
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Rendering HTML5
Illustration

Matthew David

AMSTERDAM  •  BOSTON  •  HEIDELBERG  •  LONDON  •  NEW YORK  •  OXFORD
PARIS  •  SAN DIEGO  •  SAN FRANCISCO  •  SINGAPORE  •  SYDNEY  •  TOKYO

Focal Press is an imprint of Elsevier

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Focal Press is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
Linacre House, Jordan Hill, Oxford OX2 8DP, UK

© 2010 Elsevier, Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic
or mechanical, including photocopying, recording, or any information storage and retrieval system, without
permission in writing from the publisher. Details on how to seek permission, further information about the
Publisher’s permissions policies and our arrangements with organizations such as the Copyright Clearance Center
and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other
than as may be noted herein).

Notices
Knowledge and best practice in this field are constantly changing. As new research and experience broaden our
understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any
information, methods, compounds, or experiments described herein. In using such information or methods they
should be mindful of their own safety and the safety of others, including parties for whom they have a professional
responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability
for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or
from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

ISBN: 978-0-240-81384-4

For information on all Focal Press publications
visit our website at www.elsevierdirect.com

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Contents
The Tale of Web Image Formats . . 1

Bitmap Images: Using JPEG, GIF, and PNG Images on the Web. 1

Creating SVG Graphics. . 3

The Fundamentals of Creating SVG Images and Adding them to

Your Web Pages. . 5

Leveraging SVG Drawing Tools. . 23

Adding the CANVAS Element to Your Web Page. 23

What You Have Learned. . 36

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1

Tags are used in HTML5 to place and organize content at a level
that is descriptive. This does not mean that the page will look
good. Presentation of content on the page is controlled using
Cascading Style Sheets Level 3, or CSS3, in HTML5.

There are times, however, when you need to present graph-
ics, too. Typically, HTML has only provided support for pixel-
based images in JPEG and GIF image format. With HTML5, you
can now create mathematically generated images. The new
formats are scalable vector graphics (SVG) and CANVAS. The
difference between the two is that SVG is an XML-based lan-
guage that describes how an image should be displayed in two-
dimensional (2D) constructs. The CANVAS tag also describes
2D images, but it does so using JavaScript. The CANVAS tag
also allows you to easily integrate interactivity within it using
JavaScript.

In this article you will learn the following:
•	 The new image formats available in HTML5.
•	 How to draw using SVG.
•	 How to draw with CANVAS.
•	 How to add interactivity to CANVAS using JavaScript.

The goal at the end of this article is that you will understand
how you can use the image formats in HTML5.

The Tale of Web Image Formats
The Web is not a friendly place for a designer. For many years

you have been limited to the number of file formats you can
use. There are two predominant file formats used on the Web for
creating graphics: JPEG and GIF.

Bitmap Images: Using JPEG, GIF, and PNG
Images on the Web

Both JPEG and GIF image formats are raster images created
from pixels of individual color. Both have positives and nega-
tives. JPEG images are an open standard managed by the Joint

Rendering HTML5
Illustration

http://lib.ommolketab.ir
http//lib.ommolketab.ir

2 

Photographers Expert Group. The JPEG file format allows you to
create photorealistic images (Figure 3.1). A great place to go to
view millions of JPEG images is Yahoo’s Flickr. A JPEG image is
identified with the extension of either JPEG or JPG.

The second file format used widely on the Internet is GIF,
graphics interchange format. Unlike JPEG, which support
millions of colors, the GIF file format only allows you to create
images that support a color palette of 256 colors (Figure 3.2).
On the face of it, the GIF format appears to be inferior to the
JPEG format. However, the GIF format does have two features
the JPEG format does not: setting transparency as a color and
sequencing a series of images together to play back as a simple
animation.

Both JPEG and GIF image formats, however, are now being
superseded by a more sophisticated image format: PNG. Portable
network graphics (PNG) are a raster-based file format that gives
the best of both JPEG and GIF and a little more (Figure 3.3). A
PNG image format will support 32-byte images for photorealistic
presentation. Additionally, like GIF images, backgrounds in PNG
images can be set to be transparent.

While PNG, GIF, and JPEG images are all great, it is difficult to
programmatically change the graphical display of the images. For
instance, you cannot create a bar chart using JPEG images that
change as new data come in. HTML5 introduces two solutions
that address this problem: SVG and CANVAS.

The CANVAS HTML5 element allows you to create bitmap
images programmatically using JavaScript as the designer. Through
this technique, complex animations and interactive solutions
can be created. Google has established ChromeExperiments.com
(http://www.chromeexperiments.com/) to demonstrate powerful
CANVAS and JavaScript experiments (Figure 3.4).

The second technology, SVG (scalable vector graphics), is
a vector-based technology that enables you to create images
and animation using XML syntax similar to HTML. SVG started

Figure 3.2  The GIF image is
using a Web-safe color palette
of 256 colors. You can see by the
grainy texture that the image is
not photorealistic.

Figure 3.3  PNG graphics allow
you to have the best of JPEG
and GIF technologies in a single
format.

Figure 3.1  This image is in JPEG
format. The right side shows the
pixel-by-pixel construction of the
image.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

	  3

as an Open Standard in 1999. The support for SVG started out
patchy, but, with the release of FireFox, that all changed. FireFox
1.5 introduced support for SVG, with other competing browsers
such as Chrome and Safari rapidly adopting the standard
through support of the WebKit Web Browser project. SVG as an
alternative vector graphics technology is being widely adopted.
As an example, Wikipedia.org has over 250,000 SVG images on
its site.

Creating SVG Graphics
If you are comfortable working with HTML code

then you will feel comfortable working with SVG. SVG
is an XML-based drawing language that allows you to
describe your drawing using standard XML elements.
For instance, the following code is describing how to
create a star shape. Figure 3.5 shows the resulting SVG
drawing.

<?xml version=”1.0” standalone=”yes”?>

<svg version=”1.1”

viewBox=”0.0 0.0 720.0 540.0”

fill=”none” stroke=”none”

Figure 3.4  ChromeExperiments.com showcases how far you can take technologies such as SVG and
CANVAS.

Figure 3.5  A star drawn using
SVG XML syntax.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4 

stroke-linecap=”square”

stroke-miterlimit=”10”

xmlns=”http://www.w3.org/2000/svg”

xmlns:xlink=”http://www.w3.org/1999/xlink”>

<path

d=”M240 148L298 148L316 96L334 148L392 148L345
180L363 232L316 200L269 232L287 180Z”

fill-rule=”nonzero”

fill=”#ff9900”

stroke=”#ff0000”

stroke-width=”2.0”

stroke-linejoin=”round”

stroke-linecap=”butt”>

</path></svg>

If you want to change the fill color inside of the star, you only
need to change the value of the fill property to a new color. Say
you would prefer a red star; simply change the fill value to red, as
follows:

fill=red

Figure 3.6 shows that the star is now red.
Allowing the browser to control the color, shape, and visual

elements of the SVG image allows you to write programs that
dynamically control the SVG illustrations.

SVG comes with some fundamental benefits:
•	 Images scale easily.
•	 SVG is accessible.
•	 Search engines can easily read and understand SVG

images.
These benefits make using SVG very compelling.

Figure 3.6  Any element used to build an SVG drawing can be easily edited.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

	  5

The Fundamentals of Creating SVG
Images and Adding Them to Your Web Pages

Unlike traditional drawing, SVG can be “drawn” all in code. You
can use your favorite text editor to create any type of SVG illus-
tration. The easiest way to manage SVG drawings is to save each
illustration to a text file with the extension SVG. You can then
treat your SVG drawings as if they are image files like JPEG or
PNG files.

All SVG files will start with a line declaring the document is an
XML file. The following line should be placed at the start of all
your SVG documents:

<?xml version=”1.0” standalone=”yes”?>

Following the XML declaration is some information explaining
the SVG document. The first line specifies which version of SVG
you are using. The most commonly adopted version is 1.1:

<svg version=”1.1”

The viewBox property identifies the size of the canvas you are
working with. The viewBox is constructed of four properties that
identify the X and Y coordinates of the viewBox and width and
height.

viewBox=”0.0 0.0 300.0 800.0”

You can specify drawing attributes that should be used for
all objects in the image in the opening SVG properties. Here all
objects in the illustration will, by default, have no fill or stroke,
and a square line will be used to draw images with a stroke miter
of 5.

fill=”none”

stroke=”none”

stroke-linecap=”square”

stroke-miterlimit=”5”

The final two attributes provide links to the SVG namespace
standard.

xmlns=”http://www.w3.org/2000/svg”

xmlns:xlink=”http://www.w3.org/1999/xlink”>

Drawing is managed through a number of elements, with
PATH being the main one. The role of the PATH element is to
draw out the specific coordinates of an image point by point. In
the following example, a single line is drawn.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6 

<path d=”M8 16L776 0” fill-rule=”nonzero”
stroke=”blue” stroke-width=”5” stroke-
linejoin=”round” stroke-linecap=”butt”>

</path>

</svg>

A closing SVG element completes your code. Your drawing can
now be saved and added to a web page.

When you have completed an SVG drawing there are several
ways in which you can add SVG images to your web page. Unlike
JPEG, GIF, and PNG files, you cannot use the IMG element to add
an SVG drawing to your web page. You do, however, have three
alternative methods.

The first is to use the OBJECT element:

<object data=”star.svg” width=”300” height=”800”/>

The OBJECT tag has several attributes. The most important is
the data attribute that references the location of the SVG file.
The width and height attributes define the space used on the
screen for the SVG drawing.

A second method you can use to add SVG images to your web
page is through the use of the IFRAME element. Typically, you use
the IFRAME element to load an external web page, but you can also
load an SVG image directly into your web page. Here is an example:

<iframe src=”star.svg” width=”300” height=”800”></
iframe>

These two methods for embedding SVG images into your
web page are relatively easy to use and are not much more
complicated to use than the IMG element.

The third method of adding SVG images to a web page is to
insert the SVG XML directly into the HTML code itself. The fol-
lowing code is HTML saved as a web page. There is no need to
use separate SVG files in this example.

<html>
<head>
<title>SVG embedded inline in XHTML</title>

</head>
<body>
<h1>SVG embedded inline in XHTML</h1>
<svg xmlns=”http://www.w3.org/2000/svg”

width=”300” height=”800”>
<path
d=”M240 148L298 148L316 96L334 148L392 148L345
180L363 232L316 200L269 232L287 180Z”
fill-rule=”nonzero”

http://lib.ommolketab.ir
http//lib.ommolketab.ir

	  7

fill=”#ff9900”
stroke=”#ff0000”
stroke-width=”2.0”
stroke-linejoin=”round”
stroke-linecap=”butt”>
</path> </svg>
</body>

</html>

Adding the SVG coded directly to a web page only requires that
you use SVG element tags inside of your HTML.

At the end of the day, it is really up to you as to how you want
to add SVG images to your web pages.

Understanding the Basics of Creating Shapes
As with HTML, SVG is built of elements. The difference

between SVG and HTML is that the elements in SVG are used to
construct images. The main elements you will use in building
your drawings are:

•	 Line—for defining lines
•	 Polyline—for defining shapes constructed of lines
•	 Rect—for defining rectangles
•	 Circle—for defining circles
•	 Ellipse—for defining ellipses
•	 Polygon—for defining polygons
•	 Path—for defining arbitrary paths

The most basic drawing element for SVG is a line. To define a
straight line you need to declare where in the viewBox property
the line starts on the X and Y axes and where the line ends on the
X and Y axes. This is referred to as X1, Y1 and X2, Y2. Here is an
example of a straight line.

<?xml version=”1.0” standalone=”no”?>

   <!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.1//EN”

   “http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd”>

   <svg width=”100%” height=”100%” version=”1.1”

   xmlns=”http://www.w3.org/2000/svg”>

   <line x1=”25” y1=”150” x2=”300” y2=”150”

   style=”stroke:red;stroke-width:10”/>

In this example the line starts 25 pixels in from the left side of
the browser window, the line is 300 pixels long, and the line is
horizontal along the Y axis. Figure 3.7 is how it looks in your web
browser with additional CSS styling to emphasize the line.

Figure 3.7  A line is drawn in SVG using the LINE element.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8 

You can easily modify the settings for the X and Y axes to
change the position of your line. In the following SVG code, the
line is changed to run vertically.

<?xml version=”1.0” standalone=”no”?>

<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.1//EN”

“http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd”>

<svg width=”100%” height=”100%” version=”1.1”

xmlns=”http://www.w3.org/2000/svg”>

<line x1=”300” y1=”310” x2=”300” y2=”10”

style=”stroke:red;stroke-width:10”/>

</svg>

Figure 3.8 shows the results and how the line is displayed.
The POLYLINE element extends the functionality of the

LINE element to enable you to build drawings created with
lines. The construction is created through valued pairs of X and
Y coordinates using POLYLINE’s point attribute. Here is an
example of creating a square shape using the POLYLINE element.

<?xml version=”1.0” standalone=”no”?>

<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.1//EN”

“http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd”>

<svg width=”100%” height=”100%” version=”1.1”

xmlns=”http://www.w3.org/2000/svg”>

<polyline points=”5,5 5,150 150,150 150,5 5,5”

style=”fill:white;stroke:red;stroke-width:2”/>

</svg>

Figure 3.8  Changing the XML element values changes the display of the line.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

	  9

Figure 3.9 shows the final drawing.
You can create more complex shapes with the POLYLINE ele-

ment. In this example a set of stairs is created. All you have to
remember is that the first value in the value pair is the X axis
and the second value is the Y axis. Figure 3.10 shows the results.

<?xml version=”1.0” standalone=”no”?>

<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.1//EN”

“http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd”>

<svg width=”100%” height=”100%” version=”1.1”

xmlns=”http://www.w3.org/2000/svg”>

<polyline points=”5,0 5,40 40,40 40,80 80,80 80,120”

style=”fill:white;stroke:red;stroke-width:2”/>

</svg>

Figure 3.9  The POLYLINE element can be used to draw images with straight lines. In this
case a square is drawn.

Figure 3.10  A drawing created of straight lines can be created using the POLYLINE element.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

10 

Rectangle shapes can be created in SVG using the RECT
element. The RECT element has two attributes, width and
height. The following SVG adds a rectangle of width 400 pixels
and height 400 pixels. Additional styling using CSS has been
added to the drawing so you can see it. The results are shown in
Figure 3.11.

<?xml version=”1.0” standalone=”no”?>

<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.1//EN”

“http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd”>

<svg width=”100%” height=”100%” version=”1.1”

xmlns=”http://www.w3.org/2000/svg”>

<rect width=”400” height=”400”

style=”fill:red;stroke-width:5;

stroke:yellow”/>

</svg>

Creating circles is similar to creating rectangles in SVG. The
difference is you use the CIRCLE element. At its most basic, the
CIRCLE element only requires that you define the radius of the
circle using an R attribute. The following SVG code draws a circle
with a radius of 150 pixels.

Figure 3.11  The RECT element allows you to easily create rectangle shapes such as this
square.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

	  11

<?xml version=”1.0” standalone=”no”?>

<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.1//EN”

“http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd”>

<svg width=”100%” height=”100%” version=”1.1”

xmlns=”http://www.w3.org/2000/svg”>

<circle r=”150” stroke=”yellow”

stroke-width=”5” fill=”red”/>

</svg>

Figure 3.12 shows the results of the CIRCLE element in more
detail.

As you can see in the figure, defining only the radius forces
most of the circle to drop off the top-left corner of the browser
window. To correct this you can use two additional, optional attri-
butes, CX and CY, to define the X and Y axes positions of the circle
on the screen.

<?xml version=”1.0” standalone=”no”?>

<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.1//EN”

“http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd”>

<svg width=”100%” height=”100%” version=”1.1”

xmlns=”http://www.w3.org/2000/svg”>

<circle cx=”160” cy=”160” r=”150” stroke=”yellow”

stroke-width=”5” fill=”red”/>

</svg>

Figure 3.13 shows the use of these attributes.

Figure 3.12  The CIRCLE element allows you to draw circles on the screen.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

12 

The ELLIPSE element extends the functionality of the CIRCLE
element by allowing you to control radius along the X and Y axes
using the RX and RY attributes. You will see in the following code
that the ELLIPSE element also leverages the CIRCLE element’s
CX and CY attributes to position the ellipse in the web browser.
Figure 3.14 shows the results

<?xml version=”1.0” standalone=”no”?>

<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.1//EN”

“http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd”>

<svg width=”100%” height=”100%” version=”1.1”

xmlns=”http://www.w3.org/2000/svg”>

<ellipse cx=”300” cy=”150” rx=”250” ry=”120”

Figure 3.13  Using the CX and CY attributes enables you to control where on the screen
the CIRCLE element is placed.

Figure 3.14  An ellipse can be created using the ELLIPSE element.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

	  13

style=”fill:yellow;

stroke:red;stroke-width:5”/>

</svg>

A POLYGON shape is similar to the POLYLINE element. Using
X and Y value pairs you can draw whole polygon shapes. The fol-
lowing is an example of a triangle. Figure 3.15 shows the results.

<?xml version=”1.0” standalone=”no”?>

<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.1//EN”

“http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd”>

<svg width=”100%” height=”100%” version=”1.1”

xmlns=”http://www.w3.org/2000/svg”>

<polygon points=”220,100 290,220 150,220”

style=”fill:yellow;

stroke:red;stroke-width:5”/>

</svg>

The most complex drawing element you will create using SVG
is the PATH element. Each drawing you create with the PATH ele-
ment is built using a series of special codes that explain where the
line is supposed to move to on the screen. Those codes are:

•	 M = move to
•	 L = line to
•	 H = horizontal line to
•	 V = vertical line to
•	 C = curve to
•	 S = smooth curve to
•	 Q = quadratic Belzier curve to
•	 T = smooth quadratic Belzier curve to
•	 A = elliptical arc to
•	 Z = close path to

The following code creates a smiley face illustration using the
PATH element and the codes above to create the drawing. Figure
3.16 shows the results from the code.

<?xml version=”1.0” standalone=”yes”?>

<svg version=”1.1” viewBox=”0.0 0.0 1152.0 864.0”
fill=”none” stroke=”none” stroke-linecap=”square”
stroke-miterlimit=”10” xmlns=”http://www.
w3.org/2000/svg” xmlns:xlink=”http://www.
w3.org/1999/xlink”>

<path d=”M56 108L56 108C56 66 92 32 136 32C180
32 216 66 216 108C216 150 180 184 136 184C92
184 56 150 56 108Z” fill-rule=”nonzero”
fill=”#ffff00”></path>

Figure 3.15  A triangle is created
using the POLYGON element.

Figure 3.16  The POLYLINE element
allows you to create complex
images such as this smiley face.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

14 

<path d=”M102 85C102 81 106 77 110 77C115 77
119 81 119 85C119 90 115 93 110 93C106 93 102
90 102 85M153 85C153 81 157 77 162 77C166 77
170 81 170 85C170 90 166 93 162 93C157 93 153
90 153 85” fill-rule=”nonzero” fill=”#cccc00”
stroke=”#ff0000” stroke-width=”2.0” stroke-
linejoin=”round” stroke-linecap=”butt”></path>

<path d=”M93 141Q136 169 179 141” fill-rule=
”nonzero” stroke=”#ff0000” stroke-width=”2.0”
stroke-linejoin=”round” stroke-linecap=
”butt”></path>

<path d=”M56 108L56 108C56 66 92 32 136 32C180 32
216 66 216 108C216 150 180 184 136 184C92 184 56
150 56 108Z” fill-rule=”nonzero” stroke=”#ff0000”
stroke-width=”2.0” stroke-linejoin=”round”
stroke-linecap=”butt”></path>

</svg>

As you can see, it is quite complex to create PATH-defined
illustrations. For this reason, it is recommended that you use an
SVG drawing tool to create PATH-based illustrations (more on
that later).

Adding CSS-Based Color
SVG is a technology that allows you to create drawings. To add

color to those drawings, however, you leverage Cascading Style
Sheets. There is no need to use a different technology for apply-
ing color, as CSS and SVG are partners in HTML5. Both have
strengths that can be enhanced with each other.

To provide an example, let’s look back at the ellipse drawing
created earlier (see Figure 3.14).

<?xml version=”1.0” standalone=”no”?>

<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.1//EN”

“http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd”>

<svg width=”100%” height=”100%” version=”1.1”

xmlns=”http://www.w3.org/2000/svg”>

<ellipse cx=”300” cy=”150” rx=”250” ry=”120”

style=”fill:yellow;

stroke:red;stroke-width:5”/>

</svg>

After the ellipse image is drawn there is a style attribute. The
style attribute in SVG allows you to add a CSS style to the image. In
HTML you have a style attribute that behaves exactly the same.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

	  15

Modifying the style attribute will visually change the pre-
sentation of the ellipse. The following example changes the fill to
blue and the stroke color to gray. Figure 3.17 shows the results.

<?xml version=”1.0” standalone=”no”?>

<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.1//EN”

“http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd”>

<svg width=”100%” height=”100%” version=”1.1”

xmlns=”http://www.w3.org/2000/svg”>

<ellipse cx=”300” cy=”150” rx=”250” ry=”120”

style=”fill:blue;

stroke:gray;stroke-width:5”/>

</svg>

Both the Fill and Stroke properties control the color of the
inside of an image. In this example a CSS color name is used,
but you can use any of the color formats you use to control CSS,
including the following:

•	 Color name—you can have names for colors such as
brown, black, red, or cyan.

•	 Full hexadecimal—a hexadecimal value comprised of six
alpha-numeric values.

•	 Short hexadecimal—a hexadecimal value comprised of
three alpha-numeric values.

•	 RGB—a combination of red, green, and blue values.
•	 RGBA—a combination of red, green, and blue values with

a transparency value (alpha).
•	 HSL—a combination of hue, saturation, and lightness.
•	 HSLA—a combination of hue, saturation, and lightness

with a transparency value (alpha).
In addition to using CSS colors you can use any of the follow-

ing measurements:
•	 cm—centimeter
•	 in. —inch
•	 mm—millimeter
•	 pc—pica (1 pica = 12 points)
•	 pt—point (1 point = 1/72 inch)
•	 px—pixels

Through leveraging CSS you can change the stroke of the
ellipse using short hexadecimal and the measurement in CM.

<?xml version=”1.0” standalone=”no”?>

<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.1//EN”

“http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd”>

<svg width=”100%” height=”100%” version=”1.1”

Figure 3.17  CSS is used to set
the visual appearance of an SVG
drawing.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

16 

xmlns=”http://www.w3.org/2000/svg”>

<ellipse cx=”300” cy=”150” rx=”250” ry=”120”

style=”fill:blue;

stroke:#999;stroke-width:1cm”/>

</svg>

Figure 3.18 shows how CSS colors and measurements can be
used.

To add a linear of radial gradient to an SVG drawing you need
to use specific SVG gradient elements.

Applying Gradients to SVG Images
SVG employs a great technique that allows you to reuse a gradi-

ent definition over one or more images in your SVG illustration. This
is done using either the LINEARGRADIENT or RADIALGRADIENT
element types. Both gradients allow you to define the horizontal
and vertical colors and direction of the gradient.

Let’s look first at linear gradients. The LINEARGRADIENT ele-
ment is constructed by five different attributes that define over a
linear direction how the gradient will behave. The first attribute
you need to provide information for is the ID attribute, which
allows you to give your gradient a name you can use to reference
from your drawing.

For a linear gradient you can draw your gradient moving over
an X–Y axis direction. To determine the direction of the gradient
you have to specify the start and end X and start and end Y axes
points. The following illustrates a left–right gradient:

<linearGradient x1=”0%” y1=”0%” x2=”100%” y2=”0%”>

To create a vertical gradient you change the Y and X axes to:

<linearGradient x1=”0%” y1=”100%” x2=”0%” y2=”0%”>

You can see the difference between the two numbers is changing
the X or Y axis to 100%. See Figure 3.19.

Changing the X and Y axes percentages will change how the
gradient is drawn. Adding color to the gradient is the next step.
To do this, you create a list of two or more colors using the STOP
element. For instance, to create a simple yellow-to-red gradient
color change you will add two STOP elements as shown in the
following.

<stop offset=”0%” style=”stop-color:yellow;stop-
opacity:1”/>

<stop offset=”100%” style=”stop-color:red;stop-
opacity:1”/>

Figure 3.18  Standard CSS colors
and measurements can be used
to control the presentation of a
drawing.

Figure 3.19  Linear gradients can
be applied in SVG images using
the LINEARGRADIENT element.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

	  17

The offset attribute dictates where in the drawing the gra-
dient starts. The example above draws a smooth gradient color
change over the space of the image. The style attribute allows
you to list any CSS-specific color. You can add the two colors to
the LINEARGRADIENT in the following example.

<?xml version=”1.0” standalone=”no”?>

<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.1//EN”

“http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd”>

<svg width=”100%” height=”100%” version=”1.1”

xmlns=”http://www.w3.org/2000/svg”>

<defs>

<linearGradient id=”yellow_red” x1=”0%” y1=”100%”
x2=”0%” y2=”0%”>

<stop offset=”0%” style=”stop-color:yellow;stop-
opacity:1”/>

<stop offset=”100%” style=”stop-color:red;stop-
opacity:1”/>

</linearGradient>

</defs>

<rect width=”400” height=”400”

style=”fill:url(#yellow_red);

stroke:yellow”/>

</svg>

You can see that the rectangle image uses a URL string to find
the style called #yellow_red. The yellow_red color style is the
name of the gradient. See Figure 3.20.

Radial gradients are similar to linear gradients. The differ-
ence is that you define essentially two circles—an outer and
inner circle—with the radial gradient. As with linear gradients,
the RADIALGRADIENT element requires a valid ID name to
identify the gradient. Following that, you have five attributes
to define the inner and outer circle and radius. Following is an
example where the CX and CY attributes are the outer circle,
the R is the radius, and the FX and FY attributes are the inner
circle.

<radialGradient id=”yellow_red” cx=”50%” cy=”50%”
r=”50%”

fx=”50%” fy=”50%”>

The colors for the gradient are defined using a STOP list. The
following code shows the radial gradient applied to a rectangle.

Figure 3.20  Linear gradients
can be drawn horizontally.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

18 

<?xml version=”1.0” standalone=”no”?>

<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.1//EN”

“http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd”>

<svg width=”100%” height=”100%” version=”1.1”

xmlns=”http://www.w3.org/2000/svg”>

<defs>

<radialGradient id=”yellow_red” cx=”50%” cy=”50%”
r=”50%”

fx=”50%” fy=”50%”>

<stop offset=”0%” style=”stop-color:yellow;stop-
opacity:1”/>

<stop offset=”100%” style=”stop-color:red;stop-
opacity:1”/>

</radialGradient>

</defs>

<rect width=”400” height=”400”

style=”fill:url(#yellow_red);

stroke:yellow”/>

</svg>

Figure 3.21 shows the results.
Both the linear and radial gradients can have more than two

colors. The following code (see Figure 3.22) has four colors.

<stop offset=”0%” style=”stop-color:yellow;stop-
opacity:1”/>

<stop offset=”25%” style=”stop-color:red;stop-
opacity:1”/>

<stop offset=”50%” style=”stop-color:blue;stop-
opacity:1”/>

<stop offset=”100%” style=”stop-color:black;stop-
opacity:1”/>

In addition, you can link multiple images to a single gradient.
The following SVG code links a circle and rectangle to the same
gradient.

<?xml version=”1.0” standalone=”no”?>

<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.1//EN”

“http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd”>

<svg width=”100%” height=”100%” version=”1.1”

xmlns=”http://www.w3.org/2000/svg”>

Figure 3.21  A radial gradient
applied to a rectangle shape.

Figure 3.22  Multiple colors can
be created to change the gradient.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

	  19

<defs>

<radialGradient id=”yellow_red” cx=”50%” cy=”50%”
r=”50%” fx=”50%” fy=”50%”>

<stop offset=”0%” style=”stop-color:yellow;stop-
opacity:1”/>

<stop offset=”25%” style=”stop-color:red;stop-
opacity:1”/>

<stop offset=”50%” style=”stop-color:blue;stop-
opacity:1”/>

<stop offset=”100%” style=”stop-color:black;stop-
opacity:1”/>

</radialGradient>

</defs>

<rect width=”500” height=”250”

style=”fill:url(#yellow_red);

stroke:yellow”/>

<circle cx=”250” cy=”250” r=”180” stroke=”black”

stroke-width=”2” fill=”url(#yellow_red)” />

</svg>

The results are shown in Figure 3.23.

Adding Text to Your SVG Drawings
Text can be added to your SVG drawings using the TEXT

element. At its most basic, all you need to do is add the TEXT ele-
ment to your SVG document, as shown in the following code and
Figure 3.24.

<svg xmlns=”http://www.w3.org/2000/svg”

    xmlns:xlink=”http://www.w3.org/1999/xlink”>

    <text x=”100” y=”40”>It was the best of times</
text>

</svg>

The X and Y attributes specify where on the screen the text
will appear. Formatting of the text is controlled using CSS in
the style attribute. Text can have the following styles applied
to it:

Figure 3.23  Gradient color
definitions can be shared among
shapes.

Figure 3.24  Text can be easily inserted into an SVG drawing use the TEXT element.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

20 

•	 Font-family—the name of the font
•	 Font-size—the size of the font
•	 Kerning—the space between letters
•	 Stroke—the outside color of a font
•	 Fill—the inside color of a font

Following is an example SVG code showing text formatting.

<svg xmlns=”http://www.w3.org/2000/svg”
xmlns:xlink=”http://www.w3.org/1999/xlink”>
<text x=”100” y=”40”

style=”font-family: Arial;
font-size	 : 24pt;
stroke	 : red;
fill	 : yellow;
kerning	 : 3; ”

>It was the best of times</text>
</svg>

Figure 3.25 shows the results of the code.

Text is treated as simply another image type in SVG. This allows
you to add some additional visual effects. As an example, you can
use a gradient as the FILL style for your text. The following SVG
code exaggerates the size of the text to show a gradient fill (see
Figure 3.26).

<svg xmlns=”http://www.w3.org/2000/svg”
xmlns:xlink=”http://www.w3.org/1999/xlink”>

<radialGradient id=”yellow_red” cx=”50%” cy=”50%”
r=”50%” fx=”50%” fy=”50%”>
<stop offset=”0%” style=”stop-color:yellow;stop-
opacity:1”/>
<stop offset=”25%” style=”stop-color:red;stop-
opacity:1”/>
<stop offset=”50%” style=”stop-color:blue;stop-
opacity:1”/>
<stop offset=”100%” style=”stop-color:black;stop-
opacity:1”/>
</radialGradient>

Figure 3.25  Formatted SVG text.

Figure 3.26  Both linear and radial gradients can be used to style text.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

	  21

<text x=”100” y=”140”
style=”font-family: Arial;

font-size	 : 96pt;
stroke	 : red;
fill	 : url(#yellow_red);
”

>It was the best</text>
</svg>

SVG supports a method where you can embed a font into the
document. Embedding a font in SVG is, however, tricky. The chal-
lenge is that to embed a font you must specify the exact shape of
each font glyph you use. A glyph is a shape matched to a key on
your keyboard. Figure 3.27 is a glyph of the letter “A.”

SVG’s GLYPH element draws the outline of the font and ties it
to a character. This can get complex very quickly. The following is
an example of what you will need to duplicate just the letter “a” as
a reusable glyph in SVG.

<glyph unicode=”a” glyph-name=”a” horiz-adv-x=”577”
d=”M595 -324H-36V898H595V-324ZM117 27Q123 25 130
20T146 29Q154 41 159 59T166 86Q169 96 167 103T172
113Q181 115 185 106T202 97Q213 97 227 102T273
108Q306 108 320 105T347 109Q359 115 370 123T387

127Q388 126 393 118T403 101T412 82T417 67Q420 57
426 41T451 23Q471 19 477 25T486 47Q491 60 478
71T460 96Q457 102 448 126T426 178T404 235T387
279Q382 296 372 321T351 371T332 416T321 443Q318
448 317 460T313 485T307 510T297 528Q291 533 284
528T271

516T261 500T254 485Q253 473 257 464T261 448Q261
442 255 434T245 414Q241 405 240 397T238 381Q238
373 220 338T189 265Q177 230 176 217T172 194Q171
186 166 169T151 138Q147 128 138 112T120 78T110
44T117 27ZM366 235Q375 218 377 201T376 169Q375 163

368 162T351 163T329 168T310 171Q280 171 269
176Q265 180 256 176T228 165Q208 158 201 159T187
164Q183 165 186 172T195 189T207 208T215 228Q217
237 224 257T240 299T255 337T261 355Q261 359 256
362T245 369Q242 370 249 377T262 392Q269 402 271
408T282

411Q286 409 298 385T324 330T351 271T366 235ZM243
222L250 238Q254 246 257 253T261 264Q267 272 268
284Q269 292 272 302Q267 298 262 285T253 256Q247
238 243 222ZM294 186Q292 193 288 201T277 207Q272
205 265 205H257L294 186ZM201 78L340 83Q328 86 306

Figure 3.27  A glyph of the
letter “A.”

http://lib.ommolketab.ir
http//lib.ommolketab.ir

22 

86T260 83Q231 82 201 78ZM194 70Q190 60 188 53Q181
36 176 30Q172 27 169 25T165 18Q162 15 162 12Q175
23 181 31Q196 52 194 70ZM491 126Q494 122 489
136T475 174T452 232T424 303Q390 388 344 496Q383
394 414 314Q429 278 442 245T465 187T481 144T491
126Z”/>

To use a full alphabet you will need to create the lowercase and
uppercase for each character on the keyboard. Your files for a
simple font will get very large very quickly.

Adding Interactivity and Javascript to Your
SVG Drawings

You can use JavaScript to add interactivity to your SVG
illustrations. You do this using the SCRIPT element in your SVG
document. The following example adds a JavaScript that changes
the color of a rectangle shape each time you click on it.

<?xml version=”1.0” encoding=”UTF-8”
standalone=”no”?>

<!DOCTYPE svg PUBLIC “-//W3C//DTD SVG 1.0//EN”

“http://www.w3.org/TR/2001/REC-SVG-20010904/DTD/
svg10.dtd”>

<svg xmlns=”http://www.w3.org/2000/svg”
xmlns:xlink=”http://www.w3.org/1999/xlink”
width=”800” height=”800”>
<script type=”text/ecmascript”>
<![CDATA[
function randomColor(evt) {
var red = Math.round(Math.random() * 255);
var green = Math.round(Math.random() * 255);
var blue = Math.round(Math.random() * 255);
evt.target.setAttributeNS(null,”fill”,”rgb(“+

red +”,”+ green+”,”+blue+”)”);
}

]]>
</script>
<rect id=”myBlueRect” width=”600” height=”600”

x=”40” y=”20” fill=”orange” onClick=”randomColor
(evt)”/>
</svg>

You can see that the JavaScript is wrapped in a CDATA
element. This allows the script to be correctly interpreted by the
JavaScript engine running in the web browser. The onClick
event attribute links the name of the JavaScript function with the
rectangle.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

	  23

Through using JavaScript you can do a lot with SVG. Some
great sites that push the interactive limits of JavaScript and SVG
integration are:

•	 http://raphaeljs.com/
•	 http://svgkit.sourceforge.net/
•	 http://www.liquidx.net/plotkit/
•	 http://www.lutanho.net/svgvml3d/index.html
•	 http://code.google.com/p/svgweb/

Each of these sites gives you libraries of JavaScript code that allow
you to complete complex, interactive SVG presentations.

Leveraging SVG Drawing Tools
If you have gotten this far then you have realized that drawing

with SVG is complex. There are, unfortunately, very few illustra-
tion tools you can use to create SVG drawings. Fortunately, the
few tools that are on the market just happen to be very good.

Adobe’s Illustrator has supported, since CSS2, the ability to
export any illustration in SVG format. This is great news, as you
can take complex drawings and import them directly to SVG.

While Illustrator will export to SVG, the Open Source project
InkSpace will save and edit SVG files directly. InkSpace is not as
easy to use as Illustrator, but it is free, and it is certainly easier to
create SVG illustrations with InkSpace than by scratch.

Sketsa is a Java-based SVG drawing tool. The tool itself is quite
basic, but, again, it is better than nothing.

Finally, if you use Google’s Docs to create documents online
then you will be interested to know that the “Insert Image” fea-
ture uses SVG to create the images. Additionally, if you use a text,
then Google uses the complex Glyph editor to embed the fonts
for you.

The good news is that there are tools you can use to create
SVG illustrations. The bad news is that there are few tools you
can use to visually apply interactivity to your SVG drawings. With
SVG becoming more popular for sites such as Google Maps and
Wikipedia and now as a first-class citizen in HTML5, we should
expect SVG authoring tools to become more common.

Adding the CANVAS Element to Your
Web Page

There is a royal battle happening in the Web-o-sphere between
technologies that enable you to create cool, interactive anima-
tions online. The current “king” is Adobe’s Flash, with Microsoft’s
SilverLight coming in guns blazing. The “black horse” contender
is the emerging HTML5 standard. Baked into HTML5 is a new

http://lib.ommolketab.ir
http//lib.ommolketab.ir

24 

element called CANVAS. Not sure what CANVAS is? Do you own
a Mac? Most of the widgets you run on your dashboard are built
with HTML5’s CANVAS element.

The CANVAS element gives you the ability to build Adobe
Flash–like applications without having to use Flash. It is in the
early stages of development, but some of the things you can
already accomplish are very impressive. If you are running
Google’s Chrome, FireFox, or Safari, then you will want to check
out http://www.chromeexperiments.com/, a site that pushes the
capabilities of what can be done in your browser (Figure 3.28). In
particular, look at the CANVAS experiments. Is it me, or do they
look very Flash-like?

In many ways, CANVAS looks and feels very similar to SVG. The
very valid question is: Why two technologies that are the same?
There is a fundamental difference between CANVAS and SVG.
SVG is a drawing technology that creates vector images. CANVAS,
on the other hand, dynamically creates bitmap images. You
can think of CANVAS as a programmable version of JPEG/PNG
images.

Unlike SVG, a technology that has been maturing for a decade
as a separate standard and only recently became included as part
of HTML5, CANVAS was created as part of HTML5. The CANVAS
technology was originally created by Apple to help in the cre-
ation of desktop widgets for the Mac OSX operating system. The
technology was quickly included into WebKit, the technology
Apple leverages to power its Safari web browser, and CANVAS has
been adopted by Mozilla’s FireFox, Opera’s Browser, and Google’s
Chrome. CANVAS is a powerful drawing tool that aligns with
competing technologies such as Adobe’s Flash and Microsoft’s
SilverLight.

Figure 3.28  Google’s ChromeExperiments.com web site showcases some of the best
CANVAS solutions on the Web.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

	  25

The only browser that currently does not support CANVAS is
Microsoft’s Internet Explorer. You can, however, add CANVAS sup-
port to Internet Explorer through a plug-in called ExplorerCanvas,
which can be downloaded at http://excanvas.sourceforge.net/.

At the end of the end day, SVG is a good solution, whereas
CANVAS is an exciting emerging solution. A lot of technology
from Google, Apple, Opera, and Mozilla is being invested into
expanding the functionality of CANVAS.

Starting with the Basics
There are two parts you need to create a visual element using

CANVAS. The first is the CANVAS element itself used in your
HTML. In many ways, the CANVAS element is very much the
same as any other element used in HTML. Here is an example:

<canvas id=”myCanvas” width=”640” height=”480”>
</canvas>

The tag uses the new HTML5 element CANVAS as the open-
ing and closing tag. The width and height attributes specify the
size of the CANVAS space on the screen. It is the ID that is impor-
tant. Here the ID is named “myCanvas”.

Using JavaScript, you can now program the illustration that will
appear in the CANVAS tag. The following example creates a black,
outlined square that appears in your web page using JavaScript
and Canvas.

<html>
<head>
<title>Basic Canvas Drawing</title>
<script type=”text/javascript”>
function draw(){
var canvas = document.getElementById

(‘myCanvas’);
if (canvas.getContext){

var ctx = canvas.getContext(‘2d’);
}

}
</script>
<style type=”text/css”>

canvas { border: 1px solid black; }
</style>

</head>
<body onload=”draw();”>

<canvas id=”myCanvas” width=”150”
height=”150”></canvas>

</body>
</html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

26 

Figure 3.29 shows the end result.
Stepping through the code you will see that the CANVAS ele-

ment has not changed. What is modified is how the object in the
CANVAS element is presented. Using JavaScript, you start a new
function named “draw.” The draw function is constructed of a
variable called “myCanvas”. The “myCanvas” variable declares
that the CANVAS element is a 2D object. The distinction of 2D is
important, as it is expected that a three-dimensional (3D) defini-
tion will be added to the CANVAS element as part of the WebGL
3D program.

You use Cascading Style Sheets to define the color and border
thickness for the drawing. In this instance, the drawing is black
with a solid 1-pixel outline.

The “onload” event in the BODY element triggers when the
CANVAS illustration is drawn.

Controlling Shapes
The CANVAS element does not have the same rich collection

of primitive drawing objects you find in SVG. The only primitive
drawing object is a rectangle. This does not limit what you can
draw, as CANVAS leverages an alternative, rich collection of path
drawing functions that allow you to create complex paths, arcs,
Bezier curves, and quadratic curves that you can use as the basis
of your illustrations.

The rectangle shape is built of four basic parts:
•	 X—starting position of the rectangle along the X axis
•	 Y—starting position of the rectangle along the Y axis
•	 Width—width of the rectangle
•	 Height—height of the rectangle

The following is an example of a solid rectangle shape:

myRectangle.fillRect(15,15,100,100);

This description places the rectangle as starting 15 pixels in
from the left side of the CANVAS element (the X axis), 15 pix-
els from the top of the CANVAS element (the Y axis), and with a
width and height of 100 pixels each. You need to add the follow-
ing HTML to view the rectangle.

<html>
<head>
<title>Basic Canvas Drawing</title>

<script>
function draw(){
var canvas = document.getElementById
(‘myCanvas’);
if (canvas.getContext){

Figure 3.29  The CANVAS
element draws a simple rectangle.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

	  27

var myRectangle = canvas.getContext(‘2d’);
myRectangle.fillRect(15,15,100,100);

}
}
</script>

<style type=”text/css”>
canvas { border: 1px solid black; }

</style>
</head>
<body onload=”draw();”>
<canvas id=”myCanvas” width=”150”

height=”150”></canvas>
</body>

</html>

The code describing the rectangle must be placed in the
SCRIPT section of your HTML page. Below you will see that a vari-
able called myRectangle  is declared on line 6. Line 7 describes
what the variable myRectangle will look like. The CANVAS ele-
ment in the HTML body illustrates where the rectangle will be
drawn.

There are three different types of rectangle primitive you can
draw. The previous example demonstrates how to use the fillRect
shape. You can also draw clearRect and strokeRect.

•	 clearRect draws a transparent rectangle on the screen.
•	 strokeRect draws only the outline of the rectangle on the

screen.
Following is how you write the JavaScript describing how to

draw the three different rectangle primitives.

  myRectangle.fillRect(15,15,100,100);

  myRectangle.clearRect(20,20,60,60);

  myRectangle.strokeRect(25,25,50,50);

All three rectangles can be combined with JavaScript and pre-
sented within your web page, as follows.

<html>
<head>
<title>Basic Canvas Drawing</title>

<script>
function draw(){

var canvas = document.getElementById(‘myCanvas’);
if (canvas.getContext){
var myRectangle = canvas.getContext(‘2d’);
myRectangle.fillRect(15,15,100,100);
myRectangle.clearRect(20,20,60,60);
myRectangle.strokeRect(25,25,50,50);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

28 

}
}

</script>
<style type=”text/css”>
canvas { border: 1px solid black; }

</style>
</head>
<body onload=”draw();”>
<canvas id=”myCanvas” width=”150”

height=”150”></canvas>
</body>

</html>

See Figure 3.30 for how the rectangles appear. All other drawings
are created from paths you must describe.

Drawing Simple Shapes
Shapes are described in JavaScript and presented in the

CANVAS element. The structure for describing a shape takes the
following basic methods:

•	 beginPath
•	 moveTo
•	 closePath
•	 fill

The role of the beginPath method is to declare the start of the
shape. Following the beginPath method is where you start draw-
ing your shape. The moveTo method is used to describe that
you have moved your virtual pen and are starting to draw a new
shape. Following the moveTo method is where you describe the
structure of the shape. The following code demonstrates how a
triangle is started and drawn.

myShape.beginPath();

myShape.moveTo(750,500);

myShape.lineTo(1000,750);

myShape.lineTo(1000,250);

The first line declares the start of the shape. The second line is
the moveTo method stating that the drawing will start at 750 pix-
els from the left (X axis) and down 500 pixels (Y axis).

The triangle itself is a closed shape. By default you do not need
to use the closePath method. You use the closePath method to
close a shape when it is not clear where the closure for the shape
is.

The final method is the fill method. Together, the code looks as
follows, and Figure 3.31 shows the end result.

Figure 3.30  There are three
different types of rectangle
primitive you can draw using the
CANVAS element.

Figure 3.31  A simple triangle is
drawn using the CANVAS element.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

	  29

<html>
<head>
<title>Basic Canvas Drawing</title>

<script>
function draw(){

var canvas = document.getElementById
(‘myCanvas’);

if (canvas.getContext){
var myShape = canvas.getContext(‘2d’);

myShape.beginPath();
myShape.moveTo(750,500);
myShape.lineTo(1000,750);
myShape.lineTo(1000,250);
myShape.fill();

}
}
</script>

</head>
<body onload=”draw();”>
<canvas id=”myCanvas” width=”1500”

height=”1500”></canvas>
</body>

</html>

The lineTo method describes the shape. There are four tools
you can use to describe your shape:

•	 Lines
•	 Arcs
•	 Bezier curves
•	 Quadratic curves

These four shape drawing tools allow you to create any type of
shape.

Drawing Lines
The most simple path to describe is the line. Using the lineTo

method you describe the starting and ending X and Y axes
positions. For instance, the following code describes a basic
rectangle.

myTriangle.beginPath();

myTriangle.moveTo(10, 10);

myTriangle.lineTo(500, 10);

myTriangle.lineTo(10, 500);

myTriangle.lineTo(10, 10);

The lineTo property describes the three lines used to create
position:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

30 

myTriangle.lineTo(500, 10);

myTriangle.lineTo(10, 500);

myTriangle.lineTo(10, 10);

Figure 3.32 shows what the triangle will look like.
The following code shows how to present the triangle shape in

your web browser.

<!DOCTYPE html> <html lang=”en”>
<head> <meta charset=”utf-8”>
<title>Drawing a Rectangle</title>
<script type=”text/javascript”><!--

window.addEventListener(‘load’, function () {
var elem = document.getElementById(‘myCanvas’);
if (!elem || !elem.getContext) {
return;

}
var myTriangle = elem.getContext(‘2d’);
if (!myTriangle) {
return;

}
myTriangle.fillStyle = “orange”;
myTriangle.strokeStyle = “yellow”;
myTriangle.lineWidth = 7;
myTriangle.beginPath();
myTriangle.moveTo(10, 10);
myTriangle.lineTo(500, 10);
myTriangle.lineTo(10, 500);
myTriangle.lineTo(10, 10);
myTriangle.fill();
myTriangle.stroke();
myTriangle.closePath();

}, false);
// --></script>

</head> <body style=”background-color:#000;”>
<canvas id=”myCanvas” width=”500” height=”500”>
</canvas>
  </body> </html>

Using the lineTo property allows you to draw simple, line-
based shapes.

Creating Arcs
When you want to draw a circle you use the Arc method. An arc

is drawn with six different properties:
•	 X—the coordinates for the circle’s center along the X axis.
•	 Y—the coordinates for the circle’s center along the Y axis.

Figure 3.32  The lineTo property
allows you to draw lines in a
CANVAS image.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

	  31

•	 Radius—the size of the circle.
•	 startAngle—the start point of the arc.
•	 endAngle—the end point of the arc.
•	 anticlockwise—a Boolean value that dictates the direction

the circle is drawn.
The following code describes the structure of an arc:

context.arc(260,260,250,0,7,true);

Figure 3.33 shows the circle as it is drawn on the page.
The following code embeds the Arc method and instructions

into a CANVAS drawing.

<!DOCTYPE html>
<html>
<head>
<title>Canvas - Creating a Circle</title>
<script type=”text/javascript”>
window.onload = function() {
var drawingCanvas = document.getElementById

(‘myCircle’);
if(drawingCanvas && drawingCanvas.

getContext) {
var context = drawingCanvas.getContext(‘2d’);
context.strokeStyle = “yellow”;
context.fillStyle = “red”;
context.lineWidth = 20;
context.beginPath();
context.arc(260,260,250,0,Math.PI*2,true);
context.closePath();
context.stroke();
context.fill();

}
}
</script>

</head>
<body>
<canvas id=”myCircle” width=”550” height=”550”>
</canvas>

</body>
</html>

Figure 3.34 illustrates how you can add color to your circles.
In addition to the Arc method you also can add Bezier and

quadratic curves, both of which are mathematical calcula-
tions for creating an image. Bezier curves were developed by
French mathematician Pierre Bezier in 1962. A Bezier curve
is calculated from a parametric curve describing a parabola.
Figure 3.35 shows the four points used to create a Bezier
curve.

Figure 3.33  The Arc method
allows you to draw circles.

Figure 3.34  The Arc method can
be controlled visually with the
same controls you use for other
CANVAS drawing methods.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

32 

A quadratic curve is based on the Bezier curve. The dif-
ference is that the quadratic curve is constructed of three
points of definition instead of just one. It can be difficult to
draw complex, Bezier curve images in CANVAS for a single,
simple reason: There are no visual drawing tools, such as
Adobe Illustrator, that export images that can be read by
the CANVAS element.

Adding Color
So you now have basic shapes on the page. Big deal, right?

Using JavaScript you can now begin to programmatically paint
your objects. The following shows two semitransparent intersect-
ing squares. You will see that the fill color is a CSS style.

<html>
<head>
<script type=”application/x-javascript”>
function draw() {
var canvas = document.getElementById

(“myCanvas”);
if (canvas.getContext) {
var ctx = canvas.getContext(“2d”);
ctx.fillStyle = “rgb(0,0,500)”;
ctx.fillRect (10, 10, 150, 150);
ctx.fillStyle = “rgba(0, 300, 0, 0.5)”;
ctx.fillRect (75, 75, 150, 150);

}
}

</script>
</head>
<body onload=”draw();”>

<canvas id=”myCanvas” width=”300”
height=”300”></canvas>

</body>
</html>

The fillStyle method allows you to apply CSS style formatting.
Leveraging CSS increases the amount of visual control you have
on your drawings on the screen. As with SVG you can use any of
the CSS color naming formats such as Hex and RGB.

Linear and radial gradients can also be applied to CANVAS
images. As with SVG, the linear and radial gradients inherit how
CSS implements gradients. The gradient construction is devel-
oped by first creating a shape, giving the gradient a name, defin-
ing the gradient, and then applying the gradient.

The first step is to create a shape. The following is a simple
CANVAS rectangle:

Figure 3.35  A Bezier curve.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

	  33

myRectangle.fillRect(10,10,650,650);

The next step is to create a new variable that declares a new
gradient. The following line creates a new gradient that is named
verticalGradient. The name is arbitrary; what is not arbitrary is
the description of the gradient type that follows the name.

var verticalGradient = myRectangle.createLinearGradient
(0,0,0,650);

Here you are associating the gradient with the CANVAS object
myRectangle. At this point the gradient will not paint the image
that comes later—the code at this point merely associates the
gradient and the image. The property createLinearGradient dic-
tates where the gradient will paint an object. The values in the
parenthesis are the X and Y axes and height and width.

A gradient must have at least two colors. The following will
paint a gradient color that starts red and then transitions 50%
through the image to yellow.

verticalGradient.addColorStop(0, ‘red’);

verticalGradient.addColorStop(0.5, ‘yellow’);

The final step is to use the paintStyle property to paint the
gradient into the rectangle:

myRectangle.fillStyle = verticalGradient;

The whole CANVAS script looks as follows.

<html>
<head>
<title>Linear Gradient</title>
<script type=”application/x-javascript”>
function draw() {
var myRectangle = document.getElementById

(‘myCanvas’).getContext(‘2d’);
var verticalGradient = myRectangle.

createLinearGradient(0,0,0,650);
verticalGradient.addColorStop(0, ‘red’);
verticalGradient.addColorStop(0.5, ‘yellow’);
myRectangle.fillStyle = verticalGradient;
myRectangle.fillRect(10,10,650,650);

}
</script>

</head>
<body onload=”draw();”>

<canvas id=”myCanvas” width=”800”
height=”800”></canvas>
</body>

</html>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

34 

See Figure 3.36 for an example image.
As with the linear gradient, the radial gradient is painted onto

an image and the gradient must be constructed of at least two
colors. As with SVG, the radial gradients require starting and stop-
ping radius definitions, size, and position. The following creates a
radial gradient called myRadialGradient with three colors: red,
yellow, and blue.

   var myRadialGradient = myCircle.
createRadialGradient(0,150,150,0,140,90);

myRadialGradient.addColorStop(0, ‘red’);
myRadialGradient.addColorStop(0.9, ‘yellow’);
myRadialGradient.addColorStop(1, ‘blue’);

You need to add the gradient to your CANVAS description, as
follows. See also Figure 3.37.

<html>
<head>
<title>A canvas radialGradient example</title>
<script type=”application/x-javascript”>
function draw() {
var myCircle = document.getElementById

(‘myCanvas’).getContext(‘2d’);
var myRadialGradient = myCircle.
createRadialGradient(0,150,150,0,140,90);
myRadialGradient.addColorStop(0, ‘red’);
myRadialGradient.addColorStop(0.9, ‘yellow’);
myRadialGradient.addColorStop(1, ‘blue’);
myCircle.fillStyle = myRadialGradient;
myCircle.fillRect(0,0,450,450);

}
</script>

</head>
<body onload=”draw();”>

<canvas id=”myCanvas” width=”500” height=”500”>
</canvas>

</body>
</html>

Gradients are useful for creating depth on an object. Careful
use of gradients can simulate a 3D environment.

Adding Animation to CANVAS Images
Animation can be added to CANVAS images. As you can imag-

ine, animation requires additional work. To make your life easier
there is a great JavaScript library called CAKE (Canvas Animation

Figure 3.36  Linear gradients can
be applied to CANVAS images.

Figure 3.37  A radial gradient
applied to a CANVAS image.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

	  35

Kit Experiment) that you can download at http://code.google.com/p/
cakejs/. Using the CAKE library you can easily create CANVAS-based
animation. The following code will create a pulsing blue circle.

window.onload = function()
{

var CAKECanvas = new Canvas(document.body,
600, 400);

var myCircle = new Circle(100,
{

id: ‘myCircle’,
x: CAKECanvas.width / 3,
y: CAKECanvas.height / 2,
stroke: ‘blue’,
strokeWidth: 20,
endAngle: Math.PI*2

}
);
myCircle.addFrameListener(
function(t, dt)

{
this.scale = Math.sin(t / 1000);

}
);
CAKECanvas.append(myCircle);

};

The final step you need to take to ensure that your anima-
tion works is to download the CAKE library files to your Web site.
The files can be downloaded at http://glimr.rubyforge.org/cake/.
You will need to save the CAKE JS library to your Web site. In the
HEAD section of your Web page you will need to make a linked
reference to the CAKE library. It will look like this:

<script type=“text/javascript” src=“cake.js”>
</script>

To accomplish the animation use the Scale method. The effect
is very similar to Adobe’s Flash, but with the benefit of running
correctly on web browsers found on mobile devices such as the
iPhone, MyTouch, and Palm Pre.

The introduction of CANVAS and SVG gives you great oppor-
tunities to create complex and compelling illustrations program-
matically inside of your HTML5 web pages. It is fair to say that
CANVAS is still growing in technical scope. Expect additions and
changes to the technology over the next few years. A big addition
will be the inclusion of 3D within CANVAS.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

36 

What You Have Learned
This article introduced you to scalable vector graphics (SVG) and

the CANVAS element. These two technologies enable you to pro-
grammatically build images inside of your web pages without need-
ing graphic tools such as Adobe Illustrator, Flash, or PhotoShop.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

	Front Cover
	Rendering HTML5 Illustration
	Copyright Page
	Contents
	Chapter 1: Rendering HTML5 Illustration
	The Tale of Web Image Formats
	Bitmap Images: Using JPEG, GIF, and PNG Images on the Web
	Creating SVG Graphics
	The Fundamentals of Creating SVG Images and Adding Them to Your Web Pages
	Leveraging SVG Drawing Tools
	Adding the CANVAS Element to Your Web Page
	What You Have Learned

	Ad Page

