

•
Table of

Contents

• Index

• Reviews

• Examples

• CD-ROM

•
Reader

Reviews

• Errata

Learning Java™, 2nd Edition

By Jonathan Knudsen, Pat Niemeyer

Publisher: O'Reilly

Pub Date: July 2002

ISBN: 0-596-00285-8

Pages: 700

This new edition of Learning Java has been expanded and updated
for Java 2 Standard Edition SDK 1.4. It comprehensively addresses
important topics such as web applications, servlets, and XML that
are increasingly driving enterprise applications. This edition
provides full coverage of all Java 1.4 language features including
assertions and exception chaining as well as new APIs such as
regular expressions and NIO, the new I/O package. New Swing
features and components are described along with updated
coverage of the JavaBeans component architecture using the open
source NetBeans IDE the latest information about Applets and the
Java Plug-in for all major web browsers.

777 Copyright

 Preface

 New Developments

 Audience

 Using This Book

 Online Resources

 Conventions Used in This Book

 How to Contact Us

 Acknowledgments

 Chapter 1. Yet Another Language?

 Section 1.1. Enter Java

 Section 1.2. A Virtual Machine

 Section 1.3. Java Compared with Other Languages

 Section 1.4. Safety of Design

 Section 1.5. Safety of Implementation

 Section 1.6. Application and User-Level Security

 Section 1.7. Java and the Web

 Section 1.8. Java as a General Application Language

 Section 1.9. A Java Road Map

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Chapter 2. A First Application

 Section 2.1. HelloJava

 Section 2.2. HelloJava2: The Sequel

 Section 2.3. HelloJava3: The Button Strikes!

 Section 2.4. HelloJava4: Netscape's Revenge

 Chapter 3. Tools of the Trade

 Section 3.1. The Java Interpreter

 Section 3.2. The Classpath

 Section 3.3. Policy Files

 Section 3.4. The Java Compiler

 Section 3.5. Java Archive (JAR) Files

 Chapter 4. The Java Language

 Section 4.1. Text Encoding

 Section 4.2. Comments

 Section 4.3. Types

 Section 4.4. Statements and Expressions

 Section 4.5. Exceptions

 Section 4.6. Assertions

 Section 4.7. Arrays

 Chapter 5. Objects in Java

 Section 5.1. Classes

 Section 5.2. Methods

 Section 5.3. Object Creation

 Section 5.4. Object Destruction

 Chapter 6. Relationships Among Classes

 Section 6.1. Subclassing and Inheritance

 Section 6.2. Interfaces

 Section 6.3. Packages and Compilation Units

 Section 6.4. Visibility of Variables and Methods

 Section 6.5. Arrays and the Class Hierarchy

 Section 6.6. Inner Classes

 Chapter 7. Working with Objects and Classes

 Section 7.1. The Object Class

 Section 7.2. The Class Class

 Section 7.3. Reflection

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Chapter 8. Threads

 Section 8.1. Introducing Threads

 Section 8.2. Threading an Applet

 Section 8.3. Synchronization

 Section 8.4. Scheduling and Priority

 Section 8.5. Thread Groups

 Section 8.6. Thread Performance

 Chapter 9. Working with Text

 Section 9.1. Other Text-Related APIs

 Section 9.2. Strings

 Section 9.3. Parsing and Formatting Text

 Section 9.4. Internationalization

 Section 9.5. The java.text Package

 Section 9.6. Regular Expressions

 Chapter 10. Core Utilities

 Section 10.1. Math Utilities

 Section 10.2. Dates

 Section 10.3. Timers

 Section 10.4. Collections

 Section 10.5. Properties

 Section 10.6. The Preferences API

 Section 10.7. The Logging API

 Section 10.8. Observers and Observables

 Chapter 11. Input/Output Facilities

 Section 11.1. Streams

 Section 11.2. Files

 Section 11.3. Serialization

 Section 11.4. Data Compression

 Section 11.5. The NIO Package

 Chapter 12. Network Programming

 Section 12.1. Sockets

 Section 12.2. Datagram Sockets

 Section 12.3. Simple Serialized Object Protocols

 Section 12.4. Remote Method Invocation

 Section 12.5. Scaleable I/O with NIO

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Chapter 13. Programming for the Web

 Section 13.1. Uniform Resource Locators (URLs)

 Section 13.2. The URL Class

 Section 13.3. Handlers in Practice

 Chapter 14. Servlets and Web Applications

 Section 14.1. Servlets: Powerful Tools

 Section 14.2. Web Applications

 Section 14.3. The Servlet Life Cycle

 Section 14.4. Web Servlets

 Section 14.5. The HelloClient Servlet

 Section 14.6. The Servlet Response

 Section 14.7. Servlet Parameters

 Section 14.8. The ShowParameters Servlet

 Section 14.9. User Session Management

 Section 14.10. The ServletContext API

 Section 14.11. WAR Files and Deployment

 Section 14.12. Reloading WebApps

 Section 14.13. Error and Index Pages

 Section 14.14. Security and Authentication

 Section 14.15. Servlet Filters

 Section 14.16. Building WAR Files with Ant

 Chapter 15. Swing

 Section 15.1. Components

 Section 15.2. Containers

 Section 15.3. Events

 Section 15.4. Event Summary

 Section 15.5. The AWT Robot!

 Section 15.6. Multithreading in Swing

 Chapter 16. Using Swing Components

 Section 16.1. Buttons and Labels

 Section 16.2. Checkboxes and Radio Buttons

 Section 16.3. Lists and Combo Boxes

 Section 16.4. The Spinner

 Section 16.5. Borders

 Section 16.6. Menus

 Section 16.7. The PopupMenu Class

 Section 16.8. The JScrollPane Class

 Section 16.9. The JSplitPane Class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 16.10. The JTabbedPane Class

 Section 16.11. Scrollbars and Sliders

 Section 16.12. Dialogs

 Chapter 17. More Swing Components

 Section 17.1. Text Components

 Section 17.2. Focus Navigation

 Section 17.3. Trees

 Section 17.4. Tables

 Section 17.5. Desktops

 Section 17.6. Pluggable Look-and-Feel

 Section 17.7. Creating Custom Components

 Chapter 18. Layout Managers

 Section 18.1. FlowLayout

 Section 18.2. GridLayout

 Section 18.3. BorderLayout

 Section 18.4. BoxLayout

 Section 18.5. CardLayout

 Section 18.6. GridBagLayout

 Section 18.7. Nonstandard Layout Managers

 Section 18.8. Absolute Positioning

 Section 18.9. SpringLayout

 Chapter 19. Drawing with the 2D API

 Section 19.1. The Big Picture

 Section 19.2. The Rendering Pipeline

 Section 19.3. A Quick Tour of Java 2D

 Section 19.4. Filling Shapes

 Section 19.5. Stroking Shape Outlines

 Section 19.6. Using Fonts

 Section 19.7. Displaying Images

 Section 19.8. Drawing Techniques

 Section 19.9. Printing

 Chapter 20. Working with Images and Other Media

 Section 20.1. ImageObserver

 Section 20.2. MediaTracker

 Section 20.3. Producing Image Data

 Section 20.4. Filtering Image Data

 Section 20.5. Simple Audio

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section 20.6. Java Media Framework

 Chapter 21. JavaBeans

 Section 21.1. What's a Bean?

 Section 21.2. The NetBeans IDE

 Section 21.3. Properties and Customizers

 Section 21.4. Event Hookups and Adapters

 Section 21.5. Binding Properties

 Section 21.6. Building Beans

 Section 21.7. Limitations of Visual Design

 Section 21.8. Serialization Versus Code Generation

 Section 21.9. Customizing with BeanInfo

 Section 21.10. Hand-Coding with Beans

 Section 21.11. BeanContext and BeanContextServices

 Section 21.12. The Java Activation Framework

 Section 21.13. Enterprise JavaBeans

 Chapter 22. Applets

 Section 22.1. The Politics of Applets

 Section 22.2. The JApplet Class

 Section 22.3. The <APPLET> Tag

 Section 22.4. Using the Java Plug-in

 Section 22.5. Java Web Start

 Section 22.6. Using Digital Signatures

 Chapter 23. XML

 Section 23.1. A Bit of Background

 Section 23.2. XML Basics

 Section 23.3. SAX

 Section 23.4. DOM

 Section 23.5. Validating Documents

 Section 23.6. XSL/XSLT

 Section 23.7. Web Services

 Appendix A. Content and Protocol Handlers

 Section A.1. Writing a Content Handler

 Section A.2. Writing a Protocol Handler

 Appendix B. BeanShell: Simple Java Scripting

 Section B.1. Running BeanShell

 Section B.2. Java Statements and Expressions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Section B.3. BeanShell Commands

 Section B.4. Scripted Methods and Objects

 Section B.5. Changing the Classpath

 Section B.6. Learning More ...

 Glossary

 A

 B

 C

 D

 E

 F

 G

 H

 I

 J

 L

 M

 N

 O

 P

 R

 S

 T

 U

 V

 W

 X

 Colophon

 Index

Copyright

Copyright © 2002, 2000 O'Reilly & Associates, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol,
CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales

http://lib.ommolketab.ir
http://lib.ommolketab.ir

promotional use. Online editions are also available for most titles (http://safari.oreilly.com).
For more information contact our corporate/institutional sales department: 800-998-9938
or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered
trademarks of O'Reilly & Associates, Inc. Java™ and all Java-based trademarks and logos
are trademarks or registered trademarks of Sun Microsystems, Inc., in the United States
and other countries. O'Reilly & Associates, Inc., is independent of Sun Microsystems.

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and O'Reilly &
Associates, Inc. was aware of a trademark claim, the designations have been printed in caps
or initial caps. The association between a Bengal tigress and cubs and the topic of learning
Java is a trademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and
the authors assume no responsibility for errors or omissions, or for damages resulting from
the use of the information contained herein.

Preface

This book is about the Java™ language and programming environment. Whether you are a
software developer or just someone who's been active on the Internet in the past few years,
you've undoubtedly heard a lot about Java. Its introduction was one of the most exciting
developments in the history of the Internet. Java became the darling of the Internet
programming community as soon as the alpha version was released in 1995. Immediately,
thousands of people were writing Java applets to add to their web pages. Since then Java
has grown up and traveled far from its browser-based roots. Java is now, arguably, the
most popular programming language in the world, used by millions. In recent years Java
has surpassed languages such as C++ and Visual Basic in terms of developer demand and
become the de facto language for new development-especially for web-based applications
and services. Most universities are now using Java in their introductory courses, alongside
the other important modern languages. Perhaps you are using this text in one of your
classes right now!

What, then, is Java? Java is a new kind of programming language that was developed by
Sun Microsystems to work on myriads of computing devices and to thrive in networked
applications. It's widely used to create interactive web pages and web services. However,
we have still seen only the start. The Java language and environment are rich enough to
support new kinds of applications, such as dynamically extensible web browsers and

http://safari.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

mobile agents. Entirely new kinds of computer platforms have been and are being
developed around Java; these include handheld devices and network computers that
download all their software dynamically over the network. In the coming years, we'll see
even more of what Java can do. Fancy web pages are fun and interesting, but they certainly
aren't the end of the story. The success of Java is changing the way we think about
computing in fundamental ways.

This book gives you a thorough grounding in Java fundamentals. Learning Java, Second
Edition, attempts to live up to its name by mapping out the Java language, its class
libraries, programming techniques, and idioms. We'll dig deep into interesting areas and at
least scratch the surface of the rest. Other titles from O'Reilly & Associates pick up where
we leave off and provide more comprehensive information on specific areas and
applications of Java.

Whenever possible, we provide compelling, realistic and examples and avoid merely
cataloging features. The examples are simple but hint at what can be done. We won't be
developing the next great "killer app" in these pages, but we hope to give you a starting
point for many hours of experimentation and inspired tinkering that will lead you to learn
more on your own.

New Developments

This book, Learning Java, is actually the fourth edition-reworked and retitled-of our
original popular Exploring Java. With each edition we've taken great care not only to add
new material covering additional features, but to thoroughly revise and update the existing
content to synthesize the coverage and add years of real world perspective and experience
to these pages.

One noticeable change in recent editions is that we've deemphasized the use of applets,
reflecting their somewhat static role over the past couple of years in creating interactive
web pages. And in this edition we've greatly expanded our coverage of web applications
and services, which are now mature technologies. We've also included a chapter on
working with XML and XSL, which are important new technologies.

We cover the most interesting features of Sun's newest release of Java, officially called
Java 2 Standard Edition SDK Version 1.4 . (In the old days, it would have been called JDK
for Java Development Kit; Sun now uses the term SDK for Software Development Kit.)
Sun coined the term "Java 2" to cover the major new features introduced in Java Version
1.2. When it's necessary to mention versions, we'll simply refer to them as Java 1.x.

New features in Java 1.4 include important improvements for servlets and web

http://lib.ommolketab.ir
http://lib.ommolketab.ir

applications, regular expressions, Swing enhancements, new language features such as
assertions and chained exceptions, logging and preferences APIs and a completely new I/O
facility.

Another important change in recent Java history (Version 1.2) was the ascendancy of Java
Swing as the main API for graphical user interface programming. All the material in this
book relating to AWT, Java's original GUI programming interface, has been recast and
updated in terms of the Swing facilities.

New in This Edition

This edition of the book has been significantly reworked to be as complete and up to date
as possible. New topics in this edition include:

Language assertions and exception chaining (Chapter 4)

Regular expressions (Chapter 9)

The new preferences and logging APIs (Chapter 10)

The NIO package for scaleable I/O (Chapter 11 and Chapter 12)

Full coverage of the servlet and web applications API (Chapter 14)

Swing updates including formatted text and the new focus system (Chapters Chapter
15 through Chapter 17)

JavaBeans examples using the NetBeans IDE (Chapter 21)

Information on the Java Plug-in and applet signing (Chapter 22)

Full coverage of XML including SAX, DOM, DTDs, XSL/XSLT, and the new
JavaBeans XMLEncoder (Chapter 23)

Audience

This book is for computer professionals, students, technical people, and Finnish hackers.
It's for everyone who has a need for hands-on experience with the Java language with an
eye toward building real applications. This book could also be considered a crash course in
object-oriented programming; as you learn about Java, you'll also learn a powerful and
practical approach to object-oriented software development.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Superficially, Java looks like C or C++, so you'll have a head start in using this book if you
have some experience with one of these languages. If you do not however, don't worry.
Don't make too much of the syntactic similarities between Java and C or C++. In many
respects, Java acts like more dynamic languages such as Smalltalk and Lisp. Knowledge of
another object-oriented programming language should certainly help, although you may
have to change some ideas and unlearn a few habits. Java is considerably simpler than
languages like C++ and Smalltalk. If you learn well from good, concise examples and
personal experimentation, we think you'll like this book.

Although we encourage you to take a broad view, you would have every right to be
disappointed if we ignored the Web. A substantial part of this book does discuss Java in the
context of web applications, so you should be familiar with the basic ideas behind web
browsers, servers, and documents.

Using This Book

This book is organized roughly as follows:

Chapter 1 and Chapter 2 provide a basic introduction to Java concepts and a tutorial to
give you a jump start on Java programming.

Chapter 3 discusses tools for developing with Java (the compiler, the interpreter, and
the JAR file package). It also covers important concepts such as embedding Java code
in HTML support and object signing.

Chapter 4 through Chapter 8 describe the Java language itself. Chapter 8 covers the
language's thread facilities, which should be of particular interest to advanced
programmers.

Chapter 9 covers basic string utilities and the powerful Regular Expressions API.

Chapter 10 and Chapter 11 cover much of the core API. Chapter 10 describes basic
utilities, and Chapter 11 covers I/O facilities.

Chapter 12 and Chapter 13 cover Java networking including sockets and NIO, URLs,
and remote method invocation (RMI).

Chapter 14 covers web applications using servlets, servlet filters, and WAR files.

Chapter 15 through Chapter 20 cover the Abstract Window Toolkit (AWT) and
Swing, which provide graphical user interface (GUI) and image support.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 21 covers the JavaBeans™ component architecture.

Chapter 22 covers applets, the area in which Java saw its initial success.

Chapter 23 covers the Java APIs for working with XML and XSLT.

If you're like us, you don't read books from front to back. If you're really like us, you
usually don't read the Preface at all. However, on the off chance that you will see this in
time, here are a few suggestions:

If you are an experienced programmer who has to learn Java in the next five minutes,
you are probably looking for the examples. You might want to start by glancing at the
tutorial in Chapter 2. If that doesn't float your boat, you should at least look at the
information in Chapter 3, which tells how to use the compiler and interpreter, and
gives the basics of a standalone Java application. This should get you started.

Chapter 12 through Chapter 14 are essential if you are interested in writing advanced
networked or web-based applications. This is one of the more interesting and
important parts of Java.

Chapter 15 though Chapter 21 discuss Java's graphics features and component
architecture. You should read this if you are interested in writing graphical Java
applications or applets.

Chapter 22 covers the Applet API, including the Java Plug-in for guaranteed browser
compatibility and signed applets for advanced applications.

Chapter 23 covers the Java APIs for working with XML, including SAX, DOM,
DTDs, and using XSL to render output for the Web. XML technology is becoming
key to cross-platform development.

On the CD-ROM

The accompanying CD-ROM provides all you need to start working with Java immediately
(view CD content online at http://examples.oreilly.com/learnjava2/CD-ROM/). Open
source software on the CD-ROM includes:

Java 2 Standard Edition SDK (Version 1.4.0)

NetBeans (Version 3.3.1), a visual IDE for working with JavaBeans

Ant (Version 1.4.1), a Java servlet engine from the Jakarta Project

http://examples.oreilly.com/learnjava2/CD-ROM/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Tomcat (Version 4.0.3), a Java servlet engine from the Jakarta Project

BeanShell (Version 1.2), a simple Java scripting language

Online Resources

There are many online sources for information about Java. Sun Microsystems's official web
site for Java topics is http://java.sun.com; look here for the latest news, updates, and Java
releases. This is where you'll find the Java SDK, which includes the compiler, the
interpreter, and other tools (the SDK is also on the CD-ROM that comes with this book;
view CD content online at http://examples.oreilly.com/learnjava2/CD-ROM/).

You should also visit O'Reilly & Associates' Java site at http://java.oreilly.com. There
you'll find information about other O'Reilly Java books, and a pointer to the home page for
Learning Java, http://www.oreilly.com/catalog/learnjava2/, where you'll find the source
code examples for this book.

The comp.lang.java newsgroup can be a good source of information and announcements,
and a place to ask intelligent questions.

Conventions Used in This Book

The font conventions used in this book are quite simple.

Italic is used for:

Unix pathnames, filenames, and program names

Internet addresses, such as domain names and URLs

New terms where they are defined

GUI buttons and menus, and threads

Program names, compilers, interpreters, utilities, and commands

Constant width is used for:

Anything that might appear in a Java program, including method names, variable
names, and class names

http://java.sun.com
http://examples.oreilly.com/learnjava2/CD-ROM/
http://java.oreilly.com
http://www.oreilly.com/catalog/learnjava2/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Command lines and options that should be typed verbatim on the screen

Tags that might appear in an HTML or XML document

Keywords, objects, and environment variables

Constant width bold is used for:

Text that is typed by the user in code examples

Constant width italic is used for:

Replaceable items in code

This icon designates a note, which is an important aside to the nearby
text.

This icon designates a warning relating to the nearby text.

In the main body of text, we always use a pair of empty parentheses after a method name to
distinguish methods from variables and other creatures.

In the Java source listings, we follow the coding conventions most frequently used in the
Java community. Class names begin with capital letters; variable and method names begin
with lowercase. All the letters in the names of constants are capitalized. We don't use
underscores to separate words in a long name; following common practice, we capitalize
individual words (after the first) and run the words together. For example:
thisIsAVariable, thisIsAMethod(), ThisIsAClass, and
THISISACONSTANT. Also, note that we differentiate between static and nonstatic
methods when we refer to them. Unlike some books, we never write Foo.bar() to mean
the bar() method of Foo unless bar() is actually static.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, or any additional
information. You can access this page at:

http://www.oreilly.com/catalog/learnjava2

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly
Network, see our web site at:

http://www.oreilly.com

Acknowledgments

Many people have contributed to putting this book together, both in its Exploring Java
incarnation and in its current form as Learning Java. Foremost we would like to thank Tim
O'Reilly for giving us the opportunity to write this book. Special thanks to Mike Loukides,
the series editor, whose endless patience and experience got us through the difficult parts.
Paula Ferguson and John Posner contributed their organizational and editing abilities to get
the material into final form. We could not have asked for a more skillful or responsive team
of people with whom to work.

Speaking of borrowings, the original version of the glossary came from David Flanagan's
book, Java in a Nutshell. We also borrowed the class hierarchy diagrams from David's
book. These diagrams were based on similar diagrams by Charles L. Perkins. His original
diagrams are available at http://rendezvous.com/java/.

Thanks also to Marc Wallace and Steven Burkett for reading the original work in progress
and for the support of our friends at Washington University. A big thanks to Deb Cameron
who edited this edition of the book and kept me from getting too far behind schedule
(thanks for all the hard work Deb!). Thanks to all those who reviewed or answered
questions for the latest edition: Jim Elliott and Brian Cole for Swing, Jack Shirazi for NIO,
Tim Boudreau for NetBeans, Ed Howland for XML, and Ian Darwin for regular
expressions. (Check out Ian's O'Reilly Java Cookbook for more examples.) Thanks also to

http://www.oreilly.com/catalog/learnjava2
http://www.oreilly.com
http://rendezvous.com/java/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Ray O'Leary, Mario Aquino, and Mark Volkmann for their reviews. Finally, special thanks
to Song Fang for putting up with me through all this work.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

Chapter 1. Yet Another Language?

 1.1 Enter Java

 1.2 A Virtual Machine
 1.3 Java Compared with Other Languages

 1.4 Safety of Design

 1.5 Safety of Implementation

 1.6 Application and User-Level Security

 1.7 Java and the Web
 1.8 Java as a General Application Language

 1.9 A Java Road Map

The greatest challenges and most exciting opportunities for software developers today lie
in harnessing the power of networks. Applications created today, whatever their intended
scope or audience, will almost certainly be run on machines linked by a global network of
computing resources. The increasing importance of networks is placing new demands on
existing tools and fueling the demand for a rapidly growing list of completely new kinds of
applications.

We want software that works-consistently, anywhere, on any platform-and that plays
well with other applications. We want dynamic applications that take advantage of a
connected world, capable of accessing disparate and distributed information sources. We
want truly distributed software that can be extended and upgraded seamlessly. We want
intelligent applications-such as autonomous agents that can roam the Net for us, ferreting
out information and serving as electronic emissaries. We know, to some extent, what we
want. So why don't we have it?

The problem, historically, has been that the tools for building these applications have fallen
short. The requirements of speed and portability have been, for the most part, mutually
exclusive, and security has been largely ignored or misunderstood. There are truly portable
languages, but they are mostly bulky, interpreted, and slow. These languages are popular as
much for their high-level functionality as for their portability. And there are fast languages,
but they usually provide speed by binding themselves to particular platforms, so they can
meet the portability issue only halfway. There are even a few recent safe languages, but
they are primarily offshoots of the portable languages and suffer from the same problems.

1.1 Enter Java

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Java™ programming language, developed at Sun Microsystems under the guidance of
Net luminaries James Gosling and Bill Joy, is designed to be a machine-independent
programming language that is both safe enough to traverse networks and powerful enough
to replace native executable code. Java addresses the issues raised here and may help us
start building the kinds of applications we want.

Initially, most of the enthusiasm for Java centered around its capabilities for building
embedded applications for the Web called applets. Applets can be independent programs in
and of themselves, or serve as sophisticated frontends to programs running on a server.
More recently, interest has shifted to other areas. In Version 1.2, Java introduced Swing,
one of the most sophisticated toolkits for building graphical user interfaces in any
language. This development allowed Java to become a popular platform for developing
traditional client-side application software. Java has also become the premier platform for
web applications, using the servlet interface, and for enterprise applications using
technologies such as Enterprise JavaBeans™. Java network portability makes it the
platform of choice for modern distributed applications. This book shows you how to use
Java to accomplish real programming tasks, such as building networked applications and
creating functional user interfaces.

1.1.1 Java's Origins

The seeds of Java were planted in 1990 by Sun Microsystems patriarch and chief
researcher, Bill Joy. Since Sun's inception in the early `80s, it has steadily pushed one idea:
"The network is the computer." At the time though, Sun was competing in a relatively
small workstation market, while Microsoft was beginning its domination of the more
mainstream, Intel-based PC world. When Sun missed the boat on the PC revolution, Joy
retreated to Aspen, Colorado, to work on advanced research. He was committed to the idea
of accomplishing complex tasks with simple software and founded the aptly named Sun
Aspen Smallworks.

Of the original members of the small team of programmers assembled in Aspen, James
Gosling is the one who will be remembered as the father of Java. Gosling first made a
name for himself in the early `80s as the author of Gosling Emacs, the first version of the
popular Emacs editor that was written in C and ran under Unix. Gosling Emacs became
popular but was soon eclipsed by a free version, GNU Emacs, written by Emacs' original
designer. By that time, Gosling had moved on to design Sun's NeWS window system,
which briefly contended with the X Window System for control of the Unix graphical user
interface (GUI) desktop in 1987. While some people would argue that NeWS was superior
to X, NeWS lost out because Sun kept it proprietary and didn't publish source code, while
the primary developers of X formed the X Consortium and took the opposite approach.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Designing NeWS taught Gosling the power of integrating an expressive language with a
network-aware windowing GUI. It also taught Sun that the Internet programming
community will ultimately refuse to accept proprietary standards, no matter how good they
may be. The seeds of Java's remarkably permissive licensing scheme were sown by
NeWS's failure. Gosling brought what he had learned to Bill Joy's nascent Aspen project,
and in 1992, work on the project led to the founding of the Sun subsidiary, FirstPerson,
Inc. Its mission was to lead Sun into the world of consumer electronics.

The FirstPerson team worked on developing software for information appliances, such as
cellular phones and personal digital assistants (PDAs). The goal was to enable the transfer
of information and real-time applications over cheap infrared and packet-based networks.
Memory and bandwidth limitations dictated small and efficient code. The nature of the
applications also demanded they be safe and robust. Gosling and his teammates began
programming in C++, but they soon found themselves confounded by a language that was
too complex, unwieldy, and insecure for the task. They decided to start from scratch, and
Gosling began working on something he dubbed "C++ minus minus."

With the foundering of the Apple Newton, it became apparent that the PDA's ship had not
yet come in, so Sun shifted FirstPerson's efforts to interactive TV (ITV). The programming
language of choice for ITV set-top boxes was to be the near ancestor of Java, a language
called Oak. Even with its elegance and ability to provide safe interactivity, Oak could not
salvage the lost cause of ITV at that time. Customers didn't want it, and Sun soon
abandoned the concept.

At that time, Joy and Gosling got together to decide on a new strategy for their language. It
was 1993, and the explosion of interest in the Internet, and the Web in particular, presented
a new opportunity. Oak was small, robust, architecture-independent, and object-oriented.
As it happens, these are also the requirements for a universal, network-savvy programming
language. Sun quickly changed focus, and, with a little retooling, Oak became Java.

1.1.2 Future Buzz?

It would not be overdoing it to say that Java has caught on like wildfire. Even before its
first official release, while Java was still a nonproduct, nearly every major industry player
had jumped on the Java bandwagon. Java licensees included Microsoft, Intel, IBM, and
virtually all major hardware and software vendors. That's not to say that everything has
come up roses. Even with all this support, Java has taken a lot of knocks and had some
growing pains during its first few years.

An ongoing lawsuit between Sun and Microsoft over the distribution of Java with Internet

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Explorer has hampered its deployment on the world's most common operating
system-Windows. Microsoft's involvement with Java has also become one focus of a
larger federal lawsuit over serious anticompetitive practices at the company, with court
testimony revealing concerted efforts by the software giant to undermine Java's future by
introducing incompatibilities in its version of Java. Meanwhile, Microsoft has introduced
their own Java-like language called C# (C-sharp) as part of their .NET initiative. This can
only be interpreted as an indication of the success of the Java architecture.

As we begin looking at the Java architecture, you'll see that much of what is exciting about
Java comes from the self-contained, virtual machine environment in which Java
applications run. Java has been carefully designed so that this supporting architecture can
be implemented either in software, for existing computer platforms, or in customized
hardware, for new kinds of devices. Sun and other industry giants are producing fast Java
chips and microprocessors tailored to run media-rich Java applications. Hardware
implementations of Java are currently used in smart cards and other embedded systems.
They are also planned for larger devices such as network terminals and web pads. Software
implementations of Java are available for all modern computer platforms down to portable
computing devices such as the popular Palm PDA. Java is also shipping now with many
new cell phones.

Many people see Java as part of a trend toward cheap, Internet-based, "operating system-
less" appliances that will weave the Net into more and more consumer-related areas. The
first attempts at marketing "network computers" as alternatives to the standard PC have not
gone very well. (The combination of Windows and cheap PC hardware create a formidable
barrier.) But the desktop is only one corner of the network. Only time will tell what people
will do with Java, but it's probably worth at least a passing thought that the applet you write
today might well be running on someone's wristwatch tomorrow. If that seems too
futuristic, remember that you can already get "smart cards" and "wearable" devices such as
rings and dog tags that have Java interpreters embedded in them. These devices are capable
of doing everything from financial transactions (paying a hotel bill) to unlocking a door
(the door to your hotel room) to rerouting phone calls (so your hotel room receives your
business calls). The hardware is already here; it can't be long before the rest of the software
infrastructure begins to take advantage of it. A Java wristwatch is not a silly notion.

1.2 A Virtual Machine

Java is both a compiled and an interpreted language. Java source code is turned into simple
binary instructions, much like ordinary microprocessor machine code. However, whereas C
or C++ source is refined to native instructions for a particular model of processor, Java
source is compiled into a universal format-instructions for a virtual machine.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Compiled Java byte code is executed by a Java runtime interpreter. The runtime system
performs all the normal activities of a real processor, but it does so in a safe, virtual
environment. It executes a stack-based instruction set and manages a storage heap. It
creates and manipulates primitive data types, and loads and invokes newly referenced
blocks of code. Most importantly, it does all this in accordance with a strictly defined open
specification that can be implemented by anyone who wants to produce a Java-compliant
virtual machine. Together, the virtual machine and language definition provide a complete
specification. There are no features of the base Java language left undefined or
implementation-dependent. For example, Java specifies the sizes of all its primitive data
types, rather than leaving it up to the platform implementation.

The Java interpreter is relatively lightweight and small; it can be implemented in whatever
form is desirable for a particular platform. On most systems, the interpreter is written in a
fast, natively compiled language such as C or C++. The interpreter can be run as a separate
application, or it can be embedded in another piece of software, such as a web browser.

Put together this means that Java code is implicitly portable. The same Java application
byte code can run on any platform that provides a Java runtime environment, as shown in
Figure 1-1. You don't have to produce alternative versions of your application for different
platforms, and you don't have to distribute source code to end users.

Figure 1-1. The Java runtime environment

The fundamental unit of Java code is the class. As in other object-oriented languages,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

classes are application components that hold executable code and data. Compiled Java
classes are distributed in a universal binary format that contains Java byte code and other
class information. Classes can be maintained discretely and stored in files or archives
locally or on a network server. Classes are located and loaded dynamically at runtime as
they are needed by an application.

In addition to the platform-specific runtime system, Java has a number of fundamental
classes that contain architecture-dependent methods. These native methods serve as the
gateway between the Java virtual machine and the real world. They are implemented in a
natively compiled language on the host platform and provide low-level access to resources
such as the network, the windowing system, and the host filesystem. The rest of Java is
written entirely in Java and is therefore portable. This includes fundamental Java tools such
as the Java compiler and web browser components, which are also written in Java and are
therefore available on all Java platforms.

Historically, interpreters have been considered slow, but because the Java interpreter runs
compiled byte code, Java is a relatively fast interpreted language. More importantly, Java
has also been designed so that software implementations of the runtime system can
optimize their performance by compiling byte code to native machine code on the fly. This
is called just-in-time (JIT) or dynamic compilation. Sun claims that with just-in-time
compilation, Java code can execute nearly as fast as native compiled code and maintain its
transportability and security.

This is an often misunderstood point among those who want to compare language
performance. There is only one intrinsic performance hit that compiled Java code suffers at
runtime for the sake of security and virtual machine design-array bounds checking.
Everything else can be optimized down to native code just as it can with a statically
compiled language. Going beyond that, the Java language includes more structural
information than many other languages, providing more room for optimizations. Also
remember that these optimization can be made at runtime, taking into account the actual
application characteristics. What can be done at compile time that can't be done better at
runtime? Well, there is a trade-off: time.

The problem with a traditional JIT compilation is that optimizing code takes time and is
extremely important for good performance on modern computer hardware. So a JIT
compiler can produce decent results but may not be able to take the time necessary to do a
good job of optimization up front. Sun's compiler technology, called HotSpot, uses a trick
called adaptive compilation to solve this problem. If you look at what programs actually
spend their time doing, it turns out that they spend almost all their time executing a
relatively small part of the code again and again. The chunk of code that is executed
repeatedly may only be a small fraction of the total program, but its behavior determines

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the program's overall performance.

To take advantage of this fact, HotSpot starts out as a normal Java byte code interpreter,
but with a difference: it measures (profiles) the code as it is executing, to see what parts are
being executed repeatedly. Once it knows which parts of the code are crucial to
performance, HotSpot compiles those sections-and only those sections-into true
machine code. Since it compiles only a small portion of the program into machine code, it
can afford to take the time necessary to optimize those portions. The rest of the program
may not need to be compiled at all-just interpreted-saving memory and time. In fact
Sun's default Java VM can run in one of two modes: client and server, which tell it whether
the emphasize quick start-up time and memory conservation or flat out performance.

The technology for doing this is complex, but the idea is essentially simple: optimize the
parts of the program that need to go fast, and don't worry about the rest. Another advantage
of using an adaptive compiler at runtime is that it can make novel kinds of optimizations
that a static (compile-time only) compiler cannot dream of.

1.3 Java Compared with Other Languages

Java is a new language, but it draws on many years of programming experience with other
languages in its choice of features. Much can be said in comparing and contrasting Java
with other languages. There are at least three pillars necessary to support a universal
language for network programming today: portability, speed, and security. Figure 1-2
shows how Java compares to other languages.

Figure 1-2. Programming languages compared

You may have heard that Java is a lot like C or C++, but that's really not true, except at a
superficial level. When you first look at Java code, you'll see that the basic syntax looks
like C or C++. But that's where the similarities end. Java is by no means a direct

http://lib.ommolketab.ir
http://lib.ommolketab.ir

descendant of C or a next-generation C++. If you compare language features, you'll see
that Java actually has more in common with languages such as Smalltalk and Lisp. In fact,
Java's implementation is about as far from native C as you can imagine.

The surface-level similarities to these languages are worth noting, however. Java borrows
heavily from C and C++ syntax, so you'll see lots of familiar language constructs, including
an abundance of curly braces and semicolons. Java also subscribes to the C philosophy that
a good language should be compact; in other words, it should be sufficiently small and
regular so a programmer can hold all the language's capabilities in his or her head at once.
Just as C is extensible with libraries, packages of Java classes can be added to the core
language components.

C has been successful because it provides a reasonably featureful programming
environment, with high performance and an acceptable degree of portability. Java also tries
to balance functionality, speed, and portability, but it does so in a very different way. C
trades functionality for portability; Java trades speed for portability. Java also addresses
security issues while C doesn't.

In the early days, before JIT and adaptive compilation, Java was considerably slower than
compiled languages. But as we described in the previous section, Java's performance is
now comparable to C or C++ for equivalent tasks.

Scripting languages, such as Perl, Python, and Ruby, are becoming very popular, and for
good reason. There's no reason a scripting language can't be suitable for safe, networked
applications. But most scripting languages are not designed for serious, large-scale
programming. The attraction to scripting languages is that they are dynamic; they are
powerful tools for rapid prototyping. Some scripting languages such as Perl also provide
powerful tools for text-processing tasks that more general-purpose languages find
unwieldy. Scripting languages are also highly portable.

One problem with scripting languages, however, is that they are rather casual about
program structure and data typing. Most scripting languages (with a hesitant exception for
Perl 5.0 and Python) are not object-oriented. They also have vastly simplified type systems
and generally don't provide for sophisticated scoping of variables and functions. These
characteristics make them unsuitable for building large, modular applications. Speed is
another problem with scripting languages; the high-level, fully interpreted nature of these
languages often makes them quite slow.

Java offers some of the essential advantages of a scripting language, along with the added
benefits of a lower-level language. Java 1.4 adds a complete Regular Expression API that
makes it as powerful as Perl for working with text.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

However, don't confuse Java with JavaScript! JavaScript is an object-based scripting
language being developed by Netscape and others. It serves as a glue and an "in the
document" language for dynamic, interactive HTML-based applications. JavaScript takes
its name from its intended integration with Java. You can currently interact with Java
applets embedded in HTML using JavaScript. There have been a few portable
implementations of JavaScript that would promote it to the level of a general scripting
language. For more information on JavaScript, check out JavaScript: The Definitive Guide
by David Flanagan (O'Reilly & Associates).

Incremental development with object-oriented components, combined with Java's
simplicity, make it possible to develop applications rapidly and change them easily. Many
studies have found that development in Java is 10 times faster than in C or C++, strictly
based on language features. Java also comes with a large base of core classes for common
tasks such as building GUIs and doing network communications. But along with these
features, Java has the scalability and software-engineering advantages of more static
languages. It provides a safe structure on which to build higher-level frameworks (and
even other languages).

As we've already said, Java is similar in design to languages such as Smalltalk and Lisp.
However, these languages are currently used mostly as research vehicles, rather than for
developing large-scale systems. One reason is that they never developed a standard
portable binding to operating-system services, such as the C standard library or the Java
core classes. Smalltalk is compiled to an interpreted bytecode format, and it can be
dynamically compiled to native code on the fly, just like Java. But Java improves on the
design by using a bytecode verifier to ensure the correctness of compiled Java code. This
verifier gives Java a performance advantage over Smalltalk because Java code requires
fewer runtime checks. Java's bytecode verifier also helps with security issues, something
that Smalltalk doesn't address. Smalltalk is a mature language, though, and Java's designers
took lessons from many of its features.

Throughout the rest of this chapter, we'll present a bird's-eye view of the Java language.
We'll explain what's new and what's not-so-new about Java, how it differs from other
languages, and why.

1.4 Safety of Design

You have no doubt heard a lot about the fact that Java is designed to be a safe language.
But what do we mean by safe? Safe from what or whom? The security features that attract
the most attention for Java are those features that make possible new types of dynamically
portable software. Java provides several layers of protection from dangerously flawed

http://lib.ommolketab.ir
http://lib.ommolketab.ir

code, as well as more mischievous things such as viruses and Trojan horses. In the next
section, we'll take a look at how the Java virtual machine architecture assesses the safety of
code before it's run, and how the Java class loader (the bytecode loading mechanism of the
Java interpreter) builds a wall around untrusted classes. These features provide the
foundation for high-level security policies that can allow or disallow various kinds of
activities on an application-by-application basis.

In this section, though, we'll look at some general features of the Java programming
language. Perhaps more important than the specific security features, although often
overlooked in the security din, is the safety that Java provides by addressing common
design and programming problems. Java is intended to be as safe as possible from the
simple mistakes we make ourselves, as well as those we inherit from legacy software. The
goal with Java has been to keep the language simple, provide tools that have demonstrated
their usefulness, and let users build more complicated facilities on top of the language
when needed.

1.4.1 Syntactic Sweet `n' Low

Java is parsimonious in its features; simplicity rules. Unlike C++, Java doesn't allow
programmer-defined operator overloading. (The string concatenation operator + is the only
system-defined, overloaded operator in Java.). Java doesn't have a preprocessor, so it
doesn't have macros, #define statements, or conditional source compilation. These
constructs exist in other languages primarily to support platform dependencies, so in that
sense they should not be needed in Java. Conditional compilation is also commonly used
for debugging purposes. Debugging code can be included directly in your Java source code
by making it conditional on a constant (we'll talk about those in Chapter 4). The Java
compiler is smart enough to remove this code when it determines that it won't be called.

Java provides a well-defined package structure for organizing class files. The package
system allows the compiler to handle some of the functionality of the traditional make
utility (a tool for building executables from source code). The compiler also works with
compiled Java classes because all type information is preserved; there is no need for
"header" files, as in C/C++. All this means that Java code requires less context to read.
Indeed, you may sometimes find it faster to look at the Java source code than to refer to
class documentation.

Java replaces some features that have been troublesome in other languages. For example,
Java supports only a single inheritance class hierarchy but allows multiple inheritance of
interfaces. An interface, like an abstract class in C++, specifies some of the behavior of an
object without defining its implementation, a powerful mechanism borrowed from

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Objective C. It allows a class to implement the behavior of the interface, without needing to
be a subclass of anything in particular. Interfaces in Java eliminate the need for multiple
inheritance of classes, without causing the problems associated with multiple inheritance.
As you'll see in Chapter 4, Java is a simple, yet elegant, programming language.

1.4.2 Type Safety and Method Binding

One attribute of a language is the kind of type checking it uses. Generally, when we
categorize a language as static or dynamic, we are referring to the amount of information
about variable types that is known at compile time versus what is determined while the
application is running.

In a strictly statically typed language such as C or C++, data types are etched in stone when
the source code is compiled. The compiler benefits from having enough information to
enforce usage rules, so that it can catch many kinds of errors before the code is executed,
such as storing a floating-point value in an integer variable. The code then doesn't require
runtime type checking, so it can be compiled to be small and fast. But statically typed
languages are inflexible. They don't support high-level constructs such as lists and
collections as naturally as languages with dynamic type checking, and they make it
impossible for an application to safely import new data types while it's running.

In contrast, a dynamic language such as Smalltalk or Lisp has a runtime system that
manages the types of objects and performs necessary type checking while an application is
executing. These kinds of languages allow for more complex behavior and are in many
respects more powerful. However, they are also generally slower, less safe, and harder to
debug.

The differences in languages have been likened to the differences among kinds of
automobiles.[1] Statically typed languages such as C++ are analogous to a sports
car-reasonably safe and fast-but useful only if you're driving on a nicely paved road.
Highly dynamic languages such as Smalltalk are more like an off-road vehicle: they afford
you more freedom but can be somewhat unwieldy. It can be fun (and sometimes faster) to
go roaring through the back woods, but you might also get stuck in a ditch or mauled by
bears.

Another attribute of a language is the way it binds method calls to their definitions. In an
language such as C or C++, the definitions of methods are normally bound at compile time,
unless the programmer specifies otherwise. Smalltalk, on the other hand, is called a "late-
binding" language because it locates the definitions of methods dynamically at runtime.
Early-binding is important for performance reasons; an application can run without the
overhead incurred by searching method tables at runtime. But late-binding is more flexible.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

It's also necessary in an object-oriented language, where a subclass can override methods
in its superclass, and only the runtime system can determine which method to run.

Java provides some of the benefits of both C++ and Smalltalk; it's a statically typed, late-
binding language. Every object in Java has a well-defined type that is known at compile
time. This means the Java compiler can do the same kind of static type checking and usage
analysis as C++. As a result, you can't assign an object to the wrong type of variable or call
nonexistent methods on an object. The Java compiler goes even further and prevents you
from using uninitialized variables (see Chapter 4).

However, Java is fully runtime-typed as well. The Java runtime system keeps track of all
objects and makes it possible to determine their types and relationships during execution.
This means you can inspect an object at runtime to determine what it is. Unlike C or C++,
casts from one type of object to another are checked by the runtime system, and it's
possible to use new kinds of dynamically loaded objects with a level of type safety. And
since Java is a late-binding language, all methods are like virtual methods in C++. This
means that it's possible for a subclass to override methods in its superclass, even a subclass
loaded at runtime.

1.4.3 Incremental Development

Java carries all data-type and method-signature information with it from its source code to
its compiled bytecode form. This means that Java classes can be developed incrementally.
Your own Java classes can also be used safely with classes from other sources your
compiler has never seen. In other words, you can write new code that references binary
class files, without losing the type safety you gain from having the source code.

A common irritation with C++ is the "fragile base class" problem. In C++, the
implementation of a base class can be effectively frozen by the fact that it has many derived
classes; changing the base class may require recompilation of the derived classes. This is
an especially difficult problem for developers of class libraries. Java avoids this problem by
dynamically locating fields within classes. As long as a class maintains a valid form of its
original structure, it can evolve without breaking other classes that are derived from it or
that make use of it.

1.4.4 Dynamic Memory Management

Some of the most important differences between Java and C or C++ involve how Java
manages memory. Java eliminates ad hoc pointers and adds garbage collection and true
arrays to the language. These features eliminate many otherwise insurmountable problems

http://lib.ommolketab.ir
http://lib.ommolketab.ir

with safety, portability, and optimization.

Garbage collection alone should save countless programmers from the single largest source
of programming errors in C or C++: explicit memory allocation and deallocation. In
addition to maintaining objects in memory, the Java runtime system keeps track of all
references to those objects. When an object is no longer in use, Java automatically removes
it from memory. You can simply ignore objects you no longer use, with confidence that the
interpreter will clean them up at an appropriate time.

Java uses a sophisticated garbage collector that runs intermittently in the background,
which means that most garbage collecting takes place during idle times, between I/O
pauses, mouse clicks, or keyboard hits. Next-generation runtime systems such as HotSpot
have even more advanced garbage collection that can even differentiate the usage patterns
of objects (such as short-lived versus long-lived) and optimize their collection. Once you
get used to garbage collection, you won't go back. Being able to write air-tight C code that
juggles memory without dropping any on the floor is an important skill, but once you
become addicted to Java, you can reallocate some of those brain cells to new tasks.

You may hear people say that Java doesn't have pointers. Strictly speaking, this statement
is true, but it's also misleading. What Java provides are references-a safe kind of
pointer-and Java is rife with them. A reference is a strongly typed handle for an object.
All objects in Java, with the exception of primitive numeric types, are accessed through
references. If necessary, you can use references to build all the normal kinds of data
structures you're accustomed to building with pointers, such as linked lists, trees, and so
forth. The only difference is that with references you have to do so in a type-safe way.

Another important difference between a reference and a pointer is that you can't do pointer
arithmetic with references (they can point only to specific objects or elements of an array).
A reference is an atomic thing; you can't manipulate the value of a reference except by
assigning it to an object. References are passed by value, and you can't reference an object
through more than a single level of indirection. The protection of references is one of the
most fundamental aspects of Java security. It means that Java code has to play by the rules;
it can't peek into places it shouldn't.

Unlike C or C++ pointers, Java references can point only to class types. There are no
pointers to methods. People sometimes complain about this missing feature, but you will
find that tasks that call for pointers to methods can be accomplished more cleanly using
interfaces and adapter classes instead. We should also mention that Java has a sophisticated
"reflection" API that actually allows you to reference and invoke individual methods.
However this is not the normal way of doing things. We discuss reflection in Chapter 6.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Finally, arrays in Java are true, first-class objects. They can be dynamically allocated and
assigned like other objects. Arrays know their own size and type, and although you can't
directly define or subclass array classes, they do have a well-defined inheritance
relationship based on the relationship of their base types. Having true arrays in the
language alleviates much of the need for pointer arithmetic like that in C or C++.

1.4.5 Error Handling

Java's roots are in networked devices and embedded systems. For these applications, it's
important to have robust and intelligent error management. Java has a powerful exception-
handling mechanism, somewhat like that in newer implementations of C++. Exceptions
provide a more natural and elegant way to handle errors. Exceptions allow you to separate
error-handling code from normal code, which makes for cleaner, more readable
applications.

When an exception occurs, it causes the flow of program execution to be transferred to a
predesignated "catcher" block of code. The exception carries with it an object that contains
information about the situation that caused the exception. The Java compiler requires that a
method either declare the exceptions it can generate or catch and deal with them itself. This
promotes error information to the same level of importance as argument and return typing.
As a Java programmer, you know precisely what exceptional conditions you must deal
with, and you have help from the compiler in writing correct software that doesn't leave
them unhandled.

1.4.6 Threads

Applications today require a high degree of parallelism. Even a very single-minded
application can have a complex user interface-which requires concurrent activities. As
machines get faster, users become more sensitive to waiting for unrelated tasks that seize
control of their time. Threads provide efficient multiprocessing and distribution of tasks for
both client and server applications. Java makes threads easy to use because support for
them is built into the language.

Concurrency is nice, but there's more to programming with threads than just performing
multiple tasks simultaneously. In many cases, threads need to be synchronized, which can
be tricky without explicit language support. Java supports synchronization based on the
monitor and condition model developed by C.A.R. Hoare-a sort of lock and key system
for accessing resources. The keyword synchronized designates methods for safe,
serialized access within an object. Only one synchronized method within the object may
run at a given time. There are also simple, primitive methods for explicit waiting and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

signaling between threads interested in the same object.

Learning to program with threads is an important part of learning to program in Java. See
Chapter 8 for a discussion of this topic. For complete coverage of threads, refer to Java
Threads by Scott Oaks and Henry Wong (O'Reilly).

1.4.7 Scalability

At the lowest level, Java programs consist of classes. Classes are intended to be small,
modular components. They can be separated physically on different systems, retrieved
dynamically, stored in a compressed format, and even cached in various distribution
schemes. Over classes, Java provides packages, a layer of structure that groups classes into
functional units. Packages provide a naming convention for organizing classes and a
second level of organizational control over the visibility of variables and methods in Java
applications.

Within a package, a class is either publicly visible or protected from outside access.
Packages form another type of scope that is closer to the application level. This lends itself
to building reusable components that work together in a system. Packages also help in
designing a scalable application that can grow without becoming a bird's nest of tightly
coupled code.

1.5 Safety of Implementation

It's one thing to create a language that prevents you from shooting yourself in the foot; it's
quite another to create one that prevents others from shooting you in the foot.

Encapsulation is a technique for hiding data and behavior within a class; it's an important
part of object-oriented design. It helps you write clean, modular software. In most
languages, however, the visibility of data items is simply part of the relationship between
the programmer and the compiler. It's a matter of semantics, not an assertion about the
actual security of the data in the context of the running program's environment.

When Bjarne Stroustrup chose the keyword private to designate hidden members of
classes in C++, he was probably thinking about shielding you from the messy details of a
class developer's code, not the issues of shielding that developer's classes and objects from
attack by someone else's viruses and Trojan horses. Arbitrary casting and pointer
arithmetic in C or C++ make it trivial to violate access permissions on classes without
breaking the rules of the language. Consider the following code:

// C++ code

http://lib.ommolketab.ir
http://lib.ommolketab.ir

class Finances {
 private:
 char creditCardNumber[16];
 ...
};

main() {
 Finances finances;

 // Forge a pointer to peek inside the class
 char *cardno = (char *)&finances;
 printf("Card Number = %s\n", cardno);
}

In this little C++ drama, we have written some code that violates the encapsulation of the
Finances class and pulls out some secret information. This sort of shenanigan-abusing
an untyped pointer-is not possible in Java. If this example seems unrealistic, consider
how important it is to protect the foundation (system) classes of the runtime environment
from similar kinds of attacks. If untrusted code can corrupt the components that provide
access to real resources, such as the filesystem, the network, or the windowing system, it
certainly has a chance at stealing your credit-card numbers.

In Visual BASIC, it's also possible to compromise the system by peeking, poking, and,
under DOS, installing interrupt handlers.

If a Java application is to dynamically download code from an untrusted source on the
Internet and run it alongside applications that might contain confidential information,
protection has to extend very deep. The Java security model wraps three layers of
protection around imported classes, as shown in Figure 1-3.

Figure 1-3. The Java security model

At the outside, application-level security decisions are made by a security manager. A

http://lib.ommolketab.ir
http://lib.ommolketab.ir

security manager controls access to system resources such as the filesystem, network ports,
and the windowing environment. A security manager relies on the ability of a class loader
to protect basic system classes. A class loader handles loading classes from the network. At
the inner level, all system security ultimately rests on the Java verifier, which guarantees
the integrity of incoming classes.

The Java bytecode verifier is a fixed part of the Java runtime system. Class loaders and
security managers (or security policies to be more precise), however, are components that
may be implemented differently by different applications that load byte code, such as
applet viewers and web browsers. All three of these pieces need to be functioning properly
to ensure security in the Java environment. [2]

1.5.1 The Verifier

Java's first line of defense is the bytecode verifier. The verifier reads byte code before it is
run and makes sure it is well-behaved and obeys the basic rules of the Java language. A
trusted Java compiler won't produce code that does otherwise. However, it's possible for a
mischievous person to deliberately assemble bad code. It's the verifier's job to detect this.

Once code has been verified, it's considered safe from certain inadvertent or malicious
errors. For example, verified code can't forge references or violate access permissions on
objects. It can't perform illegal casts or use objects in unintended ways. It can't even cause
certain types of internal errors, such as overflowing or underflowing the operand stack.
These fundamental guarantees underlie all of Java's security.

You might be wondering, isn't this kind of safety implicit in lots of interpreted languages?
Well, while it's true that you shouldn't be able to corrupt the interpreter with bogus BASIC
code, remember that the protection in most interpreted languages happens at a higher level.
Those languages are likely to have heavyweight interpreters that do a great deal of runtime
work, so they are necessarily slower and more cumbersome.

By comparison, Java byte code is a relatively light, low-level instruction set. The ability to
statically verify the Java byte code before execution lets the Java interpreter run at full
speed with full safety, without expensive runtime checks.

The verifier is a type of mathematical "theorem prover." It steps through the Java byte code
and applies simple, inductive rules to determine certain aspects of how the byte code will
behave. This kind of analysis is possible because compiled Java byte code contains a lot
more type information than the object code of other languages of this kind. The byte code
also has to obey a few extra rules that simplify its behavior. First, most bytecode
instructions operate only on individual data types. For example, with stack operations,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

there are separate instructions for object references and for each of the numeric types in
Java. Similarly, there is a different instruction for moving each type of value into and out of
a local variable.

Second, the type of object resulting from any operation is always known in advance. There
are no bytecode operations that consume values and produce more than one possible type
of value as output. As a result, it's always possible to look at the next instruction and its
operands and know the type of value that will result.

Because an operation always produces a known type, by looking at the starting state it's
possible to determine the types of all items on the stack and in local variables at any point
in the future. The collection of all this type information at any given time is called the type
state of the stack; this is what Java tries to analyze before it runs an application. Java
doesn't know anything about the actual values of stack and variable items at this time, just
what kind of items they are. However, this is enough information to enforce the security
rules and to ensure that objects are not manipulated illegally.

To make it feasible to analyze the type state of the stack, Java places an additional
restriction on how Java bytecode instructions are executed: all paths to the same point in
the code have to arrive with exactly the same type state. [3]

1.5.2 Class Loaders

Java adds a second layer of security with a class loader. A class loader is responsible for
bringing the byte code for one or more Java classes into the interpreter. Every application
that loads classes from the network must use a class loader to handle this task.

After a class has been loaded and passed through the verifier, it remains associated with its
class loader. As a result, classes are effectively partitioned into separate namespaces based
on their origin. When a loaded class references another class name, the location of the new
class is provided by the original class loader. This means that classes retrieved from a
specific source can be restricted to interact only with other classes retrieved from that same
location. For example, a Java-enabled web browser can use a class loader to build a
separate space for all the classes loaded from a given URL.

The search for classes always begins with the built-in Java system classes. These classes
are loaded from the locations specified by the Java interpreter's classpath (see Chapter 3).
Classes in the classpath are loaded by the system only once and can't be replaced. This
means that it's impossible for an applet to replace fundamental system classes with its own
versions that change their functionality.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.5.3 Security Managers

Finally, a security manager is responsible for making application-level security decisions.
A security manager is an object that can be installed by an application to restrict access to
system resources. The security manager is consulted every time the application tries to
access items such as the filesystem, network ports, external processes, and the windowing
environment; the security manager can allow or deny the request.

A security manager is most useful for applications that run untrusted code as part of their
normal operation. Since a Java-enabled web browser can run applets that may be retrieved
from untrusted sources on the Net, such a browser needs to install a security manager as
one of its first actions. This security manager then restricts the kinds of access allowed after
that point. This lets the application impose an effective level of trust before running an
arbitrary piece of code. And once a security manager is installed, it can't be replaced.

In recent versions of Java, the security manager works in conjunction with an access
controller that lets you implement security policies by editing a file. Access policies can be
as simple or complex as a particular application warrants. Sometimes it's sufficient simply
to deny access to all resources or to general categories of services such as the filesystem or
network. But it's also possible to make sophisticated decisions based on high-level
information. For example, a Java-enabled web browser could use an access policy that lets
users specify how much an applet is to be trusted or that allows or denies access to specific
resources on a case-by-case basis. Of course, this assumes that the browser can determine
which applets it ought to trust. We'll see how this problem is solved shortly.

The integrity of a security manager is based on the protection afforded by the lower levels
of the Java security model. Without the guarantees provided by the verifier and the class
loader, high-level assertions about the safety of system resources are meaningless. The
safety provided by the Java bytecode verifier means that the interpreter can't be corrupted
or subverted and that Java code has to use components as they are intended. This, in turn,
means that a class loader can guarantee that an application is using the core Java system
classes and that these classes are the only way to access basic system resources. With these
restrictions in place, it's possible to centralize control over those resources with a security
manager.

1.6 Application and User-Level Security

There's a fine line between having enough power to do something useful and having all the
power to do anything you want. Java provides the foundation for a secure environment in
which untrusted code can be quarantined, managed, and safely executed. However, unless

http://lib.ommolketab.ir
http://lib.ommolketab.ir

you are content with keeping that code in a little black box and running it just for its own
benefit, you will have to grant it access to at least some system resources so that it can be
useful. Every kind of access carries with it certain risks and benefits. For example, in the
web browser environment, the advantages of granting an untrusted (unknown) applet
access to your windowing system are that it can display information and let you interact in
a useful way. The associated risks are that the applet may instead display something
worthless, annoying, or offensive. Since most people can accept that level of risk, graphical
applets and the Web in general are possible.

At one extreme, the simple act of running an application gives it a resource-computation
time-that it may put to good use or burned frivolously. It's difficult to prevent an
untrusted application from wasting your time or even attempting a "denial of service"
attack. At the other extreme, a powerful, trusted application may justifiably deserve access
to all sorts of system resources (e.g., the filesystem, process creation, network interfaces); a
malicious application could wreak havoc with these resources. The message here is that
important and sometimes complex security issues have to be addressed.

In some situations, it may be acceptable to simply ask the user to "okay" requests. Sun's
HotJava web browser can pop up a dialog box and ask the user's permission for an applet
to access an otherwise restricted file. However, we can put only so much burden on our
users. An experienced person will quickly grow tired of answering questions; an
inexperienced user may not be able to answer the questions correctly. Is it okay for me to
grant an applet access to something if I don't understand what that is?

Making decisions about what is dangerous and what is not can be difficult. Even ostensibly
harmless access, such as displaying a window, can become a threat when paired with the
ability of an untrusted application to communicate from your host. The Java Security
Manager provides an option to flag windows created by an untrusted application with a
special, recognizable border to prevent it from impersonating another application and
perhaps tricking you into revealing your password or your secret recipe collection. There is
also a grey area, in which an application can do devious things that aren't quite destructive.
An applet that can mail a bug report can also mail-bomb your boss. The Java language
provides the tools to implement whatever security policies you want. However, what these
policies will be ultimately depends on who you are, what you are doing, and where you are
doing it.

1.6.1 Signing Classes

Web browsers that run Java applets, such as Sun's HotJava, start by defining a few rules
and some coarse levels of security that restrict where applets may come from and what

http://lib.ommolketab.ir
http://lib.ommolketab.ir

system resources they may access. These rules are sufficient to keep the waving Duke
applet from clutching your password file, but they aren't sufficient for applications you'd
like to trust with sensitive information. To fully exploit the power of Java, we need to have
some nontechnical basis on which to make reasonable decisions about what a program can
be allowed to do. This nontechnical basis is trust; basically, you trust certain entities not to
do anything that's harmful to you. For a home user, this may mean that you trust the "Bank
of Boofa" to distribute applets that let you transfer funds between your accounts, or you
may trust L.L. Bean to distribute an applet that debits your Visa account. For a company,
this may mean you trust applets originating behind your firewall and perhaps applets from
a few high-priority customers, to modify internal databases. In all these cases, you don't
need to know in detail what the program is going to do and give it permission for each
operation. You only need to know that you trust your local bank.

This doesn't mean that there isn't a technical aspect to the problem of trust. Trusting your
local bank when you walk up to the ATM means one thing; trusting some web page that
claims to come from your local bank means something else entirely. It would be very
difficult to impersonate the ATM two blocks down the street (though it has been known to
happen), but, depending on your position on the Net, it's not all that difficult to impersonate
a web site or to intercept data coming from a legitimate web site and substitute your own.

That's where cryptography comes in. Digital signatures, together with certificates, are
techniques for verifying that data truly comes from the source it claims to have come from
and hasn't been modified en route. If the Bank of Boofa signs its checkbook applet, your
browser can verify that the applet actually came from the bank, not an imposter, and hasn't
been modified. Therefore, you can tell your browser to trust applets that have the Bank of
Boofa's signature. Java supports digital signatures; the details are covered in Chapter 3.

1.7 Java and the Web

The application-level safety features of Java make it possible to develop new kinds of
applications that were not feasible before. A web browser that uses the Java runtime system
can incorporate Java applets as executable content inside documents. This means that web
pages can contain not only static hypertext information but also full-fledged interactive
applications. The added potential for use of the Web is enormous. A user can retrieve and
use software simply by navigating with a web browser. Formerly static information can be
paired with portable software for interpreting and using the information. Instead of just
providing some data for a spreadsheet, for example, a web document might contain a fully
functional spreadsheet application embedded within it that allows users to view and
manipulate the information.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In addition to applets, a more recent model for Internet downloadable application content is
Java Web Start. The Web Start API allows your web browser to install applications locally,
with stringent security still enforced by the Java runtime system. This system can also
automatically update the software when it is used. We'll discuss this more in Chapter 22.

1.7.1 Applets

The term "applet" is used to mean a small, subordinate, or embeddable application. By
"embeddable," we mean it's designed to be run and used within the context of a larger
system. In that sense, most programs are embedded within a computer's operating system.
An operating system manages its native applications in a variety of ways: it starts, stops,
suspends, and synchronizes applications; it provides them with certain standard resources;
and it protects them from one another by partitioning their environments.

As far as the web browser model is concerned, an applet is just another type of object to
display; it's embedded into an HTML page with a special tag. Java-enabled web browsers
can execute applets directly, in the context of a particular document, as shown in Figure 1-
4. Browsers can also implement this feature using Sun's Java Plug-in, which runs Java just
like other browser plug-ins display other kinds of content.

Figure 1-4. Applets in a web document

A Java applet is a compiled Java program, composed of classes just like any Java program.
While a simple applet may consist of only a single class, most large applets should be
broken into many classes. Classes may be stored in separate files on the server, allowing
them to be retrieved as needed, but more generally are packaged together into archives.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Java defines a standard archive format-the JAR file-which is built on the common ZIP
archive format.

An applet has a four-part life cycle. When an applet is initially loaded by a web browser,
it's asked to initialize itself. The applet is then informed each time it's displayed and each
time it's no longer visible to the user. Finally, the applet is told when it's no longer needed,
so that it can clean up after itself. During its lifetime, an applet may start and suspend itself,
do work, communicate with other applications, and interact with the web browser.

Applets are autonomous programs, but they are confined within the walls of a web browser
or applet viewer, and have to play by its rules. We'll be discussing the details of what
applets can and can't do as we explore features of the Java language. However, under the
most conservative security policies, an applet can interact only with the user and can
communicate over the network only with the host from which it originated. Other types of
activities, such as accessing files or interacting directly with outside applications, are
typically prevented by the security manager that is part of the web browser or applet
viewer. But aside from these restrictions, there is no fundamental difference between a Java
applet and a standalone Java application.

1.7.2 New Kinds of Media

When it was first released, Java quickly achieved a reputation for multimedia capabilities.
Frankly, this wasn't really deserved. At that point, Java provided facilities for doing simple
animations and playing audio (which was leaps and bounds beyond static web pages). You
could animate and play audio simultaneously, though you couldn't synchronize the two.
Still, this was a significant advance for the Web, and people thought it was pretty
impressive.

Java's multimedia capabilities have now taken shape. Java now has CD-quality sound, 3D
animation, media players that synchronize audio and video, speech synthesis and
recognition, and more. The Java Media Framework now supports most common audio and
video file formats; the Java Sound API (part of the core classes) can record sound from a
computer's microphone.

1.7.3 New Software Development Models

For many years, people have been using integrated development environments (IDEs) to
create user interfaces. These environments let you generate applications by moving
components around on the screen, connecting components to each other, and so on. In
short, designing a user interface becomes a lot more like drawing a picture than like writing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

code. (Usually these tools also help you write code in the more traditional sense as well.)

For visual development environments to work well, you need to be able to create reusable
software components. That's what the JavaBeans architecture is all about: it defines a way
to package software as reusable building blocks. A graphical development tool can figure
out a component's capabilities, customize the component, and connect it to other
components to build applications. JavaBeans takes the idea of graphical development a step
further. JavaBeans components, called Beans, aren't limited to visible, user interface
components: you can have Beans that are entirely invisible and whose job is purely
computational. For example, you can have a Bean that does database access; you can
connect this to a Bean that lets the user request information from the database; and you can
use another Bean to display the result. You can also have a set of Beans that implement the
functions in a mathematical library; you can then do numerical analysis by connecting
different functions to each other. In either case, you can create programs without writing a
single line of code using Beans from a variety of sources. Granted, someone would have to
write the Beans in the first place, but that's a different kind of task.

The JavaBeans APIs are a set of naming and design patterns that work with other Java
capabilities-reflection and serialization-to allow tools to discover the capabilities of
components and hook them together. The JavaBeans standard also specifies ways for
individual beans to provide explicit information for these builder tools, including user
friendly names and appearance information.

Visual development tools that support JavaBeans include Sun's Forte for Java-a
commercial product that is also available in an open source version called NetBeans
(http://www.netbeans.org/), IBM's VisualAge, Inprise's JBuilder (http://www.inprise.com),
and WebGain's Visual Cafe (http://www.webgain.com). By using a "bridge," JavaBeans
can also function inside ActiveX components, which are used by many IDEs.

1.8 Java as a General Application Language

Java was introduced to the world through the web browser and the Java applet API.
However, Java is more than just a tool for building multimedia applications. Java is a
powerful, general-purpose programming language that just happens to be safe and
architecture-independent. Standalone Java applications are not subject to the restrictions
placed on applets; they can perform the same jobs as do programs written in languages
such as C and C++.

Any software that implements the Java runtime system can run Java applications.
Applications written in Java can be large or small, standalone or component-like, as in

http://www.netbeans.org/
http://www.inprise.com
http://www.webgain.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

other languages. Java applets are different from other Java applications only in that they
expect to be managed by a larger application. They are also normally considered untrusted
code. In this book, we will build examples of both applets and standalone Java
applications. With the exception of the few things untrusted applets can't do, such as access
files, all the tools we examine in this book apply to both applets and standalone Java
applications.

1.9 A Java Road Map

With everything that's going on, it's hard to keep track of what's available now, what's
promised, and what has been around for some time. The following sections comprise a
road map that imposes some order on Java's past, present, and future.

1.9.1 The Past: Java 1.0-Java 1.3

Java 1.0 provided the basic framework for Java development: the language itself plus
packages that let you write applets and simple applications. Although 1.0 is officially
obsolete, there are still a lot of applets in existence that conform to its API.

Java 1.1 superseded 1.0, incorporating major improvements in the AWT package (Java's
original GUI facility), a new event pattern, new language facilities such as reflection and
inner classes, and many other critical features. Java 1.1 remains important, because it is
supported natively by most versions of Netscape Navigator and Microsoft Internet
Explorer browsers. For various political reasons, the future of the browser world has been
frozen in this condition for many years; to execute applets using any features of Java after
Version 1.1, you need to use the Java Plug-in, which allows Netscape and IE to use an up-
to-date Java implementation. The latest version of Netscape (6.x) also supports Java 1.3.

Java 1.2, dubbed "Java 2" by Sun, was a major release in December 1998. It provided
many improvements and additions, mainly in terms of the set of APIs that were bundled
into the standard distributions. The most notable additions were the inclusion of the Swing
GUI package as a core API and a new, full-fledged 2D drawing API. Swing is Java's
advanced user interface toolkit with capabilities far exceeding the old AWT's. (Swing,
AWT, and some other packages have been variously called the JFC, or Java Foundation
Classes.) Java 1.2 also added a proper Collections API to Java.

Java 1.3, released in early 2000, added minor features but was primarily focused on
performance. With Version 1.3, Java got significantly faster on many platforms and Swing
got many bug fixes. In this timeframe, Java enterprise APIs such as Servlets and Enterprise
JavaBeans also matured.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.9.2 The Present: Java 1.4

This book includes all the latest and greatest improvements through the final release of
Java 1.4. This release provides many important and long-awaited features including
language assertions, regular expressions, preferences and logging APIs, a new I/O system
for high-volume applications, standard support for XML, fundamental improvements in
AWT and Swing, and a greatly matured Java Servlets API for web applications.

Here's a brief overview of the most important features of the current core Java API:

JDBC (Java Database Connectivity)

A general facility for interacting with databases. (Introduced in Java 1.1.)
RMI (Remote Method Invocation)

Java's distributed objects system. RMI lets you call methods on objects hosted by a
server running somewhere else on the network. (Introduced in Java 1.1.)

Java Security

A facility for controlling access to system resources, combined with a uniform
interface to cryptography. Java Security is the basis for signed classes, which were
discussed earlier.

JFC (Java Foundation Classes)

A catch-all for a number of new features, including the Swing user interface
components; "pluggable look-and-feel," which means the ability of the user interface
to adapt itself to the "look-and-feel" of the platform you're using; drag and drop; and
accessibility, which means the ability to integrate with special software and hardware
for people with disabilities.

Java 2D

Part of JFC; enables high-quality graphics, font manipulation, and printing.
Internationalization

The ability to write programs that adapt themselves to the language the user wants to
use; the program automatically displays text in the appropriate language. (Introduced
in Java 1.1.)

JNDI (Java Naming and Directory Interface)

A general service for looking up resources. JNDI unifies access to directory services
such as LDAP, Novell's NDS, and others.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following "standard extension" APIs aren't part of the core Java distribution; you may
have to download them separately.

JavaMail

A uniform API for writing email software.
Java 3D

A facility for developing applications with 3D graphics.
Java Media

Another catch-all that includes Java 2D, Java 3D, the Java Media Framework (a
framework for coordinating the display of many different kinds of media), Java
Speech (for speech recognition and synthesis), Java Sound (high-quality audio), Java
TV (for interactive television and similar applications), and others.

Java Servlets

A facility that lets you write server-side web applications in Java.
Java Cryptography

Actual implementations of cryptographic algorithms. (This package was separated
from Java Security for legal reasons.)

JavaHelp

A facility for writing help systems and incorporating them in Java programs.
Enterprise JavaBeans

A component architecture for building distributed server-side applications.
Jini

An extremely interesting catch-all that is designed to enable massively distributed
computing, including computing on common household appliances. In a few years,
your stereo may be able to execute Java programs.

Java Card

A version of Java for very small (i.e., credit card-sized) devices, which have severe
limitations on speed and memory.

In this book, we'll try to give you a taste of as many features as possible; unfortunately for
us (but fortunately for Java software developers), the Java environment has become so rich
that it's impossible to cover everything in a single book.

1.9.3 The Future

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can think of the first four years of Java development as a "big bang," followed by an
"inflationary" phase as Sun added new features and improved old features, at an incredible
rate. Things seem to be slowing down now: new APIs aren't being announced as often, and
those that are announced tend to be more specialized. At least for the moment, the Java
world is stabilizing. This is especially good news for the business world, which is rapidly
building a new infrastructure based on Java APIs.

Probably the most exciting front for Java now is in the area of small devices. The Java
"Java 2 Micro Edition" or J2ME is a subset of Java designed to fit on devices with limited
capabilities. The reference platform for the J2ME architecture is the Palm PDA. Java is
also now beginning to ship in cell phones, allowing downloadable applications and media.

1.9.4 Availability

You have several choices for Java development environments and runtime systems. Sun's
Java software development kit is available for Solaris, Linux, and Windows. Visit Sun's
Java web site at http://java.sun.com for more information about obtaining the latest Java
SDK (Version 1.4 is included on the accompanying CD-ROM; view CD content online at
http://examples.oreilly.com/learnjava2/CD-ROM/). There are also Java ports for other
platforms, including NetWare, HP-UX, OSF/1 (including Digital Unix), Silicon Graphics'
IRIX, and various IBM operating systems (including AIX, OS/2, OS/390, and OS/400).
For more information, see the web pages maintained by the vendor you're interested in.
Sun maintains a web page summarizing porting efforts at http://java.sun.com/cgi-bin/java-
ports.cgi. Another good source for current information is the Java FAQ from the
comp.lang.java newsgroup.

Most versions of Netscape Navigator and Microsoft Internet Explorer come with their own
Java runtime system that runs Java applets and supports Java 1.1. Neither supports later
Java releases at present, although Netscape 6 does support Java 1.3. To ameliorate the
problem in general, Sun has released a Java Plug-in that allows you to specify and install
the latest versions of Java; it is distributed with the Java development kit (SDK) and
runtime systems (JRE) for Windows.

[1] The credit for the car analogy goes to Marshall P. Cline, author of the C++ FAQ.

[2] You may have seen reports about various security flaws in Java. While these weaknesses
are real, it's important to realize that they have been found in the various implementations of
components, namely Sun's, Netscape's, and Microsoft's Java virtual machines, not in the basic
security model itself. One of the reasons Sun has released the source code for Java is to
encourage people to search for weaknesses so that they can be removed.

[3] The implications of this rule are of interest mainly to compiler writers. The rule means that

http://java.sun.com
http://examples.oreilly.com/learnjava2/CD-ROM/
http://java.sun.com/cgi-bin/java-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Java byte code can't perform certain types of iterative actions within a single frame of
execution. A common example would be looping and pushing values onto the stack. This is
not allowed because the path of execution would return to the top of the loop with a potentially
different type state on each pass, and there is no way that a static analysis of the code can
determine whether it obeys the security rules. This restriction makes it possible for the verifier
to trace each branch of the code just once and still know the type state at all points. Thus, the
verifier can ensure that instruction types and stack value types always correspond, without
actually following the execution of the code. For a more thorough explanation of all this, see
The Java Virtual Machine by Jon Meyer and Troy Downing (O'Reilly).

CONTENTS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

Chapter 2. A First Application

 2.1 HelloJava

 2.2 HelloJava2: The Sequel
 2.3 HelloJava3: The Button Strikes!

 2.4 HelloJava4: Netscape's Revenge

Before diving into our full discussion of the Java language, let's get our feet wet by
jumping into some working code and splashing around a bit. In this chapter, we'll build a
friendly little application that illustrates a number of concepts used throughout the book.
We'll take this opportunity to introduce general features of the Java language and of Java
applications. Look to subsequent chapters for more details.

This chapter also serves as a brief introduction to the object-oriented and multithreaded
aspects of Java. If these concepts are new to you, we hope that encountering them here in
Java for the first time will be a straightforward and pleasant experience. If you have
worked with another object-oriented or multithreaded programming environment, you
should especially appreciate Java's simplicity and elegance. This chapter is intended to give
you a bird's eye view of the Java language and a feel for how it is used. If you have trouble
with any of the concepts introduced here, rest assured they will be covered in greater detail
later in the book.

We can't stress enough the importance of experimentation as you learn new concepts here
and throughout the book. Don't just read the examples-run them. Copy the source code
from the accompanying CD-ROM or from our web site at
http://www.oreilly.com/catalog/learnjava2 . Compile the programs on your machine, and
try them. Then, turn our examples into your examples: play with them, change their
behavior, break them, fix them, and hopefully have some fun along the way.

2.1 HelloJava

In the tradition of introductory programming texts, we begin with Java's equivalent of the
archetypal "Hello World" application, HelloJava .

We'll end up taking four passes at this example before we're done (HelloJava ,
HelloJava2 , etc.), adding features and introducing new concepts along the way. But
let's start with the minimalist version:

http://www.oreilly.com/catalog/learnjava2
http://lib.ommolketab.ir
http://lib.ommolketab.ir

public class HelloJava {
 public static void main(String[] args) {
 System.out.println("Hello, Java!");
 }
}

This five-line program declares a class called HelloJava and a method called main()
. It uses a predefined method called println() to write some text as output. It is a
command-line program , which means that it runs in a shell or DOS window and prints its
output there. That's a bit old-school for our taste, so before we go any further, we're going
to give HelloJava a graphical user interface (GUI). Don't worry about the code too
much yet; just follow along with the progression here, and we'll come back for
explanations in a moment.

In place of the line containing the println() method, we're going to use something
called a JFrame object to put a window on the screen. We can start by replacing the
println line with the following three lines:

JFrame frame = new JFrame("Hello Java!");
frame.setSize(300, 300);
frame.setVisible(true);

This snippet creates a JFrame object with the title "Hello Java!" The JFrame is a
graphical window. To display it, we simply configure its size on the screen using the
setSize() method and make it visible by calling the setVisible() method.

If we stopped here, we would see an empty window on the screen with our "Hello Java!"
banner as its title. But we'd like our message inside the window, not just scrawled on the
top of it. To put something in the window, we need a couple more lines. The following,
complete example adds a JLabel object to display the text centered in our window. The
additional line at the top is necessary to tell Java where to find the JFrame and JLabel
classes (the definitions of the JFrame and JLabel objects that we're using).

import javax.swing.*;

public class HelloJava {
 public static void main(String[] args) {
 JFrame frame = new JFrame("Hello Java!");
 JLabel label = new JLabel("Hello Java!", JLabel.CENTER);
 frame.getContentPane().add(label);
 frame.setSize(300, 300);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 frame.setVisible(true);
 }
}

Now that we've got something presentable, let's take a moment to compile and run this
example. Place the text in a file called HelloJava.java .

Now compile this source using the Java compiler, javac :

% javac HelloJava.java

This produces the Java bytecode binary class file HelloJava.class .

You can run the application with the Java virtual machine by specifying the class name
(not the filename) as an argument:

% java HelloJava

You should see the proclamation shown in Figure 2-1 . Congratulate yourself: you have
written your first application! Take a moment to bask in the glow of your monitor.

Figure 2-1. The HelloJava application

Be aware that when you click on the window's close box, the window goes away, but your
program is still running. To stop Java and return control to the command line, type Ctrl-C
or whatever key sequence stops a running application on your platform. We'll remedy this
shortcoming in a later version of the example.

HelloJava may be a small program, but there is quite a bit going on behind the scenes.
Those few lines represent the tip of an iceberg. What lies under the surface are the layers of
functionality provided by the Java language and its foundation class libraries. Remember
that in this chapter, we're going to cover a lot of ground quickly in an effort to show you
the big picture. We'll try to offer enough detail for a good understanding of what is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

happening in each example, deferring full explanations until the appropriate chapters. This
holds for both elements of the Java language and the object-oriented concepts that apply to
them. Later chapters provide more detailed cataloging of Java's syntax, components, and
object-oriented features.

2.1.1 Classes

The previous example defines a class named HelloJava .

public class HelloJava {
...

Classes are the fundamental building blocks of most object-oriented languages. A class is a
group of data items, with associated functions that can perform operations on that data. The
data items in a class are called variables or sometimes fields ; in Java, functions are called
methods . The primary benefits of an object-oriented language are this association between
data and functionality in class units and also the ability of classes to encapsulate or hide
details, freeing the developer from worrying about low-level details.

In an application, a class might represent something concrete, such as a button on a screen
or the information in a spreadsheet, or it could be something more abstract, such as a
sorting algorithm or perhaps the sense of ennui in a character in a role-playing game. A
class representing a spreadsheet might, for example, have variables that represent the
values of its individual cells and methods that perform operations on those cells, such as
"clear a row" or "compute values."

Our HelloJava class is an entire Java application in a single class. It defines just one
method, main() , which holds the body of our program:

public class HelloJava {
 public static void main(String[] args) {
 ...

It is this main() method that is called first, when the application is started. The bit
labeled String [] args allows us to pass command-line arguments to the application.
We'll walk through the main() method in the next section. Finally, we'll note that
although this version of HelloJava does not define any variables as part of its class, it
does use two variables, frame and label , inside its main() method. We'll have more
to say about variables soon as well.

2.1.2 The main() Method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As we saw when we ran our example, running a Java application means picking a
particular class and passing it as an argument to the Java virtual machine. When we did
this, the java command looked in our HelloJava class to see if it contained the special
method named main() of just the right form. It did, and so it was executed. If it had not
been there we would have received an error message. The main() method is the entry
point for applications. Every standalone Java application includes at least one class with a
main() method that performs the necessary actions to start the rest of the program.

Our main() method sets up a window (a JFrame) that will contain the visual output of
the HelloJava class. Right now, it's doing all the work in the application. But in an
object-oriented application, we normally delegate responsibilities to many different classes.
In the next incarnation of our example we're going to perform just such a split-creating a
second class-and we'll see that as the example subsequently evolves, the main()
method remains more or less the same, simply holding the startup procedure.

Let's quickly walk through our main() method, just so we know what it does. First,
main() creates a JFrame , the window that will hold our example:

JFrame frame = new JFrame("Hello Java!");

The word new in this line of code is very important: JFrame is the name of a class that
represents a window on the screen. But the class itself is just a template, like a building
plan. The new keyword tells Java to allocate memory and actually create a particular
JFrame object. In this case, the argument inside the parentheses tells the JFrame what
to display in its title bar. We could have left out the "Hello Java" text and used empty
parentheses to create a JFrame with no title.

When frame windows are first created, they are very small. So before we show the
JFrame , we set its size to something reasonable:

frame.setSize(300, 300);

This is an example of invoking a method on a particular object. In this case the
setSize() method is defined by the JFrame class, and it affects the particular
JFrame object we've placed in the variable frame . Like the frame, we also create an
instance of JLabel to hold our text inside the window:

JLabel label = new JLabel("Hello Java!", JLabel.CENTER);

JLabel is much like a physical label. It holds some text at a particular position, in this
case on our frame. This is a very object-oriented concept: using an object to hold some
text, instead of simply invoking some method to "draw" the text and moving on. The

http://lib.ommolketab.ir
http://lib.ommolketab.ir

rationale for this will become clearer later.

Next we have to place the label into the frame we created:

frame.getContentPane().add(label);

Here we're calling a method named getContentPane() and using the result to attach
our label. You can think of the JFrame as having several "pages" to it, and this
effectively causes our label to be placed on top.

main() 's final task is to show the frame window and its contents, which otherwise would
be invisible. An invisible window makes for a pretty boring application.

frame.setVisible(true);

That's the whole main() method. As we progress through the examples in this chapter, it
will remain mostly unchanged as the HelloJava class evolves around it.

2.1.3 Garbage Collection

We've told you how to create a new object with the new operator, but we haven't said
anything about how to get rid of an object when you are done with it. If you are a C
programmer, you may be wondering why not. The reason is that you don't have to do
anything to get rid of objects when you are done with them.

The Java runtime system uses a garbage collection mechanism to deal with objects no
longer in use. The garbage collector sweeps up objects not referenced by any variables and
removes them from memory. Garbage collection is one of the most important features of
Java. It frees you from the error-prone task of having to worry about details of memory
allocation and deallocation. Now back to elaborating on our HelloJava class.

2.1.4 Classes and Objects

A class is a blueprint for a part of an application; it holds methods and variables that make
up that component. Many individual working copies of a given class can exist while an
application is active. These individual incarnations are called instances of the class or
objects . Two instances of a given class may contain different data, but they always have
the same methods.

As an example, consider a Button class. There is only one Button class, but an
application can create many different Button objects, each one an instance of the same
class. Furthermore, two Button instances might contain different data, perhaps giving

http://lib.ommolketab.ir
http://lib.ommolketab.ir

each a different appearance and performing a different action. In this sense, a class can be
considered a mold for making the object it represents, something like a cookie cutter
stamping out working instances of itself in the memory of the computer. As you'll see later,
there's a bit more to it than that-a class can in fact share information among its
instances-but this explanation suffices for now. Chapter 5 has the whole story on classes
and objects.

The term object is very general and in some other contexts is used almost interchangeably
with class . Objects are the abstract entities all object-oriented languages refer to in one
form or another. We will use "object" as a generic term for an instance of a class. We
might, therefore, refer to an instance of the Button class as a Button, a Button object,
or, indiscriminately, as an object.

The main() method in the previous example creates a single instance of the JLabel
class and shows it in an instance of the JFrame class. You could modify main() to
create many instances of JLabel , perhaps each in a separate window.

2.1.5 Variables and Class Types

In Java, every class defines a new type (data type). A variable can be declared to be of this
type and then hold instances of that class. A variable could, for example, be of type
Button and hold an instance of the Button class, or of type SpreadSheetCell and
hold a SpreadSheetCell object, just as it could be any of the simpler types such as
int or float representing numbers. The fact that variables have types and cannot
simply hold any kind of object is another important feature of the language that ensures
safety and correctness of code.

Ignoring the variables used inside the main() method for the moment, there is only one
other variable declared our simple HelloJava example. It's found in the declaration of
the main() method itself:

public void main(String [] args) {

Just like functions in other languages, a method in Java declares a list of variables that it
accepts as arguments or parameters , and it specifies the types of those variables. In this
case the main method is requiring that when it is invoked, it be passed a list of String
objects in the variable named args . The String is the fundamental object representing
text in Java. As we hinted earlier, Java uses the args parameter to pass any command-line
arguments supplied to the VM into your application. (We don't use them here.)

To this point we have loosely referred to variables as holding objects. In reality, variables

http://lib.ommolketab.ir
http://lib.ommolketab.ir

that have class types don't so much contain objects as point to them. Class-type variables
are references to objects. A reference is a pointer to or a name for an object. If you declare
a class-type variable without assigning it an object, it doesn't point to anything. It's
assigned the default value of null , meaning "no value." If you try to use a variable with a
null value as if it were pointing to a real object, a runtime error,
NullPointerException , occurs.

Of course, object references have to come from somewhere. In our example, we created
two objects using the new operator. We'll examine object creation in more detail a little
later in the chapter.

2.1.6 HelloComponent

Thus far our HelloJava example has contained itself in a single class. In fact, because
of its simple nature it has really served as just a single large method. Although we have
used a couple of objects to display our GUI message, our own code does not illustrate any
object-oriented structure. Well, we're going to correct that right now by adding a second
class. To give us something to build on throughout this chapter we're going to take over the
job of the JLabel class (bye bye JLabel !) and replace it with our own graphical class:
HelloComponent. Our HelloComponent class will start simple, just displaying our "Hello
Java!" message at a fixed position. We'll add capabilities later.

The code for our new class is very simple, just a few more lines:

import java.awt.*;

class HelloComponent extends JComponent {
 public void paintComponent(Graphics g) {
 g.drawString("Hello, Java!", 125, 95);
 }
}

You can add this text to the HelloJava.java file, or you can place it in its own file called
HelloComponent.java . If you put it in the same file, you must move the new import
statement to the top of the file, along with the other one. To use our new class in place of
the JLabel , simply replace the two lines referencing the label with:

HelloComponent hello = new HelloComponent();
frame.getContentPane().add(hello);

This time when you compile HelloJava.java, you will see two binary class files:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HelloJava.class and HelloComponent.class . Running the code should look much like the
JLabel version, but if you resize the window, you'll notice that our class does not
automatically adjust to center the code.

So what have we done, and why have we gone to such lengths to insult the perfectly good
JLabel component?! We've created our new HelloComponent class, extending a generic
graphical class called JComponent . To extend a class simply means to add functionality
to an existing class, creating a new one. We'll get into that in the next section. Here we
have created a new kind of JComponent that contains a method called
paintComponent() , responsible for drawing our message. Our
paintComponent() method takes one argument named (somewhat tersely) g , which
is of type Graphics . When the paintComponent() method is invoked, a
Graphics object is assigned to g , which we use in the body of the method. We'll say
more about paintComponent() and the Graphics class in a moment. As for why,
you'll see when we add all sorts of new features to our new component later on.

2.1.7 Inheritance

Java classes are arranged in a parent-child hierarchy in which the parent and child are
known as the superclass and subclass , respectively. We'll explore these concepts fully in
Chapter 6 . In Java, every class has exactly one superclass (a single parent), but possibly
many subclasses. The only exception to this rule is the Object class, which sits atop the
entire class hierarchy; it has no superclass.

The declaration of our class in the previous example uses the keyword extends to
specify that HelloComponent is a subclass of the JComponent class:

public class HelloComponent extends JComponent {

A subclass may inherit some or all the variables and methods of its superclass. Through
inheritance, the subclass can use those variables and methods as if it has declared them
itself. A subclass can add variables and methods of its own, and it can also override or
change the meaning of inherited variables and methods. When we use a subclass,
overridden variables and methods are hidden (replaced) by the subclass's own versions of
them. In this way, inheritance provides a powerful mechanism whereby a subclass can
refine or extend the functionality of its superclass.

For example, the hypothetical spreadsheet class might be subclassed to produce a new
scientific spreadsheet class with extra mathematical functions and special built-in
constants. In this case, the source code for the scientific spreadsheet might declare methods
for the added mathematical functions and variables for the special constants, but the new

http://lib.ommolketab.ir
http://lib.ommolketab.ir

class automatically has all the variables and methods that constitute the normal
functionality of a spreadsheet; they are inherited from the parent spreadsheet class. This
also means the scientific spreadsheet maintains its identity as a spreadsheet, and we can use
it anywhere the simpler spreadsheet is used. That last sentence has profound implications,
which we'll explore throughout the book. It means that specialized objects can be used in
place of more generic objects, customizing their behavior without changing the underlying
application.

Our HelloComponent class is a subclass of the JComponent class and inherits
many variables and methods not explicitly declared in our source code. This is what allows
our tiny class to serve as a component in a JFrame , with just a few customizations.

2.1.8 The JComponent Class

The JComponent class provides the framework for building all kinds of user interface
components. Particular components, such as buttons, labels, and list boxes, are
implemented as subclasses of JComponent .

We override methods in such a subclass to implement the behavior of our particular
component. This may sound restrictive, as if we are limited to some predefined set of
routines, but that is not the case at all. Keep in mind that the methods we are talking about
are ways to interact with the windowing system. We don't have to squeeze our whole
application in there. A realistic application might involve hundreds or thousands of classes,
with legions of methods and variables and many threads of execution. The vast majority of
these are related to the particulars of our job (these are called domain objects). The
JComponent class and other predefined classes serve only as a framework on which to
base code that handles certain types of user interface events and displays information to the
user.

The paintComponent() method is an important method of the JComponent class;
we override it to implement the way our particular component displays itself on the screen.
The default behavior of paintComponent() doesn't do any drawing at all. If we
hadn't overridden it in our subclass, our component would simply have been invisible.
Here, we're overriding paintComponent() to do something only slightly more
interesting. We don't override any of the other inherited members of JComponent
because they provide basic functionality and reasonable defaults for this (trivial) example.
As HelloJava grows, we'll delve deeper into the inherited members and use additional
methods. We will also add some application-specific methods and variables just for the
needs of HelloComponent .

JComponent is really the tip of another iceberg called Swing. Swing is Java's user

http://lib.ommolketab.ir
http://lib.ommolketab.ir

interface toolkit, represented in our example by the import statement at the top; we'll
discuss it in some detail in Chapter 15 through Chapter 18 .

2.1.9 Relationships and Finger Pointing

We can correctly refer to HelloComponent as a JComponent because subclassing
can be thought of as creating an "is a" relationship, in which the subclass is a kind of its
superclass. HelloComponent is therefore a kind of JComponent . When we refer to
a kind of object, we mean any instance of that object's class or any of its subclasses. Later,
we will look more closely at the Java class hierarchy and see that JComponent is itself a
subclass of the Container class, which is further derived from a class called
Component , and so on, as shown in Figure 2-2 .

Figure 2-2. Part of the Java class hierarchy

In this sense, a HelloComponent object is a kind of JComponent , which is a kind
of Container , and each of these can ultimately be considered to be a kind of
Component . It's from these classes that HelloComponent inherits its basic GUI
functionality and (as we'll discuss later) the ability to have other graphical components
embedded within it as well.

Component is a subclass of the top-level Object class, so all these classes are types of
Object s. Every other class in the Java API inherits behavior from Object , which
defines a few basic methods, as you'll see in Chapter 7 . We'll continue to use the word
object (lowercase o) in a generic way to refer to an instance of any class; we'll use
Object to refer specifically to that class.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.1.10 Package and Imports

We mentioned earlier that the first line of our example tells Java where to find some of the
classes that we've been using:

import javax.swing.*;

Specifically, it tells the compiler that we are going to be using classes from the Swing GUI
toolkit (in this case, JFrame , JLabel , and JComponent). These classes are
organized into a package called javax.swing . A Java package is a group of classes
that are related by purpose or by application. Classes in the same package have special
access privileges with respect to one another and may be designed to work together
closely.

Packages are named in a hierarchical fashion with dot-separated components, such as
java.util and java.util.zip . Classes in a package must follow conventions
about where they are located in the classpath. They also take on the name of the package as
part of their "full name" or, to use the proper terminology, their fully qualified name . For
example, the fully qualified name of the JComponent class is
javax.swing.JComponent . We could have referred to it by that name directly, in
lieu of using the import statement:

public class HelloComponent extends javax.swing.JComponent {...}

The statement import javax.swing.* enables us to refer to all the classes in the
javax.swing package by their simple names. So we don't have to use fully qualified
names to refer to the JComponent , JLabel , and JFrame classes.

As we saw when we added our second example class, there may be one or more import
statements in a given Java source file. The imports effectively create a "search path" that
tells Java where to look for classes that we refer to by their simple, unqualified names. The
imports we've seen use the dot star (.*) notation to indicate that the entire package should
be imported. But you can also specify just a single class. For example, our current example
uses only the Graphics class from the java.awt package. So we could have used
import java.awt.Graphics instead of using the wildcard * to import all the AWT
package's classes. However, we are anticipating using several more classes from this
package later.

The java. and javax. package hierarchies are special. Any package that begins with
java. is part of the core Java API and is available on any platform that supports Java.
The javax. package normally denotes a standard extension to the core platform, which
may or may not be installed. However in recent years many standard extensions have been

http://lib.ommolketab.ir
http://lib.ommolketab.ir

added to the core Java API without renaming them. The javax.swing package is an
example; it is part of the core API in spite of its name. Figure 2-3 illustrates some of the
core Java packages, showing a representative class or two from each.

Figure 2-3. Some core Java packages

java.lang contains fundamental classes needed by the Java language itself; this
package is imported automatically and that is why we didn't need an import statement to
use class names such as String or System in our examples. The java.awt package
contains classes of the older, graphical Abstract Window Toolkit; java.net contains the
networking classes.

2.1.11 The paintComponent() Method

The source for our HelloComponent class defines a method, paintComponent()
, that overrides the paintComponent() method of the JComponent class:

public void paintComponent(Graphics g) {
 g.drawString("Hello, Java!", 125, 95);
}

The paintComponent() method is called when it's time for our example to draw itself
on the screen. It takes a single argument, a Graphics object, and doesn't return any type
of value (void) to its caller.

Modifiers are keywords placed before classes, variables, and methods to alter their
accessibility, behavior, or semantics. paintComponent() is declared as public ,
which means it can be invoked (called) by methods in classes other than

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HelloComponent . In this case, it's the Java windowing environment that is calling our
paintComponent() method. A method or variable declared as private is only
inaccessible from inside its own class.

The Graphics object, an instance of the Graphics class, represents a particular
graphical drawing area. (It is also called a graphics context .) It contains methods that can
be used to draw in this area, and variables that represent characteristics such as clipping or
drawing modes. The particular Graphics object we are passed in the
paintComponent() method corresponds to our HelloComponent 's area of the
screen, inside our frame.

The Graphics class provides methods for rendering shapes, images, and text. In
HelloComponent , we invoke the drawString() method of our Graphics
object to scrawl our message at the specified coordinates. (For a description of the methods
available in the Graphics class, see Chapter 19 .)

As we've seen earlier, a method of an object is accessed by appending a dot (.) and its
name to the object that holds it. We invoked the drawString() method of the
Graphics object (referenced by our g variable) in this way:

g.drawString("Hello, Java!", 125, 95);

It may be difficult to get used to the idea that our application is drawn by a method that is
called by an outside agent at arbitrary times. How can we do anything useful with this?
How do we control what gets done and when? These answers will be forthcoming. For
now, just think about how you would begin to structure applications that respond on
command instead of by their own initiative.

2.2 HelloJava2: The Sequel

Now that we've got some basics down, let's make our application a little more interactive.
The following minor upgrade, HelloJava2 , allows us to drag the message text around
with the mouse.

We'll call this example HelloJava2 rather than cause confusion by continuing to
expand the old one. But the primary changes here and further on will be in adding
capabilities to the HelloComponent class and simply making the corresponding
changes to the names to keep them straight, e.g., HelloComponent2 ,
HelloComponent3 , etc. Having just seen inheritance at work, you might wonder why
we aren't creating a subclass of HelloComponent and exploiting inheritance to build
upon our previous example and extend its functionality. Well, in this case, that would not

http://lib.ommolketab.ir
http://lib.ommolketab.ir

provide much advantage, and for clarity we will simply start over.

Here is HelloJava2 :

//file: HelloJava2.java
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class HelloJava2
{
 public static void main(String[] args) {
 JFrame frame = new JFrame("HelloJava2");
 frame.getContentPane().add(new HelloComponent2("Hello Java!"));
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(300, 300);
 frame.setVisible(true);
 }
}

class HelloComponent2 extends JComponent
 implements MouseMotionListener
{
 String theMessage;
 int messageX = 125, messageY = 95; // Coordinates of the message

 public HelloComponent2(String message) {
 theMessage = message;
 addMouseMotionListener(this);
 }

 public void paintComponent(Graphics g) {
 g.drawString(theMessage, messageX, messageY);
 }

 public void mouseDragged(MouseEvent e) {
 // Save the mouse coordinates and paint the message.
 messageX = e.getX();
 messageY = e.getY();
 repaint();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 public void mouseMoved(MouseEvent e) { }
}

Two slashes in a row indicates that the rest of the line is a comment. We've added a few
comments to HelloJava2 to help you keep track of everything.

Place the text of this example in a file called HelloJava2.java and compile it as before. You
should get new class files, HelloJava2.class and HelloComponent2.class as a result.

Run the example as before:

% java HelloJava2

Feel free to substitute your own salacious comment for the "Hello, Java!" message and
enjoy many hours of fun, dragging the text around with your mouse. Notice that now when
you click the window's close button, the application exits; we'll explain that later when we
talk about events.

2.2.1 Instance Variables

We have added some variables to the HelloComponent2 class in our example:

int messageX = 125, messageY = 95;
String theMessage;

messageX and messageY are integers that hold the current coordinates of our movable
message. We have crudely initialized them to default values that should place the message
somewhere near the center of the window. Java integers are 32-bit signed numbers, so they
can easily hold our coordinate values. The variable theMessage is of type String and
can hold instances of the String class.

You should note that these three variables are declared inside the braces of the class
definition, but not inside any particular method in that class. These variables are called
instance variables, and they belong to the class as a whole. Specifically, copies of them
appear in each separate instance of the class. Instance variables are always visible to (and
usable by) all the methods inside their class. Depending on their modifiers, they may also
be accessible from outside the class.

Unless otherwise initialized, instance variables are set to a default value of zero, false ,
or null , depending on their type. Numeric types are set to zero, boolean variables are set

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to false , and class type variables always have their value set to null , which means
"no value." Attempting to use an object with a null value results in a runtime error.

Instance variables differ from method arguments and other variables that are declared
inside the scope of a particular method. The latter are called local variables . They are
effectively private variables that can be seen only by code inside the method. Java doesn't
initialize local variables, so you must assign values yourself. If you try to use a local
variable that has not yet been assigned a value, your code generates a compile-time error.
Local variables live only as long as the method is executing and then disappear, unless
something else saves their value. Each time the method is invoked, its local variables are
recreated and must be assigned values.

We have used the new variables to make our previously stodgy paintComponent()
method more dynamic. Now all the arguments in the call to drawString() are
determined by these variables.

2.2.2 Constructors

The HelloJava2 class includes a special kind of a method called a constructor . A
constructor is called to set up a new instance of a class. When a new object is created, Java
allocates storage for it, sets instance variables to their default values, and calls the
constructor method for the class to do whatever application-level setup is required.

A constructor always has the same name as its class. For example, the constructor for the
HelloJava2 class is called HelloJava2() . Constructors don't have a return type,
but you can think of them as creating an object of their class's type. Like other methods,
constructors can take arguments. Their sole mission in life is to configure and initialize
newly born class instances, possibly using information passed to them in these parameters.

An object is created with the new operator specifying the constructor for the class and any
necessary arguments. The resulting object instance is returned as a value. In our example, a
new HelloComponent2 instance is created in the main() method by this line:

frame.getContentPane().add(new HelloComponent2("Hello, Java!"));

This line actually does three things. We could write them as three separate lines which are
a little easier to understand:

HelloJava2 newobj = new HelloComponent2("Hello, Java!");
Container content = frame.getContentPane();
content.add(newobj);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The first line is the important one, where a new HelloComponent2 object is created.
The HelloComponent2 constructor takes a String as an argument and, as we have
arranged it, uses it to set the message that is displayed in the window. With a little magic
from the Java compiler, quoted text in Java source code is turned into a String object.
(See Chapter 9 for a complete discussion of the String class.) The second and third lines
simply take our new component and add it to the frame to make it visible, as we did in the
previous examples.

While we're on the topic, if you'd like to make our message configurable, you can change
the constructor line to the following:

HelloJava2 newobj = new HelloComponent2(args[0]);

Now you can pass the text on the command line when you run the application:

% java HelloJava2 "Hello Java!"

args[0] refers to the first command-line parameter. Its meaning will be clearer when we
discuss arrays later in the book.

HelloJava2 's constructor then does two things: it sets the text of theMessage
instance variable and calls addMouseMotionListener() . This method is part of
the event mechanism, which we discuss next. It tells the system, "Hey, I'm interested in
anything that happens involving the mouse."

public HelloJava2(String message) {
 theMessage = message;
 addMouseMotionListener(this);
}

The special, read-only variable called this is used to explicitly refer to our object in the
call to addMouseMotionListener() . A method can use this to refer to the
instance of the object that holds it. The following two statements are therefore equivalent
ways of assigning the value to theMessage instance variable:

theMessage = message;

or:

this.theMessage = message;

We'll normally use the shorter, implicit form to refer to instance variables. But we'll need
this when we have to explicitly pass a reference to our object to a method in another

http://lib.ommolketab.ir
http://lib.ommolketab.ir

class. We often do this so that methods in other classes can invoke our public methods (a
callback , explained later in this chapter) or use our public variables.

2.2.3 Events

The last two methods of HelloJava2 , mouseDragged() and mouseMoved() ,
let us get information from the mouse. Each time the user performs an action, such as
pressing a key on the keyboard, moving the mouse, or perhaps banging his or her head
against a touch screen, Java generates an event . An event represents an action that has
occurred; it contains information about the action, such as its time and location. Most
events are associated with a particular GUI component in an application. A keystroke, for
instance, can correspond to a character being typed into a particular text entry field.
Pressing a mouse button can activate a particular button on the screen. Even just moving
the mouse within a certain area of the screen can trigger effects such as highlighting or
changing the cursor's shape.

To work with these events we've imported a new package, java.awt.event , which
provides specific Event objects that we use to get information from the user. (Notice that
importing java.awt.* doesn't automatically import the event package. Packages
don't really contain other packages, even if the hierarchical naming scheme would imply
that they do.)

There are many different event classes, including MouseEvent , KeyEvent , and
ActionEvent . For the most part, the meaning of these events is fairly intuitive. A
MouseEvent occurs when the user does something with the mouse, a KeyEvent
occurs when the user presses a key, and so on. ActionEvent is a little special; we'll see
it at work later in this chapter in our third version of HelloJava . For now, we'll focus
on dealing with MouseEvent s.

GUI components in Java generate events for specific kinds of user actions. For example, if
you click the mouse inside a component, the component generates a mouse event. Objects
can ask to receive the events from one or more components by registering a listener with
the event source. For example, to declare that a listener wants to receive a component's
mouse-motion events, you invoke that component's addMouseMotionListener()
method, specifying the listener object as an argument. That's what our example is doing in
its constructor. In this case, the component is calling its own
addMouseMotionListener() method, with the argument this , meaning "I want
to receive my own mouse-motion events."

That's how we register to receive events. But how do we actually get them? That's what the
two "mouse" related methods in our class are for. The mouseDragged() method is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

called automatically on a listener to receive the events generated when the user drags the
mouse-that is, moves the mouse with any button pressed. The mouseMoved() method
is called whenever the user moves the mouse over the area without pressing a button. In
this case, we've placed these methods in our HelloComponent2 class and had it
register itself as the listener. This is entirely appropriate for our new "text dragging"
component. But more generally good design usually dictates that event listeners be
implemented as adapter classes that provide better separation of GUI and "business logic."
We'll discuss that in detail later in the book.

So, our mouseMoved() method is boring: it doesn't do anything. We ignore simple
mouse motions and reserve our attention for dragging. mouseDragged() has a bit more
meat to it. This method is called repeatedly by the windowing system to give us updates on
the position of the mouse. Here it is:

public void mouseDragged(MouseEvent e) {
 messageX = e.getX();
 messageY = e.getY();
 repaint();
}

The first argument to mouseDragged() is a MouseEvent object, e , that contains all
the information we need to know about this event. We ask the MouseEvent to tell us the
x and y coordinates of the mouse's current position by calling its getX() and getY()
methods. We save these in the messageX and messageY instance variables for use
elsewhere.

The beauty of the event model is that you have to handle only the kinds of events you
want. If you don't care about keyboard events, you just don't register a listener for them;
the user can type all she wants, and you won't be bothered. If there are no listeners for a
particular kind of event, Java won't even generate it. The result is that event handling is
quite efficient.[1]

While we're discussing events we should mention another small addition we slipped into
HelloJava2 :

frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

This line tells the frame to exit the application when its close button is pressed. It's called
the "default" close operation because this operation, like almost every other GUI
interaction, is governed by events. We could register a window listener to get notification
of when the user pushes the close button and take whatever action we like. But this
convenience method handles the common cases.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Finally, we've danced around a couple of questions here: how does the system know that
our class contains the necessary mouseDragged() and mouseMoved() methods
(where do these names come from)? And why do we have to supply a mouseMoved()
method that doesn't do anything? The answer to these questions has to do with interfaces.
We'll discuss interfaces after clearing up some unfinished business with repaint() .

2.2.4 The repaint() Method

Since we changed the coordinates for the message (when we dragged the mouse), we
would like HelloJava2 to redraw itself. We do this by calling repaint() , which
asks the system to redraw the screen at a later time. We can't call paintComponent()
directly, even if we wanted to, because we don't have a graphics context to pass to it.

We can use the repaint() method of the JComponent class to request that our
component be redrawn. repaint() causes the Java windowing system to schedule a call
to our paintComponent() method at the next possible time; Java supplies the
necessary Graphics object, as shown in Figure 2-4 .

Figure 2-4. Invoking the repaint() method

This mode of operation isn't just an inconvenience brought about by not having the right
graphics context handy. The foremost advantage to this mode of operation is that the
repainting behavior is handled by someone else while we are free to go about our business.
The Java system has a separate, dedicated thread of execution that handles all
repaint() requests. It can schedule and consolidate repaint() requests as
necessary, which helps to prevent the windowing system from being overwhelmed during
such painting-intensive situations as scrolling. Another advantage is that all the painting
functionality must be encapsulated in our paintComponent() method; we aren't
tempted to spread it throughout the application.

2.2.5 Interfaces

Now it's time to face the question we avoided earlier: how does the system know to call
mouseDragged() when a mouse event occurs? Is it simply a matter of knowing that

http://lib.ommolketab.ir
http://lib.ommolketab.ir

mouseDragged() is some magic name that our event handling method must have? Not
quite; the answer to the question touches on the discussion of interfaces, which are one of
the most important features of the Java language.

The first sign of an interface comes on the line of code that introduces the
HelloComponent2 class: we say that the class implements the
MouseMotionListener interface.

class HelloComponent2 extends JComponent
 implements MouseMotionListener
{

Essentially, an interface is a list of methods that the class must have; this particular
interface requires our class to have methods called mouseDragged() and
mouseMoved() . The interface doesn't say what these methods have to do; indeed,
mouseMoved() doesn't do anything. But it does say that the methods must take a
MouseEvent as an argument and return void (i.e., no return value).

An interface is a contract between you, the code developer, and the compiler. By saying
that your class implements the MouseMotionListener interface, you're saying that
these methods will be available for other parts of the system to call. If you don't provide
them, a compilation error will occur.

But that's not the only way interfaces impact this program. An interface also acts like a
class. For example, a method could return a MouseMotionListener or take a
MouseMotionListener as an argument. When you refer to an object by an interface
name in this way it means that you don't care about the object's actual class; the only
requirement is that the class implements that interface.
addMouseMotionListener() is such a method: its argument must be an object that
implements the MouseMotionListener interface. The argument we pass is this ,
the HelloComponent2 object itself. The fact that it's an instance of JComponent is
irrelevant; it could be a Cookie , an Aardvark , or any other class we dream up. What's
important is that it implements MouseMotionListener , and thus declares that it will
have the two named methods. That's why we need a mouseMoved() method, even
though the one we supplied doesn't do anything: the MouseMotionListener
interface says we have to have one.

The Java distribution comes with many interfaces that define what classes have to do. This
idea of a contract between the compiler and a class is very important. There are many
situations like the one we just saw where you don't care what class something is, you just
care that it has some capability, such as listening for mouse events. Interfaces give us a way

http://lib.ommolketab.ir
http://lib.ommolketab.ir

of acting on objects based on their capabilities without knowing or caring about their actual
type. They are a tremendously important concept in how we use Java as an object-oriented
language, and we'll talk about them in detail in Chapter 4 .

We'll also see shortly that interfaces provide a sort of escape clause to the Java rule that any
new class can extend only a single class ("single inheritance"). A class in Java can extend
only one class but can implement as many interfaces as it wants; our next example
implements two interfaces, and the final example in this chapter implements three. In many
ways, interfaces are almost like classes, but not quite. They can be used as data types, can
extend other interfaces (but not classes) and can be inherited by classes (if class A
implements interface B, subclasses of A also implement B). The crucial difference is that
classes don't actually inherit methods from interfaces; the interfaces merely specify the
methods the class must have.

2.3 HelloJava3: The Button Strikes!

Now we can move on to some fun stuff. HelloJava3 brings us a new graphical
interface component: the JButton .[2] In this example we will add a JButton
component to our application that changes the color of our text each time the button is
pressed. The draggable-message capability is still there, too. Our new code looks like this:

//file: HelloJava3.java
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class HelloJava3
{
 public static void main(String[] args) {
 JFrame frame = new JFrame("HelloJava3");
 frame.getContentPane().add(new HelloComponent3("Hello Java!"));
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(300, 300);
 frame.setVisible(true);
 }
}

class HelloComponent3 extends JComponent
 implements MouseMotionListener, ActionListener
{

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 String theMessage;
 int messageX = 125, messageY = 95; // Coordinates of the message

 JButton theButton;

 int colorIndex; // Current index into someColors
 static Color[] someColors = {
 Color.black, Color.red, Color.green, Color.blue, Color.magenta };

 public HelloComponent3(String message) {
 theMessage = message;
 theButton = new JButton("Change Color");
 setLayout(new FlowLayout());
 add(theButton);
 theButton.addActionListener(this);
 addMouseMotionListener(this);
 }

 public void paintComponent(Graphics g) {
 g.drawString(theMessage, messageX, messageY);
 }

 public void mouseDragged(MouseEvent e) {
 messageX = e.getX();
 messageY = e.getY();
 repaint();
 }

 public void mouseMoved(MouseEvent e) {}

 public void actionPerformed(ActionEvent e) {
 // Did somebody push our button?
 if (e.getSource() == theButton)
 changeColor();
 }

 synchronized private void changeColor() {
 // Change the index to the next color, awkwardly.
 if (++colorIndex == someColors.length)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 colorIndex = 0;
 setForeground(currentColor()); // Use the new color.
 repaint();
 }

 synchronized private Color currentColor() {
 return someColors[colorIndex];
 }
}

Compile HelloJava3 in the same way as the other applications. Run the example, and
you should see the display shown in Figure 2-5 . Drag the text. Each time you press the
button the color should change. Call your friends! Test yourself for color-blindness!

Figure 2-5. The HelloJava3 application

So what have we added this time? Well, for starters we have a new variable:

JButton theButton;

The theButton variable is of type JButton and is going to hold an instance of the
javax.swing.JButton class. The JButton class, as you might expect, represents
a graphical button, like other buttons in your windowing system.

Three additional lines in the constructor create the button and display it:

theButton = new JButton("Change Color");
setLayout(new FlowLayout());
add(theButton);

In the first line, the new keyword creates an instance of the JButton class. The next line
affects the way our component will be used as a container to hold the button. It tells
HelloComponent3 how it should arrange components that are added to it for
display-in this case to use a scheme called a FlowLayout (more on that coming up).
Finally, it adds the button to our component, just like we added the HelloComponent3
to the content pane of the JFrame in the main() method.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.3.1 Method Overloading

JButton has more than one constructor. A class can have multiple constructors, each
taking different parameters and presumably using them to do different kinds of setup.
When there are multiple constructors for a class, Java chooses the correct one based on the
types of arguments used with them. We call the JButton constructor with a String
argument, so Java locates the constructor method of the JButton class that takes a single
String argument and uses it to set up the object. This is called method overloading . All
methods in Java, not just constructors, can be overloaded; this is one aspect of the object-
oriented programming principle of polymorphism .

Overloaded constructors generally provide a convenient way to initialize a new object. The
JButton constructor we've used sets the text of the button as it is created:

theButton = new JButton("Change Color");

This is shorthand for creating the button and setting its label, like this:

theButton = new JButton();
theButton.setText("Change Color");

2.3.2 Components

We have used the terms component and container somewhat loosely to describe graphical
elements of Java applications. But these terms are the names of actual classes in the
java.awt package.

Component is a base class from which all Java's GUI components are derived. It
contains variables that represent the location, shape, general appearance, and status of the
object, as well as methods for basic painting and event handling.
javax.swing.JComponent extends the base Component class and refines it for
the Swing toolkit. The paintComponent() method we have been using in our
example is inherited from the JComponent class. HelloComponent is a kind of
JComponent and inherits all its public members, just as other GUI components do.

The JButton class is also derived from JComponent and therefore shares this
functionality. This means that the developer of the JButton class had methods such as
paintComponent() available with which to implement the behavior of the JButton
object, just as we did when creating our example. What's exciting is that we are perfectly
free to further subclass components such as JButton and override their behavior to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

create our own special types of user-interface components. JButton and HelloJava3
are, in this respect, equivalent types of things.

2.3.3 Containers

The Container class is an extended type of Component that maintains a list of child
components and helps to group them. The Container causes its children to be displayed
and arranges them on the screen according to a particular layout strategy.

Because a Container is also a Component , it can be placed alongside other
Component objects in other Container s, in a hierarchical fashion, as shown in
Figure 2-6 . Our HelloComponent3 class is a kind of Container (by virtue of the
JComponent class) and can therefore hold and manage other Java components and
containers such as buttons, sliders, text fields, and panels.

Figure 2-6. Layout of Java containers and components

In Figure 2-6 , the italicized items are Component s, and the bold items are
Container s. The keypad is implemented as a container object that manages a number
of keys. The keypad itself is contained in the GizmoTool container object.

Since JComponent descends from Container , it can be both a component and a
container. In fact, we've already used it in this capacity in the HelloComponent3
example. It does its own drawing and handles events, just like a component. But it also
contains a button, just like a container.

2.3.4 Layout

Having created a JButton object, we need to place it in the container
(HelloComponent3), but where? An object called a LayoutManager determines

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the location within the HelloJava3 container at which to display the JButton . A
LayoutManager object embodies a particular scheme for arranging components on the
screen and adjusting their sizes. You'll learn more about layout managers in Chapter 18 .
There are several standard layout managers to choose from, and we can, of course, create
new ones. In our case, we specify one of the standard managers, a FlowLayout . The net
result is that the button is centered at the top of the HelloJava3 container.

To add the button to the layout, we invoke the add() method that HelloJava3 inherits
from Container , passing the JButton object as a parameter:

add(theButton);

add() is a method inherited by our class from the Container class. It appends our
JButton to the list of components the HelloJava3 container manages. Thereafter,
HelloJava3 is responsible for the JButton : it causes the button to be displayed and
it determines where in its window the button should be placed. Unlike the more complex
JFrame , a regular JComponent doesn't require the getContentPane() method;
it has only a single container, and we use the simple add() method.

2.3.5 Subclassing and Subtypes

If you look up the add() method of the Container class, you'll see that it takes a
Component object as an argument. But in our example we've given it a JButton
object. What's going on?

As we've said, JButton is a subclass of the Component class. Because a subclass is a
kind of its superclass and has, at minimum, the same public methods and variables, Java
allows us to use an instance of a subclass anywhere we could use an instance of its
superclass. This is a very important concept, and it's another aspect of the object-oriented
principle of polymorphism. JButton is a kind of Component , so any method that
expects a Component as an argument will accept a JButton .

2.3.6 More Events and Interfaces

Now that we have a JButton , we need some way to communicate with it, that is, to get
the events it generates. We could just listen for mouse clicks within the button and act
accordingly. But that would require customization, via subclassing of the JButton , and
we would be giving up the advantages of using a pre-fab component. Instead, we have the
HelloComponent3 object listen for higher level events, corresponding to button
presses. A JButton generates a special kind of event called an ActionEvent when
someone clicks on it with the mouse. To receive these events, we have added another

http://lib.ommolketab.ir
http://lib.ommolketab.ir

method to the HelloComponent3 class:

public void actionPerformed(ActionEvent e) {
 if (e.getSource() == theButton)
 changeColor();
}

If you followed the previous example, you shouldn't be surprised to see that
HelloComponent3 now declares that it implements the ActionListener interface
in addition to MouseMotionListener . ActionListener requires us to
implement an actionPerformed() method that is called whenever an
ActionEvent occurs. You also shouldn't be surprised to see that we added a line to the
HelloJava3 constructor, registering itself (this) as a listener for the button's action
events:

theButton.addActionListener(this);

Note that this time we're registering our component as a listener with a different
object-the button-whereas previously we were asking for our own events.

The actionPerformed() method takes care of any action events that arise. First, it
checks to make sure that the event's source (the component generating the event) is what
we think it should be: theButton . This may seem superfluous; after all there is only
one button, what else could possibly generate an action event? In this application, nothing.
But it's a good idea to check because another application may have many buttons, and you
may need to figure out which one has been clicked. Or you may add a second button to this
application later, and you don't want it to break something. To check this, we call the
getSource() method of the ActionEvent object, e . We then use the == operator
to make sure the event source matches theButton .

In Java, == is a test for identity, not equality; it is true if the event
source and theButton are the same object. The distinction between
equality and identity is important. We would consider two String
objects to be equal if they have the same characters in the same
sequence. However, they might not be the same object. In Chapter 7
we'll look at the equals() method, which tests for equality.

Once we establish that the event e comes from the right button, we call our
changeColor() method, and we're finished.

You may be wondering why we don't have to change mouseDragged() now that we

http://lib.ommolketab.ir
http://lib.ommolketab.ir

have a JButton in our application. The rationale is that the coordinates of the event are
all that matter for this method. We are not particularly concerned if the event happens to
fall within an area of the screen occupied by another component. This means you can drag
the text right through the JButton : try it and see! In this case, the arrangement of
containers means that the button is on top of our component, so the text is dragged beneath
it.

2.3.7 Color Commentary

To support HelloJava3 's colorful side, we have added a couple of new variables and
two helpful methods. We create and initialize an array of Color objects representing the
colors through which we cycle when the button is pressed. We also declare an integer
variable that serves as an index into this array, specifying the position of the current color:

int colorIndex;
static Color[] someColors = { Color.black, Color.red,
 Color.green, Color.blue, Color.magenta };

A number of things are going on here. First let's look at the Color objects we are putting
into the array. Instances of the java.awt.Color class represent colors; they are used
by all classes in the java.awt package that deal with basic color graphics. Notice that
we are referencing variables such as Color.black and Color.red . These look like
examples of an object's instance variables, but Color is not an object, it's a class. What is
the meaning of this? We'll discuss that next.

2.3.8 Static Members

A class can contain variables and methods that are shared among all instances of the class.
These shared members are called static variables and static methods . The most common
use of static variables in a class is to hold predefined constants or unchanging objects that
all the instances can use.

There are two advantages to this approach. The more obvious advantage is that static
members take up space only in the class; the members are not replicated in each instance.
But more importantly, static members can be accessed even if no instances of the class
exist. In this example, we use the static variable Color.red without having to create an
instance of the Color class.

An instance of the Color class represents a visible color. For convenience, the Color
class contains some static, predefined objects with friendly names such as green , red ,
and (the happy color) magenta . The variable green , for example, is a static member

http://lib.ommolketab.ir
http://lib.ommolketab.ir

in the Color class. The data type of the variable green is Color . Internally, in Java-
land it is initialized like this:

public final static Color green = new Color(0, 255, 0);

The green variable and the other static members of Color cannot be modified (after
they've been initialized), so they are effectively constants and can be optimized as such by
the Java VM. The alternative to using these predefined colors is to create a color manually
by specifying its red, green, and blue (RGB) components using a Color class constructor.

2.3.9 Arrays

Next, we turn our attention to the array. We have declared a variable called someColors
, which is an array of Color objects. In Java, arrays are first-class objects. This means
that an array is, itself, a type of object-one that knows how to hold an indexed list of
some other type of object. An array is indexed by integers; when you index an array, the
resulting value is an object reference-that is, a reference to the object that is located in the
array's specified slot. Our code uses the colorIndex variable to index someColors .
It's also possible to have an array of simple primitive types, such as float s, rather than
objects.

When we declare an array, we can initialize it using the familiar C-like curly brace
construct. Specifying a comma-separated list of elements inside curly braces is a
convenience that instructs the compiler to create an instance of the array with those
elements and assign it to our variable. Alternatively, we could have just declared our
someColors variable and, later, allocated an array object for it and assigned individual
elements to that array's slots. See Chapter 5 for a complete discussion of arrays.

2.3.10 Our Color Methods

Now we have an array of Color objects and a variable with which to index the array.
Two private methods do the actual work for us. The private modifier on these methods
specifies that they can be called only by other methods in the same instance of the class.
They cannot be accessed outside the object that contains them. We declare members to be
private to hide the detailed inner workings of a class from the outside world. This is
called encapsulation and is another tenet of object-oriented design, as well as good
programming practice. Private methods are created as helper functions for use solely in the
class implementation.

The first method, currentColor() , is simply a convenience routine that returns the
Color object representing the current text color. It returns the Color object in the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

someColors array at the index specified by our colorIndex variable:

synchronized private Color currentColor() {
 return someColors[colorIndex];
}

We could just as readily have used the expression someColors[colorIndex]
everywhere we use currentColor() ; however, creating methods to wrap common
tasks is another way of shielding ourselves from the details of our class. In an alternative
implementation, we might have shuffled off details of all color-related code into a separate
class. We could have created a class that takes an array of colors in its constructor and then
provided two methods: one to ask for the current color and one to cycle to the next color
(just some food for thought).

The second method, changeColor() , is responsible for incrementing the
colorIndex variable to point to the next Color in the array. changeColor() is
called from our actionPerformed() method whenever the button is pressed:

synchronized private void changeColor() {
 // Change the index to the next color, awkwardly.
 if (++colorIndex == someColors.length)
 colorIndex = 0;
 setForeground(currentColor()); // Use the new color.
 repaint();
}

Here we increment colorIndex and compare it to the length of the someColors
array. All array objects have a variable called length that specifies the number of
elements in the array. If we have reached the end of the array, we wrap around to the
beginning by resetting the index to zero. We've flagged this with a comment to indicate
that we're doing something fishy here. But we'll come back to that in a moment. After
changing the currently selected color, we do two things. First, we call the component's
setForeground() method, which changes the color used to draw text in our
component. Then we call repaint() to cause the component to be redrawn with the
new color for the draggable message.

What is the synchronized keyword that appears in front of our currentColor()
and changeColor() methods? Synchronization has to do with threads, which we'll
examine in the next section. For now, all you need know is that the synchronized
keyword indicates these two methods can never be running at the same time. They must
always run one after the other.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The reason for this is related to the fishy way we increment out index. Notice that in
changeColor() , we increment colorIndex before testing its value. Strictly
speaking, this means that for some brief period of time while Java is running through our
code, colorIndex can have a value that is past the end of our array. If our
currentColor() method happened to run at that same moment, we would see a
runtime "array out of bounds" error. Now, it would be easy for us to fix the problem in this
case with some simple arithmetic before changing the value, but this simple example is
representative of more general synchronization issues we need to address. We'll use it to
illustrate the use of the synchronized keyword. In the next section, you'll see that Java
makes dealing with these problems relatively easy through language-level synchronization
support.

2.4 HelloJava4: Netscape's Revenge

We have explored quite a few features of Java with the first three versions of the
HelloJava application. But until now, our application has been rather passive; it has
been completely event-driven, waiting patiently for events to come its way and responding
to the whims of the user. Now our application is going to take some
initiative-HelloJava4 will blink! Here is the code for our latest version:

//file: HelloJava4.java
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class HelloJava4
{
 public static void main(String[] args) {
 JFrame frame = new JFrame("HelloJava4");
 frame.getContentPane().add(new HelloComponent4("Hello Java!"));
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(300, 300);
 frame.setVisible(true);
 }
}

class HelloComponent4 extends JComponent
 implements MouseMotionListener, ActionListener, Runnable
{

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 String theMessage;
 int messageX = 125, messageY = 95; // Coordinates of the message

 JButton theButton;

 int colorIndex; // Current index into someColors.
 static Color[] someColors = {
 Color.black, Color.red, Color.green, Color.blue, Color.magenta };

 boolean blinkState;

 public HelloComponent4(String message) {
 theMessage = message;
 theButton = new JButton("Change Color");
 setLayout(new FlowLayout());
 add(theButton);
 theButton.addActionListener(this);
 addMouseMotionListener(this);
 Thread t = new Thread(this);
 t.start();
 }

 public void paintComponent(Graphics g) {
 g.setColor(blinkState ? getBackground() : currentColor());
 g.drawString(theMessage, messageX, messageY);
 }

 public void mouseDragged(MouseEvent e) {
 messageX = e.getX();
 messageY = e.getY();
 repaint();
 }

 public void mouseMoved(MouseEvent e) { }

 public void actionPerformed(ActionEvent e) {
 if (e.getSource() == theButton)
 changeColor();
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 synchronized private void changeColor() {
 if (++colorIndex == someColors.length)
 colorIndex = 0;
 setForeground(currentColor());
 repaint();
 }

 synchronized private Color currentColor() {
 return someColors[colorIndex];
 }

 public void run() {
 try {
 while(true) {
 blinkState = !blinkState; // Toggle blinkState.
 repaint(); // Show the change.
 Thread.sleep(300);
 }
 } catch (InterruptedException ie) { }
 }
}

Compile and run this version of HelloJava just like the others. You'll see that the text does
in fact blink. Our apologies if you find this annoying-we're not overly fond of it either.

2.4.1 Threads

All the changes we've made in HelloJava4 have to do with setting up a separate thread
of execution to make the text blink. Java is a multithreaded language, which means there
can be many paths of execution, effectively running at the same time. A thread is a
separate flow of control within a program. Conceptually, threads are similar to processes,
except that unlike processes, multiple threads share the same program space, which means
that they can share variables and methods (but also have their own local variables).
Threads are also quite lightweight in comparison to processes, so it's conceivable for a
single application to be running many (perhaps hundreds or thousands) of threads
concurrently.

Multithreading provides a way for an application to handle many different tasks at the same
time. It's easy to imagine multiple things going on at the same time in an application like a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

web browser. The user could be listening to an audio clip while scrolling an image; at the
same time, the browser can be downloading an image. Multithreading is especially useful
in GUI-based applications because it improves the interactive performance of these
applications.

Unfortunately for us, programming with multiple threads can be quite a headache. The
difficulty lies in making sure routines are implemented so they can be run concurrently, by
more than one thread at a time. If a routine changes the value of multiple state variables, for
example, then it may be important that those changes happen together, without overlapping
changes affecting each other. Later in this section, we'll examine briefly the issue of
coordinating multiple threads' access to shared data. In other languages, synchronization of
threads can be extremely complex and error-prone. You'll see that Java gives you a few
simple tools that help you deal with many of these problems. Java threads can be started,
interrupted, and assigned priorities. Threads are preemptive, so a higher priority thread can
interrupt a lower priority thread when vying for processor time. See Chapter 8 for a
complete discussion of threads.

The Java runtime system creates and manages a number of threads. (Exactly how varies
with the implementation.) We've already mentioned the repaint thread, which manages
repaint() requests and event processing for GUI components that belong to the
java.awt and javax.swing packages. Our example applications have done most of
their work in one thread. Methods such as mouseDragged() and
actionPerformed() are invoked by the windowing thread and run by its thread, on
its time. Similarly, our HelloComponent constructor runs as part of the main
application thread (the main() method). This means we are somewhat limited in the
amount of processing we do within these methods. If we were, for instance, to go into an
endless loop in our constructor, our application would never appear, as it would never
finish initializing. If we want an application to perform any extensive processing, such as
animation, a lengthy calculation, or communication, we should create separate threads for
these tasks.

2.4.2 The Thread Class

As you might have guessed, threads are created and controlled as Thread objects. An
instance of the java.lang.Thread class corresponds to a single thread. It contains
methods to start, control, and interrupt the thread's execution. Our plan here is to create a
Thread object to handle our blinking code. We call the Thread 's start() method to
begin execution. Once the thread starts, it continues to run until it completes its work, we
interrupt it, or we stop the application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

So how do we tell the thread which method to run? Well, the Thread object is rather
picky; it always expects to execute a method called run() to perform the action of the
thread. The run() method can, however, with a little persuasion, be located in any class
we desire.

We specify the location of the run() method in one of two ways. First, the Thread
class itself has a method called run() . One way to execute some Java code in a separate
thread is to subclass Thread and override its run() method to do our bidding. Invoking
the start() method of the subclass object causes its run() method to execute in a
separate thread.

It's not usually desirable to create a subclass of Thread to contain our run() method.
The Thread class has a constructor that takes an object as its argument. If we create a
Thread object using this constructor and call its start() method, the Thread
executes the run() method of the argument object, rather than its own. In order to
accomplish this, Java needs a guarantee that the object we are passing it does indeed
contain a compatible run() method. We already know how to make such a guarantee: we
use an interface. Java provides an interface named Runnable that must be implemented
by any class that wants to become a Thread .

2.4.3 The Runnable Interface

We've used the second technique in the HelloJava4 example. To create a thread, the
HelloComponent4 object passes itself (this) to the Thread constructor. This
means that HelloComponent4 must implement the Runnable interface, by
implementing the run() method. This method is called automatically when the runtime
system needs to start the thread.

We indicate that the class implements the interface in our class declaration:

public class HelloComponent4
 extends JComponent
 implements MouseMotionListener, ActionListener, Runnable {...}

At compile time, the Java compiler checks to make sure we abide by this statement. We
have carried through by adding an appropriate run() method to HelloComponent4 .
It takes no arguments and returns no value. Our run() method accomplishes blinking by
changing the color of our text a few times a second. It's a very short routine, but we're
going to delay looking at it until we tie up some loose ends in dealing with the Thread
itself.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.4.4 Starting the Thread

We want the blinking to begin when the application starts. So we'll start the thread in the
initialization code in HelloComponent4 's constructor. It takes only two lines:

Thread t = new Thread(this);
t.start();

First, the constructor creates a new instance of Thread , passing it the object that contains
the run() method to the constructor. Since HelloComponent4 itself contains our
run() method, we pass the special variable this to the constructor. this always refers
to our object. After creating the new Thread , we call its start() method to begin
execution. This, in turn, invokes HelloComponent4 's run() method in the new
thread.

2.4.5 Running Code in the Thread

Our run() method does its job by setting the value of the variable blinkState . We
have added blinkState , a boolean variable which can have the value true or
false , to represent whether we are currently blinking on or off:

boolean blinkState;

A setColor() call has been added to our paintComponent() method to handle
blinking. When blinkState is true , the call to setColor() draws the text in the
background color, making it disappear:

g.setColor(blinkState ? getBackground() : currentColor());

Here we are being very terse, using the C-language-style ternary operator to return one of
two alternative color values based on the value of blinkState . If blinkState is
true , the value is the value returned by the getBackground() method. If it is
false , the value is the value returned by currentColor() .

Finally, we come to the run() method itself:

public void run() {
 try {
 while(true) {
 blinkState = !blinkState;
 repaint();
 Thread.sleep(300);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 }
 catch (InterruptedException ie) {}
}

Basically, run() is an infinite while loop, which means the loop will run continuously
until the thread is terminated by the application exiting.

The body of the loop does three things on each pass:

Flips the value of blinkState to its opposite value using the not operator (!)

Calls repaint() to redraw the text

Sleeps for 300 milliseconds (about a third of a second)

sleep() is a static method of the Thread class. The method can be invoked from
anywhere and has the effect of putting the currently running thread to sleep for the
specified number of milliseconds. The effect here is to give us approximately three blinks
per second. The try/catch construct, described in the next section, traps any errors in
the call to the sleep() method of the Thread class.

2.4.6 Exceptions

The try/catch statement in Java handles special conditions called exceptions . An
exception is a message that is sent, normally in response to an error, during the execution
of a statement or a method. When an exceptional condition arises, an object is created that
contains information about the particular problem or condition. Exceptions act somewhat
like events. Java stops execution at the place where the exception occurred, and the
exception object is said to be thrown by that section of code. Like an event, an exception
must be delivered somewhere and handled. The section of code that receives the exception
object is said to catch the exception. An exception causes the execution of the instigating
section of code to stop abruptly and transfers control to the code that receives the exception
object.

The try/catch construct allows you to catch exceptions for a section of code. If an
exception is caused by any statement inside a try clause, Java attempts to deliver the
exception to the appropriate catch clause. A catch clause looks like a method
declaration with one argument and no return type.

try {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ...
} catch (SomeExceptionType e) {
 ...
}

If Java finds a catch clause with an argument type that matches the type of the exception,
that catch clause is invoked. A try clause can have multiple catch clauses with
different argument types; Java chooses the appropriate one in a way that is analogous to the
selection of overloaded methods. You can catch multiple types of exceptions from a block
of code. Depending on the type of exception thrown, the appropriate catch clause is
executed.

If there is no try/catch clause surrounding the code, or a matching catch clause is
not found, the exception is thrown up to the calling method. If the exception is not caught
there, it's thrown up another level, and so on until the exception is handled, or the Java VM
prints an error and exits. This provides a very flexible error-handling mechanism so that
exceptions in deeply nested calls can bubble up to the surface of the call stack for handling.
As a programmer, you need to know what exceptions a particular statement can generate.
For this reason, methods in Java are required to declare the exceptions they can throw. If a
method doesn't handle an exception itself, it must specify that it can throw that exception
so that its calling method knows that it may have to handle it. See Chapter 4 for a complete
discussion of exceptions and the try/catch clause.

So, why do we need a try/catch clause in the run() method? What kind of
exception can Thread 's sleep() method throw and why do we care about it when we
don't seem to check for exceptions anywhere else? Under some circumstances, Thread 's
sleep() method can throw an InterruptedException , indicating that it was
interrupted by another thread. Since the run() method specified in the Runnable
interface doesn't declare it can throw an InterruptedException , we must catch it
ourselves, or the compiler will complain. The try/catch statement in our example has
an empty catch clause, which means that it handles the exception by ignoring it. In this
case, our thread's functionality is so simple it doesn't matter if it's interrupted (and it won't
be anyway). All the other methods we have used either handle their own exceptions or
throw only general-purpose exceptions called RuntimeException s that are assumed
to be possible everywhere and don't need to be explicitly declared.

2.4.7 Synchronization

At any given time we can have lots of threads running in an application. Unless we
explicitly coordinate them, these threads will be executing methods without any regard for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

what the other threads are doing. Problems can arise when these methods share the same
data. If one method is changing the value of some variables at the same time another
method is reading these variables, it's possible that the reading thread might catch things in
the middle and get some variables with old values and some with new. Depending on the
application, this situation could cause a critical error.

In our HelloJava examples, both our paintComponent() and mouseDragged()
methods access the messageX and messageY variables. Without knowing more about
the implementation of the Java environment, we have to assume that these methods could
conceivably be called by different threads and run concurrently. paintComponent()
could be called while mouseDragged() is in the midst of updating messageX and
messageY . At that point, the data is in an inconsistent state and if
paintComponent() gets lucky, it could get the new x value with the old y value.
Fortunately, Swing does not allow this to happen in this case because all event activity is
handled by a single thread, and we probably would not even notice if it were to happen in
this application anyway. We did, however, see another case, in our changeColor()
and currentColor() methods, where there is the potential for a more serious "out of
bounds" error.

The synchronized modifier tells Java to acquire a lock for the object that contains the
method before executing that method. Only one method in the object can have the lock at
any given time, which means that only one synchronized method in that object can be
running at a time. This allows a method to alter data and leave it in a consistent state before
a concurrently running method is allowed to access it. When the method is done, it releases
the lock on the class.

Unlike synchronization in other languages, the synchronized keyword in Java
provides locking at the language level. This means there is no way that you can forget to
unlock a class. Even if the method throws an exception or the thread is terminated, Java
will release the lock. This feature makes programming with threads in Java much easier
than in other languages. See Chapter 8 for more details on coordinating threads and shared
data.

Whew! Well, it's time to say goodbye to HelloJava . We hope that you have developed
a feel for the major features of the Java language and that this will help you as you explore
the details of programming with Java. If you are a bit bewildered by some of the material
presented here, take heart. We'll be covering all the major topics presented here again in
their own chapters throughout the book. This tutorial was meant to be something of a "trial
by fire" to get the important concepts and terminology into your brain so that the next time
you hear them you'll have a head start.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[1] Event handling in Java 1.0 was a very different story. Early on, Java did not have a notion
of event listeners and all event handling happened by overriding methods in base GUI classes.
This was both inefficient and led to poor design with a proliferation of highly specialized
components.

[2] Why isn't it just called a Button ? Button is the name that was used in Java's

original GUI toolkit, the Abstract Window Toolkit (AWT). AWT had some significant
shortcomings, so it was extended and essentially replaced by Swing in Java 2. Since AWT

already took the reasonable names such as Button and MenuBar and mixing them in

code could be confusing, Swing user interface components have names that are prefixed with

"J", such as JButton and JMenuBar .

CONTENTS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

Chapter 3. Tools of the Trade

 3.1 The Java Interpreter

 3.2 The Classpath
 3.3 Policy Files

 3.4 The Java Compiler

 3.5 Java Archive (JAR) Files

There are many options for Java development environments, from the traditional text-
editor-and-command-line tools to full blown IDEs such as Sun's Forte for Java, WebGain's
Visual Café, and Inprise's JBuilder. The examples in this book were developed using the
Solaris and Windows versions of the standard Java Software Development Kit (SDK), so
we will describe those tools here. When we refer to the compiler or interpreter, we'll be
referring to the command-line versions of these tools, so the book is a bit biased toward
those of you who are working in a Unix or DOS-like environment with a shell and
filesystem. However, the basic features we'll be describing for Sun's Java interpreter and
compiler should be applicable to other Java environments as well.

In this chapter, we'll describe the tools you'll need to compile and run Java applications.
The last part of the chapter discusses how to pack Java class files into Java archives (JAR
files). Chapter 22 also describes the ability to "sign" classes within a JAR file and to give
greater privileges to classes with a signature that you trust.

3.1 The Java Interpreter

A Java interpreter is software that implements the Java virtual machine and runs Java
applications. It can be a standalone application like the java program that comes with the
SDK or part of a larger application like a browser. It's likely the interpreter itself is written
in a native, compiled language for a particular platform. Other tools, such as Java
compilers and IDEs, are often being implemented directly in Java to maximize their
portability. Sun's Forte for Java (called NetBeans in the open source version included on
this book's CD-ROM) is one example of a pure-Java IDE (view CD content online at
http://examples.oreilly.com/learnjava2/CD-ROM/).

The Java interpreter performs all the activities of the Java runtime system. It loads Java
class files and interprets the compiled String . It verifies compiled classes loaded from
untrusted sources. In an implementation that supports dynamic, or just-in-time,

http://examples.oreilly.com/learnjava2/CD-ROM/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

compilation, the interpreter also serves as a specialized compiler that turns Java String
into native machine instructions.

Throughout most of this book, we'll be building standalone Java programs, but we'll make
frequent references to Java applets as well. Both are kinds of Java applications run by a
Java interpreter. The difference is that a standalone Java application has all its parts; it's a
complete program that runs independently. An applet is more like an embeddable program
module. The Java interpreter can't run an applet directly because it is used as part of a
larger application. To run an applet, you can use a web browser or the appletviewer
tool that comes with the SDK. HotJava, a web browser written in Java, and the
appletviewer are standalone Java applications run directly by the Java interpreter;
these programs implement the additional structure needed to run Java applets.

For a standalone Java application, there must be at least one class that contains a method
called main() , which contains the statements to be executed upon startup. To run the
application, start the interpreter, specifying that class as an argument.You can also specify
options to the interpreter as well as arguments to be passed to the application. Sun's Java
interpreter is called java :

% java [interpreter options] class_name [program arguments]

The class should be specified as a fully qualified class name, including the package name,
if any. Note, however, that you don't include the .class file extension. Here are a few
examples:

% java animals.birds.BigBird
% java MyTest

The interpreter searches for the class in the classpath , a list of directories where packages
of classes are stored. We'll discuss the classpath in detail in the next section. The classpath
is typically specified by an environment variable, which you can override with the
command-line option -classpath .

After loading the class specified on the command line, the interpreter executes the class's
main() method. From there, the application can start additional threads, reference other
classes, and create its user interface or other structures, as shown in Figure 3-1 .

Figure 3-1. Starting a Java application

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The main() method must have the right method signature . A method signature is the set
of information that defines the method. It includes the method's name, arguments and
return type, as well as type and visibility modifiers. The main() method must be a
public , static method that takes an array of String objects as its argument and
does not return any value (void):

public static void main (String [] myArgs)

Because main() is a public and static method, it can be accessed directly from
another class using the name of the class that contains it. We'll discuss the implications of
visibility modifiers such as public and the meaning of static in Chapter 4 through
Chapter 6 .

The main() method's single argument, the array of String objects, holds the
command-line arguments passed to the application . The name that we give the parameter
doesn't matter; only the type is important. In Java, the content of myArgs is a true array.
There's no need for an argument count parameter because myArgs knows how many
arguments it contains and can happily provide that information:

int argc = myArgs.length;

myArgs[0] is the first command-line argument, and so on. Note that this differs from
C/C++, where argument zero is the name of the application. If you're accustomed to
parsing C command-line arguments, you'll need to be careful not to trip over this
difference.

The Java interpreter continues to run until the main() method of the initial class file
returns and until any threads that it starts are complete. Special threads designated as
"daemon" threads are silently killed when the rest of the application has completed.

3.1.1 System Properties

Java does not directly provide access to "environment variables" from the host operating
system. But it does allow any number of system property values to be passed to the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

application when the interpreter is started. System properties are simply name-value string
pairs that are available to the application through the static System.getProperty()
method. You can use these properties as an alternative to command-line arguments to pass
configuration information to your application at runtime. Each value is passed to the
interpreter using the -D option followed by name =value . For example:

% java -Dstreet=sesame -Dscene=alley animals.birds.BigBird

The value of the street property is then accessible this way:

String street = System.getProperty("street");

3.2 The Classpath

The concept of a path should be familiar to anyone who has worked on a DOS or Unix
platform. It's an environment variable that provides an application with a list of places to
look for some resource. The most common example is a path for executable programs. In a
Unix shell, the PATH environment variable is a colon-separated list of directories that are
searched, in order, when the user types the name of a command. The Java CLASSPATH
environment variable, similarly, is a list of locations that can be searched for packages
containing Java class files. Both the Java interpreter and the Java compiler use
CLASSPATH when searching for packages and classes on the local host.

An element of the classpath can be a directory name or the name of an archive file . Java
supports archives of class files in its own Java archive (JAR) format, and in the
conventional ZIP format. JAR and ZIP are really the same format, but JAR archives
include extra files that describe each archive's contents. JAR files are created with the Java
development kit's jar utility; many tools for creating ZIP archives are publicly available.
The archive format enables large groups of classes and their resources to be distributed in a
single file; the Java interpreter automatically extracts individual class files from an archive,
as needed.

The precise means and format for setting the classpath vary from system to system. On a
Unix system, you set the CLASSPATH environment variable with a colon-separated list of
directories and class archive files:

CLASSPATH=/home/vicky/Java/classes:/home/josh/oldstuff/foo.jar:.
export CLASSPATH

This example specifies a classpath with three locations: a directory in the user's home, a
JAR file in another user's directory, and the current directory, which is always specified

http://lib.ommolketab.ir
http://lib.ommolketab.ir

with a dot (.). The last component of the classpath, the current directory, is useful when
tinkering with classes, but as a general rule, it's bad practice to put the current directory in
any kind of path.

On a Windows system, the CLASSPATH environment variable is set with a semicolon-
separated list of directories and class archive files:

set CLASSPATH=D:\users\vicky\Java\classes;.

The Java interpreter and the other command-line tools also know how to find the core
classes, which are the classes included in every Java installation. The classes in the
java.lang , java.io , java.net , and javax.swing packages, for example,
are all core classes. You don't need to include these classes in your classpath; the Java
interpreter and the other tools can find them by themselves.

To find other classes, the Java interpreter searches the locations on the classpath in order.
The search combines the path location and the fully qualified class name. For example,
consider a search for the class animals.birds.BigBird . Searching the classpath
directory /usr/lib/java means the interpreter looks for an individual class file at
/usr/lib/java/animals/birds/BigBird.class . Searching a ZIP or JAR archive on the
classpath, say /home/vicky/Java/utils/classutils.jar , means that the interpreter looks for
component file animals/birds/BigBird.class in that archive.

For the Java interpreter, java , and the Java compiler, javac , the classpath can also be
specified with the -classpath option:

% javac -classpath /pkg/sdk/lib/classes.zip:/home/pat/java:. Foo.java

If you don't specify the CLASSPATH environment variable, it defaults to the current
directory (.); this means that the files in your current directory are normally available. If
you change the classpath and don't include the current directory, these files will no longer
be accessible.

3.2.1 javap

A useful tool to know about is the javap command. With javap , you can print a description
of a compiled class. You don't have to have the source code, and you don't even have to
know exactly where it is, only that it is in your classpath. For example:

% javap java.util.Stack

prints the information about the java.util.Stack class:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Compiled from Stack.java
public class java.util.Stack extends java.util.Vector {
 public java.util.Stack();
 public java.lang.Object push(java.lang.Object);
 public synchronized java.lang.Object pop();
 public synchronized java.lang.Object peek();
 public boolean empty();
 public synchronized int search(java.lang.Object);
}

This is very useful if you don't have other documentation handy and can also be helpful in
debugging classpath issues. If you are feeling really adventurous you can try javap with the
-c option, which causes it to also print the JVM instructions for each method in the class!

3.3 Policy Files

One of the truly novel things about Java is that security is built into the language. As
described in Chapter 1 , the Java VM can verify class files and Java's security manager can
impose limits on what classes do. In early versions of Java, it was necessary to implement
security policies programmatically by writing a Java security manager class and using it in
your application. A major shift occurred in Java 1.2, when a new declarative security
system was added. This system allows you to write policy files -text-based descriptions of
permissions-which are much simpler and don't require code changes. These policy files
tell the security manager what to allow and disallow and for whom.

With security policies you can answer questions such as: "If I download a program from
somewhere on the Internet, how can I prevent it from stealing information on my computer
and sending it back to someone else?" "How can I prevent a malicious program from
disabling my computer or erasing data on my disk?" Most computing platforms have no
answer for these questions.

In early versions of Java, much of the buzz had to do with the security of applets. Applets
generally run with security restrictions that prevent them from doing questionable things
such as reading from or writing to the disk or contacting arbitrary computers on the
network. With security policy files, it's just as easy to apply applet-style security to any
application without modifying it. Furthermore, it's easy to fine-tune the access you grant.
For example, you can allow an application to access the disk, but only in a specific
directory, or you can allow network access to certain addresses.

Understanding security and security policies is important, so we'll cover it here. However,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

in practice, you probably won't use this facility yourself, unless you are writing a
framework for running applications from many unknown sources. The Java Web Start
facility is an example of such a framework. It installs and updates Java applications over
the Web with user-definable security restrictions.

3.3.1 The Default Security Manager

By default, no security manager is installed when you launch a Java application locally.
You can turn on security using an option of the java interpreter to install a default security
manager. The default security policy enforces many of the same rules as for applets. To see
how this works, let's write a little program that does something questionable, making a
network connection to some computer on the Internet. (We cover the specifics of network
programming in Chapter 12 and Chapter 13 .)

//file: EvilEmpire.java
import java.net.*;

public class EvilEmpire {
 public static void main(String[] args) throws Exception{
 try {
 Socket s = new Socket("207.46.131.13", 80);
 System.out.println("Connected!");
 }
 catch (SecurityException e) {
 System.out.println("SecurityException: could not connect.");
 }
 }
}

If you run this program with the Java interpreter, it makes the network connection:

C:\> java EvilEmpire
Connected!

But since this program is "evil," let's install the default security manager, like this:

C:\> java -Djava.security.manager EvilEmpire
SecurityException: could not connect.

That's better, but suppose that the application actually has a legitimate reason to make its
network connection. We'd like to leave the default security manager in place, just to be

http://lib.ommolketab.ir
http://lib.ommolketab.ir

safe, but we'd like to grant this application permission to make a network connection.

3.3.2 The policytool Utility

To permit our EvilEmpire example to make a network connection, we need to create a
policy file that contains the appropriate permission. A handy utility called policytool ,
included with the SDK, helps make policy files. Fire it up from a command line like this:

C:\> policytool

You may get an error message when policytool starts up about not finding a default policy
file. Don't worry about this; just click OK to make the message go away.

We now add a network permission for the EvilEmpire application. The application is
identified by its origin, also called a codebase , described by a URL. In this case, it is a
file: URL that points to the location of the EvilEmpire application on your disk.

If you started up policytool , you should be looking at its main window, shown in Figure 3-
2 . Click on Add Policy Entry . Another window pops up, like the one shown in Figure 3-3
(but with the fields empty).

Figure 3-2. The policytool window

Figure 3-3. Adding a policy entry

http://lib.ommolketab.ir
http://lib.ommolketab.ir

First, fill in the codebase with the URL of the directory containing EvilEmpire as
shown in the figure. Then click on Add Permission . Yet another window pops up, shown
in Figure 3-4 .

Figure 3-4. Creating a new permission

Choose SocketPermission from the first combo box. Then fill out the second text field on
the right side with the network address that EvilEmpire will connect to. Finally, choose
connect from the third combo box. Click on OK ; you should see the new permission in the
policy entry window, as shown in Figure 3-3 .

Click on Done to finish creating the policy. Then choose Save As from the File menu and
save the policy file as something memorable, like EvilEmpire.policy . You can quit
policytool now; we're all done with it.

There's nothing magical about the policy file you just created. Take a look at it with a text
editor, which shows the simple syntax of the policy we just created:

grant codeBase "file:/c:/Projects/Exploring/" {
 permission java.net.SocketPermission "207.46.131.13", "connect";
};

You can eschew policytool entirely and just create policy files with a text editor, if you're
more comfortable that way.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.3.3 Using a Policy File with the Default Security Manager

Now that we've gone to the trouble of creating a policy file, let's use it. You can tell the
default security manager to use the policy file with another command-line option to the
java interpreter:

C:\> java -Djava.security.manager -Djava.security.policy=EvilEmpire.policy EvilEmpire
Connected!

EvilEmpire can now make its socket connection because we have explicitly granted it
permission with a policy file. The default security manager still protects us in other ways,
however. EvilEmpire cannot write or read files on the disk except in the directory it
came from, and it cannot make connections to any other network addresses except the one
we specified. Take a moment and bask in this warm fuzzy feeling.

Later, in Chapter 22 , you'll see policytool again when we explain signed applets. In this
chapter, codebases are identified by URLs, which isn't the most secure option. Through
tricky network shenanigans, a clever forger may be able to give you code that appears to be
from somewhere it's not. Cryptographically signed code is even more trustworthy; see
Chapter 22 for details.

3.4 The Java Compiler

In this section, we'll say a few words about javac , the Java compiler in the SDK. (If you
are happily working in another development environment, you may want to skip ahead to
the next section.) The javac compiler is written entirely in Java, so it's available for any
platform that supports the Java runtime system.

javac turns Java source code into a compiled class that contains Java virtual machine
String . By convention, source files are named with a .java extension; the resulting class
files have a .class extension. Each source code file is a single compilation unit. As you'll
see in Chapter 6 , classes in a given compilation unit share certain features, such as
package and import statements.

javac allows one public class per file and insists the file have the same name as the class. If
the filename and class name don't match, javac issues a compilation error. A single file can
contain multiple classes, as long as only one of the classes is public. Avoid packing many
classes into a single source file. Including nonpublic classes in a .java file is one easy way
to tightly couple such classes to a public class. But you might also consider using inner
classes (see Chapter 6).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Now for an example. Place the following source code in file BigBird.java :

package animals.birds;

public class BigBird extends Bird {
 ...
}

Now compile it with:

% javac BigBird.java

Unlike the Java interpreter, which takes just a class name as its argument, javac needs a
filename to process. The previous command produces the class file BigBird.class in the
same directory as the source file. While it's useful to have the class file in the same
directory as the source for testing a simple example, for most real applications, you need to
store the class file in an appropriate place in the classpath.

You can use the -d option to javac to specify an alternative directory for storing the
class files it generates. The specified directory is used as the root of the class hierarchy, so
.class files are placed in this directory or in a subdirectory below it, depending on whether
the class is contained in a package. (The compiler creates intermediate subdirectories
automatically, if necessary.) For example, we can use the following command to create the
BigBird.class file at /home/vicky/Java/classes/animals/birds/BigBird.class :

% javac -d /home/vicky/Java/classes BigBird.java

You can specify multiple .java files in a single javac command; the compiler creates a class
file for each source file. But you don't need to list source files for other classes your class
references, as long as the other classes have already been compiled. During compilation,
Java resolves other class references using the classpath. If our class refers to other classes
in animals.birds or other packages, the appropriate paths should be listed in the
classpath at compile time, so that javac can find the appropriate class files.

The Java compiler is more intelligent than your average compiler, replacing some of the
functionality of a make utility. For example, javac compares the modification times of the
source and class files for all referenced classes and recompiles them as necessary. A
compiled Java class remembers the source file from which it was compiled, so as long as
the source file is in the same directory as the class file, javac can recompile the source if
necessary. If, in the previous example, class BigBird references another class,
animals.furry.Grover , javac looks for the source file Grover.java in an

http://lib.ommolketab.ir
http://lib.ommolketab.ir

animals.furry package and recompiles it if necessary to bring the Grover.class class
file up to date.

By default, however, javac checks only source files that are referenced directly from
other source files. This means that if you have an out-of-date class file that is referenced
only by an up-to-date class file, it may not be noticed and recompiled. You can force javac
to walk the entire graph of objects using the -depend option, but this can increase
compilation time significantly. And this technique still won't help if you want to keep class
libraries or other collections of classes up to date even if they aren't being referenced at all.
For that you should consider a make utility.

Finally, it's important to note that javac can compile an application even if only the
compiled versions of referenced classes are available. You don't need source code for all
your objects. Java class files contain all the data type and method signature information
that source files contain, so compiling against binary class files is as type-safe (and
exception-safe) as compiling with Java source code.

3.5 Java Archive (JAR) Files

Java archive files (JAR files) are Java's suitcases. They are the standard and portable way
to pack up all the parts of your Java application into a compact bundle for distribution or
installation. You can put whatever you want into a JAR file: Java class files, serialized
objects, data files, images, sounds, etc. As we'll see in Chapter 22 , a JAR file can carry one
or more digital signatures that attest to its integrity and authenticity. A signature can be
attached to the file as a whole or to individual items in the file.

The Java runtime system understands JAR files and can load class files directly from an
archive. So you can pack your application's classes in a JAR file and place it in your
CLASSPATH , as described earlier. You can do the equivalent for applets by listing the
JAR file in the ARCHIVE attribute of the HTML <APPLET> tag. Nonclass files (data,
images, etc.) contained in your JAR file can also be retrieved from the classpath using the
getResource() method (described in Chapter 11). Using this facility your code
doesn't have to know whether any resource is in a plain file or a member of a JAR archive.
Whether a given class or data file is an item in a JAR file, an individual file on the
classpath, or an applet on a remote server, you can always refer to it in a standard way and
let Java's class loader resolve the location.

3.5.1 File Compression

Items stored in JAR files are compressed with the standard ZIP file compression. [1]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Compression makes downloading classes over a network much faster. A quick survey of
the standard Java distribution shows that a typical class file shrinks by about 40% when it
is compressed. Text files such as arbitrary HTML or ASCII containing English words often
compress by as much as 75%-to one-quarter their original size. (On the other hand, image
files don't get smaller when compressed; most of the common image formats have
compression built in.)

Compression is not the only advantage that a JAR file has for transporting files over a
network. Placing all the classes in a single JAR file enables them to be downloaded in a
single transaction. Eliminating the overhead of making HTTP requests is likely to be a big
savings, since individual class files tend to be small, and a complex applet could easily
require many of them. On the downside, startup time could be increased if a large JAR file
must be downloaded over a slow connection before the applet can start up.

3.5.2 The jar Utility

The jar utility provided with the SDK is a simple tool for creating and reading JAR files.
Its user interface isn't particularly friendly. It mimics the Unix tar (tape archive) command.
If you're familiar with tar , you'll recognize the following incantations:

jar -cvf jarFile path [path] [...]

Create jarFile containing path (s)
jar -tvf jarFile [path] [...]

List the contents of jarFile , optionally showing just path (s)
jar -xvf jarFile [path] [...]

Extract the contents of jarFile , optionally extracting just path (s)

In these commands, the letters c , t , and x tell jar whether it is creating an archive, listing
an archive's contents, or extracting files from an archive. The f means that the next
argument will be the name of the JAR file on which to operate. The v tells jar to be more
verbose when displaying information about files. In verbose mode, you can get information
about file sizes, modification times, and compression ratios.

Subsequent items on the command line (i.e., anything aside from the letters telling jar what
to do and the file on which jar should operate) are taken as names of archive items. If
you're creating an archive, the files and directories you list are placed in it. If you're
extracting, only the filenames you list are extracted from the archive. (If you don't list any
files, jar extracts everything in the archive.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For example, let's say we have just completed our new game, spaceblaster . All the files
associated with the game are in three directories. The Java classes themselves are in the
spaceblaster/game directory, spaceblaster/images contains the game's images, and
spaceblaster/docs contains associated game data. We can pack all this in an archive with
this command:

% jar cvf spaceblaster.jar spaceblaster

Because we requested verbose output, jar tells us what it is doing:

adding:spaceblaster/ (in=0) (out=0) (stored 0%)
adding:spaceblaster/game/ (in=0) (out=0) (stored 0%)
adding:spaceblaster/game/Game.class (in=8035) (out=3936) (deflated 51%)
adding:spaceblaster/game/Planetoid.class (in=6254) (out=3288) (deflated 47%)
adding:spaceblaster/game/SpaceShip.class (in=2295) (out=1280) (deflated 44%)
adding:spaceblaster/images/ (in=0) (out=0) (stored 0%)
adding:spaceblaster/images/spaceship.gif (in=6174) (out=5936) (deflated 3%)
adding:spaceblaster/images/planetoid.gif (in=23444) (out=23454) (deflated 0%)
adding:spaceblaster/docs/ (in=0) (out=0) (stored 0%)
adding:spaceblaster/docs/help1.html (in=3592) (out=1545) (deflated 56%)
adding:spaceblaster/docs/help2.html (in=3148) (out=1535) (deflated 51%)

jar creates the file spaceblaster.jar and adds the directory spaceblaster , in turn adding the
directories and files within spaceblaster to the archive. In verbose mode, jar reports the
savings gained by compressing the files in the archive.

We can unpack the archive with this command:

% jar xvf spaceblaster.jar

Likewise, we can extract an individual file or directory with:

% jar xvf spaceblaster.jar filename

But you normally don't have to unpack a JAR file to use its contents; Java tools know how
to extract files from archives automatically. We can list the contents of our JAR with the
command:

% jar tvf spaceblaster.jar

Here's the output; it lists all the files, their sizes, and creation times:

0 Thu May 15 12:18:54 PDT 1997 META-INF/

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 1074 Thu May 15 12:18:54 PDT 1997 META-INF/MANIFEST.MF
 0 Thu May 15 12:09:24 PDT 1997 spaceblaster/
 0 Thu May 15 11:59:32 PDT 1997 spaceblaster/game/
 8035 Thu May 15 12:14:08 PDT 1997 spaceblaster/game/Game.class
 6254 Thu May 15 12:15:18 PDT 1997 spaceblaster/game/Planetoid.class
 2295 Thu May 15 12:15:26 PDT 1997 spaceblaster/game/SpaceShip.class
 0 Thu May 15 12:17:00 PDT 1997 spaceblaster/images/
 6174 Thu May 15 12:16:54 PDT 1997 spaceblaster/images/spaceship.gif
 23444 Thu May 15 12:16:58 PDT 1997 spaceblaster/images/planetoid.gif
 0 Thu May 15 12:10:02 PDT 1997 spaceblaster/docs/
 3592 Thu May 15 12:10:16 PDT 1997 spaceblaster/docs/help1.html
 3148 Thu May 15 12:10:02 PDT 1997 spaceblaster/docs/help2.html

3.5.2.1 JAR manifests

Note that the jar command automatically adds a directory called META-INF to our archive.
The META-INF directory holds files describing the contents of the JAR file. It always
contains at least one file: MANIFEST.MF. The MANIFEST.MF file can contain a "packing
list" naming the files in the archive along with a user-definable set of attributes for each
entry.

The manifest is a text file containing a set of lines in the form keyword: value . In Java 1.2
and later, the manifest is by default empty and contains only JAR file version information:

Manifest-Version: 1.0
Created-By: 1.2.1 (Sun Microsystems Inc.)

In Chapter 22 , we'll discuss signed JAR files. When you sign a JAR file with a digital
signature digest (checksum) information is added to the manifest for each item in the
archive. It looks like this:

Name: com/oreilly/Test.class
SHA1-Digest: dF2GZt8G11dXY2p4olzzIc5RjP3=
...

In the case of a signed JAR, the META-INF directory holds digital signature files for items
in the archive. In Java 1.1, digest information was always added to the JAR. But since it's
really necessary only for signed JAR files, it is omitted by default when you create an
archive in Java 1.2 and later.

You can add your own information to the manifest descriptions by specifying your own,
supplemental, manifest file when you create the archive. This is a good place to store other

http://lib.ommolketab.ir
http://lib.ommolketab.ir

simple kinds of attribute information about the files in the archive, perhaps version or
authorship information.

For example, we can create a file with the following keyword: value lines:

Name: spaceblaster/images/planetoid.gif
RevisionNumber: 42.7
Artist-Temperament: moody

To add this information to the manifest in our archive, place it in a file called
myManifest.mf and give the following jar command:

% jar -cvmf myManifest.mf spaceblaster.jar spaceblaster

We included an additional option with the command, m , which specifies that jar should
read additional manifest information from the file given on the command line. How does
jar know which file is which? Because m is before f , it expects to find the manifest
information before the name of the JAR file it will create. If you think that's awkward,
you're right; get the names in the wrong order, and jar will do the wrong thing. Be careful.

Although these attributes aren't automatically available to the application code, it's easy to
retrieve them from a JAR file using the java.util.jar.Manifest class.

We'll see more examples of adding information to the JAR manifest later in Chapter 21 .
The JavaBeans APIs use manifest information to designate which classes are "beans" using
a Java-Bean attribute. This information is used by IDEs which work with JavaBeans
and load them from the JAR files.

3.5.2.2 Making a JAR file runnable

Aside from attributes, there are a few special values you can put in the manifest file. One of
these, Main-Class , allows you to specify the class containing the primary main()
method for an application contained in the JAR:

Main-Class: com.oreilly.Game

If you add this to your JAR file manifest (using the m option described earlier), you can run
the application directly from the JAR:

% java -jar spaceblaster.jar

More importantly, under Windows and other GUI environments you can simply click on
the JAR file to launch the application. The interpreter looks for the Main-Class value in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the manifest. It then loads the named class as the application's initial class.

CONTENTS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

Chapter 4. The Java Language

 4.1 Text Encoding

 4.2 Comments
 4.3 Types

 4.4 Statements and Expressions

 4.5 Exceptions

 4.6 Assertions

 4.7 Arrays

In this chapter, we introduce the framework of the Java language and some of its
fundamental facilities. We don't try to provide a full language reference here; instead, we'll
lay out the basic structures of Java with special attention to how it differs from other
languages. For example, we'll take a close look at arrays in Java, because they are
significantly different from those in some other languages. We won't, on the other hand,
spend too much time explaining basic language constructs such as loops and control
structures. Nor will we talk much about Java's object-oriented side here, as that's covered
in detail in Chapter 5 through Chapter 7 . As always, we'll try to provide meaningful
examples to illustrate how to use Java in everyday programming tasks.

4.1 Text Encoding

Java is a language for the Internet. Since the people of the Net speak and write in many
different human languages, Java must be able to handle a large number of languages as
well. One of the ways in which Java supports international access is through Unicode
character encoding. Unicode uses a 16-bit character encoding; it's a worldwide standard
that supports the scripts (character sets) of most languages. [1]

Java source code can be written using the Unicode character encoding and stored either in
its full 16-bit form or with ASCII-encoded Unicode character values. This makes Java a
friendly language for non-English-speaking programmers who can use their native
alphabet for class, method, and variable names.

The Java char type and String objects also support Unicode. But if you're concerned
about having to labor with two-byte characters, you can relax. The String API makes
the character encoding transparent to you. Unicode is also ASCII-friendly; the first 256
characters are defined to be identical to the first 256 characters in the ISO8859-1 (Latin-1)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

encoding; if you stick with these values, there's really no distinction between the two.

Most platforms can't display all currently defined Unicode characters. As a result, Java
programs can be written with special Unicode escape sequences. A Unicode character can
be represented with this escape sequence:

\uxxxx

xxxx is a sequence of one to four hexadecimal digits. The escape sequence indicates an
ASCII-encoded Unicode character. This is also the form Java uses to output Unicode
characters in an environment that doesn't otherwise support them.

Java stores and manipulates characters and strings internally as Unicode values. Java also
comes with classes to read and write Unicode-formatted character streams.

4.2 Comments

Java supports both C-style block comments delimited by /* and */ and C++ - style line
comments indicated by // :

/* This is a
 multiline
 comment. */

// This is a single-line comment
// and so // is this

As in C, block comments can't be nested. Single-line comments are delimited by the end of
a line; extra // indicators inside a single line have no effect. Line comments are useful for
short comments within methods; they don't conflict with wrapping block comment
indicators around large chunks of code during development.

4.2.1 javadoc Comments

By convention, a block comment beginning with /** indicates a special doc comment . A
doc comment is designed to be extracted by automated documentation generators, such as
the Java SDK's javadoc program. A doc comment is terminated by the next */ , just as
with a regular block comment. Leading spacing and the first * on each line is ignored; lines
beginning with @ are interpreted as special tags for the documentation generator.

Here's an example:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

/**
 * I think this class is possibly the most amazing thing you will
 * ever see. Let me tell you about my own personal vision and
 * motivation in creating it.
 * <p>
 * It all began when I was a small child, growing up on the
 * streets of Idaho. Potatoes were the rage, and life was good...
 *
 * @see PotatoPeeler
 * @see PotatoMasher
 * @author John 'Spuds' Smith
 * @version 1.00, 19 Dec 1996
 */

javadoc creates HTML documentation for classes by reading the source code and pulling
out the embedded comments. The author and version information is presented in the
output, and the @see tags make hypertext links to the appropriate class documentation.

The compiler also looks at the doc comments; in particular, it is interested in the
@deprecated tag, which means that the method has been declared obsolete and should
be avoided in new programs. The fact that a method is deprecated is noted in the compiled
class file so a warning message can be generated whenever you use a deprecated feature in
your code (even if the source isn't available).

Doc comments can appear above class, method, and variable definitions, but some tags
may not be applicable to all of these. For example, a variable declaration can contain only a
@see tag. Table 4-1 summarizes the tags used in doc comments.

Table 4-1. Doc comment tags

Tag Description Applies to

@see Associated class name Class, method, or variable

@author Author name Class

@version Version string Class

@param Parameter name and description Method

@return Description of return value Method

@exception Exception name and description Method

@deprecatedDeclares an item to be obsolete Class, method, or variable

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.3 Types

The type system of a programming language describes how its data elements (variables and
constants) are associated with actual storage. In a statically typed language, such as C or
C++, the type of a data element is a simple, unchanging attribute that often corresponds
directly to some underlying hardware phenomenon, such as a register or a pointer value. In
a more dynamic language such as Smalltalk or Lisp, variables can be assigned arbitrary
elements and can effectively change their type throughout their lifetime. A considerable
amount of overhead goes into validating what happens in these languages at runtime.
Scripting languages such as Perl achieve ease of use by providing drastically simplified
type systems in which only certain data elements can be stored in variables, and values are
unified into a common representation, such as strings.

Java combines the best features of both statically and dynamically typed languages. As in a
statically typed language, every variable and programming element in Java has a type that
is known at compile time, so the runtime system doesn't normally have to check the type
validity of assignments while the code is executing. Unlike C or C++, Java also maintains
runtime information about objects and uses this to allow truly safe runtime polymorphism
and casting (using an object as a type other than its declared type).

Java data types fall into two categories. Primitive types represent simple values that have
built-in functionality in the language; they are fixed elements, such as literal constants and
numbers. Reference types (or class types) include objects and arrays; they are called
reference types because they are passed "by reference," as we'll explain shortly.

4.3.1 Primitive Types

Numbers, characters, and boolean values are fundamental elements in Java. Unlike some
other (perhaps more pure) object-oriented languages, they are not objects. For those
situations where it's desirable to treat a primitive value as an object, Java provides
"wrapper" classes (see Chapter 10). One major advantage of treating primitive values as
such is that the Java compiler can more readily optimize their usage.

Another important portability feature of Java is that primitive types are precisely defined.
For example, you never have to worry about the size of an int on a particular platform;
it's always a 32-bit, signed, two's complement number. Table 4-2 summarizes Java's
primitive types.

Table 4-2. Java primitive data types

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Type Definition

boolean true or false

char 16-bit Unicode character

byte 8-bit signed two's complement integer

short 16-bit signed two's complement integer

int 32-bit signed two's complement integer

long 64-bit signed two's complement integer

float 32-bit IEEE 754 floating-point value

double 64-bit IEEE 754 floating-point value

Those of you with a C background may notice that the primitive types look like an
idealization of C scalar types on a 32-bit machine, and you're absolutely right. That's how
they're supposed to look. The 16-bit characters were forced by Unicode, and ad hoc
pointers were deleted for other reasons. But overall, the syntax and semantics of Java
primitive types are meant to fit a C programmer's mental habits.

4.3.1.1 Floating-point precision

Floating-point operations in Java follow the IEEE 754 international specification, which
means that the result of floating-point calculations is normally the same on different Java
platforms. However, since Version 1.3, Java has allowed for extended precision on
platforms that support it. This can introduce extremely small-valued and arcane differences
in the results of high-precision operations. Most applications would never notice this, but if
you want to ensure that your application produces exactly the same results on different
platforms, use the special keyword strictfp as a class modifier on the class containing
the floating-point manipulation.

4.3.1.2 Variable declaration and initialization

Variables are declared inside of methods or classes in C style. For example:

int foo;
double d1, d2;
boolean isFun;

Variables can optionally be initialized with an appropriate expression when they are
declared:

int foo = 42;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

double d1 = 3.14, d2 = 2 * 3.14;
boolean isFun = true;

Variables that are declared as instance variables in a class are set to default values if they
aren't initialized. (In this case, they act much like static variables in C or C++.)
Numeric types default to the appropriate flavor of zero, characters are set to the null
character (\0) , and boolean variables have the value false . Local variables declared in
methods, on the other hand, must be explicitly initialized before they can be used.

4.3.1.3 Integer literals

Integer literals can be specified in octal (base 8), decimal (base 10), or hexadecimal (base
16). A decimal integer is specified by a sequence of digits beginning with one of the
characters 1-9:

int i = 1230;

Octal numbers are distinguished from decimal numbers by a leading zero:

int i = 01230; // i = 664 decimal

As in C, a hexadecimal number is denoted by the leading characters 0x or 0X (zero "x"),
followed by digits and the characters a-f or A-F, which represent the decimal values 10-15:

int i = 0xFFFF; // i = 65535 decimal

Integer literals are of type int unless they are suffixed with an L , denoting that they are to
be produced as a long value:

long l = 13L;
long l = 13; // equivalent: 13 is converted from type int

(The lowercase character l ("el") is also acceptable but should be avoided because it often
looks like the numeral 1 .)

When a numeric type is used in an assignment or an expression involving a type with a
larger range, it can be promoted to the larger type. For example, in the second line of the
previous example, the number 13 has the default type of int , but it's promoted to type
long for assignment to the long variable. Certain other numeric and comparison
operations also cause this kind of arithmetic promotion. A numeric value can never be
assigned to a type with a smaller range without an explicit (C-style) cast, however:

int i = 13;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

byte b = i; // Compile-time error, explicit cast needed
byte b = (byte) i; // OK

Conversions from floating-point to integer types always require an explicit cast because of
the potential loss of precision.

4.3.1.4 Floating-point literals

Floating-point values can be specified in decimal or scientific notation. Floating-point
literals are of type double unless they are suffixed with an f or F denoting that they are
to be produced as a float value:

double d = 8.31;
double e = 3.00e+8;
float f = 8.31F;
float g = 3.00e+8F;

4.3.1.5 Character literals

A literal character value can be specified either as a single-quoted character or as an
escaped ASCII or Unicode sequence:

char a = 'a';
char newline = '\n';
char smiley = '\u263a';

4.3.2 Reference Types

In Java, as in other object-oriented languages, you create new complex data types from
primitives by creating a class that defines a new type in the language. For instance, if we
create a new class called Foo in Java, we are also implicitly creating a new type called
Foo . The type of an item governs how it's used and where it's assigned. An item of type
Foo can, in general, be assigned to a variable of type Foo or passed as an argument to a
method that accepts a Foo value.

In an object-oriented language like Java, a type is not necessarily just a simple attribute.
Reference types are related in the same way as the classes they represent. Classes exist in a
hierarchy, where a subclass is a specialized kind of its parent class. The corresponding
types have the same relationship, where the type of the child class is considered a subtype

http://lib.ommolketab.ir
http://lib.ommolketab.ir

of the parent class. Because child classes always extend their parents and have, at a
minimum, the same functionality, an object of the child's type can be used in place of an
object of the parent's type. For example, if you create a new class, Cat , that extends
Animal , there is a new type Cat that is considered a subtype of Animal . Objects of
type Cat can then be used anywhere an object of type Animal can be used; an object of
type Cat is said to be assignable to a variable of type Animal . This is called subtype
polymorphism and is one of the primary features of an object-oriented language. We'll look
more closely at classes and objects in Chapter 5 .

Primitive types in Java are used and passed "by value." In other words, when a primitive
value is assigned or passed as an argument to a method, it's simply copied. Reference
types, on the other hand, are always accessed "by reference." A reference is simply a
handle or a name for an object. What a variable of a reference type holds is a reference to
an object of its type (or of a subtype, as described earlier). A reference is like a pointer in C
or C++, except that its type is strictly enforced and the reference value itself is a primitive
entity that can't be examined directly. A reference variable can't be created or changed
other than through assignment to an appropriate object. When references are assigned or
passed to methods, they are copied by value. If you are familiar with C, you can think of a
reference as a pointer type that is automatically dereferenced whenever it's mentioned.

Let's run through an example. We specify a variable of type Foo , called myFoo , and
assign it an appropriate object:[2]

Foo myFoo = new Foo();
Foo anotherFoo = myFoo;

myFoo is a reference-type variable that holds a reference to the newly constructed Foo
object. (For now, don't worry about the details of creating an object; we'll cover that in
Chapter 5 .) We create a second Foo type variable, anotherFoo , and assign it to the
same object. There are now two identical references: myFoo and anotherFoo . If we
change things in the state of the Foo object itself, we see the same effect by looking at it
with either reference.

We can pass an object to a method by specifying a reference-type variable (in this case,
either myFoo or anotherFoo) as the argument:

myMethod(myFoo);

An important, but sometimes confusing, distinction to make at this point is that the
reference itself is passed by value. That is, the argument passed to the method (a local
variable from the method's point of view) is actually a third copy of the reference. The
method can alter the state of the Foo object itself through that reference, but it can't change

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the caller's notion of the reference to myFoo . That is, the method can't change the caller's
myFoo to point to a different Foo object; it can change only its own. For those occasions
when we want a method to have the side effect of changing a reference passed to it, we
have to wrap that reference in another object to provide a layer of indirection.

Reference types always point to objects, and objects are always defined by classes.
However, two special kinds of reference types specify the type of object they point to in a
slightly different way. Arrays in Java have a special place in the type system. They are a
special kind of object automatically created to hold a series of some other type of object,
known as the base type . Declaring an array-type reference implicitly creates the new class
type, as you'll see in the next section.

Interfaces are a bit sneakier. An interface defines a set of methods and a corresponding
type. Any object that implements all methods of the interface can be treated as an object of
that type. Variables and method arguments can be declared to be of interface types, just
like class types, and any object that implements the interface can be assigned to them. This
allows Java to cross the lines of the class hierarchy in a type-safe way.

4.3.3 A Word About Strings

Strings in Java are objects; they are therefore a reference type. String objects do,
however, have some special help from the Java compiler that makes them look more like
primitive types. Literal string values in Java source code are turned into String objects
by the compiler. They can be used directly, passed as arguments to methods, or assigned to
String type variables:

System.out.println("Hello World...");
String s = "I am the walrus...";
String t = "John said: \"I am the walrus...\"";

The + symbol in Java is overloaded to provide string concatenation as well as numeric
addition. Along with its sister += , this is the only overloaded operator in Java:

String quote = "Four score and " + "seven years ago,";
String more = quote + " our" + " fathers" + " brought...";

Java builds a single String object from the concatenated strings and provides it as the
result of the expression. We discuss the String class in Chapter 9 .

4.4 Statements and Expressions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Although Java's means of declaring methods is quite different from C++, Java's statement
and expression syntax is similar to C. Again, the creators of Java came from this
background, and the intention was to make the low-level details of Java easily accessible to
C programmers. Java statements appear inside methods and classes; they describe all
activities of a Java program. Variable declarations and assignments, such as those in the
previous section, are statements, as are basic language structures such as conditionals and
loops. Expressions produce values; an expression is evaluated to produce a result, to be
used as part of another expression or in a statement. Method calls, object allocations, and,
of course, mathematical expressions are examples of expressions. Technically, since
variable assignments can be used as values for further assignments or operations (in
somewhat questionable programming style), they can be considered to be both statements
and expressions.

One of the tenets of Java is to keep things simple and consistent. To that end, when there
are no other constraints, evaluations and initializations in Java always occur in the order in
which they appear in the code-from left to right, top to bottom. We'll see this rule used in
the evaluation of assignment expressions, method calls, and array indexes, to name a few
cases. In some other languages, the order of evaluation is more complicated or even
implementation-dependent. Java removes this element of danger by precisely and simply
defining how the code is evaluated. This doesn't mean you should start writing obscure and
convoluted statements, however. Relying on the order of evaluation of expressions is a bad
programming habit, even when it works. It produces code that is hard to read and harder to
modify. Real programmers, however, are not made of stone, and you may catch us doing
this once or twice when we can't resist the urge to write terse code.

4.4.1 Statements

As in C or C++, statements and expressions in Java appear within a code block . A code
block is syntactically a series of statements surrounded by an open curly brace ({) and a
close curly brace (}). The statements in a code block can contain variable declarations:

{
 int size = 5;
 setName("Max");
 ...
}

Methods, which look like C functions, are in a sense code blocks that take parameters and
can be called by their names, for example, SetUpDog :

setUpDog(String name) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 int size = 5;
 setName(name);
 ...
}

Variable declarations are limited in scope to their enclosing code block. That is, they can't
be seen outside of the nearest set of braces:

{
 int i = 5;
}

i = 6; // Compile-time error, no such variable i

In this way, code blocks can be used to arbitrarily group other statements and variables.
The most common use of code blocks, however, is to define a group of statements for use
in a conditional or iterative statement.

Since a code block is itself collectively treated as a statement, we define a conditional like
an if/else clause as follows:

if (condition)
 statement;
[else
 statement;]

Thus, the if clause has the familiar (to C/C++ programmers) functionality of taking two
different forms. Here's one:

if (condition)
 statement;

Here's the other:

if (condition) {
 [statement;]
 [statement;]
 [...]
}

The condition is a boolean expression. You can't use an integer expression or a
reference type like you can in C. In other words, while i==0 is legitimate, i is not (unless
i itself is boolean) .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In the second form, the statement is a code block, and all its enclosed statements are
executed if the conditional succeeds. Any variables declared within that block are visible
only to the statements within the successful branch of the condition. Like the if/else
conditional, most of the remaining Java statements are concerned with controlling the flow
of execution. They act for the most part like their namesakes in other languages.

The do and while iterative statements have the familiar functionality; their conditional
test is also a boolean expression:

while (condition)
 statement;

do
 statement;
while (condition);

The for statement also looks like it does in C:

for (initialization; condition; incrementor)
 statement;

The variable initialization expression can declare a new variable which is then limited to
the scope of the for statement:

for (int i = 0; i < 100; i++) {
 System.out.println(i)
 int j = i;
 ...
}

Java does not in general support the C comma operator, which groups multiple expressions
into a single expression. However, you can use multiple comma-separated expressions in
the initialization and increment sections of the for loop. For example:

for (int i = 0, j = 10; i < j; i++, j--) {
 ...
}

The Java switch statement takes an integer type (or an argument that can be
automatically promoted to an integer type) and selects among a number of alternative
case branches:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

switch (int expression) {
 case int expression :
 statement;
 [case int expression
 statement;
 ...
 default :
 statement;]
}

No two of the case expressions can evaluate to the same value. As in C, an optional
default case can be specified to catch unmatched conditions. Normally, the special
statement break is used to terminate a branch of the switch :

switch (retVal) {
 case myClass.GOOD :
 // something good
 break;
 case myClass.BAD :
 // something bad
 break;
 default :
 // neither one
 break;
}

The Java break statement and its friend continue perform unconditional jumps out of
a loop or conditional statement. They differ from the corresponding statements in C by
taking an optional label as an argument. Enclosing statements, such as code blocks and
iterators, can be labeled with identifier statements:

one:
 while (condition) {
 ...
 two:
 while (condition) {
 ...
 // break or continue point
 }
 // after two
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// after one

In this example, a break or continue without argument at the indicated position
would have the normal, C-style effect. A break would cause processing to resume at the
point labeled "after two"; a continue would immediately cause the two loop to return
to its condition test.

The statement break two at the indicated point would have the same effect as an
ordinary break , but break one would break both levels and resume at the point
labeled "after one." Similarly, continue two would serve as a normal continue , but
continue one would return to the test of the one loop. Multilevel break and
continue statements remove the remaining justification for the evil goto statement in
C/C++.

There are a few Java statements we aren't going to discuss right now. The try , catch ,
and finally statements are used in exception handling, as we'll discuss later in this
chapter. The synchronized statement in Java is used to coordinate access to statements
among multiple threads of execution; see Chapter 8 for a discussion of thread
synchronization.

4.4.1.1 Unreachable statements

On a final note, we should mention that the Java compiler flags "unreachable" statements
as compile-time errors. An unreachable statement is one that the compiler determines won't
be called at all. Of course there may be many methods that are actually never called in your
code, but the compiler detects only those that it can "prove" will never be called simply by
simple checking at compile time. For example, a method with an unconditional return
statement in the middle of it causes a compile-time error. So does a method with something
like this:

if (1 < 2)
return;
// unreachable statements

4.4.2 Expressions

An expression produces a result, or value, when it is evaluated. The value of an expression
can be a numeric type, as in an arithmetic expression; a reference type, as in an object
allocation; or the special type void , which is the declared type of a method that doesn't
return a value. In the last case, the expression is evaluated only for its side effects , that is,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the work it does aside from producing a value. The type of an expression is known at
compile time. The value produced at runtime is either of this type or, in the case of a
reference type, a compatible (assignable) subtype.

4.4.2.1 Operators

Java supports almost all standard C operators. These operators also have the same
precedence in Java as they do in C, as shown in Table 4-3 .

Table 4-3. Java operators

Precedence Operator
Operand

type
Description

1 ++, -- Arithmetic Increment and decrement

1 +, - Arithmetic Unary plus and minus

1 ~ Integral Bitwise complement

1 ! Boolean Logical complement

1 (type) Any Cast

2 *, /, % Arithmetic
Multiplication, division,
remainder

3 +, - Arithmetic Addition and subtraction

3 + String String concatenation

4 << Integral Left shift

4 >> Integral
Right shift with sign
extension

4 >>> Integral
Right shift with no
extension

5 <, <=, >, >= Arithmetic Numeric comparison

5 instanceof Object Type comparison

6 ==, != Primitive
Equality and inequality of
value

6 ==, != Object
Equality and inequality of
reference

7 & Integral Bitwise AND

7 & Boolean Boolean AND

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8 ^ Integral Bitwise XOR

8 ^ Boolean Boolean XOR

9 | Integral Bitwise OR

9 | Boolean Boolean OR

10 && Boolean Conditional AND

11 || Boolean Conditional OR

12 ?: NA
Conditional ternary
operator

13 = Any Assignment

13
*=, /=, %=, +=, -=, <<=, >> =,
>>>=, &=, ^=, |=

Any Assignment with operation

There are a few operators missing from the standard C collection. As we said, Java doesn't
support the comma operator for combining expressions, although the for statement allows
you to use it in the initialization and increment sections. Java doesn't allow direct pointer
manipulation, so it doesn't support the reference (&), dereference (*), and sizeof
operators that are familiar to C/C++ programmers. We should also note that the percent
(%) operator is not strictly a modulo, but a remainder, and it can have a negative value.

Java also adds some new operators. As we've seen, the + operator can be used with
String values to perform string concatenation. Because all integral types in Java are
signed values, the >> operator performs a right-arithmetic-shift operation with sign
extension. The >>> operator treats the operand as an unsigned number and performs a
right-arithmetic-shift with no sign extension. The new operator, as in C++, is used to
create objects; we will discuss it in detail shortly.

4.4.2.2 Assignment

While variable initialization (i.e., declaration and assignment together) is considered a
statement, with no resulting value, variable assignment alone is also an expression:

int i, j; // statement
i = 5; // both expression and statement

Normally, we rely on assignment for its side effects alone, but, as in C, an assignment can
be used as a value in another part of an expression:

j = (i = 5);

Again, relying on order of evaluation extensively (in this case, using compound

http://lib.ommolketab.ir
http://lib.ommolketab.ir

assignments in complex expressions) can make code very obscure and hard to read. Do so
at your own peril.

4.4.2.3 The null value

The expression null can be assigned to any reference type. It has the meaning of "no
reference." A null reference can't be used to reference anything and attempting to do so
generates a NullPointerException at runtime.

4.4.2.4 Variable access

The dot (.) operator has multiple meanings. It can retrieve the value of an instance
variable (of some object) or a static variable (of some class). It can also specify a method to
be invoked on an object or class. Using the dot (.) to access a variable in an object is an
expression that results in the value of the variable accessed. This can be either a numeric
type or a reference type:

int i;
String s;
i = myObject.length;
s = myObject.name;

A reference-type expression can be used in further evaluations, by selecting variables or
calling methods within it:

int len = myObject.name.length();
int initialLen = myObject.name.substring(5, 10).length();

Here we have found the length of our name variable by invoking the length() method
of the String object. In the second case, we took an intermediate step and asked for a
substring of the name string. The substring method of the String class also returns
a String reference, for which we ask the length. Compounding operations like this is
also called "chaining," which we'll mention again later.

4.4.2.5 Method invocation

A method invocation is essentially a function call: an expression that results in a value. The
value's type is the return type of the method. Thus far, we have seen methods invoked by
name:

System.out.println("Hello World...");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

int myLength = myString.length();

Here we invoked the methods println() and length() on different objects.
Selecting which method is invoked, however, can be more complicated than it appears,
because Java allows method overloading and overriding (multiple methods with the same
name); the details are discussed in Chapter 5 .

Like the result of any expression, the result of a method invocation can be used in further
evaluations, as we saw earlier. You can allocate intermediate variables to make it
absolutely clear what your code is doing, or you can opt for brevity where appropriate; it's
all a matter of coding style. The two following code snippets are equivalent:

int initialLen = myObject.name.substring(5, 10).length();

String temp1 = myObject.name;
String temp2 = temp1.substring(5, 10);
int initialLen = temp2.length();

4.4.2.6 Object creation

Objects in Java are allocated with the new operator:

Object o = new Object();

The argument to new is the constructor for the class. The constructor is a method that
always has the same name as the class. The constructor specifies any required parameters
to create an instance of the object. The value of the new expression is a reference of the
type of the created object. Objects always have one or more constructors, though they may
not always be accessible to you.

We'll look at object creation in detail in Chapter 5 . For now, just note that object creation
is a type of expression and that the resulting object reference can be used in general
expressions. In fact, because the binding of new is "tighter" than that of dot (.), you can
easily create a new object and invoke a method in it, without assigning the object to a
reference type variable:

int hours = new Date().getHours();

The Date class is a utility class that represents the current time. Here we create a new
instance of Date with the new operator and call its getHours() method to retrieve the
current hour as an integer value. The Date object reference lives long enough to service
the method call and is then cut loose and garbage-collected at some point in the future.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Calling methods in object references in this way is, again, a matter of style. It would
certainly be clearer to allocate an intermediate variable of type Date to hold the new
object and then call its getHours() method. However, combining operations like this is
common.

4.4.2.7 The instanceof operator

The instanceof operator can be used to determine the type of an object at runtime. It
compares an object against a particular type. instanceof returns a boolean value
that indicates whether an object is an instance of a specified class or a subclass of that
class:

Boolean b;
String str = "foo";
b = (str instanceof String); // true
b = (str instanceof Object); // also true
b = (str instanceof Date); // false, not a Date or subclass

instanceof also correctly reports if the object is of the type of an array or a specified
interface (as we'll discuss later):

if (foo instanceof byte[])
 ...

It is also important to note that the value null is not considered an instance of any object.
So the following test returns false , no matter what the declared type of the variable:

String s = null;
if (s instanceof String)
 // false, won't happen

4.5 Exceptions

Java's roots are in embedded systems-software that runs inside specialized devices such
as hand-held computers, cellular phones, and fancy toasters. In those kinds of applications,
it's especially important that software errors be handled robustly. Most users would agree
that it's unacceptable for their phone to simply crash or for their toast (and perhaps their
house) to burn because their software failed. Given that we can't eliminate the possibility of
software errors, it's a step in the right direction to recognize and deal with anticipated
application-level errors in a methodical way.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Dealing with errors in a language such as C is entirely the responsibility of the
programmer. There is no help from the language itself in identifying error types, and there
are no tools for dealing with them easily. In C, a routine generally indicates a failure by
returning an "unreasonable" value (e.g., the idiomatic -1 or null). As the programmer,
you must know what constitutes a bad result and what it means. It's often awkward to work
around the limitations of passing error values in the normal path of data flow. [3] An even
worse problem is that certain types of errors can legitimately occur almost anywhere, and
it's prohibitive and unreasonable to explicitly test for them at every point in the software.

Java offers an elegant solution to these problems through exceptions . (Java exception
handling is similar to, but not quite the same as, exception handling in C++.) An exception
indicates an unusual condition or an error condition. Program control becomes
unconditionally transferred or "thrown" to a specially designated section of code where it's
caught and handled. In this way, error handling is orthogonal to (or outside) the normal
flow of the program. We don't have to have special return values for all our methods; errors
are handled by a separate mechanism. Control can be passed long distance from a deeply
nested routine and handled in a single location when that is desirable, or an error can be
handled immediately at its source. There are still some standard methods that return -1 as
a special value, but these are generally limited to situations where we are expecting a
special value.[4]

A Java method is required to specify the exceptions it can throw (i.e., the ones that it
doesn't catch itself); this means that the compiler can make sure we handle them. In this
way, the information about what errors a method can produce is promoted to the same level
of importance as its argument and return types. You may still decide to punt and ignore
obvious errors, but in Java you must do so explicitly.

4.5.1 Exceptions and Error Classes

Exceptions are represented by instances of the class java.lang.Exception and its
subclasses. Subclasses of Exception can hold specialized information (and possibly
behavior) for different kinds of exceptional conditions. However, more often they are
simply "logical" subclasses that serve only to identify a new exception type. Figure 4-1
shows the subclasses of Exception in the java.lang package. It should give you a
feel for how exceptions are organized. Most other packages define their own exception
types, which usually are subclasses of Exception itself or of its important subclass
RuntimeException .

Another important exception class is IOException in the package java.io . The
IOException class has many subclasses for typical I/O problems (such as

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FileNotFoundException) and networking problems (such as
MalformedURLException). Network exceptions belong to the java.net
package. Another important descendant of IOException is RemoteException ,
which belongs to the java.rmi package. It is used when problems arise during remote
method invocation (RMI). Throughout this book we'll mention the exceptions you need to
be aware of as we run into them.

Figure 4-1. The java.lang.Exception subclasses

An Exception object is created by the code at the point where the error condition arises.
It can be designed to hold whatever information is necessary to describe the exceptional
condition and also includes a full stack trace for debugging. (A stack trace is the list of all
the methods called in order to reach the point where the exception was thrown). The
Exception object is passed as an argument to the handling block of code, along with the
flow of control. This is where the terms "throw" and "catch" come from: the Exception
object is thrown from one point in the code and caught by the other, where execution
resumes.

The Java API also defines the java.lang.Error class for unrecoverable errors. The
subclasses of Error in the java.lang package are shown in Figure 4-2 . A notable
Error type is AssertionError , which is used by the Java assert language statement
to indicate a failure. We'll talk about that a bit later. A few other packages define their own
subclasses of Error , but subclasses of Error are much less common (and less useful)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

than subclasses of Exception . You generally needn't worry about these errors in your
code (i.e., you do not have to catch them); they are intended to indicate fatal problems or
virtual machine errors. An error of this kind usually causes the Java interpreter to display a
message and exit. You are actively discouraged from trying to catch or recover from them
because they are supposed to indicate a fatal program bug, not a routine condition.

Figure 4-2. The java.lang.Error subclasses

Both Exception and Error are subclasses of Throwable . Throwable is the base
class for objects which can be "thrown" with the Java language throw statement. In general
you should extend only Exception , Error or one of their subclasses.

4.5.2 Exception Handling

The try/catch guarding statements wrap a block of code and catch designated types of
exceptions that occur within it.

try {
 readFromFile("foo");
 ...
}
catch (Exception e) {
 // Handle error
 System.out.println("Exception while reading file: " + e);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ...
}

In this example, exceptions that occur within the body of the try portion of the statement
are directed to the catch clause for possible handling. The catch clause acts like a
method; it specifies an argument of the type of exception it wants to handle and, if it's
invoked, it receives the Exception object as an argument. Here we receive the object in
the variable e and print it along with a message.

A try statement can have multiple catch clauses that specify different types
(subclasses) of Exception :

try {
 readFromFile("foo");
 ...
}
catch (FileNotFoundException e) {
 // Handle file not found
 ...
}
catch (IOException e) {
 // Handle read error
 ...
}
catch (Exception e) {
 // Handle all other errors
 ...
}

The catch clauses are evaluated in order, and the first possible (assignable) match is
taken. At most, one catch clause is executed, which means that the exceptions should be
listed from most specific to least. In the previous example, we'll anticipate that the
hypothetical readFromFile() can throw two different kinds of exceptions: one for a
file not found and another for a more general read error. Any subclass of Exception is
assignable to the parent type Exception , so the third catch clause acts like the
default clause in a switch statement and handles any remaining possibilities.

One beauty of the try/catch scheme is that any statement in the try block can assume
that all previous statements in the block succeeded. A problem won't arise suddenly
because a programmer forgot to check the return value from some method. If an earlier
statement fails, execution jumps immediately to the catch clause; later statements are

http://lib.ommolketab.ir
http://lib.ommolketab.ir

never executed.

4.5.3 Bubbling Up

What if we hadn't caught the exception? Where would it have gone? Well, if there is no
enclosing try/catch statement, the exception pops to the top of the method in which it
appeared and is, in turn, thrown from that method up to its caller. If that point in the calling
method is within a try clause, control passes to the corresponding catch clause.
Otherwise the exception continues propagating up the call stack, from one method to its
caller. In this way, the exception bubbles up until it's caught, or until it pops out of the top
of the program, terminating it with a runtime error message. There's a bit more to it than
that because, in this case, the compiler might have reminded us to deal with it, but we'll get
back to that in a moment.

Let's look at another example. In Figure 4-3 , the method getContent() invokes the
method openConnection() from within a try/catch statement. In turn,
openConnection() invokes the method sendRequest() , which calls the method
write() to send some data.

Figure 4-3. Exception propagation

In this figure, the second call to write() throws an IOException . Since
sendRequest() doesn't contain a try/catch statement to handle the exception, it's
thrown again from the point where it was called in the method openConnection() .
Since openConnection() doesn't catch the exception either, it's thrown once more.
Finally it's caught by the try statement in getContent() and handled by its catch
clause.

4.5.4 Exception Stack Traces

Since an exception can bubble up quite a distance before it is caught and handled, we may
need a way to determine exactly where it was thrown. All exceptions can dump a stack

http://lib.ommolketab.ir
http://lib.ommolketab.ir

trace that lists their method of origin and all the nested method calls it took to arrive there.
Most commonly the user sees this when it is printed using the printStackTrace()
method.

try {
 // complex task
} catch (Exception e) {
 // dump information about exactly where the exception occurred
 e.printStackTrace(System.err);
 ...
}

Java 1.4 introduces methods that allow you to retrieve the stack trace information
programmatically, using the Throwable getStackTrace() method. This method
returns an array of StackTraceElement objects, each of which represents a method
call on the stack. You can ask a StackTraceElement for details about that method's
location using the methods getFileName() , getClassName() ,
getMethodName() , and getLineNumber() .

4.5.5 Checked and Unchecked Exceptions

We explained earlier how Java forces us to be explicit about our error handling. But it's not
realistic to require that every conceivable type of error be handled in every situation. So
Java exceptions are divided into two categories: checked and unchecked . Most application-
level exceptions are checked, which means that any method that throws one, either by
generating it itself (as we'll discuss later) or by ignoring one that occurs within it, must
declare that it can throw that type of exception in a special throws clause in its method
declaration. We haven't yet talked in detail about declaring methods; we'll cover that in
Chapter 5 . For now all you need to know is that methods have to declare the checked
exceptions they can throw or allow to be thrown.

Again in Figure 4-3 , notice that the methods openConnection() and
sendRequest() both specify that they can throw an IOException . If we had to
throw multiple types of exceptions, we could declare them separated with commas:

void readFile(String s) throws IOException, InterruptedException {
 ...
}

The throws clause tells the compiler that a method is a possible source of that type of
checked exception and that anyone calling that method must be prepared to deal with it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The caller may use a try/catch block to catch it, or it may declare that it can throw the
exception itself.

In contrast, exceptions that are subclasses of either the class java.lang.
RuntimeException or the class java.lang.Error are unchecked. See Figure 4-
1 for the subclasses of RuntimeException . (Subclasses of Error are generally
reserved for serious class loading or runtime system problems.) It's not a compile-time
error to ignore the possibility of these exceptions; methods don't have to declare they can
throw them. In all other respects, unchecked exceptions behave the same as other
exceptions. We are free to catch them if we wish; we simply aren't required to.

Checked exceptions are intended to cover application-level problems such as missing files
and unavailable hosts. As good programmers (and upstanding citizens), we should design
software to recover gracefully from these kinds of conditions. Unchecked exceptions
include problems such as "out of memory" and "array index out of bounds." While these
may indicate application-level programming errors, they can occur almost anywhere and
usually aren't possible to recover from. Fortunately, because there are unchecked
exceptions, you don't have to wrap every one of your array-index operations in a
try/catch statement.

To sum up, checked exceptions are problems a reasonable application should try to handle
gracefully; unchecked exceptions (runtime exceptions or errors) are problems from which
we would not normally expect our software to recover. Error types are those explicitly
intended to be conditions that we should never try to handle or recover from.

4.5.6 Throwing Exceptions

We can throw our own exceptions: either instances of Exception or one of its existing
subclasses, or our own specialized exception classes. All we have to do is create an
instance of the Exception and throw it with the throw statement:

throw new Exception();

Execution stops and is transferred to the nearest enclosing try/catch statement. (There
is little point in keeping a reference to the Exception object we've created here.) An
alternative constructor lets us specify a string with an error message:

throw new Exception("Something really bad happened");

You can retrieve this string by using the Exception object's getMessage() method.
Often, though, you can just refer to the object itself; in the first example in the earlier
section, Section 4.5.2 , an exception's string value is automatically provided to the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

println() method.

By convention, all types of Exception have a String constructor like this. The earlier
String message is somewhat facetious and vague. Normally you won't be throwing a
plain old Exception but a more specific subclass. For example:

public void checkRead(String s) {
 if (new File(s).isAbsolute() || (s.indexOf("..") != -1))
 throw new SecurityException(
 "Access to file : "+ s +" denied.");
}

In this code, we partially implement a method to check for an illegal path. If we find one,
we throw a SecurityException , with some information about the transgression.

Of course, we could include whatever other information is useful in our own specialized
subclasses of Exception . Often, though, just having a new type of exception is good
enough because it's sufficient to help direct the flow of control. For example, if we are
building a parser, we might want to make our own kind of exception to indicate a particular
kind of failure:

class ParseException extends Exception {
 ParseException() {
 super();
 }
 ParseException(String desc) {
 super(desc);
 }
}

See Chapter 5 for a full description of classes and class constructors. The body of our
Exception class here simply allows a ParseException to be created in the
conventional ways we've created exceptions previously (either generically or with a simple
string description). Now that we have our new exception type, we can guard like so:

// Somewhere in our code
...
try {
 parseStream(input);
} catch (ParseException pe) {
 // Bad input...
} catch (IOException ioe) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Low-level communications problem
}

As you can see, although our new exception doesn't currently hold any specialized
information about the problem (it certainly could), it does let us distinguish a parse error
from an arbitrary I/O error in the same chunk of code.

4.5.6.1 Chaining exceptions

Sometimes you'll want to take some action based on an exception and then turn around and
throw a new exception in its place. This is common when building frameworks, where low-
level detailed exceptions are handled and represented by higher level exceptions that can
be managed more easily. For example you might want to catch an IOException in a
communication package, possibly perform some cleanup, and ultimately throw a higher
level exception of your own, maybe something like LostServerConnection .

You can do this in the obvious way by simply catching the exception and then throwing a
new one. But then you lose important information, including the stack trace of the original
"causal" exception. To deal with this, you can use the technique of exception chaining .
This means that you include the causal exception in the new exception that you throw. Java
1.4 adds explicit support for exception chaining. Base exception types can be constructed
with an exception as an argument or the standard String message and an exception:

throw new Exception("Here's the story...", causalException);

You can get access to this exception later with the getCause() method, which returns
the causal exception. More importantly, Java automatically prints both exceptions and their
respective stack traces if you print the exception or if it is shown to the user.

You can add this kind of constructor to your own exception subclasses as well (delegating
to the parent constructor). However, since this is (at least formally) a recent addition to
Java, many preexisting exception types do not provide this kind of constructor. You can
still take advantage of this pattern by using the Throwable method initCause() to
set the causal exception explicitly after constructing your exception and before throwing it:

Try {
 // ...
} catch (IOException cause) {
 Exception e =
 new IOException("What we have here is a failure to communicate...");
 e.initCause(cause);
 throw e;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

4.5.7 try Creep

The try statement imposes a condition on the statements that it guards. It says that if an
exception occurs within it, the remaining statements are abandoned. This has consequences
for local variable initialization. If the compiler can't determine whether a local variable
assignment we placed inside a try/catch block will happen, it won't let us use the
variable:

void myMethod() {
 int foo;

 try {
 foo = getResults();
 }
 catch (Exception e) {
 ...
 }

 int bar = foo; // Compile-time error -- foo may not have been initialized

In this example, we can't use foo in the indicated place because there's a chance it was
never assigned a value. One obvious option is to move the assignment inside the try
statement:

try {
 foo = getResults();

 int bar = foo; // Okay because we get here only
 // if previous assignment succeeds
}
catch (Exception e) {
 ...
}

Sometimes this works just fine. However, now we have the same problem if we want to use
bar later in myMethod() . If we're not careful, we might end up pulling everything into
the try statement. The situation changes if we transfer control out of the method in the
catch clause:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

try {
 foo = getResults();
}
catch (Exception e) {
 ...
 return;
}

int bar = foo; // Okay because we get here only
 // if previous assignment succeeds

The compiler is smart enough to know that if an error had occurred in the try clause we
wouldn't have reached the bar assignment. Your code will dictate its own needs; you
should just be aware of the options.

4.5.8 The finally Clause

What if we have some cleanup to do before we exit our method from one of the catch
clauses? To avoid duplicating the code in each catch branch and to make the cleanup
more explicit, use the finally clause. A finally clause can be added after a try
and any associated catch clauses. Any statements in the body of the finally clause
are guaranteed to be executed, no matter why control leaves the try body (whether an
exception was thrown or not):

try {
 // Do something here
}
catch (FileNotFoundException e) {
 ...
}
catch (IOException e) {
 ...
}
catch (Exception e) {
 ...
}
finally {
 // Clean up here
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In this example, the statements at the cleanup point are executed eventually, no matter how
control leaves the try . If control transfers to one of the catch clauses, the statements in
finally are executed after the catch completes. If none of the catch clauses handles
the exception, the finally statements are executed before the exception propagates to
the next level.

If the statements in the try execute cleanly, or if we perform a return , break , or
continue , the statements in the finally clause are executed. To perform cleanup
operations, we can even use try and finally without any catch clauses:

try {
 // Do something here
 return;
}
finally {
 System.out.println("Whoo-hoo!");
}

Exceptions that occur in a catch or finally clause are handled normally; the search
for an enclosing try/catch begins outside the offending try statement.

4.5.9 Performance Issues

We mentioned at the beginning of this section that there are methods in the core Java APIs
that still return "out of bounds" values such as -1 or null instead of throwing
Exception s. Why is this? Well, for some it is simply a matter of convenience; where a
special value is easily discernible, we may not want to have to wrap those methods in
try/catch blocks.

But there is also a performance issue. Because of the way the Java virtual machine is
implemented, guarding against an exception being thrown (using a try) is free. It doesn't
add any overhead to the execution of your code. However, throwing an exception is not
free. When an exception is thrown, Java has to locate the appropriate try/catch block
and perform other time-consuming activities at runtime.

The result is that you should throw exceptions only in truly "exceptional" circumstances
and try to avoid using them for expected conditions, especially when performance is an
issue. For example, if you have a loop, it may be better to perform a small test on each pass
and avoid throwing the exception, rather than throwing it frequently. On the other hand, if
the exception is thrown only one in a gazillion times, you may want to eliminate the
overhead of the test code and not worry about the cost of throwing that exception.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.6 Assertions

An assertion is a simple pass/fail test of some condition, performed while your application
is running. Assertions can be used to check the "sanity" of your code, anywhere you
believe certain conditions are guaranteed by correct program behavior. They are distinct
from other kinds of tests because they check conditions that should never be violated: if the
assertion fails, the application is to be considered broken and generally halts with an
appropriate error message. Assertions are supported directly by the Java language so that
they can be turned on or off at runtime to remove any performance penalty of including
them in your code.

Using assertions to test for the correct behavior of your application is a simple but powerful
technique for ensuring software quality. It fills a gap between those aspects of software that
can be checked automatically by the compiler and those more generally checked by "unit
tests" and human testing. Assertions test assumptions about program behavior and make
them guarantees (at least while they are activated).

Explicit support for assertions was added in Java 1.4. However, if you've written much
code in any language, you have probably used assertions in some form. For example, you
may have written something like the following:

if (!condition)
 throw new AssertionError("fatal error: 42");

An assertion in Java is equivalent to this example but performed with the assert
language keyword. It takes a boolean condition and an optional expression value. If the
assertion fails, an AssertionError is thrown, which usually causes Java to bail out of
the application.

The optional expression may evaluate to either a primitive or object type. Either way, its
sole purpose is to be turned into a string and shown to the user if the assertion fails; most
often you'll use a string message explicitly. Here are some examples:

assert false;
assert (array.length > min);
assert a > 0 : a
assert foo != null : "foo is not null!"

In the event of failure, the first two assertions print only a generic message whereas the
third prints the value of a and the last prints the foo is not null! message.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Again, the important thing about assertions is not just that they are more terse than the
equivalent if condition but that they can be enabled or disabled when you run the
application. Disabling assertions means that their test conditions are not even evaluated, so
there is no performance penalty for including them in your code (other than, perhaps, space
in the class files when they are loaded).

Assertions are supported only in Java 1.4 and (for now) require passing a special switch to
the compiler so it recognizes the assert keyword. So to use the assert examples, you'll
have to compile using the -source compiler switch and specify 1.4 as the language
version. For example:

% javac -source 1.4 MyApplication.java

Assertions were implemented this way to provide some migration time for existing
applications with their own methods named assert , which will now be illegal. In some
future release, assertions will be recognized by default.

4.6.1 Enabling and Disabling Assertions

Assertions are turned on or off at runtime. When disabled, assertions still exist in the class
files but are not executed and consume no time. You can enable and disable assertions for
an entire application or on a package-by-package or even class-by-class basis. By default,
assertions are turned off in Java 1.4. To enable them for your code, use the Java flag -ea
or -enableassertions :

% java -ea MyApplication

To turn on assertions for a particular class, append the class name like so:

% java -ea:com.oreilly.examples.Myclass

To turn on assertions just for particular packages append the package name with trailing
ellipses (three dots) like so:

% java -ea:com.oreilly.examples...

When you enable assertions for package, Java also enables all subordinate package names
(e.g., com.oreilly.examples.text). However you can become more selective by using the
corresponding -da or -disableassertions flag to negate individual packages or
classes. You can combine all this to achieve arbitrary groupings like this:

 % java -ea:com.oreilly.examples... -da:com.oreilly.examples.text

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 -ea:com.oreilly.examples.text.MonkeyTypewriters MyApplication

This example enables assertions for the com.oreilly.examples package as a
whole, excludes the package com.oreilly.examples.text , then turns exceptions
on for just one class, MonkeyTypewriters , in that package.

4.6.2 Using Assertions

An assertion enforces a rule about something that should be unchanging in your code and
would otherwise go unchecked. You can use an assertion for added safety anywhere you
want to verify your assumptions about program behavior that can't be checked by the
compiler.

A common situation that cries out for an assertion is testing for multiple conditions or
values where one should always be found. In this case, a failing assertion as the default or
"fall through" behavior indicates the code is broken. For example, suppose we have a value
called direction that should always contain either the constant value LEFT or RIGHT
:

if (direction == LEFT)
 doLeft();
else if (direction == RIGHT)
 doRight()
else
 assert false : "bad direction";

The same applies to the default case of a switch:

switch (direction) {
 case LEFT:
 doLeft();
 break;
 case RIGHT:
 doRight();
 break;
 default:
 assert false;
}

In general, you should not use assertions for checking the validity of arguments to methods
because you want that behavior to be part of your application, not just a test for quality

http://lib.ommolketab.ir
http://lib.ommolketab.ir

control that can be turned off. The validity of input to a method is called its pre-conditions,
and you should usually throw an exception if they are not met; this elevates the
preconditions to part of the method's "contract" with the user. However, checking the
results of your methods before returning them is always valid; these are called post-
conditions .

Sometimes determining what is or is not a pre-condition depends on your point of view.
For example, when a method is used internally within a class, pre-conditions may already
be guaranteed by the methods that call it. Public methods of the class should probably
throw exceptions when their pre-conditions are violated, but a private method might use
assertions because its callers are always closely related code that should obey the correct
behavior.

Finally, note that assertions can not only test simple expressions but perform complex
validation as well. Remember that anything you place in the condition expression of an
assert statement is not evaluated when assertions are turned off. You can make helper
methods for your assertions, containing arbitrary amounts of code. And, although it
suggests a dangerous programming style, you can even use assertions that have side effects
to capture values for use by later assertions-all of which will be disabled when assertions
are turned off. For example:

int savedValue;
assert (savedValue = getValue()) != -1;
// Do work...
assert checkValue(savedValue);

Here, in the first assert, we use helper method getValue() to retrieve some information
and save it for later. Then after doing some work, we check the saved value using another
assertion, perhaps comparing results. When assertions are disabled we'll no longer save or
check the data. Note that it's necessary for us to be somewhat cute and make our first assert
condition into a boolean by checking for a known value. Again, using assertions with side
effects is a bit dangerous because you have to be careful that those side effects are only
seen by other assertions. Otherwise, you'll be changing your application behavior when
you turn them off.

4.7 Arrays

An array is a special type of object that can hold an ordered collection of elements. The
type of the elements of the array is called the base type of the array; the number of
elements it holds is a fixed attribute called its length . Java supports arrays of all primitive

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and reference types.

The basic syntax of arrays looks much like that of C or C++. We create an array of a
specified length and access the elements with the index operator, [] . Unlike other
languages, however, arrays in Java are true, first-class objects. An array is an instance of a
special Java array class and has a corresponding type in the type system. This means that to
use an array, as with any other object, we first declare a variable of the appropriate type
and then use the new operator to create an instance of it.

Array objects differ from other objects in Java in three respects:

Java implicitly creates a special array class type for us whenever we declare an array
type variable. It's not strictly necessary to know about this process in order to use
arrays, but it helps in understanding their structure and their relationship to other
objects in Java.

Java lets us use the [] operator to access array elements, so that arrays look as we
expect. We could implement our own classes that act like arrays, but we would have
to settle for having methods such as get() and put() instead of using the special
[] notation.

Java provides a corresponding special form of the new operator that lets us construct
an instance of an array and specify its length with the [] notation or initialize it from
a structured list of values.

4.7.1 Array Types

An array-type variable is denoted by a base type followed by the empty brackets, [] .
Alternatively, Java accepts a C-style declaration, with the brackets placed after the array
name.

The following are equivalent:

int [] arrayOfInts;
int arrayOfInts [];

In each case, arrayOfInts is declared as an array of integers. The size of the array is
not yet an issue, because we are declaring only the array-type variable. We have not yet
created an actual instance of the array class, with its associated storage. It's not even
possible to specify the length of an array when declaring an array-type variable.

An array of objects can be created in the same way:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

String [] someStrings;
Button someButtons [];

4.7.2 Array Creation and Initialization

The new operator is used to create an instance of an array. After the new operator, we
specify the base type of the array and its length, with a bracketed integer expression:

arrayOfInts = new int [42];
someStrings = new String [number + 2];

We can, of course, combine the steps of declaring and allocating the array:

double [] someNumbers = new double [20];
Component widgets [] = new Component [12];

As in C, array indices start with zero. Thus, the first element of someNumbers[] is 0 ,
and the last element is 19 . After creation, the array elements are initialized to the default
values for their type. For numeric types, this means the elements are initially zero:

int [] grades = new int [30];
grades[0] = 99;
grades[1] = 72;
// grades[2] == 0

The elements of an array of objects are references to the objects, not actual instances of the
objects. The default value of each element is therefore null , until we assign instances of
appropriate objects:

String names [] = new String [4];
names [0] = new String();
names [1] = "Boofa";
names [2] = someObject.toString();
// names[3] == null

This is an important distinction that can cause confusion. In many other languages, the act
of creating an array is the same as allocating storage for its elements. In Java, a newly
allocated array of objects actually contains only reference variables, each with the value
null .[5] That's not to say that there is no memory associated with an empty array; there is
memory needed to hold those references (the empty "slots" in the array). Figure 4-4
illustrates the names array of the previous example.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 4-4. A Java array

names is a variable of type String[] (i.e., a string array). This particular String[]
object contains four String type variables. We have assigned String objects to the
first three array elements. The fourth has the default value null .

Java supports the C-style curly braces {} construct for creating an array and initializing its
elements:

int [] primes = { 1, 2, 3, 5, 7, 7+4 }; // primes[2] == 3

An array object of the proper type and length is implicitly created, and the values of the
comma-separated list of expressions are assigned to its elements.

We can use the {} syntax with an array of objects. In this case, each expression must
evaluate to an object that can be assigned to a variable of the base type of the array, or the
value null . Here are some examples:

String [] verbs = { "run", "jump", someWord.toString() };
Button [] controls = { stopButton, new Button("Forwards"),
 new Button("Backwards") };
// All types are subtypes of Object
Object [] objects = { stopButton, "A word", null };

The following are equivalent:

Button [] threeButtons = new Button [3];
Button [] threeButtons = { null, null, null };

4.7.3 Using Arrays

The size of an array object is available in the public variable length :

http://lib.ommolketab.ir
http://lib.ommolketab.ir

char [] alphabet = new char [26];
int alphaLen = alphabet.length; // alphaLen == 26

String [] musketeers = { "one", "two", "three" };
int num = musketeers.length; // num == 3

length is the only accessible field of an array; it is a variable, not a method. (Don't
worry, the compiler tells you when you accidentally use parentheses, as if it were a
method; everyone does now and then.)

Array access in Java is just like array access in C; you access an element by putting an
integer-valued expression between brackets after the name of the array. The following
example creates an array of Button objects called keyPad and then fills the array with
Button objects:

Button [] keyPad = new Button [10];
for (int i=0; i < keyPad.length; i++)
 keyPad[i] = new Button(Integer.toString(i));

Attempting to access an element that is outside the range of the array generates an
ArrayIndexOutOfBoundsException . This is a type of RuntimeException
, so you can either catch and handle it yourself, if you really expect it, or ignore it, as we've
already discussed:

String [] states = new String [50];

try {
 states[0] = "California";
 states[1] = "Oregon";
 ...
 states[50] = "McDonald's Land"; // Error: array out of bounds
}
catch (ArrayIndexOutOfBoundsException err) {
 System.out.println("Handled error: " + err.getMessage());
}

It's a common task to copy a range of elements from one array into another. Java supplies
the arraycopy() method for this purpose; it's a utility method of the System class:

System.arraycopy(source,sourceStart,destination,destStart,length);

The following example doubles the size of the names array from an earlier example:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

String [] tmpVar = new String [2 * names.length];
System.arraycopy(names, 0, tmpVar, 0, names.length);
names = tmpVar;

A new array, twice the size of names , is allocated and assigned to a temporary variable
tmpVar . The arraycopy() method is then used to copy the elements of names to
the new array. Finally, the new array is assigned to names . If there are no remaining
references to the old array object after names has been copied, it is garbage-collected on
the next pass.

4.7.4 Anonymous Arrays

Often it is convenient to create "throw-away" arrays, arrays that are used in one place and
never referenced anywhere else. Such arrays don't need to have a name because you never
need to refer to them again in that context. For example, you may want to create a
collection of objects to pass as an argument to some method. It's easy enough to create a
normal, named array; but if you don't actually work with the array (if you use the array
only as a holder for some collection), you shouldn't have to. Java makes it easy to create
"anonymous" (i.e., unnamed) arrays.

Let's say you need to call a method named setPets() , which takes an array of
Animal objects as arguments. Provided Cat and Dog are subclasses of Animal , here's
how to call setPets() using an anonymous array:

Dog pokey = new Dog ("gray");
Cat boojum = new Cat ("grey");
Cat simon = new Cat ("orange");
setPets (new Animal [] { pokey, boojum, simon });

The syntax looks just like the initialization of an array in a variable declaration. We
implicitly define the size of the array and fill in its elements using the curly-brace notation.
However, since this is not a variable declaration, we have to explicitly use the new
operator to create the array object.

You can use anonymous arrays to simulate variable-length argument lists (called
VARARGS in C), a feature of many programming languages that Java doesn't provide.
The advantage of anonymous arrays over variable-length argument lists is that the former
allow stricter type checking; the compiler always knows exactly what arguments are
expected, and therefore it can verify that method calls are correct.

4.7.5 Multidimensional Arrays

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Java supports multidimensional arrays in the form of arrays of array type objects. You
create a multidimensional array with C-like syntax, using multiple bracket pairs, one for
each dimension. You also use this syntax to access elements at various positions within the
array. Here's an example of a multidimensional array that represents a chess board:

ChessPiece [][] chessBoard;
chessBoard = new ChessPiece [8][8];
chessBoard[0][0] = new ChessPiece("Rook");
chessBoard[1][0] = new ChessPiece("Pawn");
...

Here chessBoard is declared as a variable of type ChessPiece[][] (i.e., an array
of ChessPiece arrays). This declaration implicitly creates the type ChessPiece[]
as well. The example illustrates the special form of the new operator used to create a
multidimensional array. It creates an array of ChessPiece[] objects and then, in turn,
makes each element into an array of ChessPiece objects. We then index
chessBoard to specify values for particular ChessPiece elements. (We'll neglect the
color of the pieces here.)

Of course, you can create arrays with more than two dimensions. Here's a slightly
impractical example:

Color [][][] rgbCube = new Color [256][256][256];
rgbCube[0][0][0] = Color.black;
rgbCube[255][255][0] = Color.yellow;
...

As in C, we can specify a partial index of a multidimensional array to get an array-type
object with fewer dimensions. In our example, the variable chessBoard is of type
ChessPiece[][] . The expression chessBoard[0] is valid and refers to the first
element of chessBoard , which, in Java, is of type ChessPiece[] . For example, we
can create a row for our chess board:

ChessPiece [] startRow = {
 new ChessPiece("Rook"), new ChessPiece("Knight"),
 new ChessPiece("Bishop"), new ChessPiece("King"),
 new ChessPiece("Queen"), new ChessPiece("Bishop"),
 new ChessPiece("Knight"), new ChessPiece("Rook")
};

chessBoard[0] = startRow;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We don't necessarily have to specify the dimension sizes of a multidimensional array with
a single new operation. The syntax of the new operator lets us leave the sizes of some
dimensions unspecified. The size of at least the first dimension (the most significant
dimension of the array) has to be specified, but the sizes of any number of trailing, less
significant array dimensions may be left undefined. We can assign appropriate array-type
values later.

We can create a checkerboard of boolean values (which is not quite sufficient for a real
game of checkers) using this technique:

boolean [][] checkerBoard;
checkerBoard = new boolean [8][];

Here, checkerBoard is declared and created, but its elements, the eight boolean[]
objects of the next level, are left empty. Thus, for example, checkerBoard[0] is
null until we explicitly create an array and assign it, as follows:

checkerBoard[0] = new boolean [8];
checkerBoard[1] = new boolean [8];
...
checkerBoard[7] = new boolean [8];

The code of the previous two examples is equivalent to:

boolean [][] checkerBoard = new boolean [8][8];

One reason we might want to leave dimensions of an array unspecified is so that we can
store arrays given to us by another method.

Note that since the length of the array is not part of its type, the arrays in the checkerboard
do not necessarily have to be of the same length. That is, multidimensional arrays don't
have to be rectangular. Here's a defective (but perfectly legal, to Java) checkerboard:

checkerBoard[2] = new boolean [3];
checkerBoard[3] = new boolean [10];

And here's how you could create and initialize a triangular array:

int [][] triangle = new int [5][];
for (int i = 0; i < triangle.length; i++) {
 triangle[i] = new int [i + 1];
 for (int j = 0; j < i + 1; j++)
 triangle[i][j] = i + j;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

4.7.6 Inside Arrays

We said earlier that arrays are instances of special array classes in the Java language. If
arrays have classes, where do they fit into the class hierarchy and how are they related?
These are good questions; however, we need to talk more about the object-oriented aspects
of Java before answering them. That's the subject of the next chapter. For now, take it on
faith that arrays fit into the class hierarchy.

[1] For more information about Unicode, see http://www.unicode.org . Ironically, one of the
scripts listed as "obsolete and archaic" and not currently supported by the Unicode standard is
Javanese-a historical language of the people of the Island of Java.

[2] The comparable code in C++ would be:

[3] The somewhat obscure setjmp() and longjmp() statements in C can save a

point in the execution of code and later return to it unconditionally from a deeply buried
location. In a limited sense, this is the functionality of exceptions in Java.

[4] For example, the getHeight() method of the Image class returns -1 if the

height isn't known yet. No error has occurred; the height will be available in the future. In this
situation, throwing an exception would be inappropriate.

[5] The analog in C or C++ is an array of pointers to objects. However, pointers in C or C++
are themselves two- or four-byte values. Allocating an array of pointers is, in actuality,
allocating the storage for some number of those pointer objects. An array of references is
conceptually similar, although references are not themselves objects. We can't manipulate
references or parts of references other than by assignment, and their storage requirements (or
lack thereof) are not part of the high-level Java language specification.

CONTENTS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

Chapter 5. Objects in Java

 5.1 Classes

 5.2 Methods
 5.3 Object Creation

 5.4 Object Destruction

In this chapter, we get to the heart of Java and explore the object-oriented aspects of the
language. The term object-oriented design refers to the art of decomposing an application
into some number of objects, self-contained application components that work together.
The goal is to break your problem down into a number of smaller problems that are simpler
and easier to handle and maintain. Object-based designs have proven themselves over the
years, and object-based languages such as Java provide a strong foundation for writing
very small to very large applications. Java was designed from the ground up to be an
object-oriented language, and all the Java APIs and libraries are built around solid object-
based design patterns.

An object design "methodology" is a system or a set of rules created to help you break
down your application into objects. Often this means mapping real-world entities and
concepts (sometimes called the "problem domain") into application components. Various
methodologies attempt to help you factor your application into a good set of reusable
objects. This is good in principle, but the problem is that good object-oriented design is still
more art than science. While you can learn from the various off-the-shelf design
methodologies, none of them will help you in all situations. The truth is that there is no
substitute for experience.

We won't try to push you into a particular methodology here; there are shelves full of
books to do that.[1]

Instead, we'll just provide some common sense hints to get you started. The following
general design guidelines will hopefully make more sense after you've read this and the
next chapter.

Hide as much of your implementation as possible. Never expose more of the internals
of an object than you have to. This is key to building maintainable, reusable code.
Avoid public variables in your objects, with the possible exception of constants.
Instead define accessor methods to set and return values (even if they are simple

http://lib.ommolketab.ir
http://lib.ommolketab.ir

types). Later, when you need to, you'll be able to modify and extend the behavior of
your objects without breaking other classes that rely on them.

Specialize objects only when you have to-use composition instead of inheritance .
When you use an object in its existing form, as a piece of a new object, you are
composing objects. When you change or refine the behavior of an object (by
subclassing), you are using inheritance . You should try to reuse objects by
composition rather than inheritance whenever possible, because when you compose
objects, you are taking full advantage of existing tools. Inheritance involves breaking
down the barrier of an object and should be done only when there's a real advantage.
Ask yourself if you really need to inherit the whole public interface of an object (do
you want to be a "kind" of that object) or if you can just delegate certain jobs to the
object and use it by composition.

Minimize relationships between objects and try to organize related objects in
packages. Objects that work closely together can be grouped using Java packages,
which can hide those that are not of general interest. Think about how much work it
would take to make your objects generally useful, outside of your current application.
You may save yourself a lot of time later.

5.1 Classes

Classes are the building blocks of a Java application. A class can contain methods
(functions), variables, initialization code, and, as we'll discuss later on, even other classes.
It serves as a blueprint for making class instances , which are runtime objects that
implement the class structure. You declare a class with the class keyword. Methods and
variables of the class appear inside the braces of the class declaration:

class Pendulum {
 float mass;
 float length = 1.0;
 int cycles;

 float getPosition (float time) {
 ...
 }
 ...
}

The Pendulum class contains three variables: mass , length , and cycles . It also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

defines a method called getPosition() , which takes a float value as an argument
and returns a float value as a result. Variables and method declarations can appear in
any order, but variable initializers can't make "forward references" to other variables that
appear later. Once we've defined the Pendulum class, we can create a Pendulum object
(an instance of that class) as follows:

Pendulum p;
p = new Pendulum();

Recall that our declaration of the variable p doesn't create a Pendulum object; it simply
creates a variable that refers to an object of type Pendulum . We still have to create the
object, using the new keyword. Now that we've created a Pendulum object, we can
access its variables and methods, as we've already seen many times:

p.mass = 5.0;
float pos = p.getPosition(1.0);

Two kinds of variables can be defined in a class: instance variables and static variables .
Every object instance has its own set of instance variables; the values of these variables in
one object can differ from the values in another object. We'll talk about static variables
later, which, in contrast, are shared among all instances of an object. In either case, if you
don't initialize a variable when you declare it, it's given a default value appropriate for its
type (null , zero , or false).

Figure 5-1 shows a hypothetical TextBook application that uses two instances of
Pendulum through the reference-type variables bigPendulum and
smallPendulum . Each of these Pendulum objects has its own copy of mass ,
length , and cycles . As with variables, methods defined in a class may be instance
methods or static methods . An instance method is associated with an instance of the class,
but the relationship isn't quite as simple as for variables. Instance methods are accessed
through an object instance, but the object doesn't have its own copy of the methods (there
is no duplication of code). Instead, the association means that instance methods can "see"
and operate on the values of the instance variables of the object. As you'll see in Chapter 6
when we talk about subclassing; there's more to learn about how methods see variables. In
that chapter we'll also discuss how instance methods can be "overridden" in child
classes-a very important feature of object-oriented design. Both aspect differ from static
methods, which we'll see later are really more like global functions-associated with a
class by name only.

Figure 5-1. Instances of the Pendulum class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.1.1 Accessing Fields and Methods

Inside a class, we can access variables and call methods of the class directly by name.
Here's an example that expands upon our Pendulum :

class Pendulum {
 ...
 void resetEverything() {
 mass = 1.0;
 length = 1.0;
 cycles = 0;
 ...
 float startingPosition = getPosition(0.0);
 }
 ...
}

Other classes access members of an object through a reference, using the (C-style) dot
notation:

class TextBook {
 ...
 void showPendulum() {
 Pendulum bob = new Pendulum();
 ...
 int i = bob.cycles;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 bob.resetEverything();
 bob.mass = 1.01;
 ...
 }
 ...
}

Here we have created a second class, TextBook , that uses a Pendulum object. It
creates an instance in showPendulum() and then invokes methods and accesses
variables of the object through the reference bob .

Several factors affect whether class members can be accessed from "outside" the class
(from another class). You can use the visibility modifiers public , private , and
protected to control access; classes can also be placed into a package , which affects
their scope. The private modifier, for example, designates a variable or method for use
only by other members of the class itself. In the previous example, we could change the
declaration of our variable cycles to private :

class Pendulum {
 ...
 private int cycles;
 ...

Now we can't access cycles from TextBook :

class TextBook {
 ...
 void showPendulum() {
 ...
 int i = bob.cycles; // Compile time error

If we still need to access cycles in some capacity, we might add a public
getCycles() method to the Pendulum class. We'll take a detailed look at packages,
access modifiers, and how they affect the visibility of variables and methods in Chapter 6 .

5.1.2 Static Members

As we've said, instance variables and methods are associated with and accessed through an
instance of the class-i.e., through a particular object. In contrast, members that are
declared with the static modifier live in the class and are shared by all instances of the
class. Variables declared with the static modifier are called static variables or class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

variables ; similarly, these kinds of methods are called static methods or class methods .
We can add a static variable to our Pendulum example:

class Pendulum {
 ...
 static float gravAccel = 9.80;
 ...

We have declared the new float variable gravAccel as static . That means if we
change its value in any instance of a Pendulum , the value changes for all Pendulum
objects, as shown in Figure 5-2 .

Figure 5-2. Static variables shared by all instances of a class

Static members can be accessed like instance members. Inside our Pendulum class, we
can refer to gravAccel , like an instance variable:

class Pendulum {
 ...
 float getWeight () {
 return mass * gravAccel;
 }
 ...
}

However, since static members exist in the class itself, independent of any instance, we can

http://lib.ommolketab.ir
http://lib.ommolketab.ir

also access them directly through the class. We don't need a Pendulum object to set the
variable gravAccel ; instead we can use the class name in place of a reference-type
variable:

Pendulum.gravAccel = 8.76;

This changes the value of gravAccel for any current or future instances. Why would we
want to change the value of gravAccel ? Well, perhaps we want to explore how
pendulums would work on different planets. Static variables are also very useful for other
kinds of data shared among classes at runtime. For instance, you can create methods to
register your objects so that they can communicate, or you can keep track of references to
them. It's also common to use static variables to define constant values. In this case, we use
the static modifier along with the final modifier. So, if we cared only about
pendulums under the influence of the Earth's gravitational pull, we could change
Pendulum as follows:

class Pendulum {
 ...
 static final float EARTH_G = 9.80;
 ...

We have followed a common convention and named our constant with capital letters. Now
the value of EARTH_G is a constant; it can be accessed by any instance of Pendulum (or
anywhere, for that matter), but its value can't be changed at runtime.

It's important to use the combination of static and final only for things that are
really constant. That's because the compiler is allowed to "inline" such values within
classes that reference them. This means that if you change a static final variable
you may have to recompile all code that uses that class (this is really the only case where
you have to do that in Java). Static members are useful as flags and identifiers, which can
be accessed from anywhere. They are especially useful for values needed in the
construction of an instance itself. In our example, we might declare a number of static
values to represent various kinds of Pendulum objects:

class Pendulum {
 ...
 static int SIMPLE = 0, ONE_SPRING = 1, TWO_SPRING = 2;
 ...

We might then use these flags in a method that sets the type of a Pendulum or, more
likely, in a special constructor, as we'll discuss shortly:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Pendulum pendy = new Pendulum();
pendy.setType(Pendulum.ONE_SPRING);

Again, inside the Pendulum class, we can use static members directly by name, as well;
there's no need for the Pendulum. prefix:

class Pendulum {
 ...
 void resetEverything() {
 setType (SIMPLE);
 ...
 }
 ...
}

5.2 Methods

Methods appear inside class bodies. They contain local variable declarations and other Java
statements that are executed by a calling thread when the method is invoked. Method
declarations in Java look like ANSI C-style function declarations with two restrictions: a
method in Java always specifies a return type (there's no default). The returned value can
be a primitive type, a reference type, or the type void , which indicates no returned value.
Next, a method always has a fixed number of arguments. The combination of method
overloading and true arrays reduces the need for a variable number of arguments, as
offered in some languages.

Here's a simple example:

class Bird {
 int xPos, yPos;

 double fly (int x, int y) {
 double distance = Math.sqrt(x*x + y*y);
 flap(distance);
 xPos = x;
 yPos = y;
 return distance;
 }
 ...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

In this example, the class Bird defines a method, fly() , that takes as arguments two
integers: x and y . It returns a double type value as a result, using the return
keyword.

5.2.1 Local Variables

The fly() method declares a local variable called distance , which it uses to compute
the distance flown. A local variable is temporary; it exists only within the scope of its
method. Local variables are allocated and initialized when a method is invoked; they are
normally destroyed when the method returns. They can't be referenced from outside the
method itself. If the method is executing concurrently in different threads, each thread has
its own copies of the method's local variables. A method's arguments also serve as local
variables within the scope of the method.

An object created within a method and assigned to a local variable may or may not persist
after the method has returned. As with all objects in Java, it depends on whether any
references to the object remain. If an object is created, assigned to a local variable, and
never used anywhere else, that object is no longer referenced when the local variable is
destroyed, so garbage collection removes the object. If, however, we assign the object to an
instance variable, pass it as an argument to another method, or pass it back as a return
value, it may be saved by another variable holding its reference. We'll discuss object
creation and garbage collection in more detail shortly.

5.2.2 Shadowing

If a local variable and an instance variable have the same name, the local variable shadows
or hides the name of the instance variable within the scope of the method. In the following
example, the local variables xPos and yPos hide the instance variables of the same name:

class Bird {
 int xPos, yPos;
 int xNest, yNest;
 ...
 double flyToNest() {
 int xPos = xNest;
 int yPos = yNest:
 return (fly(xPos, yPos));
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ...
}

When we set the values of the local variables in flyToNest() , it has no effect on the
values of the instance variables.

5.2.2.1 The "this" reference

You can use the special reference this any time you need to refer explicitly to the current
object. Often you don't need to use this , because the reference to the current object is
implicit; such is the case when using unambiguously named instance variables inside a
class. But we can use this to refer explicitly to instance variables in our object, even if
they are shadowed. The following example shows how we can use this to allow
argument names that shadow instance variable names. This is a fairly common technique,
because it saves your having to make up alternative names. Here's how we could
implement our fly() method with shadowed variables:

class Bird {
 int xPos, yPos;

 double fly (int xPos, int yPos) {
 double distance = Math.sqrt(xPos*xPos + yPos*yPos);
 flap(distance);
 this.xPos = xPos;
 this.yPos = yPos;
 return distance;
 }
 ...
}

In this example, the expression this.xPos refers to the instance variable xPos and
assigns it the value of the local variable xPos , which would otherwise hide its name. The
only reason we need to use this in the previous example is because we've used argument
names that hide our instance variables, and we want to refer to the instance variables. You
can also use the this reference any time you want to pass a reference to your object to
some other method; we'll show examples of that later.

5.2.3 Static Methods

Static methods (class methods), like static variables, belong to the class and not to an
individual instance of the class. What does this mean? Well, foremost, a static method lives

http://lib.ommolketab.ir
http://lib.ommolketab.ir

outside of any particular class instance. It can be invoked by name, through the class name,
without any objects around. Because it is not bound to a particular object instance, a static
method can directly access only other static members of the class. It can't directly see any
instance variables or call any instance methods, because to do so we'd have to ask, "on
which instance?" Static methods can be called from instances, just like instance methods,
but the important thing is that they can also be used independently.

Our fly() method uses a static method: Math.sqrt() , which is defined by the
java.lang.Math class; we'll explore this class in detail in Chapter 10 . For now, the
important thing to note is that Math is the name of a class and not an instance of a Math
object. (It so happens that you can't even make an instance of the Math class.) Because
static methods can be invoked wherever the class name is available, class methods are
closer to C-style functions. Static methods are particularly useful for utility methods that
perform work that is useful either independently of instances or in creating instances. For
example, in our Bird class, we could enumerate all types of birds that can be created:

class Bird {
 ...
 static String [] getBirdTypes() {
 String [] types;
 // Create list...
 return types;
 }
 ...
}

Here we've defined a static method getBirdTypes() , which returns an array of
strings containing bird names. We can use getBirdTypes() from within an instance
of Bird , just like an instance method. However, we can also call it from other classes,
using the Bird class name as a reference:

String [] names = Bird.getBirdTypes();

Perhaps a special version of the Bird class constructor accepts the name of a bird type.
We could use this list to decide what kind of bird to create.

Static methods also play an important role in various design patterns, where you limit the
use of the new operator for a class to one method, a static method called a factory method .
We'll talk more about object construction later. But suffice it to say that it's common to see
usage like this:

Bird bird = Bird.getBird("pigeon");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.2.4 Initializing Local Variables

In the flyToNest() example, we made a point of initializing the local variables xPos
and yPos . Unlike instance variables, local variables must be initialized before they can be
used. It's a compile-time error to try to access a local variable without first assigning it a
value:

void myMethod() {
 int foo = 42;
 int bar;

 bar += 1; // compile-time error, bar uninitialized

 bar = 99;
 bar += 1; // OK here
}

Notice that this doesn't imply local variables have to be initialized when declared, just that
the first time they are referenced must be in an assignment. More subtle possibilities arise
when making assignments inside conditionals:

void myMethod {
 int foo;
 if (someCondition) {
 foo = 42;
 ...
 }
 foo += 1; // Compile-time error, foo may not be initialized
}

In this example, foo is initialized only if someCondition is true . The compiler
doesn't let you make this wager, so it flags the use of foo as an error. We could correct
this situation in several ways. We could initialize the variable to a default value in advance
or move the usage inside the conditional. We could also make sure the path of execution
doesn't reach the uninitialized variable through some other means, depending on what
makes sense for our particular application. For example, we could return from the method
abruptly:

int foo;
...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

if (someCondition) {
 foo = 42;
 ...
} else
 return;

foo += 1;

In this case, there's no chance of reaching foo in an uninitialized state, so the compiler
allows the use of foo after the conditional.

Why is Java so picky about local variables? One of the most common (and insidious)
sources of errors in C or C++ is forgetting to initialize local variables, so Java tries to help
us out. If it didn't, Java would suffer the same potential irregularities as C or C++. [2]

5.2.5 Argument Passing and References

Let's consider what happens when you pass arguments to a method. All primitive data
types (e.g., int , char , float) are passed by value. By now you're probably used to
the idea that reference types (i.e., any kind of object, including arrays and strings) are used
through references. An important distinction is that the references themselves (the pointers
to these objects) are actually primitive types and are passed by value too.

Consider the following piece of code:

...
 int i = 0;
 SomeKindOfObject obj = new SomeKindOfObject();
 myMethod(i, obj);
 ...
void myMethod(int j, SomeKindOfObject o) {
 ...
}

The first chunk of code calls myMethod() , passing it two arguments. The first
argument, i , is passed by value; when the method is called, the value of i is copied into
the method's parameter, j . If myMethod() changes the value of j , it's changing only its
copy of the local variable.

In the same way, a copy of the reference to obj is placed into the reference variable o of
myMethod() . Both references refer to the same object, so any changes made through

http://lib.ommolketab.ir
http://lib.ommolketab.ir

either reference affect the actual (single) object instance. If we change the value of, say,
o.size , the change is visible either as o.size (inside myMethod()) or as
obj.size (in the calling method). However, if myMethod() changes the reference o
itself-to point to another object-it's affecting only its local variable reference. It doesn't
affect the caller's variable obj , which still refers to the original object. In this sense,
passing the reference is like passing a pointer in C and unlike passing by reference in C++.

What if myMethod() needs to modify the calling method's notion of the obj reference
as well (i.e., make obj point to a different object)? The easy way to do that is to wrap
obj inside some kind of object. For example, we could wrap the object up as the lone
element in an array:

SomeKindOfObject [] wrapper = new SomeKindOfObject [] { obj };

All parties could then refer to the object as wrapper[0] and would have the ability to
change the reference. This is not aesthetically pleasing, but it does illustrate that what is
needed is the level of indirection.

Another possibility is to use this to pass a reference to the calling object. In that case, the
calling object serves as the wrapper for the reference. Let's look at a piece of code that
could be from an implementation of a linked list:

class Element {
 public Element nextElement;

 void addToList(List list) {
 list.addToList(this);
 }
}

class List {
 void addToList(Element element) {
 ...
 element.nextElement = getNextElement();
 }
}

Every element in a linked list contains a pointer to the next element in the list. In this code,
the Element class represents one element; it includes a method for adding itself to the
list. The List class itself contains a method for adding an arbitrary Element to the list.
The method addToList() calls addToList() with the argument this (which is, of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

course, an Element). addToList() can use the this reference to modify the
Element 's nextElement instance variable. The same technique can be used in
conjunction with interfaces to implement callbacks for arbitrary method invocations.

5.2.6 Method Overloading

Method overloading is the ability to define multiple methods with the same name in a
class; when the method is invoked, the compiler picks the correct one based on the
arguments passed to the method. This implies that overloaded methods must have different
numbers or types of arguments. (In Chapter 6 , we'll look at method overriding , which
occurs when we declare methods with identical signatures in different classes.)

Method overloading (also called ad-hoc polymorphism) is a powerful and useful feature.
The idea is to create methods that act in the same way on different types of arguments. This
creates the illusion that a single method can operate on any of the types. The print()
method in the standard PrintStream class is a good example of method overloading in
action. As you've probably deduced by now, you can print a string representation of just
about anything using this expression:

System.out.print(argument)

The variable out is a reference to an object (a PrintStream) that defines nine
different, "overloaded" versions of the print() method. The versions take arguments of
the following types: Object , String , char[] , char , int , long , float ,
double , and boolean .

class PrintStream {
 void print(Object arg) { ... }
 void print(String arg) { ... }
 void print(char [] arg) { ... }
 ...
}

You can invoke the print() method with any of these types as an argument, and it's
printed in an appropriate way. In a language without method overloading, this requires
something more cumbersome, such as a uniquely named method for printing each type of
object. Then it's your responsibility to remember what method to use for each data type.

In the previous example, print() has been overloaded to support two reference types:
Object and String . What if we try to call print() with some other reference type?
Say, perhaps, a Date object? When there's not an exact type match, the compiler searches

http://lib.ommolketab.ir
http://lib.ommolketab.ir

for an acceptable, assignable match. Since Date , like all classes, is a subclass of
Object , a Date object can be assigned to a variable of type Object . It's therefore an
acceptable match, and the Object method is selected.

What if there's more than one possible match? Say, for example, we tried to print a
subclass of String called MyString . (The String class is final , so it can't be
subclassed, but please allow this brief transgression for purposes of explanation.)
MyString is assignable to either String or to Object . Here the compiler makes a
determination as to which match is "better" and selects that method. In this case, it's the
String method.

The intuitive explanation is that the String class is closer to MyString in the
inheritance hierarchy. It is a more specific match. A more rigorous way of specifying it
would be to say that a given method is more specific than another method if the argument
types of the first method are all assignable to the argument types of the second method. In
this case, the String method is more specific to a subclass of String than the
Object method because type String is assignable to type Object . The reverse is not
true.

If you're paying close attention, you may have noticed we said that the compiler resolves
overloaded methods. Method overloading is not something that happens at runtime; this is
an important distinction. It means that the selected method is chosen once, when the code is
compiled. Once the overloaded method is selected, the choice is fixed until the code is
recompiled, even if the class containing the called method is later revised and an even more
specific overloaded method is added. This is in contrast to overridden methods, which are
located at runtime and can be found even if they didn't exist when the calling class was
compiled. We'll talk about method overriding later in the chapter.

One last note about overloading. In earlier chapters, we've pointed out that Java doesn't
support programmer-defined overloaded operators and that + is the only system-defined
overloaded operator. If you've been wondering what an overloaded operator is, we can
finally clear up that mystery. In a language like C++, you can customize operators such as
+ and * to work with objects that you create. For example, you could create a class
Complex that implements complex numbers and then overload methods corresponding to
+ and * to add and multiply Complex objects. Some people argue that operator
overloading makes for elegant and readable programs, while others say it's just "syntactic
sugar" that makes for obfuscated code. The Java designers clearly espoused the latter
opinion when they chose not to support programmer-defined overloaded operators.

5.3 Object Creation

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Objects in Java are allocated on a system "heap" memory space, much like that in C or
C++. Unlike in C or C++, however, we needn't manage that memory ourselves. Java takes
care of memory allocation and deallocation for you. Java explicitly allocates storage for an
object when you create it with the new operator. More importantly, objects are removed by
garbage collection when they're no longer referenced.

5.3.1 Constructors

Objects are allocated with the new operator using an object constructor . A constructor is a
special method with the same name as its class and no return type. It's called when a new
class instance is created, which gives the class an opportunity to set up the object for use.
Constructors, like other methods, can accept arguments and can be overloaded (they are
not, however, inherited like other methods; we'll discuss inheritance in Chapter 6).

class Date {
 long time;

 Date() {
 time = currentTime();
 }

 Date(String date) {
 time = parseDate(date);
 }
 ...
}

In this example, the class Date has two constructors. The first takes no arguments; it's
known as the default constructor . Default constructors play a special role: if we don't
define any constructors for a class, an empty default constructor is supplied for us. The
default constructor is what gets called whenever you create an object by calling its
constructor with no arguments. Here we have implemented the default constructor so that it
sets the instance variable time by calling a hypothetical method, currentTime() ,
which resembles the functionality of the real java.util.Date class. The second
constructor takes a String argument. Presumably, this String contains a string
representation of the time that can be parsed to set the time variable. Given the
constructors in the previous example, we create a Date object in the following ways:

Date now = new Date();
Date christmas = new Date("Dec 25, 2002");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In each case, Java chooses the appropriate constructor at compile time based on the rules
for overloaded method selection.

If we later remove all references to an allocated object, it'll be garbage-collected, as we'll
discuss shortly:

christmas = null; // fair game for the garbage collector

Setting this reference to null means it's no longer pointing to the "Dec 25, 2002" object.
(So would setting christmas to any other value.) Unless that object is referenced by
another variable, it's now inaccessible and can be garbage-collected.

A few more notes: constructors can't be declared abstract , synchronized , or
final (we'll define the rest of those terms later). Constructors can, however, be declared
with the visibility modifiers public , private , or protected to control their
accessibility. We'll talk in detail about visibility modifiers in the next chapter.

5.3.2 Working with Overloaded Constructors

A constructor can refer to another constructor in the same class or the immediate superclass
using special forms of the this and super references. We'll discuss the first case here,
and return to that of the superclass constructor after we have talked more about subclassing
and inheritance. A constructor can invoke another, overloaded constructor in its class using
the reference this() with appropriate arguments to select the desired constructor. If a
constructor calls another constructor, it must do so as its first statement:

class Car {
 String model;
 int doors;

 Car(String m, int d) {
 model = m;
 doors = d;
 // other, complicated setup
 ...
 }

 Car(String m) {
 this(m, 4);
 }
 ...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

In this example, the class Car has two constructors. The first, more explicit one, accepts
arguments specifying the car's model and its number of doors. The second constructor
takes just the model as an argument and, in turn, calls the first constructor with a default
value of four doors. The advantage of this approach is that you can have a single
constructor do all the complicated setup work; other auxiliary constructors simply feed the
appropriate arguments to that constructor.

The call to this() must appear as the first statement in our second constructor. The
syntax is restricted in this way because there's a need to identify a clear chain of command
in the calling of constructors. At one end of the chain, Java invokes the constructor of the
superclass (if we don't do it explicitly) to ensure that inherited members are initialized
properly before we proceed.

There's also a point in the chain, just after the constructor of the superclass is invoked,
where the initializers of the current class's instance variables are evaluated. Before that
point, we can't even reference the instance variables of our class. We'll explain this
situation again in complete detail after we have talked about inheritance.

For now, all you need to know is that you can invoke a second constructor only as the first
statement of another constructor. For example, the following code is illegal and causes a
compile-time error:

Car(String m) {
 int doors = determineDoors();
 this(m, doors); // Error: constructor call
 // must be first statement
}

The simple model name constructor can't do any additional setup before calling the more
explicit constructor. It can't even refer to an instance member for a constant value:

class Car {
 ...
 final int default_doors = 4;
 ...

 Car(String m) {
 this(m, default_doors); // Error: referencing
 // uninitialized variable
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ...
}

The instance variable defaultDoors is not initialized until a later point in the chain of
constructor calls, so the compiler doesn't let us access it yet. Fortunately, we can solve this
particular problem by using a static variable instead of an instance variable:

class Car {
 ...
 static final int DEFAULT_DOORS = 4;
 ...

 Car(String m) {
 this(m, DEFAULT_DOORS); // Okay now
 }
 ...
}

The static members of a class are initialized when the class is first loaded, so it's safe to
access them in a constructor.

5.3.3 Static and Nonstatic Initializer Blocks

It's possible to declare a block of code (some statements within curly braces) directly
within the scope of a class. This code block doesn't belong to any method; instead, it's
executed once, at the time the object is constructed, or, in the case of a code block marked
static , at the time the class is loaded. These blocks can be used to do additional setup
for the class or an object instance and are sometimes called initializer blocks.

Instance initializer blocks can be thought of as extensions of instance variable initialization.
They're called at the time the instance variable's initializers are evaluated (after superclass
construction), in the order that they appear in the Java source:

class MyClass {
 Properties myProps = new Properties();
 // set up myProps
 {
 myProps.put("foo", "bar");
 myProps.put("boo", "gee");
 }
 int a = 5;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

...

Normally this kind of setup could be done just as well in the object's constructor. A notable
exception is in the case of an anonymous inner class (see Chapter 6).

Similarly, you can use static initializer blocks to set up static class members. This allows
the static members of a class to have complex initialization just like objects do with
constructors:

class ColorWheel {
 static Hashtable colors = new Hashtable();

 // set up colors
 static {
 colors.put("Red", Color.red);
 colors.put("Green", Color.green);
 colors.put("Blue", Color.blue);
 ...
 }
 ...
}

The class ColorWheel provides a variable colors that maps the names of colors to
Color objects in a Hashtable . The first time the class ColorWheel is referenced
and loaded, the static components of ColorWheel are evaluated, in the order they appear
in the source. In this case, the static code block simply adds elements to the colors
Hashtable .

5.4 Object Destruction

Now that we've seen how to create objects, it's time to talk about their destruction. If you're
accustomed to programming in C or C++, you've probably spent time hunting down
memory leaks in your code. Java takes care of object destruction for you; you don't have to
worry about memory leaks, and you can concentrate on more important programming
tasks.

5.4.1 Garbage Collection

Java uses a technique known as garbage collection to remove objects that are no longer
needed. The garbage collector is Java's grim reaper. It lingers, usually in a low-priority

http://lib.ommolketab.ir
http://lib.ommolketab.ir

thread, stalking objects and awaiting their demise. It finds them and watches them,
periodically counting references to them to see when their time has come. When all
references to an object are gone, and it's no longer accessible, the garbage-collection
mechanism declares the object unreachable and reclaims its space back to the available
pool of resources. An unreachable object is one that cannot be found through any
references in the running application.

There are many different algorithms for garbage collection; the Java virtual machine
architecture doesn't require a particular scheme. It's worth noting, however, by way of
example, how some implementations of Java accomplish this task. Under a scheme called
"mark and sweep," Java first walks through the tree of all accessible object references and
marks them as alive. Then Java scans the heap looking for identifiable objects that aren't
marked. In this scenario, Java is able to find objects on the heap because they are stored in
a characteristic way and have a particular signature of bits in their handles unlikely to be
reproduced naturally. This kind of algorithm doesn't become confused by the problem of
cyclic references, in which detached objects can mutually reference each other and appear
alive (and that behavior is guaranteed by Java). It did, however, slow Java's execution and
so in Java 1.3, Sun implemented a new garbage collection method.

As of Java 1.3, garbage collection effectively runs continuously in a very efficient way that
should never cause a significant delay in execution. Java garbage collectors use state-of-
the-art techniques to balance efficiency of collection with performance and to minimize
interruption of your application. The improvement in Java's garbage collection since the
early releases has been remarkable and is one of the reasons that Java is now competitive
with traditional compiled languages in terms of speed.

In general you do not have to concern yourself with the garbage-collection process. But
there is one method that can be useful for debugging. You can prompt the garbage collector
to make a sweep explicitly by invoking the System.gc() method. This method is
somewhat implementation-dependent but could be used if you want to guarantee that Java
has cleaned up before you do some activity.

5.4.2 Finalization

Before an object is removed by garbage collection, its finalize() method is invoked
to give it a last opportunity to clean up its act and free other kinds of resources it may be
holding. While the garbage collector can reclaim memory resources, it may not take care of
things such as closing files and terminating network connections as gracefully or efficiently
as could your code. That's what the finalize() method is for. An object's
finalize() method is called once and only once before the object is garbage-collected.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

However, there's no guarantee when that will happen. Garbage collection may, in theory,
never run on a system that is not short of memory. It is also interesting to note that
finalization and collection occur in two distinct phases of the garbage-collection process.
First items are finalized; then they are collected. It is therefore possible that finalization can
(intentionally or unintentionally) create a lingering reference to the object in question,
postponing its garbage collection. The object is, of course, subject to collection later, if the
reference goes away, but its finalize() method isn't called again.

The finalize() methods of superclasses are not invoked automatically for you. If you
need to invoke the finalization routine of your parent classes, you should invoke the
finalize() method of your superclass, using super.finalize() . We discuss
inheritance and overridden methods in Chapter 6 .

5.4.3 Weak and Soft References

In general, as we've described, Java's garbage collector reclaims objects when they are
unreachable. An unreachable object, again, is one that is no longer referenced by any
variables within your application, one that is not reachable through any chain of references
by any running thread. Such an object cannot be used by the application any longer and is
therefore a clear case where the object should be removed.

There are, however, situations where it is advantageous to have Java's garbage collector
work with your application to decide when it is time to remove a particular object. For
these cases, Java allows you to hold an object reference indirectly through a special
wrapper object, a type of java.lang.ref.Reference . If Java then decides to
remove the object, the reference the wrapper holds turns to null automatically. But while
the reference exists, you may continue to use it in the ordinary way and if you wish, assign
it elsewhere (using normal references), preventing its garbage collection.

There are two types of Reference wrappers that implement different schemes for
deciding when to let their target references be garbage-collected. The first is called a
WeakReference . Weak references are eligible for garbage collection immediately;
they do not prevent garbage collection the way that ordinary "strong" references do. This
means that if you have a combination of strong references and references contained in
WeakReference wrappers in your application, the garbage collector waits until only
WeakReference s remain and then collects the object. This is an essential feature that
allows garbage collection to work with certain kinds of caching schemes. Often you'll want
to cache an object reference for performance (to avoid creating it or looking it up). But
unless you take specific action to remove unneeded objects from your cache, the cache
keeps those objects alive forever by maintaining live references to them. By using weak

http://lib.ommolketab.ir
http://lib.ommolketab.ir

references, you can implement a cache that automatically throws away references when the
object would normally be garbage-collected. In fact, an implementation of HashMap
called WeakHashMap is provided that does just this (see Chapter 10 for details).

The second type of reference wrapper is called SoftReference . A soft reference is
similar to a weak reference, but it tells the garbage collector to be less aggressive about
reclaiming its contents. Soft-referenced objects are collected only when and if Java runs
short of memory. This is useful for a slightly different kind of caching where you want to
keep some content around unless there is a need to get rid of it. For example, a web
browser can use soft references to cache images or HTML strings internally, thus keeping
them around as long as possible until memory constraints come into play. (A more
sophisticated application might also use its own scheme based on "least recently used"
marking of some kind.)

The java.lang.ref package contains the WeakReference and
SoftReference wrappers, as well as a facility called ReferenceQueue that allows
your application to receive a list of references that have been collected. It's important that
your application use the queue or some other checking mechanism to remove the
Reference objects themselves after their contents have been collected; otherwise your
cache will soon fill up with empty Reference object wrappers.

[1] Once you have some experience with basic object-oriented concepts, you might want to
take a look at Design Patterns: Elements of Reusable Object-Oriented Software by Gamma,
Helm, Johnson, and Vlissides (Addison-Wesley). This book catalogs useful object-oriented
designs that have been refined over the years by experience. Many appear in the design of the
Java APIs.

[2] As with malloc 'ed storage in C or C++, Java objects and their instance variables are

allocated on a heap, which allows them default values once, when they are created. Local
variables, however, are allocated on the Java virtual machine stack. As with the stack in C and
C++, failing to initialize these could mean successive method calls could receive garbage
values, and program execution might be inconsistent or implementation-dependent.

CONTENTS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

Chapter 6. Relationships Among Classes

 6.1 Subclassing and Inheritance

 6.2 Interfaces
 6.3 Packages and Compilation Units

 6.4 Visibility of Variables and Methods

 6.5 Arrays and the Class Hierarchy

 6.6 Inner Classes

So far, in our exploration of Java we have seen how to create Java classes and objects,
which are instances of those classes. But by themselves objects would be little more than a
convention for organizing code. It is in the relationships between objects-their
connections and privileges with respect to one another-that the power of an object-
oriented language is really expressed.

That's what we'll cover in this chapter. In particular, we'll be looking at several kinds of
relationships:

Inheritance relationships

How a class inherits methods and variables from its parent class
Interfaces

How to declare that a class supports certain behavior and define a type to refer to that
behavior

Packaging

How to organize objects into logical groups
Inner classes

A generalization of classes that lets you nest a class definition inside another class
definition

6.1 Subclassing and Inheritance

Classes in Java exist in a hierarchy. A class in Java can be declared as a subclass of another
class using the extends keyword. A subclass inherits variables and methods from its
superclass and can use them as if they were declared within the subclass itself:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

class Animal {
 float weight;
 ...
 void eat() {
 ...
 }
 ...
}

class Mammal extends Animal {
 int heartRate;
 // inherits weight
 ...
 void breathe() {
 ...
 }
 // inherits eat()
}

In this example, an object of type Mammal has both the instance variable weight and the
method eat() . They are inherited from Animal .

A class can extend only one other class. To use the proper terminology, Java allows single
inheritance of class implementation. Later in this chapter we'll talk about interfaces, which
take the place of multiple inheritance as it's primarily used in C++.

A subclass can be further subclassed. Normally, subclassing specializes or refines a class
by adding variables and methods (you cannot remove or hide variables or methods by
subclassing). For example:

class Cat extends Mammal {
 boolean longHair;
 // inherits weight and heartRate
 ...
 void purr() {
 ...
 }
 // inherits eat() and breathe()
}

The Cat class is a type of Mammal that is ultimately a type of Animal . Cat objects

http://lib.ommolketab.ir
http://lib.ommolketab.ir

inherit all the characteristics of Mammal objects and, in turn, Animal objects. Cat also
provides additional behavior in the form of the purr() method and the longHair
variable. We can denote the class relationship in a diagram, as shown in Figure 6-1 .

Figure 6-1. A class hierarchy

A subclass inherits all members of its superclass not designated as private . As we'll
discuss shortly, other levels of visibility affect what inherited members of the class can be
seen from outside of the class and its subclasses, but at a minimum, a subclass always has
the same set of visible members as its parent. For this reason, the type of a subclass can be
considered a subtype of its parent, and instances of the subtype can be used anywhere
instances of the supertype are allowed. Consider the following example:

Cat simon = new Cat();
Animal creature = simon;

The Cat instance simon in this example can be assigned to the Animal type variable
creature because Cat is a subtype of Animal .

6.1.1 Shadowed Variables

In Section 5.2 in Chapter 5 , we saw that a local variable of the same name as an instance
variable shadows (hides) the instance variable. Similarly, an instance variable in a subclass
can shadow an instance variable of the same name in its parent class, as shown in Figure 6-
2 .

Figure 6-2. The scope of shadowed variables

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In Figure 6-2 , the variable weight is declared in three places: as a local variable in the
method foodConsumption() of the class Mammal , as an instance variable of the
class Mammal , and as an instance variable of the class Animal . The actual variable
selected depends on the scope in which we are working.

In the previous example, all variables were of the same type. Just about the only reason to
declare a variable with the same type in a subclass is to provide an alternate initializer.

A more important use of shadowed variables involves changing their types. We could, for
example, shadow an int variable with a double variable in a subclass that needs
decimal values instead of integer values. We can do this without changing the existing code
because, as its name suggests, when we shadow variables, we don't replace them but
instead mask them. Both variables still exist; methods of the superclass see the original
variable, and methods of the subclass see the new version. The determination of what
variables the various methods see occurs at compile time.

Here's a simple example:

class IntegerCalculator {
 int sum;
 ...
}

class DecimalCalculator extends IntegerCalculator {
 double sum;
 ...
}

In this example, we shadow the instance variable sum to change its type from int to
double .[1] Methods defined in the class IntegerCalculator see the integer

http://lib.ommolketab.ir
http://lib.ommolketab.ir

variable sum , while methods defined in DecimalCalculator see the floating-point
variable sum . However, both variables actually exist for a given instance of
DecimalCalculator , and they can have independent values. In fact, any methods
that DecimalCalculator inherits from IntegerCalculator actually see the
integer variable sum .

Since both variables exist in DecimalCalculator , we need to reference the variable
inherited from IntegerCalculator . We do that using the super reference:

int s = super.sum;

Inside of DecimalCalculator , the super keyword used in this manner refers to the
sum variable defined in the superclass. We'll explain the use of super more fully in a bit.

Another important point about shadowed variables has to do with how they work when we
refer to an object by way of a less derived type. For example, we can refer to a
DecimalCalculator object as an IntegerCalculator . If we do so and then
access the variable sum , we get the integer variable, not the decimal one:

DecimalCalculator dc = new DecimalCalculator();
IntegerCalculator ic = dc;

int s = ic.sum; // accesses IntegerCalculator sum

After this detailed explanation, you may still be wondering what shadowed variables are
good for. Well, to be honest, the usefulness of shadowed variables is limited, but it's
important to understand the concepts before we talk about doing the same thing with
methods. We'll see a different and more dynamic type of behavior with method shadowing,
or to use the correct terminology, method overriding .

6.1.2 Overriding Methods

In Chapter 5 , we saw that we could declare overloaded methods (i.e., methods with the
same name but a different number or type of arguments) within a class. Overloaded method
selection works in the way we described on all methods available to a class, including
inherited ones. This means that a subclass can define some overloaded methods that
augment the overloaded methods provided by a superclass.

But a subclass can do more than that; it can define a method that has exactly the same
method signature (arguments and return type) as a method in its superclass. In that case, the
method in the subclass overrides the method in the superclass and effectively replaces its
implementation, as shown in Figure 6-3 . Overriding methods to change the behavior of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

objects is called subtype polymorphism . It's the usage most people think of when they talk
about the power of object-oriented languages.

Figure 6-3. Method overriding

In Figure 6-3 , Mammal overrides the reproduce() method of Animal , perhaps to
specialize the method for the peculiar behavior of mammals' giving live birth. [2] The Cat
object's sleeping behavior is also overridden to be different from that of a general Animal
, perhaps to accommodate cat naps. The Cat class also adds the more unique behaviors of
purring and hunting mice.

From what you've seen so far, overridden methods probably look like they shadow
methods in superclasses, just as variables do. But overridden methods are actually more
powerful than that. When there are multiple implementations of a method in the inheritance
hierarchy of an object, the one in the "most derived" class (the lowest one in the hierarchy)
always overrides the others, even if we refer to the object by way of a less derived type. [3]

For example, if we have a Cat instance assigned to a variable of the more general type
Animal , and we call its sleep() method, we still get the sleep() method
implemented in the Cat class, not the one in Animal :

Cat simon = new Cat();
Animal creature = simon;
 ...
creature.sleep(); // accesses Cat sleep();

In other words, a Cat acts like a Cat , regardless of whether you know specifically that
you have that kind of animal or not. In other respects, the variable creature looks like
an Animal . For example, access to a shadowed variable would find the implementation
in the Animal class, not the Cat class. However, because methods are searched for in
subclasses first, the appropriate method in the Cat class can be located, even though we

http://lib.ommolketab.ir
http://lib.ommolketab.ir

are dealing with an Animal object. This means we can deal with specialized objects as if
they were more general types of objects and still take advantage of their specialized
implementations of behavior.

One note before we move on: A common programming error in Java is to accidentally
overload a method when trying to override it. Any difference in the number or type of
arguments produces two overloaded methods instead of a single, overridden method. Make
it a habit to look twice when overriding methods.

6.1.2.1 Overridden methods and dynamic binding

In a previous section, we mentioned that overloaded methods are selected by the compiler
at compile time. Overridden methods, on the other hand, are selected dynamically at
runtime. Even if we create an instance of a subclass, our code has never seen before
(perhaps a new object type loaded from the network), any overriding methods that it
contains are located and used at runtime, replacing those that existed when we last
compiled our code.

In contrast, if we load a new class that implements an additional, more specific overloaded
method, our code continues to use the implementation it discovered at compile time.
Another effect of this is that casting (i.e., explicitly telling the compiler to treat an object as
one of its assignable types) affects the selection of overloaded methods but not overridden
methods.

6.1.2.2 Static method binding

S tatic methods don't belong to any object instance; they are accessed directly through a
class name, so they are not dynamically selected at runtime like instance methods. That is
why static methods are called "static";they are always bound at compile time.

A static method in a superclass can be shadowed by another static method in a subclass, as
long as the original method was not declared final. However, you can't override a static
method with a non-static method. In other words, you can't change a static method in a
superclass into an instance method in a subclass.

6.1.2.3 final methods and performance

In languages like C++, the default is for methods to act like shadowed variables, so you
have to declare explicitly the methods you want to be dynamic (or, as C++ terms them,
virtual). In Java, instance methods are, by default, dynamic. But you can use the final
modifier to declare that an instance method can't be overridden in a subclass, and it won't

http://lib.ommolketab.ir
http://lib.ommolketab.ir

be subject to dynamic binding.

We have seen final used with variables to effectively make them constants. When
applied to a method, final means that its implementation is constant; no overriding
allowed. final can also be applied to an entire class, which means the class can't be
subclassed.

In the old days, dynamic method binding came with a significant performance penalty, and
some people are still inclined to use the final modifier to guard against this. But runtime
systems such as Sun's HotSpot should eliminate the need for this kind of fudging. A
profiling runtime can determine which methods are not being overridden and
"optimistically" inline them, treating them as if they were final until it becomes necessary
to do otherwise.

6.1.2.4 Compiler optimizations

In some versions of Java, the javac compiler can be run with a -O switch, which tells it to
perform certain optimizations. With optimizations turned on, the compiler can inline
final methods to improve performance (while slightly increasing the size of the resulting
class file). private methods, which are effectively final , can also be inlined, and
final classes may also benefit from more powerful optimizations. Note that the -O
compiler switch will probably gradually go away in favor of smarter runtime systems. We
mention it here mainly for completeness.

Another kind of optimization allows you to include debugging code in your Java source
without a size penalty. Java doesn't have a preprocessor to explicitly control what source is
included, but you can get some of the same effects by making a block of code conditional
on a constant (i.e., static and final) variable. The Java compiler is smart enough to
remove this code when it determines that it won't be called. For example:

static final boolean DEBUG = false;
...
final void debug (String message) {
 if (DEBUG) {
 System.err.println(message);
 // do other stuff
 ...
 }
}

In this case, the compiler can recognize that the condition on the DEBUG variable is always

http://lib.ommolketab.ir
http://lib.ommolketab.ir

false , and the body of the debug() method will be optimized away. But that's not all:
because debug() itself is also final , it can be inlined, and an empty inlined method
generates no code at all. So when we compile with DEBUG set to false , calls to the
debug() method generate no residual code at all.

6.1.2.5 Method selection revisited

By now you should have a good, intuitive feel for how methods are selected from the pool
of potentially overloaded and overridden method names of a class. If, however, you are
dying for a dry definition, we'll provide one now. If you are satisfied with your
understanding, you may wish to skip this little exercise in logic.

In a previous section, we offered an inductive rule for overloaded method resolution. It said
that a method is considered more specific than another if its arguments are assignable to the
arguments of the second method. We can now expand this rule to include the resolution of
overridden methods by adding the following condition: to be more specific than another
method, the type of the class containing the method must also be assignable to the type of
the class holding the second method.

What does that mean? Well, the only classes whose types are assignable are classes in the
same inheritance hierarchy. So, what we're talking about now is the set of all methods of
the same name in a class or any of its parent or child classes. Since subclass types are
assignable to superclass types, but not vice versa, the resolution is pushed, in the way that
we expect, down the chain, toward the subclasses. This effectively adds a second
dimension to the search, in which resolution is pushed down the inheritance tree towards
more refined classes and, simultaneously, toward the most specific overloaded method
within a given class.

6.1.2.6 Exceptions and overridden methods

When we talked about exception handling in Chapter 4 , we didn't mention an important
restriction that applies when you override a method. When you override a method, the new
method (the overriding method) must adhere to the throws clause of the method it
overrides. In other words, if an overridden method declares that it can throw an exception,
the overriding method must also specify that it can throw the same kind of exception or a
subtype of that exception. By allowing the exception to be a subtype of the one specified
by the parent, the overriding method can refine the type of exception thrown to go along
with its new behavior. For example:

class MeatInedibleException extends InedibleException {
 ...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

class Animal {
 void eat(Food f) throws InedibleException {
 ...
 }
}
class Herbivore extends Animal {
 void eat(Food f) throws InedibleException {
 if (f instanceof Meat)
 throw new MeatInedibleException();
 ...
 }
}

In this code, Animal specifies that it can throw an InedibleException from its
eat() method. Herbivore is a subclass of Animal , so its eat() method must also
be able to throw an InedibleException . However, Herbivore 's eat() method
actually throws a more specific exception: MeatInedibleException . It can do this
because MeatInedibleException is a subtype of InedibleException
(remember that exceptions are classes, too). Our calling code's catch clause can therefore
be more specific:

Animal creature = ...
try {
 creature.eat(food);
} catch (MeatInedibleException) {
 // creature can't eat this food because it's meat
} catch (InedibleException) {
 // creature can't eat this food
}

However, if we don't care why the food is inedible, we're free to catch
InedibleException alone because a MeatInedibleException is also an
InedibleException .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The eat() method in the Herbivore class could have declared that
it throws a MeatInedibleException , not a plain old
InedibleException . But it should do so only if it throws this
subtype of the exception (if eating meat is the only cause of herbivore
indigestion).

6.1.3 Special References: this and super

The special references this and super allow you to refer to the members of the current
object instance or to members of the superclass, respectively. We have seen this used
elsewhere to pass a reference to the current object and to refer to shadowed instance
variables. The reference super does the same for the parents of a class. You can use it to
refer to members of a superclass that have been shadowed or overridden. A common
arrangement is for an overriding method in a subclass to do some preliminary work and
then defer to the overridden method of the superclass to finish the job:

class Animal {
 void eat(Food f) throws InedibleException {
 // consume food
 }
}

class Herbivore extends Animal {
 void eat(Food f) throws MeatInedibleException {
 // check if edible
 ...
 super.eat(f);
 }
}

In this example, our Herbivore class overrides the Animal eat() method to first do
some checking on the food object. After doing its job, it uses super.eat() to call the
(otherwise overridden) implementation of eat() in its superclass.

super prompts a search for the method or variable to begin in the scope of the immediate
superclass rather than the current class. The inherited method or variable found may reside
in the immediate superclass or in a more distant one. The usage of the super reference
when applied to overridden methods of a superclass is special; it tells the method resolution
system to stop the dynamic method search at the superclass instead of at the most derived

http://lib.ommolketab.ir
http://lib.ommolketab.ir

class (as it otherwise does). Without super , there would be no way to access overridden
methods.

6.1.4 Casting

A cast explicitly tells the compiler to change the apparent type of an object reference. In
Java (unlike C++), casts are checked both at compile time and at runtime to make sure they
are legal. Attempting to cast an object to an incompatible type at runtime results in a
ClassCastException . Only casts between objects in the same inheritance hierarchy
(and as we'll see later, to appropriate interfaces) are legal in Java and pass the scrutiny of
the compiler and the runtime system.

Casts in Java affect only the treatment of references; they never change the form of the
actual object. This is an important rule to keep in mind. You never change the object
pointed to by a reference by casting it; you change only the compiler's (or runtime
system's) notion of it.

A cast can be used to narrow the type of a reference-to make it more specific. Often, we'll
do this when we have to retrieve an object from a more general type of collection or when
it has been previously used as a less derived type. (The prototypical example is using an
object in a Vector or Hashtable , as you'll see in Chapter 10 .) Continuing with our
Cat example:

Animal creature;
Cat simon;
// ...

creature = simon; // OK
// simon = creature; // Compile time error, incompatible type
simon = (Cat)creature; // OK

We can't reassign the reference in creature to the variable simon even though we
know it holds an instance of a Cat (Simon). We have to perform the indicated cast. This is
called downcasting the reference.

Note that an implicit cast was performed when we went the other way to widen the
reference simon to type Animal during the first assignment. In this case, an explicit cast
would have been legal but superfluous.

If casting seems complicated, here's a simple way to think about it. Basically, you can't lie
about what an object is. If you have a Cat object, you can cast it to a less derived type

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(i.e., a type above it in the class hierarchy) such as Animal or even Object , because all
Java classes are a subclass of Object . If you have an Object you know is a Cat , you
can downcast the Object to be an Animal or a Cat . However, if you aren't sure if the
Object is a Cat or a Dog at runtime, you should check it with instanceof before
you perform the cast. If you get the cast wrong, the runtime system throws a
ClassCastException .

As we mentioned earlier, casting can affect the selection of compile-time items such as
variables and overloaded methods, but not the selection of overridden methods. Figure 6-4
shows the difference. As shown in the top half of the diagram, casting the reference
simon to type Animal (widening it) affects the selection of the shadowed variable
weight within it. However, as the lower half of the diagram indicates, the cast doesn't
affect the selection of the overridden method sleep() .

Figure 6-4. Casting and selection of methods and variables

6.1.5 Using Superclass Constructors

When we talked earlier about constructors, we discussed how the special statement
this() invokes an overloaded constructor upon entry to another constructor. Similarly,
the statement super() explicitly invokes the constructor of a superclass. Of course, we
also talked about how Java makes a chain of constructor calls that includes the superclass's
constructor, so why use super() explicitly? When Java makes an implicit call to the
superclass constructor, it calls the default constructor. So, if we want to invoke a superclass
constructor that takes arguments, we have to do so explicitly using super() .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If we are going to call a superclass constructor with super() , it must be the first
statement of our constructor, just as this() must be the first call we make in an
overloaded constructor. Here's a simple example:

class Person {
 Person (String name) {
 // setup based on name
 ...
 }
 ...
}

class Doctor extends Person {
 Doctor (String name, String specialty) {
 super(name);
 // setup based on specialty
 ...
 }
 ...
}

In this example, we use super() to take advantage of the implementation of the
superclass constructor and avoid duplicating the code to set up the object based on its
name. In fact, because the class Person doesn't define a default (no arguments)
constructor, we have no choice but to call super() explicitly. Otherwise, the compiler
would complain that it couldn't find an appropriate default constructor to call. In other
words, if you subclass a class whose constructors all take arguments, you have to invoke
one of the superclass's constructors explicitly from your subclass constructor.

Instance variables of the class are initialized upon return from the superclass constructor,
whether that's due to an explicit call to super() or an implicit call to the default
superclass constructor.

6.1.6 Full Disclosure: Constructors and Initialization

We can now tell the full story of how constructors are chained together and when instance
variable initialization occurs. The rule has three parts and is applied repeatedly for each
successive constructor invoked.

If the first statement of a constructor is an ordinary statement-i.e., not a call to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

this() or super() -Java inserts an implicit call to super() to invoke the
default constructor of the superclass. Upon returning from that call, Java initializes the
instance variables of the current class and proceeds to execute the statements of the
current constructor.

If the first statement of a constructor is a call to a superclass constructor via
super() , Java invokes the selected superclass constructor. Upon its return, Java
initializes the current class's instance variables and proceeds with the statements of the
current constructor.

If the first statement of a constructor is a call to an overloaded constructor via
this() , Java invokes the selected constructor, and upon its return, simply proceeds
with the statements of the current constructor. The call to the superclass's constructor
has happened within the overloaded constructor, either explicitly or implicitly, so the
initialization of instance variables has already occurred.

6.1.7 Abstract Methods and Classes

A method in Java can be declared with the abstract modifier to indicate that it's just a
prototype. An abstract method has no body; it's simply a signature declaration followed by
a semicolon. You can't directly use a class that contains an abstract method; you must
instead create a subclass that implements the abstract method's body.

abstract void vaporMethod(String name);

In Java, a class that contains one or more abstract methods must be explicitly declared as
an abstract class, also using the abstract modifier:

abstract class vaporClass {
 ...
 abstract void vaporMethod(String name);
 ...
}

An abstract class can contain other nonabstract methods and ordinary variable declarations,
but it can't be instantiated. To be used, it must be subclassed, and its abstract methods must
be overridden with methods that implement a body. Not all abstract methods have to be
implemented in a single subclass, but a subclass that doesn't override all its superclass's
abstract methods with actual, concrete implementations must also be declared abstract
.

Abstract classes provide a framework for classes that are to be "filled in" by the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

implementer. The java.io.InputStream class, for example, has a single abstract
method called read() . Various subclasses of InputStream implement read() in
their own ways to read from their own sources. The rest of the InputStream class,
however, provides extended functionality built on the simple read() method. A subclass
of InputStream inherits these nonabstract methods to provide functionality based on
the simple read() method that the subclass implements.

6.2 Interfaces

Java expands on the concept of abstract methods with interfaces . It's often desirable to
specify a group of abstract methods defining some behavior for an object without tying it to
any implementation at all. In Java, this is called an interface . An interface defines a set of
methods that a class must implement. A class in Java can declare that it implements an
interface if it implements the required methods. Unlike extending an abstract class, a class
implementing an interface doesn't have to inherit from any particular part of the inheritance
hierarchy or use a particular implementation.

Interfaces are kind of like Boy Scout or Girl Scout merit badges. A scout who has learned
to build a birdhouse can walk around wearing a little sleeve patch with a picture of one.
This says to the world, "I know how to build a birdhouse." Similarly, an interface is a list
of methods that define some set of behavior for an object. Any class that implements each
method listed in the interface can declare at compile time that it implements the interface
and wear, as its merit badge, an extra type-the interface's type.

Interface types act like class types. You can declare variables to be of an interface type, you
can declare arguments of methods to accept interface types, and you can specify that the
return type of a method is an interface type. In each case, what is meant is that any object
that implements the interface (i.e., wears the right merit badge) can fill that role. In this
sense, interfaces are orthogonal to the class hierarchy. They cut across the boundaries of
what kind of object an item is and deal with it only in terms of what it can do . A class can
implement as many interfaces as it desires. In this way, interfaces in Java replace much of
the need for multiple inheritance in other languages (and all its messy complications).

An interface looks, essentially, like a purely abstract class (i.e., a class with only
abstract methods). You define an interface with the interface keyword and list its
methods with no bodies, just prototypes (signatures):

interface Driveable {
 boolean startEngine();
 void stopEngine();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 float accelerate(float acc);
 boolean turn(Direction dir);
}

The previous example defines an interface called Driveable with four methods. It's
acceptable, but not necessary, to declare the methods in an interface with the abstract
modifier; we haven't done that here. More importantly, the methods of an interface are
always considered public , and you can optionally declare them as so. Why public?
Well, the user of the interface wouldn't necessarily be able to see them otherwise, and
interfaces are generally intended to describe the behavior of an object, not its
implementation.

Interfaces define capabilities, so it's common to name interfaces after their capabilities.
Driveable , Runnable , and Updateable are good interface names. Any class that
implements all the methods can then declare it implements the interface by using a special
implements clause in its class definition. For example:

class Automobile implements Driveable {
 ...
 public boolean startEngine() {
 if (notTooCold)
 engineRunning = true;
 ...
 }

 public void stopEngine() {
 engineRunning = false;
 }

 public float accelerate(float acc) {
 ...
 }

 public boolean turn(Direction dir) {
 ...
 }
 ...
}

Here, the class Automobile implements the methods of the Driveable interface and
declares itself Driveable using the implements keyword.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As shown in Figure 6-5 , another class, such as Lawnmower , can also implement the
Driveable interface. The figure illustrates the Driveable interface being
implemented by two different classes. While it's possible that both Automobile and
Lawnmower could derive from some primitive kind of vehicle, they don't have to in this
scenario. This is a significant advantage of interfaces over standard multiple inheritance, as
implemented in languages such as C++.

Figure 6-5. Implementing the Driveable interface

After declaring the interface, we have a new type, Driveable . We can declare variables
of type Driveable and assign them any instance of a Driveable object:

Automobile auto = new Automobile();
Lawnmower mower = new Lawnmower();
Driveable vehicle;

vehicle = auto;
vehicle.startEngine();
vehicle.stopEngine();

vehicle = mower;
vehicle.startEngine();
vehicle.stopEngine();

Both Automobile and Lawnmower implement Driveable , so they can be
considered of that type.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.2.1 Interfaces as Callbacks

Interfaces can be used to implement "callbacks" in Java. This is when an object effectively
passes a reference to one or more of its methods to another object. The callback occurs
when the other object subsequently invokes one of the methods. In C or C++, this is prime
territory for function pointers; Java uses interfaces instead. More generally, this concept is
extended in Java to the idea of events in which listener objects register with even sources.
But we'll cover that concept in great detail in later chapters.

Consider two classes: a TickerTape class that displays data and a TextSource class
that provides an information feed. We'd like our TextSource to send any new text data.
We could have TextSource store a reference to a TickerTape object, but then we
could never use our TextSource to send data to any other kind of object. Instead, we'd
have to proliferate subclasses of TextSource that dealt with different types. A more
elegant solution is to have TextSource store a reference to an interface type,
TextUpdateable :

interface TextUpdateable {
 void doTextUpdate(String text);
}

class TickerTape implements TextUpdateable {
 public void doTextUpdate(String text) {
 System.out.println("TICKER:\n" + text + "\n");
 }
}

class TextSource {
 TextUpdateable receiver;

 TextSource(TextUpdateable r) {
 receiver = r;
 }

 public void sendText(String s) {
 receiver.doTextUpdate(s);
 }
}

The only thing the TextSource really cares about is finding the right method to invoke

http://lib.ommolketab.ir
http://lib.ommolketab.ir

in order to output some text. Using an interface establishes a "well-known" name,
doTextUpdate , for that method.

When the TextSource is constructed, a reference to the TickerTape (which
implements the interface) is stored in an instance variable. This "registers" the
TickerTape as the TextSource 's "output device." Whenever it needs to output data,
the TextSource calls the output device's doTextUpdate() method.

6.2.2 Interface Variables

Although interfaces mostly allow us to specify behavior without implementation, there's
one exception. An interface can contain constants (static final variables), which
appear in any class that implements the interface. This feature enables predefined
parameters for use with the methods:

interface Scaleable {
 static final int BIG = 0, MEDIUM = 1, SMALL = 2;
 void setScale(int size);
}

The Scaleable interface defines three integers: BIG , MEDIUM , and SMALL . All
variables defined in interfaces are implicitly final and static ; you don't have to use
the modifiers, but, for clarity, we recommend you do. A class that implements
Scaleable sees these variables:

class Box implements Scaleable {

 void setScale(int size) {
 switch(size) {
 case BIG:
 ...
 case MEDIUM:
 ...
 case SMALL:
 ...
 }
 }
 ...
}

6.2.2.1 Flag and empty interfaces

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sometimes, interfaces are created just to hold constants; anyone who implements the
interfaces can see the constant names, as if they were included directly in their class. This
is a somewhat degenerate, but acceptable, use of interfaces.

More often, completely empty interfaces are used to serve as a marker that a class has a
special property. The java.io.Serializeable interface is a good example. Classes
that implement Serializable don't add any methods or variables. Their additional
type simply identifies them to Java as classes that want to be able to be serialized.

6.2.3 Subinterfaces

An interface can extend another interface, just as a class can extend another class. Such an
interface is called a subinterface . For example:

interface DynamicallyScaleable extends Scaleable {
 void changeScale(int size);
}

The interface DynamicallyScaleable extends our previous Scaleable interface
and adds an additional method. A class that implements DynamicallyScaleable
must implement all the methods of both interfaces.

Note here that we are using the term extends and not implements to subclass the interface.
Interfaces can't implement anything! But an interface is allowed to extend as many
interfaces as it wants. If you want to extend two or more interfaces, list them after the
extends keyword, separated by commas:

interface DynamicallyScaleable extends Scaleable, SomethingElseable {
 ...
}

Keep in mind that although Java supports multiple inheritances of interfaces, each class can
extend only a single parent class.

6.3 Packages and Compilation Units

A package is a name for a group of related classes and interfaces. In Chapter 3 we
discussed how Java uses package names to locate classes during compilation and at
runtime. In this sense, packages are somewhat like libraries; they organize and manage sets
of classes. Packages provide more than just source-code-level organization though. They

http://lib.ommolketab.ir
http://lib.ommolketab.ir

also create an additional level of scope for their classes and the variables and methods
within them. We'll talk about the visibility of classes later in this section. In the next
section, we'll discuss the effect that packages have on access to variables and methods
among classes.

6.3.1 Compilation Units

The source code for a Java class is organized into compilation units . A simple compilation
unit contains a single class definition and is named for that class. The definition of a class
named MyClass , for instance, would appear in a file named MyClass.java . For most of
us, a compilation unit is just a file with a .java extension, but in theory in an integrated
development environment, it could be an arbitrary entity. For brevity here, we'll refer to a
compilation unit simply as a file.

The division of classes into their own compilation units is important because the Java
compiler assumes much of the responsibility of a make utility. The compiler relies on the
names of source files to find and compile dependent classes. It's possible to put more than
one class definition into a single file, but there are some restrictions we'll discuss shortly.

A class is declared to belong to a particular package with the package statement. The
package statement must appear as the first statement in a compilation unit. There can be
only one package statement, and it applies to the entire file:

package mytools.text;

class TextComponent {
 ...
}

In this example, the class TextComponent is placed in the package mytools.text .

6.3.2 Package Names

Package names are constructed in a hierarchical way, using a dot-separated naming
convention. Package-name components construct a unique path for the compiler and
runtime systems to locate files; however, they don't create relationships between packages
in any other way. There is no such thing as a "subpackage"; the package namespace is, in
actuality, flat-not hierarchical. Packages under a particular part of a package hierarchy are
related only by convention. For example, if we create another package called
mytools.text.poetry (presumably for text classes specialized in some way to
work with poetry), those classes won't be part of the mytools.text package; they

http://lib.ommolketab.ir
http://lib.ommolketab.ir

won't have the access privileges of package members. In this sense, the package-naming
convention can be misleading. One minor deviation from this notion is that assertions,
which we described in Chapter 4 , can be turned on or off for a package and all packages
"under" it. But that is really just a convenience and not represented in the code structure.

6.3.3 Class Visibility

By default, a class is accessible only to other classes within its package. This means that
the class TextComponent is available only to other classes in the mytools.text
package. To be visible elsewhere, a class must be declared as public :

package mytools.text;

public class TextEditor {
 ...
}

The class TextEditor can now be referenced anywhere. There can be only a single
public class defined in a compilation unit; the file must be named for that class.

By hiding unimportant or extraneous classes, a package builds a subsystem that has a well-
defined interface to the rest of the world. Public classes provide a facade for the operation
of the system. The details of its inner workings can remain hidden, as shown in Figure 6-6 .
In this sense, packages can hide classes in the way classes hide private members.

Figure 6-6. Packages and class visibility

Figure 6-6 shows part of the hypothetical mytools.text package. The classes
TextArea and TextEditor are declared public , so they can be used elsewhere in
an application. The class TextComponent is part of the implementation of TextArea
and is not accessible from outside of the package.

6.3.4 Importing Classes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Classes within a package can refer to each other by their simple names. However, to locate
a class in another package, we have to be more specific. Continuing with the previous
example, an application can refer directly to our editor class by its fully qualified name of
mytools.text.TextEditor . But we'd quickly grow tired of typing such long class
names, so Java gives us the import statement. One or more import statements can
appear at the top of a compilation unit, after the package statement. The import
statements list the fully qualified names of classes and packages to be used within the file.

Like a package statement, an import statement applies to the entire compilation unit.
Here's how you might use an import statement:

package somewhere.else;
import mytools.text.TextEditor;

class MyClass {
 TextEditor editBoy;
 ...
}

As shown in this example, once a class is imported, it can be referenced by its simple name
throughout the code.

It is also possible to import all the classes in a package using the * wildcard notation:

import mytools.text.*;

Now we can refer to all public classes in the mytools.text package by their simple
names.

Obviously, there can be a problem with importing classes that have conflicting names. If
two different packages contain classes that use the same name, you just have to fall back to
using fully qualified names to refer to those classes. You can either use the fully qualified
name directly, or you can add an additional import statement that disambiguates the
class name. Other than the potential for naming conflicts, there's no penalty for importing
classes. Java doesn't carry extra baggage into the compiled class files. In other words, Java
class files don't contain other class definitions; they only reference them.

One note about conventions: in our efforts to keep our examples short we'll often import
entire packages (.*) even when we only use a class or two from it. In practice, it's always
better to be specific when possible and list individual, fully qualified class imports. Some
people avoid using package imports entirely, choosing to list every imported class
individually, but that's an extreme.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.3.5 The Unnamed Package

A class that is defined in a compilation unit that doesn't specify a package falls into the
large, amorphous, unnamed package. Classes in this nameless package can refer to each
other by their simple names. Their path at compile time and runtime is considered to be the
current directory, so package-less classes are useful for experimentation and testing (and
for brevity in examples in books about Java).

6.4 Visibility of Variables and Methods

One of the most important aspects of object-oriented design is data hiding , or
encapsulation . By treating an object in some respects as a "black box" and ignoring the
details of its implementation, we can write stronger, simpler code with components that can
be easily reused.

6.4.1 Basic Access Modifiers

By default, the variables and methods of a class are accessible to members of the class
itself and to other classes in the same package. To borrow from C++ terminology, classes
in the same package are friendly . We'll call this the default level of visibility. As you'll see
as we go on, the default visibility lies in the middle of the range of restrictiveness that can
be specified.

The modifiers public and private , on the other hand, define the extremes. As we
mentioned earlier, methods and variables declared as private are accessible only within
their class. At the other end of the spectrum, members declared as public are accessible
from any class in any package, provided the class itself can be seen. (The class that
contains the methods must be public to be seen outside of its package, as we discussed
previously.) The public members of a class should define its most general
functionality-what the black box is supposed to do.

Figure 6-7 illustrates the four simplest levels of visibility, continuing the example from the
previous section. Public members in TextArea are accessible from anywhere. Private
members are not visible from outside the class. The default visibility allows access by other
classes in the package.

Figure 6-7. Private, default, protected, and public visibility

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The protected modifier allows special access permissions for subclasses. Contrary to
how it might sound, protected is slightly less restrictive than the default level of
accessibility. In addition to the default access afforded classes in the same package,
protected members are visible to subclasses of the class, even if they are defined in a
different package. If you are a C++ programmer and so are used to more restrictive
meanings, this may rub you the wrong way. [4]

Table 6-1 summarizes the levels of visibility available in Java; it runs generally from most
restrictive to least. Methods and variables are always visible within a declaring class itself,
so the table doesn't addresses that scope.

Table 6-1. Visibility modifiers

Modifier Visibility

Private None

None (default) Classes in the package

Protected Classes in package and subclasses inside or outside the package

Public All classes

6.4.2 Subclasses and Visibility

Subclasses add two important (but unrelated) complications to the topic of visibility. First,
when you override methods in a subclass, the overriding method must be at least as visible
as the overridden method. While it is possible to take a private method and override it
with a public method in a subclass, the reverse is not possible; you can't override a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public method with a private method. This restriction makes sense if you realize that
subtypes have to be usable as instances of their supertype (e.g., a Mammal is a subclass of
Animal and therefore must be usable as an Animal). If we could override a method
with a less visible method, we would have a problem: our Mammal might not be able to do
all the things an Animal can. However, we can reduce the visibility of a variable. In this
case, the variable acts like any other shadowed variable; the two variables are distinct and
can have separate visibilities in different classes.

The next complication is a bit harder to follow: the protected variables of a class are
visible to its subclasses, but only through objects of the subclass's type or its subtypes. In
other words, a subclass can see a protected variable of its superclass as an inherited
variable, but it can't access that same variable in a separate instance of the superclass itself.
This statement may be confusing because we often forget that visibility modifiers don't
restrict access between instances of the same class in the same way they restrict access
between instances of different classes. Two instances of the same type of object can
normally access all each other's members, including private ones. Said another way: two
instances of Cat can access all each other's variables and methods (including private
ones), but a Cat can't access a protected member in an instance of Animal unless the
compiler can prove that the Animal is a Cat . That is, Cat s have the special privileges
of being an Animal only with respect to other Cat s, not just any Animal . If you find
this hard to follow, don't worry too much. You shouldn't run into these issues very often (if
ever).

6.4.3 Interfaces and Visibility

Interfaces behave like classes within packages. An interface can be declared public to
make it visible outside its package. Under the default visibility, an interface is visible only
inside its package. Like classes, there can be only one public interface declared in a
compilation unit.

6.5 Arrays and the Class Hierarchy

At the end of Chapter 4 , we mentioned that arrays have a place in the Java class hierarchy,
but we didn't give you any details. Now that we've discussed the object-oriented aspects of
Java, we can give you the whole story.

Array classes live in a parallel Java class hierarchy under the Object class. If a class is a
direct subclass of Object , then an array class for that base type also exists as a direct
subclass of Object . Arrays of more derived classes are subclasses of the corresponding
array classes. For example, consider the following class types:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

class Animal { ... }
class Bird extends Animal { ... }
class Penguin extends Bird { ... }

Figure 6-8 illustrates the class hierarchy for arrays of these classes. Arrays of the same
dimension are related to one another in the same manner as their base type classes. In our
example, Bird is a subclass of Animal , which means that the Bird[] type is a
subtype of Animal[] . In the same way a Bird object can be used in place of an
Animal object, a Bird[] array can be assigned to a variable of type Animal[] :

Animal [][] animals;
Bird [][] birds = new Bird [10][10];
birds[0][0] = new Bird();

// make animals and birds reference the same array object
animals = birds;
observe(animals[0][0]); // processes Bird object

Figure 6-8. Arrays in the Java class hierarchy

Because arrays are part of the class hierarchy, we can use instanceof to check the type
of an array:

if (birds instanceof Animal[][]) // true

An array is a subtype of Object and so can be assigned to Object type variables:

Object something;
something = animals;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Since Java knows the actual type of all objects, you can also cast back if appropriate:

animals = (Animal [][])something;

Under unusual circumstances, Java may not be able to check the types of objects you place
into arrays at compile time. In those cases, it's possible to receive an
ArrayStoreException if you try to assign the wrong type of object to an array
element. Consider the following:

class Dog { ... }
class Poodle extends Dog { ... }
class Chihuahua extends Dog { ... }

Dog [] dogs;
Poodle [] poodles = new Poodle [10];

dogs = poodles;
dogs[3] = new Chihuahua(); // runtime error, ArrayStoreException

Both Poodle and Chihuahua are subclasses of Dog , so an array of Poodle objects
can therefore be assigned to an array of Dog objects. The problem is that an object
assignable to an element of an array of type Dog[] may not be assignable to an element of
an array of type Poodle[] . A Chihuahua object, for instance, can be assigned to a
Dog element because it's a subtype of Dog , but not to a Poodle element.[5]

6.6 Inner Classes

Java 1.1 added to the language a large heap of syntactic sugar called inner classes . Simply
put, classes in Java can be declared at any level of scope. That is, you can declare a class
within any set of curly braces (i.e., almost anywhere that you could put any other Java
statement), and its visibility is limited to that scope in the same way that the name of a
variable or method would be. Inner classes are a powerful and aesthetically pleasing
facility for structuring code. Their even sweeter cousins, anonymous inner classes , are
another powerful shorthand that make it seem as if you can create classes dynamically
within Java's statically typed environment.

However, if you delve into the inner workings of Java, inner classes are not quite as
aesthetically pleasing or dynamic. We said that they are syntactic sugar; this means that
they let you leverage the compiler by writing a few lines of code that trigger a lot of
behind-the-scenes work somewhere between the compiler's front end and the bytecode.
Inner classes rely on code generation; they are a feature of the Java language, but not of the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Java virtual machine. As a programmer you may never need be aware of this; you can
simply rely on inner classes like any other language construct. However, you should know
a little about how inner classes work to better understand the results and a few potential
side effects.

To this point, all our classes have been top-level classes. We have declared them,
freestanding, at the package level. Inner classes are essentially nested classes, like this:

Class Animal {
 Class Brain {
 ...
 }
}

Here the class Brain is an inner class: it is a class declared inside the scope of class
Animal . Although the details of what that means require a fair bit of explanation, we'll
start by saying that the Java language tries to make the meaning, as much as possible, the
same as for the other Java entities (methods and variables) living at that level of scope. For
example, let's add a method to the Animal class:

Class Animal {
 Class Brain {
 ...
 }
 void performBehavior() { ... }
}

Both the inner class Brain and the method performBehavior() are within the
scope of Animal . Therefore, anywhere within Animal we can refer to Brain and
performBehavior() directly, by name. Within Animal , we can call the constructor
for Brain (new Brain()) to get a Brain object or invoke performBehavior()
to carry out that method's function. But neither Brain nor performBehavior() are
generally accessible outside of the class Animal without some additional qualification.

Within the body of the Brain class and the body of the performBehavior()
method, we have direct access to all the other methods and variables of the Animal class.
So, just as the performBehavior() method could work with the Brain class and
create instances of Brain , code within the Brain class can invoke the
performBehavior() method of Animal as well as work with any other methods
and variables declared in Animal .

That last bit has important consequences. From within Brain we can invoke the method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

performBehavior() ; that is, from within an instance of Brain we can invoke the
performBehavior() method of an instance of Animal . Well, which instance of
Animal ? If we have several Animal objects around (say, a few Cat s and Dog s), we
need to know whose performBehavior() method we are calling. What does it mean
for a class definition to be "inside" another class definition? The answer is that a Brain
object always lives within a single instance of Animal : the one that it was told about
when it was created. We'll call the object that contains any instance of Brain its enclosing
instance .

A Brain object cannot live outside of an enclosing instance of an Animal object.
Anywhere you see an instance of Brain , it will be tethered to an instance of Animal .
Although it is possible to construct a Brain object from elsewhere (i.e., another class),
Brain always requires an enclosing instance of Animal to "hold" it. We'll also say now
that if Brain is to be referred to from outside of Animal , it acts something like an
Animal.Brain class. And just as with the performBehavior() method,
modifiers can be applied to restrict its visibility. There is even an interpretation of the
static modifier, which we'll talk about a bit later.

Although we'd probably never find a need to do it, we can construct an instance of Brain
from outside the class by referencing an instance of Animal . To do this requires that the
inner class Brain be accessible and that we use a special form of the new operator
designed just for inner classes:

Animal monkey = new Animal();
Animal.Brain monkeyBrain = monkey.new Brain();

Here the Animal instance monkey is used to qualify the new operator on Brain .
Again, this is not a very common thing to do. Static inner classes are more useful. We'll
talk about them a bit later.

6.6.1 Inner Classes as Adapters

A particularly important use of inner classes is to make adapter classes . An adapter class
is a "helper" class that ties one class to another in a very specific way. Using adapter
classes, you can write your classes more naturally, without having to anticipate every
conceivable user's needs in advance. Instead, you provide adapter classes that marry your
class to a particular interface. As an example, let's say that we have an EmployeeList
object:

public class EmployeeList {
 private Employee [] employees = ... ;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ...
}

EmployeeList holds information about a set of employees. Let's say that we would like
to have EmployeeList provide its elements via an iterator. An iterator is a simple,
standard interface to a sequence of objects. The java.util.Iterator interface has
several methods:

public interface Iterator {
 boolean hasMore ();
 Object next();
void remove();
}

It lets us step through its elements, asking for the next one and testing to see if more
remain. The iterator is a good candidate for an adapter class because it is an interface that
our EmployeeList can't readily implement itself. Why can't the list implement the
iterator directly? Because an iterator is a "one-way," disposable view of our data. It isn't
intended to be reset and used again. It may also be necessary for there to be multiple
iterators walking through the list at different points. We must therefore keep the iterator
implementation separate from the EmployeeList itself. This is crying out for a simple
class to provide the iterator capability. But what should that class look like?

Well, before we knew about inner classes, our only recourse would have been to make a
new "top-level" class. We would probably feel obliged to call it
EmployeeListIterator :

class EmployeeListIterator implements Iterator {
 // lots of knowledge about EmployeeList
 ...
}

Here we have a comment representing the machinery that the
EmployeeListIterator requires. Think for just a second about what you'd have to
do to implement that machinery. The resulting class would be completely coupled to the
EmployeeList and unusable in other situations. Worse, to function it must have access
to the inner workings of EmployeeList . We would have to allow
EmployeeListIterator access to the private array in EmployeeList , exposing
this data more widely than it should be. This is less than ideal.

This sounds like a job for inner classes. We already said that
EmployeeListIterator was useless without an EmployeeList ; this sounds a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

lot like the "lives inside" relationship we described earlier. Furthermore, an inner class lets
us avoid the encapsulation problem because it can access all the members of its enclosing
instance. Therefore, if we use an inner class to implement the iterator, the array
employees can remain private , invisible outside the EmployeeList . So let's
just shove that helper class inside the scope of our EmployeeList :

public class EmployeeList {
 private Employee [] employees = ... ;
 ...

 class Iterator implements java.util.Iterator {
 int element = 0;

 boolean hasMore() {
 return element < employees.length ;
 }

 Object next() {
 if (hasMoreElements())
 return employees[element++];
 else
 throw new NoSuchElementException();
 }

 void remove() {
 throw new UnsupportedOperationException();
 }
 }
}

Now EmployeeList can provide a method like the following to let other classes work
with the list:

Iterator getIterator() {
 return new Iterator();
 }

One effect of the move is that we are free to be a little more familiar in the naming of our
iterator class. Since it is no longer a top-level class, we can give it a name that is
appropriate only within the EmployeeList . In this case, we've named it Iterator
to emphasize what it does, but we don't need a name like EmployeeIterator that

http://lib.ommolketab.ir
http://lib.ommolketab.ir

shows the relationship to the EmployeeList class because that's implicit. We've also
filled in the guts of the Iterator class. As you can see, now that it is inside the scope of
EmployeeList , Iterator has direct access to its private members, so it can directly
access the employees array. This greatly simplifies the code and maintains compile-time
safety.

Before we move on, we should note that inner classes can have constructors, even though
we didn't need one in this example. They are in all respects real classes.

6.6.2 Inner Classes Within Methods

Inner classes may also be declared within the body of a method. Returning to the Animal
class, we can put Brain inside the performBehavior() method if we decide that
the class is useful only inside that method:

Class Animal {
 void performBehavior() {
 Class Brain {
 ...
 }
 }
}

In this situation, the rules governing what Brain can see are the same as in our earlier
example. The body of Brain can see anything in the scope of performBehavior()
and above it (in the body of Animal). This includes local variables of
performBehavior() and its arguments. But because of the ephemeral (fleeting)
nature of a method invocation, there are a few limitations and additional restrictions, as
described in the following sections. If you are thinking that inner classes within methods
sounds a bit arcane, bear with us until we talk about anonymous inner classes, which are
tremendously useful.

6.6.2.1 Limitations on inner classes in methods

performBehavior() is a method, and methods have limited lifetimes. When they
exit, their local variables normally disappear into the abyss. But an instance of Brain
(like any object) lives on as long as it is referenced. So Java must make sure that any local
variables used by instances of Brain created within an invocation of
performBehavior() also live on. Furthermore, all the instances of Brain that we
make within a single invocation of performBehavior() must see the same local
variables. To accomplish this, the compiler must be allowed to make copies of local

http://lib.ommolketab.ir
http://lib.ommolketab.ir

variables. Thus, their values cannot change once an inner class has seen them. This means
that any of the method's local variables that are referenced by the inner class must be
declared final . The final modifier means that they are constant once assigned. This
is a little confusing and easy to forget, but the compiler will graciously remind you.

6.6.2.2 Static inner classes

We mentioned earlier that the inner class Brain of the class Animal can in some ways
be considered an Animal.Brain class. That is, it is possible to work with a Brain
from outside the Animal class, using just such a qualified name: Animal.Brain . But
given that our Animal.Brain class always requires an instance of an Animal as its
enclosing instance, it's not as common to work with them directly in this way.

But there is another situation in which we might use inner classes by name. An inner class
that lives within the body of a top-level class (not within a method or another inner class)
can be declared static . For example:

class Animal {
 static class MigrationPattern {
 ...
 }
 ...
}

A static inner class such as this acts just like a new top-level class called
Animal.MigrationPattern . We can use it just like any other class, without regard
to any enclosing instances. Although this may seem strange, it is not inconsistent, since a
static member never has an object instance associated with it. The requirement that the
inner class be defined directly inside a top-level class ensures that an enclosing instance
won't be needed. If we have permission, we can create an instance of the class using the
qualified name:

Animal.MigrationPattern stlToSanFrancisco =
 new Animal.MigrationPattern();

As you see, the effect is that Animal acts something like a minipackage, holding the
MigrationPattern class. Here we have used the fully qualified name, but we could
also import it like any other class:

import Animal.MigrationPattern;

This enables us to refer to it simply as MigrationPattern . We can use all the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

standard visibility modifiers on inner classes, so a static inner class can have private ,
protected , default , or public visibility.

Here's another example. The Java 2D API uses static inner classes to implement specialized
shape classes. For example, the java.awt.geom.Rectangle2D class has two inner
classes, Float and Double , that implement two different precisions. These shape
classes are actually very simple subclasses; it would have been sad to have to multiply the
number of top-level classes in that package by three to accommodate all of them.

6.6.2.3 Anonymous inner classes

Now we get to the best part. As a general rule, the more deeply encapsulated and limited in
scope our classes are, the more freedom we have in naming them. We saw this in our
previous iterator example. This is not just a purely aesthetic issue. Naming is an important
part of writing readable and maintainable code. We generally want to use the most concise
and meaningful names possible. A corollary to this is that we prefer to avoid doling out
names for purely ephemeral objects that are going to be used only once.

Anonymous inner classes are an extension of the syntax of the new operation. When you
create an anonymous inner class, you combine a class declaration with the allocation of an
instance of that class, creating effectively a "one time only" class and a class instance in
one operation. After the new keyword, you specify either the name of a class or an
interface, followed by a class body. The class body becomes an inner class, which either
extends the specified class or, in the case of an interface, is expected to implement the
specified interface. A single instance of the class is created and returned as the value.

For example, we could do away with the declaration of the Iterator class in the
EmployeeList example by using an anonymous inner class in the getIterator()
method:

Iterator getIterator() {
 return new Iterator() {
 int element = 0;
 boolean hasMore() {
 return element < employees.length ;
 }
 Object next() {
 if (hasMoreElements())
 return employees[element++];
 else
 throw new NoSuchElementException();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 void remove() {
 throw new UnsupportedOperationException();
 }
 };
}

Here we have simply moved the guts of Iterator into the body of an anonymous inner
class. The call to new implicitly creates a class that implements the Iterator interface
and returns an instance of the class as its result. Note the extent of the curly braces and the
semicolon at the end. The getIterator() method contains a single statement, the
return statement.

But the previous code certainly does not improve readability. Inner classes are best used
when you want to implement a few lines of code, when the verbiage and conspicuousness
of declaring a separate class detracts from the task at hand.

Here's a better example. Suppose that we want to start a new thread to execute the
performBehavior() method of our Animal :

new Thread() {
 public void run() { performBehavior(); }
}.start();

Here we have gone over to the terse side. We've allocated and started a new Thread ,
using an anonymous inner class that extends the Thread class and invokes our
performBehavior() method in its run() method. The effect is similar to using a
method pointer in some other language. However, the inner class allows the compiler to
check type consistency, which would be more difficult (or impossible) with a true method
pointer. At the same time, our anonymous adapter class with its three lines of code is much
more efficient and readable than creating a new, top-level adapter class named
AnimalBehaviorThreadAdapter .

While we're getting a bit ahead of the story, anonymous adapter classes are a perfect fit for
event handling (which we'll cover fully in Chapter 15). Skipping a lot of explanation, let's
say you want the method handleClicks() to be called whenever the user clicks the
mouse. You would write code like this:

addMouseListener(new MouseInputAdapter() {
 public void mouseClicked(MouseEvent e) { handleClicks(e); }
});

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In this case, the anonymous class extends the MouseInputAdapter class by
overriding its mouseClicked() method to call our method. A lot is going on in a very
small space, but the result is clean, readable code. You get to assign method names that are
meaningful to you, while allowing Java to do its job of type checking.

6.6.2.4 Scoping of the "this" reference

Sometimes an inner class may want to get a handle on its "parent" enclosing instance. It
might want to pass a reference to its parent or to refer to one of the parent's variables or
methods that has been hidden by one of its own. For example:

class Animal {
 int size;
 class Brain {
 int size;
 }
}

Here, as far as Brain is concerned, the variable size in Animal is hidden by its own
version.

Normally an object refers to itself using the special this reference (implicitly or
explicitly). But what is the meaning of this for an object with one or more enclosing
instances? The answer is that an inner class has multiple this references. You can specify
which this you want by prefixing it with the name of the class. So, for instance (no pun
intended), we can get a reference to our Animal from within Brain like so:

class Brain {
 Animal ourAnimal = Animal.this;
 ...
}

Similarly, we could refer to the size variable in Animal :

class Brain {
 int animalSize = Animal.this.size;
 ...
}

6.6.2.5 How do inner classes really work?

Finally, we'll get our hands dirty and take a look at what's really going on when we use an

http://lib.ommolketab.ir
http://lib.ommolketab.ir

inner class. We've said that the compiler is doing all the things that we had hoped to forget
about. Let's see what's actually happening. Try compiling this trivial example:

class Animal {
 class Brain {
 }
}

What you'll find is that the compiler generates two .class files: Animal.class and
Animal$Brain.class .

The second file is the class file for our inner class. Yes, as we feared, inner classes are
really just compiler magic. The compiler has created the inner class for us as a normal, top-
level class and named it by combining the class names with a dollar sign. The dollar sign is
a valid character in class names but is intended for use only by automated tools. (Please
don't start naming your classes with dollar signs.) Had our class been more deeply nested,
the intervening inner-class names would have been attached in the same way to generate a
unique top-level name.

Now take a look at it with the SDK's javap utility (don't quote the argument on a
Windows system):

% javap 'Animal$Brain'
class Animal$Brain extends java.lang.Object {
 Animal$Brain(Animal);
}

You'll see that the compiler has given our inner class a constructor that takes a reference to
an Animal as an argument. This is how the real inner class gets the handle on its
enclosing instance.

The worst thing about these additional class files is that you need to know they are there.
Utilities such as jar don't automatically find them; when you're invoking a such a utility,
you need to specify these files explicitly or use a wildcard that finds them.

6.6.2.6 Security implications

Given what we just saw-that the inner class really does exist as an automatically
generated top-level class-how does it get access to private variables? The answer,
unfortunately, is that the compiler is forced to break the encapsulation of your object and
insert accessor methods so that the inner class can reach them. The accessor methods are
given package-level access, so your object is still safe within its package walls, but it is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

conceivable that this difference could be meaningful if people were allowed to create new
classes within your package.

The visibility modifiers on inner classes also have some problems. Current
implementations of the virtual machine do not implement the notion of a private or
protected class within a package, so giving your inner class anything other than
public or default visibility is only a compile-time guarantee. It is difficult to conceive of
how these security issues could be abused, but it is interesting to note that Java is straining
a bit to stay within its original design.

[1] Note that a better way to design our calculators would be to have an abstract

Calculator class with two subclasses: IntegerCalculator and

DecimalCalculator .

[2] We'll ignore the platypus, which is an obscure nonovoviviparous mammal.

[3] An overridden method in Java acts like a virtual method in C++.

[4] Early on, the Java language allowed for certain combinations of modifiers, one of which

was private protected . The meaning of private protected was to limit visibility

strictly to subclasses (and remove package access). This was later deemed confusing and
overly complex. It is no longer supported.

[5] In some sense, this could be considered a hole in the Java type system. It doesn't occur
elsewhere in Java-only with arrays. This is because array objects exhibit covariance in
overriding their assignment and extraction methods. Covariance allows array subclasses to
override methods with arguments or return values that are subtypes of the overridden
methods, where the methods would normally be overloaded or prohibited. This allows array
subclasses to operate on their base types with type safety, but also means that subclasses
have different capabilities than their parents, leading to the problem shown earlier.

CONTENTS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

Chapter 7. Working with Objects and Classes

 7.1 The Object Class

 7.2 The Class Class
 7.3 Reflection

In the previous two chapters, we came to know Java objects and their interrelationships.
We will now climb the scaffolding of the Java class hierarchy to the very top and finish our
study of the core language at the summit. In this chapter we'll talk about the Object class
itself, which is the "grandmother" of all classes in Java. We'll also describe the even more
fundamental Class class (the class named "Class") that represents Java classes in the Java
virtual machine. We'll discuss what you can do with these objects in their own right.
Finally, this will lead us to a more general topic: the Java Reflection API, which lets a Java
program inspect and interact with (possibly unknown) objects on the fly.

7.1 The Object Class

java.lang.Object is the ancestor of all objects; it's the primordial class from which
all other classes are ultimately derived. Methods defined in Object are therefore very
important because they appear in every instance of every class, throughout all of Java. At
last count, there were nine public methods in Object . Five of these are versions of
wait() and notify() that are used to synchronize threads on object instances, as we'll
discuss in Chapter 8 . The remaining four methods are used for basic comparison,
conversion, and administration.

Every object has a toString() method that can be called when it's to be represented as
a text value. PrintStream objects use toString() to print data, as discussed in
Chapter 11 . toString() is also used implicitly when an object is referenced in a string
concatenation. Here are some examples:

MyObj myObject = new MyObj();
Answer theAnswer = new Answer();

System.out.println(myObject);
String s = "The answer is: " + theAnswer ;

To be friendly, a new kind of object should override toString() and implement its

http://lib.ommolketab.ir
http://lib.ommolketab.ir

own version that provides appropriate printing functionality. Two other methods,
equals() and hashCode() , may also require specialization when you create a new
class.

7.1.1 Equality and Equivalence

equals() determines whether two objects are equivalent. Precisely what that means for
a particular class is something that you'll have to decide for yourself. Two String
objects, for example, are considered equivalent if they hold precisely the same characters in
the same sequence:

String userName = "Joe";
...
if (userName.equals(suspectName))
 arrest(userName);

Using equals() is not the same as:

if (userName == suspectName) // Wrong!

This code line tests whether the two reference variables, userName and suspectName
, refer to the same object. It is a test for identity , not equality. Two variables that are
identical (point to the same object) will of course test equal, but the converse is not always
true.

A class should override the equals() method if it needs to implement its own notion of
equality. If you have no need to compare objects of a particular class, you don't necessarily
need to override equals() .

Watch out for accidentally overloading equals() when you mean to override it. With
overloading, the method signatures differ; with overriding, they must be the same. The
equals() method signature specifies an Object argument and a boolean return value.
You'll probably want to check only objects of the same type for equivalence. But in order
to override (not overload) equals() , the method must specify its argument to be an
Object .

Here's an example of correctly overriding an equals() method in class Shoes with an
equals() method in subclass Sneakers . Using its own method, a Sneakers object
can compare itself with any other object:

class Sneakers extends Shoes {
 public boolean equals(Object arg) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if ((arg != null) && (arg instanceof Sneakers)) {
 // compare arg with this object to check equivalence
 // If comparison is okay...
 return true;
 }
 return false;
 }
 ...
}

If we specified public boolean equals(Sneakers arg) ... in the
Sneakers class, we'd overload the equals() method instead of overriding it. If the
other object happens to be assigned to a non-Sneakers variable, the method signature
won't match. The result: superclass Shoes 's implementation of equals() is called,
which may or may not be what you intended.

7.1.2 Hashcodes

The hashCode() method returns an integer that is a hashcode for the object. A
hashcode is like a signature or checksum for an object; it's a random-looking identifying
number that is usually generated from the contents of the object. The hashcode should
always be different for instances of the class that contain different data, but should be the
same for instances that compare "equal" with the equals() method. Hashcodes are used
in the process of storing objects in a Hashtable or a similar kind of collection. The
hashcode helps the Hashtable optimize its storage of objects by serving as an identifier
for distributing them into storage evenly and locating them quickly later.

The default implementation of hashCode() in Object assigns each object instance a
unique number. If you don't override this method when you create a subclass, each instance
of your class will have a unique hashcode. This is sufficient for some objects. However, if
your classes have a notion of equivalent objects (if you have overridden equals()), and
you want equal objects to serve as equivalent keys in a Hashtable , you should override
hashCode() so that your equivalent objects generate the same hashcode value.

7.1.3 Cloning Objects

Objects can use the clone() method of the Object class to make copies of themselves.
A copied object is a new object instance, separate from the original. It may or may not
contain exactly the same state (the same instance variable values) as the original; that is
controlled by the object being copied. Just as important, the decision as to whether the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

object allows itself to be cloned at all is up to the object.

The Java Object class provides the mechanism to make a simple copy of an object
including all of its state-a bitwise copy. But by default this capability is turned off. (We'll
hit upon why in a moment.) To make itself cloneable, an object must implement the
java.lang.Cloneable interface. This is a flag interface indicating to Java that the
object wants to cooperate in being cloned (the interface does not actually contain any
methods). If the object isn't cloneable, the clone() method throws a
CloneNotSupportedException .

clone() is a protected method, so by default it can be called only by an object on itself,
an object in the same package, or another object of the same type or a subtype. If we want
to make an object cloneable by everyone, we have to override its clone() method and
make it public.

Here is a simple, cloneable class-Sheep :

import java.util.Hashtable;

public class Sheep implements Cloneable {
 Hashtable flock = new Hashtable();

 public Object clone() {
 try {
 return super.clone();
 } catch (CloneNotSupportedException e) {
 throw new Error("This should never happen!");
 }
 }
}

Sheep has one instance variable, a Hashtable called flock (which the sheep uses to
keep track of its fellow sheep). Our class implements the Cloneable interface,
indicating that it is okay to copy Sheep , and it has overridden the clone() method to
make it public. Our clone() simply returns the object created by the superclass's
clone() method-a copy of our Sheep . Unfortunately, the compiler is not smart
enough to figure out that the object we're cloning will never throw the
CloneNotSupportedException , so we have to guard against it anyway. Our
sheep is now cloneable. We can make copies like so:

Sheep one = new Sheep();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Sheep anotherOne = (Sheep)one.clone();

The cast is necessary here because the return type of clone() is Object .[1]

We now have two sheep instead of one. A properly implemented equals() method
would tell us that the sheep are equivalent, but == tells us that they aren't the same; that is,
they are two distinct objects. Java has made a shallow copy of our Sheep . What's so
shallow about it? Java has simply copied the values of our variables. That means that the
flock instance variable in each of our Sheep still holds the same information-that is,
both sheep have a reference to the same Hashtable . The situation looks like that shown
in Figure 7-1 .

Figure 7-1. Shallow copy of an object

This may or may not be what you intended. If we instead want our Sheep to have
separate copies of all its variables (or something in between), we can take control
ourselves. In the following example, DeepSheep , we implement a "deep" copy,
duplicating our own flock variable:

public class DeepSheep implements Cloneable {
 Hashtable flock = new Hashtable();

 public Object clone() {
 try {
 DeepSheep copy = (DeepSheep)super.clone();
 copy.flock = (Hashtable)flock.clone();
 return copy;
 } catch (CloneNotSupportedException e) {
 throw new Error("This should never happen!");
 }
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Our clone() method now clones the Hashtable as well. Now, when a DeepSheep
is cloned, the situation looks more like that shown in Figure 7-2 .

Figure 7-2. Deep copy of an object

Each DeepSheep now has its own hashtable. You can see now why objects are not
cloneable by default. It would make no sense to assume that all objects can be sensibly
duplicated with a shallow copy. Likewise, it makes no sense to assume that a deep copy is
necessary, or even correct. In this case, we probably don't need a deep copy; the flock
contains the same members no matter which sheep you're looking at, so there's no need to
copy the Hashtable . But the decision depends on the object itself and its requirements.

The last method of Object we need to discuss is getClass() . This method returns a
reference to the Class object that produced the Object instance. We'll talk about it
next.

7.2 The Class Class

A good measure of the complexity of an object-oriented language is the degree of
abstraction of its class structures. We know that every object in Java is an instance of a
class, but what exactly is a class? In languages like C++, objects are formulated by and
instantiated from classes, but classes are really just artifacts of the compiler. Thus, in those
languages you see classes mentioned only in source code, not at runtime. By comparison,
classes in Smalltalk are real, runtime entities in the language that are themselves described
by "metaclasses" and "metaclass classes." Java strikes a happy medium between these two
languages with what is effectively a two-tiered system that uses Class objects.

Classes in Java source code are represented at runtime by instances of the
java.lang.Class class. There's a Class object for every class you use; this Class
object is responsible for producing instances of its class. But you don't have to worry about
that unless you are interested in loading new kinds of classes dynamically at runtime. The
Class object is also the basis for "reflecting" on a class to find its methods and other

http://lib.ommolketab.ir
http://lib.ommolketab.ir

properties, allowing you to find out about an object's structure at runtime. We'll discuss
reflection in the next section.

We get the Class associated with a particular object with the getClass() method:

String myString = "Foo!"
Class c = myString.getClass();

We can also get the Class reference for a particular class statically, using the .class
notation:

Class c = String.class;

The .class reference looks like a static field that exists in every class. However, it is
really resolved by the compiler.

One thing we can do with the Class object is ask for the name of the object's class:

String s = "Boofa!";
Class myclass= s.getClass();
System.out.println(myclass.getName()); // "java.lang.String"

Another thing that we can do with a Class is to ask it to produce a new instance of its
type of object. Continuing with the previous example:

try {
 String s2 = (String)strClass.newInstance();
}
catch (InstantiationException e) { ... }
catch (IllegalAccessException e) { ... }

newInstance() has a return type of Object , so we have to cast it to a reference of
the appropriate type. (newInstance() has to be able to return any kind of constructed
object.) A couple of exceptions can be thrown here. An InstantiationException
indicates we're trying to instantiate an abstract class or an interface.
IllegalAccessException is a more general exception that indicates we can't
access a constructor for the object. Note that newInstance() can create only an
instance of a class that has an accessible default constructor. It doesn't allow us to pass any
arguments to a constructor. (But see the later section Section 7.3.4 , where we'll learn how
to do just that.)

All this becomes more meaningful when we add the capability to look up a class by name.
forName() is a static method of Class that returns a Class object given its name

http://lib.ommolketab.ir
http://lib.ommolketab.ir

as a String :

try {
 Class sneakersClass = Class.forName("Sneakers");
}
catch (ClassNotFoundException e) { ... }

A ClassNotFoundException is thrown if the class can't be located.

Combining these tools, we have the power to load new kinds of classes dynamically. When
combined with the power of interfaces, we can use new data types by name in our
applications:

interface Typewriter {
 void typeLine(String s);
 ...
}

class Printer implements Typewriter {
 ...
}

class MyApplication {
 ...
 String outputDeviceName = "Printer";

 try {
 Class newClass = Class.forName(outputDeviceName);
 Typewriter device = (Typewriter)newClass.newInstance();
 ...
 device.typeLine("Hello...");
 }
 catch (Exception e) { ... }
}

Here we have an application loading a class implementation (Printer , which
implements the Typewriter interface) knowing only its name. Imagine the name was
entered by the user or looked up from a configuration file. This kind of class loading is the
basis for many kinds of configurable systems in Java.

7.3 Reflection

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In this section, we'll take a look at the Java Reflection API, supported by the classes in the
java.lang.reflect package. As its name suggests, reflection is the ability for a
class or object to examine itself. Reflection lets Java code look at an object (more precisely,
the class of the object) and determine its structure. Within the limits imposed by the
security manager, you can find out what constructors, methods, and fields a class has, as
well as their attributes. You can even change the value of fields, dynamically invoke
methods, and construct new objects, much as if Java had primitive pointers to variables and
methods. And you can do all this on objects that your code has never even seen before.

We don't have room here to cover the Reflection API fully. As you might expect, the
reflect package is complex and rich in details. But reflection has been designed so that
you can do a lot with relatively little effort; 20% of the effort gives you 80% of the fun.

The Reflection API is used by JavaBeans to determine the capabilities of objects at
runtime. It's also used at a lower level by object serialization to tear apart and build objects
for transport over streams or into persistent storage. Obviously, the power to pick apart
objects and see their internals must be zealously guarded by the security manager. The
general rule is that your code is not allowed to do anything with the Reflection API that it
couldn't do with static (ordinary, compiled) Java code. In short, reflection is a powerful
tool, but it isn't an automatic loophole. By default, an object can't use it to work with fields
or methods that it wouldn't normally be able to access (for example, another object's
private fields), although those privileges can be granted, as we'll discuss later.

The three primary features of a class are its fields (variables), methods, and constructors.
For purposes of describing or accessing an object, these three features are represented by
separate classes in the Reflection API: java.lang.reflect.Field ,
java.lang.reflect.Method , and java.lang.reflect.Constructor .
We can look up these members of a class using the Class object.

The Class class provides two pairs of methods for getting at each type of feature. One
pair allows access to a class's public features (including those inherited from its
superclasses) while the other pair allows access to any public or nonpublic item declared
directly within the class (but not features that are inherited), subject to security
considerations. Some examples:

getFields() returns an array of Field objects representing all a class's public
variables, including those it inherits.

getDeclaredFields() returns an array representing all the variables declared
in the class, regardless of their access modifiers (not including variables the security

http://lib.ommolketab.ir
http://lib.ommolketab.ir

manager won't let you see), but not including inherited variables.

For constructors, the distinction between "all constructors" and "declared
constructors" is not meaningful (classes do not inherit constructors), so
getConstructors() and getDeclaredConstructors() differ only in
that the former returns public constructors, while the latter returns all the class's
constructors.

Each pair of methods includes a method for listing all the items at once (for example,
getFields()) and a method for looking up a particular item by name and-for
methods and constructors-by signature (for example, getField() , which takes the
field name as an argument).

The following listing shows the methods in the Class class:

Field [] getFields();

Get all public variables, including inherited ones.
Field getField(String name);

Get the specified public variable, which may be inherited.
Field [] getDeclaredFields();

Get all public and nonpublic variables declared in this class (not including those
inherited from superclasses).

Field getDeclaredField(String name);

Get the specified variable, public or nonpublic, declared in this class (inherited
variables not considered).

Method [] getMethods();

Get all public methods, including inherited ones.
Method getMethod(String name , Class [] argumentTypes);

Get the specified public method whose arguments match the types listed in
argumentTypes . The method may be inherited.

Method [] getDeclaredMethods();

Get all public and nonpublic methods declared in this class (not including those
inherited from superclasses).

Method getDeclaredMethod(String name , Class [] argumentTypes
);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Get the specified method, public or nonpublic, whose arguments match the types
listed in argumentTypes , and which is declared in this class (inherited methods
not considered).

Constructor [] getConstructors();

Get all public constructors of this class.
Constructor getConstructor(Class [] argumentTypes);

Get the specified public constructor of this class whose arguments match the types
listed in argumentTypes .

Constructor [] getDeclaredConstructors();

Get all public and nonpublic constructors of this class.
Constructor getDeclaredConstructor(Class [] argumentTypes);

Get the specified constructor, public or nonpublic, whose arguments match the types
listed in argumentTypes .

As a quick example, we'll show how easy it is to list all the public methods of the
java.util.Calendar class:

Method [] methods = Calendar.class.getMethods();
for (int i=0; i < methods.length; i++)
 System.out.println(methods[i]);

Here we have used the .class notation to get a reference to the Class of Calendar .
Remember the discussion of the Class class; the reflection methods don't belong to a
particular instance of Calendar itself; they belong to the java.lang.Class object
that describes the Calendar class. If we wanted to start from an instance of Calendar
(or, say, an unknown object), we could have used the getClass() method of the object
instead:

Method [] methods = myUnknownObject.getClass().getMethods();

7.3.1 Security

Access to the Reflection API is governed by a security manager. A fully trusted application
has access to all the previously discussed functionality; it can gain access to members of
classes at the level of restriction normally granted code within its scope. It is, however,
possible to grant special access to code so that it can use the Reflection API to gain access
to private and protected members of other classes in a way that the Java language
ordinarily disallows.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Field , Method , and Constructor classes all extend from a base class called
AccessibleObject . The AccessibleObject class has one important method
called setAccessible() , which allows you to deactivate normal security when
accessing that particular class member. That may sound too easy. It is indeed simple, but
whether that method allows you to disable security or not is a function of the Java security
manager and security policy. You can do this in a normal Java application running without
any security policy.

7.3.2 Accessing Fields

The class java.lang.reflect.Field represents static variables and instance
variables. Field has a full set of overloaded accessor methods for all the base types (for
example, getInt() and setInt() , getBoolean() and setBoolean()) and
get() and set() methods for accessing members that are object references. Let's
consider this class:

class BankAccount {
 public int balance;
}

With the Reflection API, we can read and modify the value of the public integer field
balance :

BankAccount myBankAccount = ...;
...
try {
 Field balanceField = BankAccount.class.getField("balance");
 // read it
 int mybalance = balanceField.getInt(myBankAccount);
 // change it
 balanceField.setInt(myBankAccount, 42);
} catch (NoSuchFieldException e) {
 ... // there is no "balance" field in this class
} catch (IllegalAccessException e2) {
 ... // we don't have permission to access the field
}

In this example, we are assuming that we already know the structure of a BankAccount
object. But in general we could gather that information from the object itself.

All the data access methods of Field take a reference to the particular object instance that

http://lib.ommolketab.ir
http://lib.ommolketab.ir

we want to access. In the code shown earlier, the getField() method returns a Field
object that represents the balance of the BankAccount class; this object doesn't refer
to any specific BankAccount . Therefore, to read or modify any specific
BankAccount , we call getInt() and setInt() with a reference to
myBankAccount , which is the particular account we want to work with. An exception
occurs if we try to access a field that doesn't exist, or if we don't have the proper
permission to read or write to the field. If we make balance a private field, we can still
look up the Field object that describes it, but we won't be able to read or write its value.

Therefore, we aren't doing anything that we couldn't have done with static code at compile
time; as long as balance is a public member of a class that we can access, we can write
code to read and modify its value. What's important is that we're accessing balance at
runtime, and we could just as easily use this technique to examine the balance field in a
class that was dynamically loaded.

7.3.3 Accessing Methods

The class java.lang.reflect.Method represents a static or instance method.
Subject to the normal security rules, a Method object's invoke() method can be used
to call the underlying object's method with specified arguments. Yes, Java does have
something like a method pointer!

As an example, we'll write a Java application called Invoke that takes as command-line
arguments the name of a Java class and the name of a method to invoke. For simplicity,
we'll assume that the method is static and takes no arguments:

//file: Invoke.java
import java.lang.reflect.*;

class Invoke {
 public static void main(String [] args) {
 try {
 Class c = Class.forName(args[0]);
 Method m = c.getMethod(args[1], new Class [] { });
 Object ret = m.invoke(null, null);
 System.out.println(
 "Invoked static method: " + args[1]
 + " of class: " + args[0]
 + " with no args\nResults: " + ret);
 } catch (ClassNotFoundException e) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // Class.forName() can't find the class
 } catch (NoSuchMethodException e2) {
 // that method doesn't exist
 } catch (IllegalAccessException e3) {
 // we don't have permission to invoke that method
 } catch (InvocationTargetException e4) {
 // an exception occurred while invoking that method
 System.out.println(
 "Method threw an: " + e4.getTargetException());
 }
 }
}

We can run invoke to fetch the value of the system clock:

% java Invoke java.lang.System currentTimeMillis
Invoked static method: currentTimeMillis of class:
java.lang.System with no args
Results: 861129235818

Our first task is to look up the specified Class by name. To do so, we call the
forName() method with the name of the desired class (the first command-line
argument). We then ask for the specified method by its name. getMethod() has two
arguments: the first is the method name (the second command-line argument), and the
second is an array of Class objects that specifies the method's signature. (Remember that
any method may be overloaded; you must specify the signature to make it clear which
version you want.) Since our simple program calls only methods with no arguments, we
create an anonymous empty array of Class objects. Had we wanted to invoke a method
that takes arguments, we would have passed an array of the classes of their respective
types, in the proper order. For primitive types we would have used the standard wrappers
(Integer , Float , Boolean , etc.) to hold the values. The classes of primitive types
in Java are represented by special static TYPE fields of their respective wrappers; for
example, use Integer.TYPE for the class of an int .

Once we have the Method object, we call its invoke() method. This calls our target
method and returns the result as an Object . To do anything nontrivial with this object,
you have to cast it to something more specific. Presumably, since you're calling the
method, you know what kind of object to expect. If the returned value is a primitive type
such as int or boolean , it will be wrapped in the standard wrapper class for its type.
(Wrappers for primitive types are discussed in Chapter 10 .) If the method returns void ,
invoke() returns a java.lang.Void object. This is the wrapper class that

http://lib.ommolketab.ir
http://lib.ommolketab.ir

represents void return values.

The first argument to invoke() is the object on which we would like to invoke the
method. If the method is static, there is no object, so we set the first argument to null .
That's the case in our example. The second argument is an array of objects to be passed as
arguments to the method. The types of these should match the types specified in the call to
getMethod() . Because we're calling a method with no arguments, we can pass null
for the second argument to invoke() . As with the return value, you must use wrapper
classes for primitive argument types.

The exceptions shown in the previous code occur if we can't find or don't have permission
to access the method. Additionally, an InvocationTargetException occurs if the
method being invoked throws some kind of exception itself. You can find what it threw by
calling the getTargetException() method of
InvocationTargetException .

7.3.4 Accessing Constructors

The java.lang.reflect.Constructor class represents an object constructor
that accepts arguments. You can use it, subject to the security manager of course, to create
a new instance of an object. Recall that you can create instances of a class with
Class.newInstance() , but you cannot specify arguments with that method. This is
the solution to that problem, if you really need to do it.

Here we'll create an instance of java.util.Date ,[2] passing a string argument to the
constructor:

try {
 Constructor c =
 Date.class.getConstructor(new Class [] { String.class });
 Object o = c.newInstance(new Object [] { "Jan 1, 2000" });
 Date d = (Date)o;
 System.out.println(d);
} catch (NoSuchMethodException e) {
 // getConstructor() couldn't find the constructor we described
} catch (InstantiationException e2) {
 // the class is abstract
} catch (IllegalAccessException e3) {
 // we don't have permission to create an instance
} catch (InvocationTargetException e4) {
 // the construct threw an exception

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

The story is much the same as with a method invocation; after all, a constructor is really no
more than a method with some strange properties. We look up the appropriate constructor
for our Date class-the one that takes a single String as its argument-by passing
getConstructor() an array containing the String class as its only element. (If the
constructor required more arguments, we would put additional objects in the array,
representing the class of each argument.) We can then invoke newInstance() ,
passing it a corresponding array of argument objects. Again, to pass primitive types, we
would wrap them in their wrapper types first. Finally, we cast the resulting object to a
Date and print it.

The exceptions from the previous example apply here, too, along with
IllegalArgumentException and InstantiationException . The latter is
thrown if the class is abstract and therefore can't be instantiated.

7.3.5 What About Arrays?

The Reflection API allows you to create and inspect arrays of base types using the
java.lang.reflect.Array class. The process is very much the same as with the
other classes, so we won't cover it in detail. The primary feature is a static method of
Array called newInstance(), which creates an array, allowing you to specify a base
type and length. You can also use it to construct multidimensional array instances, by
specifying an array of lengths (one for each dimension). For more information, look in
your favorite Java language reference.

7.3.6 Dynamic Interface Adapters

Ideally, Java reflection would allow us to do everything at runtime that we can do at
compile time (without forcing us to generate and compile source into bytecode). But that is
not entirely the case. Although we can dynamically load and create instances of objects at
runtime using the Class.forName() method, there is no general way to create new
types of objects-for which no class files preexist-on the fly.

In Java 1.3, the java.lang.reflect.Proxy class was added, which takes a step
towards solving this problem by allowing the creation of adapter objects that implement
arbitrary interfaces. The Proxy class is a factory that can generate an adapter class
implementing any interface (or interfaces) you want. When methods are invoked on the
adapter class, they are delegated to a designated InvocationHandler object. You can
use this to create implementations of any kind of interface at runtime and handle the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

method calls anywhere you want. This is particularly important for tools that work with
JavaBeans, which must dynamically register event listeners. (We'll mention this again in
Chapter 21 .)

In the following snippet, we take an interface name and construct a proxy implementing the
interface. It outputs a message whenever any of the interface's methods is invoked:

import java.lang.reflect.*;

InvocationHandler handler =
 new InvocationHandler() {
 invoke(Object proxy, Method method, Object[] args) {
 System.out.println("Method: "+ method.getName() +"()"
 +" of interface: "+ interfaceName
 + " invoked on proxy.");
 return null;
 }
 };

Class clas = Class.forName(MyInterface);

MyInterface interfaceProxy =
 (MyInterface)Proxy.newProxyInstance(
 clas.getClassLoader(), new Class[] { class }, handler);

The resulting object, interfaceProxy , is cast to the type of the interface we want. It
will call our handler whenever any of its methods are invoked.

First we make an implementation of InvocationHandler . This is an object with an
invoke() method that takes as its argument the Method being called and an array of
objects representing the arguments to the method call. Then we fetch the class of the
interface that we're going to implement using Class.forName() . Finally we ask the
proxy to create an adapter for us, specifying the types of interfaces (you can specify more
than one) that we want implemented and the handler to use. invoke() is expected to
return an object of the correct type for the method call. If it returns the wrong type, a
special runtime exception is thrown. Any primitive types in the arguments or in the return
value should be wrapped in the appropriate wrapper class. (The runtime system unwraps
the return value, if necessary.)

7.3.7 What Is Reflection Good for?

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In Chapter 21 we'll learn how reflection is used to dynamically discover capabilities and
features of JavaBean objects. But these are somewhat behind-the-scenes applications. What
can reflection do for us in everyday situations?

Well, we could use reflection to go about acting as if Java had dynamic method invocation
and other useful capabilities; in Chapter 21 , we'll also develop a dynamic adapter class
using reflection. But as a general coding practice, dynamic method invocation is a bad idea.
One of the primary features of Java is its strong typing and safety. You abandon much of
that when you take a dip in the reflecting pool. And although the performance of the
Reflection API is very good, it is not as fast as compiled method invocations in general.

More appropriately, you can use reflection in situations where you need to work with
objects that you can't know about in advance. Reflection puts Java on a higher plane of
programming languages, opening up possibilities for new kinds of applications. As we
hinted earlier, one of the most important uses for reflection is in integrating Java with
scripting languages. With reflection, you can write a source code interpreter in Java that
can access the full Java APIs, create objects, invoke methods, modify variables and do all
the other things a Java program can do at compile time, while it is running. In fact someone
has done this-one of the authors of this book!

7.3.7.1 The BeanShell scripting language

I (Pat) can't resist inserting a plug here for BeanShell-my free, open source, lightweight
Java scripting language. BeanShell is just what I alluded to in the previous section-a Java
application that uses the Reflection API to execute Java statements and expressions
dynamically. You can use BeanShell interactively to quickly try out some of the examples
in this book (although you can't create classes per se). BeanShell exercises the Java
Reflection API to its fullest and serves as a demonstration of how dynamic the Java
runtime environment really is.

You can find a copy of BeanShell on the CD-ROM that accompanies this book (view CD
content online at http://examples.oreilly.com/learnjava2/CD-ROM/) and the latest release
and documentation at its web site, http://www.beanshell.org . In recent years BeanShell has
become quite popular. It is now distributed with Emacs as part of the JDE and bundled
with popular application environments including BEA's WebLogic server, NetBeans, and
Sun's Forte for Java IDE. See Appendix B for more information on getting started. I hope
you find it both interesting and useful!

[1] You might think that we could override the clone() method in our objects to refine the

return type of the clone() method. However this is currently not possible in Java. You can't

override methods and change their return types. Technically this would be called covariant

http://lib.ommolketab.ir
http://lib.ommolketab.ir

return typing . It's something that may find its way into the language eventually.

[2] This Date constructor is deprecated but will serve us for this example.

CONTENTS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

Chapter 8. Threads

 8.1 Introducing Threads

 8.2 Threading an Applet
 8.3 Synchronization

 8.4 Scheduling and Priority

 8.5 Thread Groups

 8.6 Thread Performance

At the heart of designing computer systems and software lies the problem of managing
time, specifically, scheduling what to do and when to do it. We take for granted that
modern computer systems such as desktop computers can manage many applications
running concurrently and produce the effect that the software is running simultaneously. Of
course we know that, for the most part, our single processor computers can do only one
thing at a time. The magic is performed by slight of hand in the operating system, which
juggles applications and turns its attention from one to the next so quickly that they appear
to run at once.

In the old days, the unit of concurrency for such systems was the application or process .
To the OS, a process was more or less a black box that decided what do to on its own. If an
application required greater concurrency, it could get it only by running multiple processes
and communicating between them, but this was a heavyweight approach and not very
elegant. Later, the concept of threads was introduced. Threads provide fine-grained
concurrency within a process, under the application's own control. Threads have existed for
a long time but have historically been tricky to use. In Java, support for threading is built
right into the language, which means it's easier to work with threads. It also means that
Java's APIs take full advantage of threading. So it's important that you become familiar
with threads early in your exploration of Java.

Threads are integral to the design of many Java APIs. For example, when we look at GUI
programming later in this book, you'll see that a component's paint() method isn't
called directly by the application but rather by a separate master thread within the Java
runtime system. At any given time, there may be many such background threads,
performing activities in parallel with your application. In fact, it's easy to get half a dozen
or more threads running in an application without even trying, simply by loading images,
updating the screen, playing audio, and so on. But these things happen behind the scenes;
you don't normally have to worry about them. In this chapter, we'll talk about writing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

applications that create and use their own threads explicitly.

8.1 Introducing Threads

Conceptually, a thread is a flow of control within a program. A thread is similar to the
more familiar notion of a process, except that multiple threads within the same application
share much of the same state-in particular, they run in the same address space. It's not
unlike a golf course, which many golfers use at the same time. Sharing the same address
space means that threads share a working area. They have access to the same objects
including static and instance variables within their application. However, threads have their
own copies of local variables, just as players share the golf course, but not personal things
like clubs and balls.

Multiple threads in an application have the same problems as the golfers-in a word,
synchronization. Just as you can't have two sets of players blindly playing the same green
at the same time, you can't have several threads trying to access the same variables without
some kind of coordination. Someone is bound to get hurt. A thread can reserve the right to
use an object until it's finished with its task, just as a golf party gets exclusive rights to the
green until it's done. And a thread that is more important can raise its priority, asserting its
right to play through.

The devil is in the details, of course, and those details have historically made threads
difficult to use. Fortunately Java makes creating, controlling, and coordinating threads
simpler by integrating some of these concepts directly into the language.

It is common to stumble over threads when you first work with them because creating a
thread exercises many of your new Java skills all at once. You can avoid confusion by
remembering there are always two players involved in running a thread: a Java language
object that represents the thread itself and an arbitrary target object that contains the
method the thread is to execute. Later, you will see that it is possible to play some sleight
of hand and combine these two roles, but that special case just changes the packaging, not
the relationship.

8.1.1 The Thread Class and the Runnable Interface

A new thread is born when we create an instance of the java.lang.Thread class.
The Thread object represents a real thread in the Java interpreter and serves as a handle
for controlling and coordinating with its execution. With it, we can start the thread, wait for
it to complete, cause it to sleep for a time, or interrupt its activity. The constructor for the
Thread class accepts information about where the thread should begin its execution.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Conceptually, we would like to simply tell it what method to run, but since there are no
pointers to methods in Java (not in this sense anyway), we can't specify one directly.
Instead, we have to take a short detour and use the java.lang.Runnable interface to
create an object that contains a "runnable" method. Runnable defines a single, general-
purpose method.

public interface Runnable {
 abstract public void run();
}

Every thread begins its life by executing the run() method in a Runnable object, the
"target object" that was passed to the thread's constructor. The run() method can contain
any code, but it must be public, take no arguments, have no return value, and throw no
checked exceptions.

Any class that contains an appropriate run() method can declare that it implements the
Runnable interface. An instance of this class is then a runnable object that can serve as
the target of a new thread. If you don't want to put the run() method directly in your
object (and very often you don't), you can always make an adapter class that serves as the
Runnable for you. The adapter's run() method can then call any method it wants after
the thread is started. We'll show examples of these options later.

8.1.1.1 Creating and starting threads

A newly born thread remains idle until we give it a figurative slap on the bottom by calling
its start() method. The thread then wakes up and proceeds to execute the run()
method of its target object. start() can be called only once in the lifetime of a thread.
Once a thread starts, it continues running until the target object's run() method returns
(or throws an unchecked exception of some kind). The start() method has a sort of evil
twin method called stop() , which kills the thread permanently. However, this method is
deprecated and should no longer be used. We'll explain why and give some examples of a
better way to stop your threads later in this chapter. We will also look at some other
methods you can use to control a thread's progress while it is running.

Now let's look at an example. The following class, Animation , implements a run()
method to drive its drawing loop:

class Animation implements Runnable {
 public void run() {
 while (true) {
 // draw Frames

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ...
 }
 }
}

To use it, we create a Thread object, passing it an instance of Animation as its target
object, and invoke its start() method. We can perform these steps explicitly:

Animation happy = new Animation("Mr. Happy");
Thread myThread = new Thread(happy);
myThread.start();

Here we have created an instance of our Animation class and passed it as the argument
to the constructor for myThread . When we call the start() method, myThread
begins to execute Animation 's run() method. Let the show begin!

This situation is not terribly object-oriented. More often, we want an object to handle its
own threads, as shown in Figure 8-1 , which depicts a Runnable object that creates and
starts its own thread. We'll show our Animation class performing these actions in its
constructor, although in practice it might be better to place them in a more explicit
controller method (e.g., startAnimation()).

Figure 8-1. Interaction between Animation and its thread

class Animation implements Runnable {
 Thread myThread;
 Animation (String name) {
 myThread = new Thread(this);
 myThread.start();
 }
 ...
}

In this case, the argument we pass to the Thread constructor is this , the current object
(which is a Runnable). We keep the Thread reference in the instance variable

http://lib.ommolketab.ir
http://lib.ommolketab.ir

myThread in case we want to interrupt the show or exercise some other kind of control
later.

8.1.1.2 A natural-born thread

The Runnable interface lets us make an arbitrary object the target of a thread, as we did
in the previous example. This is the most important general usage of the Thread class. In
most situations in which you need to use threads, you'll create a class (possibly a simple
adapter class) that implements the Runnable interface.

However we'd be remiss not to show you the other technique for creating a thread. Another
design option is to make our target class a subclass of a type that is already runnable. As it
turns out, the Thread class itself conveniently implements the Runnable interface; it
has its own run() method, which we can override directly to do our bidding:

class Animation extends Thread {
 public void run() {
 while (true) {
 // draw Frames
 ...
 }
 }
}

The skeleton of our Animation class looks much the same as before, except that our
class is now a subclass of Thread . To go along with this scheme, the default constructor
of the Thread class makes itself the default target. That is, by default, the Thread
executes its own run() method when we call the start() method, as shown in Figure
8-2 . So now our subclass can just override the run() method in the Thread class.
(Thread itself defines an empty run() method.)

Figure 8-2. Animation as a subclass of Thread

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Now we create an instance of Animation and call its start() method (which it also
inherited from Thread):

Animation bouncy = new Animation("Bouncy");
bouncy.start();

Alternatively, we can have the Animation object start its thread when it is created, as
before:

class Animation extends Thread {

 Animation (String name) {
 start();
 }
 ...
}

Here our Animation object just calls its own start() method when an instance is
created. (Again, it's probably better form to start and stop our objects explicitly after they're
created rather than starting threads as a hidden side effect of object creation. But this serves
the example well.)

Subclassing Thread may seem like a convenient way to bundle a thread and its target
run() method. However, this approach often isn't the best design. If you subclass
Thread to implement a thread, you are saying you need a new type of object that is a
kind of Thread , which exposes all of the public API of the Thread class. While there
is something very satisfying about taking an object that's primarily concerned with
performing a task and making it a Thread , the actual situations where you'll want to
create a subclass of Thread should not be very common. In most cases, it is more natural
to let the requirements of your program dictate the class structure. If you find you're
subclassing Thread a lot, you may want to examine whether you are falling into the
design trap of making objects that are really glorified functions.

8.1.1.3 Using an adapter

Finally, as we have suggested, we can build an adapter class to give us more control over
how to structure the code. It is particularly convenient to create an anonymous inner class
that implements Runnable and invokes an arbitrary method in our object. This almost
gives the feel of starting a thread and specifying an arbitrary method to run, as if we had
method pointers. For example, suppose that our Animation class provides a method
called startAnimating() , which performs setup (loads the images, etc.) and then

http://lib.ommolketab.ir
http://lib.ommolketab.ir

starts a thread to perform the animation. We'll say that the actual guts of the animation loop
are in a private method called drawFrames() . We could use an adapter to run
drawFrames() for us:

class Animation {

 public void startAnimating() {
 // do setup, load images, etc.
 ...
 // start a drawing thread
 Thread myThread = new Thread (new Runnable() {
 public void run() { drawFrames(); }
 });
 myThread.start();
 }

 private void drawFrames() {
 // do animation ...
 }
}

In this code, the anonymous inner class implementing Runnable is generated for us by
the compiler. We create a thread with this anonymous object as its target and have its
run() method call our drawFrames() method. We have avoided implementing a
generic run() method in our application code at the expense of generating an extra class.

Note that we could be even more terse in the previous example by simply having our
anonymous inner class extend Thread rather than implement Runnable . We could
also start the thread without saving a reference to it if we won't be using it later.

new Thread() {
 public void run() { drawFrames(); }
}.start();

8.1.2 Controlling Threads

We have seen the start() method used to bring a newly created thread to life. Several
other instance methods let us explicitly control a thread's execution:

The sleep() method causes the current thread to wait for a designated period of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

time, without consuming much (or possibly any) CPU time.

The methods wait() and join() coordinate the execution of two or more threads.
We'll discuss them in detail when we talk about thread synchronization later in this
chapter.

The interrupt() method wakes up a thread that is sleeping in a sleep() or
wait() operation or is otherwise blocked on a long I/O operation. [1]

8.1.2.1 Deprecated methods

We should also mention that there are three deprecated thread control methods: stop() ,
suspend() , and resume() . The stop() method complements start() ; it
destroys the thread. start() , and the deprecated stop() method, can be called only
once in the life cycle of a thread. By contrast, the deprecated suspend() and
resume() methods were used to arbitrarily pause and then restart the execution of a
thread.

Although these deprecated methods still exist in the latest version of Java (and will
probably be there forever), they shouldn't be used in new code development. The problem
with both stop() and suspend() is that they seize control of a thread's execution in
an uncoordinated and harsh way. This makes programming difficult; it's not always easy
for an application to anticipate and properly recover from being interrupted at an arbitrary
point in its execution. Moreover, when a thread is seized using one of these methods, the
Java runtime system must release all its internal locks used for thread synchronization. This
can cause unexpected behavior and, in the case of suspend() , can easily lead to
deadlock.

A better way to affect the execution of a thread-which requires just a bit more work on
your part-is by creating some simple logic in your thread's code to use monitor variables
(flags), possibly in conjunction with the interrupt() method, which allows you to
wake up a sleeping thread. In other words, you should cause your thread to stop or resume
what it is doing by asking it nicely rather than by pulling the rug out from under it
unexpectedly. The thread examples in this book use this technique in one way or another.

8.1.2.2 The sleep() method

We often need to tell a thread to sit idle, or "sleep," for a fixed period of time. While a
thread is asleep, or otherwise blocked on input of some kind, it doesn't consume CPU time
or compete with other threads for processing. For this, we can either call the thread's
sleep() instance method or use the static convenience method Thread.sleep() ,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

which affects the currently executing thread. In either case, the call causes the thread to go
idle for a specified number of milliseconds:

try {
 // The current thread
 Thread.sleep(1000);
 // particular thread
 someThread.sleep(500);
} catch (InterruptedException e) {
 // someone woke us up prematurely
}

The sleep() method may throw an InterruptedException if it is interrupted by
another thread via the interrupt() method. As you see in the previous code, the
thread can catch this exception and take the opportunity to perform some action-such as
checking a variable to determine whether or not it should exit-or perhaps just perform
some housekeeping and then go back to sleep.

8.1.2.3 The join() method

Finally, if you need to coordinate your activities with another thread by waiting for the
other thread to complete its task, you can use the join() method. Calling a thread's
join() method causes the caller to block until the target thread completes. Alternatively,
you can poll the thread by calling join() with a number of milliseconds to wait. This is a
very coarse form of thread synchronization. Later in this chapter, we'll look at a much more
general and powerful mechanism for coordinating the activities of threads: wait() and
notify() .

8.1.2.4 The interrupt() method

Earlier we described the interrupt() method as a way to wake up a thread that is idle
in a sleep() , wait() , or lengthy I/O operation. This is indeed the prescribed
functionality of the method. However, historically, this has been a weak spot, and Java
implementations have had trouble getting it to work correctly in all cases. In early Java
VMs (prior to Version 1.1), interrupt did not work at all. In more recent versions
there are still problems with interrupting I/O calls. By an I/O call we mean when an
application is blocked in a read() or write() method, moving bytes to or from a
source such as a file or the network. In this case Java is supposed to throw an
InterruptedIOException when the interrupt() is performed. However this
has never been reliable across all Java implementations. To address this in Java 1.4, a new

http://lib.ommolketab.ir
http://lib.ommolketab.ir

I/O framework (java.nio) was introduced with one of its goals being to specifically
address these problems. When the thread associated with an NIO operation is interrupted,
the thread wakes up and the I/O stream (called a "channel") is automatically closed. (See
Chapter 11 for more about the NIO package.)

8.1.3 Death of a Thread

A thread continues to execute until one of the following things happens:

It explicitly returns from its target run() method.

It encounters an uncaught runtime exception.

The evil and nasty deprecated stop() method is called.

So what happens if none of these things occurs, and the run() method for a thread never
terminates? The answer is that the thread can live on, even after what is ostensibly the part
of the application that created it has finished. This means we have to be aware of how our
threads eventually terminate, or an application can end up leaving orphaned threads that
unnecessarily consume resources.

In many cases, we really want to create background threads that do simple, periodic tasks
in an application. The setDaemon() method can be used to mark a thread as a daemon
thread that should be killed and discarded when no other application threads remain.
Normally, the Java interpreter continues to run until all threads have completed. But when
daemon threads are the only threads still alive, the interpreter will exit.

Here's a devilish example using daemon threads:

class Devil extends Thread {
 Devil() {
 setDaemon(true);
 start();
 }
 public void run() {
 // perform evil tasks
 }
}

In this example, the Devil thread sets its daemon status when it is created. If any Devil
threads remain when our application is otherwise complete, the runtime system kills them

http://lib.ommolketab.ir
http://lib.ommolketab.ir

for us. We don't have to worry about cleaning them up.

Daemon threads are primarily useful in standalone Java applications and in the
implementation of the Java runtime system itself, but not component applications such as
applets. Since an applet runs inside another Java application, any daemon threads it creates
can continue to live until the controlling application exits-probably not the desired effect.
A browser or any other application can use ThreadGroups to contain all the threads
created by subsystems of an application and then clean them up if necessary.

One final note about killing threads gracefully. A very common problem new developers
encounter the first time they create an application using an AWT or Swing component is
that their application never exits; the Java VM just seems to hang indefinitely after
everything is finished. This is because when working with graphics, Java has created an
AWT thread to process input and painting events. The AWT thread is not a daemon thread
so it doesn't exit automatically when other application threads have completed, and the
developer must call System.exit() explicitly. (If you think about it, this makes sense.
Since most GUI applications are event-driven and simply wait for user input, they would
otherwise simply exit after their startup code completed.)

8.2 Threading an Applet

Applets are embeddable Java applications that are expected to start and stop themselves on
command. Applets may be asked to start and stop themselves any number of times. A Java-
enabled web browser normally starts an applet when the applet is displayed and stops it
when the user moves to another page or (in theory) when the user scrolls the applet out of
view. To conform to the semantics of the API, we would like an applet to cease its
nonessential activity when it is stopped and resume it when started again. (If you're not
familiar with applets, you may want to take a look at Chapter 22 at this point.)

In this section, we will build UpdateApplet , a simple base class for an applet that
maintains a thread to automatically update its display at regular intervals. Although we're
building an applet here, the general techniques are important for all threaded applications.

UpdateApplet handles the basic starting and stopping behavior for us:

//file: UpdateApplet.java
public class UpdateApplet extends java.applet.Applet
 implements Runnable
{
 private Thread updateThread;
 int updateInterval = 1000;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public void run() {
 while (updateThread != null) {
 try {
 Thread.sleep(updateInterval);
 } catch (InterruptedException e) {
 return;
 }
 repaint();
 }
 }

 public void start() {
 if (updateThread == null) {
 updateThread = new Thread(this);
 updateThread.start();
 }
 }
 public void stop() {
 if (updateThread != null) {
 Thread runner = updateThread;
 updateThread = null; // flag to quit
 runner.interrupt(); // wake up if asleep
 }
 }
}

UpdateApplet is a Runnable object that alternately sleeps and calls its
repaint() method. (There's nothing to paint, though, so running this applet is kind of
boring. Later in this section, we'll subclass it to implement a digital clock.) It has two other
public methods: start() and stop() . These are methods of the Applet class we are
overriding; don't confuse them with the similarly named methods of the Thread class.
These start() and stop() methods are called by the web browser or applet viewer to
tell the applet when it should and should not be running.

UpdateApplet illustrates an environmentally friendly way to deal with threads in a
simple applet. UpdateApplet simply dismisses its thread each time the applet is
stopped and recreates it if the applet is restarted. When UpdateApplet 's start()
method is called, we first check to make sure there is no currently executing
updateThread . We then create one to begin our execution. When our applet is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

subsequently asked to stop, we set a flag indicating that it should stop and then make sure it
is awake by invoking its interrupt() method. In our stop() method, we set
updateThread to null , which serves three purposes: it allows the garbage collector
to clean up the dead Thread object; it indicates to UpdateApplet 's start()
method that the thread is gone so that another one can be started when necessary; and it
serves as the flag to indicate to the running thread that it is time to quit. If you feel that we
have overburdened this variable, you might consider using a separate boolean variable for
the flag condition.

One thing about Applet s: in truth, an Applet 's start() and stop() methods are
guaranteed to be called in sequence. As a result, we shouldn't have to check for the
existence of updateThread in start() . (It should always be null.) However, it's
good programming practice to perform the test. If we didn't, and for some reason stop()
were to fail at its job, we might inadvertently start a lot of threads.

With UpdateApplet doing all the work for us, we can now create the world's simplest
clock applet with just a few lines of code. Figure 8-3 shows our Clock . (This might be a
good one to run on your Java wristwatch.)

Figure 8-3. The Clock applet

Here's the code:

//file: Clock.java
public class Clock extends UpdateApplet {
 public void paint(java.awt.Graphics g) {
 g.drawString(new java.util.Date().toString(), 10, 25);
 }
}

The java.util.Date().toString() method creates a string that contains the
current time.

Our Clock applet provides a good example of a simple thread; we don't mind throwing it
away and subsequently rebuilding it if the user should happen to wander on and off our
web page a few times. But what if the task that our thread handles isn't so simple? What if,
for instance, we have to open a socket and establish a connection with another system?
This isn't strictly a function of the thread of course. But a more general solution might be to
have the thread set a timer for itself and clean up at some point in the future.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Now if you're concerned about being so cavalier in creating and discarding Thread
objects, you might also ask if we couldn't simply do a little more logic and save our thread.
Perhaps we could teach the applet's start() method to have the existing thread start up
again rather than having to create a new thread. It should be apparent how to go about this
using the wait() and notify() methods after you read the next section on thread
synchronization.

However, an issue with applets is that we have no control over how a user navigates web
pages. For example, say a user scrolls our applet out of view, and we pause our thread.
Now we have no way of ensuring that the user will bring the applet back into view before
moving to another page. And actually, the same situation would occur if the user simply
moves on to another page and never comes back. That's not a problem in this simple
example, but there may be cases in which we need to do some application cleanup before
we die. For this situation the Applet API gives us the destroy() method. destroy()
is called by the Java runtime system when the applet is going to be removed (often from a
cache). It provides a place at which we can free up any resources the applet is holding.

8.3 Synchronization

Every thread has a life of its own. Normally, a thread goes about its business without any
regard for what other threads in the application are doing. Threads may be time-sliced,
which means they can run in arbitrary spurts and bursts as directed by the operating
system. On a multiprocessor system, it is even possible for many different threads to be
running simultaneously on different CPUs. This section is about coordinating the activities
of two or more threads so that they can work together and not collide in their use of the
same address space (coordinating their play on the golf course).

Java provides a few simple structures for synchronizing the activities of threads. They are
all based on the concept of monitors, a widely used synchronization scheme (developed by
C.A.R. Hoare). You don't have to know the details about how monitors work to be able to
use them, but it may help you to have a picture in mind.

A monitor is essentially a lock. The lock is attached to a resource that many threads may
need to access, but that should be accessed by only one thread at a time. It's very much like
a restroom with a door that locks. If the resource is not being used, the thread can acquire
the lock and access the resource. By the same token, if the restroom is unlocked, you can
enter and lock the door. When the thread is done, it relinquishes the lock, just as you
unlock the door and leave it open for the next person. However, if another thread already
has the lock for the resource, all other threads have to wait until the current thread finishes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and releases the lock. This is just like when the restroom is locked when you arrive: you
have to wait until the current occupant is done and unlocks the door.

Fortunately, Java makes the process of synchronizing access to resources quite easy. The
language handles setting up and acquiring locks; all you have to do is specify which
resources require locks.

8.3.1 Serializing Access to Methods

The most common need for synchronization among threads in Java is to serialize their
access to some resource (an object)-in other words, to make sure that only one thread at a
time can manipulate an object or variable.[2] In Java, every object has a lock associated
with it. To be more specific, every class and every instance of a class has its own lock. The
synchronized keyword marks places where a thread must acquire the lock before
proceeding.

For example, say we implemented a SpeechSynthesizer class that contains a
say() method. We don't want multiple threads calling say() at the same time, or we
wouldn't be able to understand anything being said. So we mark the say() method as
synchronized , which means that a thread has to acquire the lock on the
SpeechSynthesizer object before it can speak:

class SpeechSynthesizer {
 synchronized void say(String words) {
 // speak
 }
}

Because say() is an instance method, a thread has to acquire the lock on the
SpeechSynthesizer instance it is using before it can invoke the say() method.
When say() has completed, it gives up the lock, which allows the next waiting thread to
acquire the lock and run the method. Note that it doesn't matter whether the thread is
owned by the SpeechSynthesizer itself or some other object; every thread has to
acquire the same lock, that of the SpeechSynthesizer instance. If say() were a
class (static) method instead of an instance method, we could still mark it as synchronized.
But in this case because there is no instance object involved, the lock is on the class object
itself.

Often, you want to synchronize multiple methods of the same class so that only one
method modifies or examines parts of the class at a time. All static synchronized methods
in a class use the same class object lock. By the same token, all instance methods in a class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

use the same instance object lock. In this way, Java can guarantee that only one of a set of
synchronized methods is running at a time. For example, a SpreadSheet class might
contain a number of instance variables that represent cell values, as well as some methods
that manipulate the cells in a row:

class SpreadSheet {
 int cellA1, cellA2, cellA3;

 synchronized int sumRow() {
 return cellA1 + cellA2 + cellA3;
 }

 synchronized void setRow(int a1, int a2, int a3) {
 cellA1 = a1;
 cellA2 = a2;
 cellA3 = a3;
 }
 ...
}

In this example, both methods setRow() and sumRow() access the cell values. You
can see that problems might arise if one thread were changing the values of the variables in
setRow() at the same moment another thread was reading the values in sumRow() .
To prevent this, we have marked both methods as synchronized . When threads are
synchronized, only one is run at a time. If a thread is in the middle of executing
setRow() when another thread calls sumRow() , the second thread waits until the first
one is done executing setRow() before it gets to run sumRow() . This synchronization
allows us to preserve the consistency of the SpreadSheet . And the best part is that all
this locking and waiting is handled by Java; it's transparent to the programmer.

In addition to synchronizing entire methods, the synchronized keyword can be used
in a special construct to guard arbitrary blocks of code. In this form it also takes an explicit
argument that specifies the object for which it is to acquire a lock:

synchronized (myObject) {
 // Functionality that needs to be synced
}

This code block can appear in any method. When it is reached, the thread has to acquire the
lock on myObject before proceeding. In this way, we can synchronize methods (or parts
of methods) in different classes in the same way as methods in the same class.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A synchronized instance method is, therefore, equivalent to a method with its statements
synchronized on the current object. Thus:

synchronized void myMethod () {
 ...
}

is equivalent to:

void myMethod () {
 synchronized (this) {
 ...
 }
}

8.3.1.1 Accessing instance variables

In the SpreadSheet example, we guarded access to a set of instance variables with a
synchronized method, which we did mainly so that we wouldn't change one of the
variables while someone was reading the rest of them. We wanted to keep them
coordinated. But what about individual variable types? Do they need to be synchronized?
Normally the answer is no. Almost all operations on primitives and object reference types
in Java happen atomically : they are handled by the virtual machine in one step, with no
opportunity for two threads to collide. You can't be in the middle of changing a reference
and be only part way done when another thread looks at the reference.

But watch out-we did say almost. If you read the Java virtual machine specification
carefully, you will see that the double and long primitive types are not guaranteed to be
handled atomically. Both of these types represent 64-bit values. The problem has to do
with how the Java VM's stack handles them. It is possible that this specification will be
beefed up in the future. But for now, if you have any fears, synchronize access to your
double and long instance variables through accessor methods.

8.3.1.2 Reentrant locking

The locks acquired by Java upon entering a synchronized method or block of code are
reentrant. This means that the thread holding onto the lock may acquire the same lock
again any number of times and will never block waiting for itself. In most cases this just
means that the code behaves as you'd expect; a thread can call a synchronized method
recursively, for example, and can itself call upon other synchronized methods within the
same object.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8.3.2 The wait() and notify() Methods

With the synchronized keyword, we can serialize the execution of complete methods
and blocks of code. The wait() and notify() methods of the Object class extend
this capability. Every object in Java is a subclass of Object , so every object inherits
these methods. By using wait() and notify() , a thread can effectively give up its
hold on a lock at an arbitrary point and then wait for another thread to give it back before
continuing.[3] All of the coordinated activity still happens inside synchronized blocks, and
still only one thread is executing at a given time.

By executing wait() from a synchronized block, a thread gives up its hold on the lock
and goes to sleep. A thread might do this if it needs to wait for something to happen in
another part of the application, as we'll see shortly. Later, when the necessary event
happens, the thread that is running it calls notify() from a block synchronized on the
same object. Now the first thread wakes up and begins trying to acquire the lock again.

When the first thread manages to reacquire the lock, it continues from the point it left off.
However, the thread that waited may not get the lock immediately (or perhaps ever). It
depends on when the second thread eventually releases the lock and which thread manages
to snag it next. Note also that the first thread won't wake up from the wait() unless
another thread calls notify() . There is an overloaded version of wait() , however,
that allows us to specify a timeout period. If another thread doesn't call notify() in the
specified period, the waiting thread automatically wakes up.

Let's look at a simple scenario to see what's going on. In the following example, we'll
assume there are three threads-one waiting to execute each of the three synchronized
methods of the MyThing class. We'll call them the waiter , notifier , and related threads.
Here's a code fragment to illustrate:

class MyThing {
 synchronized void waiterMethod() {
 // do some stuff
 wait(); // now wait for notifier to do something
 // continue where we left off
 }
 synchronized void notifierMethod() {
 // do some stuff
 notify(); // notify waiter that we've done it
 // continue doing stuff
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 synchronized void relatedMethod() {
 // do some related stuff
 }
 ...
}

Let's assume waiter gets through the gate first and begins executing waiter-Method(
) . The two other threads are initially blocked, trying to acquire the lock for the MyThing
object. When waiter executes the wait() method, it relinquishes its hold on the lock and
goes to sleep. Now there are now two viable threads waiting for the lock. Which thread
gets it depends on several factors, including chance and the priorities of the threads. (We'll
discuss thread scheduling in the next section.)

Let's say that notifier is the next thread to acquire the lock, so it begins to run
notifierMethod() . waiter continues to sleep, and related languishes, waiting for its
turn. When notifier executes the call to notify() , the runtime system prods the waiter
thread, effectively telling it something has changed. waiter then wakes up and rejoins
related in vying for the MyThing lock. Note that it doesn't receive the lock automatically;
it just changes from saying, "Leave me alone" to "I want the lock."

At this point, notifier still owns the lock and continues to hold it until the synchronized
notifierMethod() returns-or perhaps executes a wait() itself. At that point, the
other two methods get to fight over the lock. waiter would like to continue executing
waiterMethod() from the point it left off, while related , which has been patient,
would like to get started. We'll let you choose your own ending for the story.

For each call to notify() , the runtime system wakes up just one method that is asleep
in a wait() call. If there are multiple threads waiting, Java picks a thread on an arbitrary
basis, which may be implementation-dependent. The Object class also provides a
notifyAll() call to wake up all waiting threads. In most cases, you'll probably want to
use notifyAll() rather than notify() . Keep in mind that notify() really
means, "Hey, something related to this object has changed. The condition you are waiting
for may have changed, so check it again." In general, there is no reason to assume only one
thread at a time is interested in the change or able to act upon it. Different threads might
look upon whatever has changed in different ways.

Often, our waiter thread is waiting for a particular condition to change, and we will want it
to sit in a loop like the following:

while (condition != true)
 wait();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Other synchronized threads call notify() or notifyAll() when they have modified
the environment so that waiter can check the condition again. Using wait conditions like
this is the civilized alternative to polling and sleeping, as you'll see in the following section.

8.3.3 Passing Messages

Now we'll illustrate a classic interaction between two threads: a Producer and a
Consumer . A producer thread creates messages and places them into a queue while a
consumer reads and displays them. To be realistic, we'll give the queue a maximum depth.
And to make things really interesting, we'll have our consumer thread be lazy and run
much more slowly than the producer. This means that Producer occasionally has to stop
and wait for Consumer to catch up. Here are the Producer and Consumer classes:

import java.util.*;

public class Consumer implements Runnable {
 Producer producer;

 Consumer(Producer producer) {
 this.producer = producer;
 }

 public void run() {
 while (true) {
 String message = producer.getMessage();
 System.out.println("Got message: " + message);
 try {
 Thread.sleep(2000);
 } catch (InterruptedException e) { }
 }
 }

 public static void main(String args[]) {
 Producer producer = new Producer();
 new Thread(producer).start();
 Consumer consumer = new Consumer(producer);
 new Thread(consumer).start();
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public class Producer implements Runnable{
 static final int MAXQUEUE = 5;
 private List messages = new ArrayList();

 public void run() {
 while (true) {
 putMessage();
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) { }
 }
 }

 private synchronized void putMessage()
 {
 while (messages.size() >= MAXQUEUE)
 try {
 wait();
 } catch(InterruptedException e) { }

 messages.add(new java.util.Date().toString());
 notify();
 }

 // called by Consumer
 public synchronized String getMessage()
 {
 while (messages.size() == 0)
 try {
 notify();
 wait();
 } catch(InterruptedException e) { }
 String message = (String)messages.remove(0);
 notify();
 return message;
 }
}

For convenience, we have included a main() method in the Consumer class that runs
the complete example. It creates a Consumer that is tied to a Producer and starts the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

two classes. You can run the example as follows:

% java Consumer

This produces the timestamp messages created by the Producer :

Got message: Sun Dec 19 03:35:55 CST 1999
Got message: Sun Dec 19 03:35:56 CST 1999
Got message: Sun Dec 19 03:35:57 CST 1999
...

The timestamps initially show a spacing of one second, although they appear every two
seconds. Our Producer runs faster than our Consumer . Producer would like to
generate a new message every second, while Consumer gets around to reading and
displaying a message only every two seconds. Can you see how long it will take the
message queue to fill up? What will happen when it does?

Let's look at the code. We are using a few new tools here. Producer and Consumer
implement the Runnable interface, and each has a thread associated with it. The
Producer and Consumer classes pass messages through an instance of a
java.util.List object. We haven't discussed the List class yet. Think of this one
as a queue: we simply add and remove elements in first-in, first-out order.

The important activity is in the synchronized methods: putMessage() and
getMessage() . Although one of the methods is used by the Producer thread and
the other by the Consumer thread, they both live in the Producer class so that we can
coordinate them simply by declaring them synchronized . Here they both implicitly
use the Producer object's lock. If the queue is empty, the Consumer blocks in a call in
the Producer , waiting for another message.

Another design option would implement the getMessage() method in the Consumer
class and use a synchronized code block to synchronize explicitly on the Producer
object. In either case, synchronizing on the Producer enables us to have multiple
Consumer objects that feed on the same Producer . We'll do that later in this section.

putMessage() 's job is to add a new message to the queue. It can't do this if the queue
is already full, so it first checks the number of elements in messages . If there is room, it
stuffs in another timestamp message. If the queue is at its limit, however,
putMessage() has to wait until there's space. In this situation, putMessage()
executes a wait() and relies on the consumer to call notify() to wake it up after a
message has been read. Here we have putMessage() testing the condition in a loop. In
this simple example, the test probably isn't necessary; we could assume that when

http://lib.ommolketab.ir
http://lib.ommolketab.ir

putMessage() wakes up, there is a free spot. However, this test is another example of
good programming practice. Before it finishes, putMessage() calls notify() itself
to prod any Consumer that might be waiting on an empty queue.

getMessage() retrieves a message for the Consumer . It enters a loop like that of
putMessage() , waiting for the queue to have at least one element before proceeding.
If the queue is empty, it executes a wait() and expects the Producer to call
notify() when more items are available. Notice that getMessage() makes its own
calls to notify() . It does this any time the queue is empty, to prod a producer that
might be sleeping and also after it consumes a message, to give the producer the go ahead
to fill the queue again. These scenarios are more plausible if there are more consumers, as
we'll see next.

Now let's add another consumer to the scenario, just to make things really interesting. Most
of the necessary changes are in the Consumer class; here's the code for the modified
class, now called NamedConsumer :

public class NamedConsumer implements Runnable
{
 Producer producer;
 String name;

 NamedConsumer(String name, Producer producer) {
 this.producer = producer;
 this.name = name;
 }

 public void run() {
 while (true) {
 String message = producer.getMessage();
 System.out.println(name + " got message: " + message);
 try {
 Thread.sleep(2000);
 } catch (InterruptedException e) { }
 }
 }

 public static void main(String args[]) {
 Producer producer = new Producer();
 new Thread(producer).start();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 NamedConsumer consumer = new NamedConsumer("One", producer);
 new Thread(consumer).start();
 consumer = new NamedConsumer("Two", producer);
 new Thread(consumer).start();
 }
}

The NamedConsumer constructor takes a string name to identify each consumer. The
run() method uses this name in the call to println() to identify which consumer
received the message.

The only required modification to the Producer code is to change the notify() calls
to notifyAll() calls in putMessage() and getMessage() . (We could have
used notifyAll() in the first place.) Now, instead of the consumer and producer
playing tag with the queue, we can have many players waiting for the condition of the
queue to change. We might have a number of consumers waiting for a message, or we
might have the producer waiting for a consumer to take a message. Whenever the condition
of the queue changes, we prod all the waiting methods to reevaluate the situation by calling
notifyAll() .

Here is some sample output when there are two NamedConsumers running, as in the
main() method shown previously:

One got message: Sat Mar 20 20:00:01 CST 1999
Two got message: Sat Mar 20 20:00:02 CST 1999
One got message: Sat Mar 20 20:00:03 CST 1999
Two got message: Sat Mar 20 20:00:04 CST 1999
One got message: Sat Mar 20 20:00:05 CST 1999
Two got message: Sat Mar 20 20:00:06 CST 1999
One got message: Sat Mar 20 20:00:07 CST 1999
Two got message: Sat Mar 20 20:00:08 CST 1999
...

We see nice, orderly alternation between the two consumers as a result of the calls to
sleep() in the various methods. Interesting things would happen, however, if we were
to remove all calls to sleep() and let things run at full speed. The threads would
compete, and their behavior would depend on whether the system is using time-slicing. On
a time-sliced system, there should be a fairly random distribution between the two
consumers while on a nontime-sliced system, a single consumer could monopolize the
messages. And since you're probably wondering about time-slicing, let's talk about thread

http://lib.ommolketab.ir
http://lib.ommolketab.ir

priority and scheduling.

8.3.4 ThreadLocal Objects

A common issue that arises is the need to maintain some information or state on a per-
thread basis. For example, we might want to carry some context with the current thread as
it executes our application. Or we might simply want to have a value that is different for
different threads. Java supports this through the ThreadLocal class. A
ThreadLocal is an object wrapper that automatically maintains a separate value for any
thread calling it. For example:

ThreadLocal userID = new ThreadLocal();
userID.set("Pat"); // called by thread 1
userID.set("Bob"); // called by thread 2
userID.get(); // thread 1 gets "Pat"
userID.get(); // thread 2 gets "Bob"

You can use an instance of ThreadLocal anywhere you might use a static or instance
variable to automatically maintain separate values for each thread.

8.4 Scheduling and Priority

Java makes few guarantees about how it schedules threads. Almost all of Java's thread
scheduling is left up to the Java implementation and, to some degree, the application.
Although it might have made sense (and would certainly have made many developers
happier) if Java's developers had specified a scheduling algorithm, a single scheduling
algorithm isn't necessarily suitable for all the roles that Java can play. Instead, Sun decided
to put the burden on you to write robust code that works whatever the scheduling
algorithm, and let the implementation tune the algorithm for whatever is best. [4]

Therefore, the priority rules that we'll describe next are carefully worded in the Java
language specification to be a general guideline for thread scheduling. You should be able
to rely on this behavior overall (statistically), but it is not a good idea to write code that
relies on very specific features of the scheduler to work properly. You should instead use
the control and synchronization tools that we have described in this chapter to coordinate
your threads.[5]

Every thread has a priority value. If at any time a thread of a higher priority than the
current thread becomes runnable (is started, stops sleeping, or is notified), it preempts the
lower-priority thread and begins executing. By default, threads at the same priority are

http://lib.ommolketab.ir
http://lib.ommolketab.ir

scheduled round-robin, which means once a thread starts to run, it continues until it does
one of the following:

Sleeps, by calling Thread.sleep() or wait()

Waits for a lock, in order to run a synchronized method

Blocks on I/O, for example, in a read() or accept() call

Explicitly yields control, by calling yield()

Terminates, by completing its target method or with a stop() call (deprecated)

This situation looks something like Figure 8-4 .

Figure 8-4. Priority preemptive, round-robin scheduling

8.4.1 Time-Slicing

In addition to prioritization, many systems implement time-slicing of threads. [6] In a time-
sliced system, thread processing is chopped up, so that each thread runs for a short period
of time before the context is switched to the next thread, as shown in Figure 8-5 .

Figure 8-5. Priority preemptive, time-sliced scheduling

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Higher-priority threads still preempt lower-priority threads in this scheme. The addition of
time-slicing mixes up the processing among threads of the same priority; on a
multiprocessor machine, threads may even be run simultaneously. This can introduce a
difference in behavior for applications that don't use threads and synchronization properly.

Since Java doesn't guarantee time-slicing, you shouldn't write code that relies on this type
of scheduling; any software you write needs to function under the default round-robin
scheduling. If you're wondering what your particular flavor of Java does, try the following
experiment:

public class Thready {
 public static void main(String args []) {
 new ShowThread("Foo").start();
 new ShowThread("Bar").start();
 }

 static class ShowThread extends Thread {
 String message;

 ShowThread(String message) {
 this.message = message;
 }
 public void run() {
 while (true)
 System.out.println(message);
 }
 }
}

The Thready class starts up two ShowThread objects. ShowThread is a thread that
goes into a hard loop (very bad form) and prints its message. Since we don't specify a
priority for either thread, they both inherit the priority of their creator, so they have the
same priority. When you run this example, you will see how your Java implementation
does its scheduling. Under a round-robin scheme, only "Foo" should be printed; "Bar"
never appears. In a time-slicing implementation, you should occasionally see the "Foo" and
"Bar" messages alternate (which is most likely what you will see).

8.4.2 Priorities

Now let's change the priority of the second thread:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

class Thready {
 public static void main(String args []) {
 new ShowThread("Foo").start();
 Thread bar = new ShowThread("Bar");
 bar.setPriority(Thread.NORM_PRIORITY + 1);
 bar.start();
 }
}

As you might expect, this changes how our example behaves. Now you may see a few
"Foo" messages, but "Bar" should quickly take over and not relinquish control, regardless
of the scheduling policy.

Here we have used the setPriority() method of the Thread class to adjust our
thread's priority. The Thread class defines three standard priority values (they're
integers): MIN_PRIORITY , NORM_PRIORITY , and MAX_PRIORITY .

If you need to change the priority of a thread, you should use one of these values, possibly
with a small increment or decrement. Avoid using values near MAX_PRIORITY ; if you
elevate many threads to this priority level, priority will quickly become meaningless. A
slight increase in priority should be enough for most needs. For example, specifying
NORM_PRIORITY + 1 in our example is enough to beat out our other thread.

We should also note that in an applet environment you may not have access to maximum
priority because you're limited by the maximum priority of the thread group in which you
were created (see "Thread Groups" later in this chapter).

Finally, in our opinion, utilizing thread priorities should really be reserved more for system
and framework development. It is not as useful or flexible in practice as simply
implementing application-level control over processing using patterns like prioritized
queues or pools.

8.4.3 User-Controlled Time-Slicing

There is a rough technique you can use to achieve an effect similar to time-slicing in a Java
application, even if the Java runtime system does not support it directly. The idea is simply
to create a high (maximum) priority thread that does nothing but repeatedly sleep for a
short interval and then wake up. Since the higher-priority thread (in general) interrupts any
lower-priority threads when it becomes runnable, you effectively chop up the execution
time of your lower-priority threads, which should then execute in the standard round-robin
fashion. We call this technique rough because of the weakness of the specification for Java

http://lib.ommolketab.ir
http://lib.ommolketab.ir

threads with respect to their preemptiveness. If you use this technique, you should consider
it only a potential optimization.

8.4.4 Yielding

Whenever a thread sleeps, waits, or blocks on I/O, it gives up its time slot, and another
thread is scheduled. As long as you don't write methods that use hard loops, all threads
should get their due. However, a thread can also signal that it is willing to give up its time
voluntarily at any point with the yield() call. We can change our previous example to
include a yield() on each iteration:

...
static class ShowThread extends Thread {
 ...
 public void run() {
 while (true) {
 System.out.println(message);
 yield();
 }
 }
}

Now you should see "Foo" and "Bar" messages strictly alternating. If you have threads that
perform very intensive calculations or otherwise eat a lot of CPU time, you might want to
find an appropriate place for them to yield control occasionally. Alternatively, you might
want to drop the priority of your compute-intensive thread so that more important
processing can proceed around it.

Unfortunately the Java language specification is very weak with respect to yield() . It
is another one of these things you should consider an optimization hint rather than a
guarantee. In the worst case, the runtime system may simply ignore calls to yield() .

8.4.5 Native Threads

We mentioned the possibility that different threads could run on different processors. This
would be an ideal Java implementation. Unfortunately, many implementations don't even
allow multiple threads to run in parallel with other processes running on the same machine.
Older implementations of threading (known variously as "pthreads" or "green threads")
effectively simulate threading within an individual process like the Java interpreter. One
feature that you might want to confirm in choosing a Java implementation is called native

http://lib.ommolketab.ir
http://lib.ommolketab.ir

threads . This means that the Java runtime system is able to use the real (native) threading
mechanism of the host environment, which should perform better and, ideally, allow
multiprocessor operation.

8.5 Thread Groups

The ThreadGroup class allows us to deal with threads wholesale: we can use it to
arrange threads in groups and deal with the groups as a whole. A thread group can contain
other thread groups, in addition to individual threads, so our arrangements can be
hierarchical. Thread groups are particularly useful when we want to start a task that might
create many threads of its own. By assigning the task a thread group, we can later identify
and control all the task's threads. Thread groups are also the subject of restrictions that can
be imposed by the Java Security Manager. So we can restrict a thread's behavior according
to its thread group. For example, we can forbid threads in a particular group from
interacting with threads in other groups. This is one way web browsers can prevent threads
started by Java applets from stopping important system threads.

When we create a thread, it normally becomes part of the thread group to which the
currently running thread belongs. To create a new thread group of our own, we can call the
constructor:

ThreadGroup myTaskGroup = new ThreadGroup("My Task Group");

The ThreadGroup constructor takes a name, which a debugger can use to help you
identify the group. (You can also assign names to the threads themselves.) Once we have a
group, we can put threads in the group by supplying the ThreadGroup object as an
argument to the Thread constructor:

Thread myTask = new Thread(myTaskGroup, taskPerformer);

Here, myTaskGroup is the thread group, and taskPerformer is the target object
(the Runnable object that performs the task). Any additional threads that myTask
creates also belong to the myTaskGroup thread group.

8.5.1 Working with the ThreadGroup Class

Creating thread groups isn't interesting unless you do things with them. The
ThreadGroup class exists so that you can control threads in batches. It has methods that
parallel the basic Thread control methods-even the deprecated stop() ,
suspend() , and resume() . These methods in the thread group operate on all the
threads they contain. You can also mark a thread group as a "daemon"; a daemon thread

http://lib.ommolketab.ir
http://lib.ommolketab.ir

group is automatically removed when all its children are gone. If a thread group isn't a
daemon, you have to call destroy() to remove it when it is empty.

We can set the maximum priority for threads created in a thread group by calling
setMaximumPriority() . Thereafter, no threads can be created in the thread group
with a priority higher than the maximum; threads that change their priority can't set their
new priority higher than the maximum.

Finally, you can get a list of all threads in a group. The method activeCount() tells
you how many threads are in the group; the method enumerate() gives you a list of
them. The argument to enumerate() is an array of Thread s, which enumerate()
fills in with the group's threads. (Use activeCount() to make an array of the right
size.) Both activeCount() and enumerate() operate recursively on all thread
groups the group contains.

It is also the responsibility of the ThreadGroup to handle uncaught runtime exceptions
thrown by the run() methods of its threads. You can override the
uncaughtException() method of ThreadGroup when making your own thread
groups to control this behavior.

8.6 Thread Performance

The way that applications use threads and the associated costs and benefits have greatly
impacted the design of many Java APIs. We will discuss some of the issues in detail in
other chapters of this book. But it is worth mentioning briefly here some aspects of thread
performance and how the use of threads has dictated the form and functionality of several
recent Java packages.

8.6.1 The Cost of Synchronization

The act of acquiring locks to synchronize threads, even when there is no contention, takes
time. In older implementations of Java this time could be significant. With newer VMs, it is
almost negligible.[7] However, unnecessary synchronization at a low level can still slow
applications where legitimate concurrent access would be proper and could be more
efficiently organized at a higher level of abstraction. Because of this, two important APIs
were specifically crafted to avoid unnecessary synchronization, by placing it under the
control of the developer: the Java Collections API and the Swing GUI API.

The java.util Collections API replaces earlier simple Java aggregate types-namely
Vector and Hashtable-with more fully featured and, notably, unsynchronized types (List

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and HashMap). The Collections API allows application code to synchronize access to
collections and provides special "fail fast" functionality to help detect concurrent access
and throw an exception. It also provides synchronization "wrappers" that can provide safe
access in the old style.

The Java Swing GUI, which grew out of AWT, has taken a different very approach to
providing speed and safety. Swing dictates that modification of its components (with
notable exceptions) must all be done by a single thread: the main event queue. Swing
solves performance problems as well as nasty issues of determinism in ordering of events
by forcing a single super-thread to control the GUI. The application may access the event
queue thread indirectly by pushing commands onto a queue through a simple interface.

8.6.2 Thread Resource Consumption

A fundamental pattern in Java, which we will see illustrated in Chapter 11 and Chapter 12 ,
is to start many threads to handle asynchronous external resources such as socket
connections. For maximum efficiency, a web server might, for example, be tempted to
create a thread for each client connection it is servicing. With each client having its own
thread, I/O operations may block and restart as needed. But as efficient as this may be in
terms of throughput, it is very inefficient in terms of server resources. Threads consume
memory; each thread has its own "stack" for local variables, and switching between
running threads (context switching) adds overhead to the CPU. While threads are relatively
lightweight (in theory it is possible to have hundreds or perhaps thousands running on a
large server) at a certain point the resources consumed by the threads themselves start
defeating the purpose of starting more threads. Often this point is reached at only a few
dozen threads. Creating a thread per client is not a very scaleable option.

An alternative approach is to create "thread pools" where a fixed number of threads pull
tasks from a queue and return for more when they are finished. This recycling of threads
makes for solid scalability, but it has historically been difficult to implement efficiently in
Java because stream I/O (for things like sockets) has not fully supported nonblocking
operations. This has changed with Java 1.4 and the introduction of the NIO (new I/O)
package, java.nio . The NIO package introduces asynchronous I/O channels:
nonblocking reads and writes along with the ability to "select" or test the readiness of
streams for moving data. Channels can also be asynchronously closed, allowing threads to
work gracefully. With the NIO package, it should be possible to create servers with much
more sophisticated, scaleable thread patterns.

[1] interrupt() does not work in versions of Java prior to 1.1 and, historically, has not

worked consistently in all Java implementations.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[2] Don't confuse the term "serialize" in this context with Java object serialization, which is a
mechanism for making objects persistent. But the underlying meaning (to place one thing after
another) does apply to both. In the case of object serialization, it is the object's data which is
laid out, byte for byte, in a certain order.

[3] In actuality, they don't really pass the lock around; the lock becomes available and, as
we'll describe, a thread that is scheduled to run acquires it.

[4] A notable alternative to this is the "real-time" Java specification which defines specialized
thread behavior for certain types of applications. It is being developed under the Java
community process and can be found at http://www.rtj.org/ .

[5] Java Threads by Scott Oaks and Henry Wong (O'Reilly) includes a detailed discussion of
synchronization, scheduling, and other thread-related issues.

[6] In the beginning, with Java's Release 1.0, Sun's Interpreter for Windows used time-slicing,
as did the Netscape Navigator Java VM. Sun's Java 1.0 for Solaris didn't. All modern
implementations using "real threads" should perform time-slicing, so this question is largely
settled.

[7] In a completely naïve test (simple loop) using JDK 1.4.0 on a 400-MHz Sparc Ultra-60, we
measured the cost of synchronization on an object to be about one-tenth of a microsecond.
However, when the lock is contested it would surely be more expensive.

CONTENTS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

Chapter 9. Working with Text

 9.1 Other Text-Related APIs

 9.2 Strings
 9.3 Parsing and Formatting Text

 9.4 Internationalization

 9.5 The java.text Package

 9.6 Regular Expressions

If you've been reading this book sequentially, you've read all about the core Java language
constructs, including the object-oriented aspects of the language and the use of threads.
Now it's time to shift gears and start talking about the Java Application Programming
Interface (API), the collection of classes that comprise the standard Java packages and
come with every Java implementation. Java's core packages are one of its most
distinguishing features. Many other object-oriented languages have similar features, but
none has as extensive a set of standardized APIs and tools as Java does. This is both a
reflection of and a reason for Java's success. Table 9-1 lists the most important packages in
the API and shows which chapters discuss each of the packages.

Table 9-1. Java API packages

Package Contents Chapter

java.applet The Applet API 22

java.beans JavaBeans API 21

java.io , java.nio Input and output 11

java.lang ,
java.lang.ref

Basic language classes 4, 5, 6, 7, 8, 9

java.lang.reflect Reflection 7

java.net , java.rmi Networking and Remote Method
Invocation classes

12

java.text ,
java.util.regex

International text classes and regular
expressions

9

java.util Utilities and collections classes 9, 10, 11

As you can see in Table 9-1 , we examined some classes in java.lang in earlier
chapters on the core language constructs. Starting with this chapter, we throw open the
Java toolbox and begin examining the rest of the API classes, starting with text-related
utilities, because they are fundamental to all kinds of applications.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

javax.swing , java.awt Swing GUI and 2D graphics
15, 16, 17, 18,
19

As you can see in Table 9-1 , we examined some classes in java.lang in earlier
chapters on the core language constructs. Starting with this chapter, we throw open the
Java toolbox and begin examining the rest of the API classes, starting with text-related
utilities, because they are fundamental to all kinds of applications.

We begin our exploration with some of the fundamental language classes in java.lang
concerning strings. Figure 9-1 shows the class hierarchy of the java.lang package.

Figure 9-1. The java.lang package

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We'll also look at some of the classes in java.util in this chapter, including locales for
internationalization. We'll cover more classes in java.util , including classes that
support math, date and time values, collections, and many more in Chapter 10 . Figure 9-2
shows the class hierarchy of the java.util package.

Figure 9-2. The java.util package

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.1 Other Text-Related APIs

In this chapter, we cover most of the special-purpose, text-related APIs in Java, including
classes for simple parsing of words and numbers, text formatting, internationalization, and
regular expressions. But since so much of what we do with computers is oriented around
text, classifying some APIs as text-related can be somewhat arbitrary. Some of the text-
related packages we cover in the next chapter include the Java Calendar API, the Properties
and User Preferences APIs, and the Logging API. But probably the most important new
tools in the text arena are those for working with the Extensible Markup Language, XML.
In Chapter 23 , we cover this topic in detail, along with the XSL/XSLT stylesheet
language. Together they provide a powerful framework for rendering documents.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.2 Strings

Now we take a closer look at the Java String class (or, more specifically,
java.lang.String). Because strings are used so extensively, the Java String
class has quite a bit of functionality. We'll test-drive most of the important features, but if
you want to go deeper, you should refer to a Java class reference manual such as the Java
Fundamental Classes Reference by Mark Grand and Jonathan Knudsen (O'Reilly).

A String object encapsulates a sequence of Unicode characters. Strings are immutable;
once you create a String object, you can't change its value. Operations that appear to
change the content or length of a string instead return a new String object that copies or
internally references the needed characters of the original. Java implementations make an
effort to consolidate identical strings and string literals in the same class into a shared-
string pool.

9.2.1 String Constructors

Literal strings are allocated with double quotes and can be assigned to a String variable:

String quote = "To be or not to be";

Java automatically converts the literal string into a String object. If you're a C or C++
programmer, you may be wondering about the internal structure of this string; you don't
have to worry about this with Java strings. We've said that the String class stores
Unicode characters, and Java uses arrays internally to hold them. But the details are
encapsulated in the String class, so you don't have to worry about them.

As always, arrays in Java are real objects that know their own length, so String objects
in Java don't require special terminators. If you need to know the length of a String , use
the length() method:

int length = quote.length();

Strings can take advantage of the only overloaded operator in Java, the + operator, for
string concatenation. The following code produces equivalent strings:

String name = "John " + "Smith";
String name = "John ".concat("Smith");

Literal strings can't span lines in Java source files, but we can concatenate lines to produce
the same effect:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

String poem =
 "'Twas brillig, and the slithy toves\n" +
 " Did gyre and gimble in the wabe:\n" +
 "All mimsy were the borogoves,\n" +
 " And the mome raths outgrabe.\n";

Embedding lengthy text in source code should now be a thing of the past, given that we can
retrieve a String from anywhere on the planet via a URL. In Chapter 13 , we'll see how
to do things like this:

String poem = (String) new URL(
 "http://myserver/~dodgson/jabberwocky.txt").getContent();

In addition to making strings from literal expressions, you can construct a String from
an array of characters:

char [] data = new char [] { 'L', 'e', 'm', 'm', 'i', 'n', 'g' };
String lemming = new String(data);

You can also construct a String from an array of bytes:

byte [] data = new byte [] { (byte)97, (byte)98, (byte)99 };
String abc = new String(data, "ISO8859_1");

The second argument to the String constructor for byte arrays is the name of an
encoding scheme. The String construct uses it to convert the given bytes to Unicode
characters. Unless you know something about Unicode, you can use the form of the
constructor that accepts a byte array only; the default encoding scheme on your system will
be used.[1]

Conversely, the charAt() method of the String class lets you access the characters of
a String in an array-like fashion:

String s = "Newton";
for (int i = 0; i < s.length(); i++)
 System.out.println(s.charAt(i));

This code prints the characters of the string one at a time. Alternately, we can get the
characters all at once with toCharArray() . Here's a way to save typing a bunch of
single quotes:

char [] abcs = "abcdefghijklmnopqrstuvwxyz".toCharArray();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

9.2.2 Strings from Things

We can get the string representation of most things with the static String.valueOf()
method. Various overloaded versions of this method give us string values for all of the
primitive types:

String one = String.valueOf(1);
String two = String.valueOf(2.384f);
String notTrue = String.valueOf(false);

All objects in Java have a toString() method, inherited from the Object class. For
class-type references, String.valueOf() invokes the object's toString()
method to get its string representation. If the reference is null , the result is the literal
string "null":

String date = String.valueOf(new Date());
System.out.println(date); // "Sun Dec 19 05:45:34 CST 2002"

date = null;
System.out.println(date); // "null"

Because string concatenation uses the valueOf() method internally, it's common to use
the empty string and the plus operator (+) to get the string value of any object. For
example:

String two = "" + 2.384f;
String today = "" + new Date();

9.2.3 Comparing Strings

The standard equals() method can compare strings for equality ; they contain exactly
the same characters. You can use a different method, equalsIgnoreCase() , to
check the equivalence of strings in a case-insensitive way:

String one = "FOO";
String two = "foo";

one.equals(two); // false
one.equalsIgnoreCase(two); // true

A common mistake for novice programmers in Java is to compare strings with the ==
operator when they mean to use the equals() method. Remember that strings are

http://lib.ommolketab.ir
http://lib.ommolketab.ir

objects in Java, and == tests for object identity , that is, whether the two arguments being
tested are the same object. In Java, it's easy to make two strings that have the same
characters but are not the same string object. For example:

String foo1 = "foo";
String foo2 = String.valueOf(new char [] { 'f', 'o', 'o' });

foo1 == foo2 // false!
foo1.equals(foo2) // true

This mistake is particularly dangerous, because it often works for the common case in
which you are comparing literal strings (strings declared with double quotes right in the
code). The reason for this is that Java tries to manage strings efficiently by combining
them. At compile time, Java finds all the identical strings within a given class and makes
only one object for them. This is safe because strings are immutable and cannot change.
You can coalesce strings in this way at runtime using the String intern() method.
Interning a string returns an equivalent string reference that is unique across the VM.

The compareTo() method compares the lexical value of the String to another
String , determining whether it sorts alphabetically earlier than, the same as, or later
than the target string. It returns an integer that is less than, equal to, or greater than zero:

String abc = "abc";
String def = "def";
String num = "123";

if (abc.compareTo(def) < 0) // true
if (abc.compareTo(abc) == 0) // true
if (abc.compareTo(num) > 0) // true

On some systems, the behavior of lexical comparison is complex, and obscure alternative
character sets exist. Java avoids this problem by comparing characters strictly by their
position in the Unicode specification.

9.2.3.1 The Collator class

The java.text package provides a sophisticated set of classes for comparing strings,
even in different languages. German, for example, has vowels with umlauts and another
character that resembles the Greek letter beta and represents a double "s." How should we
sort these? Although the rules for sorting such characters are precisely defined, you can't
assume that the lexical comparison we used earlier has the correct meaning for languages

http://lib.ommolketab.ir
http://lib.ommolketab.ir

other than English. Fortunately, the Collator class takes care of these complex sorting
problems.

In the following example, we use a Collator designed to compare German strings. You
can obtain a default Collator by calling the Collator.getInstance() method
with no arguments. Once you have an appropriate Collator instance, you can use its
compare() method, which returns values just like String 's compareTo() method.
The following code creates two strings for the German translations of "fun" and "later,"
using Unicode constants for these two special characters. It then compares them, using a
Collator for the German locale;[2] the result is that "fun" (Spaß) sorts before "later"
(später).

String fun = "Spa\u00df";
String later = "sp\u00e4ter";
Collator german = Collator.getInstance(Locale.GERMAN);
if (german.compare(fun, later) < 0) // true

Using collators is essential if you're working with languages other than English. In
Spanish, for example, "ll" and "ch" are treated as separate characters and alphabetized
separately. A collator handles cases like these automatically.

9.2.4 Searching

The String class provides several simple methods for finding fixed substrings within a
string. The startsWith() and endsWith() methods compare an argument string
with the beginning and end of the String , respectively:

String url = "http://foo.bar.com/";
if (url.startsWith("http:")) // true

The indexOf() method searches for the first occurrence of a character or substring and
returns the starting character position:

String abcs = "abcdefghijklmnopqrstuvwxyz";
int i = abcs.indexOf('p'); // 15
int i = abcs.indexOf("def"); // 3

Similarly, lastIndexOf() searches for the last occurrence of a character or substring
in a target string.

For more complex searching, you can use the new Regular Expression API, which allows
you to look for and parse complex patterns. We'll talk about regular expressions later in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

this chapter.

9.2.5 Editing

A number of methods operate on the String and return a new String as a result.
While this is useful, you should be aware that creating lots of strings in this manner can
affect performance. If you need to modify a string often, you should use the
StringBuffer class, as we'll discuss shortly.

trim() is a useful method that removes leading and trailing whitespace (i.e., carriage
return, newline, and tab) from the String :

String str = " abc ";
str = str.trim(); // "abc"

In this example, we have thrown away the original String (with excess whitespace), so
it will be garbage-collected.

The toUpperCase() and toLowerCase() methods return a new String of the
appropriate case:

String down = "FOO".toLowerCase(); // "foo"
String up = down.toUpperCase(); // "FOO"

substring() returns a specified range of characters. The starting index is inclusive; the
ending is exclusive:

String abcs = "abcdefghijklmnopqrstuvwxyz";
String cde = abcs.substring(2, 5); // "cde"

As of Java 1.4, the String class adds two new methods that allow you to do pattern
substitution: replaceAll() and replaceFirst() . We'll talk about these when we
discuss regular expressions later in this chapter.

9.2.6 String Method Summary

Many people complain when they discover that the Java String class is final (i.e., it can't
be subclassed). There is a lot of functionality in String , and it would be nice to be able
to modify its behavior directly. The String class is final because of performance and
security implications. With final classes, the Java VM can make implementation-dependent
optimizations, and since strings are used ubiquitously throughout the Java APIs,
subclassing at the very least needs to be scrutinized carefully for security issues. Table 9-2

http://lib.ommolketab.ir
http://lib.ommolketab.ir

summarizes the methods provided by the String class.

Table 9-2. String methods

Method Functionality

charAt() Gets a particular character in the string

compareTo() Compares the string with another string

concat() Concatenates the string with another string

copyValueOf() Returns a string equivalent to the specified character array

endsWith() Checks whether the string ends with a specified suffix

equals() Compares the string with another string

equalsIgnoreCase() Compares the string with another string, ignoring case

getBytes() Copies characters from the string into a byte array

getChars() Copies characters from the string into a character array

hashCode() Returns a hashcode for the string

indexOf() Searches for the first occurrence of a character or substring in
the string

intern() Fetches a unique instance of the string from a global shared-
string pool

lastIndexOf() Searches for the last occurrence of a character or substring in
a string

length() Returns the length of the string

regionMatches() Checks whether a region of the string matches the specified
region of another string

replace() Replaces all occurrences of a character in the string with
another character

startsWith() Checks whether the string starts with a specified prefix

substring() Returns a substring from the string

toCharArray() Returns the array of characters from the string

toLowerCase() Converts the string to lowercase

toString() Returns the string value of an object

toUpperCase() Converts the string to uppercase

trim() Removes leading and trailing whitespace from the string

valueOf() Returns a string representation of a value

http://lib.ommolketab.ir
http://lib.ommolketab.ir

matches() Determines if the whole string matches a regular expression
pattern

replaceFirst() Replaces the first occurrence of a regular expression pattern
with a pattern

replaceAll() Replaces all occurrences of a regular expression pattern with
a pattern

split() Splits the string into an array of strings using a regular
expression pattern as a delimiter

9.2.7 The java.lang.StringBuffer Class

In contrast to the immutable string, the java.lang.StringBuffer class is a
modifiable and expandable buffer for characters. It's an efficient alternative to code like
this:

String ball = "Hello";
ball = ball + " there.";
ball = ball + " How are you?";

This example repeatedly produces new String objects. The character array must be
copied over and over, which can adversely affect performance. A more economical
alternative is to use a StringBuffer object and its append() method:

StringBuffer ball = new StringBuffer("Hello");
ball.append(" there.");
ball.append(" How are you?");

The StringBuffer class provides a number of overloaded append() methods for
appending any type of data to the buffer.

We can get a String back from the StringBuffer with its toString() method:

String message = ball.toString();

You can also retrieve part of a StringBuffer , as a String , using one of the
substring() methods.

StringBuffer also provides a number of overloaded insert() methods for
inserting various types of data at a particular location in the string buffer. Furthermore, you
can remove a single character or a range of characters with the deleteCharAt() and
delete() methods. Finally, you can replace part of the StringBuffer with the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

contents of a String using the replace() method.

The String and StringBuffer classes cooperate so that even in this last operation,
no copy of the data has to be made. The string data is shared between the objects, unless
and until we try to change it in the StringBuffer .

You should use a StringBuffer instead of a String any time you need to keep
adding characters to a string; it's designed to handle such modifications efficiently. You
still have to convert the StringBuffer to a String when you need to use any of the
methods in the String class, but you can print a StringBuffer directly using
System.out.println() because println() calls the toString() method for
you.

Another thing you should know about StringBuffer methods is that they are thread-
safe (like most methods in the Java APIs). This means that multiple threads can work on
the same StringBuffer instance, and modifications happen sequentially (without
interfering).

You might be interested to know that the compiler uses a StringBuffer to implement
String concatenation. Consider the following expression:

String foo = "To " + "be " + "or";

It is equivalent to:

String foo = new
 StringBuffer().append("To ").append("be ").append("or").toString();

9.2.8 The java.util.StringTokenizer Class

A common programming task involves parsing a string of text into words or "tokens" that
are separated by some set of delimiter characters. The
java.util.StringTokenizer class is a utility that does just this. Before we go
on, we should mention that in Java 1.4 the String class itself, in conjunction with the
new regular expression package, has added string-tokenizing capabilities that are more
powerful and convenient to use than the simple StringTokenizer . So we'll cover
this topic again when we talk about splitting strings using the String split() method
in the section of this chapter on regular expressions.

Let's look at an example using StringTokenizer . The following snippet reads words
from the string text :

http://lib.ommolketab.ir
http://lib.ommolketab.ir

String text = "Now is the time for all good men (and women)...";
StringTokenizer st = new StringTokenizer(text);

while (st.hasMoreTokens()) {
 String word = st.nextToken();
 ...
}

First, we create a new StringTokenizer from the String . We invoke the
hasMoreTokens() and nextToken() methods to loop over the words of the text.
By default, the StringTokenizer class uses standard whitespace characters-carriage
return, newline, and tab-as delimiters.

The StringTokenizer is an enumeration. It implements the
java.util.Enumeration interface, which means that StringTokenizer also
implements two more general methods for accessing elements: hasMoreElements()
and nextElement() . These methods are defined by the Enumeration interface;
they provide a standard way to return a sequence of values. The Enumeration interface
is implemented by many items that return sequences or collections of objects. The
advantage of nextToken() is that it returns a String , whereas nextElement()
returns an Object type that must be cast. We'll talk about enumerations and iterators
(another interface for the same concept) in the next chapter.

You can also specify your own set of delimiter characters in the StringTokenizer
constructor, using another String argument to the constructor. Any contiguous
combination of the specified characters that appears in the target string is treated as the
equivalent of whitespace for tokenizing:

text = "http://foo.bar.com/";
tok = new StringTokenizer(text, "/:");

if (tok.countTokens() < 2)
 ... // bad URL

String protocol = tok.nextToken(); // "http"
String host = tok.nextToken(); // "foo.bar.com"

This example parses a URL specification to get at the protocol and host components. The
characters / and : are used as separators. The countTokens() method provides a fast
way to see how many tokens will be returned by nextToken() without actually
creating the String objects.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

StringTokenizer can do a few more tricks. An overloaded form of nextToken()
accepts a string that defines a new delimiter set for that and subsequent reads. The
StringTokenizer constructor also accepts a flag that specifies that separator
characters are to be returned individually as tokens themselves. By default, the delimiter
characters are skipped over and not returned.

Again, we'll return to this topic when we talk about regular expressions and the String
split() method later in this chapter.

9.3 Parsing and Formatting Text

Parsing and formatting text is a large and open-ended topic. So far in this chapter we've
looked at only primitive operations on strings-creation, basic editing, searching, and
simple tokenizing. Now we'd like to move on to more structured forms of text. Java has a
rich set of APIs for parsing and printing formatted strings, including numbers, dates, times,
and currency values. We'll cover most of these topics in this chapter, but we'll wait to
discuss date and time formatting until Chapter 10 .

In this section, we're going to talk about just one of the more common operations: parsing
primitive numbers. Later in this chapter we'll delve into the java.text package, which
provides full-blown parsing and formatting tools. We'll also look at the topic of
internationalization to see how Java can help "localize" parsing and formatting of text,
numbers, and dates for particular nationalities. Finally we'll take a detailed look at regular
expressions, which are the newest and most powerful text-parsing tool Java offers. Regular
expressions let you define your own patterns of arbitrary complexity, search for them, and
parse them from text.

9.3.1 Parsing Primitive Numbers

In Java, numbers and booleans are primitive types-not objects. But for each primitive
type, Java also defines a primitive wrapper class. Specifically, the java.lang package
includes the following classes: Byte , Short , Integer , Long , Float , Double ,
and Boolean . We'll talk about these in detail in Chapter 10 , but we bring them up now
because these classes hold static utility methods that know how to parse their respective
types from strings.

For example, the Integer and Long classes provide the static methods
Integer.parseInt() and Long.parseLong() that read a String and return
the corresponding primitive type:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

int n = Integer.parseInt("42");
long l = Long.parseLong("99999999999");

The Float and Double classes provide the static methods Float.parseFloat()
and Double.parseDouble() for parsing strings into floating-point primitives:

float f = Float.parseFloat("4.2");
double d = Double.parseDouble("99.99999999");

The Boolean class deviates from this a little. Instead of having a "parse" method, you
must construct a Boolean wrapper object from your string and then ask it for its value:

boolean b = new Boolean("true").booleanValue();

The reason for this will become clearer when we examine the other uses for the primitive
wrappers. Primitive wrappers support many "value" methods that allow you to convert
between types.

9.3.1.1 Working with alternate bases

It's easy to parse integer type numbers (byte , short , int , long) in alternate number
bases. You can use the parse methods of the primitive wrapper classes, simply specifying
the base as a second parameter:

long l = Long.parseLong("CAFEBABE", 16); // l = 3405691582
byte b = Byte.parseByte ("12", 8); // b = 10

You can also convert a long or integer value to a string value in a specified base using
special static toString() methods of the Integer and Long classes:

String s = Long.toString(3405691582L, 16); // s = "cafebabe"

For convenience, each class also has a static toHexString() method for working with
base 16:

String s = Integer.toHexString(255).toUpper(); // s = "FF";

We'll revisit numeric parsing and formatting later in this chapter when we cover the
NumberFormat class of the java.text package.

9.3.1.2 Number formats

Although we can parse simple numbers in this way for simple cases, we are not taking into

http://lib.ommolketab.ir
http://lib.ommolketab.ir

account the conventions used internationally. Let's pretend for a moment that we are
programming Java in the rolling hills of Tuscany (some of you may not have to pretend).
We would follow the local customs for representing numbers and write code like the
following:

double d = Double.parseDouble("1.234,56"); // oops!

Unfortunately, this code throws a NumberFormatException , which is a runtime
exception thrown whenever a number cannot be parsed. We'll see how to handle number
formatting for different countries using the java.text package next.

9.4 Internationalization

The Java virtual machine lets us write code that executes in the same way on any Java
platform. But in a global marketplace, that is only half the battle. A big question remains:
will the application content and data be understandable to end users all over the world?
Must users know English to use your application? The answer is that Java provides
thorough support for customizing the language components of your application for most
modern languages and dialects. In this section, we'll talk about the concepts of
internationalization (often abbreviated "I18N") and the classes that support them.

9.4.1 The java.util.Locale Class

Internationalization programming revolves around the Locale class. The class itself is
very simple; it encapsulates a country code, a language code, and a rarely used variant
code. Commonly used languages and countries are defined as constants in the Locale
class. (It's ironic that these names are all in English.) You can retrieve the codes or readable
names, as follows:

Locale l = Locale.ITALIAN;
System.out.println(l.getCountry()); // IT
System.out.println(l.getDisplayCountry()); // Italy
System.out.println(l.getLanguage()); // it
System.out.println(l.getDisplayLanguage()); // Italian

The country codes comply with ISO 3166. You will find a complete list of country codes at
http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html . The language codes comply
with ISO 639. A complete list of language codes is at
http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt . There is no official set of variant
codes; they are designated as vendor-specific or platform-specific.

http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html
http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt
http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can retrieve the default Locale for your location with the static
Local.getDefault() method.

Various classes throughout the Java API use a Locale to decide how to represent
themselves. We ran into one earlier when talking about sorting text with the Collator
class. We'll also use them later in this chapter to format numbers and currency, and again in
the next chapter with the DateFormat class, which uses Locale s to determine how to
format and parse dates and times.

9.4.2 Resource Bundles

If you're writing an internationalized program, you want all the text that is displayed by
your application to be in the correct language or languages. Given what you have just
learned about locales, you could customize your application by testing for the current
locale and printing different messages. This would quickly get cumbersome, however,
because the messages for all locales would be hardcoded in your source code.
ResourceBundle and its subclasses offer a cleaner, more flexible solution.

A ResourceBundle is a collection of objects your application can access by name. It
acts much like the Hashtable or Map collections we'll discuss in Chapter 10 , looking
up objects based on String s that serve as keys. A ResourceBundle of a given
name may be defined for many different Locale s. To get a particular
ResourceBundle , call the factory method ResourceBundle.getBundle() ,
which accepts the name of the ResourceBundle and a Locale . The following
example gets the ResourceBundle named "Message" for two Locale s; from each
bundle, it retrieves the message whose key is "HelloMessage" and prints the message:

//file: Hello.java
import java.util.*;

public class Hello {
 public static void main(String[] args) {
 ResourceBundle bun;
 bun = ResourceBundle.getBundle("Message", Locale.ITALY);
 System.out.println(bun.getString("HelloMessage"));
 bun = ResourceBundle.getBundle("Message", Locale.US);
 System.out.println(bun.getString("HelloMessage"));
 }
}

The getBundle() method throws the runtime exception

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MissingResourceException if an appropriate ResourceBundle cannot be
located.

ResourceBundle s are defined in three ways. They can be standalone classes, in which
case they are either subclasses of ListResourceBundle or direct implementations of
ResourceBundle . They can also be backed by a property file, in which case they are
represented at runtime by a PropertyResourceBundle object.
ResourceBundle.getBundle() returns either a matching class or an instance of
PropertyResourceBundle corresponding to a matching property file. The
algorithm used by getBundle() is based on appending the country and language codes
of the requested Locale to the name of the resource. Specifically, it searches for
resources in this order:

name_language_country_variant
name_language_country
name_language
name
name_default-language_default-country_default-variant
name_default-language_default-country
name_default-language

In this example, when we try to get the ResourceBundle named Message , specific
to Locale.ITALY , it searches for the following names (no variant codes are in the
Locale s we are using):

Message_it_IT
Message_it
Message
Message_en_US
Message_en

Let's define the Message_it_IT ResourceBundle now, using the lowest level
mechanism, a subclass of ListResourceBundle :

import java.util.*;

public class Message_it_IT extends ListResourceBundle {
 public Object[][] getContents() {
 return contents;
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 static final Object[][] contents = {
 {"HelloMessage", "Buon giorno, world!"},
 {"OtherMessage", "Ciao."},
 };
}

ListResourceBundle makes it easy to define a ResourceBundle class; all we
have to do is override the getContents() method. This method simply returns a two-
dimensional array containing the names and values of its resources. In this example,
contents[1][0] is the second key (OtherMessage), and contents [1][1]
is the corresponding message (Ciao.).

Now let's define a ResourceBundle for Locale.US . This time, we'll take the easy
way and make a property file. Save the following data in a file called
Message_en_US.properties :

HelloMessage=Hello, world!
OtherMessage=Bye.

So what happens if somebody runs your program in Locale.FRANCE , and no
ResourceBundle is defined for that Locale ? To avoid a runtime
MissingResourceException , it's a good idea to define a default
ResourceBundle . In our example, you can change the name of the property file to
Message.properties . That way, if a language- or country-specific
ResourceBundle cannot be found, your application can still run.

9.5 The java.text Package

The java.text package includes, among other things, a set of classes designed for
generating and parsing string representations of objects. In this section, we'll talk about
three classes: NumberFormat , ChoiceFormat , and MessageFormat . In
Chapter 10 , we'll cover the DateFormat class.

The NumberFormat class can be used to format and parse currency, percentages, or
plain old numbers. NumberFormat is an abstract class, but it has several useful factory
methods that produce formatters for different types of numbers. For example, to format or
parse currency strings, use getCurrencyInstance() :

double salary = 1234.56;
String here = // $1,234.56
 NumberFormat.getCurrencyInstance().format(salary);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

String italy = // L 1.234,56
 NumberFormat.getCurrencyInstance(Locale.ITALY).format(salary);

The first statement generates an American salary, with a dollar sign, a comma to separate
thousands, and a period as a decimal point. The second statement presents the same string
in Italian, with a lire sign, a period to separate thousands, and a comma as a decimal point.
Remember that NumberFormat worries about format only; it doesn't attempt to do
currency conversion. (That would require, among other things, access to a dynamically
updated table of exchange rates-a good opportunity for a JavaBean but too much to ask of
a simple formatter.) We can go the other way and parse a formatted value using the
parse() method, as we'll see in the next example.

Likewise, getPercentInstance() returns a formatter you can use for generating
and parsing percentages. If you do not specify a Locale when calling a
getInstance() method, the default Locale is used:

int progress = 44;
NumberFormat pf = NumberFormat.getPercentInstance();
System.out.println(pf.format(progress)); // "44%"
try {
 System.out.println(pf.parse("77.2%")); // "0.772"
}
catch (ParseException e) {}

And if you just want to generate and parse plain old numbers, use a NumberFormat
returned by getInstance() or its equivalent, getNumberInstance() :

NumberFormat guiseppe = NumberFormat.getInstance(Locale.ITALY);

// defaults to Locale.US
NumberFormat joe = NumberFormat.getInstance();

try {
 double theValue = guiseppe.parse("34.663,252").doubleValue();
 System.out.println(joe.format(theValue)); // "34,663.252"
}
catch (ParseException e) {}

We use guiseppe to parse a number in Italian format (periods separate thousands,
comma is the decimal point). The return type of parse() is Number , so we use the
doubleValue() method to retrieve the value of the Number as a double . Then we

http://lib.ommolketab.ir
http://lib.ommolketab.ir

use joe to format the number correctly for the default (U.S.) locale.

Here's a list of the factory methods for text formatters in the java.text package. Again,
we'll look at the DateFormat methods in the next chapter.

NumberFormat.getCurrencyInstance()
NumberFormat.getCurrencyInstance(Locale inLocale)
NumberFormat.getInstance()
NumberFormat.getInstance(Locale inLocale)
NumberFormat.getNumberInstance()
NumberFormat.getNumberInstance(Locale inLocale)
NumberFormat.getPercentInstance()
NumberFormat.getPercentInstance(Locale inLocale)
DateFormat.getDateInstance()
DateFormat.getDateInstance(int style)
DateFormat.getDateInstance(int style, Locale aLocale)
DateFormat.getDateTimeInstance()
DateFormat.getDateTimeInstance(int dateStyle, int timeStyle)
DateFormat.getDateTimeInstance(int dateStyle, int timeStyle, Locale aLocale)
DateFormat.getInstance()
DateFormat.getTimeInstance()
DateFormat.getTimeInstance(int style)
DateFormat.getTimeInstance(int style, Locale aLocale)

Thus far we've seen how to format numbers as text. Now we'll take a look at a class,
ChoiceFormat , that maps numerical ranges to text. ChoiceFormat is constructed
by specifying the numerical ranges and the strings that correspond to them. One
constructor accepts an array of double s and an array of String s, where each string
corresponds to the range running from the matching number up to (but not including) the
next number in the array:

double[] limits = new double [] {0, 20, 40};
String[] labels = new String [] {"young", "less young", "old"};
ChoiceFormat cf = new ChoiceFormat(limits, labels);
System.out.println(cf.format(12)); // young
System.out.println(cf.format(26)); // less young

You can specify both the limits and the labels using a special string in an alternative
ChoiceFormat constructor:

ChoiceFormat cf = new ChoiceFormat("0#young|20#less young|40#old");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

System.out.println(cf.format(40)); // old
System.out.println(cf.format(50)); // old

The limit and value pairs are separated by vertical bars (|); the number sign (#) separates
each limit from its corresponding value.

ChoiceFormat is most useful for handling pluralization in messages, enabling you to
avoid hideous constructions such as, "you have one file(s) open". You can create readable
error messages by using ChoiceFormat along with the MessageFormat class. To
construct a MessageFormat , pass it a pattern string. A pattern string is a lot like the
string you feed to the printf() function in C/C++, although the syntax is different.
Arguments are delineated by curly brackets and may include information about how they
should be formatted. Each argument consists of a number, an optional type, and an optional
style, as summarized in Table 9-3 .

Table 9-3. MessageFormat arguments

Type Styles

Choice Pattern

Date short , medium , long , full , pattern

Number integer , percent , currency , pattern

Time short , medium , long , full , pattern

Let's use an example to clarify all this:

MessageFormat mf = new MessageFormat("You have {0} messages.");
Object[] arguments = {"no"};
System.out.println(mf.format(arguments)); // "You have no messages."

We start by constructing a MessageFormat object; the argument to the constructor is
the pattern on which messages are based. The special incantation {0} means "use element
zero from the array of arguments supplied to the format() method." When we generate
a message by calling format() , we pass in values to replace the placeholders ({0} ,
{1} , ...) in the template. In this case, we pass the array arguments[] to mf.format
; this substitutes arguments[0] , yielding the result, You have no messages.

Let's try this example again, but this time, we'll format a number and a date instead of a
string argument:

MessageFormat mf = new MessageFormat(

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 "You have {0, number, integer} messages on {1, date, long}.");
Object[] arguments = {new Integer(93), new Date()};

// "You have 93 messages on April 10, 2002."
System.out.println(mf.format(arguments));

In this example, we need to fill in two spaces in the template, so we need two elements in
the arguments[] array. Element 0 must be a number and is formatted as an integer.
Element 1 must be a Date and is printed in the long format. When we call format() ,
the arguments[] array supplies these two values.

This is still sloppy. What if there is only one message? To make this grammatically correct,
we can embed a ChoiceFormat -style pattern string in our MessageFormat pattern
string:

MessageFormat mf = new MessageFormat(
 "You have {0, number, integer} message{0, choice, 0#s|1#|2#s}.");
Object[] arguments = {new Integer(1)};

// "You have 1 message."
System.out.println(mf.format(arguments));

In this case, we use element 0 of arguments[] twice: once to supply the number of
messages and once to provide input to the ChoiceFormat pattern. The pattern says to
add an s if argument 0 has the value zero or is two or more.

Finally, a few words on how to be clever. If you want to write international programs, you
can use resource bundles to supply not only the text of messages, but the strings for your
MessageFormat objects, as well. Thus you can automatically format messages that are
in the appropriate language with dates and other language-dependent fields handled
appropriately.

In this context, it's helpful to realize that messages don't need to read elements from the
array in order. In English, you would say, "Disk C has 123 files"; in some other language,
you might say, "123 files are on Disk C." You could implement both messages with the
same set of arguments:

MessageFormat m1 = new MessageFormat(
 "Disk {0} has {1, number, integer} files.");
MessageFormat m2 = new MessageFormat(
 "{1, number, integer} files are on disk {0}.");
Object[] arguments = {"C", new Integer(123)};

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In real life, the code could be even more compact; you'd use only a single
MessageFormat object, initialized with a string taken from a resource bundle.

9.6 Regular Expressions

Now it's time to take a brief detour on our trip through Java and enter the land of regular
expressions . A regular expression, or regex for short, describes a text pattern. Regular
expressions are used with many tools-including the java.util.regex package, text
editors, and many scripting languages-to provide sophisticated text-searching and
powerful string-manipulation capabilities.

If you are already familiar with the concept of regular expressions and how they are used
with other languages, you may wish to simply skim this section. At minimum you'll need to
look at Section 9.6.2 , which covers the Java package necessary to use them. On the other
hand, if you've come to this point on your Java journey with a clean slate on this topic, and
you're wondering exactly what regular expressions are, then pop open your favorite
beverage and get ready. You are about to learn about the most powerful tool in the arsenal
of text manipulation and what is, in fact, a tiny language within a language, all in the span
of a few pages.

9.6.1 Regex Notation

A regular expression describes a pattern in text. By pattern, we mean just about any feature
you can imagine identifying in text from the literal characters alone, without actually
understanding their meaning. This includes features such as words, word groupings, lines
and paragraphs, punctuation, case, and more generally, strings and numbers with a specific
structure to them, such as phone numbers, email addresses, and quoted phrases. With
regular expressions you can search the dictionary for all the words that have the letter "q"
without its pal "u" next to it, or words that start and end with the same letter. Once you
have constructed a pattern, you can use simple tools to hunt for it in text or to determine if
a given string matches it. A regex can also be arranged to help you dismember specific
parts of the text it matched, which you could then use as elements of replacement text if
you wish.

9.6.1.1 Write once, run away

Before moving on, we should say a few words about regular expression syntax in general.
At the beginning of this section, we casually mentioned that we would be discussing a new
language. Regular expressions do, in fact, comprise a simple form of programming

http://lib.ommolketab.ir
http://lib.ommolketab.ir

language. If you think for a moment about the examples we cited earlier, you can see that
something like a language is going to be needed to describe even simple patterns-such as
email addresses-that have some variation in form.

A computer science textbook would classify regular expressions at the bottom of the
hierarchy of computer languages, in terms of both what they can describe and what you can
do with them. They are still capable of being quite sophisticated, however. As with most
programming languages, the elements of regular expressions are simple, but they can be
built up in combination to arbitrary complexity. And that is where things start to get sticky.

Since regexes work on strings, it is convenient to have a very compact notation that can be
easily wedged between characters. But compact notation can be very cryptic, and
experience shows that it is much easier to write a complex statement than to read it again
later. Such is the curse of the regular expression. You may find that in a moment of late-
night, caffeine-fueled inspiration, you can write a single glorious pattern to simplify the
rest of your program down to one line. When you return to read that line the next day,
however, it may look like just so much Egyptian hieroglyphics to you. Simpler is generally
better. If you can break your problem down and do it more clearly in several steps, maybe
you should.

9.6.1.2 Escaped characters

Now that you're properly warned, we have to throw one more thing at you before we build
you back up. Not only can the regex notation get a little hairy, but it is also somewhat
ambiguous with ordinary Java strings. An important part of the notation is the escaped
character, a character with a backslash in front of it. For example, the escaped d character,
\d , is shorthand that matches any single digit character (0-9). However, you cannot
simply write "\d" as part of a Java string, because Java uses the backslash for its own
special characters and to specify Unicode character sequences. Fortunately, Java gives us a
replacement: an escaped backslash, which is two backslashes (\\), means a literal backslash.
The rule is that when you want a backslash to appear in your regex, you must escape it
with an extra one:

"\\d" // Java string that yields backslash "d"

And just to make things crazier, because regex notation itself uses backslash to denote
special characters, it must provide the same "escape hatch" as well-allowing you to
double up backslashes if you want a literal backslash. If you want to specify a regular
expression that includes a single literal backslash, it looks like this:

"\\\\" // Java string yields two backslashes; regex yields one

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Most of the "magic" operator characters you read about in this section operate on the
character that precedes them, so these also must be escaped if you want their literal
meaning. This includes such characters as . ,* ,+ , braces {} , and parentheses () .

If you need to create part of an expression that has several literal characters in it, you might
be able to use the special delimiters \Q and \E to help you. Any text appearing between
\Q and \E is automatically escaped. (Note that you still need the Java String
escapes-double backslashes for backslash, but not quadruple).

Beyond that, my only suggestion to help maintain your sanity when working with these
examples is to keep two copies-a comment line showing the naked regular expression and
the real Java string, where you must double up all backslashes.

9.6.1.3 Characters and character classes

Now let's dive into the actual regex syntax. The simplest form of a regular expression is
just some plain, literal text, which means match exactly that text. This can be a single
character or more. For example, in the following string, the pattern s can match the
character s in the words rose and is :

"A rose is $1.99."

The pattern rose can match only the literal word rose . But this isn't very interesting. Let's
crank things up a notch by introducing some special characters and the notion of character
"classes."

Any character: dot (.)

The special character dot (.) matches any single character. The pattern .ose matches
rose, nose, ose (space followed by ose) or any other character followed by the
sequence ose. Two dots match any two characters, and so on. The dot operator is
nondiscriminating. It normally stops only for an end-of-line character (and,
optionally, you can tell it not to; we discuss that later).

We can consider "." to represent the group or class of all characters. And regexes
define more interesting character classes as well.

Whitespace or nonwhitespace character: \s, \S

The special character \s matches a literal-space character or one of the following
characters: \t (tab), \r (carriage return), \n (newline), \f (formfeed), and
backspace. The corresponding special character \S does the inverse, matching any
character except whitespace.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Digit or nondigit character: \d, \D

\d matches any of the digits 0-9. \D does the inverse, matching all characters but
digits.

Word or nonword character: \w, \W

\w matches a "word" character, including upper- and lowercase letters A-Z, a-z, the
digits 0-9, and the underscore character (_). \W matches everything except those
characters.

9.6.1.4 Custom character classes

You can define your own character classes using the notation [...]. For example, the
following class matches any of the characters a, b, c, x, y, or z:

[abcxyz]

The special x-y range notation can be used as shorthand for the alphabetic characters. The
following example defines a character class containing all upper- and lowercase letters:

[A-Za-z]

Placing a caret (^) as the first character inside the brackets inverts the character class. For
example:

[^A-F] // G, H, I, ..., a, b, c, ... etc.

matches any character except uppercase A through F.

Nesting character classes simply adds them:

[A-F[G-Z]] // A-Z

The && logical AND notation can be used to take the intersection (characters in common):

[a-p&&[l-z]] // l, m, n, o, p
[A-Z&&[^P]] // A through Z except P

9.6.1.5 Position markers

The pattern "[Aa] rose" (including an upper- or lowercase A) matches three times in the
following phrase:

"A rose is a rose is a rose"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Position characters allow you to designate the relative location of a match. The most
important are ^ and $, which match the beginning and end of a line, respectively:

^[Aa] rose // matches "A rose" at the beginning of line
[Aa] rose$ // matches "a rose" at end of line

Actually, by default, ^ and $ match the beginning and end of "input," which is often a line.
If you are working with multiple lines of text and wish to match the beginnings and
endings of lines within a single large string, you can turn on "multiline" mode-see the
later section Section 9.6.1.11 .

The position markers \b and \B match a word boundary or nonword boundary,
respectively. For example, the following pattern matches rose and rosemary, but not
primrose:

\brose

9.6.1.6 Iteration (multiplicity)

Simply matching fixed character patterns would not get us very far. Next we look at
operators that count the number of occurrences of a character (or more generally, of a
pattern, as we'll see later).

Any (zero or more iterations): asterisk (*)

Placing an asterisk after a character or character class means "allow any number of that type of
character"-in other words, zero or more. For example, the following pattern matches a digit with any
number of leading zeros (possibly none):

0*\d // match a digit with any number of leading zeros
Some (one or more iterations): plus sign (+)

The plus sign (+) means "one or more" iterations and is equivalent to XX* (pattern followed by
pattern asterisk). For example, the following pattern matches a multiple-digit number with leading
zeros:

0*\d+ // match a number (one or more digits) with leading zeros

It may seem redundant to match the zeros at the beginning of expression because zero is, of course, a digit
and is matched by the \d+ portion of the expression anyway. However, we'll show later how you can pick
apart the string using a regex and get at just the pieces you want. For example, in this case, you might want
to strip off the leading zeros and keep just the digits.

Optional (zero or one iteration): question mark (?)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The question mark operator (?) allows exactly zero or one iteration. For example, the following
pattern matches a credit-card expiration date, which may or may not have a slash in the middle:

\d\d/?\d\d // match four digits with an optional slash in the middle
Range (between x and y iterations, inclusive): {x,y}

The {x,y} curly-brace range operator is the most general iteration operator. It specifies a precise
range to match. A range takes two arguments: a lower bound and an upper bound, separated by a
comma. This regex matches any word with five to seven characters, inclusive:

\b\w{5,7}\b // match words with at least 5 and at most 7 letters
At least x or more iterations (y is infinite): {x,}

If you omit the upper bound, simply leaving a dangling comma in the range, the upper bound becomes
infinite. This is a way to specify a minimum of occurrences with no maximum.

9.6.1.7 Grouping

Just as in logical or mathematical operations, parentheses can be used in regular
expressions to make subexpressions or to put boundaries on parts of expressions. This
power lets us extend the operators we've talked about to work not only on characters, but
on also words or other regular expressions. For example:

(yada)+

Here we are applying the + (one or more) operator to the whole pattern yada, not just one
character. It matches yada, yadayada, yadayadayada, and so on.

Using grouping, we can start building more complex expressions. For example, while
many email addresses have a three-part structure (e.g., foo@bar.com), the domain name
portion can, in actuality, contain an arbitrary number of dot-separated components. To
handle this properly, we can use an expression like this one:

\w+@\w+(\.\w)+ // Match an email address

This expression matches a word, followed by an @ symbol, followed by another word and
then one or more literal dot-separated words, e.g., pat@pat.net , bob@foo.bar.com , or
mate@foo.bar.co.uk .

9.6.1.8 Capture groups

In addition to basic grouping of operations, parentheses have an important, additional role:
the text matched by each parenthesized subexpression can be separately retrieved. That is,
you can isolate the text that matched each subexpression. There is then a special syntax for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

referring to each capture group within the regular expression by number. This important
feature has two uses.

First, you can construct a regular expression that refers to the text it has already matched
and uses this text as a parameter for further matching. This allows you to express some
very powerful things. For example, we can now show the dictionary example we
mentioned in the introduction. Let's find all the words that start and end with the same
letter:

\b(\w)\w*\1\b // match words beginning and ending with the same letter

See the 1 in this expression? It's a reference to the first capture group in the expression, \w
. References to capture groups take the form \n where n is the number of the capture
group, counting from left to right. In this example, the first capture group matches a word
character on a word boundary. Then we allow any number of word characters up to the
special reference \1 (also followed by a word boundary). The \1 means "the value
matched in capture group one." Since these characters must be the same, this regex
matches words that start and end with the same character.

The second use of capture groups is in referring to the matched portions of text while
constructing replacement text. We'll show you how to do that a bit later when we talk about
the Regular Expression API.

Capture groups can contain more than one character, of course, and you can have any
number of groups. You can even nest capture groups. Next, we discuss exactly how they
are numbered.

9.6.1.9 Numbering

Capture groups are numbered, starting at 1, and moving from left to right, by counting the
number of open parentheses it takes to reach them. The special group number 0 always
refers to the entire expression match. For example, consider the following string:

one ((two) (three (four)))

This string creates the following matches:

Group 0: one two three four
Group 1: two three four
Group 2: two
Group 3: three four
Group 4: four

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Before going on, we should note one more thing. So far in this section we've glossed over
the fact that parentheses are doing double duty: creating logical groupings for operations
and defining capture groups. What if the two roles conflict? Suppose we have a complex
regex that uses parentheses to group subexpressions and to create capture groups? In that
case, you can use a special noncapturing group operator (?:) to do logical grouping
instead of using parentheses. You probably won't need to do this often, but it's good to
know.

9.6.1.10 Alternation

The vertical bar (|) operator denotes the logical OR operation, also called alternation or
choice. The | operator does not operate on individual characters but instead applies to
everything on either side of it. It splits the expression in two unless constrained by
parentheses grouping. For example, a slightly naïve approach to parsing dates might be the
following:

\w+, \w+ \d+ \d+|\d\d/\d\d/\d\d // pattern 1 or pattern 2

In this expression, the left side matches patterns such as Fri, Oct 12 2001, and the right
matches 10/12/2001.

The following regex might be used to match email addresses with one of three domains
(net , edu , and gov):

\w+@[\w\.]*\.(net|edu|gov) // email address ending in .net, .edu, or .gov

9.6.1.11 Special options

There are several special options that affect the way the regex engine performs its
matching. These options can be applied in two ways:

You can pass in one or more flags during the Pattern.compile() step
(discussed later in this chapter)

You can include a special block of code in your regex

We show the latter approach. To do this, include one or more flags in a special block (?x
) where x is the flag for the option we want to turn on. Generally, you do this at the
beginning of the regex. You can also turn off flags by adding a minus sign (?-x) ,
which allows you to apply flags to select parts of your pattern.

The following flags are available:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Case-insensitive: (?i)

The (?i) flag tells the regex engine to ignore case while matching, for example:
(?i)yahoo // match Yahoo, yahoo, yahOO, etc.
Dot all: (?s)

The (?s) flag turns on "dot all" mode, allowing the dot character to match anything,
including end-of-line characters. It is useful if you are matching patterns that span
multiple lines. The s stands for "single line mode," a somewhat confusing name
derived from Perl.

Multiline: (?m)

By default, ^ and $ don't really match the beginning and ending of lines (as defined
by carriage return or newline combinations); they instead match the beginning or
ending of the entire input text. Turning on multiline mode with (?m) causes them to
match the beginning and ending of every line as well as the beginning and end of
input. Specifically, this means the spot before the first character, the spot after the last
character, and the spots just after and just before line terminators inside the string.

Unix lines: (?d)

The (?d) flag changes the definition of the line terminator for the ^ , $, and .
special characters to Unix-style newline only (\n). By default, carriage return
newline (\r\n) is also allowed.

9.6.1.12 Greediness

We've seen hints that regular expressions are capable of sorting out some complex patterns.
But there are cases where what is matched is ambiguous (at least to you, though not in fact
to the regex engine). Probably the most important example has to do with the number of
characters the iterator operators consume before stopping. The .* operation best illustrates
this. Consider the following string:

"Now is the time for <bold>action</bold>, not words."

Suppose we want to search for all the HTML-style tags (the parts between the < and >
characters), perhaps because we want to remove them.

We might naïvely start with this regex:

</?.*> // match <, optional /, and then anything up to >

We then get the following match, which is much too long:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<bold>action</bold>

The problem is that the .* operation, like all the iteration operators, is by default "greedy,"
meaning that it consumes absolutely everything it can, up until the last match for the
terminating character (in this case >) in the file or line.

There are solutions for this problem. The first is to "say what it is," that is, to be more
specific about what is allowed between the braces. The content of an HTML tag cannot
actually include anything ; for example, it cannot include a closing bracket (>). So we
could rewrite our expression as:

</?\w*> // match <, optional /, any number of word characters, then >

But suppose the content is not so easy to describe. For example, we might be looking for
quoted strings in text, which could include just about any text. In that case we can use a
second approach and "say what it is not." We can invert our logic from the previous
example and specify that anything except a closing bracket is allowed inside the brackets:

</?[^>]*>

This is probably the most efficient way to tell the regex engine what to do. It then knows
exactly what to look for to stop reading. This approach has limitations, however. It is not
obvious how to do this if the delimiter is more complex than a single character. It is also
not very elegant.

Finally, we come to our general solution: the use of "reluctant" operators. For each of the
iteration operators, there is an alternative, nongreedy form that consumes as few characters
as possible, while still trying to get a match with what comes after it. This is exactly what
we needed in our previous example.

Reluctant operators take the form of the standard operator with a "?" appended. (Yes, we
know that's confusing.) We can now write our regex as:

</?.*?> // match <, optional /, minimum number of any chars, then >

Here we have appended ? to .* to cause .* to match as few characters as possible while
still making the final match of >. The same technique (appending the ?) works with all the
iteration operators, as in the two following examples:

.+? // one or more, nongreedy

.{x,y}? // between x and y, nongreedy

9.6.1.13 Lookaheads and lookbehinds

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In order to understand our next topic, let's return for a moment to the position marking
characters (^ , $, \b , and \B) that we discussed earlier. Think about what exactly these
special markers do for us. We say, for example, that the \b marker matches a word
boundary. But the word "match" here may be a bit too strong. In reality, it "requires" a
word boundary to appear at the specified point in the regex. Suppose we didn't have \b ;
how could we construct it? Well, we could try constructing a regex that matches the word
boundary. It might seem easy, given the word and nonword character classes (\w and \W
):

\w\W|\W\w // match the start or end of a word

But now what? We could try inserting that pattern into our regular expressions wherever
we would have used \b , but it's not really the same. Now we're actually matching those
characters not just requiring them. This regular expression matches the two characters
comprising the word boundary in addition to whatever else matches afterwards, whereas
the \b operator simply requires the word boundary but doesn't match any text. The
distinction is that \b isn't a matching pattern but a lookahead. A lookahead is a pattern that
is required to match next in the string, but which is not consumed by the regex engine.
When a lookahead pattern succeeds, the pattern moves on, and the characters are left in the
stream for the next part to use. If the lookahead fails, the match fails (or it backtracks and
tries a different approach).

We can make our own lookaheads with the lookahead operator (?=) . For example, to
match the letter X at the end of a word we could use:

(?=\w\W)X // Find X at the end of a word

Here the regex engine requires the \W\w pattern to match but not consume the characters,
leaving them for the next part of the pattern. This effectively allows us to write overlapping
patterns (like the previous example). For instance, we can match the word "Pat" only when
it's part of the word "Patrick," like so:

(?=Patrick)Pat // Find Pat only in Patrick

Another operator (?!) -the negative lookahead -requires that the pattern not match.
We can find all the occurrences of Pat not inside of a Patrick with this:

(?!Patrick)Pat // Find Pat never in Patrick

It's worth noting that we could have written all of these examples in other ways, by simply
matching a larger amount of text. For instance, in the first example we could have matched
the whole word "Patrick". But that is not as precise, and if we wanted to use capture groups

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to pull out the matched text or parts of it later, we'd have to play games to get what we
want. For example, suppose we wanted to substitute something for Pat (say, change the
font). We'd have to use an extra capture group and replace the text with itself. Using
lookaheads is much more elegant.

In addition to looking ahead in the stream, we can use the (?<=) and (?<!) lookbehind
operators to look backwards in the stream. For example, we can find my last name, but
only when it refers to me:

(?<=Pat)Niemeyer // Niemeyer, only when preceded by Pat

Or we can find the string "bean" when it is not part of the phrase "Java bean":

(?<!Java *)bean // The word bean, not preceded by Java

In these cases, the lookbehind and the matched text didn't overlap because the lookbehind
was before the matched text. But you can place a lookahead or lookbehind at either
point-before or after the match; for example, we could also match Pat Niemeyer like this:

Niemeyer(?<=Pat Niemeyer)

9.6.2 The java.util.regex API

Now that we've covered the theory of how to construct regular expressions, the hard part is
over. All that's left is to investigate the Java API for applying regexes: searching for them
in strings, retrieving captured text, and replacing matches with substitution text.

9.6.2.1 Pattern

As we've said, the regex patterns that we write as strings are, in actuality, little programs
describing how to match text. At runtime, the Java regex package compiles these little
programs into a form that it can execute against some target text. Several simple
convenience methods accept strings directly to use as patterns. More generally however,
Java allows you to explicitly compile your pattern and encapsulate it in an instance of a
Pattern object. This is the most efficient way to handle patterns that are used more than
once, because it eliminates needlessly recompiling the string. To compile a pattern, we use
the static method Pattern.compile() :

Pattern urlPattern = Pattern.compile("\\w+://[\\w/]*");

Once you have a Pattern , you can ask it to create a Matcher object, which associates
the pattern with a target string:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Matcher matcher = urlPattern.matcher(myText);

The matcher is what actually executes the matches. We'll talk about it next. But before we
do, we'll just mention one convenience method of Pattern . The static method
Pattern.matches() simply takes two strings-a regex and a target string-and
determines if the target matches the regex. This is very convenient if you just want to do a
quick test once in your application. For example:

Boolean match = Pattern.matches("\\d+\\.\\d+f?", myText);

The previous line of code can test if the string myText contains a Java-style floating-point
number such as "42.0f". Note that the string must match completely, to the end, to be
considered a match.

9.6.2.2 The Matcher

A Matcher associates a pattern with a string and provides tools for testing, finding, and
iterating over matches of the pattern against it. The Matcher is "stateful." For example,
the find() method tries to find the next match each time it is called. But you can clear
the Matcher and start over by calling its reset() method.

If you're just interested in "one big match"-that is, you're expecting your string to either
match the pattern or not-you can use matches() or lookingAt() . These
correspond roughly to the methods equals() and startsWith() of the String
class. The matches() method asks if the string matches the pattern in its entirety (with
no string characters left over) and returns true or false. The lookingAt() method does
the same, except that it asks only whether the string starts with the pattern and doesn't care
if the pattern uses up all the string's characters.

More generally, you'll want to be able to search through the string and find one or more
matches. To do this, you can use the find() method. Each call to find() returns
true or false for the next match of the pattern and internally notes the position of the
matching text. You can get the starting and ending character positions with the Matcher
start() and end() methods, or you can simply retrieve the matched text with the
group() method. For example:

import java.util.regex.*;

String text="A horse is a horse, of course of course...";
String pattern="horse|course";

Matcher matcher = Pattern.compile(pattern).matcher(text);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

while (matcher.find())
 System.out.println(
 "Matched: '"+matcher.group()+"' at position "+matcher.start());

The previous snippet prints the starting location of the words "horse" and "course" (four in
all):

Matched: 'horse' at position 2
Matched: 'horse' at position 13
Matched: 'course' at position 23
Matched: 'course' at position 33

The method to retrieve the matched text is called group() because it refers to capture
group zero (the entire match). You can also retrieve the text of other numbered capture
groups by giving the group() method an integer argument. You can determine how
many capture groups you have with the groupCount() method:

for (int i=1; i < matcher.groupCount(); i++)
System.out.println(matcher.group(i));

9.6.2.3 Splitting strings

A very common need is to parse a string into a bunch of fields based on some delimiter,
such as a comma. It's such a common problem that in Java 1.4, a method was added to the
String class for doing just this. The static method String.split() accepts a
regular expression and returns an array of substrings broken around that pattern. For
example:

String text = "Foo, bar , blah";
String [] fields = String.split("\s*,\s*", text)

yields a String array containing Foo, bar, and blah. You can control the maximum
number of matches and also whether you get "empty" strings (for text that might have
appeared between two adjacent delimiters) using an optional limit field.

If you are going to use an operation like this more than a few times in your code, you
should probably compile the pattern and use its split() method, which is identical to
the version in String . The String.split() method is equivalent to:

Pattern.compile(pattern).split(string);

9.6.2.4 Replacing text

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A common reason that you'll find yourself searching for a pattern in a string is to change it
to something else. The regex package not only makes it easy to do this but also provides a
simple notation to help you construct replacement text using bits of the matched text.

The most convenient form of this API is Matcher 's replaceAll() method, which
substitutes a replacement string for each occurrence of the pattern and returns the result.
For example:

String text = "Richard Nixon's social security number is: 567-68-0515.";
Matcher matcher =
Pattern.compile("\\d\\d\\d-\\d\\d\-\\d\\d\\d\\d").matcher(text);
String output = matcher.replaceAll("XXX-XX-XXXX");

This code replaces all occurrences of U.S. government Social Security numbers with
"XXX-XX-XXXX" (perhaps for privacy considerations).

9.6.2.4.1 Using captured text in a replacement

Literal substitution is nice, but we can make this even more powerful by using capture
groups in our substitution pattern. To do this, we use the simple convention of referring to
numbered capture groups with the notation $n , where n is the group number. For example,
suppose we wanted to show just a little of the Social Security number in the above
example, so that the user would know if we were talking about him. We could modify our
regex to catch, for example, the last four digits like so:

\d\d\d-\d\d-(\d\d\d\d)

We can then use that in the substitution text:

String output = matcher.replaceAll("XXX-XX-$1");

9.6.2.4.2 Controlling the substitution

The replaceAll() method is useful, but you may want more control over each
substitution. You may want to change each match to something different or base the
change on the match in some programmatic way.

To do this, you can use the Matcher appendReplacement() and
appendTail() methods. These methods can be used in conjunction with the find()
method as you iterate through matches to build a replacement string.
appendReplacement() and appendTail() operate on a StringBuffer that
you supply. The appendReplacement() method builds a replacement string by

http://lib.ommolketab.ir
http://lib.ommolketab.ir

keeping track of where you are in the text and appending all nonmatched text to the buffer
for you as well as the substitute text that you supply. Each call to find() appends the
intervening text from the last call, followed by your replacement, then skips over all the
matched characters to prepare for the next one. Finally, when you have reached the last
match, you should call appendTail() , which appends any remaining text after the last
match. We'll show an example of this next, as we build a simple "template engine."

9.6.2.5 The simple template engine

Now let's tie together what we've discussed in a nifty example. A common problem that
comes up in Java applications is working with bulky, multiline text. In general, you don't
want to store text messages in your application code, because it makes them difficult to edit
or internationalize. But when you move them to external files or resources, you need a way
for your application to plug in information at runtime. The best example of this is in Java
servlets; a generated HTML page is often 99% static text with only a few "variable" pieces
plugged in. Technologies such as JSP and XSL were developed to address this. But these
are big tools, and we have a simple problem. So let's create a simple solution-a template
engine.

Our template engine reads text containing special template tags and substitutes values that
we provide it. And since generating HTML or XML is one of the most important
applications of this, we'll be friendly to those formats by making our tags conform to the
style of an XML comment. Specifically, our engine searches the text for tags that look like
this:

<!--TEMPLATE:name This is the template for the user name -->

XML style comments start with <!-- and can contain anything up to a closing --> .
We'll add the convention of requiring a TEMPLATE:name field to specify the name of the
value we want to use. But aside from that, we'll still allow any descriptive text the user
wants to include. To be friendly (and consistent), we'll allow any amount of whitespace to
appear in the tags, including multiline text in the comments. We'll also ignore the text case
of the "TEMPLATE" identifier, just in case. Now, we could do this all with low level
String commands, looping over whitespace and taking substrings a lot. But using the
power of regexes, we can do it much more cleanly and with only about seven lines of
relevant code. (We've rounded out the example with a few more to make it more useful).

import java.util.*;
import java.util.regex.*;

public class Template

http://lib.ommolketab.ir
http://lib.ommolketab.ir

{
 Properties values = new Properties();
 Pattern templateComment =
 Pattern.compile("(?si)<!--\\s*TEMPLATE:(\\w+).*?-->");

 public void set(String name, String value) {
 values.setProperty(name, value);
 }

 public String fillIn(String text) {
 Matcher matcher = templateComment.matcher(text);

 StringBuffer buffer = new StringBuffer();
 while(matcher.find()) {
 String name = matcher.group(1);
 String value = values.getProperty(name);
 matcher.appendReplacement(buffer, value);
 }
 matcher.appendTail(buffer);
 return buffer.toString();
 }
}

You'd use the Template class like this:

String input = "<!-- TEMPLATE:name --> lives at "
 +"<!-- TEMPLATE:address -->";
Template template = new Template();
template.set("name", "Bob");
template.set("address", "1234 Main St.");
String output = template.fillIn(input);

In this code, input is a string containing tags for name and address. The set() method
provides the values for those tags.

Let's start by picking apart the regex, templatePattern , in the example:

(?si)<!--\s*TEMPLATE:(\w+).*?-->

It looks scary, but it's actually very simple. Just start reading from left to right. First, we
have the special flags declaration (?si) telling the regex engine that it should be in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

single-line mode, with .* matching all characters including newlines (s), and ignoring
case (i). Next, there is the literal <!-- followed by any amount of whitespace (\s) and
the TEMPLATE: identifier. After the colon, we have a capture group (\w+), which reads
our name identifier and saves it for us to retrieve later. We allow anything (.*) up to the
--> , being careful to specify that .* should be nongreedy (.*?) . We don't want .* to
consume other opening and closing comment tags all the way to the last one but instead to
find the smallest match (one tag).

Our fillIn() method does the work, accepting a template string, searching it, and
"replacing" the tag values with the values from set() , which we have stored in a
Properties table. Each time fillIn() is called, it creates a Matcher to wrap the
input string and get ready to apply the pattern. It then creates a temporary
StringBuffer to hold the output and loops, using the Matcher find() method to
get each tag. For each match, it retrieves the value of the capture group (group one) that
holds the tag name. It looks up the corresponding value and replaces the tag with this value
in the output string buffer using the appendReplacement() method. (Remember that
appendReplacement() fills in the intervening text on each call, so we don't have to.)
All that remains is to call appendTail() at the end to get the remaining text after the
last match and return the string value. That's it!

Regular expressions aren't new, but they are new to Java (at least as a standard). We have
shown you some of the power provided by these tools and (we hope) whetted your appetite
for more. Regexes allow you to work in ways you may not have considered before.
Especially now, when the software world is focused on textual representations of almost
everything-from data to user interfaces-via XML and HTML, having powerful text-
manipulation tools is fundamental. Just remember to keep those regexes simple so you can
reuse them again and again. .

[1] In Windows, the default encoding is CP1252; in Solaris, it's ISO8859_1.

[2] Locales help you deal with issues relevant to particular languages and cultures; we'll talk
about them in the later section Section 9.4 .

CONTENTS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

Chapter 10. Core Utilities

 10.1 Math Utilities

 10.2 Dates
 10.3 Timers

 10.4 Collections

 10.5 Properties

 10.6 The Preferences API

 10.7 The Logging API
 10.8 Observers and Observables

In this chapter we'll continue our look at the core Java APIs, covering more of the tools of
the java.util package. The java.util package includes a wide range of utilities
for mathematical operations, dates and times, structured collections of objects, stored user
data, and logging I/O.

10.1 Math Utilities

Java supports integer and floating-point arithmetic directly in the language. Higher-level
math operations are supported through the java.lang.Math class. As we'll discuss
later, there are also wrapper classes for all primitive data types, so you can treat them as
objects if necessary. These wrapper classes hold some methods for basic conversions. Java
provides the java.util.Random class for generating random numbers.

First, a few words about built-in arithmetic in Java. Java handles errors in integer
arithmetic by throwing an ArithmeticException :

int zero = 0;

try {
 int i = 72 / zero;
}
catch (ArithmeticException e) {
 // division by zero
}

To generate the error in this example, we created the intermediate variable zero . The

http://lib.ommolketab.ir
http://lib.ommolketab.ir

compiler is somewhat crafty and would have caught us if we had blatantly tried to perform
a division by a literal zero.

Floating-point arithmetic expressions, on the other hand, don't throw exceptions. Instead,
they take on the special out-of-range values shown in Table 10-1 .

Table 10-1. Special floating-point values

Value Mathematical representation

POSITIVE_INFINITY 1.0/0.0

NEGATIVE_INFINITY -1.0/0.0

NaN 0.0/0.0

The following example generates an infinite result:

double zero = 0.0;
double d = 1.0/zero;

if (d == Double.POSITIVE_INFINITY)
 System.out.println("Division by zero");

The special value NaN indicates the result is "not a number." The value NaN has the
special mathematical distinction of not being equal to itself (NaN != NaN evaluates to
true). Use Float.isNaN() or Double.isNaN() to test for NaN .

10.1.1 The java.lang.Math Class

The java.lang.Math class provides Java's math library. All its methods are static and
used directly; you don't have to (and you can't) instantiate a Math object. This kind of
degenerate class is used when we really want methods to approximate global functions. It's
not very object-oriented, but it provides a means of grouping some related utility functions
in a single class and accessing them easily. Table 10-2 summarizes the methods in
java.lang.Math .

Table 10-2. Methods in java.lang.Math

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Method Argument type(s) Functionality

Math.abs(a)
int , long , float ,
double

Absolute value

Math.acos(a) double Arc cosine

Math.asin(a) double Arc sine

Math.atan(a) double Arc tangent

Math.atan2(a,b) double Angle part of rectangular-to-polar
coordinate transform

Math.ceil(a) double Smallest whole number greater than or
equal to a

Math.cos(a) double Cosine

Math.exp(a) double Math.E to the power a

Math.floor(a) double Largest whole number less than or equal
to a

Math.log(a) double Natural logarithm of a

Math.max(a, b)
int , long , float ,
double

Maximum

Math.min(a, b)
int , long , float ,
double

Minimum

Math.pow(a, b) double a to the power b

Math.random() None Random-number generator

Math.rint(a) double Converts double value to integral value
in double format

Math.round(a) float , double Rounds to whole number

Math.sin(a) double Sine

Math.sqrt(a) double Square root

Math.tan(a) double Tangent

log() , pow() , and sqrt() can throw an ArithmeticException . abs() ,
max() , and min() are overloaded for all the scalar values, int , long , float , or
double , and return the corresponding type. Versions of Math.round() accept either
float or double and return int or long , respectively. The rest of the methods
operate on and return double values:

double irrational = Math.sqrt(2.0);
int bigger = Math.max(3, 4);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

long one = Math.round(1.125798);

For convenience, Math also contains the static final double values E and PI :

double circumference = diameter * Math.PI;

10.1.2 The java.math Package

If a long or a double just isn't big enough for you, the java.math package provides
two classes, BigInteger and BigDecimal , that support arbitrary-precision
numbers. These are full-featured classes with a bevy of methods for performing arbitrary-
precision math. In the following example, we use BigDecimal to add two numbers:

try {
 BigDecimal twentyone = new BigDecimal("21");
 BigDecimal seven = new BigDecimal("7");
 BigDecimal sum = twentyone.add(seven);

 int answer= sum.intValue(); // 28
}
catch (NumberFormatException nfe) { }
catch (ArithmeticException ae) { }

If you implement cryptographic or scientific algorithms for fun, BigInteger is crucial.
But other than that, you're not likely to need these classes.

10.1.3 Wrappers for Primitive Types

In languages such as Smalltalk, numbers and other simple types are objects, which makes
for an elegant language design but has trade-offs in efficiency and complexity. By contrast,
there is a schism in the Java world between class types (i.e., objects) and primitive types
(i.e., numbers, characters, and boolean values). Java accepts this trade-off simply for
efficiency reasons. When you're crunching numbers, you want your computations to be
lightweight; having to use objects for primitive types complicates performance
optimizations. For the times you want to treat values as objects, Java supplies a wrapper
class for each of the primitive types, as shown in Table 10-3 .

Table 10-3. Primitive type wrappers

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Primitive Wrapper

void java.lang.Void

boolean java.lang.Boolean

char java.lang.Character

byte java.lang.Byte

short java.lang.Short

int java.lang.Integer

long java.lang.Long

float java.lang.Float

double java.lang.Double

An instance of a wrapper class encapsulates a single value of its corresponding type. It's an
immutable object that serves as a container to hold the value and let us retrieve it later. You
can construct a wrapper object from a primitive value or from a String representation of
the value. The following statements are equivalent:

Float pi = new Float(3.14);
Float pi = new Float("3.14");

Like the parsing methods we looked at in the previous chapter, the wrapper constructors
throw a NumberFormatException when there is an error in parsing a string:

try {
 Double bogus = new Double("huh?");
} catch (NumberFormatException e) { // bad number
}

Each of the numeric type wrappers implements the java.lang.Number interface,
which provides "value" methods access to its value in all the primitive forms. You can
retrieve scalar values with the methods doubleValue() , floatValue() ,
longValue() , intValue() , shortValue() , and byteValue() :

Double size = new Double (32.76);

double d = size.doubleValue(); // 32.76
float f = size.floatValue(); // 32.76
long l = size.longValue(); // 32
int i = size.intValue(); // 32

This code is equivalent to casting the primitive double value to the various types.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The most common need for a wrapper is when you want to use a primitive value in a
situation that requires an object. For example, later in this chapter we'll look at the Java
Collections API, which is a sophisticated set of classes for dealing with object groups such
as lists, sets, and maps. All the Collections APIs work on object types, so you'll need to use
wrappers to hold primitive numbers for them. As we'll see, a List is an extensible array
of Object s. We can use wrappers to hold numbers in a List (along with other objects):

List myNumbers = new ArrayList();
Integer thirtyThree = new Integer(33);
myNumbers.add(thirtyThree);

Here we have created an Integer wrapper object so that we can insert the number into
the List , using addElement() . Later, when we are extracting elements from the
List , we can recover the int value as follows:

Integer theNumber = (Integer)myNumbers.get(0);
int n = theNumber.intValue(); // 33

10.1.4 Random Numbers

You can use the java.util.Random class to generate random values. It's a pseudo-
random number generator that can be initialized with a 48-bit seed. [1] The default
constructor uses the current time as a seed, but if you want a repeatable sequence, specify
your own seed with:

long seed = mySeed;
Random rnums = new Random(seed);

This code creates a random-number generator. Once you have a generator, you can ask for
random values of various types using the methods listed in Table 10-4 .

Table 10-4. Random number methods

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Method Range

nextBoolean() true or false

nextInt() -2147483648 to 2147483647

nextInt(int n) 0 to (n - 1) inclusive

nextLong() -9223372036854775808 to 9223372036854775807

nextFloat() -1.0 to 1.0

nextDouble() -1.0 to 1.0

nextGaussian() Gaussian distribution, SD 1.0

By default, the values are uniformly distributed. You can use the nextGaussian()
method to create a Gaussian (bell curve) distribution of double values, with a mean of
0.0 and a standard deviation of 1.0.

The static method Math.random() retrieves a random double value. This
method initializes a private random number generator in the Math class, using the
default Random constructor. Thus every call to Math.random() corresponds to a call
to nextDouble() on that random number generator.

10.2 Dates

Working with dates and times without the proper tools can be a chore. [2] In Java 1.1 and
later, you get three classes that do all the hard work for you. The java.util.Date
class encapsulates a point in time. The java.util.GregorianCalendar class,
which descends from the abstract java.util.Calendar , translates between a point
in time and calendar fields like month, day, and year. Finally, the
java.text.DateFormat class knows how to generate and parse string
representations of dates and times.[3]

The separation of the Date class and the GregorianCalendar class is analogous to
having a class representing temperature and a class that translates that temperature to
Celsius units. Conceivably, we could define other subclasses of Calendar , say
JulianCalendar or LunarCalendar .

The default GregorianCalendar constructor creates an object that represents the
current time, as determined by the system clock:

GregorianCalendar now = new GregorianCalendar();

Other constructors accept values to specify the point in time. In the first statement in the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

following code, we construct an object representing August 9, 2001; the second statement
specifies both a date and a time, which yields an object that represents 9:01 A.M., April 8,
2002.

GregorianCalendar daphne =
 new GregorianCalendar(2001, Calendar.AUGUST, 9);
GregorianCalendar sometime =
 new GregorianCalendar(2002, Calendar.APRIL, 8, 9, 1); // 9:01 AM

We can also create a GregorianCalendar by setting specific fields using the set()
method. The Calendar class contains a torrent of constants representing both calendar
fields and field values. The first argument to the set() method is a field constant; the
second argument is the new value for the field.

GregorianCalendar kristen = new GregorianCalendar();
kristen.set(Calendar.YEAR, 1972);
kristen.set(Calendar.MONTH, Calendar.MAY);
kristen.set(Calendar.DATE, 20);

A GregorianCalendar is created in the default time zone. Setting the time zone of
the calendar is as easy as obtaining the desired TimeZone and giving it to the
GregorianCalendar :

GregorianCalendar smokey = new GregorianCalendar();
smokey.setTimeZone(TimeZone.getTimeZone("MST"));

10.2.1 Parsing and Formatting Dates

To represent a GregorianCalendar 's date as a string, first create a Date object:

Date mydate = smokey.getTime();

To create a string representing a point in time, create a DateFormat object and apply its
format() method to a Date object. Like the NumberFormat object we looked at in
the previous chapter, DateFormat itself is abstract, but it has several static ("factory")
methods that return useful DateFormat subclass instances. To get a default
DateFormat , simply call getInstance() :

DateFormat plain = DateFormat.getInstance();
String now = plain.format(new Date()); // 4/12/00 6:06 AM

You can generate a date string or a time string, or both, using the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

getDateInstance() , getTimeInstance() , and
getDateTimeInstance() factory methods. The argument to these methods
describes what level of detail you'd like to see. DateFormat defines four constants
representing detail levels: they are SHORT , MEDIUM , LONG , and FULL . There is also a
DEFAULT , which is the same as MEDIUM . The following code creates three
DateFormat instances: one to format a date, one to format a time, and one to format a
date and time together. Note that getDateTimeInstance() requires two arguments:
the first specifies how to format the date, the second how to format the time:

// 12-Apr-00
DateFormat df = DateFormat.getDateInstance(DateFormat.DEFAULT);

// 9:18:27 AM
DateFormat tf = DateFormat.getTimeInstance(DateFormat.DEFAULT);

// Wednesday, April 12, 2000 9:18:27 o'clock AM EDT
DateFormat dtf =
 DateFormat.getDateTimeInstance(DateFormat.FULL, DateFormat.FULL);

We're showing only how to create the DateFormat objects here; to actually generate a
String from a date, you'll need to call the format() method of these objects, passing
a Date as an argument.

Formatting dates and times for other countries is just as easy. Overloaded factory methods
accept a Locale argument:

// 12 avr. 00
DateFormat df =
 DateFormat.getDateInstance(DateFormat.DEFAULT, Locale.FRANCE);

// 9:27:49
DateFormat tf =
 DateFormat.getTimeInstance(DateFormat.DEFAULT, Locale.GERMANY);

// mercoledi 12 aprile 2000 9.27.49 GMT-04:00
DateFormat dtf =
 DateFormat.getDateTimeInstance(
 DateFormat.FULL, DateFormat.FULL, Locale.ITALY);

To parse a string representing a date, we use the parse() method of the DateFormat
class. The result is a Date object. The parsing algorithms are finicky, so it's safest to parse

http://lib.ommolketab.ir
http://lib.ommolketab.ir

dates and times that are in the same format produced by the DateFormat . The
parse() method throws a ParseException if it doesn't understand the string you
give it. All of the following calls to parse() succeed except the last; we don't supply a
time zone, but the format for the time is LONG . Other exceptions are occasionally thrown
from the parse() method. To cover all the bases, catch NullPointerExceptions
and StringIndexOutOfBoundsExceptions , also.

try {
 Date d;
 DateFormat df;

 df = DateFormat.getDateTimeInstance(
 DateFormat.FULL, DateFormat.FULL);
 d = df.parse("Wednesday, April 12, 2000 2:22:22 o'clock PM EDT");

 df = DateFormat.getDateTimeInstance(
 DateFormat.MEDIUM, DateFormat.MEDIUM);
 d = df.parse("12-Apr-00 2:22:22 PM");

 df = DateFormat.getDateTimeInstance(
 DateFormat.LONG, DateFormat.LONG);
 d = df.parse("April 12, 2000 2:22:22 PM EDT");

 // throws a ParseException; detail level mismatch
 d = df.parse("12-Apr-00 2:22:22 PM");
}
catch (Exception e) { ... }

10.3 Timers

Java includes two handy classes for timed code execution. If you write a clock application,
for example, you might want to update the display every second. Or you might want to
play an alarm sound at some predetermined time. You could accomplish these tasks with
multiple threads and calls to Thread.sleep() . But it's simpler to use the
java.util.Timer and java.util.TimerTask classes.

Instances of Timer watch the clock and execute TimerTask s at appropriate times. You
could, for example, schedule a task to run at a specific time like this:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.util.*;

public class Y2K {
 public static void main(String[] args) {
 Timer timer = new Timer();

 TimerTask task = new TimerTask() {
 public void run() {
 System.out.println("Y2K!");
 }
 };

 Calendar c = new GregorianCalendar(2000, Calendar.JANUARY, 1);
 timer.schedule(task, c.getTime());
 }
}

TimerTask implements the Runnable interface. To create a task, you can simply
subclass TimerTask and supply a run() method. Here we've created a simple
anonymous subclass of TimerTask that prints a message to System.out . Using the
schedule() method of Timer , we've asked that the task be run on January 1, 2000.
(Oops-too late! But you get the idea.)

There are some other varieties of schedule() ; you can run tasks once or at recurring
intervals. There are two kinds of recurring tasks-fixed delay and fixed rate. Fixed delay
means that a fixed amount of time elapses between the end of the task's execution and the
beginning of the next execution. Fixed rate means that the task should begin execution at
fixed time intervals (the difference may be important if the time it takes to execute the
command is substantial).

You could, for example, update a clock display every second with code like this:

Timer timer = new Timer();

TimerTask task = new TimerTask() {
 public void run() {
 repaint(); // update the clock display
 }
};

timer.schedule(task, 0, 1000);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Timer can't really make any guarantees about exactly when things are executed; you'd
need a real-time operating system for that kind of precision. However, Timer can give
you reasonable assurance that tasks will be executed at particular times, provided the tasks
are not overly complex; with a slow-running task, the end of one execution might spill into
the start time for the next execution.

10.4 Collections

Collections are fundamental to all kinds of programming. Anywhere we need to keep a
group of objects, we have some kind of collection. At the most basic level, Java supports
collections in the form of arrays. But since arrays have a fixed length, they are awkward for
groups of things that grow and shrink over the lifetime of an application. From the
beginning, the Java platform has had two fundamental classes for managing groups of
objects: the java.util.Vector class represents a dynamic list of objects, and the
java.util.Hashtable class holds a map of key/value pairs. With Java 1.2 came a
more comprehensive approach to collections called the Collections Framework. The
Vector and Hashtable classes still exist, but they have now been brought into the
framework (and have some eccentricities).

If you work with maps, dictionaries, or associative arrays in other languages, you
understand how useful these classes are. If you have done a lot of work in C or another
static language, you should find collections to be truly magical. They are part of what
makes Java powerful and dynamic. Being able to work with groups of objects and make
associations between them is an abstraction from the details of the types. It lets you think
about the problems at a higher level and saves you from having to reproduce common
structures every time you need them.

The Collections Framework is based around a handful of interfaces in the java.util
package. These interfaces are divided into two hierarchies. The first hierarchy descends
from the Collection interface. This interface (and its descendants) represents a
container that holds other objects. The second hierarchy is based on the Map interface,
which represents a group of key/value pairs.

10.4.1 The Collection Interface

The mother of all collections is an interface appropriately named Collection . It serves
as a container that holds other objects, its elements . It doesn't specify exactly how the
objects are organized; it doesn't say, for example, whether duplicate objects are allowed or
whether the objects are ordered in some way. These kinds of details are left to child

http://lib.ommolketab.ir
http://lib.ommolketab.ir

interfaces. Nevertheless, the Collection interface does define some basic operations:

public boolean add(Object o)

This method adds the supplied object to this collection. If the operation succeeds, this
method returns true . If the object already exists in this collection and the collection
does not permit duplicates, false is returned. Furthermore, some collections are
read-only. These collections throw an UnsupportedOperationException if
this method is called.

public boolean remove(Object o)

This method removes the specified object from this collection. Like the add()
method, this method returns true if the object is removed from the collection. If the
object doesn't exist in this collection, false is returned. Read-only collections
throw an UnsupportedOperationException if this method is called.

public boolean contains(Object o)

This method returns true if the collection contains the specified object.
public int size()

Use this method to find the number of elements in this collection.
public boolean isEmpty()

This method returns true if there are no elements in this collection.
public Iterator iterator()

Use this method to examine all the elements in this collection. This method returns an
Iterator , which is an object you can use to step through the collection's
elements. We'll talk more about iterators in the next section.

These methods are common to every Collection implementation. Any class that
implements Collection or one of its child interfaces will have these methods.

10.4.1.1 Collections and arrays

Converting between collections and arrays is easy. As a special convenience, the elements
of a collection can be placed into an array using the following methods:

public Object[] toArray()
public Object[] toArray(Object[] a)

The first method returns a plain Object array. With the second form, we can be more
specific. If we supply our own array of the correct size, it will be filled in with the values.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

But there is a special feature; if the array is too short, a new array of the same type will be
created, of the correct length, and returned to us. So it is idiomatic to pass in an empty
array of the correct type just to specify the type of the array we want, like this:

String [] myStrings = (String [])myCollection(new String[0]);

You can convert an object type array to a List type collection with the static asList()
method of the java.util.Arrays class:

List list = Arrays.asList(myStrings);

10.4.1.2 Working with Collections

A Collection is a dynamic container; it can grow to accommodate new items. For
example, a List is a kind of Collection that implements a dynamic array. You can
insert and remove elements at arbitrary positions within a List . Collection s work
directly with the type Object , so we can use Collection s with instances of any
class.[4]

We can even put different kinds of Object s in a Collection together; the
Collection doesn't know the difference.

As you might guess, this is where things get tricky. To do anything useful with an
Object after we take it back out of a Collection , we have to cast it back (narrow it)
to its original type. This can be done safely in Java because the cast is checked at runtime.
Java throws a ClassCastException if we try to cast an object to the wrong type.
However, this need for casting means that your code must remember types or methodically
test them with instanceof . That is the price we pay for having a completely dynamic
collection class that operates on all types.

You might wonder if you can implement Collection to produce a class that works on
just one type of element in a type-safe way. Unfortunately, the answer is no. We could
implement Collection 's methods to make a Collection that rejects the wrong
type of element at runtime, but this does not provide any new compile time, static type
safety. In an upcoming version of Java, templates or generics will provide a safe
mechanism for parameterizing types by restricting the types of objects used at compile
time. For a glimpse at Java language work in this area, see:
http://jcp.org/aboutJava/communityprocess/review/jsr014/ .

10.4.2 Iterators

An iterator is an object that lets you step through a sequence of values. This kind of

http://jcp.org/aboutJava/communityprocess/review/jsr014/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

operation comes up so often that it is given a generic interface:
java.util.Iterator. The Iterator interface has only two primary methods:

public Object next()

This method returns the next element of the associated collection.
public boolean hasNext()

This method returns true if you have not yet stepped through all the
Collection 's elements. In other words, it returns true if you can call next()
to get the next element.

The following example shows how you could use an Iterator to print out every
element of a collection:

public void printElements(Collection c, PrintStream out) {
 Iterator iterator = c.iterator();

 while (iterator.hasNext())
 out.println(iterator.next());
}

In addition to the traversal methods, Iterator provides the ability to remove an element
from a collection:

public void remove()

This method removes the last object returned from next() from the associated
Collection .

But not all iterators implement remove() . It doesn't make sense to be able to remove an
element from a read-only collection, for example. If element removal is not allowed, an
UnsupportedOperationException is thrown from this method. If you call
remove() before first calling next() , or if you call remove() twice in a row, you'll
get an IllegalStateException .

10.4.2.1 java.util.Enumeration

Prior to the introduction of the Collections API there was another iterator interface:
java.util.Enumeration . It used the slightly more verbose names:
nextElement() and hasMoreElements() but accomplished the same thing.
Many older classes provide Enumeration s where they would now use Iterator . If
you aren't worried about performance, you can convert your Enumeration into a List

http://lib.ommolketab.ir
http://lib.ommolketab.ir

with a static convenience method of the java.util.Collections class:

List list = Collections.list(enumeration);

10.4.3 Collection Types

The Collection interface has two child interfaces. Set represents a collection in
which duplicate elements are not allowed, and List is a collection whose elements have a
specific order.

Set has no methods besides the ones it inherits from Collection . It does, however,
enforce the rule that duplicate elements are not allowed. If you try to add an element that
already exists in a Set , the add() method returns false .

SortedSet adds only a few methods to Set . As you call add() and remove() , the
set maintains its order. You can retrieve subsets (which are also sorted) using the
subSet() , headSet() , and tailSet() methods. The first() , last() , and
comparator() methods provide access to the first element, the last element, and the
object used to compare elements (more on this later).

The last child interface of Collection is List . The List interface adds the ability to
manipulate elements at specific positions in the list.

public void add(int index , Object element)

This method adds the given object at the supplied list position. If the position is less
than zero or greater than the list length, an IndexOutOfBoundsException
will be thrown. The element that was previously at the supplied position, and all
elements after it are moved up by one index position.

public void remove(int index)

This method removes the element at the supplied position. All subsequent elements
move down by one index position.

public Object get(int index)

This method returns the element at the given position.
public Object set(int index , Object element)

This method changes the element at the given position to the supplied object.

10.4.4 The Map Interface

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Collections Framework also includes the concept of a Map , which is a collection of
key/value pairs. Another way of looking at a map is that it is a dictionary, similar to an
associative array. Maps store and retrieve elements with key values; they are very useful
for things like caches or minimalist databases. When you store a value in a map, you
associate a key object with that value. When you need to look up the value, the map
retrieves it using the key.

The java.util.Map interface specifies a map that, like Collection , operates on
the type Object . A Map stores an element of type Object and associates it with a key,
also of type Object . In this way, we can index arbitrary types of elements using
arbitrary types as keys. As with Collection , casting is generally required to narrow
objects back to their original type after pulling them out of a map.

The basic operations are straightforward:

public Object put(Object key , Object value)

This method adds the specified key/value pair to the map. If the map already contains
a value for the specified key, the old value is replaced and returned as the result.

public Object get(Object key)

This method retrieves the value corresponding to key from the map.
public Object remove(Object key)

This method removes the value corresponding to key from the map. The value
removed is returned.

public int size()

Use this method to find the number of key/value pairs in this map.

You can retrieve all the keys or values in the map:

public Set keySet()

This method returns a Set that contains all the keys in this map.
public Collection values()

Use this method to retrieve all the values in this map. The returned Collection
can contain duplicate elements.

Map has one child interface, SortedMap . SortedMap maintains its key/value pairs in
sorted order according to the key values. It provides the subMap() , headMap() , and
tailMap() methods for retrieving sorted map subsets. Like SortedSet , it also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

provides a comparator() method that returns an object that determines how the map
keys are sorted. We'll talk more about this later.

Finally, we should make it clear that although related, Map is not a type of Collection
(Map does not extend the Collection interface). You might be wondering why. All of
the methods of the Collection interface would appear to make sense for Map , except
for iterator() . A Map , remember, has two sets of objects: keys and values and
separate iterators for each.

One more note about maps: some map implementations (including Java's standard,
HashMap) allow null to be used as a key or value, but others may not.

10.4.5 Implementations

Up until this point, we've talked only about interfaces. But you can't instantiate interfaces.
The Collections Framework includes useful implementations of the collections interfaces.
These implementations are listed by interface in Table 10-5 .

Table 10-5. Collections framework implementation classes

Interface Implementation

Set HashSet

SortedSet TreeSet

List ArrayList , LinkedList , Vector

Map
HashMap , Hashtable, LinkedHashMap,
IdentityHashMap

SortedMap TreeMap

ArrayList offers good performance if you add to the end of the list frequently, while
LinkedList offers better performance for frequent insertions and deletions. Vector
has been around since Java 1.0; it's now retrofitted to implement the List methods.
Vector 's methods are synchronized by default, unlike the other Map s. The old
Hashtable has been updated so that it now implements the Map interface. Its methods
are also synchronized. As we'll discuss a bit later, there are other, more general ways to get
synchronized collections.

10.4.5.1 Hashcodes and key values

The name Hashtable and HashMap refer to the fact that these map collections use

http://lib.ommolketab.ir
http://lib.ommolketab.ir

object hashcodes in order to maintain their associations. Specifically, an element in a
Hashtable or HashMap is not associated with a key strictly by the key object's identity
but rather by the key's contents. This allows keys that are equivalent to access the same
object. By "equivalent," we mean those objects that compare true with equals() . So,
if you store an object in a Hashtable using one object as a key, you can use any other
object that equals() tells you is equivalent to retrieve the stored object.

It's easy to see why equivalence is important if you remember our discussion of strings.
You may create two String objects that have the same text in them but that come from
different sources in Java. In this case, the == operator tells you that the objects are
different, but the equals() method of the String class tells you that they are
equivalent. Because they are equivalent, if we store an object in a HashMap using one of
the String objects as a key, we can retrieve it using the other.

The hashcode of an object makes this association based on content. As we mentioned in
Chapter 7 , the hashcode is like a fingerprint of the object's data content. HashMap uses it
to store the objects so that they can be retrieved efficiently. The hashcode is nothing more
than a number (an integer) that is a function of the data. The number always turns out the
same for identical data, but the hashing function is intentionally designed to generate as
random a number as possible for different combinations of data. In other words, a very
small change in the data should produce a big difference in the number. It is unlikely that
two similar datasets would produce the same hashcode.

Internally, HashMap really just keeps a number of lists of objects, but it puts objects into
the lists based on their hashcode. So when it wants to find the object again, it can look at
the hashcode and know immediately how to get to the appropriate list. The HashMap still
might end up with a number of objects to examine, but the list should be short. For each
object it finds, it does the following comparison to see if the key matches:

if ((keyHashcode == storedKeyHashcode) && key.equals(storedKey))
 return object;

There is no prescribed way to generate hashcodes. The only requirement is that they be
somewhat randomly distributed and reproducible (based on the data). This means that two
objects that are not the same could end up with the same hashcode by accident. This is
unlikely (there are 2^32 possible integer values); moreover, it doesn't cause a problem
because the HashMap ultimately checks the actual keys, as well as the hashcodes, to see if
they are equal. Therefore, even if two objects have the same hashcode, they can still coexist
in the HashMap as long as they don't test equal to one another as well.

Hashcodes are computed by an object's hashCode() method, which is inherited from

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the Object class if it isn't overridden. The default hashCode() method simply assigns
each object instance a unique number to be used as a hashcode. If a class does not override
this method, each instance of the class will have a unique hashcode. This goes along well
with the default implementation of equals() in Object , which only compares objects
for identity using == .

You must override equals() in any classes for which equivalence of different objects is
meaningful. Likewise, if you want equivalent objects to serve as equivalent keys, you need
to override the hashCode() method as well to return identical hashcode values. To do
this, you need to create some suitably complex and arbitrary function of the contents of
your object. The only criterion for the function is that it should be almost certain to return
different values for objects with different data, but the same value for objects with identical
data.

10.4.6 Synchronized and Read-Only Collections

The java.util.Collections class is full of handy static methods that operate on
Set s and Map s. (It's not the same as the java.util.Collection interface, which
we've already talked about.) Since all the static methods in Collections operate on
interfaces, they work regardless of the actual implementation classes you're using. There
are lots of useful methods in here and we'll look at only a few now.

All the default collection implementations are not synchronized; that is, they are not safe
for concurrent access by multiple threads. The reason for this is performance. In many
applications there is no need for synchronization, so the Collections API does not provide
it by default. Instead you can create a synchronized version of any collection using the
following methods of the Collections class:

public static Collection synchronizedCollection(Collection c)
public static Set synchronizedSet(Set s)
public static List synchronizedList(List list)
public static Map synchronizedMap(Map m)
public static SortedSet synchronizedSortedSet(SortedSet s)
public static SortedMap synchronizedSortedMap(SortedMap m)

These methods create synchronized, thread-safe versions of the supplied collection,
normally by wrapping them. We'll talk a little more about this later in this chapter.

Furthermore, you can use the Collections class to create read-only versions of any
collection:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public static Collection unmodifiableCollection(Collection c)
public static Set unmodifiableSet(Set s)
public static List unmodifiableList(List list)
public static Map unmodifiableMap(Map m)
public static SortedSet unmodifiableSortedSet(SortedSet s)
public static SortedMap unmodifiableSortedMap(SortedMap m)

10.4.7 Sorting for Free

Collections includes other methods for performing common operations like sorting.
Sorting comes in two varieties:

public static void sort(List list)

This method sorts the given list. You can use this method only on lists whose
elements implement the java.lang.Comparable interface. Luckily, many
classes already implement this interface, including String , Date , BigInteger
, and the wrapper classes for the primitive types (Integer , Double , etc.).

public static void sort(List list , Comparator c)

Use this method to sort a list whose elements don't implement the Comparable
interface. The supplied java.util.Comparator does the work of comparing
elements. You might, for example, write an ImaginaryNumber class and want to
sort a list of them. You would then create a Comparator implementation that knew
how to compare two imaginary numbers.

Collections gives you some other interesting capabilities, too. If you're interested in
learning more, check out the min() , max() , binarySearch() , and reverse()
methods.

10.4.8 A Thrilling Example

Collections is a bread-and-butter topic, which means it's hard to make exciting examples
about it. The example in this section reads a text file, parses all its words, counts the
number of occurrences, sorts them, and writes the results to another file. It gives you a
good feel for how to use collections in your own programs.

//file: WordSort.java
import java.io.*;
import java.util.*;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public class WordSort {
 public static void main(String[] args) throws IOException {
 // get the command-line arguments
 if (args.length < 2) {
 System.out.println("Usage: WordSort inputfile outputfile");
 return;
 }
 String inputfile = args[0];
 String outputfile = args[1];

/* Create the word map. Each key is a word and each value is an
 * Integer that represents the number of times the word occurs
 * in the input file.
 */
 Map map = new TreeMap();

 // read every line of the input file
 BufferedReader in =
 new BufferedReader(new FileReader(inputfile));

 String line;
 while ((line = in.readLine()) != null) {
 // examine each word on the line
 StringTokenizer st = new StringTokenizer(line);
 while (st.hasMoreTokens()) {
 String word = st.nextToken();
 Object o = map.get(word);
 // if there's no entry for this word, add one
 if (o == null) map.put(word, new Integer(1));
 // otherwise, increment the count for this word
 else {
 Integer count = (Integer)o;
 map.put(word, new Integer(count.intValue() + 1));
 }
 }
 }
 in.close();

 // get the map's keys

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 List keys = new ArrayList(map.keySet());

 // write the results to the output file
 PrintWriter out = new PrintWriter(new FileWriter(outputfile));
 Iterator iterator = keys.iterator();
 while (iterator.hasNext()) {
 Object key = iterator.next();
 out.println(key + " : " + map.get(key));
 }
 out.close();
 }
}

Suppose, for example, that you have an input file named Ian Moore.txt :

Well it was my love that kept you going
Kept you strong enough to fall
And it was my heart you were breaking
When he hurt your pride

So how does it feel
How does it feel
How does it feel
How does it feel

You could run the example on this file using the following command line:

% java WordSort "Ian Moore.txt" count.txt

The output file, count.txt , looks like this:

And : 1
How : 3
Kept : 1
So : 1
Well : 1
When : 1
breaking : 1
does : 4
enough : 1
fall : 1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

feel : 4
going : 1
he : 1
heart : 1
how : 1
hurt : 1
it : 6
kept : 1
love : 1
my : 2
pride : 1
strong : 1
that : 1
to : 1
was : 2
were : 1
you : 3
your : 1

The results are case-sensitive: "How" and "how" are recorded separately. You could
modify this behavior by converting words to all lowercase after retrieving them from the
StringTokenizer :

String word = st.nextToken().toLowerCase();

10.4.9 Thread Safety and Iterators

Earlier we saw that the Collections class provides methods that create a thread-safe
version of any Collection . There are methods for each subtype of Collection .
The following example shows how to create a thread-safe List :

List list = new ArrayList();
List syncList = Collections.synchronizedList(list);

Although synchronized collections are thread-safe, the Iterator s returned from them
are not. This is an important point. If you obtain an Iterator from a collection, you
should do your own synchronization to ensure that the collection does not change as you're
iterating through its elements. You can do this by convention by synchronizing on the
collection itself with the synchronized keyword:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

synchronized(syncList) {
 Iterator iterator = syncList.iterator();
 // do stuff with the iterator here
}

10.4.10 WeakHashMap

In Chapter 5 we introduced the idea of weak references-object references that don't
prevent their objects from being removed by the garbage collector. WeakHashMap is an
implementation of Map that makes use of weak references in its keys and values. This
means that you don't have to remove key/value pairs from a Map when you're finished with
them. Normally if you removed all references to a key object in the rest of your application,
the Map would still contain a reference and keep the object "alive." WeakHashMap
changes this; once you remove references to a key object in the rest of the application, the
WeakHashMap lets go of it too.

10.5 Properties

The java.util.Properties class is a specialized hashtable map for strings. Java
uses a Properties object to hold environmental information in the way that
environment variables are used in other programming environments. You can use a
Properties table to hold arbitrary configuration information for an application in an
easily accessible format. The Properties table can also load and store its information
in text format using streams (see Chapter 11 for information on streams). In Java 1.4, a new
Preferences API was introduced which is designed to take over much of the system
configuration functionality of properties using XML files. We'll talk about that a bit later.

Any string values can be stored as key/value pairs in a Properties table. However, the
convention is to use a dot-separated naming hierarchy to group property names into logical
structures, as is done with X Window System resources on Unix systems. [5]

You can create an empty Properties table and add String key/value pairs just as
you can with a Hashtable :

Properties props = new Properties();
props.setProperty("myApp.xsize", "52");
props.setProperty("myApp.ysize", "79");

Thereafter, you can retrieve values with the getProperty() method:

String xsize = props.getProperty("myApp.xsize");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

If the named property doesn't exist, getProperty() returns null . You can get an
Enumeration of the property names with the propertyNames() method:

for (Enumeration e = props.propertyNames(); e.hasMoreElements;) {
 String name = e.nextElement();
 ...
}

When you create a Properties table, you can specify a second table for default
property values:

Properties defaults;
...
Properties props = new Properties(defaults);

Now when you call getProperty() , the method searches the default table if it doesn't
find the named property in the current table. An alternative version of getProperty()
also accepts a default value; this value is returned instead of null if the property is not
found in the current list or in the default list:

String xsize = props.getProperty("myApp.xsize", "50");

10.5.1 Loading and Storing

You can save a Properties table to an OutputStream using the save() method.
The property information is output in a flat ASCII format. We'll talk about I/O in the next
chapter, but bear with us for now. Continuing with the previous example, output the
property information using the System.out stream as follows:

props.save(System.out, "Application Parameters");

System.out is a standard output stream that prints to the console or command line of an
application. We could also save the information to a file using a FileOutputStream
as the first argument to save() . The second argument to save() is a String that is
used as a header for the data. The previous code outputs something like the following to
System.out :

#Application Parameters
#Mon Feb 12 09:24:23 CST 1999
myApp.ysize=79
myApp.xsize=52

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The load() method reads the previously saved contents of a Properties object from
an InputStream :

FileInputStream fin;
...
Properties props = new Properties()
props.load(fin);

The list() method is useful for debugging. It prints the contents to an
OutputStream in a format that is more human-readable but not retrievable by load()
. It truncates long lines with an ellipsis (...).

10.5.2 System Properties

The java.lang.System class provides access to basic system environment
information through the static System.getProperty() method. This method returns
a Properties table that contains system properties. System properties take the place of
environment variables in some programming environments. Table 10-6 summarizes system
properties that are guaranteed to be defined in any Java environment.

Table 10-6. System properties

System property Meaning

java.vendor Vendor-specific string

java.vendor.url URL of vendor

java.version Java version

java.home Java installation directory

java.class.version Java class version

java.class.path The classpath

os.name Operating system name

os.arch Operating system architecture

os.version Operating system version

file.separator File separator (such as / or \)

path.separator Path separator (such as : or ;)

line.separator Line separator (such as \n or \r\n)

user.name User account name

user.home User's home directory

Applets are, by current web browser conventions, prevented from reading the following
properties: java.home , java.class.path , user.name , user.home , and
user.dir . As you'll see later, these restrictions are implemented by a
SecurityManager object.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

user.dir Current working directory

Applets are, by current web browser conventions, prevented from reading the following
properties: java.home , java.class.path , user.name , user.home , and
user.dir . As you'll see later, these restrictions are implemented by a
SecurityManager object.

Your application can set system properties with the static method System.
setProperty() . You can also set system properties when you run the Java
interpreter, using the -D option:

% java -Dfoo=bar -Dcat=Boojum MyApp

Since it is common to use system properties to provide parameters such as numbers and
colors, Java provides some convenience routines for retrieving property values and parsing
them into their appropriate types. The classes Boolean , Integer , Long , and
Color each come with a "get" method that looks up and parses a system property. For
example, Integer.getInteger("foo") looks for a system property called foo
and then returns it as an Integer . Color.getColor("foo") parses the property
as an RGB value and returns a Color object.

10.6 The Preferences API

Java 1.4 introduced a Preferences API to accommodate the need to store both system and
per user configuration data persistently across executions of the Java VM. The Preferences
API is like a portable version of the Windows registry, a mini database in which you can
keep small amounts of information, accessible to all applications. Entries are stored as
name/value pairs, where the values may be of several standard types including strings,
numbers, booleans, and even short byte arrays. We should stress that the Preferences API
is not intended to be used as a true database and you can't store large amounts of data in it.
(That's not to say anything about how it's actually implemented).

Preferences are stored logically in a tree. A preferences object is a node in the tree located
by a unique path. You can think of preferences as files in a directory structure; within the
file are stored one or more name/value pairs. To store or retrieve items you ask for a
preferences object for the correct path. Here is an example; we'll explain the node lookup
shortly:

Preferences prefs = Preferences.userRoot().node("oreilly/learningjava");

prefs.put("author", "Niemeyer");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

prefs.putInt("edition", 4);

String author = prefs.get("author", "unknown");
int edition = prefs.getInt("edition", -1);

In addition to the String and int type accessors, there are the following get methods
for other types: getLong() , getFloat() , getDouble() , getByteArray() ,
and getBoolean() . Each of these get methods takes a key name and default value to
be used if no value is defined. And of course for each get method, there is a corresponding
"put" method that takes the name and a value of the corresponding type. Providing defaults
in the get methods is mandatory. The intent is for applications to function even if there is
no preference information or if the storage for it is not available, as we'll discuss later.

Preferences are stored in two separate trees: system preferences and user preferences.
System preferences are shared by all users of the Java installation. But user preferences are
maintained separately for each user; each user sees his or her own preference information.
In our example, we used the static method userRoot() to fetch the root node
(preference object) for the user preferences tree. We then asked that node to find the child
node at the path oreilly/learningjava , using the node() method. The corresponding
systemRoot() method provides the system root node.

The node() method accepts either a relative or an absolute path. A relative path asks the
node to find the path relative to itself as a base. So we also could have gotten our node this
way:

Preferences prefs =
 Preferences.userRoot().node("oreilly").node("learningjava");

But node() also accepts an absolute path, in which case the base node serves only to
designate which tree the path is in. So we could use the absolute path /oreilly/learningjava
as the argument to any node() method and reach our preferences object.

10.6.1 Preferences for Classes

Java is an object-oriented language, and so it's natural to wish to associate preference data
with classes. In Chapter 11 , we'll see that Java provides special facilities for loading
resource files associated with class files. The Preferences API follows this pattern by
associating a node with each Java package. Its convention is simple: the node path is just
the package name with the dots (.) converted to slashes (/). All classes in the package share
the same node.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can get the preference object node for a class using the static
Preferences.userNodeForPackage() or
Preferences.systemNodeForPackage() methods, which take a Class as an
argument and return the corresponding package node for the user and system trees
respectively. For example:

Preferences datePrefs = Preferences.systemNodeForPackage(Date.class);
Preferences myPrefs = Preferences.userNodeForPackage(MyClass.class);
Preferences morePrefs =
 Preferences.userNodeForPackage(myObject.getClass());

Here we've used the .class construct to refer to the Class object for the Date class in
the system tree and to our own MyClass class in the user tree. The Date class is in the
java.util package, so we'll get the node /java/util in that case. You can get the Class
for any object instance using the getClass() method.

10.6.2 Preferences Storage

There is no need to "create" nodes. When you ask for a node you get a preferences object
for that path in the tree. If you write something to it, that data is eventually placed in
persistent storage, called the backing store. The backing store is the implementation-
dependent storage mechanism used to hold the preference data. All the put methods return
immediately, and no guarantees are made as to when the data is actually stored. You can
force data to the backing store explicitly using the flush() method of the Preferences
class. Conversely, you can use the sync() method to guarantee that a preferences object
is up to date with respect to changes placed into the backing store by other applications or
threads. Both flush() and sync() throw a BackingStoreException if data
cannot be read or written for some reason.

You don't have to create nodes, but you can test for the existence of a data node with the
nodeExists() method, and you can remove a node and all its children with the
removeNode() method. To remove a data item from a node, use the remove()
method, specifying the key; or you can remove all the data from a node with the
clear() method (which is not the same as removing the node).

Although the details of the backing store are implementation-dependent, the Preferences
API provides a simple import/export facility that can read and write parts of a preference
tree to an XML file. (The format for the file is available at http://java.sun.com/dtd/). A
preference object can be written to an output stream with the exportNode() method.
The exportSubtree() method writes the node and all its children. Going the other
way, the static Preferences.importPreferences() method can read the XML

http://lib.ommolketab.ir
http://lib.ommolketab.ir

file and populate the appropriate tree with its data. The XML file records whether it is user
or system preferences, but user data is always placed into the current user's tree, regardless
of who generated it.

It's interesting to note that since the import mechanism writes directly to the tree, you can't
use this as a general data-to-XML storage mechanism; other current and forthcoming APIs
play that role. Also, although we said that the implementation details are not specified, it's
interesting to note how things really work in the current implementation. Java creates a
directory hierarchy for each tree at $JAVA_HOME/jre/.systemPrefs and
$HOME/.java/.userPrefs , respectively. In each directory, there is an XML file called
prefs.xml corresponding to that node.

10.6.3 Change Notification

Often your application should be notified if changes are made to the preferences while it's
running. You can get updates on preference changes using the
PreferenceChangeListener and NodeChangeListener interfaces. These
interfaces are examples of event listener interfaces, and we'll see many examples of these in
Chapter 15 through Chapter 17 . We'll talk about the general pattern later, in Section 10.8 .
For now we'll just say that by registering an object that implements
PreferenceChangeListener with a node you can receive updates on added,
removed, and changed preference data for that node. The NodeChangeListener
allows you to be told when child nodes are added to or removed from a specific node. Here
is a snippet that prints all the data changes affecting our /oreilly/learningjava node.

Preferences prefs =
 Preferences.userRoot().node("/oreilly/learningjava");

prefs.addPreferenceChangeListener(new PreferenceChangeListener() {
 public void preferenceChange(PreferenceChangeEvent e) {
 System.out.println("Value: " + e.getKey()
 + " changed to "+ e.getNewValue());
 }
});

In brief, this example listens for changes to preferences and prints them. If this example
isn't immediately clear, it should be after you've read about events in Chapter 15 and
beyond.

10.7 The Logging API

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Another feature introduced in Java 1.4 is the Logging API. The java.util.logging
package provides a highly flexible and easy to use logging framework for system
information, error messages, and fine-grained tracing (debugging) output. With the logging
package you can apply filters to select log messages, direct their output to one or more
destinations (including files and network services), and format the messages appropriately
for their consumers.

Most importantly, much of this basic logging configuration can be set up externally at
runtime through the use of a logging setup properties file or an external program. For
example, by setting the right properties at runtime, you can specify that log messages are to
be sent both to a designated file in XML format and also logged to the system console in a
digested, human-readable form. Furthermore, for each of those destinations you can
specify the level or priority of messages to be logged, ignoring those below a certain
threshold of significance. By following the correct source conventions in your code, you
can even make it possible to adjust the logging levels for specific parts of your application,
allowing you to target individual packages and classes for detailed logging without being
overwhelmed by too much output.

10.7.1 Overview

Any good logging API must have at least two guiding principles. First, performance should
not inhibit the developer from using log messages freely. As with Java language assertions
(discussed in Chapter 4), when log messages are turned off they should not consume any
significant amount of processing time. This means there's no performance penalty for
including logging statements as long as they're turned off. Second, although some users
may want advanced features and configuration, a logging API must have some simple
mode of usage that is convenient enough for time-starved developers to use in lieu of the
old standby System.out.println() . Java's Logging API provides a simple model
and many convenience methods that make it very tempting.

10.7.1.1 Loggers

The heart of the logging framework is the logger , an instance of
java.util.logging.Logger . In most cases, this is the only class your code will
ever have to deal with. A logger is constructed from the static Logger.getLogger()
method, with a logger name as its argument. Logger names place loggers into a hierarchy,
with a global, root logger at the top and a tree and children below. This hierarchy allows
configuration to be inherited by parts of the tree so that logging can be automatically
configured for different parts of your application. The convention is to use a separate

http://lib.ommolketab.ir
http://lib.ommolketab.ir

logger instance in each major class or package and to use the dot-separated package and/or
class name as the logger name. For example:

package com.oreilly.learnjava;
public class Book {
 static Logger log = Logger.getLogger("com.oreilly.learnjava.Book");

The logger provides a wide range of methods to log messages; some take very detailed
information, and some convenience methods take only a string for ease of use. For
example:

log.warning("Disk 90% full.");
log.info("New user joined chat room.");

We cover methods of the logger class in detail a bit later. The names warning and info
are two examples of logging levels; there are seven levels ranging from SEVERE at the top
to FINEST at the bottom. Distinguishing log messages in this way allows us to select the
level of information that we want to see at runtime. Rather than simply logging everything
and sorting through it later (with negative performance impact) we can tweak which
messages are generated. We'll talk more about logging levels in the next section.

We should also mention that for convenience in very simple applications or experiments, a
logger for the name "global" is provided in the static field Logger.global . You can
use it as an alternative to the old standby System.out.println() for those cases
where that is still a temptation:

Logger.global.info("Doing foo...")

10.7.1.2 Handlers

Loggers represent the client interface to the logging system, but the actual work of
publishing messages to destinations (such as files or the console) is done by handler
objects. Each logger may have one or more Handler objects associated with it, which
includes several predefined handlers supplied with the Logging API: ConsoleHandler
, FileHandler , StreamHandler , and SocketHandler . Each handler knows
how to deliver messages to its respective destination. ConsoleHandler is used by the
default configuration to print messages on the command line or system console.
FileHandler can direct output to files using a supplied naming convention and
automatically rotate the files as they become full. The others send messages to streams and
sockets, respectively. There is one additional handler, MemoryHandler , that can hold a
number of log messages in memory. MemoryHandler has a circular buffer, which
maintains a certain number of messages until it is triggered to publish them to another

http://lib.ommolketab.ir
http://lib.ommolketab.ir

designated handler.

As we said, loggers can be set to use one or more handlers. Loggers also send messages up
the tree to each of their parent logger's handlers. In the simplest configuration this means
that all messages end up distributed by the root logger's handlers. We'll see how to set up
output using the standard handlers for the console, files, etc. shortly.

10.7.1.3 Filters

Before a logger hands off a message to its handlers or its parent's handlers, it first checks
whether the logging level is sufficient to proceed. If the message doesn't meet the required
level it is discarded at the source. In addition to level, you can implement arbitrary filtering
of messages by creating Filter classes which examine the log message before it is
processed. A Filter class can be applied to a logger externally, at runtime in the same
way that the logging level, handlers, and formatters, discussed next, can be. A Filter
may also be attached to an individual Handler to filter records at the output stage (as
opposed to the source).

10.7.1.4 Formatters

Internally, messages are carried in a neutral format including all the source information
provided. It is not until they are processed by a handler that they are formatted for output
by an instance of a Formatter object. The logging package comes with two basic
formatters: SimpleFormatter and XMLFormatter . The SimpleFormatter is
the default used for console output. It produces short, human-readable, summaries of log
messages. XMLFormatter encodes all the log message details into an XML record
format. The DTD for the format can be found at http://java.sun.com/dtd/ .

10.7.2 Logging Levels

Table 10-7 lists the logging levels from most significant to least significant.

Table 10-7. Logging API logging levels

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Level Meaning

SEVERE Application failure

WARNING Notification of potential problem

INFO Messages of general interest to end users

CONFIG Detailed system configuration information for administrators

FINE, FINER,
FINEST

Successively more detailed application tracing information for
developers

These levels fall into three camps: end user, administrator, and developer. Applications
often default to logging only messages of the INFO level and above (INFO, WARNING,
and SEVERE). These levels are generally seen by end users and messages logged to them
should be suitable for general consumption. In other words, they should be written clearly
so they make sense to an average user of the application. Often these kinds of message are
presented to the end user on a system console or in a pop-up message dialog.

The CONFIG level should be used for relatively static but detailed system information that
could assist an administrator or installer. This might include information about the installed
software modules, host system characteristics, and configuration parameters. These details
are important, but probably not as meaningful to an end user.

The FINE, FINER, and FINEST levels are for developers or people who have knowledge
of the internals of the application. These should be used for tracing the application at
successive levels of detail. You can define your own meanings for these. We'll suggest a
rough outline in our example, coming up next.

10.7.3 A Simple Example

In the following (admittedly very contrived) example we use all the logging levels so that
we can experiment with logging configuration. Although the sequence of messages is
nonsensical, the text is representative of messages of that type.

import java.util.logging.*;

public class LogTest {
 public static void main(String argv[])
 {
 Logger logger = Logger.getLogger("com.oreilly.LogTest");

 logger.severe("Power lost - running on backup!");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 logger.warning("Database connection lost, retrying...");
 logger.info("Startup complete.");
 logger.config("Server configuration: standalone, JVM version 1.4");
 logger.fine("Loading graphing package.");
 logger.finer("Doing pie chart");
 logger.finest("Starting bubble sort: value ="+42);
 }
}

There's not much to this example. We ask for a logger instance for our class using the
static Logger.getLogger() method, specifying a class name. The convention is to
use the fully qualified class name, so we'll pretend that our class is in a com.oreilly
package.

Now run LogTest . You should see output like the following on the system console:

Jan 6, 2002 3:24:36 PM LogTest main
SEVERE: Power lost - running on backup!
Jan 6, 2002 3:24:37 PM LogTest main
WARNING: Database connection lost, retrying...
Jan 6, 2002 3:24:37 PM LogTest main
INFO: Startup complete.

We see the INFO, WARNING, and SEVERE messages, each identified with a date and
timestamp and the name of the class and method (LogTest main) from which they
came. Notice that the lower level messages did not appear. This is because the default
logging level is normally set to INFO, meaning that only messages of severity INFO and
above are logged. Also note that the output went to the system console and not to a log file
somewhere; that's also the default. Now we'll describe where these defaults are set and how
to override them at runtime.

10.7.4 Logging Setup Properties

As we said in the introduction, probably the most important feature of the Logging API is
the ability to configure so much of it at runtime through the use of external properties or
applications. The default logging configuration is stored in the file
jre/lib/logging.properties in the directory where Java is installed. It's a standard Java
properties file (of the kind we described earlier in this chapter).

The format of this file is simple. You can make changes to it, but you don't have to. Instead
you can specify your own logging setup properties file on a case-by-case basis using a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

system property at runtime, as follows:

% java -Djava.util.logging.config.file=myfile.properties

In this command line, myfile is your properties file that contains directives we'll describe
next. If you want to make this file designation more permanent, you can do so by setting
the filename in the corresponding entry using the Java Preferences API described earlier in
this chapter. You can go even further, and instead of specifying a setup file, supply a class
that is responsible for setting up all logging configuration, but we won't get into that here.

A very simple logging properties file might look like this:

Set the default logging level
.level = FINEST
Direct output to the console
handlers = java.util.logging.ConsoleHandler

Here we have set the default logging level for the entire application using the .level
(that's dot-level) property. We have also used the handlers property to specify that an
instance of the ConsoleHandler should be used (just like the default setup) to show
messages on the console. If you run our application again, specifying this properties file as
the logging setup, you will now see all our log messages.

But we're just getting warmed up. Next let's look at a more complex configuration:

Set the default logging level
.level = INFO

Ouput to file and console
handlers = java.util.logging.FileHandler, java.util.logging.ConsoleHandler

Configure the file output
java.util.logging.FileHandler.level = FINEST
java.util.logging.FileHandler.pattern = %h/Test.log
java.util.logging.FileHandler.limit = 25000
java.util.logging.FileHandler.count = 4
java.util.logging.FileHandler.formatter = java.util.logging.XMLFormatter

Configure the console output
java.util.logging.ConsoleHandler.level = WARNING

Levels for specific classes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

com.oreilly.LogTest.level = FINEST

In this example, we have configured two log handlers: a ConsoleHandler with the
logging level set to WARNING and also an instance of FileHandler that sends the
output to an XML file. The file handler is configured to log messages at the FINEST level
(all messages) and to rotate log files every 25,000 lines, keeping a maximum of four files.

The filename is controlled by the pattern property. Forward slashes in the filename are
automatically localized to backslash (\) if necessary. The special symbol %h refers to the
user home. You can use %t to refer to the system temporary directory. If filenames
conflict, a number is appended automatically after a dot (starting at zero). Alternatively,
you can use %u to indicate where a unique number should be inserted into the name.
Similarly, when files rotate, a number is appended after a dot at the end. You can take
control of where the rotation number is placed with the %g identifier.

In our example we specified the XMLFormatter class. We could also have used the
SimpleFormatter class to send the same kind of simple output to the console. The
ConsoleHandler also allows us to specify any formatter we wish, using the
formatter property.

Finally, we promised earlier that you could control logging levels for parts of your
applications. To do this, set properties on your application loggers using their hierarchical
names:

Levels for specific logger (class) names
com.oreilly.LogTest.level = FINEST

Here we've set the logging level for just our test logger, by name. The log properties follow
the hierarchy, so we could set the logging level for all classes in the oreilly package
with:

com.oreilly.level = FINEST

Logging levels are set in the order they are read in the properties file, so set the general
ones first. Also note that the levels set on the handlers allow the file handler to filter only
the messages being supplied by the loggers. So setting the file handler to FINEST won't
revive messages squelched by a logger set to SEVERE (only the SEVERE messages will
make it to the handler from that logger).

10.7.5 The Logger

In our example we used the seven convenience methods named for the various logging

http://lib.ommolketab.ir
http://lib.ommolketab.ir

levels. There are also three groups of general methods that can be used to provide more
detailed information. The most general are:

log(Level level, String msg)
log(Level level, String msg, Object param1)
log(Level level, String msg, Object params[])
log(Level level, String msg, Throwable thrown)

These methods accept as their first argument a static logging level identifier from the
Level class, followed by a parameter, array, or exception type. The level identifier is one
of Level.SEVERE , Level.WARNING , Level.INFO , and so on.

In addition to these four methods, there are four corresponding methods named logp()
that also take a source class and method name as the second and third arguments. In our
example, we saw Java automatically determine that information, so why would we want to
supply it? Well, the answer is that Java may not always be able to determine the exact
method name because of runtime dynamic optimization. The p in logp stands for
"precise" and allows you to control this yourself.

There is yet another set of methods named logrb() (which probably should have been
named "logprb()") that take both the class and method names and a resource bundle name.
The resource bundle localizes the messages (see "Resource Bundles" in Chapter 9). More
generally a logger may have a resource bundle associated with it when it is created, using
another form of the getLogger method:

Logger.getLogger("com.oreilly.LogTest", "logMessages");

In either case, the resource bundle name is passed along with the log message and can be
used by the formatter. If a resource bundle is specified, the standard formatters treat the
message text as a key and try to look up a localized message. Localized messages may
include parameters using the standard message format notation and the form of log() ,
which accepts an argument array.

Finally, there are convenience methods called entering() , exiting() , and
throwing() which developers can use to log detailed trace information.

10.7.6 Performance

In the introduction we said that a priority of the Logging API is performance. To that end
we've described that log messages are filtered at the source, using logging levels to cut off
processing of messages early. This saves much of the expense of handling them. However
it cannot prevent certain kinds of setup work that you might do before the logging call.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Specifically, since we're passing things into the log methods, it's common to construct
detailed messages or render objects to strings as arguments. Often this kind of operation is
costly. To avoid unnecessary string construction, you should wrap expensive log
operations in a conditional test using the Logger isLoggable() method to test
whether you should carry out the operation:

if (log.isLoggable(Level.CONFIG)) {
 log.config("Configuration: "+ loadExpensiveConfigInfo());
}

10.8 Observers and Observables

The java.util.Observer interface and java.util.Observable class are
relatively small utilities, but they provide a glimpse of a fundamental design pattern in
Java. Observers and observables are part of the MVC (Model-View-Controller)
framework. It is an abstraction that lets a number of client objects (the observers) be
notified whenever a certain object or resource (the observable) changes in some way. We
will see this pattern used extensively in Java's event mechanism, covered in Chapter 15
through Chapter 18 .

The Observable object has a method an Observer calls to register its interest. When
a change happens, the Observable sends a notification by calling a method in each of
the Observer s. The observers implement the Observer interface, which specifies
that notification causes an Observer object's update() method to be called.

In the following example, we create a MessageBoard object that holds a String
message. MessageBoard extends Observable , from which it inherits the
mechanism for registering observers (addObserver()) and notifying observers
(notifyObservers()). To observe the MessageBoard , we have Student
objects that implement the Observer interface so that they can be notified when the
message changes:

//file: MessageBoard.java
import java.util.*;

public class MessageBoard extends Observable {
 private String message;

 public String getMessage() {
 return message;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 public void changeMessage(String message) {
 this.message = message;
 setChanged();
 notifyObservers(message);
 }
 public static void main(String [] args) {
 MessageBoard board = new MessageBoard();
 Student bob = new Student();
 Student joe = new Student();
 board.addObserver(bob);
 board.addObserver(joe);
 board.changeMessage("More Homework!");
 }
} // end of class MessageBoard

class Student implements Observer {
 public void update(Observable o, Object arg) {
 System.out.println("Message board changed: " + arg);
 }
}

Our MessageBoard object extends Observable , which provides a method called
addObserver() . Each Student objects registers itself using this method and
receives updates via its update() method. When a new message string is set, using the
MessageBoard 's changeMessage() method, the Observable calls the
setChanged() and notifyObservers() methods to notify the observers.
notifyObservers() can take as an argument an Object to pass along as an
indication of the change. This object, in this case the String containing the new
message, is passed to the observer's update() method, as its second argument. The first
argument to update() is the Observable object itself.

The main() method of MessageBoard creates a MessageBoard and registers two
Student objects with it. Then it changes the message. When you run the code, you
should see each Student object print the message as it is notified.

You can imagine how you could implement the observer/observable relationship yourself
using a List to hold the list of observers. In Chapter 15 and beyond, we'll see that the
Java AWT and Swing event model extends this design pattern to use strongly typed
observables and observers, called event s and event listeners. But for now, we turn our

http://lib.ommolketab.ir
http://lib.ommolketab.ir

discussion of core utilities to another fundamental topic: I/O.

[1] The generator uses a linear congruential formula. See The Art of Computer Programming
, Volume 2: Semi-numerical Algorithms by Donald Knuth (Addison-Wesley).

[2] For a wealth of information about time and world time-keeping conventions, see
http://tycho.usno.navy.mil , the U.S. Navy Directorate of Time. For a fascinating history of the
Gregorian and Julian calendars, try this site:
http://www.magnet.ch/serendipity/hermetic/cal_stud/cal_art.htm .

[3] In Java 1.0.2, the Date class performed all three functions. In Java 1.1 and later, most

of its methods have been deprecated, so that the only purpose of the Date class is to

represent a point in time.

[4] In C++, where classes don't derive from a single Object class that supplies a base

type and common methods, the elements of a collection would usually be derived from some
common collectable class. This forces the use of multiple inheritance along with its associated
problems.

[5] Unfortunately, this is just a naming convention right now, so you can't access logical
groups of properties as you can with X resources.

CONTENTS

http://tycho.usno.navy.mil
http://www.magnet.ch/serendipity/hermetic/cal_stud/cal_art.htm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

Chapter 11. Input/Output Facilities

 11.1 Streams

 11.2 Files
 11.3 Serialization

 11.4 Data Compression

 11.5 The NIO Package

In this chapter, we continue our exploration of the Java API by looking at many of the
classes in the java.io and java.nio packages. These packages offer a rich set of
tools for basic I/O and also provide the framework on which all file and network
communication in Java is built.

Figure 11-1 shows the class hierarchy of these packages.

Figure 11-1. The java.io package

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We'll start by looking at the stream classes in java.io , which are subclasses of the basic
InputStream , OutputStream , Reader , and Writer classes. Then we'll
examine the File class and discuss how you can interact with the filesystem using classes
in java.io . We'll also take a quick look at the data compression classes provided in
java.util.zip . Finally, we'll begin our investigation of the new java.nio

http://lib.ommolketab.ir
http://lib.ommolketab.ir

package, introduced in Java 1.4. The NIO package adds significant new functionality for
building high performance services.

11.1 Streams

Most fundamental I/O in Java is based on streams . A stream represents a flow of data, or a
channel of communication with (at least conceptually) a writer at one end and a reader at
the other. When you are working with the java.io package to perform terminal input
and output, reading or writing files, or communicating through sockets in Java, you are
using various types of streams. Later in this chapter we'll look at the NIO package, which
introduces a similar concept called a channel . But for now we'll start by summarizing the
available types of streams.

InputStream/OutputStream

Abstract classes that define the basic functionality for reading or writing an unstructured sequence
of bytes. All other byte streams in Java are built on top of the basic InputStream and
OutputStream .

Reader/Writer

Abstract classes that define the basic functionality for reading or writing a sequence of character
data, with support for Unicode. All other character streams in Java are built on top of Reader and
Writer .

InputStreamReader/OutputStreamWriter

"Bridge" classes that convert bytes to characters and vice versa. Remember: in Unicode, a character
is not a byte!

DataInputStream/DataOutputStream

Specialized stream filters that add the ability to read and write simple data types, such as numeric
primitives and String objects, in a universal format.

ObjectInputStream/ObjectOutputStream

Specialized stream filters that are capable of writing whole serialized Java objects and
reconstructing them.

BufferedInputStream/BufferedOutputStream/BufferedReader/BufferedWriter

Specialized stream filters that add buffering for additional efficiency.
PrintWriter

A specialized character stream that makes it simple to print text.
PipedInputStream/PipedOutputStream/PipedReader/PipedWriter

http://lib.ommolketab.ir
http://lib.ommolketab.ir

"Double-ended" streams that normally occur in pairs. Data written into a
PipedOutputStream or PipedWriter is read from its corresponding
PipedInputStream or PipedReader .

FileInputStream/FileOutputStream/FileReader/FileWriter

Implementations of InputStream , OutputStream , Reader , and Writer that read from
and write to files on the local filesystem.

Streams in Java are one-way streets. The java.io input and output classes represent the
ends of a simple stream, as shown in Figure 11-2 . For bidirectional conversations, you'll
use one of each type of stream.

Figure 11-2. Basic input and output stream functionality

InputStream and OutputStream are abstract classes that define the lowest-
level interface for all byte streams. They contain methods for reading or writing an
unstructured flow of byte-level data. Because these classes are abstract, you can't create a
generic input or output stream. Java implements subclasses of these for activities such as
reading from and writing to files and communicating with sockets. Because all byte
streams inherit the structure of InputStream or OutputStream , the various kinds
of byte streams can be used interchangeably. A method specifying an InputStream as
an argument can, of course, accept any subclass of InputStream . Specialized types of
streams can also be layered to provide features, such as buffering, filtering, or handling
larger data types.

Reader and Writer are very much like InputStream and OutputStream ,
except that they deal with characters instead of bytes. As true character streams, these
classes correctly handle Unicode characters, which was not always the case with byte
streams. Often, a bridge is needed between these character streams and the byte streams of
physical devices such as disks and networks. InputStreamReader and
OutputStreamWriter are special classes that use an encoding scheme to translate
between character and byte streams.

We'll discuss all the interesting stream types in this section, with the exception of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FileInputStream , FileOutputStream , FileReader , and FileWriter .
We'll postpone the discussion of file streams until the next section, where we'll cover issues
involved with accessing the filesystem in Java.

11.1.1 Terminal I/O

The prototypical example of an InputStream object is the standard input of a Java
application. Like stdin in C or cin in C++, this is the source of input to a command-
line (non-GUI) program. It is the input stream from the environment-usually a terminal
window or the output of another command. The java.lang.System class, a general
repository for system-related resources, provides a reference to standard input in the static
variable System.in . It also provides streams for standard output and standard error in
the out and err variables, respectively. The following example shows the correspondence:

InputStream stdin = System.in;
OutputStream stdout = System.out;
OutputStream stderr = System.err;

This example hides the fact that System.out and System.err aren't really
OutputStream objects, but more specialized and useful PrintStream objects. We'll
explain these later, but for now we can reference out and err as OutputStream
objects, because they are a type of OutputStream as well.

We can read a single byte at a time from standard input with the InputStream 's
read() method. If you look closely at the API, you'll see that the read() method of the
base InputStream class is an abstract method. What lies behind System.in is a
particular implementation of InputStream ; the subclass provides a real
implementation of the read() method.

try {
 int val = System.in.read();
 ...
}
catch (IOException e) {
 ...
}

Note that the return type of read() in this example is int , not byte as you'd expect.
That's because Java's input stream read() method uses a convention of the C language.
Although read() provides only a byte of information, its return type is int . This
allows it to use the special return value of an integer -1 , indicating that end of stream has

http://lib.ommolketab.ir
http://lib.ommolketab.ir

been reached. You'll need to test for this condition when using the simple read()
method. If an error occurs during the read, an IOException is thrown. All basic input
and output stream commands can throw an IOException , so you should arrange to
catch and handle them appropriately.

To retrieve the value as a byte , perform a cast:

byte b = (byte) val;

Be sure to check for the end-of-stream condition before you perform the cast.

An overloaded form of read() fills a byte array with as much data as possible up to the
capacity of the array, and returns the number of bytes read:

byte [] buff = new byte [1024];
int got = System.in.read(buff);

We can also check the number of bytes available for reading on an InputStream with
the available() method. Using that information, we could create an array of exactly
the right size:

int waiting = System.in.available();
if (waiting > 0) {
 byte [] data = new byte [waiting];
 System.in.read(data);
 ...
}

However, the reliability of this technique depends on the ability of the underlying stream
implementation to detect how much data can be retrieved. It generally works for files but
should not be relied upon for all types of streams.

These read() methods block until at least some data is read (at least one byte). You
must, in general, check the returned value to determine how much data you got and if you
need to read more.

InputStream provides the skip() method as a way of jumping over a number of
bytes. Depending on the implementation of the stream, skipping bytes may be more
efficient than reading them. The close() method shuts down the stream and frees up
any associated system resources. It's a good idea to close a stream when you are done using
it.

11.1.2 Character Streams

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Some InputStream and OutputStream subclasses of early versions of Java
included methods for reading and writing strings, but most of them operated by naively
assuming that a 16-bit Unicode character was equivalent to an 8-bit byte in the stream.
Unfortunately, this works only for Latin-1 (ISO 8859-1) characters. To remedy this, the
character stream classes Reader and Writer were introduced. Two special classes,
InputStreamReader and OutputStreamWriter , bridge the gap between the
world of character streams and the world of byte streams. These are character streams that
are wrapped around an underlying byte stream. An encoding scheme is used to convert
between bytes and characters. An encoding scheme name can be specified in the
constructor of InputStreamReader or OutputStreamWriter . The default
constructor can also be used; it uses the system's default encoding scheme. For example,
let's parse a human-readable string from the standard input into an integer. We'll assume
that the bytes coming from System.in use the system's default encoding scheme:

try {
 InputStreamReader converter = new InputStreamReader(System.in);
 BufferedReader in = new BufferedReader(converter);

 String text = in.readLine();
 int i = NumberFormat.getInstance().parse(text).intValue();
}
catch (IOException e) { }
catch (ParseException pe) { }

First, we wrap an InputStreamReader around System.in . This object converts
the incoming bytes of System.in to characters using the default encoding scheme.
Then, we wrap a BufferedReader around the InputStreamReader .
BufferedReader gives us the readLine() method, which we can use to convert a
full line of text into a String . The string is then parsed into an integer using the
techniques described in Chapter 9 .

We could have programmed the previous example using only byte streams, and it might
have worked for users in the United States, at least. But character streams correctly support
Unicode strings. Unicode was designed to support almost all the written languages of the
world. If you want to write a program that works in any part of the world, in any language,
you definitely want to use streams that don't mangle Unicode.

So how do you decide when you need a byte stream (InputStream or
OutputStream) and when you need a character stream? If you want to read or write
character strings, use some variety of Reader or Writer . Otherwise, a byte stream

http://lib.ommolketab.ir
http://lib.ommolketab.ir

should suffice. Let's say, for example, that you want to read text from a file that was written
by an earlier Java application. In this case, you could simply create a FileReader ,
which will convert the bytes in the file to characters using the system's default encoding
scheme. If you have a file in a specific encoding scheme, you can create an
InputStreamReader with the specified encoding scheme wrapped around a
FileInputStream and read characters from it.

Another example comes from the Internet. Web servers serve files as byte streams. If you
want to read Unicode strings with a particular encoding scheme from a file on the network,
you'll need an appropriate InputStreamReader wrapped around the InputStream
of the web server's socket (as we'll see in Chapter 12).

11.1.3 Stream Wrappers

What if we want to do more than read and write a sequence of bytes or characters? We can
use a "filter" stream, which is a type of InputStream , OutputStream , Reader ,
or Writer that wraps another stream and adds new features. A filter stream takes the
target stream as an argument in its constructor and delegates calls to it after doing some
additional processing of its own. For example, you could construct a
BufferedInputStream to wrap the system standard input:

InputStream bufferedIn = new BufferedInputStream(System.in);

The BufferedInputStream is a type of filter stream that reads ahead and buffers a
certain amount of data. (We'll talk more about it later in this chapter.) The
BufferedInputStream wraps an additional layer of functionality around the
underlying stream. Figure 11-3 shows this arrangement for a DataInputStream .

As you can see from the previous code snippet, the BufferedInputStream filter is a
type of InputStream . Because filter streams are themselves subclasses of the basic
stream types, they can be used as arguments to the construction of other filter streams. This
allows filter streams to be layered on top of one another to provide different combinations
of features. For example, we could first wrap our System.in with a
BufferedInputStream and then wrap the BufferedInputStream with a
DataInputStream for reading special data types.

There are four superclasses corresponding to the four types of filter streams:
FilterInputStream , FilterOutputStream , FilterReader , and
FilterWriter . The first two are for filtering byte streams, and the last two are for
filtering character streams. These superclasses provide the basic machinery for a "no op"
filter (a filter that doesn't do anything) by delegating all their method calls to their

http://lib.ommolketab.ir
http://lib.ommolketab.ir

underlying stream. Real filter streams subclass these and override various methods to add
their additional processing. We'll make an example filter stream a little later in this chapter.

Figure 11-3. Layered streams

11.1.3.1 Data streams

DataInputStream and DataOutputStream are filter streams that let you read or
write strings and primitive data types comprised of more than a single byte.
DataInputStream and DataOutputStream implement the DataInput and
DataOutput interfaces, respectively. These interfaces define the methods required for
streams that read and write strings and Java primitive numeric and boolean types in a
machine-independent manner.

You can construct a DataInputStream from an InputStream and then use a
method such as readDouble() to read a primitive data type:

DataInputStream dis = new DataInputStream(System.in);
double d = dis.readDouble();

This example wraps the standard input stream in a DataInputStream and uses it to
read a double value. readDouble() reads bytes from the stream and constructs a
double from them. The DataInputStream methods expect the bytes of numeric
data types to be in network byte order , a standard that specifies that the high-order bytes
are sent first (also known as "big endian," as we'll discuss later).

The DataOutputStream class provides write methods that correspond to the read
methods in DataInputStream . For example, writeInt() writes an integer in
binary format to the underlying output stream.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The readUTF() and writeUTF() methods of DataInputStream and
DataOutputStream read and write a Java String of Unicode characters using the
UTF-8 "transformation format." UTF-8 is an ASCII-compatible encoding of Unicode
characters commonly used for the transmission and storage of Unicode text. This differs
from the Reader and Writer streams that can use arbitrary encodings that may not
preserve all the Unicode characters.

We can use a DataInputStream with any kind of input stream, whether it be from a
file, a socket, or standard input. The same applies to using a DataOutputStream , or,
for that matter, any other specialized streams in java.io .

11.1.3.2 Buffered streams

The BufferedInputStream , BufferedOutputStream , BufferedReader
, and BufferedWriter classes add a data buffer of a specified size to the stream path.
A buffer can increase efficiency by reducing the number of physical read or write
operations that correspond to read() or write() method calls. You create a buffered
stream with an appropriate input or output stream and a buffer size. (You can also wrap
another stream around a buffered stream, so that it benefits from the buffering.) Here's a
simple buffered input stream called bis :

BufferedInputStream bis =
 new BufferedInputStream(myInputStream, 4096);
...
bis.read();

In this example, we specify a buffer size of 4096 bytes. If we leave off the size of the buffer
in the constructor, a reasonably sized one is chosen for us. On our first call to read() ,
bis tries to fill the entire 4096-byte buffer with data. Thereafter, calls to read() retrieve
data from the buffer, which is refilled as necessary.

A BufferedOutputStream works in a similar way. Calls to write() store the
data in a buffer; data is actually written only when the buffer fills up. You can also use the
flush() method to wring out the contents of a BufferedOutputStream at any
time. The flush() method is actually a method of the OutputStream class itself. It's
important because it allows you to be sure that all data in any underlying streams and filter
streams has been sent (before, for example, you wait for a response).

Some input streams such as BufferedInputStream support the ability to mark a
location in the data and later reset the stream to that position. The mark() method sets the
return point in the stream. It takes an integer value that specifies the number of bytes that

http://lib.ommolketab.ir
http://lib.ommolketab.ir

can be read before the stream gives up and forgets about the mark. The reset() method
returns the stream to the marked point; any data read after the call to mark() is read
again.

This functionality is especially useful when you are reading the stream in a parser. You
may occasionally fail to parse a structure and so must try something else. In this situation,
you can have your parser generate an error (a homemade ParseException) and then
reset the stream to the point before it began parsing the structure:

BufferedInputStream input;
...
try {
 input.mark(MAX_DATA_STRUCTURE_SIZE);
 return(parseDataStructure(input));
}
catch (ParseException e) {
 input.reset();
 ...
}

The BufferedReader and BufferedWriter classes work just like their byte-
based counterparts but operate on characters instead of bytes.

11.1.3.3 PrintWriter

Another useful wrapper stream is java.io.PrintWriter . This class provides a
suite of overloaded print() methods that turn their arguments into strings and push
them out the stream. A complementary set of println() methods adds a newline to the
end of the strings. PrintWriter is an unusual character stream because it can wrap
either an OutputStream or another Writer .

PrintWriter is the more capable big brother of the older PrintStream byte
stream. The System.out and System.err streams are PrintStream objects; you
have already seen such streams strewn throughout this book:

System.out.print("Hello world...\n");
System.out.println("Hello world...");
System.out.println("The answer is: " + 17);
System.out.println(3.14);

PrintWriter and PrintStream have a strange, overlapping history. Early versions
of Java did not have the Reader and Writer classes and streams such as

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PrintStream , which must of necessity convert bytes to characters; those versions
simply made assumptions about the character encoding. As of Java 1.1, the
PrintStream class was enhanced to translate characters to bytes using the system's
default encoding scheme. For all new development, however, use a PrintWriter
instead of a PrintStream . Because a PrintWriter can wrap an OutputStream
, the two classes are more or less interchangeable.

When you create a PrintWriter object, you can pass an additional boolean value to
the constructor. If this value is true , the PrintWriter automatically performs a
flush() on the underlying OutputStream or Writer each time it sends a newline:

boolean autoFlush = true;
PrintWriter p = new PrintWriter(myOutputStream, autoFlush);

When this technique is used with a buffered output stream, it corresponds to the behavior
of terminals that send data line by line.

Unlike methods in other stream classes, the methods of PrintWriter and
PrintStream do not throw IOException s. This makes life a lot easier for printing
text, which is a very common operation. Instead, if we are interested, we can check for
errors with the checkError() method:

System.out.println(reallyLongString);
if (System.out.checkError()) // uh oh

11.1.4 Pipes

Normally, our applications are directly involved with one side of a given stream at a time.
PipedInputStream and PipedOutputStream (or PipedReader and
PipedWriter), however, let us create two sides of a stream and connect them together,
as shown in Figure 11-4 . This can be used to provide a stream of communication between
threads, for example, or as a "loopback" for testing.

Figure 11-4. Piped streams

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To create a byte-stream pipe, we use both a PipedInputStream and a
PipedOutputStream . We can simply choose a side and then construct the other side
using the first as an argument:

PipedInputStream pin = new PipedInputStream();
PipedOutputStream pout = new PipedOutputStream(pin);

Alternatively:

PipedOutputStream pout = new PipedOutputStream();
PipedInputStream pin = new PipedInputStream(pout);

In each of these examples, the effect is to produce an input stream, pin , and an output
stream, pout , that are connected. Data written to pout can then be read by pin . It is
also possible to create the PipedInputStream and the PipedOutputStream
separately and then connect them with the connect() method.

We can do exactly the same thing in the character-based world, using PipedReader and
PipedWriter in place of PipedInputStream and PipedOutputStream .

Once the two ends of the pipe are connected, use the two streams as you would other input
and output streams. You can use read() to read data from the PipedInputStream
(or PipedReader) and write() to write data to the PipedOutputStream (or
PipedWriter). If the internal buffer of the pipe fills up, the writer blocks and waits
until space is available. Conversely, if the pipe is empty, the reader blocks and waits until
some data is available.

One advantage to using piped streams is that they provide stream functionality in our code
without compelling us to build new, specialized streams. For example, we can use pipes to
create a simple logging or "console" facility for our application. We can send messages to
the logging facility through an ordinary PrintWriter , and then it can do whatever
processing or buffering is required before sending the messages off to their ultimate
destination. Because we are dealing with string messages, we use the character-based
PipedReader and PipedWriter classes. The following example shows the skeleton
of our logging facility:

//file: LoggerDaemon.java
import java.io.*;

class LoggerDaemon extends Thread {
 PipedReader in = new PipedReader();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 LoggerDaemon() {
 start();
 }

 public void run() {
 BufferedReader bin = new BufferedReader(in);
 String s;

 try {
 while ((s = bin.readLine()) != null) {
 // process line of data
 }
 } catch (IOException e) { }
 }

 PrintWriter getWriter() throws IOException {
 return new PrintWriter(new PipedWriter(in));
 }
}

class myApplication {
 public static void main (String [] args) throws IOException {
 PrintWriter out = new LoggerDaemon().getWriter();

 out.println("Application starting...");
 // ...
 out.println("Warning: does not compute!");
 // ...
 }
}

LoggerDaemon reads strings from its end of the pipe, the PipedReader named in .
LoggerDaemon also provides a method, getWriter() , which returns a
PipedWriter that is connected to its input stream. To begin sending messages, we
create a new LoggerDaemon and fetch the output stream. In order to read strings with
the readLine() method, LoggerDaemon wraps a BufferedReader around its
PipedReader . For convenience, it also presents its output pipe as a PrintWriter ,
rather than a simple Writer .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

One advantage of implementing LoggerDaemon with pipes is that we can log messages
as easily as we write text to a terminal or any other stream. In other words, we can use all
our normal tools and techniques. Another advantage is that the processing happens in
another thread, so we can go about our business while the processing takes place.

11.1.5 Streams from Strings and Back

StringReader is another useful stream class; it essentially wraps stream functionality
around a String . Here's how to use a StringReader :

String data = "There once was a man from Nantucket...";
StringReader sr = new StringReader(data);

char T = (char)sr.read();
char h = (char)sr.read();
char e = (char)sr.read();

Note that you will still have to catch IOException s thrown by some of the
StringReader 's methods.

The StringReader class is useful when you want to read data in a String as if it
were coming from a stream, such as a file, pipe, or socket. For example, suppose you create
a parser that expects to read from a stream, but you want to provide an alternative method
that also parses a big string. You can easily add one using StringReader .

Turning things around, the StringWriter class lets us write to a character buffer via
an output stream. The internal buffer grows as necessary to accommodate the data. When
we are done we can fetch the contents of the buffer as a String . In the following
example, we create a StringWriter and wrap it in a PrintWriter for
convenience:

StringWriter buffer = new StringWriter();
PrintWriter out = new PrintWriter(buffer);

out.println("A moose once bit my sister.");
out.println("No, really!");

String results = buffer.toString();

First we print a few lines to the output stream, to give it some data, then retrieve the results
as a string with the toString() method. Alternately, we could get the results as a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

StringBuffer object using the getBuffer() method.

The StringWriter class is useful if you want to capture the output of something that
normally sends output to a stream, such as a file or the console. A PrintWriter
wrapped around a StringWriter is a viable alternative to using a StringBuffer
to construct large strings piece by piece.

The ByteArrrayInputStream and ByteArrayOutputStream work with
bytes in the same way the previous examples worked with characters. You can write byte
data to a ByteArrayOutputStream and retrieve it later with the toByteArray()
method. Conversely, you can construct a ByteArrayInputStream from a byte array
as StringReader does with a String .

11.1.6 The rot13InputStream Class

Before we leave streams, let's try our hand at making one of our own. We mentioned
earlier that specialized stream wrappers are built on top of the FilterInputStream
and FilterOutputStream classes. It's quite easy to create our own subclass of
FilterInputStream that can be wrapped around other streams to add new
functionality.

The following example, rot13InputStream , performs a rot13 (rotate by 13 letters)
operation on the bytes that it reads. rot13 is a trivial obfuscation algorithm that shifts
alphabetic characters to make them not quite human-readable (it simply passes over
nonalphabetic characters without modifying them). rot13 is cute because it's symmetric;
"un-rot13" some text, simply it again. We use the rot13InputStream class in the
"Content and Protocol Handlers" section of the expanded material on the CD that comes
with this book (view CD content online at http://examples.oreilly.com/learnjava2/CD-
ROM/). So we've put the class in the learningjava.io package to facilitate reuse.
Here's our rot13InputStream class:

//file: rot13InputStream.java
package learningjava.io;
import java.io.*;

public class rot13InputStream extends FilterInputStream {

 public rot13InputStream (InputStream i) {
 super(i);
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public int read() throws IOException {
 return rot13(in.read());
 }

 private int rot13 (int c) {
 if ((c >= 'A') && (c <= 'Z'))
 c=(((c-'A')+13)%26)+'A';
 if ((c >= 'a') && (c <= 'z'))
 c=(((c-'a')+13)%26)+'a';
 return c;
 }
}

The FilterInputStream needs to be initialized with an InputStream ; this is the
stream to be filtered. We provide an appropriate constructor for the
rot13InputStream class and invoke the parent constructor with a call to super() .
FilterInputStream contains a protected instance variable, in , in which it stores a
reference to the specified InputStream , making it available to the rest of our class.

The primary feature of a FilterInputStream is that it delegates its input tasks to the
underlying InputStream. So, for instance, a call to FilterInputStream 's
read() method simply turns around and calls the read() method of the underlying
InputStream , to fetch a byte. The filtering happens when we do our extra work on the
data as it passes through. In our example, the read() method fetches a byte from the
underlying InputStream , in , and then performs the rot13 shift on the byte before
returning it. Note that the rot13() method shifts alphabetic characters while simply
passing over all other values, including the end-of-stream value (-1). Our subclass is now
a rot13 filter.

read() is the only InputStream method that FilterInputStream overrides.
All other normal functionality of an InputStream , such as skip() and
available() , is unmodified, so calls to these methods are answered by the underlying
InputStream .

Strictly speaking, rot13InputStream works only on an ASCII byte stream since the
underlying algorithm is based on the Roman alphabet. A more generalized character-
scrambling algorithm would have to be based on FilterReader to handle 16-bit
Unicode classes correctly. (Anyone want to try rot32768?) We should also note that we
have not fully implemented our filter: we should also override the version of read() that
takes a byte array and range specifiers, perhaps delegating it to our own read . Unless we
do so, a reader using that method would get the raw stream .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

11.2 Files

Working with files in Java poses some conceptual problems. The host filesystem lies
outside of Java's virtual environment, in the real world, and can therefore still suffer from
architecture and implementation differences. Java tries to mask some of these differences
by providing information to help an application tailor itself to the local environment; we'll
mention these areas as they occur.

11.2.1 The java.io.File Class

The java.io.File class encapsulates access to information about a file or directory
entry in the filesystem. It can be used to get attribute information about a file, list the
entries in a directory, and perform basic filesystem operations such as removing a file or
making a directory. While the File object handles these tasks, it doesn't provide direct
access for reading and writing file data; there are specialized streams for that purpose.

11.2.1.1 File constructors

You can create an instance of File from a String pathname:

File fooFile = new File("/tmp/foo.txt");
File barDir = new File("/tmp/bar");

You can also create a file with a relative path:

File f = new File("foo");

In this case, Java works relative to the current directory of the Java interpreter. You can
determine the current working directory by checking the user.dir property in the
System Properties list:

System.getProperty("user.dir"));

An overloaded version of the File constructor lets you specify the directory path and
filename as separate String objects:

File fooFile = new File("/tmp", "foo.txt");

With yet another variation, you can specify the directory with a File object and the
filename with a String :

http://lib.ommolketab.ir
http://lib.ommolketab.ir

File tmpDir = new File("/tmp");
File fooFile = new File (tmpDir, "foo.txt");

None of the File constructors throw any exceptions. This means the object is created
whether or not the file or directory actually exists; it isn't an error to create a File object
for a nonexistent file. You can use the object's exists() instance method to find out
whether the file or directory exists. The File object simply exists as a handle for getting
information about what is (potentially at least) a file or directory.

11.2.1.2 Path localization

One of the reasons that working with files in Java is problematic is that pathnames are
expected to follow the conventions of the local filesystem. Java's designers intend to
provide an abstraction that provides ways to work with some system-dependent filename
features, such as the file separator, path separator, device specifier, and root directories.

On some systems, Java can also compensate for differences such as the direction of the file
separator slashes in a pathname. For example, in the current implementation on Windows
platforms, Java accepts paths with either forward slashes or backslashes. However, under
Solaris, Java accepts only paths with forward slashes.

Your best bet is to make sure you follow the filename conventions of the host filesystem. If
your application has a GUI that is opening and saving files at the user's request, you should
be able to handle that functionality with the Swing JFileDialog class. This class
encapsulates a graphical file-selection dialog box. The methods of the JFileDialog
take care of system-dependent filename features for you.

If your application needs to deal with files on its own behalf, however, things get a little
more complicated. The File class contains a few static variables to make this task
possible. File.separator defines a String that specifies the file separator on the
local host (e.g., / on Unix and Macintosh systems and \ on Windows systems);
File.separatorChar provides the same information as a char .

You can use this system-dependent information in several ways. Probably the simplest way
to localize pathnames is to pick a convention you use internally, for instance the forward
slash (/), and do a String replace to substitute for the localized separator character:

// we'll use forward slash as our standard
String path = "mail/1999/june/merle";
path = path.replace('/', File.separatorChar);
File mailbox = new File(path);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Alternately, you could work with the components of a pathname and build the local
pathname when you need it:

String [] path = { "mail", "1999", "june", "merle" };

 StringBuffer sb = new StringBuffer(path[0]);
for (int i=1; i< path.length; i++)
 sb.append(File.separator + path[i]);
File mailbox = new File(sb.toString());

One thing to remember is that Java interprets the backslash character (\) as an escape
character when used in a String . To get a backslash in a String , you have to use \\
.

Another issue to grapple with is that some operating systems use special identifiers for the
roots of filesystems. For example, Windows uses C:\ . Should you need it, the File
class provides the static method listRoots() , which returns an array of File objects
corresponding to the filesystem root directories.

11.2.1.3 File operations

Once we have a File object, we can use it to ask for information about the file or
directory and to perform standard operations on it. A number of methods let us ask certain
questions about the File . For example, isFile() returns true if the File
represents a file while isDirectory() returns true if it's a directory.
isAbsolute() indicates whether the File has an absolute or relative path
specification.

Components of the File pathname are available through the following methods:
getName() , getPath() , getAbsolutePath() , and getParent() .
getName() returns a String for the filename without any directory information;
getPath() returns the directory information without the filename. If the File has an
absolute path specification, getAbsolutePath() returns that path. Otherwise it
returns the relative path appended to the current working directory. getParent()
returns the parent directory of the File .

The string returned by getPath() or getAbsolutePath() may not follow the
same case conventions as the underlying filesystem. You can retrieve the filesystem's own
or "canonical" version of the file's path using the method getCanonicalPath() . In
Windows, for example, you can create a File object whose getAbsolutePath() is
C:\Autoexec.bat but whose getCanonical-Path() is C:\AUTOEXEC.BAT . This is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

useful for comparing filenames that may have been supplied with different case
conventions or for showing them to the user.

You can get or set the modification time of a file or directory with lastModified()
and setLastModified() methods. The value is a long that is the number of
milliseconds since the epoch (Jan 1, 1970, 00:00:00 GMT). We can also get the size of the
file in bytes with length() .

Here's a fragment of code that prints some information about a file:

File fooFile = new File("/tmp/boofa");

String type = fooFile.isFile() ? "File " : "Directory ";
String name = fooFile.getName();
long len = fooFile.length();
System.out.println(type + name + ", " + len + " bytes ");

If the File object corresponds to a directory, we can list the files in the directory with the
list() method or the listFiles() method:

String [] fileNames = fooFile.list();
File [] files = fooFile.listFiles();

list() returns an array of String objects that contains filenames. listFiles()
returns an array of File objects. Note that in neither case are the files guaranteed to be in
any kind of order (alphabetical, for example). You can use the Collections API to sort
strings alphabetically like so:

List list = Arrays.asList(sa);
Collections.sort(l);

If the File refers to a nonexistent directory, we can create the directory with mkdir()
or mkdirs() . The mkdir() method creates a single directory; mkdirs() creates all
the intervening directories in a File specification. Use renameTo() to rename a file or
directory and delete() to delete a file or directory.

Although we can create a directory using the File object, this isn't the most common way
to create a file; that's normally done implicitly with a FileOutputStream or
FileWriter , as we'll discuss in a moment. The exception is the createNewFile()
method, which can be used to attempt to create a new zero-length file at the location
pointed to by the File object. The useful thing about this method is that the operation is
guaranteed to be "atomic" with respect to all other file creation. createNewFile()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

returns a boolean value that tells you whether the file was created.

You can use this to implement simple file locking from Java. (The NIO package supports
true file locks, as we'll see later). This is useful in combination with deleteOnExit() ,
which flags the file to be automatically removed when the Java Virtual Machine exits.
Another file creation method related to the File class itself is the static method
createTempFile() , which creates a file in a specified location using an
automatically generated unique name. This, too, is useful in combination with
deleteOnExit() .

The toURL() method converts a file path to a file: URL object. We'll talk about
URLs in Chapter 13 . They are an abstraction that allows you to point to any kind of object
anywhere on the Net. Converting a File reference to a URL may be useful for
consistency with more general routines that deal with URLs.

Table 11-1 summarizes the methods provided by the File class.

Table 11-1. File methods

Method Return type Description

canRead() Boolean Is the file (or directory) readable?

canWrite() Boolean Is the file (or directory) writable?

createNewFile() Boolean Creates a new file

createTempFile (String
pfx , String sfx)

File

Static method to create a new file,
with the specified prefix and
suffix, in the default temp file
directory

delete() Boolean Deletes the file (or directory)

deleteOnExit() Void When it exits, Java runtime system
deletes the file

exists() boolean Does the file (or directory) exist?

getAbsolutePath() String Returns the absolute path of the
file (or directory)

getCanonicalPath() String Returns the absolute, case-correct
path of the file (or directory)

getName() String Returns the name of the file (or
directory)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

getParent() String Returns the name of the parent
directory of the file (or directory)

getPath() String Returns the path of the file (or
directory)

isAbsolute() boolean Is the filename (or directory name)
absolute?

isDirectory() boolean Is the item a directory?

isFile() boolean Is the item a file?

lastModified() long Returns the last modification time
of the file (or directory)

length() long Returns the length of the file

list() String [] Returns a list of files in the
directory

listfiles() File[]
Returns the contents of the
directory as an array of File
objects

mkdir() boolean Creates the directory

Mkdirs() boolean Creates all directories in the path

renameTo(File dest) boolean Renames the file (or directory)

setLastModified() boolean Sets the last-modified time of the
file (or directory)

setReadOnly() boolean Sets the file to read-only status

toURL() java.net.URL Generates a URL object for the
file (or directory)

11.2.2 File Streams

Java provides two specialized streams for reading from and writing to files in the
filesystem: FileInputStream and FileOutputStream . These streams provide
the basic InputStream and OutputStream functionality applied to reading and
writing files. They can be combined with the filter streams described earlier to work with
files in the same way we do other stream communications.

Because FileInputStream is a subclass of InputStream , it inherits all standard
InputStream functionality for reading a file. FileInputStream provides only a
low-level interface to reading data, however, so you'll typically wrap it with another
stream, such as a DataInputStream .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can create a FileInputStream from a String pathname or a File object:

FileInputStream in = new FileInputStream("/etc/passwd");

When you create a FileInputStream , the Java runtime system attempts to open the
specified file. Thus, the FileInputStream constructors can throw a
FileNotFoundException if the specified file doesn't exist, or an IOException if
some other I/O error occurs. You must catch these exceptions in your code. When the
stream is first created, its available() method and the File object's length()
method should return the same value. To save resources, you can call the close()
method when you are done with the file.

To read characters from a file, you can wrap an InputStreamReader around a
FileInputStream . If you want to use the default character-encoding scheme, you can
use the FileReader class instead, which is provided as a convenience. FileReader
works just like FileInputStream , except that it reads characters instead of bytes and
wraps a Reader instead of an InputStream .

The following class, ListIt , is a small utility that sends the contents of a file or
directory to standard output:

//file: ListIt.java
import java.io.*;

class ListIt {
 public static void main (String args[]) throws Exception {
 File file = new File(args[0]);

 if (!file.exists() || !file.canRead()) {
 System.out.println("Can't read " + file);
 return;
 }

 if (file.isDirectory()) {
 String [] files = file.list();
 for (int i=0; i< files.length; i++)
 System.out.println(files[i]);
 } else
 try {
 FileReader fr = new FileReader (file);
 BufferedReader in = new BufferedReader(fr);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 String line;
 while ((line = in.readLine()) != null)
 System.out.println(line);
 }
 catch (FileNotFoundException e) {
 System.out.println("File Disappeared");
 }
 }
}

ListIt constructs a File object from its first command-line argument and tests the
File to see whether it exists and is readable. If the File is a directory, ListIt outputs
the names of the files in the directory. Otherwise, ListIt reads and outputs the file.

FileOutputStream is a subclass of OutputStream , so it inherits all the standard
OutputStream functionality for writing to a file. Just like FileInputStream
though, FileOutputStream provides only a low-level interface to writing data. You'll
typically wrap another stream, such as a DataOutputStream or a PrintWriter ,
around the FileOutputStream to provide higher-level functionality.

You can create a FileOutputStream from a String pathname or a File object.
Unlike FileInputStream , however, the FileOutputStream constructors don't
throw a FileNotFoundException . If the specified file doesn't exist, the
FileOutputStream creates the file. The FileOutputStream constructors can
throw an IOException if some other I/O error occurs, so you still need to handle this
exception.

If the specified file does exist, the FileOutputStream opens it for writing. When you
subsequently call the write() method, the new data overwrites the current contents of
the file. If you need to append data to an existing file, you can use a form of the constructor
that accepts an append flag:

FileInputStream fooOut = new FileOutputStream(fooFile);
FileInputStream pwdOut = new FileOutputStream("/etc/passwd", true);

Another way to append data to files is with RandomAccessFile , as we'll discuss
shortly.

To write characters (instead of bytes) to a file, you can wrap an
OutputStreamWriter around a FileOutputStream . If you want to use the
default character-encoding scheme, you can use instead the FileWriter class, which is
provided as a convenience. FileWriter works just like FileOutputStream ,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

except that it writes characters instead of bytes and wraps a Writer instead of an
OutputStream .

The following example reads a line of data from standard input and writes it to the file
/tmp/foo.txt :

String s = new BufferedReader(
 new InputStreamReader(System.in)).readLine();
File out = new File("/tmp/foo.txt");
FileWriter fw = new FileWriter (out);
PrintWriter pw = new PrintWriter(fw)
pw.println(s);
fw.close();

Notice how we wrapped a PrintWriter around the FileWriter to facilitate writing
the data. Also, to be a good filesystem citizen, we've called the close() method when
we're done with the FileWriter .

11.2.3 The java.io.RandomAccessFile Class

The java.io.RandomAccessFile class provides the ability to read and write data
at a specified location in a file. RandomAccessFile implements both the
DataInput and DataOutput interfaces, so you can use it to read and write strings
and primitive types. In other words, RandomAccessFile defines the same methods for
reading and writing data as DataInputStream and DataOutputStream .
However, because the class provides random, rather than sequential, access to file data, it's
not a subclass of either InputStream or OutputStream .

You can create a RandomAccessFile from a String pathname or a File object.
The constructor also takes a second String argument that specifies the mode of the file.
Use r for a read-only file or rw for a read-write file. Here's how we would start to create a
simple database to keep track of user information:

try {
 RandomAccessFile users =
 new RandomAccessFile("Users", "rw")
 } catch (IOException e) { ... }

When you create a RandomAccessFile in read-only mode, Java tries to open the
specified file. If the file doesn't exist, RandomAccessFile throws an IOException
. If, however, you're creating a RandomAccessFile in read-write mode, the object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

creates the file if it doesn't exist. The constructor can still throw an IOException if
another I/O error occurs, so you still need to handle this exception.

After you have created a RandomAccessFile , call any of the normal reading and
writing methods, just as you would with a DataInputStream or
DataOutputStream . If you try to write to a read-only file, the write method throws
an IOException .

What makes a RandomAccessFile special is the seek() method. This method takes
a long value and uses it to set the location for reading and writing in the file. You can use
the getFilePointer() method to get the current location. If you need to append data
to the end of the file, use length() to determine that location, then seek() to it. You
can write or seek beyond the end of a file, but you can't read beyond the end of a file. The
read() method throws an EOFException if you try to do this.

Here's an example of writing some data to a user database:

users.seek(userNum * RECORDSIZE);
users.writeUTF(userName);
users.writeInt(userID);

Of course, in this naïve example we assume that the String length for userName ,
along with any data that comes after it, fits within the specified record size.

11.2.4 Applets and Files

Unless otherwise restricted, a Java application can read and write to the host filesystem
with the same level of access as the user running the Java interpreter. For security reasons,
untrusted applets and applications are not permitted to read from or write to arbitrary
places in the filesystem. The ability of untrusted code to read and write files, as with any
kind of system resource, is under the control of the system security policy, through a
SecurityManager object. A security policy is set by the application that is running the
untrusted code, such as appletviewer or a Java-enabled web browser. All filesystem
access must first pass the scrutiny of the SecurityManager .

Some web browsers allow untrusted applets to have access to specific files designated by
the user. Netscape Navigator and Internet Explorer currently do not allow untrusted applets
any access to the filesystem. However, as we'll see in Chapter 22 , signed applets can be
given arbitrary access to the filesystem, just like a standalone Java application.

It's not unusual to want an applet to maintain some kind of state information on the system
on which it's running. But for a Java applet that is restricted from access to the local

http://lib.ommolketab.ir
http://lib.ommolketab.ir

filesystem, the only option is to store data over the network on its server (or possibly in a
client-side cookie). Applets have at their disposal powerful general means for
communicating data over networks. The only limitation is that, by convention, an applet's
network communication is restricted to the server that launched it. This limits the options
for where the data will reside.

Currently, the only way for a Java program to send data to a server is through a network
socket or tools such as RMI, which run over sockets. In Chapter 11 we'll take a detailed
look at building networked applications with sockets. With the tools described in that
chapter, it's possible to build powerful client/server applications. Sun also has a Java
extension called WebNFS, which allows applets and applications to work with files on an
NFS server in much the same way as the ordinary File API.

11.2.5 Loading Application Resources

We often package data files and other objects with our applications. Java provides many
ways to access these resources. In a standalone application, we can simply open files and
read the bytes. In both standalone applications and applets, we can construct URLs to well-
known locations. The problem with these methods is that we generally have to know where
our application lives in order to find our data. This is not always as easy as it seems. What
is needed is a universal way to access resources associated with our application and our
application's individual classes. The Class class's getResource() method provides
just this.

What does getResource() do for us? To construct a URL to a file, we normally have
to figure out a home directory for our code and construct a path relative to that. As we'll
see in Chapter 22 , in an applet, we could use getCodeBase() or
getDocumentBase() to find the base URL and then use that base to create the URL
for the resource we want. But these methods don't help a standalone application, and there's
no reason that a standalone application and an applet shouldn't be written in the same way
anyway. To solve this problem, the getResource() method provides a standard way
to get objects relative to a given class file or to the system classpath. getResource()
returns a special URL that uses the class's class loader. This means that no matter where the
class came from-a web server, the local filesystem, or even a JAR file-we can simply
ask for an object, get a URL for the object, and use the URL to access the object.

getResource() takes as an argument a slash-separated pathname for the resource and
returns a URL. There are two kinds of paths: absolute and relative. An absolute path begins
with a slash, for example, /foo/bar/blah.txt . In this case, the search for the object begins at
the top of the classpath. If there is a directory foo/bar in the classpath, getResource()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

searches that directory for the blah.txt file. A relative URL does not begin with a slash. In
this case, the search begins at the location of the class file, whether it is local, on a remote
server, or in a JAR file (either local or remote). So if we were calling getResource()
on a class loader that loaded a class in the foo.bar package, we could refer to the file as
blah.txt . In this case, the class itself would be loaded from the directory foo/bar
somewhere on the classpath, and we'd expect to find the file in the same directory.

For example, here's an application that looks up some resources:

//file: FindResources.java
package mypackage;
import java.net.URL;
import java.io.IOException;

public class FindResources {
 public static void main(String [] args) throws IOException {
 // absolute from the classpath
 URL url = FindResources.class.getResource("/mypackage/foo.txt");
 // relative to the class location
 url = FindResources.class.getResource("foo.txt");
 // another relative document
 url = FindResources.class.getResource("docs/bar.txt");
 }
}

The FindResources class belongs to the mypackage package, so its class file will
live in a mypackage directory somewhere on the classpath. FindResources locates the
document foo.txt using an absolute and then a relative URL. At the end,
FindResources uses a relative path to reach a document in the mypackage/docs
directory. In each case we refer to the FindResources 's Class object using the static
.class notation. Alternatively, if we had an instance of the object, we could use its
getClass() method to reach the Class object.

For an applet, the search is similar but occurs on the host from which the applet was
loaded. getResource() first checks any JAR files loaded with the applet, and then
searches the normal remote applet classpath, constructed relative to the applet's codebase
URL.

getResource() returns a URL for whatever type of object you reference. This could
be a text file or properties file that you want to read as a stream, or it might be an image or
sound file or some other object. If you want the data as a stream, the Class class also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

provides a getResourceAsStream() method. In the case of an image, you'd
probably hand the URL over to the getImage() method of a Swing component for
loading.

11.3 Serialization

Using a DataOutputStream , you could write an application that saves the data
content of your objects as simple types. However Java provides an even more powerful
mechanism called object serialization that does almost all the work for you. In its simplest
form, object serialization is an automatic way to save and load the state of an object.
However, object serialization has depths that we cannot plumb within the scope of this
book, including complete control over the serialization process and interesting conundrums
such as class versioning.

Basically, an object of any class that implements the Serializable interface can be
saved and restored from a stream. Special stream subclasses, ObjectInputStream
and ObjectOutputStream , are used to serialize primitive types and objects.
Subclasses of Serializable classes are also serializable. The default serialization
mechanism saves the value of an object's nonstatic and nontransient (see the following
explanation) member variables.

One of the most important (and tricky) things about serialization is that when an object is
serialized, any object references it contains are also serialized. Serialization can capture
entire "graphs" of interconnected objects and put them back together on the receiving end
(we'll demonstrate this in an upcoming example). The implication is that any object we
serialize must contain only references to other Serializable objects. We can take
control by marking nonserializable members as transient or overriding the default
serialization mechanisms. The transient modifier can be applied to any instance
variable to indicate that its contents are not useful outside of the current context and should
never be saved.

In the following example, we create a Hashtable and write it to a disk file called h.ser .
The Hashtable object is serializable because it implements the Serializable
interface.

//file: Save.java
import java.io.*;
import java.util.*;

public class Save {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public static void main(String[] args) {
 Hashtable h = new Hashtable();
 h.put("string", "Gabriel Garcia Marquez");
 h.put("int", new Integer(26));
 h.put("double", new Double(Math.PI));

 try {
 FileOutputStream fileOut = new FileOutputStream("h.ser");
 ObjectOutputStream out = new ObjectOutputStream(fileOut);
 out.writeObject(h);
 }
 catch (Exception e) {
 System.out.println(e);
 }
 }
}

First we construct a Hashtable with a few elements in it. Then, in the three lines of
code inside the try block, we write the Hashtable to a file called h.ser , using the
writeObject() method of ObjectOutputStream . The
ObjectOutputStream class is a lot like the DataOutputStream class, except
that it includes the powerful writeObject() method.

The Hashtable we created has internal references to the items it contains. Thus, these
components are automatically serialized along with the Hashtable . We'll see this in the
next example when we deserialize the Hashtable .

//file: Load.java
import java.io.*;
import java.util.*;

public class Load {
 public static void main(String[] args) {
 try {
 FileInputStream fileIn = new FileInputStream("h.ser");
 ObjectInputStream in = new ObjectInputStream(fileIn);
 Hashtable h = (Hashtable)in.readObject();
 System.out.println(h.toString());
 }
 catch (Exception e) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 System.out.println(e);
 }
 }
}

In this example, we read the Hashtable from the h.ser file, using the readObject()
method of ObjectInputStream . The ObjectInputStream class is a lot like
DataInputStream , except that it includes the readObject() method. The return
type of readObject() is Object , so we need to cast it to a Hashtable . Finally,
we print out the contents of the Hashtable using its toString() method.

11.3.1 Initialization with readObject()

Often simple deserialization alone is not enough to reconstruct the full state of an object.
For example, the object may have had transient fields representing state that could not be
serialized, such as network connections, event registration, or decoded image data. Objects
have an opportunity to do their own setup after deserialization by implementing a special
method named readObject() .

Not to be confused with the readObject() method of the ObjectInputStream ,
this method is implemented by the serializable object itself. The readObject() method
must have a specific signature, and it must be private. The following snippet is taken from
an animated JavaBean that we'll talk about in Chapter 21 :

private void readObject(ObjectInputStream s)
 throws IOException, ClassNotFoundException
{
 s.defaultReadObject();
 initialize();
 if (isRunning)
 start();
}

When the readObject() method with this signature exists in an object it is called
during the deserialization process. The argument to the method is the
ObjectInputStream doing the object construction. We delegate to its
defaultReadObject() method to do the normal deserialization and then do our
custom setup. In this case we call one of our methods, named initialize() , and
optionally a method called start() .

We'll talk more about serialization in Chapter 21 when we discuss JavaBeans. There we'll

http://lib.ommolketab.ir
http://lib.ommolketab.ir

see that it is even possible to serialize a graphical GUI component in mid-use and bring it
back to life later.

11.4 Data Compression

The java.util.zip package contains classes you can use for data compression. In
this section, we'll talk about how to use these classes. We'll also present two useful
example programs that build on what you have just learned about streams and files. The
classes in the java.util.zip package support two widespread compression formats:
GZIP and ZIP.

11.4.1 Compressing Data

The java.util.zip class provides two FilterOutputStream subclasses to
write compressed data to a stream. To write compressed data in the GZIP format, simply
wrap a GZIPOutputStream around an underlying stream and write to it. The
following is a complete example that shows how to compress a file using the GZIP format.

//file: GZip.java
import java.io.*;
import java.util.zip.*;

public class GZip {
 public static int sChunk = 8192;

 public static void main(String[] args) {
 if (args.length != 1) {
 System.out.println("Usage: GZip source");
 return;
 }
 // create output stream
 String zipname = args[0] + ".gz";
 GZIPOutputStream zipout;
 try {
 FileOutputStream out = new FileOutputStream(zipname);
 zipout = new GZIPOutputStream(out);
 }
 catch (IOException e) {
 System.out.println("Couldn't create " + zipname + ".");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 return;
 }
 byte[] buffer = new byte[sChunk];
 // compress the file
 try {
 FileInputStream in = new FileInputStream(args[0]);
 int length;
 while ((length = in.read(buffer, 0, sChunk)) != -1)
 zipout.write(buffer, 0, length);
 in.close();
 }
 catch (IOException e) {
 System.out.println("Couldn't compress " + args[0] + ".");
 }
 try { zipout.close(); }
 catch (IOException e) {}
 }
}

First we check to make sure we have a command-line argument representing a filename.
Then we construct a GZIPOutputStream wrapped around a FileOutputStream
representing the given filename, with the .gz suffix appended. With this in place, we open
the source file. We read chunks of data and write them into the GZIPOutputStream .
Finally, we clean up by closing our open streams.

Writing data to a ZIP archive file is a little more involved but still quite manageable. While
a GZIP file contains only one compressed file, a ZIP file is actually a collection of files,
some (or all) of which may be compressed. Each item in the ZIP file is represented by a
ZipEntry object. When writing to a ZipOutputStream , you'll need to call
putNextEntry() before writing the data for each item. The following example shows
how to create a ZipOutputStream . You'll notice it's just like creating a
GZIPOutputStream :

ZipOutputStream zipout;
try {
 FileOutputStream out = new FileOutputStream("archive.zip");
 zipout = new ZipOutputStream(out);
}
catch (IOException e) {}

Let's say we have two files we want to write into this archive. Before we begin writing, we

http://lib.ommolketab.ir
http://lib.ommolketab.ir

need to call putNextEntry() . We'll create a simple entry with just a name. There are
other fields in ZipEntry that you can set, but most of the time you won't need to bother
with them.

try {
 ZipEntry entry = new ZipEntry("First");
 zipout.putNextEntry(entry);
 ZipEntry entry = new ZipEntry("Second");
 zipout.putNextEntry(entry);
 . . .
}
catch (IOException e) {}

11.4.2 Decompressing Data

To decompress data, you can use one of the two FilterInputStream subclasses
provided in java.util.zip . To decompress data in the GZIP format, simply wrap a
GZIPInputStream around an underlying FileInputStream and read from it. The
following is a complete example that shows how to decompress a GZIP file:

//file: GUnzip.java
import java.io.*;
import java.util.zip.*;

public class GUnzip {
 public static int sChunk = 8192;
 public static void main(String[] args) {
 if (args.length != 1) {
 System.out.println("Usage: GUnzip source");
 return;
 }
 // create input stream
 String zipname, source;
 if (args[0].endsWith(".gz")) {
 zipname = args[0];
 source = args[0].substring(0, args[0].length() - 3);
 }
 else {
 zipname = args[0] + ".gz";
 source = args[0];

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 GZIPInputStream zipin;
 try {
 FileInputStream in = new FileInputStream(zipname);
 zipin = new GZIPInputStream(in);
 }
 catch (IOException e) {
 System.out.println("Couldn't open " + zipname + ".");
 return;
 }
 byte[] buffer = new byte[sChunk];
 // decompress the file
 try {
 FileOutputStream out = new FileOutputStream(source);
 int length;
 while ((length = zipin.read(buffer, 0, sChunk)) != -1)
 out.write(buffer, 0, length);
 out.close();
 }
 catch (IOException e) {
 System.out.println("Couldn't decompress " + args[0] + ".");
 }
 try { zipin.close(); }
 catch (IOException e) {}
 }
}

First we check to make sure we have a command-line argument representing a filename. If
the argument ends with .gz , we figure out what the filename for the uncompressed file
should be. Otherwise, we use the given argument and assume the compressed file has the
.gz suffix. Then we construct a GZIPInputStream wrapped around a
FileInputStream , representing the compressed file. With this in place, we open the
target file. We read chunks of data from the GZIPInputStream and write them into the
target file. Finally, we clean up by closing our open streams.

Again, the ZIP archive presents a little more complexity than the GZIP file. When reading
from a ZipInputStream , you should call getNextEntry() before reading each
item. When getNextEntry() returns null , there are no more items to read. The
following example shows how to create a ZipInputStream . You'll notice it's just like
creating a GZIPInputStream :

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ZipInputStream zipin;
try {
 FileInputStream in = new FileInputStream("archive.zip");
 zipin = new ZipInputStream(in);
}
catch (IOException e) {}

Suppose we want to read two files from this archive. Before we begin reading, we need to
call getNextEntry() . At the least, the entry will give us a name of the item we are
reading from the archive:

try {
 ZipEntry first = zipin.getNextEntry();
}
catch (IOException e) {}

At this point, you can read the contents of the first item in the archive. When you come to
the end of the item, the read() method will return -1 . Now you can call
getNextEntry() again to read the second item from the archive:

try {
 ZipEntry second = zipin.getNextEntry();
}
catch (IOException e) {}

If you call getNextEntry(), and it returns null , there are no more items, and you
have reached the end of the archive.

11.5 The NIO Package

The java.nio package is a major new addition in Java 1.4. The name NIO stands for
"new I/O," which may seem to imply that it is to be a replacement for the java.io
package. In fact, much of the NIO functionality does overlap with existing APIs. NIO was
added primarily to address specific issues of scalability for large systems, especially in
networked applications. That said, NIO also provides several new features Java lacked in
basic I/O, so there are some tools here that you'll want to look at even if you aren't planning
to write any large or high-performance services. The primary features of NIO are outlined
in the following sections.

11.5.1 Asynchronous I/O

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Most of the need for the NIO package was driven by the desire to add nonblocking and
selectable I/O to Java. Prior to NIO, most read and write operations in Java were bound to
threads that were forced to block for unpredictable amounts of time. Although certain APIs
such as Sockets (which we'll see in Chapter 12) provided specific means to limit how long
an I/O call could take, this was a workaround to compensate for the lack of a more general
mechanism. Prior to the introduction of threads, in many languages I/O could still be done
efficiently by setting I/O streams to a nonblocking mode and testing them for their
readiness to send or receive data. In a nonblocking mode, a read or write does only as
much work as can be done immediately-filling or emptying a buffer and then returning.
Combined with the ability to test for readiness, this allows a single thread to continuously
service many channels efficiently. The main thread "selects" a stream that is ready and
works with it until it blocks, then moves to another. On a single processor system, this is
fundamentally equivalent to using multiple threads. Even now, this style of processing has
advantages when using a pool of threads (rather than just one). We'll discuss this in detail
in Chapter 12 when we discuss networking and building servers that can handle many
clients simultaneously.

In addition to nonblocking and selectable I/O, the NIO package enables closing and
interrupting I/O operations asynchronously. As discussed in Chapter 8 , prior to NIO there
was no reliable way to stop or wake up a thread blocked in an I/O operation. With NIO,
threads blocked in I/O operations always wake up when interrupted or when the channel is
closed by anyone. Additionally, if you interrupt a thread while it is blocked in an NIO
operation, its channel is automatically closed. (Closing the channel because the thread is
interrupted might seem too strong, but usually it's the right thing to do.)

11.5.2 Performance

Channel I/O is designed around the concept of buffers , which are a more sophisticated
form of array, tailored to working with communications. The NIO package supports the
concept of direct buffers , buffers that maintain their memory outside the Java virtual
machine, in the native host operating system. Since all real I/O operations ultimately have
to work with the host OS, by maintaining the buffer space there, some operations can be
made much more efficient. Data can be transferred without first copying it into Java and
back out.

11.5.3 Mapped and Locked Files

NIO provides two general-purpose file-related features-memory-mapped files and file
locking. We'll discuss memory-mapped files later, but suffice it to say that they allow you
to work with file data as if it were all magically resident in memory. File locking supports

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the concept of shared and exclusive locks on regions of files-useful for concurrent access
by multiple applications.

11.5.4 Channels

While java.io deals with streams, java.nio works with channels. A channel is an
endpoint for communication. Although in practice channels are similar to streams, the
underlying notion of a channel is a bit more abstract and primitive. Whereas streams in
java.io are defined in terms of input or output with methods to read and write bytes, the
basic channel interface says nothing about how communications happen. It simply defines
whether the channel is open or closed, via the methods isOpen() and close() .
Implementations of channels for files, network sockets, or arbitrary devices then add their
own methods for operations such as reading, writing, or transferring data. The following
channels are provided by NIO:

FileChannel

Pipe.SinkChannel , Pipe.SourceChannel

SocketChannel , ServerSocketChannel , DatagramChannel

We'll cover FileChannel in this chapter. The Pipe channels are simply the channel
equivalents of the java.io Pipe facilities. We'll talk about Socket and Datagram
channels in Chapter 12 .

All these basic channels implement the ByteChannel interface, designed for channels
that have read and write methods such as I/O streams. ByteChannel s read and write
ByteBuffer s, however, not byte arrays.

In addition to these native channels, you can bridge to channels from java.io I/O
streams and readers and writers for interoperability. Know that, if you mix these features,
you may not get the full benefits of performance and asynchronous I/O.

11.5.5 Buffers

Most of the utilities of the java.io and java.net packages operate on byte arrays.
The corresponding tools of the NIO package are built around ByteBuffer s (with
another type of buffer, CharBuffer , serving as a bridge to the text world). Byte arrays
are simple, so why are buffers necessary? They serve several purposes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

They formalize the usage patterns for buffered data and they provide for things like
read-only buffers and keep track of read/write positions and limits within a large
buffer space. They also provide a mark/reset facility like that of
BufferedInputStream .

They provide additional APIs for working with raw data representing primitive types.
You can create buffers that "view" your byte data as a series of larger primitives such
as short s, int s, or float s. The most general type of data buffer,
ByteBuffer , includes methods that let you read and write all primitive types like
DataOutputStream does for streams.

They abstract the underlying storage of the data, allowing for special optimizations by
Java. Specifically, buffers may be allocated as direct buffers that use native buffers of
the host operating system instead of arrays in Java's memory. The NIO Channel
facilities that work with buffers can recognize direct buffers automatically and try to
optimize I/O to use them. For example, a read from a file channel into a Java byte
array normally requires Java to copy the data for the read from the host operating
system into Java's memory. But with a direct buffer the data can remain outside Java's
normal memory space, in the host operating system.

11.5.5.1 Buffer operations

Buffer is a subclass of java.nio.Buffer object. The base Buffer is something
like an array with state. The base Buffer class does not specify what type of elements it
holds (that is for subtypes to decide), but it does define functionality common to all data
buffers. A Buffer has a fixed size called its capacity . Although all the standard
Buffer s provide "random access" to their contents, a Buffer expects to be read and
written sequentially, so Buffer s maintain the notion of a position where the next
element is read or written. In addition to the position a Buffer can maintain two other
pieces of state information: a limit , which is a position that is a "soft" limit to the extent of
a read or write, and a mark , which can be used to remember an earlier position for future
recall.

Implementations of Buffer add specific, typed get and put methods that read and write
the buffer contents. For example, ByteBuffer is a buffer of bytes and it has get()
and put() methods that read and write bytes and arrays of bytes (along with many other
useful methods we'll discuss later). Getting from and putting to the Buffer changes the
position marker, so the Buffer keeps track of its contents somewhat like a stream.
Attempting to read or write past the limit marker generates a
BufferUnderflowException or BufferOverflowException , respectively.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The mark, position, limit, and capacity values always obey the formula:

mark position limit capacity

The position for reading and writing the Buffer is always greater than the mark, which
serves as a lower bound, and the limit, which serves as an upper bound. The capacity
represents the physical extent of the buffer space.

You can set the position and limit markers explicitly with the position() and
limit() methods. But several convenience methods are provided for the common usage
patterns. The reset() method sets the position back to the mark. If no mark has been
set, an InvalidMarkException is thrown. The clear() method resets the
position to zero and makes the limit the capacity, readying the buffer for new data (the
mark is discarded). Note that the clear() method does not actually do anything to the
data in the buffer; it simply changes the position markers.

The flip() method is used for the common pattern of writing data into the buffer and
then reading it back out. flip makes the current position the limit and then resets the
current position to zero (any mark is thrown away). This saves having to keep track of how
much data was read. Another method, rewind() , simply resets the position to zero,
leaving the limit alone. You might use it to write the same data again. Here is a snippet of
code that uses these methods to read data from a channel and writes it to two channels:

ByteBuffer buff = ...
while (inChannel.read(buff) > 0) { // position = ?
 buff.flip(); // limit = position; position = 0;
 outChannel.write(buff);
 buff.rewind(); // position = 0
 outChannel2.write(buff);
 buff.clear(); // position = 0; limit = capacity
}

This might be confusing the first time you look at it because here the read from the
Channel is actually a write to the Buffer and vice versa. Because this example writes
all the available data up to the limit, either flip() or rewind() have the same effect in
this case.

11.5.5.2 Buffer types

As stated earlier, various buffer types add get and put methods for reading and writing
specific data types. There is a buffer type for each of the Java primitive types:
ByteBuffer , CharBuffer , ShortBuffer , IntBuffer , LongBuffer ,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

FloatBuffer and DoubleBuffer . Each provides get and put methods for reading
and writing its type and arrays of its type. Of these, ByteBuffer is the most flexible.
Because it has the "finest grain" of all the buffers, it has been given a full complement of
get and put methods for reading and writing all the other data types, as well as byte .
Here are some ByteBuffer methods:

byte get()
char getChar()
short getShort()
int getInt()
long getLong()
float getFloat()
double getDouble()

void put(byte b)
void put(ByteBuffer src)
void put(byte[] src, int offset, int length)
void put(byte[] src)
void putChar(char value)
void putShort(short value)
void putInt(int value)
void putLong(long value)
void putFloat(float value)
void putDouble(double value)

As we said, all the standard buffers also support random access. So for each of the
aforementioned methods of ByteBuffer , there is an additional form that takes an
index:

getLong(int index)
putLong(int index, long value)

But that's not all. ByteBuffer can also provide "views" of itself as any of the larger
grained types. For example, you can fetch a ShortBuffer view of a ByteBuffer
with the asShortBuffer() method. The ShortBuffer view is backed by the
ByteBuffer , which means that they work on the same data, and changes to either one
affect the other. The view buffer's extent starts at the ByteBuffer 's current position,
and its capacity is a function of the remaining number of bytes, divided by the new type's
size. (For example, short s and float s consume two bytes each, long s and
double s four.) View buffers are convenient for reading and writing large blocks of a
contiguous type within a ByteBuffer .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CharBuffer s are interesting as well, primarily because of their integration with
String s. Both CharBuffer s and String s implement the
java.lang.CharSequence interface. This is the interface that provides the standard
charAt() and length() methods. Because of this, newer APIs (such as the
java.util.regex package) allow you to use a CharBuffer or a String
interchangeably. In this case, the buffer acts like a String with user-configurable start
and end positions.

11.5.5.3 Byte order

Now, since we're talking about reading and writing types larger than a byte here, the
question arises: in what order do the bytes of multibyte values (e.g. short s, int s) get
written? There are two camps in this world: "big endian" and "little endian." [1] Big endian
means that the most significant bytes come first; little endian is the reverse. If you're
writing binary data for consumption by some native application, this is important. Intel-
compatible computers use little endian, and many workstations that run Unix use big
endian. The ByteOrder class encapsulates the choice. You can specify the byte order to
use with the ByteArray order() method, using the identifiers
ByteOrder.BIG_ENDIAN and ByteOrder.LITTLE_ENDIAN like so:

byteArray.order(ByteOrder.BIG_ENDIAN);

You can retrieve the native ordering for your platform using the static
ByteOrder.nativeOrder() method.

11.5.5.4 Allocating buffers

You can create a buffer either by allocating it explicitly using allocate() or by
wrapping an existing array type. Each buffer type has a static allocate() method that
takes a capacity (size) and also a wrap() method that takes an existing array:

CharBuffer cbuf = CharByffer.allocate(64*1024);

A direct buffer is allocated in the same way, with the allocateDirect() method:

ByteBuffer bbuf = ByteByffer.allocateDirect(64*1024);

As we described earlier, direct buffers can use native host operating-system memory
structures that are optimized for use with some kinds of I/O operations. The tradeoff is that
allocating a direct buffer is a little slower than a plain buffer, so you should try to use them
for longer term buffers. (For example, on a 400-MHz Sparc Ultra 60, it took about 10

http://lib.ommolketab.ir
http://lib.ommolketab.ir

milliseconds to allocate a 1-MB direct buffer versus 2 milliseconds for a plain buffer of the
same size.)

11.5.6 Character Encoders and Decoders

Character encoders and decoders turn characters into raw bytes and vice versa, mapping
from the Unicode standard to particular encoding schemes. Encoders and decoders have
always existed in Java for use by Reader and Writer streams and in the methods of the
String class that work with byte arrays. However, prior to Java 1.4, there was no API
for working with encoding explicitly; you simply referred to encoders and decoders
wherever necessary by name as a String . The java.nio.charset package
formalizes the idea of a Unicode character set with the Charset class.

The Charset class is a factory for Charset instances, which know how to encode
character buffers to byte buffers and decode byte buffers to character buffers. You can look
up a character set by name with the static Charset.forName() method and use it in
conversions:

Charset charset = Charset.forName("US-ASCII");
CharBuffer charBuff = charset.decode(byteBuff); // to ascii
ByteBuffer byteBuff = charset.encode(charBuff); // and back

You can also test to see if an encoding is available with the static
Charset.isSupported() method.

The following character sets are guaranteed to be supplied:

US-ASCII

ISO-8859-1

UTF-8

UTF-16BE

UTF-16LE

UTF-16

You can list all the encoders available on your platform using the static
availableCharsets() method:

Map map = Charset.availableCharsets();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Iterator it = map.keySet().iterator();
while (it.hasNext())
 System.out.println(it.next());

The result of availableCharsets() is a map because character sets may have
"aliases" and appear under more than one name.

In addition to the buffer-oriented classes of the java.nio package, the
InputStreamReader and OutputStreamWriter bridge classes of the
java.io package have been updated to work with Charset as well. You can specify
the encoding as a Charset object or by name.

11.5.6.1 CharsetEncoder and CharsetDecoder

You can get more control over the encoding and decoding process by creating an instance
of CharsetEncoder or CharsetDecoder (codec) with the Charset
newEncoder() and newDecoder() methods. In our earlier example, we assumed
that all the data was available in a single buffer. More often, however, we might have to
process data as it arrives in chunks. The encoder/decoder API allows for this by providing
more general encode() and decode() methods that take a flag specifying whether
more data is expected. The codec needs to know this because it might have been left
hanging in the middle of a multibyte character conversion when the data ran out. If it
knows that more data is coming, it will not throw an error on this incomplete conversion.
In the following snippet, we use a decoder to read from a ByteBuffer bbuff and
accumulate character data into a CharBuffer cbuff :

CharsetDecoder decoder = Charset.forName("US-ASCII").newDecoder();

boolean done = false;
while (!done) {
 bbuff.clear();
 done = (in.read(bbuff) == -1);
 bbuff.flip();
 decoder.decode(bbuff, cbuff, done);
}
cbuff.flip();
// use cbuff. . .

Here we look for the end of input condition on the in channel to set the flag done . The
encode() and decode() methods also return a special result object, CoderResult
, that can determine the progress of encoding. The methods isError() ,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

isUnderflow() , and isOverflow() on the CoderResult specify why
encoding stopped: for an error, a lack of bytes on the input buffer, or a full output buffer,
respectively.

11.5.7 FileChannel

Now that we've covered the basics of channels and buffers, it's time to look at a real
channel type. The FileChannel is the NIO equivalent of the
java.io.RandomAccessFile , but it provides several basic new features, in
addition to some performance optimizations. You will want to use a FileChannel in
place of a plain java.io file stream if you wish to use file locking, memory mapped file
access, or perform highly optimized data transfer between files or between file and network
channels.

A FileChannel is constructed from a FileInputStream ,
FileOutputStream , or RandomAccessFile :

FileChannel readOnlyFc = new FileInputStream("file.txt").getChannel();
FileChannel readWriteFc =
 new RandomAccessFile("file.txt", "rw").getChannel();

FileChannel s for file input and output streams are read-only or write-only,
respectively. To get a read-write FileChannel you must construct a
RandomAccessFile with read-write permissions, as in the previous example.

Using a FileChannel is just like a RandomAccessFile , but it works with
ByteBuffer instead of byte arrays:

bbuf.clear();
readOnlyFc.position(index);
readOnlyFc.read(bbuf);
bbuf.flip();
readWriteFc.write(bbuf);

You can control how much data is read and written either by setting buffer position and
limit markers or using another form of read/write that takes a buffer starting position and
length. You can also read and write to a random position using:

readWriteFc.read(bbuf, index)
readWriteFc.write(bbuf, index2);

In each case, the actual number of bytes read or written depends on several factors. The

http://lib.ommolketab.ir
http://lib.ommolketab.ir

operation tries to read or write to the limit of the buffer and the vast majority of the time
that is what happens with local file access. But the operation is only guaranteed to block
until at least one byte has been processed. Whatever happens, the number of bytes
processed is returned, and the buffer position is updated accordingly. This is one of the
things that is convenient about buffers; they can manage the count for you. Like standard
streams, the channel read() method returns -1 upon reaching the end of input.

The size of the file is always available with the size() method. It can change if you
write past the end of the file. Conversely, you can truncate the file to a specified length
with the truncate() method.

11.5.7.1 Concurrent access

FileChannel s are safe for use by multiple threads and guarantee that data "viewed" by
them is consistent across channels in the same VM. However no guarantees are made about
how quickly writes are propagated to the storage mechanism. If you need to be sure that
data is safe before moving on, you can use the force() method to flush changes to disk.
The force() method takes a boolean argument indicating whether or not file metadata,
including timestamp and permissions, must be written. Some systems keep track of reads
on files as well as writes, so you can save a lot of updates if you set the flag to false ,
which indicates that you don't care about syncing that data immediately.

As with all Channel s, a FileChannel may be closed by any thread. Once closed all
its read/write and position-related methods throw a ClosedChannelException .

11.5.7.2 File locking

FileChannel s support exclusive and shared locks on regions of files through the
lock() method:

FileLock fileLock = fileChannel.lock();
int start = 0, len = fileChannel2.size();
FileLock readLock = fileChannel2.lock(start, len, true);

Locks may be either shared or exclusive. An exclusive lock prevents others from acquiring
a lock of any kind on the specified file or file region. A shared lock allows others to
acquire overlapping shared locks but not exclusive locks. These are useful as write locks
and read locks respectively. When you are writing, you don't want others to be able to
write until you're done, but when reading, you need only to block others from writing, not
reading concurrently.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The simple lock() method in the previous example attempts to acquire an exclusive lock
for the whole file. The second form accepts a starting and length parameter, as well as a
flag indicating whether the lock should be shared (or exclusive). The FileLock object
returned by the lock() method can be used to release the lock:

fileLock.release();

Note that file locks are a cooperative API; they do not necessarily prevent anyone from
reading or writing to the locked file contents. In general the only way to guarantee that
locks are obeyed is for both parties to attempt to acquire the lock and use it. Also, shared
locks are not implemented on some systems, in which case all requested locks are
exclusive. You can test if a lock is shared with the isShared() method.

11.5.7.3 Memory mapped files

One of the most interesting new features offered through FileChannel is the ability to
map a file into memory. When a file is memory mapped , like magic it becomes accessible
through a single ByteBuffer -just as if the entire file was read into memory at once.
The implementation of this is extremely efficient, generally among the fastest ways to
access the data. In fact, for working with large files, memory mapping can save a lot of
resources and time.

This may seem counterintuitive; we're getting a conceptually easier way to access our data
and it's also faster and more efficient? What's the catch? There really is no catch. The
reason for this is that all modern operating systems are based on the idea of virtual
memory. In a nutshell, that means the operating system makes disk space act like memory
by continually paging (swapping 4K blocks called "pages") between memory and disk,
transparent to the applications. Operating systems are very good at this; they efficiently
cache the data the application is using and let go of what is not. So memory mapping a file
is really just taking advantage of what the OS is doing internally.

A good example of where a memory-mapped file would be useful is in a database. Imagine
a 100-MB file containing records indexed at various positions. By mapping the file we can
work with a standard ByteBuffer , reading and writing data at arbitrary positions and
let the native operating system read and write the underlying data in fine grained pages, as
necessary. We could emulate this behavior with RandomAccessFile or
FileChannel , but we would have to explicitly read and write data into buffers first,
and the implementation would almost certainly not be as efficient.

A mapping is created with the FileChannel map() method. For example:

FileChannel fc = new RandomAccessFile("index.db", "rw").getChannel();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MappedByteBuffer mappedBuff =
 fc.map(FileChannel.MapMode.READ_WRITE, 0, fc.size());

The map() method returns a MappedByteBuffer , which is simply the standard
ByteBuffer with a few additional methods relating to the mapping. The most important
is force() , which ensures that any data written to the buffer is flushed out to permanent
storage on the disk. The READ_ONLY and READ_WRITE constant identifiers of the
FileChannel.MapMode static inner class specify the type of access. Read-write
access is available only when mapping a read-write file channel. Data read through the
buffer is always consistent within the same Java VM. It can also be consistent across
applications on the same host machine, but this is not guaranteed.

Again, a MappedByteBuffer acts just like a ByteBuffer . Continuing with the
previous example, we could decode the buffer with a character decoder and search for a
pattern like so:

CharBuffer cbuff = Charset.forName("US-ASCII").decode(mappedBuff);
Matcher matcher = Pattern.compile("abc*").matcher(cbuff);
while (matcher.find())
 print(matcher.start()+": "+matcher.group(0));

Here we have effectively implemented the Unix grep command in about five lines of code
(thanks to the fact that the Regular Expression API can work with our CharBuffer as a
CharSequence). Of course in this example, the CharBuffer allocated by the
decode() method is as large as the mapped file and must be held in memory. More
generally, we can use the CharsetDecoder shown earlier to iterate through a large
mapped space.

11.5.7.4 Direct transfer

The final feature of FileChannel that we'll look at is performance optimization.
FileChannel supports two highly optimized data transfer methods:
transferFrom() and transferTo() , which move data between the file channel
and another channel. These methods can take advantage of direct buffers internally to
move data between the channels as fast as possible, often without copying the bytes into
Java's memory space at all. The following example is currently the fastest way to
implement a file copy in Java:

import java.io.*;
import java.nio.*;
import java.nio.channels.*;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public class CopyFile {
 public static void main(String [] args) throws Exception
 {
 String fromFileName = args[0];
 String toFileName = args[1];
 FileChannel in = new FileInputStream(fromFileName).getChannel();
 FileChannel out = new FileOutputStream(toFileName).getChannel();
 in.transferTo(0, (int)in.size(), out);
 in.close();
 out.close();
 }
}

11.5.8 Scaleable I/O with NIO

We've laid the groundwork for using the NIO package in this chapter but left out some of
the important pieces. In the next chapter, we'll see more of the real motivation for
java.nio when we talk about nonblocking and selectable I/O. In addition to the
performance optimizations that can be made through direct buffers, these capabilities make
possible a design for network servers that uses fewer threads and can scale well to large
systems. We'll also look at the other significant Channel types: SocketChannel ,
ServerSocketChannel , and DatagramChannel .

[1] The terms "big endian" and "little endian" come from Jonathan Swift's novel Gulliver's
Travels , where it denoted two camps of Lilliputians: those who eat their eggs from the big end
and those who eat them from the little end.

CONTENTS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

Chapter 12. Network Programming

 12.1 Sockets

 12.2 Datagram Sockets
 12.3 Simple Serialized Object Protocols

 12.4 Remote Method Invocation

 12.5 Scaleable I/O with NIO

The network is the soul of Java. Most of what is new and exciting about Java centers
around the potential for new kinds of dynamic, networked applications. In this chapter,
we'll start our discussion of the java.net package, which contains the fundamental
classes for communications and working with networked resources. Then we'll talk about
the java.rmi package, which provides Java's powerful, high-level, remote method
invocation facilities. Finally, we'll complete our discussion of the java.nio package,
which is highly efficient for implementing large servers.

The classes of java.net fall into two categories: the Sockets API and tools for working
with uniform resource locators (URLs). Figure 12-1 shows the java.net package.

Figure 12-1. The java.net package

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Java's Sockets API provides access to the standard network protocols used for
communications between hosts on the Internet. Sockets are the mechanism underlying all
other kinds of portable networked communications. Sockets are your lowest-level
tool-you can use sockets for any kind of communications between client and server or
peer applications on the Net, but you have to implement your own application-level
protocols for handling and interpreting the data. Higher-level networking tools, such as
remote method invocation and other distributed object systems, are implemented on top of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

sockets.

Java remote method invocation (RMI) is a powerful tool that leverages Java object
serialization, allowing you to transparently work with objects on remote machines as if
they were local. With RMI, it is easy to write distributed applications in which clients and
servers work with each other's data as full-fledged Java objects rather than raw streams or
packets of data.

In this chapter, we'll provide some simple and practical examples of Java network
programming at both levels, using sockets and RMI. In Chapter 13 , we'll look at the other
half of the java.net package, which lets clients work with web services via URLs.
Chapter 14 covers the Servlets API, which allows you to write application components for
web servers.

12.1 Sockets

Sockets are a low-level programming interface for networked communications. They send
streams of data between applications that may or may not be on the same host. Sockets
originated in BSD Unix and are, in other languages, hairy and complicated things with lots
of small parts that can break off and choke little children. The reason for this is that most
socket APIs can be used with almost any kind of underlying network protocol. Since the
protocols that transport data across the network can have radically different features, the
socket interface can be quite complex.[1]

The java.net package supports a simplified, object-oriented interface to sockets that
makes network communications considerably easier. If you have done network
programming using sockets in C or another structured language, you should be pleasantly
surprised at how simple things can be when objects encapsulate the gory details. If this is
the first time you've come across sockets, you'll find that talking to another application
over the network can be as simple as reading a file or getting user input from a terminal.
Most forms of I/O in Java, including most network I/O, use the stream classes described in
Chapter 11 . Streams provide a unified I/O interface so that reading or writing across the
Internet is similar to reading or writing on the local system.

Java provides sockets to support three distinct classes of underlying protocols: Socket s,
DatagramSocket s, and MulticastSocket s. In this first section, we look at
Java's basic Socket class, which uses a connection-oriented protocol. A connection-
oriented protocol provides the equivalent of a telephone conversation; after establishing a
connection, two applications can send streams of data back and forth-the connection stays
in place even when no one is talking. The protocol ensures that no data is lost and that

http://lib.ommolketab.ir
http://lib.ommolketab.ir

whatever you send always arrives in the order that you sent it. In the next section, we look
at the DatagramSocket class, which uses a connectionless protocol. A connectionless
protocol is more like the postal service. Applications can send short messages to each
other, but no end-to-end connection is set up in advance, and no attempt is made to keep
the messages in order. It is not even guaranteed that the messages will arrive at all. A
MulticastSocket is a variation of a DatagramSocket that perform
multicasting-sending data to multiple recipients simultaneously. Working with multicast
sockets is very much like working with datagram sockets. Because multicasting is not
widely supported across the Internet at this time, we do not cover it here.

Again, in theory, just about any protocol family can be used underneath the socket layer:
Novell's IPX, Apple's AppleTalk, etc. But in practice, there's only one protocol family
people care about on the Internet, and only one protocol family that Java supports: the
Internet Protocol (IP). The Socket class speaks TCP, the connection-oriented flavor of
IP, and the DatagramSocket class speaks UDP, the connectionless kind. These
protocols are generally available on any system connected to the Internet.

12.1.1 Clients and Servers

When writing network applications, it's common to talk about clients and servers. The
distinction is increasingly vague, but the side that initiates the conversation is usually
considered the client . The side that accepts the request is usually the server . In the case
where there are two peer applications using sockets to talk, the distinction is less important,
but for simplicity we'll use this definition.

For our purposes, the most important difference between a client and a server is that a
client can create a socket to initiate a conversation with a server application at any time,
while a server must be prepared to listen for incoming conversations in advance. The
java.net.Socket class represents one side of an individual socket connection on
both the client and server. In addition, the server uses the java.net.ServerSocket
class to listen for new connections from clients. In most cases, an application acting as a
server creates a ServerSocket object and waits, blocked in a call to its accept()
method, until a connection arrives. When it does, the accept() method creates a
Socket object the server uses to communicate with the client. A server may carry on
conversations with multiple clients at once; in this case there is still only a single
ServerSocket but the server has multiple Socket objects-one associated with each
client, as shown in Figure 12-2 .

Figure 12-2. Clients and servers, Sockets and ServerSockets

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A client needs two pieces of information to locate and connect to a server on the Internet: a
hostname (used to find the host's network address) and a port number . The port number is
an identifier that differentiates between multiple clients or servers on the same host. A
server application listens on a prearranged port while waiting for connections. Clients
select the port number assigned to the service they want to access. If you think of the host
computers as hotels and the applications as guests, then the ports are like the guests' room
numbers. For one person to call another, he or she must know the other party's hotel name
and room number.

12.1.1.1 Clients

A client application opens a connection to a server by constructing a Socket that
specifies the hostname and port number of the desired server:

try {
 Socket sock = new Socket("wupost.wustl.edu", 25);
} catch (UnknownHostException e) {
 System.out.println("Can't find host.");
} catch (IOException e) {
 System.out.println("Error connecting to host.");
}

This code fragment attempts to connect a Socket to port 25 (the SMTP mail service) of
the host wupost.wustl.edu . The client handles the possibility that the hostname can't be
resolved (UnknownHostException) and that it might not be able to connect to it
(IOException). The constructor also works with a string containing the host's IP
address:

Socket sock = new Socket("22.66.89.167", 25);

Once a connection is made, input and output streams can be retrieved with the Socket

http://lib.ommolketab.ir
http://lib.ommolketab.ir

getInputStream() and getOutputStream() methods. The following (rather
arbitrary) code sends and receives some data with the streams:

try {
 Socket server = new Socket("foo.bar.com", 1234);
 InputStream in = server.getInputStream();
 OutputStream out = server.getOutputStream();

 // write a byte
 out.write(42);

 // write a newline or carriage return delimited string
 PrintWriter pout = new PrintWriter(out, true);
 pout.println("Hello!");

 // read a byte
 byte back = (byte)in.read();

 // read a newline or carriage return delimited string
 BufferedReader bin =
 new BufferedReader(new InputStreamReader(in));
 String response = bin.readLine();

 // send a serialized Java object
 ObjectOutputStream oout = new ObjectOutputStream(out);
 oout.writeObject(new java.util.Date());
 oout.flush();

 server.close();
}
catch (IOException e) { ... }

In this exchange, the client first creates a Socket for communicating with the server. The
Socket constructor specifies the server's hostname (foo.bar.com) and a prearranged port
number (1234). Once the connection is established, the client writes a single byte to the
server using the OutputStream `s write() method. It then wraps a PrintWriter
around the OutputStream in order to send a string of text more easily. Next, it
performs the complementary operations: reading a byte from the server using
InputStream 's read() and then creating a BufferedReader from which to get a
full string of text. Finally, we do something really funky and send a serialized Java object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to the server, using an ObjectOutputStream . (We'll talk in depth about sending
serialized objects later in this chapter.) The client then terminates the connection with the
close() method. All these operations have the potential to generate IOException s;
the catch clause is where our application would deal with these.

12.1.1.2 Servers

After a connection is established, a server application uses the same kind of Socket
object for its side of the communications. However, to accept a connection from a client, it
must first create a ServerSocket , bound to the correct port. Let's recreate the previous
conversation from the server's point of view:

// Meanwhile, on foo.bar.com...
try {
 ServerSocket listener = new ServerSocket(1234);

 while (!finished) {
 Socket client = listener.accept(); // wait for connection

 InputStream in = client.getInputStream();
 OutputStream out = client.getOutputStream();

 // read a byte
 byte someByte = (byte)in.read();

 // read a newline or carriage-return-delimited string
 BufferedReader bin =
 new BufferedReader(new InputStreamReader(in));
 String someString = bin.readLine();

 // write a byte
 out.write(43);

 // say goodbye
 PrintWriter pout = new PrintWriter(out, true);
 pout.println("Goodbye!");

 // read a serialized Java object
 ObjectInputStream oin = new ObjectInputStream(in);
 Date date = (Date)oin.readObject();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 client.close();
 }

 listener.close();
}
catch (IOException e) { ... }
catch (ClassNotFoundException e2) { ... }

First, our server creates a ServerSocket attached to port 1234. On some systems, there
are rules about what ports an application can use. Port numbers below 1024 are usually
reserved for system processes and standard, well-known services, so we pick a port number
outside of this range. The ServerSocket is created only once; thereafter we can accept
as many connections as arrive.

Next we enter a loop, waiting for the accept() method of the ServerSocket to
return an active Socket connection from a client. When a connection has been
established, we perform the server side of our dialog, then close the connection and return
to the top of the loop to wait for another connection. Finally, when the server application
wants to stop listening for connections altogether, it calls the close() method of the
ServerSocket .

This server is single-threaded; it handles one connection at a time, not calling accept()
to listen for a new connection until it's finished with the current connection. A more
realistic server would have a loop that accepts connections concurrently and passes them
off to their own threads for processing. There is a lot to be said about implementing
multithreaded servers. Later in this chapter we'll create a tiny web server that starts a new
thread for each connection and also a slightly more complex web server that uses the NIO
package to handle many connections with a small number of threads.

12.1.1.3 Sockets and security

The previous examples presuppose that the client has permission to connect to the server
and that the server is allowed to listen on the specified socket. If you're writing a general,
standalone application this is normally the case. However, applets and other untrusted
applications run under the auspices of a security policy that can impose arbitrary
restrictions on what hosts they may or may not talk to, and whether or not they can listen
for connections.

The security policy imposed on applets by the SDK appletviewer and most browsers
allow untrusted applets to open socket connections only to the host that served them. That

http://lib.ommolketab.ir
http://lib.ommolketab.ir

is, they can talk back only to the server from which their class files were retrieved.
Untrusted applets are not allowed to open server sockets themselves. Now, this doesn't
mean that an untrusted applet can't cooperate with its server to communicate with anyone,
anywhere. The applet's server could run a proxy that lets the applet communicate indirectly
with anyone it likes. What this security policy prevents is malicious applets poking around
inside corporate firewalls, making connections to trusted services. It places the burden of
security on the originating server, and not the client machine. Restricting access to the
originating server limits the usefulness of "Trojan" applications that do annoying things
from the client side. (You probably won't let your proxy mail-bomb people, because you'll
be blamed.)

While fully trusted code and applications that are run without any security policy can
perform any kind of activities, the default security policy that comes with Java 1.2 and later
disallows most network access. So, if you are going to run your application under the
default security manager (using the -Djava.security.manager option on the
command line or by manually installing the security manager within your application), you
must modify the policy file to grant the appropriate permissions to your code. (See Section
3.3 in Chapter 3 .) The following policy file fragment sets the socket permissions to allow
connections to or from any host, on any nonprivileged port:

grant {
 permission java.net.SocketPermission
 "*:1024-", "listen,accept,connect";
};

When starting the Java interpreter, you can install the security manager and use this file
(call it mysecurity.policy):

java -Djava.security.manager
 -Djava.security.policy=mysecurity.policy MyApplication

12.1.2 The DateAtHost Client

Many networked workstations run a time service that dispenses their local clock time on a
well-known port. This was a precursor of NTP, the more general Network Time Protocol.
In the next example, DateAtHost , we'll make a specialized subclass of
java.util.Date that fetches the time from a remote host instead of initializing itself
from the local clock. (See Chapter 10 for a complete discussion of the Date class.)

DateAtHost connects to the time service (port 37) and reads four bytes representing the
time on the remote host. These four bytes have a peculiar specification which we'll decode

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to get the time. Here's the code:

//file: DateAtHost.java
import java.net.Socket;
import java.io.*;

public class DateAtHost extends java.util.Date {
 static int timePort = 37;
 // seconds from start of 20th century to Jan 1, 1970 00:00 GMT
 static final long offset = 2208988800L;

 public DateAtHost(String host) throws IOException {
 this(host, timePort);
 }

 public DateAtHost(String host, int port) throws IOException {
 Socket server = new Socket(host, port);
 DataInputStream din =
 new DataInputStream(server.getInputStream());
 int time = din.readInt();
 server.close();

 setTime((((1L << 32) + time) - offset) * 1000);
 }
}

That's all there is to it. It's not very long, even with a few frills. We have supplied two
possible constructors for DateAtHost . Normally we'd expect to use the first, which
simply takes the name of the remote host as an argument. The second constructor specifies
the hostname and the port number of the remote time service. (If the time service were
running on a nonstandard port, we would use the second constructor to specify the alternate
port number.) This second constructor does the work of making the connection and setting
the time. The first constructor simply invokes the second (using the this() construct)
with the default port as an argument. Supplying simplified constructors that invoke their
siblings with default arguments is a common and useful technique; that is the only reason
we've shown it here.

The second constructor opens a socket to the specified port on the remote host. It creates a
DataInputStream to wrap the input stream and then reads a four-byte integer using
the readInt() method. It's no coincidence that the bytes are in the right order. Java's

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DataInputStream and DataOutputStream classes work with the bytes of
integer types in network byte order (most significant to least significant). The time protocol
(and other standard network protocols that deal with binary data) also uses the network
byte order, so we don't need to call any conversion routines. Explicit data conversions
would probably be necessary if we were using a nonstandard protocol, especially when
talking to a non-Java client or server. In that case we'd have to read byte by byte and do
some rearranging to get our four-byte value. After reading the data, we're finished with the
socket, so we close it, terminating the connection to the server. Finally, the constructor
initializes the rest of the object by calling Date 's setTime() method with the
calculated time value.

The four bytes of the time value are interpreted as an integer representing the number of
seconds since the beginning of the 20th century. DateAtHost converts this to Java's
variant of the absolute time (milliseconds since January 1, 1970, a date that should be
familiar to Unix users). The conversion first creates a long value, which is the unsigned
equivalent of the integer time . It subtracts an offset to make the time relative to the epoch
(January 1, 1970) rather than the century, and multiplies by 1000 to convert to
milliseconds. It then uses the converted time to initialize itself.

The DateAtHost class can work with a time retrieved from a remote host almost as
easily as Date is used with the time on the local host. The only additional overhead is that
we have to deal with the possible IOException that can be thrown by the
DateAtHost constructor:

try {
 Date d = new DateAtHost("sura.net");
 System.out.println("The time over there is: " + d);
}
catch (IOException e) { ... }

This example fetches the time at the host sura.net and prints its value.

12.1.3 The TinyHttpd Server

Have you ever wanted to write your very own web server? Well, you're in luck. In this
section, we're going to build TinyHttpd , a minimal but functional HTTP daemon.
TinyHttpd listens on a specified port and services simple HTTP GET requests. They
look something like this:

GET /path/filename [optional stuff]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Your web browser sends one or more of these requests for each document it retrieves from
a web server. Upon reading a request, our server attempts to open the specified file and
send its contents. If that document contains references to images or other items to be
displayed inline, the browser follows up with additional GET requests. For best
performance TinyHttpd services each request in its own thread. Therefore,
TinyHttpd can service several requests concurrently.

This example works, but it's a bit oversimplified. Remember that file pathnames are still
somewhat architecture-dependent in Java. This example should work, as is, on most
systems, but could require some enhancement to work everywhere. It's possible to write
slightly more elaborate code that uses the environmental information provided by Java to
tailor itself to the local system. (Chapter 11 gives some hints about how.)

Unless you have a firewall or other security in place, the next example
serves files from your host without protection. Don't try this at work.

Now, without further ado, here's TinyHttpd :

//file: TinyHttpd.java
import java.net.*;
import java.io.*;
import java.util.regex.*;

public class TinyHttpd {
 public static void main(String argv[]) throws IOException {
 ServerSocket ss =
 new ServerSocket(Integer.parseInt(argv[0]));
 while (true)
 new Thread(new TinyHttpdConnection(ss.accept())).start();
 }
}

class TinyHttpdConnection implements Runnable {
 Socket client;
 TinyHttpdConnection (Socket client) throws SocketException {
 this.client = client;
 }
 public void run() {
 try {
 BufferedReader in = new BufferedReader(

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 new InputStreamReader(client.getInputStream(), "8859_1"));
 OutputStream out = client.getOutputStream();
 PrintWriter pout = new PrintWriter(
 new OutputStreamWriter(out, "8859_1"), true);
 String request = in.readLine();
 System.out.println("Request: "+request);

 Matcher get = Pattern.compile("GET /?(\\S*).*").matcher(request);
 if (get.matches()) {
 request = get.group(1);
 if (request.endsWith("/") || request.equals(""))
 request = request + "index.html";
 try {
 FileInputStream fis = new FileInputStream (request);
 byte [] data = new byte [64*1024];
 for(int read; (read = fis.read(data)) > -1;)
 out.write(data, 0, read);
 out.flush();
 } catch (FileNotFoundException e) {
 pout.println("404 Object Not Found"); }
 } else
 pout.println("400 Bad Request");
 client.close();
 } catch (IOException e) {
 System.out.println("I/O error " + e); }
 }
}

Compile TinyHttpd and place it in your classpath, as described in Chapter 3 . Go to a
directory with some interesting documents and start the daemon, specifying an unused port
number as an argument. For example:

% java TinyHttpd 1234

You should now be able to use your web browser to retrieve files from your host. You'll
have to specify the port number you chose in the URL. For example, if your hostname is
foo.bar.com , and you started the server as shown, you could reference a file as in:

http://foo.bar.com:1234/welcome.htm

Or if you're running both the server and your web browser on the same machine:

http://foo.bar.com:1234/welcome.htm
http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://localhost:1234/welcome.html

TinyHttpd looks for files relative to its current directory, so the pathnames you provide
should be relative to that location. Retrieved some files? (Did you notice that when you
retrieved an HTML file, your web browser automatically generated more requests for items
like images that were contained within it?) Let's take a closer look.

The TinyHttpd application has two classes. The public TinyHttpd class contains the
main() method of our standalone application. It begins by creating a ServerSocket ,
attached to the specified port. It then loops, waiting for client connections and creating
instances of the second class, a TinyHttpdConnection , to service each request. The
while loop waits for the ServerSocket accept() method to return a new
Socket for each client connection. The Socket is passed as an argument to construct
the TinyHttpdConnection thread that handles it.

TinyHttpdConnection is a Runnable object . For each connection we start a
thread, which lives long enough to handle the single client connection and then dies. The
body of TinyHttpdConnection 's run() method is where all the magic happens.
First, we fetch an OutputStream for talking back to our client. The second line reads
the GET request from the InputStream into the variable request . This request is a
single newline-terminated String that looks like the GET request we described earlier.
For this we use a BufferedInputStream wrapped around an
InputStreamReader . (We'll say more about the InputStreamReader in a
moment.)

We then parse the contents of request to extract a filename. Here we are using the
Regular Expression API (see Chapter 9 for a full discussion of regular expressions and the
Regular Expression API). The pattern simply looks for the "GET " followed by an optional
slash and then any string of non-whitespace characters. We add the ".*" at the end to cause
the pattern to match the whole input, so that we can use the Matcher match() method
to test if the whole request made sense to us or not. The part that matches the filename is in
a capture group: "(\\S*)". This allows us to retrieve that text with the Matcher
group() method. Finally, we check to see if the requested filename looks like a directory
name (i.e., ends in a slash) or is empty. In these cases, we append the familiar default
filename index.html as a convenience.

Once we have the filename, we try to open the specified file and send its contents using a
large byte array. Here we loop, reading a buffer at a time and writing to the client via the
OutputStream . If we can't parse the request or the file doesn't exist, we use the
PrintStream to send a textual message. Then we return an appropriate HTTP error
message. Finally, we close the socket and return from run() , removing our Thread .

http://localhost:1234/welcome.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.1.3.1 Do French web servers speak French?

In TinyHttpd , we explicitly created the InputStreamReader for our
BufferedRead and the OutputStreamWriter for our PrintWriter . We do
this so that we can specify the character encoding to use when converting to and from the
byte representation of the HTTP protocol messages. (Note that we're not talking about the
body of the file to be sent-that is simply a stream of raw bytes to us; rather we're talking
here about the GET and response messages.) If we didn't specify, we'd get the default
character encoding for the local system. For many purposes that may be correct, but in this
case we are speaking of a well-defined international protocol, and we should be specific.
The RFC for HTTP specifies that web clients and servers should use the ISO8859-1
character encoding. We specify this encoding explicitly when we construct the
InputStreamReader and OutputStreamWriter . Now as it turns out,
ISO8859-1 is just plain ASCII and conversion to and from Unicode should always leave
ASCII values unchanged, so again we would probably not be in any trouble if we did not
specify an encoding. But it's important to think about these things at least once-and now
you have.

12.1.3.2 Taming the daemon

An important problem with TinyHttpd is that there are no restrictions on the files it
serves. With a little trickery, the daemon would happily send any file in your filesystem to
the client. It would be nice if we could enforce the restriction that TinyHttpd serve only
files that are in the current working directory or a subdirectory, as it normally does. An
easy way to do this is to activate the Java Security Manager. Normally, a security manager
is used to prevent Java code downloaded over the Net from doing anything suspicious.
However, we can press the security manager into service to restrict file access in our
application as well.

You can use a policy like the simple one that we provided in the previous section Section
12.1.1.3 ; it allows the server to accept connections on a specified range of sockets.
Fortuitously, the default file-access security policy does just what we want: it allows an
application access to files in its current working directory and subdirectories. So simply
installing the security manager provides exactly the kind of file protection that we wanted
in this case. (It would be easy to add additional permissions if you wish to extend the
server's range to other well-defined areas.)

With the security manager in place, the daemon cannot access anything outside the current
directory and its subdirectories. If it tries to, the security manager throws an exception and
prevents access to the file. In that case, we should have TinyHttpd catch the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SecurityException and return a proper message to the web browser. Add the
following catch clause after the FileNotFoundException 's catch clause.

...
} catch (Security Exception e) {
 pout.println("403 Forbidden");
}

12.1.3.3 Room for improvement

TinyHttpd still has quite a bit of room for improvement. Technically it implements only
an obsolete subset of the HTTP protocol (Version 0.9) in which the server expects only the
GET request and returns just the content. All modern servers speak either HTTP 1.0 or 1.1,
which allows for additional metadata in both the HTTP request and response and requires
certain data (like version number, content length, etc.). HTTP 1.1 also allows multiple
requests to be sent over one socket connection.

And of course real web servers can do all sorts of other things. For example, you might
consider adding a few lines of code to read directories and generate linked HTML listings
as most web servers do. Have fun with this example, and you can learn quite a bit!

12.1.4 Socket Options

As we've said, the Java sockets API is a somewhat simplified interface to the general
socket mechanisms. In other environments, where all the gory details of the network are
visible to you, a lot of complex and sometimes esoteric options can be set on sockets to
govern the behavior of the underlying protocols. Java gives us access to a few important
ones. We'll refer to them by their standard (C language) names so that you can recognize
them in other networking books.

12.1.4.1 SO_TIMEOUT

The SO_TIMEOUT option sets a timer on all I/O methods of a socket that block so that
you don't have to wait forever if they don't return. This works for operations such as
accept() on server sockets and read() or write() on all sockets. If the timer
expires before the operation would complete, an InterruptedIOException is
thrown. You can catch the exception and continue to use the socket normally if it is
appropriate, or you can take the opportunity to bail out of the operation. Multi-threaded,
blocking servers such as TinyHttpd can use this sort of technique for their "shutdown"
logic:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

serverSocket.setSoTimeout(2000); // 2 seconds

while (!shutdown) {
 try {
 Socket client = serverSocket.accept();
 handleClient(client);
 } catch (InterruptedIOException e) {
 // ignore the exception
 }

 // exit
}

You set the timer by calling the setSoTimeout() method of the Socket class with
the timeout period, in milliseconds, as an int argument. This works for regular Socket
s, ServerSocket s (TCP), and DatagramSockets (UDP), discussed in the next
section. To find the current timeout value, call getSoTimeout() .

This feature is a workaround for the fact that stream-oriented I/O operations in Java are
"blocking," and there is no way to test, or poll, them for activity. Later in this chapter we'll
complete our discussion of the NIO package, which provides full nonblocking I/O for all
types of operations, including sockets.

12.1.4.2 TCP_NODELAY

This option turns off a feature of TCP called Nagle's algorithm, which tries to prevent
certain interactive applications from flooding the network with very tiny packets. You can
turn this feature off if you have a fast network, and you want all packets sent as soon as
possible. The Socket setTcpNoDelay() method takes a boolean argument
specifying whether the delay is on or off. To find out whether the TCP_NODELAY option
is enabled, call getTcpNoDelay() , which returns a boolean .

12.1.4.3 SO_LINGER

This option controls what happens to any unsent data when you perform a close() on
an active socket connection. Normally the system blocks on the close and tries to deliver
any network buffered data and close the connection gracefully. The setSoLinger()
method of the Socket class takes two arguments: a boolean that enables or disables
the option and an int that sets the time to wait (the linger value), in seconds. If you set the
linger value to 0, any unsent data is discarded, and the TCP connection is aborted

http://lib.ommolketab.ir
http://lib.ommolketab.ir

(terminated with a reset). To find the current linger value, call getSoLinger() .

12.1.4.4 TCP_KEEPALIVE

This option can be enabled with the setKeepAlive() method. It triggers a feature of
TCP that polls the other side every two hours if there is no other activity. Normally, when
there is no data flowing on a TCP connection, no packets are sent. This can make it
difficult to tell whether the other side is simply being quiet or has disappeared. If one side
of the connection closes properly, this is detected. But if the other side simply disappears,
we don't know unless and until we try to talk to it. For this reason, servers often use
TCP_KEEPALIVE to detect lost client connections (where they might otherwise only
respond to requests, rather than initiate them). Keepalive is not part of the TCP
specification; it's an add-on that's not guaranteed to be implemented everywhere. If you
have the option, the best way to detect lost clients is to implement the polling as part of
your own protocol.

12.1.4.5 Half close

In TCP, it is technically possible to close one direction of a stream but not the other. In
other words, you can shut down sending but not receiving, or vice versa. A few protocols
use this to indicate the end of a client request by closing the client side of the stream,
allowing the end of stream to be detected by the server. You can shut down either half of a
socket connection with shutdownOutput() or shutdownInput() .

12.1.5 Proxies and Firewalls

Many networks are behind firewalls, which prevent applications from opening direct
socket connections to the outside network. Instead, they provide a service called SOCKS
(named for sockets) that serves as a proxy server for socket connections, giving the
administrators more control over what connections are allowed. Alternatively, firewalls can
choose to proxy only HTTP level requests at a higher level using an HTTP proxy. Java has
built-in support for both SOCKS and HTTP proxies. All you have to do is set some system
properties in your application (in an applet, this should be already taken care of for you,
because you wouldn't have authority to set those properties). Here's a list of the properties
that configure Java to use a socket proxy server:

socksproxyHost

The SOCKS proxy server name
socksproxyPort

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The SOCKS proxy port number

It's similar for an HTTP proxy:

http.proxySet

A boolean (true or false) indicating whether to use the proxy
http.proxyHost

The proxy server name
http.proxyPort

The proxy port number

You can set these properties on the command line using the Java interpreter's -D option or
by calling the System.setProperty() method. The following command runs
MyProgram using the HTTP proxy server at foo.bar.com on port 1234:

% java -Dhttp.proxySet=true -Dhttp.proxyServer=foo.bar.com
 -Dhttp.proxyPort=1234 MyProgram

If the firewall does not allow any outside socket connections, your applet or application
may still be able to communicate with the outside world by using HTTP to send and
receive data in this way. See Chapter 13 for an example of how to perform an HTTP POST
operation to send data.

12.2 Datagram Sockets

TinyHttpd used a Socket to create a connection to the client using the TCP protocol.
In that example, TCP itself took care of data integrity; we didn't have to worry about data
arriving out of order or incorrect. Now we take a walk on the wild side, building an applet
that uses a java.net.DatagramSocket , which uses the UDP protocol. A datagram
is sort of like a letter sent via the postal service: it's a discrete chunk of data transmitted in
one packet. Unlike the previous example, where we could get a convenient
OutputStream from our Socket and write the data as if writing to a file, with a
DatagramSocket we have to work one datagram at a time. (Of course, the TCP
protocol was taking our OutputStream and slicing the data into packets, but we didn't
have to worry about those details.)

UDP doesn't guarantee that the data is received. If the data packets are received, they may
not arrive in the order in which we sent them; it's even possible for duplicate datagrams to
arrive (under rare circumstances). Using UDP is something like cutting the pages out of the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

encyclopedia, putting them into separate envelopes, and mailing them to your friend. If
your friend wants to read the encyclopedia, it's his or her job to put the pages in order. If
some pages get lost in the mail, your friend has to send you a letter asking for
replacements.

Obviously, you wouldn't use UDP to send a huge amount of data without error correction.
But it's significantly more efficient than TCP, particularly if you don't care about the order
in which messages arrive, or whether 100% of their arrival is guaranteed. For example, in a
simple periodic database lookup, the client can send a query; the server's response itself
constitutes an acknowledgment. If the response doesn't arrive within a certain time, the
client can send another query. It shouldn't be hard for the client to match responses to its
original queries. Some important applications that use UDP are the Domain Name System
(DNS) and Sun's Network File System (NFS).

12.2.1 The HeartBeat Applet

In this section, we build a simple applet, HeartBeat , that sends a datagram to its server
each time it's started and stopped. We also build a simple standalone server application,
Pulse , that receives these datagrams and prints them. By tracking the output, you can
have a crude measure of who is currently looking at your web page at any given time
(assuming that firewalls do not block the UDP packets). This is an ideal application for
UDP: we don't want the overhead of a TCP socket, and if the datagrams get lost, it's no big
deal.

First, the HeartBeat applet:

//file: HeartBeat.java
import java.net.*;
import java.io.*;

public class HeartBeat extends java.applet.Applet {
 String myHost;
 int myPort;

 public void init() {
 myHost = getCodeBase().getHost();
 myPort = Integer.parseInt(getParameter("myPort"));
 }

 private void sendMessage(String message) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 try {
 byte [] data = message.getBytes();
 InetAddress addr = InetAddress.getByName(myHost);
 DatagramPacket pack =
 new DatagramPacket(data, data.length, addr, myPort);
 DatagramSocket ds = new DatagramSocket();
 ds.send(pack);
 ds.close();
 } catch (IOException e) {
 System.out.println(e); // Error creating socket
 }
 }

 public void start() {
 sendMessage("Arrived");
 }
 public void stop() {
 sendMessage("Departed");
 }
}

Compile the applet and include it in an HTML document with an <APPLET> tag:

<APPLET height=10 width=10 code=HeartBeat>
 <PARAM name="myPort" value="1234">
</APPLET>

Make sure to place the compiled HeartBeat.class file in the same directory as the
HTML document. If you're not familiar with embedding applets in HTML documents,
consult Chapter 22 .

The myPort parameter should specify the port number on which our server application
listens for data.

Next, the server-side application, Pulse :

//file: Pulse.java
import java.net.*;
import java.io.*;

public class Pulse {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public static void main(String [] argv) throws IOException {
 DatagramSocket s =
 new DatagramSocket(Integer.parseInt(argv[0]));

 while (true) {
 DatagramPacket packet =
 new DatagramPacket(new byte [1024], 1024);
 s.receive(packet);
 String message = new String(packet.getData());
 System.out.println("Heartbeat from: "
 + packet.getAddress().getHostName()
 + " - " + message);
 }
 }
}

Compile Pulse and run it on your web server, specifying a port number as an argument:

% java Pulse 1234

The port number should be the same as the one you used in the myPort parameter of the
<APPLET> tag for HeartBeat .

Now, pull up the web page in your browser. You won't see anything interesting there (a
better application might do something visual as well), but you should get a blip from the
Pulse application. Leave the page and return to it a few times. Each time the applet is
started or stopped, it sends a message, and Pulse reports it:

Heartbeat from: foo.bar.com - Arrived
Heartbeat from: foo.bar.com - Departed
Heartbeat from: foo.bar.com - Arrived
Heartbeat from: foo.bar.com - Departed
...

Cool, eh? Just remember the datagrams are not guaranteed to arrive (although it's highly
unlikely you'll ever see them fail on a normal network), and it's possible that you could
miss an arrival or a departure. Now let's look at the code.

12.2.1.1 The HeartBeat applet code

HeartBeat overrides the init() , start() , and stop() methods of the Applet

http://lib.ommolketab.ir
http://lib.ommolketab.ir

class and implements one private method of its own, sendMessage() , which sends a
datagram. (Again, we haven't covered applets yet, so if you want more details you'll have
to refer to Chapter 22 .) HeartBeat begins its life in init() , where it determines the
destination for its messages. It uses the Applet getCodeBase() and getHost()
methods to find the name of its originating host and fetches the correct port number from
the myPort parameter of the <APPLET> tag. After init() has finished, the
start() and stop() methods are called whenever the applet is started or stopped.
These methods merely call sendMessage() with the appropriate message.

sendMessage() is responsible for sending a String message to the server as a
datagram. It takes the text as an argument, constructs a datagram packet containing the
message, and then sends the datagram. All the datagram information is packed into a
java.net.DatagramPacket object, including the destination and port number. The
DatagramPacket is like an addressed envelope, stuffed with our bytes. After the
DatagramPacket is created, sendMessage() simply has to open a
DatagramSocket and send it.

The first five lines of sendMessage() build the DatagramPacket :

try {
 byte [] data = message.getBytes();
 InetAddress addr = InetAddress.getByName(myHost);
 DatagramPacket pack =
 new DatagramPacket(data, data.length, addr, myPort);

First, the contents of message are placed into an array of bytes called data . Next a
java.net.InetAddress object is created from the name myHost . An
InetAddress holds the network address information for a host in a special format. We
get an InetAddress object for our host using the static getByName() method of the
InetAddress class. (We can't construct an InetAddress object directly.) Finally,
we call the DatagramPacket constructor with four arguments: the byte array
containing our data, the length of the data, the destination address object, and the port
number.

The remaining lines construct a default client DatagramSocket and call its send()
method to transmit the DatagramPacket . After sending the datagram, we close the
socket:

DatagramSocket ds = new DatagramSocket();
ds.send(pack);
ds.close();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Two operations throw a type of IOException : the InetAddress.getByName()
lookup and the DatagramSocket send() method.
InetAddress.getByName() can throw an UnknownHostException , which
is a type of IOException that indicates the hostname can't be resolved. If send()
throws an IOException , it implies a serious client-side problem in talking to the
network. We need to catch these exceptions; our catch block simply prints a message
telling us that something went wrong. If we get one of these exceptions, we can assume the
datagram never arrived. However, we can't assume the inverse: even if we don't get an
exception, we still don't know that the host is actually accessible or that the data actually
arrived; with a DatagramSocket , we never find out from the API.

12.2.1.2 The Pulse server code

The Pulse server corresponds to the HeartBeat applet. First, it creates a
DatagramSocket to listen on our prearranged port. This time, we specify a port
number in the constructor; we get the port number from the command line as a string
(argv[0]) and convert it to an integer with Integer.parseInt() . Note the
difference between this call to the constructor and the call in HeartBeat . In the server,
we need to listen for incoming datagrams on a prearranged port, so we need to specify the
port when creating the DatagramSocket . The client just sends datagrams, so we don't
have to specify the port in advance; we build the port number into the
DatagramPacket itself.

Second, Pulse creates an empty DatagramPacket of a fixed size to receive an
incoming datagram. This alternative constructor for DatagramPacket takes a byte
array and a length as arguments. As much data as possible is stored in the byte array when
it's received. (A practical limit on the size of a UDP datagram that can be sent over the
Internet is 8K, although they can be larger for local network use-theoretically up to 64K.)
Finally, Pulse calls the DatagramSocket 's receive() method to wait for a
packet to arrive. When a packet arrives, its contents are printed by turning them to a string
using the default system encoding.

As you can see, DatagramSocket s are slightly more tedious than regular Socket s.
With datagrams, it's harder to spackle over the messiness of the socket interface. The Java
API rather slavishly follows the Unix interface, and that doesn't help. It's easy to imagine
conveniences that would make all this simpler; perhaps we'll have them in a future release.

12.3 Simple Serialized Object Protocols

Earlier in this chapter, we showed a hypothetical conversation in which a client and server

http://lib.ommolketab.ir
http://lib.ommolketab.ir

exchanged some primitive data and a serialized Java object. Passing an object between two
programs may not have seemed like a big deal at the time, but in the context of Java as a
portable bytecode language, it has profound implications. In this section, we show how a
protocol can be built using serialized Java objects.

Before we move on, it's worth considering network protocols. Most programmers would
consider working with sockets to be "low-level" and unfriendly. Even though Java makes
sockets much easier to use than many other languages, sockets still provide only an
unstructured flow of bytes between their endpoints. If you want to do serious
communications using sockets, the first thing you have to do is come up with a protocol
that defines the data you'll be sending and receiving. The most complex part of that
protocol usually involves how to marshal (package) your data for transfer over the Net and
unpack it on the other side.

As we've seen, Java's DataInputStream and DataOuputStream classes solve this
problem for simple data types. We can read and write numbers, String s, and Java
primitives in a standard format that can be understood on any other Java platform. But to
do real work, we need to be able to put simple types together into larger structures. Java
object serialization solves this problem elegantly, by allowing us to send our data just as
we use it, as the state of Java objects. Serialization can even pack up entire graphs of
interconnected objects and put them back together at a later time, in another Java VM.

12.3.1 A Simple Object-Based Server

In the following example, a client sends a serialized object to the server, and the server
responds in kind. The object sent by the client represents a request and the object returned
by the server represents the response. The conversation ends when the client closes the
connection. It's hard to imagine a simpler protocol. All the hairy details are taken care of by
object serialization, which allows us to work with standard Java objects as we are used to.

To start, we define a class-Request -to serve as a base class for the various kinds of
requests we make to the server. Using a common base class is a convenient way to identify
the object as a type of request. In a real application, we might also use it to hold basic
information such as client names and passwords, timestamps, serial numbers, etc. In our
example, Request can be an empty class that exists so others can extend it:

//file: Request.java
public class Request implements java.io.Serializable {}

Request implements Serializable , so all its subclasses are serializable by default.
Next we create some specific kinds of Request s. The first, DateRequest , is also a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

trivial class. We use it to ask the server to send us a java.util.Date object as a
response:

//file: DateRequest.java
public class DateRequest extends Request {}

Next, we create a generic WorkRequest object. The client sends a WorkRequest to
get the server to perform some computation for it. The server calls the WorkRequest
object's execute() method and returns the resulting object as a response:

//file: WorkRequest.java
public abstract class WorkRequest extends Request {
 public abstract Object execute();
}

For our application, we subclass WorkRequest to create MyCalculation , which
adds code that performs a specific calculation; in this case, we just square a number:

//file: MyCalculation.java
public class MyCalculation extends WorkRequest {
 int n;

 public MyCalculation(int n) {
 this.n = n;
 }
 public Object execute() {
 return new Integer(n * n);
 }
}

As far as data content is concerned, MyCalculation really doesn't do much; it only
transports an integer value for us. But keep in mind that a request object could hold lots of
data, including references to many other objects in complex structures such as arrays or
linked lists. The only requirement is that all the objects to be sent must be serializable or
must be able to be discarded by marking them as transient (see Section 11.3 in Chapter 11
). An important thing to note here is that MyCalculation also contains behavior-the
execute() operation. While Java object serialization sends only the data content of a
class, in our discussion of RMI below we'll see how Java's ability to dynamically download
bytecode for classes can make both the data content and behavior portable over the
network.

Now that we have our protocol, we need the server. The following Server class looks a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

lot like the TinyHttpd server we developed earlier in this chapter:

//file: Server.java
import java.net.*;
import java.io.*;

public class Server {
 public static void main(String argv[]) throws IOException {
 ServerSocket ss = new ServerSocket(Integer.parseInt(argv[0]));
 while (true)
 new ServerConnection(ss.accept()).start();
 }
} // end of class Server

class ServerConnection extends Thread {
 Socket client;
 ServerConnection (Socket client) throws SocketException {
 this.client = client;
 }

 public void run() {
 try {
 ObjectInputStream in =
 new ObjectInputStream(client.getInputStream());
 ObjectOutputStream out =
 new ObjectOutputStream(client.getOutputStream());
 while (true) {
 out.writeObject(processRequest(in.readObject()));
 out.flush();
 }
 } catch (EOFException e3) { // Normal EOF
 try {
 client.close();
 } catch (IOException e) { }
 } catch (IOException e) {
 System.out.println("I/O error " + e); // I/O error
 } catch (ClassNotFoundException e2) {
 System.out.println(e2); // unknown type of request object
 }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 private Object processRequest(Object request) {
 if (request instanceof DateRequest)
 return new java.util.Date();
 else if (request instanceof WorkRequest)
 return ((WorkRequest)request).execute();
 else
 return null;
 }
}

The Server handles each request in a separate thread. For each connection, the run()
method creates an ObjectInputStream and an ObjectOutputStream , which
the server uses to receive the request and send the response. The processRequest()
method decides what the request means and comes up with the response. To figure out
what kind of request we have, we use the instanceof operator to look at the object's
type.

Finally, we get to our Client , which is even simpler:

//file: Client.java
import java.net.*;
import java.io.*;

public class Client {
 public static void main(String argv[]) {
 try {
 Socket server =
 new Socket(argv[0], Integer.parseInt(argv[1]));
 ObjectOutputStream out =
 new ObjectOutputStream(server.getOutputStream());
 ObjectInputStream in =
 new ObjectInputStream(server.getInputStream());

 out.writeObject(new DateRequest());
 out.flush();
 System.out.println(in.readObject());

 out.writeObject(new MyCalculation(2));
 out.flush();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 System.out.println(in.readObject());

 server.close();
 } catch (IOException e) {
 System.out.println("I/O error " + e); // I/O error
 } catch (ClassNotFoundException e2) {
 System.out.println(e2); // unknown type of response object
 }
 }
}

Just like the server, Client creates the pair of object streams. It sends a DateRequest
and prints the response; it then sends a MyCalculation object and prints the response.
Finally, it closes the connection. On both the client and the server, we call the flush()
method after each call to writeObject() . This method forces the system to send any
buffered data; it's important because it ensures that the other side sees the entire request
before we wait for a response. When the client closes the connection, our server catches the
EOFException that is thrown and ends the session. Alternatively, our client could write
a special object, perhaps null , to end the session; the server could watch for this item in
its main loop.

The order in which we construct the object streams is important. We create the output
streams first because the constructor of an ObjectInputStream tries to read a header
from the stream to make sure that the InputStream really is an object stream. If we
tried to create both of our input streams first, we would deadlock waiting for the other side
to write the headers.

Finally, we run the example, giving it a port number as an argument:

% java Server 1234

Then we run the Client , telling it the server's hostname and port number:

% java Client flatland 1234

The result should look something like this:

Sun Mar 3 14:25:25 PDT 2002
4

All right, the result isn't that impressive, but it's easy to imagine more substantial
applications. Imagine that you need to perform some complex computation on many large

http://lib.ommolketab.ir
http://lib.ommolketab.ir

datasets. Using serialized objects makes maintenance of the data objects natural and
sending them over the wire trivial. There is no need to deal with byte-level protocols at all.

12.3.1.1 Limitations

There is one catch in this scenario: both the client and server need access to the necessary
classes. That is, all the Request classes-including MyCalculation , which is really
the property of the Client -have to be in the classpath on both the client and the server
machines. As we hinted earlier, in the next section we'll see that it's possible to send the
Java bytecode along with serialized objects to allow completely new kinds of objects to be
transported over the network dynamically. We could create this solution on our own,
adding to the earlier example using a network class loader to load the classes for us. But we
don't have to: Java's RMI facility handles that for us. The ability to send both serialized
data and class definitions over the network is not always needed but it makes Java a
powerful tool for developing advanced distributed applications.

12.4 Remote Method Invocation

The most fundamental means of interobject communication in Java is method invocation.
Mechanisms such as the Java event model are built on simple method invocations between
objects in the same virtual machine. Therefore, when we want to communicate between
virtual machines on different hosts, it's natural to want a mechanism with similar
capabilities and semantics. Java's Remote Method Invocation (RMI) mechanism does just
that. It lets us get a reference to an object on a remote host and use it as if it were in our
own virtual machine. RMI lets us invoke methods on remote objects, passing real Java
objects as arguments and getting real Java objects as returned values.

Remote invocation is nothing new. For many years C programmers have used remote
procedure calls (RPC) to execute a C function on a remote host and return the results. The
primary difference between RPC and RMI is that RPC, being an offshoot of the C
language, is primarily concerned with data structures. It's relatively easy to pack up data
and ship it around, but for Java, that's not enough. In Java we don't just work with data
structures; we work with objects that contain both data and methods for operating on the
data. Not only do we have to be able to ship the state of an object (the data) over the wire,
but the recipient has to be able to interact with the object (use its methods) after receiving
it. With Java RMI, you can work with network services in an object-oriented fashion, using
real, extensible types.

It should be no surprise that RMI uses object serialization, which allows us to send graphs
of objects (objects and all the connected objects that they reference). When necessary, RMI

http://lib.ommolketab.ir
http://lib.ommolketab.ir

can also use dynamic class loading and the security manager to transport Java classes
safely. So, in addition to making remote method calls almost as easy to use as local calls,
RMI also makes it possible to ship both data and behavior (code) around the Net.

12.4.1 Remote and Nonremote Objects

Before an object can be used remotely through RMI, it must be serializable. But that's not
sufficient. Remote objects in RMI are real distributed objects. As the name suggests, a
remote object can be an object on a different machine, or it can be an object on the local
host. The term remote means that the object is used through a special kind of object
interface that can be passed over the network. Like normal Java objects, remote objects are
passed by reference. Regardless of where the reference is used, the method invocation
occurs at the original object, which still lives on its original host. If a remote host returns a
reference to one of its remote objects to you, you can call the object's methods; the actual
method invocations happen on the remote host, where the object resides.

Nonremote objects are simpler; they're just normal serializable objects. (You can pass these
over the network as we did in the previous section Section 12.3.1 .) The catch is that when
you pass a nonremote object over the network, it is simply copied, so references to the
object on one host are not the same as those on the remote host. Nonremote objects are
passed by copy (as opposed to by reference). This may be acceptable for many kinds of
data-oriented objects in your application, such as the client requests and server responses in
our previous example.

12.4.1.1 Stubs and skeletons

No, we're not talking about a gruesome horror movie. Stubs and skeletons are used in the
implementation of remote objects. When you invoke a method on a remote object (which
could be on a different host), you are actually calling some local code that serves as a
proxy for that object. This is the stub. (It is called a stub because it is something like a
truncated placeholder for the object.) The skeleton is another proxy that lives with the real
object on its original host. It receives remote method invocations from the stub and passes
them to the object.

After you create stubs and skeletons you never have to work with them directly; they are
hidden from you (in the closet, so to speak). Stubs and skeletons for your remote objects
are created by running the rmic (RMI compiler) utility. After compiling your Java source
files normally, you run rmic on the remote object classes as a second pass. It's easy; we'll
show you how in the following examples.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12.4.1.2 Remote interfaces

Remote objects are objects that implement a special remote interface that specifies which
of the object's methods can be invoked remotely. The remote interface must be explicitly
created, and it must extend the java.rmi.Remote interface. Your remote object then
implements its remote interface, as does the stub object that is automatically generated for
it. In the rest of your code, you should then refer to the remote object as an instance of the
remote interface-not as an instance of its actual class. Because both the real object and
stub implement the remote interface, they are equivalent as far as we are concerned (for
method invocation); locally, we never have to worry about whether we have a reference to
a stub or to an actual object. This "type equivalence" means that we can use normal
language features such as casting, with remote objects. Of course public fields (variables)
of the remote object are not accessible through an interface, so you must make accessor
methods if you want to manipulate the remote object's fields.

All methods in the remote interface must declare that they can throw the exception
java.rmi.RemoteException . This exception (or one of its subclasses) is thrown
when any kind of networking error happens, for example, a server crash, a network failure,
or a request for an unavailable object.

Here's a simple example of the remote interface that defines the behavior of
RemoteObject ; we give it two methods that can be invoked remotely, both of which
return some kind of Widget object:

import java.rmi.*;

public interface RemoteObject extends Remote {
 public Widget doSomething() throws RemoteException;
 public Widget doSomethingElse() throws RemoteException;
}

12.4.1.3 The UnicastRemoteObject class

The actual implementation of a remote object (not the interface we discussed previously)
usually extends java.rmi.server.UnicastRemoteObject . This is the RMI
equivalent to the familiar Object class. When a subclass of UnicastRemoteObject
is constructed, the RMI runtime system automatically "exports" it to start listening for
network connections from remote interfaces (stubs) for the object. Like
java.lang.Object , this superclass also provides implementations of equals() ,
hashcode() , and toString() that make sense for a remote object.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Here's a remote object class that implements the RemoteObject interface; we haven't
shown implementations for the two methods or the constructor:

public class MyRemoteObject implements RemoteObject
 extends java.rmi.UnicastRemoteObject
{
 public RemoteObjectImpl() throws RemoteException {...}
 public Widget doSomething() throws RemoteException {...}
 public Widget doSomethingElse() throws RemoteException {...}
 // other non-public methods
 ...
}

This class can have as many additional methods as it needs; presumably, most of them will
be private , but that isn't strictly necessary. We have to supply a constructor explicitly,
even if the constructor does nothing, because the constructor (like any method) can throw a
RemoteException ; we therefore can't use the default constructor.

What if we can't or don't want to make our remote object implementation a subclass of
UnicastRemoteObject ? Suppose, for example, that it has to be a subclass of
BankAccount or some other special base type for our system. Well, we can simply take
over the job of exporting the object ourselves, using the static method
exportObject() of UnicastRemoteObject . The exportObject() method
takes as an argument a Remote interface and accomplishes what the
UnicastRemoteObject constructor normally does for us. It returns as a value the
remote object's client stub. However, you will normally not do anything with this directly.
In the next section, we'll discuss how to get stubs to your client through the RMI registry (a
lookup service).

Normally, exported objects listen on individual ephemeral (randomly assigned) port
numbers by default. (This is implementation-dependent.) You can control the port number
allocation explicitly by exporting your objects using another form of
UnicastRemoteObject.exportObject() , which takes both a Remote
interface and a port number as arguments.

Finally, the name UnicastRemoteObject begs the question, "What other kinds of
remote objects are there?" Right now, none. It's possible that Sun will develop remote
objects using other protocols or multicast techniques in the future.

12.4.1.4 The RMI registry

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The registry is the RMI phone book. You use the registry to look up a reference to a
registered remote object on another host. We've already described how remote references
can be passed back and forth by remote method calls. But the registry is needed to
bootstrap the process: the client needs some way of looking up some initial object.

The registry is implemented by a class called Naming and an application called
rmiregistry . This application must be running on the local host before you start a
Java program that uses the registry. You can then create instances of remote objects and
bind them to particular names in the registry. (Remote objects that bind themselves to the
registry sometimes provide a main() method for this purpose.) A registry name can be
anything you choose; it takes the form of a slash-separated path. When a client object
wants to find your object, it constructs a special URL with the rmi: protocol, the
hostname, and the object name. On the client, the RMI Naming class then talks to the
registry and returns the remote object reference.

So, which objects need to register themselves with the registry? Well, initially this can be
any object the client has no other way of finding. But a call to a remote method can return
another remote object without using the registry. Likewise, a call to a remote method can
have another remote object as its argument, without requiring the registry. So you could
design your system such that only one object registers itself and then serves as a factory for
any other remote objects you need. In other words, it wouldn't be hard to build a simple
object request "bouncer" (we won't say "broker") that returns references to all the remote
objects your application uses. Depending on how you structure your application, this may
happen naturally anyway.

The RMI registry is just one implementation of a lookup mechanism for remote objects. It
is not very sophisticated, and lookups tend to be slow. It is not intended to be a general-
purpose directory service but simply to bootstrap RMI communications. More generally,
the Java Naming and Directory service (JNDI) can be used as a frontend to other name
services that can provide this service. It is used with RMI as part of the Enterprise Java
Beans APIs. The factory registry that we mentioned is also extremely flexible and useful.

12.4.2 An RMI Example

The first example using RMI is a duplication of the simple serialized object protocol from
the previous section. We make a remote RMI object called MyServer on which we can
invoke methods to get a Date object or execute a WorkRequest object. First, we define
our Remote interface:

//file: ServerRemote.java
import java.rmi.*;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.util.*;

public interface ServerRemote extends Remote {
 Date getDate() throws RemoteException;
 Object execute(WorkRequest work) throws RemoteException;
}

The ServerRemote interface extends the java.rmi.Remote interface, which
identifies objects that implement it as remote objects. We supply two methods that take the
place of our old protocol: getDate() and execute() .

Next, we implement this interface in a class called MyServer that defines the bodies of
these methods. (Note that a more common convention for naming the implementation of
remote interfaces is to append Impl to the class name. Using that convention MyServer
would instead be named something like ServerImpl .)

//file: MyServer.java
import java.rmi.*;
import java.util.*;

public class MyServer
 extends java.rmi.server.UnicastRemoteObject
 implements ServerRemote {

 public MyServer() throws RemoteException { }

 // implement the ServerRemote interface
 public Date getDate() throws RemoteException {
 return new Date();
 }

 public Object execute(WorkRequest work)
 throws RemoteException {
 return work.execute();
 }

 public static void main(String args[]) {
 try {
 ServerRemote server = new MyServer();
 Naming.rebind("NiftyServer", server);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 } catch (java.io.IOException e) {
 // problem registering server
 }
 }
}

MyServer extends java.rmi.UnicastRemoteObject , so when we create an
instance of MyServer , it is automatically exported and starts listening to the network.
We start by providing a constructor, which must throw RemoteException ,
accommodating errors that might occur in exporting an instance. Next, MyServer
implements the methods of the remote interface ServerRemote . These methods are
straightforward.

The last method in this class is main() . This method lets the object set itself up as a
server. main() creates an instance of the MyServer object and then calls the static
method Naming.rebind() to place the object in the registry. The arguments to
rebind() include the name of the remote object in the registry (NiftyServer
)-which clients use to look up the object-and a reference to the server object itself. We
could have called bind() instead, but rebind() is less prone to problems: if there's
already a NiftyServer registered, rebind() replaces it.

We wouldn't need the main() method or this Naming business if we weren't expecting
clients to use the registry to find the server. That is, we could omit main() and still use
this object as a remote object. We would be limited to passing the object in method
invocations or returning it from method invocations-but that could be part of a factory
registry, as we discussed before.

Now we need our client:

//file: MyClient.java
import java.rmi.*;
import java.util.*;

public class MyClient {

 public static void main(String [] args)
 throws RemoteException {
 new MyClient(args[0]);
 }

 public MyClient(String host) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 try {
 ServerRemote server = (ServerRemote)
 Naming.lookup("rmi://"+host+"/NiftyServer");
 System.out.println(server.getDate());
 System.out.println(
 server.execute(new MyCalculation(2)));
 } catch (java.io.IOException e) {
 // I/O Error or bad URL
 } catch (NotBoundException e) {
 // NiftyServer isn't registered
 }
 }
}

When we run MyClient , we pass it the hostname of the server on which the registry is
running. The main() method creates an instance of the MyClient object, passing the
hostname from the command line as an argument to the constructor.

The constructor for MyClient uses the hostname to construct a URL for the object. The
URL looks something like this: rmi://hostname/NiftyServer . (Remember, NiftyServer
is the name under which we registered our ServerRemote .) We pass the URL to the
static Naming.lookup() method. If all goes well, we get back a reference to a
ServerRemote (the remote interface). The registry has no idea what kind of object it
will return; lookup() therefore returns an Object , which we must cast to
ServerRemote .

Compile all the code. Then run rmic to make the stub and skeleton files for MyServer :

% rmic MyServer

Let's run the code. For the first pass, we assume you have all the class files, including the
stubs and skeletons generated by rmic , available in the classpath on both the client and
server machines. (You can run this example on a single host to test it if you want.) Make
sure your classpath is correct, start the registry, and then start the server:

% rmiregistry & (on Windows: start rmiregistry)
% java MyServer

In each case, make sure the registry application has the classpath including your server
classes so that it can load the stub class. (Be warned: we're going to tell you to do the
opposite later as part of setting up the dynamic class loading!)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Finally, on the client machine, run MyClient , passing the hostname of the server:

% java MyClient myhost

The client should print the date and the number 4, which the server graciously calculated.
Hooray! With just a few lines of code, you have created a powerful client/server
application.

12.4.2.1 Dynamic class loading

Before running the example, we told you to distribute all the class files to both the client
and server machines. However, RMI was designed to ship classes, in addition to data,
around the network; you shouldn't have to distribute all the classes in advance. Let's go a
step further and have RMI load classes for us, as needed. This involves several steps.

First, we need to tell RMI where to find any other classes it needs. We can use the system
property java.rmi.server.codebase to specify a URL on a web server (or FTP
server) when we run our client or server. This URL specifies the location of a JAR file or a
base directory where RMI begins its search for classes. When RMI sends a serialized
object (i.e., an object's data) to some client, it also sends this URL. If the recipient needs
the class file in addition to the data, it fetches the file at the specified URL. In addition to
stub classes, other classes referenced by remote objects in the application can be loaded
dynamically. Therefore, we don't have to distribute many class files to the client; we can let
the client download them as necessary. In Figure 12-3 , we see an example as MyClient
is going to the registry to get a reference to the ServerRemote object. Then
MyClient dynamically downloads the stub class for MyServer from a web server
running on the server object's host.

Figure 12-3. RMI applications and dynamic class loading

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We can now split our class files between the server and client machines. For example, we
could withhold the MyCalculation class from the server since it really belongs to the
client. Instead, we can make the MyCalculation class available via a web server on
some machine (probably our client's) and specify the URL when we run MyClient :

% java -Djava.rmi.server.codebase='http://myserver/foo/' ...

Note that the trailing slash in the codebase URL is important: it says that the location is a
base directory that contains the class files. In this case, we would expect that
MyCalculation would be accessible at the URL
http://myserver/foo/MyCalculation.class .

Next we have to set up security. Since we are loading class files over the network and
executing their methods, we must have a security manager in place to restrict the kinds of
things those classes may do, at least in the case where they are not coming from a trusted
code source. RMI will not load any classes dynamically unless a security manager is
installed. One easy way to meet this condition is to install the RMISecurityManager
as the system security manager for your application. It is an example security manager that
works with the default system policy and imposes some basic restrictions on what
downloaded classes can do. To install the RMISecurityManager , simply add the
following line to the beginning of the main() method of both the client and server
applications (yes, we'll be sending code both ways in the next section):

http://myserver/foo/MyCalculation.class
http://lib.ommolketab.ir
http://lib.ommolketab.ir

main() {
 System.setSecurityManager(new RMISecurityManager());
 ...

The RMISecurityManager works with the system security policy file to enforce
restrictions. So you have to provide a policy file that allows the client and server to do
basic operations like make network connections. Unfortunately allowing all the operations
needed to load classes dynamically requires listing a lot of permission information and we
don't want to get into that here. So we're going to resort to suggesting that for this example
you simply grant the code all permissions. Here is an example policy file-call it
mysecurity.policy :

grant {
 permission java.security.AllPermission ;
};

(It's exceedingly lame, not to mention risky, to install a security manager and then tell it to
enforce no real security, but we're more interested in looking at the networking code at the
moment.)

So, to run our MyServer application we would run a command like this:

% java -Djava.rmi.server.codebase='http://myserver/foo/'
 -Djava.security.policy=mysecurity.policy MyServer

Finally, there is one last magic incantation required to enable dynamic class loading. As of
the current implementation, the rmiregistry must be run without the classes that are
to be loaded being in its classpath. If the classes are in the classpath of rmiregistry , it
does not annotate the serialized objects with the URLs of their class files, and no classes
are dynamically loaded. This limitation is really annoying; all we can say is to heed the
warning for now.

If you meet these conditions, you should be able to get the client started with only the
MyClient class and the ServerRemote remote interface. All the other classes are
loaded dynamically from a remote location.

12.4.2.2 Passing remote object references

So far, we haven't done anything that we couldn't have done with the simple object
protocol. We used only one remote object, MyServer , and we got its reference from the
RMI registry. Now we extend our example to pass some remote references between the
client and server, allowing additional remote calls in both directions. We'll add two

http://lib.ommolketab.ir
http://lib.ommolketab.ir

methods to our remote ServerRemote interface:

public interface ServerRemote extends Remote {
 ...
 StringIterator getList() throws RemoteException;
 void asyncExecute(WorkRequest work, WorkListener listener)
 throws RemoteException;
}

getList() retrieves a new kind of object from the server: a StringIterator . The
StringIterator is a simple list of strings, with some methods for accessing the
strings in order. We make it a remote object, so that implementations of
StringIterator stay on the server.

Next we spice up our work request feature by adding an asyncExecute() method.
asyncExecute() lets us hand off a WorkRequest object as before, but it does the
calculation on its own time. The return type for asyncExecute() is void because it
doesn't actually return a value; we get the result later. Along with the request, our client
passes a reference to a WorkListener object that is to be notified when the
WorkRequest is done. We'll have our client implement WorkListener itself.

Because this is to be a remote object, our interface must extend Remote , and its methods
must throw RemoteException s:

//file: StringIterator.java
import java.rmi.*;

public interface StringIterator extends Remote {
 public boolean hasNext() throws RemoteException;
 public String next() throws RemoteException;
}

Next, we provide a simple implementation of StringIterator , called
MyStringIterator :

//file: MyStringIterator.java
import java.rmi.*;

public class MyStringIterator
 extends java.rmi.server.UnicastRemoteObject
 implements StringIterator {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 String [] list;
 int index = 0;

 public MyStringIterator(String [] list)
 throws RemoteException {
 this.list = list;
 }
 public boolean hasNext() throws RemoteException {
 return index < list.length;
 }
 public String next() throws RemoteException {
 return list[index++];
 }
}

MyStringIterator extends UnicastRemoteObject . Its methods are simple: it
can give you the next string in the list, and it can tell you if there are any strings you
haven't seen yet.

Next, we define the WorkListener remote interface. This is the interface that defines
how an object should listen for a completed WorkRequest . It has one method,
workCompleted() , which the server executing a WorkRequest calls when the job
is done:

//file: WorkListener.java
import java.rmi.*;

public interface WorkListener extends Remote {
 public void workCompleted(WorkRequest request, Object result)
 throws RemoteException;
}

Next, let's add the new features to MyServer . We need to add implementations of the
getList() and asyncExecute() methods, which we just added to the
ServerRemote interface:

public class MyServer extends java.rmi.server.UnicastRemoteObject
 implements ServerRemote {
 ...
 public StringIterator getList() throws RemoteException {
 return new MyStringIterator(

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 new String [] { "Foo", "Bar", "Gee" });
 }

 public void asyncExecute(
 WorkRequest request , WorkListener listener)
 throws java.rmi.RemoteException {

 // should really do this in another thread
 Object result = request.execute();
 listener.workCompleted(request, result);
 }
}

getList() just returns a StringIterator with some stuff in it.
asyncExecute() calls a WorkRequest 's execute() method and notifies the
listener when it's done.

Note that our implementation of asyncExecute() is a little cheesy. If we were
forming a more complex calculation we would want to start a thread to do the calculation
and return immediately from asyncExecute() , so the client won't block. The thread
would call workCompleted() at a later time, when the computation was done. In this
simple example, it would probably take longer to start the thread than to perform the
calculation.

We have to modify MyClient to implement the remote WorkListener interface.
This turns MyClient into a remote object, so we must make it a
UnicastRemoteObject . We also add the workCompleted() method the
WorkListener interface requires.

public class MyClient
 extends java.rmi.server.UnicastRemoteObject
 implements WorkListener {
 ...
 public void workCompleted(WorkRequest request, Object result)
 throws RemoteException {
 System.out.println("Async work result = " + result);
 }
}

Finally, we want MyClient to exercise the new features. Add these lines after the calls to
getDate() and execute() :

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// MyClient constructor
 ...
StringIterator se = server.getList();
while (se.hasNext())
 System.out.println(se.next());

server.asyncExecute(new MyCalculation(100), this);

We use getList() to get the iterator from the server, then loop, printing the strings. We
also call asyncExecute() to perform another calculation; this time, we square the
number 100. The second argument to asyncExecute() is the WorkListener to
notify when the data is ready; we pass a reference to ourselves (this).

Now all we have to do is compile everything and run rmic to make the stubs for all our
remote objects:

% rmic MyClient MyServer MyStringIterator

Restart the RMI registry and MyServer on your server, and run the client somewhere.
You should get the following:

Sun Mar 3 23:57:19 PDT 2002
4
Foo
Bar
Gee
Async work result = 10000

If you are experimenting with dynamic class loading, you should be able to have the client
download all the server's auxiliary classes (the stubs and the StringIterator) from a
web server. And, conversely, you should be able to have the MyServer download the
Client stub and WorkRequest related classes when it needs them.

We hope that this introduction has given you a feel for the tremendous power that RMI
offers through object serialization and dynamic class loading. Java is one of the first
programming languages to offer this kind of powerful framework for distributed
applications.

12.4.3 RMI Object Activation

One of the newer features of RMI is the ability to create remote objects that are persistent.
They can save their state for arbitrary periods of inactivity and be reactivated when a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

request from a client arrives. This is an important feature for large systems with remote
objects that must remain accessible across long periods of time. RMI activation effectively
allows a remote object to be stored away-in a database, for example-and automatically
reincarnated when it is needed. RMI activation is not particularly easy to use and would not
have benefited us in any of our simple examples; we won't delve into it here. Much of the
functionality of activatable objects can be achieved by using factories of shorter-lived
objects that know how to retrieve some state from a database (or other location). The
primary users of RMI activation may be systems such as Enterprise JavaBeans, which need
a generalized mechanism to save remotely accessible objects and revive them at later times.

12.4.4 RMI and CORBA

Java supports an important alternative to RMI, called CORBA (Common Object Request
Broker Architecture). We won't say much about CORBA here, but you should know that it
exists. CORBA is a distributed object standard developed by the Object Management
Group (OMG), of which Sun Microsystems is one of the founding members. Its major
advantage is that it works across languages: a Java program can use CORBA to talk to
objects written in other languages, like C or C++. This is may be a considerable advantage
if you want to build a Java frontend for an older program that you can't afford to
reimplement. CORBA also provides other services similar to those in the Java Enterprise
APIs. CORBA's major disadvantages are that it's complex, inelegant, and somewhat
arcane.

Sun and OMG have been making efforts to bridge RMI and CORBA. There is an
implementation of RMI that can use IIOP (the Internet Inter-Object Protocol) to allow
some RMI-to-CORBA interoperability. However, CORBA currently does not have many
of the semantics necessary to support true RMI-style distributed objects. So this solution is
somewhat limited at this writing.

12.5 Scaleable I/O with NIO

We'll now wrap up the discussion of the NIO package we began in Chapter 10 by talking
about nonblocking and selectable network communications. All our server examples in this
chapter have used a thread-bound pattern (one thread per I/O operation). In Java this is
very natural because of the ease with which we can create threads. It's also very efficient,
within limits. Problems arise when you try to build very large scale servers using this style
of client handling. While on a large machine it's certainly possible to have hundreds or
even thousands of threads (especially if they're mostly idle, waiting for I/O), this is a
resource-hungry solution. Every thread you start in Java consumes memory for its internal

http://lib.ommolketab.ir
http://lib.ommolketab.ir

stack, and the performance of managing this number of threads is highly system-
dependent.

An alternative approach is to take a lesson from the old, dark days before threading was
available and to use nonblocking I/O operations to manage a lot of communications from a
single thread. Better yet, our server will use a configurable pool of threads, taking
advantage of machines with many processors.

At the heart of this process is the concept of selectable I/O. It's not good enough to simply
have nonblocking I/O operations if you have no way to efficiently poll for work to be done.
The NIO package provides for efficient polling using selectable channels. A selectable
channel allows for the registration of a special kind of listener called a selector that can
check the readiness of the channel for operations such as reading and writing or accepting
or creating network connections.

The selector and the selection process are not typical Java listeners of the kind we'll see
elsewhere in this book, but instead rather slavishly follow the conventions of C language
systems. This is mainly for performance reasons; since this API is primarily intended for
high-volume servers it is bound very tightly to the traditional, underlying operating system
facilities with less regard for ease of use. This, combined with the other details of using the
NIO package, mean that this section is somewhat dense and the server we create here is
one of the longer and more complex examples in the book. Don't be discouraged if you are
a bit put off by this section. You can use the general techniques earlier in this chapter for
most applications and reserve this knowledge for creating services that handle very high
volumes of simultaneous client requests.

12.5.1 Selectable Channels

A selectable channel implements the SelectableChannel interface, which specifies
that the channel can be set to a nonblocking mode and that it provides support for the select
process that makes efficient polling possible. In Java 1.4, the primary selectable channels
are those for working with the network: SocketChannel ,
ServerSocketChannel , and DatagramChannel . The only other selectable
channel is the Pipe (which can be used in an analogous way for intra-VM
communication).

At the heart of the process is the Selector object, which knows about a particular set of
selectable channels and provides a select() method for determining their readiness for
I/O operations. Conceptually the process is simple; you register one or more channels with
a selector and then poll it, asking it to tell you which set of channels is ready to go. In
actuality, there are a few additional pieces involved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

First, the Selector does not work directly with channels but instead operates on
SelectionKey objects. A SelectionKey object is created implicitly when the
channel is registered with the Selector . It encapsulates the selectable channel as well
as information about what types of operations (e.g., read, write) we are interested in
waiting for. That information is held in the SelectionKey in a set of flags called the
interest set , which can be changed by the application at any time. SelectionKey s are
also used to return the results of a select operation. Each call to select() returns the
set of SelectionKey s that are ready for some type of I/O. Each key also has a set of
flags called the ready set that indicates which operation of interest is actually ready
(possibly more than one). For example, a SelectionKey interest set might indicate that
we want to know when its channel is ready for reading or writing. After a select operation,
if that key is in the set returned by the selector, we know that it is ready for one or more of
those operations, and we can check the key's ready set to see which.

Before we go on we should say that although we have been saying that channels are
registered with selectors, the API is (confusingly) the other way around. Selectors are
actually registered with the channels they manage, but it's better to mentally spackle over
this and think of them the other way around.

12.5.2 Using Select

A Selector object is created using the Selector.open() method (Selector
uses a factory pattern).

Selector selector = Selector.open();

To register one or more channels with the selector, set them to nonblocking mode:

SelectableChannel channelA = // ...
channelA.configureBlocking(false);

Now register the channels:

int interestOps = SelectionKey.OP_READ | SelectionKey.OP_WRITE;
SelectionKey key = channelA.register(selector, interestOps);

When we register the channel we have an opportunity to set the initial interest operations
(or "interest ops"). These are defined by constant fields in the SelectionKey class:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

OP_READ Ready to read

OP_WRITE Ready to write

OP_CONNECT Client socket connection ready

OP_ACCEPT Server socket connection ready

These fields are bit flags; you can OR them together as in the above example to express
interest in more than one type of operation.

The result of the register() method is a SelectionKey object. We can use the key
to change the interest ops at any time with the SelectionKey interestOps()
method or to deregister the channel from the Selector with the key's cancel()
method.

This same key is also returned as the result of selection operations when its channel is
ready. When the SelectionKey is returned, its ready set holds flags for the operations
that do not block if called. We can retrieve the value of the flags with the readySet()
method. There are also convenience methods to test for each operation in the ready set :
isReadable() , isWritable(), isConnectable() and
isAcceptable() .

Depending on how you structure your application, it may not be necessary to save the
SelectionKey at registration time. In our example, we let the Selector keep track
of the keys for us, simply using them when they are ready. In fact, we go even further and
put the SelectionKey to work by asking it to hold a reference for us! The
SelectionKey attach() method is a convenience that can attach an arbitrary object
to the key for use by our application. We'll show you how this can be useful in a bit.

Once one or more channels are registered with the Selector we can perform a select
operation using one of its select() methods.

int readyCount = selector.select();

Without arguments, the method blocks until at least one channel is ready for some
operation or until the Selector 's wakeup() method is called. Alternately you can use
the form of select() that takes a timeout (in milliseconds) to wait for a ready channel
before returning. There is also selectNow() , which always returns immediately. Each
of these returns the count of the number of ready channels.

You can use the blocking select() and wakeup() somewhat like wait() and
notify() . The wakeup is necessary because once a selection is started, it will not see
any changes to its key's interest ops until the next invocation. The Selector is also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

heavily synchronized; for example, calls to register new channels block until the select is
finished. So often it's much easier to simply use select with a short timeout and a loop,
like this:

while (selector.select(50) == 0);

Next we can get the set of ready channels from the Selector with the
selectedKeys() method and iterate through them, doing whatever our application
dictates:

Set readySet = selector.selectedKeys();
for(Iterator it = readySet.iterator(); it.hasNext();) {
 SelectionKey key = (SelectionKey)it.next();
 it.remove(); // remove the key from the ready set
 // use the key
}

The ready set is returned to us as a java.util.Set , which we walk through with an
Iterator (see Section 10.4 in Chapter 10). One important thing to note is that we've
used the Iterator 's remove() method to remove the key from the ready set. The
select() methods add keys only to the ready set or add flags to keys already in the set;
they never remove them. So we must clear the keys when we handle them. You can get the
full set of keys a Selector is managing with the keys() method, but you should not
attempt to remove keys from that set; use the cancel() method on individual keys
instead. Or you can close the entire Selector with its close() method, de-registering
all its keys.

12.5.3 LargerHttpd

Now let's put this information to use. In this section we create the big brother of
TinyHttpd (our minimalist web server) called LargerHttpd . The LargerHttpd
server is a nonblocking web server that uses SocketChannel s and a pool of threads to
service requests. In this example, a single thread executes a main loop that accepts new
connections and checks the readiness of existing client connections for reading or writing.
Whenever a client needs attention, it places the job in a queue where a thread from our
thread pool waits to service it. As we said, this example is a bit longer than we would like,
but is really the minimum necessary to show a realistic usage of the APIs. Here we go:

import java.io.*;
import java.util.*;
import java.net.*;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.nio.*;
import java.nio.channels.*;
import java.nio.charset.*;
import java.util.regex.*;

public class LargerHttpd {
 Selector clientSelector;
 ClientQueue readyClients = new ClientQueue();

 public void run(int port, int threads) throws IOException {
 clientSelector = Selector.open();
 ServerSocketChannel ssc = ServerSocketChannel.open();
 ssc.configureBlocking(false);
 InetSocketAddress sa =
 new InetSocketAddress(InetAddress.getLocalHost(), port);
 ssc.socket().bind(sa);
 ssc.register(clientSelector, SelectionKey.OP_ACCEPT);

 for(int i=0; i<threads; i++) // create thread pool
 new Thread() { public void run() {
 while (true) try { handleClient(); } catch (IOException e) { }
 } }.start();

 while (true) try { // main select loop
 while (clientSelector.select(50) == 0);
 Set readySet = clientSelector.selectedKeys();
 for(Iterator it = readySet.iterator(); it.hasNext();) {
 SelectionKey key = (SelectionKey)it.next();
 it.remove();
 if (key.isAcceptable())
 acceptClient(ssc);
 else {
 key.interestOps(0);
 readyClients.add(key);
 }
 }
 } catch (IOException e) { System.out.println(e); }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 void acceptClient(ServerSocketChannel ssc) throws IOException {
 SocketChannel clientSocket = ssc.accept();
 clientSocket.configureBlocking(false);
 SelectionKey key =
 clientSocket.register(clientSelector, SelectionKey.OP_READ);
 HttpdConnection client = new HttpdConnection(clientSocket);
 key.attach(client);
 }

 void handleClient() throws IOException {
 SelectionKey key = (SelectionKey)readyClients.next();
 HttpdConnection client = (HttpdConnection)key.attachment();
 if (key.isReadable())
 client.read(key);
 else
 client.write(key);
 }

 public static void main(String argv[]) throws IOException {
 new LargerHttpd().run(Integer.parseInt(argv[0]));
 }
}

class HttpdConnection {
 static Charset charset = Charset.forName("8859_1");
 static Pattern httpGetPattern = Pattern.compile("(?s)GET /?(\\S*).*");
 SocketChannel clientSocket;
 ByteBuffer buff = ByteBuffer.allocateDirect(64*1024);
 String request;
 String response;
 FileChannel file;
 int filePosition;

 HttpdConnection (SocketChannel clientSocket) {
 this.clientSocket = clientSocket;
 }

 void read(SelectionKey key) throws IOException {
 if (request == null && (clientSocket.read(buff) == -1

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 || buff.get(buff.position()-1) == '\n'))
 processRequest(key);
 else
 key.interestOps(SelectionKey.OP_READ);
 }

 void processRequest(SelectionKey key) {
 buff.flip();
 request = charset.decode(buff).toString();
 Matcher get = httpGetPattern.matcher(request);
 if (get.matches()) {
 request = get.group(1);
 if (request.endsWith("/") || request.equals(""))
 request = request + "index.html";
 //System.out.println("Request: "+request);
 try {
 file = new FileInputStream (request).getChannel();
 } catch (FileNotFoundException e) {
 response = "404 Object Not Found";
 }
 } else
 response = "400 Bad Request" ;

 if (response != null) {
 buff.clear();
 charset.newEncoder().encode(
 CharBuffer.wrap(response), buff, true);
 buff.flip();
 }
 key.interestOps(SelectionKey.OP_WRITE);
 }

 void write(SelectionKey key) throws IOException {
 if (response != null) {
 clientSocket.write(buff);
 if (buff.remaining() == 0)
 response = null;
 } else if (file != null) {
 int remaining = (int)file.size()-filePosition;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 int got = file.transferTo(filePosition, remaining, clientSocket);
 if (got == -1 || remaining <= 0) {
 file.close();
 file = null;
 } else
 filePosition += got;
 }
 if (response == null && file == null) {
 clientSocket.close();
 key.cancel();
 } else
 key.interestOps(SelectionKey.OP_WRITE);
 }
}

class ClientQueue extends ArrayList {
 synchronized void add(SelectionKey key) {
 super.add(key);
 notify();
 }
 synchronized SelectionKey next() {
 while (isEmpty())
 try { wait(); } catch (InterruptedException e) { }
 return (SelectionKey)remove(0);
 }
}

From a bird's eye view, the structure of LargerHttpd is the same as TinyHttpd .
There is the main class, LargerHttpd , which accepts connections, and a connection
class, HttpdConnection , which encapsulates a socket and handles the conversation
with the client. However this time, instead of each connection object being a Runnable
serviced in its own thread, its functionality is broken into two primary methods called
read() and write() . The job of our LargerHttpd is to accept new client socket
connections, wrap them in an instance of HttpdConnection , and then watch the
client's status with a Selector . Whenever we detect that a client is ready for some
operation, we place its key into a queue (for which we've created the class
ClientQueue). A set of threads waits in the queue, pulling out the keys and calling
read() or write() on the corresponding client, based on which operation is ready.

The HttpConnection object encapsulates the state of the conversation with the client.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Since its interface is rather coarse, it must keep track of whether it is waiting to read more
input, when it's time to generate a response, and when to write output. The
HttpdConnection also manages the interest set of its key, so that it can effectively
schedule itself to be woken up when it's ready for reading or for writing. The association
between the HttpdConnection and the key is made using the key's attach() and
attachment() methods. LargerHttpd 's acceptClient() method does
several things. First, it accepts the new socket connection. Next, it configures and registers
it with the selector with an initial interest set for reading. Finally it creates the
HttpdConnection object, wrapping the socket, and attaches that object to the key for
later retrieval.

The main loop of LargerHttpd is fairly straightforward. First we set up the
ServerSocketChannel . This is similar to setting up a plain ServerSocket ,
except that we must first create an InetSocketAddress object to hold the local
address and port combination of our server socket and then explicitly bind or socket to that
address with the ServerSocketChannel bind() method. We also configure the
server socket to nonblocking mode and register it with our main Selector , so that we
can select for client connections in the same loop that we use to select for client read and
write readiness.

In the main select loop, we check whether the key is ready for an accept operation
and if so we call acceptClient() ; if not we set the key's interest set to zero with the
interestOps() method and dispatch the key to our queue for work to be done. It's
important that we set the interest set to zero to clear it before the next loop; otherwise we'd
be in a race to see whether the thread pool performed its maximum work before we
detected another ready condition. Setting the interest ops to 0, and resetting it in the
HttpdConnection object, combined with synchronization in our ClientQueue
object, ensures that only one thread is handling a client at a time.

Prior to entering the main select loop, we start one or more threads, each entering the
handleClient() method, which blocks until a key is ready on the queue. (The queue
itself simply uses wait() and notify() to block until new keys arrive. See the
Producer/Consumer example in Section 8.3.3 in Chapter 8 .) For each ready key, we
retrieve the associated HttpdConnection object and call the appropriate service
method based on whether the key is ready for reading or writing. After that, it's up to the
connection object to do its job. Each call to the read() method simply does what would
be one iteration of a read loop in a thread-bound application. Each read gets as much data
as available and checks to see if we've reached the end of a line (a \n newline character).
Upon reaching the end of line we dispatch the call to the processRequest() method,
which turns the byte buffer into text and uses the same techniques as our TinyHttpd to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

parse the request into a file pathname. On each incomplete call to read(), we set the
interest ops of our key back to OP_READ . Upon completing the read and processing the
request, we switch to using OP_WRITE , because we are now ready for sending a
response.

The write() method keeps track of whether it's sending a text response (error message)
or a file, using the response and file instance variables. When sending a file, we use
the FileChannel 's transferTo() method to transfer bytes from the file directly to
the network socket, without copying them into Java's memory space. (This is indeed an
efficient little web server.) And that's about it. When we're done, we close the client socket
and cancel our key, which causes it to be removed from the Selector 's key set during
the next select operation (discarding our HttpdConnection object with it).

12.5.4 Nonblocking Client-Side Operations

Our example showed SocketChannel used for nonblocking, selectable I/O in a typical
server application. It's less common to need nonblocking I/O from a client, but there is
certainly no reason you can't do it. Perhaps you're writing a peer-to-peer (P2P) application
that manages many connections from both sides.

For the client side of communications, there is one additional tool provided: a nonblocking
socket-connect operation. The process of creating a TCP connection from the client side
involves contacting the remote host in a two-phase acknowledgement. This process
normally blocks until the connection is established. However the NIO package provides an
alternative that allows you to initiate the connection and then poll for its status. When set to
nonblocking mode, a call to a SocketChannel 's connect() method returns
immediately. The connection is then attempted (and possibly succeeds or fails) in the
background. Later, a Selector can be used, checking for the OP_CONNECT flag to see
when the socket is ready to "finish connecting." The connection is finished by invoking the
SocketChannel 's finishConnect() method, which either returns or throws an
IOException indicating the failure. The process of finishing the connection is really
more about collecting the results of the asynchronous connection-acknowledging its
success or failure-than about doing work.

[1] For a discussion of sockets in general, see Unix Network Programming by Richard
Stevens (Prentice-Hall). For a complete discussion of network programming in Java, see Java
Network Programming by Elliotte Rusty Harold (O'Reilly).

CONTENTS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

Chapter 13. Programming for the Web

 13.1 Uniform Resource Locators (URLs)

 13.2 The URL Class
 13.3 Handlers in Practice

When you think about the Web, you probably think of applications-web browsers, web
servers-and the many kinds of content that those applications move around the network.
But it's important to note that standards and protocols, not the applications themselves,
have enabled the Web's growth. Since the earliest days of the Internet, there have been
ways to move files from here to there, and document formats that were just as powerful as
HTML, but there was not a unifying model for how to identify, retrieve, and display
information nor was there a universal way for applications to interact with that data over
the network. Since the web explosion began, HTML has reigned supreme as a common
format for documents, and most developers have at least some familiarity with it. In this
chapter, we're going to talk a bit about its cousin, HTTP, the protocol that handles
communications between web clients and servers, and URLs, which provide a standard for
naming and addressing objects on the Web. Java provides a very simple API for working
with URLs to address objects on the Web. We'll discuss how to write web clients that can
interact with the servers using the HTTP GET and POST methods. In Chapter 14 , we'll
take a look at servlets, simple Java programs that run on web servers and implement the
other side of these conversations.

13.1 Uniform Resource Locators (URLs)

A URL points to an object on the Internet. [1] It's a text string that identifies an item, tells
you where to find it, and specifies a method for communicating with it or retrieving it from
its source. A URL can refer to any kind of information source. It might point to static data,
such as a file on a local filesystem, a web server, or an FTP archive; or it can point to a
more dynamic object such as a news article on a news spool or a record in a database.
URLs can even refer to less tangible resources such as Telnet sessions and mailing
addresses.

A URL is usually presented as a string of text, like an address. Since there are many
different ways to locate an item on the Net, and different mediums and transports require
different kinds of information, there are different formats for different kinds of URLs. The

http://lib.ommolketab.ir
http://lib.ommolketab.ir

most common form has three components: a network host or server, the name of the item,
its location on that host, and a protocol by which the host should communicate:

protocol://hostname/path/item-name

protocol (also called the "scheme") is an identifier such as http , ftp , or gopher ;
hostname is an Internet hostname; and the path and item components form a
unique path that identifies the object on that host. Variants of this form allow extra
information to be packed into the URL, specifying for example, port numbers for the
communications protocol and fragment identifiers that reference parts inside the object.

We sometimes speak of a URL that is relative to another URL, called a base URL . In that
case we are using the base URL as a starting point and supplying additional information.
For example, the base URL might point to a directory on a web server; a relative URL
might name a particular file in that directory.

13.2 The URL Class

Bringing this down to a more concrete level is the Java URL class. The URL class
represents a URL address and provides a simple API for accessing web resources, such as
documents and applications on servers. It uses an extensible set of protocol and content
handlers to perform the necessary communication and even data conversion. With the URL
class, an application can open a connection to a server on the network and retrieve content
with just a few lines of code. As new types of servers and new formats for content evolve,
additional URL handlers can be supplied to retrieve and interpret the data without
modifying your applications.

A URL is represented by an instance of the java.net.URL class. A URL object
manages all the component information within a URL string and provides methods for
retrieving the object it identifies. We can construct a URL object from a URL specification
string or from its component parts:

try {
 URL aDoc =
 new URL("http://foo.bar.com/documents/homepage.html");
 URL sameDoc =
 new URL("http","foo.bar.com","documents/homepage.html");
}
catch (MalformedURLException e) { }

These two URL objects point to the same network resource, the homepage.html document

http://lib.ommolketab.ir
http://lib.ommolketab.ir

on the server foo.bar.com . Whether the resource actually exists and is available isn't
known until we try to access it. When initially constructed, the URL object contains only
data about the object's location and how to access it. No connection to the server has been
made. We can examine the URL 's components with the getProtocol() ,
getHost() , and getFile() methods. We can also compare it to another URL with
the sameFile() method (which has an unfortunate name for something which may not
point to a file). sameFile() determines whether two URLs point to the same resource.
It can be fooled, but sameFile() does more than compare the URLs for equality; it
takes into account the possibility that one server may have several names, and other
factors. (It doesn't go as far as to fetch the resources and compare them, however.)

When a URL is created, its specification is parsed to identify just the protocol component.
If the protocol doesn't make sense, or if Java can't find a protocol handler for it, the URL
constructor throws a MalformedURLException . A protocol handler is a Java class
that implements the communications protocol for accessing the URL resource. For
example, given an http URL, Java prepares to use the HTTP protocol handler to retrieve
documents from the specified server.

13.2.1 Stream Data

The lowest level and most general way to get data back from a URL is to ask for an
InputStream from the URL by calling openStream() . Getting the data as a stream
may also be useful if you want to receive continuous updates from a dynamic information
source. The drawback is that you have to parse the contents of the byte stream yourself.
Not all types of URLs support the openStream() method because not all types of
URLs refer to concrete data; you'll get an UnknownServiceException if the URL
doesn't.

The following code prints the contents of an HTML file:

try {
 URL url = new URL("http://server/index.html");

 BufferedReader bin = new BufferedReader (
 new InputStreamReader(url.openStream()));

 String line;
 while ((line = bin.readLine()) != null)
 System.out.println(line);
} catch (Exception e) { }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We ask for an InputStream with openStream() and wrap it in a
BufferedReader to read the lines of text. Because we specify the http protocol in
the URL, we enlist the services of an HTTP protocol handler. As we'll discuss later, that
raises some questions about what kinds of handlers are available. This example partially
works around those issues because no content handler (only the protocol handler) is
involved; we read the data and interpret the content ourselves, by simply printing it.

One note about applets. In the applet environment, you typically have additional security
restrictions that limit the URLs to which you may communicate. To be sure that you can
access the specified URL and use the correct protocol handler, you should construct URL s
relative to the base URL that identifies the applet's codebase -the location of the applet
code. This insures that any data you load comes via the same protocol and from the same
server as your applet itself. For example:

new URL(getCodeBase(), "foo/bar.gif");

Alternately, if you are just trying to get data files or media associated with an applet, there
is a more general way; see the discussion of getResource() in Chapter 11 .

13.2.2 Getting the Content as an Object

As we said previously, reading content from a stream is the most general mechanism for
accessing data over the Web. openStream() leaves the parsing of data up to you. The
URL class supports a more sophisticated, pluggable, content-handling mechanism that
we'll discuss now, but be aware that this is not widely used because of lack of
standardization and limitations in how you can deploy new handlers. Consider this section
to be mainly for educational purposes.

When Java knows the type of content being retrieved from a URL, and a proper content
handler is available (installed), you can retrieve the item the URL addresses as a native Java
object by calling the URL 's getContent() method. In this mode of operation,
getContent() initiates a connection to the host, fetches the data for you, determines
the Multipurpose Internet Mail Extensions (MIME) type of the contents, and invokes a
content handler to turn the bytes into a Java object. (It acts just as if you had read a
serialized Java object, as in Chapter 12). MIME is the standard developed to facilitate
multimedia email, but it has become widely used as a general way to specify how to treat
data. Java uses MIME to help it pick the right content handler. This sounds good, but
generally requires that you supply the correct handlers with your application or install them
in the Java runtime environment. Unfortunately, there is not a standard way to do this. (The
HotJava web browser provides a mechanism for adding new handlers, but it is not a widely
deployed browser, so that doesn't help us much in practical terms.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For example, given the URL http://foo.bar.com/index.html , a call to getContent()
uses the HTTP protocol handler to retrieve data and an HTML content handler to turn the
data into an appropriate document object. A URL that points to a plain-text file might use a
text-content handler that returns a String object. Similarly, a GIF file might be turned
into an ImageProducer object using a GIF content handler. If we access the GIF file
using an FTP URL, Java uses the same content handler but uses the FTP protocol handler
to receive the data.

getContent() returns the output of the content handler but leaves us wondering what
kind of object we got. Since the content handler has to be able to return anything, the return
type of getContent() is Object . In a moment, we'll describe how we could ask the
protocol handler about the object's MIME type, which it discovered. Based on this, and
whatever other knowledge we have about the kind of object we are expecting, we can cast
the Object to its appropriate, more specific type. For example, if we expect a String ,
we'll cast the result of getContent() to a String :

try {
 String content = (String)myURL.getContent();
} catch (ClassCastException e) { ... }

Various kinds of errors can occur when trying to retrieve the data. For example,
getContent() can throw an IOException if there is a communications error. Other
kinds of errors can occur at the application level: some knowledge of how the application-
specific content and protocol handlers deal with errors is necessary. One problem that
could arise is that a content handler for the data's MIME type wouldn't be available. In this
case, getContent() invokes a special "unknown type" handler that returns the data as
a raw InputStream . A sophisticated application might interpret this behavior and try
to decide what to do with the data on its own.

In some situations, we may also need knowledge of the protocol handler. For example,
consider a URL that refers to a nonexistent file on an HTTP server. When requested, the
server returns the familiar "404 Not Found" message. To deal with protocol-specific
operations like this, we may need to talk to the protocol handler, which we'll discuss next.

The openStream() and getContent() methods both implicitly create the
connection to the remote URL object. When the connection is set up, the protocol handler
is consulted to create a URLConnection object. The URLConnection manages the
protocol-specific communications. We can get a URLConnection for our URL with the
openConnection() method. One of the things we can do with the
URLConnection is ask for the object's content type. For example:

http://foo.bar.com/index.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

URLConnection connection = myURL.openConnection();
String mimeType = connection.getContentType();
...
Object contents = myURL.getContents();

We can also get protocol-specific information. Different protocols provide different types
of URLConnection objects. The HttpURLConnection object, for instance, can
interpret the "404 Not Found" message and tell us about the problem. We'll talk more about
the HttpURLConnection later in this chapter.

13.3 Handlers in Practice

The content- and protocol-handler mechanisms we've described are very flexible; to handle
new types of URLs, you need only add the appropriate handler classes. One interesting
application of this would be Java-based web browsers that could handle new and
specialized kinds of URLs by downloading them over the Net. The idea for this was touted
since the earliest days of Java. Unfortunately, it has never come to fruition. There is no API
for dynamically downloading new content and protocol handlers. In fact, there is no
standard API for determining what content and protocol handlers exist on a given platform.
Although content and protocol handlers are part of the Java API and an intrinsic part of the
mechanism for working with URLs, specific content and protocol handlers aren't defined.
The standard Java classes don't, for example, include content handlers for HTML, GIF,
MPEG, or other common data types. Sun's SDK and all of the other Java environments do
come with these kinds of handlers, but these are installed on an application-level basis and
not documented.

There are two real issues here:

There isn't a standard that says that certain types of handlers have to be provided in
each environment along with the core Java API. Instead we have to rely on the
application to decide what kinds of data types it needs. This may make sense but is
frustrating when it should be reasonable to expect certain basic types to be handled in
all environments.

There isn't any standard that tells you what kind of object the content handler should
return. Maybe GIF data should be returned as an ImageProducer object, but at
the moment, that's an application-level decision. If you're writing your own
application and your own content handlers, that isn't an issue: you can make any
decision you want. (In practical terms, few developers take this approach.) But if
you're writing content handlers that are to be used by arbitrary applications you need

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to know what they expect.

The HotJava web browser supports the content and protocol handler mechanism, and you
can install handlers locally (as for all Java applications), but other web browsers such as
Netscape and Internet Explorer do not directly support handlers at all. You can install them
for use in your own (perhaps intranet-based) applets but you cannot use them to extend the
capabilities of the browser. Netscape and Internet Explorer are currently classic monolithic
applications: knowledge about certain kinds of objects, like HTML and GIF files, is built
in. These browsers can be extended via a plug-in mechanism, which is a much less fine-
grained and powerful approach than Java's handler mechanism. If you're writing applets for
use in Netscape or Internet Explorer now, about all you can do is use the
openStream() method to get a raw input stream from which to read data.

13.3.1 Other Handler Frameworks

The idea of dynamically downloadable handlers could also be applied to other kinds of
handler-like components. For example, the Java XML community is fond of referring to
XML as a way to apply semantics to documents and to Java as a portable way to supply the
behavior that goes along with those semantics. It's possible that an XML viewer could be
built with downloadable handlers for displaying XML tags.

The JavaBeans APIs also touch upon this subject with the Java Activation Framework. The
JAF provides a way to detect the type of a stream of data and "encapsulate access to it" in a
JavaBean. If this sounds suspiciously like the content handler's job, it is. Unfortunately, it
looks like these APIs will not be merged and, outside of the Java Mail API, the JAF has not
been widely used.

13.3.2 Writing Content and Protocol Handlers

Although content and protocol handlers are used fairly extensively in Java, they have not
been leveraged very much by developers for their own applications. We discussed some of
the reasons for this earlier. But, if you're adventurous and want to try leveraging content
and protocol handlers in your own applications, you can find all the information you'll need
in Appendix A , which covers creating and installing your own handlers.

13.3.3 Talking to Web Applications

Web browsers are the universal clients for web applications. They retrieve documents for
display and serve as a user interface, primarily through the use of HTML forms and links.
In the remainder of this chapter, we will show how to write client-side Java code that uses

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HTTP through the URL class to work with web applications directly. There are many
reasons an application (or applet) might want to communicate in this way. For example,
compatibility with another browser-based application might be important, or you might
need to gain access to a server through a firewall where direct socket connections (and
hence RMI) are not available. HTTP has become the lingua franca of the Net and despite
its limitations (or more likely because of its simplicity), it has rapidly become one of the
most widely supported protocols in the world. As for using Java on the client side, all the
other reasons you would write a client GUI application (as opposed to a pure Web/HTML-
based application) also present themselves. A client-side GUI can do sophisticated
presentation and validation while, with the techniques presented here, still use web-enabled
services over the network.

The primary task we discuss here is sending data to the server, specifically HTML form-
encoded data. In a web browser, the name/value pairs of HTML form fields are encoded in
a special format and sent to the server using one of two methods. The first method, using
the HTTP command GET , encodes the user's input into the URL and requests the
corresponding document. The server recognizes that the first part of the URL refers to a
program and invokes it, passing along the information encoded in the URL as a parameter.
The second method uses the HTTP command POST to ask the server to accept the encoded
data and pass it to a web application as a stream. In Java, we can create a URL that refers to
a server-side program and send it data using either the GET or POST methods. (In Chapter
14 we'll see how to build web applications that implement the other side of this
conversation.)

13.3.4 Using the GET Method

Using the GET method of encoding data in a URL is pretty easy. All we have to do is
create a URL pointing to a server program and use a simple convention to tack on the
encoded name/value pairs that make up our data. For example, the following code snippet
opens a URL to a CGI program called login.cgi on the server myhost and passes it two
name/value pairs. It then prints whatever text the CGI sends back:

URL url = new URL(
 // this string should be URL-encoded as well
 "http://myhost/cgi-bin/login.cgi?Name=Pat&Password=foobar");

BufferedReader bin = new BufferedReader (
 new InputStreamReader(url.openStream()));

String line;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

while ((line = bin.readLine()) != null)
 System.out.println(line);

To form the new URL, we start with the URL of login.cgi ; we add a question mark (?),
which marks the beginning of the form data, followed by the first name/value pair. We can
add as many pairs as we want, separated by ampersand (&) characters. The rest of our code
simply opens the stream and reads back the response from the server. Remember that
creating a URL doesn't actually open the connection. In this case, the URL connection was
made implicitly when we called openStream() . Although we are assuming here that
our server sends back text, it could send anything. (In theory of course we could use the
getContentType() method of the URL to check the MIME type of any returned data
and try to retrieve the data as an object using getContent() as well).

It's important to point out that we have skipped a step here. This example works because
our name/value pairs happen to be simple text. If any "non-printable" or special characters
(including ? or &) are in the pairs, they have to be encoded first. The
java.net.URLEncoder class provides a utility for encoding the data. We'll show
how to use it in the next example.

Another important thing to note is that although this example sends a password field, you
should never do so using this simplistic approach. All of the data we're sending goes in
clear text across the network (it is not encrypted). And in this case, the password field
would appear anywhere the URL is printed as well (e.g., server logs and bookmarks). We'll
talk about secure web communications later in this chapter and when we discuss writing
web applications using servlets in Chapter 14 .

13.3.5 Using the POST Method

Next we'll create a small application that acts like an HTML form. It gathers data from two
text fields-name and password -and posts the data to a specified URL using the
HTTP POST method. Here we are writing a Swing-based client application that works with
a server-side web-based application, just like a web browser.

Here's the code:

//file: Post.java
import java.net.*;
import java.io.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public class Post extends JPanel implements ActionListener {
 JTextField nameField, passwordField;
 String postURL;

 GridBagConstraints constraints = new GridBagConstraints();
 void addGB(Component component, int x, int y) {
 constraints.gridx = x; constraints.gridy = y;
 add (component, constraints);
 }

 public Post(String postURL) {
 this.postURL = postURL;
 JButton postButton = new JButton("Post");
 postButton.addActionListener(this);
 setLayout(new GridBagLayout());
 addGB(new JLabel("Name:"), 0,0);
 addGB(nameField = new JTextField(20), 1,0);
 addGB(new JLabel("Password:"), 0,1);
 addGB(passwordField = new JPasswordField(20),1,1);
 constraints.gridwidth = 2;
 addGB(postButton, 0,2);
 }

 public void actionPerformed(ActionEvent e) {
 postData();
 }

 protected void postData() {
 StringBuffer sb = new StringBuffer();
 sb.append(URLEncoder.encode("Name") + "=");
 sb.append(URLEncoder.encode(nameField.getText()));
 sb.append("&" + URLEncoder.encode("Password") + "=");
 sb.append(URLEncoder.encode(passwordField.getText()));
 String formData = sb.toString();

 try {
 URL url = new URL(postURL);
 HttpURLConnection urlcon =

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 (HttpURLConnection) url.openConnection();
 urlcon.setRequestMethod("POST");
 urlcon.setRequestProperty("Content-type",
 "application/x-www-form-urlencoded");
 urlcon.setDoOutput(true);
 urlcon.setDoInput(true);
 PrintWriter pout = new PrintWriter(new OutputStreamWriter(
 urlcon.getOutputStream(), "8859_1"), true);
 pout.print(formData);
 pout.flush();

 // read results...
 if (urlcon.getResponseCode() != HttpURLConnection.HTTP_OK)
 System.out.println("Posted ok!");
 else {
 System.out.println("Bad post...");
 return;
 }
 //InputStream in = urlcon.getInputStream();
 // ...

 } catch (MalformedURLException e) {
 System.out.println(e); // bad postURL
 } catch (IOException e2) {
 System.out.println(e2); // I/O error
 }
 }

 public static void main(String [] args) {
 JFrame frame = new JFrame("SimplePost");
 frame.getContentPane().add(new Post(args[0]), "Center");
 frame.pack();
 frame.setVisible(true);
 }
}

When you run this application, you must specify the URL of the server program on the
command line. For example:

% java Post http://www.myserver.example/cgi-bin/login.cgi

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The beginning of the application creates the form; there's nothing here that won't be
obvious after you've read Chapter 15 through Chapter 17 . All the magic happens in the
protected postData() method. First we create a StringBuffer and load it with
name/value pairs, separated by ampersands. (We don't need the initial question mark when
we're using the POST method because we're not appending to a URL string.) Each pair is
first encoded using the static URLEncoder.encode() method. We run the name fields
through the encoder as well as the value fields, even though we know that they contain no
special characters.

Next we set up the connection to the server program. In our previous example, we didn't
have to do anything special to send the data because the request was made by the web
browser for us. Here, we have to carry some of the weight of talking to the remote web
server. Fortunately, the HttpURLConnection object does most of the work for us; we
just have to tell it that we want to do a POST to the URL and the type of data we are
sending. We ask for the URLConnection object using the URL's
openConnection() method. We know that we are using the HTTP protocol, so we
should be able to cast it safely to an HttpURLConnection type, which has the support
we need.

Next we use setRequestMethod() to tell the connection we want to do a POST
operation. We also use setRequestProperty() to set the "Content-Type" field of
our HTTP request to the appropriate type-in this case, the proper MIME type for encoded
form data. (This is necessary to tell the server what kind of data we're sending.) Finally, we
use the setDoOutput() and setDoInput() methods to tell the connection that we
want to both send and receive stream data. The URL connection infers from this
combination that we are going to do a POST operation and expects a response. Next we get
an output stream from the connection with getOutputStream() and create a
PrintWriter so we can easily write our encoded data.

After we post the data, our application calls getResponseCode() to see whether the
HTTP response code from the server indicates the POST was successful. Other response
codes (defined as constants in HttpURLConnection) indicate various failures. At the
end of our example, we indicate where we could have read back the text of the response.
For this application, we'll assume that simply knowing the post was successful is sufficient.

Although form-encoded data (as indicated by the MIME type we specified for the
Content-Type field) is the most common, other types of communications are possible.
We could have used the input and output streams to exchange arbitrary data types with the
server program. The POST operation accepts nonform data as well; the server application
simply has to know how to handle it. One final note: if you are writing an application that
needs to decode form data, you can use the java.net.URLDecoder to undo the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

operation of the URLEncoder . If you use the Servlet API, this happens automatically, as
you'll see in Chapter 14 .

13.3.6 The HttpURLConnection

Other information from the request is available from the HttpURLConnection as
well. We could use getContentType() and getContentEncoding() to
determine the MIME type and encoding of the response. We could also interrogate the
HTTP response headers using getHeaderField() . (HTTP response headers are
metadata name/value pairs carried with the response.) There are also convenience methods
to fetch integer- and date-formatted header fields: getHeaderFieldInt() and
getHeaderFieldDate() , which return an int and a long type, respectively. The
content length and last modification date are also provided through
getContentLength() and getLastModified() .

13.3.7 SSL and Secure Web Communications

The previous examples sent a field called Password to the server. However, standard
HTTP doesn't provide encryption to hide our data. Fortunately, adding security for GET
and POST operations like this is easy (trivial in fact, for the developer). Where available
you simply have to use a secure form of the HTTP protocol-HTTPS:

https://www.myserver.example/cgi-bin/login.cgi

HTTPS is a version of the standard HTTP protocol run over SSL (Secure Sockets Layer),
which uses public-key encryption techniques to encrypt the data sent. Most web browsers
and servers currently come with built-in support for HTTPS (or raw SSL sockets).
Therefore, if your web server supports HTTPS, you can use a browser to send and receive
secure data simply by specifying the https protocol in your URLs. There is a lot more to
know in general about SSL and related aspects of security such as authenticating whom
you are actually talking to. But as far as basic data encryption goes, this is all you have to
do. It is not something your code has to deal with directly. As of Java 1.4, the standard
distribution from Sun is shipped with SSL and HTTPS support. Applets written using the
Java Plug-in also have access to the HTTPS protocol handler. We'll discuss writing secure
web applications in more detail in Chapter 14 .

13.3.8 URLs, URNs, and URIs

Earlier we talked about URLs and distinguished them from the concept of URNs or
Uniform Resource Names. Whereas a URL points to a specific location on the Net and

https://www.myserver.example/cgi-bin/login.cgi
http://lib.ommolketab.ir
http://lib.ommolketab.ir

specifies a protocol or scheme for accessing its contents, a URN is simply a globally
unique name. A URL is analogous to giving someone your phone number. But a URN is
more like giving them your social security number. Your phone number may change, but
your social security number uniquely identifies you forever.

While it's possible that some mechanism might be able to look at a given URN and resolve
it to a location (a URL), it is not necessarily so. URNs are intended only to be permanent,
unique, abstract identifiers for an item whereas a URL is a mechanism you can use to get in
touch with a resource right now. You can use a phone number to contact me today, but you
can use my social security number to uniquely identify me anytime.

An example of a URN is http://www.w3.org/1999/XSL/Transform , which is the identifier
for a version of the Extensible Stylesheet Language, standardized by the W3C. Now, it
happens that this is also a URL (you can go to that address and find information about the
standard), but that is for convenience only. This URNs primary mission is to uniquely label
the version of the programming language in a way that never changes.

Collectively, URLs and URNs are called Uniform Resource Identifiers or URIs. A URI is
simply a URL or URN. So, we can talk about URLs and URNs as kinds of URIs. The
reason for this abstraction is that URLs and URNs, by definition, have some things in
common. All URIs are supposed to be human-readable and "transcribable" (it should be
possible to write them on the back of a napkin). They always have a hierarchical structure,
and they are always unique. Both URLs and URNs also share some common syntax, which
is described by the URI RFC-2396.

Java 1.4 introduced the java.net.URI class to formalize these distinctions. Prior to
that, there was only the URL class in Java. The difference between the URI and URL
classes is that the URI class does not try to parse the contents of the identifier and apply
any "meaning." The URL class immediately attempts to parse the scheme portion of the
URL and locate a protocol handler, whereas the URI class doesn't interpret its content. It
serves only to allow us to work with the identifier as structured text, according to the
general rules of URI syntax. With the URI class, you can construct the string, resolve
relative paths, and perform equality or comparison operations, but no hostname or protocol
resolution is done.

[1] The term URL was coined by the Uniform Resource Identifier (URI) working group of the
IETF to distinguish URLs from the more general notion of Uniform Resource Names or URNs
(see RFC-2396). Look for Section 13.3.8 later in this chapter.

CONTENTS

http://www.w3.org/1999/XSL/Transform
http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

Chapter 14. Servlets and Web Applications

 14.1 Servlets: Powerful Tools

 14.2 Web Applications
 14.3 The Servlet Life Cycle

 14.4 Web Servlets

 14.5 The HelloClient Servlet

 14.6 The Servlet Response

 14.7 Servlet Parameters
 14.8 The ShowParameters Servlet

 14.9 User Session Management
 14.10 The ServletContext API

 14.11 WAR Files and Deployment

 14.12 Reloading WebApps
 14.13 Error and Index Pages

 14.14 Security and Authentication
 14.15 Servlet Filters

 14.16 Building WAR Files with Ant

Now we're going to take a leap from the client side to the server side to learn how to write
Java applications for web servers. The Java Servlet API is a framework for writing servlets
, application components for web services, just as applets are application components for a
web browser. The Servlet API provides a simple yet powerful architecture for web-based
applications. The Servlet API lives in the javax.servlet package, a standard Java
API extension, so technically it isn't part of the core Java APIs. In this book, we haven't
talked about many standard extension packages, but this one is particularly important. This
chapter covers the Java Servlet API 2.3.

Most web servers support the Servlet API either directly or indirectly through add-on
modules. Servers that support the full set of Java Enterprise APIs (including servlets, JSPs,
and Enterprise JavaBeans) are called application servers . JBoss is a free, open source Java
application server available from http://www.jboss.org , and BEA's WebLogic is a popular
commercial application server. Components that handle just the servlets are more precisely
called servlet containers or servlet runners .

We try to avoid talking about details of particular servlet environments, but we will use the
Apache Project's Tomcat server for the examples in this book. Tomcat is a popular, free
servlet engine that can be used by itself or in conjunction with popular web servers. It is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

easy to configure and is a pure Java application, so you can use it on any platform that has
a Java VM. You can download it from http://jakarta.apache.org/tomcat/ . Tomcat has been
adopted by Sun as part of the J2EE reference implementation, so it always has an up-to-
date implementation of the specifications available in both source and binary form. The
Servlet APIs and Java documentation can be downloaded directly from
http://java.sun.com/products/servlet/ . You might consider taking a look at the Java servlet
specification white paper, also available at that location. It is unusually readable for a
reference document.

14.1 Servlets: Powerful Tools

Many different ways of writing server-side software for web applications have evolved
over the years. Early on, the standard was CGI, usually in combination with a scripting
language such as Perl. Various web servers also offered native-language APIs for
pluggable software modules. Java, however-and in particular the Java Servlet API-is
rapidly becoming the most popular architecture for building web-based applications. Java
servlet containers (engines) are available for virtually every web server.

So, why has Java become so popular on the server side? Servlets let you write web
applications in Java and derive all the benefits of Java and the virtual machine environment
(along with the same limitations, of course). Java is generally faster than scripting
languages, especially in a server-side environment where long-running applications can be
highly optimized by the virtual machine. Servlets have an additional speed advantage over
traditional CGI programs, because servlets execute in a multithreaded way within one
instance of a virtual machine. Older CGI applications required the server to start a separate
process, pipe data to it, and receive the response as a stream. The unique runtime safety of
Java also beats most native APIs in a production web-server environment, where it would
be very bad to have an errant transaction bring down the server.

So, speed and safety are factors, but perhaps the most important reason for using Java is
that it makes writing large and complex applications much more manageable. Java servlets
may not be as easy to write as scripts, but they are easier to update with new features, and
servlets are far better at scaling for complex, high-volume applications. From servlet code,
you can access all the standard Java APIs within the virtual machine while your servlets are
handling requests. This means that your Java servlet code can work well in a multitiered
architecture, accessing "live" database connections with JDBC or communicating with
other network services that have already been established. This kind of behavior has been
hacked into CGI environments, but for Java, it is both robust and natural.

Before we move on, we should also mention servlets' relationships to two other

http://java.sun.com/products/servlet/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

technologies: Java Server Pages (JSPs) and XML/XSL. JSPs are another way to write
server-side applications. They consist primarily of HTML content with Java-like syntax
embedded within the documents. JSPs are compiled dynamically by the web server into
Java servlets and can work with Java APIs directly and indirectly to generate dynamic
content for the pages. XML is a powerful set of standards for working with structured
information in text form. The Extensible Stylesheet Language (XSL) is a language for
transforming XML documents into other kinds of documents, including HTML. The
combination of servlets that can generate XML content and XSL stylesheets that can
transform content for presentation is a very exciting direction, covered in detail in Chapter
23 .

14.2 Web Applications

So far we've used the term " web application" generically. Now we are going to have to be
more precise with that term. In the context of the Java Servlet API, a web application is a
collection of servlets, supporting Java classes, and content such as HTML or JSP pages and
images. For deployment (installation into a web server), a web application is bundled into a
Web Application Resources (WAR) file. We'll discuss WAR files in detail later, but suffice
it to say that they are essentially JAR archives containing the application files along with
some deployment information. The important thing is that the standardization of WAR files
means not only that the Java code is portable, but also that the process of deploying all the
application's parts is standardized.

At the heart of the WAR archive is the web.xml file. This file describes which servlets and
JSPs are to be run, their names and URL paths, their initialization parameters and a host of
other information, including security and authentication requirements.

Web applications, or WebApps, also have a very well-defined runtime environment. Each
WebApp has its own "root" path on the web server, meaning that all the URLs addressing
its servlets and files start with a common unique prefix (e.g.,
www.oreilly.com/someapplication/). The WebApp's servlets are also isolated from those of
other web applications. WebApps cannot directly access each other's files (although they
may be allowed to do so through the web server, of course). Each WebApp also has its
own servlet context. We'll discuss the servlet context in more detail, but in brief, it is a
common area for servlets to share information and get resources from the environment.
The high degree of isolation between web applications is intended to support the dynamic
deployment and updating of applications required by modern business systems.

14.3 The Servlet Life Cycle

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Let's jump ahead now to the Servlet API itself so that we can get started building servlets
right away. We'll fill in the gaps later when we discuss various parts of the APIs and WAR
file structure in more detail. The Servlet API is very simple, almost exactly paralleling the
Applet API. There are three life-cycle methods-init() , service() , and
destroy() -along with some methods for getting configuration parameters and servlet
resources. Before a servlet is used the first time, it's initialized by the server through its
init() method. Thereafter the servlet spends its time handling service() requests
and doing its job until (presumably) the server is shut down, and the servlet's destroy()
method is called, giving it an opportunity to clean up.

Generally only one instance of each deployed servlet class is instantiated per server. To be
more precise, it is one instance per entry in the web.xml file, but we'll talk more about
servlet deployment later. And there is an exception to that rule when using the special
SingleThreadModel , described below.

The service() method of a servlet accepts two parameters: a servlet "request" object
and a servlet "response" object. These provide tools for reading the client request and
generating output; we'll talk about them in detail in the examples.

By default, servlets are expected to handle multithreaded requests; that is, the servlet's
service methods may be invoked by many threads at the same time. This means that you
cannot store client-related data in instance variables of your servlet object. (Of course, you
can store general data related to the servlet's operation, as long as it does not change on a
per-request basis.) Per-client state information can be stored in a client session object (such
as a cookie), which persists across client requests. We'll talk about that later as well.

If for some reason you have developed a servlet that cannot support multithreaded access,
you can indicate this to the servlet container by implementing the flag interface
SingleThreadModel . This interface has no methods, serving only to indicate that the
servlet should be invoked in a single-threaded manner. When implementing the
SingleThreadModel, the container may create more than one instance of your
servlet per VM in order to pool requests.

14.4 Web Servlets

There are actually two packages of interest in the Servlet API. The first is the
javax.servlet package, which contains the most general Servlet APIs. The second
important package is javax.servlet.http , which contains APIs specific to servlets
that handle HTTP requests for web servers. In the rest of this section, we are going to
discuss servlets pretty much as if all servlets were HTTP-related. You can write servlets for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

other protocols, but that's not what we're currently interested in.

The primary tool provided by the javax.servlet.http package is the
HttpServlet base class. This is an abstract servlet that provides some basic
implementation related to handling an HTTP request. In particular, it overrides the generic
servlet service() request and breaks it out into several HTTP-related methods,
including doGet() , doPost() , doPut() , and doDelete() . The default
service() method examines the request to determine what kind it is and dispatches it to
one of these methods, so you can override one or more of them to implement the specific
web server behavior you need.

doGet() and doPost() correspond to the standard HTTP GET and POST operations.
GET is the standard request for retrieving a file or document at a specified URL. POST is
the method by which a client sends an arbitrary amount of data to the server. HTML forms
are the most common use for POST .

To round these out, HttpServlet provides the doPut() and doDelete()
methods. These methods correspond to a poorly supported part of the HTTP protocol,
meant to provide a way to upload and remove files. doPut() is supposed to be like
POST but with different semantics; doDelete() would be its opposite. These aren't
widely used.

HttpServlet also implements three other HTTP-related methods for you: doHead()
, doTrace() , and doOptions() . You don't normally need to override these
methods. doHead() implements the HTTP HEAD request, which asks for the headers of
a GET request without the body. HttpServlet implements this by default by
performing the GET method and then sending only the headers. You may wish to override
doHead() with a more efficient implementation if you can provide one as an
optimization. doTrace() and doOptions() implement other features of HTTP that
allow for debugging and simple client/server capabilities negotiation. You generally
shouldn't need to override these.

Along with HttpServlet , javax.servlet.http also includes subclasses of the
ServletRequest and ServletResponse objects, HttpServletRequest
and HttpServletResponse . These subclasses provide, respectively, the input and
output streams needed to read and write client data. They also provide the APIs for getting
or setting HTTP header information and, as we'll see, client session information. Rather
than document these dryly, we'll show them in the context of some examples. As usual,
we'll start with the simplest possible example.

14.5 The HelloClient Servlet

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Here's our servlet version of "Hello World"- HelloClient :

//file: HelloClient.java
import java.io.*;
import javax.servlet.ServletException;
import javax.servlet.http.*;

public class HelloClient extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

 // must come first
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 out.println(
 "<html><head><title>Hello Client</title></head><body>"
 + "<h1> Hello Client </h1>"
 + "</body></html>");
 out.close();
 }
}

If you want to try out this servlet right away, skip ahead to the sections Section 14.11 and
Section 14.11.3 , where we walk through the process of running this servlet. It's simply a
matter of packaging up the servlet class file along with a simple web.xml file that describes
it and placing it on your server. But for now we're going to discuss just the servlet example
code itself.

Let's have a look at the example. HelloClient extends the base HttpServlet class
and overrides the doGet() method to handle simple requests. In this case, we want to
respond to any GET request by sending back a one-line HTML document that says "Hello
Client." First we tell the container what kind of response we are going to generate, using
the setContentType() method of the HttpServletResponse object. Then we
get the output stream using the getWriter() method and print the message to it.
Finally, we close the stream to indicate we're done generating output. (It shouldn't strictly
be necessary to close the output stream, but we show it for completeness.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.5.1 Servlet Exceptions

The doGet() method of our example servlet declares that it can throw a
ServletException . All of the service methods of the Servlet API may throw a
ServletException to indicate that a request has failed. A ServletException
can be constructed with a string message and an optional Throwable parameter that can
carry any corresponding exception representing the root cause of the problem:

throw new ServletException("utter failure", someException);

By default, the web server determines exactly what is shown to the user when a
ServletException is thrown, but often the exception and its stack trace are
displayed. Through the web.xml file, you can designate custom error pages; see Section
14.13 later in this chapter for details.

Alternatively, a servlet may throw an UnavailableException , a subclass of
ServletException , to indicate that it cannot handle requests. This exception can be
constructed to indicate that the condition is permanent or that it should last for a specified
period of seconds.

14.5.2 Content Type

Before fetching the output stream and writing to it, we must specify the kind of output we
are sending by calling the response parameter's setContentType() method. In
this case, we set the content type to text/html , which is the proper MIME type for an
HTML document. In general, though, it's possible for a servlet to generate any kind of data,
including sound, video, or some other kind of text. If we were writing a generic
FileServlet to serve files like a regular web server, we might inspect the filename
extension and determine the MIME type from that or from direct inspection of the data. For
writing binary data, you can use the getOutputStream() method to get an
OutputStream as opposed to a Writer .

The content type is used in the Content-Type: header of the server's HTTP response,
which tells the client what to expect even before it starts reading the result. This allows
your web browser to prompt you with the "Save File" dialog when you click on a ZIP
archive or executable program. When the content-type string is used in its full form to
specify the character encoding (for example, text/html; charset=ISO-8859-1
), the information is also used by the servlet engine to set the character encoding of the
PrintWriter output stream. As a result, you should always call the
setContentType() method before fetching the writer with the getWriter()
method.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.6 The Servlet Response

In addition to providing the output stream for writing content to the client, the
HttpServletResponse object provides methods for controlling other aspects of the
HTTP response, including headers, error result codes, redirects, and servlet container
buffering.

HTTP headers are metadata name/value pairs sent with the response. You can add headers
(standard or custom) to the response with the setHeader() and addHeader()
methods (headers may have multiple values). There are also convenience methods for
setting headers with integer and date values:

response.setIntHeader("MagicNumber", 42);
response.setDateHeader("CurrentTime", System.currentTimeMillis());

When you write data to the client, the servlet container automatically sets the HTTP
response code to a value of 200, which means OK. Using the sendError() method,
you can generate other HTTP response codes. HttpServletResponse contains
predefined constants for all of the standard codes. Here are a few common ones:

HttpServletResponse.SC_OK
HttpServletResponse.SC_BAD_REQUEST
HttpServletResponse.SC_FORBIDDEN
HttpServletResponse.SC_NOT_FOUND
HttpServletResponse.SC_INTERNAL_SERVER_ERROR
HttpServletResponse.SC_NOT_IMPLEMENTED
HttpServletResponse.SC_SERVICE_UNAVAILABLE

When you generate an error with sendError() , the response is over, and you can't
write any content to the client. You can specify a short error message, however, which may
be shown to the client. (See Section 14.15.1 , for an example.)

An HTTP redirect is a special kind of response that tells the client web browser to go to a
different URL. Normally this happens quickly and without any interaction from the user.
You can send a redirect with the sendRedirect() method:

response.sendRedirect(http://www.oreilly.com/);

We should say a few words about buffering. Most responses are buffered internally by the
servlet container until the servlet service method has exited. This allows the container to set
the HTTP content-length header automatically, telling the client how much data to expect.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can control the size of this buffer with the setBufferSize() method, specifying
a size in bytes. You can even clear it and start over if no data has been written to the client.
To clear the buffer, use isCommitted() to test whether any data has been set, then use
resetBuffer() to dump the data if none has been sent. If you are sending a lot of
data, you may wish to set the content length explicitly with the setContentLength()
method.

14.7 Servlet Parameters

Our first example shows how to accept a basic request. A more sophisticated servlet might
do arbitrary processing or handle database queries, for example. Of course, to do anything
really useful we'll need to get some information from the user. Fortunately, the servlet
engine handles this for us, interpreting both GET - and POST -encoded form data from the
client and providing it to us through the simple getParameter() method of the servlet
request.

14.7.1 GET, POST, and the "Extra Path"

There are essentially two ways to pass information from your web browser to a servlet or
CGI program. The most general is to "post" it, which means that your client encodes the
information and sends it as a stream to the program, which decodes it. Posting can be used
to upload large amounts of form data or other data, including files. The other way to pass
information is to somehow encode the information in the URL of your client's request. The
primary way to do this is to use GET -style encoding of parameters in the URL string. In
this case, the web browser encodes the parameters and appends them to the end of the URL
string. The server decodes them and passes them to the application.

As we described in Chapter 13 , GET -style encoding takes the parameters and appends
them to the URL in a name/value fashion, with the first parameter preceded by a question
mark (?) and the rest separated by ampersands (&). The entire string is expected to be
URL-encoded : any special characters (such as spaces, ?, and & in the string) are specially
encoded.

A less sophisticated form of encoding data in the URL is called extra path . This simply
means that when the server has located your servlet or CGI program as the target of a URL,
it takes any remaining path components of the URL string and simply hands it over as an
extra part of the URL. For example, consider these URLs:

http://www.myserver.example/servlets/MyServlet
http://www.myserver.example/servlets/MyServlet/foo/bar

http://www.myserver.example/servlets/MyServlet
http://www.myserver.example/servlets/MyServlet/foo/bar
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Suppose the server maps the first URL to the servlet called MyServlet . When
subsequently given the second URL, the server still invokes MyServlet , but considers
/foo/bar to be an "extra path" that can be retrieved through the servlet request
getExtraPath() method.

Both GET and POST encoding can be used with HTML forms on the client by specifying
get or post in the action attribute of the form tag. The browser handles the encoding;
on the server side, the servlet engine handles the decoding.

The content type used by a client to post form data to a servlet is the same as that for any
CGI: "application/x-www-form-urlencoded." The Servlet API automatically parses this
kind of data and makes it available through the getParameter() method. However, if
you do not use the getParameter() method, the data remains available in the input
stream and can be read by the servlet directly.

14.7.2 GET or POST: Which One to Use?

To users, the primary difference between GET and POST is that they can see the GET
information in the encoded URL shown in their web browser. This can be useful because
the user can cut and paste that URL (the result of a search, for example) and mail it to a
friend or bookmark it for future reference. POST information is not visible to the user and
ceases to exist after it's sent to the server. This behavior goes along with the protocol's
perspective that GET and POST are intended to have different semantics. By definition, the
result of a GET operation is not supposed to have any side effects. That is, it's not supposed
to cause the server to perform any subsequent operations (such as making an e-commerce
purchase). In theory, that's the job of POST . That's why your web browser warns you
about reposting form data again if you hit reload on a page that was the result of a form
posting.

The extra path method is not useful for form data but would be useful for a servlet that
retrieves files or handles a range of URLs in a human-readable way not driven by forms.

14.8 The ShowParameters Servlet

Our first example didn't do anything interesting. This example prints the values of any
parameters that were received. We'll start by handling GET requests and then make some
trivial modifications to handle POST as well. Here's the code:

//file: ShowParameters.java
import java.io.*;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import javax.servlet.ServletException;
import javax.servlet.http.*;
import java.util.Enumeration;

public class ShowParameters extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 showRequestParameters(request, response);
 }

 void showRequestParameters(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 out.println(
 "<html><head><title>Show Parameters</title></head><body>"
 + "<h1>Parameters</h1>");

 for (Enumeration e=request.getParameterNames();
 e.hasMoreElements();) {
 String name = (String)e.nextElement();
 String value = request.getParameter(name);
 if (! value.equals(""))
 out.println(""+ name +" = "+ value);
 }

 out.close();
 }
}

There's not much new here. As in the first example, we override the doGet() method.
Here, we delegate the request to a helper method that we've created, called
showRequestParameters() . This method just enumerates the parameters using the
request object's getParameterNames() method and prints the names and values. (To
make it pretty, we listed them in an HTML list by prefixing each with an tag.)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As it stands, our servlet would respond to any URL that contains a GET request. Let's
round it out by adding our own form to the output and also accommodating POST method
requests. To accept posts, we override the doPost() method. The implementation of
doPost() could simply call our showRequestParameters() method, but we can
make it simpler still. The API lets us treat GET and POST requests interchangeably
because the servlet engine handles the decoding of request parameters. So we simply
delegate the doPost() operation to doGet() .

Add the following method to the example:

public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 doGet(request, response);
}

Now let's add an HTML form to the output. The form lets the user fill in some parameters
and submit them to the servlet. Add this line to the showRequestParameters()
method before the call to out.close() :

out.println(
 "<p><form method=\"POST\" action=\""
 + request.getRequestURI() + "\">"
 + "Field 1 <input name=\"Field 1\" size=20>
"
 + "Field 2 <input name=\"Field 2\" size=20>
"
 + "
<input type=\"submit\" value=\"Submit\"></form>"
);

The form's action attribute is the URL of our servlet so that the servlet will get the data.
We use the getRequestURI() method to ask for the location of our servlet. For the
method attribute, we've specified a POST operation, but you can try changing the
operation to GET to see both styles.

So far, we haven't done anything that you couldn't do easily with your average CGI script.
In the following section, we'll show something more interesting: how to manage a user
session. But before we go on, we should mention a useful standard servlet that is a kin of
our example above, SnoopServlet .

14.8.1 SnoopServlet

Most servlet containers come with some useful servlets that serve as examples or

http://lib.ommolketab.ir
http://lib.ommolketab.ir

debugging aids. One of the most basic tools you have for debugging servlets is the
"SnoopServlet." We place that name in quotes because you will find many different
implementations of this with various names. But the original SnoopServlet came with
the Java servlet development kit and is currently supplied with the Tomcat server
distribution. This very simple debugging servlet displays everything about its environment,
including all of its request parameters, just as our ShowParameters example did. There
is a lot of useful information there. In the default Tomcat 4.0 distribution, you can access
this servlet at http://myserver:8080/examples/snoop .

14.9 User Session Management

One of the nicest features of the Servlet API is its simple mechanism for managing a user
session. By a session, we mean that the servlet can maintain information over multiple
pages and through multiple transactions as navigated by the user; this is also called
maintaining state. Providing continuity through a series of web pages is important in many
kinds of applications, such as handling a login process or tracking purchases in a shopping
cart. In a sense, session data takes the place of instance data in your servlet object. It lets
you store data between invocations of your service methods.

Session tracking is supported by the servlet engine; you don't have to worry about the
details of how it's accomplished. It's done in one of two ways: using client-side cookies or
URL rewriting. Client-side cookies are a standard HTTP mechanism for getting the client
web browser to cooperate in storing state information for you. A cookie is basically just a
name/value attribute that is issued by the server, stored on the client, and returned by the
client whenever it is accessing a certain group of URLs on a specified server. Cookies can
track a single session or multiple user visits.

URL rewriting appends session-tracking information to the URL, using GET -style
encoding or extra path information. The term "rewriting" applies because the server
rewrites the URL before it is seen by the client and absorbs the extra information before it
is passed back to the servlet. In order to support URL rewriting, a servlet must take the
extra step to encode any URLs it generates in content (e.g., HTML links that may return to
the page) using a special method of the HttpServletResponse object. We'll
describe this later.

To the servlet programmer, state information is made available through an
HttpSession object, which acts like a hashtable for storing whatever objects you
would like to carry through the session. The objects stay on the server side; a special
identifier is sent to the client through a cookie or URL rewriting. On the way back, the
identifier is mapped to a session, and the session is associated with the servlet again.

http://myserver:8080/examples/snoop
http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.9.1 The ShowSession Servlet

Here's a simple servlet that shows how to store some string information to track a session:

//file: ShowSession.java
import java.io.*;
import javax.servlet.ServletException;
import javax.servlet.http.*;
import java.util.Enumeration;

public class ShowSession extends HttpServlet {

 public void doPost(
 HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 doGet(request, response);
 }

 public void doGet(
 HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 HttpSession session = request.getSession();
 boolean clear = request.getParameter("clear") != null;
 if (clear)
 session.invalidate();
 else {
 String name = request.getParameter("Name");
 String value = request.getParameter("Value");
 if (name != null && value != null)
 session.setAttribute(name, value);
 }

 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println(
 "<html><head><title>Show Session</title></head><body>");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if (clear)
 out.println("<h1>Session Cleared:</h1>");
 else {
 out.println("<h1>In this session:</h1>");
 Enumeration names = session.getAttributeNames();
 while (names.hasMoreElements()) {
 String name = (String)names.nextElement();
 out.println(""+name+" = " +session.getAttribute(name));
 }
 }

 out.println(
 "<p><hr><h1>Add String</h1>"
 + "<form method=\"POST\" action=\""
 + request.getRequestURI() +"\">"
 + "Name: <input name=\"Name\" size=20>
"
 + "Value: <input name=\"Value\" size=20>
"
 + "
<input type=\"submit\" value=\"Submit\">"
 + "<input type=\"submit\" name=\"clear\" value=\"Clear\"></form>"
);
 }
}

When you invoke the servlet, you are presented with a form that prompts you to enter a
name and a value. The value string is stored in a session object under the name provided.
Each time the servlet is called, it outputs the list of all data items associated with the
session. You will see the session grow as each item is added (in this case, until you restart
your web browser or the server).

The basic mechanics are much like our ShowParameters servlet. Our doGet()
method generates the form, which refers back to our servlet via a POST method. We
override doPost() to delegate back to our doGet() method, allowing it to handle
everything. Once in doGet() , we attempt to fetch the user session object from the
request parameter using getSession() . The HttpSession object supplied by
the request functions like a hashtable. There is a setAttribute() method, which
takes a string name and an Object argument, and a corresponding getAttribute()
method. In our example, we use the getAttributeNames() method to enumerate the
values currently stored in the session and to print them.

By default, getSession() creates a session if one does not exist. If you want to test for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

a session or explicitly control when one is created, you can call the overloaded version
getSession(false) , which does not automatically create a new session and returns
null if there is no session. To clear a session immediately, we can use the
invalidate() method. After calling invalidate() on a session, we are not
allowed to access it again, so we set a flag in our example and show the "Session Cleared"
message. Sessions may also become invalid on their own by timing out. You can control
session timeout in the application server or through the web.xml file (via the "session-
timeout" value of the "session config" section). User sessions are private to each web
application and are not shared across applications.

We mentioned earlier that an extra step is required to support URL rewriting for web
browsers that don't support cookies. To do this, we must make sure that any URLs we
generate in content are first passed through the HttpServletResponse
encodeURL() method. This method takes a string URL and returns a modified string
only if URL rewriting is necessary. Normally, when cookies are available, it returns the
same string. In our previous example, we should have encoded the server form URL
retrieved from getRequestURI() before passing it to the client.

14.9.2 The ShoppingCart Servlet

Now we build on the previous example to make a servlet that could be used as part of an
online store. ShoppingCart lets users choose items and add them to their basket until
checkout time:

//file: ShoppingCart.java
import java.io.*;
import javax.servlet.ServletException;
import javax.servlet.http.*;
import java.util.Enumeration;

public class ShoppingCart extends HttpServlet {
 String [] items = new String [] {
 "Chocolate Covered Crickets", "Raspberry Roaches",
 "Buttery Butterflies", "Chicken Flavored Chicklets(tm)" };

 public void doPost(
 HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException
 {
 doGet(request, response);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 public void doGet(
 HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 response.setContentType("text/html");
 PrintWriter out = response.getWriter();

 // get or create the session information
 HttpSession session = request.getSession();
 int [] purchases = (int [])session.getAttribute("purchases");
 if (purchases == null) {
 purchases = new int [items.length];
 session.setAttribute("purchases", purchases);
 }

 out.println("<html><head><title>Shopping Cart</title>"
 + "</title></head><body><p>");

 if (request.getParameter("checkout") != null)
 out.println("<h1>Thanks for ordering!</h1>");
 else {
 if (request.getParameter("add") != null) {
 addPurchases(request, purchases);
 out.println(
 "<h1>Purchase added. Please continue</h1>");
 } else {
 if (request.getParameter("clear") != null)
 for (int i=0; i<purchases.length; i++)
 purchases[i] = 0;
 out.println("<h1>Please Select Your Items!</h1>");
 }
 doForm(out, request.getRequestURI());
 }
 showPurchases(out, purchases);
 out.close();
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 void addPurchases(HttpServletRequest request, int [] purchases) {
 for (int i=0; i<items.length; i++) {
 String added = request.getParameter(items[i]);
 if (added !=null && !added.equals(""))
 purchases[i] += Integer.parseInt(added);
 }
 }

 void doForm(PrintWriter out, String requestURI) {
 out.println("<form method=POST action="+ requestURI +">");

 for(int i=0; i< items.length; i++)
 out.println("Quantity <input name=\"" + items[i]
 + "\" value=0 size=3> of: " + items[i] + "
");
 out.println(
 "<p><input type=submit name=add value=\"Add To Cart\">"
 + "<input type=submit name=checkout value=\"Check Out\">"
 + "<input type=submit name=clear value=\"Clear Cart\">"
 + "</form>");
 }

 void showPurchases(PrintWriter out, int [] purchases)
 throws IOException {

 out.println("<hr><h2>Your Shopping Basket</h2>");
 for (int i=0; i<items.length; i++)
 if (purchases[i] != 0)
 out.println(purchases[i] +" "+ items[i] +"
");
 }
}

ShoppingCart has some instance data: a String array that holds a list of products.
We're making the assumption that the product selection is the same for all customers. If it's
not, we'd have to generate the product list on the fly or put it in the session for the user.

We see the same basic pattern as in our previous servlets, with doPost() delegating to
doGet() , and doGet() generating the body of the output and a form for gathering
new data. Here we've broken down the work using a few helper methods: doForm() ,
addPurchases() , and showPurchases() . Our shopping cart form has three
submit buttons: one for adding items to the cart, one for checkout, and one for clearing the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

cart. In each case, we display the contents of the cart. Depending on the button pressed, we
add new purchases, clear the list, or simply show the results as a checkout window.

The form is generated by our doForm() method, using the list of items for sale. As in the
other examples, we supply our servlet's address as the target of the form. Next, we have
placed an integer array called purchases into the user session. Each element in
purchases holds a count of the number of each item the user wants to buy. We create
the array after retrieving the session simply by asking the session for it. If this is a new
session, and the array hasn't been created, getValue() gives us a null array to populate.
Since we generate the form using the names from the items array, it's easy for
addPurchases() to check for each name using getParameter() and increment
the purchases array for the number of items requested. We also test for the value being
equal to the empty string, because some broken web browsers send empty strings for
unused field values. Finally, showPurchases() simply loops over the purchases array
and prints the name and quantity for each item that the user has purchased.

14.9.3 Cookies

In our previous examples, a session lived only until you shut down your web browser or
the server. You can do more long-term user tracking or identification by managing cookies
explicitly. You can send a cookie to the client by creating a
javax.servlet.http.Cookie object and adding it to the servlet response using
the addCookie() method. Later you can retrieve the cookie information from the
servlet request and use it to look up persistent information in a database. The following
servlet sends a "Learning Java" cookie to your web browser and displays it when you
return to the page:

//file: CookieCutter.java
import java.io.*;
import java.text.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class CookieCutter extends HttpServlet {

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws IOException, ServletException {
 response.setContentType("text/html");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 PrintWriter out = response.getWriter();

 if (request.getParameter("setcookie") != null) {
 Cookie cookie = new Cookie("Learningjava", "Cookies!");
 cookie.setMaxAge(3600);
 response.addCookie(cookie);
 out.println("<html><body><h1>Cookie Set...</h1>");
 } else {
 out.println("<html><body>");
 Cookie[] cookies = request.getCookies();
 if (cookies.length == 0)
 out.println("<h1>No cookies found...</h1>");
 else
 for (int i = 0; i < cookies.length; i++)
 out.print("<h1>Name: "+ cookies[i].getName()
 + "
"
 + "Value: " + cookies[i].getValue()
 + "</h1>");
 out.println("<p><a href=\""+ request.getRequestURI()
 +"?setcookie=true\">"
 +"Reset the Learning Java cookie.");
 }
 out.println("</body></html>");
 out.close();
 }
}

This example simply enumerates the cookies supplied by the request object using the
getCookies() method and prints their names and values. We provide a GET -style link
that points back to our servlet with a parameter setcookie , indicating that we should
set the cookie. In that case, we create a Cookie object using the specified name and value
and add it to the response with the addCookie() method. We set the maximum age of
the cookie to 3600 seconds, so it remains in the browser for an hour before being discarded
(we'll talk about tracking a cookie across multiple sessions later). You can specify an
arbitrary time period here or a negative time period to indicate that the cookie should not
be stored persistently on the client. Indicating a negative time period is a good way to erase
an existing cookie of the same name.

Two other Cookie methods are of interest: setDomain() and setPath() . These
methods allow you to specify the domain name and path component that limits the servers

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to which the client will send the cookie. If you're writing some kind of purchase applet for
L.L. Bean, you don't want clients sending your cookies over to Eddie Bauer. In practice,
however, this cannot happen. The default domain is the domain of the server sending the
cookie. (You may not be able to specify other domains for security reasons.) The path
parameter defaults to the base URL of the servlet, but you can specify a wider (or
narrower) range of URLs on the server by setting this parameter manually.

14.10 The ServletContext API

Web applications have access to the server environment through the ServletContext API. A
reference to the ServletContext can be obtained from the HttpServlet
getServletContext() method.

ServetContext context = getServletContext();

Each WebApp has its own ServletContext. The context provides a shared space in which a
WebApp's servlets may rendezvous and post objects. Objects may be placed into the
context with the setAttribute() method and retrieved by name with the
getAttribute() method.

context.setAttribute("myapp.statistics", myObject);
Object stats = context.getAttribute("myapp.statistics");

Attribute names beginning with "java." and "javax." are reserved for use by Java. Use the
standard package-naming conventions for your attributes in order to avoid conflicts. One
standard attribute that can be accessed through the servlet context is a reference to a private
working directory java.io.File object. This temp directory is guaranteed unique to
the WebApp. No guarantees are made about it being cleared upon exit, however, so you
should use the temporary file API to create files here (unless you wish to try to keep them
beyond the server exit). For example:

File tmpDir = (File)context.getAttribute("javax.servlet.context.tempdir");
File tmpFile = File.createTempFile("appprefix", "appsuffix", tmpDir);

The servlet context also provides direct access to the WebApp's files from its root
directory. The getResource() method is similar to the Class getResource()
method (see Chapter 11). It takes a pathname and returns a special local URL for
accessing that resource. In this case, it takes a path rooted in the servlet base directory
(WAR file). The servlet may obtain references to files, including those in the WEB-INF
directory, using this method. For example, a servlet may fetch an input stream for its own
web.xml file:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

InputStream in = context.getResourceAsStream("/WEB-INF/web.xml");

It could also use a URL reference to get one of its images:

URL bunnyURL = context.getResource("/images/happybunny.gif");

The method getResourcePaths() may be used to fetch a directory-style listing of all
the resource files available matching a specified path. The return value is a
java.util.Set collection of strings naming the resources available under the
specified path. For example, the path / lists all files in the WAR file; the path /WEB-INF/
lists at least the web.xml file and classes directory.

The ServletContext is also a factory for RequestDispatcher objects.

14.11 WAR Files and Deployment

As we described in the introduction to this chapter, a WAR file is an archive that contains
all the parts of a web application: Java class files for servlets, JSPs, HTML pages, images,
and other resources. The WAR file is simply a JAR file with specified directories for the
Java code and one very important file: the web.xml file, which tells the application server
what to run and how to run it. WAR files always have the extension .war , but they can be
created and read with the standard jar tool.

The contents of a typical WAR file might look like this, as revealed by the jar tool:

$ jar tvf shoppingcart.war

 index.html
 purchase.html
 receipt.html
 images/happybunny.gif
 WEB-INF/web.xml
 WEB-INF/classes/com/mycompany/PurchaseServlet.class
 WEB-INF/classes/com/mycompany/ReturnServlet.class
 WEB-INF/lib/thirdparty.jar

When deployed, the name of the WAR file becomes, by default, the root path of the web
application, in this case shoppingcart . Thus the base URL for this WebApp, if deployed on
www.oreilly.com , is http://www.oreilly.com/shoppingcart/ , and all references to its
documents, images, and servlets start with that path. The top level of the WAR file
becomes the document root (base directory) for serving files. Our index.html file appears at

http://www.oreilly.com/shoppingcart/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

the base URL we just mentioned, and our happybunny.gif image is referenced as
http://www.oreilly.com/shoppingcart/images/happybunny.gif .

The WEB-INF directory (all caps, hyphenated) is a special directory that contains all
deployment information and application code. This directory is protected by the web
server, and its contents are not visible, even if you add WEB-INF to the base URL. Your
application classes can load additional files from this area directly using
getResource() , however, so it is a safe place to store application resources. The
WEB-INF directory contains the all-important web.xml file, which we'll talk about more in
a moment.

The WEB-INF/classes and WEB-INF/lib directories contain Java class files and JAR
libraries, respectively. The WEB-INF/classes directory is automatically added to the
classpath of the web application, so any class files placed here (using the normal Java
package conventions) are available to the application. After that, any JAR files located in
WEB-INF/l ib are appended to the WebApp's classpath (the order in which they are
appended is, unfortunately, not specified). You can place your classes in either location.
During development, it is often easier to work with the "loose" classes directory and use
the lib directory for supporting classes and third-party tools. Usually it's also possible to
install classes and JAR files in the main system classpath of the servlet container to make
them available to all WebApps running on that server. The procedure for doing this,
however, is not standard and any classes that are deployed in this way cannot be
automatically reloaded if changed-a feature of WAR files that we'll discuss later.

14.11.1 The web.xml File

The web.xml file is an XML file that lists the servlets to be run, the relative names (URL
paths) under which to run them, their initialization parameters, and their deployment
details, including security and authorization. We will assume that you have at least a
passing familiarity with XML or that you can simply imitate the examples in a cut-and-
paste fashion. (For details about working with Java and XML, see Chapter 23 .) Let's start
with a simple web.xml file for our HelloClient servlet example. It looks like this:

<web-app>
 <servlet>
 <servlet-name>helloclient1</servlet-name>
 <servlet-class>HelloClient</servlet-class>
 </servlet>
 <servlet-mapping>
 <servlet-name>helloclient1</servlet-name>

http://www.oreilly.com/shoppingcart/images/happybunny.gif
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <url-pattern>/hello</url-pattern>
 </servlet-mapping>
</web-app>

The top-level element of the document is called <web-app> . Many types of entries may
appear inside the <web-app> , but the most basic are <servlet> declarations and
<servlet-mapping> deployment mappings. The <servlet> declaration tag is
used to declare an instance of a servlet and, optionally, to give it initialization and other
parameters. One instance of the servlet class is instantiated for each <servlet> tag
appearing in the web.xml file.

At minimum, the <servlet> declaration requires two pieces of information: a
<servlet-name> , which is used as a handle to reference the servlet elsewhere in the
web.xml file, and the <servlet-class> tag, which specifies the Java class name of
the servlet. Here, we named the servlet helloclient1 . We named it like this to
emphasize that we could declare other instances of the same servlet if we wanted to,
possibly giving them different initialization parameters, etc. The class name for our servlet
is of course HelloClient . In a real application, the servlet class would likely have a
full package name such as com.oreilly.servlets.HelloClient .

A servlet declaration may also include one or more initialization parameters, which are
made available to the servlet through the ServletConfig object's
getInitParameter() method:

<servlet>
 <servlet-name>helloclient1</servlet-name>
 <servlet-class>HelloClient</servlet-class>
 <init-param>
 <param-name>foo</param-name>
 <param-value>bar</param-value>
 </init-param>
</servlet>

Next, we have our <servlet-mapping> , which associates the servlet instance with a
path on the web server. Servlet mapping entries appear in the web.xml file after all the
servlet declaration entries:

<servlet-mapping>
 <servlet-name>helloclient1</servlet-name>
 <url-pattern>/hello</url-pattern>
</servlet-mapping>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Here we mapped our servlet to the path /hello . If we later name our WAR file
learningjava.war and deploy it on www.oreilly.com , the full path to this servlet would be
http://www.oreilly.com/learningjava/hello . Just as we could declare more than one servlet
instance with the <servlet> tag, we could declare more than one <servlet-
mapping> for a given servlet instance. We could, for example, redundantly map the
same helloclient1 instance to the paths /hello and /hola . The <url-pattern> tag
provides some very flexible ways to specify the URLs that should match a servlet. We'll
talk about this in detail in the next section.

Finally, we should mention that although the web.xml example listed earlier will probably
work on most application servers, it is technically incomplete because it is missing a formal
header that specifies the version of XML it is using and the version of the web.xml file
standard with which it complies.

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE web-app
 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN"
 "http://java.sun.com/dtd/web-app_2_3.dtd">

You can paste these four lines onto the beginning of each web.xml file we use in this book.
You should do so, in fact, because with this information, if you make a mistake in the
web.xml file, the web server can give you much better error messages.

14.11.2 URL Pattern Mappings

The <url-pattern> specified in the previous example was a simple string, "/hello".
For this pattern, only an exact match ending in "/hello" would invoke our servlet. The
<url-pattern> tag is capable of more powerful patterns, however, including
wildcards. For example, specifying a <url-pattern> of "/hello*" allows our servlet to
be invoked by URLs such as www.oreilly.com/learningjava/helloworld or ".../hellobaby".
You can even specify wildcards with extensions, e.g., "*.html" or "*.foo", meaning that the
servlet is invoked for any path that ends with those characters.

Using wildcards can result in more than one match. Consider, for example, the mappings
"/scooby*" and "/scoobydoo*". Which should be matched for the URL ending with
"../scooby"? What if we have a third possible match because of a wildcard suffix extension
mapping? The rules for resolving these are as follows.

First, any exact match is taken. For example, "/hello" matches the "/hello" URL pattern in
our example regardless of any additional "/hello*". Failing that, the container looks for the
longest prefix match. So "/scoobydoobiedoo" matches the second pattern, "/scoobydoo*",

http://www.oreilly.com/learningjava/hello
http://lib.ommolketab.ir
http://lib.ommolketab.ir

because it is longer and presumably more specific. Failing any matches there, the container
looks at wildcard suffix mappings. A request ending in ".foo" matches a "*.foo" mapping
at this point in the process. Finally, failing any matches there, the container looks for a
default, catchall mapping named "/*". A servlet mapped to "/*" picks up anything
unmatched by this point. If there is no default servlet mapping, the request fails with a "404
not found" message.

14.11.3 Deploying HelloClient

Now let's deploy our HelloClient servlet. Once you've deployed the servlet, it should
be easy to add examples to the WAR file as you work with them in this chapter. In this
section, we'll show you how to build a WAR file by hand. In Section 14.16 , we'll show a
more realistic way to manage your applications using the wonderful tool, Ant. You can
also grab the full set of examples, along with their source code, in the learningjava.war file
on the CD-ROM that comes with this book (view CD content online at
http://examples.oreilly.com/learnjava2/CD-ROM/).

To create the WAR file by hand, we first create the WEB/INF and WEB-INF/classes
directories. Place web.xml into WEB-INF and HelloClient.class into WEB-INF/classes .
Use the jar command to create learningjava.war :

$ jar cvf learningjava.war WEB-INF

You can also include some documents in the top level of this WAR file by adding their
names after the WEB-INF directory above. This command produces the file
learningjava.war . You can verify the contents using the jar command:

$ jar tvf learningjava.war

Now all that is necessary is to drop the WAR file into the correct location for your server.
We assume you have downloaded and installed Tomcat. With Version 4.0 of Tomcat, the
location for WAR files is the path for Tomcat, followed by /webapps . Place your WAR file
here, and start the server. If Tomcat is configured with the default port number, you should
be able to point to the HelloClient servlet with the following URLs:
http://localhost:8080/learningjava/hello or http://<yourserver>:8080/learningjava/hello ,
where <yourserver> is the name or IP address of your server.

14.12 Reloading WebApps

All servers should provide a facility for automatically reloading WAR files and possibly
individual servlet classes after they have been modified. This is part of the servlet

http://examples.oreilly.com/learnjava2/CD-ROM/
http://localhost:8080/learningjava/hello
http://<yourserver>:8080/learningjava/hello
http://lib.ommolketab.ir
http://lib.ommolketab.ir

specification and is especially useful during development. Unfortunately, support for this
feature varies. BEA's WebLogic application server, when configured in development
mode, allows you simply to replace the WAR file, and it handles redeployment. At the time
of this writing, Tomcat is not quite so friendly. It supports reloading of servlet classes but
does not handle reloading WAR files very well. Some servers, including the current
version of Tomcat, "explode" WAR files by unpacking them into the webapps directory, or
they allow you explicitly to configure a root directory for your WebApp. In this mode, they
may allow you to replace individual files. After changing servlets or other classes, you can
prompt Tomcat to reload the WebApp using a special URL with the format
http://<yourserver>:8080/manager/reload?path=/learningjava . Even so, Tomcat does
not currently reload the web.xml file. Until this situation improves, your safest bet is to
remove this exploded directory, drop in your new WAR file, and restart the server (our
apologies).

14.13 Error and Index Pages

One of the finer points of writing a professional-looking web application is taking care to
handle errors well. Nothing annoys a user more than getting a funny-looking page with
some technical mumbo-jumbo error information on it when they expected the receipt for
their Christmas present. Through the web.xml file, it is possible to specify documents or
servlets to handle error pages shown for various conditions, as well as the special case of
index files (welcome files) for directories. Let's start with error handling.

You can designate a page or servlet that can handle various HTTP error status codes, such
as "404 not found", "403 forbidden", etc., using one or more <error-page>
declarations:

<web-app>
...
 <error-page>
 <error-code>404</error-code>
 <location>/notfound.html</location>
 </error-page>
 <error-page>
 <error-code>403</error-code>
 <location>/secret.html</location>
 </error-page>

Additionally, you can designate error pages based on Java exception types that may be
thrown from the servlet. For example:

http://<yourserver>:8080/manager/reload?path=/learningjava
http://lib.ommolketab.ir
http://lib.ommolketab.ir

<error-page>
 <exception-type>java.lang.IOException</exception-type>
 <location>/ioexception.html</location>
</error-page>

This declaration catches any IOExceptions generated from servlets in the WebApp and
displays the ioexception.html page. If no matching exceptions are found in the <error-
page> declarations, and the exception is of type ServletException (or a subclass),
the container makes a second try to find the correct handler. It looks for a wrapped
exception (instigating exception) contained in the ServletException and attempts to
match it to an error page declaration.

As we've mentioned, you can use a servlet to handle your error pages, just as you can use a
static document. In fact, the container supplies several helpful pieces of information to an
error-handling servlet, which the servlet can use in generating a response. The information
is made available in the form of servlet request attributes through the method
getAttribute() :

Object attribute = servletRequest.getAttribute("name");

Attributes are like servlet parameters, except that they can be arbitrary objects. We have
seen attributes of the ServletContext in a previous section. In this case, we are talking about
attributes of the request. When a servlet (or JSP or filter) is invoked to handle an error
condition, the following string attributes are set in the request:

javax.servlet.error.servlet_name
javax.servlet.error.request_uri
javax.servlet.error.message

Depending on whether the <error-page> declaration was based on an <error-
code> or <exception-type> condition, the request also contains one of the
following two attributes:

// status code Integer or Exception object
javax.servlet.error.status_code
javax.servlet.error.exception

In the case of a status code, the attribute is an Integer representing the code. In the case
of the exception type, the object is the actual instigating exception.

Index files can be designated in a similar way. Normally, when a user specifies a directory
URL path, the web server searches for a default file in that directory to be displayed. The

http://lib.ommolketab.ir
http://lib.ommolketab.ir

most common example of this is the ubiquitous index.html file. You can designate your
own ordered list of files to look for by adding a <welcome-file-list> entry to your
web.xml file. For example:

<welcome-file-list>
 <welcome-file>index.html</welcome-file>
 <welcome-file>index.htm</welcome-file>
</welcome-file-list>

<welcome-file-list> specifies that when a partial request (directory path) is
received, the server should search first for a file named index.html and, if that is not found,
a file called index.htm . If none of the specified welcome files is found, it is left up to the
server to decide what kind of page to display. Servers are generally configured to display a
directory-like listing or to produce an error message.

14.14 Security and Authentication

One of the most powerful features of WebApp deployment with the 2.3 Servlet API is the
ability to define declarative security constraints. Declarative security means that you can
simply spell out in the web.xml file exactly which areas of your WebApp (URL paths to
documents, directories, servlets, etc.) are login-protected, the types of users allowed access
to them, and the class of security protocol required for communications. It is not necessary
to write code in your servlets to implement these basic security procedures.

There are two types of entries in the web.xml file that control security and authentication.
First are the <security-constraint> entries, which provide authorization based
on user roles and secure transport of data, if desired. Second is the <login-config>
entry, which determines the kind of authentication used for the web application.

14.14.1 Assigning Roles to Users

Let's take a look at a simple example. The following web.xml excerpt defines an area called
"My secret documents" with a URL pattern of /secure/* and designates that only users with
the role "secretagent" may access them. It specifies the simplest form of login process: the
BASIC authentication model, which causes the browser to prompt the user with a simple
pop-up username and password dialog box.

<web-app>
...
 <security-constraint>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <web-resource-collection>
 <web-resource-name>Secret documents</web-resource-name>
 <url-pattern>/secret/*</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>secretagent</role-name>
 </auth-constraint>
 </security-constraint>

 <login-config>
 <auth-method>BASIC</auth-method>
 </login-config>

The security constraint entry comes after all servlet and filter-related entries in the web.xml
file. Each <security-constraint> block has one <web-resource-
collection> section that designates a named list of URL patterns for areas of the
WebApp, followed by an <auth-constraint> section listing user roles that are
allowed to access those areas. You can add the example setup to the web.xml file for the
learningjava.war file and prepare to try it out. However, there is one additional step you'll
have to take to get this working: create the user role "secretagent" and an actual user with
this role in your application server.

Access to protected areas is granted to user roles, not individual users. A user role is
effectively just a group of users; instead of granting access to individual users by name,
access is granted to roles, and users are assigned one or more roles. A user role is an
abstraction from users. Actual user information (name and password, etc.) is handled
outside the scope of the WebApp, in the application server environment (possibly
integrated with the host platform operating system). Generally, application servers have
their own tools for creating users and assigning individuals (or actual groups of users) their
roles. A given username may have many roles associated with it.

When attempting to access a login-protected area, the user's valid login will be assessed to
see if she has the correct role for access. For the Tomcat server, adding users and assigning
them roles is easy; simply edit the file conf/tomcat-users.xml . To add a user named "bond"
with the "secretagent" role, you'd add an entry like this:

<user name="bond" password="007" roles="secretagent"/>

For other servers, you'll have to refer to the documentation to determine how to add users
and assign security roles.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.14.2 Secure Data Transport

Before we move on, there is one more piece of the security constraint to discuss: the
transport guarantee. Each <security-constraint> block may end with a <user-
data-constraint> entry, which designates one of three levels of transport security
for the protocol used to transfer data to and from the protected area. For example:

<security-constraint>
...
 <user-data-constraint>
 <transport-guarantee>CONFIDENTIAL</transport-guarantee>
 </user-data-constraint>
</security-constraint>

The three levels are NONE, INTEGRAL, and CONFIDENTIAL. NONE is equivalent to
leaving out the section, indicating no special transport is required. This is the standard for
normal web traffic, which is generally sent in plain text over the network. The INTEGRAL
level of security specifies that any transport protocol used must guarantee the data sent is
not modified in transit. This implies the use of digital signatures or some other method of
validating the data at the receiving end but it does not require that the data be encrypted
and hidden while it is transported. Finally, CONFIDENTIAL implies both INTEGRAL
and encrypted. In practice, the only widely used secure transport used in web browsers is
SSL. Requiring a transport guarantee other than NONE typically forces the use of SSL by
the client browser.

14.14.3 Authenticating Users

The <login-conf> section determines exactly how a user authenticates (identifies)
himself or herself to the protected area. The <auth-method> tag allows four types of
login authentication to be specified: BASIC, DIGEST, FORM, and CLIENT-CERT. In our
example, we showed the BASIC method, which uses the standard web browser login and
password pop-up dialog. BASIC authentication sends the user's name and password in
plain text over the Internet unless a transport guarantee has been used separately to start
SSL and encrypt the data stream. DIGEST is a variation on BASIC that hides the text of
the password but adds little real security; it is not widely used. FORM is equivalent to
BASIC, but instead of using the browser's dialog, we are allowed to use our own HTML
form or servlet to post the username and password data. Again, form data is sent in plain
text unless otherwise protected by a transport guarantee (SSL). CLIENT-CERT is an
interesting option. It specifies that the client must be identified using a client-side public
key certificate. This implies the use of a protocol like SSL, which allows for secure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

exchange and mutual authentication using digital certificates.

The FORM method is most useful because it allows us to customize the look of the login
page (we recommend using SSL to secure the data stream). We can also specify an error
page to use if the authentication fails. Here is a sample <login-config> using the
form method:

<login-config>
 <auth-method>FORM</auth-method>
 <form-login-config>
 <form-login-page>/login.html</form-login-page>
 <form-error-page>/login_error.html</form-error-page>
 </form-login-config>
</login-config>

The login page must contain an HTML form with a specially named pair of fields for the
name and password. Here is a simple login.html file:

<html>
<head><title>Login</title></head>
<body>
 <form method="POST" action="j_security_check">
 Username: <input type="text" name="j_username">

 Password: <input type="password" name="j_password">

 <input type="submit" value="submit">
 </form>
</body>
</html>

The username field is called j_username , the password is called j_password , and
the URL used for the form action attribute is j_security_check . There are no
special requirements for the error page, but normally you will want to provide a "try again"
message and repeat the login form.

14.14.4 Procedural Security

We should mention that in addition to the declarative security offered by the web.xml file,
servlets may perform their own active procedural (or programmatic) security using all the
authentication information available to the container. We won't cover this in detail, but here
are the basics.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The name of the authenticated user is available through the HttpServletRequest
getRemoteUser() method, and the type of authentication provided can be determined
with the getAuthType() method. Servlets can work with security roles using the
isUserInRole() method. (To do this requires adding some additional mappings in the
web.xml file allowing the servlet to refer to the security roles by reference names). For
advanced applications, a java.security.Principal object for the user can be
retrieved with the getUserPrincipal() method. In the case where a secure transport
like SSL was used, the method isSecure() returns true , and detailed information
about the cipher type, key size, and certificate chain is made available through request
attributes.

14.15 Servlet Filters

The servlet Filter API generalizes the Java Servlet API to allow modular component
"filters" to operate on the server request and responses in a sort of pipeline. Filters are said
to be chained , meaning that when more than one filter is applied, the servlet request is
passed through each filter in succession, with each having an opportunity to act upon or
modify the request before passing it to the next filter. Similarly, upon completion, the
servlet result is effectively passed back through the chain on its return trip to the browser.
Servlet filters may operate on any requests to a web application, not just those handled by
the servlets; they may filter static content, as well.

Filters are declared and mapped to servlets in the web.xml file. There are two ways to map
a filter: using a URL pattern like those used for servlets or by specifying a servlet by its
instance name (<servlet-name>). Filters obey the same basic rules as servlets when
it comes to URL matching, but when multiple filters match a path, they are all invoked.

The order of the chain is determined by the order in which matching filter mappings appear
in the web.xml file, with <url-pattern> matches taking precedence over
<servlet-name> matches. This is contrary to the way servlet URL matching is done,
with specific matches taking the highest priority. Filter chains are constructed as follows.
First, each filter with a matching URL pattern is called in the order in which it appears in
the web.xml file; next, each filter with a matching servlet name is called, also in order of
appearance. URL patterns take a higher priority than filters specifically associated with a
servlet, so in this case, patterns such as /* have first crack at an incoming request.

The Filter API is very simple and mimics the Servlet API. A servlet filter implements the
javax.servlet.Filter interface and implements three methods: init() ,
doFilter() , and destroy() . The doFilter() method is where the work is
performed. For each incoming request, the ServletRequest and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ServletResponse objects are passed to doFilter() . Here we have a chance to
examine and modify these objects-or even substitute our own objects for them-before
passing them to the next filter and ultimately the servlet (or user) on the other side. Our
link to the rest of the filter chain is another parameter of doFilter() , the
FilterChain object. With FilterChain , we can invoke the next element in the
pipeline. The following section presents an example.

14.15.1 A Simple Filter

For our first filter, we'll do something easy but practical: create a filter that limits the
number of connections to its URLs. We'll simply have our filter keep a counter of the
active connections passing through it and turn away new requests when they exceed a
specified limit.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class ConLimitFilter implements Filter
{
 int limit;
 int count;

 public void init(FilterConfig filterConfig)
 throws ServletException
 {
 String s = filterConfig.getInitParameter("limit");
 if (s == null)
 throw new ServletException("Missing init parameter: "+limit);
 limit = Integer.parseInt(s);
 }

 public void doFilter (
 ServletRequest req, ServletResponse res, FilterChain chain)
 throws IOException, ServletException
 {
 if (count > limit) {
 HttpServletResponse httpRes = (HttpServletResponse)res;
 httpRes.sendError(
 httpRes.SC_SERVICE_UNAVAILABLE, "Too Busy.");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 } else {
 ++count;
 chain.doFilter(req, res);
 --count;
 }
 }

 public void destroy() { }
}

ConLimitFilter implements the three life-cycle methods of the Filter interface:
init() , doFilter() , and destroy() . In our init() method, we use the
FilterConfig object to look for an initialization parameter named "limit" and turn it
into an integer. Users can set this value in the section of the web.xml file where the instance
of our filter is declared. The doFilter() method implements all our logic. First, it
receives ServletRequest and ServletResponse object pairs for incoming
requests. Depending on the counter, it then either passes them down the chain by invoking
the next doFilter() method on the FilterChain object, or rejects them by
generating its own response. We use the standard HTTP message "504 Service
Unavailable" when we deny new connections.

Calling doFilter() on the FilterChain object continues processing by invoking
the next filter in the chain or by invoking the servlet if ours is the last filter. Alternatively,
when we choose to reject the call, we use the ServletResponse to generate our own
response and then simply allow doFilter() to exit. This stops the processing chain at
our filter, although any filters called before us still have an opportunity to intervene as the
request effectively traverses back to the client.

Notice that ConLimitFilter increments the count before calling doFilter() and
decrements it after. Prior to calling doFilter() is our time to work on the request
before it reaches the rest of the chain and the servlet. After the call to doFilter() , the
servlet has completed, and the request is, in effect, on the way back to the client. This is our
opportunity to do any post-processing of the response. We'll discuss this a bit later.

Finally, we should mention that although we've been talking about the servlet request and
response as if they were HttpServletRequest and HttpServletResponse ,
the doFilter() method actually takes the more generic ServletRequest and
ServletResponse objects as parameters. As filter implementers, we are expected to
determine when it is safe to treat them as HTTP traffic and perform the cast as necessary
(which we do here in order to use the sendError() HTTP response method).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14.15.2 A Test Servlet

Before we go on, here is a simple test servlet you can use to try out this filter and the other
filters we'll develop in this section. It's called WaitServlet , and as its name implies, it
simply waits. You can specify how long it waits as a number of seconds with the servlet
parameter time .

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class WaitServlet extends HttpServlet
{
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 String waitStr = request.getParameter("time");
 if (waitStr == null)
 throw new ServletException("Missing parameter: time");
 int wait = Integer.parseInt(waitStr);

 try {
 Thread.sleep(wait * 1000);
 } catch(InterruptedException e) {
 throw new ServletException(e);
 }

 response.setContentType("text/html");
 PrintWriter out = response.getWriter();
 out.println(
 "<html><body><h1>WaitServlet Response</h1></body></html>");
 out.close();
 }
}

By making multiple simultaneous requests to the WaitServlet , you can try out the
ConLimitFilter . Be careful, though, because some web browsers (namely Opera)
won't open multiple requests to the same URL. You may have to add extraneous
parameters to trick the web browser. See the learningjava.war application on the CD-ROM
that accompanies this book (view CD content online at

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://examples.oreilly.com/learnjava2/CD-ROM/).

14.15.3 Declaring and Mapping Filters

Filters are declared and mapped in the web.xml file much as servlets are. Like servlets, one
instance of a filter class is created for each filter declaration in the web.xml file. A filter
declaration looks like this:

<filter>
 <filter-name>defaultsfilter1</filter-name>
 <filter-class>RequestDefaultsFilter</filter-class>
</filter>

It specifies a filter handle name to be used for reference within the web.xml file and the
filter's Java class name. Filter declarations may also contain <init-param> parameter
sections, just like servlet declarations.

Filters are mapped to resources with <filter-mapping> declarations that specify the
filter handle name and either the specific servlet handle name or a URL pattern, as we
discussed earlier.

<filter-mapping>
 <filter-name>conlimitfilter1</filter-name>
 <servlet-name>waitservlet1</servlet-name>
 </filter-mapping>

<filter-mapping>
 <filter-name>conlimitfilter1</filter-name>
 <url-pattern>/*</url-pattern>
 </filter-mapping>

Filter mappings appear after all filter declarations in the web.xml file.

14.15.4 Filtering the Servlet Request

Our first filter example was not very exciting because it did not actually modify any
information going to or coming from the servlet. Next, let's do some actual "filtering" by
modifying the incoming request before it reaches a servlet. In this example, we'll create a
request "defaulting" filter that automatically supplies default values for specified servlet
parameters when they are not provided in the incoming request. Despite its simplicity, this
example might be very useful. Here is the RequestDefaultsFilter :

http://examples.oreilly.com/learnjava2/CD-ROM/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class RequestDefaultsFilter implements Filter
{
 FilterConfig filterConfig;

 public void init(FilterConfig filterConfig) throws ServletException
 {
 this.filterConfig = filterConfig;
 }

 public void doFilter (
 ServletRequest req, ServletResponse res, FilterChain chain)
 throws IOException, ServletException
 {
 WrappedRequest wrappedRequest =
 new WrappedRequest((HttpServletRequest)req);
 chain.doFilter(wrappedRequest, res);
 }

 public void destroy() { }

 class WrappedRequest extends HttpServletRequestWrapper
 {
 WrappedRequest(HttpServletRequest req) {
 super(req);
 }

 public String getParameter(String name) {
 String value = super.getParameter(name);
 if (value == null)
 value = filterConfig.getInitParameter(name);
 return value;
 }
 }
}

To interpose ourselves in the data flow, we must do something drastic. We kidnap the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

incoming HttpServletRequest object and replace it with an evil twin that does our
bidding. The technique, which we'll use here for modifying the request object and later for
modifying the response, is to wrap the real request with an adapter, allowing us to override
some of its methods. Here we will take control of the HttpServletRequest 's
getParameter() method, modifying it to look for default values where it would
otherwise return null.

Again, we implement the three life-cycle methods of Filter , but this time, before
invoking doFilter() on the filter chain to continue processing, we wrap the incoming
HttpServletRequest in our own class, WrappedRequest .
WrappedRequest extends a special adapter called
HttpServletRequestWrapper . This wrapper class is a convenience utility that
extends HttpServletRequest . It accepts a reference to a target
HttpServletRequest object and, by default, delegates all of its methods to that
target. This makes it very convenient for us to simply override one or more methods of
interest to us. All we have to do is override getParameter() in our
WrappedRequest class and add our functionality. Here we simply call our parent's
getParameter() , and in the case where the value is null , we try to substitute a
filter initialization parameter of the same name.

Try this example out using the WaitServlet with a filter declaration and mapping as
follows:

<filter>
 <filter-name>defaultsfilter1</filter-name>
 <filter-class>RequestDefaultsFilter</filter-class>
 <init-param>
 <param-name>time</param-name>
 <param-value>3</param-value>
 </init-param>
</filter>
...
<filter-mapping>
 <filter-name>defaultsfilter1</filter-name>
 <servlet-name>waitservlet1</servlet-name>
 </filter-mapping>

Now the WaitServlet receives a default time value of three seconds even when you
don't specify one.

14.15.5 Filtering the Servlet Response

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Filtering the request was fairly easy, and we can do something similar with the response
object using exactly the same technique. There is a corresponding
HttpServletResponseWrapper that we can use to wrap the response before the
servlet uses it to communicate back to the client. By wrapping the response, we can
intercept methods that the servlet uses to write the response, just as we intercepted the
getParameter() method that the servlet used in reading the incoming data. For
example, we could override the sendError() method of the
HttpServletResponse object and modify it to redirect to a specified page. In this
way, we could create a servlet filter that emulates the programmable error page control
offered in the web.xml file. But the most interesting technique available to us, and the one
we'll show here, involves actually modifying the data written by the servlet before it
reaches the client. To do this we have to pull a double "switcheroo." We wrap the servlet
response to override the getWriter() method and then create our own wrapper for the
client's PrintWriter object supplied by this method, one that buffers the data written
and allows us to modify it. This is a useful and powerful technique, but it can be tricky.

Our example is called LinkResponseFilter . It is an automatic hyperlink-generating
filter that reads HTML responses and searches them for patterns supplied as regular
expressions. When it matches a pattern, it turns it into an HTML link. The pattern and links
are specified in the filter initialization parameters. You could extend this example with
access to a database or XML file and add additional rules to make it into a very powerful
site management helper. Here it is:

import java.io.*;
import java.util.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class LinkResponseFilter implements Filter
{
 FilterConfig filterConfig;

 public void init(FilterConfig filterConfig)
 throws ServletException
 {
 this.filterConfig = filterConfig;
 }

 public void doFilter (

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ServletRequest req, ServletResponse res, FilterChain chain)
 throws IOException, ServletException
 {
 WrappedResponse wrappedResponse =
 new WrappedResponse((HttpServletResponse)res);
 chain.doFilter(req, wrappedResponse);
 wrappedResponse.close();
 }

 public void destroy() { }

 class WrappedResponse extends HttpServletResponseWrapper
 {
 boolean linkText;
 PrintWriter client;

 WrappedResponse(HttpServletResponse res) {
 super(res);
 }

 public void setContentType(String mime) {
 super.setContentType(mime);
 if (mime.startsWith("text/html"))
 linkText = true;
 }

 public PrintWriter getWriter() throws IOException {
 if (client == null)
 if (linkText)
 client = new LinkWriter(
 super.getWriter(), new ByteArrayOutputStream());
 else
 client = super.getWriter();
 return client;
 }

 void close() {
 if (client != null)
 client.close();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 }

 class LinkWriter extends PrintWriter
 {
 ByteArrayOutputStream buffer;
 Writer client;

 LinkWriter(Writer client, ByteArrayOutputStream buffer) {
 super(buffer);
 this.buffer = buffer;
 this.client = client;
 }

 public void close() {
 try {
 flush();
 client.write(linkText(buffer.toString()));
 client.close();
 } catch (IOException e) {
 setError();
 }
 }

 String linkText(String text) {
 Enumeration en = filterConfig.getInitParameterNames();
 while (en.hasMoreElements()) {
 String pattern = (String)en.nextElement();
 String value = filterConfig.getInitParameter(pattern);
 text = text.replaceAll(
 pattern, "$0");
 }
 return text;
 }
 }
}

That was a bit longer than our previous examples, but the basics are the same. We have
wrapped the HttpServletResponse object with our own WrappedResponse
class using the HttpServletResponseWrapper helper class. Our

http://lib.ommolketab.ir
http://lib.ommolketab.ir

WrappedResponse overrides two methods: getWriter() and
setContentType() . We override setContentType() in order to set a flag
indicating whether the output is of type "text/html" (an HTML document). We don't want
to be performing regular-expression replacements on binary data such as images, for
example, should they happen to match our filter. We also override getWriter() to
provide our substitute writer stream, LinkWriter . Our LinkWriter class is a
PrintStream that takes as arguments the client PrintWriter and a
ByteArrayOutputStream that serves as a buffer for storing output data before it is
written. We are careful to substitute our LinkWriter only if the linkText boolean
set by setContent() is true . When we do use our LinkWriter , we cache the
stream so that any subsequent calls to getWriter() return the same object. Finally, we
have added one method to the response object: close() . A normal
HttpServletResponse does not have a close() method. We use ours on the
return trip to the client to indicate that the LinkWriter should complete its processing
and write the actual data to the client. We do this in case the client does not explicitly close
the output stream before exiting the servlet service methods.

This explains the important parts of our filter-writing example. Let's wrap up by looking at
the LinkWriter , which does the magic in this example. LinkWriter is a
PrintStream that holds references to two other Writers : the true client
PrintWriter and a ByteArrayOutputStream . The LinkWriter calls its
superclass constructor, passing the ByteArrayOutputStream as the target stream, so
all of its default functionality (its print() methods) writes to the byte array. Our only
real job is to intercept the close() method of the PrintStream and add our text
linking before sending the data. When LinkWriter is closed, it flushes itself to force
any data buffered in its superclass out to the ByteArrayOutputStream . It then
retrieves the buffered data (with the ByteArrayOutputStream toString()
method) and invokes its linkText() method to create the hyperlinks before writing the
linked data to the client. The linkText() method simply loops over all the filter
initialization parameters, treating them as patterns, and uses the String replaceAll()
method to turn them into hyperlinks. (See Chapter 9 for more about replaceAll()).

This example works, but it has limitations. First, we cannot buffer an infinite amount of
data. A better implementation would have to make a decision about when to start writing
data to the client, potentially based on the client-specified buffer size of the
HttpServletResponse API. Next, our implementation of linkText() could probably be
speeded up by constructing one large regular expression using alternation. You will no
doubt find other ways it can be improved.

14.16 Building WAR Files with Ant

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Thus far in this book, we have not become too preoccupied with special tools to help you
construct Java applications. Partly, this is because it's outside the scope of this text, and
partly it reflects a small bias of the authors against getting too entangled with particular
development environments. There is, however, one universal tool that should be in the
arsenal of every Java developer: the Jakarta Project's Ant. Ant is a project builder for Java,
a pure Java application that fills the role that make does for C applications. Ant has many
advantages over make when building Java code, not the least of which is that it comes with
a wealth of special "targets" (declarative commands) to perform common Java-related
operations such as building WAR files. Ant is fast, portable, and easy to install and use.
Make it your friend.

We won't cover the usage of Ant in any detail here. You can learn more and download it
from its home page, http://jakarta.apache.org/ant/ or grab it from the CD-ROM
accompanying this book (view CD content online at
http://examples.oreilly.com/learnjava2/CD-ROM/). We give you a sample build file here
to get you started.

14.16.1 A Development-Oriented Directory Layout

At the beginning of this chapter, we described the layout of a WAR file, including the
standard files and directories that must appear inside the archive. While this file
organization is necessary for deployment inside the archive, it may not be the best way to
organize your project during development. Maintaining web.xml and libraries inside a
directory named WEB-INF under all of your content may be convenient for running the jar
command, but it doesn't line up well with how those areas are created or maintained from a
development perspective. Fortunately, with a simple Ant build file, we can create our WAR
from an arbitrary project layout.

Let's choose a directory structure that is a little more oriented towards project development.
For example:

myapplication
|
|-- src
|-- lib
|-- docs
|-- web.xml

We place our source-code tree under src , required library JAR files under lib , and our
content under docs . We leave web.xml at the top where it's easy to tweak parameters, etc.

http://examples.oreilly.com/learnjava2/CD-ROM/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Here is a simple Ant build.xml file for constructing a WAR file from the new directory
structure:

<project name="myapplication" default="compile" basedir=".">

 <property name="war-file" value="${ant.project.name}.war"/>
 <property name="src-dir" value="src" />
 <property name="build-dir" value="classes" />
 <property name="docs-dir" value="docs" />
 <property name="webxml-file" value="web.xml" />
 <property name="lib-dir" value="lib" />

 <target name="compile" depends="">
 <mkdir dir="${build-dir}"/>
 <javac srcdir="${src-dir}" destdir="${build-dir}"/>
 </target>

 <target name="war" depends="compile">
 <war warfile="${war-file}" webxml="${webxml-file}">
 <classes dir="${build-dir}"/>
 <fileset dir="${docs-dir}"/>
 <lib dir="${lib-dir}"/>
 </war>
 </target>

 <target name="clean">
 <delete dir="${build-dir}"/>
 <delete file="${war-file}"/>
 </target>

</project>

Place the build.xml file in the myapplication directory. You can now compile your code
simply by running ant , or you can compile and build the WAR file with the command
ant war . Ant automatically finds all the Java files under the src tree that need building
and compiles them into a "build" directory named classes . Running antwar creates the
file myapplication.war . You can remove the build directory and WAR file with the ant
clean command.

There is nothing really project-specific in this sample build file except the project name

http://lib.ommolketab.ir
http://lib.ommolketab.ir

attribute in the first line, which you replace with your application's name. And we reference
that only to specify the name of the WAR file to generate. Feel free to customize the names
of any of the files or directories by changing the property declarations at the top. The
learningjava.war file example supplied on the accompanying CD-ROM (view CD content
online at http://examples.oreilly.com/learnjava2/CD-ROM/) comes with a version of this
Ant build.xml file.

CONTENTS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

Chapter 15. Swing

 15.1 Components

 15.2 Containers
 15.3 Events

 15.4 Event Summary

 15.5 The AWT Robot!

 15.6 Multithreading in Swing

Swing is Java's user interface toolkit. It was developed during the life of Java 1.1 and
became part of the core APIs with 1.2. Swing provides classes representing interface items
such as windows, buttons, combo boxes, trees, tables, and menus-everything you need to
build a user interface for your Java application. The javax.swing package (and its
numerous subpackages) contain the Swing user interface classes. [1]

Swing is part of a larger collection of software called the Java Foundation Classes (JFC).
JFC includes the following APIs:

The Abstract Window Toolkit (AWT), the original user interface toolkit

Swing, the pure Java user interface toolkit

Accessibility, which provides tools for integrating nonstandard input and output
devices into your user interfaces

The 2D API, a comprehensive set of classes for high-quality drawing

Drag and Drop, an API that supports the drag-and-drop metaphor

JFC is the largest and most complicated part of the standard Java platform, so it shouldn't
be any surprise that we'll take several chapters to discuss it. In fact, we won't even get to
talk about all of it, just the most important parts-Swing and the 2D API. Here's the lay of
the land:

This chapter covers the basic concepts you need to understand how to build user
interfaces with Swing.

Chapter 16 discusses the basic components from which user interfaces are built:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

buttons, lists, text fields, checkboxes, and so on.

Chapter 17 dives further into the Swing toolkit, describing text components, trees,
tables, and other neat stuff.

Chapter 18 discusses layout managers, which are responsible for arranging
components within a window.

Chapter 19 discusses the fundamentals of drawing, including simple image displays.

Chapter 20 covers the image generation and processing tools that are in the
java.awt.image package. We'll throw in audio and video for good measure.

We can't cover the full functionality of Swing in this book; if you want the whole story, see
Java Swing by Marc Loy, Robert Eckstein, Dave Wood, Brian Cole, and James Elliott
(O'Reilly). Instead, we'll cover the basic tools you are most likely to use and show some
examples of what can be done with some of the more advanced features. Figure 15-1
shows the user interface component classes of the javax.swing package.

Figure 15-1. User interface components in the javax.swing package

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To understand Swing, it helps to understand its predecessor, the Abstract Window Toolkit
(AWT). As its name suggests, AWT is an abstraction. Like the rest of Java it was designed
to be portable; its functionality is the same for all Java implementations. However, people
generally expect their applications to have a consistent look and feel and that is usually
different on different platforms. So AWT was designed to work in the same way on all
platforms, yet have the appearance of a native application. You could choose to write your
code under Windows, then run it on an X Window System or a Macintosh. To achieve
platform independence, AWT uses interchangeable toolkits that interact with the host
windowing system to display user interface components. This shields your application
from the details of the environment it's running in. Let's say you ask AWT to create a
button. When your application or applet runs, a toolkit appropriate to the host environment
renders the button appropriately: on Windows, you can get a button that looks like other

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Windows buttons; on a Macintosh, you can get a Mac button; and so on.

AWT had some serious shortcomings. The worst was that the use of platform-specific
toolkits meant that AWT applications might be subtly incompatible on different platforms.
Furthermore, AWT lacked advanced user interface components, like trees and grids, that
were not common to all environments.

Swing takes a fundamentally different approach. Instead of using native toolkits to supply
interface items such as buttons and combo boxes, components in Swing are implemented in
Java itself. This means that, whatever platform you're using, by default a Swing button (for
example) looks the same. However, Swing also provides a powerful, pluggable look-and-
feel API that allows native operating system appearance to be substituted at the Java level.
Working purely in Java makes Swing much less prone to platform-specific bugs, which
were a problem for AWT. It also means that Swing components are much more flexible
and can be extended and modified in your applications.

Working with user interface components in Swing is meant to be easy. When building a
user interface for your application, you'll be working with prefabricated components. It's
easy to assemble a collection of user interface components (buttons, text areas, etc.) and
arrange them inside containers to build complex layouts. You can also use simple
components as building blocks for making entirely new kinds of interface gadgets that are
completely portable and reusable.

Swing uses layout managers to arrange components inside containers and control their
sizing and positioning. Layout managers define a strategy for arranging components
instead of specifying absolute positions. For example, you can define a user interface with
a collection of buttons and text areas and be reasonably confident that it will always display
correctly, even if the user resizes the application window. It doesn't matter what platform
or user interface look-and-feel you're using; the layout manager should still position them
sensibly with respect to each other.

The next two chapters contain examples using most of the components in the
javax.swing package. But before we dive into those examples, we need to spend a bit
of time talking about the concepts Swing uses for creating and handling user interfaces.
This material should get you up to speed on GUI concepts and how they are used in Java.

15.1 Components

A component is the fundamental user interface object in Java. Everything you see on the
display in a Java application is a component. This includes things like windows, panels,
buttons, checkboxes, scrollbars, lists, menus, and text fields. To be used, a component

http://lib.ommolketab.ir
http://lib.ommolketab.ir

usually must be placed in a container . Container objects group components, arrange them
for display using a layout manager, and associate them with a particular display device. All
Swing components are derived from the abstract javax.swing.JComponent class,
as you saw in Figure 15-1 . For example, the JButton class is a subclass of
AbstractButton , which is itself a subclass of the JComponent class.

JComponent is the root of the Swing component hierarchy, but it descends from the
AWT Container class. At this bottom level, Swing is based on AWT, so our
conversation occasionally delves into the AWT package. Container 's superclass is
Component , the root of all AWT components, and Component 's superclass is,
finally, Object . Because JComponent inherits from Container , it has the
capabilities of both a component and a container.

AWT and Swing, then, have parallel hierarchies. The root of AWT's hierarchy is
Component , while Swing's components are based on JComponent . You'll find
similar classes in both hierarchies, such as Button and JButton , List and JList .
But Swing is much more than a replacement for AWT-it contains sophisticated
components as well as a real implementation of the Model-View-Controller (MVC)
paradigm, which we'll discuss later.

For the sake of simplicity, we can split the functionality of the JComponent class into
two categories: appearance and behavior. The JComponent class contains methods and
variables that control an object's general appearance. This includes basic attributes such as
its visibility, its current size and location, and certain common graphical defaults, such as
font and color. The JComponent class also contains methods implemented by specific
subclasses to produce graphical displays.

When a component is first displayed, it's associated with a particular display device. The
JComponent class encapsulates access to its display area on that device. It includes tools
for accessing graphics, for working with off-screen resources, and for receiving user input.

When we talk about a component's behavior, we mean the way it responds to user-driven
events. When the user performs an action (such as pressing the mouse button) within a
component's display area, a Swing thread delivers an event object that describes what
happened. The event is delivered to objects that have registered themselves as listeners for
that type of event from that component. For example, when the user clicks on a button, the
button delivers an ActionEvent object. To receive those events, an object registers
with the button as an ActionListener .

Events are delivered by invoking designated event-handler methods within the receiving
object (the "listener"). A listener object prepares itself to receive events by implementing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

methods (e.g., actionPerformed()) for the types of events in which it is interested.
Specific types of events cover different categories of component user interaction. For
example, MouseEvent s describe activities of the mouse within a component's area,
KeyEvent s describe key presses, and higher-level events (such as ActionEvent s)
indicate that a user interface component has done its job.

We will describe events thoroughly in this chapter because they are so fundamental to the
way in which user interfaces function in Java. But they aren't limited to building user
interfaces; they are an important interobject communications mechanism, which may be
used by completely nongraphical parts of an application, as well. They are particularly
important in the context of JavaBeans, which uses events as an extremely general
notification mechanism.

Swing's event architecture is very flexible. Instead of requiring every component to listen
for and handle events for its own bit of the user interface, an application may register event
"handler" objects to receive the events for one or more components and "glue" those events
to the correct application logic. A container might, for example, process the events relating
to its child components.

One responsibility a container always has is laying out the components it contains. A
component informs its container when it does something that might affect other
components in the container, such as changing its size or visibility. The container then tells
its layout manager that it is time to rearrange the child components.

As mentioned, Swing components are also containers. Containers can manage and arrange
JComponent objects without knowing what they are or what they are doing.
Components can be swapped and replaced with new versions easily and combined into
composite user interface objects that can be, themselves, treated as individual components.
This lends itself well to building larger, reusable user interface items.

15.1.1 Peers

Swing components are peerless, or lightweight. To understand these terms, you'll have to
understand the peer system that AWT used (or still uses). Getting data out to a display
medium and receiving events from input devices involve crossing the line from Java to the
real world. The real world can be a nasty place full of architecture dependence, local
peculiarities, and strange physical devices such as mice, trackballs, and `69 Buicks.

At some level, our components have to talk to objects that contain native methods to
interact with the host operating environment. To keep this interaction as clean and well-
defined as possible, AWT used a set of peer interfaces. The peer interface made it possible

http://lib.ommolketab.ir
http://lib.ommolketab.ir

for a pure Java-language graphic component to use a corresponding real component-the
peer object-in the native environment. You didn't generally deal directly with peer
interfaces or the objects behind them; peer handling was encapsulated within the
Component class.

AWT relied heavily on peers. For example, if you created a window and added eight
buttons to it, AWT would create nine peers for you-one for the window and one for each
of the buttons. As an application programmer, you wouldn't ever have to worry about the
peers, but they would always be lurking under the surface, doing the real work of
interacting with your operating system's windowing toolkit.

In Swing, by contrast, most components are peerless , or lightweight . This means that
Swing components don't have any direct interaction with the underlying windowing
system. They draw themselves in their parent container and respond to user events, all
without the aid of a peer. All the components in Swing are written in pure Java, with no
native code involved. In Swing, only the top-level (lowest API level) windows interact
with the windowing system. These Swing containers descend from AWT counterparts, and
thus still have peers. In Swing, if you create a window and add eight buttons to it, only one
peer is created-for the window. Because it has fewer interactions with the underlying
windowing system than AWT, Swing is more reliable.

With lightweight components, it is easy to change their appearance. Since each component
draws itself, instead of relying on a peer, it can decide at runtime how to render itself.
Accordingly, Swing supports different look-and-feel schemes, which can be changed at
runtime. (A look-and-feel is the collected appearance of components in an application.)
Look-and-feels based on Windows, Macintosh, and Motif are available (though licensing
issues may encumber their use on various platforms), as well as an entirely original one
called Metal or the "Java Look and Feel," which is the default scheme.

15.1.2 The Model-View-Controller Framework

Before continuing our discussion of GUI concepts, we want to make a brief aside and talk
about the Model-View-Controller (MVC) framework. MVC is a method of building
reusable components that logically separates the structure, presentation, and behavior of a
component into separate pieces. MVC is primarily concerned with building user interface
components, but the basic ideas can be applied to many design issues; its principles can be
seen throughout Java.

The fundamental idea behind MVC is the separation of the data model for an item from its
presentation. For example, we can draw different representations (e.g., bar graphs, pie
charts) of the data in a spreadsheet. The data is the model ; the particular representation is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the view . A single model can have many views that present the data differently. A user
interface component's controller defines and governs its behavior. Typically, this includes
changes to the model, which, in turn, cause the view(s) to change, also. For a checkbox
component, the data model could be a single boolean variable, indicating whether it's
checked or not. The behavior for handling mouse-click events would alter the model, and
the view would examine that data when it draws the on-screen representation.

The way in which Swing objects communicate, by passing events from sources to listeners,
is part of this MVC concept of separation. Event listeners are "observers" (controllers) and
event sources are "observables" (models). [2] When an observable changes or performs a
function, it notifies all its observers of the activity.

Swing components explicitly support MVC. Each component is actually composed of two
pieces. One piece, called the UI-delegate, is responsible for the "view" and "controller"
roles. It takes care of drawing the component and responding to user events. The second
piece is the data model itself. This separation makes it possible for multiple Swing
components to share a single data model. For example, a read-only text box and a drop-
down list box could use the same list of strings as a data model.

15.1.3 Painting

In an event-driven environment such as Swing, components can be asked to draw
themselves at any time. In a more procedural programming environment, you might expect
a component to be involved in drawing only when first created or when it changes its
appearance. In Java, components act in a way that is closely tied to the underlying behavior
of the display environment. For example, when you obscure a component with another
window and then reexpose it, a Swing thread may ask the component to redraw itself.

Swing asks a component to draw itself by calling its paint() method. paint() may
be called at any time, but in practice, it's called when the object is first made visible,
whenever it changes its appearance, or whenever some tragedy in the display system
messes up its area. Because paint() can't make any assumptions about why it was
called, it must redraw the component's entire display. The system may limit the drawing if
only part of the component needs to be redrawn, but you don't have to worry about this.

A component never calls its paint() method directly. Instead, if a component requires
redrawing, it schedules a call to paint() by invoking repaint() . The repaint()
method asks Swing to schedule the component for repainting. At some point in the future, a
call to paint() occurs. Swing is allowed to manage these requests in whatever way is
most efficient. If there are too many requests to handle, or if there are multiple requests for
the same component, the thread can reschedule a number of repaint requests into a single

http://lib.ommolketab.ir
http://lib.ommolketab.ir

call to paint() . This means that you can't predict exactly when paint() is called in
response to a repaint() ; all you can expect is that it happens at least once, after you
request it.

Calling repaint() is normally an implicit request to be updated as soon as possible.
Another form of repaint() allows you to specify a time period within which you
would like an update, giving the system more flexibility in scheduling the request. The
system tries to repaint the component within the time you specify, but if you happen to
make more than one repaint request within that time period, the system may simply
condense them to carry out a single update within the time you specified. An application
performing animation could use this method to govern its refresh rate (by specifying a
period that is the inverse of the desired frame rate).

Swing components can act as containers, holding other components. Because every Swing
component does its own drawing, Swing components are responsible for telling contained
components to draw themselves. Fortunately, this is all taken care of for you by a
component's default paint() method. If you override this method, however, you have to
make sure to call the superclass's implementation like this:

public void paint(Graphics g) {
 super.paint(g);
 ...
}

There's a cleaner way around this problem. All Swing components have a method called
paintComponent() . While paint() is responsible for drawing the component as
well as its contained components, paintComponent() 's sole responsibility is drawing
the component itself. If you override paintComponent() instead of paint() , you
won't have to worry about drawing contained components.

Both paint() and paintComponent() receive a single argument: a Graphics
object. The Graphics object represents the component's graphics context. It corresponds
to the area of the screen on which the component can draw and provides the methods for
performing primitive drawing and image manipulation. (We'll look at the Graphics
class in detail in Chapter 17 .)

15.1.4 Enabling and Disabling Components

Standard Swing components can be turned on and off by calling the setEnabled()
method. When a component such as a JButton or JTextField is disabled, it
becomes "ghosted" or "greyed-out" and doesn't respond to user input.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For example, let's see how to create a component that can be used only once. This requires
getting ahead of the story; we won't explain some aspects of this example until later.
Earlier, we said that a JButton generates an ActionEvent when it is pressed. This
event is delivered to the listeners' actionPerformed() method. The following code
disables whatever component generated the event:

public boolean void actionPerformed(ActionEvent e) {
 ((JComponent)e.getSource()).setEnabled(false);
}

This code calls getSource() to find out which component generated the event. We cast
the result to JComponent because we don't necessarily know what kind of component
we're dealing with; it might not be a button, because other kinds of components can
generate action events. Once we know which component generated the event, we disable it.

You can also disable an entire container. Disabling a JPanel , for instance, disables all
the components it contains.

15.1.5 Focus, Please

In order to receive keyboard events, a component has to have keyboard focus . The
component with the focus is the currently selected component on the screen and is usually
highlighted visually. It receives all keyboard event information until the focus changes to a
new component. Typically a component receives focus when the user clicks on it with the
mouse or navigates to it using the keyboard. A component can ask for focus with the
JComponent `s requestFocus() method. You can configure whether a given
component is eligible to receive focus with the setFocusable() method. By default
most components, including things such as buttons and checkboxes, are "focusable." To
make an entire window and its components nonfocusable, use the Window
setFocusableWindowState() method.

The control of focus is at the heart of the user's experience with an application. Especially
with text entry fields and forms, users are accustomed to a smooth transfer of focus with
the use of keyboard navigation cues (e.g., Tab and Shift-Tab for forward and backward
field navigation). The management of focus in a large GUI with many components could
be complex. Fortunately, as of Java 1.4, Swing handles almost all this behavior for you, so
in general you don't have to implement code to specify how focus is transferred. The 1.4
release introduced an entirely new focus subsystem. The flexible
KeyboardFocusManager API provides the expected common behavior by default
and allows customization via FocusTraversalPolicy objects. We'll discuss focus-
related events later in this chapter and focus navigation more in Chapter 17 .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

15.1.6 Other Component Methods

The JComponent class is very large; it has to provide the base-level functionality for all
the various kinds of Java GUI objects. It inherits a lot of functionality from its parent
Container and Component classes. We don't have room to document every method
of the JComponent class here, but we'll flesh out our discussion by covering some more
of the important ones:

Container getParent()

Return the container that holds this component.
String getName()
void setName(String name)

Get or assign the String name of this component. Naming a component is useful for
debugging. The name is returned by toString() .

void setVisible(boolean visible)

Make the component visible or invisible, within its container. If you change the
component's visibility, the container's layout manager automatically lays out its visible
components.

Color getForeground()
void setForeground(Color c)
void setBackground(Color c)
Color getBackground()

Get and set the foreground and background colors for this component. The foreground
color of any component is the default color used for drawing. For example, it is the
color used for text in a text field as well as the default drawing color for the
Graphics object passed to the component's paint() and
paintComponent() methods. The background color is used to fill the
component's area when it is cleared by the default implementation of update() .

Dimension getSize()
void setSize(int width , int height)

Get and set the current size of the component. Note that a layout manager may change
the size of a component even after you've set its size yourself. To change the size a
component "wants" to be, use setPreferredSize() . There are other methods
in JComponent to set its location, but normally this is the job of a layout manager.

Dimension getPreferredSize()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

void setPreferredSize(Dimension preferredSize)

Use these methods to examine or sets the preferred size of a component. Layout
managers attempt to set components to their preferred sizes. If you change a
component's preferred size, you must call the method revalidate() on the
component to get it laid out again.

Cursor getCursor()
void setCursor(Cursor cursor)

Get or set the type of cursor (mouse pointer) used when the mouse is over this
component's area. For example:

JComponent myComponent = ...;
Cursor crossHairs =
 Cursor.getPredefinedCursor(Cursor.CROSSHAIR_CURSOR);
myComponent.setCursor(crossHairs);

15.2 Containers

A container is a kind of component that holds and manages other components.
JComponent objects can be containers because the JComponent class descends from
the Container class. However, you wouldn't normally add components directly to
specialized components such as buttons or lists.

Three of the most useful general container types are JFrame , JPanel , and JApplet .
A JFrame is a top-level window on your display. JFrame is derived from JWindow ,
which is pretty much the same but lacks a border. A JPanel is a generic container
element that groups components inside JFrame s and other JPanel s. The JApplet
class is a kind of container that provides the foundation for applets that run inside web
browsers. Like other JComponent s, a JApplet can contain other user-interface
components. You can also use the JComponent class directly, like a JPanel , to hold
components inside another container. With the exception of JFrame and JWindow , all
the components and containers in Swing are lightweight.

A container maintains the list of "child" components it manages and has methods for
dealing with those components. Note that this child relationship refers to a visual hierarchy,
not a subclass/superclass hierarchy. By themselves, most components aren't very useful
until they are added to a container and displayed. The add() method of the Container
class adds a component to the container. Thereafter, this component can be displayed in the
container's display area and positioned by its layout manager. You can remove a
component from a container with the remove() method.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

15.2.1 Layout Managers

A layout manager is an object that controls the placement and sizing of components within
the display area of a container. A layout manager is like a window manager in a display
system; it controls where the components go and how big they are. Every container has a
default layout manager, but you can install a new one by calling the container's
setLayout() method.

Swing comes with a few layout managers that implement common layout schemes. The
default layout manager for a JPanel is a FlowLayout , which tries to place objects at
their preferred size from left to right and top to bottom in the container. The default for a
JFrame is a BorderLayout , which places objects at specific locations within the
window, such as NORTH , SOUTH , and CENTER . Another layout manager,
GridLayout , arranges components in a rectangular grid. The most general (and
difficult to use) layout manager is GridBagLayout , which lets you do the kinds of
things you can do with HTML tables. (We'll get into the details of all these layout
managers in Chapter 16 .)

When you add a component to a container using a simple layout manager, you'll often use
the version of add() that takes a single Component as an argument. However, if you're
using a layout manager that uses "constraints," such as BorderLayout or
GridBagLayout , you must specify additional information about where to put the new
component. For that you can use the version that takes a constraint object. Here's how to
place a component at the top edge of a container that uses a BorderLayout manager:

myContainer.add(myComponent, BorderLayout.NORTH);

In this case, the constraint object is the static member variable NORTH .
GridBagLayout uses a much more complex constraint object to specify positioning.

15.2.2 Insets

Insets specify a container's margins; the space specified by the container's insets won't be
used by a layout manager. Insets are described by an Insets object, which has four
public int fields: top , bottom , left , and right . You normally don't need to
worry about the insets; the container sets them automatically, taking into account extras
like the menu bar that may appear at the top of a frame. To find the insets, call the
component's getInsets() method, which returns an Insets object.

15.2.3 Z-Ordering (Stacking Components)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

With the standard layout managers, components are not allowed to overlap. However, if
you use custom-built layout managers or absolute positioning, components within a
container may overlap. If they do, the order in which components were added to a
container matters. When components overlap, they are "stacked" in the order in which they
were added: the first component added to the container is on top, and the last is on the
bottom. To give you more control over stacking, two additional forms of the add()
method take an additional integer argument that lets you specify the component's exact
position in the container's stacking order.

15.2.4 The revalidate() and doLayout() Methods

A layout manager arranges the components in a container only when asked to. Several
things can mess up a container after it's initially laid out:

Changing its size

Resizing or moving one of its child components

Adding, showing, removing, or hiding a child component

Any of these actions cause the container to be marked invalid . This means that it needs to
have its child components readjusted by its layout manager. In most cases, Swing readjusts
the layout automatically. All components, not just containers, maintain a notion of when
they are valid or invalid. If the size, location, or internal layout of a Swing component
changes, its revalidate() method is automatically called. Internally, the
revalidate() method first calls the method invalidate() to mark the component
and all its enclosing containers as invalid. It then validates the tree. Validation descends the
hierarchy, starting at the nearest validation root container, recursively validating each
child. Validating a child Container means invoking its doLayout() method, which
asks the layout manager to do its job and then notes that the Container has been
reorganized by setting its state to valid again. A validation root is a container that can
accommodate children of any size such as JScrollPane .

There are a few cases in which you may need to tell Swing to fix things manually. One
example is when you change the preferred size of a component (as opposed to its actual
onscreen size). To clean up the layout, call the revalidate() method. So, for example,
if you have a small JPanel -say a keypad holding some buttons-and you change the
preferred size of the JPanel by calling its setPreferredSize() method, you
should also call revalidate() on the panel or its immediate container. The layout
manager of the panel then rearranges its buttons to fit inside its new area.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

15.2.5 Managing Components

There are a few additional tools of the Container class we should mention:

Component[] getComponents()

Returns the container's components in an array.
void list(PrintWriter out , int indent)

Generates a list of the components in this container and writes them to the specified
PrintWriter .

Component getComponentAt(int x , int y)

Tells you what component is at the specified coordinates in the container's coordinate
system.

15.2.6 Listening for Components

You can use the ContainerListener interface to automate setting up a container's
new components. A container that implements this interface can receive an event whenever
it gains or loses a component. This facility makes it easy for a container to micro-manage
its components.

15.2.7 Windows and Frames

Windows and frames are the top-level containers for Java components. A JWindow is
simply a plain, graphical screen that displays in your windowing system. Windows have no
frills; they are mainly suitable for making "splash" screens and pop-up windows. JFrame
, on the other hand, is a subclass of JWindow that has a border and can hold a menu bar.
You can drag a frame around on the screen and resize it, using the ordinary controls for
your windowing environment. Figure 15-2 shows a JFrame on the left and a JWindow
on the right.

Figure 15-2. A frame and a window

http://lib.ommolketab.ir
http://lib.ommolketab.ir

All other Swing components and containers must be held, at some level, inside a
JWindow or JFrame . Applets are a kind of Container . Even applets must be
housed in a frame or window, though normally you don't see an applet's parent frame
because it is part of (or simply is) the browser or appletviewer displaying the applet.

JFrame s and JWindow s are the only components that can be displayed without being
added or attached to another Container . After creating a JFrame or JWindow , you
can call the setVisible() method to display it. The following short application
creates a JFrame and a JWindow and displays them side by side, just like in Figure 15-2
.

//file: TopLevelWindows.java
import javax.swing.*;

public class TopLevelWindows {
 public static void main(String[] args) {
 JFrame frame = new JFrame("The Frame");
 frame.setSize(300, 300);
 frame.setLocation(100, 100);

 JWindow window = new JWindow();
 window.setSize(300, 300);
 window.setLocation(500, 100);

 frame.setVisible(true);
 window.setVisible(true);
 }
}

The JFrame constructor can take a String argument that supplies a title, displayed in
the JFrame 's titlebar. (Or you can create the JFrame with no title and call
setTitle() to supply the title later.) The JFrame 's size and location on your desktop

http://lib.ommolketab.ir
http://lib.ommolketab.ir

is determined by the calls to setSize() and setLocation() . After creating the
JFrame , we create a JWindow in almost exactly the same way. The JWindow doesn't
have a titlebar, so there are no arguments to the JWindow constructor.

Once the JFrame and JWindow are set up, we call setVisible(true) to get them
on the screen. The setVisible() method returns immediately, without blocking.
Fortunately, our application does not exit, even though we've reached the end of the
main() method, because the windows are still visible. You can close the JFrame by
clicking on the close button in the titlebar. JFrame 's default behavior is to hide itself
when you click on the box by calling setVisible(false) . You can alter this
behavior by calling the setDefaultCloseOperation() method or by adding an
event listener, which we'll cover later. Since we haven't arranged any other means here,
you will have to hit Ctrl-C or whatever keystroke kills a process on your machine to stop
execution of the TopLevelWindows application.

15.2.8 Other Methods for Controlling Frames

The setLocation() method of the Component class can be used on a JFrame or
JWindow to set its position on the screen. The x and y coordinates are relative to the
screen's origin (the top left corner).

You can use the toFront() and toBack() methods to place a JFrame or
JWindow in front of, or behind, other windows. By default, a user is allowed to resize a
JFrame , but you can prevent resizing by calling setResizable(false) before
showing the JFrame .

On most systems, frames can be "iconified"; that is, they can be shrunk down and
represented by a little icon image. You can get and set a frame's icon image by calling
getIconImage() and setIconImage() . As you can with all components, you
can set the cursor by calling the setCursor() method.

15.2.9 Using Content Panes

Windows and frames don't behave exactly like regular containers. With other containers,
you can add child components with the add() method. JFrame and JWindow have
some extra stuff in them (mostly to support Swing's peerless components), so you can't just
add() components directly. Instead, you need to add the components to the associated
content pane . The content pane is just a Container that covers the visible area of the
JFrame or JWindow . Whenever you create a new JFrame or JWindow , a content
pane is automatically created for you. You can retrieve it with getContentPane() .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Here's another example that creates a JFrame and adds some components to its content
pane:

//file: MangoMango1.java
import java.awt.*;
import javax.swing.*;

public class MangoMango1 {
 public static void main(String[] args) {
 JFrame frame = new JFrame("The Frame");
 frame.setLocation(100, 100);

 Container content = frame.getContentPane();
 content.setLayout(new FlowLayout());
 content.add(new JLabel("Mango"));
 content.add(new JButton("Mango"));

 frame.pack();
 frame.setVisible(true);
 }
}

The call to JFrame 's pack() method tells the frame window to resize itself to the
minimum size required to hold all its components. Instead of having to determine the size
of the JFrame , pack tells it to be "just big enough." If you do want to set the absolute
size of the JFrame yourself, call setSize() instead.

If you create your own Container , you can make it the content pane of a JFrame or
JWindow by passing it to setContentPane() . Using this strategy, you could
rewrite the previous example as follows:

//file: MangoMango2.java
import java.awt.*;
import javax.swing.*;

public class MangoMango2 {
 public static void main(String[] args) {
 JFrame f = new JFrame("The Frame");
 f.setLocation(100, 100);

 Container content = new JPanel();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 content.add(new JLabel("Mango"));
 content.add(new JButton("Mango"));
 f.setContentPane(content);

 f.pack();
 f.setVisible(true);
 }
}

We'll cover labels and buttons in Chapter 16 and layouts in Chapter 18 . The important
thing to remember is that you can't add components directly to a JFrame or JWindow .
Instead, add them to the automatically created content pane or create an entirely new
content pane. If you try to add components directly to one of these containers you will get
an informative runtime exception directing you to do otherwise.

15.3 Events

We've spent a lot of time discussing the different kinds of objects in Swing-components,
containers, and special containers such as frames and windows. Now it's time to discuss
interobject communication in detail.

Swing objects communicate by sending events. The way we talk about events- "firing"
them and "handling" them-makes it sound as if they are part of some special Java
language feature. But they aren't. An event is simply an ordinary Java object that is
delivered to its receiver by invoking an ordinary Java method. Everything else, however
interesting, is purely convention. The entire Java event mechanism is really just a set of
conventions for the kinds of descriptive objects that should be delivered; these conventions
prescribe when, how, and to whom events should be delivered.

Events are sent from a single source object to one or more listeners (or receivers). A
listener implements prescribed event-handling methods that enable it to receive a type of
event. It then registers itself with a source of that kind of event. Sometimes an adapter
object may be interposed between the event source and the listener, but in any case,
registration of a listener is always established before any events are delivered.

An event object is an instance of a subclass of java.util.EventObject ; it holds
information about something that's happened to its source. The EventObject class
itself serves mainly to identify event objects; the only information it contains is a reference
to the event source (the object that sent the event). Components don't normally send or
receive EventObject s as such; they work with subclasses that provide more specific

http://lib.ommolketab.ir
http://lib.ommolketab.ir

information.

AWTEvent is a subclass of java.awt.EventObject ; further subclasses of
AWTEvent provide information about specific event types. Swing has events of its own
that descend directly from EventObject . For the most part, you'll just be working with
specific event subclasses from the AWT or Swing packages.

ActionEvent s correspond to a decisive "action" a user has taken with the
component-like pressing a button or pressing Enter. An ActionEvent thus carries the
name of an action to be performed (the action command) by the program.
MouseEvents are generated when a user uses the mouse within a component's area.
They describe the state of the mouse and therefore carry such information as the x and y
coordinates and the state of your mouse buttons at the time the MouseEvent was
created.

ActionEvent operates at a higher semantic level than MouseEvent : an
ActionEvent lets us know that a component has performed its job; a MouseEvent
simply confers a lot of information about the mouse at a given time. You could figure out
that somebody clicked on a JButton by examining mouse events, but it is simpler to
work with action events. The precise meaning of an event, however, can depend on the
context in which it is received.

15.3.1 Event Receivers and Listener Interfaces

An event is delivered by passing it as an argument to the receiving object's event-handler
method. ActionEvent s, for example, are always delivered to a method called
actionPerformed() in the receiver:

public void actionPerformed(ActionEvent e) {
 ...
}

For each type of event, there is a corresponding listener interface that prescribes the
method(s) it must provide to receive those events. In this case, any object that receives
ActionEvent s must implement the ActionListener interface:

public interface ActionListener extends java.util.EventListener {
 public void actionPerformed(ActionEvent e);
}

All listener interfaces are subinterfaces of java.util.EventListener , which is an
empty interface. It exists only to help Java-based tools such as IDEs identify listener

http://lib.ommolketab.ir
http://lib.ommolketab.ir

interfaces.

Listener interfaces are required for a number of reasons. First, they help to identify objects
that can receive a given type of event. This way we can give the event-handler methods
friendly, descriptive names and still make it easy for documentation, tools, and humans to
recognize them in a class. Next, listener interfaces are useful because several methods can
be specified for an event receiver. For example, the FocusListener interface contains
two methods:

abstract void focusGained(FocusEvent e);
abstract void focusLost(FocusEvent e);

Although these methods each take a FocusEvent as an argument, they correspond to
different reasons for firing the event; in this case, whether the FocusEvent means that
focus was received or lost. In this case you could also figure out what happened by
inspecting the event; all AWTEvent s contain a constant specifying the event's type. But
by using two methods, the FocusListener interface saves you the effort: if
focusGained() is called, you know the event type was FOCUS_GAINED .

Similarly, the MouseListener interface defines five methods for receiving mouse
events (and MouseMotionListener defines two more), each of which gives you
some additional information about why the event occurred. In general, the listener
interfaces group sets of related event-handler methods; the method called in any given
situation provides a context for the information in the event object.

There can be more than one listener interface for dealing with a particular kind of event.
For example, the MouseListener interface describes methods for receiving
MouseEvent s when the mouse enters or exits an area or a mouse button is pressed or
released. MouseMotionListener is an entirely separate interface that describes
methods to get mouse events when the mouse is moved (no buttons pressed) or dragged
(buttons pressed). By separating mouse events into these two categories, Java lets you be a
little more selective about the circumstances under which you want to receive
MouseEvent s. You can register as a listener for mouse events without receiving mouse
motion events; because mouse motion events are extremely common, you don't want to
handle them if you don't need to.

Two simple patterns govern the naming of Swing event listener interfaces and handler
methods:

Event-handler methods are public methods that return type void and take a single
event object (a subclass of java.util.EventObject) as an argument.[3]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Listener interfaces are subclasses of java.util.EventListener that are
named with the suffix "Listener"-for example, MouseListener and
ActionListener .

These may seem pretty obvious, but they are important because they are our first hint of a
design pattern governing how to build components that work with events.

15.3.2 Event Sources

The previous section described the machinery an event receiver uses to listen for events. In
this section, we'll describe how a receiver tells an event source to send it events, as they
occur.

To receive events, an eligible listener must register itself with an event source. It does this
by calling an "add listener" method in the event source and passing a reference to itself.
(Thus, this scheme implements a callback facility.) For example, the Swing JButton
class is a source of ActionEvent s. Here's how a TheReceiver object might register
to receive these events:

// receiver of ActionEvents
class TheReceiver implements ActionListener
{
 // source of ActionEvents
 JButton theButton = new JButton("Belly");

 TheReceiver() {
 ...
 theButton.addActionListener(this);
 }

 public void actionPerformed(ActionEvent e) {
 // Belly Button pushed...
 }

The receiver makes a call to addActionListener() to become eligible to receive
ActionEvent s from the button when they occur. It passes the reference this to
register itself as an ActionListener .

To manage its listeners, an ActionEvent source (like the JButton) always
implements two methods:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

// ActionEvent source
public void addActionListener(ActionListener listener) {
 ...
}
public void removeActionListener(ActionListener listener) {
 ...
}

The removeActionListener() method removes the listener from the list so that it
will not receive future events of that kind. Swing components supply implementations of
both methods; normally, you won't need to implement them yourself. It's important to pay
attention to how your application uses event sources and listeners. It's okay to throw away
an event source without removing its listeners, but it isn't okay to throw away listeners
without removing them from the source first because the event source maintains references
to them, preventing them from being garbage-collected.

Now, you may be expecting an EventSource interface listing these two methods, but
there isn't one. There are no event source interfaces in the current conventions. If you are
analyzing a class and trying to determine what events it generates, you have to look for the
add and remove methods. For example, the presence of the addActionListener()
and removeActionListener() methods define the object as a source of
ActionEvent s. If you happen to be a human being, you can simply look at the
documentation, but if the documentation isn't available, or if you're writing a program that
needs to analyze a class (a process called reflection), you can look for this design
pattern.(There is a utility, the java.beans.Introspector , which can do this for
you).

A source of FooEvent events for the FooListener interface must implement a pair
of add/remove methods:

addFooListener(FooListener listener)
removeFooListener(FooListener listener)

If an event source can support only one event listener (unicast delivery), the add listener
method can throw the java.util.TooManyListenersException .

So what do all the naming patterns up to this point accomplish? Well, for one thing, they
make it possible for automated tools and integrated development environments to divine
sources of particular events. Tools that work with JavaBeans will use the Java reflection
and introspection APIs to search for these kinds of design patterns and identify the events
that can be fired by a component.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

At a more concrete level, it also means that event hookups are strongly typed, just like the
rest of Java. So it's impossible to accidentally hook up the wrong kind of components; for
example, you can't register to receive ItemEvent s from a JButton because a button
doesn't have an addItemListener() method. Java knows at compile time what types
of events can be delivered to whom.

15.3.3 Event Delivery

Swing and AWT events are multicast; every event is associated with a single source but
can be delivered to any number of receivers. When an event is fired, it is delivered
individually to each listener on the list (Figure 15-3).

Figure 15-3. Event delivery

There are no guarantees about the order in which events are delivered. Nor are there any
guarantees about what happens if you register yourself more than once with an event
source; you may or may not get the event more than once. Similarly, you should assume
that every listener receives the same event data. In general, events are immutable; they can't
be changed by their listeners.

To be complete, we could say that event delivery is synchronous with respect to the event
source, but that follows from the fact that the event delivery is really just the invocation of
a normal Java method. The source of the event calls the handler method of each listener.
However, listeners shouldn't assume all the events will be sent in the same thread, unless
they are AWT/Swing events, which are always sent serially by a global event dispatcher
thread.

15.3.4 Event Types

All the events used by Swing GUI components are subclasses of
java.util.EventObject . You can use or subclass any of the EventObject
types for use in your own components. We describe the important event types here.

The events and listeners that are used by Swing fall into two packages:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

java.awt.event and javax.swing.event . As we've discussed, the structure of
components has changed significantly between AWT and Swing. The event mechanism,
however, is fundamentally the same, so the events and listeners in java.awt.event
are used by Swing components. In addition, Swing has added event types and listeners in
the javax.swing.event package.

java.awt.event.ComponentEvent is the base class for events that can be fired
by any component. This includes events that provide notification when a component
changes its dimensions or visibility as well as the other event types for mouse operations
and key presses. ContainerEvent s are fired by containers when components are
added or removed.

15.3.5 The java.awt.event.InputEvent Class

MouseEvent s, which track the state of the mouse, and KeyEvent s, which are fired
when the user uses the keyboard, are kinds of java.awt.event.InputEvent s.
When the user presses a key or moves the mouse within a component's area, the events are
generated with that component identified as the source.

Input events and GUI events are processed in a special event queue that is managed by
Swing. This gives Swing control over how all its events are delivered. First, under some
circumstances, a sequence of the same type of event may be compressed into a single
event. This is done to make some event types more efficient-in particular, mouse events
and some special internal events used to control repainting. Perhaps more important to us,
input events are delivered with extra information that lets listeners decide if the component
itself should act on the event.

15.3.6 Mouse and Key Modifiers on InputEvents

InputEvent s come with a set of flags for special modifiers. These let you detect
whether the Shift, Control, or Alt keys were held down during a mouse button or key press,
and, in the case of a mouse button press, distinguish which mouse button was involved.
The following are the flag values contained in java.awt.event.InputEvent :

SHIFT_MASK
CTRL_MASK
META_MASK
ALT_MASK
BUTTON1_MASK
BUTTON2_MASK

http://lib.ommolketab.ir
http://lib.ommolketab.ir

BUTTON3_MASK

To check for one or more flags, evaluate the bitwise AND of the complete set of modifiers
and the flag or flags you're interested in. The complete set of modifiers involved in the
event is returned by the InputEvent 's getModifiers() method:

public void mousePressed (MouseEvent e) {
 int mods = e.getModifiers();
 if ((mods & InputEvent.SHIFT_MASK) != 0) {
 // shifted Mouse Button press
 }
}

The three BUTTON flags can determine which mouse button was pressed on a two- or
three-button mouse. If you use these, you run the risk that your program won't work on
platforms without multibutton mice. Currently, BUTTON2_MASK is equivalent to
ALT_MASK , and BUTTON3_MASK is equivalent to META_MASK . This means that
pushing the second mouse button is equivalent to pressing the first (or only) button with
the Alt key depressed, and the third button is equivalent to the first with the Meta key
depressed. These provide some minimal portability even for systems that don't provide
multibutton mice. However, for the most common uses of these buttons-pop-up
menus-you don't have to write explicit code; Swing provides special support that
automatically maps to the correct gesture in each environment (see the PopupMenu class
in Chapter 16).

15.3.6.1 Mouse-wheel events

Java 1.4 added support for the mouse wheel. (A mouse wheel is a scrolling device in place
of a middle mouse button.) By default, Swing handles mouse-wheel movement for
scrollable components, so you should not have to write explicit code to handle this. Mouse
wheel events are handled a little differently from other events because the conventions for
using the mouse wheel don't always require the mouse to be over a scrolling component. If
the immediate target component of a mouse-wheel event is not registered to receive it, a
search is made for the first enclosing container that wants to consume the event. This
allows components enclosed in ScrollPane s to operate as expected.

If you wish to explicitly handle mouse-wheel events, you can register to receive them using
the MouseWheelListener interface shown in Table 15-1 in the next section. Mouse-
wheel events encapsulate information about the amount of scrolling and the type of scroll
unit, which on most systems may be configured externally to be fine-grained scroll units or
large blocks. If you want a physical measure of how far the wheel was turned, you can get

http://lib.ommolketab.ir
http://lib.ommolketab.ir

that with the getWheelRotation() method, which returns a number of clicks.

15.3.7 Focus Events

As we mentioned earlier, focus handling is largely done automatically in Swing
applications and we'll discuss it more in Chapter 17 . However, understanding how focus
events are handled will help you understandand customize components.

As we described, a component can make itself eligible to receive focus using the
JComponent setFocusable() method (windows may use
setFocusableWindowState()). A component normally receives focus when the
user clicks on it with the mouse. It can also programmatically request focus using the
requestFocus() or requestFocusInWindow() methods. The
requestFocusInWindow() method acts just like requestFocus() except that
it does not ask for transfer across windows. (There are currently limitations on some
platforms that prevent focus transfer from native applications to Java applications, so using
requestFocusInWindow() guarantees portability by adding this restriction.)

Although a component can request focus explicitly, the only way to verify when a
component has received or lost focus is by using the FocusListener interface (see
Table 15-1 and Table 15-2 later in this chapter). You can use this interface to customize the
behavior of your component when it is ready for input (e.g., the TextField 's blinking
cursor). Also, input components often respond to the loss of focus by committing their
changes. For example, JTextFields and other components can be arranged to validate
themselves when the user attempts to move to a new field and to prevent the focus change
until the field is valid (as we'll see in Chapter 17).

Assuming that there is currently no focus, the following sequence of events happens when
a component receives focus:

WINDOW_ACTIVATED
WINDOW_GAINED_FOCUS
FOCUS_GAINED

The first two are WindowEvent s delivered to the component's containing Window ,
and the third is a FocusEvent , sent to the component itself. If a component in another
window subsequently receives focus, the following complementary sequence will occur:

FOCUS_LOST
WINDOW_FOCUS_LOST
WINDOW_DEACTIVATED

http://lib.ommolketab.ir
http://lib.ommolketab.ir

These events carry a certain amount of context with them. The receiving component can
determine from what component the focus is being transferred and from what Window .
The yielding component and window are called "opposites" and are available with the
FocusEvent getOppositeComponent() and WindowEvent
getOppositeWindow() methods. If the opposite is part of a native non-Java
application, then these values may be null .

Focus gained and lost events may also be marked as "temporary," as determined by the
FocusEvent isTemporary() method. The concept of a temporary focus change is
used for components such as pop-up menus, scrollbars, and window manipulation where
control is expected to return to the primary component later. The distinction is made for
components to "commit" or validate data upon losing focus. No commit should happen on
a temporary loss of focus.

15.4 Event Summary

Table 15-1 and Table 15-2 summarize commonly used Swing events, which Swing
components fire them, and the methods of the listener interfaces that receive them. The
events and listeners are divided between the java.awt.event and
javax.swing.event packages.

Table 15-1. Swing component and container events

Event Fired by Listener interface Handler method

java.awt.event.ComponentEvent All
components

ComponentListener

componentResized()
componentMoved()
componentShown()
componentHidden()

java.awt.event.FocusEvent All
components

FocusListener focusGained()

 focusLost()

java.awt.event.KeyEvent
All
components

KeyListener
keyTyped()
keyPressed()
keyReleased()

java.awt.event.MouseEvent
All
components

MouseListener

mouseClicked()
mousePressed()
mouseReleased()
mouseEntered()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

mouseExited()

 MouseMotionListener
mouseDragged()
mouseMoved()

java.awt.event.ContainerEvent All
containers

ContainerListener
componentAdded()
componentRemoved()

Table 15-2. Component-specific swing events

Event Fired by Listener interface Handler method

java.awt.event.ActionEvent

JButton
JCheckBoxMenuItem
JComboBox
JFileChooser
JList
JRadioButtonMenuItem
JTextField
JToggleButton

ActionListener actionPerformed()

java.awt.event.AdjustmentEvent JScrollBar AdjustmentListener adjustmentValue-Changed()

javax.swing.event.CaretEvent JTextComponent CaretListener caretUpdate()

javax.swing.event.HyperlinkEvent JEditorPane, JTextPane HyperlinkListener hyperlinkUpdate()

java.awt.event.InternalFrameEvent JInternalFrame InternalFrameListener

internalFrame-Activated()
internalFrameClosed()
internalFrame-Closing()
internalFrame-Deactivated()
internalFrame-Deiconified()
internalFrame-Iconified()
internalFrameOpened()

java.awt.event.ItemEvent

JCheckBoxMenuItem
JComboBox
JRadioButtonMenuItem
JToggleButton

ItemListener itemStateChanged()

javax.swing.event.ListDataEvent ListModel ListDataListener
contentsChanged()
intervalAdded()
intervalRemoved()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

javax.swing.event.ListSelectionEvent
JList
ListSelectionModel

ListSelectionListener valueChanged()

javax.swing.event.MenuEvent JMenu MenuListener
menuCanceled()
menuDeselected()
menuSelected()

javax.swing.event.PopupMenuEvent JPopupMenu PopupMenuListener
popupMenuCanceled()
popupMenuWill-BecomeInvisible()
popupMenuWill-BecomeVisible()

javax.swing.event.MenuKeyEvent JMenuItem MenuKeyListener
menuKeyPressed()
menuKeyReleased()
menuKeyTyped()

javax.swing.event.MenuDragMouseEvent JMenuItem MenuDragMouseListener

menuDragMouse-Dragged()
menuDragMouse-Entered()
menuDragMouse-
Exited()
menuDragMouse-Released()

javax.swing.event.TableColumnModelEvent TableColumnModel[4] TableColumnModelListener

columnAdded()
columnMarginChanged()
columnMoved()
columnRemoved()
columnSelection-Changed()

javax.swing.event.TableModelEvent TableModel TableModelListener tableChanged()

javax.swing.event.TreeExpansionEvent JTree TreeExpansionListener
treeCollapsed()
treeExpanded()

javax.swing.event.TreeModelEvent TreeModel TreeModelListener

treeNodesChanged()
treeNodesInserted()
treeNodesRemoved()
treeStructure-Changed()

javax.swing.event.TreeSelectionEvent
JTree
TreeSelectionModel

TreeSelectionListener valueChanged()

javax.swing.event.UndoableEditEvent javax.swing.text.Document UndoableEditListener undoableEdit-Happened()

java.awt.event. WindowEvent
JDialog
JFrame
JWindow

WindowListener

windowOpened()
windowClosing()
windowClosed()
windowIconified()
windowDeiconified()
windowActivated()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

windowDeactivated()

In Swing, a component's model and view are distinct. Strictly speaking, components don't
fire events; models do. When you press a JButton , for example, it's actually the button's
data model that fires an ActionEvent , not the button itself. But JButton has a
convenience method for registering ActionListener s; this method passes its
argument through to register the listener with the button model. In many cases (as with
JButton s), you don't have to deal with the data model separately from the view, so we
can speak loosely of the component itself firing the events. InputEvent s are, of course,
generated by the native input system and fired for the appropriate component, although the
listener responds as though they're generated by the component.

15.4.1 Adapter Classes

It's not ideal to have your application components implement a bunch of listener interfaces
and receive events directly. Sometimes it's not even possible. Being an event receiver
forces you to modify or subclass your objects to implement the appropriate event listener
interfaces and add the code necessary to handle the events. And since we are talking about
Swing events here, a more subtle issue is that you would be, of necessity, building GUI
logic into parts of your application that shouldn't have to know anything about the GUI.
Let's look at an example.

In Figure 15-4 , we have drawn the plans for our Vegomatic food processor. Here we have
made our Vegomatic object implement the ActionListener interface so that it can
receive events directly from the three JButton components: Chop , Puree , and
Frappe . The problem is that our Vegomatic object now has to know more than how
to mangle food. It also has to be aware that it is driven by three controls-specifically,
buttons that send action commands-and be aware of which methods it should invoke for
those commands. Our boxes labeling the GUI and application code overlap in an
unwholesome way. If the marketing people should later want to add or remove buttons or
perhaps just change the names, we have to be careful. We may have to modify the logic in
our Vegomatic object. All is not well.

Figure 15-4. Implementing the ActionListener interface directly

http://lib.ommolketab.ir
http://lib.ommolketab.ir

An alternative is to place an adapter class between our event source and receiver. An
adapter is a simple object whose sole purpose is to map an incoming event to an outgoing
method.

Figure 15-5 shows a better design that uses three adapter classes, one for each button. The
implementation of the first adapter might look like:

class VegomaticAdapter1 implements ActionListener {
 Vegomatic vegomatic;
 VegomaticAdapter1 (Vegotmatic vegomatic) {
 this.vegomatic = vegomatic;
 }
 public void actionPerformed(ActionEvent e) {
 vegomatic.chopFood();
 }
}

Figure 15-5. Implementing the ActionListener interface using adapter classes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

So somewhere in the code where we build our GUI, we could register our listener like this:

Vegomatic theVegomatic = ...;
Button chopButton = ...;

// make the hookup
chopButton.addActionListener(new VegomaticAdapter1(theVegomatic));

Instead of registering itself (this) as the Button's listener, the adapter registers the
Vegomatic object (theVegomatic). In this way, the adapter acts as an intermediary,
hooking up an event source (the button) with an event receiver (the virtual chopper).

We have completely separated the messiness of our GUI from the application code.
However, we have added three new classes to our application, none of which does very
much. Is that good? It depends on your vantage point.

Under different circumstances, our buttons may have been able to share a common adapter
class that was simply instantiated with different parameters. Various trade-offs can be made
between size, efficiency, and elegance of code. Adapter classes will often be generated
automatically by development tools. The way we have named our adapter classes
VegomaticAdapter1 , VegomaticAdapter2 , and VegomaticAdapter3
hints at this. More often, when hand-coding, you'll use an anonymous inner class, as we'll
see in the next section. At the other extreme, we can forsake Java's strong typing and use
the Reflection API to create a completely dynamic hookup between an event source and its
listener.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

15.4.2 Dummy Adapters

Many listener interfaces contain more than one event-handler method. Unfortunately, this
means that to register yourself as interested in any one of those events, you must implement
the whole listener interface. And to accomplish this you might find yourself typing in
dummy "stubbed-out" methods, simply to complete the interface. There is really nothing
wrong with this, but it is a bit tedious. To save you some trouble, AWT and Swing provide
some helper classes that implement these dummy methods for you. For each of the most
common listener interfaces containing more than one method, there is an adapter class
containing the stubbed methods. You can use the adapter class as a base class for your own
adapters. So when you need a class to patch together your event source and listener, you
can simply subclass the adapter and override only the methods you want.

For example, the MouseAdapter class implements the MouseListener interface
and provides the following implementation:

public void mouseClicked(MouseEvent e) {};
public void mousePressed(MouseEvent e) {};
public void mouseReleased(MouseEvent e) {};
public void mouseEntered(MouseEvent e) {};
public void mouseExited(MouseEvent e) {};

This isn't a tremendous time saver; it's simply a bit of sugar. The primary advantage comes
into play when we use the MouseAdapter as the base for our own adapter in an
anonymous inner class. For example, suppose we want to catch a mousePressed()
event in some component and blow up a building. We can use the following to make the
hookup:

someComponent.addMouseListener(new MouseAdapter() {
 public void MousePressed(MouseEvent e) {
 building.blowUp();
 }
});

We've taken artistic liberties with the formatting, but it's very readable. Moreover, we've
avoided creating stub methods for the four unused event-handler methods. Writing
adapters is common enough that it's nice to avoid typing those extra few lines and perhaps
stave off the onset of carpal tunnel syndrome for a few more hours. Remember that any
time you use an inner class, the compiler is generating a class for you, so the messiness
you've saved in your source still exists in the output classes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

15.5 The AWT Robot!

This topic may not be of immediate use to everyone, but sometimes an API is just
interesting enough that it deserves mentioning. In Java 1.3 a class with the intriguing name
java.awt.Robot was added. The AWT robot provides an API for generating input
events such as keystrokes and mouse gestures programmatically. It can be used to build
automated GUI testing tools and the like. The following example uses the Robot class to
move the mouse to the upper left area of the screen and perform a series of events
corresponding to a double click. On most Windows systems, this opens up the My
Computer folder that lives in that region of the screen.

public class RobotExample
{
 public static void main(String [] args) throws Exception
 {
 Robot r = new Robot();
 r.mouseMove(35,35);
 r.mousePress(InputEvent.BUTTON1_MASK);
 r.mouseRelease(InputEvent.BUTTON1_MASK);
 Thread.sleep(50);
 r.mousePress(InputEvent.BUTTON1_MASK);
 r.mouseRelease(InputEvent.BUTTON1_MASK);
 }
}

15.6 Multithreading in Swing

An important compromise was made early in the design of Swing relating to speed, GUI
consistency, and thread safety. To provide maximum performance and simplicity in the
common case, Swing does not explicitly synchronize access to most Swing component
methods. This means that most Swing components are, technically, not thread-safe for
multithreaded applications. Now don't panic: it's not as bad as it sounds because there is a
plan. All event processing in AWT/Swing is handled by a single, system thread using a
single system event queue. The queue serves two purposes. First, it eliminates thread-safety
issues by making all GUI modifications happen in a single thread. Second, the queue
imposes a strict ordering of all activity in Swing. Because painting is handled in Swing
using events, all screen updating is also ordered with respect to all event handling.

What this means for you is that multithreading programs need to be careful about how they

http://lib.ommolketab.ir
http://lib.ommolketab.ir

update Swing components after they are realized (added to a visible container). If you
make arbitrary modifications to Swing components from your own threads, you run the
risk of malformed rendering on the screen and inconsistent behavior.

There are several conditions under which it is always safe to modify a Swing component.
First, Swing components can be modified before they are realized. The term realized
originates from the days when the component would have created its peer object. It is the
point when it is added to a visible container or when it is made visible in the case of a
window. Most of our examples in this book set up GUI components in their main()
method, add them to a JFrame, and then, as their final action cause the JFrame to be
displayed using setVisible() . This style of setup is safe because components are not
realized until the container is made visible. Actually, that last sentence is not entirely true.
Technically, components can also be realized by the JFrame() pack() method.
However since no GUI is shown until the container is made visible, it is unlikely that any
GUI activity can be mishandled.

Second, it's safe to modify Swing components from code that is already running from the
system event handler's thread. Because all events are processed by the event queue, the
methods of all Swing event listeners are normally invoked by the system event handling
thread. This means that event handler methods and, transitively, any methods called from
those methods during the lifetime of that call can freely modify Swing GUI components
because they are already running in the system event-dispatching thread. If you are unsure
of whether some bit of code will ever be called outside the normal event thread, you can
use the static method SwingUtilities.isEventDispatchThread() to test the
identity of the current thread. You can then perform your activity using the alternate
mechanism we'll talk about later.

Finally, Swing components can be safely modified when the API documentation explicitly
says that the method is thread-safe. Many important methods of Swing components are
explicitly documented as thread-safe. These include the JComponent repaint() and
revalidate() methods, many methods of Swing text components, and all listener add
and remove methods.

If you can't meet any of the requirements for thread safety listed previously, you can use a
simple API to get the system event queue to perform arbitrary activities for you on the
event handling thread. This is accomplished using the invokeAndWait() or
invokeLater() static methods of the javax.swing.SwingUtilities class.

public static void invokeLater(Runnable doRun)

Use this method to ask Swing to execute the run() method of the specified

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Runnable .
public static void invokeAndWait(Runnable doRun)throws
InterruptedException,InvocationTargetException

This method is just like invokeLater() except that it waits until the run()
method has completed before returning.

You can put whatever activities you want inside a Runnable object and cause the event
dispatcher to perform them using these methods. Often you'll use an inner class, for
example:

SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 MyComponent.setVisible(false);
 }
});

You may find that you won't have to use the event dispatcher in simple GUI applications
because most activity happens in response to user interface events where it is safe to
modify components. However, consider these caveats when you create threads to perform
long-running tasks such as loading data or communicating over the network.

[1] Don't be fooled by the javax prefix, which usually denotes a standard extension API.

Swing is an integral part of the core APIs in Java 2 Standard Edition.

[2] In Chapter 10 we described the Observer class and Observable interface of the

java.util package. Swing doesn't use these classes directly, but it does use exactly the

same design pattern for handling event sources and listeners.

[3] This rule is not complete. The JavaBeans conventions (see Chapter 19) allows event-
handler methods to take additional arguments when absolutely necessary and also to throw
checked exceptions.

[4] The TableColumnModel class breaks with convention in the names of the methods that
add listeners. They are addColumnModelListener() and removeColumnModelListener().

CONTENTS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

Chapter 16. Using Swing Components

 16.1 Buttons and Labels

 16.2 Checkboxes and Radio Buttons
 16.3 Lists and Combo Boxes

 16.4 The Spinner

 16.5 Borders

 16.6 Menus

 16.7 The PopupMenu Class
 16.8 The JScrollPane Class

 16.9 The JSplitPane Class
 16.10 The JTabbedPane Class

 16.11 Scrollbars and Sliders

 16.12 Dialogs

In the previous chapter, we discussed a number of concepts, including how Java's user
interface facility is put together and how the larger pieces work. You should understand
what components and containers are, how you use them to create a display, what events
are, how components use them to communicate with the rest of your application, and what
layout managers are.

Now that we're through with the general concepts and background, we'll get to the fun
stuff: how to do things with Swing. We will cover most of the components that the Swing
package supplies, how to use these components in applets and applications, and how to
build your own components. We will have lots of code and lots of pretty examples to look
at.

There's more material than fits in a single chapter. In this chapter, we'll cover all the basic
user interface components. In the next chapter, we'll cover some of the more involved
topics: text components, trees, tables, and creating your own components.

16.1 Buttons and Labels

We'll start with the simplest components: buttons and labels. Frankly, there isn't much to
say about them. If you've seen one button, you've seen them all, and you've already seen
buttons in the applications in Chapter 2 (HelloJava3 and HelloJava4). A button
generates an ActionEvent when the user presses it. To receive these events, your

http://lib.ommolketab.ir
http://lib.ommolketab.ir

program registers an ActionListener , which must implement the
actionPerformed() method. The argument passed to actionPerformed() is
the event itself.

There's one more thing worth saying about buttons, which applies to any component that
generates an action event. Java lets us specify an "action command" string for buttons (and
other components, like menu items, that can generate action events). The action command
is less interesting than it sounds. It is just a String that serves to identify the component
that sent the event. By default, the action command of a JButton is the same as its label;
it is included in action events, so you can use it to figure out which button an event came
from.

To get the action command from an action event, call the event's getAction-
Command() method. The following code checks whether the user pressed the button
labeled Yes :

public void actionPerformed(ActionEvent e){
 if (e.getActionCommand().equals("Yes") {
 //the user pressed "Yes"; do something
 ...
 }
}

Yes is a string, not a command per se. You can change the action command by calling the
button's setActionCommand() method. The following code changes button
myButton 's action command to "confirm":

myButton.setActionCommand("confirm");

It's a good idea to get used to setting action commands explicitly; this helps to prevent your
code from breaking when you or some other developer " internationalizes" it or otherwise
changes the button's label. If you rely on the button's label, your code stops working as
soon as that label changes; a French user might see the label Oui rather than Yes . By
setting the action command, you eliminate one source of bugs; for example, the button
myButton in the previous example always generates the action command confirm ,
regardless of what its label says.

Swing buttons can have an image in addition to a label. The JButton class includes
constructors that accept an Icon object, which knows how to draw itself. You can create
buttons with captions, images, or both. A handy class called ImageIcon takes care of
loading an image for you and can be used to add an image to a button. The following
example shows how this works:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

//file: PictureButton.java
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class PictureButton {
 public static void main(String[] args)
 {
 JFrame frame = new JFrame();
 Icon icon = new ImageIcon("rhino.gif");
 JButton button = new JButton(icon);

 button.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 System.out.println("Urp!");
 }
 });

 frame.getContentPane().add(button);
 frame.pack();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }
}

The example creates an ImageIcon from the rhino.gif file. Then a JButton is created
from the ImageIcon . The whole thing is displayed in a JFrame . This example also
shows the idiom of using an anonymous inner class as an ActionListener .

There's even less to be said about JLabel components. They're just text strings or images
housed in a component. There aren't any special events associated with labels; about all
you can do is specify the text's alignment, which controls the position of the text within the
label's display area. As with buttons, JLabel s can be created with Icon s if you want to
create a picture label. The following code creates some labels with different options:

// default alignment (CENTER)
JLabel label1 = new JLabel("Lions");

// left aligned
JLabel label2 = new JLabel("Tigers", SwingConstants.LEFT);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

//label with no text, default alignment
JLabel label3 = new JLabel();

// create image icon
Icon icon = new ImageIcon("rhino.gif");

// create image label
JLabel label4 = new JLabel(icon);

// assigning text to label3
label3.setText("and Bears");

// set alignment
label3.setHorizontalAlignment(SwingConstants.RIGHT);

The alignment constants are defined in the SwingConstants interface.

Now we've built several labels, using a variety of constructors and several of the class's
methods. To display the labels, just add them to a container by calling the container's
add() method.

You can set other label characteristics, such as changing their font or color, using the
methods of the Component class, JLabel 's distant ancestor. For example, you can call
setFont() and setColor() on a label, as with any other component.

Given that labels are so simple, why do we need them at all? Why not just draw a text
string directly on the container object? Remember that a JLabel is a JComponent .
That's important; it means that labels have the normal complement of methods for setting
fonts and colors that we mentioned earlier as well as the ability to be persistently and
sensibly managed by a layout manager. Therefore, they're much more flexible than a text
string drawn at an absolute location within a container. Speaking of layouts-if you use the
setText() method to change the text of your label, the label's preferred size may
change. But the label's container automatically lays out its components when this happens,
so you don't have to worry about it.

16.1.1 HTML Text in Buttons and Labels

Swing can interpret HTML-formatted text in JLabel and JButton labels. The
following example shows how to create a button with some HTML-formatted text:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

JButton button = new JButton(
 "<html>"
 + "SMALL "
 + "CAPITALS");

Older versions of Java may not render complex HTML very well. But as of 1.4, most basic
HTML features are supported, including crazy things such as images and tables.

Figure 16-1 uses an HTML table to arrange its text.

Figure 16-1. Button using HTML table

Figure 16-2 uses an HTML image tag to display an image.

Figure 16-2. Button using HTML img tag

The code for the two figures looks like this:

String html=
 "<html><table border=1>"
 +"<tr><td>One</td><td>Two</td></tr>"
 +"<tr><td>Three</td><td>Four</td></tr>"
 +"</table>";
JButton button = new JButton(html);

String html2=
 "<html><h3>Learning Java</h3>"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 +"";
Jbutton button2 = new JButton(html2);

16.2 Checkboxes and Radio Buttons

A checkbox is a labeled toggle switch. Each time the user clicks it, its state toggles between
checked and unchecked. Swing implements the checkbox as a special kind of button. Radio
buttons are similar to checkboxes, but they are normally used in groups. Clicking on one
radio button in the group automatically turns the others off. They are named for the
mechanical preset buttons on old car radios (like some of us had in high school).

Checkboxes and radio buttons are represented by instances of JCheckBox and
JRadioButton , respectively. Radio buttons can be tethered together using an instance
of another class called ButtonGroup . By now you're probably well into the swing of
things (no pun intended) and could easily master these classes on your own. We'll use an
example to illustrate a different way of dealing with the state of components and to show
off a few more things about containers.

A JCheckBox sends ItemEvent s when it's pushed. Because a checkbox is a kind of
button, it also fires ActionEvent s when checked. For something like a checkbox, we
might want to be lazy and check on the state of the buttons only at some later time, such as
when the user commits an action. For example, when filling out a form you may only care
about the user's choices when the submit button is pressed.

The next application, DriveThrough , lets us check off selections on a fast food menu,
as shown in Figure 16-3 .

Figure 16-3. The DriveThrough application

DriveThrough prints the results when we press the Place Order button. Therefore, we
can ignore all the events generated by our checkboxes and radio buttons and listen only for
the action events generated by the regular button.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

//file: DriveThrough.java
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class DriveThrough
{
 public static void main(String[] args) {
 JFrame frame = new JFrame("Lister v1.0");

 JPanel entreePanel = new JPanel();
 final ButtonGroup entreeGroup = new ButtonGroup();
 JRadioButton radioButton;
 entreePanel.add(radioButton = new JRadioButton("Beef"));
 radioButton.setActionCommand("Beef");
 entreeGroup.add(radioButton);
 entreePanel.add(radioButton = new JRadioButton("Chicken"));
 radioButton.setActionCommand("Chicken");
 entreeGroup.add(radioButton);
 entreePanel.add(radioButton = new JRadioButton("Veggie", true));
 radioButton.setActionCommand("Veggie");
 entreeGroup.add(radioButton);

 final JPanel condimentsPanel = new JPanel();
 condimentsPanel.add(new JCheckBox("Ketchup"));
 condimentsPanel.add(new JCheckBox("Mustard"));
 condimentsPanel.add(new JCheckBox("Pickles"));

 JPanel orderPanel = new JPanel();
 JButton orderButton = new JButton("Place Order");
 orderPanel.add(orderButton);

 Container content = frame.getContentPane();
 content.setLayout(new GridLayout(3, 1));
 content.add(entreePanel);
 content.add(condimentsPanel);
 content.add(orderPanel);

 orderButton.addActionListener(new ActionListener() {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public void actionPerformed(ActionEvent ae) {
 String entree =
 entreeGroup.getSelection().getActionCommand();
 System.out.println(entree + " sandwich");
 Component[] components = condimentsPanel.getComponents();
 for (int i = 0; i < components.length; i++) {
 JCheckBox cb = (JCheckBox)components[i];
 if (cb.isSelected())
 System.out.println("With " + cb.getText());
 }
 }
 });

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(300, 150);
 frame.setVisible(true);
 }
}

DriveThrough lays out three panels. The radio buttons in the entreePanel are tied
together through a ButtonGroup object. We add() the buttons to a ButtonGroup
to make them mutually exclusive. The ButtonGroup object is an odd animal. One
might expect it to be a container or a component, but it isn't; it's simply a helper object that
allows only one RadioButton to be selected at a time.

In this example, the button group forces you to choose a beef, chicken, or veggie entree,
but not more than one. The condiment choices, which are JCheckBox es, aren't in a
button group, so you can request any combination of ketchup, mustard, and pickles on your
sandwich.

When the Place Order button is pushed, we receive an ActionEvent in the
actionPerformed() method of our inner ActionListener . At this point, we
gather the information in the radio buttons and checkboxes and print it.
actionPerformed() simply reads the state of the various buttons. We could have
saved references to the buttons in a number of ways; this example demonstrates two. First,
we find out which entree was selected. To do so, we call the ButtonGroup 's
getSelection() method. This returns a ButtonModel , upon which we
immediately call getActionCommand() . This returns the action command as we set
it when we created the radio buttons. The action commands for the buttons are the entrée
names, which is exactly what we need.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To find which condiments were selected, we use a more complicated procedure. The
problem is that condiments aren't mutually exclusive, so we don't have the convenience of
a ButtonGroup . Instead, we ask the condiments JPanel for a list of its components.
The getComponents() method returns an array of references to the container's child
components. We'll use this to loop over the components and print the results. We cast each
element of the array back to JCheckBox and call its isSelected() method to see if
the checkbox is on or off. If we were dealing with different types of components in the
array, we could determine each component's type with the instanceof operator. Or,
more generally, we could maintain references to the elements of our form in some explicit
way (a map by name,perhaps).

16.3 Lists and Combo Boxes

JList s and JComboBox es are a step up on the evolutionary chain from JButton s
and JLabel s. Lists let the user choose from a group of alternatives. They can be
configured to force a single selection or allow multiple choices. Usually, only a small
group of choices is displayed at a time; a scrollbar lets the user move to the choices that
aren't visible. The user can select an item by clicking on it. She can expand the selection to
a range of items by holding down Shift and clicking on another item. To make
discontinuous selections, the user can hold down the Control key instead of the Shift key
(on a Mac, this is the Command key).

A combo box is a cross-breed between a text field and a list. It displays a single line of text
(possibly with an image) and a downward pointing arrow on one side. If you click on the
arrow, the combo box opens up and displays a list of choices. You can select a single
choice by clicking on it. After a selection is made, the combo box closes up; the list
disappears, and the new selection is shown in the text field.

Like other components in Swing, lists and combo boxes have data models that are distinct
from visual components. The list also has a selection model that controls how selections
may be made on the list data.

Lists and combo boxes are similar because they have similar data models. Each is simply
an array of acceptable choices. This similarity is reflected in Swing, of course: the type of a
JComboBox 's data model is a subclass of the type used for a JList 's data model. The
next example demonstrates this relationship.

The following example creates a window with a combo box, a list, and a button. The
combo box and the list use the same data model. When you press the button, the program
writes out the current set of selected items in the list (see Figure 16-4).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 16-4. A combo box and a list using the same data model

Here's the code for the example:

//file: Lister.java
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Lister {
 public static void main(String[] args) {
 JFrame frame = new JFrame("Lister v1.0");

 // create a combo box
 String [] items = { "uno", "due", "tre", "quattro", "cinque",
 "sei", "sette", "otto", "nove", "deici",
 "undici", "dodici" };
 JComboBox comboBox = new JComboBox(items);
 comboBox.setEditable(true);

 // create a list with the same data model
 final JList list = new JList(comboBox.getModel());

 // create a button; when it's pressed, print out
 // the selection in the list
 JButton button = new JButton("Per favore");
 button.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 Object[] selection = list.getSelectedValues();
 System.out.println("-----");
 for (int i = 0; i < selection.length; i++)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 System.out.println(selection[i]);
 }
 });

 // put the controls the content pane
 Container c = frame.getContentPane();
 JPanel comboPanel = new JPanel();
 comboPanel.add(comboBox);
 c.add(comboPanel, BorderLayout.NORTH);
 c.add(new JScrollPane(list), BorderLayout.CENTER);
 c.add(button, BorderLayout.SOUTH);

 frame.setSize(200, 200);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }
}

The combo box is created from an array of strings. This is a convenience-behind the
scenes, the JComboBox constructor creates a data model from the strings you supply and
sets the JComboBox to use that data model. The list is created using the data model of the
combo box. This works because JList expects to use a ListModel for its data model,
and the ComboBoxModel used by the JComboBox is a subclass of ListModel .

The button's action event handler simply prints out the selected items in the list, which are
retrieved with a call to getSelectedValues() . This method actually returns an
object array, not a string array. List and combo box items, like many other things in Swing,
are not limited to text. You can use images, drawings, or some combination of text and
images.

You might expect that selecting one item in the combo box would select the same item in
the list. In Swing components, selection is controlled by a selection model. The combo box
and the list have distinct selection models; after all, you can select only one item from the
combo box while it's possible to select multiple items from the list. Thus, while the two
components share a data model, they have separate selection models.

We've made the combo box editable. By default, it would not be editable: the user could
choose only one item in the drop-down list. With an editable combo box, the user can type
in a selection, as if it were a text field. Noneditable combo boxes are useful if you just want
to offer a limited set of choices; editable combo boxes are handy when you want to accept
any input but offer some common choices.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

There's a great class tucked away in the last example that deserves some recognition. It's
JScrollPane . In Lister , you'll notice we created one when we added the List to
the main window. JScrollPane simply wraps itself around another Component and
provides scrollbars as necessary. The scrollbars show up if the contained Component 's
preferred size (as returned by getPreferredSize()) is greater than the size of the
JScrollPane itself. In the previous example, the scrollbars show up whenever the size
of the List exceeds the available space.

You can use JScrollPane to wrap any Component , including components with
drawings or images or complex user interface panels. We'll discuss JScrollPane in
more detail later in this chapter, and we'll use it frequently with the text components in
Chapter 17 .

16.4 The Spinner

Jlist and JComboBox are two ways to let the user choose from a set of values. A
JComboBox has added flexibility when it is made editable, but in general both of these
components are limited in that they can only prompt the user from a fixed set of choices. In
Java 1.4, Swing added a new component, JSpinner , which is useful for large or open-
ended sequences of values such as numbers or dates. The JSpinner is a cousin of the
JComboBox ; it displays a value in a field, but instead of providing a drop-down list of
choices, it gives the user a small pair of up and down arrows for moving over a range of
values (see Figure 16-5). Like the combo box, a JSpinner can also be made editable,
allowing the user to type a valid value directly into the field.

Figure 16-5. Image of DateSelector application

Swing provides three basic types of Spinner s, represented by three different data
models for the JSpinner component: SpinnerListModel ,
SpinnerNumberModel , and SpinnerDateModel .

The SpinnerListModel acts like a combo box, specifying a fixed set of objects:

String [] options = new String [] { "small", "medium", "large", "huge" };
SpinnerListModel model = new SpinnerListModel(options);
JSpinner spinner = new JSpinner(model);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can retrieve the current value from the model at any time:

String value = (String)model.getValue();

Alternatively, you can register a ChangeListener to receive updates as the user
changes values. With a SpinnerListModel , if the spinner is editable and the user
enters a value directly, it is validated against the set of choices before being accepted. This
behavior is a little different from the other types of SpinnerModel s, which when
editable accept any valid value of the correct type (e.g., a number or date).

The SpinnerNumberModel displays numeric values. It can be configured with initial,
minimum, and maximum values:

double initial=5.0, min=0.0, max=10.0, increment=0.1;
SpinnerNumberModel model =
 new SpinnerNumberModel(initial, min, max, increment);
JSpinner spinner = new JSpinner(model);

Here we have constructed a spinner with an initial value of 5.0 that allows the user to
change the value to between 0 and 10.0 in increments of 0.1. The
SpinnerNumberModel getNumber() method retrieves the current value.

Perhaps the most interesting feature of the JSpinner is the SpinnerDateModel ,
which allows the user to choose calendar dates by moving in specified increments of time.
The SpinnerDateModel accepts a range, such as the SpinnerNumberModel ,
but the values are Date objects, and the increment is a java.util.Calendar
constant field such as Calendar.DAY , Calendar.WEEK , and so on. The following
example, DateSelector , creates a JSpinner showing the current date and time. It
allows the user to change the date in increments of one week, over a range of one year (six
months forward or back). A ChangeListener is registered with the model to display
the values as they are modified:

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;
import java.util.*;

public class DateSelector {
 public static void main(String[] args)
 {
 JFrame frame = new JFrame("DateSelector v1.0");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Calendar now = Calendar.getInstance();
 Calendar earliest = (Calendar)now.clone();
 earliest.add(Calendar.MONTH, -6);
 Calendar latest = (Calendar)now.clone();
 latest.add(Calendar.MONTH, 6);
 SpinnerModel model = new SpinnerDateModel(
 now.getTime(), earliest.getTime(), latest.getTime(),
 Calendar.WEEK_OF_YEAR);
 final JSpinner spinner = new JSpinner(model);

 model.addChangeListener(new ChangeListener() {
 public void stateChanged(ChangeEvent e) {
 System.out.println(((SpinnerDateModel)e.getSource()).getDate());
 }
 });

 frame.getContentPane().add("North", new JLabel("Choose a week"));
 frame.getContentPane().add("Center", spinner);
 frame.pack();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }
}

As we said, the SpinnerCalendarModel acts just like the
SpinnerNumberModel , except that it works with Date objects and uses the special
Calendar constants as increments. To create dates , we construct a Calendar
object for the correct time and use its getTime() method. In this example, we used the
Calendar 's add() method to set the minimum and maximum values six months in
each direction. Table 16-1 shows values for increments in the Calendar .

Table 16-1. Calendar field values

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Field value Increment

Calendar.MILLISECOND One millisecond

Calendar.SECOND One second

Calendar.MINUTE One minute

Calendar.HOUR, Calendar.HOUR_OF_DAY One hour

Calendar.AM_PM A.M. or P.M.

Calendar.DAY_OF_WEEK, Calendar.DAY_OF_MONTH,
Calendar.DAY_OF_YEAR

One day

Calendar.MONTH One month

Calendar.YEAR One year

Calendar.ERA
B.C. or A.D. in the
Gregorian Calendar

The SpinnerDateModel uses the Calendar add() method with a value of 1 or -1
and the corresponding constant value to increment or decrement the value. Increments of 1
have the same effect on several of the constants, as indicated in Table 16-1 .

16.5 Borders

Any Swing component can have a decorative border. JComponent includes a method
called setBorder() ; all you have to do is call setBorder() , passing it an
appropriate implementation of the Border interface.

Swing provides many useful Border implementations in the javax.swing.border
package. You could create an instance of one of these classes and pass it to a component's
setBorder() method, but there's an even simpler technique.

The BorderFactory class creates any kind of border for you using static "factory"
methods. Creating and setting a component's border, then, is simple:

JLabel labelTwo = new JLabel("I have an etched border.");
labelTwo.setBorder(BorderFactory.createEtchedBorder());

Every component has a setBorder() method, from simple labels and buttons right up
to the fancy text and table components we cover in Chapter 17 .

BorderFactory is convenient, but it does not offer every option of every border type.
For example, if you want to create a raised EtchedBorder instead of the default
lowered border, you'll need to use EtchedBorder 's constructor, like this:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

JLabel labelTwo = new JLabel("I have a raised etched border.");
labelTwo.setBorder(new EtchedBorder(EtchedBorder.RAISED));

The Border implementation classes are listed and briefly described here:

BevelBorder

This border draws raised or lowered beveled edges, giving an illusion of depth.
SoftBevelBorder

This border is similar to BevelBorder , but thinner.
EmptyBorder

Doesn't do any drawing, but does take up space. You can use it to give a component a
little breathing room in a crowded user interface.

EtchedBorder

A lowered etched border gives the appearance of a rectangle that has been chiseled
into a piece of stone. A raised etched border looks like it is standing out from the
surface of the screen.

LineBorder

Draws a simple rectangle around a component. You can specify the color and width
of the line in LineBorder 's constructor.

MatteBorder

A souped-up version of LineBorder . You can create a MatteBorder with a
certain color and specify the size of the border on the left, top, right, and bottom of
the component. MatteBorder also allows you to pass in an Icon that will be
used to draw the border. This could be an image (ImageIcon) or any other
implementation of the Icon interface.

TitledBorder

A regular border with a title. TitledBorder doesn't actually draw a border; it just
draws a title in conjunction with another border object. You can specify the locations
of the title, its justification, and its font. This border type is particularly useful for
grouping different sets of controls in a complicated interface.

CompoundBorder

A border that contains two other borders. This is especially handy if you want to
enclose a component in an EmptyBorder and then put something decorative
around it, such as an EtchedBorder or a MatteBorder .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following example shows off some different border types. It's only a sampler, though;
many more border types are available. Furthermore, the example only encloses labels with
borders. You can put a border around any component in Swing. The example is shown in
Figure 16-6 ; the source code follows.

Figure 16-6. A bevy of borders

//file: Borders.java
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.border.*;

public class Borders {
 public static void main(String[] args) {
 // create a JFrame to hold everything
 JFrame frame = new JFrame("Borders");

 // Create labels with borders.
 int center = SwingConstants.CENTER;
 JLabel labelOne = new JLabel("raised BevelBorder", center);
 labelOne.setBorder(
 BorderFactory.createBevelBorder(BevelBorder.RAISED));
 JLabel labelTwo = new JLabel("EtchedBorder", center);
 labelTwo.setBorder(BorderFactory.createEtchedBorder());
 JLabel labelThree = new JLabel("MatteBorder", center);
 labelThree.setBorder(

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 BorderFactory.createMatteBorder(10, 10, 10, 10, Color.pink));
 JLabel labelFour = new JLabel("TitledBorder", center);
 Border etch = BorderFactory.createEtchedBorder();
 labelFour.setBorder(
 BorderFactory.createTitledBorder(etch, "Title"));
 JLabel labelFive = new JLabel("TitledBorder", center);
 Border low = BorderFactory.createLoweredBevelBorder();
 labelFive.setBorder(
 BorderFactory.createTitledBorder(low, "Title",
 TitledBorder.RIGHT, TitledBorder.BOTTOM));
 JLabel labelSix = new JLabel("CompoundBorder", center);
 Border one = BorderFactory.createEtchedBorder();
 Border two =
 BorderFactory.createMatteBorder(4, 4, 4, 4, Color.blue);
 labelSix.setBorder(BorderFactory.createCompoundBorder(one, two));

 // add components to the content pane
 Container c = f.getContentPane();
 c.setLayout(new GridLayout(3, 2));
 c.add(labelOne);
 c.add(labelTwo);
 c.add(labelThree);
 c.add(labelFour);
 c.add(labelFive);
 c.add(labelSix);

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.pack();
 frame.setVisible(true);
 }
}

16.6 Menus

A JMenu is a standard pull-down menu with a fixed name. Menus can hold other menus
as submenu items, enabling you to implement complex menu structures. In Swing, menus
are first-class components, just like everything else. You can place them wherever a
component would go. Another class, JMenuBar , holds menus in a horizontal bar. Menu
bars are real components, too, so you can place them wherever you want in a container:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

top, bottom, or middle. But in the middle of a container, it usually makes more sense to use
a JComboBox rather than some kind of menu.

Menu items may have associated images and shortcut keys; there are even menu items that
look like checkboxes and radio buttons. Menu items are really a kind of button. Like
buttons, menu items fire action events when they are selected. You can respond to menu
items by registering action listeners with them.

There are two ways to use the keyboard with menus. The first is called mnemonics . A
mnemonic is one character in the menu name. If you hold down the Alt key and type a
menu's mnemonic, the menu drops down, just as if you had clicked on it with the mouse.
Menu items may also have mnemonics. Once a menu is dropped down, you can select
individual items in the same way.

Menu items may also have accelerators. An accelerator is a key combination that selects
the menu item, whether or not the menu that contains it is showing. A common example is
the accelerator Ctrl-C, which is frequently used as a shortcut for the Copy item in the Edit
menu.

The next example demonstrates several different features of menus. It creates a menu bar
with three different menus. The first, Utensils , contains several menu items, a submenu, a
separator, and a Quit item that includes both a mnemonic and an accelerator. The second
menu, Spices , contains menu items that look and act like checkboxes. Finally, the Cheese
menu demonstrates radio button menu items.

The application is shown in Figure 16-7 with one of its menus dropped down. Choosing
Quit from the Utensils menu (or pressing Ctrl-Q) removes the window.

Figure 16-7. The DinnerMenu application

//file: DinnerMenu.java
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public class DinnerMenu
{
 public static void main(String[] args) {
 JFrame frame = new JFrame("Dinner Menu");

 // create the Utensils menu
 JMenu utensils = new JMenu("Utensils");
 utensils.setMnemonic(KeyEvent.VK_U);
 utensils.add(new JMenuItem("Fork"));
 utensils.add(new JMenuItem("Knife"));
 utensils.add(new JMenuItem("Spoon"));
 JMenu hybrid = new JMenu("Hybrid");
 hybrid.add(new JMenuItem("Spork"));
 hybrid.add(new JMenuItem("Spife"));
 hybrid.add(new JMenuItem("Knork"));
 utensils.add(hybrid);
 utensils.addSeparator();

 // do some fancy stuff with the Quit item
 JMenuItem quitItem = new JMenuItem("Quit");
 quitItem.setMnemonic(KeyEvent.VK_Q);
 quitItem.setAccelerator(
 KeyStroke.getKeyStroke(KeyEvent.VK_Q, Event.CTRL_MASK));
 quitItem.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) { System.exit(0); }
 });
 utensils.add(quitItem);

 // create the Spices menu
 JMenu spices = new JMenu("Spices");
 spices.setMnemonic(KeyEvent.VK_S);
 spices.add(new JCheckBoxMenuItem("Thyme"));
 spices.add(new JCheckBoxMenuItem("Rosemary"));
 spices.add(new JCheckBoxMenuItem("Oregano", true));
 spices.add(new JCheckBoxMenuItem("Fennel"));

 // create the Cheese menu
 JMenu cheese = new JMenu("Cheese");
 cheese.setMnemonic(KeyEvent.VK_C);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 ButtonGroup group = new ButtonGroup();
 JRadioButtonMenuItem rbmi;
 rbmi = new JRadioButtonMenuItem("Regular", true);
 group.add(rbmi);
 cheese.add(rbmi);
 rbmi = new JRadioButtonMenuItem("Extra");
 group.add(rbmi);
 cheese.add(rbmi);
 rbmi = new JRadioButtonMenuItem("Blue");
 group.add(rbmi);
 cheese.add(rbmi);

 // create a menu bar and use it in this JFrame
 JMenuBar menuBar = new JMenuBar();
 menuBar.add(utensils);
 menuBar.add(spices);
 menuBar.add(cheese);
 frame.setJMenuBar(menuBar);

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(200,200);
 frame.setVisible(true);
 }
}

Yes, we know. Quit doesn't belong in the Utensils menu. If it's driving you crazy, you can
go back and add a File menu as an exercise when we're through.

Creating menus is pretty simple work. You create a JMenu object, specifying the menu's
title. Like the text of JButton s and JLabel s, menu labels can contain simple HTML.
Then you just add JMenuItem s to the JMenu . You can also add JMenu s to a JMenu
; they show up as submenus. This is shown in the creation of the Utensils menu:

JMenu utensils = new JMenu("Utensils");
utensils.setMnemonic(KeyEvent.VK_U);
utensils.add(new JMenuItem("Fork"));
utensils.add(new JMenuItem("Knife"));
utensils.add(new JMenuItem("Spoon"));
JMenu hybrid = new JMenu("Hybrid");
hybrid.add(new JMenuItem("Spork"));

http://lib.ommolketab.ir
http://lib.ommolketab.ir

hybrid.add(new JMenuItem("Spife"));
hybrid.add(new JMenuItem("Knork"));
utensils.add(hybrid);

In the second line, we set the mnemonic for this menu using a constant defined in the
KeyEvent class.

You can add those pretty separator lines with a single call:

utensils.addSeparator();

The Quit menu item has some bells and whistles we should explain. First, we create the
menu item and set its mnemonic, just as we did before for the Utensils menu:

JMenuItem quitItem = new JMenuItem("Quit");
quitItem.setMnemonic(KeyEvent.VK_Q);

Now we want to create an accelerator for the menu item. We do this with the help of a class
called KeyStroke :

quitItem.setAccelerator(
 KeyStroke.getKeyStroke(KeyEvent.VK_Q, Event.CTRL_MASK));

Finally, to actually do something in response to the menu item, we register an action
listener:

quitItem.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) { System.exit(0); }
});

Our action listener exits the application when the Quit item is selected.

Creating the Spices menu is just as easy, except that we use JCheckBoxMenuItem s
instead of regular JMenuItem s. The result is a menu full of items that behave like
checkboxes.

The next menu, Cheese , is a little more tricky. We want the items to be radio buttons, but
we need to place them in a ButtonGroup to ensure they are mutually exclusive. Each
item, then, is created, added to the button group, and added to the menu itself.

The final step is to place the menus we've just created in a JMenuBar . This is simply a
component that lays out menus in a horizontal bar. We have two options for adding it to
our JFrame . Since the JMenuBar is a real component, we could add it to the content
pane of the JFrame . Instead, we use a convenience method called setJMenuBar() ,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

which automatically places the JMenuBar at the top of the frame's content pane. This
saves us the trouble of altering the layout or size of the content pane; it is adjusted to
coexist peacefully with the menu bar.

16.7 The PopupMenu Class

One of Swing's nifty components is JPopupMenu , a menu that automatically appears
when you press the appropriate mouse button inside a component. (On a Windows system,
for example, clicking the right mouse button invokes a pop-up menu.) Which button you
press depends on the platform you're using; fortunately, you don't have to care-Swing
figures it out for you.

The care and feeding of JPopupMenu is basically the same as any other menu. You use a
different constructor (JPopupMenu()) to create it, but otherwise, you build a menu and
add elements to it the same way. The big difference is you don't need to attach it to a
JMenuBar . Instead, just pop up the menu whenever you need it.

The following example, PopupColorMenu , contains three buttons. You can use a
JPopupMenu to set the color of each button or the frame itself, depending on where you
press the mouse.

//file: PopUpColorMenu.java
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class PopUpColorMenu implements ActionListener
{
 Component selectedComponent;

 public PopUpColorMenu() {
 JFrame frame = new JFrame("PopUpColorMenu v1.0");

 final JPopupMenu colorMenu = new JPopupMenu("Color");
 colorMenu.add(makeMenuItem("Red"));
 colorMenu.add(makeMenuItem("Green"));
 colorMenu.add(makeMenuItem("Blue"));

 MouseListener mouseListener = new MouseAdapter() {
 public void mousePressed(MouseEvent e) { checkPopup(e); }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public void mouseClicked(MouseEvent e) { checkPopup(e); }
 public void mouseReleased(MouseEvent e) { checkPopup(e); }
 private void checkPopup(MouseEvent e) {
 if (e.isPopupTrigger()) {
 selectedComponent = e.getComponent();
 colorMenu.show(e.getComponent(), e.getX(), e.getY());
 }
 }
 };

 Container content = frame.getContentPane();
 content.setLayout(new FlowLayout());
 JButton button = new JButton("Uno");
 button.addMouseListener(mouseListener);
 content.add(button);
 button = new JButton("Due");
 button.addMouseListener(mouseListener);
 content.add(button);
 button = new JButton("Tre");
 button.addMouseListener(mouseListener);
 content.add(button);

 frame.getContentPane().addMouseListener(mouseListener);

 frame.setSize(200,50);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }

 public void actionPerformed(ActionEvent e) {
 String color = e.getActionCommand();
 if (color.equals("Red"))
 selectedComponent.setBackground(Color.red);
 else if (color.equals("Green"))
 selectedComponent.setBackground(Color.green);
 else if (color.equals("Blue"))
 selectedComponent.setBackground(Color.blue);
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 private JMenuItem makeMenuItem(String label) {
 JMenuItem item = new JMenuItem(label);
 item.addActionListener(this);
 return item;
 }

 public static void main(String[] args) {
 new PopUpColorMenu();
 }
}

Figure 16-8 shows the example in action; the user is preparing to change the color of the
bottom button.

Figure 16-8. The PopupColorMenu application

Because the pop-up menu is triggered by mouse events, we need to register a
MouseListener for any of the components to which it applies. In this example, all
three buttons and the content pane of the frame are eligible for the color pop-up menu.
Therefore, we add a mouse event listener for all these components explicitly. The same
instance of an anonymous inner MouseAdapter subclass is used in each case. In this
class, we override the mousePressed() , mouse-Released() , and
mouseClicked() methods to display the pop-up menu when we get an appropriate
event. How do we know what an "appropriate event" is? Fortunately, we don't need to
worry about the specifics of our user's platform; we just need to call the event's
isPopupTrigger() method. If this method returns true , we know the user has
done whatever normally displays a pop-up menu on his system.

Once we know that the user wants to raise a pop-up menu, we display the pop-up menu by
calling its show() method with the mouse event coordinates as arguments.

If we want to provide different menus for different types of components or the background,
we create different mouse listeners for each different kind of component. The mouse

http://lib.ommolketab.ir
http://lib.ommolketab.ir

listeners invoke different kinds of pop-up menus as appropriate.

The only thing left is to handle the action events from the pop-up menu items. We use a
helper method called makeMenuItem() to register the PopUpColorMenu window
as an action listener for every item we add. The example implements ActionListener
and has the required actionPerformed() method. This method reads the action
command from the event, which is equal to the selected menu item's label by default. It
then sets the background color of the selected component appropriately.

16.8 The JScrollPane Class

We used JScrollPane earlier in this chapter without explaining much about it. In this
section we'll remedy the situation.

A JScrollPane is a container that can hold one component. Said another way, a
JScrollPane wraps another component. By default, if the wrapped component is larger
than the JScrollPane itself, the JScrollPane supplies scrollbars. JScrollPane
handles the events from the scrollbars and displays the appropriate portion of the contained
component.

Technically, JScrollPane is a Container , but it's a funny one. It has its own layout
manager, which can't be changed. It can accommodate only one component at a time. This
seems like a big limitation, but it isn't. If you want to put a lot of stuff in a JScrollPane
, just put your components into a JPanel , with whatever layout manager you like, and
put that panel into the JScrollPane .

When you create a JScrollPane , you specify the conditions under which its scrollbars
are displayed. This is called the scrollbar display policy ; a separate policy is used for the
horizontal and vertical scrollbars. The following constants can be used to specify the policy
for each of the scrollbars:

HORIZONTAL_SCROLLBAR_AS_NEEDED
VERTICAL_SCROLLBAR_AS_NEEDED

Displays a scrollbar only if the wrapped component doesn't fit.
HORIZONTAL_SCROLLBAR_ALWAYS
VERTICAL_SCROLLBAR_ALWAYS

Always shows a scrollbar, regardless of the contained component's size.
HORIZONTAL_SCROLLBAR_NEVER
VERTICAL_SCROLLBAR_NEVER

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Never shows a scrollbar, even if the contained component won't fit. If you use this
policy, you should provide some other way to manipulate the JScrollPane .

By default, the policies are HORIZONTAL_SCROLLBAR_AS_NEEDED and
VERTICAL_SCROLLBAR_AS_NEEDED .

Support for scrolling with mouse wheels is automatic as of JDK 1.4. You do not have to do
anything explicit in your application to get this to work.

The following example uses a JScrollPane to display a large image (see Figure 16-9).
The application itself is very simple; all we do is place the image in a JLabel , wrap a
JScrollPane around it, and put the JScrollPane in a JFrame 's content pane.

Figure 16-9. The ScrollPaneFrame application

Here's the code:

//file: ScrollPaneFrame.java
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class ScrollPaneFrame
{
 public static void main(String[] args) {
 String filename = "Piazza di Spagna.jpg";
 if (args.length > 0)
 filename = args[0];

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 JFrame frame = new JFrame("ScrollPaneFrame v1.0");
 JLabel image = new JLabel(new ImageIcon(filename));
 frame.getContentPane().add(new JScrollPane(image));

 frame.setSize(300, 300);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }
}

To hold the image we have used a JLabel and ImageIcon . The ImageIcon class
pre-loads the image using a MediaTracker and determines its dimensions. It's also
possible to have the ImageIcon show the image as it loads or to ask it for information
on the status of loading the image. We'll discuss image observers in Chapter 20 .

16.9 The JSplitPane Class

A split pane is a special container that holds two components, each in its own subpane. A
splitter bar adjusts the sizes of the two subpanes. In a document viewer, you could use a
split pane to show a table of contents next to a full document.

The following example uses two JLabel s containing ImageIcon s, like the previous
example. It displays the two labels, wrapped in JScrollPanes , on either side of a
JSplitPane (see Figure 16-10). You can drag the splitter bar back and forth to adjust
the sizes of the two contained components.

Figure 16-10. Using a split pane

//file: SplitPaneFrame.java
import java.awt.*;
import java.awt.event.*;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import javax.swing.*;
import javax.swing.border.*;

public class SplitPaneFrame {
 public static void main(String[] args) {
 String fileOne = "Piazza di Spagna.jpg";
 String fileTwo = "L1-Light.jpg";
 if (args.length > 0) fileOne = args[0];
 if (args.length > 1) fileTwo = args[1];

 JFrame frame = new JFrame("SplitPaneFrame");

 JLabel leftImage = new JLabel(new ImageIcon(fileOne));
 Component left = new JScrollPane(leftImage);
 JLabel rightImage = new JLabel(new ImageIcon(fileTwo));
 Component right = new JScrollPane(rightImage);

 JSplitPane split =
 new JSplitPane(JSplitPane.HORIZONTAL_SPLIT, left, right);
 split.setDividerLocation(100);
 frame.getContentPane().add(split);

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(300, 200);
 frame.setVisible(true);
 }
}

16.10 The JTabbedPane Class

If you've ever dealt with the Control Panel in Windows, you already know what a
JTabbedPane is. It's a container with labeled tabs. When you click on a tab, a new set
of controls is shown in the body of the JTabbedPane . In Swing, JTabbedPane is
simply a specialized container.

Each tab has a name. To add a tab to the JTabbedPane , simply call addTab() .
You'll need to specify the name of the tab as well as a component that supplies the tab's
contents. Typically, it's a container holding other components.

Even though the JTabbedPane only shows one set of components at a time, be aware

http://lib.ommolketab.ir
http://lib.ommolketab.ir

that all the components on all the pages are in memory at one time. If you have components
that hog processor time or memory, try to put them into some "sleep" state when they are
not showing.

The following example shows how to create a JTabbedPane . It adds standard Swing
components to a tab named Controls . The second tab is filled with a scrollable image,
which was presented in the previous examples.

//file: TabbedPaneFrame.java
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.border.*;

public class TabbedPaneFrame {
 public static void main(String[] args)
 {
 JFrame frame = new JFrame("TabbedPaneFrame");
 JTabbedPane tabby = new JTabbedPane();

 // create the controls pane
 JPanel controls = new JPanel();
 controls.add(new JLabel("Service:"));
 JList list = new JList(
 new String[] { "Web server", "FTP server" });
 list.setBorder(BorderFactory.createEtchedBorder());
 controls.add(list);
 controls.add(new JButton("Start"));

 // create an image pane
 String filename = "Piazza di Spagna.jpg";
 JLabel image = new JLabel(new ImageIcon(filename));
 JComponent picture = new JScrollPane(image);
 tabby.addTab("Controls", controls);
 tabby.addTab("Picture", picture);

 frame.getContentPane().add(tabby);

 frame.setSize(200, 200);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 frame.setVisible(true);
 }
}

The code isn't especially fancy, but the result is an impressive-looking user interface. The
first tab is a JPanel that contains some other components, including a JList with an
etched border. The second tab simply contains the JLabel with ImageIcon wrapped
in a JScrollPane . The running example is shown in Figure 16-11 .

Figure 16-11. Using a tabbed pane

Our example has only two tabs, and they fit quite easily, but in a realistic application it is
easy to run out of room. By default, when there are too many tabs to display in a single
row, JTabbedPane automatically wraps them into additional rows. This behavior fits
with the tab notion quite well, giving the appearance of a filing cabinet, but it also
necessitates that when you select a tab from the back row, the tabs must be rearranged to
bring the selected tab to the foreground. Many users find this confusing, and it violates a
principal of user interface design that says that controls should remain in the same location.
Alternatively the tabbed pane can be configured to use a single, scrolling row of tabs by
specifying a scrolling tab layout policy like this:

setTabLayoutPolicy(JTabbedPane.SCROLL_TAB_LAYOUT);

16.11 Scrollbars and Sliders

JScrollPane is such a handy component that you may not ever need to use scrollbars
by themselves. In fact, if you ever do find yourself using a scrollbar by itself, chances are
you really want to use another component called a slider .

There's not much point in describing the appearance and functionality of scrollbars and
sliders. Instead, let's jump right in with an example that includes both components. Figure
16-12 shows a simple example with both a scrollbar and a slider.

Figure 16-12. Using a scrollbar and a slider

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Here is the source code for this example:

//file: Slippery.java
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;

public class Slippery {
 public static void main(String[] args)
 {
 JFrame frame = new JFrame("Slippery v1.0");
 Container content = frame.getContentPane();

 JPanel main = new JPanel(new GridLayout(2, 1));
 JPanel scrollBarPanel = new JPanel();
 final JScrollBar scrollBar =
 new JScrollBar(JScrollBar.HORIZONTAL, 0, 48, 0, 255);
 int height = scrollBar.getPreferredSize().height;
 scrollBar.setPreferredSize(new Dimension(175, height));
 scrollBarPanel.add(scrollBar);
 main.add(scrollBarPanel);

 JPanel sliderPanel = new JPanel();
 final JSlider slider =
 new JSlider(JSlider.HORIZONTAL, 0, 255, 128);
 slider.setMajorTickSpacing(48);
 slider.setMinorTickSpacing(16);
 slider.setPaintTicks(true);
 sliderPanel.add(slider);
 main.add(sliderPanel);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 content.add(main, BorderLayout.CENTER);

 final JLabel statusLabel =
 new JLabel("Welcome to Slippery v1.0");
 content.add(statusLabel, BorderLayout.SOUTH);

 // wire up the event handlers
 scrollBar.addAdjustmentListener(new AdjustmentListener() {
 public void adjustmentValueChanged(AdjustmentEvent e) {
 statusLabel.setText("JScrollBar's current value = "
 + scrollBar.getValue());
 }
 });

 slider.addChangeListener(new ChangeListener() {
 public void stateChanged(ChangeEvent e) {
 statusLabel.setText("JSlider's current value = "
 + slider.getValue());
 }
 });

 frame.pack();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }
}

All we've really done here is added a JScrollBar and a JSlider to our main
window. If the user adjusts either of these components, the current value of the component
is displayed in a JLabel at the bottom of the window.

The JScrollBar and JSlider are both created by specifying an orientation, either
HORIZONTAL or VERTICAL . You can also specify the minimum and maximum values
for the components, as well as the initial value. The JScrollBar supports one
additional parameter, the extent . The extent simply refers to what range of values is
represented by the slider within the scroll bar. For example, in a scrollbar that runs from 0
to 255, an extent of 128 means that the slider will be half the width of the scrollable area of
the scrollbar.

JSlider supports the idea of tick marks , lines drawn at certain values along the slider's

http://lib.ommolketab.ir
http://lib.ommolketab.ir

length. Major tick marks are slightly larger than minor tick marks. To draw tick marks, just
specify an interval for major and minor tick marks, and then paint the tick marks:

slider.setMajorTickSpacing(48);
 slider.setMinorTickSpacing(16);
 slider.setPaintTicks(true);

JSlider also supports labeling the ticks with text strings, using the
setLabelTable() method.

Responding to events from the two components is straightforward. The JScrollBar
sends out AdjustmentEvent s every time something happens; the JSlider fires off
ChangeEvent s when its value changes. In our simple example, we display the new
value of the changed component in the JLabel at the bottom of the window.

16.12 Dialogs

A dialog is another standard feature of user interfaces. Dialogs are frequently used to
present information to the user ("Your fruit salad is ready.") or to ask a question ("Shall I
bring the car around?"). Dialogs are used so commonly in GUI applications that Swing
includes a handy set of prebuilt dialogs. These are accessible from static methods in the
JOptionPane class. Many variations are possible; JOptionPane groups them into
four basic types:

Message dialog

Displays a message to the user, usually accompanied by an OK button.
Confirmation dialog

Ask a question and displays answer buttons, usually Yes , No , and Cancel .
Input dialog

Asks the user to type in a string.
Option dialogs

The most general type; you pass it your own components, which are displayed in the
dialog.

A confirmation dialog is shown in Figure 16-13 .

Figure 16-13. Using a confirmation dialog

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Let's look at examples of each kind of dialog. The following code produces a message
dialog:

JOptionPane.showMessageDialog(f, "You have mail.");

The first parameter to showMessageDialog() is the parent component (in this case f
, an existing JFrame). The dialog will be centered on the parent component. If you pass
null for the parent component, the dialog is centered in your screen. The dialogs that
JOptionPane displays are modal , which means they block other input to your
application while they are showing.

Here's a slightly fancier message dialog. We've specified a title for the dialog and a
message type, which affects the icon that is displayed:

JOptionPane.showMessageDialog(f, "You are low on memory.",
 "Apocalyptic message", JOptionPane.WARNING_MESSAGE);

Here's how to display the confirmation dialog shown in Figure 16-13 :

int result = JOptionPane.showConfirmDialog(null,
 "Do you want to remove Windows now?");

In this case, we've passed null for the parent component. Special values are returned
from showConfirmDialog() to indicate which button was pressed. There's a full
example below that shows how to use this return value.

Sometimes you need to ask the user to type some input. The following code puts up a
dialog requesting the user's name:

String name = JOptionPane.showInputDialog(null,
 "Please enter your name.");

Whatever the user types is returned as a String or null if the user presses the Cancel
button.

The most general type of dialog is the option dialog. You supply an array of objects you
wish to be displayed; JOptionPane takes care of formatting them and displaying the
dialog. The following example displays a text label, a JTextField , and a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

JPasswordField . (Text components are described in the next chapter.)

JTextField userField = new JTextField();
JPasswordField passField = new JPasswordField();
String message = "Please enter your user name and password.";
result = JOptionPane.showOptionDialog(f,
 new Object[] { message, userField, passField },
 "Login", JOptionPane.OK_CANCEL_OPTION,
 JOptionPane.QUESTION_MESSAGE,
 null, null, null);

We've also specified a dialog title ("Login") in the call to showOptionDialog() . We
want OK and Cancel buttons, so we pass OK_CANCEL_OPTION as the dialog type. The
QUESTION_MESSAGE argument indicates we'd like to see the question-mark icon. The
last three items are optional: an Icon , an array of different choices, and a current
selection. Since the icon parameter is null , a default is used. If the array of choices and
the current selection parameters were not null , JOptionPane might try to display the
choices in a list or combo box.

The following application includes all the examples we've covered:

import javax.swing.*;

public class ExerciseOptions {
 public static void main(String[] args) {
 JFrame frame = new JFrame("ExerciseOptions v1.0");
 frame.setSize(200, 200);
 frame.setVisible(true);

 JOptionPane.showMessageDialog(frame, "You have mail.");
 JOptionPane.showMessageDialog(frame, "You are low on memory.",
 "Apocalyptic message", JOptionPane.WARNING_MESSAGE);

 int result = JOptionPane.showConfirmDialog(null,
 "Do you want to remove Windows now?");
 switch (result) {
 case JOptionPane.YES_OPTION:
 System.out.println("Yes"); break;
 case JOptionPane.NO_OPTION:
 System.out.println("No"); break;
 case JOptionPane.CANCEL_OPTION:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 System.out.println("Cancel"); break;
 case JOptionPane.CLOSED_OPTION:
 System.out.println("Closed"); break;
 }

 String name = JOptionPane.showInputDialog(null,
 "Please enter your name.");
 System.out.println(name);

 JTextField userField = new JTextField();
 JPasswordField passField = new JPasswordField();
 String message = "Please enter your user name and password.";
 result = JOptionPane.showOptionDialog(frame,
 new Object[] { message, userField, passField },
 "Login", JOptionPane.OK_CANCEL_OPTION,
 JOptionPane.QUESTION_MESSAGE,
 null, null, null);
 if (result == JOptionPane.OK_OPTION)
 System.out.println(userField.getText() +
 " " + new String(passField.getPassword()));

 System.exit(0);
 }
}

16.12.1 File Selection Dialog

A JFileChooser is a standard file-selection box. As with other Swing components,
JFileChooser is implemented in pure Java, so it looks and acts the same on different
platforms.

Selecting files all day can be pretty boring without a greater purpose, so we'll exercise the
JFileChooser in a minieditor application. Editor provides a text area in which we
can load and work with files. (The JFileChooser created by Editor is shown in
Figure 16-14 .) We'll stop just shy of the capability to save and let you fill in the blanks
(with a few caveats).

Figure 16-14. Using a JFileChooser

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Here's the code:

import java.awt.*;
import java.awt.event.*;
import java.io.*;
import javax.swing.*;

public class Editor extends JFrame implements ActionListener
{
 private JEditorPane textPane = new JEditorPane();

 public Editor() {
 super("Editor v1.0");
 Container content = getContentPane();
 content.add(new JScrollPane(textPane), BorderLayout.CENTER);
 JMenu menu = new JMenu("File");
 menu.add(makeMenuItem("Open"));
 menu.add(makeMenuItem("Save"));
 menu.add(makeMenuItem("Quit"));
 JMenuBar menuBar = new JMenuBar();
 menuBar.add(menu);
 setJMenuBar(menuBar);
 setSize(300, 300);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

 public void actionPerformed(ActionEvent e) {
 String command = e.getActionCommand();
 if (command.equals("Quit")) System.exit(0);
 else if (command.equals("Open")) loadFile();
 else if (command.equals("Save")) saveFile();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 private void loadFile () {
 JFileChooser chooser = new JFileChooser();
 int result = chooser.showOpenDialog(this);
 if (result == JFileChooser.CANCEL_OPTION) return;
 try {
 File file = chooser.getSelectedFile();
 java.net.URL url = file.toURL();
 textPane.setPage(url);
 }
 catch (Exception e) {
 textPane.setText("Could not load file: " + e);
 }
 }

 private void saveFile() {
 JFileChooser chooser = new JFileChooser();
 chooser.showSaveDialog(this);
 // Save file data...
 }

 private JMenuItem makeMenuItem(String name) {
 JMenuItem m = new JMenuItem(name);
 m.addActionListener(this);
 return m;
 }

 public static void main(String[] s) {
new Editor().setVisible(true);
 }
}

Editor is a JFrame that lays itself out with a JEditorPane (which is covered in
Chapter 17) and a pull-down menu. From the pull-down File menu, we can Open , Save ,
or Quit . The actionPerformed() method catches the events associated with these
menu selections and takes the appropriate action.

The interesting parts of Editor are the private methods loadFile() and
saveFile() . The loadFile() method creates a new JFileChooser and calls

http://lib.ommolketab.ir
http://lib.ommolketab.ir

its showOpenDialog() method.

A JFileChooser does its work when the showOpenDialog() method is called.
This method blocks the caller until the dialog completes its job, at which time the file
chooser disappears. After that, we can retrieve the designated file with the getFile()
method. In loadFile() , we convert the selected File to a URL and pass it to the
JEditorPane , which displays the selected file. As you'll learn in the next chapter,
JEditorPane can display HTML and RTF files.

You can fill out the unfinished saveFile() method if you wish, but it would be prudent
to add the standard safety precautions. For example, you could use one of the confirmation
dialogs we just looked at to prompt the user before overwriting an existing file.

16.12.2 The Color Chooser

Swing is chock full of goodies. JColorChooser is yet another ready-made dialog
supplied with Swing; it allows your users to choose colors. The following very brief
example shows how easy it is to use JColorChooser :

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class LocalColor {
 public static void main(String[] args) {
 final JFrame frame = new JFrame("LocalColor v1.0");
 final Container content = frame.getContentPane();
 content.setLayout(new GridBagLayout());
 JButton button = new JButton("Change color...");
 content.add(button);

 button.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 Color c = JColorChooser.showDialog(frame,
 "Choose a color", content.getBackground());
 if (c != null) content.setBackground(c);
 }
 });

 frame.setSize(200, 200);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }
}

This example shows a frame window with a single button. When you click on the button, a
color chooser pops up. After you select a color, it becomes the background color of the
frame window.

Basically all we have to do is call JColorChooser 's static method showDialog() .
In this example, we specified a parent component, a dialog title, and an initial color value.
But you can get away with just specifying a parent component. Whatever color the user
chooses is returned; if the user presses the Cancel button, null is returned.

CONTENTS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

Chapter 17. More Swing Components

 17.1 Text Components

 17.2 Focus Navigation
 17.3 Trees

 17.4 Tables

 17.5 Desktops

 17.6 Pluggable Look-and-Feel

 17.7 Creating Custom Components

In the previous chapter, we described most of the components that Swing offers for
building user interfaces. In this chapter, you'll find out about the rest. These include
Swing's text components, trees, and tables. These types of components have considerable
depth but are quite easy to use if you accept their default options. We'll show you the easy
way to use these components and start to describe the more advanced features of each.
Later in this chapter we'll also give an example of how to implement your own, custom
components in Swing.

17.1 Text Components

Swing offers sophisticated text components, from plain-text entry boxes to HTML
interpreters. For full coverage of Swing's text capabilities, see O'Reilly's Java Swing . In
that encyclopedic book, several meaty chapters are devoted to text. It's a huge subject; we'll
just scratch the surface here.

Let's begin by examining the simpler text components. JTextArea is a multiline text
editor, and JTextField is a simple, single-line text editor. Both JTextField and
JTextArea derive from the JTextComponent class, which provides the
functionality they have in common. This includes methods for setting and retrieving the
displayed text, specifying whether the text is "editable" or read-only, manipulating the
cursor position within the text, and manipulating text selections.

Observing changes in text components requires an understanding of how the components
implement the Model-View-Controller (MVC) architecture. You may recall from the last
chapter that Swing components implement a true MVC architecture. It's in the text
components that you first get an inkling of a clear separation between the M and VC parts
of the MVC architecture. The model for text components is an object called a Document

http://lib.ommolketab.ir
http://lib.ommolketab.ir

. When you add or remove text from a JTextField or a JTextArea , the
corresponding Document is changed. It's the document itself, not the visual components,
that generates text-related events when something changes. To receive notification of
JTextArea changes, therefore, you register with the underlying Document , not with
the JTextArea component itself:

JTextArea textArea = new JTextArea();
Document d = textArea.getDocument();
d.addDocumentListener(someListener);

As you'll see in an upcoming example, you can easily have more than one visual text
component use the same underlying data model, or Document .

In addition, JTextField components generate ActionEvent s whenever the user
presses the Return key within the field. To get these events, implement the
ActionListener interface and register your listener using the
addActionListener() method.

The next sections contain a couple of simple applications that show you how to work with
text areas and fields.

17.1.1 The TextEntryBox Application

Our first example, TextEntryBox , creates a JTextArea and ties it to a
JTextField , as you can see in Figure 17-1 .

Figure 17-1. The TextEntryBox application

When the user hits Return in the JTextField , we receive an ActionEvent and add
the line to the JTextArea 's display. Try it out. You may have to click your mouse in the
JTextField to give it focus before typing in it. If you fill up the display with lines, you
can test-drive the scrollbar:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

//file: TextEntryBox.java
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class TextEntryBox {

 public static void main(String[] args) {
 JFrame frame = new JFrame("Text Entry Box");

 final JTextArea area = new JTextArea();
 area.setFont(new Font("Serif", Font.BOLD, 18));
 area.setText("Howdy!\n");
 final JTextField field = new JTextField();

 Container content = frame.getContentPane();
 content.add(new JScrollPane(area), BorderLayout.CENTER);
 content.add(field, BorderLayout.SOUTH);
 field.requestFocus();

 field.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 area.append(field.getText() + '\n');
 field.setText("");
 }
 });

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(200, 300);
 frame.setVisible(true);
 }
}

TextEntryBox is exceedingly simple; we've done a few things to make it more
interesting. We give the text area a bigger font using Component 's setFont()
method; fonts are discussed in Chapter 19 . Finally, we want to be notified whenever the
user presses Return in the text field, so we register an anonymous inner class as a listener
for action events.

Pressing Return in the JTextField generates an action event, and that's where the fun

http://lib.ommolketab.ir
http://lib.ommolketab.ir

begins. We handle the event in the actionPerformed() method of our inner
ActionListener implementation. Then we use the getText() and setText()
methods to manipulate the text the user has typed. These methods can be used for
JTextField and JTextArea since these components are both derived from the
JTextComponent class and therefore have some common functionality.

The event handler, actionPerformed() , calls field.getText() to read the
text that the user typed into our JTextField . It then adds this text to the JTextArea
by calling area.append() . Finally, we clear the text field by calling the method
field.setText(" ") , preparing it for more input.

Remember, the text components really are distinct from the text data model, the
Document . When you call setText() , getText() , or append() , these
methods are shorthand for operations on an underlying Document .

By default, JTextField and JTextArea are editable; you can type and edit in both
text components. They can be changed to output-only areas by calling
setEditable(false) . Both text components also support selections . A selection is
a range of text that is highlighted for copying, cutting, or pasting in your windowing
system. You select text by dragging the mouse over it; you can then cut, copy and paste it
into other text windows using the default keyboard gestures. On most systems these are
Ctrl-C for copy, Ctrl-V for paste, and Ctrl-X for cut. You can also programmatically
manage these operations using the JTextComponent 's cut() , copy() , and
paste() methods. You could, for example, create a pop-up menu with the standard cut,
copy, and paste options using these methods. The current text selection is returned by
getSelectedText() , and you can set the selection using selectText() , which
takes an index range or selectAll() .

Notice how JTextArea fits neatly inside a JScrollPane . The scroll pane gives us
the expected scrollbars and scrolling behavior if the text in the JTextArea becomes too
large for the available space.

17.1.2 Formatted Text

Java 1.4 introduced JFormattedTextField . This component provides explicit
support for editing complex formatted values such as numbers and dates.
JFormattedTextField acts somewhat like a JTextField , except that it accepts
a format-specifying object in its constructor and manages a complex object type (such as
Date or Integer) through its setValue() and getValue() methods. The
following example shows the construction of a simple form with different types of
formatted fields:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.text.*;
import javax.swing.*;
import javax.swing.text.*;
import java.util.Date;

public class FormattedFields
{
 public static void main(String[] args) throws Exception {
 Box form = Box.createVerticalBox();
 form.add(new JLabel("Name:"));
 form.add(new JTextField("Joe User"));

 form.add(new JLabel("Birthday:"));
 JFormattedTextField birthdayField =
 new JFormattedTextField(new SimpleDateFormat("MM/dd/yy"));
 birthdayField.setValue(new Date());
 form.add(birthdayField);

 form.add(new JLabel("Age:"));
 form.add(new JFormattedTextField(new Integer(32)));

 form.add(new JLabel("Hairs on Body:"));
 JFormattedTextField hairsField
 = new JFormattedTextField(new DecimalFormat("###,###"));
 hairsField.setValue(new Integer(100000));
 form.add(hairsField);

 form.add(new JLabel("Phone Number:"));
 JFormattedTextField phoneField =
 new JFormattedTextField(new MaskFormatter("(###)###-####"));
 phoneField.setValue("(314)555-1212");
 form.add(phoneField);

 JFrame frame = new JFrame("User Information");
 frame.getContentPane().add(form);
 frame.pack();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

The JFormattedTextField can be constructed with a variety of format-specifying
objects including java.lang.Number (e.g., Integer and Float),
java.text.NumberFormat , java.text.DateFormat , and the more
arbitrary java.text.MaskFormatter . The NumberFormat and DateFormat
classes of the java.text package are discussed in Chapters Chapter 9 and Chapter 10 .
MaskFormatter allows you to construct arbitrary physical layout conventions. In a
moment we'll discuss input filtering and component validation, which also allow you to
restrict the kinds of characters that could fill the fields or perform arbitrary checks on the
data. Finally we should mention that in this example we've used a Box container. A Box is
just a Swing container that uses a BoxLayout , which we'll discuss more in Chapter 18 .

After construction you can set a valid value using setValue() and retrieve the last
valid value with getValue() . To do this, you'll have to cast the value back to the
correct type based on the format you are using. For example, this statement retrieves the
date from our birthday field:

Date bday = (Date)birthdayField.getValue();

JFormattedTextField validates its text when the user attempts to shift focus to a
new field (either by clicking with the mouse outside of the field or using keyboard
navigation). By default, JFormattedTextField handles invalid input by simply
reverting to the last valid value. If you wish to allow invalid input to remain in the field,
you can set the setFocusLostBehavior() method with the value
JFormattedTextField.COMMIT (the default is COMMIT_OR_REVERT).

17.1.3 Filtering Input

JFormattedTextField does not know about all format types itself and uses
AbstractFormatter objects that know about particular format types. The
AbstractFormatter s in turn provide implementations of two interfaces:
DocumentFilter and NavigationFilter . A DocumentFilter attaches to
implementations of Document and allows you to intercept editing commands, modifying
them as you wish. A NavigationFilter can be attached to JTextComponent s to
control the movement of the cursor (as in a mask-formatted field). You can implement your
own AbstractFormatter s for use with JFormattedTextField , and, more
generally, you can use the DocumentFilter interface to control how documents are
edited in any type of text component. For example, you could create a
DocumentFilter that maps characters to uppercase or strange symbols.
DocumentFilter provides a low-level, edit-by-edit means of controlling or mapping

http://lib.ommolketab.ir
http://lib.ommolketab.ir

user input. In the next section we discuss high-level field validation to ensure the
correctness of data once it is entered.

17.1.3.1 DocumentFilter

The following example, DocFilter , applies a document filter to a JTextField .
Our DocumentFilter simply maps any input to uppercase. Here is the code:

import java.text.*;
import javax.swing.*;
import javax.swing.text.*;

public class DocFilter
{
 public static void main(String[] args) throws Exception
 {
 JTextField field = new JTextField(30);

 ((AbstractDocument)(field.getDocument())).setDocumentFilter(
 new DocumentFilter()
 {
 public void insertString(
 FilterBypass fb, int offset, String string, AttributeSet attr)
 throws BadLocationException
 {
 fb.insertString(offset, string.toUpperCase(), attr);
 }

 public void replace(
 FilterBypass fb, int offset, int length, String string,
 AttributeSet attr) throws BadLocationException
 {
 fb.replace(offset, length, string.toUpperCase(), attr);
 }
 });

 JFrame frame = new JFrame("User Information");
 frame.getContentPane().add(field);
 frame.pack();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 frame.setVisible(true);
 }
}

The methods insertString() and replace() of the DocumentFilter are
called when text is added to the document or modified. Within them we have an
opportunity to filter the text before passing it on. When we are ready to apply the text, we
use the FilterBypass reference. FilterBypass has the same methods, which
apply the changes directly to the document. The DocumentFilter remove()
method can also be used to intercept edits to the document that remove characters. One
thing to note in our example is that not all Document s have a
setDocumentFilter() method. Instead, we have to cast our document to an
AbstractDocument . Only document implementations that extend
AbstractDocument accept filters (unless you implement your own). This is because
the Document Filter API was added in Java 1.4, and it was decided that changes could not
be made to the original Document interface.

17.1.4 Validating Data

Low-level input filtering prevents you from doing such things as entering a number where
a character should be. In this section we're going to talk about high-level validation, which
accounts for things like February having only 28 days or a credit-card number being for a
Visa or MasterCard. Whereas character filtering prevents you from entering incorrect data,
field validation happens after data has been entered. Normally validation occurs when the
user tries to change focus and leave the field, either by clicking the mouse or through
keyboard navigation. Java 1.4 added the InputVerifier API, which allows you to
validate the contents of a component before focus is transferred. Although we are going to
talk about this in the context of text fields, an InputVerifier can actually be attached
to any JComponent to validate its state in this way.

The following example creates a pair of text fields. The first allows any value to be entered,
while the second rejects any value that is not a number between 0 and 100. When both
fields are happy, you can freely move between them. However, when you enter an invalid
value in the second field and try to leave, the program just beeps and selects the text. The
focus remains trapped until you correct the problem.

import javax.swing.*;

public class Validator
{

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public static void main(String[] args) throws Exception {
 Box form = Box.createVerticalBox();
 form.add(new JLabel("Any Value"));
 form.add(new JTextField("5000"));

 form.add(new JLabel("Only 0-100"));
 JTextField rangeField = new JTextField("50");
 rangeField.setInputVerifier(new InputVerifier() {
 public boolean verify(JComponent comp) {
 JTextField field = (JTextField)comp;
 boolean passed = false;
 try {
 int n = Integer.parseInt(field.getText());
 passed = (0 <= n && n <= 100);
 } catch (NumberFormatException e) { }
 if (!passed) {
 comp.getToolkit().beep();
 field.selectAll();
 }
 return passed;
 }
 });
 form.add(rangeField);

 JFrame frame = new JFrame("User Information");
 frame.getContentPane().add(form);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.pack();
 frame.setVisible(true);
 }
}

Here we have created an anonymous inner class extending InputVerifier . The API
is very simple; at validation time our verify() method is called, and we are passed a
reference to the component needing checking. Here we cast to the correct type (we know
what we are verifying of course) and parse the number. If it is out of range, we beep and
select the text. We then return true or false indicating whether the value passes
validation.

You can use an InputVerifier in combination with a JFormattedTextField

http://lib.ommolketab.ir
http://lib.ommolketab.ir

to both guide user input into the correct format and validate the semantics of what the user
entered.

17.1.5 Say the Magic Word

Before we move on from our discussion of formatted text, we should mention that Swing
includes a class just for typing passwords, called JPasswordField . A
JPasswordField behaves just like a JTextField (it's a subclass), except every
character typed is echoed as a single character, typically an asterisk. Figure 17-2 shows the
option dialog example that was presented in Chapter 16 . The example includes a
JTextField and a JPasswordField .

Figure 17-2. Using a JPasswordField in a dialog

The creation and use of JPasswordField is basically the same as for JTextField .
If you find asterisks distasteful, you can tell the JPasswordField to use a different
character using the setEchoChar() method.

Normally, you would use getText() to retrieve the text typed into the
JPasswordField . This method, however, is deprecated; you should use
getPassword() instead. The getPassword() method returns a character array
rather than a String object. This is done because character arrays are less vulnerable
than String s to discovery by memory-snooping password sniffer programs. If you're
not that concerned, you can simply create a new String from the character array. Note
that methods in the Java cryptographic classes accept passwords as character arrays, not
strings, so you can pass the results of a getPassword() call directly to methods in the
cryptographic classes without ever creating a String .

17.1.6 Sharing a Data Model

Our next example shows how easy it is to make two or more text components share the
same Document ; Figure 17-3 shows what the application looks like.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 17-3. Three views of the same data model

Anything the user types into any text area is reflected in all of them. All we had to do is
make all the text areas use the same data model, like this:

JTextArea areaFiftyOne = new JTextArea();
JTextArea areaFiftyTwo = new JTextArea();
areaFiftyTwo.setDocument(areaFiftyOne.getDocument());
JTextArea areaFiftyThree = new JTextArea();
areaFiftyThree.setDocument(areaFiftyOne.getDocument());

We could just as easily make seven text areas sharing the same document or seventy. While
this example may not look very useful, keep in mind that you can scroll different text areas
to different places in the same document. That's one of the beauties of putting multiple
views on the same data; you get to examine different parts of it. Another useful technique
is viewing the same data in different ways. You could, for example, view some tabular
numerical data as both a spreadsheet and a pie chart. The MVC architecture that Swing
uses means that it's possible to do this in an intelligent way so that if numbers in a
spreadsheet are updated, a pie chart that uses the same data is automatically updated also.

This example works because, behind the scenes, there are a lot of events flying around.
When you type in one of the text areas, the text area receives the keyboard events. It calls
methods in the document to update its data. In turn, the document sends events to the other
text areas telling them about the updates so that they can correctly display the document's
new data. But don't worry about any of this; you just tell the text areas to use the same data,
and Swing takes care of the rest:

//file: SharedModel.java
import java.awt.*;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.awt.event.*;
import javax.swing.*;

public class SharedModel {
 public static void main(String[] args) {
 JFrame frame = new JFrame("Shared Model");

 JTextArea areaFiftyOne = new JTextArea();
 JTextArea areaFiftyTwo = new JTextArea();
 areaFiftyTwo.setDocument(areaFiftyOne.getDocument());
 JTextArea areaFiftyThree = new JTextArea();
 areaFiftyThree.setDocument(areaFiftyOne.getDocument());

 Container content = frame.getContentPane();
 content.setLayout(new GridLayout(3, 1));
 content.add(new JScrollPane(areaFiftyOne));
 content.add(new JScrollPane(areaFiftyTwo));
 content.add(new JScrollPane(areaFiftyThree));

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(300, 300);
 frame.setVisible(true);
 }
}

Setting up the display is simple. We use a GridLayout (discussed in the next chapter)
and add three text areas to the layout. Then all we have to do is tell the text areas to use the
same Document .

17.1.7 HTML and RTF for Free

Most user interfaces will use only two subclasses of JTextComponent . These are the
simple JTextField and JTextArea classes that we just covered. That's just the tip of
the iceberg, however. Swing offers sophisticated text capabilities through two other
subclasses ofJTextComponent : JEditorPane and JTextPane .

The first of these, JEditorPane , can display HTML and RTF documents. It also fires
one more type of event, a HyperlinkEvent . Subtypes of this event are fired off when
the mouse enters, exits, or clicks on a hyperlink. Combined with JEditorPane 's
HTML display capabilities, it's easy to build a simple browser. The following browser, as

http://lib.ommolketab.ir
http://lib.ommolketab.ir

shown in Figure 17-4 , has only about 70 lines of code.

Figure 17-4. The CanisMinor application, a simple web browser

//file: CanisMinor.java
import java.awt.*;
import java.awt.event.*;
import java.net.*;
import javax.swing.*;
import javax.swing.event.*;

public class CanisMinor extends JFrame {
 protected JEditorPane mEditorPane;
 protected JTextField mURLField;

 public CanisMinor(String urlString) {
 super("CanisMinor v1.0");
 createGUI(urlString);
 }

 protected void createGUI(String urlString) {
 Container content = getContentPane();
 content.setLayout(new BorderLayout());

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 JToolBar urlToolBar = new JToolBar();
 mURLField = new JTextField(urlString, 40);
 urlToolBar.add(new JLabel("Location:"));
 urlToolBar.add(mURLField);
 content.add(urlToolBar, BorderLayout.NORTH);

 mEditorPane = new JEditorPane();
 mEditorPane.setEditable(false);
 content.add(new JScrollPane(mEditorPane), BorderLayout.CENTER);

 openURL(urlString);

 mURLField.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 openURL(ae.getActionCommand());
 }
 });

 mEditorPane.addHyperlinkListener(new LinkActivator());

 setSize(500, 600);
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

 protected void openURL(String urlString) {
 try {
 URL url = new URL(urlString);
 mEditorPane.setPage(url);
 mURLField.setText(url.toExternalForm());
 }
 catch (Exception e) {
 System.out.println("Couldn't open " + urlString + ":" + e);
 }
 }

 class LinkActivator implements HyperlinkListener {
 public void hyperlinkUpdate(HyperlinkEvent he) {
 HyperlinkEvent.EventType type = he.getEventType();
 if (type == HyperlinkEvent.EventType.ACTIVATED)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 openURL(he.getURL().toExternalForm());
 }
 }

 public static void main(String[] args) {
 String urlString = "http://www.oreilly.com/catalog/learnjava2/";
 if (args.length > 0)
 urlString = args[0];
 new CanisMinor(urlString).setVisible(true);
 }
}

JEditorPane is the center of this little application. Passing a URL to setPage()
causes the JEditorPane to load a new page, either from a local file or from somewhere
across the Internet. To go to a new page, enter it in the text field at the top of the window
and press Return. This fires an ActionEvent that sets the new page location of the
JEditorPane . It can display RTF files, too (Rich Text Format is the text or nonbinary
storage format for Microsoft Word documents).

Responding to hyperlinks correctly is simply a matter of responding to the
HyperlinkEvent s thrown by the JEditorPane . This behavior is encapsulated in
the LinkActivator inner class. In this case the only activity we are interested in is
when the user "activates" the hyperlink by clicking on it. We respond by setting the
location of the JEditorPane to the location given under the hyperlink. Surf away!

Behind the scenes, something called an EditorKit handles displaying documents for
the JEditorPane . Different kinds of EditorKit s can display different kinds of
documents. For HTML, the HTMLEditorKit class (in the
javax.swing.text.html package) handles the display. Currently, this class
supports HTML 3.2. Subsequent releases of the SDK will contain enhancements to the
capabilities of HTMLEditorKit ; eventually, it will support HTML 4.0.

There's another component here that we haven't covered before-the JToolBar . This
nifty container houses our URL text field. Initially, the JToolBar starts out at the top of
the window. But you can pick it up by clicking on the little dotted box near its left edge,
then drag it around to different parts of the window. You can place this toolbar at the top,
left, right, or bottom of the window, or you can drag it outside the window entirely. It will
then inhabit a window of its own. All this behavior comes for free from the JToolBar
class. All we had to do was create a JToolBar and add some components to it. The
JToolBar is just a container, so we add it to the content pane of our window to give it an
initial location.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

17.1.8 Managing Text Yourself

Swing offers one last subclass of JTextComponent that can do just about anything you
want: JTextPane . The basic text components, JTextField and JTextArea , are
limited to a single font in a single style. But JTextPane , a subclass of JEditorPane
, can display multiple fonts and multiple styles in the same component. It also includes
support for a cursor (caret), highlighting, image embedding, and other advanced features.

We'll just take a peek at JTextPane here by creating a text pane with some styled text.
Remember, the text itself is stored in an underlying data model, the Document . To create
styled text, we simply associate a set of text attributes with different parts of the document's
text. Swing includes classes and methods for manipulating sets of attributes, like specifying
a bold font or a different color for the text. Attributes themselves are contained in a class
called SimpleAttributeSet ; these attribute sets are manipulated with static
methods in the StyleConstants class. For example, to create a set of attributes that
specifies the color red, you could do this:

SimpleAttributeSet redstyle = new SimpleAttributeSet();
StyleConstants.setForeground(redstyle, Color.red);

To add some red text to a document, you would just pass the text and the attributes to the
document's insertString() method, like this:

document.insertString(6, "Some red text", redstyle);

The first argument to insertString() is an offset into the text. An exception is
thrown if you pass in an offset that's greater than the current length of the document. If you
pass null for the attribute set, the text is added in the JTextPane 's default font and
style.

Our simple example creates several attribute sets and uses them to add plain and styled text
to a JTextPane , as shown in Figure 17-5 .

Figure 17-5. Using styled text in a JTextPane

http://lib.ommolketab.ir
http://lib.ommolketab.ir

//file: Styling.java
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.text.*;

public class Styling extends JFrame {
 private JTextPane textPane;

 public Styling() {
 super("Stylin' v1.0");
 setSize(300, 200);

 textPane = new JTextPane();
 textPane.setFont(new Font("Serif", Font.PLAIN, 24));

 // create some handy attribute sets
 SimpleAttributeSet red = new SimpleAttributeSet();
 StyleConstants.setForeground(red, Color.red);
 StyleConstants.setBold(red, true);
 SimpleAttributeSet blue = new SimpleAttributeSet();
 StyleConstants.setForeground(blue, Color.blue);
 SimpleAttributeSet italic = new SimpleAttributeSet();
 StyleConstants.setItalic(italic, true);
 StyleConstants.setForeground(italic, Color.orange);

 // add the text
 append("In a ", null);
 append("sky", blue);
 append(" full of people\nOnly some want to ", null);
 append("fly", italic);
 append("\nIsn't that ", null);
 append("crazy", red);
 append("?", null);

 Container content = getContentPane();
 content.add(new JScrollPane(textPane), BorderLayout.CENTER);
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 protected void append(String s, AttributeSet attributes) {
 Document d = textPane.getDocument();
 try { d.insertString(d.getLength(), s, attributes); }
 catch (BadLocationException ble) {}
 }

 public static void main(String[] args) {
 new Styling().setVisible(true);
 }
}

This example creates a JTextPane , which is saved in a member variable. Three
different attribute sets are created using combinations of text styles and foreground colors.
Then, using a helper method called append() , text is added to the JTextPane .

The append() method tacks a text String on the end of the JTextPane 's
document, using the supplied attributes. Remember that if the attributes are null , the text
is displayed with the JTextPane 's default font and style.

You can go ahead and add your own text if you wish. If you place the caret inside one of
the differently styled words and type, the new text comes out in the appropriate style.
Pretty cool, eh? You'll also notice that JTextPane gives us word-wrapping behavior for
free. And since we've wrapped the JTextPane in a JScrollPane , we get scrolling
for free, too. Swing allows you to do some really cool stuff without breaking a sweat. Just
wait-there's plenty more to come.

This simple example should give you some idea of what JTextPane can do. It's
reasonably easy to build a simple word processor with JTextPane , and complex
commercial-grade word processors are definitely possible.

If JTextPane still isn't good enough for you, or you need some finer control over
character, word, and paragraph layout, you can actually draw text, carets, and highlight
shapes yourself. A class in the 2D API called TextLayout simplifies much of this work,
but it's outside the scope of this book. For coverage of TextLayout and other advanced
text drawing topics, see Java 2D Graphics by Jonathan Knudsen (O'Reilly).

17.2 Focus Navigation

We've brought up the topic of focus many times in our discussion so far, and we've told
you that the handling and user navigation of focus is mostly done automatically. This is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

largely due to a new focus system introduced in Java 1.4. The new focus system is very
powerful and can be heavily customized through the use of "focus traversal policy" objects
that control keyboard navigation. In general, for typical application behavior, you won't
have to deal with this directly. But we'll explain a few features you should know about.

Swing handles keyboard focus navigation through the KeyboardFocusManager
class. This class uses FocusTraversalPolicy "strategy" objects that implement the
actual schemes for locating the next component to receive focus. There are two primary
FocusTraversalPolicy types supplied with Java. The first,
DefaultFocusTraversalPolicy , is part of the AWT package. It emulates the old
AWT-style focus management by navigating components in the order in which they were
added to their container. The next, LayoutFocusTraversalPolicy , is the default
for all Swing applications. It examines the layout and attempts to provide the expected
navigation from left to right, top to bottom, based on component position and size.

The focus traversal policy is inherited from containers and oriented around groups of
components known as "root cycles." By default every window and JInternalFrame is
a root cycle. That means that focus traverses all of its child components repeatedly
(jumping from the last component back to the first), and won't, by default, leave the
container through keyboard navigation.

The default Swing policy uses the following keys for keyboard navigation:

Forward

Tab or Ctrl-Tab (Ctrl-Tab also works inside text areas)
Back

Shift-Tab or Ctrl-Shift-Tab (Ctrl-Shift-Tab also works inside text areas)

You can define your own focus traversal keys for forward and back navigation, as well as
for navigation across root cycles using the setFocusTraversalKeys() method of a
container. Here is an example that adds the keystroke Ctrl-N to the list of forward key
navigation for components in a Frame:

frame.getFocusTraversalKeys(
 KeyboardFocusManager.FORWARD_TRAVERSAL_KEYS);
AWTKeyStroke ks = AWTKeyStroke.getAWTKeyStroke(
 KeyEvent.VK_N, InputEvent.CTRL_DOWN_MASK);
Set new = new HashSet(old);
set.add(ks);
frame.setFocusTraversalKeys(

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 KeyboardFocusManager.FORWARD_TRAVERSAL_KEYS,set);

Keys are defined by the AWTKeyStroke class, which encapsulates the key and input
modifiers, in this case the Control key. Constants in the KeyboardFocusManager
specify forward, back, and up or down root cycle transfer across windows.

Finally, you can also move focus programmatically using the following methods of
KeyboardFocusManager :

focusNextComponent()
focusPreviousComponent()
upFocusCycle()
downFocusCycle()

17.3 Trees

One of Swing's advanced components is JTree . Trees are good for representing
hierarchical information, like the contents of a disk drive or a company's organizational
chart. As with all Swing components, the data model is distinct from the visual
representation. This means you can do things such as update the data model and trust that
the visual component will be updated properly.

JTree is powerful and complex. It's so complicated, in fact, that like the text tools, the
classes that support JTree have their own package, javax.swing.tree . However,
if you accept the default options for almost everything, JTree is very easy to use. Figure
17-6 shows a JTree running in a Swing application that we'll describe later.

Figure 17-6. The JTree class in action

17.3.1 Nodes and Models

A tree's data model is made up of interconnected nodes. A node has a name, typically, a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

parent, and some number of children (possibly 0). In Swing, a node is represented by the
TreeNode interface. Nodes that can be modified are represented by
MutableTreeNode . A concrete implementation of this interface is
DefaultMutableTreeNode . One node, called the root node, usually resides at the
top of the hierarchy.

A tree's data model is represented by the TreeModel interface. Swing provides an
implementation of this interface called DefaultTreeModel . You can create a
DefaultTreeModel by passing a root TreeNode to its constructor.

You could create a TreeModel with just one node like this:

TreeNode root = new DefaultMutableTreeNode("Root node");
TreeModel model = new DefaultTreeModel(root);

Here's another example with a real hierarchy. The root node contains two nodes, Node 1
and Group. The Group node contains Node 2 and Node 3 as subnodes.

MutableTreeNode root = new DefaultMutableTreeNode("Root node");
MutableTreeNode group = new DefaultMutableTreeNode("Group");
root.insert(group, 0);
root.insert(new DefaultMutableTreeNode("Node 1"), 1);
group.insert(new DefaultMutableTreeNode("Node 2"), 0);
group.insert(new DefaultMutableTreeNode("Node 3"), 1);

The second parameter to the insert() method is the index of the node in the parent.
Once you've got your nodes organized, you can create a TreeModel in the same way as
before:

TreeModel model = new DefaultTreeModel(root);

17.3.2 Save a Tree

Once you have a tree model, creating a JTree is simple:

JTree tree = new JTree(model);

The JTree behaves like a souped-up JList . As Figure 17-6 shows, the JTree
automatically shows nodes with no children as a sheet of paper, while nodes that contain
other nodes are shown as folders. You can expand and collapse nodes by clicking on the
little knobs to the left of the folder icons. You can also expand and collapse nodes by
double-clicking on them. You can select nodes; multiple selections are possible using the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Shift and Control keys. And, like a JList , you should put a JTree in a
JScrollPane if you want it to scroll.

17.3.3 Tree Events

A tree fires off several flavors of events. You can find out when nodes have been expanded
and collapsed, when nodes are about to be expanded or collapsed (because the user has
clicked on them), and when selections occur. Three distinct event listener interfaces handle
this information.

TreeExpansionListener
TreeWillExpandListener
TreeSelectionListener

Tree selections are a tricky business. You can select any combination of nodes by using the
Control key and clicking on nodes. Tree selections are described by a TreePath , which
describes how to get from the root node to the selected nodes.

The following example registers an event listener that prints out the last selected node:

tree.addTreeSelectionListener(new TreeSelectionListener() {
 public void valueChanged(TreeSelectionEvent e) {
 TreePath tp = e.getNewLeadSelectionPath();
 System.out.println(tp.getLastPathComponent());
 }
});

17.3.4 A Complete Example

This section contains an example that showcases the following tree techniques:

Construction of a tree model, using DefaultMutableTreeNode

Creation and display of a JTree

Listening for tree selection events

Modifying the tree's data model while the JTree is showing

Here's the source code for the example:

//file: PartsTree.java

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.event.*;
import javax.swing.tree.*;

public class PartsTree {
 public static void main(String[] args) {
 // create a hierarchy of nodes
 MutableTreeNode root = new DefaultMutableTreeNode("Parts");
 MutableTreeNode beams = new DefaultMutableTreeNode("Beams");
 MutableTreeNode gears = new DefaultMutableTreeNode("Gears");
 root.insert(beams, 0);
 root.insert(gears, 1);
 beams.insert(new DefaultMutableTreeNode("1x4 black"), 0);
 beams.insert(new DefaultMutableTreeNode("1x6 black"), 1);
 beams.insert(new DefaultMutableTreeNode("1x8 black"), 2);
 beams.insert(new DefaultMutableTreeNode("1x12 black"), 3);
 gears.insert(new DefaultMutableTreeNode("8t"), 0);
 gears.insert(new DefaultMutableTreeNode("24t"), 1);
 gears.insert(new DefaultMutableTreeNode("40t"), 2);
 gears.insert(new DefaultMutableTreeNode("worm"), 3);
 gears.insert(new DefaultMutableTreeNode("crown"), 4);

 // create the JTree
 final DefaultTreeModel model = new DefaultTreeModel(root);
 final JTree tree = new JTree(model);

 // create a text field and button to modify the data model
 final JTextField nameField = new JTextField("16t");
 final JButton button = new JButton("Add a part");
 button.setEnabled(false);
 button.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 TreePath tp = tree.getSelectionPath();
 MutableTreeNode insertNode =
 (MutableTreeNode)tp.getLastPathComponent();
 int insertIndex = 0;
 if (insertNode.getParent() != null) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 MutableTreeNode parent =
 (MutableTreeNode)insertNode.getParent();
 insertIndex = parent.getIndex(insertNode) + 1;
 insertNode = parent;
 }
 MutableTreeNode node =
 new DefaultMutableTreeNode(nameField.getText());
 model.insertNodeInto(node, insertNode, insertIndex);
 }
 });
 JPanel addPanel = new JPanel(new GridLayout(2, 1));
 addPanel.add(nameField);
 addPanel.add(button);

 // listen for selections
 tree.addTreeSelectionListener(new TreeSelectionListener() {
 public void valueChanged(TreeSelectionEvent e) {
 TreePath tp = e.getNewLeadSelectionPath();
 button.setEnabled(tp != null);
 }
 });

 // create a JFrame to hold the tree
 JFrame frame = new JFrame("PartsTree v1.0");

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(200, 200);
 frame.getContentPane().add(new JScrollPane(tree));
 frame.getContentPane().add(addPanel, BorderLayout.SOUTH);
 frame.setVisible(true);
 }
}

The example begins by creating a node hierarchy. The root node is called Parts . It
contains two subnodes, Beams and Gears , as shown:

MutableTreeNode root = new DefaultMutableTreeNode("Parts");
MutableTreeNode beams = new DefaultMutableTreeNode("Beams");
MutableTreeNode gears = new DefaultMutableTreeNode("Gears");
root.insert(beams, 0);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

root.insert(gears, 1);

The Beams and Gears nodes contain a handful of items each.

The Add a part button inserts a new item into the tree at the level of the current node, and
just after it. You can specify the name of the new node by typing it in the text field above
the button. To determine where the node should be added, the current selection is first
obtained in the anonymous inner class ActionListener :

TreePath tp = tree.getSelectionPath();
MutableTreeNode insertNode =
 (MutableTreeNode)tp.getLastPathComponent();

The new node should be added to the parent node of the current node, so it ends up being a
sibling of the current node. The only hitch here is that if the current node is the root node, it
won't have a parent. If a parent does exist, we determine the index of the currently selected
node, and then add the new node at the next index:

int insertIndex = 0;
if (insertNode.getParent() != null) {
 MutableTreeNode parent =
 (MutableTreeNode)insertNode.getParent();
 insertIndex = parent.getIndex(insertNode) + 1;
 insertNode = parent;
}
MutableTreeNode node =
 new DefaultMutableTreeNode(nameField.getText());
model.insertNodeInto(node, insertNode, insertIndex);

You must add the new node to the tree's data model, using insertNodeInto() , not
to the MutableTableNode itself. The model notifies the JTree that it needs to
update itself.

We have another event handler in this example, one that listens for tree selection events.
Basically, we want to enable our Add a part button only if a current selection exists:

tree.addTreeSelectionListener(new TreeSelectionListener() {
 public void valueChanged(TreeSelectionEvent e) {
 TreePath tp = e.getNewLeadSelectionPath();
 button.setEnabled(tp != null);
 }
});

http://lib.ommolketab.ir
http://lib.ommolketab.ir

When you first start this application, the button is disabled. As soon as you select
something, it is enabled, and you can add nodes to the tree with abandon. If you want to
see the button disabled again, you can unselect everything by holding the Control key and
clicking on the current selection.

17.4 Tables

Tables present information in orderly rows and columns. This is useful for presenting
financial figures or representing data from a relational database. Like trees, tables in Swing
are incredibly powerful and customizable. If you go with the default options, they're also
pretty easy to use.

The JTable class represents a visual table component. A JTable is based on a
TableModel , one of a dozen or so supporting interfaces and classes in the
javax.swing.table package.

17.4.1 A First Stab: Freeloading

JTable has one constructor that creates a default table model for you from arrays of data.
You just need to supply it with the names of your column headers and a 2D array of
Object s representing the table's data. The first index selects the table's row; the second
index selects the column. The following example shows how easy it is to get going with
tables using this constructor:

//file: DullShipTable.java
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.table.*;

public class DullShipTable {
 public static void main(String[] args) {
 // create some tabular data
 String[] headings =
 new String[] {"Number", "Hot?", "Origin",
 "Destination", "Ship Date", "Weight" };
 Object[][] data = new Object[][] {
 { "100420", Boolean.FALSE, "Des Moines IA", "Spokane WA",
 "02/06/2000", new Float(450) },

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 { "202174", Boolean.TRUE, "Basking Ridge NJ", "Princeton NJ",
 "05/20/2000", new Float(1250) },
 { "450877", Boolean.TRUE, "St. Paul MN", "Austin TX",
 "03/20/2000", new Float(1745) },
 { "101891", Boolean.FALSE, "Boston MA", "Albany NY",
 "04/04/2000", new Float(88) }
 };

 // create the data model and the JTable
 JTable table = new JTable(data, headings);

 JFrame frame = new JFrame("DullShipTable v1.0");
 frame.getContentPane().add(new JScrollPane(table));

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(500, 200);
 frame.setVisible(true);
 }
}

This small application produces the display shown in Figure 17-7 .

Figure 17-7. A rudimentary JTable

For very little typing, we've gotten some pretty impressive stuff. Here are a few things that
come for free:

Column headings

The JTable has automatically formatted the column headings differently than the
table cells. It's clear that they are not part of the table's data area.

Cell overflow

If a cell's data is too long to fit in the cell, it is automatically truncated and shown
with an ellipses (...). This is shown in the Origin cell in the first two rows in Figure

http://lib.ommolketab.ir
http://lib.ommolketab.ir

17-7 .
Row selection

You can click on any cell in the table to select its entire row. This behavior is
controllable; you can select single cells, entire rows, entire columns, or some
combination of these. To configure the JTable 's selection behavior, use the
setCellSelectionEnabled() , setColumnSelectionAllowed() ,
and set-RowSelectionAllowed() methods.

Cell editing

Double-clicking on a cell opens it for editing; you'll get a little cursor in the cell. You
can type directly into the cell to change the cell's data.

Column sizing

If you position the mouse cursor between two column headings, you'll get a little left-
right arrow cursor. Click and drag to change the size of the column to the left.
Depending on how the JTable is configured, the other columns may also change
size. The resizing behavior is controlled with the setAutoResizeMode()
method.

Column reordering

If you click and drag on a column heading, you can move the entire column to
another part of the table.

Play with this for a while; it's fun.

17.4.2 Round Two: Creating a Table Model

JTable is a very powerful component. You get a lot of very nice behavior for free.
However, the default settings are not quite what we wanted for this simple example. In
particular, we intended the table entries to be read-only; they should not be editable. Also,
we'd like entries in the Hot? column to be checkboxes instead of words. Finally, it would
be nice if the Weight column were formatted appropriately for numbers rather than for text.

To achieve more flexibility with JTable , we'll write our own data model by
implementing the TableModel interface. Fortunately, Swing makes this easy by
supplying a class that does most of the work, AbstractTableModel . To create a
table model, we'll just subclass AbstractTableModel and override whatever
behavior we want to change.

At a minimum, all AbstractTableModel subclasses have to define the following
three methods:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public int getRowCount()
public int getColumnCount()

Returns the number of rows and columns in this data model.
public Object getValueAt(int row , int column)

Returns the value for the given cell.

When the JTable needs data values, it calls the getValueAt() method in the table
model. To get an idea of the total size of the table, JTable calls the getRowCount()
and getColumnCount() methods in the table model.

A very simple table model looks like this:

public static class ShipTableModel extends AbstractTableModel {
 private Object[][] data = new Object[][] {
 { "100420", Boolean.FALSE, "Des Moines IA", "Spokane WA",
 "02/06/2000", new Float(450) },
 { "202174", Boolean.TRUE, "Basking Ridge NJ", "Princeton NJ",
 "05/20/2000", new Float(1250) },
 { "450877", Boolean.TRUE, "St. Paul MN", "Austin TX",
 "03/20/2000", new Float(1745) },
 { "101891", Boolean.FALSE, "Boston MA", "Albany NY",
 "04/04/2000", new Float(88) }
 };

 public int getRowCount() { return data.length; }
 public int getColumnCount() { return data[0].length; }

 public Object getValueAt(int row, int column) {
 return data[row][column];
 }
}

We'd like to use the same column headings we used in the previous example. The table
model supplies these through a method called getColumnName() . We could add
column headings to our simple table model like this:

private String[] headings = new String[] {
 "Number", "Hot?", "Origin", "Destination", "Ship Date", "Weight"
};

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public String getColumnName(int column) {
 return headings[column];
}

By default, AbstractTableModel makes all its cells noneditable, which is what we
wanted. No changes need to be made for this.

The final modification is to have the Hot? column and the Weight column formatted
specially. To do this, we give our table model some knowledge about the column types.
JTable automatically generates checkbox cells for Boolean column types and
specially formatted number cells for Number types. To give the table model some
intelligence about its column types, we override the getColumnClass() method. The
JTable calls this method to determine the data type of each column. It may then
represent the data in a special way. This table model returns the class of the item in the first
row of its data:

public Class getColumnClass(int column) {
 return data[0][column].getClass();
}

That's really all there is to do. The following complete example illustrates how you can use
your own table model to create a JTable using the techniques just described:

//file: ShipTable.java
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.table.*;

public class ShipTable {
 public static class ShipTableModel extends AbstractTableModel {
 private String[] headings = new String[] {
 "Number", "Hot?", "Origin", "Destination", "Ship Date", "Weight"
 };
 private Object[][] data = new Object[][] {
 { "100420", Boolean.FALSE, "Des Moines IA", "Spokane WA",
 "02/06/2000", new Float(450) },
 { "202174", Boolean.TRUE, "Basking Ridge NJ", "Princeton NJ",
 "05/20/2000", new Float(1250) },
 { "450877", Boolean.TRUE, "St. Paul MN", "Austin TX",

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 "03/20/2000", new Float(1745) },
 { "101891", Boolean.FALSE, "Boston MA", "Albany NY",
 "04/04/2000", new Float(88) }
 };

 public int getRowCount() { return data.length; }
 public int getColumnCount() { return data[0].length; }

 public Object getValueAt(int row, int column) {
 return data[row][column];
 }

 public String getColumnName(int column) {
 return headings[column];
 }

 public Class getColumnClass(int column) {
 return data[0][column].getClass();
 }
 }

 public static void main(String[] args)
 {
 // create the data model and the JTable
 TableModel model = new ShipTableModel();
 JTable table = new JTable(model);

 table.setAutoResizeMode(JTable.AUTO_RESIZE_OFF);

 JFrame frame = new JFrame("ShipTable v1.0");
 frame.getContentPane().add(new JScrollPane(table));
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(500, 200);
 frame.setVisible(true);
 }
}

The running application is shown in Figure 17-8 .

Figure 17-8. Customizing a table

http://lib.ommolketab.ir
http://lib.ommolketab.ir

17.4.3 Round Three: A Simple Spreadsheet

To illustrate just how powerful and flexible the separation of the data model from the GUI
can be, we'll show a more complex model. In the following example, we'll implement a
very slim but functional spreadsheet (see Figure 17-9) using almost no customization of
the JTable . All of the data processing is in a TableModel called
SpreadSheetModel .

Figure 17-9. A simple spreadsheet

Our spreadsheet does the expected stuff-allowing you to enter numbers or mathematical
expressions such as (A1*B2)+C3 into each cell.[1] All cell editing and updating is driven
by the standard JTable . We implement the methods necessary to set and retrieve cell
data. Of course we don't do any real validation here, so it's easy to break our table. (For
example, there is no check for circular dependencies, which may be undesirable.)

As you will see, the bulk of the code in this example is in the inner class used to parse the
value of the equations in the cells. If you don't find this part interesting you might want to
skip ahead. But if you have never seen an example of this kind of parsing before, we think
you will find it to be very cool. Through the magic of recursion and Java's powerful
String manipulation, it takes us only about 50 lines of code to implement a parser
capable of handling basic arithmetic with arbitrarily nested parentheses.

Here's the code:

//file: SpreadsheetModel.java
import java.util.StringTokenizer;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import javax.swing.*;
import javax.swing.table.AbstractTableModel;
import java.awt.event.*;

public class SpreadsheetModel extends AbstractTableModel {
 Expression [][] data;

 public SpreadsheetModel(int rows, int cols) {
 data = new Expression [rows][cols];
 }

 public void setValueAt(Object value, int row, int col) {
 data[row][col] = new Expression((String)value);
 fireTableDataChanged();
 }

 public Object getValueAt(int row, int col) {
 if (data[row][col] != null)
 try { return data[row][col].eval() + ""; }
 catch (BadExpression e) { return "Error"; }
 return "";
 }
 public int getRowCount() { return data.length; }
 public int getColumnCount() { return data[0].length; }
 public boolean isCellEditable(int row, int col) { return true; }

 class Expression {
 String text;
 StringTokenizer tokens;
 String token;

 Expression(String text) { this.text = text.trim(); }

 float eval() throws BadExpression {
 tokens = new StringTokenizer(text, " */+-()", true);
 try { return sum(); }
 catch (Exception e) { throw new BadExpression(); }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 private float sum() {
 float value = term();
 while(more() && match("+-"))
 if (match("+")) { consume(); value = value + term(); }
 else { consume(); value = value - term(); }
 return value;
 }
 private float term() {
 float value = element();
 while(more() && match("*/"))
 if (match("*")) { consume(); value = value * element(); }
 else { consume(); value = value / element(); }
 return value;
 }
 private float element() {
 float value;
 if (match("(")) { consume(); value = sum(); }
 else {
 String svalue;
 if (Character.isLetter(token().charAt(0))) {
 int col = findColumn(token().charAt(0) + "");
 int row = Character.digit(token().charAt(1), 10);
 svalue = (String)getValueAt(row, col);
 } else
 svalue = token();
 value = Float.parseFloat(svalue);
 }
 consume(); // ")" or value token
 return value;
 }
 private String token() {
 if (token == null)
 while ((token=tokens.nextToken()).equals(" "));
 return token;
 }
 private void consume() { token = null; }
 private boolean match(String s) { return s.indexOf(token())!=-1; }
 private boolean more() { return tokens.hasMoreTokens(); }
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 class BadExpression extends Exception { }

 public static void main(String [] args) {
 JFrame frame = new JFrame("Excelsior!");
 JTable table = new JTable(new SpreadsheetModel(15, 5));
 table.setPreferredScrollableViewportSize(table.getPreferredSize());
 table.setCellSelectionEnabled(true);
 frame.getContentPane().add(new JScrollPane(table));
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.pack();
 frame.show();
 }
}

Our model extends AbstractTableModel and overrides just a few methods. As you
can see, our data is stored in a 2D array of Expression objects. The setValueAt()
method of our model creates Expression objects from the strings typed by the user and
stores them in the array. The getValueAt() method returns a value for a cell by calling
the expression's eval() method. If the user enters some invalid text in a cell, a
BadExpression exception is thrown, and the word "error" is placed in the cell as a
value. The only other methods of TableModel we must override are
getRowCount() , getColumnCount() , and isCellEditable() to
determine the dimensions of the spreadsheet and to allow the user to edit the fields. That's
it! The helper method findColumn() is inherited from the AbstractTableModel
.

Now on to the good stuff. We'll employ our old friend StringTokenizer to read the
expression string as separate values and the mathematical symbols (+-*/()) one by one.
These tokens are then processed by the three parser methods: sum() , term() , and
element() . The methods call one another generally from the top down, but it might be
easier to read them in reverse to see what's happening.

At the bottom level, element() reads individual numeric values or cell names, e.g.,
5.0 or B2 . Above that, the term() method operates on the values supplied by
element() and applies any multiplication or division operations. And at the top,
sum() operates on the values that are returned by term() and applies addition or
subtraction to them. If the element() method encounters parentheses, it makes a call to
sum() to handle the nested expression. Eventually the nested sum returns (possibly after
further recursion), and the parenthesized expression is reduced to a single value, which is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

returned by element() . The magic of recursion has untangled the nesting for us. The
other small piece of magic here is in the ordering of the three parser methods. Having
sum() call term() and term() call element() imposes the precedence of
operators; i.e., "atomic" values are parsed first (at the bottom), then multiplication, and
finally addition or subtraction.

The grammar parsing relies on four simple helper methods that make the code more
manageable: token() , consume() , match() , and more() . token() calls the
string tokenizer to get the next value, and match() compares it with a specified value.
consume() is used to move to the next token, and more() indicates when the final
token has been processed.

17.5 Desktops

At this point, you might be thinking that there's nothing more that Swing could possibly do.
But it just keeps getting better. If you've ever wished that you could have windows within
windows in Java, Swing now makes it possible with JDesktopPane and
JInternalFrame . Figure 17-10 shows how this works.

Figure 17-10. Using internal frames on a JDesktopPane

You get a lot of behavior for free from JInternalFrame . Internal frames can be
moved by clicking and dragging the titlebar. They can be resized by clicking and dragging
on the window's borders. Internal frames can be iconified, which means reducing them to a
small icon representation on the desktop. Internal frames may also be made to fit the entire
size of the desktop (maximized). To you, the programmer, the internal frame is just a kind
of special container. You can put your application's data inside an internal frame.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The following brief example shows how to create the windows shown in Figure 17-10 :

//file: Desktop.java
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;
import javax.swing.border.*;

public class Desktop {
 public static void main(String[] args) {
 JFrame frame = new JFrame("Desktop");

 JDesktopPane desktop = new JDesktopPane();
 for (int i = 0; i < 5; i++) {
 JInternalFrame internal =
 new JInternalFrame("Frame " + i, true, true, true, true);
 internal.setSize(180, 180);
 internal.setLocation(i * 20, i * 20);
 internal.setVisible(true);
 desktop.add(internal);
 }

 frame.setSize(300, 300);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setContentPane(desktop);
 frame.setVisible(true);
 }
}

All we've done here is to create a JDesktopPane and add internal frames to it. When
each JInternalFrame is constructed, we specify a window title. The four true
values passed in the constructor specify that the new window should be resizable, closable,
maximizable, and iconifiable.

JInternalFrames fire off their own set of events. However,
InternalFrameEvent and InternalFrameListener are just like
WindowEvent and WindowListener with the names changed. If you want to hear
about a JInternalFrame closing, just register an InternalFrameListener and
define the internalFrameClosing() method. This is just like defining the
windowClosing() method for a JFrame .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

17.6 Pluggable Look-and-Feel

We mentioned before that Swing components can easily change their appearance, like
master spies or thespians. Generally, different kinds of components have appearances that
are similar in some way. For example, they probably use the same font and the same basic
color scheme. The collection of appearances for GUI components is called a look-and-feel
(L&F).

Part of the job of designing a GUI for an operating system is designing the L&F. MacOS,
therefore, has its own distinctive L&F, as does Windows. Java's standard edition offers
several different L&F schemes for Swing components. If you're adept at graphic design,
you can write your own L&F schemes and easily convince Swing to use them. This
chameleon-like ability to change appearance is called pluggable look-and-feel , sometimes
abbreviated PLAF (don't pronounce that out loud if others are eating).

Seeing is believing. Here's an example that creates a handful of Swing components. Menu
items allow you to change the L&F dynamically, as the application is running:

//file: QuickChange.java
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class QuickChange extends JFrame {

 public QuickChange() {
 super("QuickChange v1.0");
 createGUI();
 }

 protected void createGUI() {
 setSize(300, 200);

 // create a simple File menu
 JMenu file = new JMenu("File", true);
 JMenuItem quit = new JMenuItem("Quit");
 file.add(quit);
 quit.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) { System.exit(0); }
 });

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // create the Look & Feel menu
 JMenu lnf = new JMenu("Look & Feel", true);
 ButtonGroup buttonGroup = new ButtonGroup();
 final UIManager.LookAndFeelInfo[] info =
 UIManager.getInstalledLookAndFeels();
 for (int i = 0; i < info.length; i++) {
 JRadioButtonMenuItem item = new
 JRadioButtonMenuItem(info[i].getName(), i == 0);
 final String className = info[i].getClassName();
 item.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent ae) {
 try { UIManager.setLookAndFeel(className); }
 catch (Exception e) { System.out.println(e); }
 SwingUtilities.updateComponentTreeUI(QuickChange.this);
 }
 });
 buttonGroup.add(item);
 lnf.add(item);
 }

 // add the menu bar
 JMenuBar mb = new JMenuBar();
 mb.add(file);
 mb.add(lnf);
 setJMenuBar(mb);

 // add some components
 JPanel jp = new JPanel();
 jp.add(new JCheckBox("JCheckBox"));
 String[] names =
 new String[] { "Tosca", "Cavaradossi", "Scarpia",
 "Angelotti", "Spoletta", "Sciarrone",
 "Carceriere", "Il sagrestano", "Un pastore" };
 jp.add(new JComboBox(names));
 jp.add(new JButton("JButton"));
 jp.add(new JLabel("JLabel"));
 jp.add(new JTextField("JTextField"));
 JPanel main = new JPanel(new GridLayout(1, 2));

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 main.add(jp);
 main.add(new JScrollPane(new JList(names)));
 setContentPane(main);
 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 }

 public static void main(String[] args) {
 new QuickChange().setVisible(true);
 }
}

The interesting part of this application is creating a menu of the available L&Fs. First, we
ask a class called UIManager to tell us all about the available L&Fs on our computer:

final UIManager.LookAndFeelInfo[] info =
 UIManager.getInstalledLookAndFeels();

Information about L&Fs is returned as instances of UIManager.LookAndFeelInfo
. Despite the long name, there's not much to this class; it just associates a name, such as
Metal, and the name of the class that implements the L&F, such as
javax.swing.plaf.metal.MetalLookAndFeel . In the QuickChange
example, we create a menu item from each L&F name. If the menu item is selected, we tell
the UIManager to use the selected L&F class. Then, to make sure all the components are
redrawn with the new L&F, we call a static method in the SwingUtilities class
called updateComponentTreeUI() .

The regular SDK includes several L&Fs: one that resembles Windows, one that resembles
Motif, and a L&F called Metal. Metal is used by default on most platforms; you've been
staring at it through all the examples in this chapter and the last chapter.

If you're running Swing on MacOS, there's a MacOS L&F you can install and use. It does
not, however, run on any other platforms because of licensing issues (the Windows L&F
has similar restrictions).

17.7 Creating Custom Components

In this chapter and the previous, we've worked with different user interface objects. We've
used Swing's impressive repertoire of components as building blocks and extended their
functionality, but we haven't actually created any new components. In this section, we
create an entirely new component from scratch, a dial .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Up until now, our examples have been fairly self-contained; they generally know
everything about what to do and don't rely on additional parts to do processing. Our menu
example created a DinnerFrame class that had a menu of dinner options, but it included
all the processing needed to handle the user's selections. If we wanted to process the
selections differently, we'd have to modify the class. A true component separates the
detection of user input from the handling of those choices. It lets the user take some action
and then informs other interested parties by emitting events.

17.7.1 Generating Events

Since we want our new classes to be components, they should communicate the way
components communicate: by generating event objects and sending those events to
listeners. So far, we've written a lot of code that listened for events but haven't seen an
example that generated its own custom events.

Generating events sounds like it might be difficult, but it isn't. You can either create new
kinds of events by subclassing java.util.EventObject , or use one of the
standard event types. In either case, you just need to allow registration of listeners for your
events and provide a means to deliver events to those listeners. Swing's JComponent
class provides a protected member variable, listenerList , you can use to keep track
of event listeners. It's an instance of EventListenerList ; basically it acts like the
maître d' at a restaurant, keeping track of all event listeners, sorted by type.

Often, you won't need to worry about creating a custom event type. JComponent has
methods that support firing of generic PropertyChangeEvent s whenever one of a
component's properties changes. The example we'll look at next uses this infrastructure to
fire PropertyChangeEvent s whenever a value changes.

17.7.2 A Dial Component

The standard Swing classes don't have a component that's similar to an old fashioned
dial-for example, the volume control on your radio. (The JSlider fills this role, of
course.) In this section, we implement a Dial class. The dial has a value that can be
adjusted by clicking and dragging to "twist" the dial (see Figure 17-11). As the value of
the dial changes, DialEvent s are fired off by the component. The dial can be used just
like any other Java component. We even have a custom DialListener interface that
matches the DialEvent class.

Figure 17-11. The Dial component

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Here's the Dial code:

//file: Dial.java
import java.awt.*;
import java.awt.event.*;
import java.util.*;
import javax.swing.*;

public class Dial extends JComponent {
 int minValue, nvalue, maxValue, radius;

 public Dial() { this(0, 100, 0); }

 public Dial(int minValue, int maxValue, int value) {
 setMinimum(minValue);
 setMaximum(maxValue);
 setValue(value);
 setForeground(Color.lightGray);

 addMouseListener(new MouseAdapter() {
 public void mousePressed(MouseEvent e) { spin(e); }
 });
 addMouseMotionListener(new MouseMotionAdapter() {
 public void mouseDragged(MouseEvent e) { spin(e); }
 });
 }

 protected void spin(MouseEvent e) {
 int y = e.getY();
 int x = e.getX();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 double th = Math.atan((1.0 * y - radius) / (x - radius));
 int value=(int)(th / (2 * Math.PI) * (maxValue - minValue));
 if (x < radius)
 setValue(value + (maxValue-minValue) / 2 + minValue);
 else if (y < radius)
 setValue(value + maxValue);
 else
 setValue(value + minValue);
 }

 public void paintComponent(Graphics g) {
 Graphics2D g2 = (Graphics2D)g;
 int tick = 10;
 radius = Math.min(getSize().width,getSize().height)/2 - tick;
 g2.setPaint(getForeground().darker());
 g2.drawLine(radius * 2 + tick / 2, radius,
 radius * 2 + tick, radius);
 g2.setStroke(new BasicStroke(2));
 draw3DCircle(g2, 0, 0, radius, true);
 int knobRadius = radius / 7;
 double th = nvalue * (2 * Math.PI) / (maxValue - minValue);
 int x = (int)(Math.cos(th) * (radius - knobRadius * 3)),
 y = (int)(Math.sin(th) * (radius - knobRadius * 3));
 g2.setStroke(new BasicStroke(1));
 draw3DCircle(g2, x + radius - knobRadius,
 y + radius - knobRadius, knobRadius, false);
 }

 private void draw3DCircle(
 Graphics g, int x, int y, int radius, boolean raised)
 {
 Color foreground = getForeground();
 Color light = foreground.brighter();
 Color dark = foreground.darker();
 g.setColor(foreground);
 g.fillOval(x, y, radius * 2, radius * 2);
 g.setColor(raised ? light : dark);
 g.drawArc(x, y, radius * 2, radius * 2, 45, 180);
 g.setColor(raised ? dark : light);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 g.drawArc(x, y, radius * 2, radius * 2, 225, 180);
 }

 public Dimension getPreferredSize() {
 return new Dimension(100, 100);
 }

 public void setValue(int value) {
 this.nvalue = value - minValue;
 repaint();
 fireEvent();
 }
 public int getValue() { return nvalue+minValue; }
 public void setMinimum(int minValue) { this.minValue = minValue; }
 public int getMinimum() { return minValue; }
 public void setMaximum(int maxValue) { this.maxValue = maxValue; }
 public int getMaximum() { return maxValue; }

 public void addDialListener(DialListener listener) {
 listenerList.add(DialListener.class, listener);
 }
 public void removeDialListener(DialListener listener) {
 listenerList.remove(DialListener.class, listener);
 }

 void fireEvent() {
 Object[] listeners = listenerList.getListenerList();
 for (int i = 0; i < listeners.length; i += 2)
 if (listeners[i] == DialListener.class)
 ((DialListener)listeners[i + 1]).dialAdjusted(
 new DialEvent(this, getValue()));
 }

 public static void main(String[] args) {
 JFrame frame = new JFrame("Dial v1.0");
 final JLabel statusLabel = new JLabel("Welcome to Dial v1.0");
 final Dial dial = new Dial();
 frame.getContentPane().add(dial, BorderLayout.CENTER);
 frame.getContentPane().add(statusLabel, BorderLayout.SOUTH);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 dial.addDialListener(new DialListener() {
 public void dialAdjusted(DialEvent e) {
 statusLabel.setText("Value is " + e.getValue());
 }
 });

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(150, 150);
 frame.setVisible(true);
 }
}

Here's DialEvent , a simple subclass of java.util.EventObject :

//file: DialEvent.java
import java.awt.*;

public class DialEvent extends java.util.EventObject {
 int value;

 DialEvent(Dial source, int value) {
 super(source);
 this.value = value;
 }

 public int getValue() {
 return value;
 }
}

Finally, here's the code for DialListener :

//file: DialListener.java
public interface DialListener extends java.util.EventListener {
 void dialAdjusted(DialEvent e);
}

Let's start from the top of the Dial class. We'll focus on the structure and leave you to
figure out the trigonometry on your own.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Dial 's main() method demonstrates how to use the dial to build a user interface. It
creates a Dial and adds it to a JFrame . Then main() registers a dial listener on the
dial. Whenever a DialEvent is received, the value of the dial is examined and displayed
in a JLabel at the bottom of the frame window.

The constructor for the Dial class stores the dial's minimum, maximum, and current values;
a default constructor provides a minimum of 0, a maximum of 100, and a current value of
0. The constructor sets the foreground color of the dial and registers listeners for mouse
events. If the mouse is pressed or dragged, Dial 's spin() method is called to update
the dial's value. spin() performs some basic trigonometry to figure out what the new
value of the dial should be.

paintComponent() and draw3DCircle() do a lot of trigonometry to figure out
how to display the dial. draw3DCircle() is a private helper method that draws a circle
that appears either raised or depressed; we use this to make the dial look three-dimensional.

The next group of methods provides ways to retrieve or change the dial's current setting
and the minimum and maximum values. The important thing to notice here is the pattern of
get and set methods for all of the important values used by the Dial . We will talk more
about this in Chapter 21 . Also, notice that the setValue() method does two important
things: it repaints the component to reflect the new value and fires the DialEvent
signifying the change.

The final group of methods in the Dial class provides the plumbing necessary for our
event firing. addDialListener() and removeDialListener() take care of
maintaining the listener list. Using the listenerList member variable we inherited
from JComponent makes this an easy task. The fireEvent() method retrieves the
registered listeners for this component. It sends a DialEvent to any registered
DialListener s.

17.7.3 Model and View Separation

The Dial example is overly simplified. All Swing components, as we've discussed, keep
their data model and view separate. In the Dial component, we've combined these
elements in a single class, which limits its reusability. To have Dial implement the MVC
paradigm, we would have developed a dial data model and something called a UI-delegate
that handled displaying the component and responding to user events. For a full treatment
of this subject, see the JogShuttle example in O'Reilly's Java Swing .

In Chapter 18 , we'll take what we know about components and containers and put them
together using layout managers to create complex GUIs.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[1] You may need to double-click on a cell to edit it.

CONTENTS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

Chapter 18. Layout Managers

 18.1 FlowLayout

 18.2 GridLayout
 18.3 BorderLayout

 18.4 BoxLayout

 18.5 CardLayout

 18.6 GridBagLayout

 18.7 Nonstandard Layout Managers
 18.8 Absolute Positioning

 18.9 SpringLayout

A layout manager arranges the child components of a container, as shown in Figure 18-1 .
It positions and sets the size of components within the container's display area according to
a particular layout scheme. The layout manager's job is to fit the components into the
available area while maintaining some spatial relationships among them. AWT and Swing
come with several standard layout managers that will collectively handle most situations;
you can make your own layout managers if you have special requirements.

Figure 18-1. A layout manager at work

Every container has a default layout manager; therefore, when you make a new container,
it comes with a LayoutManager object of the appropriate type. You can install a new
layout manager at any time with the setLayout() method. For example, we can set the
layout manager of a Swing container's content pane to a BorderLayout like so:

mycontainer.getContentPane().setLayout (new BorderLayout());

Notice that we have called the BorderLayout constructor, but we haven't bothered to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

save a reference to the layout manager. This is typical; once you have installed a layout
manager, it does its work behind the scenes, interacting with the container. You rarely call
the layout manager's methods directly, so you don't usually need a reference (a notable
exception is CardLayout). However, you do need to know what the layout manager is
going to do with your components as you work with them.

The LayoutManager is consulted whenever a container's doLayout() method is
called to reorganize the contents. It does its job by calling the setLocation() or
setBounds() methods of the individual child components to arrange them in the
container's display area. A container is laid out the first time it is displayed and thereafter
whenever the container's revalidate() method is called. Containers that are a
subclass of the Window class (Frame , JFrame , and JWindow) are automatically
validated whenever they are packed or resized. Calling pack() sets the window's size as
small as possible while granting all its components their preferred sizes.

Every component determines three important pieces of information used by the layout
manager in placing and sizing it: a minimum size, a maximum size, and a preferred size.
These sizes are reported by the getMinimumSize() , getMaximum-Size() , and
getPreferredSize() methods of Component , respectively. For example, a plain
JButton object can normally be changed to any size. However, the button's designer can
provide a preferred size for a good-looking button. The layout manager might use this size
when there are no other constraints, or it might ignore it, depending on its scheme. Now if
we give the button a label, the button may need a new minimum size in order to display
itself properly. The layout manager might show more respect for the button's minimum size
and guarantee that it has at least that much space. Similarly, a particular component might
not be able to display itself properly if it is too large (perhaps it has to scale up an image); it
can use getMaximumSize() to report the largest size it considers acceptable.

The preferred size of a Container object has the same meaning as for any other type of
component. However, since a Container may hold its own components and want to
arrange them in its own layout, its preferred size is a function of its layout manager. The
layout manager is therefore involved in both sides of the issue. It asks the components in its
container for their preferred (or minimum) sizes in order to arrange them. Based on those
values, it calculates the preferred size of its own container (which can be communicated to
the container's parent and so on).

When a layout manager is called to arrange its components, it is working within a fixed
area. It usually begins by looking at its container's dimensions and the preferred or
minimum sizes of the child components. It then doles out screen area and sets the sizes of
components according to its scheme and specific constraints. You can override the
getMinimumSize() , getMaximumSize() , and getPreferredSize()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

methods of a component, but you should do this only if you are actually specializing the
component, and it has new needs. If you find yourself fighting with a layout manager
because it's changing the size of one of your components, you are probably using the
wrong kind of layout manager or not composing your user interface properly. Often it's
easier to use a number of JPanel objects in a given display, each one with its own
LayoutManager . Try breaking down the problem: place related components in their
own JPanel and then arrange the panels in the container. When that becomes unwieldy,
you can choose to use a constraint-based layout manager such as GridBagLayout ,
which we'll discuss later in this chapter.

18.1 FlowLayout

FlowLayout is a simple layout manager that tries to arrange components at their
preferred sizes, from left to right and top to bottom in the container. A FlowLayout can
have a specified row justification of LEFT , CENTER , or RIGHT and a fixed horizontal
and vertical padding. By default, a flow layout uses CENTER justification, meaning that all
components are centered within the area allotted to them. FlowLayout is the default for
JPanel s.

The following example adds five buttons to the content pane of a JFrame using the
default FlowLayout :

//file: Flow.java
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Flow extends JPanel {

 public Flow() {
 // FlowLayout is default layout manager for a JPanel
 add(new JButton("One"));
 add(new JButton("Two"));
 add(new JButton("Three"));
 add(new JButton("Four"));
 add(new JButton("Five"));
 }

 public static void main(String[] args) {
 JFrame frame = new JFrame("Flow");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.setSize(400, 75);
 frame.setLocation(200, 200);
 Flow flow = new Flow();
 frame.setContentPane(flow);
 frame.setVisible(true);
 }
}

The result is shown in Figure 18-2 .

Figure 18-2. A flow layout

Try resizing the window. If it is made narrow enough, some of the buttons will spill over to
a second or third row.

18.2 GridLayout

GridLayout arranges components into regularly spaced rows and columns. The
components are arbitrarily resized to fit the grid; their minimum and preferred sizes are
consequently ignored. GridLayout is most useful for arranging identically sized
objects-perhaps a set of JPanel s, each using a different layout manager.

GridLayout takes the number of rows and columns in its constructor. If you
subsequently give it too many objects to manage, it adds extra columns to make the objects
fit. You can also set the number of rows or columns to zero, which means that you don't
care how many elements the layout manager packs in that dimension. For example,
GridLayout(2,0) requests a layout with two rows and an unlimited number of
columns; if you put ten components into this layout, you'll get two rows of five columns
each.[1]

The following example sets a GridLayout with three rows and two columns as its
layout manager:

//file: Grid.java

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Grid extends JPanel {

 public Grid() {
 setLayout(new GridLayout(3, 2));
 add(new JButton("One"));
 add(new JButton("Two"));
 add(new JButton("Three"));
 add(new JButton("Four"));
 add(new JButton("Five"));
 }

 public static void main(String[] args) {
 JFrame frame = new JFrame("Grid");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(200, 200);
 frame.setLocation(200, 200);
 frame.setContentPane(new Grid());
 frame.setVisible(true);
 }
}

The results are shown in Figure 18-3 .

Figure 18-3. A grid layout

The five buttons are laid out, in order, from left to right, top to bottom, with one empty
spot.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

18.3 BorderLayout

BorderLayout is a little more interesting. It tries to arrange objects in one of five
geographical locations, represented by constants in the BorderLayout class: NORTH ,
SOUTH , EAST , WEST , and CENTER , possibly with some padding between.
BorderLayout is the default layout for the content panes of JWindow and JFrame
objects. Because each component is associated with a direction, BorderLayout can
manage at most five components; it squashes or stretches those components to fit its
constraints. As we'll see in the second example, this means that you often want to have
BorderLayout manage sets of components in their own panels.

When we add a component to a border layout, we need to specify both the component and
the position at which to add it. To do so, we use an overloaded version of the add()
method that takes an additional argument as a constraint. This specifies the name of a
position within the BorderLayout .

The following application sets a BorderLayout and adds our five buttons again, named
for their locations:

//file: Border1.java
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Border1 extends JPanel {

 public Border1() {
 setLayout(new BorderLayout());
 add(new JButton("North"), BorderLayout.NORTH);
 add(new JButton("South"), BorderLayout.SOUTH);
 add(new JButton("East"), BorderLayout.EAST);
 add(new JButton("West"), BorderLayout.WEST);
 add(new JButton("Center"), BorderLayout.CENTER);
 }

 public static void main(String[] args) {
 JFrame frame = new JFrame("Border1");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(300, 300);
 frame.setLocation(200, 200);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 frame.setContentPane(new Border1());
 frame.setVisible(true);
 }
}

The result is shown in Figure 18-4 .

Figure 18-4. A border layout

So, how exactly is the area divided up? Well, the objects at NORTH and SOUTH get their
preferred height and fill the display area horizontally. EAST and WEST components, on the
other hand, get their preferred width, and fill the remaining area between NORTH and
SOUTH vertically. Finally, the CENTER object takes all the rest of the space. As you can
see in Figure 18-4 , our buttons get distorted into interesting shapes.

What if we don't want BorderLayout messing with the sizes of our components? One
option would be to put each button in its own JPanel . The default layout for a JPanel
is FlowLayout , which respects the preferred size of components. The preferred sizes of
the panels are effectively the preferred sizes of the buttons, but if the panels are stretched,
they won't pull their buttons with them. The following application illustrates this approach:

//file: Border2.java
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Border2 extends JPanel {

 public Border2() {
 setLayout(new BorderLayout());
 JPanel p = new JPanel();
 p.add(new JButton("North"));

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 add(p, BorderLayout.NORTH);
 p = new JPanel();
 p.add(new JButton("South"));
 add(p, BorderLayout.SOUTH);
 p = new JPanel();
 p.add(new JButton("East"));
 add(p, BorderLayout.EAST);
 p = new JPanel();
 p.add(new JButton("West"));
 add(p, BorderLayout.WEST);
 p = new JPanel();
 p.add(new JButton("Center"));
 add(p, BorderLayout.CENTER);
 }

 public static void main(String[] args) {
 JFrame frame = new JFrame("Border2");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(225, 150);
 frame.setLocation(200, 200);
 frame.setContentPane(new Border2());
 frame.setVisible(true);
 }
}

The result is shown in Figure 18-5 .

Figure 18-5. Another border layout

In the example, we create a number of panels, put our buttons inside the panels, and put the
panels into the frame window, which has the BorderLayout manager. Now, the
JPanel for the CENTER button soaks up the extra space that comes from the
BorderLayout . Each JPanel 's FlowLayout centers the button in the panel and
uses the button's preferred size. In this case, it's all a bit awkward. We'll see how we could

http://lib.ommolketab.ir
http://lib.ommolketab.ir

accomplish this more directly using GridBagLayout shortly.

18.4 BoxLayout

Most layout managers were defined back when Java 1.0 was first released. Swing adds a
couple of new general-purpose layout managers in the javax.swing package; one is
BoxLayout . This layout manager is useful for creating toolbars or vertical button bars.
It lays out components in a single row or column. It is similar to FlowLayout but does
not wrap components into new rows.

Although you can use BoxLayout directly, Swing includes a handy container called
Box that takes care of the details for you. Every Box uses BoxLayout , but you don't
really have to worry about it; the Box class includes some very useful methods for laying
out components.

You can create a horizontal or vertical box using Box 's static methods.

Container horizontalBox = Box.createHorizontalBox();
Container verticalBox = Box.createVerticalBox();

Once the Box is created, you can just add() components as usual:

Container box = Box.createHorizontalBox();
box.add(new JButton("In the"));

Box includes several other static methods that create special invisible components that are
handy for BoxLayout . The first of these is glue ; glue is really space between
components in the Box . When the Box is resized, glue expands or contracts as more or
less space is available. The other special invisible component type is a strut . Like glue, a
strut represents space between components, but it doesn't resize.

The following example creates a horizontal Box (shown in Figure 18-6) that includes both
glue and struts. Play around by resizing the window to see the effect of the glue and the
struts.

Figure 18-6. Using the Box class

//file: Boxer.java
import java.awt.*;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.awt.event.*;
import javax.swing.*;

public class Boxer extends JPanel {
 public static void main(String[] args) {
 JFrame frame = new JFrame("Boxer");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(250, 250);
 frame.setLocation(200, 200);
 Container box = Box.createHorizontalBox();
 box.add(Box.createHorizontalGlue());
 box.add(new JButton("In the"));
 box.add(Box.createHorizontalGlue());
 box.add(new JButton("clearing"));
 box.add(Box.createHorizontalStrut(10));
 box.add(new JButton("stands"));
 box.add(Box.createHorizontalStrut(10));
 box.add(new JButton("a"));
 box.add(Box.createHorizontalGlue());
 box.add(new JButton("boxer"));
 box.add(Box.createHorizontalGlue());
 frame.getContentPane().add(box, BorderLayout.CENTER);
 frame.pack();
 frame.setVisible(true);
 }
}

Components are added sequentially for display from left to right or top to bottom with
optional "glue" or "strut" constraints placed between them. By default, components simply
line up one after another with no space between them. "Glue" acts like a spring, allowing
its adjacent components to move to occupy the space evenly. A "strut" imposes a fixed
space between adjacent components.

18.5 CardLayout

CardLayout is a special layout manager for creating the effect of a stack of cards.
Instead of arranging all of the container's components, it displays only one at a time. You
might use this kind of layout to implement something like a hypercard stack or a Windows-
style set of configuration screens. If CardLayout sounds interesting, you might also

http://lib.ommolketab.ir
http://lib.ommolketab.ir

want to investigate the JTabbedPane component, described in Chapter 16 .

To add a component to a CardLayout , use a two-argument version of the container's
add() method; the extra argument is an arbitrary string that serves as the card's name:

add("netconfigscreen", myComponent);

To bring a particular card to the top of the stack, call the CardLayout 's show()
method with two arguments: the parent Container and the name of the card you want to
show. There are also methods-first() , last() , next() , and previous() for
working with the stack of cards. These are all CardLayout instance methods. To invoke
them, you need a reference to the CardLayout object itself, not to the container it
manages. Each method takes a single argument: the parent Container . Here's an
example:

//file: Card.java
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Card extends JPanel {
 CardLayout cards = new CardLayout();

 public Card() {
 setLayout(cards);
 ActionListener listener = new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 cards.next(Card.this);
 }
 };
 JButton button;
 button = new JButton("one");
 button.addActionListener(listener);
 add(button, "one");
 button = new JButton("two");
 button.addActionListener(listener);
 add(button, "two");
 button = new JButton("three");
 button.addActionListener(listener);
 add(button, "three");
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public static void main(String[] args) {
 JFrame frame = new JFrame("Card");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(200, 200);
 frame.setLocation(200, 200);
 frame.setContentPane(new Card());
 frame.setVisible(true);
 }
}

We add three buttons to the layout and cycle through them as they are pressed. An
anonymous inner class serves as an action listener for each button; it simply calls
CardLayout 's next() method whenever a button is pressed. The reference to
Card.this refers to the Card object, which is the container in this case. In a more
realistic example, we would build a group of panels, each of which might implement some
part of a complex user interface and add those panels to the layout. Each panel would have
its own layout manager. The panels would be resized to fill the entire area available (i.e.,
the area of the Container they are in), and their individual layout managers would
arrange their internal components.

18.6 GridBagLayout

GridBagLayout is a very flexible layout manager that allows you to position
components relative to one another using constraints. With GridBagLayout (and a fair
amount of effort), you can create almost any imaginable layout. Components are arranged
at logical coordinates on an abstract grid. We'll call them "logical" coordinates because
they really designate positions in the space of rows and columns formed by the set of
components. Rows and columns of the grid stretch to different sizes, based on the sizes and
constraints of the components they hold.

A row or column in a GridBagLayout expands to accommodate the dimensions and
constraints of the largest component it contains. Individual components may span more
than one row or column. Components that aren't as large as their grid cell can be anchored
(positioned to one side) within their cell. They can also be set to fill or to expand their size
in either dimension. Extra area in the grid rows and columns can be parceled out according
to the weight constraints of the components. In this way, you can control how various
components will grow and stretch when a window is resized.

GridBagLayout is much easier to use in a graphical WYSIWYG GUI builder

http://lib.ommolketab.ir
http://lib.ommolketab.ir

environment. That's because working with GridBag is kind of like messing with the
"rabbit ears" antennae on your television. It's not particularly difficult to get the results that
you want through trial and error, but writing out hard and fast rules for how to go about it
is difficult. In short, GridBagLayout is complex and has some quirks. It is also simply
a bit ugly both in model and implementation. Remember that you can do a lot with nested
panels and by composing simpler layout managers within one another. If you look back
through this chapter, you'll see some examples of composite layouts; it's up to you to
determine how far you should go before making the break from simpler layout managers to
a more complex all-in-one layout manager like GridBagLayout .

18.6.1 The GridBagConstraints Class

Having said that GridBagLayout is complex and a bit ugly, we're going to contradict
ourselves a little and say that its API is surprisingly simple. There is only one constructor
with no arguments (GridBagLayout()), and there aren't a lot of fancy methods to
control how the display works.

The appearance of a grid bag layout is controlled by sets of GridBagConstraints ,
and that's where things get hairy. Each component managed by a GridBagLayout is
associated with a GridBagConstraints object. GridBagConstraints holds
the following variables, which we'll describe in detail shortly:

int gridx, gridy

Controls the position of the component on the layout's grid.
int weightx, weighty

Controls how additional space in the row or column is allotted to the component.
int fill

Controls whether the component expands to fill the allotted space.
int gridheight, gridwidth

Controls the number of rows or columns the component spans.
int anchor

Controls the position of the component if there is extra room within the allotted
space.

int ipadx, ipady

Controls padding between the component and the borders of its area.
Insets insets

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Controls padding between the component and neighboring components.

To make a set of constraints for a component or components, create a new instance of
GridBagConstraints and set these public variables to the appropriate values. (There
is also a large constructor that takes all 11 arguments.)

The easiest way to associate a set of constraints with a component is to use the version of
add() that takes both a component object and a layout object as arguments. This puts the
component in the container and associates the GridBagConstraints object with it:

Container content = getContentPane();
JComponent component = new JLabel("constrain me, please...");
GridBagConstraints constraints = new GridBagConstraints();
constraints.gridx = x;
constraints.gridy = y;
...
content.add(component, constraints);

You can also add a component to a GridBagLayout using the single argument add()
method and then calling the layout's setConstraints() method directly to pass it the
GridBagConstraints object for that component:

add(component);
...
myGridBagLayout.setConstraints(component, constraints);

In either case, the set of constraints is copied when it is applied to the component. It's the
individual constraints that apply to the component, not the GridBagConstraints
object. Therefore, you're free to create a single set of GridBagConstraints , modify
it as needed, and apply it as needed to different objects. You might want to create a helper
method that sets the constraints appropriately, then adds the component, with its
constraints, to the layout. That's the approach we'll take in our examples; our helper
method is called addGB() , and it takes a component plus a pair of coordinates as
arguments. These coordinates become the gridx and gridy values for the constraints.
We could expand upon this later and overload addGB() to take more parameters for
other constraints that we often change from component to component.

18.6.2 Grid Coordinates

One of the biggest surprises in the GridBagLayout is that there's no way to specify the
size of the grid. There doesn't have to be. The grid size is determined implicitly by the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

constraints of all the objects; the layout manager picks dimensions large enough so that
everything fits. Thus, if you put one component in a layout and set its gridx and gridy
constraints to 25, the layout manager creates a 25 x 25 grid, with rows and columns both
numbered from 0 to 24. If you then add a second component with a gridx of 30 and a
gridy of 13, the grid's dimensions change to 30 x 25. You don't have to worry about
setting up an appropriate number of rows and columns. The layout manager does it
automatically as you add components.

With this knowledge, we're ready to create some simple displays. We'll start by arranging a
group of components in a cross shape. We maintain explicit x and y local variables, setting
them as we add the components to our grid. This is partly for clarity, but it can be a handy
technique when you want to add a number of components in a row or column. You can
simply increment gridx or gridy before adding each component. This is a simple and
problem-free way to achieve relative placement. (Later, we'll describe
GridBagConstraints 's RELATIVE constant, which does relative placement
automatically.) The following code shows the first layout (see Figure 18-7).

Figure 18-7. A simple GridBagLayout

//file: GridBag1.java
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class GridBag1 extends JPanel {
 GridBagConstraints constraints = new GridBagConstraints();

 public GridBag1() {
 setLayout(new GridBagLayout());
 int x, y; // for clarity
 addGB(new JButton("North"), x = 1, y = 0);
 addGB(new JButton("West"), x = 0, y = 1);
 addGB(new JButton("Center"), x = 1, y = 1);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 addGB(new JButton("East"), x = 2, y = 1);
 addGB(new JButton("South"), x = 1, y = 2);
 }

 void addGB(Component component, int x, int y) {
 constraints.gridx = x;
 constraints.gridy = y;
 add(component, constraints);
 }

 public static void main(String[] args) {
 JFrame frame = new JFrame("GridBag1");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(225, 150);
 frame.setLocation(200, 200);
 frame.setContentPane(new GridBag1());
 frame.setVisible(true);
 }
}

The buttons in this example are "clumped" together in the center of their display area. Each
button is displayed at its preferred size, without stretching to fill the available space. This is
how the layout manager behaves when the "weight" constraints are left unset. We'll talk
more about weights in the next two sections.

18.6.3 The fill Constraint

Let's make the buttons expand to fill the entire JFrame window. To do so, we must take
two steps: we must set the fill constraint for each button to the value BOTH , and we
must set the weightx and weighty to nonzero values, as shown in this example:

//file: GridBag2.java
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class GridBag2 extends JPanel {
 GridBagConstraints constraints = new GridBagConstraints();

 public GridBag2() {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 setLayout(new GridBagLayout());
 constraints.weightx = 1.0;
 constraints.weighty = 1.0;
 constraints.fill = GridBagConstraints.BOTH;
 int x, y; // for clarity
 addGB(new JButton("North"), x = 1, y = 0);
 addGB(new JButton("West"), x = 0, y = 1);
 addGB(new JButton("Center"), x = 1, y = 1);
 addGB(new JButton("East"), x = 2, y = 1);
 addGB(new JButton("South"), x = 1, y = 2);
 }

 void addGB(Component component, int x, int y) {
 constraints.gridx = x;
 constraints.gridy = y;
 add(component, constraints);
 }

 public static void main(String[] args) {
 JFrame frame = new JFrame("GridBag2");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(225, 150);
 frame.setLocation(200, 200);
 frame.setContentPane(new GridBag2());
 frame.setVisible(true);
 }
}

Figure 18-8 shows the resulting layout.

Figure 18-8. Making buttons fill the available space

BOTH is one of the constants of the GridBagConstraints class; it tells the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

component to fill the available space in both directions. Here are the constants you can use
to set the fill field:

HORIZONTAL

Fill the available horizontal space.
VERTICAL

Fill the available vertical space.
BOTH

Fill the available space in both directions.
NONE

Don't fill the available space; display the component at its preferred size.

We set the weight constraints to 1.0; in this example it doesn't matter what they are,
provided each component has the same nonzero weight. Filling doesn't occur if the
component weights in the direction you're filling are 0, which is the default value.

18.6.4 Spanning Rows and Columns

One of the most important features of GridBaglayout is that it lets you create
arrangements in which components span two or more rows or columns. To do so, set the
gridwidth and gridheight variables of the GridBagConstraints . The
following example creates such a display; button one spans two columns vertically, and
button four spans two horizontally. Figure 18-9 shows the resulting layout.

Figure 18-9. Making components span rows and columns

//file: GridBag3.java
import java.awt.*;
import java.awt.event.*;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import javax.swing.*;

public class GridBag3 extends JPanel {
 GridBagConstraints constraints = new GridBagConstraints();

 public GridBag3() {
 setLayout(new GridBagLayout());
 constraints.weightx = 1.0;
 constraints.weighty = 1.0;
 constraints.fill = GridBagConstraints.BOTH;
 int x, y; // for clarity
 constraints.gridheight = 2; // span two rows
 addGB(new JButton("one"), x = 0, y = 0);
 constraints.gridheight = 1; // set it back
 addGB(new JButton("two"), x = 1, y = 0);
 addGB(new JButton("three"), x = 2, y = 0);
 constraints.gridwidth = 2; // span two columns
 addGB(new JButton("four"), x = 1, y = 1);
 constraints.gridwidth = 1; // set it back
 }

 void addGB(Component component, int x, int y) {
 constraints.gridx = x;
 constraints.gridy = y;
 add(component, constraints);
 }

 public static void main(String[] args) {
 JFrame frame = new JFrame("GridBag3");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(200, 200);
 frame.setLocation(200, 200);
 frame.setContentPane(new GridBag3());
 frame.setVisible(true);
 }
}

The size of each element is controlled by the gridwidth and gridheight values of
its constraints. For button one, we set gridheight to 2; therefore, it is two cells high.
Its gridx and gridy positions are both zero, so it occupies cell (0,0) and the cell

http://lib.ommolketab.ir
http://lib.ommolketab.ir

directly below it, (0,1). Likewise, button four has a gridwidth of 2 and a
gridheight of 1, so it occupies two cells horizontally. We place this button in cell
(1,1), so it occupies that cell and its neighbor, (2,1).

In this example, we set the fill to BOTH and weightx and weighty to 1 for all
components. By doing so, we tell each button to occupy all the space available. Strictly
speaking, this isn't necessary. However, it makes it easier to see exactly how much space
each button occupies.

18.6.5 Weighting

The weightx and weighty variables of a GridBagConstraints object determine
how "extra" space in the container is distributed among the columns or rows in the layout.
As long as you keep things simple, the effect these variables have is fairly intuitive: the
larger the weight, the greater the amount of space allocated to the component. Figure 18-10
shows what happens if we vary the weightx constraint from 0.1 to 1.0 as we place three
buttons in a row.

Figure 18-10. Using weight to control component size

Here's the code:

//file: GridBag4.java
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class GridBag4 extends JPanel {
 GridBagConstraints constraints = new GridBagConstraints();

 public GridBag4() {
 setLayout(new GridBagLayout());
 constraints.fill = GridBagConstraints.BOTH;
 constraints.weighty = 1.0;
 int x, y; // for clarity
 constraints.weightx = 0.1;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 addGB(new JButton("one"), x = 0, y = 0);
 constraints.weightx = 0.5;
 addGB(new JButton("two"), ++x, y);
 constraints.weightx = 1.0;
 addGB(new JButton("three"), ++x, y);
 }

 void addGB(Component component, int x, int y) {
 constraints.gridx = x;
 constraints.gridy = y;
 add(component, constraints);
 }

 public static void main(String[] args) {
 JFrame frame = new JFrame("GridBag4");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(300, 100);
 frame.setLocation(200, 200);
 frame.setContentPane(new GridBag4());
 frame.setVisible(true);
 }
}

The specific values of the weights are not meaningful; it is only their relative proportions
that matter. After the preferred sizes of the components (including padding and insets-see
the next section) are determined, any extra space is doled out in proportion to the
component's weights. So, for example, if each of our three components had the same
weight, each would receive a third of the extra space. To make this more obvious, you may
prefer to express the weights for a row or column as fractions totaling 1.0-for example:
0.25, 0.25, 0.50. Components with a weight of receive no extra space.

The situation is a bit more complicated when there are multiple rows or columns and when
there is even the possibility of components spanning more than one cell. In the general
case, GridBagLayout calculates an effective overall weight for each row and column
and then distributes the extra space to them proportionally. Note that the previous single-
row example is just a special case where the columns each have one component. The gory
details of the calculations follow.

18.6.5.1 Calculating the weights of rows and columns

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For a given row or column ("rank"), GridBagLayout first considers the weights of all
the components contained strictly within that rank-ignoring those that span more than one
cell. The greatest individual weight becomes the overall weight of the row or column.
Intuitively this means that GridBagLayout is trying to accommodate the needs of the
weightiest component in that rank.

Next, GridBagLayout considers the components that occupy more than one cell. Here
things get a little weird. GridbagLayout wants to evaluate them to see whether they
affect the determination of the largest weight in a row or column. However, because these
components occupy more than one cell, GridBagLayout divides their weight among
the ranks (rows or columns) that they span.

GridBagLayout tries to calculate an effective weight for the portion of the component
that occupies each row or column. It does this by trying to divide the weight of the
component among the ranks in the same proportions that the length (or height) of the
component will be shared by the ranks. But how does it know what the proportions will be
before the whole grid is determined? That's what it's trying to calculate after all. It simply
guesses based on the row or column weights already determined. GridBagLayout uses
the weights determined by the first round of calculations to split up the weight of the
component over the ranks that it occupies. For each row or column, it then considers that
fraction of the weight to be the component's weight for that rank. That weight then
contends for the "heaviest weight" in the row or column, possibly changing the overall
weight of that row or column, as we described earlier.

18.6.6 Anchoring

If a component is smaller than the space available for it, it is centered by default. But
centering isn't the only possibility. The anchor constraint tells a grid bag layout how to
position a component within its cell in the grid. Possible values are
GridBagConstraints.CENTER , NORTH , NORTHEAST , EAST , SOUTHEAST ,
SOUTH , SOUTHWEST , WEST , and NORTHWEST . For example, an anchor of
GridBagConstraints.NORTH centers a component at the top of its display area;
SOUTHEAST places a component at the bottom-right corner of its area.

18.6.7 Padding and Insets

Another way to control the behavior of a component in a grid bag layout is to use padding
and insets. Padding is determined by the ipadx and ipady fields of
GridBagConstraints . They specify horizontal and vertical "growth factors" for the
component. In Figure 18-11 , the West button is larger because we have set the ipadx and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ipady values of its constraints to 25. Therefore, the layout manager gets the button's
preferred size and adds 25 pixels in each direction to determine the button's actual size. The
sizes of the other buttons are unchanged because their padding is set to 0 (the default), but
their spacing is different. The West button is unnaturally tall, which means that the middle
row of the layout must be taller than the others.

Figure 18-11. Using padding and insets in a layout

//file: GridBag5.java
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class GridBag5 extends JPanel {
 GridBagConstraints constraints = new GridBagConstraints();

 public GridBag5() {
 setLayout(new GridBagLayout());
 int x, y; // for clarity
 addGB(new JButton("North"), x = 1, y = 0);
 constraints.ipadx = 25; // add padding
 constraints.ipady = 25;
 addGB(new JButton("West"), x = 0, y = 1);
 constraints.ipadx = 0; // remove padding
 constraints.ipady = 0;
 addGB(new JButton("Center"), x = 1, y = 1);
 addGB(new JButton("East"), x = 2, y = 1);
 addGB(new JButton("South"), x = 1, y = 2);
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 void addGB(Component component, int x, int y) {
 constraints.gridx = x;
 constraints.gridy = y;
 add(component, constraints);
 }

 public static void main(String[] args) {
 JFrame frame = new JFrame("GridBag5");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

 frame.setSize(250, 250);
 frame.setLocation(200, 200);
 frame.setContentPane(new GridBag5());
 frame.setVisible(true);
 }
}

Notice that the horizontal padding, ipadx , is added on both the left and right sides of the
button. Therefore, the button grows horizontally by twice the value of ipadx . Likewise,
the vertical padding, ipady , is added on both the top and the bottom.

Insets add space between the edges of the component and its cell. They are stored in the
insets field of GridBagConstraints , which is an Insets object. An Insets
object has four fields to specify the margins on the top , bottom , left , and right
of the component. The relationship between insets and padding can be confusing. As
shown in Figure 18-12 , padding is added to the component itself, increasing its size. Insets
are external to the component and represent the margin between the component and its cell.

Figure 18-12. The relationship between padding and insets

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Padding and weighting have an odd interaction with each other. If you use padding, it's
best to use the default weightx and weighty values for each component.

18.6.8 Relative Positioning

In all our grid bag layouts so far, we have specified the gridx and gridy coordinates of
each component explicitly using its constraints. Another alternative is relative positioning.

Conceptually, relative positioning is simple: we simply say "put this component to the right
of (or below) the previous component." To do so you can set gridx or gridy to the
constant GridBagConstraints.RELATIVE . Unfortunately, it's not as simple as
this. Here are a couple of warnings:

To place a component to the right of the previous one, set gridx to RELATIVE and
use the same value for gridy that you used for the previous component.

Similarly, to place a component below the previous one, set gridy to RELATIVE
and leave gridx unchanged.

Setting both gridx and gridy to RELATIVE places all the components in one
row, not in a diagonal line, as you might expect. (This is the default.)

In other words, if gridx or gridy is RELATIVE , you had better leave the other value
unchanged. RELATIVE makes it easy to arrange a lot of components in a row or a
column. That's what it was intended for; if you try to do something else, you're fighting
against the layout manager, not working with it.

GridBagLayout allows another kind of relative positioning in which you specify
where, in a row or a column, the component should be placed overall. To do so, you use
the gridwidth and gridheight fields of GridBagConstraints . Setting either
of these to the constant REMAINDER says that the component should be the last item in its
row or column and therefore should occupy all the remaining space. Setting either
gridwidth or gridheight to RELATIVE says that it should be the second to the
last item in its row or column. Unfortunately, you can use these constants to create
constraints that can't possibly be met; for example, you can say that two components must
be the last component in a row. In these cases, the layout manager tries to do something
reasonable, but it will almost certainly do something you don't want.

18.6.9 Composite Layouts

Sometimes things don't fall neatly into little boxes. This is true of layouts as well as life.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For example, if you want to use some of GridBagLayout 's weighting features for part
of your GUI, you could create separate layouts for different parts of the GUI and combine
them with yet another layout. That's how we'll build the pocket calculator interface in
Figure 18-13 . We will use three grid bag layouts: one for the first row of buttons (C, %, +),
one for the last (0, ., =) and one for the window itself. The master layout (the window's)
manages the text field we use for the display, the panels containing the first and last rows
of buttons, and the twelve buttons in the middle.[2]

Figure 18-13. The Calculator application

Here's the code for the Calculator example. It implements only the user interface (i.e.,
the keyboard); it collects everything you type in the display field until you press C (clear).
Figuring out how to connect the GUI to some other code that would perform the operations
is up to you. One strategy would be to send an event to the object that does the
computation whenever the user presses the equals sign. That object could read the contents
of the text field, parse it, do the computation, and display the results.

//file: Calculator.java
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class Calculator extends JPanel implements ActionListener {
 GridBagConstraints gbc = new GridBagConstraints();
 JTextField theDisplay = new JTextField();

 public Calculator() {
 gbc.weightx = 1.0; gbc.weighty = 1.0;
 gbc.fill = GridBagConstraints.BOTH;
 ContainerListener listener = new ContainerAdapter() {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public void componentAdded(ContainerEvent e) {
 Component comp = e.getChild();
 if (comp instanceof JButton)
 ((JButton)comp).addActionListener(Calculator.this);
 }
 };
 addContainerListener(listener);
 gbc.gridwidth = 4;
 addGB(this, theDisplay, 0, 0);
 // make the top row
 JPanel topRow = new JPanel();
 topRow.addContainerListener(listener);
 gbc.gridwidth = 1;
 gbc.weightx = 1.0;
 addGB(topRow, new JButton("C"), 0, 0);
 gbc.weightx = 0.33;
 addGB(topRow, new JButton("%"), 1, 0);
 gbc.weightx = 1.0;
 addGB(topRow, new JButton("+"), 2, 0);
 gbc.gridwidth = 4;
 addGB(this, topRow, 0, 1);
 gbc.weightx = 1.0; gbc.gridwidth = 1;
 // make the digits
 for(int j=0; j<3; j++)
 for(int i=0; i<3; i++)
 addGB(this, new JButton("" + ((2-j)*3+i+1)), i, j+2);
 // -, x, and divide
 addGB(this, new JButton("-"), 3, 2);
 addGB(this, new JButton("x"), 3, 3);
 addGB(this, new JButton("\u00F7"), 3, 4);
 // make the bottom row
 JPanel bottomRow = new JPanel();
 bottomRow.addContainerListener(listener);
 gbc.weightx = 1.0;
 addGB(bottomRow, new JButton("0"), 0, 0);
 gbc.weightx = 0.33;
 addGB(bottomRow, new JButton("."), 1, 0);
 gbc.weightx = 1.0;
 addGB(bottomRow, new JButton("="), 2, 0);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 gbc.gridwidth = 4;
 addGB(this, bottomRow, 0, 5);
 }

 void addGB(Container cont, Component comp, int x, int y) {
 if ((cont.getLayout() instanceof GridBagLayout) == false)
 cont.setLayout(new GridBagLayout());
 gbc.gridx = x; gbc.gridy = y;
 cont.add(comp, gbc);
 }

 public void actionPerformed(ActionEvent e) {
 if (e.getActionCommand().equals("C"))
 theDisplay.setText("");
 else
 theDisplay.setText(theDisplay.getText()
 + e.getActionCommand());
 }

 public static void main(String[] args) {
 JFrame frame = new JFrame("Calculator");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(200, 250);
 frame.setLocation(200, 200);
 frame.setContentPane(new Calculator());
 frame.setVisible(true);
 }
}

Once again, we use an addGB() helper method to add components with their constraints
to the layout. Before discussing how to build the layout, let's take a look at addGB() .
We said earlier that three layout managers are in our user interface: one for the application
panel itself, one for the panel containing the first row of buttons (topRow), and one for
the panel containing the bottom row of buttons (bottomRow). We use addGB() for all
three layouts; its first argument specifies the container to add the component to. Thus,
when the first argument is this , we're adding an object to the content pane of the
JFrame . When the first argument is topRow , we're adding a button to the first row of
buttons. addGB() first checks the container's layout manager and sets it to
GridBagLayout if it isn't already set properly. It sets the object's position by modifying
a set of constraints, gbc , and then uses these constraints to add the object to the container.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We use a single set of constraints throughout the example, modifying fields as we see fit.
The constraints are initialized in Calculator 's constructor. Before calling addGB() ,
we set any fields of gbc for which the defaults are inappropriate. Thus, for the answer
display, we set the grid width to 4 and add the answer display directly to the application
panel (this). The add() method, which is called by addGB() , makes a copy of the
constraints, so we're free to reuse gbc throughout the application.

The first and last rows of buttons motivate the use of multiple GridBagLayout
containers, each with its own grid. These buttons appear to straddle grid lines, but you
really can't accomplish this using a single grid. Therefore, topRow has its own layout
manager, with three horizontal cells, allowing each button in the row to have a grid width
of 1. To control the size of the buttons, we set the weightx variables so that the clear and
plus buttons take up more space than the percent button. We then add the topRow as a
whole to the application, with a grid width of 4. The bottom row is built similarly.

To build the buttons for the digits 1 through 9, we use a doubly nested loop. There's
nothing particularly interesting about this loop, except that it's probably a bit too clever for
good taste. The minus, multiply, and divide buttons are also simple: we create a button with
the appropriate label and use addGB() to place it in the application. It's worth noting that
we used a Unicode constant to request a real division sign rather than wimping out and
using a slash.

That's it for the user interface; what's left is event handling. Each button generates action
events; we need to register listeners for these events. We'll make the application panel, the
Calculator , the listener for all the buttons. To register the Calculator as a
listener, we'll be clever. Whenever a component is added to a container, the container
generates a ContainerEvent . We use an anonymous inner class
ContainerListener to register listeners for our buttons. This means that the
Calculator must register as a ContainerListener for itself and for the two
panels, topRow and bottomRow . The componentAdded() method is very simple.
It calls getChild() to find out what component caused the event (i.e., what component
was added). If that component is a button, it registers the Calculator as an
ActionListener for that button.

actionPerformed() is called whenever the user presses any button. It clears the
display if the user pressed the C button; otherwise, it appends the button's action command
(in this case, its label) to the display.

Combining layout managers is an extremely useful trick. Granted, this example verges on
overkill. You won't often need to create a composite layout using multiple grid bags.
Composite layouts are most common with BorderLayout ; you'll frequently use

http://lib.ommolketab.ir
http://lib.ommolketab.ir

different layout managers for each of a border layout's regions. For example, the CENTER
region might be a ScrollPane , which has its own special-purpose layout manager; the
EAST and SOUTH regions might be panels managed by grid layouts or flow layouts, as
appropriate.

18.7 Nonstandard Layout Managers

We've covered the basic layout managers; with them, you should be able to create just
about any user interface you like.

But that's not all, folks. If you want to experiment with layout managers that are
undocumented, may change, and may not be available locally on all platforms, look in the
sun.awt classes. You'll find a HorizBagLayout , a VerticalBagLayout , an
OrientableFlowLayout , and a VariableGridLayout . Furthermore, public
domain layout managers of all descriptions are on the Net.

18.8 Absolute Positioning

It's possible to set the layout manager to null : no layout control. You might do this to
position an object on the display at some absolute coordinates. This is usually not the right
approach. Components might have different minimum sizes on different platforms, and
your interface would not be very portable.

The following example doesn't use a layout manager and works with absolute coordinates
instead:

//file: MoveButton.java
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class MoveButton extends JPanel {
 JButton button = new JButton("I Move");

 public MoveButton() {
 setLayout(null);
 add(button);
 button.setSize(button.getPreferredSize());
 button.setLocation(20, 20);
 addMouseListener(new MouseAdapter() {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public void mousePressed(MouseEvent e) {
 button.setLocation(e.getX(), e.getY());
 }
 });
 }

 public static void main(String[] args) {
 JFrame frame = new JFrame("MoveButton");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(250, 200);
 frame.setLocation(200, 200);
 frame.setContentPane(new MoveButton());
 frame.setVisible(true);
 }
}

Click in the window area, outside of the button, to move the button to a new location. Try
resizing the window and note that the button stays at a fixed position relative to the
window's upper left corner.

18.9 SpringLayout

The SpringLayout is a new addition in Java 1.4. It supports a combination of absolute
positioning and point-to-point attachments between components (kind of like the "glue" of
the BoxLayout). SpringLayout is useful in GUI builder applications because it's
easy to translate manual user placement into these kinds of constraints.

SpringLayout uses Spring objects to attach edges of components. Spring s have a
range of motion and can be anchored at a coordinate or at a component's edge. Any two
component edges can also be connected by a Spring . The two edges may belong to two
different components, in which case the spring constrains the way the components are
placed relative to one another, or they may belong to the same component, in which case
the spring constrains the width or height of the component.

We don't cover SpringLayout here, but you can read about it in O'Reilly's Java Swing
.

[1] Calling new GridLayout(0, 0) causes a runtime exception; either the rows or

columns parameter must be greater than zero.

[2] If you're curious, this calculator is based on the ELORG-801, encountered in an online

http://lib.ommolketab.ir
http://lib.ommolketab.ir

"calculator museum"; see http://www.taswegian.com/MOSCOW/elorg801.html .

CONTENTS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

Chapter 19. Drawing with the 2D API

 19.1 The Big Picture

 19.2 The Rendering Pipeline
 19.3 A Quick Tour of Java 2D

 19.4 Filling Shapes

 19.5 Stroking Shape Outlines

 19.6 Using Fonts

 19.7 Displaying Images
 19.8 Drawing Techniques

 19.9 Printing

In the last few chapters, you've caught a glimpse of how graphics operations are performed
in Java. This chapter goes into more depth about drawing techniques and the tools for
working with images in Java. In the next chapter, we'll explore image-processing tools in
more detail, and we'll look at the classes that let you generate images, pixel by pixel, on the
fly.

19.1 The Big Picture

The classes you'll use for drawing come from six packages: java.awt ,
java.awt.color , java.awt.font , java.awt.geom , java.awt.image ,
and java.awt.print . Collectively, these classes make up most of the 2D API, a
comprehensive API for drawing shapes, text, and images. Figure 19-1 shows a bird's-eye
view of these classes. There's much more in the 2D API than we can cover in two chapters.
For a full treatment, see Jonathan Knudsen's Java 2D Graphics (O'Reilly).

Figure 19-1. Graphics classes of the 2D API

http://lib.ommolketab.ir
http://lib.ommolketab.ir

An instance of java.awt.Graphics2D is called a graphics context . It represents a
drawing surface such as a component's display area, a page on a printer, or an offscreen
image buffer. A graphics context provides methods for drawing three kinds of graphics
objects: shapes, text, and images. Graphics2D is called a graphics context because it
also holds contextual information about the drawing area. This information includes the
drawing area's clipping region, painting color, transfer mode, text font, and geometric
transformation. If you consider the drawing area to be a painter's canvas, you might think
of a graphics context as an easel that holds a set of tools and marks off the work area.

There are four ways to acquire a Graphics2D object. The following list shows them in
order, most common to least.

From AWT or Swing as the result of a painting request on a component

In this case, a new graphics context for the appropriate area is created and passed to
your component's paint() or update() method. (The update() method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

really applies only to AWT components, not the newer Swing components.)
Directly from an offscreen image buffer

In this case, we ask the image buffer for a graphics context directly. We'll use this
when we discuss techniques such as double buffering.

By copying an existing Graphics2D object

Duplicating a graphics object can be useful for more elaborate drawing operations;
different copies of a Graphics2D object can draw on same area, but with different
attributes and clipping regions. A Graphics2D can be copied by calling the
create() method.

Directly from an onscreen component

It's possible to ask a component to give you a Graphics2D object for its display
area. However, this is almost always a mistake; if you feel tempted to do this, think
about why you're trying to circumvent the normal paint() /repaint()
mechanism.

Each time a component's paint() method is called, the windowing system provides the
component with a new Graphics2D object for drawing in the display area. This means
that attributes we set during one painting session, such as the drawing color or clipping
region, are reset the next time paint() is called. (Each call to paint() starts with a
tidy new easel.) For the most common attributes, such as foreground color, background
color, and font, we can set defaults in the component itself. Thereafter, the graphics
contexts for painting in that component come with those properties initialized
appropriately.

The paint() method can make no assumptions about what is already drawn on the
screen. However if we are working in an AWT component's update() method, we can
assume our onscreen artwork is still intact, and we need to make only whatever changes are
needed to bring the display up to date. One way to optimize drawing operations in this case
is by setting a clipping region, as we'll see shortly.

For backwards compatibility, a graphics context is always passed to the paint() method
as a more primitive Graphics object. If you want to take advantage of the nifty features
in the 2D API (as you almost undoubtedly will), you need to cast this reference to a
Graphics2D . You'll see how this works in the upcoming examples.

19.2 The Rendering Pipeline

One of the strengths of the 2D API is that shapes, text, and images are manipulated in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

many of the same ways. In this section, we'll describe what happens to shapes, text, and
images after you give them to a Graphics2D object . Rendering is the process of
taking some collection of shapes, text, and images and figuring out how to represent them
by coloring pixels on a screen or printer. Graphics2D supports four rendering
operations:

Draw the outline of a shape, with the draw() method.

Fill the interior of a shape, with the fill() method.

Draw some text, with the drawString() method.

Draw an image, with any of the many forms of the drawImage() method.

The graphics context instantiated by a Graphics2D object consists of the following
properties, whose values are controlled by corresponding accessor methods:

paint

The current paint (an object of type java.awt.Paint) determines what color or
pattern will be used to fill a shape. This affects the drawing of shape outlines and text,
as well. You can change the current paint using Graphics2D 's setPaint()
method. Note that the Color class implements the Paint interface, so you can
pass Color s to setPaint() if you want to use solid colors.

stroke

Graphics2D uses the stroke to determine how to draw the outline of shapes that
are passed to its draw() method. In graphics terminology, to "stroke" a shape
means to take a path defined by the shape and effectively trace it with a pen or brush
of a certain size and characteristics. For example, drawing the shape of a circle using
a stroke that acts like a solid line would yield a washer or ring shape. The stroke
object in the Graphics2D API is a little more abstract than that. In actuality it accepts
the input shape to be stroked and returns an enclosed shape representing the outline,
which the Graphics2D then fills. You can set the current stroke using
setStroke() . The 2D API comes with a handy class,
java.awt.BasicStroke , that implements different line widths, end styles,
join styles, and dashing.

font

Text is rendered by creating a shape that represents the characters to be drawn. The
current font determines what shapes are created for a given set of characters. The
resulting text shape is then filled. The current font is set using setFont() . The 2D

http://lib.ommolketab.ir
http://lib.ommolketab.ir

API gives applications access to all the TrueType and PostScript Type 1 fonts that are
installed.

transformation

Shapes, text, and images are geometrically transformed before they are rendered.
This means that they may be moved, rotated, and stretched. Graphics2D 's
transformation converts coordinates from "user space" to "device space." By default,
Graphics2D uses a transformation that maps 72 units in user space to one inch on
the output device. If you draw a line from point 0, 0 to point 72, 0 using the default
transformation, it will be one inch long, regardless of whether it is drawn on your
monitor or your printer. The current transformation can be modified using the
translate() , rotate() , scale() , and shear() methods.

compositing rule

A compositing rule determines how the colors of a new drawing operation are
combined with existing colors on the Graphics2D 's drawing surface. This
attribute is set using setComposite() , which accepts an instance of
java.awt.AlphaComposite . Compositing allows you to make parts of a
drawing or image completely or partially transparent, or to combine them in other
interesting ways.

clipping shape

All rendering operations are limited to the interior of the clipping shape . No pixels
outside this shape are modified. By default, the clipping shape allows rendering on
the entire drawing surface (usually, the rectangular area of a Component).
However, you can further limit this using any simple or complex shape, including text
shapes.

rendering hints

There are different techniques that can be used to render graphics primitives. Usually
these represent a tradeoff between rendering speed and visual quality or vice versa.
Rendering hints (constants defined in the RenderingHints class) specify which
techniques to use.

Graphics primitives (shapes, text, and images) pass through the rendering engine in a series
of operations called the rendering pipeline . Let's walk through the pipeline. It can be
reduced to four steps; the first step depends on the rendering operation:

Transform the shape. For shapes that will be filled, the shape is simply transformed
using the Graphics2D 's current transformation. For shapes whose outlines are
drawn using draw() , the current stroke is used to stroke the shape's outline. Then

1.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

the stroked outline is transformed, just like any other filled shape. Text is displayed by
mapping characters to shapes using the current font. The resulting text shapes are
transformed, just like any other filled shape. For images, the outline of the image is
transformed using the current transformation.

1.

Determine the colors to be used. For a filled shape, the current paint object determines
what colors should be used to fill the shape. For drawing an image, the colors are
taken from the image itself.

2.

Combine the colors with the existing drawing surface using the current compositing
rule .

3.

Clip the results using the current clipping shape .4.

The rendering hints are used throughout to control the rendering quality.

19.3 A Quick Tour of Java 2D

19.3.1 Filling Shapes

The simplest path through the rendering pipeline is for filling shapes. For example, the
following code creates an ellipse and fills it with a solid color. (This code would live inside
a paint() method somewhere. We'll present a complete, ready-to-run example a little
later.)

Shape c = new Ellipse2D.Float(50, 25, 150, 150);
g2.setPaint(Color.blue);
g2.fill(c);

Here, g2 is our Graphics2D object. The Ellipse2D class is abstract but is
implemented by concrete inner subclasses, called Float and Double . The
Rectangle2D class, for example, has concrete subclasses Rectangle2D.Float
and Rectangle2D.Double .

In the call to setPaint() , we tell the Graphics2D to use a solid color, blue, for all
subsequent filling operations. Then, the call to fill() tells Graphics2D to fill the
given shape.

All geometric shapes in the 2D API are represented by implementations of the
java.awt.geom.Shape interface. This interface defines methods that are common to
all shapes, like returning a rectangle bounding box or testing if a point is inside the shape.
The java.awt.geom package is a smorgasbord of useful shape classes, including
Rectangle2D , RoundRectangle2D (a rectangle with rounded corners), Arc2D ,
Ellipse2D , and others. In addition, a few classes in java.awt are Shape s:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Rectangle , Polygon , and Area .

19.3.2 Drawing Shape Outlines

Drawing a shape's outline is only a little bit more complicated. Consider the following
example:

Shape r = new Rectangle2D.Float(100, 75, 100, 100);
g2.setStroke(new BasicStroke(4));
g2.setPaint(Color.yellow);
g2.draw(r);

Here, we tell the Graphics2D to use a stroke that is four units wide and a solid color,
yellow, for filling the stroke. When we call draw() , Graphics2D uses the stroke to
create a new shape, the outline, from the given rectangle. The outline shape is then filled,
just as before; this effectively draws the rectangle's outline. The rectangle itself is not filled.

19.3.3 Convenience Methods

Graphics2D includes quite a few convenience methods for drawing and filling common
shapes; these methods are actually inherited from the Graphics class. Table 19-1
summarizes these methods. It's a little easier to just call fillRect() rather than
instantiating a rectangle shape and passing it to fill() .

Table 19-1. Shape-drawing methods in the graphics class

Method Description

draw3DRect() Draws a highlighted, 3D rectangle

drawArc() Draws an arc

drawLine() Draws a line

drawOval() Draws an oval

drawPolygon() Draws a polygon, closing it by connecting the endpoints

drawPolyline() Draws a line connecting a series of points, without closing it

drawRect() Draws a rectangle

drawRoundRect() Draws a rounded-corner rectangle

fill3DRect() Draws a filled, highlighted, 3D rectangle

fillArc() Draws a filled arc

http://lib.ommolketab.ir
http://lib.ommolketab.ir

fillOval() Draws a filled oval

fillPolygon() Draws a filled polygon

fillRect() Draws a filled rectangle

fillRoundRect() Draws a filled, rounded-corner rectangle

As you can see, for each of the fill() methods in the table, there is a corresponding
draw() method that renders the shape as an unfilled line drawing. With the exception of
fillArc() and fillPolygon() , each method takes a simple x , y specification for
the top left corner of the shape and a width and height for its size.

The most flexible convenience method draws a polygon, which is specified by two arrays
that contain the x and y coordinates of the vertices. Methods in the Graphics class take
two such arrays and draw the polygon's outline or fill the polygon.

The methods listed in Table 19-1 are shortcuts for more general methods in
Graphics2D . The more general procedure is to first create a
java.awt.geom.Shape object and then pass it to the draw() or fill() method
of Graphics2D . For example, you could create a Polygon object from coordinate
arrays. Since a Polygon implements the Shape interface, you can pass it to
Graphics2D 's general draw() or fill() method.

The fillArc() method requires six integer arguments. The first four specify the
bounding box for an oval-just like the fillOval() method. The final two arguments
specify what portion of the oval we want to draw, as a starting angular position and an
offset. Both the starting angular position and the offset are specified in degrees. The zero
degree mark is at three o'clock; a positive angle is clockwise. For example, to draw the
right half of a circle, you might call:

g.fillArc(0, 0, radius * 2, radius * 2, -90, 180);

draw3DRect() automatically chooses colors by "darkening" the current color. So you
should set the color to something other than black, which is the default (maybe gray or
white); if you don't, you'll just get a black rectangle with a thick outline.

19.3.4 Drawing Text

Like drawing a shape's outline, drawing text is just a simple variation on filling a shape.
When you ask a Graphics2D to draw text, it determines the shapes that need to be
drawn and fills them. The shapes that represent characters are called glyphs . A font is a
collection of glyphs. Here's an example of drawing text:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

g2.setFont(new Font("Times New Roman", Font.PLAIN, 64));
g2.setPaint(Color.red);
g2.drawString("Hello, 2D!", 50, 150);

When we call drawString() , the Graphics2D uses the current font to retrieve the
glyphs that correspond to the characters in the string. Then the glyphs (which are really just
Shape s) are filled using the current Paint .

19.3.5 Drawing Images

Images are treated a little differently than shapes. In particular, the current Paint is not
used to render an image because the image contains its own color information (it is the
Paint, effectively). The following example loads an image from a file and displays it (you'll
have to use your own file here):

Image i = Toolkit.getDefaultToolkit().getImage("camel.gif");
g2.drawImage(i, 75, 50, this);

In this case, the call to drawImage() tells the Graphics2D to place the image at the
given location.

19.3.5.1 Transformations and rendering

Four parts of the pipeline affect every graphics operation. In particular, all rendering is
transformed, composited, and clipped. Rendering hints are used to affect all of a
Graphics2D 's rendering.

This example shows how to modify the current transformation with a translation and a
rotation:

g2.translate(50, 0);
g2.rotate(Math.PI / 6);

Every graphics primitive drawn by g2 will now have this transformation applied to it (a
shift of 50 units right and a rotation of 30 degrees counterclockwise). We can have a
similarly global effect on compositing:

AlphaComposite ac = AlphaComposite.getInstance(
 AlphaComposite.SRC_OVER, (float).5);
g2.setComposite(ac);

Now every graphics primitive we draw will be half transparent; we'll explain more about

http://lib.ommolketab.ir
http://lib.ommolketab.ir

this later.

All drawing operations are clipped by the current clipping shape, which is any object
implementing the Shape interface. In the following example, the clipping shape is set to
an ellipse:

Shape e = new Ellipse2D.Float(50, 25, 250, 150);
g2.clip(e);

You can obtain the current clipping shape using getClip() ; this is handy if you want
to restore it later using the setClip() method.

Finally, the rendering hints are used for all drawing operations. In the following example,
we tell the Graphics2D to use antialiasing, a technique that smoothes out the rough
pixel edges of shapes and text:

g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);

The RenderingHints class contains other keys and values representing other
rendering hints. If you really like to fiddle with knobs and dials, this is a good class to
check out.

19.3.6 The Whole Iguana

Let's put everything together now, just to show how graphics primitives travel through the
rendering pipeline. The following example demonstrates the use of Graphics2D from
the beginning to the end of the rendering pipeline. With very few lines of code, we are able
to draw some pretty complicated stuff (see Figure 19-2)

Figure 19-2. Exercising the 2D API

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Here's the code:

//file: Iguana.java
import java.awt.*;
import java.awt.event.*;
import java.awt.geom.*;
import javax.swing.*;

public class Iguana extends JComponent {
 private Image image;
 private int theta;

 public Iguana() {
 image = Toolkit.getDefaultToolkit().getImage(
 "Piazza di Spagna.small.jpg");
 theta = 0;
 addMouseListener(new MouseAdapter() {
 public void mousePressed(MouseEvent me) {
 theta = (theta + 15) % 360;
 repaint();
 }
 });
 }

 public void paint(Graphics g) {
 Graphics2D g2 = (Graphics2D)g;

 g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 RenderingHints.VALUE_ANTIALIAS_ON);

 int cx = getSize().width / 2;
 int cy = getSize().height / 2;

 g2.translate(cx, cy);
 g2.rotate(theta * Math.PI / 180);

 Shape oldClip = g2.getClip();
 Shape e = new Ellipse2D.Float(-cx, -cy, cx * 2, cy * 2);
 g2.clip(e);

 Shape c = new Ellipse2D.Float(-cx, -cy, cx * 3 / 4, cy * 2);
 g2.setPaint(new GradientPaint(40, 40, Color.blue,
 60, 50, Color.white, true));
 g2.fill(c);

 g2.setPaint(Color.yellow);
 g2.fillOval(cx / 4, 0, cx, cy);

 g2.setClip(oldClip);

 g2.setFont(new Font("Times New Roman", Font.PLAIN, 64));
 g2.setPaint(new GradientPaint(-cx, 0, Color.red,
 cx, 0, Color.black, false));
 g2.drawString("Hello, 2D!", -cx * 3 / 4, cy / 4);

 AlphaComposite ac = AlphaComposite.getInstance(
 AlphaComposite.SRC_OVER, (float).75);
 g2.setComposite(ac);

 Shape r = new RoundRectangle2D.Float(0, -cy * 3 / 4,
 cx * 3 / 4, cy * 3 / 4, 20, 20);
 g2.setStroke(new BasicStroke(4));
 g2.setPaint(Color.magenta);
 g2.fill(r);
 g2.setPaint(Color.green);
 g2.draw(r);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 g2.drawImage(image, -cx / 2, -cy / 2, this);
 }

 public static void main(String[] args) {
 JFrame frame = new JFrame("Iguana");
 Container c = frame.getContentPane();
 c.setLayout(new BorderLayout());
 c.add(new Iguana(), BorderLayout.CENTER);
 frame.setSize(300, 300);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }
}

The Iguana class itself is a subclass of JComponent with a fancy paint() method.
The main() method takes care of creating a JFrame that holds the Iguana
component.

Iguana 's constructor loads a small image (we'll talk more about this later) and sets up a
mouse event handler. This handler changes a member variable, theta , and repaints the
component. Each time you click, the entire drawing is rotated by 15 degrees.

Iguana 's paint() method does some pretty tricky stuff, but none of it is very difficult.
First, user space is transformed so that the origin is at the center of the component. The
user space is then rotated by theta :

g2.translate(cx, cy);
g2.rotate(theta * Math.PI / 180);

Iguana saves the current (default) clipping shape before setting it to a large ellipse. Then
Iguana draws two filled ellipses. The first is drawn by instantiating an Ellipse2D and
filling it; the second is drawn using the fillOval() convenience method. (We'll talk
about the color gradient in the first ellipse in the next section.) As you can see in Figure 19-
2 , both ellipses are clipped by the elliptical clipping shape. After filling the two ellipses,
Iguana restores the old clipping shape.

Iguana draws some text next; we'll talk about this in more detail later. The next action is
to modify the compositing rule as follows:

AlphaComposite ac = AlphaComposite.getInstance(
 AlphaComposite.SRC_OVER, (float).75);
g2.setComposite(ac);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

All this means is that we want everything to be drawn with transparency. The
AlphaComposite class defines constants representing different compositing rules,
much the way the Color class contains constants representing different predefined colors.
In this case, we're asking for the source over destination rule (SRC_OVER), but with an
additional alpha multiplier of 0.75. Source over destination means that whatever we're
drawing (the source) should be placed on top of whatever's already there (the destination).
The alpha multiplier means that everything we draw will be treated at 0.75 or three quarters
of its normal opacity, allowing the existing drawing to "show through."

You can see the effect of the new compositing rule in the rounded rectangle and the image,
which both allow previously drawn elements to show through.

19.4 Filling Shapes

Iguana fills its shapes with a number of colors, using the setPaint() method of
Graphics2D . This method sets the current color in the graphics context, so we set it to a
different color before each drawing operation. setPaint() accepts any object that
implements the Paint interface. The 2D API includes three implementations of this
interface, representing solid colors, color gradients, and textures.

19.4.1 Solid Colors

The java.awt.Color class handles color in Java. A Color object describes a single
color. You can create an arbitrary Color by specifying the red, green, and blue values,
either as integers between 0 and 255 or as floating-point values between 0.0 and 1.0. The
(somewhat strange) getColor() method can be used to look up a named color in the
system properties table, as described in Chapter 10 . getColor() takes a String
color property name, retrieves the integer value from the Properties list, and returns
the Color object that corresponds to that color.

The Color class also defines a number of static final color values; these are what
we used in the Iguana example. These constants, such as Color.black and
Color.red , provide a convenient set of basic color objects for your drawings.

19.4.2 Color Gradients

A color gradient is a smooth blend from one color to another. The GradientPaint
class encapsulates this idea in a handy implementation of the Paint interface. All you
need to do is specify two points and the color at each point. The GradientPaint takes

http://lib.ommolketab.ir
http://lib.ommolketab.ir

care of the details so that the color fades smoothly from one point to the other. For
example, in the previous example, the ellipse is filled with a gradient this way:

g2.setPaint(new GradientPaint(40, 40, Color.blue,
 60, 50, Color.white, true));

The last parameter in GradientPaint 's constructor determines whether the gradient is
cyclic . In a cyclic gradient, the colors keep fluctuating beyond the two points that you've
specified. Otherwise, the gradient just draws a single blend from one point to the other.
Beyond each endpoint, the color is solid.

19.4.3 Textures

A texture is simply an image repeated over and over like a floor tile. This concept is
represented in the 2D API with the TexturePaint class. To create a texture, just
specify the image to be used and the rectangle that will be used to reproduce it. To do this,
you also need to know how to create and use images, which we'll get to a little later.

19.4.4 Desktop Colors

The Color class makes it easy to construct a particular color; however, that's not always
what you want to do. Sometimes you want to match a preexisting color scheme. This is
particularly important when you are designing a user interface; you might want your
components to have the same colors as other components on that platform and to change
automatically if the user redefines his or her color scheme.

That's what the SystemColor class is for. A system color represents the color used by
the local windowing system in a certain context. The SystemColor class holds lots of
predefined system colors, just like the Color class holds some predefined basic colors.
For example, the field activeCaption represents the color used for the background of
the titlebar of an active window; activeCaptionText represents the color used for
the title itself. menu represents the background color of menu selections; menuText
represents the color of a menu item's text when it is not selected;
textHighlightText is the color used when the menu item is selected; and so on.
You could use the window value to set the color of a Window to match the other
windows on the user's screen-whether or not they're generated by Java programs.

myWindow.setBackground(SystemColor.window);

Because the SystemColor class is a subclass of Color , you can use it wherever you
would use a Color . However, the SystemColor constants are tricky. They are

http://lib.ommolketab.ir
http://lib.ommolketab.ir

constant, immutable objects as far as you, the programmer, are concerned (your code is not
allowed to modify them), but they can be modified at runtime by the system. If the user
changes his color scheme, the system colors are automatically updated to follow suit; as a
result, anything displayed with system colors will automatically change color the next time
it is redrawn. For example, the window myWindow would automatically change its
background color to the new background color.

The SystemColor class has one noticeable shortcoming. You can't compare a system
color to a Color directly; the Color.equals() method doesn't return reliable results.
For example, if you want to find out whether the window background color is red, you
can't call:

Color.red.equals(SystemColor.window);

Instead, you should use getRGB() to find the color components of both objects and
compare them, rather than comparing the objects themselves.

19.5 Stroking Shape Outlines

Just as a Graphics2D object's current paint determines how its shapes are filled, its
current stoke determines how its shapes are outlined. The current stroke determines such
drawing features as line thickness, line dashing, and end styles. (If you struggled with
drawing in earlier versions of Java, you'll be very grateful that there's now a way to change
the line thickness.)

To set the current stroke in a Graphics2D , just call setStroke() with any
implementation of the Stroke interface. Fortunately, the 2D API includes a
BasicStroke class that probably does everything you need. Using BasicStroke ,
you can create dashed lines, control what decoration is added to line ends, and decide how
the corners in an outline should be drawn.

By default, Graphics2D uses a solid stroke with a width of 1. In the previous Iguana
example, the line width is changed just before the outline of the rounded rectangle is
drawn, like so:

g2.setStroke(new BasicStroke(4));

19.6 Using Fonts

Text fonts in Java are represented by instances of the java.awt.Font class. A Font
object is constructed from a name, style identifier, and a point size. We can create a Font

http://lib.ommolketab.ir
http://lib.ommolketab.ir

object at any time, but it's meaningful only when applied to a particular component on a
given display device. Here are a couple of fonts:

Font smallFont = new Font("Monospaced", Font.PLAIN, 10);
Font bigFont = new Font("Serif", Font.BOLD, 18);

Font names come in three varieties: family names, face names (also called font names), and
logical names. Family and font names are closely related. For example, Garamond Italic is
a font name for a font whose family name is Garamond.

A logical name is a generic name for the font family. The following logical font names
should be available on all platforms:

Serif (generic name for TimesRoman)

SansSerif (generic name for Helvetica)

Monospaced (generic name for Courier)

Dialog

DialogInput

The logical font name is mapped to an actual font on the local platform. Java's
fonts.properties files map the font names to the available fonts, covering as much of the
Unicode character set as possible. If you request a font that doesn't exist, you get the
default font.

One of the big wins in the 2D API is that it can use most of the fonts you have installed on
your computer. The following program prints out a full list of the fonts that are available to
the 2D API:

//file: ShowFonts.java
import java.awt.*;

public class ShowFonts {
 public static void main(String[] args) {
 Font[] fonts;
 fonts =
 GraphicsEnvironment.getLocalGraphicsEnvironment().getAllFonts();
 for (int i = 0; i < fonts.length; i++) {
 System.out.print(fonts[i].getFontName() + " : ");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 System.out.print(fonts[i].getFamily() + " : ");
 System.out.print(fonts[i].getName());
 System.out.println();
 }
 }
}

Note, however, that the fonts installed on your system may not match the fonts installed on
someone else's system. For true portability, you can use one of the logical names (although
your application won't look exactly the same on all platforms) or go with the defaults. You
can also allow your users to configure the application by choosing fonts themselves.

The static method Font.getFont() looks up a font name in the system properties
list (like Color.getColor()). getFont() takes a String font property name,
retrieves the font name from the Properties table, and returns the Font object that
corresponds to that font.

The Font class defines three static style identifiers: PLAIN , BOLD , and ITALIC .
You can use these values on all fonts. The point size determines the size of the font on a
display. If a given point size isn't available, Font substitutes a default size.

You can retrieve information about an existing Font with a number of routines. The
getName() , getSize() , and getStyle() methods retrieve the logical name,
point size, and style, respectively. You can use the getFamily() method to find out the
family name while getFontName() returns the face name of the font.

Finally, to actually use a Font object, you can simply specify it as an argument to the
setFont() method of a Component or Graphics2D object. Subsequent text-
drawing commands such as drawString() for that component or in that graphics
context use the specified font.

19.6.1 Font Metrics

To get detailed size and spacing information for text rendered in a font, we can ask for a
java.awt.font.LineMetrics object. Different systems have different real fonts
available; the available fonts may not match the font you request. Furthermore, the
measurements of different characters within a single font may be different, especially in
multilingual text. Thus, a LineMetrics object presents information about a particular
set of text in a particular font on a particular system, not general information about a font.
For example, if you ask for the metrics of a nine-point Monospaced font, what you get
isn't some abstract truth about Monospaced fonts; you get the metrics of the font that the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

particular system uses for nine-point Monospaced -which may not be exactly nine
points or even fixed width.

Use the getLineMetrics() method for a Font to retrieve the metrics for text as it
would appear for that component. This method also needs to know some information about
how you plan to render the text-if you're planning to use antialiasing, for instance, which
affects the text measurements. This extra information is encapsulated in the
FontRenderContext class. Fortunately, you can just ask Graphics2D for its
current FontRenderContext rather than having to create one yourself:

public void paint(Graphics g) {
 Graphics2D g2 = (Graphics2D)g;
 ...
 FontRenderContext frc = g2.getFontRenderContext();
 LineMetrics metrics = font.getLineMetrics("Monkey", frc);
 ...
}

The Font class also has a getStringBounds() method that returns the bounding
box of a piece of text:

public void paint(Graphics g) {
 Graphics2D g2 = (Graphics2D)g;
 ...
 FontRenderContext frc = g2.getFontRenderContext();
 float messageWidth =
 (float)font.getStringBounds("Monkey", frc).getWidth();
 ...
}

The following application, FontShow , displays a word and draws reference lines
showing certain characteristics of its font, as shown in Figure 19-3 . Clicking in the
application window toggles the point size between a small and a large value.

Figure 19-3. The FontShow application

http://lib.ommolketab.ir
http://lib.ommolketab.ir

//file: FontShow.java
import java.awt.*;
import java.awt.event.*;
import java.awt.font.*;
import javax.swing.*;

public class FontShow extends JComponent
{
 private static final int PAD = 25; // frilly line padding
 private boolean bigFont = true;
 private String message;

 public FontShow(String message) {
 this.message = message;
 addMouseListener(new MouseAdapter() {
 public void mouseClicked(MouseEvent e) {
 bigFont = !bigFont;
 repaint();
 }
 });
 }

 public void paint(Graphics g)
 {
 Graphics2D g2 = (Graphics2D)g;

 g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 int size = bigFont ? 96 : 64;
 Font font = new Font("Dialog", Font.PLAIN, size);
 g2.setFont(font);
 int width = getSize().width;
 int height = getSize().height;

 FontRenderContext frc = g2.getFontRenderContext();
 LineMetrics metrics = font.getLineMetrics(message, frc);
 float messageWidth =
 (float)font.getStringBounds(message, frc).getWidth();

 // center text
 float ascent = metrics.getAscent();
 float descent = metrics.getDescent();
 float x = (width - messageWidth) / 2;
 float y = (height + metrics.getHeight()) / 2 - descent;

 g2.setPaint(getBackground());
 g2.fillRect(0, 0, width, height);

 g2.setPaint(getForeground());
 g2.drawString(message, x, y);

 g2.setPaint(Color.white); // Base lines
 drawLine(g2, x - PAD, y, x + messageWidth + PAD, y);
 drawLine(g2, x, y + PAD, x, y - ascent - PAD);
 g2.setPaint(Color.green); // Ascent line
 drawLine(g2, x - PAD, y - ascent,
 x + messageWidth + PAD, y - ascent);
 g2.setPaint(Color.red); // Descent line
 drawLine(g2, x - PAD, y + descent,
 x + messageWidth + PAD, y + descent);
 }

 private void drawLine(Graphics2D g2,
 double x0, double y0, double x1, double y1) {
 Shape line = new java.awt.geom.Line2D.Double(x0, y0, x1, y1);
 g2.draw(line);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }

 public static void main(String args[]) {
 String message = "Lemming";
 if (args.length > 0) message = args[0];

 JFrame frame = new JFrame("FontShow");
 frame.setSize(420, 300);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.getContentPane().add(new FontShow(message));
 frame.setVisible(true);
 }
}

You can specify the text to be displayed as a command-line argument:

% java FontShow "When in the course of human events ..."

FontShow may look a bit complicated, but there's really not much to it. The bulk of the
code is in paint() , which sets the font, draws the text, and adds a few lines to illustrate
some of the font's characteristics (metrics). For fun, we also catch mouse clicks (using an
event handler defined in the constructor) and alternate the font size by setting the
bigFont toggle variable and repainting.

By default, text is rendered above and to the right of the coordinates specified in the
drawString() method. Think of that starting point as the origin of a coordinate
system; the axes are the baselines of the font. FontShow draws these lines in white. The
greatest height the characters stretch above the baseline is called the ascent and is shown
by a green line. Some fonts also have parts of letters that fall below the baseline. The
farthest distance any character reaches below the baseline is called the descent .
FontShow illustrates this with a red line.

We ask for the ascent and descent of our font with the LineMetrics class's
getAscent() and getDescent() methods. We also ask for the width of our string
(when rendered in this font) with Font 's getStringBounds() method. This
information is used to center the word in the display area. To center the word vertically, we
use the height and adjust with the descent to calculate the baseline location. Table 19-2
provides a short list of methods that return useful font metrics.

Table 19-2. LineMetrics methods

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Method Description

getAscent() Height above baseline

getDescent() Depth below baseline

getLeading() Standard vertical spacing between lines

getHeight() Total line height (ascent + descent + leading)

Leading space is the padding between lines of text. The getHeight() method reports
the total height of a line of text, including the leading space.

19.7 Displaying Images

So far, we've worked with methods for drawing simple shapes and displaying text. For
more complex graphics, we'll be working with images. The 2D API has a powerful set of
tools for generating and displaying image data. These tools address the problems of
working in a distributed and multithreaded application environment. We'll start with the
basics of the java.awt.Image class and see how to get an image into an application
and draw it on a display. In general we can let Java handle the details of this for us. In a
typical Swing application, the simplest way to get an image onto the screen is to use an
ImageIcon with a JLabel . But here we'll be talking about working with image data at
a lower level, for painting. In the next chapter, we'll go further to discuss how to manage
image loading manually as well as how to create raw image data and feed it efficiently to
the rest of an application.

19.7.1 The Image Class

The java.awt.Image class represents a view of an image. The view is created from an
image source that produces pixel data. Images can be from a static source, including GIF,
JPEG, or PNG data files, or a dynamic one, such as a video stream or a graphics engine.
The Image class in Java 2 also handlesGIF89a animations, so that you can work with
simple animations as easily as static images.

Images are created by the getImage() and createImage() methods of the
java.awt.Toolkit class. There are two forms of each method, which accept a URL
or plain filename, respectively. When packaging images with your application, you should
use the Class getResource() method (discussed in Chapter 11) to construct a URL
that will references a file from the application classpath. getResource() allows you to
bundle images along with your application, inside JAR files or anywhere else in the
classpath. The following code fragment shows some examples of loading images with the
getImage() method:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Toolkit toolkit = Toolkit.getDefaultToolkit();

// Application resource URL
URL daffyURL = getClass().getResource("/cartoons/images/daffy.gif");
Image daffyDuckImage = toolkit.getImage(daffyURL);

// Absolute URL
URL monaURL = new URL("http://myserver/images/mona_lisa.png");
Image monaImage = toolkit.getImage(monaURL);

// Local file
Image elvisImage = toolkit.getImage("c:/elvis/lateryears/fatelvis1.jpg");

The createImage() method looks just like getImage() ; the difference is that
getImage() "interns" images and shares them when it receives multiple requests for the
same data. The createImage() method does not do this (it creates a new Image object
every time) and relies on you to cache and share the image. getImage() is convenient
in an application that uses a limited number of images for the life of the application, but it
may not ever release the image data. You should use createImage() and cache the
Image objects yourself when it's an issue.

Once we have an Image object, we can draw it into a graphics context with the
drawImage() method of the Graphics2D class. The simplest form of the
drawImage() method takes four parameters: the Image object, the x , y coordinates at
which to draw it, and a reference to a special image observer object. We'll show an
example involving drawImage() soon, but first let's find out about image observers.

19.7.2 Image Observers

Images are processed asynchronously, which means that Java performs image operations
such as loading and scaling on its own time (allowing the user code to continue). In a
typical client application this might not be important; images may be small, for things like
buttons, and are probably bundled with the application for almost instant retrieval.
However Java was designed to work with image data over the Web as well as locally, and
you will see this expressed in the APIs for working with image data.

For example, the getImage() method always returns immediately, even if the image
data has to be retrieved over the network from Mars and isn't available yet. In fact, if it's a
new image, Java won't even begin to fetch it until we try to try to display or manipulate it.
The advantage of this technique is that Java can do the work of a powerful, multithreaded

http://lib.ommolketab.ir
http://lib.ommolketab.ir

image-processing environment for us. However, it also introduces several problems. If Java
is loading an image for us, how do we know when it's completely loaded? What if we want
to work with the image as it arrives? What if we need to know properties of the image (like
its dimensions) before we can start working with it? What if there's an error in loading the
image?

These problems are handled by image observers - designated objects that implement the
ImageObserver interface. All operations that draw or examine Image objects return
immediately, but they take an image observer object as a parameter. The
ImageObserver monitors the image's status and can make that information available to
the rest of the application. When image data is loaded from its source by the graphics
system, your image observer is notified of its progress, including when new pixels are
available, when a complete frame of the image is ready, and if there is an error during
loading. The image observer also receives attribute information about the image, such as its
dimensions and properties, as soon as they are known.

The drawImage() method, like other image operations, takes a reference to an
ImageObserver object as a parameter. drawImage() returns a boolean value
specifying whether or not the image was painted in its entirety. If the image data has not
yet been loaded or is only partially available, drawImage() paints whatever fraction of
the image it can and returns. In the background, the graphics system starts (or continues)
loading the image data. The image observer object is registered as interested in information
about the image. It's then called repeatedly as more pixel information is available and again
when the entire image is complete. The image observer can do whatever it wants with this
information. Most often it calls repaint() to prompt the applet to draw the image again
with the updated data; a call to repaint() initiates a call to paint() to be scheduled.
In this way, an application or applet can redraw the image as it arrives for a progressive
loading effect. Alternatively, it could wait until the entire image is loaded before displaying
it.

Image observers are covered in Chapter 20 . For now, let's avoid the issue by using a
prefabricated image observer. The Component class implements the ImageObserver
interface and provides some simple repainting behavior, which means every component
can serve as its own default image observer. We simply pass a reference to our applet (or
other component) as the image observer parameter of a drawImage() call:

public void paint(Graphics g) {
 g.drawImage(monaImage, x, y, this);
 ...

Our component serves as the image observer and calls repaint() for us to redraw the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

image as necessary. If the image arrives slowly, our component is notified repeatedly as
new chunks become available. As a result, the image appears gradually, as it's loaded. The
awt.image.incrementaldraw and awt.image.redrawrate system
properties control this behavior. redrawrate limits how often repaint() is called;
the default value is every 100 milliseconds. incrementaldraw 's default value, true
, enables this behavior. Setting it to false delays drawing until the entire image has
arrived.

19.7.3 Scaling and Size

Another version of drawImage() renders a scaled version of the image:

g.drawImage(monaImage, x, y, x2, y2, this);

This draws the entire image within the rectangle formed by the points x , y and x2 , y2 ,
scaling as necessary. drawImage() behaves the same as before; the image is processed
by the component as it arrives, and the image observer is notified as more pixel data and
the completed image are available. Several other overloaded versions of drawImage()
provide more complex options: you can scale, crop, and perform some simple
transpositions.

Normally, however, for scaling you want to make a scaled copy of an image (as opposed to
simply painting one at draw-time), and you can use getScaledInstance() for this
purpose. Here's how:

Image scaledDaffy =
 daffyImage.getScaledInstance(100,200,SCALE_AREA_AVERAGING);

This method scales the original image to the given size; in this case, 100 by 200 pixels. It
returns a new Image that you can draw like any other image. SCALE_
AREA_AVERAGING is a constant that tells getScaledImage() what scaling
algorithm to use. The algorithm used here tries to do a decent job of scaling at the expense
of time. Some alternatives that take less time are SCALE_REPLICATE , which scales by
replicating scan lines and columns (which is fast but probably not pretty). You can also
specify either SCALE_FAST or SCALE_SMOOTH and let the implementation choose an
appropriate algorithm that optimizes for time or quality. If you don't have specific
requirements, you should use SCALE_DEFAULT , which, ideally, would be set by a
preference in the user's environment.

Scaling an image before calling drawImage() can improve performance dramatically
because the image loading and scaling takes place only once. Otherwise, repeated calls to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

drawImage() with scaling requirements cause the image to be scaled every time,
wasting processing time.

The Image getHeight() and getWidth() methods retrieve the dimensions of an
image. Since this information may not be available until the image data is completely
loaded, both methods also take an ImageObserver object as a parameter. If the
dimensions aren't yet available, they return values of -1 and notify the observer when the
actual value is known. We'll see how to deal with these and other problems a bit later. For
now, we'll continue to use our Component as the image observer and move on to some
general painting techniques.

19.8 Drawing Techniques

Now that we've learned about the basic tools, let's put a few of them together. In this
section, we'll look at some techniques for doing fast and flicker-free drawing and painting.
If you're interested in animation, this is for you. Drawing operations take time, and time
spent drawing leads to delays and imperfect results. Our goals are to minimize the amount
of drawing work we do and, as much as possible, to do that work away from the eyes of the
user. To do this, we use two techniques: clipping and double buffering. Fortunately, Swing
now handles double buffering by default. You won't have to implement this logic on your
own, but it's important to understand it.

Our first example, DragImage illustrates some of the issues in updating a display. Like
many animations, it has two parts: a constant background and a changing object in the
foreground. In this case, the background is a checkerboard pattern, and the object is a
small, scaled image we can drag around on top of it, as shown in Figure 19-4 .

Figure 19-4. The DragImage application

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class DragImage extends JComponent
 implements MouseMotionListener
{
 static int imageWidth=60, imageHeight=60;
 int grid = 10;
 int imageX, imageY;
 Image image;

 public DragImage(Image i) {
 image = i;
 addMouseMotionListener(this);
 }

 public void mouseDragged(MouseEvent e) {
 imageX = e.getX();
 imageY = e.getY();
 repaint();
 }
 public void mouseMoved(MouseEvent e) {}

 public void paint(Graphics g) {
 Graphics2D g2 = (Graphics2D)g;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 int w = getSize().width / grid;
 int h = getSize().height / grid;
 boolean black = false;
 for (int y = 0; y <= grid; y++)
 for (int x = 0; x <= grid; x++) {
 g2.setPaint(black ? Color.black : Color.white);
 black = !black;
 g2.fillRect(x * w, y * h, w, h);
 }
 g2.drawImage(image, imageX, imageY, this);
 }

 public static void main(String[] args) {
 String imageFile = "L1-Light.jpg";
 if (args.length > 0)
 imageFile = args[0];

 // Turn off double buffering
 //RepaintManager.currentManager(null).setDoubleBufferingEnabled(false);

 Image image = Toolkit.getDefaultToolkit().getImage(
 DragImage.class.getResource(imageFile));
 image = image.getScaledInstance(
 imageWidth,imageHeight,Image.SCALE_DEFAULT);
 JFrame frame = new JFrame("DragImage");
 frame.getContentPane().add(new DragImage(image));
 frame.setSize(300, 300);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }
}

Run the application by specifying an image file as a command-line argument. Try dragging
the image.

DragImage is a custom component that overrides the JComponent paint()
method to do its drawing. In the main() method we load the image and prescale it to
improve performance. We then create the DragImage component and place it in the
content pane. As the mouse is dragged, DragImage keeps track of its position in two
instance variables, imageX and imageY . On each call to mouseDragged() , the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

coordinates are updated, and repaint() is called to ask that the display be updated.
When paint() is called, it looks at some parameters, draws the checkerboard pattern to
fill the applet's area and finally paints the small version of the image at the latest
coordinates.

This example brings up two important differences between using a JComponent and a
plain AWT Component . First, the default JComponent update() method simply
calls our paint() method. However, prior to Java 1.4, the AWT Component class's
default update() method first cleared the screen area using a clearRect() call
before calling paint . Recall that the difference between paint() and update() is
that paint() draws the entire area; update() assumes the screen region is intact from
the last draw. In AWT, update() was overly conservative; in Swing it's more optimistic.
This is important to know if you are working with an older AWT-based application. In that
case, you can simply override update() to call paint() . The next difference is that
Swing by default performs double buffering .

19.8.1 Double Buffering

Double buffering means that instead of drawing directly on the screen, Swing first
performs drawing operations in an offscreen buffer and then copies the completed work to
the display in a single painting operation, as shown in Figure 19-5 . It takes the same
amount of time to draw a frame, but double buffering instantaneously updates our display
when it's ready, so the user does not perceive any flickering or progressively rendered
output.

Figure 19-5. Double buffering

We'll show you how you could implement this technique yourself when we use an
offscreen buffer later in this chapter. However Swing does this kind of double buffeing for
you whenever you use a Swing component in a Swing container. AWT components do not
have automatic double-buffering capability.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

It is interesting and instructive to take our example and turn off double buffering to see the
effect. Each Swing JComponent has a method called setDoubleBuffered() that
can be set to false to disable the technique. Or you can disable it for all components
using a call to the Swing RepaintManager , as we've indicated in comments in the
example. Try uncommenting that line of DragImage and observe the difference in
appearance.

The difference is most dramatic when you are using a slow system or doing complex
drawing operations. Double buffering eliminates all of the flickering. However on a slow
system, it can decrease performance noticeably, especially on older Unix or X-Windows
systems. In some cases it may be beneficial to provide an option to disable double
buffering in that environment.

Our example is pretty fast, but we're still doing some wasted drawing. Most of the
background stays the same each time it's painted. You might think of trying to make
paint() smarter, so that it wouldn't redraw these areas but remember that paint()
has to be able to draw the entire scene because it might be called in situations when the
display isn't intact. The solution is to draw only part of the picture whenever the mouse
moves. Next we'll talk about clipping.

19.8.2 Limiting Drawing with Clipping

Whenever the mouse is dragged, DragImage responds by updating its coordinates and
calling repaint() . But repaint() by default causes the entire component to be
redrawn. Most of this drawing is unnecessary. It turns out that there's another version of
repaint() that lets you specify a rectangular area that should be drawn-in essence, a
clipping region.

Why does it help to restrict the drawing area? Well, foremost, drawing operations that fall
outside the clipping region are not displayed. If a drawing operation overlaps the clipping
region, we see only the part that's inside. A second effect is that, in a good implementation,
the graphics context can recognize drawing operations that fall completely outside the
clipping region and ignore them altogether. Eliminating unnecessary operations can save
time if we're doing something complex, such as filling a bunch of polygons. This doesn't
save the time our application spends calling the drawing methods, but the overhead of
calling these kinds of drawing methods is usually negligible compared to the time it takes
to execute them. (If we were generating an image pixel by pixel, this would not be the case,
as the calculations would be the major time sink, not the drawing.)

So we can save some time in our application by redrawing only the affected portion of the
display. We can pick the smallest rectangular area that includes both the old image position

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and the new image position, as shown in Figure 19-6 . This is the only portion of the
display that really needs to change; everything else stays the same.

Figure 19-6. Determining the clipping region

A smarter algorithm could save even more time by redrawing only those regions that have
changed. However, the simple clipping strategy we've implemented here can be applied to
many kinds of drawing and gives good performance, particularly if the area being changed
is small.

One important thing to note is that, in addition to looking at the new position, our updating
operation now has to remember the last position at which the image was drawn. Let's fix
our application so it will use a specified clipping region. To keep this short and emphasize
the changes, we'll take some liberties with design and make our next example a subclass of
DragImage . Let's call it ClippedDragImage .

import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class ClippedDragImage extends DragImage {
 int oldX, oldY;

 public ClippedDragImage(Image i) { super(i); }

 public void mouseDragged(MouseEvent e) {
 imageX = e.getX();
 imageY = e.getY();
 Rectangle r = getAffectedArea(
 oldX, oldY, imageX, imageY, imageWidth, imageHeight);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 repaint(r); // repaint just the affected part of the component
 oldX = imageX;
 oldY = imageY;
 }

 private Rectangle getAffectedArea(
 int oldx, int oldy, int newx, int newy, int width, int height)
 {
 int x = Math.min(oldx, newx);
 int y = Math.min(oldy, newy);
 int w = (Math.max(oldx, newx) + width) - x;
 int h = (Math.max(oldy, newy) + height) - y;
 return new Rectangle(x, y, w, h);
 }

 public static void main(String[] args) {
 String imageFile = "L1-Light.jpg";
 if (args.length > 0)
 imageFile = args[0];

 // Turn off double buffering
 //RepaintManager.currentManager(null).setDoubleBufferingEnabled(false);

 Image image = Toolkit.getDefaultToolkit().getImage(
 ClippedDragImage.class.getResource(imageFile));
 image = image.getScaledInstance(
 imageWidth,imageHeight,Image.SCALE_DEFAULT);
 JFrame frame = new JFrame("ClippedDragImage");
 frame.getContentPane().add(new ClippedDragImage(image));
 frame.setSize(300, 300);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }
}

You may or may not find that ClippedDragImage is significantly faster. Modern
desktop computers are so fast that this kind of operation is child's play for them. However
the fundamental technique is important and applicable to more sophisticated applications.

So what have we changed? First, we've overridden mouseDragged() so that instead of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

setting the current coordinates of the image, it figures out the area that has changed. A new,
private method helps it do this. getAffectedArea() takes as arguments the new
and old coordinates and the width and height of the image. It determines the bounding
rectangle as shown in Figure 19-6 , then calls repaint() to draw only the affected area
of the screen. mouseDragged() also saves the current position by setting the oldX
and oldY variables.

Try turning off double buffering on this example and compare it to the unbuffered previous
example to see how much less work is being done.

19.8.3 Offscreen Drawing

In addition to serving as buffers for double buffering, offscreen images are useful for
saving complex, hard-to-produce, background information. We'll look at a simple example,
the doodle pad. DoodlePad is a simple drawing tool that lets us scribble by dragging the
mouse, as shown in Figure 19-7 . It draws into an offscreen image; its paint() method
simply copies the image to the display area.

Figure 19-7. The DoodlePad application

//file: DoodlePad.java
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class DoodlePad
{
 public static void main(String[] args)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 {
 JFrame frame = new JFrame("DoodlePad");
 Container content = frame.getContentPane();
 content.setLayout(new BorderLayout());
 final DrawPad drawPad = new DrawPad();
 content.add(drawPad, BorderLayout.CENTER);
 JPanel panel = new JPanel();
 JButton clearButton = new JButton("Clear");
 clearButton.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 drawPad.clear();
 }
 });
 panel.add(clearButton);
 content.add(panel, BorderLayout.SOUTH);
 frame.setSize(280, 300);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }

} // end of class DoodlePad

class DrawPad extends JComponent
{
 Image image;
 Graphics2D graphics2D;
 int currentX, currentY, oldX, oldY;

 public DrawPad() {
 setDoubleBuffered(false);
 addMouseListener(new MouseAdapter() {
 public void mousePressed(MouseEvent e) {
 oldX = e.getX();
 oldY = e.getY();
 }
 });
 addMouseMotionListener(new MouseMotionAdapter() {
 public void mouseDragged(MouseEvent e) {
 currentX = e.getX();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 currentY = e.getY();
 if (graphics2D != null)
 graphics2D.drawLine(oldX, oldY, currentX, currentY);
 repaint();
 oldX = currentX;
 oldY = currentY;
 }
 });
 }

 public void paintComponent(Graphics g) {
 if (image == null) {
 image = createImage(getSize().width, getSize().height);
 graphics2D = (Graphics2D)image.getGraphics();
 graphics2D.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);
 clear();
 }
 g.drawImage(image, 0, 0, null);
 }

 public void clear() {
 graphics2D.setPaint(Color.white);
 graphics2D.fillRect(0, 0, getSize().width, getSize().height);
 graphics2D.setPaint(Color.black);
 repaint();
 }
}

Give it a try. Draw a nice moose or a sunset. We just drew a lovely cartoon of Bill Gates. If
you make a mistake, hit the Clear button and start over.

The parts should be familiar by now. We have made a type of JComponent called
DrawPad . The new DrawPad component uses inner classes to supply handlers for the
MouseListener and MouseMotionListener interfaces. Mouse dragging is
handled by drawing lines into an offscreen image and calling repaint() to update the
display. DrawPad 's paint() method simply does a drawImage() to copy the
offscreen drawing area to the display. In this way, DrawPad saves our sketch information.

What is unusual about DrawPad is that it does some drawing outside of paint() . In

http://lib.ommolketab.ir
http://lib.ommolketab.ir

this example, we want to let the user scribble with the mouse, so we should respond to
every mouse movement. Therefore, we do our work, drawing to the offscreen buffer in
mouseDragged() itself. As a rule, we should be careful about doing heavy work in
event-handling methods because we don't want to interfere with other tasks the windowing
system's painting thread is performing. In this case, our line-drawing option should not be a
burden, and our primary concern is getting as close a coupling as possible between the
mouse movement events and the sketch on the screen.

In addition to drawing a line as the user drags the mouse, the mouseDragged() handler
maintains a set of old coordinates to be used as a starting point for the next line segment.
The mousePressed() handler resets the old coordinates to the current mouse position
whenever the user moves the mouse. Finally, DrawPad provides a clear() method
that clears the offscreen buffer and calls repaint() to update the display. The
DoodlePad application ties the clear() method to an appropriately labeled button
through another anonymous inner class.

What if we wanted to do something with the image after the user has finished scribbling on
it? As we'll see in the next chapter, we could get the pixel data for the image and work with
that. It wouldn't be hard to create a save facility that stores the pixel data and reproduces it
later. Think about how you might go about creating a networked "bathroom wall," where
people could scribble on your web pages.

19.9 Printing

Earlier in this chapter, we hinted at the possibility that you could draw the same stuff on the
screen and the printer. It's true; all you really need to do is get a Graphics2D that
represents a printer rather than an area of the screen. Java 2's Printing API provides the
necessary plumbing. There isn't room here to describe the whole Printing API, but we will
provide you with a short example that will let you get your feet wet (and your paper
blackened).

The printing classes are tucked away in the java.awt.print package. You can print
anything that implements the Printable interface. This interface has only one
method-you guessed it, print() . This method, like the paint() methods we've
already worked with, accepts a Graphics object that represents the drawing surface of
the printer's page. It also accepts a PageFormat object that encapsulates information
about the paper on which you're printing. Finally, print() is passed the number of the
page that is being rendered.

Your print() implementation should either render the requested page or state that it

http://lib.ommolketab.ir
http://lib.ommolketab.ir

doesn't exist. You can do this by returning special values from print() , either
Printable.PAGE_EXISTS or Printable.NO_SUCH_PAGE .

You can control a print job, including showing print and page setup dialogs, using the
PrinterJob class. The following class enables you to get something on paper:

//file: UnbelievablySimplePrint.java
import java.awt.*;
import java.awt.print.*;

public class UnbelievablySimplePrint implements Printable
{
 private static Font sFont = new Font("Serif", Font.PLAIN , 64);

 public int print(Graphics g, PageFormat Pf, int pageIndex)
 throws PrinterException
 {
 if (pageIndex > 0) return NO_SUCH_PAGE;
 Graphics2D g2 = (Graphics2D)g;
 g2.setFont(sFont);
 g2.setPaint(Color.black);
 g2.drawString("Save a tree!", 96, 144);
 return PAGE_EXISTS;
 }

 public static void main(String[] args) {
 PrinterJob job = PrinterJob.getPrinterJob();
 job.setPrintable(new UnbelievablySimplePrint());
 if (job.printDialog()) {
 try {
 job.print();
 }
 catch (PrinterException e) {}
 }
 System.exit(0);
 }
}

There's not much to this example. We've created an implementation of Printable ,
called UnbelievablySimplePrint . It has a very simple print() method that

http://lib.ommolketab.ir
http://lib.ommolketab.ir

draws some text.

The rest of the work, in the main() method, has to do with setting up the print job. First,
we create a new PrinterJob and tell it what we want to print:

PrinterJob job = PrinterJob.getPrinterJob();
job.setPrintable(new UnbelievablySimplePrint());

Then we use the printDialog() method to show the standard print dialog. If the user
presses the OK button, printDialog() returns true , and main() goes ahead with
the printing.

Notice, in the print() method, how we perform the familiar cast from Graphics to
Graphics2D . The full power of the 2D API is available for printing. In a real
application, you'd probably have some subclass of Component that was also a
Printable . The print() method could simply call the component's paint()
method to create a component that performs the same rendering to both the screen and the
printer.

CONTENTS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

Chapter 20. Working with Images and Other
Media

 20.1 ImageObserver

 20.2 MediaTracker
 20.3 Producing Image Data

 20.4 Filtering Image Data

 20.5 Simple Audio

 20.6 Java Media Framework

Up to this point, we've confined ourselves to working with the high-level drawing
commands of the Graphics2D class, using images in a hands-off mode. In this section,
we'll clear up some of the mystery surrounding images and see how they are created and
used. The classes in the java.awt.image package handle images and their internals;
Figure 20-1 shows the important classes in this package.

Figure 20-1. The java.awt.image package

http://lib.ommolketab.ir
http://lib.ommolketab.ir

First, we'll return to our discussion of image loading and see how we can get more control
over image data using an ImageObserver to watch as it's processed asynchronously by
GUI components. Then we'll open the hood and have a look at the inside of a
BufferedImage . If you're interested in creating sophisticated graphics, such as
rendered images or video streams, this will teach you about the foundations of image
construction in Java.

One note before we move on: In early versions of Java (prior to 1.2), creating and
modifying images was handled through the use of ImageProducer and
ImageConsumer interfaces, which operated on low-level, stream-oriented views of the
image data. We won't be covering these topics in this chapter; instead, we'll stick to the
new APIs, which are more capable and easier to use in most cases.

20.1 ImageObserver

One of the challenges in building software for networked applications is that data is not
always instantly available. Since some of Java's roots are in Internet applications such as
web browsers, its image-handling APIs were designed specifically to accommodate the fact
that images might take some time to load over a slow network, providing for detailed

http://lib.ommolketab.ir
http://lib.ommolketab.ir

information about image-loading progress. While many typical client applications do not
require handling of image data in this way, it's still useful to understand this mechanism if
for no other reason than it appears in the most basic image-related APIs. In practice, you'll
normally use one of the techniques presented in the next section to handle image loading
for you.

In the previous chapter we mentioned that all operations on image data (e.g., loading,
drawing, scaling) allow you to specify an "image observer" object as a participant. An
image observer implements the ImageObserver interface, allowing it to receive
notification as information about the image becomes available. The image observer is
essentially a callback that is notified progressively as the image is loaded. For a static
image, such as a GIF or JPEG data file, the observer is notified as chunks of image data
arrive and also when the entire image is complete. For a video source or animation (e.g.,
GIF89), the image observer is notified at the end of each frame as the continuous stream of
pixel data is generated.

The image observer can do whatever it wants with this information. For example, in the
last chapter we used the image observer built into the base Component class. Although
you probably didn't see it happen in our examples, the Component image observer
invoked repaint() for us each time a new section of the image became available so
that the picture, if it had taken a long time to load, would have displayed progressively. A
different kind of image observer might have waited for the entire image before telling the
application to display it; yet another use for an observer might be to update a loading meter
showing how far the image loading had progressed.

To be an image observer, you have to implement the single method, imageUpdate() ,
defined by the java.awt.image.ImageObserver interface:

public boolean imageUpdate(Image image, int flags, int x, int y,
 int width, int height)

imageUpdate() is called by the graphics system, as needed, to pass the observer
information about the construction of its view of the image. The image parameter holds a
reference to the Image object in question. flags is an integer whose bits specify what
information about the image is now available. The flag values are defined as static
variables in the ImageObserver interface, as illustrated in this example:

//file: ObserveImageLoad.java
import java.awt.*;
import java.awt.image.*;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public class ObserveImageLoad {

 public static void main(String [] args)
 {
 ImageObserver myObserver = new ImageObserver() {
 public boolean imageUpdate(
 Image image, int flags, int x, int y, int width, int height)
 {
 if ((flags & HEIGHT) !=0)
 System.out.println("Image height = " + height);
 if ((flags & WIDTH) !=0)
 System.out.println("Image width = " + width);
 if ((flags & FRAMEBITS) != 0)
 System.out.println("Another frame finished.");
 if ((flags & SOMEBITS) != 0)
 System.out.println("Image section :"
 + new Rectangle(x, y, width, height));
 if ((flags & ALLBITS) != 0)
 System.out.println("Image finished!");
 if ((flags & ABORT) != 0)
 System.out.println("Image load aborted...");
 return true;
 }
 };

 Toolkit toolkit = Toolkit.getDefaultToolkit();
 Image img = toolkit.getImage(args[0]);
 toolkit.prepareImage(img, -1, -1, myObserver);
 }
}

Supply an image as the command-line argument and observe the output. You'll see a
number of incremental messages about loading the image.

The flags integer determines which of the other parameters, x , y , width , and
height , hold valid data and what that data means. To test whether a particular flag in the
flags integer is set, we have to resort to some binary shenanigans (using the & (AND)
operator). The width and height parameters play a dual role. If SOMEBITS is set,
they represent the size of the chunk of the image that has just been delivered. If HEIGHT
or WIDTH is set, however, they represent the overall image dimensions. Finally,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

imageUpdate() returns a boolean value indicating whether or not it's interested in
future updates.

In this example, after requesting the Image object with getImage() , we kick-start the
loading process with the Toolkit's prepareImage() method, which takes our image
observer as an argument. Using an Image API method such as drawImage() ,
scaleImage() , or asking for image dimensions with getWidth() or
getHeight() will suffice to start the operation. Remember that although the
getImage() method created the image object, it doesn't begin loading the data until one
of the image operations requires it.

The example shows the lowest-level general mechanism for starting and monitoring the
process of loading image data. You should be able to see how we could implement all sorts
of sophisticated image loading and tracking schemes with this. The two most important
strategies (to draw an image progressively, as it's constructed, or to wait until it's complete
and draw it in its entirety) are handled for us. We have already seen that the Component
class implements the first scheme. Another class, java.awt.MediaTracker , is a
general utility that tracks the loading of a number of images or other media types for us.
We'll look at it next.

20.2 MediaTracker

java.awt.MediaTracker is a utility class simplifies life if we have to wait for one
or more images to be loaded completely before they're displayed. A MediaTracker
monitors the loading of an image or a group of images and lets us check on them
periodically or wait until they are finished. MediaTracker implements the
ImageObserver interface that we just discussed, allowing it to receive image updates.

The following code snippet illustrates using a MediaTracker to wait while an image is
prepared:

//file: StatusImage.java
import java.awt.*;
import javax.swing.*;

public class StatusImage extends JComponent
{
 boolean loaded = false;
 String message = "Loading...";
 Image image;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public StatusImage(Image image) { this.image = image; }

 public void paint(Graphics g) {
 if (loaded)
 g.drawImage(image, 0, 0, this);
 else {
 g.drawRect(0, 0, getSize().width - 1, getSize().height - 1);
 g.drawString(message, 20, 20);
 }
 }
 public void loaded() {
 loaded = true;
 repaint();
 }
 public void setMessage(String msg) {
 message = msg;
 repaint();
 }

 public static void main(String [] args) {
 JFrame frame = new JFrame("TrackImage");
 Image image = Toolkit.getDefaultToolkit().getImage(args[0]);
 StatusImage statusImage = new StatusImage(image);
 frame.getContentPane().add(statusImage);
 frame.setSize(300,300);
 frame.setVisible(true);

 MediaTracker tracker = new MediaTracker(statusImage);
 int MAIN_IMAGE = 0;
 tracker.addImage(image, MAIN_IMAGE);
 try {
 tracker.waitForID(MAIN_IMAGE); }
 catch (InterruptedException e) {}
 if (tracker.isErrorID(MAIN_IMAGE))
 statusImage.setMessage("Error");
 else
 statusImage.loaded();
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

}

In this example we have created a trivial component called StatusImage that accepts
an image and draws a text status message until it is told that the image is loaded. It then
displays the image. The only interesting part here is that we use a MediaTracker to
load the image data for us, simplifying our logic.

First, we create a MediaTracker to manage the image. The MediaTracker
constructor takes a Component as an argument; this is supposed to be the component
onto which the image is later drawn. This argument is somewhat of a hold-over from
earlier Java days with AWT. If you don't have the component reference handy, you can
simply substitute a generic component reference like so:

Component comp = new Component();

After creating the MediaTracker , we assign it images to manage. Each image is
associated with an integer identifier we can use later for checking on its status or to wait for
its completion. Multiple images can be associated with the same identifier, letting us
manage them as a group. The value of the identifier is also used to prioritize loading when
waiting on multiple sets of images; lower IDs have higher priority. In this case, we want to
manage only a single image, so we created one identifier called MAIN_IMAGE and passed
it as the ID for our image in the call to addImage() .

Next, we call the MediaTracker waitforID() routine, which blocks on the image,
waiting for it to finish loading. If successful, we tell our example component to use the
image and repaint. Another MediaTracker method, waitForAll() , waits for all
images to complete, not just a single ID. It is possible to be interrupted here by an
InterruptedException . We should also test for errors during image preparation
with isErrorID() . In our example, we change the status message if we find one.

The MediaTracker checkID() and checkAll() methods may be used to poll the
status of images loading periodically, returning true or false indicating whether
loading is finished. The checkAll() method does this for the union of all images being
loaded. Additionally, the statusID() and statusAll() methods return a constant
indicating the status or final condition of an image load. The value is one of the
MediaTracker constant values: LOADING , ABORTED , ERROR , or COMPLETE .
For statusAll() , the value is the bitwise OR value of all of the various statuses.

This may seem like a lot of work to go through just to put up a status message while
loading a single image. MediaTracker is more valuable when you are working with
many raw images that have to be available before you can begin parts of an application. It
saves implementing a custom ImageObserver for every application. For general Swing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

application work, you can use yet another simplification by employing the ImageIcon
component to use a MediaTracker ; this is covered next.

20.2.1 ImageIcon

In Chapter 16 , we discussed Swing components that can work with images using the
Icon interface. In particular, the ImageIcon class accepts an image filename or URL
and can render it into a component. Internally ImageIcon uses a MediaTracker to
fully load the image in the call to its constructor. It can also provide the Image reference
back. So, a shortcut to what we did in the last few sections-getting an image loaded fully
before using it-would be:

ImageIcon icon = new ImgeIcon("myimage.jpg");
Image image = icon.getImage();

This quirky but useful approach saves a few lines of typing but uses a component in an odd
way and is not very clear. ImageIcon also gives you direct access to the
MediaTracker it is using through the getMediaTracker() method or tells you
the MediaTracker load status through the getImageLoadStatus() method. This
returns one of the MediaTracker constants: ABORTED , ERROR , or COMPLETE .

20.3 Producing Image Data

There are two approaches to generating image data. The easiest is to treat the image as a
drawing surface and use the methods of Graphics2D to render things into the image.
The second way is to twiddle the bits that represent the pixels of the image data yourself.
This is harder, but it can be useful in specific cases such as loading and saving images in
specific formats or mathematically analyzing or creating image data.

20.3.1 Drawing Animations

Let's begin with the simpler approach, rendering on an image through drawing. We'll throw
in a twist to make things interesting: we'll build an animation. Each frame will be rendered
as we go along. This is very similar to the double buffering we examined in the last
chapter, but this time we'll use a timer, instead of mouse events, as the signal to generate
new frames.

Swing performs double buffering automatically, so we don't even have to worry about the
animation flickering. Although it looks like we're drawing directly to the screen, we're
really drawing into an image that Swing uses for double buffering. All we need to do is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

draw the right thing at the right time.

Let's look at an example, Hypnosis , that illustrates the technique. This example shows a
constantly shifting shape that bounces around the inside of a component. When screen
savers first came of age, this kind of thing was pretty hot stuff. Hypnosis is shown in
Figure 20-2 .

Figure 20-2. A simple animation

Here is its source code:

//file: Hypnosis.java
import java.awt.*;
import java.awt.event.*;
import java.awt.geom.GeneralPath;
import javax.swing.*;

public class Hypnosis extends JComponent implements Runnable {
 private int[] coordinates;
 private int[] deltas;
 private Paint paint;

 public Hypnosis(int numberOfSegments) {
 int numberOfCoordinates = numberOfSegments * 4 + 2;
 coordinates = new int[numberOfCoordinates];
 deltas = new int[numberOfCoordinates];
 for (int i = 0 ; i < numberOfCoordinates; i++) {
 coordinates[i] = (int)(Math.random() * 300);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 deltas[i] = (int)(Math.random() * 4 + 3);
 if (deltas[i] > 4) deltas[i] = -(deltas[i] - 3);
 }
 paint = new GradientPaint(0, 0, Color.blue,
 20, 10, Color.red, true);

 Thread t = new Thread(this);
 t.start();
 }

 public void run() {
 try {
 while (true) {
 timeStep();
 repaint();
 Thread.sleep(1000 / 24);
 }
 }
 catch (InterruptedException ie) {}
 }

 public void paint(Graphics g) {
 Graphics2D g2 = (Graphics2D)g;
 g2.setRenderingHint(RenderingHints.KEY_ANTIALIASING,
 RenderingHints.VALUE_ANTIALIAS_ON);
 Shape s = createShape();
 g2.setPaint(paint);
 g2.fill(s);
 g2.setPaint(Color.white);
 g2.draw(s);
 }

 private void timeStep() {
 Dimension d = getSize();
 if (d.width == 0 || d.height == 0) return;
 for (int i = 0; i < coordinates.length; i++) {
 coordinates[i] += deltas[i];
 int limit = (i % 2 == 0) ? d.width : d.height;
 if (coordinates[i] < 0) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 coordinates[i] = 0;
 deltas[i] = -deltas[i];
 }
 else if (coordinates[i] > limit) {
 coordinates[i] = limit - 1;
 deltas[i] = -deltas[i];
 }
 }
 }

 private Shape createShape() {
 GeneralPath path = new GeneralPath();
 path.moveTo(coordinates[0], coordinates[1]);
 for (int i = 2; i < coordinates.length; i += 4)
 path.quadTo(coordinates[i], coordinates[i + 1],
 coordinates[i + 2], coordinates[i + 3]);
 path.closePath();
 return path;
 }

 public static void main(String[] args) {
 JFrame frame = new JFrame("Hypnosis");
 frame.getContentPane().add(new Hypnosis(4));
 frame.setSize(300, 300);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }
}

The main() method does the usual grunt work of setting up the JFrame that holds our
animation component.

The Hypnosis component has a very basic strategy for animation. It holds some number
of coordinate pairs in its coordinates member variable. A corresponding array, deltas ,
holds "delta" amounts that are added to the coordinates each time the figure is supposed to
change. To render the complex shape you see in Figure 20-2 , Hypnosis creates a
special Shape object from the coordinate array each time the component is drawn.

Hypnosis 's constructor has two important tasks. First, it fills up the coordinates and
deltas arrays with random values. The number of array elements is determined by an

http://lib.ommolketab.ir
http://lib.ommolketab.ir

argument to the constructor. The constructor's second task is to start up a new thread that
drives the animation.

The animation is done in the run() method. This method calls timeStep() , which
repaints the component and waits for a short time (details to follow). Each time
timeStep() is called, the coordinates array is updated. Then repaint() is called.
This results in a call to paint() , which creates a shape from the coordinate array and
draws it.

The paint() method is relatively simple. It uses a helper method, called
createShape() , to create a shape from the coordinate array. The shape is then filled,
using a Paint stored as a member variable. The shape's outline is also drawn in white.

The timeStep() method updates all the elements of the coordinate array by adding the
corresponding element of deltas. If any coordinates are now out of the component's
bounds, they are adjusted, and the corresponding delta is negated. This produces the effect
of bouncing off the sides of the component.

createShape() creates a shape from the coordinate array. It uses the GeneralPath
class, a useful Shape implementation that allows you to build shapes using straight and
curved line segments. In this case, we create a shape from a series of quadratic curves,
close it to create an area, and fill it.

20.3.2 BufferedImage Anatomy

So far, we've talked about java.awt.Image s and how they can be loaded and drawn.
What if you really want to get inside the image to examine and update its data? Image
doesn't give you access to its data. You'll need to use a more sophisticated kind of image,
java.awt.image.BufferedImage . These classes are closely
related-BufferedImage , in fact, is a subclass of Image . But BufferedImage
gives you all sorts of control over the actual data that makes up the image.
BufferedImage provides many capabilities beyond the basic Image class, but
because it's a subclass of Image , you can pass still a BufferedImage to any of
Graphics2D's methods that accept an Image .

To create an image from raw data arrays, you need to understand exactly how a
BufferedImage is put together. The full details can get quite complex-the
BufferedImage class was designed to support images in nearly any storage format you
could imagine. But for common operations it's not that difficult to use. Figure 20-3 shows
the elements of a BufferedImage .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 20-3. Inside a BufferedImage

An image is simply a rectangle of colored pixels, which is a simple enough concept.
There's a lot of complexity underneath the BufferedImage class, because there are a
lot of different ways to represent the colors of pixels. You might have, for instance, an
image with RGB data in which each pixel's red, green, and blue values were stored as the
elements of byte arrays. Or you might have an RGB image where each pixel was
represented by an integer that contained red, green, and blue component values. Or you
could have a 16-level grayscale image with 8 pixels stored in each element of an integer
array. You get the idea; there are many different ways to store image data, and
BufferedImage is designed to support all of them.

A BufferedImage consists of two pieces, a Raster and a ColorModel . The
Raster contains the actual image data. You can think of it as an array of pixel values. It
can answer the question, "What are the color data values for the pixel at 51, 17?" The
Raster for an RGB image would return three values, while a Raster for a grayscale
image would return a single value. WritableRaster , a subclass of Raster , also
supports modifying pixel data values.

The ColorModel 's job is to interpret the image data as colors. The ColorModel can
translate the data values that come from the Raster into Color objects. An RGB color
model, for example, would know how to interpret three data values as red, green, and blue.
A grayscale color model could interpret a single data value as a gray level. Conceptually, at
least, this is how an image is displayed on the screen. The graphics system retrieves the
data for each pixel of the image from the Raster . Then the ColorModel tells what
color each pixel should be, and the graphics system is able to set the color of each pixel.

The Raster itself is made up of two pieces: a DataBuffer and a SampleModel . A
DataBuffer is a wrapper for the raw data arrays, which are byte , short , or int
arrays. DataBuffer has handy subclasses, DataBufferByte ,
DataBufferShort , and DataBufferInt , that allow you to create a
DataBuffer from raw data arrays. You'll see an example of this technique later in the
StaticGenerator example.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The SampleModel knows how to extract the data values for a particular pixel from the
DataBuffer . It knows the layout of the arrays in the DataBuffer and is ultimately
responsible for answering the question "What are the data values for pixel x, y?"
SampleModel s are a little tricky to work with, but fortunately you'll probably never
need to create or use one directly. As we'll see, the Raster class has many static
("factory") methods that create preconfigured Raster s for you, including their
DataBuffer s and SampleModel s.

As Figure 20-1 shows, the 2D API comes with various flavors of ColorModel s,
SampleModel s, and DataBuffer s. These serve as handy building blocks that cover
most common image storage formats. You'll rarely need to subclass any of these classes to
create a BufferedImage .

20.3.3 Color Models

As we've said, there are many different ways to encode color information: red, green, blue
(RGB) values; hue, saturation, value (HSV); hue, lightness, saturation (HLS); and more. In
addition, you can provide full-color information for each pixel, or you can just specify an
index into a color table (palette) for each pixel. The way you represent a color is called a
color model . The 2D API provides tools to support any color model you could imagine.
Here, we'll just cover two broad groups of color models: direct and indexed .

As you might expect, you must specify a color model in order to generate pixel data; the
abstract class java.awt.image.ColorModel represents a color model. By
default, Java 2D uses a direct color model called ARGB. The A stands for "alpha," which
is the historical name for transparency. RGB refers to the red, green, and blue color
components that are combined to produce a single, composite color. In the default ARGB
model, each pixel is represented by a 32-bit integer that is interpreted as four 8-bit fields; in
order, the fields represent the alpha (transparency), red, green, and blue components of the
color, as shown in Figure 20-4 .

Figure 20-4. ARGB color encoding

To create an instance of the default ARGB model, call the static

http://lib.ommolketab.ir
http://lib.ommolketab.ir

getRGBdefault() method in ColorModel . This method returns a
DirectColorModel object; DirectColorModel is a subclass of ColorModel .
You can also create other direct color models by calling a DirectColorModel
constructor, but you shouldn't need to unless you have a fairly exotic application.

In an indexed color model, each pixel is represented by a smaller piece of information: an
index into a table of real color values. For some applications, generating data with an
indexed model may be more convenient. If you have an 8-bit display or smaller, using an
indexed model may be more efficient, because your hardware is internally using an
indexed color model of some form.

20.3.4 Creating an Image

Let's take a look at producing some image data. A picture is worth a thousand words, and,
fortunately, we can generate a picture in significantly fewer than a thousand words of Java.
If we just want to render image frames byte by byte, you can put together a
BufferedImage pretty easily.

The following application, ColorPan , creates an image from an array of integers
holding RGB pixel values:

//file: ColorPan.java
import java.awt.*;
import java.awt.image.*;
import javax.swing.*;

public class ColorPan extends JComponent {
 BufferedImage image;

 public void initialize() {
 int width = getSize().width;
 int height = getSize().height;
 int[] data = new int [width * height];
 int i = 0;
 for (int y = 0; y < height; y++) {
 int red = (y * 255) / (height - 1);
 for (int x = 0; x < width; x++) {
 int green = (x * 255) / (width - 1);
 int blue = 128;
 data[i++] = (red << 16) | (green << 8) | blue;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 }
 }
 image = new BufferedImage(width, height,
 BufferedImage.TYPE_INT_RGB);
 image.setRGB(0, 0, width, height, data, 0, width);
 }

 public void paint(Graphics g) {
 if (image == null)
 initialize();
 g.drawImage(image, 0, 0, this);
 }

 public void setBounds(int x, int y, int width, int height) {
 super.setBounds(x,y,width,height);
 initialize();
 }

 public static void main(String[] args) {
 JFrame frame = new JFrame("ColorPan");
 frame.getContentPane().add(new ColorPan());
 frame.setSize(300, 300);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }
}

Give it a try. The size of the image is determined by the size of the application window.
You should get a very colorful box that pans from deep blue at the upper-left corner to
bright yellow at the bottom right, with green and red at the other extremes.

We create a BufferedImage in the initialize() method and then display the
image in paint() . The variable data is a 1D array of integers that holds 32-bit RGB
pixel values. In initialize() , we loop over every pixel in the image and assign it an
RGB value. The blue component is always 128, half its maximum intensity. The red
component varies from 0 to 255 along the y-axis; likewise, the green component varies
from 0 to 255 along the x-axis. This statement combines these components into an RGB
value:

data[i++] = (red << 16) | (green << 8) | blue;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The bitwise left-shift operator (<<) should be familiar to C programmers. It simply shoves
the bits over by the specified number of positions in our 32-bit value.

When we create the BufferedImage , all its data is zeroed out. All we specify in the
constructor is the width and height of the image and its type. BufferedImage includes
quite a few constants representing image storage types. We've chosen TYPE_INT_RGB
here, which indicates we want to store the image as RGB data packed into integers. The
constructor takes care of creating an appropriate ColorModel , Raster ,
SampleModel , and DataBuffer for us. Then we simply use a convenient method,
setRGB() , to assign our data to the image. In this way, we've side-stepped the messy
innards of BufferedImage . In the next example, we'll take a closer look at the details.

Once we have the image, we can draw it on the display with the familiar drawImage()
method. We also override the Component setBounds() method in order to
determine when the frame is resized and reinitialize the drawing image to the new size.

20.3.5 Updating a BufferedImage

BufferedImage can also be used to update an image dynamically. Because the image's
data arrays are directly accessible, you can simply change the data and redraw the picture
whenever you want. This is probably the easiest way to build your own low-level
animation software. The following example simulates the static on an old black-and-white
television screen. It generates successive frames of random black and white pixels and
displays each frame when it is complete. Figure 20-5 shows one frame of random static.

Figure 20-5. A frame of random static

Here's the code:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

//file: StaticGenerator.java
import java.awt.*;
import java.awt.event.*;
import java.awt.image.*;
import java.util.Random;
import javax.swing.*;

public class StaticGenerator extends JComponent implements Runnable {
 byte[] data;
 BufferedImage image;
 Random random;

 public void initialize() {
 int w = getSize().width, h = getSize().height;
 int length = ((w + 7) * h) / 8;
 data = new byte[length];
 DataBuffer db = new DataBufferByte(data, length);
 WritableRaster wr = Raster.createPackedRaster(db, w, h, 1, null);
 ColorModel cm = new IndexColorModel(1, 2,
 new byte[] { (byte)0, (byte)255 },
 new byte[] { (byte)0, (byte)255 },
 new byte[] { (byte)0, (byte)255 });
 image = new BufferedImage(cm, wr, false, null);
 random = new Random();
 }

 public void run() {
 if (random == null)
 initialize();
 while (true) {
 random.nextBytes(data);
 repaint();
 try { Thread.sleep(1000 / 24); }
 catch(InterruptedException e) { /* die */ }
 }
 }

 public void paint(Graphics g) {
 if (image == null) initialize();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 g.drawImage(image, 0, 0, this);
 }

 public void setBounds(int x, int y, int width, int height) {
 super.setBounds(x,y,width,height);
 initialize();
 }

 public static void main(String[] args) {
 //RepaintManager.currentManager(null).setDoubleBufferingEnabled(false);
 JFrame frame = new JFrame("StaticGenerator");
 StaticGenerator staticGen = new StaticGenerator();
 frame.getContentPane().add(staticGen);
 frame.setSize(300, 300);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 new Thread(staticGen).start();
 }
}

The initialize() method sets up the BufferedImage that produces the sequence
of images. We build this image from the bottom up, starting with the raw data array. Since
we're only displaying two colors here, black and white, we need only one bit per pixel. We
want a 0 bit to represent black and a 1 bit to represent white. This calls for an indexed color
model, which we'll create a little later.

We'll store our image data as a byte array, where each array element holds eight pixels
from our black-and-white image. The array length, then, is calculated by multiplying the
width and height of the image and dividing by eight. To keep things simple, we'll arrange
for each image row to start on a byte boundary. For example, an image 13 pixels wide
actually uses 2 bytes (16 bits) for each row:

int length = ((w + 7) * h) / 8;

Next, the actual byte array is created. The member variable data holds a reference to this
array. Later, we'll use data to change the image data dynamically. Once we have the
image data array, it's easy to create a DataBuffer from it:

data = new byte[length];
DataBuffer db = new DataBufferByte(data, length);

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DataBuffer has several subclasses, such as DataBufferByte , that make it easy to
create a data buffer from raw arrays.

The next step, logically, is to create a SampleModel . We could then create a Raster
from the SampleModel and the DataBuffer . Lucky for us, though, the Raster
class contains a bevy of useful static methods that create common types of Raster s. One
of these methods creates a Raster from data that contains multiple pixels packed into
array elements. We simply use this method, supplying the data buffer, the width and
height, and indicating that each pixel uses one bit:

WritableRaster wr = Raster.createPackedRaster(db, w, h, 1, null);

The last argument to this method is a java.awt.Point that indicates where the upper-
left corner of the Raster should be. By passing null , we use the default of 0, 0.

The last piece of the puzzle is the ColorModel . Each pixel is either 0 or 1, but how
should that be interpreted as color? In this case, we use an IndexColorModel with a
very small palette. The palette has only two entries, one each for black and white:

ColorModel cm = new IndexColorModel(1, 2,
 new byte[] { (byte)0, (byte)255 },
 new byte[] { (byte)0, (byte)255 },
 new byte[] { (byte)0, (byte)255 });

The IndexColorModel constructor that we've used here accepts the number of bits per
pixel (one), the number of entries in the palette (two), and three byte arrays that are the red,
green, and blue components of the palette colors. Our palette consists of two colors: black
(0, 0, 0) and white (255, 255, 255).

Now that we've got all the pieces, we just need to create a BufferedImage . This
image is also stored in a member variable so we can draw it later. To create the
BufferedImage , we pass the color model and writable raster we just created:

image = new BufferedImage(cm, wr, false, null);

All the hard work is done now. Our paint() method just draws the image, using
drawImage() .

The init() method starts a thread that generates the pixel data. The run() method
takes care of generating the pixel data. It uses a java.util.Random object to fill the
data image byte array with random values. Since the data array is the actual image data for
our image, changing the data values changes the appearance of the image. Once we fill the
array with random data, a call to repaint() shows the new image on the screen.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To run, try turning off double buffering by uncommenting the line involving the
RepaintManager . Now it will look even more like an old TV with flickering and all!

That's about all there is. It's worth noting how simple it is to create this animation. Once we
have the BufferedImage , we treat it like any other image. The code that generates the
image sequence can be arbitrarily complex. But that complexity never infects the simple
task of getting the image on the screen and updating it.

20.4 Filtering Image Data

An image filter is an object that performs transformations on image data. The Java 2D API
supports image filtering through the BufferedImageOp interface. An image filter takes
a BufferedImage as input (the source image) and performs some processing on the
image data, producing another BufferedImage (the destination image).

The 2D API comes with a handy toolbox of BufferedImageOp implementations, as
summarized in Table 20-1 .

Table 20-1. Image operators in the 2D API

Name Description

AffineTransformOp Transforms an image geometrically

ColorConvertOp Converts from one color space to another

ConvolveOp Performs a convolution, a mathematical operation that can be
used to blur, sharpen, or otherwise process an image

LookupOp Uses one or more lookup tables to process image values

RescaleOp Uses multiplication to process image values

Let's take a look at two of the simpler image operators. First, try the following application.
It loads an image (the first command-line argument is the filename) and processes it in
different ways as you select items from the combo box. The application is shown in Figure
20-6 .

Figure 20-6. The ImageProcessor application

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Here's the source code:

//file: ImageProcessor.java
import java.awt.*;
import java.awt.event.*;
import java.awt.geom.*;
import java.awt.image.*;
import javax.swing.*;

public class ImageProcessor extends JComponent {
 private BufferedImage source, destination;
 private JComboBox options;

 public ImageProcessor(BufferedImage image) {
 source = destination = image;
 setBackground(Color.white);
 setLayout(new BorderLayout());
 // create a panel to hold the combo box
 JPanel controls = new JPanel();
 // create the combo box with the names of the area operators
 options = new JComboBox(
 new String[] { "[source]", "brighten", "darken", "rotate", "scale" }
);
 // perform some processing when the selection changes
 options.addItemListener(new ItemListener() {
 public void itemStateChanged(ItemEvent ie) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // retrieve the selection option from the combo box
 String option = (String)options.getSelectedItem();
 // process the image according to the selected option
 BufferedImageOp op = null;
 if (option.equals("[source]"))
 destination = source;
 else if (option.equals("brighten"))
 op = new RescaleOp(1.5f, 0, null);
 else if (option.equals("darken"))
 op = new RescaleOp(.5f, 0, null);
 else if (option.equals("rotate"))
 op = new AffineTransformOp(
 AffineTransform.getRotateInstance(Math.PI / 6), null);
 else if (option.equals("scale"))
 op = new AffineTransformOp(
 AffineTransform.getScaleInstance(.5, .5), null);
 if (op != null) destination = op.filter(source, null);
 repaint();
 }
 });
 controls.add(options);
 add(controls, BorderLayout.SOUTH);
 }

 public void paintComponent(Graphics g) {
 int imageWidth = destination.getWidth();
 int imageHeight = destination.getHeight();
 int width = getSize().width;
 int height = getSize().height;
 g.drawImage(destination,
 (width - imageWidth) / 2, (height - imageHeight) / 2, null);
 }

 public static void main(String[] args) {
 String filename = args[0];

 ImageIcon icon = new ImageIcon(filename);
 Image i = icon.getImage();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 // draw the Image into a BufferedImage
 int w = i.getWidth(null), h = i.getHeight(null);
 BufferedImage buffImage = new BufferedImage(w, h,
 BufferedImage.TYPE_INT_RGB);
 Graphics2D imageGraphics = buffImage.createGraphics();
 imageGraphics.drawImage(i, 0, 0, null);

 JFrame frame = new JFrame("ImageProcessor");
 frame.getContentPane().add(new ImageProcessor(buffImage));
 frame.setSize(buffImage.getWidth(), buffImage.getHeight());
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }
}

There's quite a bit packed into the ImageProcessor application. After you've played
around with it, come back and read about the details.

20.4.1 How ImageProcessor Works

The basic operation of ImageProcessor is very straightforward. It loads a source
image, specified with a command-line argument, in its main() method. The image is
displayed along with a combo box. When you select different items from the combo box,
ImageProcessor performs some image-processing operation on the source image and
displays the result (the destination image). Most of this work occurs in the
ItemListener event handler that is created in ImageProcessor 's constructor.
Depending on what option is selected, a BufferedImageOp (called op) is instantiated
and used to process the source image, like this:

destination = op.filter(source, null);

The destination image is returned from the filter() method. If we already had a
destination image of the right size, we could have passed it as the second argument to
filter() , which would improve the performance of the application a bit. If you just
pass null , as we have here, an appropriate destination image is created and returned to
you. Once the destination image is created, paint() 's job is very simple; it just draws
the destination image, centered on the component.

20.4.2 Converting an Image to a BufferedImage

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Image processing is performed on BufferedImage s, not Image s. This example
demonstrates an important technique: how to convert an Image to a BufferedImage .
The main() method loads an Image from a file using Toolkit 's getImage()
method:

Image i = Toolkit.getDefaultToolkit().getImage(filename);

Next, main() uses a MediaTracker to make sure the image data is fully loaded.

The trick of converting an Image to a BufferedImage is to draw the Image into the
drawing surface of the BufferedImage . Because we know the Image is fully loaded,
we just need to create a BufferedImage , get its graphics context, and draw the
Image into it:

BufferedImage bi = new BufferedImage(w, h,
 BufferedImage.TYPE_INT_RGB);
Graphics2D imageGraphics = bi.createGraphics();
imageGraphics.drawImage(i, 0, 0, null);

20.4.3 Using the RescaleOp Class

Rescaling is an image operation that multiplies all the pixel values in the image by some
constant. It doesn't affect the size of the image in any way (in case you thought rescaling
meant scaling), but it does affect the colors of its pixels. In an RGB image, for example,
each of the red, green, and blue values for each pixel would be multiplied by the rescaling
multiplier. If you want, you can also adjust the results by adding an offset. In the 2D API,
rescaling is performed by the java.awt.image.RescaleOp class. To create such
an operator, specify the multiplier, offset, and a set of hints that control the quality of the
conversion. In this case, we'll use a zero offset and not bother with the hints (by passing
null):

op = new RescaleOp(1.5f, 0, null);

Here we've specified a multiplier of 1.5 and an offset of 0. All values in the destination
image will be 1.5 times the values in the source image, which has the net result of making
the image brighter. To perform the operation, we call the filter() method from the
BufferedImageOp interface.

20.4.4 Using the AffineTransformOp Class

An Affine Transformation is a kind of 2D transformation that preserves parallel lines; this

http://lib.ommolketab.ir
http://lib.ommolketab.ir

includes operations like scaling, rotating, and shearing. The
java.awt.image.AffineTransformOp image operator geometrically transforms
a source image to produce the destination image. To create an AffineTransformOp ,
specify the transformation you want, in the form of an
java.awt.geom.AffineTransform . The ImageProcessor application
includes two examples of this operator, one for rotation and one for scaling. As before, the
AffineTransformOp constructor accepts a set of hints; we'll just pass null to keep
things simple:

else if (option.equals("rotate"))
 op = new AffineTransformOp(
 AffineTransform.getRotateInstance(Math.PI / 6), null);
else if (option.equals("scale"))
 op = new AffineTransformOp(
 AffineTransform.getScaleInstance(.5, .5), null);

In both cases, we obtain an AffineTransform by calling one of its static methods. In
the first case, we get a rotational transformation by supplying an angle. This transformation
is wrapped in an AffineTransformOp . This operator has the effect of rotating the
source image around its origin to create the destination image. In the second case, a scaling
transformation is wrapped in an AffineTransformOp . The two scaling values, .5 and
.5, specify that the image should be reduced to half its original size in both the x and y
axes.

One interesting aspect of AffineTransformOp is that you may "lose" part of your
image when it's transformed. For example, when using the rotate image operator in the
ImageProcessor application, the destination image will have clipped some of the
original image out. Both the source and destination images have the same origin, so if any
part of the image gets transformed into negative x or y space, it is lost. To work around this
problem, you can structure your transformations such that the entire destination image
would be in positive coordinate space.

20.5 Simple Audio

Now we'll turn from images and open our ears to audio. The Java Sound API became a
core API in Java 1.3. It provides fine-grained support for the creation and manipulation of
both sampled audio and MIDI music. There's space here only to scratch the surface by
examining how to play simple sampled sound and MIDI music files. With the standard
JavaSound support bundled with Java you can play a wide range of file formats including
AIFF, AU, Windows WAV, standard MIDI files, and Rich Music Format (RMF) files.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

We'll discuss other formats (such as MP3) along with video media in the next section.

java.applet.AudioClip defines the simplest interface for objects that can play
sound. An object that implements AudioClip can be told to play() its sound data,
stop() playing the sound, or loop() continuously.

The Applet class provides a handy static method, newAudioClip() , that retrieves
sounds from files or over the network. (And there is no reason we can't use it in a
nonapplet application.) The method takes an absolute or relative URL to specify where the
audio file is located and returns an AudioClip . The following application,
NoisyButton , gives a simple example:

//file: NoisyButton.java
import java.applet.*;
import java.awt.*;
import java.awt.event.*;
import javax.swing.*;

public class NoisyButton {

 public static void main(String[] args) throws Exception {
 JFrame frame = new JFrame("NoisyButton");
 java.io.File file = new java.io.File(args[0]);
 final AudioClip sound = Applet.newAudioClip(file.toURL());

 JButton button = new JButton("Woof!");
 button.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) { sound.play(); }
 });

 Container content = frame.getContentPane();
 content.setBackground(Color.pink);
 content.setLayout(new GridBagLayout());
 content.add(button);
 frame.setVisible(true);
 frame.setSize(200, 200);
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setVisible(true);
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Run NoisyButton , passing the name of the audio file you wish to use as the argument.
(We've supplied one called bark.aiff .)

NoisyButton retrieves the AudioClip using a File and the toURL() method to
reference it as a URL. When the button is pushed, we call the play() method of the
AudioClip to start things. After that, it plays to completion unless we call the stop()
method to interrupt it.

This interface is simple, but there is a lot of machinery behind the scenes. Next we'll look
at the Java Media Framework, which supports wider ranging types of media.

20.6 Java Media Framework

Get some popcorn-Java can play movies! To do this though we'll need one of Java's
standard extension APIs, the Java Media Framework (JMF). The JMF defines a set of
interfaces and classes in the javax.media and javax.media.protocol
packages. You can download the latest JMF from http://java.sun.com/products/java-
media/jmf/ . To use the JMF, add jmf.jar to your classpath. Or, depending on what version
of the JMF you download, a friendly installation program may do this for you.

We'll only scratch the surface of JMF here, by working with an important interface called
Player . Specific implementations of Player deal with different media types, like
Apple QuickTime (.mov) and Windows Video (.avi). There are also players for audio
types including MP3. Player s are handed out by a high-level class in the JMF called
Manager . One way to obtain a Player is to specify the URL of a movie:

Player player = Manager.createPlayer(url);

Because video files are so large and playing them requires significant system resources,
Player s have a multistep life cycle from the time they're created to the time they
actually play something. We'll just look at one step, realizing . In this step, the Player
finds out (by looking at the media file) what system resources it needs to play the media
file.

player.realize();

The realize() method returns right away; it kicks off the realizing process in a
separate thread. When the player is finished realizing, it sends out an event. Once you
receive this event, you can obtain one of two Component s from the Player. The first is a
visual component that, for visual media types, shows the media. The second is a control
component that provides a prefab user interface for controlling the media presentation. The

http://lib.ommolketab.ir
http://lib.ommolketab.ir

control normally includes start, stop, and pause buttons, along with volume controls and
attendant goodies.

The Player has to be realized before you ask for these components so that it has
important information, like how big the component should be. After that, getting the
component is easy. Here's an example:

Component c = player.getVisualComponent();

Now we just need to add the component to the screen somewhere. We can play the media
right away (although this actually moves the Player through several other internal
states):

player.start();

The following example, MediaPlayer , uses the JMF to load and display a movie or
audio file from a specified URL:

//file: MediaPlayer.java
import java.awt.*;
import java.net.URL;
import javax.swing.*;
import javax.media.*;

public class MediaPlayer
{
 public static void main(String[] args) throws Exception {
 final JFrame frame = new JFrame("MediaPlayer");
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 URL url = new URL(args[0]);
 final Player player = Manager.createPlayer(url);

 player.addControllerListener(new ControllerListener() {
 public void controllerUpdate(ControllerEvent ce) {
 if (ce instanceof RealizeCompleteEvent)
 {
 Component visual = player.getVisualComponent();
 Component control = player.getControlPanelComponent();
 if (visual != null)
 frame.getContentPane().add(visual, "Center");
 frame.getContentPane().add(control, "South");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 frame.pack();
 frame.setVisible(true);
 player.start();
 }
 }
 });

 player.realize();
 }
}

This class creates a JFrame that holds the media. Then it creates a Player from the
URL specified on the command line and tells the Player to realize() . There's
nothing else we can do until the Player is realized, so the rest of the code operates inside
a ControllerListener after the RealizeCompleteEvent is received.

In the event handler, we get the Player 's visual and controller components and add them
to the JFrame . We then display the JFrame and, finally, we play the movie. It's very
simple!

To use the MediaPlayer , pass it the URL of a movie or audio file on the command
line. Here are a couple of examples:

% java MediaPlayer file:dancing_baby.avi
% java MediaPlayer http://myserver/mp3s/TheCure/KissMe/catch.mp3

Figure 20-7 shows the "dancing baby" AVI running in the MediaPlayer. Feel free to dance
along, if you want.

Figure 20-7. Image of the dancing baby AVI

http://myserver/mp3s/TheCure/KissMe/catch.mp3
http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

Chapter 21. JavaBeans

 21.1 What's a Bean?

 21.2 The NetBeans IDE
 21.3 Properties and Customizers

 21.4 Event Hookups and Adapters

 21.5 Binding Properties

 21.6 Building Beans

 21.7 Limitations of Visual Design
 21.8 Serialization Versus Code Generation

 21.9 Customizing with BeanInfo
 21.10 Hand-Coding with Beans

 21.11 BeanContext and BeanContextServices

 21.12 The Java Activation Framework
 21.13 Enterprise JavaBeans

JavaBeans is a component architecture for Java. It is a set of rules for writing highly
reusable software elements that can be linked together in a plug-and-play fashion to build
applications. Writing objects to the JavaBeans specification means you won't have to write
as much custom code to glue them together. It also allows you to leverage JavaBean-aware
development tools. With some integrated development environments (IDEs), it is even
possible to build large parts of applications just by connecting prefabricated JavaBeans.

JavaBeans is a rich topic, but we can't give it more than a brief overview here. If this
overview whets your appetite, look for Developing Java Beans by Robert Englander
(O'Reilly).

21.1 What's a Bean?

What exactly is or are JavaBeans? JavaBeans defines a set of rules; JavaBeans are ordinary
Java objects that play by these rules. That is, JavaBeans are Java objects that conform to
the JavaBeans API and design patterns. By doing so, they can be recognized and
manipulated within visual application builder environments, as well as by hand coding.
Beans live and work in the Java runtime system, as do all Java objects. They communicate
with their neighbors using events and other normal method invocations.

For Bean examples, we need look no further than the javax.swing packages. All the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

familiar components, such as JButton , JTextArea , JScrollpane , etc., are not
only suitable for Beans, but are also, in fact, Beans! Much of what you learned in Chapter
15 about the Swing components has prepared you for understanding Beans. Although most
of the Swing components aren't very useful in isolation, in general Beans can also be large
and complex application components, such as spreadsheets or document editors. The
HotJavaBrowser Bean, for example, is a complete web browser cast in the form of a
JavaBean. We'll talk more about exactly what makes a Bean a Bean in a moment. For now,
we want to give you a better sense of how they are used.

JavaBeans are intended to be manipulated visually within a graphical application builder.
They are generally chosen from a palette of tools and manipulated graphically in an
application builder's workspace. In this sense, Beans resemble widgets used in a traditional
GUI builder: user interface components that can be assembled to make application
"screens." In traditional GUI builders, the result is usually just some automatically
generated code that provides a skeleton on which you hang the meat of your application.
GUI builders generally build GUIs, not entire applications.

In contrast, JavaBeans can be not only simple UI components such as buttons and sliders,
but also more complex and abstract components. It is easy to get the impression that Beans
are, themselves, always graphical objects (like the Swing components that we mentioned),
but JavaBeans can implement any part of an application, including "invisible" parts that
perform calculations, storage, and communications. Ideally, we would like to snap together
a substantial application using prefabricated Beans, without ever writing a line of code!
Three characteristics of the JavaBeans architecture make it possible to work with
application components at this level:

Design patterns

The most important characteristic of a JavaBean is simply a layer of standardization.
Design patterns (i.e., coding conventions) let tools and humans recognize the basic
features of a Bean and manipulate it without knowing how it is implemented. We
might say that Beans are "self-documenting." By examining a Bean, we can tell what
events it can fire and receive; we can also learn about its properties (the equivalent of
its public variables) and methods. Beans can also provide explicit information about
their features tailored specifically for IDEs.

Reflection

Reflection is an important feature of the Java language. (It's discussed in Chapter 7 .)
Reflection makes it possible for Java code to inspect and manipulate new Java objects
at runtime. In the context of JavaBeans, reflection lets a development tool analyze a
Bean's capabilities, examine the values of its fields, and invoke its methods.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Essentially, reflection allows Java objects that meet at runtime to do all the things that
could be done if the objects had been put together at compile time. Even if a Bean
doesn't come bundled with any "built-in" documentation, we can still gather
information about its capabilities and properties by directly inspecting the class using
reflection.

Object serialization

Finally, the Java Serialization API allows us to "freeze-dry" (some prefer the word
"pickle") a live application or application component and revive it later. This is a very
important step; it makes it possible to piece together applications without extensive
code generation. Rather than customizing and compiling large amounts of Java code
to build our application on startup, we can simply paste together Beans, configure
them, tweak their appearance, and then save them. Later, the Beans can be restored
with all their state and interconnections intact. This makes possible a fundamentally
different way of thinking about the design process. It is easy to use serialized objects
from handwritten Java code, as well, so we can freely mix "freeze-dried" Beans with
plain old Bean classes and other Java code. In Java 1.4, a new "long-term" object
serialization mechanism was added that saves JavaBeans in an XML format that is
very resilient to changes in classes.

21.1.1 How Big Is a Bean?

Our Bean examples have ranged from simple buttons to spreadsheets. Obviously, a button
Bean would be much less complex than a spreadsheet and would be used at a different
level of the application's design. At what level are Beans intended to be used? The
JavaBeans architecture is supposed to scale well from small to large; simple Beans can be
used to build larger Beans. A small Bean may consist of a single class; a large Bean may
have many. Beans can also work together through their container to provide services to
other Beans.

Simple Beans are little more than ordinary Java objects. In fact, any Java class that has a
default (empty) constructor could be considered a Bean. A Bean should also be
serializable, although the JavaBeans specification doesn't strictly require that. These two
criteria ensure that we can create an instance of the Bean dynamically and that we can later
save the Bean, as part of a group or composition of Beans. There are no other requirements.
Beans are not required to inherit from a base Bean class, and they don't have to implement
any special interface.

A useful Bean would want to send and receive events and expose its properties to the
world. To do so, it follows the appropriate design patterns for naming the relevant methods

http://lib.ommolketab.ir
http://lib.ommolketab.ir

so that these features can be automatically discovered. Most nontrivial Beans intended for
use in an IDE also provide information about themselves in the form of a BeanInfo
class. A BeanInfo class implements the BeanInfo interface, which holds methods
that describe a Bean's features in more detail, along with extra packaging, such as icons for
display to the user. Normally, this "Bean info" is supplied by a separate class that is named
for and supplied with the Bean.

21.2 The NetBeans IDE

We can't have a meaningful discussion of Beans without spending a little time talking
about the builder environments in which they are used. In this book, we use the NetBeans
IDE to demonstrate our Beans. NetBeans is a popular, pure Java development environment
for Java. In this case, the "integrated" in "integrated development environment" means that
NetBeans offers powerful source-editor capabilities, templates that aid in the creation of
various types of Java classes; and the ability to compile, run, and debug applications, all in
one tool.

NetBeans is an open source project [1] with a modular architecture that allows it to be easily
extended with new capabilities. For example, there are XML modules that assist you in
creating and editing XML documents, as well as web modules that allow the IDE to edit
documents and even act as a web server for testing. NetBeans even comes with a version of
BeanShell, the Java scripting language created by one of the authors of this book! (See
Appendix B .)

Because NetBeans is a full-blown production development environment, it has many
features we don't use in these examples. For that reason, we can't really provide a full
introduction to NetBeans in this book. We will provide only bare-bones directions here for
demonstrating the JavaBeans in this chapter. But we hope that once you get into the tool
and start looking around, you will want to learn more.

Some examples of other Java development environments that support JavaBeans are:

IBM's Visual Age for Java
(http://www7.software.ibm.com/vad.nsf/Data/Document4600)

Borland/Inprise's JBuilder (http://www.inprise.com/jbuilder)

Metrowerks's CodeWarrior (http://www.metrowerks.com)

21.2.1 Installing and Running NetBeans

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You have to install the Java 1.4 SDK before you can install NetBeans. Both the SDK
(Version 1.4.0) and NetBeans itself (Version 3.3.1) are included on the CD-ROM that
accompanies this book (view CD content online at
http://examples.oreilly.com/learnjava2/CD-ROM/). They can also be downloaded from
http://java.sun.com/j2se/ and http://www.netbeans.org , respectively. Follow the simple
installation instructions for those packages (you may have to reboot if you installed Java)
and then launch NetBeans.

The first time it runs, NetBeans asks you to specify a default directory for your project files
and whether you prefer multiple smaller windows or the single-window (full-screen) mode.
We chose full-screen mode, as you will see in the examples, starting with Figure 21-1 .
NetBeans also asks if you want to associate Java files with it. If you answer yes, you can
launch NetBeans by double-clicking on a Java file (at least in Windows).

Figure 21-1. NetBeans

When you first start NetBeans, a welcome screen appears. Close it. Figure 21-1 shows the
NetBeans application. The tab selected at the top is GUI Editing . This is where we'll be
doing most of our work. The left side of the workspace is a file browser called Explorer,
and the center is the GUI editor, showing one of our examples. Key parts of the GUI editor
are the top "palettes" of Beans, the central layout area, and the properties editor or
"customizer" on the right side. The properties editor changes its contents based on the
current Bean selected in the work area.

http://examples.oreilly.com/learnjava2/CD-ROM/
http://java.sun.com/j2se/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

NetBeans includes all the standard Swing components and provides a few more Beans of
its own. Before we get started, we'll have to add the example Beans used in this chapter to
the NetBeans palette as well. To do this, grab our demo Beans JAR file, magicbeans.jar,
from the accompanying CD-ROM (view CD content online at
http://examples.oreilly.com/learnjava2/CD-ROM/) or from
http://www.oreilly.com/catalog/learnjava2/ . Save the file locally and then select Install
New JavaBean from the Tools menu to add the beans. The wizard asks you to locate the
JAR file and then shows you a list of Beans that it contains. Select all of them (shift-click
on the first and last), then click ok . NetBeans prompts you for the Palette Category under
which you wish to file these; select Beans . We'll see these Beans soon, when we start
editing an application.

Now we must open a new Java class file to begin editing. First, select in the Explorer the
folder where you'd like the new class file to be stored so that NetBeans will store it there
for you. Now click on the "new file" icon on the far left of the toolbar or select New... from
the File menu. NetBeans prompts you with a wizard for setting up the type of file you wish
to create. Expand the folder labeled GUI Forms , and select JFrame . This gives us a Java
class file extending JFrame with the basic structure of a GUI application already set up
for us. Click Next , then give the file a name, such as LearnJava1 , and choose a location
for the file. You may leave the package set to the default package if you wish. Now click
Finish .

NetBeans should now open two windows, as in Figure 21-2 : the Source Editor , showing
the LearnJava1 class it has started for us, and the Form Editor window. Select the
Swing tab at the top of the Form Editor to see some of the Swing components available as
Beans (they are shown as icons at the top of the window). Now select the Beans tab to see
the Beans we imported earlier. You should see the friendly Dial component Bean from
Chapter 17 , along with a waving Duke (the Java mascot) and a small clock icon. The rest
of our Beans have no pretty icons and can't easily be distinguished. That's because these
simple example Beans aren't packaged as completely as the others. (We'll talk about
packaging later in the chapter.) For now, right-click on one of the Beans, and select the
Show Names option to display the class names of all the Beans in the palette. (You'll want
to resize the border so you can see all the Beans).

Figure 21-2. LearnJava1 example in NetBeans

http://examples.oreilly.com/learnjava2/CD-ROM/
http://www.oreilly.com/catalog/learnjava2/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

To place a Bean into the workspace, simply click on it and then click in the workspace. The
top right of the Form Editor holds a tree that shows all the components (visible and
invisible) in the project. By right-clicking on the JFrame (our top-level container) in either
the workspace or the tree, you can select the Set Layout option to specify the layout
manager for the frame. For now, try using the AbsoluteLayout , provided by NetBeans.
This allows you to arbitrarily place and move Beans within the container.

21.3 Properties and Customizers

Properties represent the "state" or "data" content of a Bean. They are features that can be
manipulated externally to configure the Bean. For a Bean that's a GUI component, you
might expect its properties to include its size, color, and other features of its basic
appearance. Properties are similar in concept to an object's public variables. Like a
variable, a property can be a primitive type (such as a number or boolean), or it can be a
complex object type (such as a String or a collection of spreadsheet data). Unlike
variables, properties are always manipulated using methods; this enables a Bean to take
action whenever a property changes. By sending an event when a property changes, a Bean
can notify other interested Beans of the change (see Section 21.5 , later in this chapter).

Let's pull a couple of Beans into NetBeans and take a look at their properties. Grab a
JButton from the Swing palette, and place it in the workspace. When the JButton
was first loaded by NetBeans, it was inspected to discover its properties. When we select
an instance of the button, NetBeans displays these properties in the properties sheet and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

allows us to modify them. As you can see in the figure, the button has seven basic
properties. foreground and background are colors; their current values are
displayed in the corresponding box. font is the font for the label text; an example of the
font is shown. text is the text of the button's label. You can also set an image icon for the
button, the "tool tip" text that appears when the mouse hovers over the item, and a
keyboard-shortcut identifier, called a mnemonic in NetBeans. Try typing something new in
the text field of the property sheet, and watch the button label change. Click on the
background color to enter a numeric color value, or, better yet, hit the "..." button to pop up
a color-chooser dialog.

Most of these basic properties will become familiar to you because many GUI Beans
inherit them from the base JComponent class. If you click on the tab labeled Other
Properties , you'll see some 40 additional properties inherited from JComponent .
NetBeans is making an effort to categorize these for us. But as we'll see when we create our
own Beans, we can choose to limit which of a Bean's properties are shown in the properties
editor.

Now place a Juggler Bean in the workspace (this is one of Sun's original demonstration
JavaBeans that we have updated). The animation starts, and Duke begins juggling his
coffee Beans, as shown in Figure 21-3 . If he gets annoying, don't worry, we'll have him
under our control soon enough.

Figure 21-3. Juggling Beans

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can see that this Bean has a different set of properties. The most interesting is the one
called animationRate . It is an integer property that controls the interval in
milliseconds between displays of the juggler's frames. Try changing its value. The juggler
changes speed as you type each value. Good Beans give you immediate feedback on
changes to their properties. Set the juggling property to False to stop the show.

Notice that the property sheet provides a way to display and edit each of the different
property types. For the foreground and background properties of the JButton ,
the sheet displays the color; if you click on them, a color selection dialog pops up.
Similarly, if you click on the font property, you get a font dialog. For integer and
string values, you can type a new value into the field. NetBeans understands and can
edit the most useful basic Java types.

Since the property types are open-ended, NetBeans can't possibly anticipate them all.
Beans with more complex property types can supply a property editor . The Molecule
Bean that we'll play with in the next section, for example, uses a custom property editor
that lets us choose the type of molecule. If it needs even more control over how its
properties are displayed, a Bean can provide a customizer . A customizer allows a Bean to
provide its own GUI for editing its properties.

21.4 Event Hookups and Adapters

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Beans use events to communicate. As we mentioned in Chapter 15 , events are not limited
to GUI components but can be used for signaling and passing information in more general
applications. An event is simply a notification; information describing the event and other
data are wrapped up in a subclass of EventObject and passed to the receiving object by
a method invocation. Event sources register listeners who want to receive the events when
they occur. Event receivers implement the appropriate listener interface containing the
method needed to receive the events. This is Java's general event mechanism in a nutshell.

It's useful to place an adapter between an event source and a listener. An adapter can be
used when an object doesn't know how to receive a particular event; it enables the object to
handle the event anyway. The adapter can translate the event into some other action, such
as a call to a different method or an update of some data. One of the jobs of NetBeans is to
help us hook up event sources to event listeners. Another job is to produce adapter code
that allows us to hook up events in more complex ways.

21.4.1 Taming the Juggler

Before we get into details, let's look at Figure 21-4 and try to get our Juggler under
control. Using the properties sheet, change the label of our first button to read Start . Now
click the small Connection Wizard icon at the top of the GUI builder (this is the second
icon, showing two arrows pointing at one another). Now select first the button and then the
Juggler by clicking on them. NetBeans pops up the Connection Wizard , indicating the
source component (the button) and prompting you to choose from a large list of events (see
Figure 21-4). Most of these are standard Swing events that can be generated by any kind
of JComponent . What we're after is the button's action event. Expand the folder named
action , and select actionPerformed as the target method. Choose Next to go to the target
component screen for the Juggler . The wizard prompts us to choose a property to set
on the Juggler as in Figure 21-5 . The display shows three of the Juggler 's
properties. Choose juggling as the target and click Next . Now enter true in the value
box and click Finish . We have completed a hookup between the button and the Juggler
. When the button fires an action event, the "juggling" property of the Juggler is set to
true .

Figure 21-4. Selecting a source event in the Connection Wizard

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 21-5. Specifying a target operation in the Connection Wizard

If you take a look at the Source Editor window, you can see that NetBeans has generated
some code to make this connection for us. Specifically, in the initComponents()
method of our template class, it has created an anonymous inner class to serve as the
ActionListener for ActionEvent s from our button (which it has named
jButton1):

jButton1.addActionListener(new java.awt.event.ActionListener() {
 public void actionPerformed(java.awt.event.ActionEvent evt) {
 jButton1ActionPerformed(evt);
 }
});

The adapter calls a private method that sets the property on our Juggler :

private void jButton1ActionPerformed(java.awt.event.ActionEvent evt) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 juggler1.setJuggling(true);
}

You'll notice that most of the text that was written for us is shaded light blue. This is to
indicate that it is autogenerated and can't be directly modified. The body of the private
method is open, however, and we could modify it to perform arbitrary activities when the
button is pushed. In NetBeans the hookup is just a starting point.

This may all seem a little obtuse. After all, if we had made the Juggler an
ActionListener in the first place, we would expect to hook it directly to the button.
The use of adapters provides a great deal of flexibility, however, as we'll see next.

To complete our example, repeat the process and add a second JButton labeled Stop .
Click the Connection Wizard icon; select the Stop button and the Juggler as its target.
Again, choose the actionPerformed method as the source, but this time, instead of
selecting a property on the Juggler , click the Method call radio button to see a list of
available methods on the Juggler Bean. Scroll all the way down and select the
stopJuggling() method. Click Finish to complete the hookup, and look at the
generated code if you wish. Now we have seen an example of hooking up a source of
action events to produce an arbitrary method call on a Bean.

Now the Juggler will do our bidding. Hit the green arrow "run" icon and watch as
NetBeans compiles and runs our example. You should be able to start and stop Duke with
the buttons! When you are done, close the window, and return to the GUI editor. Save and
close this example, and let's move on.

21.4.2 Molecular Motion

Let's look at one more interesting example, shown in Figure 21-6 . Create a new project
class as before, choosing the JFrame template. Call this one LearnJava2 .

Grab a Molecule Bean and place it in the workspace. If you run the example now, you
will see that by dragging the mouse within the image, you can rotate the model in three
dimensions. Try changing the type of molecule using the properties sheet: ethane is fun. [2]

Now let's see what we can do with our molecule. Grab a Timer Bean from the palette.
Timer is a clock. Every so many seconds, Timer fires an event. The timer is controlled
by an integer property called delay , which determines the number of seconds between
events. Timer is an "invisible" Bean; it is not derived from a JComponent and doesn't
have a graphical appearance, just as an internal timer in an application wouldn't normally
have a presence on the screen. NetBeans represents invisible Beans in the component tree
at the top right of the GUI builder. When you wish to select the Timer , click on it in the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

tree.

Figure 21-6. The Molecule Bean and the Timer

Let's hook the Timer to our Molecule . Activate the connection wizard and select the
Timer (from the tree) and then the Molecule . Choose the Timer onTime()
method from the list. Click Next and select the Method call radio button. Find and select
the rotateOnX() method and click Finish . Run the example. Now the Molecule
should turn on its own every time it receives an event from the timer. Try changing the
timer's interval. You can also hook the Timer to the Molecule 's rotateOnY()
method, Use a different instance of TickTock and, by setting different intervals, make it
turn at different rates in each dimension. There's no end to the fun.

21.5 Binding Properties

By using a combination of events and adapters, we can connect Beans in many interesting
ways. We can even "bind" two Beans together so that if a property changes in the first
Bean, the corresponding property is automatically changed in the second Bean. In this
scenario, the Beans don't necessarily have to be of the same type, but to make sense, the
properties do.

Close the Molecule project and start a new one. Grab two NumericField Beans
from the palette, drop them in NetBeans, and select one of them, as shown in Figure 21-7 .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You'll notice that a NumericField has many of the standard properties of a Swing
component. If you select the Other Properties tab, you can also find an integer property
called value . This is the value of the field. You can set it or enter a number directly into
the field. NumericField rejects nonnumeric text.

Figure 21-7. Binding properties

Now let's bind the value property of the fields. Activate the connection wizard and
choose the propertyChange() method. This is the listener method for
PropertyChangeEvent , a generic event sent by Beans when one of their properties
changes. When a Bean fires property-change events in response to changes in a particular
property, that property is said to be "bound." This means that it is possible to bind the
property to another Bean through the generic mechanism. In this case, the value of our
NumericField Beans is a bound property.

Choose Next , and select the value property as the target on the other NumericField .
Click Next again, and select Property on the Parameters screen. Click the "..." editor
button to pop up a Select Property dialog. Select the source numeric field (probably named
numericField1) from the pulldown menu, and then choose the value property. Click Ok
and Finish to complete the hookup.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Run the application, and try entering values in the first field. The second field should
change each time. The second Bean's value property has been bound to the first.

Try binding the value property in the other direction as well so that you can change the
value in either Bean, and the changes are propagated in both directions. (Some simple logic
in the Beans prevents infinite loops from happening here.)

NetBeans has again generated an adapter for us. This time the adapter listens for
PropertyChangeEvent s and invokes the setValue() method of our target field.
Note that we haven't done anything earth-shaking. The PropertyChangeEvent does
carry some extra information-the old and new values of the property-but we're not using
them here. And with the connection wizard, you can use any event source as the impetus to
set a property on your target Bean. Finally, as we've seen, the property can derive its value
from any other Bean in the layout. The flexibility of the connection wizard is, to some
extent, masking the purpose of the events, but that's okay. If we are interested in the
specific property that changed, or if we want to apply logic about the value, we can fill in
the generated method with our own code.

21.5.1 Constraining properties

In the previous section, we discussed how Beans fire PropertyChangeEvent s to
notify other Beans (and adapters) that a property has changed. In that scenario, the object
that receives the event is simply a passive listener, as far as the event's source is concerned.
JavaBeans also supports constrained properties , in which the event listener gets to say
whether it will allow a Bean to change the property's value. If the new value is rejected, the
change is cancelled; the event source keeps its old value.

The concept of constrained properties has not been heavily used in the normal operation of
Swing, so we won't cover it in detail here. But it goes something like this.Normally,
PropertyChangeEvent s are delivered to a propertyChange() method in the
listener. Constrained properties are implemented by delivering
PropertyChangeEvent s to a separate listener method called
vetoableChange() . The vetoableChange() method throws a
PropertyVetoException if it doesn't like a proposed change. In this way,
components can govern the acceptable values of other components.

21.6 Building Beans

Now that you have a feel for how Beans look from the user's perspective, let's build some.
In this section, we will become the Magic Beans Company. We will create some Beans,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

package them for distribution, and use them in NetBeans to build a very simple application.
(The complete JAR file, along with all the example code for this chapter, is on the CD-
ROM that accompanies this book (view CD content online at
http://examples.oreilly.com/learnjava2/CD-ROM/), and at
http://www.oreilly.com/catalog/learnjava2 .)

The first thing we'll remind you of is that absolutely anything can be a Bean. Even the
following class is a Bean, albeit an invisible one:

public class Trivial implements java.io.Serializable {}

Of course, this Bean isn't very useful: it doesn't have any properties, and it doesn't do
anything. But it's a Bean nonetheless, and we can drag it into NetBeans as long as we
package it correctly. If we modify this class to extend JComponent , we suddenly have a
graphical Bean that be seen in the layout, with lots of standard Swing properties, such as
size and color information:

public class TrivialComponent extends JComponent {}

Next let's look at a Bean that's a bit more useful.

21.6.1 The Dial Bean

We created a nifty Dial component in Chapter 17 . What would it take to turn it into a
Bean? Well, surprise: it is already a Bean! The Dial has a number of properties that it
exposes in the way prescribed by JavaBeans. A get method retrieves the value of a
property; for example, getValue() retrieves the dial's current value. Likewise, a set
method (setValue()) modifies the dial's value. The dial has two other properties,
which also have get and set methods: minimum and maximum . This is all the Dial
needs to inform a tool such as NetBeans what properties it has and how to work with them.
Because Dial is a JComponent , it also has all the standard Swing properties, such as
color and size. The JComponent provides the set and get methods for all its properties.

In order to use our Dial , we'll put it in a Java package named magicBeans and store it
in a JAR file that can be loaded by NetBeans. The source code, which can be found on the
accompanying CD-ROM (view CD content online at
http://examples.oreilly.com/learnjava2/CD-ROM/), includes an Ant build file (see Section
14.16 in Chapter 14) that compiles the code and creates the final JAR file.

First, create a directory called magicBeans to hold our Beans, add a package statement
to the source files Dial.java , DialEvent.java , and DialListener.java , put the source files
into the magicBeans directory, and compile them (javac magicBeans/Dial.java

http://examples.oreilly.com/learnjava2/CD-ROM/
http://www.oreilly.com/catalog/learnjava2
http://examples.oreilly.com/learnjava2/CD-ROM/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

) to create class files. Next, we need to create a manifest file that tells NetBeans which of
the classes in the JAR file are Beans and which are support files or unrelated. At this point,
we have only one Bean, Dial.class , so create the following file, called
magicBeans.manifest :

Name: magicbeans/Dial.class
Java-Bean: True

The Name: label identifies the class file as it will appear in the JAR:
magicbeans/Dial.class . Specifications appearing after an item's Name: line and
before an empty line apply to that item. (See Section 3.5 in Chapter 3 for more details.) We
have added the attribute Java-Bean: True , which flags this class as a Bean to tools
that read the manifest. We will add an entry like this for each Bean in our package. We
don't need to flag support classes (such as DialEvent and DialListener) as Beans,
because we won't want to manipulate them directly with NetBeans; in fact, we don't need
to mention them in the manifest at all.

To create the JAR file, including our manifest information, enter this command:

% jar cvmf magicbeans.manifest magicbeans.jar magicbeans/*.class

If you loaded the precompiled examples as instructed earlier, then you already have the
Dial Bean loaded into NetBeans. The version supplied in the precompiled
magicbeans.jar file has additional packaging that allows it to appear with a spiffy icon in
the palette, as we'll discuss a bit later. If you haven't loaded the example JAR, you can
import the one we just created using the Import JavaBean wizard on the NetBeans Tools
menu, as we described earlier. If you want to replace the Dial Bean on your palette, you
can remove it by right-clicking on the icon and selecting the Delete option before importing
the new JAR. Note that you may have to restart NetBeans in order for it to recognize that a
Bean has changed.

You should now have an entry for Dial in the Bean palette. Drop an instance of the Dial
Bean into NetBeans.

As Figure 21-8 shows, the Dial 's properties-value , minimum , and maximum -are on
the properties sheet and can be modified by NetBeans. If you created the previous Dial
JAR, you'll see these properties along with all the Swing properties inherited from the
JComponent class. The figure shows the Dial Bean as it appears later in this chapter,
after we've learned about the BeanInfo class. We're almost there.

Figure 21-8. The Dial component as a Bean

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Now we're ready to put the Dial to use. Reopen the Juggler example that we asked
you to save in the first section of this chapter. (Did you save it?) Add an instance of our
new magic Dial Bean to the scenario, as shown in Figure 21-9 .

Figure 21-9. The Juggler with a dialable animation rate

Bind the value property of the Dial to the animationRate of the Juggler . Use
the connection wizard, as before, selecting the Dial and then the Juggler . Select the
DialEvent source and bind the animationRate property, selecting the Dial 's value as the
property source. When you complete the hookup, you should be able to vary the speed of
the juggler by turning the dial. Try changing the maximum and minimum values of the dial
to change the range.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

21.6.2 Design Patterns for Properties

We said earlier that tools such as NetBeans found out about a Bean's properties by looking
at its get and set methods. The easiest way to make properties visible is to follow these
simple design patterns:

Method for getting the current value of a property:
public PropertyType getPropertyName()

Method for setting the value of a property:
public void setPropertyName(PropertyType arg)

Method for determining whether a boolean-valued property is currently true :
public boolean isPropertyName()

The last method is optional and is used only for properties with boolean values. (You could
just use the get method in this situation.)

The appropriate set and get methods for these features of our Bean are already in the Dial
class, either methods that we added or methods inherited from the
java.awt.Component and javax.swing.JComponent classes:

// inherited from Component
public Color getForeground()
public void setForeground(Color c)

public Color getBackground()
public void setBackground(Color c)

public Font getFont()
public void setFont(Font f)

// many others from Component and JComponent

// part of the Dial itself
public int getValue()
public void setValue(int v)

public int getMinimum()
public void setMinimum(int m)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public int getMaximum()
public void setMaximum(int m)

JavaBeans allows read-only and write-only properties, which are implemented simply by
leaving out the get or set method.

NetBeans uses the Reflection API to find out about the Dial Bean's methods; it then uses
these naming conventions to figure out what properties are available. When we use the
properties editor to change a value, NetBeans dynamically invokes the correct set method
to change the value.

If you look further at the JComponent class, you'll notice that other methods match the
design pattern. For example, what about the setCursor() and getCursor() pair?
NetBeans doesn't know how to display or edit a cursor, and we didn't supply an editor, so it
ignores those properties in the properties sheet.

NetBeans automatically pulls the property's name from the name of its accessor methods; it
then lowercases the name for display on the properties sheet. For example, the font
property is not listed as Font . Later, we'll show how to provide a BeanInfo class that
overrides the way these properties are displayed, letting you provide your own friendly
property names.

21.6.2.1 Bean patterns in NetBeans

NetBeans automatically recognizes JavaBeans get and set method patterns in classes. In the
Explorer, expand the link for the class, and you'll see a Bean Patterns folder. You can add
properties automatically by right-clicking on the Bean Patterns folder and selecting Add ,
then Property . After you supply the name and type of the property, NetBeans
automatically creates the necessary get and set methods. You can add instance variable and
bound property support as well.

21.6.3 A (Slightly) More Realistic Example

We now have one nifty Bean for the Magic Beans products list. Let's round out the set
before we start advertising. Our goal is to build the Beans we need to make a very simple
form. The application performs a simple calculation after data is entered on the form.

21.6.3.1 A Bean for validating numeric data

One component we're sure to need in a form is a text field that accepts numeric data. Let's

http://lib.ommolketab.ir
http://lib.ommolketab.ir

build a text-entry Bean that accepts and validates numbers and makes the values available
as a property. You should recognize all the parts of the NumericField Bean:

//file: NumericField.java
package magicbeans;

import javax.swing.*;
import java.awt.event.*;

public class NumericField extends JTextField
{
 private double value;

 public NumericField() {
 super(6);
 setInputVerifier(new InputVerifier() {
 public boolean verify(JComponent comp) {
 JTextField field = (JTextField)comp;
 boolean passed = false;
 try {
 setValue(Double.parseDouble(field.getText()));
 } catch (NumberFormatException e) {
 comp.getToolkit().beep();
 field.selectAll();
 return false;
 }
 return true;
 }
 });

 addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 getInputVerifier().verify(NumericField.this);
 }
 });
 }

 public double getValue() {
 return value;
 }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public void setValue(double newValue) {
 double oldValue = value;
 value = newValue;
 setText("" + newValue);
 firePropertyChange("value", oldValue, newValue);
 }
}

NumericField extends the Swing JTextField component. The constructor defaults
the text field to a width of six columns, but you can change its size in NetBeans through the
"columns" property.

The heart of NumericField is the InputVerifier , which we have implemented
as an anonymous inner class (see Section 17.1.4 in Chapter 17). Our verifier is called to
parse the user's entry as a number, giving it a Double value. We have also added an
ActionListener that validates when the user hits Enter in the field.

If parsing succeeds, we update the value property using our setValue() method.
setValue() then fires a PropertyChangeEvent to notify any interested Beans. If
the text doesn't parse properly as a number, we give feedback to the user by selecting
(highlighting) the text.

Using NetBeans, verify the operation of this Bean by placing two NumericFields in
the workspace and binding the value property of one to the other. You should be able to
enter a new floating point value and see the change reflected in the other.

21.6.3.2 An invisible multiplier

Now, let's make an invisible Bean that performs a calculation rather than forming part of a
user interface. Multiplier is a simple invisible Bean that multiplies the values of two
of its properties (A and B) to produce the value of a third read-only property (C). Here's the
code:

//file: Multiplier.java
package magicbeans;

import java.beans.*;

public class Multiplier implements java.io.Serializable {
 private double a, b, c;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 synchronized public void setA(double val) {
 a = val;
 multiply();
 }

 synchronized public double getA() {
 return a;
 }

 synchronized public void setB(double val) {
 b = val;
 multiply();
 }

 synchronized public double getB() {
 return b;
 }

 synchronized public double getC() {
 return c;
 }

 synchronized public void setC(double val) {
 multiply();
 }

 private void multiply() {
 double oldC = c;
 c = a * b;
 propChanges.firePropertyChange(
 "c", new Double(oldC) , new Double(c));
 }

 private PropertyChangeSupport propChanges =
new PropertyChangeSupport(this);

 public void addPropertyChangeListener(
 PropertyChangeListener listener)
 {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 propChanges.addPropertyChangeListener(listener);
 }
 public void removePropertyChangeListener(
 PropertyChangeListener listener)
 {
 propChanges.removePropertyChangeListener(listener);
 }
}

To make a Multiplier a source of PropertyChangeEvent s, we enlist the help
of a PropertyChangeSupport object. To implement Multiplier 's methods for
registering property-change listeners, we simply call the corresponding methods in the
PropertyChangeSupport object. Similarly, a Multiplier fires a property
change event by calling the PropertyChangeSupport object's
firePropertyChange() method. This is the easiest way to get an arbitrary class to
be a source of PropertyChangeEvent s.

The code is straightforward. Whenever the value of property a or b changes, we call
multiply() , which multiplies their values and fires a PropertyChangeEvent .
So we can say that Multiplier supports binding of its c property.

21.6.3.3 Putting them together

Finally, let's demonstrate that we can put our Beans together in a useful way. Arrange three
JLabel s, three NumericField s, and a Multiplier as shown in Figure 21-10 .

Figure 21-10. TextLabels, NumericFields, and a Multiplier

Bind the values of the first two NumericField s to the a and b properties of the
Multiplier ; bind the c value to the third NumericField . Now we have a simple
calculator. Try some other arrangements. Can you build a calculator that squares a
number? Can you see how you might build a simple spreadsheet? Well, perhaps not. We'll
address some of the limitations in the next section.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

21.7 Limitations of Visual Design

The last example proved that we can create at least a trivial application by hooking Beans
together in a mostly visual way. In other development environments, this kind of Bean
hookup would have been even more streamlined. For example, Sun's "BeanBox" reference
JavaBean container takes a different approach from NetBeans. It allows the developer to
work with "live" JavaBean instances, dynamically generating adapter code at runtime and
relying solely on object serialization to save the resulting work. This kind of design is, in a
sense, the real goal of the JavaBeans architecture. It is true "what you see is what you get"
(WYSIWYG) programming. However, pure visual design without the ability to integrate
handwritten code, as we can do in NetBeans, has not yet proven to scale beyond these
kinds of simple applications, and pure visual programming environments have thus far
failed to catch on.

Sun is currently working on a replacement for the BeanBox called BeanBuilder. You can
find out more about it at http://java.sun.com/products/javabeans/beanbuilder/ .

21.8 Serialization Versus Code Generation

If you've been keeping an eye on the NetBeans source window while we've been working,
you may have noticed the code that is being generated when you modify properties of
Beans. By default, NetBeans generates method calls to the appropriate set methods after
creating the Bean. But if you click on the Code Generation tab in the Property Editor
window, you'll see that we have another option. By changing the Code Generation
property from Generate Code to Serialize, you change NetBeans' behavior. Instead of
generating method calls in the source code, it saves your fully configured Bean as a
serialized object and then generates the appropriate code to load the freeze-dried Bean into
the application from a file.

Try changing the code generation property for the Juggler Bean to Serialize . In the
initComponents() area, you'll now see a line for that Bean that uses the static
Beans.instantiate() method to load the Bean. Run the application. In the file
browser window, you'll now see a serialized Java object file called something like
LearnJava1_juggler1.ser (the name is controlled through the Serialize To property).
We'll discuss working with serialized Beans in more detail later in this chapter and ask you
to refer to this stored Bean file.

21.9 Customizing with BeanInfo

http://lib.ommolketab.ir
http://lib.ommolketab.ir

So far, everything NetBeans has known about our Beans has been determined by low-level
reflection-that is, by looking at the methods of our classes. The
java.Beans.Introspector class gathers information on a Bean using reflection,
then analyzes and describes a Bean to any tool that wants to know about it. The
introspection process works only if the class follows the JavaBeans naming conventions for
its methods; furthermore, it gives us little control over exactly what properties and events
appear in NetBeans menus. For example, we've seen that NetBeans by default shows all the
stuff we inherit from the base Swing component. We can change that by creating
BeanInfo classes for our Beans. A BeanInfo class provides the JavaBeans
introspector with explicit information about the properties, methods, and events of a Bean;
we can even use it to customize the text that appears in menus in NetBeans (and in other
IDEs).

A BeanInfo class implements the BeanInfo interface. That's a complicated
proposition; in most situations, the introspector's default behavior is reasonable. So instead
of implementing the BeanInfo interface, we extend the SimpleBeanInfo class,
which implements all BeanInfo 's methods. We can override specific methods to
provide the information we want; when we don't override a method, we'll get the
introspector's default behavior.

In the next few sections, we'll develop a DialBeanInfo class that provides explicit
information about our Dial Bean.

21.9.1 Getting Properties Information

We'll start out by describing the Dial 's properties. To do so, we must implement the
getPropertyDescriptors() method. This method simply returns an array of
PropertyDescriptor objects-one for each property we want to publicize.

To create a PropertyDescriptor , call its constructor with two arguments: the
property's name and the class. In the following code, we create descriptors for the Dial 's
value , minimum , and maximum properties. We then call a few methods of the
PropertyDescriptor class to provide additional information about each property. If
our methods were bound (generated PropertyChangeEvent s when modified), we'd
call the setBound() method of their PropertyDescriptor s. Our code is
prepared to catch an IntrospectionException , which can occur if something
goes wrong while creating the property descriptors, such as encountering a nonexistent
method:

//file: DialBeanInfo.java

http://lib.ommolketab.ir
http://lib.ommolketab.ir

package magicbeans;
import java.beans.*;

public class DialBeanInfo extends SimpleBeanInfo {

 public PropertyDescriptor[] getPropertyDescriptors() {
 try {
 PropertyDescriptor value =
 new PropertyDescriptor("value", Dial.class);
 PropertyDescriptor minimum =
 new PropertyDescriptor("minimum", Dial.class);
 PropertyDescriptor maximum =
 new PropertyDescriptor("maximum", Dial.class);

 return new PropertyDescriptor [] { value, minimum, maximum };
 }
 catch (IntrospectionException e) {
 return null;
 }
 }
}

Perhaps the most useful thing about DialBeanInfo is that by providing explicit
information for our properties, we automatically hide other properties introspection might
find. After compiling DialBeanInfo and packaging it with the Dial , you'll see that
its JComponent properties no longer appear in the NetBeans properties editor. (This has
been the case all along if you started with the precompiled example JAR.)

A PropertyDescriptor can provide a lot of other information about a property: the
names of the accessor methods (if you decide not to use the standard naming convention),
information on whether the property is constrained, and a class to use as a property editor
(if the standard property editors aren't sufficient).

21.9.1.1 Getting events information

The Dial Bean defines its own event: the DialEvent . We'd like to tell development
tools about this event so that we can build applications using it. The process for telling the
world about our event is similar to what we did previously: we add a method to the
DialBeanInfo class called getEventSetDescriptors() , which returns an
array of EventSetDescriptor s.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Events are described in terms of their listener interfaces, not in terms of the event classes
themselves, so our getEventSetDescriptors() method creates a descriptor for
the DialListener interface. Here's the code to add to the DialBeanInfo class:

public EventSetDescriptor[] getEventSetDescriptors() {
 try {
 EventSetDescriptor dial = new EventSetDescriptor(
 Dial.class, "dialAdjusted",
 DialListener.class, "dialAdjusted");
 dial.setDisplayName("Dial Adjusted");

 return new EventSetDescriptor [] { dial };
 }
 catch (IntrospectionException e) {
 return null;
 }
}

In this method, we create an EventSetDescriptor object: dial . The constructor
for an EventSetDescriptor takes four arguments: the class that generates the event,
the name of the event (the name that is displayed, by default, by a development tool), the
listener class, and the name of the method to which the event can be delivered. (Other
constructors let you deal with listener interfaces that have several methods). After creating
the descriptor, we call the setDisplayName() method to provide a more friendly
name to be displayed by development tools such as NetBeans. (This overrides the default
name specified in the constructor.)

Just as the property descriptors we supply hide the properties that were discovered by
reflection, the EventSetDescriptor s can hide the other events that are inherited
from the base component classes. In theory, when you recompile DialBeanInfo ,
package it in a JAR, and load it into NetBeans, you should see only the two events that we
have explicitly described: our own DialEvent and PropertyChangeEvent
(displayed as "Dial Adjusted" and "Bound property change"). Unfortunately, the current
version of NetBeans ignores this information.

Once we have an EventSetDescriptor , we can provide other kinds of information
about the event. For example, we can state that the event is unicast , which means that it
can have only one listener.

21.9.1.2 Supplying icons

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Some of the Beans that come with NetBeans are displayed on the palette with a cute icon.
This makes life more pleasant for everyone. To supply an icon for the BeanInfo object
we have been developing, we have it implement the getIcon() method. You may
supply up to four icons, with sizes of 16 x 16 or 32 x 32, in either color or monochrome.
Here's the getIcon() method for DialBeanInfo :

public class DialBeanInfo extends SimpleBeanInfo {
 ...
 public java.awt.Image getIcon(int iconKind) {

 if (iconKind == BeanInfo.ICON_COLOR_16x16) {
 return loadImage("DialIconColor16.gif");
 } else
 if (iconKind == BeanInfo.ICON_COLOR_32x32) {
 return loadImage("DialIconColor32.gif");
 } else
 if (iconKind == BeanInfo.ICON_MONO_16x16) {
 return loadImage("DialIconMono16.gif");
 } else
 if (iconKind == BeanInfo.ICON_MONO_32x32) {
 return loadImage("DialIconMono32.gif");
 }
 return null;
 }

This method is called with a constant indicating what kind of icon is being requested; for
example, BeanInfo.ICON_COLOR_16x16 requests a 16 x 16 color image. If an
appropriate icon is available, it loads the image and returns an Image object. If the icon
isn't available, it returns null . For convenience, you can package the images in the same
JAR file as the Bean and its BeanInfo class.

Though we haven't used them here, you can also use a BeanInfo object to provide
information about other public methods of your Bean (for example, array-valued
properties) and other features.

21.9.1.3 Creating customizers and property editors

JavaBeans also lets you provide a customizer for your Beans. Customizers are objects that
do advanced customization for a Bean as a whole; they let you provide your own GUI for
tweaking your Bean. (For example, the Select Bean uses a customizer rather than the
standard properties sheet.) We won't show you how to write a customizer; it's not too

http://lib.ommolketab.ir
http://lib.ommolketab.ir

difficult, but it's beyond the scope of this chapter. Suffice it to say that a customizer must
implement the java.beans.Customizer interface and should extend Component
(or JComponent) so that it can be displayed.

A property editor isn't quite as fancy as a customizer. Property editors are a way of giving
the properties sheet additional capabilities. For example, you would supply a property
editor to let you edit a property type that is specific to your Bean. You could provide a
property editor that would let you edit an object's price in dollars and cents. We've already
seen a couple of property editors: the editor used for Color -valued properties is
fundamentally no different from a property editor you might write yourself. In addition, the
Molecule Bean uses a property editor to specify its moleculeName property.

Again, describing how to write a property editor is beyond the scope of this chapter.
Briefly, a property editor must implement the PropertyEditor interface; it usually
does so by extending the PropertyEditorSupport class, which provides default
implementations for most of the methods.

21.10 Hand-Coding with Beans

So far, we've seen how to create and use Beans within a Bean application builder
environment. That is the primary role of a JavaBean in development. But Beans are not
limited to being used by automated tools. There's no reason we can't use Beans in
handwritten code. You might use a builder to assemble Beans for the user interface of your
application and then load that serialized Bean or a collection of Beans in your own code,
just as NetBeans does when told to use object serialization. We'll give an example of that in
a moment.

21.10.1 Bean Instantiation and Type Management

Beans are an abstraction over simple Java classes. They add, by convention, features that
are not part of the Java language. To enable certain additional capabilities of JavaBeans, we
have to use some special tools that take the place of basic language operations.
Specifically, when working with Beans, we are provided with replacements for three basic
Java operations: creating an object with new , checking the type of an object with the
instanceof operator, and casting a type with a cast expression. In place of these, use
the corresponding static methods of the java.beans.Beans class, shown in Table 21-
1 .

Table 21-1. Methods of the java.beans.Beans class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Operator Equivalent

New Beans.instantiate(classloader, name)

Instanceof Beans.isInstanceOf(object, class)

Explicit cast Beans.getInstanceOf(object, class)

Beans.instantiate() is the new operation for Beans. It takes a class loader and
the name of a Bean class or serialized Bean as arguments. Its advantage over the plain new
operator is that it can also load Beans from a serialized form. If you use
instantiate() , you don't have to specify in advance whether you will provide the
Bean as a class or as a serialized object. The instantiate() method first tries to load
a resource file based on the name Bean, by turning package-style names (with dots) into a
path-style name with slashes and then appending the suffix .ser . For example,
magicbeans.NumericField becomes magicbeans/NumericField.ser . If the
serialized form of the Bean is not found, the instantiate() method attempts to create
an instance of the class by name. This feature will probably become more important in the
future as other forms of Bean serialization are added. In Java 1.4, a new XMLEncoder was
added to the java.beans package, allowing Beans to be serialized to an XML file
format.

Beans.isInstanceOf() and Beans.getInstanceOf() do the jobs of
checking a Bean's type and casting it to a new type. These methods are intended to allow
one or more Beans to work together to implement "virtual" or dynamic types. In the future,
these methods may be used to let Beans take control of this behavior, providing different
"views" of themselves. However, they currently don't add any functionality.

21.10.2 Working with Serialized Beans

Remember the Juggler we serialized a while back? Well, it's time to revive him, just
like Han Solo from his "Carbonite" tomb in Star Wars. We'll assume that you saved the
Juggler by flipping on the Serialization property while working with the
LearnJava1 class and that NetBeans therefore saved him in the file
LearnJava1_juggler1.ser . If you didn't do this, you can use the following snippet of code
to serialize the Bean to a file of your choice:

import sunw.demo.juggler.Juggler;
import java.io.ObjectOutpuStream;

Juggler duke = new Juggler();
ObjectOutputStream oout = new ObjectOutputStream(

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 new FileOutputStream("duke.ser"));
oout.writeObject(duke);
oout.close();

Once you have the frozen Duke, compile the following small application:

//file: BackFromTheDead.java
import java.awt.Component;
import javax.swing.*;
import java.beans.*;

public class BackFromTheDead extends JFrame {

 public BackFromTheDead(String name) {
 super("Revived Beans!");
 try {
 Object bean = Beans.instantiate(
 getClass().getClassLoader(), name);

 if (Beans.isInstanceOf(bean, Component.class)) {
 Component comp = (Component)
 Beans.getInstanceOf(bean, Component.class);
 getContentPane().add("Center", comp);
 } else {
 System.out.println("Bean is not a Component...");
 }
 } catch (java.io.IOException e1) {
 System.out.println("Error loading the serialized object");
 } catch (ClassNotFoundException e2) {
 System.out.println(
 "Can't find the class that goes with the object");
 }
 }

 public static void main(String [] args) {
 JFrame frame = new BackFromTheDead(args[0]);
 frame.pack();
 frame.setVisible(true);
 }
}

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Run this program, passing the name of your serialized object file as an argument and
making sure that our magicbeans.jar file is in your classpath. Duke should spring back to
life, juggling once again as shown in Figure 21-11 .

Figure 21-11. The restored Juggler

In BackFromTheDead , we use Beans.instantiate() to load our serialized
Bean by name. Then we check to see whether it is a GUI component using
Beans.isInstanceOf() . (It is, because the Juggler is a subclass of
java.awt.Component .) Finally, we cast the instantiated object to a Component
with Beans.getInstanceOf() and add it to our application's JFrame . Notice that
we still need a static Java cast to turn the Object returned by getInstanceOf() into
a Component . This cast may seem gratuitous, but it is the bridge between the dynamic
Beans lookup of the type and the static, compile-time view of the type.

Note that everything we've done above could be done using the plain
java.io.ObjectInputStream discussed in Chapter 11 . But these Bean
management methods are intended to shield the user from details of how the Beans are
implemented and stored.

One more thing before we move on. We blithely noted the fact that when the Juggler
was restored, the Bean began juggling again. This implies that threads were started when
the Bean was deserialized. Serialization doesn't automatically manage transient resources
such as threads or even loaded images. But it's easy to take control of the process to finish
reconstructing the Bean's state when it is deserialized. Have a look at the Juggler source
code (provided with the examples) and refer to Chapter 11 for a discussion of object
deserialization using the readObject() method.

21.10.3 Runtime Event Hookups with Reflection

We've discussed reflection largely in terms of how design tools use it to analyze classes.
But more and more reflection is finding its way into applications to perform dynamic
activities that wouldn't be possible otherwise. In this section, we'll look at a dynamic event

http://lib.ommolketab.ir
http://lib.ommolketab.ir

adapter that can be configured at runtime.

In Chapter 15 , we saw how adapter classes could be built to connect event firings to
arbitrary methods in our code, allowing us to cleanly separate GUI and logic in our
applications. In this chapter, we have seen how NetBeans interposes this adapter code
between Beans to do this for us.

The AWT/Swing event model reduces the need to subclass components to perform simple
hookups. But if we start relying heavily on special adapter classes, we can quickly end up
with as many adapters as objects. Anonymous inner classes let us hide these classes, but
they're still there. A potential solution for large or specialized applications is to create
generic event adapters that serve a number of event sources and targets simultaneously.

In Java 1.4, a new tool was added to the java.beans package; the EventHandler is
a dynamic event dispatcher that simply calls methods in response to events. [3] What makes
the EventHandler unique in Java (so far) is that it is the first standard utility to use
reflection to allow us to specify the method by name . In other words, you ask the
EventHandler to direct events to a handler by specifying the handler object and the
string name of the method to invoke on that object. This is a big change from the normal
style of coding in Java and comes with some associated risks. We'll talk more about those
later.

We can use the create() method of EventHandler to get an adapter for a specified
type of event listener, specifying a target object and method name to call when that event
occurs. The target object doesn't have to be a listener for the particular event type or any
other particular kind of object. The following application, DynamicHookup , uses the
EventHandler to connect a button to a launchTheMissiles() method in our
class:

//file: DynamicHookup.java
import javax.swing.*;
import java.awt.event.*;
import java.beans.EventHandler;

public class DynamicHookup extends JFrame {
 JLabel label = new JLabel("Ready...", JLabel.CENTER);
 int count;

 public DynamicHookup() {
 JButton launchButton = new JButton("Launch!");
 getContentPane().add(launchButton, "South");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 getContentPane().add(label, "Center");
 launchButton.addActionListener(
 (ActionListener)EventHandler.create(
 ActionListener.class, this, "launchTheMissiles"));
 }
 public void launchTheMissiles() {
 label.setText("Launched: "+ count++);
 }

 public static void main(String[] args) {
 JFrame frame = new DynamicHookup();
 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 frame.setSize(150, 150);
 frame.setVisible(true);
 }
}

Here we call the EventHandler 's create() method, passing it the
ActionListener class, the target object (this), and a string with the name of the
method to invoke on the target when the event arrives. EventHandler internally creates
a listener of the appropriate type and registers our target information. Not only do we
eliminate an inner class, but the implementation of EventHandler may allow it to share
adapters internally, producing very few objects.

The above example shows how we would call a method that takes no arguments. But the
EventHandler can actually do more, setting JavaBeans properties in response to
events. The following form of create() tells EventHandler to call the
launchTheMissiles() method, passing the "source" property of the
ActionEvent as an the argument:

EventHandler.create(ActionListener.class, target, "launchTheMissiles", "source")

All events have a source property (via the getSource()) method. But we can go
further, specifying a chain of property "gets" separated by dots, which are applied before
the value is passed to the method. For example:

EventHandler.create(ActionListener.class, target, "launchTheMissiles", "source.text")

The source.text parameter causes the value getSource().getText() to be
passed as an argument to launchTheMissiles() . In our case, that would be the
label of our button. Other forms of create() allow more flexibility in selecting which

http://lib.ommolketab.ir
http://lib.ommolketab.ir

methods of a multimethod listener interface are used and other options. We won't cover
every detail of the tool here.

21.10.3.1 Safety implications

The EventHandler is a powerful tool, but it was, in actuality, primarily intended for
use by IDEs, not developers. Reflection allows you to do things at runtime that you
couldn't do otherwise. Therein lies the problem with this technique: by using reflection to
locate and invoke methods, we abandon Java's strong typing and head off in the direction
of scripting languages. We add power at the expense of safety. If the method name
specified to EventHandler doesn't exist, or if it exists but wants the wrong type of
arguments, you may receive a runtime exception, or worse, it may be silently ignored.

21.10.3.2 How it works

The EventHandler uses a powerful new reflection feature introduced in Java 1.3. The
java.lang.reflect.Proxy class is a factory that can generate adapters
implementing any type of interface at runtime. By specifying one or more event listener
interfaces (e.g., ActionListener), we get an adapter that implements those listener
interfaces generated for us on the fly. The adapter is a specially created class that delegates
all the method calls on its interfaces to a designated InvocationHandler object. See
Chapter 7 for more information about the reflection interface proxy.

21.11 BeanContext and BeanContextServices

So far we've talked about some sophisticated mechanisms for connecting JavaBeans
together at design time and runtime. However, we haven't talked at all about the
environment in which JavaBeans live. To build advanced, extensible applications, we'd like
a way for JavaBeans to find each other or "rendezvous" at runtime. The
java.beans.beancontext package provides this kind of container environment. It
also provides a generic "services" lookup mechanism for Beans that wish to advertise their
capabilities. These mechanisms have existed for some time, but they haven't found much
use in the standard Java packages. Still, they are interesting and important facilities that
you can use in your own applications.

You can find a full explanation and example of how to use the Bean context to find Beans
and listen for services in the expanded material on the CD-ROM that comes with the book
(view CD content online at http://examples.oreilly.com/learnjava2/CD-ROM/).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

21.12 The Java Activation Framework

The Java Activation Framework (JAF) is a standard extension that can be used by Beans
that work with many external data types, such as media retrieved from files and streams. It
is essentially a generalized content/protocol handler mechanism for JavaBeans. The JAF is
an extensible set of classes that wrap arbitrary, raw data sources to provide access to their
data as streams or objects, identify the MIME type of the data, and enumerate a registered
set of "commands" for operating on the data.

The JAF provides two primary interfaces: DataSource and DataHandler . The
DataSource acts like the protocol handlers we discussed in Chapter 13 . It wraps the
data source and determines a MIME type for the data stream. The DataHandler acts
like a content handler except it provides a great deal more than access to the data. A
DataHandler is constructed to wrap a DataSource and interpret the data in different
forms. It also provides a list of command operations that can be used to access the data.
DataHandler also implements the
java.awt.datatransfer.Transferable interface, allowing data to be passed
among application components in a well-defined way.

The JAF hasn't been used much outside the Java Mail API, but you can find out more
about JAF from Sun at http://java.sun.com/beans/glasgow/jaf.html .

21.13 Enterprise JavaBeans

Enterprise JavaBeans is a very big topic, and we can't do more than provide a few
paragraphs to whet your appetite. If you want more information, see Enterprise JavaBeans
by Richard Monson-Haefel (O'Reilly). The thrust of EJB is to take the JavaBeans
philosophy of portable, pluggable components and extend it to the server side to
accommodate the sorts of things that multitiered networked and database-centric
applications require. Although EJB pays homage to the basic JavaBeans concepts, it is
much larger and more special purpose. It doesn't have a lot in common with the kinds of
things we've been talking about in this chapter. EJBs are server-side components for
networked applications. What EJBs have in common with plain JavaBeans are the concepts
of reusable, portable components that can be deployed and configured for specific
environments. But in this case, the components encapsulate access to business logic and
database tables instead of GUI and program elements.

EJB ties together a number of other Java enterprise-oriented APIs, including database
access, transactions, and name services, into a single component model for server

http://lib.ommolketab.ir
http://lib.ommolketab.ir

applications. EJB imposes a lot more structure on how you write code than plain old
JavaBeans. But it does so in order to allow the server-side EJB container to take on a lot of
responsibility and optimize your application's activities without you having to write a lot of
code. Here are a few things Enterprise JavaBeans tackles:

Object life cycle and remote access

Container-managed persistence

Transaction management

Server resource pooling and management

Deployment configuration

EJB divides the world into two camps: Entity Beans , which represent data in a database,
and Session Beans , which implement services and operations over entity Beans. These
correspond well to the second and third tiers in a three-tiered business application.
"Business logic" is represented by Session Bean services, and database access is made
transparent through automated object mapping by Entity Beans.

Many aspects of EJB behavior can be controlled through "deployment descriptors" that
customize Bean behavior for the target environment. The result is a high level of
abstraction over ordinary business-specific code. It allows powerful, networked business
application components to be packaged and reused in the sort of way that ordinary Beans
are reused to build client-side applications.

Sun has created a reference EJB platform as part of Java 2 Enterprise Edition (J2EE);
currently, the most robust EJB implementations are provided by third parties. Usually, the
EJB container is packaged as part of a more general application server that performs other
duties, such as running web services, servlets, and JSPs. There are many vendors of
commercial EJB servers. Two popular alternatives are BEA's WebLogic, an application
server with many high-end features, and JBoss, an open source application server and
implementation of the J2EE APIs. JBoss can be downloaded from http://www.jboss.org .

[1] Sun has its own, commercial version of NetBeans called Forte for Java. Forte is largely
the same as NetBeans but includes additional tools for enterprise development.

[2] As of this writing, Sun's Molecule example has some problems when used in NetBeans.
Selecting a molecule type other than the default causes a compile-time error. You can use the
Test Form button on the NetBeans form editor to try the other molecule types.

[3] Prior to Java 1.3, we developed our own dynamic event adapter in this chapter. That
example is still instructive if you want to work with Beans using reflection. You can find it in the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

file DynamicActionAdapter.java in the examples on the accompanying CD-ROM (view CD
content online at http://examples.oreilly.com/learnjava2/CD-ROM/) or the web site for this
book.

CONTENTS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

Chapter 22. Applets

 22.1 The Politics of Applets

 22.2 The JApplet Class
 22.3 The <APPLET> Tag

 22.4 Using the Java Plug-in

 22.5 Java Web Start

 22.6 Using Digital Signatures

One of the original tenets of Java was that applications could be delivered over the network
to your computer as needed. Instead of buying a shrink-wrapped box containing a word
processor, installing it, and upgrading it every few years, it should be possible to use the
software directly from the Internet, safely and on any platform. This new model of software
distribution would be a boon for both free software and for commercial products that could
offer a new pay-per-use sales model. Unfortunately, this revolutionary idea has been
hampered by the realities of a slow Internet and the uneven progress of Java on browsers
(for reasons both technical and political). Even so, Java has maintained a toehold in this
arena through small downloadable applications called applets.

An applet is part of a web page, just like an image or hyperlink. It "owns" some rectangular
area of the user's screen. It can draw whatever it wants and respond to keyboard and mouse
events in that area. When the web browser loads a page that contains a Java applet, it
knows how to load the classes of the applet and run them.

This chapter describes how applets work and how to put them in web pages. We'll also
describe how to use Sun's Java Plug-In to take advantage of the latest Java features.
Finally, we'll cover the details of creating signed applets, which can step outside the typical
applet security restrictions to do client-side things, such as reading and writing files.

22.1 The Politics of Applets

The potential for applets to add dynamic content to web pages was one of the driving
forces behind the spread of the Java programming language. Prior to Java's introduction in
1994, there was really no standard way to do this; even the now ubiquitous animated GIF
images were not yet widely supported. Sun's HotJava Java-based web browser was the first
to support applets. It was Java's original "killer application." Later, in 1995, Netscape
announced that it would support the Applet API in its browsers, and soon after that

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Microsoft jumped on the bandwagon. For a while it seemed that Java would flourish on the
Web. But there have been some bumps along the road.

Many problems, both technical and political, plagued the early years of Java's use in client-
side applications. Performance issues were to be expected in such a young language. But
what really crippled Java early on was the nonportable and buggy AWT, Java's original
GUI toolkit. Many people overlook the fact that Java's success as a portable language is in
large part a result of just how much of the Java API is implemented in Java. You might be
surprised to learn just how many Java internals involve no native code-everything from
cryptography to DNS has been done in Java-requiring no porting for new platforms. The
renaissance of Java GUI applications seen in recent years (since Java 1.2) is due almost
entirely to the introduction of the pure Java Swing GUI toolkit. In contrast, the original
AWT system was based on native code, which had to be ported to each new system, taking
into account subtle and tricky platform dependencies. AWT was effectively a large,
graphical C program that Java talked to through a set of interfaces and Java was, to some
extent, unfairly painted as nonportable and buggy by association.

Java faced other, less technical obstacles as well. Netscape forced the original AWT upon
the world when it insisted that Java be released with "native look and feel" in lieu of a less
capable, but portable initial toolkit. Later, Microsoft effectively stuck us with this by
freezing the level of the Applet API in its browsers at Java 1.1 for many years. Applets
have thus been stuck with AWT while lawsuits between Sun and Microsoft have dragged
on. The result is that support for Applets in web browsers is a mess. There are a lot of
applets on the Web today, but they only hint at Java's original promise. There is, however,
some light on the horizon.

Sun has made an attempt to insulate Java from the browser battles with the introduction of
the Java Plug-in. The Plug-in allows applets to run in an up-to-date Java VM, identically,
in all major browsers. But for most browsers it requires installation by the user, which is
less than desirable. More recently, Netscape 6 supports versions of Java using the Plug-in
directly. If Netscape 6 sees wide distribution, we may finally have an up-to-date platform
for applets. Newer APIs such as Java Web Start also offer the alternative of simple, zero
administration, local installation of Java applications. It will be interesting to see if these
catch on.

22.2 The JApplet Class

A JApplet is something like a JPanel with a mission. It is a GUI container that has
some extra structure to allow it to be used in an "alien" environment, such as a browser.
Applets also have a life cycle that lets them act more like an application than a static

http://lib.ommolketab.ir
http://lib.ommolketab.ir

component, such as a paragraph of text or an image. Although applets tend to be relatively
simple, there's no inherent restriction on their complexity, other than download speed.
There's no reason you couldn't write a big application like a word processor as an applet.

The java.applet.Applet class defines the core functionality of an applet. It was
used early on with AWT. The javax.swing.JApplet class is a simple extension of
Applet that adds the plumbing necessary for Swing.

Structurally, an applet is a sort of wrapper for your Java code. In contrast to a standalone
graphical Java application, which starts up from a main() method and creates a GUI, an
applet is itself a component that expects to be dropped into someone else's GUI. Thus, an
applet can't run by itself; it runs in the context of a web browser or a special applet-viewer
program (which we'll talk about later). Instead of having your application create a
JFrame to hold your GUI, you stuff your application inside a JApplet (which is itself a
Container) and let someone else add your applet to their GUI.

Applets are placed on web pages with the <APPLET> HTML tag, which we'll cover later
in this chapter. At its simplest, you just specify the name of the applet class and a size for
the applet:

<APPLET code="AnalogClock" width="100" height="100"></APPLET>

Pragmatically, an applet is an intruder into someone else's environment and therefore has to
be treated with suspicion. The web browsers that run applets impose restrictions on what
the applet is allowed to do. The restrictions are enforced by an applet security manager.
The browser provides everything the applet needs through an applet context-the API the
applet uses to interact with its environment.

A JApplet expects to be embedded in a GUI (perhaps a document) and used in a
viewing environment that provides it with resources. In all other respects, however, applets
are just ordinary Panel objects. As Figure 22-1 shows, an applet is a kind of Panel .
Like any other Panel , a JApplet can contain user-interface components and use all
the basic drawing and event-handling capabilities of the Component class. You can draw
on a JApplet by overriding its paint() method and respond to events in the
JApplet 's display area by providing the appropriate event listeners. Applets have
additional structure that helps them interact with the viewer environment.

Figure 22-1. The java.applet package

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Aside from the top-level structure and the security restrictions, there is no difference
between an applet and an application. If your application can live within the limits imposed
by a browser's security manager, you can easily structure it to function as an applet and a
standalone application. Normally you'll use the your applet class only as a handle to
manage the life cycle and appearance of your application-create the GUI, start, and stop.
So the bulk of your code should be easily adaptable to either a standalone or applet
deployment.

22.2.1 Applet Life Cycle

The Applet class contains four methods that can be overridden to guide it through its life
cycle. The init() , start() , stop() , and destroy() methods are called by the
appletviewer or web browser to direct the applet's behavior. init() is called once,
after the applet is created. The init() method is where you perform basic setup such as
parsing parameters, building a user interface, and loading resources.

By convention applets don't provide an explicit constructor to do any setup. The reason for
this is that the constructor is meant to be called by the applet's environment, for simple
creation of the applet. This might happen before the applet has access to certain resources,
such as information about its environment. Therefore, an applet doesn't normally do any
work there; instead it relies on the default constructor for the JApplet class and does its
initialization in the init() method.

The start() method is called whenever the applet becomes visible; it shouldn't be a
surprise then that the stop() method is called whenever the applet becomes invisible.
init() is called only once in the life of an applet, but start() and stop() can be

http://lib.ommolketab.ir
http://lib.ommolketab.ir

called any number of times (although always in the logical sequence). The start()
method is called when the applet is displayed, such as when it scrolls onto the screen;
stop() is called if the applet scrolls off the screen, or the viewer leaves the document.
start() tells the applet it should be active. The applet may want to create threads,
animate, or otherwise perform useful (or annoying) activity. stop() is called to let the
applet know it should go dormant. Applets should cease CPU-intensive or wasteful activity
when they are stopped and resume it when (and if) they are restarted. However, there's no
requirement that an invisible applet stop computing; in some applications, it may be useful
for the applet to continue running in the background. Just be considerate of your user, who
doesn't want an invisible applet dragging down system performance.

Finally, the destroy() method gives the applet a last chance to clean up before it's
removed-some time after the last call to stop() . For example, an applet might want to
close down suspended communications channels or remove graphics frames. Exactly when
destroy() is called depends on the browser; Netscape calls destroy() just prior to
deleting the applet from its cache. This means that although an applet can cling to life after
being told to stop() , how long it can go on is unpredictable. If you want to maintain
your applet as the user progresses through other pages of activities, you may have to put it
in an HTML frame, so that it remains visible and won't be told to stop() . See Section
22.2.3.5 later in this chapter.

If you've been through the rest of this book you've already seen a couple of applets that
snuck in among other topics. In Chapter 8 , we created a simple clock applet, and in
Chapter 12 , we used an applet to send packets of information from a web browser. Now
let's try a simple Swing-based example using JApplet . The following example, shown
in Figure 22-2 , ShowApplet , does nothing special, but you can use it to test the version
of Java that's running in your browser (and see if the Plug-in is installed) and to see when
the applet is started and stopped. It's a good reference.

Figure 22-2. ShowApplet

import javax.swing.*;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.awt.event.*;

public class ShowApplet extends JApplet {
 JTextArea text = new JTextArea();
 int startCount;

 public void init() {
 JButton button = new JButton("Press Me");
 button.addActionListener(new ActionListener() {
 public void actionPerformed(ActionEvent e) {
 text.append("Button Pressed!\n");
 }
 });
 getContentPane().add("Center", new JScrollPane(text));
 JPanel panel = new JPanel();
 panel.add(button);
 getContentPane().add("South", panel);
 text.append("Java Version: "
 +System.getProperty("java.version")+"\n");
 text.append("Applet init()\n");
 }
 public void start() {
 text.append("Applet started: "+ startCount++ +"\n");
 }
 public void stop() {
 text.append("Applet stopped.\n");
 }
}

After compiling the applet, we have to create an HTML page in which to embed it. The
following will do:

<html><head><title>ShowApplet</title></head>
<body>
<applet code="ShowApplet" WIDTH="300" HEIGHT="300">
 Your browser does not understand Java.</applet>
</body>
</html>

We'll discuss the APPLET tag and other issues related to embedding applets in documents

http://lib.ommolketab.ir
http://lib.ommolketab.ir

in detail later in this chapter. For now, just save this in a file called showapplet.html . Now
load the file with your favorite web browser (we suggest Netscape 6.2 or later, which
comes with a recent version of Java) and see what happens. If you have access to a web
server you can use it. Otherwise you may have to use a URL like the following to point to
your file:

file://localhost/c:/somedirectory/showapplet.html

The applet shows the version of Java running it and prints messages when its button is
pressed. It also prints messages when its start() and stop() methods are called,
along with a count. You can use this to experiment with different browsers and page-layout
configurations to see when your applet is reloaded or restarted. If your browser fails to
display the applet, don't despair. Later in this chapter we'll talk about how to convert the
HTML to force the browser to use the Java Plug-in.

22.2.2 The Applet Security Sandbox

Applets are quarantined within the browser by an applet SecurityManager . The
SecurityManager is part of the web browser or appletviewer . It is installed
before the browser loads any applets and implements the basic restrictions that let the user
run untrusted applets (loaded over the Internet) safely. Remember, there are no inherent
security restrictions on a standalone Java application. It is the browser that limits what
applets are allowed to do using a security policy.

Most browsers impose the following restrictions on untrusted applets:

Untrusted applets can't read or write files on the local host.

Untrusted applets can open network connections (sockets) only to the server from
which they originated.

Untrusted applets can't start other processes on the local host.

Untrusted applets can't have native methods.

The motivation for these restrictions should be fairly obvious: you clearly wouldn't want a
program coming from some random Internet site to access your files or run arbitrary
programs. Although untrusted applets can't directly read and write files on the client side or
talk to arbitrary hosts on the network, applets can work with servers to store data and
communicate. For example, an applet can use Java's RMI facility to do processing on its
server. An applet can communicate with other applets on the Net by proxy through its

http://lib.ommolketab.ir
http://lib.ommolketab.ir

server.

22.2.2.1 Trusted applets

We've been using the term untrusted applet , so it should come as no surprise that it is also
possible to have such a thing as a trusted applet . Applets become trusted through the use
of digital signatures, by signing the JAR file containing your applet code.Because a
signature identifies the applet's origin unambiguously, we can now distinguish between
trusted applets (i.e., applets that come from a site or person you trust not to do anything
harmful) and run-of-the-mill untrusted applets. In browser environments that support
signing, trusted applets can be granted permission to "go outside" of the applet security
sandbox. Trusted applets can be allowed to do most of the things that standalone Java
applications can do: read and write files, open network connections to arbitrary machines,
and interact with the local operating system by starting processes. Trusted applets still can't
have native methods, but including native methods in an applet would destroy its
portability anyway.

Chapter 3 discussed how to package your applet's class files and resources into a JAR file.
Later in this chapter we'll show you how to sign an applet with your digital signature.

22.2.3 Getting Applet Resources

An applet must communicate with its browser or applet viewer. For example, it may need
configuration parameters from the HTML document in which it appears. An applet may
also need to load images, audio clips, and other items. It may also want to ask the viewer
about other applets on the same HTML page in order to communicate with them. To get
resources from the environment, applets use the AppletStub and AppletContext
interfaces, provided by the browser.

22.2.3.1 Applet parameters

An applet gets its parameters from <PARAM> tags placed inside the <APPLET> tag in the
HTML document, as we'll describe later. You can retrieve these parameters using Applet
's getParameter() method. For example, the following code reads parameters called
imageName and sheep from its HTML page:

String imageName = getParameter("imageName");
try {
 int numberOfSheep = Integer.parseInt(getParameter("sheep"));
} catch (NumberFormatException e) { /* use default */ }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

There is an API that allows an applet to provide information (help) about the parameters it
accepts. The applet's getParameterInfo() can return an array of string arrays,
listing and describing the applet's parameters. For each parameter, three strings are
provided: the parameter name, its possible values or value types, and a verbose description.
For example:

public String [][] getParameterInfo() {
 String [][] appletInfo = {
 {"logo", "url", "Main logo image"},
 {"timer", "int", "Time to wait before becoming annoying"},
 {"flashing", "constant|intermittant", "Flag for how to flash"}
 };
 return appletInfo;
}

However it's unclear who, if anyone, uses this API.

22.2.3.2 Applet resources

An applet can find out where it lives using the getDocumentBase() and
getCodeBase() methods. getDocumentBase() returns the base URL of the
document in which the applet appears; getCodeBase() returns the base URL of the
Applet 's class files (these two are often the same). An applet can use these methods to
construct relative URLs from which to load other resources from its server like images,
sounds, and other data. The getImage() method takes a URL and asks for an image
from the viewer environment. The image may be pulled from a cache or loaded
asynchronously when later used. The getAudioClip() method, similarly, retrieves
sound clips.

The following example uses getCodeBase() to construct a URL and load a properties
configuration file, located in the same remote directory as the applet's class file:

Properties props = new Properties();
try {
 URL url = new URL(getCodeBase(), "appletConfig.props");
 props.load(url.openStream());
} catch (IOException e) { /* failed */ }

A much better way to load resources is by calling the getResource() and
getResourceAsStream() methods of the Class class, which search the applet's
JAR files (if any) as well as its codebase. The following code loads the same properties file

http://lib.ommolketab.ir
http://lib.ommolketab.ir

in a more portable way:

Properties props = new Properties();
try {
 props.load(getClass().getResourceAsStream("appletConfig.props"));
} catch (IOException e) { /* failed */ }

An applet can ask its viewer to retrieve an image by calling the getImage() method.
The location of the image to be retrieved is given as a URL, either absolute or fetched from
an applet's resources:

public class MyApplet extends javax.swing.JApplet {
 public void init() {
 try {
 // absolute URL
 URL monaURL =
 new URL("http://myserver/images/mona_lisa.gif");
 Image monaImage = getImage(monaURL);
 // applet resource URL
 URL daffyURL =
 getClass().getResource("cartoons/images/daffy.gif");
 Image daffyDuckImage = getImage(daffyURL);
 }
 catch (MalformedURLException e) {
 // unintelligable url
 }
 }
 // ...
}

Again, using getResource() is preferred; it looks for the image in the applet's JAR
file (if there is one), before looking elsewhere in the server's filesystem.

22.2.3.3 Driving the browser

The status line is a blurb of text that usually appears somewhere in the web browser's
display, indicating a current activity. An applet can request that some text be placed in the
status line with the showStatus() method. (The browser isn't required to do anything
in response to this call, but most browsers will oblige you.)

An applet can also ask the browser to show a new document. To do this, the applet makes a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

call to the showDocument(url) method of the AppletContext . You can get a
reference to the AppletContext with the applet's getAppletContext() method.
Calling showDocument(url) replaces the currently showing document, which means
that your currently running applet will be stopped.

Another version of showDocument() takes an additional String argument to tell the
browser where to display the new URL:

getAppletContext().showDocument(url, name);

The name argument can be the name of an existing labeled HTML frame; the document
referenced by the URL is displayed in that frame. You can use this method to create an
applet that "drives" the browser to new locations dynamically but keeps itself active on the
screen in a separate frame. If the named frame doesn't exist, the browser creates a new top-
level window to hold it. Alternatively, name can have one of the following special values:

self

Show in the current frame
_parent

Show in the parent of our frame
_top

Show in outermost (top-level) frame
_blank

Show in a new top-level browser window

Both showStatus() and showDocument() requests may be ignored by a cold-
hearted viewer or web browser.

22.2.3.4 Inter-applet communication

Applets that are embedded in documents loaded from the same location on a web site can
use a simple mechanism to locate one another (rendezvous). Once an applet has a reference
to another applet, it can communicate with it, just as with any other object, by invoking
methods and sending events. The getApplet() method of the applet context looks for
an applet by name:

Applet clock = getAppletContext().getApplet("theClock");

Give an applet a name within your HTML document using the name attribute of the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<APPLET> tag. Alternatively, you can use the getApplets() method to enumerate all
the available applets in the pages.

The tricky thing with applet communications is that applets run inside the security
sandbox. An untrusted applet can "see" and communicate only with objects that were
loaded by the same class loader. Currently, the only reliable criterion for when applets
share a class loader is when they share a common base URL. For example, all the applets
contained in web pages loaded from the base URL of http://foo.bar.com/mypages/ should
share a class loader and should be able to see each other. This includes documents such as
mypages/foo.html and mypages/bar.html , but not mypages/morestuff/foo.html .

When applets do share a class loader, other techniques are possible too. As with any other
class, you can call static methods in applets by name. So you could use static methods in
one of your applets as a "registry" to coordinate your activities.

22.2.3.5 Applet persistence and navigation

One of the biggest shortcomings of the Applet API is the lack of a real context for
coordinating their activities during navigation across a multi-page document or web
application. The Applet API simply wasn't designed for this. Although an applet's life cycle
is well-defined in terms of its API, it is not well-defined in terms of management by the
browser or scope of visibility. As we described in the previous section, applets loaded from
the same code base can rendezvous at runtime using their name attributes. But there are no
guarantees about how long an applet will live-or whether it will be stopped as opposed to
being destroyed-once it is out of view. If you experiment with our ShowApplet in
various browsers and in the Java Plug-in (which we'll discuss later), you'll see that in some
cases the applet is stopped and restarted when the user leaves the page, but more often the
applet is reinitialized from scratch. This makes designing multipage applications difficult.

One solution has been to use static methods as a shared "registry," as mentioned earlier.
However the details governing how classes loaded by applets are managed are even less
well-defined than the management of the applet's themselves. In Java 1.4, a new pair of
methods was added to the AppletContext to support short-term applet persistence:
setStream() and getStream() . With these methods, an applet can ask the context
to save a stream of byte data by a key value and return it later. The notion of providing the
state to the context as a stream is a little odd but easy enough to accommodate. Here is an
example:

getAppletContext.setStream("myStream",
 new ByteArrayInputStream("This is some test data...".getBytes()));

http://foo.bar.com/mypages/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Later, the stream data can be retrieved:

InputStream in = getAppletContext.getStream("myStream");

Currently the data is retained only as long as the browser is running. But it's possible that a
longer term persistence API will come about in the future. If you need more complex state
and navigation capabilities, you might consider using a signed applet to write to a file or
taking advantage of the new Java Web Start API to install your application locally.

22.2.3.6 Applets versus standalone applications

The following lists summarize the methods of the Applet API. The first is from the
AppletStub interface:

boolean isActive();
URL getDocumentBase();
URL getCodeBase();
String getParameter(String name);
AppletContext getAppletContext();
void appletResize(int width, int height);

The second is from the AppletContext interface:

AudioClip getAudioClip(URL url);
Image getImage(URL url);
Applet getApplet(String name);
Enumeration getApplets();
void showDocument(URL url);
public void showDocument(URL url, String target);
void showStatus(String status);

These are the methods provided by the applet-viewer environment. If your applet doesn't
happen to use any of them, or if you can provide alternatives to handle common cases
(such as loading images), your applet can function as a standalone application as well as an
applet. The basic idea is to add a main() method that provides a window (JFrame) in
which the applet can run. Here's an outline of the strategy:

//file: MySuperApplet.java
import java.applet.Applet;
import java.awt.*;
import javax.swing.*;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public class MySuperApplet extends JApplet {

 // applet's own code, including constructor
 // and init() and start() methods

 public static void main(String [] args) {
 // instantiate the applet
 JApplet theApplet = new MySuperApplet();

 // create a window for the applet to run in
 JFrame theFrame = new JFrame();
 theFrame.setSize(200,200);

 // place the applet in the window
 theFrame.getContentPane().add("Center", theApplet);

 // start the applet
 theApplet.init();
 theApplet.start();

 // display the window
 theFrame.setVisible(true);
 }
}

Here we get to play "applet viewer" for a change. We have created an instance of the class,
MySuperApplet , using its constructor-something we don't normally do-and added
it to our own JFrame . We call its init() method to give the applet a chance to wake
up and then call its start() method. In this example, MySuperApplet doesn't
implement init() and start() , so we're calling methods inherited from the Applet
class. This is the procedure an applet viewer would use to run an applet. (If we wanted to
go further, we could implement our own AppletContext and AppletStub and set
them in the JApplet before startup.)

Trying to make your applets into applications as well often doesn't make sense and is not
always trivial. We show this example only to get you thinking about the real differences
between applets and applications.

22.3 The <APPLET> Tag

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Applets are embedded in HTML documents with the <APPLET> tag. The <APPLET>
tag resembles the HTML image tag. It contains attributes that identify the applet to
be displayed and, optionally, give the web browser hints about how it should be shown. [1]

The standard image tag sizing and alignment attributes, such as height and width, can be
used inside the applet tag. However, unlike images, applets have both an opening
<APPLET> and a closing </APPLET> tag. Sandwiched between these can be any
number of <PARAM> tags that contain data to be passed to the applet:

<APPLET attribute attribute ... >
 <PARAM parameter >
 <PARAM parameter >
 ...
</APPLET>

22.3.1 Attributes

Attributes are name/value pairs that are interpreted by a web browser or applet viewer.
Attributes of the <APPLET> tag specify general features that apply to any applet, such as
size and alignment.[2] The definition of the <APPLET> tag lists a fixed set of recognized
attributes; specifying an incorrect or nonexistent attribute should be considered an HTML
error.

Three attributes are required in the <APPLET> tag. Two of these attributes, width and
height , specify the space the applet occupies on the screen. The third required attribute
must be either code or object ; you must supply one of these attributes, and you can't
specify both. The code attribute specifies the class file from which the applet is loaded;
the object attribute specifies a serialized representation of an applet. Most often, you'll
use the code attribute; the tools for creating serialized applets aren't quite there yet.

The following is an HTML fragment for a hypothetical simple clock applet that takes no
parameters and requires no special HTML layout:

<APPLET code="AnalogClock" width="100" height="100"></APPLET>

The HTML file that contains this <APPLET> tag must be stored in the same directory as
the AnalogClock.class class file. The applet tag is not sensitive to spacing, so the
previous code is therefore equivalent to:

<APPLET
 code="AnalogClock"
 width="100"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 height="100">
</APPLET>

Which is a bit more readable.

22.3.2 Parameters

Parameters are analogous to command-line arguments; they provide a way to pass
information to an applet. Each <PARAM> tag contains a name and a value that are passed
as strings to the applet:

<PARAM name = "parameter_name" value = "parameter_value">

Parameters provide a means of embedding application-specific data and configuration
information within an HTML document. Our AnalogClock applet, for example, might
accept a parameter that selects between local and universal time:

<APPLET code="AnalogClock" width="100" height="100">
 <PARAM name="zone" value="GMT">
</APPLET>

Presumably, this AnalogClock applet is designed to look for a parameter named zone
with a possible value of GMT .

Parameter names and values should be quoted and can contain spaces and other whitespace
characters.

The parameters a given applet expects are, of course, determined by the developer of that
applet. There is no standard set of parameter names or values; it's up to the applet to
interpret the parameter name/value pairs that are passed to it. Any number of parameters
can be specified, and the applet may choose to use or ignore them as it sees fit.

22.3.3 ¿Habla Applet?

Web browsers are supposed to ignore tags they don't understand; if the web browser
doesn't know about the <APPLET> or <PARAM> tags, we would expect them to
disappear, and any HTML between the <APPLET> and </APPLET> tags to appear
normally. By convention, Java-enabled web browsers ignore any extra HTML between the
<APPLET> and </APPLET> tags. Combined, this means we can place some alternative
HTML inside the <APPLET> tag, which is displayed only by web browsers that can't run
the applet.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For our AnalogClock example, we could display a small text explanation and an image
of the clock applet as a teaser:

<APPLET code="AnalogClock" width="100" height="100">
 <PARAM name="zone" value="GMT">
 If you see this you don't have a Java-enabled Web
 browser. Here's a picture of what you are missing.

</APPLET>

22.3.4 The Complete <APPLET> Tag

We can now spell out the syntax for the full-blown <APPLET> tag:

<APPLET
 code = class_name
or:
 object = serialized_applet_name

 width = pixels_high
 height = pixels_wide

 [codebase = location_URL]
 [archive = comma_separated_list_of_archive_files]
 [name = applet_instance_name]
 [alt = alternate_text]
 [align = style]
 [vspace = vertical pad pixels]
 [hspace = horizontal pad pixels]
>
 [<PARAM name = parameter_name value = parameter_value>]
 [<PARAM ...]

 [HTML code for non-Java-aware browsers]
</APPLET>

Either the code attribute or the object attribute must be present to specify the applet to
run. The code attribute specifies the applet's class file; you'll see this most frequently. The
object attribute specifies a serialized (pickled) representation of an applet. When you
use the object attribute to load an applet, the applet's init() method is not called.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

However, the serialized applet's start() method is called.

The width , height , align , vspace , and hspace attributes determine the
preferred size, alignment, and padding, respectively. The width and height attributes
are required.

The codebase attribute specifies the base URL to be searched for the applet's class files.
If this attribute isn't present, the browser looks in the same location as the HTML file. The
archive attribute specifies a list of JAR or ZIP files in which the applet's class files are
located. To put two or more files in the list, separate the filenames with commas; for
example, the following attribute tells the browser to search three archives for the applet:

archive="Part1.jar,Part2.jar,Utilities.jar"

The archive files listed by the archive tag are loaded from the codebase URL. When
searching for classes, a browser checks the archives before searching any other locations
on the server.

The alt attribute specifies alternate text that is displayed by browsers that understand the
<APPLET> tag and its attributes but can't actually run applets. This attribute can also
describe the applet because, in this case, any alternate HTML between <APPLET> and
</APPLET> is, by convention, ignored by Java-enabled browsers.

The name attribute specifies an instance name for the executing applet. This is a name
specified as a unique label for each copy of an applet on a particular HTML page. For
example, if we include our clock twice on the same page (using two applet tags), we should
give each instance a unique name to differentiate them:

<APPLET code="AnalogClock" name="bigClock" width="300" height="300">
</APPLET>
<APPLET code="AnalogClock" name="smallClock" width="50" height="50">
</APPLET>

Applets can use instance names to recognize and communicate with other applets on the
same page. We could, for instance, create a "clock setter" applet that knows how to set the
time on an AnalogClock applet and pass it the instance name of a particular target
clock on this page as a parameter. This might look something like:

<APPLET code="ClockSetter">
 <PARAM name="clockToSet" value="bigClock">
</APPLET>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

22.3.5 Loading Class Files

The code attribute of the <APPLET> tag should specify the name of an applet. This is
either a simple class name or a package path and class name. For now, let's look at simple
class names; we'll discuss packages in a moment. By default, the Java runtime system looks
for the class file in the same location as the HTML document that contains it. This location
is known as the base URL for the document.

Consider an HTML document, clock.html , that contains our clock applet example:

<APPLET code="AnalogClock" width="100" height="100"></APPLET>

Let's say we retrieve the document at the following URL:

http://www.time.ch/documents/clock.html

Java tries to retrieve the applet class file from the same base location:

http://www.time.ch/documents/AnalogClock.class

The codebase attribute of the <APPLET> tag specifies an alternative base URL for the
class file search. Let's say our HTML document now specifies codebase , as in the
following example:

<APPLET
 codebase="http://www.joes.ch/stuff/"
 code="AnalogClock"
 width="100"
 height="100">
</APPLET>

Java now looks for the applet class file at:

http://www.joes.ch/stuff/AnalogClock.class

22.3.6 Packages

For "loose" applet class files that are not packaged into archives, Java uses the standard
package name to directory path mapping to locate files on the server. The only difference is
that the requests are not local file lookups but requests to the web server at the applet's
codebase URL. Before a class file is retrieved from a server, its package-name component
is translated by the client into a relative path name under the applet's codebase.

http://www.time.ch/documents/clock.html
http://www.time.ch/documents/AnalogClock.class
http://www.joes.ch/stuff/AnalogClock.class
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Let's suppose that our AnalogClock has been placed into a package called
time.clock (a subordinate package for clock-related classes, within a package for
time-related classes). The fully qualified name of our class is
time.clock.AnalogClock . Our simple <APPLET> tag would now look like:

<APPLET code="time.clock.AnalogClock" width="100" height="100"></APPLET>

Let's say the clock.html document is once again retrieved from:

http://www.time.ch/documents/clock.html

Java now looks for the class file in the following location:

http://www.time.ch/documents/time/clock/AnalogClock.class

The same is true when specifying an alternative codebase :

<APPLET
 codebase="http://www.joes.ch/stuff/"
 code="time.clock.AnalogClock"
 width="100"
 height="100">
</APPLET>

Java now tries to find the class in the corresponding path under this base URL:

http://www.joes.ch/stuff/time/clock/AnalogClock.class

22.3.7 Viewing Applets

Sun's SDK comes with an applet-viewer program, aptly called appletviewer . To use
appletviewer , specify the URL of the document on the command line. For example,
to view our (still only theoretical) AnalogClock at the URL shown earlier, use the
following command:

% appletviewer http://www.time.ch/documents/clock.html

appletviewer retrieves all applets in the specified document and displays each one in
a separate window. appletviewer isn'tt a web browser; it doesn't attempt to display
HTML. It's primarily a convenience for testing and debugging applets. If the document
doesn't contain <APPLET> tags, appletviewer complains and does nothing.

http://www.time.ch/documents/clock.html
http://www.time.ch/documents/time/clock/AnalogClock.class
http://www.joes.ch/stuff/time/clock/AnalogClock.class
http://lib.ommolketab.ir
http://lib.ommolketab.ir

22.4 Using the Java Plug-in

The disadvantage of the <APPLET> tag is that you have to rely on the browser's Java
interpreter. This is bad for two reasons:

The version of Java that is included in popular browsers lags the current version of
Java by years. It was a painfully long time, for instance, between the release of Java
1.1 and the time that version was supported in Netscape and Internet Explorer. As a
matter of fact, it hasn't ever been fully supported in Internet Explorer. Only Netscape
6.x now supports an up-to-date version of Java out of the box (using the Plug-in that
we'll talk about in this section).

Historically Microsoft's version of Java has had its own bugs and idiosyncrasies,
which were different from the bugs and idiosyncrasies of Sun's version. This
effectively meant that testing had to be done on each platform, contrary to Java's
write-once, run-anywhere proposition.

At the time of this writing, most popular versions of Netscape and Internet Explorer are
moderately stable for Java 1.1 development. As a developer, though, you will want to use
modern features of Java including Swing, Collections, and so on. So what can we do?

22.4.1 What Is the Java Plug-in?

We might take the state of Java in the browser to indicate that applets are dead. But wait! A
clever technology called the Java Plug-in saves the day. A plug-in is simply a loadable
application module that is used to support new content types in a web browser. Both
Navigator and Internet Explorer have a plug-in mechanism that allows the browser to be
extended in this way.

Microsoft calls this technique ActiveX custom controls. But it's exactly the same concept:
the browser gives control for a part of a web page to another piece of code. For example,
you can view movies in your browser using Apple's QuickTime plug-in. You can view
interactive multimedia with Macromedia's Shockwave plug-in. The idea is very similar to
applets; basically the browser hands-off responsibility for some rectangular area on the
screen to someone else's code. The Java Plug-in is simply a Java runtime environment
implemented as a browser plug-in.

Applets that use the Java Plug-in can take advantage of the very latest Java platform
features. With the Plug-in, Java developers can specify the version of Java they require,
and their applets should run in exactly the same way in any browser using it. The browser

http://lib.ommolketab.ir
http://lib.ommolketab.ir

isn't even really running the applet anymore; the Plug-in takes care of it.

This is nifty technology, but it does come at a price. Users who want to use the Java Plug-
in to run applets have to download and install it first. While this is not a huge burden, it is a
barrier to universal acceptance. Netscape 6.x comes with the Java Plug-in installed and
uses it automatically. Netscape also supports the automated download of new Plug-in
versions as they become available. But with the wide installed base of browser versions by
both Microsoft and Netscape, installation will be an issue for some time to come.

22.4.2 Messy Tags

The HTML for web pages that contain Plug-in applets is much messier than the
<APPLET> tag you've already seen. Part of the problem is that you have to use
specialized tags for Internet Explorer and Navigator. Navigator uses the <EMBED> tag for
plug-ins, while Internet Explorer uses the <OBJECT> tag. However if you are clever
about fitting the <EMBED> tag inside the <OBJECT> tag, you'll end up with some HTML
that both browsers recognize and run correctly.

These tags have their own little syntax, but basically you're still providing the same
information to the browser. You specify the size of the applet, the class name to use, the
location of additional classes, and parameters that should be passed to the applet itself.
Fortunately, you don't have to worry too much about the details. Sun provides a handy
utility, the HTML Converter, which converts <APPLET> tags to the appropriate
<EMBED> and <OBJECT> tags. Assuming you've set up your <APPLET> tag correctly,
you should have no trouble converting your HTML page to use the Java Plug-in. This
utility is available for download at http://java.sun.com/products/plugin/index-1.4.html

Suppose, for example, that you create a web page called ShowOff.html . Once you have the
<APPLET> tag set up the way you want (you can test it with appletviewer), you can
use the HTML Converter to set up your web page to use the Plug-in. The HTML Converter
runs as a Swing application. To run it, navigate to the directory where you installed the
HTML Converter and type the following:

C:\> java HTMLConverter

The window is pretty self-explanatory. You can convert all HTML files in a directory or
just convert a single HTML file. The conversion is done "in-place," which means that your
original HTML is overwritten with the new stuff. The Converter automatically backs up
your old files unless you tell it otherwise.

You can perform different kinds of conversions, represented by different templates. By

http://lib.ommolketab.ir
http://lib.ommolketab.ir

default, the HTML Converter uses the "standard" template that produces a page that works
with Navigator and Internet Explorer on Windows and Solaris. If you choose "extended," it
tries to produce a more elaborate version that should work on a wider set of browsers. In
addition to adding the <EMBED> and <OBJECT> tags, the "extended" template preserves
the original <APPLET> tag. This has the added benefit that you'll still be able to test your
applet with appletviewer .

We should also note that in version 1.4, the Java Plug-in has a new feature: once installed,
the Plug-in takes over control of the regular <APPLET> tag (at least for Internet Explorer)
so that, by default, all applets begin to use the Plug-in. Once the Plug-in installation is
boot-strapped, all applets benefit from it, regardless of whether the page uses the special
tags. This is a major coup for Sun, and it will be interesting to see if it is supported in the
future.

22.4.3 Viewing Plug-in Applets

What actually happens when users browse to a page with a Plug-in applet? It depends, of
course, on which browser you're using and what has been installed. If you are on a "virgin"
system, Internet Explorer asks the user for permission to download and run the Java Plug-
in to display the applet. Older versions of Netscape Navigator direct the user to the Java
Runtime Environment (JRE) download page. (The Java Plug-in is distributed as part of the
JRE.) In either case, the download and installation times vary, depending on network speed
and user comfort level. You can expect that most Internet users will have to spend five to
ten minutes downloading and installing the JRE.

The good news is that the installation needs to be done only once. When JRE is installed
and running, you can view Plug-in applets immediately (at least as soon as the browser
loads the Plug-in). The only time the user needs to install a new Plug-in is when a new
version of Java comes out.

Despite the price of installation and HTML tag messiness, the Plug-in is powerful medicine
indeed. No longer do you have to wait for browser vendors to implement the latest Java
platform features; the Plug-in makes the latest Java releases available to applets
immediately, and it provides a more hospitable environment for applets, regardless of what
browser displays them.

22.5 Java Web Start

The Java Web Start API is an interesting alternative to using applets. Java Web Start uses
the Java Network Launching Protocol (JNLP) to transparently download and install Java

http://lib.ommolketab.ir
http://lib.ommolketab.ir

applications locally. All the user has to do is to click on the install link on a web page. The
installed applications can then be launched just like any installed application, by clicking
on an icon on the desktop or through the Start menu, but they continue to be managed by
the Java security policy and to be checked for automatic upgrades. Java Web Start is a form
of zero administration client installation, which implies that the client doesn't have to do
any work to install or maintain the application. JNLP applications may be signed, allowing
the user to grant them fine-grained privileges, or unsigned. But even unsigned JNLP
applications can take advantage of standard APIs that prompt the user for permission to
perform basic operations such as opening files and printing.

Packaging your application to use JNLP is relatively easy, but we won't get into it here.
The process mainly involves creating a JNLP deployment file that lists your JARs and
specifies any special permission they require. You must then include an appropriate link in
your web page that uses Web Start. The first time a user tries to install a JNLP application,
they will have to install the Web Start plug-in (just like the Java Plug-in is installed).
Thereafter, the plug-in manages all JNLP installs. See
http://java.sun.com/products/javawebstart/ for more information.

22.6 Using Digital Signatures

Digital signatures provide a way to authenticate documents and other data. They solve one
of the Internet's biggest problems: given that you've received a message from Ms. X, how
do you know that the message really came from Ms. X and not an imposter? Just as
important for Java, let's say that you've downloaded a great new applet written by your
favorite author, Pat Niemeyer, and you'd like to grant it some additional privileges, so that
it can do something cool for you. You trust that this particular author wouldn't intentionally
distribute something harmful. But how do you know that this person really is who he says
he is? And what if you downloaded the applet from a third-party location, like an archive?
How can you be sure that someone hasn't modified the applet since the author wrote it?
With Java's default security policies for web browsers, such an applet can't do anything
serious, but when we're talking about configuring your browser to grant additional
privileges to applets coming from trusted sites, you would be in for trouble-if it weren't
for digital signatures.

Like their inky analogs, digital signatures associate a name with an item in a way that is
difficult to forge. In reality, a digital signature is much more difficult to forge than a
traditional signature. Furthermore, digital signatures provide another benefit: they allow
you to authenticate a document, proving that it hasn't been altered in transit. In other words,
you know who the sender is, and that the data you received is exactly what the sender sent.
Some malicious person can't clip out a digital signature, modify the original document (or

http://java.sun.com/products/javawebstart/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

applet), and attach the old signature to the result. And he can't generate a new signature; at
least, he can't generate a signature claiming that the document came from its original
sender. (He could, of course, attach his own signature, but that would be like signing the
stick-up note you hand to the bank teller.)

Digital signatures are based on public-key cryptography, which is beyond the scope of this
book. However, the basics are important and interesting. [3] In a public-key system, there
are two pieces of information: a public key and a private one. The keys have a special,
asymmetric relationship, such that a message encrypted with one key can only be
decrypted with the other key. Furthermore, if you know only one key, it is very difficult to
compute the other. Therefore, if I give you my public key, you can use it to create an
encrypted message that only I can read. No one else, including you, has enough
information to go through the process of decrypting the encoded message, so it's safe to
send it over untrusted networks. Furthermore, I can (and probably will) give my public key
to anyone in the world, since the public key only lets people send me messages; it doesn't
let them read my messages.

Digital signatures are based on the reverse process. If I encrypt something with my private
key, anyone can use my public key to read the message. That may not sound very useful,
since I already said that I'd give my public key away to anyone who wants it. But in this
case, we're not trying to keep the message secret, we're trying to prove that I'm the only one
who could have sent the message. And that's exactly what we've done. No one else has my
private key, so no one else can send a message that can be decrypted with my public key.
Therefore, only the real me could have sent the message.

We've simplified the process in one crucial way. Encrypting a large message with complex
algorithms takes a long time, even with fast computers. And some public-key algorithms
just aren't suitable for encrypting large amounts of data for other reasons, as well. For
digital signatures, then, we don't usually encrypt the entire message. First, we use a
standard algorithm to create a "hash" or "message digest." To produce the signature, we
then encrypt the (relatively small) message digest with the private key. The recipient can
then decrypt the signature with the public key and check whether the resulting message
digest matches the message he received. If it does, the recipient knows the message hasn't
been altered, and the sender is who he claims to be.

Digital signatures can be used to authenticate Java class files and other types of data sent
over the network. The author of an object signs the data with his or her digital signature,
and we use the author's public key to authenticate that signature after we retrieve it. We
don't have to communicate with anyone in order to verify the authenticity of the data. We
don't even have to make sure that the communications by which we received the data are
secure. We simply check the signature after the data arrives. If it is valid, we know that we

http://lib.ommolketab.ir
http://lib.ommolketab.ir

have the authentic data and that it hasn't been tampered with. Or do we?

Well, there is a larger problem digital signatures alone don't solve: verifying identity. If the
signature checks out, we know that only the person (or entity) that published the public key
could have sent the data. But how do we know that the public key really belongs to
whomever we think it does? How do we associate an identity with that public key in the
first place? We've made it more difficult to counterfeit a message, but it's not impossible. A
forger could conceivably create a counterfeit Java class, sign it with his own private key,
and try to trick you into believing that his public key is that of the real author or the trusted
web site. In this case, you'll download the bad applet, then use the wrong public key to
verify the applet, and be tricked into thinking that there's nothing wrong. This is where
certificates and certificate authorities come into play.

22.6.1 Certificates

A certificate is a document that lists a name and a public key. By a name, we mean some
real-world information describing a person or entity. For example, a certificate might
contain your full name and address or the name of a company and the location of its
headquarters. We'll consider the combination of a name and a public key in this way to
make up an identity . If we have valid information for a particular identity, we can verify
data that the identity has signed.

A certificate is signed with the digital signature of a certificate authority (CA)-the entity
that issued the certificate. The certificate is, in effect, a proclamation by the CA that the
identity listed is valid-in other words, that the listed public key really does belong to the
entity named. If we decide to trust the CA, we can then believe the identities contained in
the certificates it issues are valid. The certificate acts as a sort of electronic ID card, backed
up by the credentials of the CA. Of course, we no longer issue certificates on fancy vellum
scrolls, as shown in Figure 22-3 ; the digital format for modern certificates is described by
a standard called X.509.

Figure 22-3. An old-fashioned certificate

http://lib.ommolketab.ir
http://lib.ommolketab.ir

22.6.1.1 Certificate authority certificates

This is all well and good, but the original problem remains: in order to verify the
authenticity of a certificate, we need to verify its signature. Now, to do that, we need to
know the CA's public key; rather than solving the problem, we simply seem to have shifted
the problem to a new front. If a counterfeiter could substitute her public key for the public
key of one entity, she might be able to do the same for the CA. But shifting the problem
helps quite a bit. We have reduced the number of public keys we need to know from an
unlimited number (all the identities we might ever encounter) to a very small number: one
for each CA. We have chained our trust of the identity to the trust of the CA's identity.
Chaining can be allowed to extend further, to an arbitrary depth, allowing CAs to back up
lower CAs, and so on. At some point, of course, the chain has to stop, and that usually
happens with a "self-signed" or certificate authority certificate ; that is, a certificate that is
issued by the CA for itself, containing its own public key. "What good is that?" you might
ask.

As for the authenticity of the top-level CAs themselves, we have to rely on strong, well-
known certificates that we have acquired by very secure or perhaps very tangible means.
Web browsers, such as Netscape Navigator and Microsoft Internet Explorer, come with CA
certificates for several popular CAs. Netscape Navigator and MSIE are, for example,
shipped with a CA certificate for Verisign (http://www.verisign.com), so that you can
safely verify any certificates signed by Verisign, wherever you encounter them. So, if all is
working, we've reduced the problem to just that of your getting your copy of the web-

http://lib.ommolketab.ir
http://lib.ommolketab.ir

browser software securely the first time. As far as maintenance goes, browsers like
Netscape let you download new CA certificates dynamically, using a secure connection.

22.6.1.2 Site certificates

Certificates are presented to your web browser for verification when you encounter signed
objects (signed JAR files). They are also issued by web servers when you make a secure
connection using the HTTPS (HTTP Secure Sockets Layer) protocol. Browsers like
Netscape and Internet Explorer may save these certificates encountered from third-party
locations so that you can assign privileges or attributes to those identities and so that they
can be recognized again. We'll call these certificates site certificates -though they may
belong to any third party, like a person or an organization. For example, you might declare
that objects signed by a certain site are allowed to write local files. The browser then saves
that site's certificate, marking it with the privileges (writing local files) that it should grant.

22.6.1.3 User (signer) certificates

Finally, you, the user, can have your own identity and your own certificates to validate
your identity. Browsers such as Netscape Navigator store user certificates that can identify
you to third parties. A user certificate is associated with a private key-the private key that
goes with the public key in the certificate. When you use a private key to sign an object,
the corresponding certificate is shipped as part of the signature. Remember, the recipient
needs the public key in your certificate to validate your signature. The certificate says on
whose authority the recipient should trust that public key.

So, where do you get private keys, public keys, and certificates validating your public
keys? Well, as for the keys, you generate those yourself. No other party should ever have
access to your private key, much less generate it for you. After you generate a public and
private key pair, you send your public key to the CA to request that they certify you. The
CA can make you jump through whatever hoops are necessary; when they are satisfied that
you are who you say you are, they grant you a certificate.

In Netscape Navigator, this entire process can be accomplished by the user, within the
browser, using the KEYGEN extension to HTML. You can then use Netscape tools to sign
JAR files, send secure email, etc. The general Java tools are not quite as slick. The Java
SDK supplies the keytool utility to manage keys and certificates.

22.6.2 The keytool Utility

keytool is the standard Java utility for managing a database of identities. With it, you can

http://lib.ommolketab.ir
http://lib.ommolketab.ir

generate or import key pairs and certificates. You can then use these keys and certificates
to sign JAR files.

The packages that implement cryptography in Java are part of the Java Cryptography
Extension (JCE). As of Java 1.4, the JCE is bundled with the standard edition of Java. Prior
to that it was an optional package (and subject to export restrictions). The JCE provides
both framework and implementations of algorithms. The implementations are called
"provider" packages; Sun's security provider package comes with the SDK by default.
Other packages can be installed to provide additional or alternate implementations of the
cryptographic algorithms. By default, keytool uses the implementations found in Sun's
provider package, though it can use other packages if any are available.

The user interface to keytool is awkward. It's a good bet that someone will implement a key
management utility with a friendlier GUI; maybe it will be supplied with a future version
of Java. In any event, we won't spend a great deal of time discussing the details of keytool ;
it's more important to understand the concepts.

22.6.2.1 What about Netscape and Internet Explorer?

Before the debut of the Java Plug-in, Netscape and Microsoft both invented their own
code-signing schemes. As a result, signed applets in the Java 1.1 world were a disaster.
There were three different ways to sign and deploy code, one each for Netscape Navigator,
Sun's HotJava, and Microsoft's Internet Explorer. Unless you knew in advance that you had
only one kind of browser worry about, you were pretty much out of luck.

The Java Plug-in levels the field for signed applets, because the packaging and deployment
strategy is the same for all browsers.

22.6.2.2 The TestWrite example

Before we dive into the details, let's take a look at an example, just to show that the process
really works with the Java Plug-in. Use your browser to navigate to
http://examples.oreilly.com/learnjava2/TestWrite/Unsigned.html . You'll see the applet
shown in Figure 22-4 . When you push the button, this applet attempts to write a harmless
file on the local host. Give it a try. The applet should fail with a security exception and
display a message.

Figure 22-4. An unsigned applet violating security policy

http://examples.oreilly.com/learnjava2/TestWrite/Unsigned.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Now try a web page that displays the same applet:
http://examples.oreilly.com/learnjava2/TestWrite/Signed.html . The only difference is that
we've signed the JAR file containing the applet, with a key and certificate generated using
keytool .

When the Java Plug-in loads the applet's JAR file, it examines the signature. What happens
next depends on whether you're using the latest Java Plug-in. With Java 1.4, the Plug-in
prompts the user to decide whether or not to trust the code. In that case you get a dialog
like Figure 22-5 .

Figure 22-5. Signed applet prompt

The dialog informs you that the applet is signed, in this case by Pat Niemeyer, and asks if
you want to grant access to it. You can get information about the certificate used to sign the
JAR by clicking on View Certificate . The two fields of interest are Issuer and Subject. In
this case, we have signed the JAR file with our own self-issued certificate; the issuer and
subject (or signer) are both identified as "Pat Niemeyer." After pondering our
trustworthiness, you can grant the TestWrite applet permissions or deny them. You can
also specify whether the permissions last for one session or are remembered until the
certificate expires. If you deny permissions, the applet may still run; it depends on what it
tries to do and how it handles being denied access. In this case, the applet prints the

http://examples.oreilly.com/learnjava2/TestWrite/Signed.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

security exception when it tries to write the file. If you granted the applet permissions,
hitting the button should show a successful write. In the next section, we'll look at how we
created our certificate and signed this JAR.

If you have an older version of the Plug-in (Java 1.3 or lower) Java informs you it can't
verify the signature. This is because Java doesn't know about our certificate, and older
versions didn't prompt the user to accept unknown signers. We could manually install our
certificate in the local Java environment, but this procedure is complicated. Fortunately
with the Plug-in, we can specify the version required if we want to. (If you are interested in
learning how to install keys manually for older versions of Java, you can find out all about
it in the expanded material included on the accompanying CD-ROM; view CD content
online at http://examples.oreilly.com/learnjava2/CD-ROM/ .)

22.6.3 Keystores, Keys, and Certificates

The SDK supports keystores that hold identities along with their public keys, private keys,
and certificates. It includes the utility we covered earlier, keytool . We'll use this database
as a repository while we create and work with our identity locally.

An identity can be a person, an organization, or perhaps a logical part of an organization.
Before it can be used, an identity must have a public key and at least one certificate
validating its public key. keytool refers to entities in the local database by IDs or aliases.
These names are arbitrary and are not used outside the keystore (and possibly local Java
security policy files that reference the keystore). Identities that have a private key stored
locally in the keystore, as well as a public key, are called signers . These identities can be
used to sign JAR files.

The default location for a keystore is the file .keystore in the user's home directory. On a
single user system, the Java installation directory is used instead of the user's home
directory. The default keystore location is used by keytool unless you specify another
keystore with the -keystore option.

If you are going to maintain any private keys in a keystore (if you will have any signers),
you must take special care to keep the keystore file safe (and not publicly readable). Private
keys must be kept private.

22.6.3.1 Public and private keys

We can create a new entry in the default keystore, complete with a key pair, with the
following keytool command:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

C:\> keytool -genkey -alias Pat -keyalg DSA -keysize 1024 -dname "CN=Pat Niemeyer,
OU=Technical Publications, O=O'Reilly & Associates, C=US" -keypass secure -storepass
boofa

There are a lot of options to explain. The most important one is -genkey , which tells
keytool to create a new key pair for this entry. A key pair enables this entry to sign code.
The -alias option supplies an alias for this entry, Pat. The -keyalg argument, DSA, is
the algorithm for which we are going to generate the keys. The current release of Java
supports only DSA, the Digital Signature Algorithm, which is a U.S. government standard
for signing. The -keysize argument is the key length in bits. For most algorithms,
larger key sizes provide stronger encryption. DSA supports keys of either 512 or 1024 bits.
You should use the latter, unless you have a specific reason to do otherwise.

keytool generates the keys and places them in the default keystore. Private keys are
specially protected using the -keypass option. To retrieve Pat's private key, you need the
correct key password. The integrity of the keystore as a whole is protected by the -
storepass option. You need to supply the same keystore password to retrieve data from
this keystore later.

Once we've created a keystore entry, we can display it with the command:

C:\> keytool -list -alias Pat -storepass boofa

To see more detail, add the -v option (for "verbose"):

C:\> keytool -list -alias Pat -v -storepass boofa

We can also list the entire contents of the database:

C:\> keytool -list -storepass boofa

22.6.3.2 Certificates

Now that we have keys, we want a certificate in which to wrap our public key for
distribution. Ideally, at this point, we'd send a public key to a trusted CA and receive a
certificate in return. keytool can generate such a request in a standard format called a
Certificate Signing Request (CSR). To generate a signing request for the entry we just
created, you would do this:

C:\> keytool -csr -alias Pat -file Pat.csr -keypass secure -storepass boofa

You need to specify the alias for the entry you want, a filename where the CSR will be
written, and the password for the private key. The output file will contain the public key,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

along with the name and organizational information you provided. Once you've generated
the CSR file, you can send it off to your favorite Certificate Authority. After they've
performed some identity checks on you, and once you pay them, they will send a certificate
back to you. Suppose they send it back in a file called Pat.x509 . You can then use keytool
to import this certificate as follows:

C:\> keytool -import -alias Pat -file Pat.x509 -keypass secure -storepass boofa

To demonstrate the features of keytool , we can serve as our own authority (as we did in the
example) and use our own self-signed certificate. It turns out that keytool already did this
for us when we created keys! A self-signed certificate already exists in the keystore; all we
have to do is export it as follows:

C:\> keytool -export -alias Pat -file Pat.cer -storepass boofa

22.6.4 The jarsigner Utility

If we have a signer keystore entry, initialized with its private and public keys, we are ready
to sign JAR files. This is accomplished using another command-line utility, jarsigner . All
we need to do is specify which keystore entry should do the signing, which JAR needs to
be signed, and the keystore password:

C:\> jarsigner -storepass boofa testwrite.jar Pat

If we now list the archive, we see that jarsigner has added two files to the META-INF
directory: PAT.SF and PAT.DSA . PAT.SF is the signature file; it's like the manifest file for
this particular signature. The signature file lists the objects that were signed and the
signature algorithms. PAT.DSA is the actual binary signature.

In this chapter, we covered the events that led to the current, fractured applet world and set
the scene for what's to come. The Java Plug-in is currently our best hope for Java in the
browser to succeed, but newer technologies such as Java Web Start are making inroads. It's
an exciting time for Java as it begins to bloom on the client side just as it has on the server
side for a number of years.

[1] If you aren't familiar with HTML or other markup languages, you may want to refer to
HTML and XHTML: The Definitive Guide by Chuck Musciano and Bill Kennedy (O'Reilly) for a
complete reference on HTML and structured web documents.

[2] Many HTML tags besides <APPLET> have attributes.

[3] See Bruce Schneier's encyclopedic Applied Cryptography (John Wiley & Sons) or
Jonathan Knudsen's Java Cryptography (O'Reilly).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

Chapter 23. XML

 23.1 A Bit of Background

 23.2 XML Basics
 23.3 SAX

 23.4 DOM

 23.5 Validating Documents

 23.6 XSL/XSLT

 23.7 Web Services

Every now and then, an idea comes along that in retrospect seems just so simple and
obvious that everyone wonders why it hadn't been seen all along. Often when that happens,
it turns out that the idea isn't really all that new after all. The Java revolution began by
drawing on ideas from all the programming languages that came before it. Now,
XML-the Extensible Markup Language-is doing for content what Java did for
programming: providing a portable language for describing data.

XML is a simple, common format for representing structured information as text. The
concept of XML follows the success of HTML as a universal document presentation
format and generalizes it to handle any kind of data. In the process, XML has not only
recast HTML but is transforming the way that businesses think about their information. In
the context of a world driven more and more by documents and data exchange, XML's time
has come.

23.1 A Bit of Background

XML and HTML are called markup languages because of the way they add structure to
plain-text documents-by surrounding parts of the text with tags that indicate structure or
meaning, much as someone with a pen might highlight a sentence and add a note. While
HTML predefines a set of tags and their structure, XML is a blank slate in which the author
gets to define the tags, the rules, and their meanings.

Both XML and HTML owe their lineage to Standard Generalized Markup Language
(SGML)-the mother of all markup languages. SGML has been used in the publishing
industry for many years (including at O'Reilly). But it wasn't until the Web captured the
world that it came into the mainstream through HTML. HTML started as a very small
application of SGML, and if HTML has done anything at all, it has proven that simplicity

http://lib.ommolketab.ir
http://lib.ommolketab.ir

reigns.

HTML flourished but eventually showed its limitations. Documents using HTML have an
unhealthy mix of structural information (such as <head> and <body>) and presentation
information (for an egregious example, <blink>). Mixing the model and the user
interface in this way limits the usefulness of HTML as a format for data exchange; it's hard
for a machine to understand. XML documents consist purely of structure, and it is up to the
reader of the document to apply meaning. As we'll see in this chapter, several related
languages exist to help interpret and transform XML for presentation or further processing.

23.1.1 Text Versus Binary

When Tim Berners-Lee began postulating the Web back at CERN in the late 1980s, he
wanted to organize project information using hypertext. [1] When the Web needed a
protocol, HTTP-a simple, text-based client-server protocol-was invented. So what
exactly is so enchanting about the idea of plain text? Why, for example, didn't Tim turn to
the Microsoft Word format as the basis for Web documents? Surely a binary, non-human-
readable format and protocol would be more efficient? Since the Web's inception, there
have now been trillions of HTTP transactions. Was it really a good idea for them to use
(English) words like "GET" and "POST"?

The answer, as we've all seen, is yes! What humans can read, human developers can work
with more easily. There is a time and place for a high level of optimization (and obscurity),
but when the goal is universal acceptance and cross-platform portability, simplicity and
transparency are paramount. This is the first, fundamental proposition of XML.

23.1.2 A Universal Parser

Using text to exchange data is not exactly a new idea, either, but historically, for every new
document format that came along, a new parser would have to be written. A parser is an
application that reads a document and understands its formatting conventions, usually
enforcing some rules about the content. For example, the Java Properties class has a
parser for the standard properties file format (Chapter 10). In our simple spreadsheet in
Chapter 17 , we wrote a parser capable of understanding basic mathematical expressions.
As we've seen, depending on complexity, parsing can be quite tricky.

With XML, we can represent data without having to write this kind of custom parser. This
isn't to say that it's reasonable to use XML for everything (e.g., typing math expressions
into our spreadsheet), but for the common types of information that we exchange on the
Net, we should no longer have to write parsers that deal with basic syntax and string

http://lib.ommolketab.ir
http://lib.ommolketab.ir

manipulation. In conjunction with document-verifying components (DTDs or XML
Schema), much of the complex error checking is also done automatically. This is the
second fundamental proposition of XML.

23.1.3 The State of XML

The APIs we'll discuss in this chapter are powerful and well tested. They are being used
around the world to build enterprise-scale systems today. Unfortunately, the current slate of
XML tools bundled with Java only partially remove the burden of parsing from the
developer. Although we have taken a step up from low-level string manipulation to a
common, structured document format, the standard tools still generally require the
developer to write low-level code to traverse the content and interpret the string data
manually. The resulting program remains somewhat fragile, and much of the work can be
tedious. The next step, as we'll discuss briefly later in this chapter, is to begin to use
generating tools that read a description of an XML document (an XML DTD or Schema)
and generate Java classes or bind existing classes to XML data automatically.

23.1.4 The XML APIs

As of Java 1.4, all the basic APIs for working with XML are bundled with Java. This
includes the javax.xml standard extension packages for working with Simple API for
XML (SAX), Document Object Model (DOM), and Extensible Stylesheet Language (XSL)
transforms. If you are using an older version of Java, you can still use all these tools, but
you will have to download the packages separately from http://java.sun.com/xml/ .

23.1.5 XML and Web Browsers

Microsoft's Internet Explorer web browser was the first to support XML explicitly. If you
load an XML document in IE 5.0 or greater, it is displayed as a tree using a special
stylesheet. The stylesheet uses dynamic HTML to allow you to collapse and expand nodes
while viewing the document. IE also supports basic XSL transformation directly in the
browser. We'll talk about XSL later in this chapter.

Netscape 6.x and the latest Mozilla browsers also understand XML content and support the
rendering of documents using XSL. At the time of this writing, however, they don't offer a
friendly viewer by default. You can use the "view source" option to display an XML
document in a nicely formatted way. But in general, if you load an XML document into
either of these browsers, or any browser that doesn't explicitly transform it, it simply
displays the text of the document with all the tags (structural information) stripped off. This
is the prescribed behavior for working with XML.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

23.2 XML Basics

The basic syntax of XML is extremely simple. If you've worked with HTML, you're
already halfway there. As with HTML, XML represents information as text using tags to
add structure. A tag begins with a name sandwiched between less-than (<) and greater-than
(>) characters. Unlike HTML, XML tags must always be balanced ; in other words, an
opening tag must always be followed by a closing tag. A closing tag looks just like the
opening tag but starts with a less-than sign and a slash (</). An opening tag, closing tag,
and any content in between are collectively referred to as an element of the XML
document. Elements can contain other elements, but they must be properly nested (all tags
started within an element must be closed before the element itself is closed). Elements can
also contain plain text or a mixture of elements and text. Comments are enclosed between
<!-- and --> markers. Here are a few examples:

<!-- Simple -->
<Sentence>This is text.</Sentence>

<!-- Element -->
<Paragraph><Sentence>This is text.</Sentence></Paragraph>

<!-- Mixed -->
<Paragraph>
 <Sentence>This <verb>is</verb> text.</Sentence>
</Paragraph>

<!-- Empty -->
<PageBreak></PageBreak>

An empty tag can be written more compactly with a single tag ending with a slash and a
greater-than sign (/>):

<PageBreak/>

23.2.1 Attributes

An XML element can contain attributes , which are simple name-value pairs supplied
inside the start tag.

<Document type="LEGAL" ID="42">...</Document>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<Image name="truffle.jpg"/>

The attribute value must always be enclosed in quotes. You can use double (") or single (')
quotes. Single quotes are useful if the value contains double quotes.

Attributes are intended to be used for simple, unstructured properties or identifiers
associated with the element data. It is always possible to make an attribute into a child
element, so there is no real need for attributes. But they often make the XML easier to read
and more logical. In the case of the Document element in our snippet above, the
attributes type and ID represent metadata about the document. We might expect that a
Java class representing the Document would have static identifiers for document types
such as LEGAL . In the case of the Image element, the attribute is simply a more compact
way of including the filename. As a rule, attributes should be atomic, with no significant
internal structure; by contrast, child elements can have arbitrary complexity.

23.2.2 XML Documents

An XML document begins with the following header and has one root element :

<?xml version="1.0" encoding="UTF-8"?>
<MyDocument>
</MyDocument>

The header identifies the version of XML and the character encoding used. The root
element is simply the top of the element hierarchy, which can be considered a tree. If you
omit this header or have XML text without a single root element, technically what you
have is called an XML fragment .

23.2.3 Encoding

The default encoding for an XML document is UTF-8, the ASCII-friendly 8-bit Unicode
encoding. But an XML document may specify an encoding using the encoding attribute of
the XML header.

Within an XML document, certain characters are necessarily sacrosanct: for example, the
"<" and ">" characters that indicate element tags. When you need to include these in your
text, you must encode them. XML provides an escape mechanism called " entities" that
allows for encoding special structures. There are five predefined entities in XML, as shown
in Table 23-1 .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 23-1. XML entities

Entity Encodes

& & (ampersand)

< < (less than)

> > (greater than)

" " (quotation mark)

' ' (apostrophe)

An alternative to encoding text in this way is to use a special "unparsed" section of text
called a character data (CDATA) section. A CDATA section starts with <![CDATA[and
ends with]]> , like this:

<![CDATA[Learning Java, O'Reilly & Associates]]>

The CDATA section looks a little like a comment, but the data is really part of the
document, just opaque to the parser.

23.2.4 Namespaces

You've probably seen that HTML has a <body> tag that is used to structure web pages.
Suppose for a moment that we are writing XML for a funeral home that also uses the tag
<body> for some other, more macabre, purpose. This could be a problem if we want to
mix HTML with our mortuary information.

If you consider HTML and the funeral home tags to be a language in this case, the elements
(tag names) used in a document are really the vocabulary of those languages. An XML
namespace is a way of saying whose dictionary you are using for a given element,
allowing us to mix them freely. (Later we'll talk about XML Schema, which enforce the
grammar and syntax of the language.)

A namespace is specified with the xmlns attribute, whose value is a Universal Resource
Identifier (URI) that uniquely defines the set (and usually the meaning) of tags from that
namespace:

<element xmlns="namespaceURI">

Recall from Chapter 13 that a URI is not necessarily a URL. URIs are more general than
URLs. In practical terms, a URI is simply to be treated as a unique string. Often, the URI
is, in fact, also a URL for a document describing the namespace, but that is only by
convention.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

An xmlns namespace attribute can be applied to an element and all its children; this is
called a default namespace for the element:

<body xmlns="http://funeral-procedures.org/">

But more often it is desirable to specify namespaces on a tag-by-tag basis. To do this, we
can use the xmlns attribute to define a special identifier for the namespace and then use
that identifier as a prefix on the tags in question. For example:

<funeral xmlns:fun="http://funeral-procedures.org/">
 <html><head></head><body>
 <fun:body>Corpse #42</fun:body>
</funeral>

In the above snippet of XML, we've qualified the body tag with the prefix "fun:" that we
defined in the <funeral> tag. In this case, we should also qualify the root tag as well,
reflexively:

<fun:funeral xmlns:fun="http://funeral-procedures.org/">

In the history of XML, support for namespaces is relatively new. Not all parsers support
them. To accommodate this, the XML parser factories that we discuss later have a switch to
specify whether you want a parser that understands namespaces.

factory.setNamespaceAware(true);

We'll talk more about parsing in the sections on SAX and DOM later in this chapter.

23.2.5 Validation

A document that conforms to the basic rules of XML, with proper encoding and balanced
tags, is called a well-formed document. Just because a document is syntactically correct
doesn't mean that it makes sense, however. Two related specifications, Document Type
Definitions (DTDs) and XML Schema, define ways to provide a grammar for your XML
elements. This allows you to create syntactic rules, such as "a City element can appear only
once inside an Address element." XML Schema goes further to provide a flexible language
for describing the validity of data content of the tags, including both simple and compound
data types made of numbers and strings. Although XML Schema is the ultimate solution (it
includes data validation and not just rules about elements), it is more theory than practice at
present, at least in terms of its integration with Java. (We hope that will change soon.)

A document that is checked against a DTD or XML Schema description and follows the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

rules is called a valid document. A document can be well-formed without being valid, but
not vice versa.

23.2.6 HTML to XHTML

To speak very loosely, we could say that the most popular and widely used form of XML
in the world today is HTML. The terminology is loose because HTML is not even well-
formed XML. HTML tags violate XML's rule forbidding empty elements; the common
<p> tag is typically used without a closing tag, for example. HTML attributes also don't
require quotes. XML tags are case-sensitive; <P> and <p> are two different tags in XML.
We could generously say that HTML is "forgiving" with respect to details like this, but as a
developer, you know that sloppy syntax results in ambiguity. XHTML is a version of
HTML that is clear and unambiguous. Fortunately, you don't have to manually clean up all
your HTML documents; Tidy (http://tidy.sourceforge.net) is an open source program that
automatically converts HTML to XHTML, validates it, and corrects common mistakes.

23.3 SAX

SAX is a low-level, event-style mechanism for parsing XML documents. SAX originated
in Java but has been implemented in many languages.

23.3.1 The SAX API

To use SAX, we'll be using classes from the org.xml.sax package, available from the
W3C (World Wide Web Consortium). To perform the actual parsing, we'll need the
javax.xml.parsers package, which is the standard Java package for accessing
XML parsers. The java.xml.parsers package is part of the Java API for XML
Processing (JAXP), which allows different parser implementations to be used with Java.

To read an XML document with SAX, we first register an
org.xml.sax.ContentHandler class with the parser. The ContentHandler
has methods that are called in response to parts of the document. For example, the
ContentHandler 's startElement() method is called when an opening tag is
encountered, and the endElement() method is called when the tag is closed. Attributes
are provided with the startElement() call. Text content of elements is passed
through a separate method called characters() . The characters() method can
be invoked repeatedly to supply more text as it is read, but it often gets the whole string in
one bite. The following are the method signatures of these methods of the
ContentHandler class.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public void startElement(
 String namespace, String localname, String qname, Attributes atts);
public void characters(
 char[] ch, int start, int len);
public void endElement(
 String namespace, String localname, String qname);

The qname parameter is the qualified name of the element. This is the element name,
prefixed with namespace if it has one. When working with namespaces, the namespace
and localname parameters are also supplied, providing the namespace and unqualified
name.

The ContentHandler interface also contains methods called in response to the start
and end of the document, startDocument() and endDocument() , as well as
those for handling namespace mapping, special XML instructions, and whitespace that can
be ignored. We'll confine ourselves to the three methods above for our examples. As with
many other Java interfaces, a simple implementation,
org.xml.sax.helpers.DefaultHandler , is provided for us that allows us to
override just the methods we're interested in.

23.3.1.1 JAXP

To perform the parsing, we'll need to get a parser from the javax.xml.parsers
package. The process of getting a parser is abstracted through a factory pattern , allowing
different parser implementations to be plugged into the Java platform. The following
snippet constructs a SAXParser object and an XMLReader used to parse a file:

import javax.xml.parsers.*;

SAXParserFactory factory = SAXParserFactory.newInstance();
SAXParser saxParser = factory.newSAXParser();
XMLReader parser = saxParser.getXMLReader();

parser.setContentHandler(myContentHandler);
parser.parse(myfile.xml");

You might expect the SAXParser to have the parse method. The XMLReader
intermediary was added to support changes in the SAX API between 1.0 and 2.0. Later
we'll discuss some options that can be set to govern how XML parsers operate. These
options are normally set through methods on the parser factory (e.g.,
SAXParserFactory) and not the parser itself. This is because the factory may wish to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

use different implementations to support different required features.

23.3.1.2 SAX's strengths and weaknesses

The primary motivation for using SAX instead of the higher-level APIs that we'll discuss
later is that it is lightweight and event-driven. SAX doesn't require maintaining the entire
document in memory. If, for example, you need to grab the text of just a few elements from
a document, or if you need to extract elements from a large stream of XML, you can do so
efficiently with SAX. The event-driven nature of SAX also allows you to take actions as
the beginning and end tags are parsed. This can be useful for directly manipulating your
own models without first going through another representation. The primary weakness of
SAX is that you are operating on a tag-by-tag level with no help from the parser to
maintain context.

23.3.2 Building a Model Using SAX

The ContentHandler mechanism for receiving SAX events is very simple. It should
be easy to see how one could use it to capture the value or attributes of a single element in
a document. What may be harder to see is how one could use SAX to build a real Java
object model from an XML document. The following example, SAXModelBuilder ,
does just that. This example is a bit unusual in that we resort to using reflection to do a job
that would otherwise be a burden on the developer. Later, we'll discuss more powerful
tools for automatically generating and building models for use with XML documents.

In this section, we'll start by creating some XML along with corresponding Java classes
that serve as the model for this XML. We'll see later that it's possible to work with XML
more dynamically, without first constructing Java classes that hold all the content, but we
want to start out in the most concrete and general way possible. The final step in this
example is to create the generic model builder that reads the XML and populates the model
classes with their data. The idea here is that the developer is creating only XML and model
classes-no custom code-to do the basic parsing.

23.3.2.1 Building the XML file

The first thing we'll need is a nice XML document to parse. Luckily, it's inventory time at
the zoo! The following document, zooinventory.xml , describes two of the zoo's
residents, including some vital information about their diets:

<?xml version="1.0" encoding="UTF-8"?>
<!-- file zooinventory.xml -->

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<Inventory>
 <Animal class="mammal">
 <Name>Song Fang</Name>
 <Species>Giant Panda</Species>
 <Habitat>China</Habitat>
 <Food>Bamboo</Food>
 <Temperament>Friendly</Temperament>
 </Animal>
 <Animal class="mammal">
 <Name>Cocoa</Name>
 <Species>Gorilla</Species>
 <Habitat>Central Africa</Habitat>
 <FoodRecipe>
 <Name>Gorilla Chow</Name>
 <Ingredient>Fruit</Ingredient>
 <Ingredient>Shoots</Ingredient>
 <Ingredient>Leaves</Ingredient>
 </FoodRecipe>
 <Temperament>Know-it-all</Temperament>
 </Animal>
</Inventory>

The document is fairly simple. The root element, <Inventory> , contains two
<Animal> elements as children. <Animal> contains several simple text elements for
things like name, species, and habitat. It also contains either a simple <Food> element or
a compound <FoodRecipe> element. Finally, note that the <Animal> element has
one attribute (class) that describes the zoological classification of the creature.

23.3.2.2 The model

Now let's make a Java object model for our zoo inventory. This part is very
mechanical-easy, but tedious to do by hand. We simply create objects for each of the
complex element types in our XML, using the standard JavaBeans property design patterns
("setters" and "getters") so that our builder can automatically use them later. (We'll prove
the usefulness of these patterns later when we see that these same model objects can be
understood by the Java XMLEncoder tool.) For convenience, we'll have our model
objects extend a base SimpleElement class that handles text content for any element.

public class SimpleElement {
 StringBuffer text = new StringBuffer();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public void addText(String s) { text.append(s); }
 public String getText() { return text.toString(); }
 public void setAttributeValue(String name, String value) {
 throw new Error(getClass()+": No attributes allowed");
 }
}
public class Inventory extends SimpleElement {
 List animals = new ArrayList();
 public void addAnimal(Animal animal) { animals.add(animal); }
 public List getAnimals() { return animals; }
 public void setAnimals(List animals) { this.animals = animals; }
}

public class Animal extends SimpleElement {
 public final static int MAMMAL = 1;
 int animalClass;
 String name, species, habitat, food, temperament;
 FoodRecipe foodRecipe;

 public void setName(String name) { this.name = name ; }
 public String getName() { return name; }
 public void setSpecies(String species) { this.species = species ; }
 public String getSpecies() { return species; }
 public void setHabitat(String habitat) { this.habitat = habitat ; }
 public String getHabitat() { return habitat; }
 public void setFood(String food) { this.food = food ; }
 public String getFood() { return food; }
 public void setFoodRecipe(FoodRecipe recipe) {
 this.foodRecipe = recipe; }
 public FoodRecipe getFoodRecipe() { return foodRecipe; }
 public void setTemperament(String temperament) {
 this.temperament = temperament ; }
 public String getTemperament() { return temperament; }

 public void setAnimalClass(int animalClass) {
 this.animalClass = animalClass; }
 public int getAnimalClass() { return animalClass; }
 public void setAttributeValue(String name, String value) {
 if (name.equals("class") && value.equals("mammal"))

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 setAnimalClass(MAMMAL);
 else
 throw new Error("Invalid attribute: "+name);
 }
 public String toString() { return name +"("+species+")"; }
}

public class FoodRecipe extends SimpleElement {
 String name;
 List ingredients = new ArrayList();
 public void setName(String name) { this.name = name ; }
 public String getName() { return name; }
 public void addIngredient(String ingredient) {
 ingredients.add(ingredient); }
 public void setIngredients(List ingredients) {
 this.ingredients = ingredients; }
 public List getIngredients() { return ingredients; }
 public String toString() { return name + ": "+ ingredients.toString(); }
}

If you are working in the NetBeans IDE, you can use the Bean Patterns wizard for your
class to help you create all those get and set methods (see Section 21.6.2.1 in Chapter 21
for details).

23.3.2.3 SAX model builder

Now let's get down to business and write our builder tool. The SAXModelBuilder we
create in this section receives SAX events from parsing an XML file and constructs classes
corresponding to the names of the tags. Our model builder is simple, but it handles the
most common structures: elements with text or simple element data. We handle attributes
by passing them to the model class, allowing it to map them to fixed identifiers (e.g.,
Animal.MAMMAL). Here is the code:

import org.xml.sax.*;
import org.xml.sax.helpers.*;
import java.util.*;
import java.lang.reflect.*;

public class SAXModelBuilder extends DefaultHandler
{

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Stack stack = new Stack();
 SimpleElement element;

 public void startElement(
 String namespace, String localname, String qname, Attributes atts)
 throws SAXException
 {
 SimpleElement element = null;
 try {
 element = (SimpleElement)Class.forName(qname).newInstance();
 } catch (Exception e) {/*No class for element*/}
 if (element == null)
 element = new SimpleElement();
 for(int i=0; i<atts.getLength(); i++)
 element.setAttributeValue(atts.getQName(i), atts.getValue(i));
 stack.push(element);
 }
 public void endElement(String namespace, String localname, String qname)
 throws SAXException
 {
 element = (SimpleElement)stack.pop();
 if (!stack.empty())
 try {
 setProperty(qname, stack.peek(), element);
 } catch (Exception e) { throw new SAXException("Error: "+e); }
 }
 public void characters(char[] ch, int start, int len) {
 String text = new String(ch, start, len);
 ((SimpleElement)(stack.peek())).addText(text);
 }

 void setProperty(String name, Object target, Object value)
 throws SAXException
 {
 Method method = null;
 try {
 method = target.getClass().getMethod(
 "add"+name, new Class[] { value.getClass() });
 } catch (NoSuchMethodException e) { }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 if (method == null) try {
 method = target.getClass().getMethod(
 "set"+name, new Class[] { value.getClass() });
 } catch (NoSuchMethodException e) { }
 if (method == null) try {
 value = ((SimpleElement)value).getText();
 method = target.getClass().getMethod(
 "add"+name, new Class[] { String.class });
 } catch (NoSuchMethodException e) { }
 try {
 if (method == null)
 method = target.getClass().getMethod(
 "set"+name, new Class[] { String.class });
 method.invoke(target, new Object [] { value });
 } catch (Exception e) { throw new SAXException(e.toString()); }
 }
 public SimpleElement getModel() { return element; }
}

The SAXModelBuilder extends DefaultHandler to help us implement the
ContentHandler interface. We use the startElement() , endElement() ,
and characters() methods to receive information from the document.

Because SAX events follow the structure of the XML document, we use a simple stack to
keep track of which object we are currently parsing. At the start of each element, the model
builder attempts to create an instance of a class with the same name and push it onto the top
of the stack. Each nested opening tag creates a new object on the stack until we encounter a
closing tag. Upon reaching an end of the element, we pop the current object off the stack
and attempt to apply its value to its parent (the enclosing element), which is the new top of
the stack. The final closing tag leaves the stack empty, but we save the last value in the
result variable.

Our setProperty() method uses reflection and the standard JavaBeans naming
conventions to look for the appropriate property "setter" method to apply a value to its
parent object. First we check for a method named add<Property> or
set<Property> , accepting an argument of the child element type (for example, the
addAnimal(Animal animal) method of our Inventory object). Failing that,
we look for an "add" or "set" method accepting a String argument and use it to apply
any text content of the child object. This convenience saves us from having to create trivial
classes for properties containing only text.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The common base class SimpleElement helps us in two ways. First, it provides a
method allowing us to pass attributes to the model class. Next, we use SimpleElement
as a placeholder when no class exists for an element, allowing us to store the text of the tag.

23.3.2.4 Test drive

Finally, we can test-drive the model builder with the following class,
TestModelBuilder , which calls the SAX parser, setting an instance of our
SAXModelBuilder as the content handler. The test class then prints some of the
information parsed from the zooinventory.xml file:

import org.xml.sax.*;
import org.xml.sax.helpers.*;
import javax.xml.parsers.*;

public class TestModelBuilder
{
 public static void main(String [] args) throws Exception
 {
 SAXParserFactory factory = SAXParserFactory.newInstance();
 SAXParser saxParser = factory.newSAXParser();
 XMLReader parser = saxParser.getXMLReader();
 SAXModelBuilder mb = new SAXModelBuilder();
 parser.setContentHandler(mb);
 parser.parse("zooinventory.xml");

 Inventory inventory = (Inventory)mb.getModel();
 System.out.println("Animals = "+inventory.getAnimals());
 Animal cocoa = (Animal)(inventory.getAnimals().get(1));
 FoodRecipe recipe = cocoa.getFoodRecipe();
 System.out.println("Recipe = "+recipe);
 }
}

The output should look like this:

Animals = [Song Fang(Giant Panda), Cocoa(Gorilla)]
Recipe = Gorilla Chow: [Fruit, Shoots, Leaves]

In the following sections we'll generate the equivalent output using different tools.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

23.3.2.5 Limitations and possibilities

To make our model builder more complete, we could use more robust naming conventions
for our tags and model classes (taking into account packages and mixed capitalization,
etc.). But more generally, we might not want to name our model classes strictly based on
tag names. And, of course, there is the problem of taking our model and going the other
way, using it to generate an XML document. Furthermore, as we've said, writing the model
classes is tedious and error-prone. All this is a good indication that this area is ripe for
autogeneration of classes. We'll discuss tools that do that a bit later in the chapter.

23.3.2.6 XMLencoder/decoder

Java 1.4 introduced a tool for serializing JavaBeans classes to XML. The java.beans
package XMLEncoder and XMLDecoder classes are analogous to java.io
ObjectInputStream and ObjectOutputStream . Instead of using the native
Java serialization format, they store the object state in a high-level XML format. We say
that they are analogous, but the XML encoder is not a general replacement for Java object
serialization. Instead, it is specialized to work with objects that follow the JavaBeans
design patterns, and it can only store and recover state of the object that is expressed
through a bean's public properties in this way (using getters and setters).

In memory, the XMLEncoder attempts to construct a copy of the graph of beans that you
are serializing, using only public constructors and JavaBean properties. As it works, it
writes out these steps as "instructions" in an XML format. Later, the XMLDecoder
executes these instructions and produces the result. The primary advantage of this process
is that it is highly resilient to changes in the class implementation. While standard Java
object serialization can accommodate many kinds of "compatible changes" in classes, it
requires some help from the developer to get it right. Because the XMLEncoder uses only
public APIs and writes instructions in simple XML, it is expected that this form of
serialization will be the most robust way to store the state of JavaBeans. The process is
referred to as "long-term persistence" for JavaBeans.

Give it a whirl. You can use the model-builder example to create the beans and compare
the output to our original XML. You can add this bit to our TestModelBuilder class,
which will populate the beans for you to write:

import java.beans.XMLEncoder;

XMLEncoder xmle = new XMLEncoder(System.out);
xmle.writeObject(inventory);
xmle.close();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Fun!

23.3.2.7 Further thoughts

It might seem at first like this would obviate the need for our SAXModelBuilder
example. Why not simply write our XML in the format that XMLDecoder understands
and use it to build our model? Well, although XMLEncoder is very efficient at
eliminating redundancy, you can see that its output is still very verbose (about four times as
large as our original XML) and not very human-friendly. Although it's possible to write it
by hand, this XML format wasn't really designed for that. Finally, although XMLEncoder
can be customized for how it handles specific object types, it suffers from the same
problem that our model builder does in that "binding" (the namespace of tags) is
determined strictly by our Java class names. As we've said before, what is really needed is
a more general tool to generate classes or to map our own classes to XML and back.

23.4 DOM

In the last section, we used SAX to parse an XML document and build a Java object model
representing it. In that case, we created specific Java types for each of our complex
elements. If we were planning to use our model extensively in an application, this
technique would give us a great deal of flexibility. But often it is sufficient (and much
easier) to use a "generic" model that simply represents the content of the XML in a neutral
form. The Document Object Model (DOM) is just that. The DOM API parses an XML
document into a full, memory-resident representation consisting of classes such as
Element and Attributes with text values.

As we saw in our zoo example, once you have an object model, using the data is a breeze.
So a generic DOM would seem like an appealing solution, especially when working mainly
with text. The only catch in this case is that DOM didn't evolve first as a Java API, and it
doesn't map well to Java. DOM is very complete and provides access to every facet of the
original XML document, but it's so generic (and language-neutral), it's cumbersome to use
in Java. In our example, we'll start by making a couple of helper methods to smooth things
over. Later, we'll also mention a native Java alternative to DOM called JDOM that is more
pleasant to use.

23.4.1 The DOM API

The core DOM classes belong to the org.w3c.dom package. The result of parsing an
XML document with DOM is a Document object from this package (see Figure 23-1).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Document is a factory and a container for a hierarchical collection of Node objects,
representing the document structure. A node has a parent and may have children, which
can be traversed using its getChildNodes() , getFirstChild() , or
getLastChild() methods. A node may also have "attributes" associated with it,
which consist of a named map of nodes.

Figure 23-1. The parsed DOM

Subtypes of Node - Element , Text , and Attr -represent elements, text, and
attributes in XML. Some types of nodes (including these) have a text "value." For example,
the value of a Text node is the text of the element it represents. The same is true of an
attribute , cdata , or comment node. The value of a node can be accessed by the
getNodeValue() and setNodeValue() methods.

The Element node provides "random" access to its child elements through its
getElementsByTagName() method, which returns a NodeList (a simple
collection type). You can also fetch an attribute by name from the Element using the
getAttribute() method.

The javax.xml.parsers package contains a factory for DOM parsers, just as it does
for SAX parsers. An instance of DocumentBuilderFactory can be used to create a
DocumentBuilder object to parse the file and produce a Document result.

23.4.2 Test-Driving DOM

Let's use DOM to parse our zoo inventory and print the same information as our model-
builder example. Using DOM saves us from having to create all those model classes and
makes our example much shorter. But before we even begin, we're going to make a couple
of utility methods to save us a great deal of pain. The following class, DOMUtil , covers
two very common operations on an element: retrieving a simple (singular) child element by

http://lib.ommolketab.ir
http://lib.ommolketab.ir

name and retrieving the text of a simple child element by name. Here is the code:

import org.w3c.dom.*;

public class DOMUtil
{
 public static Element getFirstElement(Element element, String name) {
 NodeList nl = element.getElementsByTagName(name);
 if (nl.getLength() < 1)
 throw new RuntimeException(
 "Element: "+element+" does not contain: "+name);
 return (Element)nl.item(0);
 }

 public static String getSimpleElementText(Element node, String name)
 {
 Element namedElement = getFirstElement(node, name);
 return getSimpleElementText(namedElement);
 }

 public static String getSimpleElementText(Element node)
 {
 StringBuffer sb = new StringBuffer();
 NodeList children = node.getChildNodes();
 for(int i=0; i<children.getLength(); i++) {
 Node child = children.item(i);
 if (child instanceof Text)
 sb.append(child.getNodeValue());
 }
 return sb.toString();
 }
}

With that out of the way we can present our TestDOM class:

mport javax.xml.parsers.*;
import org.w3c.dom.*;

public class TestDOM
{

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 public static void main(String [] args) throws Exception
 {
 DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance();
 DocumentBuilder parser = factory.newDocumentBuilder();
 Document document = parser.parse("zooinventory.xml");
 Element inventory = document.getDocumentElement();
 NodeList animals = inventory.getElementsByTagName("Animal");

 System.out.println("Animals = ");
 for(int i=0; i<animals.getLength(); i++) {
 String name = DOMUtil.getSimpleElementText(
 (Element)animals.item(i),"Name");
 String species = DOMUtil.getSimpleElementText(
 (Element)animals.item(i), "Species");
 System.out.println(" "+ name +" ("+species+")");
 }

 Element foodRecipe = DOMUtil.getFirstElement(
 (Element)animals.item(1), "FoodRecipe");
 String name = DOMUtil.getSimpleElementText(foodRecipe, "Name");
 System.out.println("Recipe = " + name);
 NodeList ingredients = foodRecipe.getElementsByTagName("Ingredient");
 for(int i=0; i<ingredients.getLength(); i++)
 System.out.println(" " + DOMUtil.getSimpleElementText(
 (Element)ingredients.item(i)));
 }
}

TestDOM creates an instance of a DocumentBuilder and uses it to parse our
zooinventory.xml file. We use the Document getDocumentElement() method to
get the root element of the document, from which we will begin our traversal. From there,
we ask for all the Animal child nodes. The getElementbyTagName() method
returns a NodeList object, which we then use to iterate through our creatures. For each
animal, we use our DOMUtil.getSimpleElementText() method to retrieve the
basic name and species information. Next, we use the
DOMUtil.getFirstElement() method to retrieve the element called
FoodRecipe from the second animal. We use it to fetch a NodeList for the tags
matching Ingredient and print them as before. The output should contain the same
information as our SAX-based example.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

23.4.3 Generating XML with DOM

Thus far, we've used the SAX and DOM APIs to parse XML. But what about generating
XML? Sure, it's easy to generate trivial XML documents simply by emitting the
appropriate strings. But if we plan to create a complex document on the fly, we might want
some help with all those quotes and closing tags. What we can do is to build a DOM
representation of our object in memory and then transform it to text. This is also useful if
we want to read a document and then make some alterations to it. To do this, we'll use of
the java.xml.transform package. This package does a lot more than just printing
XML. As its name implies, it's part of a general transformation facility. It includes the
XSL/XSLT languages for generating one XML document from another. (We'll talk about
XSL later in this chapter.)

We won't discuss the details of constructing a DOM in memory here, but it follows fairly
naturally from what you've learned about traversing the tree in our previous example. The
following example, PrintDOM , simply parses our zooinventory.xml file to a DOM and
then prints it back to the screen:

import javax.xml.parsers.*;
import org.w3c.dom.*;
import javax.xml.transform.*;
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamResult;

public class PrintDOM {
 public static void main(String [] args) throws Exception
 {
 DocumentBuilder parser =
 DocumentBuilderFactory.newInstance().newDocumentBuilder();
 Document document=parser.parse("zooinventory.xml");
 Transformer transformer =
 TransformerFactory.newInstance().newTransformer();
 Source source = new DOMSource(document);
 Result output = new StreamResult(System.out);
 transformer.transform(source, output);
 }
}

Note that the imports are almost as long as the entire program! Here we are using an
instance of a Transformer object in its simplest capacity to copy from a source to an

http://lib.ommolketab.ir
http://lib.ommolketab.ir

output. We'll return to the Transformer later when we discuss XSL.

23.4.4 JDOM

As we promised earlier, we'll now describe an easier DOM API: JDOM, created by Jason
Hunter and Brett McLaughlin, two fellow O'Reilly authors (Java Servlet Programming and
Java and XML , respectively). It is a more natural Java DOM that uses real Java collection
types such as List for its hierarchy and provides more streamlined methods for building
documents. You can get the latest JDOM from http://www.jdom.org/ . Here's the JDOM
version of our standard "test" program:

import org.jdom.*;
import org.jdom.input.*;
import org.jdom.output.*;
import java.util.*;

public class TestJDOM {
 public static void main(String[] args) throws Exception {
 Document doc = new SAXBuilder().build("zooinventory.xml");
 List animals = doc.getRootElement().getChildren("Animal");
 System.out.println("Animals = ");
 for(int i=0; i<animals.size(); i++) {
 String name = ((Element)animals.get(i)).getChildText("Name");
 String species = ((Element)animals.get(i)).getChildText("Species");
 System.out.println(" "+ name +" ("+species+")");
 }
 Element foodRecipe = ((Element)animals.get(1)).getChild("FoodRecipe");
 String name = foodRecipe.getChildText("Name");
 System.out.println("Recipe = " + name);
 List ingredients = foodRecipe.getChildren("Ingredient");
 for(int i=0; i<ingredients.size(); i++)
 System.out.println(" "+((Element)ingredients.get(i)).getText());
 }
}

JDOM has convenience methods that take the place of our homemade DOM helper
methods. Namely, the JDOM element has getChild() and getChildren()
methods as well as a getChildText() method for retrieving node text.

23.5 Validating Documents

http://lib.ommolketab.ir
http://lib.ommolketab.ir

"Words, words, mere words, no matter from the heart."

-William Shakespeare, Troilus and Cressida

In this section, we talk about DTDs and XML Schema, two ways to enforce rules an XML
document must follow. A DTD is a grammar for an XML document, defining which tags
may appear where and in what order, with what attributes, etc. XML Schema is the next
generation of DTD. With XML Schema, you can describe the data content of the document
in terms of primitives such as numbers, dates, and simple regular expressions. The word
schema means a blueprint or plan for structure, so we'll refer to DTDs and XML Schema
collectively as schema where either applies

Now for a reality check. Unfortunately, Java support for XML Schema isn't entirely mature
at the time of this writing. XML support in Java 1.4.0 is based on the Apache Project's
Crimson parser (which in turn is based on Sun's "Project X" parser). The Crimson engine
doesn't support XML Schema. However, a future release of Java will migrate the XML
implementation to the Apache Xerces2 engine, and at that time, XML Schema should
begin to be supported.

23.5.1 Using Document Validation

XML's validation of documents is a key piece of what makes it useful as a data format.
Using a schema is somewhat analogous to the way Java classes enforce type checking in
the language. Schema define document types. Documents conforming to a given schema
are often referred to as instance documents .

This type safety provides a layer of protection that eliminates having to write complex
error-checking code. However, validation may not be necessary in every environment. For
example, when the same tool generates XML and reads it back, validation should not be
necessary in normal operation. It is invaluable, though, during development. Often,
document validation is used during development and turned off in production
environments.

23.5.2 DTDs

The Document Type Definition language is fairly simple. A DTD is primarily a set of
special tags that define each element in the document and, for complex types, provide a list
of the elements it may contain. The DTD <!ELEMENT> tag consists of the name of the
tag and either a special keyword for the data type or a parenthesized list of elements.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<!ELEMENT Name (#PCDATA)>
<!ELEMENT Document (Head, Body)>

The special identifier #PCDATA indicates character data (a string). When a list is
provided, the elements are expected to appear in that order. The list may contain sublists,
and items may be made optional using a vertical bar (|) as an OR operator. Special
notation can also be used to indicate how many of each item may appear; a few examples
of this notation are shown in Table 23-2 .

Table 23-2. DTD notation defining occurrences

Character Meaning

* Zero or more occurrences

? Zero or one occurrences

+ One or more occurrences

Attributes of an element are defined with the <!ATTLIST> tag. This tag enables the DTD
to enforce rules about attributes. It accepts a list of identifiers and a default value:

<!ATTLIST Animal class (unknown | mammal | reptile) "unknown">

This ATTLIST says that the Animal element has a class attribute that can have one of
three values: unknown , mammal , or reptile . The default is unknown .

We won't cover everything you can do with DTDs here. But the following example will
guarantee zooinventory.xml follows the format we've described. Place the following in a
file called zooinventory.dtd (or grab this file from the CD-ROM or web site for the book):

<!ELEMENT Inventory (Animal*)>
<!ELEMENT Animal (Name, Species, Habitat, (Food | FoodRecipe), Temperament)>
<!ATTLIST Animal class (unknown | mammal | reptile) "unknown">
<!ELEMENT Name (#PCDATA)>
<!ELEMENT Species (#PCDATA)>
<!ELEMENT Habitat (#PCDATA)>
<!ELEMENT Food (#PCDATA)>
<!ELEMENT FoodRecipe (Name, Ingredient+)>
<!ELEMENT Ingredient (#PCDATA)>
<!ELEMENT Temperament (#PCDATA)>

The DTD says that an Inventory consists of any number of Animal elements. An

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Animal has a Name , Species , and Habitat tag followed by either a Food or
FoodRecipe . FoodRecipe 's structure is further defined later.

To use our DTD, we must associate it with the XML document. We do this by placing a
DOCTYPE declaration in the XML itself. When a validating parser encounters the
DOCTYPE , it attempts to load the DTD and validate the document. There are several
forms the DOCTYPE can have, but the one we'll use is:

<!DOCTYPE Inventory SYSTEM "zooinventory.dtd">

Both SAX and DOM parsers can automatically validate documents that contain a
DOCTYPE declaration. However, you have to explicitly ask the parser factory to provide a
parser that is capable of validation. To do this, set the validating property of the parser
factory to true before you ask it for an instance of the parser. For example:

SAXParserFactory factory = SAXParserFactory.newInstance();
factory.setValidating(true);

Try inserting the setValidating() line in our model builder example at the
location indicated above. Now abuse the zooinventory.xml file by adding or removing an
element or attribute and see what happens when you run the example.

To really use the validation, we would have to register an
org.xml.sax.ErrorHandler object with the parser, but by default Java installs
one that simply prints the errors for us.

23.5.3 XML Schema

Although DTDs can define the basic structure of an XML document, they can't adequately
describe data and validate it programmatically. The evolving XML Schema standard is the
next logical step and should replace DTDs in the near future. For more information about
XML Schema, see http://www.w3.org/XML/Schema . As mentioned earlier, we expect an
upcoming Java release to support XML Schema.

23.5.4 JAXB and Code Generation

The ultimate goal of XML will be reached by automated binding of XML to Java classes.
There are several tools today that provide this, but they are hampered by the slow adoption
of XML Schema.

The standard Java solution is the forthcoming Java XML Binding (JAXB) project.
Unfortunately, at the time of this writing, JAXB is not mature. It is difficult to use and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

doesn't support XML Schema (necessary to fully describe document content). JAXB also
requires its own "binding" language to be used, even for simple cases. We hope that the
final release of JAXB will provide a good solution for XML binding. You can find
information about JAXB at http://java.sun.com/xml/jaxb .

Unlike JAXB, Castor, an open source XML binding framework for Java, works with XML
Schema and is relatively easy to use. Unfortunately, at the time of this writing, Castor
doesn't support DTDs, and most industry- or task-specific XML standards are still written
in terms of DTDs. You can find out more about Castor at http://www.castor.org/ .

23.6 XSL/XSLT

Earlier in this chapter, we used a Transformer object to copy a DOM representation of
an example back to XML text. We mentioned then that we were not really tapping the
potential of the Transformer . Now we'll give you the full story.

The javax.xml.transform package is the API for using the XSL/XSLT
transformation language. XSL stands for Extensible Stylesheet Language. Like Cascading
Stylesheets for HTML, XSL allows us to "mark up" XML documents by adding tags that
provide presentation information. XSL Transformation (XSLT) takes this further by adding
the ability to completely restructure the XML and produce arbitrary output. XSL and
XSLT together comprise their own programming language for processing an XML
document as input and producing another (usually XML) document as output. (From here
on in we'll refer to them collectively as XSL.)

XSL is extremely powerful, and new applications for its use arise every day. For example,
consider a web portal that is frequently updated and which must provide access to a variety
of mobile devices, from PDAs to cell phones to traditional browsers. Rather than recreating
the site for these and additional platforms, XSL can transform the content to an appropriate
format for each platform. Multilingual sites also benefit from XSL.

You can probably guess the caveat that we're going to issue next: XSL is a big topic
worthy of its own books (see, for example, O'Reilly's Java and XSLT by Eric Burke, a
fellow St. Louis author), and we can only give you a taste of it here. Furthermore, some
people find XSL difficult to understand at first glance because it requires thinking in terms
of recursively processing document tags. Don't be put off if you have trouble following this
example; just file it away and return to it when you need it. At some point, you will be
interested in the power transformation can offer you.

23.6.1 XSL Basics

http://lib.ommolketab.ir
http://lib.ommolketab.ir

XSL is an XML-based standard, so it should come as no surprise that the language is based
on XML. An XSL stylesheet is an XML document using special tags defined by the XSL
namespace to describe the transformation. The most basic XSL operations include
matching parts of the input XML document and generating output based on their contents.
One or more XSL templates live within the stylesheet and are called in response to tags
appearing in the input. XSL is often used in a purely input-driven way, where input XML
tags trigger output in the order that they appear, using only the information they contain.
But more generally, the output can be constructed from arbitrary parts of the input, drawing
from it like a database, composing elements and attributes. The XSLT transformation part
of XSL adds things like conditionals and for loops to this mix, enabling arbitrary output to
be generated based on the input.

An XSL stylesheet contains as its root element a stylesheet tag. By convention, the
stylesheet defines a namespace prefix xsl for the XSL namespace. Within the stylesheet
are one or more template tags containing a match attribute describing the element upon
which they operate.

<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <xsl:template match="/">
 I found the root of the document!
 </xsl:template>

</xsl:stylesheet>

When a template matches an element, it has an opportunity to handle all the children of the
element. The simple stylesheet above has one template that matches the root of the input
document and simply outputs some plain text. By default, input not matched is simply
copied to the output with its tags stripped (HTML convention). But here we match the root
so we consume the entire input.

The match attribute can refer to elements in a hierarchical path fashion starting with the
root. For example, match="/Inventory/Animal" would match only the Animal
elements from our zooinventory.xml file. The path may be absolute (starting with "/") or
relative, in which case the template detects whenever that element appears in any context.
The match attribute actually uses an expression format called XPath that allows you to
describe element names using a syntax somewhat similar to a regular expression. XPath is
a powerful syntax for describing sets of nodes in XML, and it includes notation for
describing sets of child nodes based on path and even attributes.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Within the template, we can put whatever we want, as long as it is well-formed XML (if
not, we can use a CDATA section). But the real power comes when we use parts of the
input to generate output. The XSL value-of tag is used to output the content of an
element or a child of the element. For example, the following template would match an
Animal element and output the value of its Name child:

<xsl:template match="Animal">
 Name: <xsl:value-of select="Name"/>
</xsl:template>

The select attribute uses a similar expression format to match. Here we tell it to print
the value of the Name element within Animal . We could have used a relative path to a
more deeply nested element within Animal or even an absolute path to another part of the
document. To refer to its own element, we can simply use "." as the path. The select
expression can also retrieve attributes from the elements it refers to.

Now if we try to add the Animal template to our simple example, it won't generate any
output. What's the problem? Well, if you recall, we said that a template matching an
element has the opportunity to process all its children. We already have a template
matching the root ("/"), so it is consuming all the input. The answer to our dilemma-and
this is where things get a little tricky-is to delegate the matching to other templates using
the apply-templates tag. The following example correctly prints the names of all the
animals in our document:

<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <xsl:template match="/">
 Found the root!
 <xsl:apply-templates/>
 </xsl:template>

 <xsl:template match="Animal">
 Name: <xsl:value-of select="Name"/>
 </xsl:template>

</xsl:stylesheet>

Note that we still have the opportunity to add output before and after the apply-
templates tag. But upon invoking it, the template matching continues from the current
node. Next we'll use what we have so far and add a few bells and whistles.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

23.6.2 Transforming the Zoo Inventory

Your boss just called, and it's now imperative that your zoo clients have access to the zoo
inventory through the Web, today! Well, after reading Chapter 14 , you should be
thoroughly prepared to build a nice "zoo portal." Let's get you started by creating an XSL
stylesheet to turn our zooinventory.xml into HTML:

<xsl:stylesheet
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version="1.0">

 <xsl:template match="/Inventory">
 <html><head><title>Zoo Inventory</title></head>
 <body><h1>Zoo Inventory</h1>
 <table border="1">
 <tr><td>Name</td><td>Species</td>
 <td>Habitat</td><td>Temperament</td>
 <td>Diet</td></tr>
 <xsl:apply-templates/>
 <!-- Process Inventory -->
 </table>
 </body>
 </html>
 </xsl:template>
 <xsl:template match="Inventory/Animal">
 <tr><td><xsl:value-of select="Name"/></td>
 <td><xsl:value-of select="Species"/></td>
 <td><xsl:value-of select="Habitat"/></td>
 <td><xsl:value-of select="Temperament"/></td>
 <td><xsl:apply-templates select="Food|FoodRecipe"/>
 <!-- Process Food,FoodRecipe--></td></tr>
 </xsl:template>

 <xsl:template match="FoodRecipe">
 <table>
 <tr><td><xsl:value-of select="Name"/></td></tr>
 <xsl:for-each select="Ingredient">
 <tr><td><xsl:value-of select="."/></td></tr>
 </xsl:for-each>
 </table>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </xsl:template>

</xsl:stylesheet>

The stylesheet contains three templates. The first matches /Inventory and outputs the
beginning of our HTML document (the header) along with the start of a table for the
animals. It then delegates using apply-templates before closing the table and adding
the HTML footer. The next template matches Inventory/Animal , printing one row
of an HTML table for each animal. Although there are no other Animal elements in the
document, it still doesn't hurt to specify that we will match an Animal only in the context
of an Inventory , because in this case we are relying on Animal to start and end our
table. (This template makes sense only in the context of an Inventory .) Finally, we
provide a template that matches FoodRecipe and prints a small (nested) table for that
information. FoodRecipe makes use of the for-each operation to loop over child
nodes with a select specifying that we are only interested in Ingredient children.
For each Ingredient , we output its value in a row.

There is one more thing to note in the Animal template. Our apply-templates
element has a select attribute that limits the elements affected. In this case, we are using
the "| " regular expression-like syntax to say that we want to apply templates for only the
Food or FoodRecipe child elements. Why do we do this? Because we didn't match the
root of the document (only Inventory), we still have the default stylesheet behavior of
outputting the plain text of nodes that aren't matched. We want this behavior for the Food
element in the event that a FoodRecipe isn't there. But we don't want it for all the other
elements of Animal that we've handled explicitly. Alternatively, we could have been
more verbose, adding a template matching the root and another template just for the Food
element. That would also mean that new tags added to our XML would be ignored and not
change the output. This may or may not be the behavior you want, and there are other
options as well. As with all powerful tools, there is usually more than one way to do
something.

23.6.3 XSLTransform

Now that we have a stylesheet, let's apply it! The following simple program,
XSLTransform , uses the javax.xml.transform package to apply the stylesheet
to an XML document and print the result. You can use it to experiment with XSL and our
example code.

import javax.xml.transform.*;
import javax.xml.transform.stream.*;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

public class XSLTransform
{
 public static void main(String [] args) throws Exception
 {
 if (args.length < 2 || !args[0].endsWith(".xsl")) {
 System.err.println("usage: XSLTransform file.xsl file.xml");
 System.exit(1);
 }
 TransformerFactory factory = TransformerFactory.newInstance();
 Transformer transformer =
 factory.newTransformer(new StreamSource(args[0]));
 StreamSource xmlsource = new StreamSource(args[1]);
 StreamResult output = new StreamResult(System.out);
 transformer.transform(xmlsource, output);
 }
}

Run XSLTransform , passing the XSL stylesheet and XML input, as in the following
command:

% java XSLTransform zooinventory.xsl zooinventory.xml > zooinventory.html

The output should look like Figure 23-2 .

Figure 23-2. Image of the zoo inventory table

Constructing the transform is a similar process to that of getting a SAX or DOM parser.
The difference from our earlier use of the TransformerFactory is that this time we
construct the transformer, passing it the XSL stylesheet source. The resulting
Transformer object is then a dedicated machine that knows how to take input XML
and generate output according to its rules.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

One important thing to note about XSLTransform is that it is not guaranteed thread-
safe. If you must make concurrent transformations in many threads, they must either
coordinate their use of the transformer or have their own instances.

23.6.4 XSL in the Browser

With our XSLTransform example, you can see how you'd go about rendering XML to
an HTML document on the server side. But as mentioned in the introduction, modern web
browsers support XSL on the client side as well. Internet Explorer 5.x and above, Netscape
6.x, and Mozilla can automatically download an XSL stylesheet and use it to transform an
XML document. To make this happen, just add a standard XSL stylesheet reference in your
XML. You can put the stylesheet directive next to your DOCTYPE declaration in the
zooinventory.xml file:

<?xml-stylesheet type="text/xsl" href="zooinventory.xsl"?>

Now, as long as the zooinventory.xsl file is available at the same location (base URL) as the
zooinventory.xml file, the browser will use it to render HTML on the client side.

23.7 Web Services

One of the most interesting directions for XML is web services. A web service is simply an
application service supplied over the network, making use of XML to describe the request
and response. Normally, web services run over HTTP and use an XML-based protocol
called SOAP. SOAP stands for Simple Object Access Protocol and is an evolving W3C
standard. The combination of XML and HTTP provides a universally accessible interface
for services.

SOAP and other XML-based remote procedure call mechanisms can be used in place of
Java RMI for cross-platform communications and as an alternative to CORBA. There is a
lot of excitement surrounding web services, and it is likely that they will grow in
importance in coming years. To learn more about SOAP, see
http://www.w3.org/TR/SOAP/ . To learn more about Java APIs related to web services,
keep an eye on http://java.sun.com/webservices/ .

Well, that's it for our brief introduction to XML. There is a lot more to learn about this
exciting new area, and many of the APIs are evolving rapidly. We hope we've given you a
good start.

With this chapter we also wrap up the main part of our book. We hope that you've enjoyed

http://www.w3.org/TR/SOAP/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Learning Java. We welcome your feedback to help us keep making this book better in the
future.

[1] To read Berners-Lee's original proposal to CERN, go to
http://www.w3.org/History/1989/proposal.html .

CONTENTS

http://www.w3.org/History/1989/proposal.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

Appendix A. Content and Protocol Handlers

 A.1. Writing a Content Handler

 A.2. Writing a Protocol Handler

Content and protocol handlers represent one of the most interesting ideas from the original
Java vision. Unfortunately, as far as we can tell, no one has taken up the challenge of using
this intriguing facility. We considered dropping them from the book entirely, but that
decision just felt bad. Instead, we banished the discussion of how to write content and
protocol handlers to an appendix. If you let us know that this material is important to you,
we'll keep it in the next edition. If you feel "yes, this is interesting, but why do I care?"
we'll drop them from the book. (You can send comments via the book's web page at
http://www.oreilly.com/catalog/learnjava2 .)

This appendix picks up where we left our discussion of content and protocol handlers in
Chapter 13 . We'll show you how to write your own handlers, which can be used in any
Java application, including the HotJava web browser. In this section, we'll write a content
handler that reads Unix tar files and a protocol handler that implements a pluggable
encryption scheme. You should be able to drop both into your class path and start using
them in the HotJava web browser right away.

A.1 Writing a Content Handler

The URL class's getContent() method invokes a content handler whenever it's called
to retrieve an object at some URL. The content handler must read the flat stream of data
produced by the URL 's protocol handler (the data read from the remote source), and
construct a well-defined Java object from it. By "flat," we mean that the data stream the
content handler receives has no artifacts left from retrieving the data and processing the
protocol. It's the protocol handler's job to fetch and decode the data before passing it along.
The protocol handler's output is your data, pure and simple.

The roles of content and protocol handlers do not overlap. The content handler doesn't care
how the data arrives or what form it takes. It's concerned only with what kind of object it's
supposed to create. For example, if a particular protocol involves sending an object over
the network in a compressed format, the protocol handler should do whatever is necessary
to unpack it before passing the data on to the content handler. The same content handler
can then be used again with a completely different protocol handler to construct the same

http://www.oreilly.com/catalog/learnjava2
http://lib.ommolketab.ir
http://lib.ommolketab.ir

type of object received via a different transport mechanism.

Let's look at an example. The following lines construct a URL that points to a GIF file on
an FTP archive and attempt to retrieve its contents:

try {
 URL url =
 new URL ("ftp://ftp.wustl.edu/graphics/gif/a/apple.gif");
 ImageProducer imgsrc = (ImageProducer)url.getContent();
 ...

When we construct the URL object, Java looks at the first part of the URL string
(everything prior to the colon) to determine the protocol and locate a protocol handler. In
this case, it locates the FTP protocol handler, which is used to open a connection to the host
and transfer data for the specified file.

After making the connection, the URL object asks the protocol handler to identify the
resource's MIME type. The handler can try to resolve the MIME type through a variety of
means, but in this case, it might just look at the filename extension (.gif) and determine
that the MIME type of the data is image/gif . Here, image/gif is a string that
denotes that the content falls into the category of images and is, more specifically, a GIF
image. The protocol handler then looks for the content handler responsible for the
image/gif type and uses it to construct the right kind of object from the data. The
content handler returns an ImageProducer object, which getContent() returns to
us as an Object . As we've seen before, we cast this Object back to its real type so we
can work with it.

In an upcoming section, we'll build a simple content handler. To keep things simple, our
example produces text as output; the URL 's get-Content() method returns this as a
String object.

A.1.1 Locating Content Handlers

When Java searches for a class, it translates package names into filesystem pathnames.
(The classes may also be in a JAR file in the class path, but we refer to them as files and
directories anyway.) This applies to locating content-handler classes as well as other kinds
of classes. For example, a class in a package named foo.bar.handlers would live in
a directory with foo/bar/handlers/ as part of its pathname. To allow Java to find handler
classes for arbitrary new MIME types, content handlers are organized into packages
corresponding to the basic MIME type categories. The handler classes themselves are
named after the specific MIME type, which allows Java to map MIME types directly to

http://lib.ommolketab.ir
http://lib.ommolketab.ir

class names. The only remaining information Java needs is a list of packages in which the
handlers might reside. To supply this information, you should use the system properties
java.content.handler.pkgs and java.protocol.handler.pkgs . In
these properties, you can use a vertical bar (|) to separate different packages in a list.

We'll put our content handlers in the learningjava.contenthandlers package.
According to the scheme for naming content handlers, a handler for the image/gif
MIME type is called gif and placed in a package that is called
learningjava.contenthandlers.image . The fully qualified name of the
class would then be learningjava.contenthandlers.image.gif , and it
would be located in the file learningjava/contenthandlers/image/gif.class , somewhere in
the local class path, or, perhaps someday, on a server. Likewise, a content handler for the
video/mpeg MIME type would be called mpeg , and an mpeg.class file would be
located in a learningjava/contenthandlers/video/ directory somewhere in the class path.

Many MIME type names include a dash (-), which is illegal in a class name. You should
convert dashes and other illegal characters into underscores (_) when building Java class
and package names. Also note that there are no capital letters in the class names. This
violates the coding convention used in most Java source files, in which class names start
with capital letters. However, capitalization is not significant in MIME type names, so it is
simpler to name the handler classes accordingly.

A.1.2 The application/x-tar Handler

In this section, we'll build a simple content handler that reads and interprets tar (tape
archive) files. tar is an archival format widely used in the Unix -world to hold collections
of files, along with their basic type and attribute information.There are several slightly
different versions of the tar format. This content handler understands the most widely used
variant. A tar file is similar to a JAR file, except that it's not compressed. Files in the
archive are stored sequentially, in flat text or binary with no special encoding. In practice,
tar files are usually compressed for storage using an application like Unix compress or
GNU gzip and then named with a filename extension like .tar.gz or .tgz .

Most web browsers, upon retrieving a tar file, prompt the user with a File Save dialog. The
assumption is that if you are retrieving an archive, you probably want to save it for later
unpacking and use. We would like to implement a tar content handler that allows an
application to read the contents of the archive and give us a listing of the files that it
contains. In itself, this would not be the most useful thing in the world, because we would
be left with the dilemma of how to get at the archive's contents. However, a more complete
implementation of our content handler, used in conjunction with an application like a web

http://lib.ommolketab.ir
http://lib.ommolketab.ir

browser, could generate HTML output or pop up a dialog that lets us select and save
individual files within the archive.

Some code that fetches a tar file and lists its contents might look like this:

try {
 URL listing =
 new URL("http://somewhere.an.edu/lynx/lynx2html.tar");
 String s = (String)listing.getContents();
 System.out.println(s);
 ...

Our handler produces a listing similar to the Unix tar application's output:

Tape Archive Listing:

0 Tue Sep 28 18:12:47 CDT 1993 lynx2html/
14773 Tue Sep 28 18:01:55 CDT 1993 lynx2html/lynx2html.c
470 Tue Sep 28 18:13:24 CDT 1993 lynx2html/Makefile
172 Thu Apr 01 15:05:43 CST 1993 lynx2html/lynxgate
3656 Wed Mar 03 15:40:20 CST 1993 lynx2html/install.csh
490 Thu Apr 01 14:55:04 CST 1993 lynx2html/new_globals.c
...

Our handler will dissect the file to read the contents and generate the listing. The URL 's
getContent() method will return that information to an application as a String
object.

First we must decide what to call our content handler and where to put it. The MIME-type
hierarchy classifies the tar format as an application type extension . Its proper MIME type is
then application/x-tar . Therefore, our handler belongs in the
learningjava.contenthandlers.application package and goes into the
class file learningjava/contenthandlers/application/x_tar.class . Note that the name of our
class is x_tar , rather than x-tar ; you'll remember the dash is illegal in a class name
so, by convention, we convert it to an underscore.

Here's the code for the content handler; compile it and put it in
learningjava/contenthandlers/application/ , somewhere in your class path:

//file: x_tar.java
package learningjava.contenthandlers.application;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

import java.net.*;
import java.io.*;
import java.util.Date;

public class x_tar extends ContentHandler {
 static int
 RECORDLEN = 512,
 NAMEOFF = 0, NAMELEN = 100,
 SIZEOFF = 124, SIZELEN = 12,
 MTIMEOFF = 136, MTIMELEN = 12;

 public Object getContent(URLConnection uc) throws IOException {
 InputStream is = uc.getInputStream();
 StringBuffer output =
 new StringBuffer("Tape Archive Listing:\n\n");
 byte [] header = new byte[RECORDLEN];
 int count = 0;

 while ((is.read(header) == RECORDLEN)
 && (header[NAMEOFF] != 0)) {
 String name =
 new String(header, NAMEOFF, NAMELEN, "8859_1"). trim();
 String s =
 new String(header, SIZEOFF, SIZELEN, "8859_1").trim();
 int size = Integer.parseInt(s, 8);
 s = new String(header, MTIMEOFF, MTIMELEN, "8859_1").trim();
 long l = Integer.parseInt(s, 8);
 Date mtime = new Date(l*1000);

 output.append(size + " " + mtime + " " + name + "\n");

 count += is.skip(size) + RECORDLEN;
 if (count % RECORDLEN != 0)
 count += is.skip (RECORDLEN - count % RECORDLEN);
 }

 if (count == 0)
 output.append("Not a valid TAR file\n");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 return(output.toString());
 }
}

A.1.2.1 The ContentHandler class

Our x_tar handler is a subclass of the abstract class java.net.ContentHandler .
Its job is to implement one method: getContent() , which takes as an argument a
special "protocol connection" object and returns a constructed Java Object . The
getContent() method of the URL class ultimately uses this getContent() method
when we ask for the contents of the URL. The code looks formidable, but most of it's
involved with processing the details of the tar format. If we remove these details, there isn't
much left:

public class x_tar extends ContentHandler {

 public Object getContent(URLConnection uc) throws IOException {
 // get input stream
 InputStream is = uc.getInputStream();

 // read stream and construct object
 // ...

 // return the constructed object
 return(output.toString());
 }
}

That's really all there is to a content handler; it's relatively simple.

A.1.2.2 The URLConnection

The java.net.URLConnection object that getContent() receives represents
the protocol handler's connection to the remote resource. It provides a number of methods
for examining information about the URL resource, such as header and type fields, and for
determining the kinds of operations the protocol supports. However, its most important
method is getInputStream() , which returns an InputStream from the protocol
handler. Reading this InputStream gives you the raw data for the object the URL
addresses. In our case, reading the InputStream feeds x_tar the bytes of the tar file
it's to process.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.1.2.3 Constructing the object

The majority of our getContent() method is devoted to interpreting the stream of
bytes of the tar file and building our output object: the String that lists the contents of
the tar file. Again, this means that this example involves the particulars of reading tar files,
so you shouldn't fret too much about the details.

After requesting an InputStream from the URLConnection , x_tar loops,
gathering information about each file. Each archived item is preceded by a header that
contains attribute and length fields. x_tar interprets each header and then skips over the
remaining portion of the item. To parse the header, we use the String constructor to read
a fixed number of characters from the byte array header[] . To convert these bytes into
a Java String properly, we specify the character encoding used by web servers: 8859_1,
which (for the most part) is equivalent to ASCII. Once we have a file's name, size, and time
stamp, we accumulate the results (the file listings) in a StringBuffer -one line per
file. When the listing is complete, getContent() returns the StringBuffer as a
String object.

The main while loop continues as long as it's able to read another header record, and as
long as the record's "name" field isn't full of ASCII null values. (The tar file format calls
for the end of the archive to be padded with an empty header record, although most tar
implementations don't seem to do this.) The while loop retrieves the name, size, and
modification times as character strings from fields in the header. The most common tar
format stores its numeric values in octal, as fixed-lengthASCII strings. We extract the
strings and use Integer.parseInt() to parse them.

After reading and parsing the header, x_tar skips over the data portion of the file and
updates the variable count , which keeps track of the offset into the archive. The two
lines following the initial skip account for tar's "blocking" of the data records. In other
words, if the data portion of a file doesn't fit precisely into an integral number of blocks of
RECORDLEN bytes, tar adds padding to make it fit.

As we said, the details of parsing tar files are not really our main concern here. Butx_tar
does illustrate a few tricks of data manipulation in Java.

It may surprise you that we didn't have to provide a constructor; our content handler relies
on its default constructor. We don't need to provide a constructor because there isn't
anything for it to do. Java doesn't pass the class any argument information when it creates
an instance of it. You might suspect that the URLConnection object would be a natural
thing to provide at that point. However, when you are calling the constructor of a class that
is loaded at runtime, you can't easily pass it any arguments.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.1.2.4 Using our new handler

When we began this discussion of content handlers, we showed a brief example of how our
x_tar content handler would work for us. You can try that code snippet now with your
favorite tar file by setting the java.content.handler.pkgs system property to
learningjava.contenthandlers and making sure that package is in your class
path.

To make things more exciting, try setting the property in your HotJava properties file. (The
HotJava properties file usually resides in a .hotjava directory in your home directory or in
the HotJava installation directory on a Windows machine.) Make sure the class path is set
before you start HotJava. Once HotJava is running, go to the Preferences menu, and select
Viewer Applications . Find the type TAR archive , and set its Action to View in HotJava .
This tells HotJava to try to use a content handler to display the data in the browser. Now,
drive HotJava to a URL that contains a tar file. The result should look something like that
shown in Figure A-1 .

Figure A-1. Using a content handler to display data in a browser

We've just extended our copy of HotJava to understand tar files! In the next section, we'll
turn the tables and look at protocol handlers. There we'll be building URLConnection
objects; someone else will have the pleasure of reconstituting the data.

A.2 Writing a Protocol Handler

A URL object uses a protocol handler to establish a connection with a server and perform

http://lib.ommolketab.ir
http://lib.ommolketab.ir

whatever protocol is necessary to retrieve data. For example, an HTTP protocol handler
knows how to talk to an HTTP server and retrieve a document; an FTP protocol handler
knows how to talk to an FTP server and retrieve a file. All types of URLs use protocol
handlers to access their objects. Even the lowly "file" type URLs use a special "file"
protocol handler that retrieves files from the local filesystem. The data a protocol handler
retrieves is then fed to an appropriate content handler for interpretation.

While we refer to a protocol handler as a single entity, it really has two parts: a
java.net.URLStreamHandler and a java.net.URLConnection . These
are both abstract classes that we will subclass to create our protocol handler. (Note that
these are abstract classes, not interfaces. Although they contain abstract methods we
are required to implement, they also contain many utility methods we can use or override.)
The URL looks up an appropriate URLStreamHandler , based on the protocol
component of the URL. The URLStreamHandler then finishes parsing the URL and
creates a URLConnection when it's time to communicate with the server. The
URLConnection represents a single connection with a server and implements the
communication protocol itself.

A.2.1 Locating Protocol Handlers

Protocol handlers are organized in a package hierarchy similar to content handlers. But
unlike content handlers, which are grouped into packages by the MIME types of the
objects that they handle, protocol handlers are given individual packages. Both parts of the
protocol handler (the URLStreamHandler class and the URLConnection class) are
located in a package named for the protocol they support.

For example, if we wrote an FTP protocol handler, we might put it in an
learningjava.protocolhandlers.ftp package. The URLStreamHandler
is placed in this package and given the name Handler ; all URLStreamHandler s are
named Handler and distinguished by the package in which they reside. The
URLConnection portion of the protocol handler is placed in the same package and can
be given any name. There is no need for a naming convention because the corresponding
URLStreamHandler is responsible for creating the URLConnection objects it uses.

As with content handlers, Java locates packages containing protocol handlers using the
java.protocol.handler.pkgs system property. The value of this property is a
list of package names; if more than one package is in the list, use a vertical bar (|) to
separate them. For our example, we will set this property to include
learningjava.protocolhandlers .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A.2.2 URLs, Stream Handlers, and Connections

The URL , URLStreamHandler , URLConnection , and ContentHandler
classes work together closely. Before diving into an example, let's take a step back, look at
the parts a little more, and see how these things communicate. Figure A-2 shows how these
components relate to each other.

Figure A-2. The protocol handler machinery

We begin with the URL object, which points to the resource we'd like to retrieve. The
URLStreamHandler helps the URL class parse the URL specification string for its
particular protocol. For example, consider the following call to the URL constructor:

URL url = new URL("protocol://foo.bar.com/file.ext");

The URL class parses only the protocol component; later, a call to the URL class's
getContent() or openStream() method starts the machinery in motion. The URL
class locates the appropriate protocol handler by looking in the protocol-package hierarchy.
It then creates an instance of the appropriate URLStreamHandler class.

The URLStreamHandler is responsible for parsing the rest of the URL string,
including hostname and filename, and possibly an alternative port designation. This allows
different protocols to have their own variations on the format of the URL specification
string. Note that this step is skipped when a URL is constructed with the "protocol," "host,"
and "file" components specified explicitly. If the protocol is straightforward, its
URLStreamHandler class can let Java do the parsing and accept the default behavior.
For this illustration, we'll assume that the URL string requires no special parsing. (If we use
a nonstandard URL with a strange format, we're responsible for parsing it ourselves, as
we'll show shortly.)

The URL object next invokes the handler's openConnection() method, prompting
the handler to create a new URLConnection to the resource. The URLConnection

http://lib.ommolketab.ir
http://lib.ommolketab.ir

performs whatever communications are necessary to talk to the resource and begins to
fetch data for the object. At that time, it also determines the MIME type of the incoming
object data and prepares an InputStream to hand to the appropriate content handler.
This InputStream must send "pure" data with all traces of the protocol removed.

The URLConnection also locates an appropriate content handler in the content-handler
package hierarchy. The URLConnection creates an instance of a content handler; to put
the content handler to work, the URLConnection 's getContent() method calls the
content handler's getContent() method. If this sounds confusing, it is: we have three
getContent() methods calling each other in a chain. The newly created
ContentHandler object then acquires the stream of incoming data for the object by
calling the URLConnection 's getInputStream() method. (Recall that we
acquired an InputStream in our x_tar content handler.) The content handler reads
the stream and constructs an object from the data. This object is then returned up the
getContent() chain: from the content handler, the URLConnection , and finally
the URL itself. Now our application has the desired object in its greedy little hands.

To summarize, we create a protocol handler by implementing a URLStreamHandler
class that creates specialized URLConnection objects to handle our protocol. The
URLConnection objects implement the getInputStream() method, which
provides data to a content handler for construction of an object. The base
URLConnection class implements many of the methods we need; therefore, our
URLConnection needs to provide only the methods that generate the data stream and
return the MIME type of the object data.

If you're not thoroughly confused by all that terminology (or even if you are), let's move on
to the example. It should help to pin down what all these classes are doing.

A.2.3 The crypt Handler

In this section, we'll build a crypt protocol handler. It parses URLs of the form:

crypt:type://hostname[:port]/location/item

type is an identifier that specifies what kind of encryption to use. The protocol itself is a
simplified version of HTTP; we'll implement the GET command and no more. We added
the type identifier to the URL to show how to parse a nonstandard URL specification.
Once the handler has figured out the encryption type, it dynamically loads a class that
implements the chosen encryption algorithm and uses it to retrieve the data. Obviously, we
don't have room to implement a full-blown public-key encryption algorithm, so we'll use
the rot13InputStream class from Chapter 11 . It should be apparent how the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

example can be extended by plugging in a more powerful encryption class.

A.2.3.1 The Encryption class

First, we'll lay out our plug-in encryption class. We'll define an abstract class called
CryptInputStream that provides some essentials for our plug-in encrypted protocol.
From the CryptInputStream we'll create a subclass called
rot13CryptInputStream , that implements our particular kind of encryption:

//file: rot13CryptInputStream.java
package learningjava.protocolhandlers.crypt;
import java.io.*;

abstract class CryptInputStream extends InputStream {
 InputStream in;
 OutputStream out;
 abstract public void set(InputStream in, OutputStream out);
} // end of class CryptInputStream

class rot13CryptInputStream extends CryptInputStream {

 public void set(InputStream in, OutputStream out) {
 this.in = new learningjava.io.rot13InputStream(in);
 }
 public int read() throws IOException {
 return in.read();
 }
}

Our CryptInputStream class defines a method called set() that passes in the
InputStream it's to translate. Our URLConnection calls set() after creating an
instance of the encryption class. We need a set() method because we want to load the
encryption class dynamically, and we aren't allowed to pass arguments to the constructor of
a class when it's dynamically loaded. (We noticed this same issue in our content handler
previously.) In the encryption class, we also provide for the possibility of an
OutputStream . A more complex kind of encryption might use the OutputStream
to transfer public-key information. Needless to say, rot13 doesn't, so we'll ignore the
OutputStream here.

The implementation of rot13CryptInputStream is very simple. set() takes the
InputStream it receives and wraps it with the rot13InputStream filter. read(

http://lib.ommolketab.ir
http://lib.ommolketab.ir

) reads filtered data from the InputStream , throwing an exception if set() hasn't
been called.

A.2.3.2 The URLStreamHandler

Next we'll build our URLStreamHandler class. The class name is Handler ; it
extends the abstract URLStreamHandler class. This is the class the Java URL looks up
by converting the protocol name (crypt) into a package name. Remember that Java expects
this class to be named Handler , and to live in a package named for the protocol type.

//file: Handler.java
package learningjava.protocolhandlers.crypt;
import java.io.*;
import java.net.*;

public class Handler extends URLStreamHandler {

 protected void parseURL(URL url, String spec,
 int start, int end) {
 int slash = spec.indexOf('/');
 String crypType = spec.substring(start, slash-1);
 super.parseURL(url, spec, slash, end);
 setURL(url, "crypt:"+crypType, url.getHost(),
 url.getPort(), url.getFile(), url.getRef());
 }

 protected URLConnection openConnection(URL url)
 throws IOException {
 String crypType = url.getProtocol().substring(6);
 return new CryptURLConnection(url, crypType);
 }
}

Java creates an instance of our URLStreamHandler when we create a URL specifying
the crypt protocol. Handler has two jobs: to assist in parsing the URL specification
strings and to create CryptURLConnection objects when it's time to open a
connection to the host.

Our parseURL() method overrides the parseURL() method in the
URLStreamHandler class. It's called whenever the URL constructor sees a URL
requesting the crypt protocol. For example:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

URL url = new URL("crypt:rot13://foo.bar.com/file.txt");

parseURL() is passed a reference to the URL object, the URL specification string, and
starting and ending indexes that show what portion of the URL string we're expected to
parse. The URL class has already identified the simple protocol name; otherwise, it
wouldn't have found our protocol handler. Our version of parseURL() retrieves our
type identifier from the specification and stores it temporarily in the variable crypType .
To find the encryption type, we take everything between the starting index we were given
and the character preceding the first slash in the URL string (i.e., everything up to the colon
in ://). We then defer to the superclass parseURL() method to complete the job of
parsing the URL after that point. We call super.parseURL() with the new start
index, so that it points to the character just after the type specifier. This tells the superclass
parseURL() that we've already parsed everything prior to the first slash, and it's
responsible for the rest. Finally we use the utility method setURL() to put together the
final URL. Almost everything has already been set correctly for us, but we need to call
setURL() to add our special type to the protocol identifier. We'll need this information
later when someone wants to open the URL connection.

Before going on, we'll note two other possibilities. If we hadn't hacked the URL string for
our own purposes by adding a type specifier, we'd be dealing with a standard URL
specification. In this case, we wouldn't need to override parseURL() ; the default
implementation would have been sufficient. It could have sliced the URL into host, port,
and filename components normally. On the other hand, if we had created a completely
bizarre URL format, we would need to parse the entire string. There would be no point
calling super.parseURL() ; instead, we'd have called the URLStreamHandler 's
protected method setURL() to pass the URL's components back to the URL object.

The other method in our Handler class is openConnection() . After the URL has
been completely parsed, the URL object calls openConnection() to set up the data
transfer. openConnection() calls the constructor for our URLConnection with
appropriate arguments. In this case, our URLConnection object is named
CryptURLConnection , and the constructor requires the URL and the encryption type
as arguments. parseURL() put the encryption type in the protocol identifier of the URL.
We recognize it and pass the information along. openConnection() returns the
reference to our URLConnection , which the URL object uses to drive the rest of the
process.

A.2.3.3 The URLconnection

Finally, we reach the real guts of our protocol handler, the URLConnection class. This

http://lib.ommolketab.ir
http://lib.ommolketab.ir

is the class that opens the socket, talks to the server on the remote host, and implements the
protocol itself. This class doesn't have to be public, so you can put it in the same file as the
Handler class we just defined. We call our class CryptURLConnection ; it extends
the abstract URLConnection class. Unlike ContentHandler and
StreamURLConnection , whose names are defined by convention, we can call this
class anything we want; the only class that needs to know about the URLConnection is
the URLStreamHandler , which we wrote ourselves:

//file: CryptURLConnection.java
 import java.io.*;
 import java.net.*;

class CryptURLConnection extends URLConnection {
 static int defaultPort = 80;
 CryptInputStream cis;

 public String getContentType() {
 return guessContentTypeFromName(url.getFile());
 }

 CryptURLConnection (URL url, String crypType)
 throws IOException {
 super(url);
 try {
 String classname = "learningjava.protocolhandlers.crypt."
 + crypType + "CryptInputStream";
 cis = (CryptInputStream)
 Class.forName(classname).newInstance();
 } catch (Exception e) {
 throw new IOException("Crypt Class Not Found: "+e);
 }
 }

 public void connect() throws IOException {
 int port = (url.getPort() == -1) ?
 defaultPort : url.getPort();
 Socket s = new Socket(url.getHost(), port);

 // Send the filename in plaintext
 OutputStream server = s.getOutputStream();

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 new PrintWriter(new OutputStreamWriter(server, "8859_1"),
 true).println("GET " + url.getFile());

 // Initialize the CryptInputStream
 cis.set(s.getInputStream(), server);
 connected = true;
 }

 public InputStream getInputStream() throws IOException {
 if (!connected)
 connect();
 return (cis);
 }
}

The constructor for our CryptURLConnection class takes as arguments the
destination URL and the name of an encryption type. We pass the URL on to the
constructor of our superclass, which saves it in a protected url instance variable. We
could have saved the URL ourselves but calling our parent's constructor shields us from
possible changes or enhancements to the base class. We use crypType to construct the
name of an encryption class, using the convention that the encryption class is in the same
package as the protocol handler (i.e.,
learningjava.protocolhandlers.crypt); its name is the encryption type
followed by the suffix CryptInputStream .

Once we have a name, we need to create an instance of the encryption class. To do so, we
use the static method Class.forName() to turn the name into a Class object and
newInstance() to load and instantiate the class. (This is how Java loads the content
and protocol handlers themselves.) newInstance() returns an Object ; we need to
cast it to something more specific before we can work with it. Therefore, we cast it to our
CryptInputStream class, the abstract class that rot13CryptInputStream
extends. If we implement any additional encryption types as extensions to
CryptInputStream and name them appropriately, they will fit into our protocol
handler without modification.

We do the rest of our setup in the connect() method of the URLConnection .
There, we make sure we have an encryption class and open a Socket to the appropriate
port on the remote host. getPort() returns -1 if the URL doesn't specify a port
explicitly; in that case we use the default port for an HTTP connection (port 80). We ask
for an OutputStream on the socket, assemble a GET command using the getFile()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

method to discover the filename specified by the URL, and send our request by writing it
into the OutputStream . (For convenience, we wrap the OutputStream with a
PrintWriter and call println() to send the message.) We then initialize the
CryptInputStream class by calling its set() method and passing it an
InputStream from the Socket and the OutputStream .

The last thing connect() does is set the boolean variable connected to true .
connected is a protected variable inherited from the URLConnection class. We
need to track the state of our connection because connect() is a public method. It's
called by the URLConnection 's getInputStream() method, but it could also be
called by other classes. Since we don't want to start a connection if one already exists, we
check connected first.

In a more sophisticated protocol handler, connect() would also be responsible for
dealing with any protocol headers that come back from the server. In particular, it would
probably stash any important information it deduced from the headers (e.g., MIME type,
content length, time stamp) in instance variables, where it's available to other methods. At a
minimum, connect() strips the headers from the data so the content handler won't see
them. We'll be lazy and assume we'll connect to a minimal server, such as the modified
TinyHttpd daemon (discussed in the next section), which doesn't bother with any
headers.

The bulk of the work has been done; a few details remain. The URLConnection 's
getContent() method needs to figure out which content handler to invoke for this
URL . In order to compute the content handler's name, getContent() needs to know
the resource's MIME type. To find out, it calls the URLConnection 's
getContentType() method, which returns the MIME type as a String . Our
protocol handler overrides getContentType() , providing our own implementation.

The URLConnection class provides a number of tools to help determine the MIME
type. It's possible that the MIME type is conveyed explicitly in a protocol header; in this
case, a more sophisticated version of connect() would have stored the MIME type in a
convenient location for us. Some servers don't bother to insert the appropriate headers,
though, so you can use the method guess-ContentTypeFromName() to examine
filename extensions, like .gif or .html , and map them to MIME types. In the worst case,
you can use guessContent-TypeFromStream() to intuit the MIME type from the
raw data. The Java developers call this method "a disgusting hack" that shouldn't be
needed, but that is unfortunately necessary in a world where HTTP servers lie about
content types and extensions are often nonstandard. We'll take the easy way out and use the
guessContentTypeFromName() utility of the URLConnection class to
determine the MIME type from the filename extension of the URL we are retrieving.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Once the URLConnection has found a content handler, it calls the content handler's
getContent() method. The content handler then needs to get an InputStream
from which to read the data. To find an InputStream , it calls the URLConnection
's getInputStream() method. getInputStream() returns an InputStream
from which its caller can read the data after protocol processing is finished. It checks
whether a connection is already established; if not, it calls connect() to make the
connection. Then it returns a reference to our CryptInputStream .

A final note on getting the content type: the URLConnection 's default
getContentType() calls getHeaderField() , which is presumably supposed to
extract the named field from the protocol headers (it would probably spit back information
connect() had stored away). But the default implementation of
getHeaderField() just returns null ; we would have to override it to make it do
anything interesting. Several other connection attributes use this mechanism, so in a more
general implementation, we'd probably override getHeaderField() rather than
getContentType() directly.

A.2.3.4 Trying it out

Let's try out our new protocol! Compile all the classes and put them in the
learningjava.protocolhandlers package somewhere in your class path. Now
set the java.protocol.handler.pkgs system property in HotJava to include
learningjava.protocolhandlers . Type a "crypt" style URL for a text
document; you should see something like that shown in Figure A-3 .

Figure A-3. The crypt protocol handler at work

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This example would be more interesting if we had a rot13 server. Since the crypt protocol
is nothing more than HTTP with some encryption added, we can make a rot13 server by
modifying one line of the TinyHttpd server we developed in Chapter 12 , so that it
spews its files in rot13. Just change the line that reads the data from the file-replace this
line:

f.read(data);

with a line that reads through a rot13InputStream :

new learningjava.io.rot13InputStream(f).read(data);

We'll assume you placed the rot13InputStream example in a package called
learningjava.io , and that it's somewhere in your class path. Now recompile and
run the server. It automatically encodes the files before sending them; our sample
application decodes them on the other end.

We hope that this example has given you some food for thought. Content and protocol
handlers are among the most exciting ideas in Java. It's unfortunate that we have to wait for
future releases of HotJava and Netscape to take full advantage of them. But in the
meantime, you can experiment and implement your own applications.

CONTENTS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

Appendix B. BeanShell: Simple Java Scripting

 B.1 Running BeanShell

 B.2 Java Statements and Expressions
 B.3. BeanShell Commands

 B.4. Scripted Methods and Objects

 B.5. Changing the Classpath

 B.6. Learning More ...

In this book, we (in this case, I, Pat) have avoided talking about many third-party tools that
aren't part of the standard SDK. I'm going to make an exception here to mention a nifty,
free Java tool called BeanShell. As its name suggests, BeanShell can be used as a Java
"shell." It allows you to type standard Java syntax-statements and expressions-on the
command line and see the results immediately. With BeanShell, you can try out bits of
code as you work through the book. You can access all Java APIs and even create
graphical user interface components and manipulate them "live." BeanShell uses only
reflection, so there is no need to compile class files.

I wrote BeanShell while developing the examples for this book, and I think it makes a good
companion to have along on your journey through Java. BeanShell is an open source
software project, so the source code is included on the CD-ROM that accompanies this
book (view CD content online at http://examples.oreilly.com/learnjava2/CD-ROM/). And
you can always find the latest updates and more information at its official home:
http://www.beanshell.org . In recent years BeanShell has become fairly popular. It is
included with Emacs as part of the Java Development Environment (the JDE), with the
NetBeans and Forte IDEs, and with BEA's WebLogic application server. I hope you find it
both useful and fun!

B.1 Running BeanShell

All you need to run BeanShell is the Java runtime system (Version 1.1 or greater) and the
bsh JAR file. Under Windows you can launch a graphical desktop for BeanShell by simply
double-clicking the JAR file icon. More generally, you can add the JAR to your classpath:

Unix: export CLASSPATH=$CLASSPATH:bsh.jar
Windows: set classpath %classpath%;bsh.jar

http://www.beanshell.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Or just drop the JAR file in the jre/lib/ext directory of your Java installation. You can then
run BeanShell interactively in either a GUI or command-line mode:

java bsh.Console // run the graphical desktop
java bsh.Interpreter // run as text-only on the command line

Running BeanShell with the GUI console brings up a simple, Swing-based, desktop that
allows you to open multiple shell windows with basic command history, line editing, and
cut-and-paste capability. There are some other GUI tools available as well, including a
simple text editor and class browser. Alternately, you can run BeanShell on the command
line, in text-only mode.

You can run BeanShell scripts from files, like so:

% java bsh.Interpreter myfile.bsh

Within the NetBeans and Forte IDEs, you can create BeanShell script files using the New
File wizard or run any file with a .bsh extension just as you would execute Java code.

B.2 Java Statements and Expressions

At the prompt, you can type standard Java statements and expressions. Statements and
expressions are all of the normal things that you'd include in a Java method: variable
declarations and assignments, method calls, loops, and conditionals.

You can type these exactly as they would appear in Java. You also have the option of
working with "loosely typed" variables and arguments. That is, you can simply be lazy and
not declare the types of variables that you use (both primitives and objects). BeanShell will
still give you an error if you attempt to misuse the actual contents of the variable. If you do
declare types of variables or primitives, BeanShell will enforce them.

Here are some examples:

foo = "Foo";
four = (2 + 2)*2/2;
print(foo + " = " + four); // print() is a bsh command
// do a loop
for (i=0; i<5; i++)
 print(i);
// pop up an AWT frame with a button in it
button = new JButton("My Button");
frame = new JFrame("My Frame");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

frame.getContentPane().add(button, "Center");
frame.pack();
frame.setVisible(true);

If you don't like the idea of "loosening" Java syntax at all, you can turn off this feature of
BeanShell with the following command:

setStrictJava(true);

B.2.1 Imports

By default, BeanShell imports all of the core Java packages for you. You can import your
own classes using the standard Java import declaration:

import mypackage.*;

BeanShell can even automatically import all classes in your classpath, using the following
special declaration:

import *;

But this can take quite some time if there are a lot of directories in your path.

B.3 BeanShell Commands

BeanShell comes with a number of useful built-in commands in the form of Java methods.
These commands are implemented as BeanShell scripts, and are supplied in the bsh JAR
file. You can make your own commands by defining methods in your own scripts or
adding them to your classpath. See the BeanShell user's manual for more information.

One important BeanShell command is print() , which displays values. print() does
pretty much the same thing as System.out.println() except it ensures the output
always goes to the command line (if you have multiple windows open). print() also
displays some types of objects (such as arrays) more verbosely than Java would. Another
very useful command is show() , which toggles on and off automatic printing of the
result of every line you type. (You can turn this on if you want to see every result value.)

Here are a few other examples of BeanShell commands:

source() , run()

Reads a bsh script into this interpreter, or runs it in a new interpreter

http://lib.ommolketab.ir
http://lib.ommolketab.ir

frame()

Displays an AWT or Swing component in a frame
load() , save()

Loads or saves serializable objects (such as JavaBeans)
cd() , cat() , dir() , pwd() , etc.

Unix-like shell commands
exec()

Runs a native application
addClassPath(), reloadClasses()

Modifies the classpath or reload classes

See the BeanShell user's manual for a full list of commands.

B.4 Scripted Methods and Objects

You can declare and use methods in BeanShell, just as you would inside a Java class:

int addTwoNumbers(int a, int b) {
 return a + b;
}
sum = addTwoNumbers(5, 7); // 12

BeanShell methods may also have dynamic (loose) argument and return types.

add(a, b) {
 return a + b;
}
foo = add(1, 2); // 3
foo = add("Hello ", "Kitty"); // "Hello Kitty"

In BeanShell, as in JavaScript and Perl, method closures take the place of scripted objects.
You can turn the context of a method call into an object reference by having the method
return the special value this . You can then use the this reference to refer to any
variables that were set during the method call. To be useful, an object may also need
methods; so in BeanShell, methods may also contain methods at any level. Here is a simple
example:

user(n) {

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 name = n;
 reset() {
 print("Reset user:"+name);
 }
 return this; // return user as object
}
bob = user("Bob");
print(bob.name); // "Bob"
bob.reset(); // prints "Reset user: Bob"

This example assigns the context of the user() method to the variable bob and refers to
the field bob.name and the method bob.reset().

If you find this strange, don't worry. The most common reason you'd want to script an
object is to implement a Java interface, and you can do that using the standard Java
anonymous inner class syntax, as we'll discuss next.

B.4.1 Scripting Interfaces and Adapters

One of the most powerful features of BeanShell is that you can "script" any interface type
(provided you are running Java 1.3 or greater). BeanShell-scripted objects can
automatically implement any required interface type. All you have to do is implement the
necessary method (or at least the ones that are going to be invoked). You can use this
feature either by explicitly referring to a BeanShell script using a this style reference as
described earlier, or by using the standard Java anonymous inner class syntax. Here is an
example:

actionPerformed(event) { print(event); }
button = new JButton("Press Me!");
button.addActionListener(this);
frame(button);

You can type this code right on the command line and press the button to see the events it
generates. In this case the this reference refers to the current context, just as in a method.
BeanShell automatically implements the ActionListener interface and delegates calls
to its actionPerformed() method to our scripted method.

Alternately, we could use the anonymous inner class syntax to create an
ActionListener for our button:

button = new JButton("Press Me!");

http://lib.ommolketab.ir
http://lib.ommolketab.ir

button.addActionListener(new ActionListener() {
 actionPerformed(event) { print(event); }
});
frame(button);

In this case the "anonymous inner class" is actually a BeanShell script that implements the
ActionListener interface for us in the same way as the previous example.

One more thing: we hinted earlier that you only have to implement those methods of the
interface that you want to use. If you don't script a method, it's okay as long as it's not
invoked (in which case you'd get an exception). For convenience in implementing a large
interface, you can define the special invoke() method, which handles calls to scripted
methods that don't exist:

invoke(name, args) { print("Method: "+name+" invoked!"); }

This invoke() method will handle method calls for methods that are not defined and
simply print their names. See the user manual for more details.

B.5 Changing the Classpath

Within BeanShell you can add to your classpath and even reload classes:

addClassPath("mystuff.jar");
addClassPath(http://examples.oreilly.com/learnjava/magicbeans.jar);

To reload all classes in the classpath simply use:

reloadClasses();

You can do more elaborate things as well, such as reloading individual classes, if you
know what you're doing. See the user manual for more details.

B.6 Learning More ...

BeanShell has many more features than I've described here. You can embed BeanShell into
your applications as a lightweight scripting engine, passing live Java objects into and out of
scripts. You can even run BeanShell in a remote server mode, which lets you work in a
shell inside your running application, for debugging and experimentation. There is also a
BeanShell servlet that can be used for running scripts inside an application server.

BeanShell is small (only about 200 KB) and it's free, licensed under the GNU Library

http://examples.oreilly.com/learnjava/magicbeans.jar
http://lib.ommolketab.ir
http://lib.ommolketab.ir

General Public License and the Sun Public License. You can learn more by checking out
the full user's manual and FAQ on the web site. If you have ideas, bug fixes, or
improvements, please consider joining the developer's mailing list.

As a final caveat, I should say that you do get what you pay for, and BeanShell is still
somewhat experimental. So you will certainly find bugs. Please feel free to send feedback,
using the book's web page, http://www.oreilly.com/catalog/learnjava2 . Enjoy!

CONTENTS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from
distribution channels. Distinctive covers complement our distinctive approach to technical
topics, breathing personality and life into potentially dry subjects.

The animals on the cover of Learning Java, Second Edition, are a Bengal tigress and her
cubs. The Bengal tiger (Panthera tigris) lives in Southern Asia where it has been hunted
practically to extinction principally for its bone, which is reputed to have medicinal value.
It now lives mostly in natural preserves and national parks where it is strictly protected. It's
estimated that there are less than 3,000 Bengal tigers left in the wild.

The Bengal tiger is reddish orange with narrow black, gray, or brown stripes, generally in a
vertical direction. Males can grow to nine feet long and weigh as much as 500 pounds; they
are the largest existing members of the cat family. Preferred habitats include dense thickets,
long grass, or tamarisk shrubs along river banks. Maximum longevity can be 26 years but
is usually only about 15 years in the wild.

Tigers most commonly conceive after the monsoon rains; the majority of cubs are born
between February and May after a gestation of three and a half months. Females bear
single litters every two to three years. Cubs weigh under three pounds at birth and are
striped. Litters consist of one to four cubs, with occasionally as many as six, but it's
unusual for more than two or three to survive. Cubs are weaned at four to six months but
depend on their mother for food and protection for another two years. Female tigers are
mature at three to four years, males at four to five years.

Their white ear spots may help mothers and cubs to keep track of each other in the dim
forests at night.

Mary Anne Weeks Mayo was the production editor, and Leanne Soylemez copyedited
select chapters for Learning Java, Second Edition. Matt Hutchinson and Jane Ellin
provided quality control. Phil Dangler provided production assistance. Ellen Troutman-
Zaig wrote the index.

Hanna Dyer designed the cover of this book, based on a series design by Edie Freedman.
The cover image is an original engraving from the book Forest and Jungle: An Illustrated
History of the Animal Kingdom by P.T. Barnum (1899). Emma Colby produced the cover
layout with QuarkXPress 4.1 using Adobe's ITC Garamond font. David Futato designed
the CD-ROM label.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Melanie Wang designed the interior layout, based on a series design by David Futato. Neil
Walls converted the files from Microsoft Word to FrameMaker 5.5.6 using tools created by
Mike Sierra. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed;
and the code font is LucasFont's TheSans Mono Condensed. The illustrations that appear in
the book were produced by Robert Romano and Jessamyn Read using Macromedia
FreeHand 9 and Adobe Photoshop 6. The tip and warning icons were drawn by
Christopher Bing. This colophon was compiled by Mary Anne Weeks Mayo.

The online edition of this book was created by the Safari production group (John Chodacki,
Becki Maisch, and Madeleine Newell) using a set of Frame-to-XML conversion and
cleanup tools written and maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff
Liggett.

CONTENTS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONTENTS

Glossary

A

B

C

D

E

F

G

H

I

J

L

M

N

O

P

R

S

T

U

V

W

http://lib.ommolketab.ir
http://lib.ommolketab.ir

X

A

abstract

The abstract keyword is used to declare abstract methods and classes. An
abstract method has no implementation defined; it is declared with arguments and a
return type as usual, but the body enclosed in curly braces is replaced with a
semicolon. The implementation of an abstract method is provided by a subclass of the
class in which it is defined. If an abstract method appears in a class, the class is also
abstract.

API (Application Programming Interface)

An API consists of the functions and variables programmers use in their applications.
The Java API consists of all public and protected methods of all public
classes in the java.applet, java.awt, java.awt.image,
java.awt.peer, java.io, java.lang, java.net, and java.util
packages.

applet

An embedded Java application that runs in the context of an applet viewer, such as a
web browser.

<APPLET> tag

An HTML tag that specifies an applet run within a web document.

appletviewer

Sun's application that implements the additional structure needed to run and display
Java applets.

application

A Java program that runs standalone; i.e., it doesn't require an applet viewer.

assertion

A language feature used to test for conditions that should be guaranteed by program
logic. If a condition checked by an assertion is found to be false, a fatal error is

http://lib.ommolketab.ir
http://lib.ommolketab.ir

thrown. For added performance, assertions can be disabled when an application is
deployed.

AWT (Abstract Window Toolkit)

Java's platform-independent windowing, graphics, and user interface toolkit.

B

Boojum

The mystical, spectral, alter-ego of a Snark. From the Lewis Carroll poem "The
Hunting of the Snark," 1876.

boolean

A primitive Java data type that contains a truth value. The two possible values of a
boolean variable are true and false.

byte

A primitive Java data type that's an eight-bit two's-complement signed number (in all
implementations).

C

callback

A behavior that is defined by one object and then later invoked by another object
when a particular event occurs.

cast

A technique that explicitly converts one data type to another.

catch

The catch statement introduces an exception-handling block of code following a
try statement. The catch keyword is followed by an exception type and argument
name in parentheses and a block of code within curly braces.

certificate

An electronic document used to verify the identity of a person, group, or

http://lib.ommolketab.ir
http://lib.ommolketab.ir

organization. Certificates attest to the identity of a person or group and contain that
organization's public key. A certificate is signed by a certificate authority.

certificate authority (CA)

An organization that is entrusted to issue certificates, taking whatever steps are
necessary to verify the identity for which it is issuing the certificate.

char

A primitive Java data type; a variable of type char holds a single 16-bit Unicode
character.

Collections API

Classes in the core java.util package for working with and sorting structured
collections or maps of items. This API includes the Vector and Hashtable
classes as well as newer items such as List and Map.

class

a) An encapsulated collection of data and methods to operate on the data. A class may
be instantiated to produce an object that's an instance of the class.

b) The class keyword is used to declare a class, thereby defining a new object type.
Its syntax is similar to the struct keyword in C.

class loader

An object in the Java security model that is responsible for loading Java binary
classes from the network into the local interpreter. A class loader keeps its classes in a
separate namespace, so that loaded classes cannot interact with system classes and
breach system security.

class method

A method declared static. Methods of this type are not passed implicit this
references and may refer only to class variables and invoke other class methods of the
current class. A class method may be invoked through the class name, rather than
through an instance of the class.

classpath

The directory path specifying the location of compiled Java class files on the local

http://lib.ommolketab.ir
http://lib.ommolketab.ir

system.

class variable

A variable declared static. Variables of this type are associated with the class,
rather than with a particular instance of the class. There is only one copy of a static
variable, regardless of the number of instances of the class that are created.

client

The application that initiates a conversation as part of a networked client/server
application. See also server.

compilation unit

The source code for a Java class. A compilation unit normally contains a single class
definition and, in most current development environments, is simply a file with a
.java extension.

compiler

A program that translates source code into executable code.

component architecture

A methodology for building parts of an application. It is a way to build reusable
objects that can be easily assembled to form applications.

composition

Using objects as part of another, more complex object. When you compose a new
object, you create complex behavior by delegating tasks to the internal objects.
Composition is different from inheritance, which defines a new object by changing or
refining the behavior of an old object. See also inheritance.

constructor

A method that is invoked automatically when a new instance of a class is created.
Constructors are used to initialize the variables of the newly created object. The
constructor method has the same name as the class.

content handler

A class that is called to parse a particular type of data and that converts it to an
appropriate object.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

D

datagram

A packet of data sent to a receiving computer without warning, error checking, or
other control information.

data hiding

See encapsulation.

deep copy

A duplicate of an object along with all of the objects that it references, transitively. A
deep copy duplicates the entire "graph" of objects, instead of just duplicating
references. See also shallow copy.

DOM (Document Object Model)

An in-memory representation of a fully parsed XML document using objects with
names like Element, Attribute, and Text. The Java XML DOM API binding
is standardized by the World Wide Web Consortium (W3C).

double

A Java primitive data type; a double value is a 64-bit (double-precision) floating-
point number.

DTD (Document Type Definition)

A document containing specialized language that expresses constraints on the
structure of XML tags and tag attributes. DTDs are used to validate an XML
document and can constrain the order and nesting of tags as well as the allowed
values of attributes.

E

encapsulation

An object-oriented programming technique that makes an object's data private or
protected (i.e., hidden) and allows programmers to access and manipulate that
data only through method calls. Done well, encapsulation reduces bugs and promotes
reusability and modularity of classes. This technique is also known as data hiding.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

event

A user's action, such as a mouse-click or key press.

exception

A signal that some unexpected condition has occurred in the program. In Java,
exceptions are objects that are subclasses of Exception or Error (which
themselves are subclasses of Throwable). Exceptions in Java are "raised" with the
throw keyword and received with the catch keyword. See also catch, throw, and
throws.

exception chaining

The design pattern of catching an exception and throwing a new, higher level, or
more appropriate exception which contains the underlying exception as its cause. The
"cause" exception can be retrieved if necessary.

extends

A keyword used in a class declaration to specify the superclass of the class being
defined. The class being defined has access to all the public and protected
variables and methods of the superclass (or, if the class being defined is in the same
package, it has access to all non-private variables and methods). If a class
definition omits the extends clause, its superclass is taken to be
java.lang.Object.

F

final

A keyword modifier that may be applied to classes, methods, and variables. It has a
similar, but not identical, meaning in each case. When final is applied to a class, it
means that the class may never be subclassed. java.lang.System is an example
of a final class. When final is applied to a variable, the variable is a constant;
i.e., it can't be modified.

finalize

A reserved method name. The finalize() method is called when an object is no
longer being used (i.e., when there are no further references to it) but before the
object's memory is actually reclaimed by the system. A finalizer should perform
cleanup tasks and free system resources not handled by Java's garbage-collection

http://lib.ommolketab.ir
http://lib.ommolketab.ir

system.

finally

A keyword that introduces the finally block of a try/catch/finally
construct. catch and finally blocks provide exception handling and routine
cleanup for code in a try block. The finally block is optional and appears after
the try block, and after zero or more catch blocks. The code in a finally
block is executed once, regardless of how the code in the try block executes. In
normal execution, control reaches the end of the try block and proceeds to the
finally block, which generally performs any necessary cleanup.

float

A Java primitive data type; a float value is a 32-bit (single-precision) floating-
point number represented in IEEE 754 format.

G

garbage collection

The process of reclaiming the memory of objects no longer in use. An object is no
longer in use when there are no references to it from other objects in the system and
no references in any local variables on the method call stack.

graphics context

A drawable surface represented by the java.awt.Graphics class. A graphics
context contains contextual information about the drawing area and provides methods
for performing drawing operations in it.

GUI (graphical user interface)

A GUI is constructed from graphical push buttons, text fields, pull-down menus,
dialog boxes, and other standard interface components.

H

hashcode

An arbitrary-looking identifying number used as a kind of signature for an object. A
hashcode stores an object in a hashtable. See also hashtable.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

hashtable

An object that is like a dictionary or an associative array. A hashtable stores and
retrieves elements using key values called hashcodes. See also hashcode.

hostname

The name given to an individual computer attached to the Internet.

HotJava

A web browser written in Java, capable of downloading and running Java applets.

HTTP (Hypertext Transfer Protocol)

The protocol used by web browsers or other clients to talk to web servers. The
simplest form of the protocol uses the commands GET to request a file and POST to
send data.

I

implements

A keyword used in class declarations to indicate that the class implements the named
interface or interfaces. The implements clause is optional in class declarations; if
it appears, it must follow the extends clause (if any). If an implements clause
appears in the declaration of a non-abstract class, every method from each
specified interface must be implemented by the class or by one of its superclasses.

import

The import statement makes Java classes available to the current class under an
abbreviated name. (Java classes are always available by their fully qualified name,
assuming the appropriate class file can be found relative to the CLASSPATH
environment variable and that the class file is readable. import doesn't make the
class available; it just saves typing and makes your code more legible.) Any number
of import statements may appear in a Java program. They must appear, however,
after the optional package statement at the top of the file, and before the first class
or interface definition in the file.

inheritance

An important feature of object-oriented programming that involves defining a new
object by changing or refining the behavior of an existing object. That is, an object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

implicitly contains all the non-private variables of its superclass and can invoke
all the non-private methods of its superclass. Java supports single inheritance of
classes and multiple inheritance of interfaces.

inner class

A class definition that is nested within another class. An inner class functions within
the lexical scope of another class.

instance

An object. When a class is instantiated to produce an object, we say the object is an
instance of the class.

instance method

A non-static method of a class. Such a method is passed an implicit this
reference to the object that invoked it. See also class method and static.

instanceof

A Java operator that returns true if the object on its left side is an instance of the
class (or implements the interface) specified on its right side. instanceof returns
false if the object isn't an instance of the specified class or doesn't implement the
specified interface. It also returns false if the specified object is null.

instance variable

A non-static variable of a class. Copies of such variables occur in every instance
of the created class. See also class variable and static.

int

A primitive Java data type that's a 32-bit two's-complement signed number (in all
implementations).

interface

A keyword used to declare an interface. More generally, an interface defines a list of
methods that enables a class to implement the interface itself.

internationalization

The process of making an application accessible to people who speak a variety of
languages. Sometimes abbreviated I18N.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

interpreter

The module that decodes and executes Java bytecode.

introspection

The process by which a JavaBean provides additional information about itself,
supplementing information learned by reflection.

ISO 8859-1

An eight-bit character encoding standardized by the ISO. This encoding is also
known as Latin-1 and contains characters from the Latin alphabet suitable for English
and most languages of western Europe.

ISO 10646

A four-byte character encoding that includes all the world's national standard
character encodings. Also known as UCS. The two-byte Unicode character set maps
to the range 0x00000000 to 0x0000FFFF of ISO 10646.

J

JavaBeans

A component architecture for Java. It is a way to build interoperable Java objects that
can be manipulated easily in a visual application builder environment.

JavaBeans

Individual JavaBeans are Java classes that are built using certain design patterns and
naming conventions.

JavaScript

A language developed by Netscape for creating dynamic web pages. From a
programmer's point of view, it's unrelated to Java, although some of its capabilities
are similar. Internally, there may be a relationship, but even that is unclear.

JAXB (Java API for XML Binding)

A Java API that allows for generation of Java classes from XML DTD or Schema
descriptions and the generation of XML from Java classes. JAXB includes a binding
schema that maps names and structures in the Java classes to XML tags and vice

http://lib.ommolketab.ir
http://lib.ommolketab.ir

versa.

JAXP (Java API for XML Parsers)

The Java API that allows for pluggable implementations of XML and XSL engines.
This API provides an implementation-neutral way to construct parsers and
transforms.

JDBC (Java Database Connectivity)

The standard Java API for talking to an SQL (structural query language) database.

JDOM

A native Java DOM created by Jason Hunter and Brett McLaughlin. JDOM is easier
to use than the standard DOM API for Java. It uses the Java collections API and
standard conventions. Available at http://www.jdom.org/.

L

layout manager

An object that controls the arrangement of components within the display area of a
container.

Latin-1

A nickname for ISO 8859-1.

lightweight component

A Java component that has no native peer in the AWT.

local variable

A variable that is declared inside a single method. A local variable can be seen only
by code within that method.

Logging API

The Java API for structured logging and reporting of messages from within
application components. The Logging API supports logging levels indicating the
importance of messages, as well as filtering and output capabilities.

long

http://www.jdom.org/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

A primitive Java data type that's a 64-bit two's-complement signed number (in all
implementations).

M

message digest

A long number computed from a message, used to determine whether the message's
contents have been changed in any way. A change to a message's contents will
change its message digest. It is almost impossible to create two similar messages with
the same digest.

method

The object-oriented programming term for a function or procedure.

method overloading

Providing definitions of more than one method with the same name but with different
argument lists or return values. When an overloaded method is called, the compiler
determines which one is intended by examining the supplied argument types.

method overriding

Defining a method that exactly matches (i.e., same name, same argument types, and
same return type) a method defined in a superclass. When an overridden method is
invoked, the interpreter uses "dynamic method lookup" to determine which method
definition is applicable to the current object.

Model-View-Controller (MVC) framework

A user-interface design that originated in Smalltalk. In MVC, the data for a display
item is called the "model." A "view" displays a particular representation of the model,
and a "controller" provides user interaction with both. Java incorporates many MVC
concepts.

modifier

A keyword placed before a class, variable, or method that alters the item's
accessibility, behavior, or semantics. See also abstract, final, native, private,
protected, public, static, and synchronized.

N

http://lib.ommolketab.ir
http://lib.ommolketab.ir

NaN (not-a-number)

This is a special value of the double and float data types that represents an
undefined result of a mathematical operation, such as zero divided by zero.

native

A modifier that may be applied to method declarations. It indicates that the method is
implemented (elsewhere) in C, or in some other platform-dependent fashion. A
native method declaration should end with a semicolon instead of a brace-
enclosed code block. A native method cannot be abstract, but all other
method modifiers may be used with native methods.

native method

A method that is implemented in a native language on a host platform, rather than
being implemented in Java. Native methods provide access to such resources as the
network, the windowing system, and the host filesystem.

new

new is a unary operator that creates a new object or array (or raises an
OutOfMemoryException if there is not enough memory available).

NIO

The Java "new" I/O package. A core package introduced in Java 1.4 to support
asynchronous, interruptible, and scalable I/O operations. The NIO API supports
nonthread-bound "select" style I/O handling.

null

null is a special value that indicates a variable doesn't refer to any object. The value
null may be assigned to any class or interface variable. It cannot be cast to any
integral type, and should not be considered equal to zero, as in C.

O

object

An instance of a class. A class models a group of things; an object models a particular
member of that group.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<OBJECT> tag

A proposed HTML tag that may replace the widely used but nonstandard
<APPLET> tag.

P

package

The package statement specifies which package the code in the file is part of. Java
code that is part of a particular package has access to all classes (public and non-
public) in the package, and all non-private methods and fields in all those
classes. When Java code is part of a named package, the compiled class file must be
placed at the appropriate position in the CLASSPATH directory hierarchy before it
can be accessed by the Java interpreter or other utilities. If the package statement is
omitted from a file, the code in that file is part of an unnamed default package. This is
convenient for small test programs, or during development because it means the code
can be interpreted from the current directory.

<PARAM> tag

An HTML tag used within <APPLET> ... </APPLET> to specify a named
parameter and string value to an applet within a web page.

plug-in

A modular application component for a web browser designed to extend the
browser's capabilities to handle a specific type of data (MIME type). The Java Plug-in
supports Java applets in browsers that do not have up-to-date Java runtime support.

Preferences API

The Java API for storing small amounts of information on a per-user or systemwide
basis across executions of the Java VM. The Preferences API is analogous to a small
database or the Windows registry.

primitive type

One of the Java data types: boolean, char, byte, short, int, long, float,
double. Primitive types are manipulated, assigned, and passed to methods "by
value" (i.e., the actual bytes of the data are copied). See also reference type.

private

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The private keyword is a visibility modifier that can be applied to method and
field variables of classes. A private field is not visible outside its class definition.

protected

A keyword that is a visibility modifier; it can be applied to method and field variables
of classes. A protected field is visible only within its class, within subclasses, or
within the package of which its class is a part. Note that subclasses in different
packages can access only protected fields within themselves or within other
objects that are subclasses; they cannot access protected fields within instances of the
superclass.

protocol handler

Software that describes and enables the use of a new protocol. A protocol handler
consists of two classes: a StreamHandler and a URLConnection.

public

A keyword that is a visibility modifier; it can be applied to classes and interfaces and
to the method and field variables of classes and interfaces. A public class or
interface is visible everywhere. A non-public class or interface is visible only
within its package. A public method or variable is visible everywhere its class is
visible. When none of the private, protected, or public modifiers are
specified, a field is visible only within the package of which its class is a part.

public key cryptography

A cryptographic system that requires a public key and a private key. The
private key can decrypt messages encrypted with the corresponding public
key, and vice versa. The public key can be made available to the public without
compromising cryptographic security.

R

reference type

Any object or array. Reference types are manipulated, assigned, and passed to
methods "by reference." In other words, the underlying value is not copied; only a
reference to it is. See also primitive type.

reflection

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The ability of a programming language to interact with structures of the language
itself. Reflection in Java allows a Java program to examine class files at runtime to
find out about their methods and variables, and to invoke methods or modify
variables dynamically.

regular expression

A compact yet powerful syntax for describing a pattern in text. Regular expressions
can be used to recognize and parse most kinds of textual constructs allowing for wide
variation in their form.

Regular Expression API

The core java.util.regex package for using regular expressions. The regex
package can be used to search and replace text based on sophisticated patterns.

Remote Method Invocation (RMI)

RMI is a native Java distributed object system. With RMI, you can pass references to
objects on remote hosts and invoke methods in them as if they were local objects.

root

The base of a hierarchy, such as a root class, whose descendants are subclasses. The
java.lang.Object class serves as the root of the Java class hierarchy.

S

SAX (Simple API for XML)

SAX is an event-driven API for parsing XML documents in which the client receives
events in response to activities such as the opening of tags, character data, and the
closing of tags.

Schema

XML Schema are a replacement for DTDs. Schema are an XML-based language for
expressing constraints on the structure of XML tags and tag attributes, as well as the
structure and type of the data content.

SDK (Software Development Kit)

A package of software distributed by Sun Microsystems for Java developers. It
includes the Java interpreter, Java classes, and Java development tools: compiler,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

debugger, disassembler, applet viewer, stub file generator, and documentation
generator.

SecurityManager

The Java class that defines the methods the system calls to check whether a certain
operation is permitted in the current environment.

serialize

To serialize means to put in order or make sequential. A serialized object is an object
that has been packaged so that it can be stored or transmitted over the network.
Serialized methods are methods that have been synchronized so that only one may be
executing at a given time.

server

The application that accepts a request for a conversation as part of a networked
client/server application. See also client.

servlet

A Java application component that implements the javax.servlet.Servlet
extension API allowing it to run inside a servlet container or web server. Servlets are
widely used in web applications to process user data and generate HTML or other
forms of output.

servlet context

In the Servlet API, the web application environment of a servlet that provides server
and application resources. The base URL path of the web application is also often
referred to as the servlet context.

shadow

To declare a variable with the same name as a variable defined in a superclass. We
say the variable "shadows" the superclass's variable. Use the super keyword to
refer to the shadowed variable or refer to it by casting the object to the type of the
superclass.

signature

A combination of a message's message digest, encrypted with the signer's private key,
and the signer's certificate, attesting to the signer's identity. Someone receiving a

http://lib.ommolketab.ir
http://lib.ommolketab.ir

signed message can get the signer's public key from the certificate, decrypt the
encrypted message digest, and compare that result with the message digest computed
from the signed message. If the two message digests agree, the recipient knows that
the message has not been modified and that the signer is who he or she claims to be.

signed applet

An applet packaged in a JAR file signed with a digital signature, allowing for
authentication of its origin and validation of the integrity of its contents.

signed class

A Java class (or Java archive) that has a signature attached. The signature allows the
recipient to verify the class's origin and that it is unmodified. The recipient can
therefore grant the class greater runtime privileges.

shallow copy

A copy of an object that duplicates only values contained in the object itself.
References to other objects are copied as references and are not duplicated. See also
deep copy.

short

A primitive Java data type that's a 16-bit two's-complement signed number (in all
implementations).

socket

An interface that listens for connections from clients on a data port and connects the
client data stream with the receiving application.

spinner

A GUI component that displays a value and a pair of small up and down buttons that
increment or decrement the value. The Swing JSpinner can work with number
ranges and dates as well as arbitrary enumerations.

static

A keyword that is a modifier applied to method and variable declarations within a
class. A static variable is also known as a class variable as opposed to non-
static instance variables. While each instance of a class has a full set of its own
instance variables, there is only one copy of each static class variable, regardless

http://lib.ommolketab.ir
http://lib.ommolketab.ir

of the number of instances of the class (perhaps zero) that are created. static
variables may be accessed by class name or through an instance. Non-static
variables can be accessed only through an instance.

stream

A flow of data, or a channel of communication. All fundamental I/O in Java is based
on streams.

String

A class used to represent textual information. The String class includes many
methods for operating on string objects. Java overloads the + operator for string
concatenation.

subclass

A class that extends another. The subclass inherits the public and protected
methods and variables of its superclass. See also extends.

super

A keyword that refers to the same value as this: the instance of the class for which
the current method (these keywords are valid only within non-static methods)
was invoked. While the type of this is the type of the class in which the method
appears, the type of super is the type of the superclass of the class in which the
method appears. super is usually used to refer to superclass variables shadowed by
variables in the current class. Using super in this way is equivalent to casting
this to the type of the superclass.

superclass

A class extended by some other class. The superclass's public and protected
methods and variables are available to the subclass. See also extends.

synchronized

A keyword used in two related ways in Java: as a modifier and as a statement. First, it
is a modifier applied to class or instance methods. It indicates that the method
modifies the internal state of the class or the internal state of an instance of the class
in a way that is not thread-safe. Before running a synchronized class method,
Java obtains a lock on the class, to ensure that no other threads can modify the class
concurrently. Before running a synchronized instance method, Java obtains a
lock on the instance that invoked the method, ensuring that no other threads can

http://lib.ommolketab.ir
http://lib.ommolketab.ir

modify the object at the same time.

Java also supports a synchronized statement that serves to specify a "critical
section" of code. The synchronized keyword is followed by an expression in
parentheses and a statement or block of statements. The expression must evaluate to
an object or array. Java obtains a lock on the specified object or array before
executing the statements.

T

TCP (Transmission Control Protocol)

A connection-oriented, reliable protocol. One of the protocols on which the Internet is
based.

this

Within an instance method or constructor of a class, this refers to "this object"-the
instance currently being operated on. It is useful to refer to an instance variable of the
class that has been shadowed by a local variable or method argument. It is also useful
to pass the current object as an argument to static methods or methods of other
classes.

There is one additional use of this: when it appears as the first statement in a
constructor method, it refers to one of the other constructors of the class.

thread

A single, independent stream of execution within a program. Since Java is a
multithreaded programming language, more than one thread may be running within
the Java interpreter at a time. Threads in Java are represented and controlled through
the Thread object.

throw

The throw statement signals that an exceptional condition has occurred by throwing
a specified exception object. This statement stops program execution and resumes it
at the nearest containing catch statement that can handle the specified exception
object. Note that the throw keyword must be followed by an exception object, not
an exception class.

throws

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The throws keyword is used in a method declaration to list the exceptions the
method can throw. Any exceptions a method can raise that are not subclasses of
Error or RuntimeException must either be caught within the method or
declared in the method's throws clause.

try

The try keyword indicates a block of code to which subsequent catch and
finally clauses apply. The try statement itself performs no special action. See
also catch and finally for more information on the try/catch/finally construct.

U

UCS (universal character set)

A synonym for ISO 10646.

UDP (User Datagram Protocol)

A connectionless unreliable protocol. UDP describes a network data connection
based on datagrams with little packet control.

Unicode

A universal standard for text character encoding, accommodating the written forms of
almost all languages. Unicode is standardized by the Unicode Consortium. Java uses
Unicode for its char and String types.

UTF-8 (UCS transformation format 8-bit form)

An encoding for Unicode characters (and more generally, UCS characters) commonly
used for transmission and storage. It is a multibyte format in which different
characters require different numbers of bytes to be represented.

V

vector

A dynamic array of elements.

verifier

A theorem prover that steps through the Java bytecode before it is run and makes sure
that it is well-behaved. The bytecode verifier is the first line of defense in Java's

http://lib.ommolketab.ir
http://lib.ommolketab.ir

security model.

W

WAR file (Web Applications Resources file)

A JAR file with additional structure to hold classes and resources for web
applications. A WAR file includes a WEB-INF directory for classes, libraries, and the
web.xml deployment file.

web application

An application that runs on a web server or application server, normally using a web
browser as a client.

X

XML (Extensible Markup Language)

A universal markup language for text, using tags to add structure and meta-
information to the content.

XSL/XSLT (Extensible Stylesheet Language/XSLTransformations)

An XML-based language for describing styling and transformation of XML
documents. Styling involves simple addition of markup, usually for presentation.
XSLT allows complete restructuring of documents, in addition to styling.

CONTENTS

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

[Y] [Z]

"get" methods for preferences
"ghosted" or "greyed-out" GUI components

"mark and sweep" algorithm, garbage collection

"put" methods for preferences

"root cycles"

"SnoopServlet" (example)
#PCDATA (character data identifier)

<body> tag, HTML

<EMBED> tag (HTML)

<OBJECT> tag (HTML)

-c (create) option (jar utility)
-d (directory) option (javac)

-D option (Java interpreter) 2nd
-depend option (javac)

-f (file) option (jar utility)

-m (manifest) option (jar utility)
-t option (jar utility)
-v (verbose) option (jar utility)

-x (extract) option (jar utility)

.class construct

.java extension (source code files)

\B (nonword) boundary
\b (word) boundary

\d (digit), regular expression character matching

\D (nondigit), regular expression character matching

\Q and \E, automatic escaping of text between

\S (non-space character), matching in regular expressions
\s (space character), matching in regular expressions

\W (nonword), regular expression character matching

\w (word), regular expression character matching

2D API 2nd 3rd

 classes and packages for drawing
 color models

 ColorModels, SampleModels, and DataBuffers

 drawing and filling shapes

 drawing images

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 drawing techniques
 double buffering

 limiting drawing with clipping

 offscreen drawing

 drawing text

 filling shapes
 color gradients, using

 desktop colors

 solid colors, using

 textures, using

 fonts
 metrics information

 printout of available

 image operators in

 images

 Image class
 image observers

 scaling and size
 printing

 rendering on an image

 rendering pipeline
 rendering, complete example

 stroking shape outlines 2nd
 TextLayout class

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

[Z]

absolute paths 2nd

 for nodes in preferences trees

absolute positioning, GUI components

 SpringLayout layout manager

absolute time
abstract modifier

 constructors and

 methods and classes

 methods, interfaces and

Abstract Window Toolkit [See AWT]
AbstractFormatter class

AbstractTableModel class

 noneditable cells

http://lib.ommolketab.ir
http://lib.ommolketab.ir

accelerators 2nd
accept() (ServerSocket) 2nd 3rd

accessor methods

 defining to set and return values

 fields

action commands
 radio buttons, returning for

action events

 calculator application (example)

 Juggler Bean, connecting to button

 menus
 sources, methods implemented by

 in text components

ActionEvent class 2nd 3rd 4th

 checkboxes

 generic adapter for, creating 2nd
ActionListener interface 2nd 3rd 4th

 implementing directly
 implementing for pop-up menus

 implementing with adapter classes

 implementing with anonymous inner classes
 registering for menu items

actionPerformed() 2nd 3rd 4th 5th 6th
 ActionListener interface

 TextArea, TextField classes

activating remote objects

activation (Java Activation Framework)
activeCount()

ActiveX components

 JavaBeans functioning in

ad-hoc polymorphism

adapter classes 2nd
 anonymous

 creating for interfaces

 dummy adapters

 EventHandler, creating with

 generating with Proxy class
 generic adapter for ActionEvents

 JavaBeans, connecting event source and listeners

 listening for PropertyChangeEvents

 scripting (BeanShell)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 for threads
adaptive compilation

add()

 Calendar class

 Collection interface

 Container class 2nd
 GridBagConstraints class

 List interface

 Set interface

addActionListener()

addCookie()
addElement()

addGB() 2nd

addHeader() (HttpServletResponse)

addImage()

addMouseListener()
addMouseMotionListener()

addObserver() 2nd
addTab() (JTabbedPane)

AdjustmentEvents class

AffineTransformOp class
algorithms

 encryption 2nd
 BigInteger class, using

 DSA (Digital Signature Algorithm)

 rot13 (rotate by 13 letters)

 for garbage collection
 image scaling

align attribute (HTML)

allocate()

allocateDirect()

allocation/deallocation of memory 2nd
alpha RGB (ARGB) color model

AlphaComposite class 2nd

alt attribute (HTML)

Alt key modifier

alternation in patterns
anchoring components (GridBagLayout)

animations

 BufferedImage, updating

 creating and starting threads for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 drawing
 GIF89a files

 image observers and

 juggling beans

 running threads with adapters

anonymous arrays
anonymous inner classes 2nd 3rd 4th 5th

 ActionListener, implementing with

 in BeanShell

 implementing Runnable interface

 listeners for action events
Ant application

Apache Project, Tomcat server

APIs (application programming interfaces) 2nd

 Java Foundation Classes

append()
 JTextArea class

 StringBuffer class
appending data to existing files

Apple QuickTime (.mov) Player

AppletContext interface 2nd
applets 2nd 3rd 4th

 <APPLET> tag 2nd 3rd
 appletviewer, using

 attributes

 converting to <EMBED> and <OBJECT> tags

 JAR files, listing in ARCHIVE attribute
 loading class files

 package names

 parameters

 syntax, complete

 web browser treatment of
 accessing URLs and correct protocol handlers

 Applet class

 destroy()

 AppletContext interface 2nd

 methods, summary of
 short-term applet persistence

 AppletStub interface

 methods, summary of

 appletviewer 2nd 3rd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 applications vs. 2nd 3rd
 AudioClip interface

 control methods 2nd 3rd

 digital signatures, using

 certificates

 keystores, keys, and certificates
 keytool utility

 embedding in HTML documents 2nd

 files and

 HeartBeat applet (example)

 history of
 housing in frames or windows

 JApplet class 2nd

 Java Plug-in, using

 HTML tags, problems with

 viewing Plug-in applets
 Java Web Start as alternative to

 life cycle
 resources, getting 2nd

 driving the browser

 images
 inter-applet communication

 parameters
 persistence and navigation

 standalone applications vs.

 security managers for

 security restrictions on 2nd
 sharing classes with standalone applications

 signed, implementing with Plug-in

 Swing-based, using JApplet (example)

 system properties, limiting access to

 threads, creating for
 viewing

application servers

application-level exceptions

application-level scope, Java packages

application-level security 2nd
 security managers

 signing classes

application/x-tar handler

applications 2nd [See also web applications]3rd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 applets vs. 2nd 3rd
 arrays

 classes in

 class hierarchy and

 instance variables

 objects
 client-side, Java use in

 colors, setting

 compiling

 components

 constructors
 containers

 layout of

 events

 listener interfaces for

 garbage collection
 GUIs, writing for

 interfaces
 Java as general-purpose language for

 JComponent class

 look-and-feel of components 2nd
 main() method

 multithreading in
 overloading methods

 packages and import statements

 packaging images with

 repaint() method
 resources, loading

 security restrictions, applying to

 subclassing and subtypes

 testing for correct behavior with assertions

 threads
 exceptions

 Runnable interface

 running code in

 starting

 synchronization
 Thread class

apply-templates tag (XSL)

arbitrary-precision numbers

architecture

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 component 2nd
 Java

 JavaBeans

ARCHIVE attribute, <APPLET> tag 2nd

ARGB (alpha RGB) color model

 creating BufferedImage from pixel values array
arguments

 collections, passing in anonymous arrays

 declaring for methods

 instance variables vs.

 passing to methods by reference
 passing to methods by value

ArithmeticException class

arraycopy() (System class)

arrays 2nd 3rd

 animation, use in
 anonymous

 Array class
 ArrayList class

 ArrayStoreException

 bounds checking, performance and
 of bytes, converting to strings

 of characters, constructing strings from
 class hierarchy and

 classes for

 collections and

 converting between arrays and collections
 creating and initializing

 {} (curly braces) construct, using

 data types of

 image data, updating

 index operations
 ArrayIndexOutOfBoundsException

 unchecked exceptions and

 length of

 multidimensional

 other Java objects vs.
 raw data, creating data buffer from 2nd

 reference types and

 references to

 of strings

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ascent and descent (fonts)
ASCII

 character literals as escaped sequences

 Unicode characters, compatible coding of 2nd

asList() (Arrays)

assertions 2nd
 enabling and disabling

asShortBuffer() (ByteBuffer)

assignment

 += (add assignment) operator

 local variables
 operators used in

 statements and expressions

asyncExecute() (WorkRequest)

asynchronous I/O

attach() (SelectionKey) 2nd
attachment() (SelectionKey)

Attr class
attributes

 default for color and font, setting in components

 HTML
 <APPLET> tag 2nd

 name attribute
 session, getting and setting

 text, creating sets for

 XML elements

 accessing in DOM
 defining with <!ATTLIST> tags

 xmlns

 XSL match attribute

audio

 AudioClip interface
 Java support for

 loading clips for applets

 players for

authentication, using digital signatures

automated documentation generators
available()

 FileInputStream class

 InputStream class

availableCharsets() (Charset)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

AWT (Abstract Window Toolkit) 2nd 3rd 4th 5th
 AWTEvent class 2nd

 Component class

 update()

 double buffering and

 early problems with
 graphics context, acquiring

 peer system

 Robot class

 update() method for components

AWTKeyStroke class
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

[Z]

back key navigation

backing store (for preferences)
BackingStoreException

BadExpression exception
base classes (C++), fragility of

base directory, URL name and

base type
 of arrays

base URL
 finding

 HTML documents

baselines of fonts

BasicStroke class 2nd
BeanBox development environment

BeanBuilder development environment

BeanContext class

BeanContextServices class

BeanInfo interface 2nd
 properties information, getting

beans [See JavaBeans]

Beans class

BeanShell script 2nd 3rd

 classpath, changing
 commands

 importing classes

 interfaces and adapters

 methods and objects

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 online user's manual and FAQ
 running

 statements and expressions in

big endian

BigDecimal class

BigInteger class
binary files, text vs.

bind()

 Naming class

 ServerSocketChannel class

binding properties
binding XML to Java classes

bitwise left-shift (<<) operator

block comments in Java

booleans

 blinkState variable
 Boolean class

 system property, getting
 boolean data type 2nd

 parsing

 property values
BorderLayout layout manager 2nd

 sizing components in
borders, Swing components

 Border interface

 implementation classes

 BorderFactory class
 Borders class (example)

bound properties

Box class

 methods for component layout

BoxLayout layout manager
break statements 2nd

browsers

 applets

 access to user filesystem

 displaying
 driving browser with

 running in context of

 security restrictions on

 support for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 building, using JEditorPane HTML display
 caching

 certificate authority certificates

 content and protocol handlers 2nd

 HotJava 2nd

 HotJavaBrowser Bean
 Java, support for 2nd

 lacking cookie support, rewriting URLs for

 passing information to servlet or CGI program

 redirecting to different URL

 responding to unknown tags
 SecurityManager class

 XML and

 XSL in

bubbling up (exceptions)

BufferedImage class
 converting Image to

 creating from ARGB pixel values array
 Rasters and ColorModels

 updating

BufferedImageOp interface 2nd
 filter()

buffering
 double buffering images 2nd

 input/output streams

 BufferedInputStream class

 BufferedReader class
 StringBuffer class

 wrapper classes for

 logging messages

 servlet container

 servlet response data
buffers

 character (StringBuffer class)

 DataBuffer class

 forcing system to send buffered data

 image, acquiring graphics context from
 NIO package 2nd

 position and limit markers

build.xml files

builder environments for JavaBeans

http://lib.ommolketab.ir
http://lib.ommolketab.ir

business logic, representing with Session Beans
ButtonGroup class 2nd 3rd

buttons

 action commands, getting and setting

 adding to CardLayout

 adding to content pane of JFrame using FlowLayout
 BorderLayout, adding to

 colors, setting with popup menu

 combo box and list example

 GridBagLayout

 composite layout, positioning in
 spanning rows and columns

 GridLayout, arranging in

 HTML text in

 images on

 labels, changing
 mouse, modifiers on input events

 radio 2nd
 sizing with and without weight constraints in GridBagLayout

by reference [See passing by reference]

by value [See passing by value]
byte arrays

 ByteArray class, order()
 constructing strings from

 copying string characters into

Byte class

byte data type
byte streams

 converting to/from character streams

 piped, creating

ByteArrayOutputStream class 2nd

ByteArrrayInputStream class
ByteBuffer class 2nd

ByteChannel interface

bytecode

 HotSpot interpreter

 verifier for 2nd
ByteOrder class

bytes

 available on InputStream

 writing to files 2nd 3rd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

byteValue()
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

[Z]

C# (C-sharp) language

C/C++ programming languages
 access permissions for classes, violating

 array type declarations in C

 C++, complexity of

 comma (,) operator in C

 comments, Java support for
 curly braces {} construct, array creation in C

 data types

 C scalar types

 errors in C

 fragile base class problem in C++
 function pointers, Java interfaces vs.

 goto statements
 Java, comparison to

 local variables, failing to initialize

 malloc
 memory management

 multiple inheritance in C++
 operators

 remote procedure calls in C

 static data typing

CA (certificate authority)
caching

 object references, garbage collection and

 servlet response output stream

 soft-referenced objects

calculator application, creating 2nd
calendars

 Calendar class

 subclasses of

 GregorianCalendar class 2nd

 SpinnerCalendarModel class
 SpinnerDateModel class

callbacks 2nd

 interfaces as

cancel() (SelectionKey)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CanisMinor web browser (example)
canRead() (File)

canWrite() (File)

capacity, buffers

capture groups in regular expressions

card-sized devices (Java Card API)
CardLayout layout manager 2nd

case

 case-insensitive pattern matching

 case-insensitive string comparisons

 checking strings for equivalence
 in constant names

 converting in strings

 lowercase names in properties sheets

case expressions (default)

casting 2nd
 collection objects

 Graphics object reference to Graphics2D reference
 map objects

 overloaded and overridden methods, effects on selection

catch clause
 control, transferring out of method

 empty
catch statements 2nd 3rd

catching exceptions 2nd

 overridden methods and

CDATA (character data) sections
cells, table

 editing

 overflow, automatic handling of

Certificate Signing Request (CSR)

certificates 2nd 3rd 4th 5th
 certificate authority (CA) 2nd

 generating or importing with keytool

 public keys, wrapping in

 signed applet, getting information about

 site
 user

CGI (Common Gateway Interface) programs, passing information to 2nd

chaining

 constructors

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 instance variable initialization and
 exceptions

changeColor() (Color)

ChangeEvents class

ChangeListener interface

channels
 FileChannel class

 selectable

 registering selectors with

 SelectableChannel interface

 ServerSocketChannel class
character classes in regular expressions

 defining custom

character encoders/decoders

character encodings

 Latin-1 (ISO 8859-1)
 UCS (ISO 10646)

 Unicode, Java support of
 for web clients and servers

 XML entities for special characters

character escapes in regular expressions
characters

 arrays of, constructing strings from
 buffer for (StringBuffer)

 char data type 2nd 3rd 4th

 character literals

 character streams
 echoing for passwords

 reading from files

 removing from StringBuffer

 shapes representing (glyphs)

 string, printing
 writing to files

characters() (ContentHandler)

charAt()

 CharSequence interface

 String class 2nd
CharBuffer class 2nd

CharSequence interface

Charset class

checkAll() (MediaTracker)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

checkboxes
 JCheckbox class

checked exceptions

checkError()

checkID() (MediaTracker)

checksums (JAR file manifests)
ChoiceFormat class

class loaders 2nd 3rd

 applets, security restrictions on sharing

 protecting basic system classes

class methods
class variables

classes 2nd 3rd 4th

 abstract

 adapter

 dummy adapters
 anonymous inner classes

 arrays 2nd
 AWT vs. Swing

 Class class

 applet resources, loading
 packaging images with applications

 class files
 compilation units and

 loading

 modification times

 class instances 2nd 3rd 4th 5th
 ClassCastException 2nd 3rd

 ClassNotFoundException

 compiled, printing description of

 compiler, working with

 constructor methods
 data types

 digital signatures, verifying source with

 documentation, creating with javadoc

 for drawing

 enabling/disabling assertions for
 encapsulating data 2nd

 event

 exceptions and errors

 extending 2nd 3rd 4th 5th

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 interfaces and
 fields, methods, and constructors

 finding with java interpreter

 floating-point manipulation, strictfp modifier

 fully qualified names

 hierarchy
 images

 importing

 BeanShell script

 packages of

 incremental development of
 inheritance 2nd

 inner 2nd

 as adapters

 within methods

 instance variables 2nd
 interfaces

 in Java applications
 Java API

 Java security model for

 JavaBeans vs.
 loading

 dynamically
 locking by synchronized methods

 main(), specifying for JAR manifests

 methods and fields, accessing

 methods, accessing
 modifiers

 objects and 2nd

 packages of

 compilation units and

 preferences for
 Printing API

 reflection

 scalability of

 for shapes

 in source code files
 static members 2nd

 streams (java.io package)

 subclassing and inheritance

 shadowed variables

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 user interface, Swing components
 utility

 visibility of variables and methods

 interfaces and

 subclasses and

classpaths 2nd 3rd
 BeanShell, changing in

 default

 jfm.jar, adding to use JMF

clear()

 DrawPad class (example)
 Preferences class

 resetting buffer position markers

clearing sessions

clearRect() (Component)

client-side
 Java use in applications

 nonblocking I/O operations
client-side cookies

client/server programming, threads, multiprocessing and task distribution

ClientQueue class
clients 2nd 3rd

 DateAtHost class (example)
 input/output streams for reading/writing data

 lost connections, detecting from server

 for object-based server

 RMI
 class files, making available via web server

 remote object references, passing

 zero administration installations

clipping regions, limiting drawing with

clipping shapes 2nd 3rd 4th
 Iguana example

clock applet (example) 2nd

 displaying explanation for non-Java enabled browsers

 including multiple instances on same page

 parameter selecting between local and universal time
clock display, updating every second

Cloneable interface

CloneNotSupportedException class

cloning objects

http://lib.ommolketab.ir
http://lib.ommolketab.ir

close()
 File class

 InputStream class

 PrintStream class

 Selector class

 ServerSocket class
ClosedChannelException class

closing

 I/O operations asynchronously

 JFrames and JWindows

code
 copying for examples

 generating for JavaBeans, serialization vs.

 timers for execution of

code attribute (HTML) 2nd

code blocks
 static vs. nonstatic

codebase
 for applet class files

codec

CoderResult class
Collator class

collections
 Collection interface

 converting to arrays

 methods

 Collections class
 sorting methods

 Collections Framework

 Hashtable class

 implementations

 synchronized and read-only collections
 iterators

 Enumeration interface

 Iterator interface

 lists

 maps
 Map interface

 SortedMap interface

 WeakHashMap class

 passing as method arguments in anonymous arrays

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 sets
 sorting

 thread safety and iterators

Color class 2nd

 foreground and background colors, getting and setting

 implementing Paint interface
 static members

 system property, getting

 SystemColor subclass

color gradients

color models
 ARGB (alpha RGB)

 direct and indexed

 indexed

ColorModel class

colors
 arrays of Color objects

 choosing with JColorChooser dialog
 compositing

 global effects on

 rules for
 transparency with AlphaComposite class

 default attributes, setting in component
 desktop (SystemColor class)

 filling shapes with

 GUI components

 pixels, representing for
 PopupColorMenu application (example)

 predefined

 red text, creating attributes for

 rendering operations on

 solid
columns

 GridBagLayout

 spanning

 weights, calculating

 GridLayout, setting number
columns, table

 count, getting

 headings

 formatting

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 getting
 reordering

 sizing (JTable)

combo boxes

 ComboBoxModel class

 creating (example)
 editable

 selection model

comma (,) operator in C 2nd

command-line tools

 Java compiler and interpreter
comments 2nd

 javadoc

 XML

Comparable interface

Comparator interface
comparator()

 SortedMap interface
 SortedSet class

compare() (Collator)

compareTo() (String) 2nd
comparing

 cloned objects
 colors to system colors

 hash keys

 strings

compilation units
 interfaces and

 packages and

compile-time errors, unreachable statements as

compiled classes, printing description of

compiled Java bytecode
compilers

 javac 2nd

 JIT (just-in-time)

 Java interpreter and

 resolving method overloading
 rmic utility

compiling inner classes

component architecture (JavaBeans)

component model, JavaBeans

http://lib.ommolketab.ir
http://lib.ommolketab.ir

componentAdded()
components, GUI 2nd 3rd

 absolute positioning of

 architecture

 as containers

 borders
 buttons and labels

 HTML text in

 checkboxes and radio buttons

 Component class 2nd

 image observer, acting as
 methods

 setBounds()

 containers for 2nd

 insets, specifying

 layout managers
 listening for components

 managing components
 revalidating or redoing layout

 windows and frames

 content panes, adding to
 creating with bindable properties

 custom
 Dial component (example)

 generating events

 desktops

 pluggable look-and-feel
 dialogs

 file selection

 JColorChooser

 enabling and disabling

 events
 ComponentEvent class

 focus 2nd 3rd

 graphics context

 acquiring directly from

 acquiring from painting request
 host operating environment, interacting with

 invisible, creating for BoxLayout

 Java Beans as

 JComponent class 2nd 3rd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 layout [See layout managers]
 lists and combo boxes

 menus

 MVC (Model-View-Controller) framework 2nd

 popup menus

 Printable interface, implementing
 scrollbars

 sliders, using with

 size of

 spinners

 split panes
 stacking or Z-ordering

 tabbed panes

 tables

 creating with custom data model

 creating with JTable constructor
 data model, creating

 text
 formatted text

 HTML and RTF capabilities

 JTextPane class
 sharing data model

 TextEntryBox application (example)
 TextLayout class

 trees

 complete example

 updating
composite layouts, GUI

compositing colors 2nd

 rules for

 transparency with AlphaComposite class

composition
compressing/decompressing data

 decompressing data

 file compression

computer viruses, shielding classes from

concat() (String)
concatenating strings

 + operator 2nd 3rd

 StringBuffer, implementing with

 toString()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

concurrent access with FileChannels
conditional source compilation

conditional statements

 assignments, making inside

conditional ternary (?\:) operator

configuring logging setup
confirmation dialogs

connect()

 SocketChannel class

 URLConnection class

connectionless and connection-oriented protocols
connections, event sources to event listeners

 bound properties and

ConsoleHandler class

constants

 color, modifying in SystemColor
 defining with static variables

 holding in static variables of classes
 in interfaces

 static final color values in Color class

constrained properties
constraints, GridBagLayout

 anchor
 Calculator class (example)

 fill and weighting

 height and width, setting

 relative positioning
Constructor class 2nd

constructors 2nd 3rd

 accessing in reflection API

 calling other constructors from

 ChoiceFormat class
 color models

 DatagramPacket class

 Dial class (example)

 File class

 getting for classes
 inner classes and

 instance variable initialization and

 JTable class

 object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 overloaded 2nd
 remote object classes

 strings

 for error messages

 StringTokenizer, specifying delimiter characters

 superclass, using
 time and date, representing

consume()

consumer threads 2nd

containers

 BeanContext (environment for Beans)
 Box

 Container class 2nd 3rd 4th

 component management methods

 getParent()

 ContainerEvent class 2nd
 ContainerListener interface 2nd 3rd

 disabling for Swing components
 Enterprise JavaBeans (EJB)

 events

 focus traversal policy
 frames, methods for controlling

 GUI components
 insets, specifying

 JScrollPane class

 JSplitPane class

 JTabbedPane class
 layout managers 2nd 3rd

 managing components

 preferred size of

 revalidating or redoing layout

 servlet
 buffering

 buffering responses

 stacking or Z-ordering components in

 Swing GUI components acting as

 windows and frames
 adding components to content panes

contains() (Collection)

content handlers 2nd

 determining for URLs

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 web browsers 2nd
 writing 2nd

 application/x-tar handler

 locating content handlers

content length, setting for servlet responses

content panes
 JWindow and JFrame objects, BorderLayout and

 menu bars, adding

content types, setting for servlet responses 2nd

Content-Type\: header

ContentHandler class 2nd
continue statements 2nd

Control key modifier

ControllerListener interface

controllers (components)

controlling threads
converting

 <APPLET> tag to <EMBED> and <OBJECT> tags
 bytes to/from character streams

 case in strings

 collections to/from arrays
 data types

 enumerations to lists
 file paths to URLs

 integer or long value to string value in alternate base

 protocols into package/class names

 to/from strings
 bytes to Unicode characters

 string values from things

cookies

 browsers not supporting, rewriting URLs for

 persistent user tracking with
coordinates

 converting from user space to device space

 fonts, placing

 GridBagLayout

copy() (JTextComponent)
copying

 elements from one array to another

 existing Graphics2D objects

 files using FileChannel

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 objects
 source code for examples 2nd

 text

copyValueOf() (String)

CORBA (Common Object Request Broker Architecture)

core Java APIs
 classes, finding with interpreter

 packages

country codes

create()

 EventHandler class 2nd
 Graphics2D class

createImage(\\s) (Toolkit)

createNewFile() (File)

createShape()

createTempFile() (File)
creating objects

 constructors
 initializer blocks, static and nonstatic

cryptography

 checksums (JAR file manifests)
 crypt protocol handler

 CryptInputStream class 2nd
 digital signatures and certificates

 encryption algorithms, using BigInteger

 Encryption class

 Java Cryptography API
 Java Cryptography Extension (JCE)

 private keys

 public-key 2nd 3rd

 generating key pairs with keytool

 use by SSL
 rot13 encryption algorithm

curly-brace ({ }) construct, initializing arrays

currency, formatting with NumberFormat class

currentColor() 2nd

cursor
 getting and setting cursor type

 setting in JFrames

customizers for JavaBeans 2nd

customizing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 components
 Dial component (example)

 generating events

 JavaBeans

 properties information, getting

cut() (JTextComponent)
cutting, copying and pasting text

cyclic color gradients

cyclic references, garbage collection and

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

[Z]

d (definition of line terminator) flag

daemon server (example)

daemon threads 2nd

dashing, shape outlines 2nd
data compression

 decompressing data
data file types (images)

data models

 JSpinner component
 lists and combo boxes

 separation from views (components)
 sharing among text components 2nd 3rd

 TableModel interface

 tables

 AbstractTableModel class
 spreadsheet

 text components 2nd

 sharing in

 trees

 DefaultTreeModel interface
 nodes, adding

 TreeModel interface

data transfer methods (FileChannel)

data types

 arrays 2nd
 checking for

 multidimensional

 buffer

 casting 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 collections
 class fields, accessor methods for

 determining for objects at runtime

 dynamic vs. static typing

 events

 external, working with
 image storage

 integers

 interface

 JavaBeans, managing for

 preferences, accessor methods for
 primitive 2nd

 arrays, wrappers for

 boolean

 byte

 converting between
 floating-point 2nd

 integer literals
 parsing

 reading/writing with Datastreams 2nd

 variable declaration and initialization
 wrapper classes for

 wrappers for
 random values, generating for

 reference

 strings

 return values for methods
 scripting languages, limitations of 2nd

 shadowed variables, changing in

 state of

 subtypes, subclassing and 2nd 3rd

 variables and classes
DataBuffer class

 creating from image data array

DataBufferByte class

DataBufferInt class

DataBufferShort class
datagram packets

datagram sockets

 DatagramSocket class 2nd

 HeartBeat applet (example)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DatagramChannel class
datagrams

DataHandler interface

DataInput interface

DataInputStream class 2nd 3rd 4th

DataOutput interface
DataOutputStream class 2nd 3rd

 wrapping FileOutputStream

DataSource interface

dates and times

 clock applet (example), selecting between local and universal time
 Clock applet, providing current time

 Date class

 creating new instance of

 getHours()

 toString()
 date-formatted HTTP header fields

 DateAtHost client (example)
 DateFormat class 2nd

 DateRequest class

 DateSelector application
 parsing and formatting dates

 SpinnerCalendarModel class
 SpinnerDateModel class

 time zones

 utility classes

 DateFormat class
 GregorianCalendar class

debugging

 applets with appletviewer program

 code for, including in source code

 output stream contents using list()
 servlets

 "SnoopServlet" (example)

decimal numbers

 BigDecimal class

declaring
 abstract classes

 arrays 2nd

 classes

 scope

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 instance variables
 methods

 variables 2nd

 interface

decode()

decoding request parameters, servlet handling of
decompressing data

deep copies

default classpaths

default constructors

default property values
default visibility

 class members

 interfaces

DefaultFocusTraversalPolicy class

DefaultMutableTreeNode interface
defaultReadObject() (ObjectInputStream)

DefaultTreeModel interface 2nd 3rd
defining

 classes that implement interfaces

 interfaces
delete() (File)

deleteOnExit() (File)
deleting characters from string buffers

delimiter characters, specifying in StringTokenizer constructor

delivery of events

deltas arrays (animation)
deployment descriptors (EJB)

deprecated methods

dereference (*) operator in C

descent (fonts)

deserialized objects, initializing
design methodology for objects

design patterns, JavaBeans 2nd

 properties

desktops

 colors for
 pluggagble look-and-feel

destination image

 transforming to/from source image

destroy()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Applet class 2nd 3rd 4th
 Servlet class

 ThreadGroup class

destroying objects

 finalization

developing classes incrementally
development environments

 IDEs

 for Java

 for JavaBeans

 visual design limitations
 pure Java

 NetBeans IDE

 WYSIWYG GUI builder

development history, Java

 current core APIs
 future

 past (Java 1.0-1.3)
device space coordinates, converting user space coordinates to

Dial component (example)

 converting to Bean
dialogs

 confirmation
 file selection

 input

 JColorChooser

 message
 option

 example

 print

digests, message

digital signatures 2nd 3rd
 applets

 archive files for applets 2nd

 certificates

 DSA (Digital Signature Algorithm)

 identity verification and
 JAR files, storing in META-INF directory

 keystores, keys, and certificates

 certificates

 public and private keys

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 signing JARs
 keytool utility

 public-key cryptography 2nd 3rd

 signed classes

Dimension class

 getting and setting current size
 getting and setting preferred size

direct buffers 2nd

 allocating

 FileChannel data transfer methods, use in

direct color models
DirectColorModel class

directories

 -d option (javac), specifying alternative for class files

 in classpaths

 creating
 extracting individual from JAR file

 listing contents of 2nd 3rd
 META-INFdirectory

 modification time

 in pathnames
disabling assertions

disabling Swing components
display policies for scrollbars

displaying text, creating Bean for

do/while statement

doc comments
 tags used in

DOCTYPE declarations

Document class 2nd

 setDocumentFilter()

 sharing among multiple text components 2nd
 sharing among text components

 styled text, creating from

document filters

 JTextField, applying to

Document Object Model [See DOM]
Document Type Definitions [See DTDs]

DocumentBuilderFactory class

DocumentFilter interface

doDelete() (HttpServlet)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

doGet()
 ShoppingCart class (example)

 ShowSession servlet (example)

doGet() (HttpServlet) 2nd

doHead() (HttpServlet)

doLayout()
 Container class

DOM (Document Object Model) 2nd

 generating XML with

 JDOM

 JDOM (Java DOM)
domain name, specifying for cookie deployment

domain objects

DOMUtil class 2nd

DoodlePad application (example)

doOptions() (HttpServlet)
doPost()

 HttpServlet class
 ShoppingCart class (example)

 ShowSessionServlet (example)

doPut() (HttpServlet)
dot (.) operator

 accessing object members
dot-separated naming hierarchy (properties)

doTrace() (HttpServlet)

double buffering 2nd

 animations and
Double class 2nd

 isNaN()

double data type

 random numbers, working with

 readDouble()
DoubleBuffer class

doubleValue() (NumberFormat)

downcasting references

downloadable content handlers

Drag and Drop API
dragging the mouse (events)

DragImage component (example)

draw() (Graphics2D) 2nd

draw3DCircle() (Dial class example)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

drawImage() 2nd
 DrawPad class (example)

 Graphics2D class 2nd

 scaling and sizing images

drawing

 2D API, using
 printing

drawing GUI components

drawing with 2D API [See 2D API]

drawString() 2nd

 Graphics class
 Graphics2D class

drop-down menus

DSA (Digital Signature Algorithm)

DTDs (Document Type Definitions) 2nd 3rd

dummy "stubbed-out" methods, handling
duplicate elements, prohibition in sets

dynamic
 programming languages

dynamic class loading

dynamic image updating
dynamic interface adapters

dynamic memory management
dynamic method binding

dynamic web page content

dynamically typed languages 2nd

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]
[Z]

early-binding programming languages

echoing password characters

editing cells (JTable)
editing strings

editors

 Editor class

 EditorKit classes

 JavaBean properties
 JEditorPane class

 HTML and RTF documents, displaying

 using in browser

 JTextArea and JTextField

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 property
Element class

element()

elements

 array

 accessing with [] (index) operator
 references to

 XML

 attributes of

 JDOM, retrieving with

 matching to XSL templates
 root element

Ellipse2D class

 instantiating and filling

embeddable applications

embedded systems
empty interfaces

empty tags
enabling assertions

enabling/disabling Swing components

encapsulation 2nd 3rd 4th
 anonymous inner classes

encode()
encode() (URLEncoder)

encoders/decoders, character

encodeURL()

 HttpServletResponse class
encoding

 byte arrays, converting to strings

encoding schemes, translating between character and byte streams

encoding text

 in XML documents
encoding/decoding HTML form information

encrypting/decrypting messages

encryption

 public-key techniques, using over SSL 2nd

 type, specifying in URLs
encryption keys

end styles for lines

end styles, shape outlines

end-of-line characters, matching in regular expressions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

endElement() (ContentHandler)
endsWith() (String) 2nd

Enterprise JavaBeans (EJB) 2nd

 Java 2 Enterprise Edition (J2EE) platform

entities, XML

Entity Beans
enumerate()

enumerations

 Enumeration interface 2nd

 property names

environment variables
 classpath

 host operating system, Java access to

 system

EOFException class 2nd

equality
 == operator 2nd

 equivalence and
 identity vs.

equals()

 Color class
 comparing has code keys

 Object class 2nd
 String class 2nd

 UnicastRemoteObject class

equalsIgnoreCase() (String) 2nd

equations, parsing in spreadsheet
equivalence

 comparing strings for

 of hash code keys

error messages, formatting with ChoiceFormat

errors [See also exceptions]
 classes for

 compile-time, unreachable statements as

 Error class

 unchecked exceptions and

 handling with exceptions
 HTTP error codes

 image preparation, testing for

 runtime exceptions

 System.err objects

http://lib.ommolketab.ir
http://lib.ommolketab.ir

escape sequences, Unicode characters
event handlers

 anonymous adapter classes

EventHandler class

EventListener interface

events 2nd 3rd
 action

 ActionEvent class 2nd

 adapter classes implementing listener interfaces

 AWTEvent class

 calculator application (example)
 checkbox

 classes for

 delivery of

 Dial component (example) 2nd

 EventObject class
 focus

 generating for components
 HyperlinkEvent class 2nd

 input, generating with AWT Robot class

 InternalFrameEvent class
 JavaBeans

 runtime event hookup with reflection
 JavaBeans, getting information about

 JavaBeans, hookups and adapters

 bound properties and

 connecting Molecule Bean to Timer
 listeners for

 in MVC framework

 mouse

 players, realizing

 preference changes, notifying of
 receivers and listener interfaces

 SAX 2nd

 scrollbar and slider

 sources of

 design pattern
 Swing GUI

 components, notification of

 Swing GUI, summary of

 tree selection

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 trees
 types of

EventSetDescriptor class

Exception class

 subclassing

exception handling
exceptions 2nd 3rd 4th

 bubbling up

 checked and unchecked

 classes for

 handling with try/catch statements 2nd
 finally clause

 overridden methods and

 parsing streams

 performance and

 runtime
 servlet

 stack traces for
 throwing

 chaining exceptions

 messages with
 try creep

exclusive file locks
executables, building from source code

execute()

 MyCalculation class (example)

 MyClient class (example)
 RMI server (example)

exists() (File)

exit() (System)

expanding and collapsing nodes

explicit casting
exportNode() (Preferences)

exportObject() (UnicastRemoteObject)

exportSubtree() (Preferences)

expressions

 assertion, evaluating
 assignment

 BeanShell, using in

 creating and evaluating in spreadsheet table

 grouping with comma (,) operator

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 method invocation
 null values in

 operators in

 instanceof operator

 object creation

 order of evaluation
extending

 classes 2nd 3rd 4th

 interfaces

extends keyword 2nd

Extensible Markup Language [See XML]
Extensible Stylesheet Language [See XML, XSL/XSLT]

extent (JScrollBar)

extra path

extracting files from archive

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]
[Z]

face (or font) names

 retrieving

factory patterns
false values 2nd

family names (fonts)
Field class 2nd

fields

 HTTP headers, checking for response MIME type and encoding

fields, class
 accessing 2nd

file locking

file types (images)

FileChannel class

 concurrent access
 direct data transfer

 file locking

 MapMode static inner class

 memory-mapped files

 transferTo()
FileHandler class

files

 applets and

 compression (JAR files)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 content type, guessing from name
 file selection dialog

 FileNotFoundException

 FileOutputStream class

 FileReader class

 input/output
 File class

 streams 2nd

 listing contents of

 localizing path with JFileDialog class

 manifests (JAR)
 nonexistent on server

 RandomAccessFile class

 restricting access to 2nd

 source code, .java extension

 uploading and removing with HTTP
fill constraints (GridBagLayout) 2nd

fill() (Graphics2D class)
filling shapes 2nd 3rd

 color gradients, using

 desktop colors
 Graphics2D methods for

 solid colors, using
 textures, using

filter()

 BufferedImageOp interface

FilterBypass class
filtering

 FilterInputStream class 2nd

 FilterOutputStream class

 FilterReader class

 FilterWriter class
 image data

 AffineTransformOp class

 image operators 2nd 3rd

 Image, converting to BufferedImage

 ImageProcessor application (example)
 RescaleOp class, using

 input to formatted text components 2nd

 JTextField

 logging messages

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 servlet responses
final modifier 2nd

 combining with static

 interface variables

 combining with static modifier

 constructors and
 String class 2nd

finalization

finalize()

finally clauses 2nd 3rd

FindResources class (example)
finishConnect() (SocketChannel)

fireEvent() (Dial class example)

firewalls

first()

 CardLayout class
 SortedSet class

fixed delay/fixed rate recurring tasks
flags

 ImageObserver interface

 InputEvent class, values for
 interest set, for selection keys

 ready set, for selector keys
 in regular expression matching

 threads, using with

 windows from untrusted applications

flip()
Float class 2nd

 isNaN()

float data type

FloatBuffer class

floating-point data types 2nd
 arithmetic, Java support for

 floatValue()

 literals, out-of-range values

 parsing strings into

FlowLayout layout manager 2nd 3rd
flush()

 BufferedOutputStream class

 LinkWriter class (example)

 object-based server and client (example)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Preferences class
 PrintWriter class

focus, GUI components

 focus events

 focusGained()

 FocusListener interface 2nd
 keyboard navigation

Font class

 getLineMetrics()

 getStringBounds()

FontRenderContext class
fonts

 glyphs and

 metrics information

 FontShow application (example)

 setting for Graphics2D objects
 style identifiers and point size

 TextEntryBox, setting in
fonts.properties files

for statements

force()
 FileChannel class

 MappedByteBuffer class
form data, encoding/decoding

format()

 DateFormat class

format() (MessageFormat)
formatted text

 filtering input

 JFormattedTextField class 2nd

 InputVerifier, using with

 JPasswordField class
 validating data

formatters for logging

formatters for logging messages

formatting

 ChoiceFormat class
 DateFormat class

 dates

 messages

 NumberFormat class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 text
forms

 shopping cart servlet (example)

 validating data

 NumericField Bean (example)

forName() (Class) 2nd 3rd 4th
Forte for Java development tool (Sun)

forward key navigation

frames

 colors, setting with popup menu

 content panes, using
 HTML

 applet visibility in

 naming

 internal frames, creating in DesktopPane

 keyboard focus navigation
 menu bars, adding to

 position on screen, setting
 random static, simulating

 sizing

friendly classes (C++)
fully qualified names 2nd

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

[Z]

garbage collection 2nd 3rd 4th

 finalization and
 weak and soft references

Gaussian distribution of double values

gc() (System)

general exceptions

GeneralPath class
generators, random number

generic event adapters

geographical locations, arranging components in windows by

geometric shapes in 2D API

geometric transformations, Graphics 2D objects
 AffineTransformOp class, using

geometric transformations, Graphics2D objects

get and set methods, JavaBeans

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 NetBeans recognition of pattern
 properties information

 property design patterns

 requirement for

GET method 2nd 3rd 4th

 doGet(), correspondence to
 HelloClient servlet (example)

 matching with regular expression

 requests, handling

 security, adding

 ShoppingCart class (example)
 ShowSession servlet (example)

 URLs, encoding data in 2nd 3rd

get()

 List interface

 Map interface
get() and set() methods, Field class

getAbsolutePath() (File) 2nd
getActionCommand() 2nd

getApplet() (AppletContext)

getAppletContext() (Applet)
getAttribute()

 Element class
 HttpSession class

getAttributeNames() (HttpSession)

getAudioClip() (Applet)

getBackground()
 JComponent class

getBuffer()

getBundle() (ResourceBundle)

getByName() (InetAddress)

getBytes() (String)
getChars() (String)

getChild()

getClass()

 Class class 2nd

 Object class
getClassName() (StackTraceElement)

getCodeBase()

 Applet class 2nd

getColumnCount() (JTable)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

getColumnName()
getComponents() (JPanel)

getConstructor()

getConstructors() (Class)

getContent()

 ContentHandler class
 URL class 2nd

 URLConnection class 2nd

getContentPane()

 JFrame or JWindow class

getContents()
getContentType() (URLConnection)

getCookies() (Cookie)

getCurrencyInstance() (NumberFormat)

getCursor() (JComponent)

getDate()
 MyClient class (example)

 RMI server (example)
getDateInstance() (DateFormat)

getDateTimeInstance() (DateFormat)

getDeclaredConstructors() (Class)
getDeclaredFields() (Class)

getDeclaredMethods()
 Method class

getDocumentBase() (Applet) 2nd

getDocumentElement() (Document)

getElementsByTagName() (Element)
getEventSetDescriptors() (BeanInfo)

getExtraPath()

getField() (Field)

getFields() (Class)

getFile() 2nd 3rd
getFileName() (StackTraceElement)

getFilePointer() (RandomAccessFile)

getFirstElement() (DOMUtil)

getFont() (Font)

getForeground() (JComponent)
getHeaderField()

getHeight() (Image)

getHost()

 Applet class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

getHours() (Date)
getIcon()

getIconImage()

getImage()

 Applet class 2nd

 Toolkit class 2nd
getImageLoadStatus()

getInputStream()

 Socket class

 URLConnection class 2nd 3rd

getInsets()
getInstance()

 Collator class

 DateFormat class

 NumberFormat class

getInstanceOf() (Beans)
getInt() (Field)

getLineMetrics() (Font)
getLineNumber() (StackTraceElement)

getList() (StringIterator)

getLogger() (Logger)
getMaximumSize() (Component)

getMediaTracker() (ImageIcon)
getMessage()

 Exception class

getMethod() (Method) 2nd

getMethodName() (StackTraceElement)
getMinimumSize() (Component)

getModifiers() (InputEvent)

getName()

 File class

 JComponent class
getNextEntry() (ZipInputStream)

getNumber() (SpinnerNumberModel)

getNumberInstance() (NumberFormat)

getOppositeComponent() (FocusEvent)

getOppositeWindow() (WindowEvent)
getOutputStream() 2nd

 Socket class

getParameter() 2nd

 Applet class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

getParameterNames()
getParent()

 File class

 JComponent class

getPassword() (JPasswordField)

getPath() (File)
getPercentInstance() (NumberFormat)

getPort()

getPreferredSize()

 Component class 2nd

 JComponent class
getProperty()

 Properties class

 System class 2nd

getPropertyDescriptors()

getProtocol()
getRequestURI() 2nd

getResource()
 Applet class 2nd

 Class class 2nd 3rd

getResourceAsStream() (Class) 2nd
getResponseCode()

getRGB()
getRGBdefault() (ColorModel)

getRowCount() (JTable)

getScaledInstance() (Image)

getSelectedText() 2nd
getSelectedValues()

getSelection() (ButtonGroup)

getSession() (HttpSession)

getSimpleElementText() (DOMUtil)

getSize() (JComponent)
getSoTimeout() (Socket)

getSource()

 ActionEvent class

 JComponent class

getStackTrace() (Throwable)
getStream() (AppletContext)

getStringBounds() (Font)

getTargetException() (InvocationTargetException)

getTcpNoDelay() (Socket)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

getText()
getTimeInstance() (DateFormat)

getValue()

 JFormattedTextField class

getValueAt()

 JTable class
getWheelRotation() (MouseWheelListener)

getWidth() (Image)

getWriter() 2nd

 HttpServletResponse class 2nd

getX() (MouseEvent)
getY() (MouseEvent)

GIF image files

 notifying user of loading progress

glue components

glyphs
goto statements (C/C++)

GradientPaint class
graphical user interfaces [See components, GUI GUIs Swing GUI toolkit]

Graphics class

 shape-drawing methods
graphics context 2nd

 properties
Graphics2D class 2nd [See also graphics context]

 drawImage()

 methods for drawing and filling shapes

 rendering on images through drawing
 setFont()

 setting current stroke for

grayscale images

greediness in regular expression matching

GregorianCalendar class
 TimeZone, setting for

grep command (Unix)

GridBagLayout layout manager 2nd

 composite layouts

 constraints
 anchor

 fill constraints

 GridBagConstraints class

 relative positioning

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 weighting
 grid coordinates 2nd

 GridBagConstraints class

 fill constraint

 padding and insets

 spanning rows and columns
 WYSIWYG GUI builder, using in

GridLayout layout manager 2nd

group() (Matcher)

grouping in regular expressions

 noncapturing group operator (?\:)
 without capturing

guessContentTypeFromName()

guessContentTypeFromStream()

GUIs (graphical user interfaces) 2nd [See also components, GUI;Swing GUI toolkit]3rd 4th

 applets, embedding in 2nd
 builder environments

 JavaBeans as widgets
 WYSIWYG

 calculator interface, creating

 components 2nd
 events and

 GUI Beans 2nd 3rd 4th
 HelloJava application, writing for

 IDEs (integrated development environments)

 JApplet class

 Java
 JButton component

 layout managers

 Model-View-Controller framework for components

 multithreading in

 painting components
 Swing toolkit

GZIP compression format

 GZIPInputStream class 2nd

 GZIPOutputStream class

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]
[Z]

half close option (TCP connections)

handleClient() (LargerHttpd example class)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

handlers [See also events]
 content and protocol

 for logging

 for mouse-wheel events

 Swing component and container events

hardware implementations of Java
hashCode()

 Object class 2nd

 String class

 UnicastRemoteObject class

hashcodes
HashMap class 2nd

HashSet class

hashtables

 creating (example)

 hashcodes, storing in
 Hashtable class 2nd

 Map interface
 in object cloning

 properties

hasMoreElements() (Enumeration) 2nd
hasMoreTokens() (StringTokenizer)

hasNext() (Iterator)
headers, HTTP

 content type, getting from

 HEAD and doHead() methods, obtaining with

 response, checking for MIME type and encoding
 setting values for response

headMap() (SortedMap)

headSet() (SortedSet)

height

 GridBagConstraints
 height attribute (HTML) 2nd

 images 2nd

 images, retrieving for 2nd

 lines of text

help systems for Java programs
helper methods for assertions

hexadecimal numbers

 converting values from alternate bases to

hierarchy, class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 arrays and
 java.lang package

 java.util package

hookups for JavaBean events

 bound properties and

 Juggler Bean action event, connecting to button
 reflection, using for

hookups for JavaBeans events

HorizBagLayout layout manager

horizontal boxes, creating

horizontal orientation, scrollbars and sliders
horizontal scrollbars, display policies

hostnames 2nd

 Internet hostname (URLs)

hosts, security and 2nd

HotJava web browser 2nd
 content handler, using to display data

 security rules and levels, defining
 user permission for applet access

HotJavaBrowser Bean

HotSpot virtual machine
 adaptive compilation

 advanced garbage collection
hspace attribute (HTML)

HTML

 <body> tag

 applets
 embedding in pages

 displaying in text components

 HTMLEditorKit class

 documentation for classes, creating with javadoc

 KEYGEN extension
 text in buttons and labels

 transforming XML document to

 XSL stylesheet, applying

 XSL stylesheet, creating

 XHTML
HTML Converter utility

HTML documents

 base URL

 embedding applets in

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 naming applets within
 printing contents of

HTML forms

 adding to servlet output

 data, encoding/decoding 2nd 3rd

 GET and POST encoding, using with 2nd 3rd
 name/value pairs (fields)

HTML frames

 maintaining applet visibility in

 naming for document display

HTML tags
 <APPLET>

 tag 2nd 3rd

HTTP

 files, uploading and removing

 HEAD requests
 headers

 Content-Type
 HttpServlet class

 HttpServletRequest class

 HttpServletResponse class
 HttpSession class

 LargerHttpd (example), nonblocking web server
 proxy servers for requests

 requests, servlets handling

 responses

 servers, modern version for
 TinyHttpd server (example)

 XML, combining with for web services

HTTP protocol

 sockets, opening for connections

HttpdConnection class
HTTPS (HTTP Secure Socket Layer) protocol

 site certificates and

HttpServletResponse

 encodeURL()

HttpServletResponse class 2nd
 sendError()

 setting content type and getting writer

HttpServletResponseWrapper class

HttpSession class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HttpURLConnection class
hue, lightness, saturation (HLS)

hue, saturation, value (HSV)

HyperlinkEvent class

hypertext links to class documentation

Hypnosis class (animation example)
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

[Y] [Z]

icons

 button labels, creating with
 ImageIcon class 2nd

 JavaBeans, supplying for

 JFrames, supplying for

 in option dialogs

identifiers for images (MediaTracker)
identities

 database of
identity (==) operator 2nd

identity, testing with == operator

IdentityHashMap class
IDEs (integrated development environments)

 JavaBeans, features tailored for
 NetBeans IDE

 installing and running

IDEs (Integrated Development Environments)

 pure-Java
IE [See Internet Explorer]

if/else statement

ignoring exceptions

IIOP (Internet Inter-Object Protocol)

IllegalAccessException class
IllegalArgumentException class

IllegalStateException class

image buffers, acquiring graphics context from

image observers

 ImageObserver interface
 imageUpdate()

 MediaTracker class

ImageIcon class

ImageObserver interface

http://lib.ommolketab.ir
http://lib.ommolketab.ir

images
 on buttons

 displaying with HTML tag

 drawing with 2D API 2nd

 Image class

 image observers
 offscreen 2nd

 printing 2nd

 rendering pipeline

 scaling and size

 techniques
 drawing with Graphics class

 filtering data

 BufferedImageOp interface

 converting Image to BufferedImage

 ImageProcessor application (example)
 RescaleOp class, using

 filtering image data
 image operators 2nd 3rd

 generating image data

 BufferedImage class
 color models

 creating an image
 drawing

 updating dynamically

 geometric transformation of 2nd

 graphics context for drawing
 Image class, methods starting loading operation

 ImageComponent class

 adding to tab in JTabbedPane

 ImageIcon class

 ImageObserver interface
 loading class resources for

 MediaTracker class

 MediaTracker, using 2nd

 movies, working with

imageUpdate() (ImageObserver)
implementation classes for collections

 synchronized and read-only collections

implements clauses

 classes implementing interfaces

http://lib.ommolketab.ir
http://lib.ommolketab.ir

implements keyword
implicit casting

import statements

importing

 classes

 classes into BeanShell
 packages

 packages and classes

importPreferences() (Preferences)

incoming events, mapping to outgoing methods

incremental development of Java classes
incrementaldraw property

index operator [], creating and accessing array elements with

 multidimensional arrays

index operator [], creating and accessing array elements with

IndexColorModel class
indexed color models

indexes, array 2nd
 ArrayIndexOutOfBoundsException

 incrementing

 multidimensional arrays
 unchecked exceptions and

indexOf() (String) 2nd
indirection

InetAddress class

InetSocketAddress class

infinite loops 2nd
infinity

inheritance

 class

 interfaces and

 in Java classes and interfaces
 method overloading and

 in objects

 single inheritance 2nd

 subclassing and

 abstract methods and classes
 overriding methods

 shadowed variables

 single inheritance

 special references

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 subclassing subclasses
 superclass constructors, using

 visibility modifiers, effects of

init()

 Applet class 2nd

 Servlet class
initializations

 comma-separated expressions in for loop

 order of

initialize()

initializer blocks
initializing

 arrays 2nd

 deserialized objects

 instance variables, constructor chaining and

 local variables
 variables 2nd

inlining final methods and classes
inner classes 2nd 3rd 4th

 as adapters

 anonymous 2nd
 creating adapter classes with

 parsing arithmetic in spreadsheet
 within methods

 anonymous

 compiling

 limitations on
 scoping of this reference

 security

 static

input dialogs

input streams
 CryptInputStream class

 DataInputStream class, network byte order and

 HttpServletRequest objects

 InputStream class 2nd

 read() method
 InputStreamReader class

 ObjectInputStream class

 order of creation

 server request processing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 objects, order of creation 2nd
 properties, loading from

 sockets, retrieving for

 URL connections 2nd 3rd

 URLs, retrieving from

input to methods, validity of
input/output

 data compression

 files

 applets and

 File class
 filtering input to formatted text component

 network

 NIO package

 asynchronous I/O

 buffers
 channels

 character encoders/decoders
 FileChannel class

 mapped and locked files

 performance and
 scaleable I/O with

 object serialization
 streams

 caching in servlet responses

 character

 file
 input, getting from protocol handler

 piped

 rot13InputStream class (example)

 strings, wrapping with

 terminal I/O
 wrapper classes

 timers, setting on socket methods

InputEvent class

InputVerifier class 2nd

insert() methods, StringBuffer class
insertNodeInto()

insertString()

 Document class

 DocumentFilter class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

insets and padding (GridBagLayout)
 relationship between

installing

 Java applications locally

 NetBeans IDE

instance methods 2nd 3rd
 final

instance variables 2nd 3rd

 assigning value to, using this reference

 default values for 2nd

 initialization
 constructor chaining and

 nonstatic code blocks and

 object, retriving value with dot (.) operator

 shadowing by local variables 2nd

 this reference and
 transient modifier

instanceof operator 2nd 3rd 4th
 array type, checking

 casts, testing

 request object type, determining
instances 2nd [See also objects]3rd 4th

 creating with constructor methods
 instance methods

 instantiating new 2nd

instantiate() (Beans)

InstantiationException class 2nd
integers

 arithmetic, Java support for

 BigInteger class

 int data type 2nd

 array of, declaring
 in Java switch statements

 IntBuffer class

 Integer class

 parseInt()

 system property, getting
 integer literals

 intValue()

 parsing in alternate number bases

 writing to output streams

http://lib.ommolketab.ir
http://lib.ommolketab.ir

interest set (selector key flags)
interestOps() (SelectionKey) 2nd

interfaces 2nd 3rd 4th

 adapter classes and

 as callbacks

 Cloneable interface
 defining

 empty

 event

 inheritance and

 listener
 implementing with adapter classes

 methods

 multiple inheritance in Java

 naming

 peer interfaces (AWT)
 reference types and

 reflection API, dynamic adapters for 2nd
 remote

 Runnable interface

 scripting (BeanShell)
 subinterfaces

 variables 2nd
 visibility and

 visibility of

intern() (String) 2nd

internal frames, creating in DesktopPane
internalFrameClosing()

InternalFrameEvent class

InternalFrameListener class

internationalization 2nd 3rd

 button labels
 date/time formats

 Locale class

 resource bundles 2nd

Internet Explorer

 certificate authority (CA) certificates
 HTML tags for

 Java support 2nd

 plug-in mechanism

 signed applets

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 viewing Plug-in applets with
 XSL support

Internet-based computer networks

interpreters, Java 2nd

 classpaths, specifying

 security manager, installing
 system properties, access to

interrupt()

 Thread class 2nd

 UpdateApplet class (example)

InterruptedException class 2nd 3rd
interrupting I/O operations asynchronously

introspection 2nd

IntrospectionException class

Introspector class

invalid containers or components
invalidate() (HttpSession)

invisible applets 2nd
invisible Beans 2nd

invisible components in BoxLayout

InvocationTargetException
invoke()

 InvocationHandler class
 Method class 2nd

invokeAndWait() (SwingUtilities)

invokeLater() (SwingUtilities)

IOException 2nd 3rd 4th 5th 6th
IP (Internet protocol)

 addresses, using for hostnames

isAbsolute() (File)

isAcceptable() (SelectionKey)

isCommitted()
isConnectable() (SelectionKey)

isDirectory() (File)

isEmpty() (Collection)

isError() (CoderResult)

isErrorID()
isEventDispatchThread() (SwingUtilities)

isFile() (File)

isInstanceOf() (Beans)

isLoggable()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

isNaN(), Float or Double class
ISO character encoding

isOverflow() (CoderResult)

isPopupTrigger()

isReadable() (SelectionKey)

isSelected() (JCheckbox)
isShared() (FileLock)

isSupported() (Charset)

isTemporary() (FocusEvent)

isUnderflow() (CoderResult)

isWritable() (SelectionKey)
ItemEvents class

iterations

 in greedy matching

 regular expression pattern matches

iterative statements
iterator() (Collection)

iterators
 Enumeration interface

 Iterator interface 2nd

 maps
 for ready set (selection key flags)

 StringIterator class
 MyStringIterator class (example)

 thread safety and

ITV (interactive TV)

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]
[Z]

J2ME (Java 2 Micro Edition)

JApplet class 2nd

 embedding in GUI
 paint()

JAR (Java Archive) files

 archive attribute, specifying with

 classpaths

 digital signatures for applets
 file compression

 jar utility

 JAR manifests

 making files runnable

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 JavaBeans
 magicbeans.jar (demo Beans)

 JMF (Java Media Framework)

 signed

 signed, utilities for

 jarsigner
 keytool

jar utility

Java

 Application Programming Interface (API)

 architecture
 as general application language

 comparison with other programming languages

 development environments supporting Java Beans

 development history 2nd [See also SDK, Version 1.4]

 Version 1.4
 Versions 1.0-1.3

 error handling with exceptions
 history of

 interpreters

 memory management
 online information about

 packages
 scripting, BeanShell

 security features in design

 dynamic memory management

 error handling
 incremental development

 scalability

 syntax, simplicity of

 threads

 type safety and method binding
 security features in implementation

 byte-code verifier

 class loaders

 security managers

 security features, application and user-level
 signing classes

 threads

 Version 1.4 [See SDK, Version 1.4]

 virtual machines

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 web services, APIs related to
 Web Start facility

 Web, use of

 applets

 multimedia

 software development models
 XML APIs

 JAXB (Java XML Binding)

 JAXP

 JDOM

Java 2 Enterprise Edition (J2EE)
Java 2 Micro Edition (J2ME)

Java 2 platform

 Collections Framework

 GUIs, emphasis on

 Printing API
Java 2D API [See 2D API]

Java 3D API
Java Activation Framework (JAF)

 content handler

 downloading from web site
Java Card API

Java Cryptography API
Java Cryptography Extension (JCE)

Java Database Connectivity (JDBC) 2nd

Java DOM

Java DOM (JDOM)
Java Foundation Classes (JFC), APIs in

java interpreter 2nd

 -D option

Java language

 arrays
 assertions

 comments

 data types

 primitive

 reference
 exceptions

 exception and error classes

 exception handling

 expressions 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 objects
 statements

 text encoding

Java Media API

Java Media Framework (JMF)

 audio and video file support
Java Network Launching Protocol (JNLP)

Java Plug-in

 applets, using with

 HTML tags, problems with

 viewing Plug-in applets
 downloading from JRE page

 signed applets, implementing

Java Runtime Environment (JRE)

 downloading Java Plug-in

Java scripting language [See BeanShell script]
Java Security

Java Servlet API
Java Servlets API

Java Sound API

Java Web Start 2nd
java.awt package

java.awt.event package 2nd
java.awt.geom package

java.awt.image package

java.awt.print package

java.beans.beancontext package
java.io package

java.lang package

 class hierarchy

 Error subclasses

java.lang.reflect package
java.net package 2nd

java.nio package 2nd

java.rmi package

java.text pakcage

java.util package
java.util.zip package 2nd 3rd

JavaBeans 2nd 3rd

 architecture

 BeanContext and BeanContextServices

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 building
 design patterns for properties

 Dial class (example)

 form data, validating

 limitations of visual design

 component architecture
 customizing with BeanInfo

 properties information, getting

 development environment (NetBeans IDE)

 installing and running

 Enterprise JavaBeans
 event hookups and adapters

 hand-coding with

 instantiation and type management

 runtime event hookups with reflection

 serialized beans
 individual

 Java Activation Framework
 JavaBeans class

 properties

 binding
 customizers and

 reusable software components
 serialization vs. code generation

 serializing classes to XML

 size of Beans

 Swing GUI components as
javac compiler 2nd

 -D option

 O (optimization) option

javadoc program

JavaHelp API
JavaMail API

javap tool 2nd

JavaScript, Java vs.

javax.media package

javax.media.protocol package
javax.servlet package 2nd

javax.servlet.http package

javax.swing package 2nd

 user interface component packages

http://lib.ommolketab.ir
http://lib.ommolketab.ir

javax.swing.event package
javax.swing.table package

javax.swing.tree package

JAXB (Java XML Binding)

JAXP (Java API for XML Parsers)

JAXP (Java API for XML Processing) 2nd
JBuilder development tool (Inprise)

JButton class

 action commands

 constructors, overloading

 icons, creating for
 properties, displaying in NetBeans

 receiving events generated by

JCE (Java Cryptography extension)

JCheckBox class 2nd

JColorChooser class
JComboBox class 2nd

JComponent class 2nd 3rd
 appearance and functionality of objects, controlling with

 Component class vs.

 GUI Beans, inheritance from
 listenerList member variable

 methods
 repaint()

 setBorder()

 setDoubleBuffered()

 setFocusable()
 validating data with InputVerifier

JDBC (Java Database Connectivity)

JDesktopPane class, creating and adding internal frame

JDK (Java Development Kit)

JDOM (Java DOM) 2nd
JEditorPane class

 displaying HTML and RTF documents

JFC (Java Foundation Classes)

JFileChooser class

 showOpenDialog()
JFileDialog class

JFormattedTextField class 2nd

 filtering input

 format-specifying objects

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 InputValdator, using with
JFrame class 2nd

 animation component, setting up for

 BorderLayout layout manager

 buttons, adding with FlowLayout

 content panes for
 creating windows 2nd

 default BorderLayout for content panes

 JMenuBar, adding to content pane

 movies, displaying in

 opening windows 2nd
 position on screen, setting

Jini API

JInternalPane class, creating and adding to DesktopPane

JIT (just-in-time) compilation

JLabel class
 creating labels for windows 2nd

JList class
 data model of combo box, using

JMD (Java Media Framework)

JMenu class
JMenuBar class

 adding to content pane of JFrame
JMenuItems class

JMF (Java Media Framework)

JNDI (Java Naming and Directory Interface)

JNLP (Java Network Launching Protocol)
join styles for lines

join() (Thread) 2nd

JOptionPane class, dialog groupings in

JPanel class

 displaying multiple panels in BorderLayout
 FlowLayout layout manager

 layout managers for

 preferred size, setting

JPasswordField class 2nd

JPEG image files
 notifying user of loading progress

JPopupMenu class

JRadioButton class

JRE (Java Runtime Environment)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

JScrollBar class
JScrollPane class 2nd 3rd

 application displaying large image

 fitting JTextArea within

 ImageIcons, wrapping in

JSlider class
JSpinner class

JSplitPane class

JTabbedPane class

JTable class

 creating spreadsheet with custom data model
 creating table with constructor

 data model, creating

 getValueAt()

JTextArea class

JTextComponent class
 cut(), copy(), and paste() methods

 NavigationFilter, attaching to
JTextField class 2nd

 document filter, applying to

JTextPane class 2nd
 attribute sets for plain and styled text

JToolBar class
JTree class

Juggler Bean (example)

just-in-time compilation

justification, rows in FlowLayout
JWindow class

 default BorderLayout for content panes

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

[Z]

key values

 Hashtable class

 maps

keyboard events

keyboard focus 2nd
keyboard presses

 KeyEvents, describing

 modifiers on InputEvents 2nd

keyboard shortcuts

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 accelerators for menus
 copying, pasting, and cutting text

 for menus

 mnemonics for 2nd

KeyboardFocusManager class

 methods for moving focus
KeyEvent class 2nd

KEYGEN extension to HTML

keys

 cryptographic

keys() (Selector)
keys, cryptographic

 public and private

 generating pairs with keytool

keySet()

 Map interface
keystores

 private keys, protecting with password
 public/private key entries

KeyStroke class

keytool
 Certificate Signing Request (CSR), generating

 generating public/private key pairs with
 user interface awkwardness

keywords

 abstract

 assert
 catch

 class

 extends 2nd

 for interfaces

 final
 implements

 interface

 modifiers

 new 2nd

 null
 return

 strictfp

 super

 synchronized 2nd 3rd 4th

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 void
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

[Z]

L&F [See look-and-feels]

labels
 frame windows, creating with JLabel

 HTML text in

 internationalizing 2nd

 JLabel class

 combining with JavaBeans
 menus

 split panes

 tick marks in sliders

language codes

languages
 international access, Unicode character encoding

 internationalization
 Locale class

 resource bundles

last()
 CardLayout class

last() (SortedSet)
lastIndexOf() (String) 2nd

lastModified() (File)

late-binding programming languages

Latin-1 character encoding 2nd
layout managers 2nd 3rd 4th

 absolute positioning and 2nd

 absolute positioning, using instead of

 BorderLayout

 BoxLayout
 CardLayout

 FlowLayout 2nd 3rd

 GridBagLayout

 anchoring components

 composite layouts
 constraints 2nd

 grid coordinates

 padding and insets

 relative positioning

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 spanning rows and columns
 weighting constraints

 GridLayout

 nondefault, installing

 nonstandard

 revalidating or redoing layout
 stacking components (Z-ordering)

LayoutFocusTraversalPolicy class

leading space of fonts 2nd

left-shift (<<) operator

length
 of arrays 2nd 3rd

 setting for content in servlet responses

length()

 CharSequence interface

 File class 2nd
 RandomAccessFile class

 String class 2nd 3rd
levels for logging 2nd

 LogTest class (example)

 methods for
lexical comparison of strings

life cycle
 applet

 servlet

lightweight components

lightweight components (Swing) 2nd
limit and value pairs for numerical ranges

limit markers, buffer

line comments in Java

line terminators, changing definition in regular expression matching

LineMetrics class
 font sizing and spacing

 methods

lines (shape outlines), thickness, dashing, and end styles 2nd 3rd 4th 5th

lingering before closing active socket connection

linked lists
LinkedHashMap class

LinkedList class

links

 generating with LinkResponseFilter (example)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 HyperlinkEvent class
 responding to

LinkWriter class (example)

Linux, support for Java

Lisp programming language

 dynamic data typing 2nd
 Java, comparison to

list()

 File class

 Properties class

listeners 2nd 3rd
 ActionListener interface

 registering for menu items

 adapter classes and 2nd 3rd 4th

 adapter classes for

 adapter classes, implementing with
 dummy adapters

 ChangeListener interface
 ContainerListener interface 2nd

 FocusListener interface

 interfaces
 FocusListener interface

 interfaces and handler methods
 InternalFrameListener interface

 maintaining list of

 MouseWheelListener interface

 selectors
 tree events

listeners, event

listFiles() (File)

listing archive contents

ListIt class (example)
ListModel class

ListResourceBundle class

listRoots() (File)

lists 2nd

 converting enumerations into
 converting object type collection to

 creating (example)

 data models

 SpinnerListModel

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 implementation classes
 LinkedList class

 List interface

 selection model

 combo box selection model vs.

 sorting
 thread-safe, creating

 Vector class

little endian

load() (Properties)

loadFile() (Editor)
loading

 applet resources

 application resources

 class files for applets

 classes
 with class loaders

 dynamically
 images

 getImage() method, using

 ImageIcon class
 ImageObserver interface and

 MediaTracker class
 progression, notifying of

 properties

local variables 2nd 3rd 4th

 initializing
 shadowing instance variables

 shadowing of instance variables

Locale class

locales

 specifying for number formats
localizing pathnames

location

 components in windows

 of servlets, requesting 2nd 3rd

 setting for JFrame
lock() (FileChannel)

locked files 2nd

locking classes

logging

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 formatters for messages
 handlers for

 loggers

 filters for

 levels, setting for

 logging levels
 methods for

 LogTest class (example)

 performance and

 piped streams, using for

 setup properties
logical font names

 font portability and

logins, option dialog for

long data type 2nd 3rd

 Long class
 parseLong()

 system property, getting
 toString()

 longValue()

LongBuffer class
longjmp() statements in C

look-and-feels (L&Fs) 2nd
 application components

 included in SDK

 interface components

 menu of available 2nd
lookahead operator (?=)

lookaheads and lookbehinds

lookbehind operators (?<= and ?<!)

lookup() (Naming)

loop() (AudioClip)
loops, infinite

 run() method as

lowercase names in properties sheets

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

[Z]

m (multiline mode), regular expression matching

Macintosh, look-and-feel schemes

MacOS look-and-feel (L&F)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

main() 2nd 3rd
 applications in JAR file, specifying class containing

 Dial class (example)

 Java interpreter and

 MessageBoard class (example)

 RMI client (example)
 RMI server (example)

 RMISecurityManager, installing

Main-Class value, adding to manifests

major tick marks

make utility 2nd
makeMenuItem()

malloc in C/C++

Manager class

manifests (JAR files)

 Bean classes in 2nd
 signature files and

map() (FileChannel)
MapMode class

MappedByteBuffer class

maps
 casting map objects back to original type

 implementation classes
 incoming events to outgoing methods

 Map interface

 SortedMap interface

 synchronized and read-only
 WeakHashMap class

margins for containers, specifying

mark() (BufferedInputStream)

mark, position, limit, and capacity values for buffers

mark/reset facility for buffers
markup languages

marshalling data

MaskFormatter class

match attribute, XSL

match()
 Matcher class

matches() (String)

math utilities

 java.math package

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Math class
 methods, summary of

 Random class

 wrappers for primitive types

MediaTracker class

 use by ImageIcon class
members, class

 inheritance of, visibility modifiers and

 static 2nd

 setting up with static initializer blocks

memory
 managing dynamically in Java

 managing with garbage collection

memory-mapped files 2nd

MemoryHandler class

menus
 action events

 available L&Fs, creating 2nd
 DinnerMenu application (example)

 JMenu class

 JMenuBar class
 JMenuItems class

 labels for
 menu bar, adding to JFrame

 popup

 PopupColorMenu application (example)

 Quit menu item 2nd 3rd
 shortcut keys

 submenus, creating

message dialogs

 example

message digests 2nd
MessageBoard class (example)

MessageFormat class

messages

 formatting

 logging with piped streams
META-INF directory 2nd

Metal look-and-feel 2nd

Method class 2nd 3rd

method signature

http://lib.ommolketab.ir
http://lib.ommolketab.ir

methods 2nd 3rd 4th 5th 6th 7th
 abstract

 Applet API, summary of

 argument passing and references

 arguments for

 Beans class
 binding to definitions

 late-binding in Java

 binding to definitions, late vs. early binding

 ByteBuffer class

 callbacks
 class

 accessing 2nd

 visibility of

 Class class

 Collection interface
 constructors

 overloaded
 deprecated

 dummy, handling with dummy adapters

 event handling 2nd
 exceptions

 declaring 2nd
 tracing to origin

 exceptions, declaring

 File class

 font metrics, obtaining
 helper, for assertions

 inheritance among classes

 inheritance of

 inner classes within

 interface 2nd
 invoking

 JComponent class

 local variables

 initializing

 Math class
 modifiers

 native 2nd

 Object class

 clone()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 equals(), overriding
 getClass()

 hashCode()

 toString()

 outgoing, mapping to incoming events

 overloading 2nd 3rd 4th
 casting and

 overriding 2nd 3rd

 casting and

 compiler optimizations for performance

 dynamic binding and
 exceptions and

 final methods, performance and

 selection among

 static binding

 visibility and
 passing collections as arguments

 passing objects as arguments
 pointers to, Java elimination of

 private

 Random class
 RMI (remote method invocation)

 scripted (BeanShell)
 serializing

 shadowing variables

 shapes, drawing and filling

 static 2nd 3rd
 main()

 String class, summary of

 synchronization 2nd

 Thread class

 variables within scope of
Microsoft

 applets, history of use

 C# (C-sharp) language and .NET initiative

 Internet Explorer [See Internet Explorer]

 Java version, problems with
 Windows [See Windows operating systems]

 Word, use of RTF in documents

MIDI music files, playing

MIME types (Multipurpose Internet Mail Extensions) 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 DataSource, determining for data stream
 determining for servlet output

 mapping into class names

 URLs, determining for

MissingResourceException class 2nd

mkdir(), mkdirs() (File)
mnemonics 2nd

 in NetBeans

modal dialogs

mode of files (read/write), specifying

Model-View-Controller (MVC) framework 2nd 3rd
 components, separating model and view

 text components

 sharing a data model

models [See data models]

modification times
 comparing with javac for source and class files

 files and directories
modifiers 2nd [See also individual modifier names; keywords; visibility]3rd

 for constructors

 final 2nd
 interface methods

 interface variables
 key and input

 mouse and key, on input events

 public, combining with static

 static, combining with final
 strictfp

 synchronized modifier

 transient

 visibility

 class methods and variables
 for classes

 inheritance and

monitor and condition model, Java synchronization

monitor variables, using with threads 2nd

monitors
more()

Motif, look-and-feel schemes 2nd

mouse

 MouseMotionListener interface

http://lib.ommolketab.ir
http://lib.ommolketab.ir

mouse events
 DrawPad application (example)

 inner classes supplying handlers for

 modifiers on InputEvents

 mouse-wheel

 MouseEvent class 2nd
 getting x and y coordinates of position

 MouseListener interface

 implementing with MouseAdapter class

 MouseMotionListener interface 2nd 3rd 4th

 pop-up menus and
mouse wheels, scrolling with

mouseClicked() methods

mouseDragged() 2nd 3rd

 drawing to offscreen buffer

 eliminating unnecessary image update actions
mouseMoved() 2nd

mousePressed()
mouseReleased()

MouseWheelListener interface

movies, working with
 URLs for movies, passing in command line

Mozilla browsers
 XML support

 XSL support

multicast sockets

multidimensional arrays
multiline mode, regular expression matching

multiline text editor

multimedia

 Java Sound API

 JMF (Java Media Framework)
multiple inheritance

Multipurpose Internet Mail Extensions [See MIME types]

multithreading

 requests, servlet handling of

 Swing components and
music files, playing

MutableTreeNode interface

MVC [See Model-View-Controller framework]

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

[Z]

Nagle's algorithm, turning off

name attribute (HTML)

names

 anonymous inner classes
 applets

 code attribute, specifying with

 name attribute of <APPLET> tag

 dot-separated hierarchy (properties) 2nd

 files, localization of
 fonts

 HTML frames for displaying documents

 inner classes

 Naming class

 binding/rebinding names to registry
 packages

 remote interfaces
namespaces

 XSL

naming conventions
 constants

 constructor methods
 interfaces

 JavaBeans, naming and design patterns, JavaBeans

 packages

 Swing components
 Swing event listener interfaces and handler methods

NaN (not-a-number) 2nd

narrowing

 object types 2nd

 reference types
native methods 2nd

native threads

nativeOrder() (ByteOrder)

navigation

 applets, over multipage documents
 keyboard focus

NavigationFilter interface

negative infinity

negative lookahead operator (?!)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

nested expressions, parsing
nesting

 character classes

 classes

 comments

 XML tags
NetBeans IDE 2nd

 Bean Patterns wizard, using

 get and set method patterns, recognition of

 installing and running

Netscape
 applets, history of use

 JavaScript

 Navigator

 certificate authority (CA) certificates

 encryption keys, managing with KEYGEN
 HTML tags for

 Java, support for 2nd
 plug-in mechanism

 signed applets

 user certificates
 viewing Plug-in applets with 2nd

 XML support (v. 6.x)
 XSL support (v. 6.x)

network byte order

Network Filesystem (NFS)

networking 2nd
 applets, communication with

 classes for (java.net package)

 connections, limiting with default security manager

 datagram sockets

 exceptions
 Internet-based computer systems

 Java Network Launching Protocol (JNLP)

 Network Time Protocol (NTP)

 object serialization (object-based server)

 protocols
 RMI (remote method invocation)

 example

 object activation

 passing remote object references

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 remote and non-remote objects
 scaleable I/O with NIO

 nonblocking client-side operations

 nonblocking web server

 selectable channels

 serialized object protocols
 sockets 2nd

 clients and servers

 DateAtHost client (example)

 options

 proxies and firewalls
 TinyHttpd server (example)

new I/O package [See NIO]

new operator 2nd 3rd 4th 5th

 creating anonymous inner classes

 creating arrays 2nd
 multidimensional arrays and

 objects, creating
newAudioClip() (Applet)

newDecoder() (Charset)

newEncoder() (Charset)
newInstance() (Class) 2nd 3rd

newlines
 adding to end of strings

next()

 CardLayout class

 Iterator class
nextDouble() (Random)

nextElement() (Enumeration) 2nd

nextGaussian() (Random)

nextToken() (StringTokenizer)

NFS server, applets and applications working with files on 2nd
NIO (new I/O) package 2nd

 asynchronous I/O

 buffers

 channels

 character encoders/decoders
 FileChannel class

 mapped and locked files

 performance and

 scaleable I/O with

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 selectable channels
 selectable I/O with

 nonblocking client-side operations

 nonblocking web server

node() (Preferences)

NodeChangeListener interface
nodeExists() (Preferences)

nodes

 adding new into tree

 DOM (Document Object Model)

 expanding, collapsing, and selecting
 hierarchy, creating

 preferences tree

 packages, getting for

 user and system root, getting

nonblocking I/O 2nd
 client-side operations

 LargerHttpd server (example)
 SelectableChannel interface, setting for 2nd

nonexistent files 2nd

nongreedy matching
nonstandard layout managers

nonstatic code blocks
not operator (!)

not-a-number (NaN) 2nd

notify()

 ClientQueue class
 Thread class

notifyAll() 2nd

notifyObservers() 2nd

null values 2nd 3rd

 character
 default value of array elements

 instanceof operator and

 maps and

 for reference types

NullPointerExceptions class
numbering capture groups

numbers

 floating-point

 formats for different countries

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 instance variables, numeric
 NaN (not-a-number) 2nd

 Number interface

 NumberFormat class 2nd

 NumberFormatException

 parsing
 randomly generated

 SpinnerNumberModel, displaying numeric values

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

[Z]

O (optimization) option, javac

object attribute (HTML) 2nd

object serialization [See serialization]

object-oriented programming

 classes
 encapsulation

 encapsulation of data
 late method binding

 polymorphism principle 2nd

 scripting languages vs.
 subtype polymorphism

ObjectOutputStream class 2nd
objects 2nd 3rd 4th 5th 6th 7th

 arrays as 2nd 3rd [See also arrays]

 building Java model from XML document

 classes and 2nd 3rd 4th 5th
 methods and fields, accessing

 static members

 collections of

 converting to strings

 creating
 constructors

 initializer blocks, static and nonstatic

 new operator, using

 design methodology

 destroying
 finalization

 garbage collection 2nd

 event

 getting URL content as

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 graphics
 hashcodes

 input/output streams for

 JavaBeans

 locking

 mapping to databases (Entity Beans)
 methods

 local variables

 shadowing variables

 static

 methods and variables, accessing
 Object class 2nd 3rd

 array classes and

 cloning

 equality vs. equivalence

 hashcodes
 primitive data types vs.

 primitive types as
 reference types and

 references to 2nd 3rd [See also references]

 remote and non-remote
 runtime information about (Java)

 scripted (BeanShell)
 serialization [See serialization]

observables

 MessageBoard class (example)

 Swing, event sources as
observers

 Observer interface

 Swing, event listeners as

octal numbers

offscreen drawing 2nd
open() (Selector)

openConnection()

 Handler class

 URL class 2nd

openStream() (URL) 2nd
operating systems [See also entries under operating system names]

 classpath environment variables

 virtual memory

operators

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 (identity) operator
 << (left-shift) operator

 assignment

 comma (,) in C

 dot (.)

 image operators 2nd
 instanceof

 Java, listing of

 new 2nd 3rd

 not (!) operator

 overloaded 2nd 3rd
 precedence of

 in nested expressions

 string concatenation (+)

 ternary operator

optimizing code
 javac compiler

 in JIT compilation
option dialogs

 examples

order of evaluation
order() (ByteArray)

OrientableFlowLayout layout manager
out of bounds values, returning instead of throwing exceptions

outgoing methods, mapping to incoming events

output streams

 ByteArrayOutputStream class
 DataOutputStream class

 network byte order

 HttpServletResponse objects

 ObjectOutputStream class

 order of creation
 server response processing

 objects, order of creation 2nd

 OutputStream class

 properties table, saving to 2nd

 sockets, retrieving for
 System.out and System.err

 URL connections 2nd 3rd 4th

 writing preferences to

overloading

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 methods 2nd 3rd 4th 5th
 add()

 append() (StringBuffer)

 casting and

 constructors

 equals()
 overriding vs. 2nd

 operators 2nd 3rd

overriding methods 2nd 3rd

 abstract methods

 casting and
 compiler optimizations for performance

 component size

 dynamic binding and

 equals() 2nd

 exceptions and
 final, performance and

 hashCode()
 method selection and

 overloaded methods vs.

 static binding
 subclasses, visibility and

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]
[Z]

pack()

 JFrame class
packages 2nd 3rd

 applet class files, locating on server

 compilation units and

 core, Java platform

 cryptographic (JCE)
 drawing, classes for

 enabling assertions for

 event

 importing 2nd

 Java API
 java.lang, class hierarchy

 java.text

 naming

 protocols handler, names for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 scalability and
 unnamed

 user and system preferences for

packing JAR files

padding

 GridBagLayout
 insets, relationship with

 HTML attribute for

 between lines of text

Paint interface

paint objects
paint() 2nd 3rd

 animation, use in

 Component class

 DrawPad class (example)

 image observers and
 JApplet class

 update() vs.
paintComponent() 2nd 3rd 4th

 Dial class (example)

 HelloComponent class (example)
 JComponent class

panels
 applets as

 displaying multiple in BorderLayout

 Panel class

panes
 JOptionPane class, dialog groupings in

 JScrollPane class

 JSplitPane class

 JTabbedPane class

parameters
 applets

 <PARAM> tag

 methods 2nd [See also arguments]

 servlet

 tracking purchases in shopping cart application
parent directory of a file

parse() (NumberFormat)

parseDouble() (Double)

ParseException class 2nd 3rd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

parseFloat() (Float)
parseInt() (Integer) 2nd

parseLong() (Long)

parseURL()

parsing

 dates
 equations

 methods for

 protocols

 streams, exceptions in

 strings of text into words or tokens
 tar files

 text

 primitive numbers

 URLs 2nd

 XML documents
 with DOM 2nd

 JAXP 2nd
 parser support for namespaces

 SAX API, using

passing by reference
 reference types

 remote objects
passing by value

 primitive data types 2nd

 references

passwords
 JPasswordField class

 displaying in option dialog

 private keys, protecting with

paste() (JTextComponent)

pasting text
pathnames

 components of, getting

 creating File instances from

 localizing for filesystem

 resources, returning URL for
 RMI registry

paths

 absolute and relative

 converting to URLs

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 cookie deployment, specifying for
 GeneralPath class

 tree selections

 URLs

pattern strings

patterns 2nd [See also regular expressions]
pausing threads

peer interfaces 2nd 3rd

peer-to-peer (P2P) application, nonblocking client-side I/O

percentages, formatting for locales

performance
 applets and

 array bounds checking and

 byte-code verification and

 channel I/O and

 collection synchronization and
 double buffering images

 dynamic method selection, final modifier and
 encryption and

 exceptions and

 garbage collection and
 logging and 2nd

 scaling images and
 threads and

Perl scripting language

 data types

 Java vs.
permissions, storing in policy files

persistence

 applets

 remote objects

personal digital assistants (PDAs)
PI (static final double value)

PipedInputStream class

PipedOutputStream class

PipedReader class

PipedWriter class
pipes

 pipe channels

 selectable channels

pixels

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 arrays of values (Raster)
 assigning RGB value

 colors, methods of representing

PLAF [See pluggable look-and-feel]

play() (AudioClip)

Player interface
plug-ins

 Java Plug-in

 signed applets, implementing

 specifying and installing latest Java version

 viewing Plug-in applets
 Java Plug-in, using with applets

 HTML tags, problems with

 Java Web Start, installing

pluggable look-and-feel 2nd

PNG image files
point size (fonts)

point-to-point attachments between GUI components
pointers

 references vs.

 untyped, violating class encapsulation
policy files

 creating with policytool
 policytool utility, creating with

 using with default security manager

polling I/O operations for activity

 selectable channels, using
polygons, drawing

polymorphism 2nd

 in Java

 subclassing and

 subtype 2nd
popup menus

port numbers

 exported objects, listening on random

 rules for using

 specifying for server
portability

 fonts

 Java code

porting Java to platforms and operating systems

http://lib.ommolketab.ir
http://lib.ommolketab.ir

position markers
 in buffers 2nd

 in regular expression matches 2nd

positioning components in containers [See layout managers]

positive infinity

POST method
 doPost(), correspondence to

 requests, accepting

 security, adding

 using (application example) 2nd 3rd

 web browsers, passing information with 2nd
post-conditions (validating method returns)

postData()

pre-conditions (method input validity)

precedence, operator

 in nested expressions
PreferenceChangeListener interface

Preferences API 2nd
preferred size

 components

 containers
preferred sizes

 components
prepareImage() (Toolkit)

preprocessor, lacking in Java

presentation information, separating from structure

previous() (CardLayout)
primitive data types 2nd 3rd

 arrays of

 arrays, wrappers for

 boolean

 byte
 char

 converting between

 data input/output streams, reading/writing with 2nd 3rd

 double

 float
 floating-point 2nd

 int

 integer literals

 Java runtime interpreter, handling of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 long
 Math class methods, working with

 NIO (new I/O) buffers

 parsing

 passing by value in method arguments

 short
 variable declaration and initialization

 wrapper classes for

 wrappers for

print()

 Printable interface
 PrintStream class

printDialog()

PrinterJob class

printing

 from 2D API
 collection elements with Iterator

 HTML file contents 2nd
 Printing API, Java 2

 PrintStream class 2nd 3rd

 LinkWriter class (example)
 PrintWriter class 2nd

 wrapping FileOutputStream 2nd
 PrintWriter, creating for URL connection 2nd

println()

 printing string buffers

 PrintWriter class
printStackTrace()

prioritizing image loading by ID value

priority of threads

private keys

private modifier 2nd 3rd 4th 5th
 inheritance and

 methods

 methods and variables

processes

 threads vs.
processes, threads vs.

processing images, ImageProcessor application 2nd

producer threads 2nd

programming for the Web 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

programming languages
 Java, comparison with other

 methods, binding to definitions

 regular expressions

 type safety and method binding

propagation, exceptions
properties

 classes implementing interfaces

 constructing URL and loading configuration file with an applet

 fonts, Java files for

 graphics context
 JavaBeans 2nd

 binding

 constrained

 design patterns for

 Dial class (example)
 editors for 2nd

 information about
 setting with EventHandler

 loading and storing

 logging setup
 setting in XML to Java conversion

 system
 applet access, restrictions on

 configuring Java to use socket proxy server

 current working directory

 interpreter access to
propertyChange()

PropertyChangeEvent class 2nd 3rd 4th

 adapter classes listening for

 notifying Beans of

PropertyDescriptor class
propertyNames() (Properties)

PropertyResourceBundle class

PropertyVetoException class

protected modifier 2nd 3rd

 clone() method
protocol handlers 2nd

 identifying source MIME type

 web browsers and 2nd

 writing 2nd 3rd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Encryption class
 locating protocol handlers

 URLConnection class

 URLs, Stream Handlers, and Connections

 URLStreamHandler class

protocols
 networking

 UDP

provider packages

Proxy class 2nd

proxy servers 2nd
public modifier 2nd 3rd 4th

 classes 2nd

 combining with static modifier

 methods

 interface
 methods and variables

public-key cryptography [See cryptography]2nd 3rd
purchases, tracking in shopping cart servlet

put() (Map)

putMessage()
putNextEntry() (ZipOutputStream)

Python scripting language
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

[Z]

quantifiers, regular expression pattern matches
queueing

 events

 references

 selection keys for threads

Quit menu item 2nd
quotation marks

 in applet parameter names and values

 in strings

 in XML attributes

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]
[Z]

radio buttons

 ButtonGroup class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Cheese menu (example), using with
 DriveThrough application (example)

 grouping with ButtonGroup class

 JRadioButton class

random access, support by buffers

random numbers
 random() (Math)

random values, filling data image byte array

RandomAccessFile class 2nd

 FileChannel vs.

range operator [...]
Raster class

 DataBuffers and SampleModels

 static methods for creating Rasters

read()

 FileChannel class
 FilterInputStream class

 InputStream
 InputStream class 2nd

 LargerHttpd class (example) 2nd

 PipedInputStream class
 RandomAccessFile class

read-only and write-only properties (JavaBeans)
read-only collections, creating

read-only files

read-write files

 FileChannel
read/write positions and limits within buffers

readDouble() (DataInputStream)

Reader class

readLine() (BufferedReader) 2nd

readObject() (ObjectInputStream) 2nd
readUTF() (DataInputStream)

ready set (selector key flags)

readySet() (SelectionKey)

realize() (Player) 2nd

RealizeCompleteEvent class
realized Swing components

rebind() (Naming)

receivers for events

 registering with event sources

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Rectangle2D class
recurring tasks

recursion

red, green, and blue (RGB)

 images

 values, representing colors
redirects

redrawrate property

reference (&) operator, C language

reference types 2nd

 method overloading and
 null values, assigning to

 objects, pointing to

 strings

ReferenceQueue class

references 2nd 3rd
 accessing object members through

 arrays as objects 2nd
 calling methods in

 elements of array of objects

 garbage collection and
 finalizing objects

 weak and soft references
 object serialization and

 passing arguments to methods

 passing by value

 passing remote objects
 remote object, passing

 RMI client

 super 2nd

 super reference

 this 2nd 3rd 4th
 weak (WeakHashMap)

reflection 2nd 3rd

 arrays

 Bean information, gathering

 constructors, accessing
 dynamic interface adapters

 fields, accessing

 JavaBeans, using in 2nd

 methods, accessing 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 runtime event hookups with
 security and

 security

 uses of

regionMatches() (String)

register() (SelectionKey)
registering event listeners 2nd

registry, applets using static methods for

registry, RMI

 registering objects with

regular expressions (and pattern matching)
 alternation

 capture groups

 character classes, defining custom

 characters and character classes

 escaped characters
 greediness in matching

 grouping
 java.util.regex API

 lookaheads and lookbehinds

 position markers 2nd
 special options

 strings
relative paths 2nd 3rd

 class package names, converting to

relative positioning (GridBagLayout)

relative URLs
 constructing for loading applet resources

remote interfaces

 Remote interface, defining for RMI server

 WorkListener (example)

remote method invocation [See RMI]
remote objects

 activating

 implementing with UnicastRemoteObject

 stubs and skeletons

remote procedure calls (RPC) in C
RemoteException class 2nd

RemoteObject interface

remove()

 Collection interface

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Container class
 DocumentFilter class

 Iterator class 2nd

 List interface

 Map interface

 Preferences class
 SortedSet interface

removeActionListener()

removeNode() (Preferences)

removing files with HTTP

renameTo() (File)
rendering

 clipping shape, limiting to interior of

 clipping shapes

 complete example

 compositing colors
 drawing animations

 drawing images
 drawing shape outlines

 drawing text

 filling shapes
 hints for

 text
 FontRenderContext class

 transformations and

rendering hints

 RenderingHints class
 rescaling images

rendering pipeline

 steps in

reordering columns (JTable)

repaint() 2nd
 animation, use in

 Component class

 image observers and

 JComponent class

 limiting redrawing with
 progressive image updates

 UpdateApplet class (example)

replace()

 DocumentFilter class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 String class
replaceAll() (String)

replaceFirst() (String)

request and response objects

 HttpServletRequest and HttpServletResponse

 for object-based server
 determining request type

 servlets

 filtering responses

 HttpServletResponse

requestFocus() (JComponent) 2nd
requestFocusInWindow()

rescaling images

reset facility, buffers

reset()

 Buffer class
 BufferedInputStream class

resetBuffer()
resizing JFrames 2nd

resource bundles

 ListResourceBundle class
 MissingResourceException class 2nd

 PropertyResourceBundle class
 ResourceBundle class

resources

 applets, getting for

 driving the browser
 inter-applet communication

 persistence and navigation

 standalone applications vs.

 application, loading

restricting file access 2nd 3rd
resume()

 Thread class

 ThreadGroup class

return keyword

return statements
return values

 void

return values, method

 data type, specifying for

http://lib.ommolketab.ir
http://lib.ommolketab.ir

revalidate() 2nd
rewind()

rewriting URLs

 for browsers not supporting cookies

RGB (red, green, and blue) color components

RMI
RMI (Remote Method Invocation)

RMI (remote method invocation) 2nd

 client, creating

 CORBA, support for

 example
 dynamic class loading

 remote object references, passing

 object activation

 object serialization, use of

 remote and non-remote objects
 registry

 remote interfaces
 stubs and skeletons

 UnicastRemoteObject class

 security
rmic (RMI compiler)

 creating stub and skeleton files
rmiregistry application

 dynamic class loading and

RMISecurityManager class

Robot class
root element for XML documents

 DOM, getting in

root logger

root node for user and system peferences trees

 creating (example)
root node for user and system preferences trees

root path on web server for web applications

roots

 filesystem

rot13CryptInputStream class
rotate by 13 letters (rot13) operation

rotate() (Graphics2D)

rotational transformation (images)

round() (Math)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

rows
 GridBagLayout

 spanning

 weights, calculating

 justification in FlowLayout

 setting number in GridLayout
rows, table

 count, getting

 selection of

RPC (remote procedure calls) in C

RTF documents, displaying in text components 2nd
Ruby scripting language

run() 2nd 3rd

 HelloComponent4 class (example)

 object-based server (example)

 Thread class
 animation, use in

 TinyHttpdConnection class (example)
Runnable interface 2nd 3rd 4th

 anonymous inner class, implementing with

 creating and starting threads
 subclassing Thread

running applications
 HelloJava (example)

runtime

 adaptive compiler, use at

 typing (Java)
runtime interpreter

runtime systems

RuntimeException class 2nd

 unchecked exceptions and

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]
[Z]

s (single line mode), regular expression matching

sameFile() (URL)

SampleModel class 2nd
save() (Properties)

saveFile() (Editor)

SAX (Simple API for XML) 2nd

 Java object model, building from XML document

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 JAXP, accessing parser with
 strengths and weaknesses of

say()

scalability of Java classes

scalar types (C language)

scalar values, retrieving for numeric type wrappers
scale() (Graphics2D)

scaleable I/O with NIO package

 selectable channels

scaling images 2nd 3rd [See also rescaling images]

schedule() (Timer)
scheduling threads 2nd

scientific algorithms

scope

 application level in Java packages

 declaring for classes
 local variables

 shadowed variables
 this reference (inner classes)

scripting languages

 BeanShell, for Java [See BeanShell script]
 comparing to Java

 JavaScript
 reflection API, using to integrate Java with

scrollbars

 JScrollPane class 2nd

 scrollbar display policy
 sliders, using with

scrolling, mouse-wheel device

SDK (Software Development Kit) 2nd

 appletviewer

 JAR (Java archive) files
 jar utility

 Java interpreter

 system properties, access to

 javac compiler

 javap tool
 policytool utility

 Version 1.4

 assertions

 digital signatures for applets

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 exception chaining
 focus in Swing components 2nd

 formatted text in Swing

 Java Plug-in, using with applets

 Java Web Start as alternative to applets

 Logging API
 mouse-wheel events in Swing

 NIO (new I/O) package 2nd

 overview of features

 Preferences API

 regular expressions
 servlets and web applications

 XML

searching for substrings within strings

security

 applets, restrictions on
 reading/writing to files

 digital signatures, using
 certificates 2nd

 EventHandler class and

 HTTP daemon server
 inner classes and

 Java design features
 dynamic memory management

 error handling

 incremental development

 scalability
 simplicity of syntax

 threads

 type safety and method binding 2nd

 Java features, application and user-level

 signing classes
 Java implementation features

 byte-code verifier

 class loaders

 security managers 2nd

 Java Security API
 policy files

 policytool utility, creating with

 Reflection API 2nd

 RMISecurityManager

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 SecurityManager class 2nd
 access to filesystems, controlling

 sockets and

 web communications 2nd

security managers 2nd

 default 2nd
 policy files, using with

 flagging windows from untrusted applications

security policy, unsigned applet violating

SecurityException class

seeding pseudo-random number generator
seek() (RandomAccessFile)

select() (Selector)

selectable channels

 SelectableChannel interface

selectable I/O with NIO package 2nd
 LargerHttpd (example), nonblocking web server

 nonblocking client-side operations
selectAll()

selectedKeys() (Selector)

SelectionKey class
 interest set operations, setting

selections
 JTable, configuring for

 nodes

 selection models

 combo box and lists
 lists

 in text components

 trees

 event handler for

selectNow() (Selector)
selectors 2nd 3rd

 checking for socket to finish connecting

 registering with channels

selectText()

self-issued certificates
self-signed certificates 2nd 3rd

sendError() (HttpServletResponse) 2nd

sendMessage() (private method)

sendRedirect() (HttpServletResponse)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

separator lines, adding to menus
Serializable interface 2nd

serialization 2nd 3rd 4th

 applets 2nd

 initializing deserialized objects

 JavaBeans 2nd
 code generation vs.

 JavaBeans APIs, using with

 JavaBeans classes to XML

 object-based server

 of methods 2nd
 reflection, use of

 RMI, use of 2nd

 stream subclasses, use in

servers

 application
 class files, making available via web server

 clients vs.
 detecting lost client connections

 Java applications for (servlets)

 LargerHttpd (example), nonblocking web server
 object-based

 client for
 object-based (example)

 proxy servers

 Pulse (example) 2nd

 RMI
 client for

 security restrictions on

 ServerSocket class 2nd

 servlets handling HTTP requests for

 TinyHttpd server (example)
 character encoding

 security

ServerSocketChannel class

 setting up for LargerHttpd server (example)

service()
 HttpServlet class

 Servlet class

services (BeanContextServices)

ServletException class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ServletRequest class
ServletResponse class

servlets 2nd

 debugging with "SnoopServlet"

 filtering responses

 HelloClient (example)
 content types

 exceptions

 HttpServletRequest and HttpServletResponse objects

 life cycle

 location of, requesting 2nd
 parameters

 response

 Servlet API

 session management

 cookies, using
 HttpSession objects

 ShoppingCart servlet (example)
 ShowSession servlet (example)

 web

 web applications and
Session Beans

session tracking (servlets)
 cookies, using

 ShoppingCart servlet (example)

 ShowSession servlet (example)

 invalidating (clearing) sessions
set()

 Calendar class

 CryptInputStream class

 List interface

set() methods, Field class
setActionCommand()

setAttribute() (HttpSession)

setBackground() (JComponent)

setBorder() (JComponent)

setBound()
setBounds()

 Component class

setBufferSize() (HttpServletResponse)

setChanged()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

setColor() 2nd
setComposite() (Graphics2D)

setConstraints() (GridBagLayout)

setContentLength() (HttpServletResponse)

setContentPane() (JWindow or JFrame)

setContentType()
 HttpServletResponse class

setContentType() (HttpServletResponse)

setCursor()

 JComponent class

 JFrame class
setDaemon() (Thread)

setDefaultCloseOperation() (JFrame)

setDisplayName()

setDocumentFilter() (Document)

setDoInput() 2nd
setDomain() (Cookie)

setDoOutput()
setDoubleBuffered() (JComponent)

setEchoChar() (JPasswordField)

setEnabled()
setFocusable() (JComponent)

setFocusableWindowState() 2nd
setFocusLostBehavior() (JFormattedTextField)

setFocusTraversalKeys()

setFont() 2nd

 Component class 2nd
 Graphics2D class

setForeground() (JComponent)

setHeader() (HttpServletResponse)

setIconImage()

setInt() (Field)
setJMenuBar() (JFrame)

setjmp() statements in C

setKeepAlive()

setLabelTable() (JSlider)

setLastModified() (File)
setLayout() (Container) 2nd

setLocation()

 Component class

setMaximumPriority()

http://lib.ommolketab.ir
http://lib.ommolketab.ir

setPaint() (Graphics2D)
setPath() (Cookie)

setPreferredSize() (JPanel)

setProperty() (System) 2nd

setRequestMethod()

setRequestProperty()
setResizable() (JFrame)

setRGB()

sets

 of attributes

 implementation classes
 ready set (selection keys)

 SortedSet interface

 synchronized and read-only

setSize()

 JComponent class
 JFrame class

setSoLinger() (Socket)
setSoTimeout() (Socket)

setStream() (AppletContext)

setStroke() (Graphics2D) 2nd
setTcpNoDelay() (Socket)

setText()
 JLabel class

setTitle() (JFrame class)

setURL()

setValue()
 class

 Dial class (example)

setValueAt()

setVisible()

 JFrame class
 JWindow class

SGML (Standard Generalized Markup Language)

shadowing methods [See methods, overriding]

shadowing variables 2nd 3rd

 this reference, explicitly referring to instance variables
shallow copies

shapes

 clipping 2nd 3rd

 Iguana example

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 creating for animation
 drawing with 2D API

 outlines

 rendering pipeline

 filling 2nd

 color gradients, using
 desktop colors

 ellipses

 solid colors, using

 textures, using

 geometric transformation of 2nd
 graphics context for drawing

 rendering in Graphics2D

 Shape interface and classes implementing

 stroking outlines

shared file locks
shear() (Graphics2D)

Shift key modifier
ShoppingCart servlet (example) 2nd 3rd

Short class

short data type 2nd
 shortValue()

ShortBuffer class
shortcut keys

 accelerators for menus

 copying, pasting, and cutting text

 mnemonics for menus
show() 2nd

showConfirmDialog() (JOptionPane)

showDialog() (JColorChooser)

showDocument(url) (AppletContext)

showMessageDialog() (JOptionPane)
showOpenDialog() (JFileChooser)

showStatus() (Applet)

shutdownInput()

shutdownOutput()

signature, method
signed JAR files

 utilities for

 jarsigner

 keytool

http://lib.ommolketab.ir
http://lib.ommolketab.ir

signer certificates
signers

signing classes

Simple API for XML [See SAX]

Simple Object Access Protocol (SOAP)

SimpleAttributeSet class
SimpleElement class

SimpleFormatter class

single inheritance

 interfaces providing exception to

single line mode, regular expression matching
single-line text editor

SingleThreadModel interface

site certificates

size

 applet, HTML attributes for
 buttons in GridBagLayout

 columns, table
 components in BorderLayout

 frame window, setting for

 GridBagLayout
 grid, implicitly determined

 GridBagLayout, rows and columns
 GUI components and windows

 images

 JavaBeans

 JFrame, setting for
 JFrames, resetting

 preferred

 for components

 setting for JPanel

size()
 Collection class

 FileChannel class

 Map interface

sizeof operator

skeletons
 creating with rmic

skip() (InputStream)

sleep() (Thread) 2nd 3rd 4th

sliders

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Smalltalk programming language
 dynamic data typing and late method binding

 dynamic typing in

 Java, comparison to

smart cards

SOAP (Simple Object Access Protocol)
SocketChannel class

 connect()

 finishConnect()

SocketHandler clss

sockets 2nd 3rd 4th 5th 6th
 clients and servers

 security

 ServerSocket class

 datagram

 DatagramSocket class
 HeartBeat applet (example)

 HTTP connection, opening for
 Java programs sending data to server over

 multicast and datagram

 network
 options

 proxies and firewalls
 TinyHttpd server (example)

 server

 Socket class

 TCP, use of
 SSL (Secure Socket Layer) 2nd

SOCKS service

soft references

Software Development Kit [See SDK]

Software Development Kit (SDK)
 look-and-feels (L&Fs)

software development models (IDEs)

software distribution over the Internet

Solaris

 Java, support for
 look-and-feel of

SortedMap interface

sorting collections

sound

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Java Sound API
 loading sound clips for applets

source code

 .java extension for files

 compilation units

 compiling with javac
 copying for examples

 debugging code, including in

source image

 processing with BufferedImageOp

 transforming to destination image
source over destination compositing rule

sources of events

special references

speed [See performance]

spinners
 SpinnerCalendarModel class

 SpinnerDateModel class
 SpinnerListModel class

 SpinnerNumberModel class

split panes
split() (String)

splitter bars
spreadsheets, creating with custom table data model

SpringLayout layout manager

SSL (Secure Socket Layer)

stacks
 components

 Stack class

 StackTraceElement class

 type state of 2nd

standalone applications
 applets vs. 2nd

 sharing classes with applets

Standard Generalized Markup Language (SGML)

standard input

 wrapping in BufferedInputStream
standardization (JavaBeans)

start()

 Applet class

 Thread class 2nd 3rd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 UpdateApplet class (example)
startElement() (ContentHandler)

startsWith() (String) 2nd

state

 Beans 2nd 3rd

 data types 2nd
statements 2nd

 BeanShell, using in

 code blocks and

 conditional

 in finally clause, execution of
 iterative

 package statement

 synchronized

 unreachable

 variable initialization
static modifier

 class members 2nd
 code blocks

 combining with final modifier 2nd

 inner classes
 methods 2nd 3rd 4th

 main()
 variables

 retrieving value with dot operator

statically typed programming languages 2nd

status line (browser), displaying text for applets
statusAll() (MediaTracker)

statusID() (MediaTracker)

StatusImage class (example)

stop()

 Applet class 2nd
 AudioClip class

 Thread class 2nd

 UpdateApplet class (example)

stopping threads blocked in I/O operations

StreamHandler class
streams, I/O 2nd

 caching in servlet responses

 channels vs.

 character

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 class resources, obtaining as
 compressed data

 data transfer, network byte order

 exceptions

 file

 FileChannels for
 guessing content type from name

 networking, use of

 objects

 order of creation

 server request/response cycle
 piped

 rot13InputStream class (example)

 strings, wrapping with

 terminal I/O

 URLs
 obtaining from

 wrapper classes
 Datastreams

strictfp class modifier

strings 2nd 3rd 4th
 arrays of

 backslashes in
 CharBuffers, integration with

 comparing

 in different languages

 lexical value to another string
 concatenation (+) operator 2nd 3rd

 constructors

 converting objects to

 date/time

 parsing
 editing

 equivalence of

 error messages, specifying with

 expression, tokenizing and parsing

 input/output streams, wrapping with
 newline, adding to 2nd 3rd

 operations on

 pattern, for messages

 regular expressions, using with

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 escaped characters
 searching for substrings in

 String class

 getName()

 methods, summary of

 StringBuffer class
 implementing String concatenation

 StringIndexOutOfBoundsExceptions

 StringIterator class

 StringTokenizer class 2nd

 support for Unicode
 text, bounding box of

 toString()

 URL specification, parsing

 URL-encoded

strokes
 setting for Graphics2D objects

 shape outlines 2nd
strtok() in C

struct (keyword) in C

structural information, separating from presentation
strut components

stubs and skeletons
 creating with rmic

 stub classes, loading dynamically

style identifiers for fonts

stylesheets (XSL) 2nd
subclassing

 array classes

 Error class

 Exception class

 inheritance and 2nd
 abstract classes and methods

 overriding methods

 shadowed variables

 special references

 subclassing subclasses
 superclass constructors, using

 visibility modifiers, effects of

 interfaces

 reference types and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 RuntimeException class
 subtypes and

 Thread class

 visibility and

subinterfaces

subMap() (SortedMap)
submenus, creating

subSet() (SortedSet)

substring() (String) 2nd 3rd

substrings, finding within strings

subtype polymorphism 2nd
subtypes

sum()

Sun Microsystems

 Java web site 2nd

 SDK, obtaining latest
 Network Filesystem (NFS)

super reference 2nd 3rd 4th
super(), explicitly invoking superclass constructor 2nd

super.parseURL()

superclasses
 class inheritance and

 constructors, using
 finalize() methods of

suspend()

 Thread class

 ThreadGroup class
Swing GUI toolkit 2nd 3rd

 AWT (Abstract Window Toolkit) vs.

 components 2nd 3rd

 as JavaBeans

 borders
 buttons and labels

 checkboxes and radio buttons

 customizing

 dialogs 2nd

 focus
 focus navigation

 JTree class

 lists and combo boxes

 menus

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 model and view separation
 naming

 peerless and lightweight nature of

 pluggable-look-and-feel

 popup menus

 scrollbars
 scrollbars and sliders

 spinners

 split panes

 tabbed panes

 tables
 text

 containers

 content panes

 insets, specifying

 layout managers
 listening for components

 managing components
 revalidating or redoing layout

 stacking (Z-ordering) components

 windows and frames
 double buffering images

 event architecture
 events

 adapter classes implementing listener interfaces

 delivery of

 focus
 input, generating with AWT Robot

 receivers and listener interfaces

 sources of

 summary of

 types of
 graphics context, acquiring

 JApplet class

 ShowApplet (example)

 JComponent class

 methods
 update(), vs. AWT update()

 multithreading in

 user interface component classes

SwingUtilities class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 testing identity of current thread
 updateComponentTreeUI()

switch statements

sync() (Preferences)

synchronization 2nd

 collection implementations
 Java tools for

 Selector objects

 threads 2nd 3rd

 join() method, using

synchronized modifier 2nd 3rd 4th 5th
 constructors and

synchronized statements

System class

 arraycopy()

 exit()
 gc()

 input/output and errors
 user.dir property, checking

system preferences

system properties
 configuring Java to use socket proxy server

 font names, looking up in
 incrementaldraw and redrawrate

 Java interpreter, access to

system resources, controlling access to

System.err 2nd
System.out 2nd

System.out.println()

SystemColor class

systemNodeForPackage() (Preferences)

systemRoot() (Preferences)
systems, fonts available on

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

[Z]

tables
 creating with JTable constructor

 data model, creating

 spreadsheet

 TableModel interface 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

tabs, JTabbedPane class
tags

 doc comment

 HTML

 <APPLET> 2nd 3rd

 <body>

 <OBJECT>

 <PARAM>

 Plug-in applets, problems with

 XML
 <!ATTLIST>

 XSL

 stylesheet

 value-of

tailMap() (SortedMap)
tailSet() (SortedSet)

tar (tape archive) files, content handler
tasks, creating and executing

Tcl scripting language, data types

Tcl/Tk scripting language
TCP (Transmission Control Protocol)

 client-side connections
 closing one side of connection

 Keepalive option

 NoDelay option

 Socket class, use of
 UPD (User Datagram Protocol) vs.

templates, HTML conversions

templates, XSL

 apply-templates tag

temporary focus change events
term()

terminal input/output

terminating threads

ternary operator

text
 alternate, displayed by browsers unable to run applets

 APIs related to

 combo boxes, displaying in

 displaying in windows with JLabel objects

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 drawing with 2D API
 rendering pipeline

 geometric transformation of 2nd

 Graphics class methods, drawing with

 graphics context for

 internationalization
 Locale class

 resource bundles

 java.text package

 formatting numbers as text

 message formatting
 numerical ranges, mapping to text

 labels, creating and changing

 parsing and formatting

 parsing primitive types

 regular expressions (and pattern matching) [See regular expressions]
 strings of

 bounding box for
 comparing

 converting objects and primitive types to

 editing
 embedding in source code

 parsing into words or tokens
 searching for substrings

 XML and

Text class

text components, Swing GUI
 data model, sharing

 focus

 formatted text

 filtering input

 JFormattedTextField class
 JPasswordField class

 validating data

 HTML and RTF capabilities

 JTextArea and JTextField

 JTextPane class
 TextEntryBox application (example)

 TextLayout class

text encoding

text label, displaying in option dialog

http://lib.ommolketab.ir
http://lib.ommolketab.ir

textures, TexturePaint class
thickness, shape outlines

this reference 2nd 3rd 4th

 inner classes and

 overloaded constructors

this()
thread safety

 collections

 iterators and

 Swing component modification and

 XSLT Transforms
threads 2nd 3rd 4th

 animation, use in

 applets, creating for

 controlling

 creating and starting 2nd
 daemon

 multithreading in Swing
 priority 2nd 3rd

 producer and consumer 2nd 3rd

 Runnable interface
 running code in

 server 2nd
 servlets, single and multiple

 starting

 synchronization 2nd 3rd 4th 5th 6th 7th

 wait() and notify() 2nd 3rd
 synchronized statement

 terminating

 Thread class 2nd

 sleep() 2nd

 Thread class and Runnable interface
 creating and starting threads

 subclassing Thread

 ThreadGroup class

Throwable interface

throwing exceptions 2nd
 chaining exceptions

 overridden methods

 throw statements

 throws clauses 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

tick marks (sliders), major and minor
time [See dates and times]

time slicing, threads

timers

 as invisible beans

 Molecule Bean, connecting to
 sockets, I/O methods

 Timer class

 TimerTask class

timeStep()

title, setting for frames
toByteArray()

toCharArray() (String) 2nd

toFront() and toBack() (JFrame and JWindow)

toggle switches (checkboxes)

toHexString()
token()

tokens, parsing string into
toLowerCase() (String) 2nd

Tomcat server

 SnoopServlet for debugging
toolbars (JToolBar class)

Toolkit class
 images, creating

 prepareImage()

TooManyListenersException

top-level classes
TopLevelWindows class (example)

toString() 2nd

 ByteArrayOutputStream class

 Date class

 Integer and Long classes
 Object class

 String class

 StringBuffer class

 UnicastRemoteObject class

toUpperCase() (String) 2nd
toURL()

 File class

tracing exceptions

tracking user sessions [See session tracking]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Transferable interface
transferFrom() (FileChannel)

transferTo() (FileChannel) 2nd

transformations, geometric 2nd 3rd

 Affine Transformation

 rendering and
Transformer class

transient modifier

translate() (Graphics2D)

transparency

 ARGB (alpha RGB) color model
 drawing with

traversal policy objects, focus

TreeMap class

TreeNode interface

trees
 complete example

 DefaultTreeModel interface 2nd
 events

 selection events, listeners for

 TreeModel interface 2nd
TreeSelectionListener interface

TreeSet class
triangular arrays

trigonometry in Dial component (example)

trim() (String) 2nd

Trojan horses, protection against
truncate() (FileChannel)

trust

 certificate authorities (CAs)

trusted applets

try statements 2nd
try/catch statements 2nd 3rd

 finally clause

 try creep

type state (stack)

types [See data types]
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

[Y] [Z]

UCS (universal character set) 2nd 3rd 4th

http://lib.ommolketab.ir
http://lib.ommolketab.ir

UDP (User Datagram Protocol) 2nd
 datagram sockets

UI-delegate (components)

UIManager class

unchecked exceptions

UnicastRemoteObject class
Unicode

 Charset class

 encapsulation in String objects

 escape sequences for characters 2nd

 UCS encoding
 UTF-8 encoding 2nd 3rd

Uniform Resource Names (URNs) 2nd

Unix

 CLASSPATH environment variable

 grep command
 GUI desktop

 PATH environment variable
UnknownHostException class

UnknownServiceException

unnamed packages
unpacking JAR files

unreachable objects
unreachable statements

UnsupportedOperationException 2nd

untrusted applets

 browser restrictions on
 sharing class loaders

update() 2nd 3rd 4th

 Component vs. JComponent

updateComponentTreeUI() (SwingUtilities)

updating image data
 BufferedImage

 coordinates arrays in animation

updating image displays

 MediaTracker class

updating Swing components, multithreading and
uploading files with HTTP

URIs

 for XML namespaces

URLEncoder class 2nd 3rd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

URLs
 applet resources

 document base and code base

 images

 for audio files

 base URL for HTML documents
 for class files

 constructing to files

 converting file paths to

 cookie deployment, specifying for

 describing codebases 2nd
 encoding data in

 GET method

 formats for

 image files, constructing for

 for movies or audio files
 parsing

 protocol handlers, using
 rewriting 2nd

 URL class

 URLConnection class 2nd 3rd 4th
 URLStreamHandler class

 web application servlets and files
 for XSL stylesheets

URNs (Uniform Resource Names) 2nd

user (signer) certificates

user interfaces [See GUIs Swing GUI toolkit]
user preferences

user session management

user space coordinates, converting to device space

user-level security

user.dir property
userNodeForPackage() (Preferences)

userRoot() (Preferences)

UTF-8 encoding 2nd 3rd

utility classes

 collections
 Collections class 2nd

 Enumerator interface

 Hashtable class

 implementations

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Iterator interface
 List interface

 Set interface

 SortedSet interface

 Vector class

 dates and times
 internationalization

 logging API

 Logger class

 math utilities

 observers and observables
 Preferences API

 properties

 strings

 SwingUtilities class

 timers
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

[Z]

validating

 data in formatted text components
 form data with JavaBeans

 input to methods
 text in JFormattedTextField component

 XML documents 2nd

 DTDs, using

 XML Schema, using
value-of tag (XSL)

valueOf() (String) 2nd

values() (Map)

VARARGS (variable-length argument lists)

VariableGridLayout layout manager
variables 2nd 3rd 4th 5th

 accessing with dot (.) operator

 accessing with reflection

 assigning value to

 class 2nd
 visibility of

 class type

 converting to/from strings

 data types

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 declaring 2nd
 declaring and initializing

 inheritance among classes

 inheritance of 2nd

 instance 2nd 3rd

 declaring
 transient

 instance or member variables

 interface 2nd

 local 2nd

 initializing
 modifiers

 reference types

 shadowing 2nd

 changing data type

 this reference, explicitly referring to instance variables
 static

 static class members
 this references

 type checking

vectors
 Vector class 2nd

verbose mode, jar utility
verifier (Java byte-code) 2nd 3rd

verify()

Verisign certificate authority

vertical boxes, creating
vertical orientation, scrollbars and sliders

vertical scrollbars, display policy

vetoableChange()

video files

 image observers and
 Java support for

 Players for

viewers for applets

 appletviewer program

 creating
viewing Plug-in applets

views (components)

 separation from data models

 viewing data in different ways

http://lib.ommolketab.ir
http://lib.ommolketab.ir

virtual machines
 garbage collection system

 running Java applications

virtual memory

virtual methods (C++) 2nd

viruses, shielding classes from
visibility

 applets

 shortcomings in API

 class variables and methods

 basic access modifiers
 inheritance and

 interfaces and

 subclasses and

 classes 2nd

 frames and windows, setting for
 invisible components in BoxLayout

 Swing components
 windows and frames, setting for

visibility modifiers

 access to class members, controlling
 constructors

 inner classes
 problems with

 static inner classes

 private 2nd

 private and public
 protected

 public, classes in source code files

Visual BASIC, limitations of security features

Visual Cafe development tool (WebGain)

visual design for JavaBeans, limitations of
visual development environments

VisualAge development tool (IBM)

void return type 2nd

vspace attribute (HTML)

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]
[Y] [Z]

wait()

 ClientQueue class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Thread class 2nd
waitForAll() (MediaTracker)

waitforID() (MediaTracker)

wakeup() (Selector)

waking up threads blocked in I/O operations

WAR (Web Application Resources) files
 building with Ant

weak references

WeakHashMap class

Web Application Resources [See WAR files]

web applications 2nd [See also applications]
 communicating with

 GET method, using

 HTTPS, running over SSL

 HttpURLConnection

 POST method, using
 URLs, URNs, and URIs

 Java Servlets API
web browsers [See browsers]

web servers [See servers]

web services
web servlets

Web Start API 2nd
Web, Java and

 applets

 multimedia

 programming for
 URLs

 software development models

web.xml files 2nd

WebNFS Java extension 2nd

weighting (GridBagLayout) 2nd
 padding, interaction with

well-formed documents (XML)

whitespace

 HTML <PARAM> tag, parameter names and values

 regular expression matching
 StringTokenizer class, use of

 trimming from strings 2nd

width

 GridBagConstraints

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 HTML attribute, <APPLET> tag
 images 2nd

windows

 Abstract Window Toolkit [See AWT]

 displaying text with JLabel objects

 focus events, receiving
 host system, interacting with AWT toolkit

 JFrame objects, creating with 2nd 3rd

 JFrame vs. JWindow

 JWindow class

 content panes, using
 setting position on screen

 local system, colors for

 from untrusted applications, flagging

 Window class

 focus
 revalidating subclasses

 within windows, creating
Windows operating systems

 CLASSPATH environment variable

 JAR files, compatibility with ZIP archives
 Java, support for

 look-and-feel of components 2nd
 Video (.avi) Player

Wksh scripting language 2nd

word processors, building with JTextPane

words, parsing strings of text into
workCompleted() (WorkListener)

WorkRequest class

 asyncExecute()

wrap()

wrapper classes
 for streams

 strings

 HttpServletResponseWrapper class

 for primitive types 2nd

 for streams
write()

 BufferedOutputStream

 LargerHttpd class (example) 2nd

 OutputStream class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 PipedOutputStream
writeInt() (DataOutputStream)

writeObject() 2nd

Writer class

writeUTF() (DataOutputStream)

WYSIWYG GUI builder environment
 limitations of

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

[Z]

XHTML, converting XML to
XML

 backing store files

 basics of

 browsers and

 document header and root element
 DOM

 generating XML with
 parsing with

 downloadable handlers and

 JAXP (Java API for XML Parsers)
 namespaces

 parsers
 SAX

 Java object model, building from XML document

 state of

 tags
 text vs. binary

 validating documents 2nd

 XML Schema, using

 web services

 XSL/XSLT 2nd
 browser support for XSL

 XSL stylesheet for XML to HTML transform

XMLDecoder class

XMLEncoder class

XMLFormatter class
xmlns attribute

XMLReader class

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X]

[Y] [Z]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

yield()

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

[Z]

Z-ordering (stacking components)
zero administration client installation

zero values

ZIP compression format 2nd 3rd

 ZipInputStream class

 ZipOutputStream class

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	Learning Java™, 2nd Edition
	Copyright
	Preface
	New Developments
	Audience
	Using This Book
	Online Resources
	Conventions Used in This Book
	How to Contact Us
	Acknowledgments

	Chapter 1. Yet Another Language?
	1.1 Enter Java
	1.2 A Virtual Machine
	1.3 Java Compared with Other Languages
	1.4 Safety of Design
	1.5 Safety of Implementation
	1.6 Application and User-Level Security
	1.7 Java and the Web
	1.8 Java as a General Application Language
	1.9 A Java Road Map

	Chapter 2. A First Application
	2.1 HelloJava
	2.2 HelloJava2: The Sequel
	2.3 HelloJava3: The Button Strikes!
	2.4 HelloJava4: Netscape's Revenge

	Chapter 3. Tools of the Trade
	3.1 The Java Interpreter
	3.2 The Classpath
	3.3 Policy Files
	3.4 The Java Compiler
	3.5 Java Archive (JAR) Files

	Chapter 4. The Java Language
	4.1 Text Encoding
	4.2 Comments
	4.3 Types
	4.4 Statements and Expressions
	4.5 Exceptions
	4.6 Assertions
	4.7 Arrays

	Chapter 5. Objects in Java
	5.1 Classes
	5.2 Methods
	5.3 Object Creation
	5.4 Object Destruction

	Chapter 6. Relationships Among Classes
	6.1 Subclassing and Inheritance
	6.2 Interfaces
	6.3 Packages and Compilation Units
	6.4 Visibility of Variables and Methods
	6.5 Arrays and the Class Hierarchy
	6.6 Inner Classes

	Chapter 7. Working with Objects and Classes
	7.1 The Object Class
	7.2 The Class Class
	7.3 Reflection

	Chapter 8. Threads
	8.1 Introducing Threads
	8.2 Threading an Applet
	8.3 Synchronization
	8.4 Scheduling and Priority
	8.5 Thread Groups
	8.6 Thread Performance

	Chapter 9. Working with Text
	9.1 Other Text-Related APIs
	9.2 Strings
	9.3 Parsing and Formatting Text
	9.4 Internationalization
	9.5 The java.text Package
	9.6 Regular Expressions

	Chapter 10. Core Utilities
	10.1 Math Utilities
	10.2 Dates
	10.3 Timers
	10.4 Collections
	10.5 Properties
	10.6 The Preferences API
	10.7 The Logging API
	10.8 Observers and Observables

	Chapter 11. Input/Output Facilities
	11.1 Streams
	11.2 Files
	11.3 Serialization
	11.4 Data Compression
	11.5 The NIO Package

	Chapter 12. Network Programming
	12.1 Sockets
	12.2 Datagram Sockets
	12.3 Simple Serialized Object Protocols
	12.4 Remote Method Invocation
	12.5 Scaleable I/O with NIO

	Chapter 13. Programming for the Web
	13.1 Uniform Resource Locators (URLs)
	13.2 The URL Class
	13.3 Handlers in Practice

	Chapter 14. Servlets and Web Applications
	14.1 Servlets: Powerful Tools
	14.2 Web Applications
	14.3 The Servlet Life Cycle
	14.4 Web Servlets
	14.5 The HelloClient Servlet
	14.6 The Servlet Response
	14.7 Servlet Parameters
	14.8 The ShowParameters Servlet
	14.9 User Session Management
	14.10 The ServletContext API
	14.11 WAR Files and Deployment
	14.12 Reloading WebApps
	14.13 Error and Index Pages
	14.14 Security and Authentication
	14.15 Servlet Filters
	14.16 Building WAR Files with Ant

	Chapter 15. Swing
	15.1 Components
	15.2 Containers
	15.3 Events
	15.4 Event Summary
	15.5 The AWT Robot!
	15.6 Multithreading in Swing

	Chapter 16. Using Swing Components
	16.1 Buttons and Labels
	16.2 Checkboxes and Radio Buttons
	16.3 Lists and Combo Boxes
	16.4 The Spinner
	16.5 Borders
	16.6 Menus
	16.7 The PopupMenu Class
	16.8 The JScrollPane Class
	16.9 The JSplitPane Class
	16.10 The JTabbedPane Class
	16.11 Scrollbars and Sliders
	16.12 Dialogs

	Chapter 17. More Swing Components
	17.1 Text Components
	17.2 Focus Navigation
	17.3 Trees
	17.4 Tables
	17.5 Desktops
	17.6 Pluggable Look-and-Feel
	17.7 Creating Custom Components

	Chapter 18. Layout Managers
	18.1 FlowLayout
	18.2 GridLayout
	18.3 BorderLayout
	18.4 BoxLayout
	18.5 CardLayout
	18.6 GridBagLayout
	18.7 Nonstandard Layout Managers
	18.8 Absolute Positioning
	18.9 SpringLayout

	Chapter 19. Drawing with the 2D API
	19.1 The Big Picture
	19.2 The Rendering Pipeline
	19.3 A Quick Tour of Java 2D
	19.4 Filling Shapes
	19.5 Stroking Shape Outlines
	19.6 Using Fonts
	19.7 Displaying Images
	19.8 Drawing Techniques
	19.9 Printing

	Chapter 20. Working with Images and Other Media
	20.1 ImageObserver
	20.2 MediaTracker
	20.3 Producing Image Data
	20.4 Filtering Image Data
	20.5 Simple Audio
	20.6 Java Media Framework

	Chapter 21. JavaBeans
	21.1 What's a Bean?
	21.2 The NetBeans IDE
	21.3 Properties and Customizers
	21.4 Event Hookups and Adapters
	21.5 Binding Properties
	21.6 Building Beans
	21.7 Limitations of Visual Design
	21.8 Serialization Versus Code Generation
	21.9 Customizing with BeanInfo
	21.10 Hand-Coding with Beans
	21.11 BeanContext and BeanContextServices
	21.12 The Java Activation Framework
	21.13 Enterprise JavaBeans

	Chapter 22. Applets
	22.1 The Politics of Applets
	22.2 The JApplet Class
	22.3 The <APPLET> Tag
	22.4 Using the Java Plug-in
	22.5 Java Web Start
	22.6 Using Digital Signatures

	Chapter 23. XML
	23.1 A Bit of Background
	23.2 XML Basics
	23.3 SAX
	23.4 DOM
	23.5 Validating Documents
	23.6 XSL/XSLT
	23.7 Web Services

	Appendix A. Content and Protocol Handlers
	A.1. Writing a Content Handler
	A.2. Writing a Protocol Handler

	Appendix B. BeanShell: Simple Java Scripting
	B.1. Running BeanShell
	B.2. Java Statements and Expressions
	B.3. BeanShell Commands
	B.4. Scripted Methods and Objects
	B.5. Changing the Classpath
	B.6. Learning More ...

	Colophon
	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

	Index

