
Copyright

Game Coding Complete, Third Edition
Mike ―MrMike‖ McShaffry et al.

Publisher and General Manager, Course Technology PTR:

Stacy L. Hiquet

Associate Director of Marketing:

Sarah Panella

Content Project Manager:
Jessica McNavich

Marketing Manager:

Jordan Casey

Acquisitions Editor:

Heather Hurley

Project and Copy Editor:
Marta Justak

Technical Reviewer:

Sascha Friedmann, Vincent Magiya

PTR Editorial Services Coordinator:

Jen Blaney

Interior Layout Tech:
Bill Hartman

Cover Designer:

Kris Taylor

Indexer:

Larry Sweazy

Proofreader:
Heather Urschel

Course Technology,

a part of Cengage Learning
20 Channel Center Street

Boston, MA 02210
USA

For your lifelong learning solutions, visit courseptr.com.

Visit our corporate Web site at cengage.com.

Printed in the United States of America

1 2 3 4 5 6 7 11 10 09

../../default0.htm
../../default1.htm
http://lib.ommolketab.ir
http//lib.ommolketab.ir

© 2009 Course Technology, a part of Cengage Learning.

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be
reproduced, transmitted, stored, or used in any form or by any means graphic, electronic,

or mechanical, including but not limited to photocopying, recording, scanning, digitizing,

taping, Web distribution, information networks, or information storage and retrieval
systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright

Act, without the prior written permission of the publisher.

For product information and technology assistance, contact us at Cengage Learning

Customer & Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit all requests online at

cengage.com/permissions.

Further permissions questions can be e-mailed to permissionrequest@cengage.com.

Microsoft, Microsoft Windows, Visual Studio, Internet Explorer, Xbox, Xbox360, and DirectX

are either registered trademarks or trademarks of Microsoft Corporation in the United States
and/or other countries.

3ds Max and Maya are either registered trademarks or trademarks of Autodesk, Inc. in the
United States and/or other countries.

Gamecube and Wii are trademarks of Nintendo Company, Ltd. in the United States and/or

other countries.

PlayStation, PlayStation 2, and PlayStation 3 are either registered trademarks or
trademarks of Microsoft Corporation in the United States and/or other countries.

Photoshop is a registered trademark of Adobe Systems Incorporated in the United States

and/or other countries.

Ultima and Ultima Online are either registered trademarks or trademarks of Electronic Arts,
Inc. in the United States and/or other countries.

All other trademarks are the property of their respective owners.

Library of Congress Control Number: 2008939941

ISBN-10: 1-58450-680-6

eISBN-10: 1-59863-696-2

Cengage Learning is a leading provider of customized learning solutions with office locations
around the globe, including Singapore, the United Kingdom, Australia, Mexico, Brazil, and

Japan. Locate your local office at: international.cengage.com/region.

Cengage Learning products are represented in Canada by Nelson Education, Ltd.

Dedication

../../permissions
mailto:permissionrequest@cengage.com
../../region
http://lib.ommolketab.ir
http//lib.ommolketab.ir

This book and my life are dedicated to my wife and my best friend, Robin

Kudos

From Blue Phoenix:

I definitely hope that it‘s not the last publication you make, I‘m sure books can be a
challenge, but you‘ve done an amazing job. Kudos to you, the editors, publisher, and

everyone who helped produce this fine book.

From CdrJ:

Overall this book is pretty much all meat. I can‘t recommend it highly enough, and I‘ve
praised it to my entire team. It‘s probably the most useful game development text on my

shelf.

From Paul Jeffrey at Amazon.com

But here‘s a test you can take for yourself... go to www.mcshaffry.com/ GameCode and see
how Mike McShaffry is still helping folks who‘ve read his book (or anyone who posts on the

site for that matter). He‘s still giving free advice on his book‘s forum, when most other
authors won‘t even respond to an email.

From Codehead on Amazon.com

This is an excellent book. The author clearly is an expert on the subject, and he has spent

years developing mainstream commercial games (for example, Ultima series). This is a
refreshing change from so many books out there written by people with some theoretical

knowledge, but little practical application.

I will buy any book this guy writes in the future. Can‘t give a better recommendation than
that.

From spotland on Amazon.com

I have studied a lot of the ―standard‖ game coding books recently. This is the first game

book I have read that I was sorry when I got to the end because there wasn‘t any more. I
had to read it again. It is full of relevant content, peppered with real insights from someone

who has obviously been there and gotten the T-shirt. Because of its breadth of scope, it has
helped me fill in a lot of gaps left by some of the other texts. I have been programming in

C++ for over 13 years, and I still learned a few neat tricks. One of these was directly
relevant to a program I am writing—thanks for the tip!

Foreword

Let me start by admitting a couple of things. First, I‘ve never written a foreword for a book

before. I‘ve written books but never a foreword. Honestly, I usually skip right over these
things when I‘m reading a book, so odds are that no one is ever going to read what I‘m

writing here anyway. That makes it safe for me to move on to admission number two: I‘m

not a programmer. Never have been, and I fear, never will be, despite some valiant efforts
on my part (if I do say so myself). I‘ve done okay despite not knowing a blessed thing

about programming. I‘m not looking for sympathy or anything, but I am here to tell you

../../default2.htm
../../default3.htm
../../default2.htm
../../default2.htm
http://lib.ommolketab.ir
http//lib.ommolketab.ir

that a day doesn‘t go by when I don‘t think, ―Damn, if only I knew my z-buffers from my

BSP trees!‖ If you‘re already a programmer, you‘ve got a huge leg up on me when I tried to
get into the electronic game biz! (And if you‘re not a programmer, do as I say and not as I

do—learn to program ASAP. Mike has some advice about how to do that in the pages that
follow. Pay attention.)

Okay, so with those two confessions out of the way, I figure there‘s a fair chance any

credibility I might have had is pretty well shot. Luckily for you folks, the guy who wrote this
book has credibility to burn. Mike McShaffry (or ―Mr. Mike‖ as he‘s known to most everyone

in the game biz) is the real deal. Mike is a genuine survivor. He is a guy who can talk the
talk because, Lord knows, he‘s walked the walk enough times to earn some talking time.

Mike‘s experience of game development runs the gamut in a pretty remarkable way. He was

there when teams were a dozen folks, and he‘s been around in the era of 20, 30, and 50-
person teams. He‘s done the start-up thing, worked for the biggest publishers in the

business, worked on ―traditional‖ games and decidedly untraditional ones—everything from
Ultima to Blackjack, single player, multiplayer, online and off, and just about everything

else you can imagine. When it comes to PC games, he speaks with the authority of someone

who‘s worn just about every hat it‘s possible to wear—programmer, designer, project
leader, director of development, studio head....

And I‘ve had the privilege of watching him learn and grow with each new project and each

new role. I was there when Mike got his first game job. I was one of the folks at Origin who
interviewed him back in the Bone Ages, back in the 20th century, way back in 1990, when

he applied for a programming job at Origin. (Seems like forever, doesn‘t it, Mike? Whew!)

He started out as ―just‖ a programmer on Martian Dreams, a game I produced for Origin,
but by the end of the project, he was the engine that drove that game to the finish line. The

game wouldn‘t have happened without Mike. His drive, dedication, love of games, knack for
on-the-fly design, natural leadership skills, ability to combine right brain and left brain (to

say nothing of his willingness to work crazy hours), drove all of us to work that much harder
and ensured that the game ended up something special (at least to those of us who worked

on it together—it sure didn‘t sell many copies!).

I honestly don‘t even remember if I ever gave Mike the title ―Lead Programmer‖ officially on
Martian Dreams, but he sure deserved it. The guy was a machine, working longer hours

than most people I‘ve worked with (and that‘s saying something in the game business). He
also managed to do more and better work in those hours than any human being should be

allowed to. It just ain‘t fair to the rest of us mere mortals. When Mike was on, there was no

touching him. And he was almost always on—after Martian Dreams, Mike did it again and
again, on Ultima VII, VIII, IX and a bunch of others. Scary really.

In retrospect, all those hours and all the hard work that seemed so necessary, back in the

days when we were all younger and more foolish than we are now, was probably an
indication that Mike, like the rest of us, didn‘t have a clue about software development or

game design or much anything else. (Okay, we had a pretty good handle on the effects of
sugar and caffeine on the human body, but that‘s about it.) We had to work so long and so

hard just to have a chance in hell of ending up with something worthwhile.

Reading this book, I couldn‘t help but marvel at how much Mike‘s learned over the years
and wonder how much more Mike—and the rest of us—would have gotten done, how much

better our games might have been, if we‘d had the benefit of the kind of information in the
pages that follow. There just wasn‘t anyone around back then who knew enough about

games, programming practices, and software development. We were making it up as we
went along.

Today, there are plenty of books out there that can teach you the typing part of

programming. There are even some books that go a bit further and teach you what makes

http://lib.ommolketab.ir
http//lib.ommolketab.ir

game coding different from coding a word processing program or a billing system for your

local health care providers (or, as we used to call ‘em, ―doctors‖). But even now, there just
aren‘t many books that combine hard-core game programming advice with equally hard-

core development processes, debugging, and team-building information.

Development process? Team-building? Who cares about all that? You just want to write
code, right? If you‘re like a lot of programmers I know, that‘s just what you‘re thinking.

And, man, are you wrong. There might have been a time when coders could just close their
doors and type, not caring about how their work fit into the bigger picture of a game‘s

development. Maybe that was true 10 years ago or more (probably not, but maybe...).
Well, it sure isn‘t true anymore. With teams getting bigger all the time, with timelines

stretching and budgets bloating, process and team issues are everyone‘s concern
nowadays.

Mike gets that, something that becomes clear in the very first chapter, when he says,

―Being the best developer you can be requires that you have intimate knowledge about the
real demands of the industry.‖ Amen, brother. That, in a nutshell, is what makes this book

special. Most people think enthusiasm and talent are enough to get them into the game

business and to ensure success once they land that all-important first gig. ―I play games all
the time,‖ they say, ―and I‘m a kickass coder, so what more is there to know. Sign me up!‖

Well, I‘m here to tell you that there‘s plenty more to know and that‘s probably the single

most valuable lesson this book has to offer. Games are insanely complex, and their creation
involves a unique combination of art and science (some call it ―magic,‖ and they‘re not far

wrong). Game development is demanding in a way that can only be appreciated after a stint
in the trenches. At least, I used to think that was the case, but that‘s where Mike comes in.

Having been in the trenches, he can save you the trouble and pain and scars and
relationship breakups and company failures that all too often go along with game

development. No matter what you may think, it isn‘t all glory, fame, wealth, and intense
personal satisfaction (though there is a better than fair share of that last item...).

There‘s a ton of great stuff in Mike‘s book. Even if you‘re a nonprogrammer, you‘ll get

something out of the introductory chapters and the section about ―Professional Game
Production.‖ And I love all the insider bits found in Mike‘s ―Tales from the Pixel Mines.‖

Of course, there‘s plenty of nuts-and-bolts stuff for folks who are already programmers but

want to know what makes game programming so special (and believe me, it is). But even
programmers will benefit from the other ton of stuff that often gets short shrift in the typical

programming book—all that Big Picture stuff that doesn‘t involve code samples.

These are critical to being the most effective developer you can be, whether you‘re a
programmer or not. This is all stuff you can‘t get just anywhere. You have to have lived

through the process (and the pain!) a bunch of times. Or you have to find a mentor and

spend years sucking his or her brain dry. Or you can stop reading this foreword and start
reading this book.

What are you waiting for?

—Warren Spector

Acknowledgments

Mom and Grandma Hawker

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Thanks for never saying I‘d never amount to anything, playing games all the time; you

believed in me, and it paid off.

Dad and Lynn

Thanks for showing me I should never be afraid of hard work.

Phil Hawker

Thanks for giving me a sense of humor—I think I put it to good use here.

Warren Spector and Richard Garriott

Thanks for believing a geeky college kid could help make the games I loved to play.

Third Edition Guest Authors and Extra Help

James Clarendon, Jeff Lake, Quoc Tran, David (Rez) Graham, Chris Shelley

Third Edition Beta Testers

Sascha Friedmann, Vincent Magiya

Third Edition Publisher and Editor

Thanks to Heather Hurley for picking up the book for a third edition.

Thanks to my editor Marta Justak for making me look like a writer.

Contributor Acknowledgments

The Cover Artist

The cover was created by my friend and co-worker Kris Taylor.

He is currently the Art Director of Red Fly Studio in Austin, Texas.

James Clarendon, Author of Chapter 11, ―Scripting With Lua‖

I’d like to thank Mr. Mike for this opportunity as well as all the good times
(and bad!) we’ve shared in this crazy industry.

A special thanks to Edith, who has kept me sane during many of these times.

Jeff Lake, Co-author of Chapter 15, ―Collision and Simple Physics‖

To Larry Lake: It’s no EOR, but it’s close.

David ―Rez‖ Graham, Author of Chapter 17, ―An Introduction to Game
AI‖

Steph Laberis for her constant encouragement.

../../ch11#ch11
../../ch15#ch15
../../ch17#ch17
http://lib.ommolketab.ir
http//lib.ommolketab.ir

My father for giving me my first programming book.

My mother for never telling me to stop wasting my life playing games.

My grandfather for his sage wisdom.

And last but not least, my good friend Mike McShaffry for giving me this
opportunity.

Quoc Tran, Author of Chapter 19, ―A Simple Game Editor in C#‖

Dr. Bruce Naylor for inspiring me to become a game developer.

Peter Freese for giving me my first break in the industry as a programmer.

My lovely wife, whose patience and support helped me maintain my tenuous
grip on sanity.

About the Author

Mike McShaffry, aka ―Mr. Mike,‖ started programming games as soon as he could tap a

keyboard—in fact, he somehow skipped seventh grade math entirely in favor of writing
games in BASIC on an ancient Commodore Pet. In his single-minded pursuit of

programming knowledge, he signed up for an extended stay at the University of Houston.

To his surprise of himself and the Dean of Mathematics, he actually graduated five and one-
half years later. Shortly after graduation, he entered the boot camp of the computer game

industry: Origin Systems. He worked for Warren Spector and Richard Garriott, aka ―Lord
British,‖ on Martian Dreams, Ultima VII: The Black Gate, Ultima VIII: Pagan, Ultima IX:

Ascension, and Ultima Online.

Exactly seven years from the day he was hired, Mike arranged his escape and in 1997
formed his first company, Tornado Alley. Tornado Alley was a garage start-up whose goal

was to create No Grownups Allowed, a massively multiplayer world for children—something
that was sure to land Mike and anyone else at Tornado Alley front and center of a

Congressional hearing. While No Grownups never left the tarmac, a kid‘s activity program
called Magnadoodle by Mattel Media did, and in record development time.

The entrepreneurial bug, a ravenous and insatiable beast, finally devoured enough of Mike‘s

remaining EA stock to motivate him to take a steady gig at Glass Eye Entertainment,
working for his friend Monty Kerr, where he produced Microsoft Casino. Ten short months

later, Monty asked Mike and his newly assembled team to start their own company called

Compulsive Development, which worked exclusively with Microsoft on casual casino and
card games.

Mike served as the primary coffee brew master and head of studio, and together with the

rest of the Compulsive folks, 20 great people in all, produced three more casual titles for
Microsoft until August 2002. Compulsive was acquired by Glass Eye Entertainment to

continue work on Glass Eye‘s growing online casual games business.

Mike was hungry for AAA console work, and in 2003 he got what he wanted: Ion Storm‘s
Thief: Deadly Shadows team called Mike in to create their third-person camera technology

and work on fine-tuning character movement at the 11th hour. What started as a two-week
contract turned into almost a year of labor working side-by-side with programmers who

used to call Mike ―boss.‖

../../ch19#ch19
http://lib.ommolketab.ir
http//lib.ommolketab.ir

While it was great to be ―one of the boys‖ again, it couldn‘t last forever. Mike was recruited

to start an Austin studio for Maryland-based Breakaway Games. Breakaway Austin‘s focus
was AAA console development and high-end simulations for the U.S. military and DoD

contractors. Mike and three of the BreakAway Austin team actually visited the USS Harry S.
Truman, one of the U.S. Navy‘s CVN class Nuclear Aircraft Carriers. They flew out, landed

on the carrier, spent four days and nights with the officers and crew, and got launched to go
back home. Afterwards, they created 24 Blue, a training simulator that mimics the insane

environment of the deck of the carrier, jets and everything.

After BreakAway Austin, Mike founded a consulting company called MrMike. He figured that
nearly 18 years in the gaming industry was enough to firmly establish that as a good

identity for the company. For nearly two years, he helped small game companies choose
their game technology, firm up their production practices, and pitch game ideas to industry

publishers like Microsoft, EA, THQ, and others. One of his clients, Red Fly Studio, made him

an offer he couldn‘t refuse, and he jumped back into a full-time gig.

Mike took the position of Executive Producer and helped ship Mushroom Men: The Spore

Wars. He is currently working on Ghostbusters for the Wii and two unannounced titles. He

still makes coffee and tries to give good advice to the programmers, artists, designers,
audio guys, and producers working for him.

He still writes code when he can—most recently working with his friend Quoc creating some

nifty plug-ins for Microsoft Project, called MrMike’s Addins.

If Mike‘s fingers aren‘t tapping away at a keyboard, he‘s probably either ―downhilling‖ on his

mountain bike or enjoying good times with his friends in Austin, Texas.

Introduction

Who Is Mr. Mike and Why Should I Care?

I had been playing the Ultima series of games by Richard Garriott since I was in high

school, and I was a die-hard fan. Every game he published, I played all the way through,
from Ultima I on the Apple][to Ultima V on the IBM PC. Ultima VI came out right as I

graduated from college, and I noticed that the contact information for Origin Systems was

in Austin, Texas. I was living in Houston at the time, and my wife and I were ready for a
change. On a whim, I sent my resume and a letter to Richard Garriott. Weeks went by. I

heard nothing.

I finally called Origin and asked the receptionist about it. When she found out that I‘d sent
my resume to Richard, she laughed and said that was the last thing I should have done.

She gave me the name of Dallas Snell, Origin‘s Vice President of Product Development. I
sent him my resume via Federal Express and hoped for the best. I got a call two days later,

and Dallas asked me how soon I could get to Austin for an interview. I asked him if
tomorrow was too soon! He told me he‘d see me for the interview at 2 p.m. I was terrified. I

wore a tie, but my wife smartly told me to take it off before I entered the building. It was a
good thing because Dallas was dressed in shorts, flip-flops, and a Hawaiian shirt.

I didn‘t have a shred of game programming experience, and during my interview I was

asked by a panel of Origin upper crust how I knew I could cut it at Origin. I looked around
the table and saw the likes of Richard Garriott, aka Lord British, Warren Spector, Chris

Roberts of Wing Commander fame, and six other folks. I tried not to panic. After all, I didn‘t

know if I could cut it, did I? If I‘d never actually programmed a real game before, I couldn‘t
stand before industry luminaries and just be arrogant.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Instead, I came right out and told them that I didn‘t know if I could cut it. I told them that

programming games was a dream I had since I could reach up and tap a keyboard. I
promised them that if they hired me, and I sucked, that I‘d leave Origin and not return until

I earned my place there. I wanted to be a game programmer, and I‘d do anything to make
that dream come true. I guess they liked my answer because I got a job offer the following

Monday. That was October, 1990.

I‘ve spent the following years doing some programming but also some project management.
I‘ve worked on fantasy role-playing games, MMO‘s, kid‘s games, casual games, action

stealth games, military training simulations, and platformers. I‘ve worked on the PC, Xbox,
and the Wii.

Welcome to the Third Edition

The first edition of this book was published in the summer of 2003, just as I was making
some big transitions of my own. The first edition gave me a chance to stand back and show

programmers what really goes on in the world of game development. Writing the book was
a challenge but the rewards were many. I heard from programmers all around the world

who enjoyed the book and found the stories, insight, and programming tips to be helpful.
The second edition was almost a complete rewrite. The book went from around 700 pages

to 1,110, and was more popular than the first edition.

As big as the second edition was, it didn‘t cover some really important topics, such as AI,
multiprogramming, working with scripting languages like Lua, and how to write C# tools like

your level editor. In 2008, Charles River and I and four of my friends and colleagues agreed

to tackle the third edition.

What you hold in your hands is the result.

Where Is the Code? Must I Actually Type?

Shortly after the publication of the first edition of this book, I made a Web site to provide
resources and helpful information for readers. This site also became a great place for

downloading the book‘s source code examples, and all manner of interesting stuff. The site
has really grown since the first edition, and now it has become quite a resource center. So if

you are looking for additional help, the source code, or you want to share your thoughts
with other game programmers, point your browser to one of these two places:

www.mcshaffry.com/GameCode/

www.courseptr.com/downloads

I‘ve never included a CD because the source code will get fixed and tweaked even as this

book goes to press and long thereafter. Good suggestions and fixes even come from readers
like you. Grab the code from my Web site (or the publisher‘s), and you‘ll be assured of

getting the latest source code and information.

How This Book Is Organized

The book is organized into four parts:

 Part One—Game Programming Fundamentals: Exposes some stuff that you‘ll

want in your game programming toolbox, like a good random number generator. It

also introduces the major components of games and how they interact. After you
read the chapters in this part, you‘ll have a good working knowledge of the real

architecture that game developers use.

../../default4.htm
../../downloads
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Part Two—Get Your Game Running: It‘s now time to learn how to get all of the

main building blocks of your game together, including the initialization and shutdown

code, the main loop, game data structures, user interfaces and input device code,
and sprites and fonts. You‘ll find your first meaty game code examples, including

user interface code and your main loop. Often, many programming books just gloss
over this stuff and jump right into the cool 3D code. But in reality, this is the stuff

you really need to know to create a successful game, no matter what type of game

you want to build.

 Part Three—Core Game Technologies: The tougher code examples are in this

section, such as 3D programming, scripting with Lua, game audio, physics, and
network game programming.

 Part Four—Advanced Topics and Bringing It All Together: In this section,

you‘ll find chapters on AI, programming with threads, creating tools in C#, and

bringing all the code in the book together to make a little game. You‘ll also see some
of my best debugging tricks and an entire chapter on how it feels to be there when

you release a commercial game.

Throughout the book, you‘ll see a few insets that are identified by the following icons:

Gotcha

When you see this icon, you‘ll read about a common mistake

that I‘m hoping you can avoid. Mostly likely, I didn‘t and
suffered the consequences.

Best Practice

This inset is something I do by habit, and it helps me avoid
programming trouble. Usually, I learned these tips from someone else

who taught me, and I’m passing on the good word.

Tales from the Pixel Mines

Working in the pixel mines is slang for working on computer
games. Since I‘ve worked in the industry since 1990 and I‘m

a creature of observation, I couldn‘t help but bring a few tall
tales to the book from my game industry experiences. Some

tales are taller than others, but believe it or not, they all
actually happened.

What You’ll Need

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you‘re a programmer and you‘ve had some game programming experience, you‘ll be able

to follow along nicely. Take a moment to flip through the pages, and you‘ll see this book is
written for programmers. Nonprogrammers could probably get something from the book,

too, but there is more code in this book than noncode.

The code is written in C++, so if you are a die-hard C programmer, you‘ll have to at least
be able to read C++ to get the most out of this book. If you don‘t know either language,

you‘ll probably struggle a little with the code samples, but I‘ll bet you can get enough from
the comments and the explanations to get your money‘s worth.

All of the code in this book works under Visual Studio 2003 and 2005, or at least it did when

I copied it into Microsoft Word, which is how I wrote the book. I apologize ahead of time for
making no attempt whatsoever to make sure the code worked in other compilers like

CodeWarrior or GNU C++. I hope you‘ll forgive me. I figured my time would be better spent
by covering as much technical ground as possible, instead of working on multicompiler-

compatible code.

The code in this book also has a heavy Win32 bias. I‘m a Win32 programmer, and I was a
DOS programmer before that. I‘ve had some brief forays into UNIX on the Ultima Online

server code, but I‘m hardly an expert. Much of the code in this book assumes Win32, and I
didn‘t change the code to support cross-compiling into other operating systems for much

the same reason as I chose a single compiler. It was simply better for me to cover lots of

technical issues than for me to check my code under LINUX.

As far as graphics APIs are concerned, I assume you‘ll use DirectX 9 or later. I don‘t have

anything against OpenGL, of course, but I‘m just not an expert in the nuances. Basically, if

you have a good working knowledge in C++, Win32, and a passing knowledge of DirectX,
you‘ll be fine. You don‘t have to be godlike in your skill, but you should be pretty

comfortable coding in these areas.

If you are a complete newbie and perhaps only know a little C++, don‘t feel dejected and
don‘t return this book! I have a plan for you. Throughout this book, I‘ll refer to other tomes

of knowledge that helped me learn how to program. They can help you, too, and you can
use them in conjunction with the humble collection of knowledge you hold in your hands.

With a little concentration, you can bootstrap yourself into programming prowess. I learned
more about programming in C++, DirectX, and Win32 by looking at working code, of which

there is plenty included in these pages for you to enjoy.

STL and Boost C++

This book uses STL for common data structures. If you don‘t know anything about STL,

you‘ll see some good examples in this book, and I‘m sure you‘ll be able to follow the code.
I‘m not attempting to teach you STL, which is something that is beyond the scope of this

book. Instead, go read The C++ Standard Library: A Tutorial and Reference by Nicolai M.
Josuttis. After you get your bearings, go read Scott Meyer‘s books on STL because they‘re

fantastic.

STL is a body of code that is extremely well tested, has a widely understood API, and is
available on almost every development platform. If you haven‘t seen it yet, stop reading

right now and do a little research. You‘ll never have to write code for common data

structures like linked lists, resizable arrays, and trees ever again. I‘ve saved hours of grief
using <list>, <vector>, and <map>.

Whatever happens, don‘t get caught writing your own linked-list class or tree when STL

would have worked. All implementations are extremely well tested. Every bug or
implementation oddity has already been exposed and discussed on the Internet. Your own

code, on the other hand, is not.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

While only a small portion of the Boost C++ Library is used in this book, it is an amazing

resource, and like STL, it contains a wealth of well-tested code.

Source Code and Coding Standards

I despise technical books that include source code that doesn‘t compile. I cursed the name
of every author and editor who created these books, filled with errors and broken code. I‘m

now doomed to join their ranks.

Microsoft Word just doesn‘t handle C++ source code very well. Since this book is printed in
black and white, the code highlighting has to be turned off. I understand, now, why so

many programming books are crawling with errors. I apologize to every author and editor I

maligned. Until I wrote this book, I had no idea how difficult it was. Enough groveling! I will
make a valiant effort to check and recheck the source code in this book, and I‘ll do what I

can to set anything right if I find it broken.

Now that my conscience is at ease, you should know something about how to read the
source code in this book.

Where the Code Comes from

Every line of source code has its beginning in an actual game. Of course, the code is not
100 percent verbatim. My front door would be knocked down by a wave of lawyers from

Microsoft, Electronic Arts, Mattel, Eidos, and who knows what else. Instead, the code has

been sufficiently tweaked to protect the intellectual property of myself and everyone who
was crazy enough to employ me and my guest authors. The original code is much harder to

read anyway. It usually contained optimizations and external references that I couldn‘t
easily include in any form. Since they came from nearly 14 years of coding experience, you

can imagine the wide variety of style and structure. If you want to make your own game,
the source code in this book should give you a head start. You‘ll find some great skeletal

work on which you can hang your own code. I‘m even hoping that some of the code in here
will save you some headaches so you can concentrate on your game.

The code in this book was written and tested on the Win32 platform under Visual Studio

2005 using the DirectX 9 application framework. Console programming is a different beast,
and where it makes sense, I‘ll pull some advice from experts regarding a particular solution.

If you‘re looking to use this code on a Win32 box but want to know how programming the

same thing on the Xbox360, PS3, or the Wii is different, you‘re holding the right book.

The source code is covered under the Creative Commons Attribution Share-Alike license.

You can read about this license here: http://creativecommons.org/licenses/by-sa/1.0, but

basically it means that you can do what you like with the code as long as you give me and
my guest authors credit and you distribute your work in exactly the same way. If you want

to use this code in a commercial game, then contact me through my Web site,
www.mcshaffry.com/GameCode, and I‘ll first try to dissuade you. If you persist, I‘ll be

happy to accommodate you with a very affordable license.

Coding Standards and Style

Source code standards are important. I‘m not necessarily a standards dictator. I can find
room for other opinions on code style, and I‘m happy to adopt reasonable standards when

and where I must. I look at it like trying to learn a bit of the local language if you travel
abroad. The locals will appreciate it, and you might even learn something.

Origin Systems didn‘t have company-wide coding standards. I was part of no less than

three standards committees while I was there, to no avail. Every time we attempted to
discuss C++ bracing style, the meeting simply broke down into a screaming match. There

were many programmers at Origin who simply wouldn‘t adapt to anyone else‘s style. It got

../../1.0
../../gamecode
http://lib.ommolketab.ir
http//lib.ommolketab.ir

so bad that somebody wrote a little utility that would parse a source file and change the

bracing style from one to the other. Madness!

Your coding standards and style exist solely to communicate useful information to other

programmers, and sometimes a future version of yourself.

I use a coding style in this book extremely similar to what I use professionally. The only
departures are those that make the code simpler to read. For example, the source code in

the book frequently eliminates obvious error detection and handling. If I used every line of

source code exactly as it appeared in real projects, this book would have to be twice as
long. It was a tough trade-off, but it‘s better to have more examples and leave the obvious

stuff out of the book.

Goto: Not Just a Bad Idea—It was

Nonexistent!

At Origin Systems, a particular programmer on Martian

Dreams used goto at a frequency you‘d find unpleasantly

surprising. The new version of the Borland compiler was on

everyone‘s desks, fresh from the presses. He‘d just finished
installing it and went to lunch. I went to his machine and

edited the compiler executable. I changed the keyword goto

to goat. When he came back from lunch, three or four of us

were pouring over the Borland docs in my office. We told him

that Borland‘s software engineers decided to eliminate goto

from their implementation of C. He didn‘t believe us until he

compiled a small test program in his newly installed compiler
and received ―unexpected identifier or keyword: goto‖

message for his trouble. We told him the truth before he
reached someone at Borland‘s customer service department.

Using Prefixes

I see one prefix letter per identifier, and I don‘t under any circumstance worry about using
prefixes for type, such as Win32 APIs use. Modern IDEs like Visual Studio expose the type

of an identifier with a tooltip, so programmers don‘t have to clutter the prefix with
redundant information. Here are my suggested prefixes:

 g: Use with global variables—g_Counter

 m: Use with member variables—m_Counter

 V: Use with virtual functions—VDraw()

 I: Use with Interface classes—class IDrawable

I‘ve seen some crazy use of prefixes that attach three or more characters to the front of any

identifier. It must be hard to program in Hungary. The problem with this style is that every
identifier that has the same prefix looks exactly alike. That‘s why the prefix should be as

small as possible and separated from the identifier with an underscore—it conveys useful
information without overpowering the identity of the variable name. In your own code, feel

free to add more prefixes to this list as you find good use for them. Just don‘t go overboard!

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Prefixing variables for scope is an excellent use for prefixes. Programmers who change the

value of something with global scope need to be slapped in the face so they can take proper
precautions. Class member variables have a different scope than local variables. The ―m‖

prefix is a clean way to differentiate locals and members when they are used in the same
method, such as constructors.

Virtual functions are powerful, and therefore dangerous when used to evil ends. A prefix on

virtual functions reminds programmers that they should call the parent‘s overloaded virtual
function, and that the cost of calling the function is high.

I find it useful to apply a prefix to interface classes, ones that only define pure virtual

functions and no data members, so programmers feel safe multiply inheriting from them. I
avoid multiple inheritance of noninterface classes, and I advise you to do the same. The

resulting code can be very confusing and hard to maintain.

Capitalization

I use capitalization to distinguish different classes of identifiers and make identifiers easier
to read.

 Variables and Parameters: Always start with lowercase and use a capital letter for

each compound word—g_BufferLength, m_BufferLength, return-Value.

 Classes, Functions, Typedefs, and Methods: Always start with uppercase and

capitalize each compound word—SoundResource, MemoryFile.

 Macros: All capitals and separate compound words with underscores—

SAFE_DELETE, MAX_PATH.

The first two capitalization styles help programmers distinguish between definitions of class

and instances of those classes:

SoundResource soundResource;

MemoryFile memoryFile;

Macros, a source of frequent pain and suffering, should boldly state their existence in all

capitals. If you want to find the definition of a macro, it‘s easy to search for the #define

MACRO_NAME. This sets them apart from functions or methods.

Const Correct Code

I try my best to make code const correct, and the code in this book is no exception. I‘m
sure some of you hard-core const correct programmers will be able to throw a few thousand

const keywords in where I‘ve forgotten them. Const correctness is a pain, but it‘s

important. Adding const to member variables, function returns, pointers, and references

communicates important information to other programmers.

Strings and Localization

If you make your game for English speakers only, you‘re slashing your sales. Europe and
Asia, especially mainland China, are hungry for quality games. Most players will put up with

English, but they‘d rather get their hands on a good translation in their native language.
Good localization technique deserves an entire book and a master‘s degree in foreign

cultures. Since the book has a decidedly Win32 bias, I‘m going to use TCHAR as the basic

character data type. It can compile with or without _UNICODE defined. Even though it is

http://lib.ommolketab.ir
http//lib.ommolketab.ir

pretty unusual these days to use single-width character sets, using TCHAR makes it easier

for you to port back to a single-width system if you need to. In a few years time, we can
drop all this and just use a wide character set for everything.

You‘ll notice that CHAR and unsigned CHAR is still used in code that needs 8-bit values,

specifically when dealing with graphics, sound data, or SDKs that prefer single width
character sets, such as ZLib.

I tend to use std::string and std::wstring throughout the book. It is an incredibly

useful string class, and while not everyone agrees, it‘s the one I‘m most comfortable with.

In the code samples, I generally use literal strings for clarity. In a real project, every string
that could possibly be seen by anyone playing the game is declared in a string table. The

string table can be managed by a global class, such as your application class, and you have
an easy way to swap out one language for another:

std::string msg = g_pApp-&GetString(IDS_QUESTION_QUIT_GAME);

Regarding the resource constant, I don‘t attempt to encode the exact text of the string in
the macro. It takes too long to type and muddles the code. I usually find a good

abbreviation.

One final note about strings in real game code: Debug strings or names for objects are fine

as literals. You can declare them at will:

if (impossibleError == true)

{

OutputDebugString(_T("Someone enabled the impossible error

flag!"));

}

Commenting

Really good code comments itself, and I‘m hoping the code in this book does exactly that.

Good variable names and logic should obviate the need for wordy explanations. In this
book, I‘ll sprinkle comments in the code where I think they do some good, but you‘ll usually

find some meaty explanation immediately after the code sample.

In a real game, the meaty explanation should be inserted into the code, perhaps at the
beginning of the file, so that other programmers can figure out what‘s going on. What

seems obvious the moment you type the code degrades linearly with time to a confusing

mess. For me, total confusion sets in approximately three months after I write the code.
How could I possibly expect anyone else to understand it if I‘m completely lost in something

I wrote myself?

I always start projects with the intention of putting good comments in my code. I always
end projects disappointed in other programmers and myself—we just didn‘t have enough

time. That happens. Projects under pressure will see comments disappear because the
programmers are spending 100 percent of their time coding like mad. The best policy is to

start off with a lean, light commenting policy and keep it up as long as you can. If there
comes a point in the project where comments are dwindling, try to make a good effort to go

back in the code base after the project releases to document the code. A good friend of
mine at Microsoft told me that shipping the product was a good feature. I agree.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Error Handling

There is very little error handling code in this book, so little that when I look at it, I cringe.
The fact is that robust error code gets a little wordy, and I wanted to spend time on the

lines of code that will teach you about making games. You can use any form of error

checking you want, and I talk about some different options in the chapter on debugging.

Every hard exit in your game should have an error message that is presented to the player:

―Bummer – your game is hosed because of some bug in objectdata.cpp, line 6502‖. Use

__FILE__ and __LINE__ to identify the offending code. Unique error codes are a hassle

to maintain. This data can be invaluable for the development team and customer service

after the game ships. Many a patch or workaround traces its roots to a few hundred
telephone calls and emails that finger a particular error code.

Memory Leak Detection

Most everywhere in the source code, you will see memory allocations use GCC_NEW:

m_PCMBuffer = GCC_NEW char[bytes];

GCC_NEW is defined in debug builds as:

#define GCC_NEW new(_NORMAL_BLOCK,__FILE__, __LINE__)

You‘ll learn more about this in Chapter 21, ―Debugging Your Game,‖ but suffice it to say for
now that doing this helps you find memory leaks.

Part I: Game Programming Fundamentals

Chapter 1. What Is Game Programming Really Like?

In This Chapter

 The Good

 The Bad

 The Ugly

 It‘s All Worth It, Right?

Most programmers have no idea what it is like to work on games. The ones lucky enough to

land a job in the industry are sometimes quite surprised, often pleasantly but not always.

../../ch21#ch21
../../ch01lev1sec1#ch01lev1sec1
../../ch01lev1sec2#ch01lev1sec2
../../ch01lev1sec3#ch01lev1sec3
../../ch01lev1sec4#ch01lev1sec4
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Before I talk about the code and game engine architecture, I want to let you know a little

more about what you are in for.

Programming games is fundamentally different from other kinds of programming. It‘s not

better or worse, just different. Most of the good aspects of game programming have to do

with the bleeding edge challenges you run across and the fact that sometimes you actually
see your name scroll across a credits screen. Games are cool, and everybody loves them. If

you meet a fan at a computer game store, that person is usually really happy to meet you.
You get to play with some great technology from console manufacturers like Nintendo,

Microsoft, and Sony. Software development kits from companies like Emergent, Havok,
Epic, Valve, and others are also a lot of fun to play with. They can give you a real boost in

game development, and can bootstrap your game from nothing to something cool in record
time.

The bad side of professional game programming involves the inherent unknowns that come

with your work. The sweaty underbelly of this industry can be blamed mostly on insane
deadlines and work hours, project management problems, ever-changing SDKs and

operating systems, and intense competition. Hopefully, I can give you some perspective on

the industry and at the same time show you the good, the bad, and the ugly aspects of
game development. I‘ll try to point out some things that I‘ve learned over the past few

years. Read this chapter, and you might be able to dodge a few of these problems.

The Good

Programming jobs in the games industry change fast. In fact, they‘ve even changed since I

penned the first edition of this book. Programming used to be a really broad activity
because there were so many problems to solve and there were so few good and

experienced programmers out there who could solve the problems. In the real early days,
game programmers did everything: code, art, sound, and game design. Now you tend to

see very specialized game programmers for niche areas of game technology: character
movement, network communications, database, physics, and audio are just a few. When I

accepted my first job in the computer game industry, my second choice was a job with
American General Life Insurance. They wore ties. Their employees took drug tests. In that

job I would have had the distinct privilege of working on a beta version of Microsoft‘s C++

compiler, programming little sales tools for insurance agents. Did I make the right decision
or what?

Face it—there aren‘t many exciting programming jobs out there. But if you know where to

look, you can still find them. The cool jobs still fall into a few categories: jobs you can‘t talk
about, ultra high budget simulations and control software, and games. Everything else falls

quickly into the ―Did you put a cover sheet on your TPS report?‖ category.

The Job

Here‘s my bottom line: It‘s cool to work on games because they are as much art as they are

science. When I wrote the first edition of this book, I put a lot of thought into why I found

game programming immensely satisfying even with all of the pressures and challenges. I
came to the following conclusion—I like blending the artsy side of my left brain and the

engineering side of my right brain, especially when I‘m in new territory. When I was on
Thief: Deadly Shadows, I got to work on character movement—talk about a tweak fest. I

had to look carefully at the character movement and understand why it ―felt‖ wrong. I
played tons of Splinter Cell to see how they solved some sticky problems. The ―art‖ involved

understanding how character movement was supposed to ―feel.‖ Once I had a clue, I had to
convert that feeling to a piece of code that fixed the problem—that was science, mostly

math. Two sides of your brain working together can solve some really cool problems. Even if
you understand the science, sometimes it‘s up to you to tweak it, like an artist tweaks a

smile on a portrait.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

It‘s great to take a game design discussion with you to lunch. You can have a heated debate

on whether the master zombie characters came from outer space or originated here on
earth—the result of some tragic experiment. You get the weirdest looks, as someone

screams, ―Damn it, everyone knows that it‘s better for the zombies to come from space!‖

I have the most fun coding, especially when things are going well. Game code is usually
pretty difficult stuff, and you frequently have to break some new ground here and there.

This is especially true when you are playing with new hardware like the latest console
development kits. It‘s also true when you figure out how to implement a customized version

of a classic algorithm so that it runs fast enough to be in a game instead of a textbook.

Probably the best part of game coding is starting from scratch and allowing everything in
your libraries to be refreshed and rewritten if necessary. At the end of a project, you can‘t

make drastic changes, and you are forced to live with some annoying hacks and hastily
designed objects. When the project is done and you are starting the next one, there‘s

nothing better than throwing off those shackles. Re-factoring, reorganizing, and rewriting an
older system so that it really shines is extremely rewarding. Games probably offer more

freedom than other types of programming projects because game code can have a very

short shelf life. The state of the art moves pretty fast, and as a game developer, you‘ll be
pedaling as fast as you can.

The People

If you work in the games industry, people want to know about your company and your
projects. They talk to you about your job because it‘s high profile. They want to know when

they can play your game. Every now and then, you‘ll find someone who played a game you

worked on and enjoyed it. It‘s great when fans get a buzz going about a game that‘s still in
the design phase, or they start talking about the next version before you‘re back from

vacation. They set up Web sites devoted to your game and argue endlessly about stuff that
even the development team finds minor.

Believe it, You Have Fans!

Development team t-shirts attract attention, especially from
fans. I happened to be wearing an Ultima VII ―Development

Team‖ shirt when I walked into CompUSA to pick up a game.
As I was browsing, a little nerdy guy walked up to me and

started talking to me about gritty details of the game design.
I‘m pretty patient about this kind of thing, so I tried my best

to steer the conversation to a close, where any normal
human being would simply say, ―Well, gee it was nice to

meet you! Thanks!‖ and walk away. Fifteen minutes later I

felt as if I wanted to chew my own arm off and give it to him,
in the hopes I could make my escape!

Another category of people you come into contact with is the hopeful would-be game
programmer. I enjoy meeting these folks, and I do everything I can for anyone who has
talent and is willing to increase his or her skills—if I didn‘t, you wouldn‘t be reading this

book! With today‘s mod scene and increasingly savvy hobbyists, there is also an increase in

amateur developers. These developers are taking things a step beyond the more casual
hobbyist level to create things that are intensely interesting. Some even graduate to cult

status, or better yet, to the professional ranks. With XboxLive Community, anyone can
make his own Xbox360 game, actually sell it, and make a living. The best revenge is being

able to tell your parents that playing all those games actually did you some good.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The best people are those closest to you—the development team. By the end of a project,

they‘re like your family. Certainly you‘ve seen them more than your family, and I‘ve even
seen teammates become family. Programmers, artists, designers, audio engineers,

composers, testers, and project managers make an odd mix of people. You wouldn‘t think
that these people could all hang out and get along. But they do, most of the time anyway.

Most of your interactions in game programming are with other programmers. One big

difference between the game industry and more boring jobs is that there‘s a significant
portion of programmers who are self-taught in the game industry.

A Demo is Better than a Resume

One of the best programmers I ever worked with started out
as a dedicated amateur. This guy was so dedicated that he

rewrote a large portion of Ultima VII on his own time and
actually made a fantastic graphics engine that had Z-sprites

before I even knew what they were. He showed us a demo
that simply blew the minds of the Ultima programming team.

We hired him.

That‘s not to say these folks are slackers by any shake of the stick. Instead, they tend to be

absolutely brilliant. One difference between the self-taught hackers and the programmer
with formal training is that hackers tend to design and code things before they realize that

someone has already solved the problem. Sometimes, you‘ll catch them describing a cool
data structure they just came up with, and you‘ll realize they are talking about a B+ tree.

Their strength comes from their amazing ability to see right to the heart of a problem and
fearlessly begin to solve it. One of the most brilliant programmers I ever met never

graduated high school.

I wish I were a better artist. This is a skill that I admire to the point of wide-eyed wonder.
Even better than admiring the raw skills, the creative insight that artists conjure up makes

working with them so fantastic. Don‘t get me wrong—some of them are completely insane,

opinionated, temperamental, and ultra-perfectionists. That description fits programmers,
doesn‘t it? Probably the weirdest thing about working with artists on computer games is

that you realize that artists and programmers are the same kind of people working with
different sides of their brain.

The Tools—Software Development Kits (SDKs)

The most widely used SDK is DirectX from Microsoft. It provides APIs useful for creating

game software. There are many more: SDKs for physics, SDKs for rendering 3D graphics,
SDKs for audio, networking, even AI. You can‘t make a professional game without SDKs.

You don‘t need all of them, but most certainly you‘ll use one or two. They boost your
development schedule and give you some confidence that your graphics or audio system

has been well tested.

When I first started writing this section, it was in my ―The Ugly‖ section at the end of this
chapter. I felt a little guilty about giving SDKs such a bad rap. After all, if they were really

useless, why do I use them on every project? The truth is that SDKs give you a huge leg up.
They can also be a huge pain in the butt. SDKs are widely used, so they can‘t appeal to the

odd needs of every developer. Some of the expensive ones come with source code, which is
critical for debugging problems. You can even make changes and recompile the SDK, but

any customizations you perform might be invalidated by their next version. Most of the time

you have to be satisfied with begging and pleading. Perhaps the SDK engineers will take
pity upon you and consider your request.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The real hassle comes when you grab their latest version. You‘ll usually find that the new

version isn‘t compatible with your code base, and you‘ll spend hours or days getting your
game to compile again. Do yourself a favor and try to find SDKs that either promise to

support earlier APIs or have already become stable. Anything else is madness.

The Hardware

Games run on cool hardware. Well, most games do. Thief: Deadly Shadows used the very

latest in audio and video hardware for the PC, especially the new 5.0 EAX environmental

audio system from Creative, and, of course, it also ran on the Xbox. Back in the day, the
Ultima games pushed hardware so hard that players would usually buy a new computer

every time an Ultima came out. Many of the big budget PC titles are created on hardware
that has yet to reach any serious market penetration, which means that the hardware

manufacturers are constantly sending game developers the latest greatest stuff and even a
T-shirt every now and then. An established developer can still call any hardware company

out there and get on their developer program. You don‘t exactly get truckloads of free
hardware, but you do get a few bits and pieces to split among the programmers and the

test group. That can save your butt if you find that your game crashes on the hottest video

card—you can‘t fix the bug just by hoping it goes away.

The developer programs offered by hardware manufacturers are a great resource. Most of

them have special developer Web sites and prerelease hardware programs. They also have

dedicated engineers who can help you with a specific problem. An engineer at ATI verified a
particular bug on one of the Microsoft projects I worked on, and they had a new driver

ready in a few days. Of course, I was happy to have the big gorilla named Microsoft
standing behind us, but you‘ll find that most hardware companies are really responsive

when it comes to diagnosing driver problems.

The Platforms

There are a wide variety of gaming platforms, and they never stop growing. For many
years, we only had to deal with consoles and desktops. Since 2001, games have popped up

on handheld devices like the Nintendo DS, Sony‘s PSP, the iPhone, and many others.

At the time of this writing, the big consoles on the market are the Wii from Nintendo, the
Xbox360 from Microsoft, and the PlayStation 3 from Sony. The most recent battle is going

solidly to Nintendo, which came in third place during the PS2/GameCube/Xbox era. Since
the 1950s and the very first computers, it was always software that sold the hardware,

which is a fact that I feel will never change. Playstation 2 won the last time because they
had the best games, period. This time, the Wii is winning because of the wide appeal it has

to gamers of all ages. Even my Mom is playing the Wii—it turns out she is killer at Wii
Bowling and trounces me every time she plays.

My Nephew Made Mushroom Men Better

One thing most games go through is something called blind
playtesting. This is when you let someone who has never

seen the game come in and give it a try. Usually, this
happens with some developers watching and cringing, as

they see a new player have trouble with something they

designed. My 10-year-old nephew, Sam, was a blind
playtester for Mushroom Men: The Spore Wars, and actually

found a pretty important bug. One of the programmers, Kain,
was able to fix the bug and show Sam how his comments

made the game better.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Tables 1.1 and 1.2 list the various platforms on the market and their hardware

specifications.

Table 1.1. Capabilities of Last Generation Consoles

Platform Xbox PS2 GameCube

CPU 733MHz 294.9MHz 485MHz

Graphics

Processor

250MHz 147.5MHz 162MHz

Maximum

Resolution

1920×1080 1280×1024 Up to HDTV

Memory 64MB RAM 40MB RAM 43MB RAM

Controller Ports 4 2 (4 optional) 4

Media 4x DVD-ROM (3.2-

6.4GB)

5x DVD-ROM (3.2-

6.4GB)

3x DVD-ROM (1.5GB)

Digital Sound Dolby 5.1 DTS in

gameplay

Dolby Pro Logic II Dolby 5.1 for DVDs

Hardware Audio

Channels

64 48 64

Hard Disk Yes—8GB Add-on No

Internet 10/100 Ethernet

Port

Optional

modem/broadband

Optional

modem/broadband

DVD Movies Yes Yes No

Table 1.2. Capabilities of Next-Generation Consoles

Platform Xbox360 PS3 Wii

CPU 3.2GHz PowerPC

Xenon with three

cores

3.2GHz Cell - Also has seven

single-threaded special purpose

processors (SPEs)

729MHz IBM

Broadway

Graphics

Processor

500MHz ATI 550MHz NVIDIA 243MHz ATI

javascript:moveTo('ch01table01');
javascript:moveTo('ch01table02');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 1.2. Capabilities of Next-Generation Consoles

Platform Xbox360 PS3 Wii

Maximum

Resolution

Up to 1080p HDTV Up to 1080p HDTV Up to 480p

Memory 512MB RAM @

22.4Gbps

256MB RAM @ 25.6Gbps 60MB RAM @

1.9Gbps

HDMI Yes Yes No

Controller

Ports

4 (wired and

wireless)

7 (wired and wireless) 4 (wired and

wireless)

Media 12x DVD-ROM (3.2-

6.4GB)

Blu-ray (3.2-6.4GB) Proprietary

DVD (4.5GB)

Digital Sound Dolby 5.1 DTS Dolby 5.1 DTS Dolby 5.1 for

DVDs

Hardware

Audio Channels

n/a 320 hardware, no limit with

software

64

Hard Disk Yes—20-120GB Yes—20-120GB No

Internet 100Mbs Ethernet Gigabit Ethernet Built-in

wireless

DVD Movies Yes Yes No

Blu-ray Movies No Yes No

The best part of developing for consoles is the fact that you‘ll never have to worry about

supporting a hellish grid of operating system and hardware configurations that are
guaranteed to change at least twice during your development cycle. You do have to deal

with standards compliance with the console manufacturers, which can be quite difficult if
you‘ve never had the experience.

There‘s a serious leap in capability from that first table to the second, isn‘t there? The

change from the PS2 to the PS3 is nothing short of remarkable. But hardware capability
doesn‘t mean you‘ll sell more—a great lesson that sometimes less is more.

When I wrote the second edition, I had a line about desktop hardware that said: ―After all,

you can‘t find CPUs topping 2Ghz in the console world....‖ Funny how times change—just a
few years go by and that statement is completely wrong. I also wrote that consoles were

http://lib.ommolketab.ir
http//lib.ommolketab.ir

always lacking behind desktops for raw processing and graphics power. That statement isn‘t

so true in the PS3/Xbox360 era.

Desktops are still ahead when it comes to memory and hard drive storage, but they are

falling behind in cool controllers, like you see with the Wii. With all the consoles being

Internet-capable and having space on their hard drives, consoles even get to send updates.
The lines are definitely blurring.

Still, the dizzying array of hardware and operating system combinations on desktops makes

compatibility a serious problem. You‘ll spend a serious amount of time chasing down some
crazy bug that only happens on some archaic version of Windows or on some rare video

card. What a hassle!

On desktops you also have to find ways to support old legacy hardware while you make
your game look good on the bleeding-edge gear. The CPU delta can be nearly 10:1, and the

graphics delta is worse. Old video cards might not have programmable pipelines at all. That
means your games need tons of configurable options so that players with crappy computers

can turn off everything to get some decent frame-rate. Let the flamethrowers turn on
multichannel MP3 decompression, full dynamic lighting and shadows, full-screen graphics

effects like motion blur and bloom, ultra-high texture and model density, stereo
1600×1200×32 displays, and quasi-telepathic AI. Each of these options deserves separate

testing paths on all the hardware configurations.

It makes you glad you can send patches over the Internet.

The Show

The game industry throws awesome tradeshows and parties. Find out for yourself and
register for the Electronic Entertainment Expo (E3), usually held in Los Angeles in May.

Other great shows include the Tokyo Game Show and Games Convention, traditionally held
in Leipzig, Germany and drawing over 200,000 visitors in 2008. Sometimes, you have to be

part of the industry to get registered, so if you don‘t have a game job, then launch a game
review Web site and call yourself ―press.‖ Everybody else does. When you get there, play

every game you can and dork around with the latest console gear. The show floor is where

the game companies pull out all the stops to attract attention. You‘ve got to go see for
yourself. It‘s unbelievable.

If you want to learn about game development, go to the Game Developer‘s Conference in

San Francisco, which is held in March. It‘s brutally expensive, but you‘ll find the cream of
the game development crop telling willing crowds some of their secrets. Before you sign up

for any of the workshops, roundtables, or sessions, it‘s a good idea to do a Google search
on the speakers and get an idea of what they‘ve worked on recently. Choose the sessions

that have speakers with the most game industry experience and subject matter you‘re
ready to hear—some of them are fairly advanced.

Sneaking Around is Definitely a Best Practice

Throughout this book, I’ll be including a number of “best practice” tips
from my years of experience as a developer. I couldn’t resist including

this one for your first “best practice” dose. It can be a lot of fun to
snag party invitations from the in-crowd, and talk your way into the

“by invitation only” areas. A friend of mine who worked for Dell was
able to get into virtually every private area of the show just by

showing up, flashing his Dell credentials, and talking like he was
someone important. Almost everyone bought it. It’s all good fun.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Bad

Every job has its good parts and bad parts. Game programming is no different. First, game

programming is hard, sometimes to the point of being frustrating. Many before me have
argued that programming games is the most challenging form of programming there is. Bad

things are a matter of perspective; some people find these things challenging while others
find them burdensome. You‘ll have to judge for yourself.

Game Programming Is Freaking Hard

It‘s not uncommon for a game programmer to do something completely new and try to hit a

deadline at the same time. I‘m not talking about a modification of a data structure to fit a
certain problem; I‘m talking about applying experimental and theoretical designs to a

production system that meets deadlines. On Ultima VII, one programmer wrote a 32-bit
memory management system that was based on a little known Intel 486 processor flag and

hand-coded assembly, since there were no 32-bit compilers. On Ultima VIII, one of the low-
level engineers wrote a multithreaded real-time multitasker two years before Win32 went

beta. On Ultima IX, the graphics programmer figured out how to make a software rasterizer

appear to pump 32,000 textured polygons per second on a first generation Pentium.
Everyone knows what Ultima Online did—found a way to get every Ultima fan playing in

Britannia all at the same time. I can‘t even begin to talk about the innovation that had to
happen there just to get this system to work.

It would be one thing if this stuff were all research, where results come when they may and

the pressure is bearable. A game project is different because the schedule is relentless. For
all the media press about how late games are, I‘m surprised that you see some of them at

all, given the level of difficulty.

Bits and Pieces

Games are built from more than code. Go find any PC game you bought recently and take a
look at the directory where you installed it. You‘ll find the expected EXE and DLL files, with a

few INIs or TXT files, too. You‘ll also find gigabytes of other stuff with file extensions that
don‘t necessarily map to any program you‘ve ever seen. These other files hold art, models,

levels, sounds, music, scripts, and game data. This data didn‘t just fall out of the ether.
Every texture was once a BMP or TIF file. Every sound was once a WAV, probably converted

to MP3 or OGG. Each model and game level had its own file, too, perhaps stored in a 3ds
Max file. Even a small game will collect hundreds, if not thousands, of these bits and pieces,

all of which need to be catalogued and organized into a manageable database of sorts.

Richard Garriott Uses Jedi Mind Tricks

Technology isn‘t the only thing that makes game

programming hard. Game designers will push you farther
than you ever thought you could go. I remember very well a

conversation the senior staff at Origin had with Richard
Garriott about the world design for Ultima IX. The team was

pushing for a simple design that was reminiscent of the old

Ultima games—the outdoor map was separate from the city
maps. This was a simple design because each map could be

loaded at once and no complicated map streaming would be
required. Richard didn‘t go for it. He wanted a seamless map

like Ultima VII. This was a much harder problem. We knew
going into the meeting that if we couldn‘t convince Richard to

http://lib.ommolketab.ir
http//lib.ommolketab.ir

use a simpler world design we‘d have a hard time making our

deadlines. We steeled ourselves with resolve, and armed with
our charts and graphs and grim schedule predictions, we

entered the conference room. Two hours later, we all walked
out of the room completely convinced that Richard was right,

a seamless map was the way to go. I wish I knew how he
does that!

Losing Files is Easier than You Think

Logistically, these things can be a nightmare to manage. I

worked on a project where an artist wiped every file he‘d
worked on without even knowing it. Art files would get

changed on the network, but wouldn‘t get copied into the

build, or even worse, the artist would change the name of a
file, and it would get lost forever. When you have thousands

of files to look though, it‘s sometimes easier to just repaint it.
Luckily, there are some tools out there to help manage this

problem. The situation is certainly better than when I
started, when I think our best file management scheme was

a pad of paper.

Very few software projects share this problem. The only thing that comes close is a Web

site, and there just aren‘t that many assets. After all, they have to get sent over the
Internet so there can‘t be that many. Certainly not enough to fill up a DVD, and a

compressed one at that.

That’s Not a Bug—That’s a Feature

Actual bug: I was walking along and the trees turned into shovels and my character turned
into a pair of boots and then the game crashed.

You certainly won‘t see a bug report like that working on a database application. Seriously,

some of these reports convince you beyond any shadow of doubt that some testers are
certifiably crazy.

You might wonder why I put something so amusing in the ―bad‖ section of working on

games. There are plenty of funny bugs; stuff goes wrong in a game and has a bizarre
result. Luckily, Quality Assurance (QA) should find it because it will be funnier for you as a

developer than it will be for a player whose crashed game just lost a few hard hours of play.

Beyond the funny bugs, there‘s a dark side.

One bad thing is just the sheer volume of bugs. Games tend to be rushed into testing and

the QA department does what they are paid to do and writes up every problem they

observe. I think they hope that eventually the producers will get the point and stop sending
proto-ware into the test department. They hope in vain because the pressure to call the

game ―testable‖ is usually too much for the project management to bear. It‘s too bad that
there tends to be no solid definition of ―testable‖ unless you work in QA. From their point of

view, it‘s pretty obvious.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You Won’t be Able to Fix Every Bug

There‘s nothing like having the rug pulled out from

underneath you because a bug that you intended to fix is

marked ―won‘t fix‖ by the team leadership. You might even
have the code fixed on your machine, ready to check in for

the next build. Instead, you get to undo the change. The final
straw is when some critic on the Internet bashes the

programmers for writing buggy code, and even points out the
very bug that you intended to fix. Most programmers I know

are perfectionists and take a lot of pride in their work, and
because of that they lose sleep over bugs. As evil as this

seems, making those decisions is as tough as knowing your

code has a bug you aren‘t allowed to fix. Believe me, I‘ve
done that a few thousand times.

The heavy bug volume weighs on everyone, developers and testers alike. They end up
creating a logistical nightmare. The graphical reports that get spit out by the bug database
are watched like the stock market; only this time, a steep upward curve tends to have a

negative effect on team morale. The worst part by far is what happens when the team can‘t

quite keep the bug count under control, which is most of the time. The project leadership
gathers together in a locked office and ―fixes‖ bugs without ever touching the project. The

bug simply becomes a feature, maybe a weird screwed-up annoying feature, but a feature
all the same.

The Tools

Richard Garriott, aka Lord British and creator of the Ultima RPG series, once said that the

computer game industry is a lot like the movie industry. He also said that at the beginning
of every game project we start by inventing new cameras, film and processing techniques,

and projectors. He said that 10 years ago, and while there is great middleware out there for
sound and graphics and even complete turnkey game engines like Unreal 3, many game

projects end up writing their own development tools from scratch.

Other games use a simpler strategy, a wise choice if you don‘t need 20 people building
seamless maps and levels. The basic game level is assembled in a modeling tool like 3ds

Max. A special editing tool usually loads that level and drops in special actions, dynamic
object generators, and characters, almost as if you were playing the game. If you are

developing a smaller game with a small team, there‘s no need to have a complicated,
multiperson aware tool. In fact, with a little work you can make 3ds Max act like your level

editor—just don‘t try this on an AAA title.

There are a number of game engines on the market from Emergent, Epic, Crytek, id, Valve,
Vicious Cycle, Trinigy, and others. The days of creating custom level and mission editors

may be over, but you‘ll still have to write quite a bit of custom tools and code to make your

game unique. So, worry not, the job of the game programmer is safe for a long time.

Before We Made the Game, We Made the

Tools

Most games have level or mission editors. When we
developed the Ultima games, we spent the first year or so of

development writing the game editor—a tool that could

import graphics, sounds, and models from all the art and

http://lib.ommolketab.ir
http//lib.ommolketab.ir

modeling software like Photoshop, Lightwave, 3ds Max,

Maya, and others. Ultima IX‘s level editor was fully
networked and used TCP/IP to communicate peer/peer to all

the designers and programmers running it. They could even
edit the same map at the same time, since smaller portions

of the map could be locked out for changes. The editor could
launch into game mode at the press of a button, so the

designers could test their work. Ultima Online’s editor was
much more like the game than Ultima IX. UO already had a

client/server system up and running, and it used a special

god client to change the map levels and add new assets to
the game.

The Ugly

There are plenty of factors that make game coding a fluid and unpredictable task. The

design of the game frequently changes drastically during development, motivated by many
factors inside and outside the development team. Mounting schedule slippage and

production pressure leads to the legendary ―crunch mode‖ so prevalent on many game
projects. Dependant software tools like DirectX change constantly, challenging software

teams to keep up. Unlike many software projects, games frequently must support a wide
variety of operating systems, graphics APIs, and platforms.

Hitting a Moving Target

Most industry software projects are carefully designed and planned. Systems analysts study

customer requirements, case studies of previous versions of the software, and prospective
architectures for months before the first line of code is ever written. Ultima VIII’s

architecture was planned by seven programmers in a single afternoon on a whiteboard.

Architecture notwithstanding, you can‘t design ―fun.‖ Fun is a ―tweakable‖ thing, not
something that exists in a design document. You hope like hell that the original design will

result in a fun game, but the first playable version frequently leaves you with the distinct
impression that the game needs some more chili powder and a little more time on the

stove.

Sometimes, the entire design is reworked. Ultima IX’s architecture and game design
changed no less than three times in development. I was there for two of them, and didn‘t

stick around for the third. When a game is in development for multiple years, it‘s easy for

new hardware technology to blaze past you. In Ultima IX’s case, 3D accelerated video cards
were just coming into their own as we were putting the finishing touches on what had to be

the finest software rasterizer anyone ever wrote. It never saw the light of day.

Sometimes Your Game is Just Plain Boring

Ultima VIII’s map design had a hub-and-spoke model. The

hub was an underground dungeon that connected every other
map. We released the game to QA, and word came back that

it was completely boring. The culprit was a sparse central
map that wasn‘t much more than an underground maze with

a few bad guys hanging out here and there. It wasn‘t good
enough. Two designers worked day and night to rework the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

central map. Puzzles, traps, monsters, and other trickery

finally added a little spice. The central map ended up being
one of the best parts of the whole game.

Crunch Mode (and Crunch Meals)

Every now and then you end up at a technological dead-end and have to start completely

over. I was brought into the late stages of a Mattel project that was supposed to be in the
test phase in about two weeks. I took one look at the code and realized, to my horror, that

the entire graphics engine was using Windows GDI. Unless someone out there knew
something I didn‘t, the GDI in 1999 couldn‘t texture map polygons. In less than five weeks,

the entire project was rebuilt from scratch, including a basic 2D vector animation tool.

Those five weeks were really more like 15 weeks. The tiny development team worked late
into each night and dragged themselves back each morning. There were no weekends.

There were no days off. I‘d estimate that we worked 90-hour workweeks on that project.

You might think that unreasonable, and that nobody should have to work like that. That
project was only five weeks. It was nothing compared to the pixel mines of Origin Systems

circa 1992. Back then, Origin had something called the ―100 Club.‖ The price of entry was
working 100 hours in a single workweek. The last time I counted, there were only 168 hours

in seven days, so the folks in the 100 Club were either working or sleeping.

The Infamous Origin Hostel

To facilitate a grueling schedule, the teams built bunk beds in

the kitchen. Company kitchens are no place for bedding. My
office was unfortunately located right across the hall, and I

observed the kitchen/bedroom getting higher occupancy than
the homeless shelter in downtown Austin. After about a week,

I began to detect an odor emanating from across the hall. It
seemed that the brilliant organizers of Hotel Origin never

hired a maid service, and that an unplanned biology

experiment was reporting its initial results via colorless but
odorous gasses. Origin management soon liquidated the

experiment.

It‘s not uncommon for companies insisting on long hours from salaried employees to
provide meals. These ―crunch meals‖ are usually ordered out and delivered to the team.

Origin was able to get a local deli to bill them instead of requiring a credit card, so they

began to order from them almost every night. Months went by, and everyone on the
development team knew every item on the menu by heart, and knew exactly which bits of

food were most likely to survive delivery intact. Fifteen years later, I can still tell you what‘s
on the menu at Jason‘s Deli, and even though the food is good, I rarely eat there.

At the ripe old age of 38, I signed on to full-fledged crunch mode at Ion Storm to help finish

Thief: Deadly Shadows. Let me tell you something, the older you get, the harder it is to stay
awake and code. I actually cheated a little and came in early, but the long hours still were

pretty tiring, especially after the fourth month. Good grief—when will this industry ever
learn?

Bah Humbug

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Computer games are a seasonal business. They sell like crap in the summer, and profits

soar at Christmas time. Of course, they only soar for your project if you‘re not still working
on it. This puts a significant amount of pressure on development teams. Sometimes, the

pressure begins before the team begins working. Every game contract I signed stipulated
specific release dates simply to make sure the boxes would have enough lead time to get

built, shipped, and on store shelves.

This lead time varies from publisher to publisher. A big company like Microsoft has a huge
manufacturing pipeline that includes everything from the latest version of Halo to their

latest version of Office. I once worked on a game that shipped the same month as Windows
XP. I‘ll bet that if you were standing on the assembly line you‘d be hard pressed to notice

the brief flash of dark green as 50,000 boxes of my game whizzed by. You shouldn‘t be
surprised to see a publisher like Microsoft require you to finish your title by September at

the latest in order to make the shelves by the holiday season.

Other publishers are more nimble, and they might be more accommodating if you‘ve got a
AAA title coming in hot and steep as late as November. You won‘t get the best sales if you

release after Thanksgiving, but even getting out the week before Christmas is better than

missing the season altogether. It‘s always best to have everything in the can before October
if you want to see your game under Christmas trees.

Basically, Christmas is only merry if your game is done.

Operating System Hell

Microsoft Excel doesn‘t need to support full-screen modes, and it certainly doesn‘t need to
worry about whether the installed video card has 2.0 shaders. That‘s one of the reasons

that games get some special dispensations from Microsoft to qualify for logo compliance.
Logo compliance means that your game exposes certain features and passes quality

assurance tests from Microsoft. When your game passes muster, you are allowed to display

the Windows logo on the box—something that is good for any game but especially
important for mass-market games.

The Microsoft projects we developed had to pass QA testing for Windows 98, Windows ME,

Windows 2000, and all versions of Windows XP. By 2002, Microsoft wasn‘t supporting
Windows 95 anymore, which was a good thing. It was hard enough building an old box for

our Windows 98 test machine. The OS that required the most tweaking was Windows XP,
mostly because of the new requirement that the Program Files directory was essentially

read/only for nonadministrator accounts. Most games store their dynamic data files close to
the executable, which will fail under Windows XP Home. These drastic changes to Windows

XP motivated many game companies to drop support for all Windows 9x platforms by the
end of 2004. For a big company, Microsoft can move pretty fast, and as a game

programmer, you have to keep up.

The hell doesn‘t even stop there—some programmers choose to write graphics engines that
work under DirectX and OpenGL. Some graphics middleware supports this natively, so you

don‘t have to worry about it. Why would you bother? Performance.

Most video cards have DirectX and OpenGL drivers, but it‘s not guaranteed that you‘ll
achieve equal performance or graphics quality under both. The performance differences are

directly proportional to the effort put into the drivers, and there are cases where the

OpenGL driver beats DirectX soundly. Of course, there are mirror cases as well, where
DirectX is the way to go. Even better, the quality of the drivers changes from operating

system to operating system. The result of all this is a huge increase in effort on your side.
Even if you choose one particular graphics API, you still have to support a wide array of

operating systems. This increase in effort simply widens the market for your game. It
doesn‘t make your game fun or provide a deeper experience. It just keeps it from

misbehaving on someone‘s computer.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

I almost forgot, what about Linux? What about Mac? They are still tiny slivers of the gaming

market. Linux is growing, and there are people out there with Mac computers. The question
about writing a cross-platform game for these operating systems is more logistical and

financial than technological. Most game projects can be ported to similar platforms with a
tolerable dose of programming hell.

Moving games to very dissimilar platforms can be nigh impossible, such as a direct port of a

PC game to a console. The lack of a keyboard or game controller, different screen
resolution, and smaller secondary storage preclude some games from ever appearing on

consoles. That doesn‘t even begin to address the inherent design concerns that differ
sharply from consoles to desktops.

Fluid Nature of Employment

The game industry, for all its size and billions of dollars of annual revenue, is not the most

stable employment opportunity out there. You can almost guarantee that if you get a job in
the industry you‘ll be working with a completely different set of people every two years or

so, and perhaps even more often than that.

Every year at the Origin Christmas party, employees were asked to stand up as a group.
Everyone who had worked there less than a year was asked to sit down, followed by second

and third year employees. This process was repeated until only a handful of people were
left. This was usually by the fourth or fifth year. In my sixth year, I became the twelfth

most senior person in the company by time of service, and Origin had hundreds of
employees. This is fairly common throughout the industry.

The stresses of incredibly short schedules and cancelled projects have chased many of my

friends out of the industry altogether. Whole studios, including two of my own, take root for
a while and then evaporate or get bought. Your boss today will not be your boss tomorrow,

especially if your boss attempts to do something crazy, like start his own game studio!

It’s All Worth It, Right?

There‘s something odd about human psychology. After a particularly scary or painful

experience, some of us will say to ourselves, ―Hey, that wasn‘t so bad. Let‘s do it again!‖
People that make games do this all the time. The job is incredibly difficult and can drive you

completely mad. Your tools and supported operating systems change more often than you‘d
like. Some days you delete more code than you write.

Taking three steps forward and five steps back is a good recipe for long hours, and you‘ll

get an ―all you can eat‖ buffet of overtime. It will get so bad that you‘ll feel guilty when you
leave work before 7 p.m. on a Sunday night. When crunch mode is over, and you get back

to a normal 60-hour workweek, you‘ll wonder what to do with all the extra time on your
hands.

Why bother? Is it possible that that boring job at American General Life Insurance was a

better option for me? Not a chance. There are plenty of good things, but there‘s one that
beats them all: After all the work, lost weekends, and screaming matches with producers

and testers, your game finally appears on the retail shelves somewhere. A few weeks after
it ships, you start looking. You make excuses to go to Wal-Mart, GameStop, and Best Buy

and wander the software section. Eventually, you see it. Your game. In a box. On the shelf.

There‘s nothing like it. As you hold it in your hands, someone walks up to you and says,
―Hey, I was thinking of buying that game. Is it any good?‖ You smile and hand him the box,

―Yeah, it‘s damn good.‖

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 2. What’s in a Game?

In This Chapter

 Game Architecture

 Applying the Game Architecture

 Application Layer

 Game Logic

 Game View for the Human Player

 Game Views for AI Agents

 Networked Game Architecture

 Do I Have to Use DirectX?

 Other Bits and Pieces

 Further Reading

There are tons of reasons programmers get attracted to games: graphics, physics, AI,

networking, and more. Looking at all of the awesome games that have been released over
the past few years, such as Halo 3, Grand Theft Auto IV, Gears of War 2, and others, you

might first think that all of the major technology advances have been in the area of graphics
or physics programming. There is certainly more than meets the eye, and after seeing for

myself how some games glue major subsystems together, I often wonder how they even
function.

When building a game, programmers will typically start with a DirectX sample, import some

of their own miserable programmer art, put an environment map or a bump map on
everything in sight, and shout ―Eureka! The graphics system is finished! We‘ll be shipping

our game by next weekend!‖

By the time the next weekend rolls around, the same newbie game programmers will have
a long laundry list of things that need to be done, and there are a number of subtle things

that they will have completely missed—like how to manage memory and game processes

properly. These hidden systems are usually the heart of every game, and you‘re never
aware of them when you play games because you‘re not supposed to be aware of them.

This book is about more than just the visible parts, It is primarily about how to glue all

these parts together in a way that won‘t drive you and your programming colleagues
insane. This chapter takes the first step, and it shows you a high-level view of how

commercial games are (or should be) architected.

After you finish this chapter, you‘ll have a good understanding of the main components of
game code and how they fit together. The rest of this book digs into the details of these

systems and how they are built.

The important lesson to learn here is that you‘ll be able to build much better games if you
really understand the architecture, the components, and how everything fits together. In

../../ch02lev1sec1#ch02lev1sec1
../../ch02lev1sec2#ch02lev1sec2
../../ch02lev1sec3#ch02lev1sec3
../../ch02lev1sec4#ch02lev1sec4
../../ch02lev1sec5#ch02lev1sec5
../../ch02lev1sec6#ch02lev1sec6
../../ch02lev1sec7#ch02lev1sec7
../../ch02lev1sec8#ch02lev1sec8
../../ch02lev1sec9#ch02lev1sec9
../../ch02lev1sec10#ch02lev1sec10
http://lib.ommolketab.ir
http//lib.ommolketab.ir

other words, think and plan before you start coding, because a great foundation can hold a

big game, where a crappy one simply can‘t hold up to the strain. We all hear this good
advice over and over, but it‘s easy to neglect because it takes a lot longer to get something

up and running. Think of this like you would approach building a house. Don‘t be like the
guy down the street who just starts putting up walls without really thinking through the

kinds of components that he‘ll really need to do the job right.

Game Architecture

There are as many ways to assemble the subsystems of a game as there are game

programmers. Being a game programmer, I‘ll give you my opinion of what the subsystems
are, what they do, and how they communicate. You‘ll probably do things differently, and

that‘s perfectly fine by me, especially since what I‘m going to present is geared toward
understandability, not necessarily efficiency. Once you understand something, you can find

your own path to making it run pegged at 60Hz or better, but you sure can‘t get something
to run that fast if you have no idea what‘s going on.

I can‘t say this enough—you don‘t have to do things my way—but since my way is the

easiest for me to describe, it makes some sense that I‘ll preach a little of my own opinions.
As you read this chapter, think first about what problems I‘m solving with this system and

at least grab hold of the subsystems and what they do on their own. If you come up with a

better way to build this mousetrap, call me, and I‘ll hire you.

Let‘s start at the top level and work our way down. You can take every subsystem in a

game and classify it as belonging to one of three primary categories: the application layer,

the game logic layer, and the game view layer (see Figure 2.1). The application layer deals
with the hardware and the operating system. The game logic layer manages your game

state and how it changes over time. The game view layer presents the game state with
graphics and sound.

Figure 2.1. High-level game architecture.

If you think this architecture sounds familiar (and you‘re familiar with MFC‘s document/view

architecture), you‘re exactly right, but don‘t burn this book in disgust just yet. While I
loathe programming in MFC as much as the next person, there is amazing flexibility in

separating a game into these three independent systems. Another popular design pattern,
the Model-View-Controller, seeks to separate the logic of a system from the interface used

to present or request changes to data. The architecture I propose encapsulates that and
adds a layer for hardware or operating system specific subsystems.

The application layer concerns itself with the machine your game runs on. If you were going

to port your game from Windows to Mac, or from the PlayStation 3 to Xbox360, you would
rewrite most of the code in the application layer, but hopefully not much else. In this area

javascript:moveTo('ch02fig01');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

you‘ll find code that deals with hardware devices like the mouse or a gamepad, operating

system services such as network communications or threading, and operations such as
initialization and shutdown of your game.

The game logic layer is your game, completely separated from the machine your game runs

on or how it is presented to the player. In a perfect world, you could simply recompile all
the source code related to your game logic, and it would run on any platform or operating

system. In this area, you‘ll find subsystems for managing your game‘s world state,
communicating state changes to other systems, and accepting input commands from other

systems. You‘ll also find systems that enforce rules of your game system‘s universe. A good
example of this is a physics system, which is the authority on how game objects move and

interact.

The third and last system component is the game view. This system is responsible for
presenting the game state and translating input into game commands that are then sent to

the game logic. What‘s interesting about the game view is that it can have different
implementations, and you can have as many views attached to your game as your

computer can handle. One type of game view is for your players; it draws the game state

on the screen, sends audio to the speakers, and accepts input through the user interface.
Another type is the view for the artificial intelligence (AI) agent, and a third might be a view

for a remote player over a network. They all get the same state changes from the game
logic—they just do different things.

Applying the Game Architecture

It might seem weird to you at first that the code for the AI would communicate through the

same pathways and in exactly the same manner as a human being. Let me give you a more
concrete example. Let‘s design a racing game using the game logic and game view

architecture, and we‘ll also create two views: one for a human player and one for an AI
driver who will race with you on the track.

The game logic for a racing game will have the data that describes cars and tracks, and all

the minute properties of each. For the car, you‘ll have data that describes how weight is
distributed, engine performance, tire performance, fuel efficiency, and things like that. The

track will have data that describes its shape and the properties of the surface all along the

route. You‘ll also have a physics system that can calculate what happens to cars in various
states of acceleration and steering, how they respond to the track, change in input controls,

or even collisions with each other.

For inputs, the game logic cares about only four things for each car: steering, acceleration,
braking, and perhaps the emergency brake. If your cars have guns on them, like we all

wish, you would also have an input for whether the fire trigger is down. That‘s it; the game
logic needs nothing else as input to get the cars moving around the track.

Outputs from the game logic will be state changes and events. This includes each car‘s

position and orientation, and the position and orientation of the wheels in relation to the
car‘s body. If the game supports damage, you‘ll also have damage statistics as an output. If

your cars have guns, a state change could also be whether the weapon is firing and how
much ammo is left. Another important game state, especially the way I play racing games,

is collision events. Every time a collision happens, the game logic sends an event with all
the collision data. Events and state changes are sent to game views.

The game view for the human has a lot of work to do to present the view of the game state.

It has to draw the scene from various points of view, send audio to the speakers, spawn
particle effects—especially when bad drivers like myself are scraping down the guardrails—

and rumble the force feedback controls. The view also reads the state of the game

http://lib.ommolketab.ir
http//lib.ommolketab.ir

controller, and translates that into game logic commands. A good example of this is to

notice the right trigger pressed to full throttle, and it sends the ―Accelerator at 100%‖
command to the game view, or changes in the left thumbstick to ―Steer left at 50%.‖ These

commands are sent back to the game logic as requests to change the game state.

Imagine what happens when a player mashes the A button on the controller—the normal
control for the emergency brake in my favorite racing game. The human view interprets this

as a request to hit the emergency brake on my Ferrari, and sends a ―player hit emergency
brake‖ message to the game logic. The game logic evaluates the request, sets the

m_bIsEmergencyBrakeOn to true, and sends a state update back to the human view.

The human view responds to this message by playing a sound effect of the tires squealing

or maybe showing something on the screen, like the car spinning into the nearest guardrail.

Another example is the throttle setting. Pressing the right trigger usually controls the
throttle. If I press it to 82% of its range, the view interprets this as a command to set the

accelerator to 82% and sends a ―throttle to 82%‖ request to the game logic. The game logic
determines that the rear tires have broken loose by looking at the car, its weight, the tires,

the track condition, and other factors. It sends a message back to the game view that the
rear tires are spinning, and the game view could then respond by playing a sound effect.

You can see that a game controller‘s thumbstick or button state doesn‘t affect the game

state directly. Instead, the controller‘s state is interpreted by the game view and converted
into commands, which are sent to the game logic by an event. The game logic receives

events generated by the view and uses those commands, along with its physics simulation,
to figure out what is happening in the game universe. The state changes in the game world

get sent back to the view, so it can draw polygons, play sound effects, and rumble the

controller.

The game view for the AI is a little different. It will receive the same game state events

received by the human game view, such as which track the race is occurring on, the

weather conditions, and the constantly updated positions, orientations, and velocity of cars
on the track. It will take this information and recalculate what commands to send into the

game logic. For example, in response to the ―Go‖ event from the game logic, the AI might
send an ―Accelerator at 100%‖ command back to the game logic. While negotiating a turn,

it might send ―Steer left at 50%‖ to the game logic.

You should be aware that the commands sent from the human view and the AI view to the
game logic are exactly the same. While it might take a little more thinking to convince

yourself that the inputs to the game view, namely the game status and game events, are
exactly the same, I assure you it is true.

I mentioned before that this game architecture is flexible. You‘ve probably already surmised

that a particular game logic can have any number of views, both human and AI. It is a
trivial matter to swap a human player, or even all human players, with AI players. But wait,

it gets better.

You could create a special VCR game view that does nothing but record game events into a
buffer and play them back. In a sense, the game logic is entirely short circuited, but since

the game state changes and events are exactly the same, they can be presented in the VCR
view with very little recoding. Of course, if you want a ―rewind‖ feature, you‘ve got some

extra work to do because the game events don‘t necessarily go equally back in time as they
go forward!

You could also create a special game view that forwards game status and events to a

remote player across the Internet. Think about that: the game logic doesn‘t have to care
whether the players are local or separated by thousands of miles. The remote view should

be pretty smart about collecting game states and events, compressing them into as few

bytes as possible, and shipping them via TCP or UDP to the remote player. The game
commands received from the remote player should go through a verification filter, of

http://lib.ommolketab.ir
http//lib.ommolketab.ir

course. You can never be too sure about remote players, or remote game logics, for that

matter.

One thing to note—players with different views can be advantaged or disadvantaged. For

example, those who play on 4:3 screens can‘t see quite as much as those playing on 16:9

screens. Taken a step further, you can easily see that any differences in view definitions can
give any consumer of that view a huge edge, or take it away. Be cautious with your view

definitions, whether it has to do with something obvious like screen size, or the types of
events the view receives from the game logic.

I hope I‘ve convinced you that this architecture is a good way to go. I‘ll be quite honest and

tell you that it isn‘t an easy architecture to code, especially at first. You‘ll go through a
phase where you are sure there is an easier way, and you‘ll want to abandon this event-

driven architecture where game logic is completely separate from the view. Please be
patient and resist the urge. Given some time, you‘ll never go back to a simpler, but less

flexible design.

Application Layer

The contents of the application layer are divided further into different areas that deal with
devices, the operating system, and your game‘s lifetime (see Figure 2.2).

Figure 2.2. A closer look at the application layer.

Reading Input

Games have an amazing variety of user input devices: keyboard, mouse, gamepad,
joystick, dance pad, steering wheel, and my personal favorite, the guitar. Reading these

devices is almost always completely dependent on calls to the operating system and device
drivers. The state of these devices should always be translated into game commands. Some

of these commands might be sent back to the game logic, such as ―fire missile,‖ while
others might be handled by the game view, such as ―show me my inventory.‖ Either way,

you‘ll likely write an entire subsystem to read these devices and interpret them as
commands.

This same system should also be configurable. I play console shooters with an inverted Y-

axis, but many people like it the other way around, even though I‘ll never understand why.
If you have a system that reads devices as input and sends game commands as output, you

can create the system to read a configuration file to match controls with commands. Then

all you have to do is modify this data file, and you‘ll have completely configurable controls.

One thing is critical: You can‘t simply change the game state directly when you read user

input. Every bit of game sample code out there does this; you can see where games make

javascript:moveTo('ch02fig02');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

direct changes to data simply because the W key was pressed. This is a vastly inflexible

system and will haunt you later, I guarantee it.

File Systems and Resource Caching

File systems include DVD-ROM, hard disk, or removable memory cards. Code in this

subsystem will generally be responsible for managing game resource files and loading and
saving the game state. Managing resource files can be pretty complicated—much more so

than simply opening a JPG or an MP3 file.

A resource cache is one of those hidden systems I told you about. An open world game like
Grand Theft Auto has gigabytes of art and sound, and the system only has a fraction of the

memory needed to load everything. Imagine the problem of getting a crowd of people out of

a burning building. Left to their own devices, the crowd will panic, attempt to force
themselves through every available exit, and only a small fraction of the people will escape

alive.

Now imagine another scenario, where the evacuation is completely organized. The crowd
would divide themselves into single file lines, each line going out the nearest exit. If the

lines don‘t cross, people could almost run. It would be very likely that even a large building
could be completely evacuated.

This analogy works well for game resources. The burning building is your optical media, and

the doors are the limited bandwidth you have for streaming this media. The bits on the disk
represent the crowd. Your job is to figure out a way to get as many of the bits from the

optical media into memory in the shortest possible time. That‘s not the entire problem,
though. A resource cache is exactly what the name implies—commonly used assets like the

graphics for the HUD are always in memory, and rarely used assets like the cinematic
endgame are only in memory while it‘s playing, and most likely only a piece of it at that.

The resource cache manages assets like these in a way that fools the game into thinking

that they are always in memory. If everything works well, the game will never have to wait
for anything, since the resource cache should be smart enough to predict which assets will

be used and load them before they are needed.

Every now and then, the cache might miscalculate and suffer a cache miss. Depending on
the resource, the game might be able to continue without it until it has been loaded, such

as the graphics for an object in the far distance. In that case, the graphic can fade in once it

is safely in memory. In other cases, the game isn‘t so lucky, such as a missing audio file for
a character‘s lines. Since they are synched to the facial animations, the game has to wait

until the audio is loaded before the character can begin speaking.

So it‘s not enough to write a little cache that knows whether resources exist in memory at
the moment they are needed. It has to be clever, predicting the future to some extent and

even providing the game with a backup in case the cache suffers a miss.

Luckily, I‘ve included an entire chapter on the subject of file systems and the resource
cache. This just might be one of the most under-discussed topics in game development.

Managing Memory

Managing memory is a critical system for AAA games, but is largely ignored by most game
developers until they run out of it. Simply put, the default memory manager that comes

with the default C-runtime libraries is completely unsuitable for most game applications.

Many game data structures are relatively tiny things, and they belong in different areas of
memory, such as RAM or video memory. A general memory manager tries to be all things to

all applications, where you will know every detail about how your game needs and uses

http://lib.ommolketab.ir
http//lib.ommolketab.ir

memory. Generally, you‘ll write your own memory manager to handle allocations of various

sizes and persistence, and more importantly to track budgets.

Virtual Memory—Can be Good, Can be Bad

Windows can use virtual memory, and when a game runs out of
physical memory, the OS will automatically begin to use virtual

memory. Sometimes, Windows games can get away with this, but it is
a little like playing Russian Roulette—at some point, the game will

slow to a crawl. A console game is completely different. For example,

if your game allocates a single byte larger than the available memory,
it will crash. Every game programmer should be as careful about

memory as console programmers. Your game will run faster and will
simply be more fun. Create some way to track every byte of memory,

which subsystem is using it, and when any one of these areas exceeds
its memory budget. Your game will be better for it.

Initialization, the Main Loop, and Shutdown

Most Windows software waits for the user to do something before any code is executed. If

the mouse isn‘t moving and the keyboard isn‘t being hammered, an application like Excel is
completely idle. This is good because you can have a bunch of applications up and running

without a large CPU overhead. Games are completely different. Games are simulations that
have a life of their own. Without player input, they‘ll happily send some horrific creature

over to start pounding on your character‘s skull. That will probably motivate a few button
presses.

The system that controls this ongoing activity is the main loop, and it has three major

components: grabbing and queuing player input, ticking the game logic, and presenting the
game state to all the game views, which means rendering the screen, playing sounds, or

sending game state changes over the Internet.

At the highest level, your game application layer creates and loads your game logic, creates
and attaches game views to that logic, and then gives all these systems some CPU time so

they can do their jobs. You‘ll learn more about this in Chapter 5, ―Game Initialization,‖ and
Chapter 6, ―The Main Loop.‖

Other Application Layer Code

There are lots of other important subsystems in the application layer, including the

following:

 The system clock

 String handling

 Dynamically loaded libraries (DLLs)

 Threads and thread synchronization

 Network communications

 Initialization

../../ch05#ch05
../../ch06#ch06
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Main loop

 Shutdown

The system clock is critical for games. Without it, you have no way to synchronize game

animations and audio, move objects at a known speed, or simply be able to time your
credits so that people have enough time to read them. Almost every game subsystem will

care about time: physics, animations, user interface, sound, and so on.

Game programming becomes more global year after year, and generally games that sell
well in one language will also sell well if they are translated or localized. If you structure

your game correctly and factor all user-presented strings into external files, you‘ll find it a
lot easier to translate your game into a similar language. Note that I said ―similar

language.‖ Although it is possible to structure a game to be in completely different
languages like English and Japanese, remember that you don‘t just have a technology

barrier to multilingual gaming. You also have a culture barrier—not every game is one that
can cross cultures easily.

Most operating systems have a way to dynamically swap code in and out of memory at

runtime. This is critical for conserving valuable memory space or replacing a subsystem
entirely. You might use a DLL to swap a DirectX for an OpenGL renderer, for example.

Today‘s multicore desktops and consoles make multithreaded and multicore programming a

must. I actually remember a time when games didn‘t use threads—instead everything ran in
a single execution path. It was easier in some ways, but harder in others. Threads are used

for audio streaming data, AI, and if you are clever, even physics. I‘ve read in other places

that shall remain nameless that suggest you can use threads for everything. Don‘t believe
this for a minute; if every subsystem had to be thread safe, you‘d spend most of your CPU

time waiting for thread synchronization.

Network communications is another service provided by the operating system. This network
code will generally provide your game with a way to make a network connection with

another computer and a way to read and write data from the network stream. The definition
of what actually gets sent and how received data is interpreted is actually coded in the

game view and game logic layer. I‘ll talk more about that shortly.

The last group in the application layer is responsible for your game‘s life cycle: initialization,
the main loop, and shutdown. I‘ve also included in this group your core libraries that

standardize basic data structures and templates, as well as your script interpreter.

Initialization can be something of a nightmare. Many game subsystems have complicated
interrelations, and they tend to depend on one another. We‘ll discuss details of the

initialization sequence in Chapter 5.

Most games use scripting languages. Whether it is UnrealScript, Python, LUA, or something
a game team creates from scratch, these systems and the scripts they run are critical

components for today‘s commercial game development. You‘ll learn more about scripting
languages, and Lua in particular, in Chapter 11.

Game Logic

The game logic (see Figure 2.3) is the heart and soul of your game. It defines the game

universe, what things are in the universe, and how they interact. It also defines how the
game state can be changed by external stimulus, such as a human player pressing a

../../ch05#ch05
../../ch11#ch11
javascript:moveTo('ch02fig03');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

gamepad key or an AI process taking action to kill you. Let‘s take a closer look at all of the

components of the game logic system.

Figure 2.3. Game logic and its subsystems.

Game State and Data Structures

Every game will have a container for game objects. Simple games can use a list structure,

but more complicated games will need something more flexible and optimized for quick local
searching or streaming. Your game engine must be able to traverse the object data

structures quickly to change an object‘s state, and yet it must be able to hold a flexible
array of properties for each object. These two requirements are frequently at odds with

each other; one is quick to search, the other is easy to extend.

Ultima used a simple two-dimensional array of object lists. It was easy to find objects within
a given range of a map location, and each grid square was small enough to have a quickly

traversable list of objects. Thief: Deadly Shadows, on the other hand, used a simple list of

objects, but it was heavily tangled by internal pointers. If two objects needed to know about
each other, such as an elevator button and the elevator door, they were linked by the game

editor. This solution actually worked quite well and is commonly used.

Object properties, such as hit points, engine horsepower, and wacky things like that, tend
to be stored in custom data structures whose efficiency can be anything from fantastic to

dismal. Ultima Online used text strings to define properties on objects, which had the
benefit of easy and flexible development at some cost in memory storage. Thief: Deadly

Shadows had an extremely complicated property system that was actually object oriented;
you could define object properties for an archetype, like a barrel, but overload existing

properties or even create totally new ones for a particular barrel that was placed only once
in the game universe. The system was memory efficient since it never copied property data,

but it ran at some extra cost in CPU time because the property system was essentially a

tree structure. There are trade-offs no matter how you do it.

It‘s easy to confuse the game logic representation of an object with the visual

representation of an object. The game logic holds the object state, such as the amount of

damage an object has—probably stored in an integer. The visual representation, managed
by the game view, holds model data and textures that convey the state visually to the

player, such as a bloody arm stump. A bloody arm stump texture is completely different

from m_damage = 30.

You might feel that it would be better to store all of these things in a single C++ object—

how much damage had been done and whether the arm texture is healthy or bloody. You‘d
be wrong. In this architecture, there are two C++ objects—one belongs to the game logic,

and is usually called an actor. The other belongs to the renderer, and is called a textured
skeletal mesh. When the game actor changes, the game logic broadcasts an event. The

renderer reacts to this event by changing the texture. More on this later.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

I wish I had more time in this book to exhaustively go over game data structures, but to be

honest, they are extremely custom and are finely tuned to suit the requirements of a
particular game. My suggestion to you is to make sure that you have an excellent

knowledge of classic data structures such as linked lists, hash lists, trees, B-trees, and all
those other things you learn in classic data structures texts. Games absolutely use these

structures, or perhaps abuse them, to get the results they need.

Physics and Collision

Physics falls under the general category of ―rules of your game universe,‖ and is solidly a
member of your game logic. It defines everything from how objects move when they fall

under gravity to what they do when they tumble around.

You certainly don‘t need a complicated physics system to have a fun game, but you can bet
your bottom dollar that a bad physics system will completely remove the fun from any

game. There‘s a great game concept that says that when something is completely abstract,
it‘s easy to ignore unrealistic representations of things. When you inject reality into a game,

even small errors create complaints from your players. You can prove this to yourself by
looking at the movements of a stick figure on one of those Flash games on the Internet, and

compare it to the best human animations in a game like Gears of War. You‘ll forgive the
stick figure for moving in weird ways because it is so abstract, but you‘ll be upset with the

Gears character for the smallest mistake in shoulder animation—(one of the hardest things

to animate by the way) because the character looks so realistic.

This concept has to do with human psychology and how we observe things. It comes into

serious play when you create any game technology that approaches reality, as physics

systems do. You‘ll spend a staggering amount of time making the tiniest tweaks to your
system to remove the smallest movement problems because the smallest mistake in reality

is glaring.

Events

When the game logic makes changes in the game state, such as creating or moving an

object, a number of game systems will respond. Here‘s an example. Imagine that one

object in your game is a portable radio. The graphics system will need to create polygons
and textures so you can see the radio. The sound system will create a sound effect so your

radio will play some great music—perhaps a little Jimi Hendrix. AI processes might respond
to the presence of the object. In this case, they might just chill out and enjoy the sublime

guitar from our boy Jimi. All three of these subsystems—the graphics system, the audio
system, and even the AI system—need to know that this radio exists and what it is doing.

These systems are notified through events. Just like a Windows application hears about a

WM_MOUSEMOVE event, your game systems can listen and react to a game event for

practically any change in game state or input from a player. There are also global game

events, such as events to inform subsystems that a new level has been loaded or the game
is being saved.

Many games create an event system that defines these events and the data that

accompanies them. Different subsystems register with the event manager to listen for
events that they‘ll react to. A good example of this is the sound system; it might register to

listen for object collision events so that it can play the appropriate sound effect when two
objects are smashed together.

Event-based architectures tend to make your game system clean and efficient. Instead of

making API calls to four or five subsystems when an object collision is detected, the code
simply sends an event to the event manager, and all the subsystems that registered to

receive event notifications of this type will get notified in turn.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The event code is the glue that holds this entire game architecture together. The application

layer holds the event registry, subsystems register to listen to events they care about, and
other subsystems send events as needed. These events get sent to only the subsystems

that have subscribed to them.

Chapter 10, ―Game Event Management,‖ will dig into this system and show you how it
works.

Process Manager

Any simulation of a game world is usually composed of discrete bits of very simple code,
such as a bit of code to move an object along a linear path or parse a Lua script. These bits

of code can be combined to act on a single game object, which will have the effect of

combining these state changes. These bits of code are usually organized into classes, and
they can be instantiated for any game object. If you were to create a ―move along this

path‖ class and a ―run Lua script‖ class, and instantiated them both on one object, you‘d
create an interesting and complicated interaction from two simple pieces of code.

This is the heart of another important game subsystem: the process manager. It keeps a

list of processes and gives each one a little CPU time by calling it once every game loop. A
great example of this is a pathfind process. It acts to move an object from one place to

another and when the destination is reached, it simply terminates and ceases acting on the
object.

Learning Our Lessons From Ultima VII

After Ultima VII, all of the programmers met in the courtyard
of Origin Systems with a plan to redesign the Ultima

technology for Ultima VIII. We had a nice sunny day, a
whiteboard, and real motivation to make a much better

system. We realized that any code that operated on an
object or group of objects for a period of time could be

encapsulated in a cooperative process, and it could even be

responsible for its own lifetime. When its job was done, it
would kill itself off. The best thing of all was that the entire

thing could be managed from a single class that contained a
list of every running process. This technology eventually

evolved to become almost as useful and complex as a simple
operating system, managing both cooperative and real-time

processes.

On Ultima, we found it very useful to allow processes to have dependencies on one another,

where one process would wait for another to complete before starting. A good example of
this is something you might use for a Molotov cocktail: one process tracks the parabolic

movement of any game object until it collides with something, and another process
manages a fireball explosion. Your game can string these processes together to create some

amazingly cool effects.

You‘ll learn more about this system in Chapter 6, ―Controlling the Main Loop.‖

Command Interpreter

A game logic needs to respond to external commands. For a human playing a racing game,
these commands will send input to the game logic‘s representation of the car: acceleration,

braking, and steering. An AI process will do exactly the same thing. External entities, such

../../ch10#ch10
../../ch06#ch06
http://lib.ommolketab.ir
http//lib.ommolketab.ir

as a human holding a gamepad or an AI process using a command-based interface, can

communicate to the game logic with exactly the same commands.

You might ask why this is necessary. In any racing game, there should be someplace in the

code that says something like ―If button A is down, set emergency brake‖ or something like

that. I know it seems like a lot of extra work, but that breaks the separation between game
logic and game views that I have found to be so important when creating games.

What should happen is this: The game view presents an interface to the human player that

changes the ―Button A is pressed‖ state into a game command, ―Set Emergency Brake.‖
That game command is then sent to the game logic, but here‘s the rub: the code that

actually sets the emergency brake state on the data structure representing the car is
actually in the game logic. This code only sets the emergency brake in response to a

command—not through a direct tweak to the m_bIsEmergencyBrakeOn member of a

class somewhere.

I can hear you whining about this, and I‘m not even sitting near you. Let me try to show

you how cool this is before you call me a complete freak.

If your game logic can accept commands through an event-based interface instead of direct
API calls to game logic classes, you can create a programming language for your own game,

just like you see in so many games that have heavy mod hooks like Unreal and Doom. The
command interpreter you use for your game will probably have an ultra efficient low level,

but there‘s nothing keeping you from coding a higher level interface that accepts console

input. Then you could actually type ―SET CAR 2 EMERGENCY BRAKE‖ or something like that,
and guess what will happen? Car two will lock up the tires and go spinning out of control, all

at your command.

Unreal’s Command Console

Ion Storm‘s core code base was basically Unreal Warfare, a
modified version of Unreal 2, and thus had an amazing

console command system that could be used to control

almost anything. You could do almost anything: add or
remove properties, move them, make Als blind, deaf, dumb,

or even all three. The console system could even take input
from a file, creating a weird meta-programming language for

our game. Believe me it was nice to have—because even if
your game doesn‘t have a rigorous separation between game

logic and game view, you can still create a command
interpreter that provides a very low-level way to tweak your

game while it is running.

Game View for the Human Player

A game view is a collection of systems that communicates with the game logic to present

the game to a particular kind of observer. This observer can be a human being with a
controller of some kind like a keyboard or a dance pad, but it can also be an AI agent,

whose view of the game state will determine the AI process‘s next course of action.

The game view for a human being has a lot of work to do (see Figure 2.4). It must respond
to game events and figure out how to draw the scene, send output to the speakers,

translate controller input into game commands, and more. Let‘s look at the main areas.

javascript:moveTo('ch02fig04');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Figure 2.4. Subsystems that create a game view for a human player.

Graphics Display

The display renders the objects that make up a game scene, the user interface layer on top
of the scene, and perhaps even streaming video. The renderer should draw the screen as

fast as it possibly can. The display is one of the biggest suckers of CPU budget in a game,
and should therefore scale well with the capabilities of a wide range of CPUs and GPUs

(graphics processing unit). For PC games, it should also perform well under different
hardware configurations. Generally, lower-end CPUs will cut expensive features, such as full

screen effects, in order to run at the best frame rate they can.

Video cards will draw all the polygons you stuff into the GPU, even if it takes them forever.
Forever, by the way, is defined as anything more than 50ms, giving you a frame rate of

20fps. The real problem a 3D engine has is choosing which polygons to draw to make the

most compelling scene.

Consider the problem of a flight simulator like Microsoft Flight Simulator X. When the plane

is on the ground, the display looks a lot like every other 3D game out there. You see a few

buildings, a few other planes, and a runway. You might also see some scenery in the
distance like a mountain range or a city skyline (see Figure 2.5).

Figure 2.5. Microsoft Flight Simulator X.

Once the plane is up in the air, you have a different story altogether. You‘ve increased the

viewable surface by a few orders of magnitude, and therefore you‘ve increased the potential
viewable set of polygons. Players who attempt a naive approach of simply drawing all the

polygons will learn quickly that they can‘t get their plane more than 150 feet off the ground.
The frame rate will fall in inverse geometric proportion to the altitude of the plane, because

that‘s how many more polygons you have to draw to achieve a realistic look.

javascript:moveTo('ch02fig05');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

The actual approach to this problem uses different levels of detail to draw areas of terrain

and objects, depending on their distance from the viewer. On some flight simulators, you
can catch this happening. Simply begin a slow descent and watch as the terrain suddenly

becomes better looking; the green patches will increase in detail and eventually become
individual trees until you crash into them. One of the trickier parts of most 3D engines is

getting the levels of detail to transition smoothly, avoiding the ―popping‖ effect.

Another problem is avoiding overdraw. If your game is in a complex interior environment or
deep in the concrete canyons of New York City, you‘ll achieve the fastest frame rate if you

only draw the polygons that you can see. Again the naive approach is to simply draw all of
the polygons in the view frustum, omitting any that are facing away from the camera. This

solution will most likely result in a disastrous frame rate in certain areas but not others,
even if the camera is pointed straight at an interior wall. When the game is bogging down

like this, it is drawing an enormous number of polygons behind the wall, only to be covered

up by the bigger polygons close to the camera. What a waste!

You‘ll need some advanced tools to help you analyze your level and calculate what areas

can be seen given a particular viewing location. Umbra Software has technologies to do this

either offline or on the fly, but many games can use a simple portal technique. Competitive
games are all pushing the envelope for the illusion of extremely complicated worlds. The

trick is to create these worlds so that your environments behave well with whatever culling
technique is best for your renderer. Add to that mix of technology some nice levels of detail,

and you can get a game that looks good when objects are close up or far away.

Since 3D engines are only capable of drawing so much scenery per frame, an amazing
amount of effort must go into creating the right level of design. Any environment that is too

dense must be fixed, or the frame rate will suffer along with your reviews.

Your Artists Need to Know What Your Engine
Can Do

The most common mistake made on 3D games is not

communicating with the artists about what the graphics
engine can and can‘t do. Remember that the world

environment is just a backdrop, and you‘ll still need to add
interactive objects, characters, special effects, and a little bit

of user interface before you can call it a day. All these things,
especially the characters, will drag your performance into the

ground if the background art is too aggressive. Try to

establish CPU budgets for drawing the background, objects,
characters, and special effects early on and hold your

environment artists and level designers to it like glue.
Measure the CPU time spent preparing and rendering these

objects and display it for all to see.

Audio

Audio is one of my favorite areas of game development, and I‘ve been lucky enough to work
with some of the best audio engineers and composers in the business. Game audio can

generally be split up into three major areas: sound effects, music, and speech.

Sound effects are pretty easy things to get running in a game. You simply load a WAV file
and send it into DirectX with volume and looping parameters. Almost every sound system is

capable of simulating the 3D position of the object relative to the listener. You just provide

the position of the object, and the 3D sound system will do the rest.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Music can be really easy or really hard. Technically, it‘s not really different from sound

effects, unless you want to get into complicated mixing of different tunes to reflect what‘s
going on in the game. Anyone who‘s played Halo knows how effective this can be; the

distinctive combat music tells you you‘d better reload your shotgun.

Speech is much trickier—not just technically, but keeping track of all the bits and pieces
recorded in the studio and matching them with a 3D lip-synched character. This usually

involves anything from a total hack, to a carefully hand-tweaked database of mouth
positions for each speech file, to a tool that can automatically generate this data.

You‘ll see a good introduction to game audio in Chapter 12, ―Game Audio.‖

User Interface Presentation

The user interface for a game doesn‘t look like the standard Windows GDI. Game interfaces
have a creative flair, and they should. This means that the user interface code needs to be

baked fresh every time, especially since every health meter and HUD is different for every

game.

The irony of this is that games still need things like a button control, so players can easily

click ―OK‖ for whatever thing the game is asking about. These controls aren‘t hard to write,

but if you‘re like me, you hate rewriting something that already exists and is well
understood by both coders and players. You‘ll probably roll your own, and hopefully keep

that code around from game to game so you won‘t have to rewrite it ever again. Another
option is licensing ScaleForm GFx, which lets your artists create your entire UI in Flash and

import the results directly into your game.

I‘ll cover these topics more in Chapter 9, ―User Interface Programming.‖

Process Manager

Having a little déjà vu? You aren‘t crazy, because you saw this same heading under the

game logic group just a few pages back. It turns out that game views can use their own

process manager to handle everything from button animations to streaming audio and
video. Keep this in the back of your mind as you read about the process manager in Chapter

6. You‘ll use it all over your game.

Options

Most games have some user-configurable options like sound effects volume, whether your

controls are Y-inverted or not, and whether you like to run your game in 4:3 or in 16:9

widescreen. These options are useful to stick in something simple like an INI file so that
anyone can easily tweak it, especially during development.

Multiplayer Games

One thing you might not have considered—this event-based, logic/view architecture makes
it simple to have a multiplayer game. All you need to do is attach more human views to the

same game logic. Okay, I‘ll come clean. It‘s a little more trouble than that because each

view needs to share what is likely a single display from the application layer, figure out how
to iterate the additional controls, and so on. That stuff is fairly easy compared to getting the

overall architecture built to support multiple players, especially if it wasn‘t designed to do so
from the very beginning.

Game Views for AI Agents

../../ch12#ch12
../../ch09#ch09
../../ch06#ch06
../../ch06#ch06
../../ch06#ch06
http://lib.ommolketab.ir
http//lib.ommolketab.ir

A great argument for the harsh breakdown between game logic and game views is that

humans and AI processes can interact with the game logic through exactly the same event-
based interface. An AI agent‘s view of a game generally has the components shown in

Figure 2.6.

Figure 2.6. An AI agent’s view of the game.

The stimulus interpreter receives the exact same events that all other game views receive:

object movement, collisions, and so on. It‘s up to the AI programmer to determine how the
AI will react to each event the AI agent receives. It would be easy enough for an AI process

to ignore certain events or react to events that are filtered by the human view, and this
would certainly affect what the AI process would do.

For example, AI agents might react to sound effects, which are the result of game events

such as objects colliding, footsteps, or noisy objects like radios being activated. If an AI is
supposed to be deaf, it merely filters the sound events. If an AI is supposed to be blind, it

filters any event about the visible state of an object. You can set the nature of an AI agent‘s
behavior completely by controlling what stimuli the AI agent receives.

The second part of an AI view is the decision system. This is a completely custom written

subsystem that translates stimuli into actions. Your AI agent might be able to send
commands into the game your human can‘t, giving them extra abilities such as opening

locked doors. The reverse is also true, and the combination of AI stimulus filters and
command sets can have a great effect on how smart your AI agents are.

If your AI needs to solve difficult problems, such as how to navigate a complicated

environment or make the next move in a chess match, then you might need a process
manager just as in the game logic and game view. You might use this to have AI spread its

evaluation of stimuli and decisions over time, amortizing the cost of these expensive

calculations over many frames.

Finally, you‘ll certainly want a list of AI options that you can tweak through a simple text

file. The stimulus filter and decision set options are certainly enough to warrant a large

options file, but more importantly, your AI options can be extremely useful for AI tuning
during development. Even if you eventually hard code the AI parameters, you‘ll certainly

want an instantly ―tweakable‖ version while your game is in development.

Networked Game Architecture

If you implement the game architecture that I‘ve been beating you with since the beginning
of this chapter, you can write two additional classes and transform your single player game

into a networked, multiplayer game. That might seem like an insane boast, but it is

javascript:moveTo('ch02fig06');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

completely true. Look at Figure 2.7 to get another look at how game views interact with the

game logic.

Figure 2.7. Client/server networked game architecture.

You‘ll see the same game logic/game view architecture, but there is a new implementation
of the game logic and a new implementation of the game view. Both are needed to create

remote versions of their single player brethren.

Remote Game View

On the server machine, the remote player should appear just like an AI agent. The remote
view receives game events from the game logic and responds with commands back to the

game logic. What happens inside the remote view is completely different from the AI agent
view or the human view.

Game events received from the game logic are packaged up and sent via TCP or UDP to a

client computer across the network. Since game events on a local machine can be
somewhat bloated, there should be some processing of the event data before it is sent out.

First, redundant messages should be removed from the message stream. It makes no sense
to send two object move events when the only one that matters is the last one. Second,

multiple events should be sent together as one packet. If the packet is large enough, it

should be compressed to save bandwidth.

The remote game view also receives IP traffic from the remote machine, namely the game

commands that result from the controller input. One difference in the remote game view is

that it should never trust this command data entirely. The game logic should be smart
enough to do some sanity checking on impossible commands, but the remote view can take

a front-line approach and attempt to short-circuit any hacking attempts, such as detecting
badly formed packets or packets that come in with an unusual frequency. Once the game

commands have gone through some kind of anti-hacking filter, they are sent on to the
game logic.

Remote Game Logic

In this model, the game logic is an authoritative server; its game state is the final word on

what is happening in the game. Of course, the client machines need a copy of the game
state and a way to manage delays in Internet traffic. This is the job of the remote game

logic.

The remote game logic is quite similar to the authoritative game logic. It contains
everything it needs to simulate the game, even code that can simulate decisions when it

must. It has two components that the authoritative game logic doesn‘t have: something to
predict authoritative decisions, and something to handle corrections in those decisions. This

is easier to see with a concrete example.

javascript:moveTo('ch02fig07');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Imagine playing Halo, and imagine you are about to shoot an RPG at your best friend. If

your friend is playing over the Internet and has a bad lag, your friend‘s machine might not
get the message that you fired the RPG until a few hundred milliseconds after you fired it. If

you could watch both screens at the same time, you‘d see your RPG rocketing over to blow
up your friend, but your friend wouldn‘t see anything at all, for just a short time.

Some 500ms later, your friend‘s machine gets the message that you fired an RPG. Since

there was no way to predict this message, it must show the fired RPG, but begin to move
the rocket fast enough to ―catch up‖ to the rocket on the authoritative server, or host.

That‘s why playing shooter games is impossible when you have bad lag and you‘re not

running the host! That‘s also why no one will play with you when you run the host over a
slow connection, because it gives you an unfair advantage. The remote machines simply

don‘t get the messages fast enough.

What this means to the remote game logic is that it has to make corrections in its game
state, perhaps breaking the ―rules‖ in order to get things back in sync. In the previous

example, the rule that had to be bent a bit was the acceleration and speed of an RPG. If
you‘ve ever seen an RPG turn a corner and kill you dead, you‘ve experienced this firsthand.

Other than that, the remote game logic interacts with the game view in pretty much exactly

the same way as the authoritative view; it sends the game view events and changes in
game state, and accepts game commands from the view. Those commands are then

packaged and forwarded on to the server machine, specifically the remote game view
mentioned in the previous section.

You Need Multiplayer? Give Me a Few Hours...

We designed our last card game for Microsoft using a
rigorous implementation of the game logic/game view

system. When we started working on the game, Microsoft
wanted us to code it such that we could create a multiplayer

version of the game in as short a time as possible. Believe

me, it wasn‘t easy, and all the programmers had to take
some time to learn how to deal with this very different

architecture. After we shipped the project, I was curious how
well we‘d done in creating something that was multiplayer-

aware, even though we‘d never actually used the feature.
One of our programmers spent about two days and had our

card game playing over the Internet. If that‘s not proof, I
don‘t know what is.

Do I Have to Use DirectX?

If your platform of choice is the PC, you have to consider whether to use DirectX in your

game or try an alternative API for graphics, sound, and input.

Just to be perfectly clear, this section has nothing to do with how to draw a shaded polygon
under Direct3D. This section is going to enlighten you about why you would choose

something like OpenGL over Direct3D. Believe it or not, the choice isn‘t clear-cut no matter

what your religious beliefs.

All Roads Lead to Rome

http://lib.ommolketab.ir
http//lib.ommolketab.ir

It’s not possible for me to be more tired of the religious nature of the

OpenGL/DirectX debate. Any good programmer should understand

what’s under the hood of every API if you have to make a choice
between them. Disregarding DirectX simply because Microsoft made it

is asinine.

Design Philosophy of DirectX

DirectX was designed to sit between the application and the hardware. If the hardware was

capable of performing an action itself, DirectX would call the driver and be done with it. If
the hardware wasn‘t there, DirectX would emulate the call in software. Clearly, that would

be much slower.

One thing that was gained by this design philosophy was a single API for every hardware
combination that supported DirectX. Back in the old days (that would be the early 1990s),

programmers weren‘t so lucky. A great example was all the work that needed to be done for
sound systems. Origin supported Adlib, Roland, and SoundBlaster with separate bits of

code. Graphics were similar; the old EGA graphics standard was completely different than

Hercules. What a pain!

Of course, DirectX isn‘t the simplest API to learn. COM is a weird thing to look at if you

aren‘t used to it. It also seems weird to have 50 lines of code to initialize a 3D rendering

surface when OpenGL does it so much easier. Herein lies one basis for religious argument:
old-time C versus newfangled COM. Get over it long enough to understand it.

DirectX exposes a lot more about what the hardware is capable of doing. Those CAPS bits

can tell you if your video card can support nothing, hardware transform and lighting (T&L),
or the latest shaders. Perhaps that means you‘ll load up denser geometry or simply bring up

a dialog box telling some loser that he needs a better video card. Your customer service
people will thank you if you decide to leave the word ―loser‖ out of the error message.

Direct3D or OpenGL

I‘m not going to preach to you about why DirectX is unusable and why OpenGL is God‘s gift.

Instead, I hope to give you enough knowledge about how and why you would judge one
against the other with the goal of making the best choice for your game, your team, and the

good people that will throw money at you to play your latest game. I‘m sure to get lovely
emails about this section. Bring it on. I‘m going to take a weirder tack on this argument

anyway. Both APIs will get you a nice-looking game. There are plenty of middleware
rendering engines that support both. What does that tell you? It tells me that while there

may be interesting bits and pieces here and there that are unique, the basic job of pushing
triangles to the video card is essentially equivalent.

You don‘t have control over the quality of the driver. I‘m sure we could find OpenGL drivers

that suck, and we can certainly find Direct3D drivers that never should have seen the light
of day. Given that unfortunate reality, you should choose the API that has the best drivers

for all the people who will play your game.

If you have a hard-core title like Half Life 2, you‘re pretty safe in choosing OpenGL, since
the drivers for high-end cards tend to have a high quality. Of course, the Direct3D drivers

for these same cards are going to be equally good, since they‘re high-end cards after all.

Your choice gets murkier if your game has a wider appeal and perhaps runs on older
machines. It‘s a safe bet that there are more video cards out there that have Direct3D

http://lib.ommolketab.ir
http//lib.ommolketab.ir

drivers than OpenGL drivers, and that on the low-end cards the Direct3D drivers are going

to be better.

Why is this true? The video card companies making low-end cards had to make a choice,

too, and allocate resources to write drivers. They generally chose Direct3D first and got that

driver out the door and on the install disk. The OpenGL driver might come later on the Web
site, if they had time and resources to do it. Again, this points to the fact that a hard-core

audience will likely have OpenGL drivers on a rocking video card, because they sought it
out.

The mass market went where they were told: Direct3D. I guess that‘s where you should go,

too, if you are doing a game with mass-market appeal. Hard-core games can make
whatever choice they like.

DirectSound or What?

For years, I never looked farther than RAD Game Tools, Inc. for sound and video

technology. The Miles Sound System includes full source code, has a flat license fee, and
works on every platform in existence today. The Bink Video tools are cross platform and

support all the latest consoles, Win32, and Macintosh. Check out the latest at
www.radgametools.com. It doesn‘t hurt that RAD has been in business since 1988 and has

licensed their technology for thousands of games. They are probably the most used
middleware company in the industry.

Miles can use DirectSound as a lower layer. This is quite convenient if you want to do some

odd thing that Miles can‘t. One nail in the coffin for DirectSound is that it doesn‘t include the
ability to decode MP3 files. Part of your license fee for Miles pays for a license to decode

MP3s, which are a fantastic alternative to storing bloated WAV files or weird-sounding
MIDIs. You could use OGG files, which are completely open source and unencumbered by an

expensive license—in fact, the audio chapter shows you how to do this. There is one great

thing Miles gets you—and that‘s streaming. You don‘t have to load the entire sound file in
memory at once if you don‘t want to, and believe me, Miles makes this easy. Bottom line,

do yourself a favor and get Miles for your game.

Other audio technologies, like FMod or WWise, take playing sound buffers to the next step
and allow tighter control over sound in your game: how sounds are mixed, which sounds

have higher priority, and what tunable parameters your game can tweak to make different
effects in real time. WWise is more expensive than Miles, but is more capable. FMod is a

good choice since it is free for noncommercial software development.

DirectInput or Roll Your Own

DirectInput encapsulates the translation of hardware-generated messages to something
your game can use directly. This mapping isn‘t exactly rocket science, and most

programmers can code the most used portions of DirectInput with their eyes closed. The
weirder input devices, like the force feedback joysticks that look like an implement of

torture, plug right into DirectInput. DirectInput also abstracts the device so that you can
write one body of code for your game, whether or not your players have the weirdest

joystick on the block.

Other Bits and Pieces

There are tons of other bits and pieces to coding games, many of which you‘ll discover
throughout this book. These things defy classification, but they are every bit as important to

games as a good random number generator.

../../default5.htm
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Beyond that, you‘ll find some things important to game coding such as how to convince

Microsoft Windows to become a good platform for your game—a more difficult task than
you‘d think. Microsoft makes almost all of its income from the sales of business software

like Microsoft Office, and the operating system reflects that. Sure, DirectX is supposed to be
the hard-core interface for game coders, but you‘ll find that it‘s something of a black sheep

even within Microsoft. Don‘t get me wrong, it works and works surprisingly well, but you
can‘t ever forget that you are forcing a primarily business software platform to become a

game platform, and sometimes you‘ll run into dead-ends.

Debugging games is much more difficult than other software, mostly because there‘s a lot
going on in real time, and there are gigabytes of data files that can harbor nasty bugs.

Combine that with the menagerie of game hardware like video cards, audio cards, user
input devices, and even operating systems, and it‘s a wonder that games work as well as

they do. It‘s no secret that games are considered to be the most unstable software on the

market, and it reflects the difficulty of the problem.

Now that you know what‘s in a game, let‘s discuss how game code needs a certain style.

Further Reading

Design Patterns: Elements of Reusable Object-Oriented Software, Erich Gamma, Richard

Helm, and Ralph E. Johnson

Antipatterns: Refactoring Software, Architectures, and Projects in Crisis, William J. Brown,
Raphael C. Malveau, and Thomas J. Mowbray

Modern C++ Design: Generic Programming and Design Patterns Applied, Andrei

Alexandrescu

Chapter 3. Coding Tidbits and Style That Will Save You

In This Chapter

 Smart Design Practices

 Smart Pointers and Naked Pointers

 Using Memory Correctly

 Mike‘s Grab Bag of Useful Stuff

 Developing the Style That‘s Right for You

 Further Reading

When you pick up a game programming book, the last thing you probably want to do is
read about programming style and coding techniques. You want to dive right in and learn

how to code 3D graphics or AI. As cool as that stuff is, I want to show you some useful

things you‘ll use throughout your entire code base. I‘ll also show you some things to avoid
in your code—much of which is geared toward working with other programmers. Your code

should communicate clearly to other programmers at every opportunity. Something I‘ve

../../ch03lev1sec1#ch03lev1sec1
../../ch03lev1sec2#ch03lev1sec2
../../ch03lev1sec3#ch03lev1sec3
../../ch03lev1sec4#ch03lev1sec4
../../ch03lev1sec5#ch03lev1sec5
../../ch02lev1sec10#ch02lev1sec10
http://lib.ommolketab.ir
http//lib.ommolketab.ir

learned over the years is that the distance between exuberance and experience is paved

with mistakes. If you can avoid a few of those mistakes, you‘ll be a happier programmer.

In the first edition of this book, this chapter was called ―Dumb Stuff All Game Programmers

Should Know.‖ It turned out that this stuff wasn‘t so dumb or obvious. My goal in this

chapter is to set the foundation for the coding techniques that I‘ll be presenting throughout
this book. I‘ve developed this style over the years watching really smart people, and it

worked for me so I‘ve kept it around.

As you read this chapter, keep in mind that when it comes to programming style, every
programmer can be very different. For example, the techniques you use to program games

on a PC platform, where you have more robust tools and plenty of memory to work with,
might be different from the techniques you use to program on a platform such as the PS3.

Using C, C++, or C# also makes a huge difference in style. In other words, not every
problem has a single solution and no single style fits all situations. Also, every programmer

and programming team is different. They‘ll sometimes never agree on even trivial things. I
don‘t expect you‘ll agree with everything I present in this chapter, nor this book.

Let me put it this way. If you find something you really hate, it means you have opinions

different than mine, and you‘ve formed those opinions through firsthand experience. That‘s
great! It means you‘re a programmer, and you and I can debate endlessly on the Web

about the best way to do things. Just remember, neither of us is wrong—just different and

opinionated.

We‘ll start by looking at design practices that you should consider when writing a game, and

then we‘ll move on and look at specific programming techniques such as working with

pointers, memory management, how to avoid memory leaks, and other goodies. In the last
part of this chapter, I‘ll provide you with a few coding tools taken from my own personal

toolbox.

Smart Design Practices

Isaac Asimov‘s Foundation series invented an interesting discipline called psycho-history, a

social science that could predict societal trends and macro events with great certainty. Each
historian in the story was required to contribute new formulas and extend the science. As a

programmer, your job is similar. Every new module or class that you create gives you the
opportunity to extend the capabilities and usefulness of the code base. But to do this

effectively, you must learn how to think ahead and design code with the goal of keeping it
in use for many projects and many years.

Designing good code in an object-oriented language can be more difficult than in a

procedural language like C or PASCAL. Why? The power and flexibility of an object-oriented
language like C++, for example, allows you to create extremely complicated systems that

appear quite simple. This is both good and bad; it‘s easy to get yourself into trouble without
realizing it. A great example of this is the C++ constructor. Some programmers create code

in a constructor that can fail—maybe they tried to read data from an initialization file and

the file doesn‘t exist. A failed constructor doesn‘t return any kind of error code, so the badly
constructed object still exists and might get used again. While you can use structured

exception handling to catch a failure in a constructor, it is a much better practice to write
constructors that can‘t fail. Another example is the misuse of virtual functions. For example,

a naive programmer might make every method in the class virtual, thinking that future
expandability for everything is good. Well, he‘d be wrong. On some platforms, virtual

functions can be very expensive. A well thought through design is more important than
blind application of object-oriented programming constructs.

You can make your work much more efficient by improving how you design your software.

With a few keystrokes, you can create interesting adaptations of existing systems. There‘s

http://lib.ommolketab.ir
http//lib.ommolketab.ir

nothing like having such command and control over a body of code. It makes you more

artist than programmer.

A different programmer might view your masterpiece entirely differently, however. For

example, intricate relationships inside a class hierarchy could be difficult or impossible to

understand without your personal guidance. Documentation, usually written in haste, is
almost always inadequate or even misleading.

To help you avoid some of the common design practice pitfalls, I‘m going to spend some

time in this chapter up-front discussing how you can do the following:

 Avoid hidden code that performs nontrivial operations.

 Keep your class hierarchies as flat as possible.

 Be aware of the difference between inheritance and containment.

 Avoid abusing virtual functions.

 Use interface classes and factories.

 Use streams in addition to constructors to initialize objects.

Avoiding Hidden Code and Nontrivial Operations

Copy constructors, operator overloads, and destructors are all party to the ―nasty‖ hidden

code problems that plague game developers. This kind of code can cause you a lot of

problems when you least expect them. The best example is a destructor because you never
actually call it explicitly. It is called when the memory for an object is being deallocated or

the object goes out of scope. If you do something really crazy in a destructor, like attach it
to a remote computer and download a few megabytes of MP3 files, your teammates are

going have you drawn and quartered.

My advice is that you should try to avoid copy constructors and operator overloads that
perform nontrivial operations. If something looks simple, it should be simple and not

something deceptive. For example, most programmers would assume that if they
encountered some code that contained a simple equals sign or multiplication symbol that it

would not invoke a complicated formula—like a Taylor series. They would assume that the
code under the hood would be as straightforward as it looked—a basic assignment or

calculation between similar data types like floats or doubles.

Game programmers love playing with neat technology, and sometimes their sense of
elegance drives them to push nontrivial algorithms and calculations into C++ constructs,

such as copy constructors or overloaded operators. They like it because the high level code

performs complicated actions in a few lines of code, and on the surface, it seems like the
right design choice. Don‘t be fooled.

Any operation with some meat to it should be called explicitly. This might annoy your sense

of cleanliness if you are the kind of programmer that likes to use C++ constructs at each
and every opportunity. Of course, there are exceptions. One is when every operation on a

particular class is comparatively expensive, such as a 4×4 matrix class. Overloaded
operators are perfectly fine for classes like this because the clarity of the resulting code is

especially important and useful.

Sometimes, you want to go a step further and make copy constructors and assignment
operators private, which keeps programmers from assuming the object can be duplicated in

the system. You can use the Boost noncopyable class to achieve this. Just inherit from it,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

and your class will be protected. A good example of this is an object in your resource cache,

such as an ambient sound track that could be tens of megabytes. You clearly want to
disable making blind copies of this thing, because an unwary programmer might believe all

he‘s doing is copying a tiny sound buffer.

A recurring theme I‘ll present throughout this book is that you should always try to avoid
surprises. Most programmers don‘t like surprises because most surprises are bad ones.

Don‘t add to the problem by tucking some crazy piece of code away in a destructor or
similar mechanism.

Class Hierarchies: Keep Them Flat

One of the most common mistakes game programmers make is that they either over-design

or under-design their classes and class hierarchies. Getting your class structure well
designed for your particular needs takes real practice.

We created so many classes in Ultima VII that we ran out of good names to use. The

compiler was so taxed by the end of the project that we couldn‘t add any more variables to
the namespace or risk crashing the compiler. We were forced to use global variables to

store more than one piece of data by encoding it in the high and low words rather than
creating two new variables. By the end of the project, I was terrified of adding any new

code, because the compiler would most likely crash.

Everything in Moderation

My first project at Origin developed with C++ was Ultima VII.

This project turned out to be a poster child for insane C++. I
was so impressed by the power of constructors, virtual

functions, inheritance, and everything else that once I got
the basics down I went nuts and made sure to use at least

three C++ constructs on every line of code. What a horrible
mistake! Some Ultima VII classes were seven or eight levels

of inheritance deep. Some classes added only one data

member to the parent—our impotent attempt at extending
base classes.

On the opposite end of the spectrum, a common problem found in C++ programs is the

Blob class, as described in the excellent book Antipatterns by Brown et al. This is a class

that has a little bit of everything in it, and comes from the reluctance on the programmer‘s

part to make new, tightly focused classes. In the source code that accompanies this book,

the GameCodeApp class is probably the one that comes closest to this, but if you study it a

bit you can find some easy ways to factor it.

When I was working on Ultima VII, we actually had a class called KitchenSink and sure

enough it had a little bit of everything. I‘ll admit to creating such a class on one of the
Microsoft Casino projects; it would have made intelligent programmers sick to their

stomachs. My class was supposed to encapsulate the data and methods of a screen, but it

ended up looking a little like MFC‘s old CWnd class. It was huge, unwieldy, and simply threw

everything into one gigantic bucket of semicolons and braces.

I try always to use a flat class hierarchy. Whenever possible, it starts with an interface class
and has at most two or three levels of inheritance. This class design is usually much easier

to work with and understand. Any change in the base class propagates to a smaller number

of child classes, and the entire architecture is something normal humans can follow.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Try to learn from my mistakes. Good class architecture is not like a Swiss Army Knife; it

should be more like a well-balanced throwing knife.

Inheritance Versus Containment

Game programmers love to debate the topics of inheritance and containment. Inheritance is

used when an object is evolved from another object, or when a child object is a version of
the parent object. Containment is used when an object is composed of multiple discrete

components, or when an aggregate object has a version of the contained object.

A good example of this relationship is found in user interface code. A screen class might
have the methods and data to contain multiple controls such as buttons or check boxes. The

classes that implement buttons and check boxes probably inherit from a base control class.

When you make a choice about inheritance or containment, your goal is to communicate the
right message to other programmers. The resulting assembly code is almost exactly the

same, barring the oddities of virtual function tables. This means that the CPU doesn‘t give a

damn if you inherit or contain. Your fellow programmers will care, so try to be careful and
clear.

Virtual Functions Gone Bad

Virtual functions are powerful creatures that are often abused. Programmers often create
virtual functions when they don‘t need them, or they create long chains of overloaded

virtual functions that make it difficult to maintain base classes. I did this for a while when I

first learned how to program with C++.

Take a look at MFC‘s class hierarchy. Most of the classes in the hierarchy contain virtual

functions, which are overloaded by inherited classes or by new classes created by

application programmers. Imagine for a moment the massive effort involved if some
assumptions at the top of the hierarchy were changed. This isn‘t a problem for MFC because

it‘s a stable code base, but your game code isn‘t a stable code base. Not yet.

An insidious bug is often one that is created innocently by a programmer mucking around in
a base class. A seemingly benign change to a virtual function can have unexpected results.

Some programmers might count on the oddities of the behavior of the base class that, if
they were fixed, would actually break any child classes. Maybe one of these days someone

will write an IDE that graphically shows the code that will be affected by any change to a
virtual function. Without this aid, any programmer changing a base class must learn (the

hard way) for himself what hell he is about to unleash. One of the best examples of this is
changing the parameter list of a virtual function. If you‘re unlucky enough to change only an

inherited class and not the base class, the compiler won‘t bother to warn you at all; it will

simply break the virtual chain, and you‘ll have a brand new virtual function. It won‘t ever be
called by anything, of course.

Let the Compiler Help You

If you ever change the nature of anything that is currently in wide

use, virtual functions included, I suggest you actually change its
name. The compiler will find each and every use of the code, and

you’ll be forced to look at how the original was put to use. It’s up to

you if you want to keep the new name. I suggest you do, even if it
means changing every source file.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

From one point of view, a programmer overloads a virtual function because the child class

has more processing to accomplish in the same ―chain of thought.‖ This concept is
incredibly useful, and I‘ve used it for nearly 10 years. It‘s funny that I never thought how

wrong it could be.

An overloaded virtual function changes the behavior of an object and gains control over
whether to invoke the original behavior. If the new object doesn‘t invoke the original

function at all, the object is essentially different from the original. What makes this problem
even worse is that everything about the object screams to programmers that it is just an

extension of the original. If you have a different object, make a different object. Consider
containing the original class instead of inheriting from it. It‘s much clearer in the code when

you explicitly refer to a method attached to a contained object rather than calling a virtual
function.

What happens to code reuse? Yes, have some. I hate duplicating code. I‘m a lazy typist,

and I‘m very unlucky when it comes to cutting and pasting code. I create bugs like crazy.

Try to look at classes and their relationships like appliances and electrical cords. Always
seek to minimize the length of the extension cords, minimize the appliances that plug into

one another, and don‘t make a nasty tangle that you have to figure out every time you
want to turn something on. This metaphor is put into practice with a flat class hierarchy—

one where you don‘t have to open 12 source files to see all the code for a particular class.

Use Interface Classes

Interface classes are those that contain nothing but pure virtual functions. They form the
top level in any class hierarchy. Here‘s an example:

class IAnimation

{

public:

 virtual void VAdvance(const int deltaMilliseconds) = 0;

 virtual bool const VAtEnd() const = 0;

 virtual int const VGetPosition() const = 0;

};

typedef std::list<IAnimation *> AnimationList;

This sample interface class defines simple behavior common for a timed animation. We

could add other methods, such as one to tell how long the animation will run or whether the
animation loops; that‘s purely up to you. The point is that any system that contains a list of

objects inheriting and implementing the IAnimation interface can animate them with a

few lines of code:

AnimationList::iterator end = animList.end();

for(AnimationList::iterator itr = animList.begin(); itr != end;

++itr)

{

 (*itr).VAdvance(delta);

}

Interface classes are a great way to enforce design standards. A programmer writing engine
code can create systems that expect a certain interface. Any programmer creating objects

http://lib.ommolketab.ir
http//lib.ommolketab.ir

that inherit from and implement the interface can be confident that the object will work with

the engine code.

Another great benefit of using interface classes is they reduce compile time dependencies.

The interfaces can be defined in a single #include file, or a very small number of them,

and because they hide all the disgusting guts of implementation classes, there‘s very little
for the compiler to do but register the class and move on.

Consider Using Factories

Games tend to build complex objects constructing groups of objects, such as controls or

sprites, and storing them in lists or other collections. A common way to do this is to have
the constructor of one object, say a certain implementation of a screen class, ―new up‖ all

the sprites and controls. In many cases, many types of screens are used in a game, all
having different objects inheriting from the same parents.

In the book Design Patterns: Elements of Reusable Object-Oriented Software by Erich

Gamma et al., one of the object creation patterns is called a factory. An abstract factory can
define the interface for creating objects. Different implementations of the abstract factory

carry out the concrete tasks of constructing objects with multiple parts. Think of it this
way—a constructor creates a single object. A factory creates and assembles these objects

into a working mechanism.

Imagine an abstract factory that builds screens. The fictional game engine in this example
could define screens as components that have screen elements, a background, and a logic

class that accepts control messages. Here‘s an example:

class SaveGameScreenFactory : public IScreenFactory

{

public:

 SaveGameScreenFactory();

 virtual IScreenElements * const BuildScreenElements() const;

 virtual ScreenBackground * const BuildScreenBackground()

const;

 virtual IScreenLogic * const BuildScreenLogic() const;

};

The code that builds screens will call the methods of the IScreenFactory interface, each

one returning the different objects that make the screen, including screen elements like
controls, a background, or the logic that runs the screen. As all interface classes tend to

enforce design standards, factories tend to enforce orderly construction of complicated
objects. Factories are great for screens, animations, AI, or any nontrivial game object.

What‘s more, factories can help you construct these mechanisms at the right time. One of

the neatest things about the factory design pattern is a delayed instantiation feature. You
could create factory objects, push them into a queue, and delay calling the ―BuildXYZ‖

methods until you were ready. In the screen example, you might not have enough memory
to instantiate a screen object until the active one is destroyed. The factory object is tiny,

perhaps a few tens of bytes, and can easily exist in memory until you are ready to fire it.

Use Streams to Initialize Objects

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Any persistent object in your game should implement a method that takes a stream as a

parameter and reads the stream to initialize the object. If the game is loaded from a file,
objects can use the stream as a source of parameters. Here‘s an example to consider:

class AnimationPath

{

public:

 AnimationPath();

 Initialize (std::vector<AnimationPathPoint> const & srcPath);

 Initialize (InputStream & stream);

 //Of course, lots more code follows.

};

This class has a default constructor and two ways to initialize it. The first is through a classic

parameter list, in this case, a list of AnimationPathPoints. The second initializes the

class through a stream object. This is cool because you can initialize objects from a disk, a

memory stream, or even the network. If you want to load game objects from a disk, as you
would in a saved game, this is exactly how you do it.

Some programmers try to do stream initialization inside an object‘s constructor. If you find

the first edition of this book you‘ll see that I used to do that too:

 AnimationPath (InputStream & stream);

That was a horrible idea, and I‘m not too big to admit it either. Thanks for the kind

―corrections‖ posted on the Web site. The unkind ones I‘ll happily forget! Here‘s why this is
a bad idea—a bad stream will cause your constructor to fail, and you‘ll end up with a bad

object. You can never trust the content of a stream. It could be coming from a bad disk file
or hacked network packets. Ergo, construct objects with a default constructor you can rely

on and create initialization methods for streams.

Exercise Your Load/Save System

Test your stream constructors by loading and saving your game

automatically in the DEBUG build at regular intervals. It will have the
added side effect of making sure programmers keep the load/save

code pretty fast.

Smart Pointers and Naked Pointers

All smart pointers wear clothing.

If you declare a pointer to another object, you‘ve just used a naked pointer. Pointers are
used to refer to another object, but they don‘t convey enough information. Anything

declared on the heap must be referenced by at least one other object, or it can never be
freed, causing a memory leak. It is common for an object on the heap to be referred to

http://lib.ommolketab.ir
http//lib.ommolketab.ir

multiple times by other objects in the code. A good example of this is a game object like a

clock. A pointer to the clock will exist in the game object list, the physics system, the
graphics system, and even the sound system.

If you use naked pointers, you must remember which objects implicitly own other objects.

An object that owns other objects controls their existence. Imagine a ship object that owns
everything on the ship. When the ship sinks, everything else is destroyed along with it. If

you use naked pointers to create these relationships, you have to remember who owns who.
This can be a confusing or even impossible task. You‘ll find that using naked pointers will

quickly paint you into a corner.

Smart pointers, on the other hand, hold extra information along with the address of the
distant object. This information can count references, record permanent or temporary

ownership, or perform other useful tasks. In a sense, an object controlled by a smart
pointer ―knows‖ about every reference to itself. The horrible nest of naked pointers

evaporates, leaving a simple and foolproof mechanism for handling your dynamic objects.

Reference Counting

Reference counting stores an integer value that counts how many other objects are
currently referring to the object in question. Reference counting is a common mechanism in

memory management. DirectX objects implement the COM based IUnknown interface,

which uses reference counting. Two methods that are central to this task are AddRef()

and Release(). The following code shows how this works:

MySound *sound = new MySound;

sound->AddRef(); // reference count is now 1

After you construct a reference counted object, you call the AddRef() method to increase

the integer reference counter by one. When the pointer variable goes out of scope, by

normal scoping rules or by the destruction of the container class, you must call

Release(). Release() will decrement the reference counter and destroy the object if

the counter drops to zero. A shared object can have multiple references safely without fear

of the object being destroyed, leaving bad pointers all over the place.

Use AddRef() and Release() with Caution

Good reference counting mechanisms automatically delete

the object when the reference count becomes zero. If the API
leaves the explicit destruction of the object to you, it‘s easy

to create memory leaks—all you have to do is forget to call

Release(). You can also cause problems if you forget to

call AddRef() when you create the object. It‘s likely that

the object will get destroyed unexpectedly, not having
enough reference counts.

Anytime you assign a pointer variable to the address of the reference counted object, you‘ll
do the same thing. This includes any calls inside a local loop:

for (int i=0; i<m_howMany; ++i)

{

 MySound *s = GoGrabASoundPointer(i);

 s->AddRef();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 DangerousFunction();

 if (s->IsPlaying())

 {

 DoSomethingElse();

 }

 s->Release();

}

This kind of code exists all over the place in games. The call to DangerousFunction()

goes deep and performs some game logic that might attempt to destroy the instance of the

MySound object. Don‘t forget that in a release build the deallocated memory retains the

same values until it is reused. It‘s quite possible that the loop will work just fine even

though the MySound pointer is pointing to unallocated memory. What‘s more likely to occur

is a terrible corruption of memory.

Reference counting keeps the sound object around until Release() is called at the bottom

of the loop. If there was only one reference to the sound before the loop started, the call to

AddRef() will add one to the sound‘s reference count, making two references.

DangerousFunction() does something that destroys the sound, but through a call to

Release(). As far as DangerousFunction() is concerned, the sound is gone forever.

It still exists because one more reference to it, through MySound *s, kept the reference

count from dropping to zero inside the loop. The final call to Release() causes the

destruction of the sound.

Boost C++’s shared_ptr

If you think calling AddRef() and Release() all over the place might be a serious pain

in the rear, you‘re right. It‘s really easy to forget an AddRef() or a Release() call, and

your memory leak will be almost impossible to find. It turns out that there are plenty of
C++ templates out there that implement reference counting in a way that handles the

counter manipulation automatically. One of the best examples is the shared_ptr

template class in the Boost C++ library, found at www.boost.org.

Here‘s an example of how to use this template:

#include <boost\config.hpp>

#include <boost\shared_ptr.hpp>

using boost::shared_ptr;

class IPrintable

{

public:

 virtual void VPrint()=0;

};

class CPrintable : public IPrintable

{

 char *m_Name;

public:

../../default6.htm
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 CPrintable(char *name) { m_Name = name; printf("create

%s\n",m_Name); }

 virtual ~CPrintable() { printf("delete %s\n",m_Name); }

 void VPrint() { printf("print %s\n",m_Name); }

};

shared_ptr<CPrintable> CreateAnObject(char *name)

{

 return shared_ptr<CPrintable>(new CPrintable(name));

}

void ProcessObject(shared_ptr<CPrintable> o)

{

 printf("(print from a function) ");

 o->VPrint();

}

void TestSharedPointers(void)

{

 shared_ptr<CPrintable> ptr1(new CPrintable("1")); // create

object 1

 shared_ptr<CPrintable> ptr2(new CPrintable("2")); // create

object 2

 ptr1 = ptr2; // destroy object 1

 ptr2 = CreateAnObject("3"); // used as a return value

 ProcessObject(ptr1); // call a function

 // BAD USEAGE EXAMPLES....

 //

 CPrintable o1("bad");

 //ptr1 = &o1; // Syntax error! It's on the stack....

 //

 CPrintable *o2 = new CPrintable("bad2");

 //ptr1 = o2; // Syntax error! Use the next line to do

this...

 ptr1 = shared_ptr<CPrintable>(o2);

 // You can even use shared_ptr on ints!

 shared_ptr<int> a(new int);

 shared_ptr<int> b(new int);

 *a = 5;

 *b = 6;

 const int *q = a.get(); // use this for reading in

multithreaded code

 // this is especially cool - you can also use it in lists.

 std::list< shared_ptr<int> > intList;

 std::list< shared_ptr<IPrintable> > printableList;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 for (int i=0; i<100; ++i)

 {

 intList.push_back(shared_ptr<int>(new int(rand())));

 printableList.push_back(shared_ptr<IPrintable>(new

CPrintable("list")));

 }

 // No leaks!!!! Isn't that cool...

}

The template classes use overloaded assignment operators and copy operators to keep

track of how many references point to the allocated data. As long as the shared_ptr

object is in scope and you behave yourself by avoiding the bad usage cases, you won‘t leak

memory, and you won‘t have to worry about objects getting destroyed while you are still
referencing them from somewhere else.

This smart pointer even works in multithreaded environments, as long as you follow a few

rules. First, don‘t write directly to the data. You can access the data through const

operations such as the .get() method. As you can also see, the template works fine even

if it is inside an STL container such as std::list. A similar smart pointer,

std::auto_ptr, cannot be used in STL structures.

Be Careful Using Threads and Sharing Memory

Don’t ignore multithreaded access to shared memory blocks. You
might think that the chances of two threads accessing the shared data

are exceedingly low and convince yourself that you don’t need to go to
the trouble of adding multithreaded protection. You’d be wrong, every

time.

There are a couple of safety tips with smart pointers.

 You can‘t have two different objects manage smart pointers for each other.

 When you create a smart pointer, you have to make sure it is created straight from

a raw pointer new operator.

I‘ll show you examples of each of these abuses. If two objects have smart pointers to each

other, neither one will ever be destroyed—it may take your brain a moment to get this—
since each one has a reference to the other.

class CJelly;

class CPeanutButter

{

public:

 shared_ptr<CJelly> m_pJelly;

 CPeanutButter(CJelly *pJelly) { m_pJelly.reset(pJelly); }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

};

class CJelly

{

public:

 shared_ptr<CPeanutButter> m_pPeanutButter;

 CJelly();

};

CJelly::CJelly()

{

 m_pPeanutButter.reset(new CPeanutButter(this));

}

void PleaseLeakMyMemory()

{

 shared_ptr<CJelly> pJelly(new CJelly);

}

If you follow the code you‘ll find that CJelly has two references, one from the free

function and the other from CPeanutButter. The CPeanutButter class only has one

reference, but it can‘t ever be decremented because the CJelly smart pointer will end up

with a single reference count. Basically, because they point to each other, it‘s almost like

two stubborn gentlemen saying, ―No, sir, after you‖ and ―Please, I insist‖ when trying to go
through a single door—because they point to each other, they will never be destroyed.

The solution to this is usually some kind of ―owned‖ pointer or ―weak referenced‖ pointer,

where one object is deemed the de-factor owner, and therefore won‘t use the multiply

referenced shared_ptr mechanism. In the Boost library, the weak_ptr template is used

exactly for this purpose.

The other gotcha is constructing two smart pointers to manage a single object:

 int *z = new int;

 shared_ptr<int> bad1(z);

 shared_ptr<int> bad2(z);

Remember that smart pointers work with a reference count, and each of the smart pointer

objects only has one reference. If either of them goes out of scope, the memory for the
object will be deallocated, and the other smart pointer will point to garbage.

Using Memory Correctly

Did you ever hear the joke about the programmer trying to beat the Devil in a coding

contest? Part of his solution involved overcoming a memory limitation by storing a few
bytes in a chain of sound waves between the microphone and the speaker. That‘s an

interesting idea, and I‘ll bet we would have tried that one on Ultima VII had someone on our
team thought of it.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Memory comes in very different shapes, sizes, and speeds. If you know what you‘re doing,

you can write programs that make efficient use of these different memory blocks. If you
believe that it doesn‘t matter how you use memory, you‘re in for a real shock. This includes

assuming that the standard memory manager for your operating system is efficient; it
usually isn‘t, and you‘ll have to think about writing your own.

Understanding the Different Kinds of Memory

The system RAM is the main warehouse for storage, as long as the system has power. Video

RAM or VRAM is usually much smaller and is specifically used for storing objects that will be
used by the video card. Some platforms, such as Xbox and Xbox360, have a unified

memory architecture that makes no distinctions between RAM and VRAM. Desktop PCs run
operating systems like Windows Vista, and have virtual memory that mimics much larger

memory space by swapping blocks of little-used RAM to your hard disk. If you‘re not

careful, a simple memcpy() could cause the hard drive to seek, which to a computer is like

waiting for the sun to cool off.

System RAM

Your system RAM is a series of memory sticks that are installed on the motherboard.
Memory is actually stored in nine bits per byte, with the extra bit used to catch memory

parity errors. Depending on the OS, you get to play with a certain addressable range of
memory. The operating system keeps some to itself. Of the parts you get to play with, it is

divided into three parts when your application loads:

 Global memory: This memory never changes size. It is allocated when your

program loads and stores global variables, text strings, and virtual function tables.

 Stack: This memory grows as your code calls deeper into core code, and it shrinks

as the code returns. The stack is used for parameters in function calls and local

variables. The stack has a fixed size that can be changed with compiler settings.

 Heap: This memory grows and shrinks with dynamic memory allocation. It is used

for persistent objects and dynamic data structures.

Old-timers used to call global memory the DATA segment, harkening back to the days when
there used to be near memory and far memory. It was called that because programmers

used different pointers to get to it. What a disgusting practice! Everything is much cleaner
these days because each pointer is a full 32 bits. (Don‘t worry, I‘m not going to bore you

with the ―When I went to school I used to load programs from a linear access tape cassette‖
story.)

Your compiler and linker will attempt to optimize the location of anything you put into the

global memory space based on the type of variable. This includes constant text strings.
Many compilers, including Visual Studio, will attempt to store text strings only once to save

space:

const char *error1 = "Error";

const char *error2 = "Error";

int main()

{

 printf ("%x\n", (int)error1);

 // How quaint. A printf.

 printf ("%x\n", (int)error2);

 return 0;

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This code yields interesting results. You‘ll notice that under Visual C++, the two pointers
point to the same text string in the global address space. Even better than that, the text

string is one that was already global and stuck in the CRT libraries. It‘s as if we wasted our
time typing ―Error.‖ This trick only works for constant text strings, since the compiler knows

they can never change. Everything else gets its own space. If you want the compiler to
consolidate equivalent text strings, they must be constant text strings.

Don‘t make the mistake of counting on some kind of rational order to the global addresses.

You can‘t count on anything the compiler or linker will do, especially if you are considering
crossing platforms.

On most operating systems, the stack starts at high addresses and grows toward lower

addresses. C and C++ parameters get pushed onto the stack from right to left—the last
parameter is the first to get pushed onto the stack in a function call. Local parameters get

pushed onto the stack in their order of appearance:

void testStack(int x, int y)

{

 int a = 1;

 int b = 2;

 printf("&x= %-10x &y= %-10x\n", &x, &y);

 printf("&a= %-10x &b= %-10x\n", &a, &b);

}

This code produces the following output:

&x= 12fdf0 &y= 12fdf4

&a= 12fde0 &b= 12fdd4

Stack addresses grow downward to smaller memory addresses. Thus, it should be clear that
the order in which the parameters and local variables were pushed was y, x, a, and b.

Which turns out to be exactly the order in which you read them—a good mnemonic. The
next time you‘re debugging some assembler code, you‘ll be glad to understand this,

especially if you are setting your instruction pointer by hand.

C++ allows a high degree of control over the local scope. Every time you enclose code in a
set of braces, you open a local scope with its own local variables:

int main()

{

 int a = 0;

 { // start a local scope here...

 int a = 1;

 printf("%d\n", a);

 }

 printf("%d\n", a);

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This code compiles and runs just fine. The two integer variables are completely separate

entities. I‘ve written this example to make a clear point, but I‘d never actually write code
like this. Doing something like this in Texas is likely to get you shot. The real usefulness of

this kind of code is for use with C++ objects that perform useful tasks when they are
destroyed—you can control the exact moment a destructor is called by closing a local scope.

Video Memory (VRAM)

Video RAM is the memory installed on your video card, unless we‘re talking about an Xbox.

Xbox hardware has unified memory architecture or UMI, so there‘s no difference between
system RAM and VRAM. It would be nice if the rest of the world worked that way. Other

hardware such as the Intel architectures must send any data between VRAM and system
RAM over a bus. The PS2 has even more different kinds of memory. There are quite a few

bus architectures and speeds out there, and it is wise to understand how reading and
writing data across the bus affects your game‘s speed.

As long as the CPU doesn‘t have to read from VRAM, everything clicks along pretty fast. If

you need to grab a piece of VRAM for something, the bits have to be sent across the bus to
system RAM. Depending on your architecture, your CPU and GPU must argue for a moment

about timing, stream the bits, and go their separate ways. While this painful process is
occurring, your game has come to a complete halt.

This problem was pretty horrific back in the days of fixed function pipelines when anything

not supported by the video card had to be done with the CPU, such as the first attempts at
motion blur. With programmable pipelines, you can create shaders that can run directly on

the bits stored in VRAM, making this kind of graphical effect extremely efficient.

The hard disk can‘t write straight to VRAM, so every time a new texture is needed you‘ll
need to stop the presses, so to speak. The smart approach is to limit any communication

needed between the CPU and the video card. If you are going to send anything to it, it is

best to send it in batches.

If you‘ve been paying attention, you‘ll realize that the GPU in your video card is simply

painting the screen using the components in VRAM. If it ever has to stop and ask system

RAM for something, your game won‘t run as fast as it could.

Mr. Mike’s First Texture Manager

The first texture manager I ever wrote was for Ultima IX.
(That was before the game was called Ultima: Ascension.) I

wrote the texture manager for 3DFx‘s Glide API, and I had all

of an hour to do it. We wanted to show some Origin execs
what Ultima looked like running under hardware acceleration.

Not being the programmer extraordinaire, and I only had a
day to work, my algorithm had to be pretty simple. I chose a

variant of LRU, but since I didn‘t have time to write the code
to sort and organize the textures, I simply threw out every

texture in VRAM the moment there wasn‘t any additional
space. I think this code got some nomination for the dumbest

texture manager ever written, but it actually worked. The

player would walk around for 90 seconds or so before the
hard disk lit up and everything came to a halt for two

seconds. I‘m pretty sure someone rewrote it before U9
shipped. At least, I hope someone rewrote it!

Optimizing Memory Access

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Every access to system RAM uses a CPU cache. If the desired memory location is already in

the cache, the contents of the memory location are presented to the CPU extremely quickly.
If, on the other hand, the memory is not in the cache, a new block of system RAM must be

fetched into the cache. This takes a lot longer than you‘d think.

A good test bed for this problem uses multidimensional arrays. C++ defines its arrays in
row major order. This ordering puts the members of the right-most index next to each other

in memory.

TestData[0][0][0] and TestData[0][0][1] are stored in adjacent memory

locations.

Row Order or Column Order?

Not every language defines arrays in row order. Some

versions of PASCAL define arrays in column order. Don‘t

make assumptions unless you like writing slow code.

If you access an array in the wrong order, it will create a worst-case CPU cache scenario.

Here‘s an example of two functions that access the same array and do the same task. One
will run much faster than the other:

const int g_n = 250;

float TestData[g_n][g_n][g_n];

inline void column_ordered()

{

 for (int k=0; k<g_n; k++) // K

 for (int j=0; j<g_n; j++) // J

 for (int i=0; i<g_n; i++) // I

 TestData[i][j][k] = 0.0f;

}

inline void row_ordered()

{

 for (int i=0; i<g_n; i++) // I

 for (int j=0; j<g_n; j++) // J

 for (int k=0; k<g_n; k++) // K

 TestData[i][j][k] = 0.0f;

}

The timed output of running both functions on my test machine showed that accessing the
array in row order was nearly nine times faster:

Column Ordered=2817 ms Row Ordered=298 ms Delta=2519 ms

Any code that accesses any largish data structure can benefit from this technique. If you
have a multistep process that affects a large data set, try to arrange your code to perform

as much work as possible in smaller memory blocks. You‘ll optimize the use of the L2 cache

http://lib.ommolketab.ir
http//lib.ommolketab.ir

and make a much faster piece of code. While you surely won‘t have any piece of runtime

game code do something this crazy, you might very well have a game editor or production
tool that does.

Memory Alignment

The CPU reads and writes memory-aligned data much faster than other data. Any N-byte
data type is memory aligned if the starting address is evenly divisible by N. For example, a

32-bit integer is memory aligned on a 32-bit architecture if the starting address is

0x04000000. The same 32-bit integer is unaligned if the starting address is 0x04000002,
since the memory address is not evenly divisible by 4 bytes.

You can perform a little experiment in memory alignment and how it affects access time by

using example code like this:

#pragma pack(push, 1)

struct ReallySlowStruct

{

 char c : 6;

 __int64 d : 64;

 int b : 32;

 char a : 8;

};

struct SlowStruct

{

 char c;

 __int64 d;

 int b;

 char a;

};

struct FastStruct

{

 __int64 d;

 int b;

 char a;

 char c;

 char unused[2];

};

#pragma pack(pop)

I wrote a piece of code to perform some operations on the member variables in each
structure. The difference in times is as follows:

Really slow=417 ms

Slow=222 ms

Fast=192 ms

Your penalty for using the SlowStruct over FastStruct is about 14 percent on my test

machine. The penalty for using ReallySlowStruct is code that runs twice as slowly.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The first structure isn‘t even aligned properly on bit boundaries, hence the name

ReallySlowStruct. The definition of the 6-bit char variable throws the entire structure

out of alignment. The second structure, SlowStruct, is also out of alignment, but at least

the byte boundaries are aligned. The last structure, FastStruct, is completely aligned for

each member. The last member, unused, ensures that the structure fills out to an 8-byte

boundary in case someone declares an array of FastStruct.

Notice the #pragma pack(push, 1) at the top of the source example? It‘s

accompanied by a #pragma pack(pop) at the bottom. Without them, the compiler,

depending on your project settings, will choose to spread out the member variables and

place each one on an optimal byte boundary. When the member variables are spread out
like that, the CPU can access each member quickly, but all that unused space can add up. If

the compiler were left to optimize SlowStruct by adding unused bytes, each structure

would be 24 bytes instead of just 14. Seven extra bytes are padded after the first char

variable, and the remaining bytes are added at the end. This ensures that the entire

structure always starts on an 8-byte boundary. That‘s about 40 percent of wasted space, all
due to a careless ordering of member variables.

Don’t let the compiler waste precious memory space. Put some of your brain cells to work

and align your own member variables. You don‘t get many opportunities to save memory
and optimize CPU at the same time.

Virtual Memory

Virtual memory increases the addressable memory space by caching unused memory blocks

to the hard disk. The scheme depends on the fact that even though you might have a
500MB data structure, you aren‘t going to be playing with the whole thing at the same time.

The unused bits are saved off to your hard disk until you need them again. You should be
cheering and wincing at the same time. Cheering because every programmer likes having a

big memory playground, and wincing because anything involving the hard disk wastes a lot
of time.

Just to see how bad it can get, I took the code from the array access example and modified

it to iterate through a three-dimensional array 500 elements cubed. The total size of the
array would be 476MB, much bigger than the installed memory on the test machine. A data

structure bigger than available memory is sometimes called out-of-core. I ran the

column_ordered() function and went to lunch. When I got back about 30 minutes later,

the test program was still chugging away. The hard drive was seeking like mad, and I began

to wonder whether my hard disk would give out. I became impatient and re-ran the
example and timed just one iteration of the inner loop. It took 379.75 seconds to run the

inner loop. The entire thing would have taken over 50 hours to run. I‘m glad I didn‘t wait.
Any game written badly can suffer the same fate, and as you can see, the difference

between running quickly and paging constantly to your hard disk can be as small as a single
byte.

Remember that the original array, 250 elements cubed, ran the test code in 298ms when

the fast row_ordered() function was used. The large array is only eight times bigger,

giving an expectation that the same code should have run in 2384ms, or just under two-

and-a-half seconds.

Compare 2384ms with 50 hours, and you‘ll see how virtual memory can work against you if
your code accesses virtual memory incorrectly.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Cache Misses Can Cost You Dearly

Any time a cache is used inefficiently, you can degrade the

overall performance of your game by many orders of

magnitude. This is commonly called ―thrashing the cache‖
and is your worst nightmare. If your game is thrashing

cache, you might be able to solve the problem by reordering
some code, but most likely you will need to reduce the size of

the data.

Writing Your Own Memory Manager

Most games extend the provided memory management system. The biggest reasons to do
this are performance, efficiency, and improved debugging. Default memory managers in the

C runtime are designed to run fairly well in a wide range of memory allocation scenarios.

They tend to break down under the load of computer games, though, where allocations and
deallocations of relatively tiny memory blocks can be fast and furious.

A standard memory manager, like the one in the C runtime, must support multithreading.

Each time the memory manager‘s data structures are accessed or changed, they must be
protected with critical sections, allowing only one thread to allocate or deallocate memory at

a time. All this extra code is time consuming, especially if you use malloc and free very

frequently. Most games are multithreaded to support sound systems, but don‘t necessarily

need a multithreaded memory manager for every part of the game. A single threaded
memory manager that you write yourself might be a good solution.

The Infamous Voodoo Memory Manager

Ultima VII: The Black Gate had a legendary memory
manager: The VooDoo Memory Management System. It was

written by a programmer who used to work on guided missile
systems for the Department of Defense, a brilliant and

dedicated engineer. U7 ran in good old DOS back in the days
when protected mode was the neat new thing. VooDoo was a

true 32-bit memory system for a 16-bit operating system,

and the only problem with it was you had to read and write
to the memory locations with assembly code, since the

Borland compiler didn‘t understand 32-bit pointers. It was
done this way because U7 couldn‘t really exist in a 16-bit

memory space—there were atomic data structures larger
than 64KB. For all its hoopla, VooDoo was actually pretty

simple, and it only provided the most basic memory
management features. The fact that it was actually called

VooDoo was a testament to the fact that it actually worked;

it wasn‘t exactly supported by the operating system or the
Borland compilers.

VooDoo MM for Ultima VII is a great example of writing a

simple memory manager to solve a specific problem. It didn‘t
support multithreading, it assumed that memory blocks were

large, and finally it wasn‘t written to support a high number
or frequency of allocations.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Simple memory managers can use a doubly-linked list as the basis for keeping track of

allocated and free memory blocks. The C runtime uses a more complicated system to
reduce the algorithmic complexity of searching through the allocated and free blocks that

could be as small as a single byte. Your memory blocks might be either more regularly
shaped, fewer in number, or both. This creates an opportunity to design a simpler, more

efficient system.

Default memory managers must assume that deallocations happen approximately as often
as allocations, and they might happen in any order and at any time. Their data structures

have to keep track of a large number of blocks of available and used memory. Any time a
piece of memory changes state from used to available, the data structures must be quickly

traversed. When blocks become available again, the memory manager must detect adjacent
available blocks and merge them to make a larger block. Finding free memory of an

appropriate size to minimize wasted space can be extremely tricky. Since default memory

managers solve these problems to a large extent, their performance isn‘t as high as another
memory manager that can make more assumptions about how and when memory

allocations occur.

If your game can allocate and deallocate most of its dynamic memory space at once, you
can write a memory manager based on a data structure no more complicated than a singly-

linked list. You‘d never use something this simple in a more general case, of course,
because a singly-linked list has O(n) algorithmic complexity. That would cripple any memory

management system used in the general case.

A good reason to extend a memory manager is to add some debugging features. Two
features that are common include adding additional bytes before and after the allocation to

track memory corruption or to track memory leaks. The C runtime adds only one byte

before and after an allocated block, which might be fine to catch those pesky x+1 and x-1

errors, but doesn‘t help for much else. If the memory corruption seems pretty random, and

most of them sure seem that way, you can increase your odds of catching the culprit by
writing a custom manager that adds more bytes to the beginning and ending of each block.

In practice, the extra space is set to a small number, even one byte, in the release build.

Different Build Options will Change Runtime
Behavior

Anything you do differently from the debug and release

builds can change the behavior of bugs from one build target
to another. Murphy‘s Law dictates that the bug will only

appear in the build target that is hardest, or even impossible,
to debug.

Another common extension to memory managers is leak detection. It is a common practice

to redefine the new operator to add __FILE__ and __LINE__ information to each

allocated memory block in debug mode. When the memory manager is shut down, all the
unfreed blocks are printed out in the output window in the debugger. This should give you a

good place to start when you need to track down a memory leak.

If you decide to write your own memory manager, keep the following points in mind:

 Data structures: Choose the data structure that matches your memory allocation

scenario. If you traverse a large number of free and available blocks very frequently,
choose a hash table or tree-based structure. If you hardly ever traverse it to find

free blocks, you could get away with a list. Store the data structure separately from

http://lib.ommolketab.ir
http//lib.ommolketab.ir

the memory pool; any corruption will keep your memory manager‘s data structure

intact.

 Single/multithreaded access: Don‘t forget to add appropriate code to protect

your memory manager from multithreaded access if you need it. Eliminate the
protections if you are sure that access to the memory manager will only happen from

a single thread, and you‘ll gain some performance.

 Debug and testing: Allocate a little additional memory before and after the block

to detect memory corruption. Add caller information to the debug memory blocks; at

a minimum, you should use __FILE__ and __LINE__ to track where the

allocation occurred.

One of the best reasons to extend the C runtime memory manager is to write a better
system to manage small memory blocks. The memory managers supplied in the C runtime

or MFC library are not meant for tiny allocations. You can prove it to yourself by allocating

two integers and subtracting their memory addresses as shown here:

int *a = new int;

int *b = new int;

int delta1 = ((int)b - (int)a) - sizeof(int);

The wasted space for the C runtime library was 28 bytes for a release build and 60 bytes for
the debug build under Visual Studio. Even with the release build, an integer takes eight
times as much memory space as it would if it weren‘t dynamically allocated.

Most games overload the new operator to allocate small blocks of memory from a reserved

pool set aside for smaller allocations. Memory allocations that are larger than a set number

of bytes can still use the C runtime. I recommend that you start with 128 bytes as the
largest block your small allocator will handle and tweak the size until you are happy with the

performance.

Mike’s Grab Bag of Useful Stuff

Before we leave this chapter, I want to arm you with some lifesaving snippets of code.
Some code defies classification. It gets thrown into a toolbox with all the other interesting

things that simply won‘t die. I try to dust them off and use them on every project, and I‘m
never disappointed. I‘ll start with a great random number generator, show you a template

class you can‘t live without, and end with a neat algorithm to traverse any set in random
order without visiting the same member twice.

An Excellent Random Number Generator

There are as many good algorithms for generating random numbers as there are pages in

this book. Most programmers will soon discover that the ANSI rand() function is

completely inadequate because it can only generate a single stream of random numbers.

Most games need multiple discrete streams of random numbers.

Unless your game comes with a little piece of hardware that uses the radioactive decay of
cesium to generate random numbers, your random number generator is only pseudo-

random. A pseudo-random number sequence can certainly appear random, achieving a
relatively flat distribution curve over the generation of billions of numbers mapped to a

http://lib.ommolketab.ir
http//lib.ommolketab.ir

small domain, like the set of numbers between 1 and 100. Given the same starting

assumption, commonly called a seed, the sequence will be exactly the same. A truly random
sequence could never repeat like that.

This might seem bad because you might feel that a hacker could manipulate the seed to

affect the outcome of the game. In practice, all you have to do is regenerate the seed every
now and then using some random element that would be difficult or impossible to duplicate.

In truth, a completely predictable random number generator is something you will give your
left leg for when writing test tools or a game replay system.

Even Old Code Can be Useful

Every Ultima from Ultima I to Ultima VIII used the same
random number generator, originally written in 6502

assembler. In 1997, this generator was the oldest piece of
continuously used code at Origin Systems. Finally, this RNG

showed its age and had to be replaced. Kudos to Richard
Garriott (aka Lord British) for making the longest-lived piece

of code Origin ever used.

Here‘s a cool little class to keep track of your random numbers. You‘ll want to make sure

you save this code and stuff it into your own toolbox. The RNG core is called a Mersenne
Twister pseudorandom number generator, and it was originally developed by Takuji

Nishimura and Makoto Matsumoto:

class CRandom

{

 unsigned int rseed;

 unsigned long mt[CMATH_N]; // the array for the state vector

 int mti; // mti==N+1 means mt[N] is not

initialized

public:

 CRandom(void);

 unsigned int Random(unsigned int n);

 void SetRandomSeed(unsigned int n);

 unsigned int GetRandomSeed(void);

 void Randomize(void);

};

The original code has been modified to include a few useful bits, one of which is to allow this
class to save and reload its random number seed, which can be used to replay random

number sequences by simply storing the seed. Here‘s an example of how you can use the
class:

CRandom r;

r.Randomize();

unsigned int num = r.Random(100); // returns a number from 0-

99, inclusive

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You should use a few instantiations of this class in your game, each one generating random

numbers for a different part of your game. Here‘s why: Let‘s say you want to generate
some random taunts from AI characters. If you use a different random number sequence

from the sequence that generates the contents of treasure chests, you can be sure that if
the player turns off character audio, the same RNG sequence will result for the treasure

chests, which nicely compartmentalizes your game. In other words, your game becomes
predictable and testable.

Your Random Number Generator Can Break

Automation

I was working on an automation system for some Microsoft
games, and the thing would just not work right. The goal of

the system was to be able to record game sessions and play
them back. The system was great for testers and

programmers alike. It‘s hard, and boring, to play a few
million hands of blackjack. Our programming team realized

that since the same RNG was being called for every system

of the game, small aberrations would occur as calls to the
RNG went out-of-sync. This was especially true for random

character audio, since the timing of character audio was
completely dependent on another thread, which was

impossible to synchronize. When we used one CRandom

class for each subsystem of the game, the problem

disappeared.

Supporting Optional Variables with Optional<T>

A really favorite template of mine is one that encapsulates optional variables. Every variable

stores values, but they don‘t store whether the current value is valid. Optional variables
store this information to indicate if the variable is valid or initialized. Think about it, how

many times have you had to use a special return value to signify some kind of error case?

Take a look at this code, and you‘ll see what I‘m talking about:

bool DumbCalculate1(int &spline)

{

 // imagine some code here....

 //

 // The return value is the error, and the value of spline is

invalid return

 false;

}

#define ERROR_IN_DUMBCALCULATE (-8675309)

int DumbCalculate2()

{

 // imagine some code here....

 //

 // The return value is a "special" value, we hope could never

be actually

 // calculated

 return ERROR_IN_DUMBCALCULATE;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

}

int _tmain(void)

{

//

 // Dumb way #1 - use a return error code,

 // and a reference to get to your data.

 //

 int dumbAnswer1;

 if (DumbCalculate1(dumbAnswer1))

 {

 // do my business...

 }

//

 // Dumb way #2 - use a "special" return value to signify an

error

 int dumbAnswer2 = DumbCalculate2();

 if (dumbAnswer2 != ERROR_IN_DUMBCALCULATE)

 {

 // do my business...

 }

}

There are two evil practices in this code. The first practice, ―Dumb Way #1,‖ requires that
you use a separate return value for success or failure. This causes problems because you

can‘t use the return value DumbCalculate1() function as the parameter to another

function because the return value is an error code:

 AnotherFunction(DumbCalculate1()); // whoops. Can't do this!

The second practice I‘ve seen that drives me up the wall is using a ―special‖ return value to

signify an error. This is illustrated in the DumbCalculate2() call. In many cases, the

value chosen for the error case is a legal value, although it may be one that will ―almost
never‖ happen. If those chances are one in a million and your game sells a million copies,

how many times per day do you think someone is going to get on the phone and call your
friendly customer service people? Too many.

Here‘s the code for optional<T>, a template class that solves this problem.

class optional_empty { };

template <unsigned long size>

class optional_base

{

public:

 // Default - invalid.

 optional_base() : m_bValid(false) { }

 optional_base & operator = (optional_base const & t);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 optional_base(optional_base const & other)

 : m_bValid(other.m_bValid) { }

 //utility functions

 bool const valid() const { return m_bValid; }

 bool const invalid() const { return !m_bValid; }

protected:

 bool m_bValid;

 char m_data[size]; // storage space for T

};

template <class T>

class optional : public optional_base<sizeof(T)>

{

public:

 // Default - invalid.

 optional() { }

 optional(T const & t) { construct(t); m_bValid = (true); }

 optional(optional_empty const &) { }

 optional & operator = (T const & t);

 optional(optional const & other);

 optional & operator = (optional const & other);

 bool const operator == (optional const & other) const;

 bool const operator < (optional const & other) const

 ~optional() { if (m_bValid) destroy(); }

 // Accessors.

 T const & operator * () const { assert(m_bValid); return *

GetT(); }

 T & operator * () { assert(m_bValid); return *

GetT(); }

 T const * const operator -> () const { assert(m_bValid);

return GetT(); }

 T * const operator -> () { assert(m_bValid); return GetT();

}

 //This clears the value of this optional variable and makes it

invalid once

 // again.

 void clear();

 //utility functions

 bool const valid() const { return m_bValid; }

 bool const invalid() const { return !m_bValid; }

private:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 T const * const GetT() const

 { return reinterpret_cast<T const * const>(m_data); }

 T * const GetT()

 { return reinterpret_cast<T * const>(m_data);}

 void construct(T const & t) { new (GetT()) T(t); }

 void destroy() { GetT()->~T(); }

};

As you can see, it‘s not as simple as storing a Boolean value along with your data. The extra
work in this class handles comparing optional objects with each other and getting to the
data the object represents.

Here‘s an example of how to use optional<T>:

#include "stdafx.h"

#include "optional.h"

optional<int> Calculate()

{

 optional<int> spline;

 spline = 10; // you assign values to optionals like

this...

 spline = optional_empty(); // or you could give them the

empty value

 spline.clear(); // or you could clear them to make them

invalid

 return spline;

}

int main(void)

{

 optional<int> answer = Calculate();

 if (answer.valid())

 {

 // do my business...

 }

 return 0;

}

-1 Is a Fine Number

I personally don’t see why so many programmers have it out for the
value (-1). Everyone seems to use that to stand for some error case. I

think (-1) is a fine upstanding number, and I refuse to abuse it. Use
optional<T> and join me in saving (-1) from further abuse.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you are familiar with Boost C++, you‘ll know that it has an optional template too. But to

be honest, it does something I don‘t like very much, namely overloading the ! operator to

indicate the validity of the object. Imagine this code in Boost:

 optional<bool> bIsFullScreen;

 // imagine code here...

 if (!!bIsFullScreen)

 {

 }

Yes, that‘s no typo. The !! operator works just fine with Boost‘s optional template. While it

is something of a matter of taste, I personally think this is unsightly and certainly confusing.

Pseudo-Random Traversal of a Set

Have you ever wondered how the ―random‖ button on your CD player worked? It will play

every song on your CD at random without playing the same song twice. That‘s a really
useful solution for making sure players in your games see the widest variety of features like

objects, effects, or characters before they have the chance of seeing the same ones again.

The following code uses a mathematical feature of prime numbers and quadratic equations.
The algorithm requires a prime number larger than the ordinal value of the set you want to

traverse. If your set has 10 members, your prime number would be 11. Of course, the
algorithm doesn‘t generate prime numbers; instead, it just keeps a select set of prime

numbers around in a lookup table. If you need bigger primes, there‘s a convenient Web site

for you to check out at www.rsok.com/~jrm/printprimes.html.

Here‘s how it works. A skip value is calculated by choosing three random values greater

than zero. These values become the coefficients of the quadratic, and the domain value (x)

is set to the ordinal value of the set:

Skip = RandomA * (members * members) + RandomB * members +

RandomC

Armed with this skip value, you can use this piece of code to traverse the entire set exactly
once, in a pseudo random order:

nextMember += skip;

nextMember %= prime;

The value of skip is so much larger than the number of members of your set that the

chosen value seems to skip around at random. Of course, this code is inside a while loop

to catch the case where the value chosen is larger than your set but still smaller than the
prime number. Here‘s the class definition:

class PrimeSearch

{

 static int prime_array[];

../../printprimes.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 int skip;

 int currentPosition;

 int maxElements;

 int *currentPrime;

 int searches;

 CRandom r;

public:

 PrimeSearch(int elements);

 int GetNext(bool restart=false);

 bool Done() { return (searches==*currentPrime); }

 void Restart() { currentPosition=0; searches=0; }

};

I‘ll show you a trivial example to make a point.

void FadeToBlack(Screen *screen)

{

 int w = screen.GetWidth();

 int h = screen.GetHeight();

 int pixels = w * h;

 PrimeSearch search(pixels);

 int p;

 while((p=search.GetNext())!=-1)

 {

 int x = p % w;

 int y = h / p;

 screen.SetPixel(x, y, BLACK);

 }

}

The example sets random pixels to black until the entire screen is erased. I should warn you
now that this code is completely stupid, for two reasons. First, you wouldn‘t set one pixel at

a time. Second, you would likely use a pixel shader to do this. (I told you the example was

trivial.) Use PrimeSearch for other cool things like spawning creatures, weapons, and

other random stuff.

Developing the Style That’s Right for You

Throughout this chapter I‘ve tried to point out a number of coding techniques and pitfalls

that I‘ve learned over the years. I‘ve tried to focus on the ones that seem to cause the most
problems and offer the best results. Of course, keep in mind that there is no single best

approach or one magic solution for coding a game.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

I wish I had more pages because there are tons of programming gems and even game

programming gems out there. Most of it you‘ll beg or borrow from your colleagues. Some of
it you‘ll create yourself after you solve a challenging problem.

However you find them, don‘t forget to share.

Further Reading

Beyond the C++ Standard Library. An Introduction to Boost, Björn Karlsson

C++ Templates: The Complete Guide, Nicolai M. Josuttis und David Vandevoorde

Effective C++, Scott Meyers

More Effective C++, Scott Meyers

Effective STL, Scott Meyers

Exceptional C++, Herb Sutter

More Exceptional C++, Herb Sutter

Modern C++ Design: Applied Generic and Design Patterns, Andrei Alexandrescu

Standard C++ IOStreams and Locales, Angelika Langer

The C++ Programming Language, Bjarne Stroustrup

Thinking in C++ Vol. 1, Bruce Eckel

Thinking in C++ Vol. 2, Bruce Eckel and Chuck Allison

Chapter 4. Building Your Game

In This Chapter

 A Little Motivation

 Creating a Project

 Source Code Repositories and Version Control

 Building the Game: A Black Art?

 Creating Build Scripts

 Multiple Projects and Shared Code

../../ch04lev1sec1#ch04lev1sec1
../../ch04lev1sec2#ch04lev1sec2
../../ch04lev1sec3#ch04lev1sec3
../../ch04lev1sec4#ch04lev1sec4
../../ch04lev1sec5#ch04lev1sec5
../../ch04lev1sec6#ch04lev1sec6
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Some Parting Advice

Do you ever freeze up just before starting a new project? I do, and I‘m not afraid to admit
it. I get hung up thinking about the perfect directory structure, where the art and sound

data should be stored, how the build process should work, and mostly how I will keep my
new game from becoming a horrible mess. By the end of a project, it usually turns out to be

a mess anyway! So I‘m always thankful I plan out a directory structure, employ good
version control tools, and incorporate automation scripts that all keep entropy just low

enough for a human like me to be able to keep track of what I‘m doing.

In this chapter, I‘m going to tell you everything you need to know to get your game
projects organized from the start, and how to configure project files and use version control

tools effectively. This is an area where many game developers try to cut corners, so my
advice is to invest a little time and ensure that your projects go together smoothly and stay

that way. Hopefully, they‘ll stay organized right to the day you ship.

As you read through this chapter, you might feel that you are getting an education in
software engineering. Try not to feel overwhelmed. These techniques are very critical to the

process of successfully developing games, and they are used by real game developers.

A Little Motivation

Games are much more than source code. A typical game includes raw and optimized art and

sound data, map levels, event scripts, test tools, and more. Don‘t forget the project
documentation—both the docs that ship with your project, such as the user guide, and the

internal documents, such as the technical design document, design document, and test
plans.

There are two essential problems that all these files create. First, the sheer number of game

files for art, sound, music, and other assets need to have some rational organization—there
can be hundreds of thousands of these files. Games like Age of Empires easily have

hundreds of thousands of asset files in production. With this many files, it can be really easy

to lose track of one, or a few hundred. The second problem is the difficulty of ensuring that
sensitive debug builds and other internal files are kept separate from the stuff that will be

shipped to consumers. The last thing you need is to release your debug build, with all its
symbols, to the public at large. The best setup lets you segregate your release files from

everything else so you can burn a single directory tree to a DVD without worrying about
culling a weird list of files. Over the last few years, I‘ve settled on a project organization

that solves these two problems.

The process of building a project should be as automatic as possible. You should be able to
automatically build your game every night so that you can check your latest work. A game

that can‘t build every day is in big trouble. Even dumb producers know this, so if you want
an easy way to get a project snuffed, just make it impossible to fulfill a build request at a

moment‘s notice.

The directory structure, project settings, and development scripts you use should make
building, publishing, and rebuilding any previously published build a snap. If your source

code repository supports branching, you‘ll be ahead of the game because you can support

multiple lines of development simultaneously. I‘ll explain a little later what this is and why
using branches is important.

Everyone does things differently, but the project organization, build scripts, and build

process you‘ll learn in this chapter are hard to beat. I figure that if they‘re good enough for
Microsoft, and they got our projects out the door on time, I‘ll keep them.

../../ch04lev1sec7#ch04lev1sec7
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Creating a Project

This might sound a little hokey, but every project I work on has its own code word. I picked

this up from Microsoft, and I love it. You should let your project team choose the code word,

but try to make sure that the name chosen is somewhat cryptic. It‘s actually really
convenient if you end up at the bar with a bunch of software developers from other

companies. You can talk all day about finishing a build for ―Slickrock‖ or that ―Rainman‖
needs another programmer. Cloak and dagger aside, there‘s a real utilitarian reason to use

short code words for projects.

You can use this code word for your top-level project directory and the SLN file that builds
your game and tools. It is an easy step from there to create a standard build script that can

find your SLN file, build the game, and even test it. If you work in a studio with multiple
projects, a master build server can easily build every project in development every night

and take very little maintenance to add or subtract projects.

Beyond that, a code word for a project has one other use. If you end up making multiple
versions of the same product, you can use different code words to refer to them instead of

version numbers. You are ready to start your project, so choose a code word and create
your top-level directory. May whatever gods you believe in have mercy on your soul:

mkdir <codeword>

Build Configurations

Every project should have two build targets at a minimum: debug and release. The release

build will enable optimizations critical for a product the customer will actually use. Many

projects also have a profile build, which usually disables enough optimizations to allow for

debugging but disables code inside #ifdef DEBUG constructs to allow it to actually run in

real time. It‘s a good idea to have all three targets because they serve different purposes.
Mostly, programmers will run and develop with a profile build target, and they will use the

debug target only when something really nasty is in their bug list.

Don’t Go Too Long Between Builds

Try to keep all your build targets alive and working every day. If you

ignore any build configuration, especially the release build, it could
take a very long time to figure out why it’s not working properly. Build

it nightly, if you can, and make sure any problems get handled the
very next day.

Create a Bullet-Proof Directory Structure

Over the years of developing complex projects, I‘ve experimented with different directory
structures trying to find the ideal structure. I‘ve learned that it is important to have a good

working directory structure from the start. It will help you work your way through all of the

stages of developing a project—from writing your first lines of source code to testing and
debugging your project. You also need to keep in mind that you‘ll likely need to share

aspects of your project with others during the development process, even if you are the
only one writing all the source code. For example, you might need to hire an independent

http://lib.ommolketab.ir
http//lib.ommolketab.ir

testing team to work over your game. If you organize your project well, you‘ll be able to

share files when necessary with a minimum of hassle.

Keeping all of this in mind, here‘s my recommended directory structure where should store

each project you develop, including your game engine:

 Docs

 Media

 Source

 Obj

 Bin

 Test

The Docs directory is a reference for the development team. It should have an organized

hierarchy to store both design documents and technical specifications. I always put a copy
of the contract exhibits and milestone acceptance criteria in it for my team, since these

documents specify our obligations to the publisher. (You don‘t want to ever forget who is
paying the bills!) While I‘m developing a project, it‘s not unusual to find detailed character

scripts, initial user interface designs, and other works in progress in the Docs directory.

The Media directory is going to store all your art and sound assets in their raw, naked form.
This directory is likely going to get huge, so make sure the source control system is

configured to filter it out for people who don‘t care about it. I say ―raw and naked‖ not just
because I enjoy putting it in print—these assets are those not used by the game directly,

but those that are used by artists, designers, or sound engineers while they are working on
them. Think of it as the same kind of directory that programmers use for their code. When

the assets get imported or packed into game files that are used by the game directly, they‘ll

be inside the Bin directory where all the distributable stuff lives. One more thing, this
directory will be a huge, complicated hierarchy that will most likely be created to appease

the whims of artists or sound engineers, so don‘t expect to have much control over it.

The source code lives in the Source directory. It should be organized by the programmers in
whatever manner they see fit. The project‘s solution file or makefile should also reside in

the Source directory, and be named according to the code word for the project. The rest of
the source code should be organized into other directories below Source.

When a project is being built, each build target will place temporary files into the Obj

directory. On most projects, you‘ll have at least an Obj\Debug directory to hold the debug
build and an Obj\Release directory to hold the release build. You may have other build

targets, and if you do, put them in their own directory.

Visual Studio Defaults Aren’t Always So Great

Visual Studio does a really bad thing by assuming that software

engineers want their build targets to clutter up the Source directory. I
find this annoying, since I don’t want a single byte of the Source

directory to change when I build my project. Why, you ask? First, I
like to be able to copy the entire Source directory for publishing or

backup without worrying about large temporary files. Secondly, I can
compare two different Source directories from version to version to

http://lib.ommolketab.ir
http//lib.ommolketab.ir

see only the deltas in the source code, instead of wading through

hundreds of useless .OBJ, .SBR, and other files. Thirdly, I know I can

always delete the Obj directory to force a new build of the entire
project. I also know that I never have to back up or publish the Obj

directory.

The Bin directory should hold the release build and every game data file that is used to
create your project. You should be able to send the contents of the Bin directory to a

separate testing group or to someone in the press, and they‘d have everything they would
need to run and test the game. You also want to ensure that they don‘t get anything you

want to keep to yourself, such as confidential project documentation or your crown jewels—
the source code. Generally, you‘ll place release executables and DLLs in Bin, and store all

your game data and config files in Bin/Data. If you take the time to set up a directory that
stores the files that you may be providing to others from time to time, you‘ll likely avoid

sending out your source code or internal project design documents.

The Test directory should hold the debug and profile targets of the game and special files
only for the test team. It usually contains test scripts, files that unlock cheats, and test

utilities. Some games have a logging feature that writes diagnostic, warning, and error
messages to a text file—the Test directory is a great place for them. Most importantly, it

should contain the release notes for the latest build. The release notes are a list of features

that work, or don‘t work, in the latest build. They also contain quick instructions about
anything the test team needs to know, such as how to expose a certain feature or a part of

your game that needs special attention. As you are developing your project, I strongly
encourage you to keep the release notes up-to-date. If you hand your game over to a

testing team, they won‘t have to pull out their hair trying to figure out how to get your
project to work. You‘ll discover that Visual Studio has to be convinced to use this directory

structure, and it takes a little work to create projects under this standard. Visual Studio
assumes that everything in the project lives underneath the directory that stores the

solution file. It may be a pain to get Visual Studio to conform to this structure, but trust me,

it is worth it.

C# Projects are Tougher to Reorganize

While you can tweak the directory structure of C++ projects
under Visual Studio, C# projects are tougher. There is a way

to reconfigure the solution files to make my recommended

directory structure work, but it isn‘t exactly supported by
Microsoft. Perhaps Microsoft will in their great wisdom figure

this out someday, but don‘t hold your breath. For more on
this topic, visit the companion Web site for this book.

The directory structure is useful because it caters to all the different people and groups that
need access to your game development files. The development team gets access to the

whole thing. Executives and press looking for the odd demo can copy the Bin directory
whenever they want. The test group grabs Bin and Test, and they have everything they

need.

If you store the build targets in the Source directory, like Visual Studio wants you to, you‘ll
have to write complicated batch files to extract the build target, clean temporary files, and

match game data with executables. Those batch files are a pain to maintain, and are a
frequent source of bad builds. If you pound Visual Studio for a little while to get a better

http://lib.ommolketab.ir
http//lib.ommolketab.ir

directory structure started, you won‘t have to worry about a nasty batch file during the life

of your product.

Where to Put Your Game Engine and Tools

In case it wasn‘t clear, your game engine should get its own directory, with the same

directory structure in parallel with your game. On one project I worked on, our game engine
had a pretty uncreative code name: Engine. It was stored in an Engine directory with

Source, Docs, Obj, and Lib, instead of Bin, since the output of the build was a library. There

was some debate about separating the #include files into an Inc directory at the top

level. That‘s a winner of an idea because it allows the game engine to be published with

only the #include files and the library. The source code would remain safely in our hands.

Tools are a little fuzzier, and depend somewhat on whether the tool in question is one that
is a custom tool for the project or something that everyone on every project uses. As you

might expect, a tool for one project would go into the source tree for the project, and one
that everyone uses would go into the same directory hierarchy as your shared game engine.

If neither seems to fit, such as a one-off tool to convert some wacky file format to another,
and it would never need to change or undergo any further development, perhaps you should

install it into a special directory tree for those oddballs. Basically, the rule of thumb is that

any directory tree should be under the same kind of development: rapid, slow, or
completely static.

If your game needs any open source or third-party libraries to build, I suggest putting them

in a 3rdParty directory inside your Source directory. This makes it easy to keep all the right
versions of those things with your code base, and it is convenient for other programmers

who need to grab your code and work with it. After all, it might be tough to find an old
version of something if your source code requires it.

Setting Visual Studio Build Options

I mentioned that you have to coax Visual Studio to move its intermediate and output files

outside the directory that stores the solution file. To do this, open your solution, right-click
the solution in your solution explorer, and select Properties. Click the ―General‖ group under

Configuration Properties (see Figure 4.1), and you‘ll be able to select the Output and
Intermediate directories.

Figure 4.1. Visual Studio 2005 Configuration properties.

javascript:moveTo('ch04fig01');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Intermediate directory is set to where you want all of your .OBJ and other intermediate
build files to be saved. Visual Studio has defined the macro $(ConfigurationName) to

separate intermediate files in directories with the configuration name, such as Debug or
Release. I also like to add the macro $(Project-Name), just in case I have two Visual Studio

project files that happen to have the same name. In these property settings, you can use
the $(IntDir) macro to identify the entire path defined in the Intermediate directory setting,

so you can find it useful for things like placing other build-specific files like your build log.

The Output directory is where the linked result, such as your .EXE file, will go. You should
set that to your Bin directory for the Release configuration and the Test directory for other

configurations. The $(OutDir) macro can then be used to store any build output file you
want to live in your Output directories.

Under the linker settings, you set the output filename to $(OutDir)/$(Project-Name)d.exe

for the debug build, $(OutDir)/$(ProjectName)p.exe for the profile build, and
$(OutDir)/$(ProjectName).exe for the release build. The names you give to the output files

will set the $(TargetName) and $(TargetPath) macros, which comes in handy to keep things
like the PCH files named to match their executable counterparts.

Rename Your Build Targets So They Can Exist in the Same Directory

You can distinguish the debug, profile, and release files by adding a
“d” or a “p” to the end of any final build target. You could also use the

$(ConfigurationName) macro if want absolute clarity. If for any reason
the files need to coexist in the same directory, you don’t have to

worry about copying them or creating temporary names.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

With the target directories set right, Visual Studio has some macros you can use in your

project settings.

 $(IntDir): The path to intermediate files

 $(OutDir): The path to the output directory (..\Bin\ or ..\Test\)

 $(TargetDir): The path to the primary output file

 $(TargetName): The name of the primary output file of the build without the

extension

 $(TargetPath): The fully qualified path and filename for the output file

 $(ConfigurationName): Set to the name of your current configuration, such as

Debug or Release

Use these macros for the following settings for all build configurations:

 Debugging/Debugging Command: $(TargetPath) will call the right executable for

each build target

 Debugging/Working Directory: Should always be ..\..\Bin

 C/C++/Precompiled Headers/Precompiled Header File: $(IntDir)

$(ProjectName)$(ConfigurationName).pch

 C/C++/Output Files: $(IntDir) for the ASM list location, object filename, and

program database filename

 Linker/Debug Settings/Generate Program Database File:

$(IntDir)$(TargetName).pdb

 Linker/Debug Settings/Map File: $(IntDir)$(TargetName).map

Some Notes about Changing Default
Directories in Visual Studio

There are plenty of third-party tools that work with Visual

Studio. Most of them make the same assumptions about
project default directories that Visual Studio does. They‘ll still

work with my suggested directory structure, but you‘ll have

to tweak the search directories for source code and symbol
files.

The macros also help to keep the differences between the

build targets to a minimum. For example, $(IntDir) can stand
for ..\Obj\Debug or ..\Obj\Release because they are the

same in all build targets, and they don‘t disappear when you
choose ―All Configurations‖ in the project settings dialog.

Multiplatform Projects

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you happen to be lucky enough, or unlucky enough, to work on a multiplatform project,

you‘ll need to tweak the previous solution just a little. Multiplatform projects usually have
files that are common to all platforms and platform-specific files, too. The general idea is to

keep all the common files together and create parallel directories for the platform-
dependent stuff.

You‘ll need to install the platform-specific SDK before Visual Studio will recognize the new

project platform. Your platform SDK will usually have instructions for this if it is compatible
with Visual Studio, but most of the console manufacturers have SDKs that are compatible,

so even if you are working on the Nintendo Wii you can still use Visual Studio to do your
work.

Once the platform SDK is installed, you add the platform to your solution by opening the

Configuration Manager from the Build menu. Then for each project, drop down the platform
choice and choose New. You should be able to select the new platform (see Figure 4.2).

Figure 4.2. Adding a new platform configuration to your project.

You can use the $(PlatformName) macro in your properties settings to keep platform-

specific intermediate and output files nice and neat.

As far as how you should change your directory structure, here‘s an example of how to set
up a Win32/Xbox360/Wii multiplatform structure.

Take a look at Figure 4.3. The project root is C:\Projects\GameCode3\Dev. That directory

stores the familiar Bin, Media, Obj, Source, and Test directories I mentioned earlier. There
are two accommodations for platform-dependent files and directories. First, the Bin

directory has a special platform-dependent directory for each platform. These directories
will hold executables and DLLs. The Bin\data directory holds both the common files and

platform-dependent files, named for what they contain. GameCode3.zip stores cooked game
assets common to all platforms, and there are platform-specific files as well. Basically, you

follow the same rules as before—make it easy to find and filter your files based on what you
want—in this case, by platform.

Figure 4.3. How to organize multiplatform development.

javascript:moveTo('ch04fig02');
javascript:moveTo('ch04fig03');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

During development you‘ll want the convenience of having all the platforms side-by-side,
which keeps you from making tons of copies of the common files for every platform. You‘ll

need to make a small change to your deployment script, in order to strip unwanted platform
files from platform-specific builds, such as those that would get burned to an installation

disk. After all, there‘s no reason to have a Win32 version of your game on the Wii, is there?

Source Code Repositories and Version Control

In comparing game development with other kinds of software development projects, what
really stands out is the sheer number of parts required. Even for a small game, you may

have many tens of thousands of source files for code, sound, art, world layout, scripts, and
more. You may also have to cook files for your game engine or platform. Most sound effects

come from a source WAV, and are usually converted to OGG or MP3. Textures may have a
source PSD if they were created in Photoshop and have a companion JPG or PNG after it‘s

been flattened and compressed. Models have a MAX file (if you use 3ds Max) and have
multiple source textures. You might also have HTML files for online help or strategy guides.

The list goes on and on. Even small games have hundreds, if not thousands, of individual

http://lib.ommolketab.ir
http//lib.ommolketab.ir

files that all have to be created, checked, fixed, rechecked, tracked, and installed into the

game. Big games will frequently have hundreds of thousands of files.

The Flame

When I first arrived at Origin Systems, I noticed some odd
labels taped to people‘s monitors. One said, ―The Flame of

the Map‖ and another ―The Flame of Conversation.‖ I thought

these phrases were Origin‘s version of Employee of the
Month, but I was wrong. This was source control in the days

of SneakerNet, when Origin didn‘t even have a local area
network. If someone wanted to work on something, they

physically walked to the machine that was the ―Flame of
Such and Such‖ and copied the relevant files onto a floppy

disk, stole the flame label, and went back to their machine.
Then they became the ―Flame.‖ When a build was assembled

for QA, everyone carried his or her floppy disks to the build

computer and copied all the flames to one place. Believe it or
not, this system worked fairly well.

Many years later, I was working on a small project and one

afternoon a panicked teammate informed me that our
development server went down and no one could work. We

were only two days away from a milestone, and the team
thought we were doomed. ―Nonsense!‖ I said, as I created a

full list of our development files and posted them outside my
office. I reintroduced our team to SneakerNet—and they used

a pencil to ―check out‖ a file from the list and a diskette to
move the latest copy of the file from my desktop to theirs

where they could work on it.

We made our milestone, and no files were lost or destroyed.
Sometimes an old way of doing something isn‘t so bad after

all.

Back in the old days, the source files for a big project were typically spread all over the
place. Some files were stored on a network (if you knew where to look), but most were
scattered in various places on desktop computers, never to be seen again after the project

finished. Unfortunately, these files were frequently lost or destroyed while the project was in
production. The artist or programmer would have to grudgingly re-create their work, a

hateful task at best.

Source control management is a common process used by game development teams
everywhere. Game development is simply too hard and too risky to manage without it.

Nonprogrammers find source control systems unwieldy and will complain for a while, but

they will get used to it pretty quickly. Even 3ds Max has plug-ins for source control systems
so everyone on the team can use it.

Outside of source control, many companies choose to track these bits and pieces with the

help of a database, showing what state the asset is in and whether it is ready to be installed
in the game. Source control repositories can help you manage who is working on

something, but they aren‘t that good at tracking whether something is ―good enough‖ to be
in the game. For that, you don‘t need anything more than an Excel spreadsheet to keep a

list of each file, who touched it last, what‘s in the file, and why it is important to your game.
You could also write a little PHP/MySQL portal site and put a complete content management

intranet up on your local network to track files.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

To help you put your own version control process in place, I‘ll introduce you to some of the

more popular version control tools that professional game developers use in their practice.
I‘ll also tell you which ones to avoid. Of course, keep in mind that there is no perfect, one-

size-fits-all tool or solution. The important thing is that you put some type of process
together and that you do it at the beginning of any project.

Visual SourceSafe from Microsoft

Visual SourceSafe is the source repository distributed with Microsoft‘s Visual Studio, and it is

an excellent example of, ―You get what you pay for.‖ What attracts most people to this
product is an easy-to-use GUI interface and an extremely simple setup. You can be up and

running on SourceSafe in 10 minutes if you don‘t type slowly.

The biggest problem with SourceSafe is how it stores the source repository. If you dig a bit
into the shared files where the repository is stored, you‘ll find a data directory with a huge

tree of files with odd names like AAAAAAAB.AAA and AAACCCAA.AAB. The contents of these
files are clear text, or nearly, so this wacky naming scheme couldn‘t have been for security

reasons. If anyone out there knows why they did it this way, drop me an email. I‘m
completely stumped.

Each file stores a reverse delta of previous revisions of a file in the repository. Every

revision of a file will create a new SourceSafe file with one of those wacky names. For those
of you paying attention, you‘ll remember that many of these files will be pretty small, given

that some source changes could be as simple as a single character change. The amount of
network drive space taken up by SourceSafe is pretty unacceptable in my humble opinion.

There‘s also a serious problem with speed. Even small projects get to be a few hundred files

in size, and large projects can be tens, or even hundreds of thousands of files. Because
SourceSafe stores its data files in the repository directory structure, access time for opening

and closing all these files is quite long and programmers can wait forever while simply

checking to see if they have the most recent files. SourceSafe doesn‘t support branching
(see my discussion on branching a little later), unless you make a complete copy of the

entire tree you are branching. Ludicrous!

Forget attempting to access SourceSafe remotely. Searching thousands of files over a pokey
Internet connection is murder. Don‘t even try it over a T1 line. Finally, SourceSafe‘s file

index database can break down, and even the little analyzer utility will throw up its hands
and tell you to start over. I‘ve finished projects under a corrupted database before, but it

just happened that the corruption was affecting a previous version of a file that I didn‘t
need. I was lucky.

SourceSafe also has a habit of corrupting itself, making your entire repository a useless pile

of unfathomable files. This is especially true when you store large binary assets like sounds,
textures, and video.

If I haven‘t convinced you to try something other than SourceSafe, let me just say it: Don‘t

use it. I‘ve heard rumors that Microsoft doesn‘t use it, so why should you?

Subversion and TortoiseSVN

Subversion is a free source repository available at http://subversion.tigris.org. It uses a
command-line interface, which can give some nonprogrammers some heartburn when using

it. Luckily, you can also download TortoiseSVN, a GUI that integrates with Windows
Explorer. It is available at http://tortoisesvn.tigris.org. Both are free, are easy to set up and

administer, and are a great choice for a development team on a budget.

The system stores the file state on the local machine, which makes it trivial to work on files
even if you have no network access. You just work on them and tell the Subversion server

../../default7.htm
../../default8.htm
http://lib.ommolketab.ir
http//lib.ommolketab.ir

when you are ready to commit them to the server. If anyone else made modifications with

you in parallel, the system will let you merge the changes.

Complaints about the system generally fall into the speed and scalability category. If you

are working on a large game with a huge directory structure and tens of thousands of

assets, you would be wise to consider something else, such as Perforce.

I developed this edition of the book, and all the source code in it, under Subversion. So if

you are reading this now and can play with the source code, I guess Subversion worked just

fine.

Perforce by Perforce Software

My favorite product in this category is Perforce. I‘ve used this product for years, and it‘s

never let me down. For any of you lucky enough to move from SourceSafe to Perforce, the
first thing you‘ll notice is its speed. It‘s damn fast.

Perforce uses a client/server architecture and a Btrieve-based database for storing the

repository. Btrieve is an extremely efficient data storage and retrieval engine that powers
Pervasive‘s SQL software. That architecture simply blows the pants off anything that uses

the network directory hierarchy. More than storing the current status of each version of

each file, it even stores the status of each file for everyone who has a client connection.
That‘s why most SourceSafe slaves freak out when they use Perforce the first time; it‘s so

fast they don‘t believe it‘s actually doing anything. Of course, this makes remote access as
fast as it can possibly be.

Don’t Forget to Ask Perforce’s Permission

Since Perforce ―knows‖ the status of any file on your system,
you have to be careful if you change a file while you are

away from your network connection and you can‘t connect to
the Perforce server to ―check out‖ a file. Since Perforce

knows nothing of the change, it will simply complain later
that a local file is marked read/write, so while it won‘t blow

away your changes, it also doesn‘t go out of its way to
remind you that you‘ve done anything. SourceSafe actually

does local data/time comparisons, so it will tell you that the

local file is different than the network copy. Subversion
stores your local file status locally, so it is much faster than

SourceSafe.

Perforce has a nice GUI for anyone who doesn‘t want to use the command line. The GUI will
perform about 99 percent of the tasks you ever need to perform, so you can leave the

command line to someone who knows what they‘re doing. Even better, Perforce integrates

with Windows Explorer, and you can edit and submit files just by right-clicking them. Artists
love that kind of thing.

The branching mechanisms are extremely efficient. If you make a branch from your main

line of development to a test line, Perforce only keeps the deltas from branch to branch.
Network space is saved, and remerging branches is also very fast. Subversion and others

make a completely new copy of the branch, taking up enormous network storage space.

You‘ll find almost as many third-party tools that work with Perforce as with some of the free
repositories. Free downloads are available, including tools that perform graphical merges,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

C++ APIs, conversion tools from other products like SourceSafe, Subversion, and tons of

others.

Perforce + Visual Sourcesafe = Chaos

When I worked for Ion Storm, the programmers used
Perforce, but everyone else used Visual SourceSafe. What a

fiasco! The content tree that stored art, game levels, and

sounds would always be a little ―off‖ from the source code in
Perforce. If you even had to check in a change that required

a parallel change to content, you had to practically halt the
entire team and tell everyone to do this massive refresh from

the network. This was simply horrible and wasted an amazing
amount of time. Don‘t screw around—make sure that you get

source code control licenses for everyone on your
development team: programmers, artists, and everyone else

that touches your game.

AlienBrain from Avid

For those of you with really serious asset tracking problems and equally serious budgets,

there‘s a pretty good solution out there that will track your source code and other assets:
AlienBrain from Avid. They have a huge client list that looks like a who‘s who of the

computer game industry. Their software integrates with nearly every tool out there:
CodeWarrior, Visual Studio, 3ds Max, Maya, Photoshop, and many others.

AlienBrain is somewhat more expensive than Perforce, but has some features Perforce

doesn‘t have. AlienBrain is used by game developers, filmmakers, and big iron simulations
developers that have needs to track much more than source code. They‘ve also made some

serious strides in the last few versions to improve performance and bring better branching
to their software that better matches other software. They also have some excellent

production pipeline helpers in their software, so files can be reviewed and approved after

they are checked in.

Programmers and ―build gurus‖ will like the fact that AlienBrain has sophisticated branching

and pinning mechanisms just like the more advanced source code repositories on the

market. (I‘ll discuss the importance of branching a little later in this chapter.) Artists and
other contributors will actually use this product, unlike others that are mainly designed to

integrate well with Visual Studio and not creative applications such as Photoshop and 3D
Studio Max. One of the big drawbacks of other products is their rather naive treatment of

nontext files. AlienBrain was written with these files in mind. They have some great features
to track peer review in art files, for example.

Using Source Control Branches

I freely admit that up until 2001 I didn‘t use branching. I also admit that I didn‘t really know

what it was for, but it also wasn‘t my fault. I blame Microsoft. Their Visual SourceSafe tool
is distributed with Visual Studio, and some engineers use it without question. Microsoft

software, like Office, has hundreds of thousands of source files and many hundreds of
engineers. SourceSafe was never designed to handle repositories of that size.

Branching is a process where an entire source code repository is copied so that parallel

development can proceed unhindered on both copies simultaneously. Sometimes the copies
are merged back into one tree. It is equally possible that after being branched, the

branched versions diverge entirely and are never merged. Why is branching so important?
Branches of any code imply a fundamental change in the development of that code. You

http://lib.ommolketab.ir
http//lib.ommolketab.ir

might branch source code to create a new game. You might also branch source code to

perform some heavy research. Sometimes a fundamental change, such as swapping out one
rendering engine for another or coding a new object culling mechanism is too dangerous to

attempt in the main line of code. If you make a new branch, you‘ll wall off your precious
main code line, have a nice sandbox to play in, and get the benefits of source control for

every source file.

SourceSafe‘s branching mechanism, and I use that term loosely, makes a complete copy of
the entire source tree. That‘s slow and fat. Most decent repositories keep track of only the

deltas from branch to branch. This approach is much faster, and it doesn‘t penalize you for
branching the code.

Here are the branches I use and why:

 Main: Normal development branch

 Research: A ―playground‖ branch where anything goes, including trashing it

entirely

 Gold: The branch submitted for milestone approvals or release

The Research and Gold branches originate from the Main branch. Changes in these branches

may or may not be merged with the Main branch, depending on what happens to the code.
The Main branch supports the main development effort; almost all of your development

effort will happen in the Main branch.

The Research branch supports experimental efforts. It‘s a great place to make some core
API changes, swap in new middleware, or make any other crazy change without damaging

the main line or slowing development there. The Gold branch is the stable branch that has
your last, or next, milestone submission. Programmers can code fast and furious in the

main line while minor tweaks and bug fixes needed for milestone approval are tucked into

the Gold branch.

Perhaps the best evidence for branching code can be found in how a team works under

research and release scenarios. Consider a programming team about to reach a major

milestone. The milestone is attached to a big chunk of cash, which is only paid out if the
milestone is approved. Say this team is old-fashioned and doesn‘t know anything about

branching.

Just before the build, the lead programmer runs around and makes everyone on the team
promise not to check on any code while the build is compiling. Everyone promises to keep

their work to themselves, and everyone continues to work on their own machines.

Most likely the build doesn‘t even compile the first time. One of the programmers might
have forgotten to check in some new files, or simply gotten sloppy and checked in work that

didn‘t compile. By the time the lead programmer figures out who can fix the build, the
programmer at fault may have already started work on other things, which now may have

to be reverted to get the build working again. This is a big waste of time. While all of this is
going on, another programmer is frustrated because he can‘t begin making major changes

to the AI code since it might need a tweak to make the build work too. Getting the build to
become stable with everyone working in one branch basically shuts everyone down until the

build is complete, which can take more than a day in some cases.

But the problems don‘t stop there. Let‘s assume the completed build is going to be tested
by a remote test team, and the build takes hours to upload to their FTP site. By the time the

build is uploaded and then grabbed by the test team, it could be two days. If the test team

finds a problem that halts testing, the whole process starts again with the whole

http://lib.ommolketab.ir
http//lib.ommolketab.ir

development team hobbled until testing gives the green light. This whole process could take

two to three days or more.

If you don‘t think this is that bad, you are probably working without branches and have

trained yourself to enjoy this little hellish scenario. You‘ve probably developed coping

mechanisms that you call ―process‖ instead of what they are, which is crazy. I used to do
the same thing because I thought branches were too much trouble and too confusing. Until

I tried them myself.

Let‘s look at the same scenario from the perspective of a team that uses branches.

The lead programmer walks around and makes sure the team has all the milestone changes

checked in. She goes to the build machine and launches a milestone build. The first thing

that happens is the Gold branch gets refreshed with the very latest of everything in the
Main branch. The build finishes with the same failure as before—compile errors due to

missing files. The programmer responsible simply checks in the missing files into both the
Main branch and the Gold branch, and everything continues without delay. The AI

programmer mentioned previously continues working without worry, since all of his changes
will happen in the Main branch, safely away from the Gold branch.

The finished build is checked and sent to the testing group via the same FTP site, and it still

takes almost eight hours. When the build gets just as hosed as before, the lead programmer
makes a small tweak directly in the Gold branch to get it working, and she uploads a small

patch. The test team gets to work and reports a few issues, which are then fixed directly in
the Gold branch and merged back into the Main branch. When the milestone is approved,

the Gold branch has the latest and greatest version of the game, and the development team

never lost a second during the entire process. They even have the bug fixes that were made
in the Gold branch.

Every minute of lost development time means your game is a little less fun, or a little less

polished than it could be. Given the above—which team do you think is going to make the
best game? My money and Metacritic are going with the team that used branches.

Silver, Gold, and Live

A friend of mine who worked at Microsoft was in the Build lab

for Microsoft Office. At the time, they used three branches: a

Main, a Silver, and a Gold. The teams would publish from
Main to Silver when a milestone was about to be delivered,

but because of the vast number and speed of changes that
happened even in the Silver branch, they also published

Silver to Gold when a real ―version‖ was ready to go into final
testing.

This same strategy is also used by my friends working on

online games—they usually have three branches too: Main,
Gold, and Live. Sometimes, you have to make a change

directly in the Live branch to fix a critical issue right on the
live servers and then propagate that change back to the Gold

and Main branches.

Building the Game: A Black Art?

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You can‘t build a testable version of your game by simply grabbing the latest source code

and launching the compiler. Most games have multiple gigabytes of data, install programs,
multiple languages, special tools, and all manner of components that have nothing at all to

do with the executable. All of these components come together in one way or another
during the build. Every shred of code and data must make it onto the install image on one

or more CDs or on the network for the test team. Frequently, these components don‘t come
together without a fight. Building the game is something of a black art, assigned to the

most senior code shamans.

Ultima VIII had a build process that was truly insane. It went something like this:

1. Grab the latest source code: editor, game, and game scripts.

2. Build the game editor.

3. Run the game editor and execute a special command that nuked the local game data

files and grab the latest ones from the shared network drive.

4. Build the game.

5. Run the UNK compiler (Ultima‘s game scripting language) to compile and link the game

scripts for English. Don‘t ask me what UNK stands for, I really can‘t remember....

6. Run the UNK compiler twice more and compile the French and German game scripts.

7. Run the game and test it. Watch it break and loop back to Step 1 until the game finally

works.

8. Copy the game and all the game data into a temp directory.

9. Compress the game data files.

10. Build the install program.

11. Copy the English, French, and German install images to 24 floppy disks.

12. Copy the CD-ROM image to the network. (The only CD burner was on the first floor.)

13. Go to the first floor media lab and make three copies of each install: 72 floppy disks and

three CDs. And hope like hell there are enough floppy disks.

Before you ask, I‘ll just tell you that the fact that the build process for Ultima VIII had 13

steps never sat very well with me. Each step generally failed at least twice for some dumb
reason, which made building Ultima VIII no less than a four hour process—on a good day.

The build was actually fairly automated with batch files. The game editor even accepted

command line parameters to perform the task of grabbing the latest map and other game
data. Even so, building Ultima VIII was so difficult and fraught with error that I was the only

person who ever successfully built a testable version of the game. That wasn‘t an
accomplishment, it was a failure.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

On one of my trips to Microsoft, I learned something about how they build Office. The build

process is completely automatic. The build lab for Office has a fleet of servers that build
every version of Office in every language, and they never stop. The moment a build is

complete, they start again, constantly looking for compile errors introduced by someone in
the last few minutes. Office is a huge piece of software. If Microsoft can automate a build as

big and complex as this, surely you can automate yours.

Automate Your Builds

My experience has taught me that every project can and should have an automatic build.
No exceptions. It‘s far easier (and safer) to maintain build scripts that automate the process

instead of relying on a build master, whose knowledge is so arcane he might better be
called a witchdoctor. My suggestion is that you should try to create Microsoft‘s build lab in

miniature on your own project. Here is what‘s needed:

 A build machine, or even multiple machines, if your project is big enough

 Good tools for automatic building, both from third-party sources or made yourself

 Invest time creating and maintain automation scripts

The Build Machine

Don‘t try to save a buck and use a programmer‘s development box as your build machine.

Programmers are always downloading funky software, making operating system patches,
and installing third-party development tools that suit their needs and style. A build machine

should be a pristine environment that has known versions and updates for each piece of
software: the operating system, compiler, internal tools, SDKs, install program, and

anything else used to build the game.

After You Go Gold, Back Up Your Build Machine

A complete backup of the build machine is good insurance. The

physical machine itself, preserved for eternity, is even better. If you
need to build an old project, the backup of the build machine will have

the right versions of the compiler, operating system, and other tools.
New versions and patches come out often, and a project just 12

months old can be impossible to build, even if the source code is
readily available in the source code repository. Just try to build

something 10 or 12 years old, and you’ll see what I mean. If anyone

out there has a good copy of Turbo Pascal and IBM DOS 3.3, let me
know!

The build machine should be extremely fast, have loads of RAM, and have a high
performance hard disk, preferably multiple hard disks with high RPM and configured with at

least RAID 0 for ultimate speed. Compiling is RAM- and hard disk-intensive, so try to get the

penny-pinchers to buy a nice system. If you ever used the argument about how much
money your company could save by buying fast computers for the programmers, imagine

how easy it would be to buy a nice build machine. The entire test team might have to wait
on a build. How much is that worth?

Automated Build Scripts

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Automated builds have been around as long as there have been makefiles and command-

line compilers. I admit that I‘ve never been good at the cryptic syntax of makefiles, which is
one reason I put off automating builds. If you use Visual Studio, you might consider using

the prebuild or postbuild settings to run some custom batch files or makefiles. I wouldn‘t,
and here‘s why: You‘ll force your programmers to run the build scripts every time they

build. That‘s probably wasteful at best, completely incorrect at worst.

Prebuild and postbuild steps should run batch files, makefiles, or other utilities that are
required every time the project is built. Build scripts tend to be a little different and skew

toward getting the build ready for the test department or burning to DVD. As an example,
the build script will always grab the latest code from the source repository and rebuild the

entire project from scratch. If you forced your programmers to do that for every compile,
they‘d lynch you.

Batch files and makefiles are perfectly fine solutions for any build script you need. You can

also write great batch files or shell scripts, since Visual Studio builds can be run from the
command line. There are some better tools for those like myself who like GUIs, such as

Visual Build Pro from Kinook Software (see Figure 4.4).

Figure 4.4. Visual Build from Kinook Software.

This tool is better than batch files or makefiles. The clean GUI helps you understand and
maintain a complicated build process with multiple tools and failure steps. The build script is
hierarchical, each group possibly taking different steps if a component of the build fails.

Visual Build also integrates cleanly with a wide variety of development tools and source
code repositories.

javascript:moveTo('ch04fig04');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Every internal tool you create should have a command-line interface. Whether the tool

creates radiosity maps for your levels, calculates visibility sets, analyzes map data, or runs
a proprietary compression technology, it must be able to take input from the command line,

or you won‘t be able to automate your build process.

Creating Build Scripts

You‘ll want to create a few build scripts for your project. Most builds will simply grab the
latest code, build it, and copy the results somewhere on the network. The milestone build is

a little more complicated and involves branching and merging the source code repository.

Normal Build

The normal build script builds a clean version of the game and copies the results somewhere
useful. It is run as a part of the milestone build process, but it can also run automatically at

regular intervals. I suggest you run a normal build at least once per day, preferably in the
wee hours of the morning, to check the code on the network for any errors. The normal

build script is also useful for building adhoc versions of the game for the test team.

The normal build script performs the following steps:

 Clean the build machine. If you use the directory structure I suggest at the

beginning of this chapter, you can just delete the Obj directory.

 Get the latest source code and game media. I used to recommend cleaning

everything and starting from nothing, but on most games this simply takes too long.
Just grab the recent files.

 Grab the latest version number and label the build. You can decide when to

change the version number—each build or even each night. You can use the version

number to specify the ultimate destination on your build server, so every build

you‘ve ever made can be available. Visual Build Pro has a utility to grab or even
change the version number of Visual Studio resource files, but it‘s pretty easy to

write one yourself.

 Compile and link every build target: debug, profile, and release. The project

settings will make sure everything goes into the right place.

 Run automatic test scripts. If you have automated testing, have the build

machine run the test scripts to see if the build is a good one. This is more reliable
than a bleary-eyed programmer attempting to test the game at 4 a.m.

 Process and copy the build results. The destination directory should use the code

name of the project and the version number to distinguish it from other projects or

other versions of the same project. For example, version 2.0.8.25 of the Rainman

project might go into E:\Builds\Rainman\2.0.8.25. The nightly build of the same
project might go into E:\Builds\Rainman\Nightly.

A nightly build process is actually trivial to set up if you have your automated build

working—just set up a scheduled task on the build machine. For Windows Vista, you can
create a scheduled task by going into the Control Panel, run Administrative Tools, and run

the Task Scheduler. The wizard will take you through the steps of defining when and how
often to run it. If you happen to be a Linux person, look up the cron command. Usually, it‘s

a good idea to copy the results of the build to your network where everyone can grab it.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Scripts Can’t Update Themselves While they
are Running

If you‘re paying attention, you‘ll realize that the build scripts

themselves should be checked to make sure they haven‘t

changed. If the build script is running, how can it clean itself
off the build machine and get itself from the source code

repository? It can‘t, at least not easily. If you standardize
your projects with a single directory structure, it‘s better to

create a master build script that works for any project.
Project-specific build commands are put into a special build

script that lives in the same directory as the project files. The
master build script should only change when the build

process for every project is changed—something that should

be extremely rare.

Milestone Build

Milestone builds add more steps to the beginning and end of the build since they involve
branching the code. They also involve an approval process that takes days or weeks instead

of minutes, so the build process has an ―open,‖ a ―create,‖ and a ―close‖ script to manage
the branches and make sure that any changes that happen during approval get back into

the main code line.

Every project should have a Main branch and a Gold branch. Every source code repository
does this a little differently. When a milestone build is launched, the first thing that happens

is the Gold branch gets a fresh copy of the Main branch. The branches are synchronized
without merging, which means that the entire Main branch is simply copied to the Gold

branch, making them identical. The build machine runs the build scripts from the Gold

branch to make the milestone build. This implies that the Main and Gold branch can exist on
the same machine at the same time. This is true.

Most source code repositories allow a great degree of freedom for each client to configure

how they view the contents of the repository. It‘s pretty easy to configure the client to put
all the Main branches of every project into a D:\Projects\Main directory and all the Gold

branches into D:\Projects\Gold. The build scripts can even use a branch macro to figure out
which branch needs building.

After the milestone build is assembled, it should be packaged and sent to testing. In our

case, this meant Zip‘ing up the entire build and putting it on our FTP site so Microsoft‘s Test
department could grab it.

No Build Automation = Madness

At Origin Systems, we didn‘t do anything special for
milestone builds on the Ultima projects. Some unlucky

programmer, usually me, launched the build on his desktop
machine and after plenty of cursing and a few hours, the new

version was ready to test. The other programmers kept
adding features and bugs as fast as the test team could sign

off old features. New code and features would break existing
code—stuff the test team approved. The bugs would pile up,

and it was difficult to figure out if the project was making any

progress. To minimize the pain of this process, it was usually

http://lib.ommolketab.ir
http//lib.ommolketab.ir

done in the middle of the night when most of the developers

had gone home.

The projects I‘ve been on since then were entirely different,

mostly due to ditching SourceSafe and using branches. Our

source code repository, Perforce, had excellent branching and
merging capabilities. The programming team resisted at first,

but quickly saw that milestone builds were linked directly to
their paychecks. A few milestones later everyone wondered

how we ever developed projects without branching.

Old Advice Turned Out to be Dumb Advice

In the first and second editions of this book, I advised readers to use

monolithic ZIP or RAR files to package their entire build and FTP that

one file. This turns out to be a horrible idea. I was working on a
project that had to upload a multigigabyte file, and when the FTP

failed seven hours into the upload, we had to start all over. Instead,
use RAR/PAR files. Most Rar tools can split a monolithic Rar file into

smaller components, each of which may only be a few hundred
megabytes. The PAR files can be used to actually rebuild a corrupted

file on the receiving end, saving both parties a ton of time.

Teams almost never submit milestone builds that are approved with no changes. Most of
the time, testing will require some changes, both major and minor. Any of these changes

should happen in your Gold branch. You can then rebuild the Gold branch and resubmit to
your testing group. This process continues until the test team is satisfied. The Gold branch

is then merged to the Main branch. This is usually an automatic process, but sometimes
merge conflicts force a human to stare at the changes and merge them.

The two additional scripts you‘ll need to build and manage your changes in a multibranch

environment are ―Open‖ and ―Close.‖ Here‘s an outline of what you‘ll want in the ―begin‖
script:

 Get the latest files in the Main branch.

 Unlock the Gold branch and revert any modified files.

 Force integrate from Main to Gold.

 Submit the Gold branch.

You may notice a command to ―unlock‖ the Gold branch. More on that in a moment. Take a

look at the ―close‖ script:

 Get the latest files in the Gold branch.

 Integrate from Gold to Main.

 Resolve all changes.

 Submit the Main and the Gold branch.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Lock the Gold branch from all changes.

The integration commands are expected, but if you look at the last two lines of the Close
phase, you‘ll see that the Gold branch is locked so that no one can change it. The Open

phase unlocks the files and reverts any changes. Why bother? This makes absolutely sure
that the Gold branch is only open for changes during milestone approval. If no milestone

build is in test, there should be no reason to change the Gold branch.

Builds were Tough on Thief: Deadly Shadows

On Thief: Deadly Shadows, there was an unfortunate

problem in the build process that no automation could
possibly fix. Since the project was really large and there was

no automated testing, the test team would only get new
builds every couple of days. It would take them that long just

to be sure they could send the latest version to the entire
test team. The problem was that the new build was launched

at fairly random times, and the development team was never
given any notice. Now, I know what you‘re thinking. If every

submission to the source repository were individually

checked, then a new build should be able to launch at any
time without error. Wrong! The builds took days to perform

because there was little, if any, integration testing on the
part of programmers. They simply tested their own stuff in

quick, isolated tests. This rarely caught the odd problems due
to integration flaws, and these problems accumulated

between builds. The solution? Give the developers a little
notice—at least a few hours—and get them to run some more

serious integration tests of their own before the build. That,

and for goodness sake, create some automated testing and
run it nightly.

This has an added side effect: Anyone who wants the latest approved milestone build can
simply grab the code in the Gold branch and build the game. This is especially useful if the
odd executive or representative of the press wants to see a demo. Even if the last build is

missing from the network, you can always recreate it by building the Gold branch.

Multiple Projects and Shared Code

It‘s difficult to share code between multiple projects if the shared code is still under rapid

development. Two different teams will eventually be in different stages of development
because it is unlikely they both will have the same project schedule. Eventually, one team

will need to make a change to the shared code that no one else wants.

There are a couple of different cases you should consider:

 One team needs to put a ―hack‖ in the shared code to make a milestone quickly, and

the other team wants to code the ―real‖ solution.

 One team is close to shipping and has started a total code lockdown. No one can

change anything. The other team needs to make modifications to the shared code to
continue development.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

How do you deal with this sticky problem? Branching, of course.

In the case of the scenario where two project teams need to share a common game engine,
the game engine has three branches:

 Main: The normal development branch

 Gold_Project_A: The Gold branch for the first project

 Gold_Project_B: The Gold branch for the second project

While both projects are in normal development, they both make changes to the shared
engine code in the Main branch. If either project goes into a milestone approval phase, they

fix milestone blockers in the Gold branch for their project. Since they each get their own

Gold branch, both projects can be in approval simultaneously without worrying about each
other. If they happen to be broken in exactly the same way, you can always make the

change in the Main branch and integrate that single change forward to both Gold branches,
it‘s totally up to you. After their milestone has been approved, the changes get merged back

into the main line. When either project hits code lockdown, meaning that only a few high
priority changes are being made to the code, the project stays in the Gold branch until it

ships.

All this work assumes the two teams are motivated to share the game engine and
continually contribute to its improvement. There might be a case for one project

permanently branching the shared code, in which case, it should get its own code line apart
from the Main branch of the original shared code. If the changes are minor, and they should

be, it‘s trivial to merge any two arbitrary code lines, as long as they originated from an

original source. Even if you got unlucky and the changes were overhauls, the difficulty of
the merge is preferable to making huge changes in your main code line while trying to

satisfy a milestone. Best to leave this activity in its own branch.

Some Parting Advice

This chapter has likely shown you that there is a lot of drudgery on any software project,
and games are no exception. Back in the dark ages, I built game projects by typing in

commands at the command prompt and checking boxes on a sheet of paper. Since most of
this work happened way after midnight, I made tons of mistakes. Some of these mistakes

wasted time in copious amounts—mostly because the test team had a broken build on their
hands, courtesy of a decaffeinated or just exhausted Mike McShaffry.

Without using branching techniques, all the programmers had to tiptoe around their code

during a build. Moving targets are much harder to hit. Programmers take a long time to get
in a good zone. If you break anyone‘s concentration by halting progress to do a build, you

lose valuable time.

My parting advice: Always automate the monkey work, give the test team a good build
every time, and never ever get in the way of a developer in the zone.

Part II: Get Your Game Running

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 5. Game Initialization and Shutdown

In This Chapter

 Initialization 101

 Some C++ Initialization Pitfalls

 The Game‘s Application Layer

 Stick the Landing: A Nice Clean Exit

 Getting In and Getting Out

There are a million little details about writing games that no one talks about. Lots of books

and Web sites can teach you how to draw textured polygons in Direct3D. But when it comes

to figuring out your initialization sequence, you‘ll find little discussion. Most programmers
hack something together over time that eventually turns into a horrible mess.

I‘ve written this chapter to show you the ins and outs of the entire initialization sequence.

As you check out the code in this chapter, keep in mind that the solutions provided
shouldn‘t be used verbatim because your game might be very different and require a

different solution. Hopefully, you‘ll gain an understanding of my approach and be able to
adapt it to your particular situation. Truly elegant solutions and algorithms never just fall

out of the sky. They usually come to you after seeing some code that falls slightly short of
what you need, and you push it the rest of the way yourself.

Every piece of software, including games, has initialization, the core or main loop, and

cleanup. Initialization prepares your canvas for painting pixels. The main loop accepts and
translates user input, changes the game state, and renders the game state until the loop is

broken. This loop is broken by a user quitting the game or some kind of failure. The cleanup
code releases key system resources, closes files, and exits back to the operating system.

This chapter deals with initialization and shutdown. Chapter 6, ―Controlling the Main Loop,‖

will dig a little deeper and show you how to control the main loop of your game.

Initialization 101

Initializing games involves performing setup tasks in a particular order, especially on

Windows platforms. Initialization tasks for Windows games are a superset of console games
due to a more unpredictable hardware and OS configuration. There are some tasks you

must perform before creating your window, and others that must have a valid window

handle or HWND, and therefore happen after you create your window. Initialization tasks for

a Windows game should happen in this order:

 Check system resources: hard drive space, memory, input and output devices.

 Check the CPU speed.

 Initialize your main random number generator (this was covered in Chapter 3).

 Load programmer‘s options for debugging purposes.

../../ch05lev1sec1#ch05lev1sec1
../../ch05lev1sec2#ch05lev1sec2
../../ch05lev1sec3#ch05lev1sec3
../../ch05lev1sec4#ch05lev1sec4
../../ch05lev1sec5#ch05lev1sec5
../../ch06#ch06
../../ch03#ch03
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Initialize your memory cache.

 Create your window.

 Initialize the audio system.

 Load the player‘s game options and saved game files.

 Create your drawing surface.

 Perform initialization for game systems: physics, AI, and so on.

Some C++ Initialization Pitfalls

Before we work through our initialization checklist, let‘s get some critical initialization pitfalls

out of the way, starting with the misuse of C++ constructors. I‘ve heard that power
corrupts, and absolute power corrupts absolutely. You might get some disagreement from

Electronic Art‘s executives on this point. I‘ll prove it to you by showing you some problems
with going too far using C++ constructors to perform initialization. It turns out that C++

constructors are horrible at initializing game objects, especially if you declare your C++

objects globally.

Programming in C++ gives you plenty of options for initializing objects and subsystems.

Since the constructor runs when an object comes into scope, you might believe that you can

write your initialization code like this:

// Main.cpp – initialization using globals

//

DataFiles g_DataFiles;

AudioSystem g_AudioSystem;

VideoSystem g_VideoSystem;

int main(void)

{

 BOOL done = false;

 while (! done)

 {

 // imagine a cool main loop here

 }

 return 0;

}

The global objects in this source code example are all complicated objects that could
encapsulate some game subsystems. The fledgling game programmer might briefly enjoy

the elegant look of this code, but that love affair will be quite short lived. When any of these
initialization tasks fail, and they will, there‘s no easy way to recover.

I‘m not talking about using exception handling as a recovery mechanism. Rather, I‘m

suggesting that any problem with initialization should give the player a chance to do
something about it, such as wiping the peanut butter off the DVD. To do this, you need a

user interface of some kind, and depending on where the failure happens, your user
interface might not be initialized yet.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Global objects under C++ are initialized before the entry point, in this case main(void).

One problem with this is ordering; you can‘t control the order in which global objects are
instantiated. Sometimes the objects are instantiated in the order of the link, but you can‘t

count on that being the case with all compilers, and even if it were predictable, you
shouldn‘t count on it. What makes this problem worse is that since C++ constructors have

no return value, you are forced to do something ugly to find out if anything went wrong.
One option, if you can call it that, is to check a member variable of the class to see if the

initialization completed properly:

// Main.cpp – initialization using globals

//

DataFiles g_DataFiles;

AudioSystem g_AudioSystem;

VideoSystem g_VideoSystem;

int main(void)

{

 // check all the global objects for initialization failure

 if (! g_DataFiles.Initialized() ||

 ! g_AudioSystem.Initialized() ||

 ! g_VideoSystem.Initialized())

 {

 printf("Something went horribly wrong. Please return this

game to the "

 "store in a fit of anger and write scathing posts to

every Web site "

 "you can about the company that would hire such

idiots.");

 return (1);

 }

 BOOL done = false;

 while (! done)

 {

 // imagine a cool main loop here

 }

 return (0);

}

This code is suddenly looking less elegant. But wait, there‘s more! The wise programmer will

inform his game players about what has gone wrong so they can have some possibility of
fixing the problem. The simpler alternative of failing and dropping back to the operating

system with some lame error message is sure to provoke a strong reaction.

If you want to inform the player, you might want to do it with a simple dialog box. This
assumes that you‘ve already initialized the systems that make the dialog box function:

video, user interface, data files that contain the button art, font system, and so on. This is
certainly not always possible. What if your nosey game player hacked into the art data files

and screwed them up? You won‘t have any button art to display your nice dialog box telling
hackers they‘ve screwed themselves. You have no choice but to use the system UI, such as

the standard message box under Windows. It‘s better than nothing.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Initialize Your String Subsystem Early

Initialize your text cache, or whatever you use to store text strings,

very early. You can present any errors about initialization failures in
the right language. If the initialization of the text cache fails, present

an error with a number. It’s easier for foreign language speakers

almost anywhere in the world to use the number to find a solution
from a customer service person or a Web site.

There are some good reasons to use global objects. One of the best ones is to trap the
general exception handler; your code then has control over how the game will handle
failures during initialization. Make sure that any global object you create cannot fail on

construction.

Global object pointers are much better than global objects. Singleton objects, such as the
instantiation of the class that handles the audio system or perhaps your application object,

are naturally global, and if you‘re like me, you hate passing pointers or references to these
objects in every single method call from your entry point to the lowest level code. Declare

global pointers to these objects, initialize them when you‘re good and ready, and free them

under your complete control. Here‘s an example of a more secure way to initialize:

// Main.cpp – initialization using pointers to global objects

//

// A useful macro

#define SAFE_DELETE(p) { if (p) { delete (p); (p)=NULL; } }

DataFiles *gp_DataFiles = NULL;

AudioSystem *gp_AudioSystem = NULL;

VideoSystem *gp_VideoSystem = NULL;

int main(void)

{

 gp_DataFiles = new DataFiles;

 if ((NULL==gp_DataFiles) || (!gp_DataFiles->Initialized())

)

 {

 // Please excuse the naked text strings! They are better

for

 // examples, but in practice I'd use a text cache for

 // localization. Not everyone speaks English, you know.

 _stprintf("The data files are somehow screwed. "

 "Try to reinstall before you "

 "freak out and return the game.");

 return (1);

 }

 gp_AudioSystem = new AudioSystem;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 if ((NULL==gp_AudioSystem) || (!gp_AudioSystem -

>Initialized()))

 {

 _stprintf("The audio system is somehow screwed. "

 "Reboot and try running the "

 "game again. That almost always works. ");

 return (1);

 }

 gp_VideoSystem = new VideoSystem;

 if ((NULL==gp_VideoSystem) || (!gp_VideoSystem -

>Initialized()))

 {

 _stprintf("The video system is screwed. Go get a real video

"

 "card before you even think of trying to run this

game.");

 return (1);

 }

 BOOL done = false;

 while (! done)

 {

 // imagine a cool main loop here

 }

 SAFE_DELETE(gp_VideoSystem); // AVOID DEADLOCK!!!

 SAFE_DELETE(gp_AudioSystem);

 SAFE_DELETE(gp_DataFiles);

 return (0);

}

Note that the objects are released in the reverse order in which they are instantiated. This

is no mistake, and it is a great practice whenever you need to grab a bunch of resources of
different kinds in order to do something. In multithreaded operating systems with limited

resources, you can avoid deadlock by allocating and deallocating your resources in this way.

Deadlock is a nasty situation whereby two processes are attempting to gain access to the
same resources at the same time, but cannot because they each have access to the

resource the other process needs to continue. Deadlock can even happen in a single-
threaded program, if other programs are attempting to gain access to the same limited

resources. Computers are very patient, and will happily wait until the sun explodes. Get in
the habit of programming with that problem in mind, even if your code will never run on an

operating system where that will be a problem. It‘s a great habit, and you‘ll avoid some

nasty bugs.

Exception Handling

Sometimes you have no choice but to write code in a C++ constructor that has the

possibility of failing. Certainly if you wrap the creation of some DirectX objects in a nice

class, you‘ll have plenty of places you‘d wish a constructor could return an HRESULT.

Instead of rewriting all your code to cripple the constructor and replace it with the

ubiquitous Init() method that returns success or failure, use exception handling as

shown here.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

// A useful macro

#define SAFE_DELETE(p) { if (p) { delete (p); (p)=NULL; }

}

DataFiles::DataFiles()

{

 // Imagine some code up here...

 {

 // blah blah blah

 }

 if (somethingWentWrong)

 {

 // Throw anything you want, I'm throwing a custom class

that

 // defines errors, so don't go looking in MSDN for the

ErrorCode

 // class; it's something you would define yourself!

 throw ErrorCode(EC_DATAFILES_PROBLEM);

 }

}

DataFiles *gp_DataFiles = NULL;

AudioSystem *gp_AudioSystem = NULL;

VideoSystem *gp_VideoSystem = NULL;

int main(void)

{

 BOOL returnCode = 0;

 try

 {

 // initialize everything in this try block

 gp_DataFiles = new DataFiles;

 gp_AudioSystem = new AudioSystem;

 gp_VideoSystem = new VideoSystem;

 BOOL done = false;

 while (! done)

 {

 // imagine a cool main loop here

 }

 }

 catch(ErrorCode e)

 {

 e.InformUser(); // ErrorCode can inform the user itself

 returnCode = 1;

 }

 SAFE_DELETE(gp_VideoSystem); // AVOID DEADLOCK!!!

 SAFE_DELETE(gp_AudioSystem);

 SAFE_DELETE(gp_DataFiles);

 return (returnCode);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

}

That code is looking much nicer, and it‘s beginning to appeal to my sense of elegance. Any
problem in initialization will throw an exception, jumping past the main loop entirely. The

ErrorCode class, the design of which I‘ll leave as an exercise for the reader, simply

reports the error back to the user in the best way possible, given what systems are up and

running. Perhaps the only thing it can do is send a text string out to stdout, or maybe it

can bring up a nice dialog box using your game‘s graphics. After the error is reported to the

player, a useful macro frees the global objects that have been constructed. Finally, a return
code is sent back to the operating system.

The Game’s Application Layer

We‘re now ready to work our way through the initialization checklist. We‘ll create the class

for your application layer, a very Win32-specific thing. The application layer would be
completely rewritten for different operating systems, such as Linux or consoles like the Wii.

The application layer class is instantiated as a global singleton object, and is referred to
throughout your code through a pointer. It is constructed globally too, since it has to be

there from the entry point to the program termination.

WinMain

The place where all Windows applications start is _tWinMain. I‘ve decided to use the

DirectX Framework for rendering, mostly because it handles all of the pain and suffering of
dealing with running a DirectX-based application under Windows. Take a quick look at the

code in one of the source files in the DirectX Framework, DXUT.cpp, sometime, and you‘ll
see exactly what I mean! The following code can be found in Source\GameCode.cpp:

INT WINAPI wWinMain(HINSTANCE hInstance,

 HINSTANCE hPrevInstance,

 LPWSTR lpCmdLine,

 int nCmdShow)

{

 // Set up checks for memory leaks.

 int tmpDbgFlag = _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG);

 // always perform a leak check just before app exits.

 tmpDbgFlag |= _CRTDBG_LEAK_CHECK_DF;

 _CrtSetDbgFlag(tmpDbgFlag);

 DXUTSetCallbackD3D9DeviceCreated(GameCodeApp::OnCreateDevice

);

 DXUTSetCallbackD3D9DeviceDestroyed(

GameCodeApp::OnDestroyDevice);

 DXUTSetCallbackMsgProc(GameCodeApp::MsgProc);

 DXUTSetCallbackD3D9DeviceReset(GameCodeApp::OnResetDevice);

 DXUTSetCallbackD3D9DeviceLost(GameCodeApp::OnLostDevice);

 DXUTSetCallbackD3D9FrameRender(GameCodeApp::OnRender);

 DXUTSetCallbackFrameMove(GameCodeApp::OnUpdateGame);

 // Show the cursor and clip it when in full screen

 DXUTSetCursorSettings(true, true);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 // Perform application initialization

 if (!g_pApp->InitInstance (hInstance, lpCmdLine))

 {

 return FALSE;

 }

 DXUTMainLoop();

 DXUTShutdown();

 //_CRTDBG_LEAK_CHECK_DF is used at program initialization

 // to force a leak check just before program exit. This

 // is important because some classes may dynamically

 // allocate memory in globally constructed objects.

 //

 //_CrtDumpMemoryLeaks(); // Reports leaks to stderr

 return g_pApp->GetExitCode();

}

These calls to the DXUTSetCallbackEtc functions allow the DirectX Framework to notify

the application about device changes, user input, and Windows messages. You should

always handle the callbacks for device reset/lost, or your game won‘t be able to withstand

things like fast user task switching under Windows.

The calls to the _CrtDumpMemory functions set up your game to detect memory leaks,

something discussed at length in Chapter 21, ―Debugging Your Game.‖

The global object to our game application is g_pApp. This points to a global object that

stores the game‘s application layer. Let‘s take a look at the base class, GameCodeApp.

The Application Layer: GameCodeApp

The game‘s application layer handles operating system-specific tasks, including interfacing

with the hardware and operating system, handling the application life cycle including

initialization, managing access to localized strings, and initializing the game logic. This class
is meant to be inherited by a game-specific application class that will extend it and define

some game-specific things, such as title, but also implementations for creating the game
logic and game views and loading the initial state of the game.

The class acts as a container for other important members that manage the application

layer:

 A handle to the language DLL, m_LangDll, which contains nothing but a string

resource so the game can easily be localized into other languages.

 A font handler, which uses the operating system to load fonts that can be rendered

by the graphics system.

 The game logic implementation.

 A data structure that holds game options, usually read from an INI file.

 The resource cache, which is responsible for loading textures, meshes, and sounds

from a resource file.

../../ch21#ch21
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 The script manager, in this case, a LUA script manager.

 The main event manager, which allows all the different game subsystems to

communicate with each other.

 The network communications manager.

All of these members are initialized in GameCodeApp::InitInstance().

InitInstance(): Checking System Resources

InitInstance():Checking System Resources is especially important for Windows

games, but console developers don‘t get off scot-free. Permanent storage, whether it is a
hard disk or a memory card, should be checked for enough space to store game data before

the player begins. Windows and console games that support special hardware, like steering
wheels or other input devices, must check for their existence and fall back to another

option, like the gamepad, if nothing is found. System RAM and VRAM checks or calculating
the CPU speed is clearly a job for the Windows programmer.

The code inside InitInstance is particularly sensitive to order, so be careful if you

decide to change this method. You should also keep your exit code in sync, or rather
reverse sync, with the order of initialization. Always release systems and resources in the

reverse order in which you requested or created them.

Here‘s what this method does:

 Detects multiple instances of the application.

 Loads the language DLL.

 Checks secondary storage space, RAM, and VRAM.

 Parses command lines.

 Loads the game‘s resource cache.

 Creates the script state manager.

 Creates the game‘s event manager.

 Uses the script manager to load initial game options.

 Initializes DirectX and creates the window for the application.

 Creates the game logic and game views.

 Creates the display devices.

char const * const kpLangDllName = "Lang" APP_SUFX ".dll";

bool GameCodeApp::InitInstance(HINSTANCE hInstance, LPTSTR

lpCmdLine)

{

 // Check for existing instance of the same window

 //

http://lib.ommolketab.ir
http//lib.ommolketab.ir

#ifndef _DEBUG

 // Note - it can be really useful to debug network code to

have

 // more than one instance of the game up at one time - so

 // feel free to comment these lines in or out as you wish!

 if (!IsOnlyInstance(VGetGameTitle()))

 return false;

#endif

 // We don't need a mouse cursor by default, let the game turn

it on

 SetCursor(NULL);

 // Load the string table from the language resource dll

 // Note: Only load it from same dir as exe ...

 char appPath[MAX_PATH+1] = {0};

 memset(appPath, 0, sizeof(appPath));

 GetModuleFileNameA(NULL, appPath, MAX_PATH);

 char const * pSep = strrchr(appPath, _T('\\'));

 if (pSep == NULL)

 strcpy(appPath, kpLangDllName);

 else

 strcpy(appPath + (pSep - appPath) + 1, kpLangDllName);

 m_LangDll = LoadLibraryA(appPath);

 if (!m_LangDll)

 {

 TCHAR msg[4096];

 _stprintf(msg, _T("Error 6502: %s not found.\n"

 "Please reinstall from your original CD."), kpLangDllName);

 MessageBox(NULL, msg, _T("Error 6502"), MB_OK);

 return false;

 }

 // Check for adequate machine resources.

 bool resourceCheck = false;

 while (!resourceCheck)

 {

 try

 {

 const DWORD physicalRAM = 512 * MEGABYTE;

 const DWORD virtualRAM = 1024 * MEGABYTE;

 CheckMemory(physicalRAM, virtualRAM);

 const int diskSpace = 10 * MEGABYTE;

 CheckHardDisk(diskSpace);

 const int minCpuSpeed = 1300; // 1.3Ghz

 extern int GetCPUSpeed();

 int thisCPU = GetCPUSpeed();

 if (thisCPU < minCpuSpeed)

 throw GameCodeError(GCERR_INIT_CPU_TOO_SLOW);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 }

 catch (GameCodeError err)

 {

 if (err.Handle()==ERROR_RETRY)

 continue;

 else

 return false;

 }

 resourceCheck = true;

 }

 m_hInstance = hInstance;

 m_pOptions = new GameOptions("m_pOptions->ini");

 ParseCommandLine(lpCmdLine);

 // Initialize the Resource Cache

 //

 m_ResCache =

 new ResCache(30, new

ResourceZipFile(_T("data\\GameCode3.zip")));

 if (!m_ResCache->Init())

 {

 return false;

 }

 // Rez up the Lua State manager now, and run the initial

script.

 m_pLuaStateManager = new LuaStateManager();

 if (!m_pLuaStateManager)

 {

 return false;

 }

 // event manager should be created next so that subsystems

 // can hook in as desired.

 m_pEventManager = new EventManager("GameCodeApp Event Mgr",

true);

 if (!m_pEventManager)

 {

 return false;

 }

 // Now that the event manager and the Lua State manager

 // are init'd, let's run the initialization file.

 const bool bLuaInitSuccess =

 m_pLuaStateManager->Init("data\\Scripts\\init.lua");

 if (false == bLuaInitSuccess)

 {

 return false;

 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 if (!m_pOptions->m_gameHost.empty())

 {

 ClientSocketManager *pClient =

 new ClientSocketManager(

 m_pOptions->m_gameHost, m_pOptions->m_listenPort);

 if (!pClient->Connect())

 {

 assert(0 && _T("Couldn't attach to game server."));

 return false;

 }

 m_pBaseSocketManager = pClient;

 }

 else if (m_pOptions->m_listenPort != -1)

 {

 BaseSocketManager *pServer = new BaseSocketManager();

 if (!pServer->Init())

 return false;

 pServer->AddSocket(

 new GameServerListenSocket(m_pOptions->m_listenPort));

 m_pBaseSocketManager = pServer;

 }

 // Initialize the sample framework and create the Win32

window and

 // Direct3D device for the application. Calling each of these

 // functions is optional, but they allow you to set several

options

 // which control the behavior of the framework.

 m_pDialogResourceManager = new CDXUTDialogResourceManager();

 DXUTInit(true, true, lpCmdLine, true);

 HICON icon = VGetIcon();

 DXUTCreateWindow(VGetGameTitle(), hInstance, icon);

 if (!GetHwnd())

 {

 return FALSE;

 }

 SetWindowText(GetHwnd(), VGetGameTitle());

 // initialize game options - including finding the profiles

directory

 _tcscpy(m_saveGameDirectory,

 GetSaveGameDirectory(GetHwnd(), VGetGameAppDirectory()));

 // You usually must have an HWND to initialize your game

views...

 m_pGame = VCreateGameAndView();

 if (!m_pGame)

 return false;

 DXUTCreateDevice(true, SCREEN_WIDTH, SCREEN_HEIGHT);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 // initialize the font system

 m_pFontHandler = new FontHandler();

 m_bIsRunning = true;

 return TRUE;

}

As I mentioned before, this code is very sensitive to order. You have to make sure that

everything is initialized before some other subsystem needs it to exist. Inevitably, you‘ll find
yourself in a catch-22 situation, and you‘ll see that two subsystems depend on each other‘s

existence. The way out is to create one in a hobbled state, initialize the other, and then
notify the first that the other exists. It may seem a little weird, but you‘ll probably run into

this more than once.

One thing you might notice is the try/catch loop around the resource checking code—

this is a good thing for those Win32 apps that give the player a chance to free up some

resources if the game needs them. Perhaps they‘ll just have to risk the boss walking in
while they are playing the latest version of World of Warcraft with no Excel to hide the

evidence.

The next sections tell you more about how to do these tasks and why each is important.

Checking for Multiple Instances of Your Game

If your game takes a moment to get around to creating a window, a player might get a little
impatient and double-click the game‘s icon a few times. If you don‘t take the precaution of

handling this problem, you‘ll find that users can quickly create a few dozen instances of
your game, none of which will properly initialize. You should create a splash screen to help

minimize this problem, but it‘s still a good idea to detect an existing instance of your game.

bool IsOnlyInstance(LPCTSTR gameTitle)

{

 // Find the window. If active, set and return false

 // Only one game instance may have this mutex at a time...

 HANDLE handle = CreateMutex(NULL, TRUE, gameTitle);

 // Does anyone else think 'ERROR_SUCCESS' is a bit of a

dichotomy?

 if (GetLastError() != ERROR_SUCCESS)

 {

 HWND hWnd = FindWindow(gameTitle, NULL);

 if (hWnd)

 {

 // An instance of your game is already running.

 ShowWindow(hWnd, SW_SHOWNORMAL);

 SetFocus(hWnd);

 SetForegroundWindow(hWnd);

 SetActiveWindow(hWnd);

 return false;

 }

 }

 return true;

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Win32 CreateMutex() API is used to gate only one instance of your game to the

window detection code, the FindWindow() API. You call it with your game‘s title, which

uniquely identifies your game. A mutex is a process synchronization mechanism and is
common to any multitasking operating system. It is guaranteed to create one mutex with

the identifier gameTitle for all processes running on the system. If it can‘t be created,

then another process has already created it.

Checking Hard Drive Space

Most PC games need a bit of free hard disk space for saving games, caching data from the

DVD-ROM drive, and other temporary needs. Here‘s a bit of code you can use to find out if

your player has enough free space for those tasks:

void CheckHardDisk(const DWORDLONG diskSpaceNeeded)

{

 // Check for enough free disk space on the current disk.

 int const drive = _getdrive();

 struct _diskfree_t diskfree;

 _getdiskfree(drive, &diskfree);

 unsigned __int64 const neededClusters =

 diskSpaceNeeded /

 (diskfree.sectors_per_cluster * diskfree.bytes_per_sector

);

 if (diskfree.avail_clusters < neededClusters)

 {

 // if you get here you don't have enough disk space!

 throw GameCodeError(GCERR_INIT_NOT_ENOUGH_DISK_SPACE);

 }

}

If you want to check free disk space, you‘ll use the _getdrive() and _getdiskfree()

utility functions, which work on any ANSI-compatible system. The return value from the

_getdiskfree() function is in clusters, not in bytes, so you have to do a little math on

the results.

Checking Memory

Checking for system RAM under Windows is a little trickier; sadly, you need to leave ANSI
compatibility behind. You should check the total physical memory installed, as well as the

available virtual memory, using Win32 calls. Virtual memory is a great thing to have on

your side as long as you use it wisely. You can think of it as having a near infinite bank
account, with a very slow bank. If your game uses virtual memory in the wrong way, it will

slow to a crawl. You might as well grab a pencil and sketch a storyboard of the next few
minutes of your game; you‘ll see it faster.

void CheckMemory(

 const DWORDLONG physicalRAMNeeded, const DWORDLONG

virtualRAMNeeded)

{

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 MEMORYSTATUSEX status;

 GlobalMemoryStatusEx(&status);

 if (status.ullTotalPhys < (physicalRAMNeeded))

 {

 // you don't have enough physical memory. Tell the player

to go get a

 // real computer and give this one to his mother.

 throw GameCodeError(GCERR_INIT_NOT_ENOUGH_PHYS_RAM);

 }

 // Check for enough free memory.

 if (status.ullAvailVirtual < virtualRAMNeeded)

 {

 // you don't have enough virtual memory available.

 // Tell the player to shut down the copy of Visual Studio

running in the

 // background, or whatever seems to be sucking the memory

dry.

 throw GameCodeError(GCERR_INIT_NOT_ENOUGH_VIRT_RAM);

 }

 char *buff = GCC_NEW char[virtualRAMNeeded];

 if (buff)

 delete[] buff;

 else

 {

 // The system lied to you. When you attempted to grab a

block as big

 // as you need the system failed to do so. Something else

is eating

 // memory in the background; tell them to shut down all

other apps

 // and concentrate on your game.

 throw GameCodeError(GCERR_INIT_NOT_ENOUGH_CONTIG_RAM);

 }

}

This function relies on the GlobalMemoryStatusEx() function, which returns the

current state of the physical and virtual memory system. In addition to that, this function

allocates and immediately releases a huge block of memory. This has the effect of making
Windows clean up any garbage that has accumulated in the memory manager, and double-

checks that you can allocate a contiguous block as large as you need. If the call succeeds,
you‘ve essentially run the equivalent of a Zamboni machine through your system‘s memory,

getting it ready for your game to hit the ice. Console programmers should nuke that bit of
code—it simply isn‘t needed in a system that only runs one application at a time.

Calculating CPU Speed

You‘d think that grabbing the CPU speed from a Wintel box would be as easy as reading the

system information. There‘s a great bit of code written by Michael Lyons at Microsoft that
does the job nicely.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

#define SLEEPTIME 0

//==

==========

// define static variables

//==

==========

static int s_milliseconds;

static __int64 s_ticks;

static int s_milliseconds0;

static __int64 s_ticks0;

//==

==========

// StartTimingCPU

//

// Call this function to start timing the CPU. It takes the CPU

tick

// count and the current time and stores it. Then, while you do

other

// things, and the OS task switches, the counters continue to

count, and

// when you call UpdateCPUTime, the measured speed is accurate.

//

//==

==========

int StartTimingCPU()

{

 //

 // detect ability to get info

 //

 __asm

 {

 pushfd ; push extended flags

 pop eax ; store eflags into eax

 mov ebx, eax ; save EBX for testing

later

 xor eax, (1<<21) ; switch bit 21

 push eax ; push eflags

 popfd ; pop them again

 pushfd ; push extended flags

 pop eax ; store eflags into eax

 cmp eax, ebx ; see if bit 21 has

changed

 jz no_cpuid ; make sure it's now on

 }

 //

 // make ourselves high priority just for the time between

 // when we measure the time and the CPU ticks

 //

 DWORD dwPriorityClass =

GetPriorityClass(GetCurrentProcess());

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 int dwThreadPriority = GetThreadPriority(GetCurrentThread());

 SetPriorityClass(GetCurrentProcess(),

REALTIME_PRIORITY_CLASS);

 SetThreadPriority(GetCurrentThread(),

THREAD_PRIORITY_TIME_CRITICAL);

 //

 // start timing

 //

 s_milliseconds0 = (int)timeGetTime();

 __asm

 {

 lea ecx, s_ticks0 ; get the offset

 mov dword ptr [ecx], 0 ; zero the memory

 mov dword ptr [ecx+4], 0 ;

 rdtsc ; read time-stamp counter

 mov [ecx], eax ; store the negative

 mov [ecx+4], edx ; in the variable

 }

 //

 // restore thread priority

 //

 SetThreadPriority(GetCurrentThread(), dwThreadPriority);

 SetPriorityClass(GetCurrentProcess(), dwPriorityClass);

 return 0;

no_cpuid:

 return -1;

}

//==

==========

// UpdateCPUTime

//

// This function stops timing the CPU by adjusting the timers to

account

// for the amount of elapsed time and the number of CPU cycles

taked

// during the timing period.

//==

==========

void UpdateCPUTime()

{

 //

 // make ourselves high priority just for the time between

 // when we measure the time and the CPU ticks

 //

 DWORD dwPriorityClass =

GetPriorityClass(GetCurrentProcess());

 int dwThreadPriority = GetThreadPriority(GetCurrentThread());

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 SetPriorityClass(GetCurrentProcess(),

REALTIME_PRIORITY_CLASS);

 SetThreadPriority(GetCurrentThread(),

THREAD_PRIORITY_TIME_CRITICAL);

 //

 // get the times

 //

 s_milliseconds = -s_milliseconds0;

 s_ticks = -s_ticks0;

 s_milliseconds += (int)timeGetTime();

 __asm

 {

 lea ecx, s_ticks ; get the offset

 rdtsc ; read time-stamp counter

 add [ecx], eax ; add the tick count

 adc [ecx+4], edx ;

 }

 //

 // restore thread priority

 //

 SetThreadPriority(GetCurrentThread(), dwThreadPriority);

 SetPriorityClass(GetCurrentProcess(), dwPriorityClass);

 return;

}

//==

==========

// CalcCPUSpeed

//

// This function takes the measured values and returns a speed

that

// represents a common possible CPU speed.

//==

==========

int CalcCPUSpeed()

{

 //

 // get the actual cpu speed in MHz, and

 // then find the one in the CPU speed list

 // that is closest

 //

 const struct tagCPUSPEEDS

 {

 float fSpeed;

 int iSpeed;

 } cpu_speeds[] =

 {

 //

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 // valid CPU speeds that are not integrally divisible by

 // 16.67 MHz

 //

 { 60.00f, 60 },

 { 75.00f, 75 },

 { 90.00f, 90 },

 { 120.00f, 120 },

 { 180.00f, 180 },

 };

 //

 // find the closest one

 //

 float

fSpeed=((float)s_ticks)/((float)s_milliseconds*1000.0f);

 int iSpeed=cpu_speeds[0].iSpeed;

 float fDiff=(float)fabs(fSpeed-cpu_speeds[0].fSpeed);

 for (int i=1 ; i<sizeof(cpu_speeds)/sizeof(cpu_speeds[0]) ;

i++)

 {

 float fTmpDiff = (float)fabs(fSpeed-cpu_speeds[i].fSpeed);

 if (fTmpDiff < fDiff)

 {

 iSpeed=cpu_speeds[i].iSpeed;

 fDiff=fTmpDiff;

 }

 }

 //

 // now, calculate the nearest multiple of fIncr

 // speed

 //

 //

 // now, if the closest one is not within one incr, calculate

 // the nearest multiple of fIncr speed and see if that's

 // closer

 //

 const float fIncr=16.66666666666666666666667f;

 const int iIncr=4267; // fIncr << 8

 //if (fDiff > fIncr)

 {

 //

 // get the number of fIncr quantums the speed is

 //

 int iQuantums = (int)((fSpeed / fIncr) + 0.5f);

 float fQuantumSpeed = (float)iQuantums * fIncr;

 float fTmpDiff = (float)fabs(fQuantumSpeed - fSpeed);

 if (fTmpDiff < fDiff)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 {

 iSpeed = (iQuantums * iIncr) >> 8;

 fDiff=fTmpDiff;

 }

 }

 return iSpeed;

}

//==

==========

// GetCPUSpeed

//

// Gets the CPU speed by timing it for 1 second.

//==

==========

int GetCPUSpeed()

{

 static int CPU_SPEED = 0;

 if(CPU_SPEED!=0)

 {

 //This will assure that the 0.5 second delay happens only

once

 return CPU_SPEED;

 }

 if (StartTimingCPU())

 return 0;

 //This will lock the application for 1 second

 do

 {

 UpdateCPUTime();

 Sleep(SLEEPTIME);

 } while (s_milliseconds < 1000);

 CPU_SPEED = CalcCPUSpeed();

 return CPU_SPEED;

}

The only thing you have to do is call GetCPUSpeed(). The first call will start the timer,

which takes a few seconds to run. The longer it runs, the more accurate the timing, but
there‘s no reason to run it any longer than two seconds, and one second will provide a

pretty accurate count. You can use the results of this calculation to turn off certain CPU-
sucking activities like decompressing MP3 files or drawing detailed animations. It‘s not

completely crazy to save the value in a game options setting, so you don‘t have to calculate

it each time your game runs.

What About Estimating VRAM?

There are now five different ways to grab the amount of video memory on your system.

What is making this more complicated is that some video cards can access memory on the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

motherboard, called shared memory. This memory is usually accessed at a slower rate than

dedicated video memory. Sometimes, the shared memory is counted as video memory,
which might not be what you want. The following APIs are available to any system running

Windows XP or later:

 DirectX 7‘s GetAvailableVidMem(): Usually gives good results, but can

sometimes give you wrong results on cards that can use shared memory.

 Windows Management Interface (WMI): Gives similar results to the DirectX 7 call.

 DxDiag: Uses both DirectX 7 and WMI to give you a better result than either would

alone.

 D3D9‘s GetAvailableTextureMemory(): Gives you the total amount of

texture memory, which might include shared memory and won‘t count any VRAM

already used by textures and display surfaces.

Depressing, isn‘t it? It‘s almost like someone at Microsoft just doesn‘t want us to find out
easily how much memory is on the video card.

The last method is only available to users of Windows Vista or later operating systems. It

uses the CreateDXGIFactory API, which you must call via GetProcAddress(). It

will return the amount of dedicated VRAM, the amount of shared memory available, and the

amount of dedicated system memory. It is the best of the 4 methods, but it is not available
on XP.

All of these methods are implemented in a DirectX Sample called VideoMemory if you have

the March 2008 drop of DirectX or later.

Do You Have a Dirtbag on Your Hands?

If you are lucky (or probably unlucky) enough to be working on a mass-market title, you
have to support computers that should really be at the business end of a boat‘s anchor

chain. Everyone wants a game to look really good, but when you have to support machines
that have only 15 percent of the CPU speed as the topend rigs, then something has to give.

Choose a benchmark for your game that makes sense to determine what makes a computer
a dirtbag and what doesn‘t. Whatever you use, it is important to set your standards and

determine if the computer the player is using is at the shallow end of the wading pool.

What to Do with Your Dirtbag

Once you figure out what computer is at the bottom end, you should

set your game defaults for new players accordingly. A good start
would be to turn off any CPU-intensive activities like decompressing

MP3 streams, scaling back skeletal detail, animations, and physics, or
reducing the cycles you spend on AI. If the player decides to bring up

the options screen and turn some of these features back on, my

suggestion is to let him do it if it’s possible. Maybe he’ll be inclined to
retire his old machine.

Initialize Your Resource Cache

I covered general memory management in Chapter 3 and resource caching is covered in
Chapter 7, ―Loading and Caching Game Data.‖ Initializing the resource cache will be a

../../ch03#ch03
../../ch07#ch07
http://lib.ommolketab.ir
http//lib.ommolketab.ir

gateway to getting your game data from the media into memory. The size of your resource

cache is totally up to your game design and the bottom-end hardware you intend to
support. It‘s a good idea to figure out if your player‘s computer is a dirtbag or flamethrower

and set your resource cache memory accordingly.

No Room Even for the Basics?

You can‘t impress a player with fantastic graphics until you

reserve a nice spot in system and video memory for your
textures, models, and animations. If your resource cache

allocation fails, you can‘t even bring up a nice dialog box
telling a loser player they are low on memory. The game

should fail as elegantly as possible, and maybe print out a
coupon for some memory sticks.

In this book, we‘ll use Zip files to store game resources. It‘s reasonably speedy, especially if

no decompression is necessary. In the InitInstance() function you saw the following

line:

new ResCache(30, new

ResourceZipFile(_T("data\\GameCode3.zip")));

This creates the ResCache object and initializes the resource cache to 30 megabytes. It

also creates an object that implements the IResource interface.

Choosing the size of your resource cache has everything to do with what kind of computer

you expect your players to have. Players of the latest game from Crytek are going to have
way more memory than my mother-in-law‘s computer—an old laptop I gave her about four

years ago. After you choose the size of your cache, you should be cautious about how that
memory is being used as you stuff in more textures, sounds, animations, and everything

else. Once you run out, your game will stop performing like it should as it suffers cache
misses. Console programmers have a harsher climate—if they run one byte over, their

game will simply crash.

Your Script Manager and the Events System

The next section of the initialization sequence creates the script parser and event system.
The Game Coding Complete source code uses Lua, which is popular and fairly easy to learn.

m_pLuaStateManager = new LuaStateManager();

 m_pEventManager = new EventManager("GameCodeApp Event Mgr",

true);

 const bool bLuaInitSuccess;

bLuaInitSuccess = m_pLuaStateManager->Init(

"data\\Scripts\\init.lua");

Once it is created, you could actually use a Lua initialization script to control the rest of the
initialization sequence. This can be a fantastic idea, as the script doesn‘t add very much
additional time to the initialization sequence. What the programmer gets in return is the

capability to change the initialization sequence without recompiling the game. The only
other way to do this would be to throw some crazy options on the command line, which can

http://lib.ommolketab.ir
http//lib.ommolketab.ir

be unwieldy, even in a trivial case. A Lua script has control mechanisms for evaluating

expressions and looping—something you‘ll come to enjoy very quickly.

Initialize DirectX and Create Your Window

Win32 programmers can‘t put off the task of creating their window any longer. Creating a

game window is easy enough, especially since the DirectX Framework does the whole thing

for you. Here‘s the code that does this job inside InitInstance:

 m_pDialogResourceManager = GCC_NEW

CDXUTDialogResourceManager();

 DXUTInit(true, true, lpCmdLine, true);

 DXUTCreateWindow(VGetGameTitle(), hInstance, VGetIcon());

 if (!GetHwnd())

 {

 return FALSE;

 }

 SetWindowText(GetHwnd(), VGetGameTitle());

The dialog resource manager is a DirectX Framework object that manages user interface

controls like buttons and sliders. If you are rolling your own user interface, you don‘t need

it. Notice the calls to the virtual methods VGetGameTitle() and VGetIcon(). They are

overloaded to provide this game-specific information to the GameCodeApp base class.

You‘ll see exactly how to do this in Chapter 19, when we create a game of Teapot Wars with
this code.

Create Your Game Logic and Game View

After the game window is ready, you can create the game logic and all the views that attach

to the game logic. This is done by calling VCreateGameAndView(), which is a pure

virtual function in the GameCodeApp class. Here‘s an example of what it might look like in

the inherited class:

BaseGame *BreakoutGameApp::VCreateGameAndView()

{

 BaseGame *game = NULL;

 game = new TeapotWarsGame(*m_pOptions);

 shared_ptr<IGameView> gameView(GCC_NEW TeapotWarsGameView());

 game->VAddView(gameView);

 return game;

}

Create the DirectX D3D Device

This is one of those catch-22 initialization problems—the game device needs to exist before

you load your game because loading the game will likely require the device. This is certainly
true if you call into any DirectX methods for loading meshes and whatnot.

If you are using the DirectX Framework, you can create your device with this single line of

code:

../../ch19#ch19
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 DXUTCreateDevice(true, SCREEN_WIDTH, SCREEN_HEIGHT);

Load Your User Options and Save Game

Finding the right directory for user-settable game options used to be easy. A programmer

would simply store user data files close to the EXE and use the GetModuleFileName API.

Starting with Windows XP Home, the Program Files directory is off limits by default,

and applications are not allowed to write directly to this directory tree. Instead, applications

must write user data to the C:\Documents and Settings\{User name}\Application Data
directory for XP and C:\Users\{User Name} \Application Data directory for Vista. Not only

can this directory be completely different from one version of Windows to another, but some
users store these on a drive other than the C: drive. You can use a special API to deal with

this problem: SHGetSpecialFolderPath(). Windows XP Pro is more forgiving, and

doesn‘t limit access to these directories by default. XP Home was designed this way to keep

the casual, home user from stomping though the Program Files directory in a ham-fisted
attempt to solve various problems.

If it were that easy, I wouldn‘t have to show you the next code block. If you open Windows

Explorer to your application data directory, you‘ll see plenty of companies who play by the
rules, writing application data in the spot that will keep Windows XP from freaking out.

Usually, a software developer will create a hierarchy, starting with their company name,

maybe adding their division, then the product, and finally the version. A Microsoft product I
worked on used this path:

GAME_APP_DIRECTORY = "Microsoft\\Microsoft Games\\Bicycle

Casino\\2.0";

Game_App_Directory = Your Registry Key

The value for your GAME_APP_DIRECTORY is also a great value for a

registry key. Don’t forget to add the version number at the end. You
might as well hope for a gravy train: 2.0, 3.0, 4.0, and so on.

It‘s up to you to make sure you create the directory if it doesn‘t exist. This can be a hassle,

since you have to walk down the directory tree, creating all the way down:

const TCHAR *GetSaveGameDirectory(HWND hWnd, const TCHAR

*gameAppDirectory)

{

 HRESULT hr;

 static TCHAR m_SaveGameDirectory[MAX_PATH];

 TCHAR userDataPath[MAX_PATH];

 hr = SHGetSpecialFolderPath(hWnd, userDataPath,

CSIDL_APPDATA, true);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 _tcscpy_s(m_SaveGameDirectory, userDataPath);

 _tcscat_s(m_SaveGameDirectory, _T("\\"));

 _tcscat_s(m_SaveGameDirectory, gameAppDirectory);

 // Does our directory exist?

 if (0xffffffff == GetFileAttributes(m_SaveGameDirectory))

 {

 // Nope - we have to go make a new directory to store

application data.

 //

 // On Win32 systems you could call SHCreateDirectoryEx to

create an

 // entire directory tree, but this code is included for ease

of

 // portability to other systems without that.

 //

 //

 TCHAR current[MAX_PATH];

 TCHAR myAppData[MAX_PATH];

 _tcscpy_s(current, userDataPath);

 _tcscpy_s(myAppData, gameAppDirectory);

 TCHAR token[MAX_PATH];

 token[0] = 0;

 do {

 TCHAR *left = _tcschr(myAppData, '\\');

 if (left==NULL)

 {

 _tcscpy_s(token, myAppData);

 myAppData[0] = 0;

 }

 else

 {

 _tcsncpy_s(token, myAppData, left-myAppData);

 token[left-myAppData] = 0;

 _tcscpy_s(myAppData, left+1);

 }

 if (_tcslen(token))

 {

 _tcscat_s(current, _T("\\"));

 _tcscat_s(current, token);

 if (false == CreateDirectory(current, NULL))

 {

 int error = GetLastError();

 if (error != ERROR_ALREADY_EXISTS)

 {

 return false;

 }

 }

 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 } while (_tcslen(myAppData));

 }

 _tcscat_s(m_SaveGameDirectory, _T("\\"));

 return m_SaveGameDirectory;

}

This code parses each element of the directory path, and for each one, it will make sure

each subdirectory exists using GetFileAttributes(). If any directory needs to be

created, CreateDirectory() is called. On Win32 systems, you can also shorten this

code by calling SHCreateDirectoryEx(), which can create a directory tree. I‘ve left

the old school system in there for those of you who might have to port this code—every

little bet helps. Finally, the value of m_SaveGameDirectory is set to the name of that

directory—drive letter and all, and then returned to the calling function.

Developers Have Different Needs than Your Players

Make sure that you have two different game options files—one for
users and one for developers. For example, it can be very convenient

to have some way to override the full-screen option in the user

settings to open in windowed mode for a debug session. Debugging a
full screen application with a single monitor is sure to send you on a

killing spree.

Stick the Landing: A Nice Clean Exit

Your game won‘t run forever. Even the best games will take a back seat to food and water,
regardless of what Microsoft‘s XBox ads seem to imply. There may be a temptation to

simply call exit(0) and be done with it. This isn‘t a wise choice because your DirectX

drivers might be left in a bad state, and it can be difficult to tell if your game is leaking

resources.

DirectX drivers sometimes handle hard exits badly, causing your video card to be in a state
that might require a reboot to restart your game. Rebooting used to be a normal thing, and

every gamer was used to multiple reboots every day, but those days are long gone. Players
who find that your game requires a reboot after they‘re done will get pretty annoyed, and

most likely will return your game. If you don‘t have a decent exit mechanism, you‘ll also

find it impossible to determine where your game is leaking memory or other resources.
After all, a hard exit is basically a huge memory leak. A tight exit mechanism will show you

a single byte of leaked memory before returning control to the operating system. This is
important for all games, Win32 or console.

Always Fix Leaks, Fast

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Games should never leak memory. Period. The reality of it is that

some Win32 calls leak resources, and you just have to live with it.

That’s no reason your game code should be sloppy; hold yourself to a
higher standard, and you won’t get a reputation for crappy software.

How Do I Get Out of Here?

There are two ways to stop a game from executing without yanking the power or causing

some kind of exception:

 The player quits the game on purpose.

 The system shuts the application down (Win32).

If the player chooses to stop playing, the first thing you should do is ask the player if he or
she wants to save their game. The last thing someone needs is to lose six hours of progress

only to hit the wrong button by accident. One standard detects if the current state of the
game has changed since the last time the user saved, and only if the state is different does

the system ask if the player wants to save his or her game. It is equally annoying to save

your game, select quit, and have the idiot application ask if the game needs saving all over
again.

Console programmers can stop here and simply run their exit code, destroying all the game

systems generally in the reverse order in which they were created. Windows programmers,
as usual, don‘t get off nearly that easy.

When the Win32 OS decides your game has to shut down, it sends a different message.

Win32 apps should intercept the WM_SYSCOMMAND message and look for SC_CLOSE in the

wParam. This is what Win32 sends to applications that are being closed, perhaps against

their will. This can happen if the machine is shut down or if the player hits Alt-F4.

The problem with this message is that Alt-F4 should act just like your normal exit, asking
you if you want to quit. If you can save to a temporary location and load that state the next

time the player starts, your players will thank you. Most likely, they were just getting to the
boss encounter and the batteries on their laptop finally ran out of motivated electrons.

You have to double-check for multiple entries into this code with a Boolean variable. If your

players hit Alt-F4 and bring up a dialog box in your game asking if they want to quit,
nothing is keeping them from hitting Alt-F4 again. If your players are like the folks at

Microsoft‘s test labs, they‘ll hit it about 50 times. Your game is still pumping messages, so

the WM_SYSCOMMAND will get through every time a player presses Alt-F4. Make sure you

handle that by filtering it out.

If your game is minimized, you have to do something to catch the player‘s attention. If your
game runs in full-screen mode and you‘ve tabbed away to another app, your game will act

just as if it is minimized. If your player uses the system menu by right-clicking on the game

in the start bar, your game should exhibit standard Windows behavior and flash. This is
what well-behaved Windows applications do when they are minimized but require some

attention from a human being.

void GameCodeApp::FlashWhileMinimized()

http://lib.ommolketab.ir
http//lib.ommolketab.ir

{

 // Flash the application on the taskbar

 // until it's restored.

 if (! GetHwnd())

 return;

 // Blink the application if we are minimized,

 // waiting until we are no longer minimized

 if (IsIconic(GetHwnd()))

 {

 // Make sure the app is up when creating a new screen

 // this should be the case most of the time, but when

 // we close the app down, minimized, and a confirmation

 // dialog appears, we need to restore

 DWORD now = timeGetTime();

 DWORD then = now;

 MSG msg;

 FlashWindow(GetHwnd(), true);

 for (;;)

 {

 if (PeekMessage(&msg, NULL, 0, 0, 0))

 {

 if (msg.message != WM_SYSCOMMAND || msg.wParam !=

SC_CLOSE)

 {

 TranslateMessage(&msg);

 DispatchMessage(&msg);

 }

 // Are we done?

 if (! IsIconic(GetHwnd()))

 {

 FlashWindow(GetHwnd(), false);

 break;

 }

 }

 else

 {

 now = timeGetTime();

 DWORD timeSpan = now > then ? (now - then) : (then -

now);

 if (timeSpan > 1000)

 {

 then = now;

 FlashWindow(GetHwnd(), true);

 }

 }

 }

 }

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Doing this is a little tricky. You basically have to run your own message pump in a tight loop

and swallow the WM_SYSCOMMAND/SC_CLOSE messages until your game isn‘t minimized

anymore, all the while calling FlashWindow() at regular time intervals.

Forcing Modal Dialog Boxes to Close

When your game is closed by something external, such as a power down or selecting ―End

Process‖ in the Windows Task Manager, you might have some tricky cleanup to do if you are
inside one of your modal dialogs we‘ll be discussing in Chapter 8, ―Programming Input

Devices.‖ Since you are running a special version of the message pump, the ―real‖ message
pump won‘t get the message.

The solution lies in forcing the modal dialog to close with its default answer and then

resending the WM_SYSCOMMAND with the SC_CLOSE parameter back into the message

pump. If you happen to have nested dialogs up, this will still work because each dialog will

get a forced close, until the normal message pump can process the close message.

Here‘s the pseudo-code for the code inside the SC_CLOSE message handler:

If (you want to prompt the user)

{

 If (m_bQuitRequested)

 Return early - user is spamming Alt-F4

 Set your m_bQuitRequested = true

 Call the model dialog box: "Are you sure you want to quit?"

 If (user said no)

 {

 Abort the quit request – return here.

 }

}

// By here we are quitting the game, by request or by force.

Set you m_bQutting = true

If (a modal dialog box is up)

{

 Force the dialog to close with a default answer

 Repost the WM_SYSCOMMAND message again to close the game

 Set m_bQuitRequested = false

}

You‘ll want to take a closer look at the source code to see more, but this code will allow the
game to bring up a quit dialog even if the player hits Alt-F4 or another app, like an install

program, and attempts to shut down your game by force.

Shutting Down the Game

With some exceptions, you should shut down or deallocate game systems in the reverse
order of which they were created. This is a good rule of thumb to use whenever you are

grabbing and releasing multiple resources that depend on each other. Each data structure
should be traversed and freed. Take care that any code that is run inside destructors has

the resources it needs to properly execute. It‘s pretty easy to imagine a situation where the
careless programmer has uninitialized something in the wrong order and a destructor

somewhere fails catastrophically. Be extremely aware of your dependencies, and where

../../ch08#ch08
http://lib.ommolketab.ir
http//lib.ommolketab.ir

multiple dependencies exist, lean on a reference counting mechanism to hold on to

resources until they really aren‘t needed anymore.

The message pump, GameCodeApp::MsgProc, will receive a WM_CLOSE message when

it is time for you to shut down your game, and you‘ll handle it by calling the nonstatic

GameCodeApp::OnClose method:

case WM_CLOSE:

{

 result = g_pApp->OnClose();

 break;

}

The application layer will delete things in the reverse order in which they were created. The

creation order was resource cache first, the game window second, and the game logic
object third. We‘ll release them in the reverse order.

LRESULT GameCodeApp::OnClose()

{

 // release all the game systems in reverse order from which

they were

 // created

 SAFE_DELETE(m_pGame);

 SAFE_DELETE(m_pFontHandler);

 DestroyWindow(GetHwnd());

 SAFE_DELETE(m_pBaseSocketManager);

 SAFE_DELETE(m_pEventManager);

 SAFE_DELETE(m_pLuaStateManager);

 SAFE_DELETE(m_ResCache);

 SAFE_DELETE(m_pOptions);

 return 0;

}

If you extended the GameCodeApp application layer into your own class, you‘ll want to do

exactly the same thing with the custom objects there and release them in the reverse order.
When the game logic is deleted, it will run a destructor that releases its objects, including

its process manager and all the views attached to it.

After the WM_CLOSE message is processed, the main message pump exits and control will

eventually return to the WinMain function, which calls DXUTShutdown() to release the

DirectX Framework.

What About Consoles?

This book has a decidedly Windows bent, mostly because most of you out there use
Windows as your programming platform. But that doesn‘t mean you can‘t be exposed to

some discussion about how to perform certain tasks with the constraints imposed by

console platforms—and shutdown is no exception.

Consoles run one program at a time, and essentially don‘t have to worry about being left in

a weird state. The shutdown solution used on Thief: Deadly Shadows could have been

documented in a single page—we simply rebooted the machine. Is this a good idea or not?

http://lib.ommolketab.ir
http//lib.ommolketab.ir

From the player‘s point of view, it‘s a great idea. Shutdown doesn‘t have to take any time

whatsoever, simply unrolling the data structures and cleaning up allocated memory. It just
exits—and BAM—you are back to the launch window.

From a programmer‘s point of view, it is easier, but you don‘t have to clean up your mess,

so to speak. A lazy programmer can create systems that are so entangled they can‘t be torn
down in an orderly manner, and that‘s clearly a bad thing. If something can‘t be torn down

during runtime, you have no choice but to allow it to exist whether it is being actively used
or not, and console resources are so tight you still want every byte.

I propose a dual solution—the release build should reboot, exit the game all at once, and

take as little time as possible. This is for the player‘s convenience. The debug build should
attempt a clean exit, and any problems with a clean exit should be addressed before they

become a cancer in the rest of your system.

Getting In and Getting Out

Games have a lot of moving parts and use every bit of hardware in the system. Getting all
the green lights turned on in the right order can be a real pain, as you saw in initialization.

It‘s really easy to have dependent systems, so much so that you have ―chicken and egg‖
problems—where more than one system has to be first in the initialization chain. I don‘t

think I‘ve ever worked on a game where we didn‘t have to hack something horribly to make

initialization work correctly. Start with a good organization and hopefully your problems in
this area will be minimal at best.

Shutting down cleanly is critical under Windows, not only to make sure system resources

like video memory are released, but it also helps the engineering team to know that the
underlying technologies can be torn down in an orderly manner. It doesn‘t guarantee good

technology, but it is a good sign of clean code.

Now you have a good grounding in the wrapper for your game—getting in and getting back
out again. The next chapter discusses the main loop for your game: reading input,

processing game logic, and watching it all happen with a view.

Chapter 6. Controlling the Main Loop

In This Chapter

 Inside the Main Loop

 A Base Class for Game Actors and Game Logic

 Can I Make a Game Yet?

As you learned in Chapter 5, ―Game Initialization and Shutdown,‖ initialization brings your

game‘s application layer and many of the subsystems online. In this chapter, you‘ll learn
about the main loop. It accepts and translates user input, changes the game state, and

renders the game state until the loop is broken. This loop is broken by a user input or some
kind of failure. When the main loop exits, your game shuts down.

The code in this chapter is written to integrate with the DirectX Framework, which handles

many nasty problems, such as detecting when a player switches screen resolutions or Alt-

../../ch06lev1sec1#ch06lev1sec1
../../ch06lev1sec2#ch06lev1sec2
../../ch06lev1sec3#ch06lev1sec3
../../ch05#ch05
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Tabs to another fullscreen application. If you code on other platforms, you‘ll likely be spared

these issues. Windows can run multiple applications simultaneously, and the user can
change hardware configurations, like screen size, while your game is running. On consoles

you can‘t do that, and you avoid all of those hellish little problems.

In this chapter, you‘ll also see a neat system to control hundreds of independent game
tasks that need a little CPU time every game loop—everything from AI to sound effects to

button animations. It uses a light cooperative multitasker—technology that actually
hearkens back before Windows 3.1, but it‘s an elegant and simple solution to a tricky

problem in game programming. This simple version doesn‘t handle preemptive multitasking;
you‘ll get a chance to learn all about that in Chapter 18, ―Introduction to Multicore

Programming.‖ Walk first, run later.

Inside the Main Loop

The main difference between games and most other applications is that games are

constantly busy doing something in the background. Most Windows applications will do
absolutely nothing until you move the mouse or mash keys on the keyboard. You can‘t even

do that if you coded a game of chess (even the chess AI should be thinking in the
background while the player thinks of his next move). The main loop of a game should

accomplish two tasks until the player quits the game or deactivates the window:

 Update your game logic.

 Render and present the scene.

We‘ll start by taking an example of a classic Win32 message pump and build it up until it
works for games. Taken straight from an old DirectX sample, the simplest game message

pump looks like this:

while(msg.message!=WM_QUIT)

{

 if(PeekMessage(&msg, NULL, 0U, 0U, PM_REMOVE))

 {

 TranslateMessage(&msg);

 DispatchMessage(&msg);

 }

 else

 MyRender();

}

Assume for a moment that the MyRender() method does nothing more than render and

present the frame. You‘ll also have to assume that any game logic update occurs only as a
result of messages appearing in the message queue. The problem with this message pump

is that if there are no messages in the queue, there‘s nothing in the code to change the
game state. If you changed the game state only as a result of receiving messages, you

would only see animations happen if you moved the mouse or Windows happened to send

your application a message. Either way, you can‘t count on Windows to control the
processing of your main loop; you want complete control over that.

Windows provides a message that seems like a good solution to this problem: WM_TIMER.

This Win32 message can be sent at definite intervals. Using the Win32 SetTimer() API,

you can cause your application to receive these WM_TIMER messages, or you can specify a

callback function. For programmers like me who remember the old Windows 3.1 days,

WM_TIMER was the only way games could get a semblance of background processing.

../../ch18#ch18
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Windows 3.1 was a cooperative multitasking system, which meant that the only way your

application got CPU time was if it had a message to process and no other app was hogging

the message pump. The biggest problem with using WM_TIMER is resolution. Even though

you specify WM_TIMER calls down to the millisecond, the timer doesn‘t actually have

millisecond accuracy, and you are not guaranteed to be called in the exact intervals your

game will require.

Rendering and Presenting the Display

The DirectX 10 Framework provides a pretty good routine to render and present the display.

It is called from the DXUTMainLoop() function when the game is not processing

messages, in exactly the way the MyRender() function was mentioned in the previous

chapter. The function is DXUTRender3DEnvironment9() inside

Source\DX10\DXUT.cpp. Let‘s pick it apart so you can understand what‘s going on. Since I

don‘t have permission to reprint this method, you should launch Visual Studio and load
either a DirectX sample or the Game Coding Complete source code and follow along.

The first thing you should notice about this function is how much can go wrong, and that it

can pretty much go wrong after nearly every single line of code. The reason for this is a
quirk of Win32 games—players have an annoying tendency to actually have other

applications up, like MSN Messenger or something, while playing your game! Any kind of
task switching, or user switching under XP or Vista, can cause DirectX to lose its display

surfaces or devices.

The first part calls Sleep() to relinquish time back to other applications if your game is

minimized or not in focus; this is just part of being a nice Win32 application and even silly

Win32 tools that have similar message pumps should do this. You might decide to tweak the
amount of time you sleep. Your mileage with the sleep values in the framework could vary

from game to game.

The next big section handles the situation where the device has been lost, which is what
would happen if you set the desktop to a new bit depth. Since your game probably loaded

all manner of textures and formatted them to run as fast as possible on the old bit depth,

you‘ll probably have to reload all your textures. This is the reason why you see

VOnRestore() calls all over the source code in this book; it separates the two tasks of

creating the object in memory and formatting—or restoring—it for fast display.

After all that homework, the code handles issues related to timers and timing. This is the

section of code that starts with DXUTGetGlobalTimer()->GetTimeValues(). Almost

every game needs to track how many milliseconds have elapsed since the last frame so that
animations and object movement can be kept in sync with reality. The alternative is to

ignore time altogether and just render things based on each frame that renders, but that

would mean that faster computers would literally play the game faster—not in the ―gamer‖
sense but in an actual sense. If you keep track of time, then objects on faster computers

will still fall to the ground at the same rate as slower computers, but the faster computers
will look smooth as silk.

The next section of code retrieves and calls the application‘s frame move callback function.

This callback is set to GameCodeApp::OnUpdateGame(), which controls the game logic

and how the game state changes over each pass of the main loop. Control passes to the

game logic‘s VOnUpdate() method, which will update all the running game processes and

send updates to all the game views attached to the game logic.

The next bit of code retrieves and calls the application‘s frame render callback, which will

call VOnRender() methods of views attached to the game. After the rendering is

complete, the screen must be presented, which is when things can go awry. Back in the

good old days, this was called ―slamming‖ because the back buffer was copied byte-by-byte

http://lib.ommolketab.ir
http//lib.ommolketab.ir

to the front buffer in one memory copy. Now this is handled by a simple pointer change in

the video hardware, and is generally called ―flipping‖ because nothing is really copied at all.

If the call to Present() fails, the D3D device is considered lost and will have to be re-

created.

After all that, the frame counter is updated, and a little status bit is checked to see if the
game should exit after one frame. This is actually a quite handy thing to have, whether you

write your own frame counter or use the one in the framework, because you can use it to
smoke test your game. An amazing amount of code runs when you initialize, update, and

render your game, and any problems during this process could be written out to a log file
for later analysis. This is a great thing to do, and it can be an important part of a simple

smoke test where you can be somewhat sure that the game can at least get to the first

frame.

Your Callback Functions for Updating and Rendering

Luckily, the DirectX Framework has done most of the major work for you, even to the point

of splitting updates in your game logic from the rendering of the game. This matches well

with the architecture I‘m pushing in this book. If you recall the _tWinMain()

implementation from the previous chapter, among the code were these two calls:

 DXUTSetCallbackD3D9FrameMove(GameCodeApp::OnUpdateGame);

 DXUTSetCallbackD3D9FrameRender(GameCodeApp::OnRender);

The first is a callback where you can update your game, and the second is a callback where
your game can render. Let‘s take a look at the implementation of those two methods:

void CALLBACK GameCodeApp::OnUpdateGame(

IDirect3DDevice9* pd3dDevice, double fTime, float fElapsedTime)

{

 if (g_pApp->HasModalDialog())

 // don't update the game if a modal dialog is up.

 return;

 if (g_pApp->m_bQuitting)

 {

 PostMessage(g_pApp->GetHwnd(), WM_CLOSE, 0, 0); return;

 }

 if (g_pApp->m_pGame)

 {

 // allow event queue to process for up to 20 ms

 safeTickEventManager(20);

 g_pApp->m_pGame->VOnUpdate(fTime, fElapsedTime);

 }

}

This method updates your game logic, but only if there isn‘t a modal dialog box up and if
the application isn‘t quitting.

This code implies that you shouldn‘t perform any quit mechanism while you are pumping

messages. Quitting takes a good amount of time, and a player worried about getting caught
playing your game while he is supposed to be doing something else can press Alt-F4 to

http://lib.ommolketab.ir
http//lib.ommolketab.ir

close your game about 20 times in a single second. If you send all those quit messages into

the message pump, you‘ve got to filter them out, which is why we check to see if we‘re

actually quitting so we can post a WM_CLOSE message. The user interface control that

receives the quit button click event or the hot key event should simply set a Boolean
variable to true, which will be checked after the last message in the queue has been

handled.

This function is a member of GameCodeApp, but since this method is a callback, it must be

declared static, which means we have to use the global g_pApp pointer to get to the

instance of the GameCodeApp class. The same is true for the

GameCodeApp::OnRender call:

void CALLBACK GameCodeApp::OnRender(

 IDirect3DDevice9* pd3dDevice, double fTime, float

fElapsedTime)

{

 BaseGame *pGame = g_pApp->m_pGame;

 for(GameViewList::iterator i=pGame->m_gameViews.begin(),

 end=pGame->m_gameViews.end(); i!=end; ++i)

 {

 (*i)->VOnRender(fTime, fElapsedTime);

 }

 g_pApp->m_pGame->VRenderDiagnostics();

}

This method simply iterates through all the views attached to the game logic, g_pApp-

>m_pGame, and calls VOnRender() for each one. After that, the game logic calls a special

method for rendering debug information, VRenderDiagnostics(). This is a

convenience for programmers who would rather not adhere to the separation between logic
and view just to draw some debug lines on the screen.

A good example of how I use VRenderDiagnostics() is drawing physics information,

such as mesh wireframe of any objects moving on the screen. The physics system is purely
a game logic object, and the renderer really belongs to the game view. If you wanted to

religiously follow the separation of game logic and game view, you‘d have to do something

like have the game logic create special ―line‖ objects and send messages to the game view
that it needs to draw these lines.

That‘s just dumb, in my opinion. A game logic should be able to use the application layer—

in this case DirectX‘s renderer—to draw debug data onto the screen. Yes, it breaks the
rules, but yes, you should do it.

Game Logic

Game logic could include AI, physics, character position and speed, and so on. Games tend
to handle an enormous amount of seemingly autonomous entities that come to life, stomp

around the game world, and die off. Each of these game objects can affect the life cycle of

other objects, such as a missile colliding with and destroying an enemy vehicle, and itself.
Back in the dark ages, circa 1991, each major subsystem of the game had a handler

function:

void MyGame::VOnUpdate(float fTime, float fElapsedTime)

{

 CalculateAI(fElapsedTime);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 DetectTriggerFire(fElapsedTime);

 ReticulateSplines(fElapsedTime);

 RunPhysicsSimulation(fElapsedTime);

 MoveKinematicObjects(fElapsedTime);

 ProcessIncomingCommands(fElapsedTime);

}

Each of these subsystems was called in a simple linear fashion. The internals of each

function were completely customized, but generally they manipulated lists of objects and
ran some code on each one, sometimes changing the members of the lists in the process.

This design wasn‘t very flexible, and it got a little ugly. Perhaps the

ReticulateSplines() call needs to happen at a different frequency than once per

main loop. Back in the old days, you‘d just call it more than once, in different places in the

list. A more general system is required, one that is based on cooperative multitasking.

Cooperative multitasking is a mechanism where each process gets a little CPU time in a
round-robin fashion. It‘s called cooperative because each process is responsible for

releasing control back to the calling entity. If a process goes into an infinite loop, the entire
system will hang. The trade-off for that weakness is that the system is simple to design and

extremely efficient.

Imagine a simple base class called CProcess with a single virtual method,

VOnUpdate():

class CProcess

{

public:

 virtual void VOnUpdate(const int deltaMilliseconds);

};

You could create objects inheriting from this class and stick them in a master process list.

Every game loop, your code could traverse this list and call VOnUpdate() for each object:

typedef std::list<CProcess*> ProcessList;

ProcessList g_ProcessList;

void UpdateProcesses(int deltaMilliseconds)

{

 ProcessList::iterator i = m_ProcessList.begin();

 ProcessList::iterator end = m_ProcessList.end();

 while (i != end)

 {

 CProcess* p = *i;

 p->VOnUpdate(deltaMilliseconds);

 ++i;

 }

}

The contents of the VOnUpdate() overload could be anything. It could move the object on

a spline, it could monitor the contents of a buffer stream and update it accordingly, and it

http://lib.ommolketab.ir
http//lib.ommolketab.ir

could run some AI code. It could monitor user interface objects like screens and buttons. If

everything in your game was run by a process, you could actually get away with a main
function that looked like this:

void main()

{

 if (CreateProcesses())

 {

 RunProcesses();

 }

 ShutdownProcesses();

}

It may sound crazy, but Ultima VIII’s main looked almost exactly like that, give or take a
few lines.

There are a few wrinkles to this wonderful design that you should know. If creating a
system to handle your main loop were as easy as all that, I wouldn‘t bother devoting so

much time to it. The first big problem comes when one process‘s VOnUpdate() can

destroy other processes, or even worse cause a recursive call to indirectly cause itself to be

destroyed. Think of the likely code for a hand grenade exploding. The VOnUpdate() would

likely query the game object lists for every object in a certain range, and then cause all
those objects to be destroyed in a nice fireball. The grenade object would be included in the

list of objects in range, wouldn‘t it?

The solution to this problem involves some kind of reference counting system or maybe a
smart pointer. The shared_ptr template class in Chapter 3, ―Coding Tidbits and Style That

Will Save You,‖ solves this problem well, and it will be used in the next section.

A Simple Cooperative Multitasker

A good process class should contain some additional data members and methods to make it

interesting and flexible. There are as many ways to create this class as there are

programmers, but this should give you a good start. There are three classes in this nugget
of code:

 shared_ptr: A smart pointer class from the Boost C++ library. This class was

presented in Chapter 3. If you can‘t remember what a smart pointer is, you‘d better
go back now and review.

 class CProcess: A base class for processes. You‘ll inherit from this class and

redefine the VOnUpdate() method.

 class CProcessManager: This is a container and manager for running all your

cooperative processes.

Here‘s the definition for CProcess:

class CProcess : boost::noncopyable

{

 friend class CProcessManager;

protected:

 int m_iType; // type of process running

../../ch03#ch03
../../ch03#ch03
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 bool m_bKill; // tells manager to kill and remove

 bool m_bActive;

 bool m_bPaused;

 bool m_bInitialUpdate; // initial update?

 shared_ptr<CProcess> m_pNext; // dependant process

private:

 unsigned int m_uProcessFlags;

public:

 CProcess(int ntype, unsigned int uOrder = 0);

 virtual ~CProcess();

public:

 bool IsDead(void) const { return(m_bKill);};

 int GetType(void) const { return(m_iType); };

 void SetType(const int t) { m_iType = t; };

 bool IsActive(void) const { return m_bActive; };

 void SetActive(const bool b) { m_bActive = b; };

 bool IsAttached()const;

 void SetAttached(const bool wantAttached);

 bool IsPaused(void) const { return m_bPaused; };

 bool IsInitialized()const { return ! m_bInitialUpdate; };

 shared_ptr<CProcess> const GetNext(void) const {

return(m_pNext);}

 void SetNext(shared_ptr<CProcess> nnext);

 // Overloadables

 virtual void VOnUpdate(const int deltaMilliseconds);

 virtual void VOnInitialize(){};

 virtual void VKill();

 virtual void VTogglePause() {m_bPaused = !m_bPaused;}

};

inline void CProcess::VOnUpdate(const int deltaMilliseconds)

{

 if (m_bInitialUpdate)

 {

 OnInitialize();

 m_bInitialUpdate = false;

 }

}

Most of the methods are self-explanatory. There are four virtual methods that you should

overload. VOnInitialize() is where you will place any initialization code. It‘s a better

practice to place initialization code here since you can actually mark the process dead
before it even runs.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

VOnUpdate() is the method that gets ticked each pass through the main loop, so this is

where you‘ll actually make changes to whatever game object you are controlling, such as
moving an elevator. If the process ends, such as when a door finishes opening, you‘ll call

VKill() from within VOnUpdate(), which will mark the process dead. The

CProcessManager class will handle all dead processes after all active processes have

been handled. If you have any special bits of code that should run when the process is

marked dead, you can overload VKill() and do it there.

The last overloadable method is VTogglePause(). This is overloadable so you can run

custom code if the process is paused or restarted, such as you might do if the process is

controlling a sound effect and you need to notify DirectSound.

Note the use of the shared_ptr class throughout. This is an excellent example of

using smart pointers in a class that uses an STL list. Any reference to a shared_ptr

<CProcess> object is managed by the smart pointer class, ensuring that the process

object will remain in memory as long as there is a valid reference to it. The moment the last

reference is cleared or reassigned, the process memory is finally freed. That‘s why the

CProcessManager has a list of shared_ptr <CProcess> instead of a list of

CProcess pointers.

One method that might need explanation is SetNext(). It sets a process dependency

such that one process will wait for another to finish, which can be great for creating
complicated sequences of events in code where one process would depend on another to

complete before beginning. With SetNext() it is possible to create code that looks like

this:

CWalkProcess *walk = new CWalkProcess(george, door);

CAnimProcess *openDoor = new CAnimProcess(OPEN_DOOR, avatar,

door);

CAnimProcess *drawSword = new CAnimProcess(DRAW_WEAPON, avatar,

sword);

CCombatProcess *goBerserk = CCombatProcess(BERSERK, avatar);

walk->SetNext(openDoor)->SetNext(drawSword)->SetNext(goBerserk);

processManager->Attach(walk);

This code begins a sequence of events that starts object George walking to the door,

opening it, drawing his sword, and going berserk. This kind of system makes it very simple
to ―stage direct‖ and chain multiple processes to perform interesting actions on your game

world.

A Seriously Nasty Bug on Ultima VIII

One of the trickiest bugs I ever had to find had to do with a

special kind of process in Ultima VIII. Ultima VIII processes

could attach their OnUpdate() calls to a realtime interrupt,

which was pretty cool. Animations and other events could
happen smoothly without worrying about the exact CPU

speed of the machine. The process table was getting
corrupted somehow, and no one was sure how to find it as

the bug occurred completely randomly—or so we thought.

After tons of QA time and late nights, we eventually found
that jumping from map to map made the problem happen

http://lib.ommolketab.ir
http//lib.ommolketab.ir

relatively frequently. We were able to track the bug down to

the code that removed processes from the main process list.
It turned out that the realtime processes were accessing the

process list at the same moment that the list was being
changed. Thank goodness we weren‘t on multiple processors;

we never would have found it.

Here is the definition of the CProcessManager class:

// ProcessList is a list of smart CProcess pointers.

typedef std::list<shared_ptr<CProcess> > ProcessList;

class CProcessManager

{

public:

 // call this to attach a process to the process manager

 void Attach(shared_ptr<CProcess> pProcess);

 bool HasProcesses();

 bool IsProcessActive(int nType);

 void UpdateProcesses(int deltaMilliseconds);

 ~CProcessManager();

protected:

 ProcessList m_ProcessList;

private:

 void Detach(shared_ptr<CProcess> pProcess);

};

When you create a Cprocess, you‘ll need to call Attach() to actually attach it to the

process manager. The process manager class has a few bookkeeping methods, such as

HasProcesses() and IsProcessActive(), which can be useful if you want to query

the state of the process manager or whether a particular kind of process is active.

The ~CProcessManager() destructor does exactly what you would expect—it runs

through the list of processes and calls Detach() for each, which removes the process from

the list and sets its attachment state to false.

The UpdateProcesses() method is the real meat of this class:

void CProcessManager::UpdateProcesses(int deltaMilliseconds)

{

 ProcessList::iterator i = m_ProcessList.begin();

 ProcessList::iterator end = m_ProcessList.end();

 shared_ptr<CProcess> pNext;

 while (i != end)

 {

 shared_ptr<CProcess> p(*i);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 if (p->IsDead())

 {

 // Check for a child process and add if exists

 pNext = p->GetNext();

 if (pNext)

 {

 p->SetNext(shared_ptr<CProcess>((CProcess *)NULL));

 Attach(pNext);

 }

 Detach(p);

 }

 else if (p->IsActive() && !p->IsPaused())

 {

 p->OnUpdate(deltaMilliseconds);

 }

 ++i;

 }

}

Recall that nearly 100 percent of the game code could be inside various overloads of

CProcess::OnUpdate(). This game code can, and will, cause game processes and

objects to be deleted, all the more reason that this system uses smart pointers.

This method iterates through the processes in the process list from beginning to end in a

round-robin fashion. One thing to beware of is that all of your processes must be able to be

processed quickly in a single pass without causing your frame rate to stall. If you can‘t and
you must amortize the cost of all your processes across multiple passes of your main loop,

you shouldn‘t start back at the beginning of the list!

Round Robin Scheduling Gone Bad

This system was used extensively to control the login servers

of Ultima Online. When it was initially deployed, customer
service began to receive complaints that some users were

waiting more than five minutes for the login process to finish,
and that didn‘t agree with the login server metrics, which

measured over 2,000 logins per minute and an average login
time of 15 seconds or so. The problem was identified after a

little digging. I had bailed early from serving all the
processes in the list in an attempt to poll network sockets

and database activity, and in so doing, I left a few processes

at the end of the list completely out in the cold.

Examples of Classes that Inherit from CProcess

A very simple example of a useful process using this cooperative design is a wait process.
This process is useful for inserting timed delays, such as the fuse on an explosive. Here‘s

how it works:

class CWaitProcess : public CProcess

{

http://lib.ommolketab.ir
http//lib.ommolketab.ir

protected:

 unsigned int m_uStart;

 unsigned int m_uStop;

public:

 CWaitProcess(CProcess* pParent, unsigned int iNumMill);

 virtual void VOnUpdate(const int deltaMilliseconds);

};

CWaitProcess::CWaitProcess(CProcess* pParent, unsigned int

iNumMill) :

 CProcess(PROC_WAIT, 0, pParent),

 m_uStart(0),

 m_uStop(iNumMill)

{

}

void CWaitProcess::VOnUpdate(const int deltaMilliseconds)

{

 CProcess::VOnUpdate(deltaMilliseconds);

 if (m_bActive)

 {

 m_uStart += deltaMilliseconds;

 if (m_uStart >= m_uStop)

 VKill();

 }

}

Here‘s how you create an instance of CWaitProcess:

shared_ptr<CProcess> wait(new CWaitProcess(3000));

processManager.Attach(wait);

Take note of two things. First, you don‘t just ―new up‖ a CWaitProcess and attach it to

the CProcessManager. You have to use the shared_ptr template to manage

CProcess objects. This fixes problems when processes get deleted, but other objects may

still point to them. Second, you must call the Attach() method of CProcessManager

to attach the new process to the process manager.

As the main loop is processed and CProcessManager::UpdateProcesses() is

called, the CWaitProcess counts the elapsed time, and once it has passed the wait

period, it calls VKill(). By itself it‘s a little underwhelming—it just uses up a little CPU

time and goes away. But if you define another process, such as CKaboomProcess, things

get a little more interesting. You can then create a nuclear explosion with a three-second

fuse without a physics degree:

// The wait process will stay alive for three seconds

Shared_ptr<CProcess> wait(new CWaitProcess(3000));

http://lib.ommolketab.ir
http//lib.ommolketab.ir

processManager.Attach(wait);

// The CKaboomProcess will wait for the CWaitProcess

// Note – kaboom will be attached automatically

Shared_ptr<CProcess> kaboom(new CKaboomProcess());

wait->SetNext(kaboom);

The CProcess::SetNext() method sets up a simple dependency between the

CWaitProcess and the CKaboomProcess. CKaboomProcess will remain inactive

until the CWaitProcess is killed.

More Uses of CProcess Derivatives

Every updatable game object can inherit from CProcess. User interface objects such as

buttons, edit boxes, or menus can inherit from CProcess. Audio objects such as sound

effects, speech, or music make great use of this design because of the dependency and

timing features.

A Base Class for Game Actors and Game Logic

Game logic is certainly something that will be completely custom for your game, but any

game logic has a few common components, and it‘s helpful to explain them here. The

CProcessManager lives inside the game logic, and now you can see how a base game

logic class is built. First, take a look at the interface class for IGameLogic:

typedef unsigned int ActorId;

class IGameLogic

{

public:

 virtual shared_ptr<IActor> VGetActor(const ActorId id)=0;

 virtual void VAddActor(shared_ptr<IActor> actor, struct

ActorParams *p)=0;

 virtual void VMoveActor(const ActorId id, Mat4x4 const

&mat)=0;

 virtual void VRemoveActor(ActorId id)=0;

 virtual bool VLoadGame(std::string gameName)=0;

 virtual void VOnUpdate(float time, float elapsedTime)=0;

 virtual void VChangeState(enum BaseGameState newState)=0;

};

Most of the methods in the IGameLogic interface deal with game actors. Game actors are

a general term for any object in a game that can change state—anything from a car in a

racing game to a candle in an action/adventure title. The IActor interface class and some

unusual implementations of IActor are discussed in Chapter 19, ―A Game of Teapot

Wars.‖

../../ch19#ch19
http://lib.ommolketab.ir
http//lib.ommolketab.ir

There‘s a method for loading the game, VLoadGame(), which in this context creates the

initial game state. Not every game needs to save, but it wouldn‘t be a bad idea to consider
adding that to increase this interface definition.

The remaining two pure virtuals are for updating your game, and they handle a change in

game state. In this context, game states are things like initialization, running, paused, and
so on.

Now that you‘ve seen the interface class, take a look at BaseGameLogic, an

implementation of the IGame interface:

typedef std::map<ActorId, shared_ptr<IActor> > ActorMap;

enum BaseGameState

{

 BGS_Initializing,

 BGS_LoadingGameEnvironment,

 BGS_WaitingForPlayers,

 BGS_Running

};

class BaseGameLogic : public IGameLogic

{

 // This is only to gain access to the view list

 friend class GameCodeApp;

protected:

 CProcessManager *m_pProcessManager;

 CRandom m_random; // our RNG

 GameViewList m_gameViews; // views attached to our game

 ActorMap m_ActorList;

 ActorId m_LastActorId;

 BaseGameState m_State;

 int m_ExpectedPlayers; // how many players are expected

public:

 BaseGameLogic(struct GameOptions const &optionss);

 virtual ~BaseGameLogic();

 void TogglePause(bool active);

 void SetPlayer(GameViewType type, GameViewId viewId, ActorId

aid);

 virtual void VAddView(shared_ptr<IGameView> pView);

 virtual void VAddActor(shared_ptr<IActor> actor, ActorParams

*p);

 virtual shared_ptr<IActor> VGetActor(const ActorId id);

 virtual void VRemoveActor(ActorId id);

 virtual void VMoveActor(const ActorId id, Mat4x4 const &mat);

 virtual bool VLoadGame(std::string gameName) { return true; }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 virtual void VOnUpdate(float time, float elapsedTime);

 virtual void VChangeState(BaseGameState newState);

 virtual void VRenderDiagnostics() { };

};

This game logic class has a few components that you‘ve been introduced to already: a

process manager, a random number generator, and a list of game views attached to the
logic.

Actor management is accomplished with an STL map that makes it easy and efficient to find

any actor in the game given its ID. The implementations of the actor management methods

like VAddActor() simply manage the contents of the STL map.

The heavy lifting in this class is done by VOnUpdate():

void BaseGameLogic::VOnUpdate(float time, float elapsedTime)

{

 int deltaMilliseconds = int(elapsedTime * 1000.0f);

switch(m_State)

{

 case BGS_Initializing:

 // If we get to here we're ready to attach players

 VChangeState(BGS_LoadingGameEnvironment);

 break;

 case BGS_LoadingGameEnvironment:

 if (g_pApp->VLoadGame())

 {

 VChangeState(BGS_WaitingForPlayers);

 }

 else

 {

 assert(0 && _T("The game failed to load."));

 g_pApp->AbortGame();

 }

 break;

 case BGS_WaitingForPlayers:

 if (m_ExpectedPlayers == m_gameViews.size())

 {

 VChangeState(BGS_Running);

 }

 break;

 case BGS_Running:

 m_pProcessManager->UpdateProcesses(deltaMilliseconds);

 break;

 default:

 assert(0 && _T("Unrecognized state."));

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 // Not a bad idea to throw an exception here to

 // catch this in a release build...

 }

 GameViewList::iterator i=m_gameViews.begin();

GameViewList::iterator end=m_gameViews.end()

while (i != end)

 {

 (*i)->VOnUpdate(deltaMilliseconds);

++I;

 }

}

This method is a simple state machine that runs different bits of code for each possible
state. Initialization in this class is trivial, it just sets the state to

BGS_WaitingForPlayers. This state waits for players to join the game until the

number of views attached to the game equals the number of expected players and then

changes the state to BGS_Running. During the running state, the game calls the

UpdateProcesses() method of the CProcessManager attached to the game logic.

For all states, the game logic calls VOnUpdate() for each view attached to the game logic

so they can update their states in preparation for rendering.

Can I Make a Game Yet?

By now you‘ve learned a lot about some of the hidden superstructure of game code, most

notably about GameCodeApp, BaseGame, CProcess, and CProcessManager. You‘ve

probably figured out that most of the subsystems discussed so far can benefit from
cooperative multitasking: animated objects, user interface code, and more. If you‘re like

me, you‘ve already played with writing your own games, and you‘re itching to put
everything together in a tight little game engine. But there are quite a few important bits

and pieces you should know before you strike out on your own.

You probably never thought about how game engines stuff a few gigabytes of game art and
sounds through a much smaller memory space. Read the next chapter and find out.

Chapter 7. Loading and Caching Game Data

In This Chapter

 Game Resources: Formats and Storage Requirements

 Resource Files

 The Resource Cache

 I‘m Out of Cache

../../ch07lev1sec1#ch07lev1sec1
../../ch07lev1sec2#ch07lev1sec2
../../ch07lev1sec3#ch07lev1sec3
../../ch07lev1sec4#ch07lev1sec4
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Once you get a nice 3D model or sound, how do you actually get it into your game? Most

game books present code examples where the game loads .X, WAV, or MP3 files directly.
This doesn‘t work in real games. Real games have tens of thousands of these files and other

bits of data. They might not fit into memory at the same time either. When you see a
detailed environment in Gears of War, you can bet that it fills memory nearly to the last bit,

and the act of walking into another room or building needs some way of kicking out the old
and bringing in the new. So how does this really work? Take a look at Figure 7.1.

Figure 7.1. This is how data flows from game resource files to your game

subsystems.

Games usually pack selected bits of game data into a single file, often called a resource file.
By the way, just in case I haven‘t mentioned it, I tend to use the terms game assets and

game resources to mean the same thing—they are all game data. Art, sounds, 3D meshes,
and map levels are all game assets. These files usually map one-to-one with an entire game

level. When you see a loading screen, you are likely witnessing the game reading one of the
resource files.

Each game resource you use must be converted to the smallest possible format, taking care

to keep quality at the right level. This is pretty easy for sounds, since you can easily predict
the quality and size delta of a 44KHz stereo WAV versus an 11KHZ mono WAV stream.

Textures are trickier to work with, on the other hand, because the best storage format is
completely dependent on its use in the game and what it looks like.

These conversions are also dependent on the hardware platform. You can count on the fact

that the Sony PS3 and the Microsoft Xbox360 will want sounds and textures presented in
two completely different formats. This process will result in different resource files for each

platform you support.

Later in this chapter, I‘ll show you how you can use Zip files as resource files, packing all
your game assets into one neat file.

If your game is more of an open world design, your technology has to be more complicated

and manage resources streaming from DVD into memory and out again as the player moves

javascript:moveTo('ch07fig01');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

through the game world. That subject is beyond the scope of this book to present a detailed

solution, but you will be introduced to the technology behind open world games.

Game Resources: Formats and Storage Requirements

Modern games have gigabytes of data. A single layer DVD can hold 4.7 GB, and a single
layer of a Blu-ray disc can hold up to 25GB. For PC games, you can browse the install

directories and get an idea of what they store and how much storage they need. I‘ll go over

the big stuff, give you an idea of how the data is stored, what formats you can use, how you
can compress it, and what that does to the final product. I‘ll cover the following game data

file types:

 3D Object Meshes and Environments: This usually requires a few tens of

megabytes, and stores all the geometry for your game.

 3D Mesh/Object Animation Data: This is much smaller than you‘d think, but lots

of in-game cinematics can blow this up to many tens of megabytes.

 Map/Level Data: This is a catchall for components like trigger events, object types,

scripts, and others. Together, they take up very little space, and are usually easy to
compress.

 Sprite and Texture Data: These get pretty big very fast, and can take many

hundreds of megabytes.

 Sound, Music, and Recorded Dialogue: Recorded dialogue usually takes more

space on games than any other data category, especially when the games have a
strong story component.

 Video and Prerendered Cinematics: Minute-per-minute, these components take

up the most space, so they are used sparingly in most games. They are essentially

the combination of sprite animation and stereo sound.

3D Object Meshes and Environments

3D object and environment geometry takes up a lot less space than you‘d think. A 3D

mesh, whether it is for an object, a character, or an environment, is a collection of points in

3D space with accompanying data that describes how these points are organized into
polygons, and how the polygons should be rendered.

The points in 3D space are called vertices. They are stored as three floating-point numbers

that represent the location of the point (X, Y, Z) from the origin. Individual triangles in this
mesh are defined by three or more indices into the point list. Here‘s an example of the

mesh for a misshapen cube:

Vec3 TestObject::g_SquashedCubeVerts[] =

{

 Vec3(0.5,0.5,-0.25), // Vertex 0.

 Vec3(-0.5,0.5,-0.25), // Vertex 1.

 Vec3(-0.5,0.5,0.5), // And so on.

 Vec3(0.75,0.5,0.5),

 Vec3(0.75,-0.5,-0.5),

 Vec3(-0.5,-0.5,-0.5),

 Vec3(-0.5,-0.3,0.5),

 Vec3(0.5,-0.3,0.5)

};

http://lib.ommolketab.ir
http//lib.ommolketab.ir

WORD TestObject::g_TestObjectIndices[][3] =

{

 { 0,1,2 }, { 0,2,3 }, { 0,4,5 },

 { 0,5,1 }, { 1,5,6 }, { 1,6,2 },

 { 2,6,7 }, { 2,7,3 }, { 3,7,4 },

 { 3,4,0 }, { 4,7,6 }, { 4,6,5 }

};

Feel free to plot it out on graph paper if you want, or you can take my word for it. The eight
vertices are stored in an array, and the triangles are defined by groups of three indices into
that array. A cube has eight points in space and six faces, but those faces are each

comprised of two triangles. Twelve groups of three indices each are needed to define 12
triangles that make a cube.

If you have some experience with 3D programming, you might know that there are ways to

save some space here. Instead of storing each triangle as a group of three points, you can
store a list of connected triangles with fewer indices. These data structures are called

triangle lists or triangle fans. Either of these stores the first triangle with three indices, and

each following triangle with only one additional index. This technique is a little like drawing
a shape without picking up your pencil, since each extra triangle requires only one

additional vertex rather than an entire set of three vertices. This way you can store n
triangles with only n+2 indices instead of n*3 vertices—quite a savings.

Let‘s assume you have an object with 2,000 vertices: 300 triangles stored in 100 triangle

groups. Take a look at Table 7.1 to see how much space this data takes.

Table 7.1. Raw Geometry Sizes

Object Members Size

Vertices 2,000 points @ (3 floating-point numbers × 4 bytes each) 24,000

bytes

Each triangle

group

300 triangles @ (302 indices × 2 bytes each) 604 bytes

All triangle

groups

100 groups @ 604 bytes = 60,400 bytes Vertices @ 24,000

bytes + Triangles @ 60,400 bytes

84,400

bytes

It looks like you can store the raw geometry in about 82KB. But wait, there‘s a little more

data to consider. The above data doesn‘t tell you anything about how to texture the object.
Renderers will assume that each triangle group has the same material and textures. For

each group, you‘ll need to store some additional data.

A material describing the diffuse map is going to define the color of an object and how it
reflects light. The size of the material can vary depending on what the renderer can handle.

The renderer can also apply one or more textures to the object. This data can vary in size.
If the object is unaffected by lighting and has a solid color, it will require only a few bytes. If

the object is affected by lighting, and has a base texture, a decal texture, a normal map, a
specular map, an environment map, and stores color information for ambient, diffuse, and

javascript:moveTo('ch07table01');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

specular lighting, then it could require almost 100 bytes per vertex. This information is

stored for each index in each triangle group.

Let‘s look at two cases, shown in Table 7.2. The first has a simple textured, colored object,

and the second has an additional 64 bytes per index in each triangle group to store material

and lighting data.

Table 7.2. Storing Simple Versus Complicated Objects

Object Members Size

Simple textured and lit object (30

bytes per vertex):

302 indices per group × 100

groups @ 30 bytes

906,000

bytes

Complicated material info (80 bytes

per vertex):

302 indices per group × 100

groups @ 80 bytes

2,416,000

bytes

Notice the staggering difference. The more complicated object is quite a bit larger. So what
have you learned? The complexity of the geometry can be made much smaller if your 3D

models make good use of triangle strips and fans, but most of the savings comes from
being frugal with complicated material models.

One thing you should note: The actual textures are stored separately from the mesh data,
and we haven‘t even talked about those yet. They are much larger, too.

Animation Data

Animations are stored as changes in position and orientation over time. You already know

that a position in 3D space takes 12 bytes—4 bytes each for X, Y, and Z coordinates.
Orientation is usually stored as a 12-byte or 16-byte data structure, depending on the

rendering engine. This is the difference between storing the orientation as angles of yaw,
pitch, and roll (Euler angles), or a mathematical entity known as a quaternion, which is a 4-

vector (X, Y, Z, W). (You‘ll learn all about the quarternion in Chapter 13, ―3D Basics.‖) For

now, we‘ll assume the orientation takes 12 bytes.

One way to store animations is by recording a stream of position and orientation data at

fast intervals, say 30 times per second. For each second and each object, we have the

following:

12 bytes for position + 12 bytes for orientation = 24 bytes per sample

30 samples per second × 24 bytes per sample = 720 bytes/second

An object like a character is represented by a lot of discrete objects. Assuming we have

even a simple character with only 30 separate movable parts (called bones), this gets pretty
big very fast:

720 bytes/second × 30 bones = 21,600 bytes per second

Of course, there are ways to cheat. Games never store this much data for animations—it is

like storing an uncompressed TGA file for every frame of an entire movie. First, most
motions don‘t need 30 samples per second to look good. Actually, even complicated motions

can usually get by with 15 samples per second or less. Your mileage may vary with different

javascript:moveTo('ch07table02');
../../ch13#ch13
http://lib.ommolketab.ir
http//lib.ommolketab.ir

motions, so your code might need to store different motions sampled at different rates. One

thing you can be sure of, not every animation can look good with the same sampling rate,
so your engine should be sophisticated enough to use animation data at different sampling

rates.

Sometimes objects don‘t need to change position and orientation; they might just rotate or
move. This implies you could store a stream of changes in position or orientation when they

happen, and store nothing at all but a time delay when the object is still. Reversing an
animation is a complicated thing, since you‘d have to start at a known position and reapply

the position and orientation deltas, but that‘s usually not a problem. Every second or so,
you should store the full position and orientation information. These snapshots are usually

called keyframes. They can be very useful for jumping quickly to somewhere in the middle
of an animation, and they can also reduce small errors that can accumulate.

Finally, since the position and orientation changes are small, you can usually get away with

storing them in something other than floating-point numbers. You can convert them to 2-
byte integers, for example. These compression techniques can dramatically reduce the size

of animation data down to a few tens of kilobytes per second for an animated character.

The animation data for a main character like Garrett in Thief: Deadly Shadows that can use
different weapons, climb on walls, crouch, crawl, and perform other activities should be in

the 5MB to 7MB range.

Assuming that your game has a big storyline and you want to store lots of in-game
cinematics, you can estimate the size of your in-game movies, minus the audio like this:

 Assume average of two characters moving simultaneously per cinematic

 Each cinematic averages 30 seconds

 50KB per second (25KB per character per second) × 30 seconds = 1.53MB

Don‘t get too excited yet; the animation data is the least of your problems. Just wait until
you see how much storage your digital audio is going to take.

Map/Level Data

Most game object data is stored in a proprietary format, which is often determined by the
type of data and the whim of the programmer. There is no standard format for storing game

object data, AI scripts, dialogue, and other components. This data is usually packed in a

binary format for the game, but during development it is usually stored in a format that is
easy to work with, such as XML. There‘s a good public domain XML parser called Xerces,

and you can find it at http://xml.apache.org/xerces-c/.

Either way, this data is usually the least of your problems as far as storage is concerned.
Your textures, audio, and animation data will overshadow this stuff by a long, long way.

Texture Data

Left to their own devices, artists would hand you every texture they create in a TIF or TGA
file. The uncompressed 32-bit art would look exactly like the artist envisioned. When you

consider that a raw 32-bit 1024 × 768 bitmap tips the scales at just over 3MB, you‘ll quickly

decide to use a more efficient format.

As always, you‘ll generally need to trade quality for size. Load time will also need to be

considered. The best games choose the right format and size for each asset. You‘ll be better

at doing this if you understand how bitmaps, textures, and audio files are stored and
processed, and what happens to them under different compression scenarios.

../../default9.htm
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Bitmap Color Depth

Different bitmap formats allocate a certain number of bits for red, green, blue, and alpha
channels. Some formats are indexed, meaning that the pixel data is actually an index into a

color table that stores the actual RGBA values. Here‘s a list of the most common formats:

 32-bit (8888 RGBA): The least compact way to store bitmaps, but retains the

most information.

 24-bit (888 RGB): This format is common for storing backgrounds that have too

much color data to be represented in either 8-bit indexed or 16-bit formats, and

have no need for an alpha channel.

 24-bit (565 RGB, 8 A): This format is great for making nice-looking bitmaps with a

good alpha channel. Green gets an extra bit because the human eye is more
sensitive to changes in green than red or blue.

 16-bit (565 RGB): This compact format is used for storing bitmaps with more

varieties of color and no alpha channel.

 16-bit (555 RGB, 1 A): This compact format leaves one bit for translucency, which

is essentially a chroma key.

 8-bit indexed: A compact way to store bitmaps that have large areas of subtly

shaded colors; some of the indexes can be reserved for different levels of
translucency.

Many renderers, including DirectX, support a wide variety of pixel depth in each red, blue,

green, and alpha channel.

Support Tools Your Content Creators will Actually Use

Avoid writing oddball tools to try to save a few bits here and there.
Try to write your game so that your content creators, such as artists,

can use the same art formats used by popular art tools like
Photoshop. They will be able to easily manipulate their work in a

common and well-known tool, and your game will look exactly the

way the artists intend it to look. You’ll also be able to find artists who
can work on your game if you stick to the standard formats and tools.

Which Is Better: 24-, 16-, or 8-Bit Art?

It‘s virtually impossible to choose a single format to store every bitmap in your game and
have all your bitmaps come through looking great. In fact, I can assure you that some of

your bitmaps will end up looking like they should be in your laundry pile.

Figure 7.2 shows three different bitmaps that were created by drawing a grayscale image in
Photoshop. The bitmap on the far left uses 8 bits per channel, the center bitmap is stored

using 5 bits per channel, while the one on the right is stored using 4 bits. If you attempt to
store a subtly shaded image using too few colors you‘ll see results closer to the right

bitmap, which looks crummy.

Figure 7.2. Grayscale banding patterns for 24-bit, 16-bit, and 8-bit depths.

javascript:moveTo('ch07fig02');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you can use 8 bits for each channel, you‘ll see the best result, but you‘ll trade this quality
for a much larger size. Needless to say, if your artist storms into your office and wonders

why her beautiful bitmaps are banded all to hell, you‘ve likely forced them into a bad color
space.

Using Lossy Compression

A discussion of art storage wouldn‘t be complete without taking a look at the effects of

using a lossy compression scheme such as JPG. The compression algorithm tweaks some
values in the original art to achieve a higher compression ratio, hence the term ―lossy.‖ It‘s

not a mistake that if you spell-check the word lossy you get ―lousy‖ as one of your choices.
Beyond a certain threshold, the art degrades too much to get past your QA department, and

it certainly won‘t get past the artist that spent so much time creating it.

Perhaps the best approach is to get artists to decide how they‘ll save their own bitmaps
using the highest lossiness they can stand. It still won‘t be enough, I guarantee you,

because they are much more sensitive to subtle differences than a consumer, but it‘s a
start.

Data Sizes for Textures

Texture storage is one of the big budget areas for games. They take up the most space

second only to audio and streaming video. Character textures for games like Gears of War
can be as large as 2048 × 2048. They also have multiple layered maps for specular and

emissive effects that weigh in at 512 × 512 or 1024 × 1024. This starts to add up
extremely quickly.

An uncompressed 1024 × 1024 texture is going to take 2MB to 4MB in memory, depending

on whether it is a 16-bit or 32-bit texture. Most of your level geometry and game objects
won‘t need that kind of density; they‘ll usually use different textures in layers to create

interesting effects.

A single object, such as a wall, might have a 16-bit 512 × 512 texture on it taking 1MB of
memory, but add to that a couple of 128 × 128 decals, a 128 × 128 normal map, and you

start eating up some memory. This one object with these three textures will take almost
2MB of texture memory. Your game might have a few hundred objects of various detail,

eating your memory faster than you expect. The Nintendo Wii only has 64MB RAM in the

first place, which means you have to budget your textures more than almost any other
game asset.

Even the best video cards don‘t perform well when you have to swap textures in and out of

video memory. If your game is expected to run well on a 512MB video card, you‘d better be
careful and take that into account when building levels. A few hundred objects and 10

characters will chew up that 512MB in a real hurry, and you‘ll have to scramble to fix the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

problem. Believe me, you won‘t be able to ask your customers to simply buy new video

cards, unless of course you are Valve and are publishing the latest Half-Life.

Finally, most textures need some additional storage for their mip-maps. A textured object

with a mip-map will look good no matter what the camera distance is. If you‘ve ever seen a

really cheap 3D game where the object textures flashed or scintillated all the time, it‘s
because the game didn‘t use mip-mapped textures. A mip-map precalculates the image of a

texture at different distances. For example, a 128 × 128 texture that is fully mip-mapped
has a 64 × 64, 32 × 32, 16 × 16, 8 × 8, 4 × 4, 2 × 2, and a 1 × 1 version of itself. The

renderer will choose one or more of these mip-maps to render the final pixels on the
polygon. This creates a smooth textured effect, no matter how the camera is moving.

A full mip-map for a texture takes 33 percent more space as the texture does by itself. So

don‘t forget to save that texture space for your mip-maps. One interesting bit—games
almost always pregenerate their mip-maps and store them in the resource file rather than

generating them on the fly. The reason is that it is faster to load them than generate them,
and improving loading speed can be a much bigger problem than media storage.

Sound and Music Data

Sound formats in digital audio are commonly stored in either mono or stereo, sampled at

different frequencies, and accurate to either 8 or 16 bits per sample. The effect of mono or
stereo on the resulting playback and storage size is obvious. Stereo sound takes twice as

much space to store but provides left and right channel waveforms. The different
frequencies and bit depths have an interesting and quite drastic effect on the sound.

Digital audio is created by sampling a waveform and converting it into discrete 8- or 16-bit

values that approximate the original waveform. This works because the human ear has a
relatively narrow range of sensitivity: 20Hz to 20,000Hz. It‘s no surprise that the common

frequencies for storing WAV files are 44KHz, 22KHz, and 11KHz.

It turns out that telephone conversations are 8-bit values sampled at 8KHz, after the
original waveform has been filtered to remove frequencies higher than 3.4MHz. Music on

CDs is first filtered to remove sounds higher than 22KHz, and then sampled at 16-bit

44KHz. Just to summarize, Table 7.3 shows how you would use the different frequencies in
digital audio.

Table 7.3. Using Different Audio Frequencies with Digital Formats

Format Quality Size per Second Size per Minute

44.1KHz 16-bit stereo WAV CD quality 172KB/second 10MB/minute

128Kbps stereo MP3 Near CD quality 17KB/second 1MB/minute

22.05KHz 16-bit stereo WAV FM Radio 86KB/second 5MB/minute

64Kbps stereo MP3 FM Radio 9KB/second 540KB/minute

11.025KHz 16-bit mono WAV AM Radio 43KB/second 2.5MB/minute

11.025KHz 8-bit mono WAV Telephone 21KB/second 1.25MB/minute

javascript:moveTo('ch07table03');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Use lower sampling rates for digital audio in your game to simulate telephone conversations

or talking over shortwave radio.

Video and Prerendered Cinematics

Animated sequences in games go as far back as Pac Man, where after every few levels

you‘d see a little cartoon featuring the little yellow guy and his friends. The cartoons had
little or nothing to do with the game, but they were fun to watch and gave players a reward.

One of the first companies to use large amounts of video footage in games was Origin

Systems in the Wing Commander series. More than giving players a reward, they actually
told a story. Epic cinematics are not only common in today‘s games, they are expected.

There are two techniques worth considering for incorporating cinematic sequences. Some

games like Wing Commander III will shoot live video segments and simply play them back.
The file is usually an enormous AVI file that would fill up a good portion of your optical

media. That file is usually compressed into something more usable by the game.

The second approach uses the game engine itself. Most games create their animated
sequences in 3ds Max or Maya and export the animations and camera motion. The

animations can be played back by loading a relatively tiny animation file and pumping the
animations through the rendering engine. The only media you have to store beyond that is

the sound. If you have tons of cinematic sequences, doing them in-game like this is the way
to go. Lots of story-heavy games are going this direction because it is simply impossible to

store that much prerendered video.

The biggest difference your players will notice is in the look of the cinematic. If an
animation uses the engine, your players won‘t be mentally pulled out of the game world.

The in-game cut-scenes will also flow perfectly between the action and the narrative, as
compared to the prerendered cut-scenes, which usually force some sort of slight delay and

interruption as the game engine switches back and forth between in-game action and

retrieving the cut-scene from the disc or hard drive. If the player has customized the look of
their character, that customization is still visible in the cinematic because it is being

rendered on the fly. As a technologist, the biggest difference you‘ll notice is the smaller
resulting cinematic data files. The animation data is tiny compared to digital video. You

should make sure the AI characters hold for the cinematic moment and attack you only
after it is over!

Sometimes you‘ll want to show a cinematic that simply can‘t be rendered in real time by

your graphics engine—perhaps something you need Maya to chew on for a few hours in a
huge render farm. In that case, you‘ll need to understand a little about streaming video and

compression.

Streaming Video and Compression

Each video frame in your cinematic should pass through compression only once. Every
compression pass will degrade the art quality. Prove this to yourself by compressing a piece

of video two or three times, and you‘ll see how bad it gets even with the second pass.

Compression settings for streaming video can get complicated. Predicting how a setting will
change the output is also tricky. Getting a grasp of how it works will help you understand

which settings will work best for your footage. Video compression uses two main strategies
to take a 5GB two-minute movie and boil it down into a 10MB or so file. Just because the

resolution drops doesn‘t mean you have to watch a postage stamp-sized piece of video.
Most playback APIs will allow a stretching parameter for the height, width, or both.

USB Hard Drives and FEDEX

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you need to move a large dataset like uncompressed video from one

network to another, use a stand-alone Ethernet or high-speed USB-

capable hard drive. It might make security conscious IT guys freak
out, but it’s a useful alternative to burning a stack of DVDs or worse,

trying to send a few hundred gigabytes over the Internet. This is
modern day “Sneakernet.”

Don’t waste your time backing up uncompressed video files. Instead,

make sure that you have everything you need to re-create them, such
as a 3ds Max scene file or even raw videotape. Make sure the source

is backed up and the final compressed files are backed up.

The first strategy for compressing video is to simply remove unneeded information by
reducing the resolution or interlacing the video. Reducing resolution from 800 × 600 to 400

× 300 would shave 3GB from a 4GB movie, a savings of 75 percent. An interlaced video
alternates drawing the even and odd scanlines every other frame. This is exactly how

television works; the electron gun completes a round trip from the top of the screen to the
bottom and back at 60Hz, but it only draws every other scanline. The activated phosphors

on the inside of the picture tube persist longer than 1/30th of a second after they‘ve been
hit with the electron gun, and can therefore be refreshed or changed at that rate without

noticeable degradation in the picture. Interlacing the video will drop the data set down to

one-half of its original size. Using interlacing and resolution reduction can make a huge
difference in your video size, even before the compression system kicks in.

Video compression can be lossless, but in practice you should always take advantage of the

compression ratios even a small amount of lossiness can give you. If you‘re planning on
streaming the video from optical media, you‘ll probably be forced to accept some lossiness

simply to get your peak and average data rates down low enough for your minimum
specification CD-ROMs. In any case, you‘ll want to check the maximum bit rate you can live

with if the video stream is going to live on optical media. Most compression utilities give you
the option of entering your maximum bit rate. The resulting compression will attempt to

satisfy your bit-rate limitations while keeping the resulting video as accurate to the original
as possible. Table 7.4 shows the ideal bit rate that should be used for different CD-ROM,

DVD, and Blu-ray speeds.

Table 7.4. Matching Bit Rates with CD-ROM/DVD Speeds

Technology Bit Rate Technology Bit Rate

1x CD 150 Kbps 16x DVD 2.21 Mbps

1x DVD 1,385 Kbps 1x Blu-ray 36 Mbps

32x CD 4,800 Kbps 8x Blu-ray 288 Mbps

Save Video Compression Settings—They’re Hard to Remember!

javascript:moveTo('ch07table04');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Getting the video compression settings just right can be a black art,

and can be difficult to reproduce later. Make sure that you record

these settings in a convenient place so you can get to them again.

Resource Files

When I wrote the first edition of this book in 2003, many hard disks rotated as fast as

7,200rpm. By the second edition, the fast drives were already up to 15,000rpm. At the
writing of the third edition, there is talk of a 20,000rpm hard disk, but I‘m not so sure I

want to sit anywhere near that thing. For a 15,000rpm device, the CPU must wait an
average of 2ms for a desired piece of data to be located in the right position to be read,

assuming the read/write head doesn‘t have to seek to a new track. For a modern day
processor operating at 2GHz or more, this time is interminable. It‘s a good thing processors

aren‘t conscious because they‘d go mad waiting for hard disks all the time. Seeking time is

much slower. The head must accelerate, move, stop, and become stable enough to
accurately read the magnetic media. For a CPU, that wait is an eternity.

Optical media is even worse. Their physical organization is a continuous spiral from the

inside of the disc to the outside, and the read laser must traverse this spiral at a constant
linear velocity. This means that not only does the laser read head have to seek to an

approximate location instead of an exact location, but also the rotational velocity of the disc
must change to the right speed before reading can begin. If the approximate location was

wrong, the head will re-seek. All this mechanical movement makes optical media much
slower that their magnetic brethren.

The only thing slower than reading data from a hard drive or optical media is to have an

intern actually type the data in manually from the keyboard.

Needless to say, you want to treat data in your files like I treat baubles in stores like Pier
One. I do everything in my power to stay away from these establishments (my wife loves

them) until I have a big list of things to buy. When I can‘t put it off any longer, I make my
shopping trip a surgical strike. I go in, get my stuff, and get out as fast as I can. When your

game needs to grab data from the hard drive or optical media, it should follow the same
philosophy.

Know Your Hardware

Knowing how hardware works is critical to writing any kind of
software. You don’t have to be a guru writing device drivers to crack

the books and learn exactly how everything works and how you can
take advantage of it. This same lesson applies to the operating system

and how the hardware APIs work under the hood. This knowledge

separates armchair game programmers from professional game
programmers.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The best solution would completely compartmentalize game assets into a single block of

data that could be read in one operation with a minimum of movement of the read/write
head. Everything needed for a screen or a level would be completely covered by this single

read. This is usually impractical because some common data would have to be duplicated in
each block. A fine compromise factors the common data in one block and the data specific

for each level or screen in their own blocks. When the game loads, it is likely you‘ll notice
two seeks—one for the common data block and one for the level specific block. You should

make sure the common data stays in memory, even if new levels are loaded.

Packaging Resources into a Single File

It‘s a serious mistake to store every game asset, such as a texture or sound effect, in its
own file. Separating thousands of assets in their own files wastes valuable storage space

and makes it impossible to get your load times faster.

Hard drives are logically organized into blocks or clusters that have surprisingly large sizes.
Most hard drives in the gigabit range have cluster sizes of 16KB–32KB. File systems like

FAT32 and NTFS were written to store a maximum of one file per cluster to enable optimal
storage of the directory structure. This means that if you have 500 sound effect files, each

1/2 second long and recorded at 44KHz mono, you‘ll have 5.13MB of wasted space on the
hard disk:

0.5 seconds * 44KHz mono = 22,000 bytes

32,768 bytes minimum cluster size – 22,000 bytes in each file = 10,768

bytes wasted per file

10,768 bytes wasted in each file * 500 files = 5.13MB wasted space

You can easily get around this problem by packing your game assets into a single file. If
you‘ve ever played with DOOM level editors, you‘re familiar with WAD files; they are a

perfect example of this technique. These packed file formats are file systems in miniature,
although most are read only. Ultima VIII and Ultima IX had a read/write version (FLX files)

that had multiuser locking capabilities for development. Almost every game on the market
uses some custom packing scheme for more reasons than saving hard drive space.

Other Benefits of Packaging Resources

The biggest advantage of combining your resources by far is load time optimization.

Opening files is an extremely slow operation on most operating systems, and Windows is no
exception. At worst, you‘ll incur the cost of an extra hard disk seek to read the directory

structure to find the physical location of the file.

Another advantage is security. You can use a proprietary logical organization of the file that
will hamper armchair hackers from getting to your art and sounds. While this security is

quite light and serious hackers will usually break it before the sun sets the first day your
game is on the shelves, it‘s better than nothing.

Hard Drive Ticking? Maybe You Should Listen

http://lib.ommolketab.ir
http//lib.ommolketab.ir

During PC development, keep your ear tuned to the sounds your hard

drive makes while you play your game. At worst, you should hear a

“tick” every few seconds or so as new data is cached in. This would be
common in a game like Ultima IX, where the player could walk

anywhere on an enormous outdoor map. At best, your game will have
a level design that grabs all the data in one read.

A great trick is to keep indexes or file headers in memory while the

file is open. These are usually placed at the beginning of a file, and on
large files the index might be a considerable physical distance away

from your data. Read the index once and keep it around to save
yourself that extra seek.

Data Compression and Performance

Compression is a double-edged sword. Every game scrambles to store as much content on

the distribution media and the hard drive as possible. Compression can achieve some
impressive space ratios for storing text, graphics, and sound at the cost of increasing the

load on the CPU and your RAM budget to decompress everything. The actual compression
ratios you‘ll get from using different utilities are completely dependent on the algorithm and

the data to be compressed. Use algorithms like Zlib or LZH for general compression that
can‘t afford lossiness. Use JPG or MPEG compression for anything that can stand lossiness,

such as graphics and sound.

Consider the cost of decompressing MP3 files for music, speech, or sound effects. On the
upper end, each stream of 128KB stereo MP3 can suck about 25MHz from your CPU budget,

depending on your processor. If you design your audio system to handle 16 simultaneous
streams, a 2GHz desktop will only have 1.6GHz left, losing 400MHz to decompressing audio.

Keep an Eye on Your Message Queue During
Callbacks

If your decompressor API uses a callback, it is quite likely
that the decompression will forward Windows system

messages into your message pump. This can create a real
nightmare since mouse clicks or hot keys can cause new art

and sounds to be recursively sent into the decompression

system. Callbacks are necessary for providing user feedback
like a progress bar, but they can also wreak havoc with your

message pump. If this is happening to your application, trap
the offending messages and hold them in a temporary queue

until the primary decompression is finished.

Zlib: Open Source Compression

If you need a lossless compression/decompression system for your game, a good choice

that has stood the test of time is Zlib, which can be found at www.gzip.org/zlib/. It‘s free,
open source, legally unencumbered, and simple to integrate into almost any platform.

Typical compression ratios with Zlib are 2:1 to 5:1, depending on the data stream.

Zlib was written by Jean-Loup Gailly and Mark Adler and is an abstraction of the DEFLATE
compression algorithm. A Zip file uses Zlib to compress many files into a single file. An

../../default10.htm
http://lib.ommolketab.ir
http//lib.ommolketab.ir

overview of the basic structure of a Zip file is shown in Figure 7.3. I‘ll show you the basic

structure first, and then we‘ll look at the code that can read it.

Figure 7.3. The internal structure of a Zip file.

Zip files store their table of contents, or file directory, at the end of the file. If you read the

file, the TZipDirHeader at the very end of the file contains data members such as a

special signature and the number of files stored in the Zip file. Just before the

TZipDirHeader, there is an array of structures, one for each file, that stores data

members such as the name of the file, the type of compression, and the size of the file

before and after compression. Each file in the Zip file has a local header stored just before

the compressed file data. It stores much of the same data as the TZipDirFileHeader

structure.

One fine example of reading a Zip file comes from Javier Arevalo. I‘ve modified it only
slightly to work well with the rest of the source code in this book. The basic premise of the

solution is to open a Zip file, read the directory into memory, and use it to index the rest of

the file. Here is the definition for the ZipFile class:

// This maps a path to a zip content id

typedef std::map<std::string, int> ZipContentsMap;

class ZipFile

{

public:

 ZipFile() { m_nEntries=0; m_pFile=NULL; m_pDirData=NULL; }

 ~ZipFile() { End(); fclose(m_pFile); }

javascript:moveTo('ch07fig03');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 bool Init(const _TCHAR *resFileName);

 void End();

 int GetNumFiles()const { return m_nEntries; }

 void GetFilename(int i, char *pszDest) const;

 int GetFileLen(int i) const;

 bool ReadFile(int i, void *pBuf);

 optional<int> Find(const char *path) const;

 ZipContentsMap m_ZipContentsMap;

private:

 struct TZipDirHeader;

 struct TZipDirFileHeader;

 struct TZipLocalHeader;

 FILE *m_pFile; // Zip file

 char *m_pDirData; // Raw data buffer.

 int m_nEntries; // Number of entries.

 // Pointers to the dir entries in pDirData.

 const TZipDirFileHeader **m_papDir;

};

// ---

// Basic types.

// ---

typedef unsigned long dword;

typedef unsigned short word;

typedef unsigned char byte;

// ---

// ZIP file structures. Note these have to be packed.

// ---

#pragma pack(1)

// ---

struct ZipFile::TZipLocalHeader

{

 enum

 {

 SIGNATURE = 0x04034b50

 };

 dword sig;

 word version;

 word flag;

 word compression; // COMP_xxxx

 word modTime;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 word modDate;

 dword crc32;

 dword cSize;

 dword ucSize;

 word fnameLen; // Filename string follows header.

 word xtraLen; // Extra field follows filename.

};

struct ZipFile::TZipDirHeader

{

 enum { SIGNATURE = 0x06054b50 };

 dword sig;

 word nDisk;

 word nStartDisk;

 word nDirEntries;

 word totalDirEntries;

 dword dirSize;

 dword dirOffset;

 word cmntLen;

};

// ---

struct ZipFile::TZipDirFileHeader

{

 enum { SIGNATURE = 0x02014b50 };

 dword sig;

 word verMade;

 word verNeeded;

 word flag;

 word compression; // COMP_xxxx

 word modTime;

 word modDate;

 dword crc32;

 dword cSize; // Compressed size

 dword ucSize; // Uncompressed size

 word fnameLen; // Filename string follows header.

 word xtraLen; // Extra field follows filename.

 word cmntLen; // Comment field follows extra field.

 word diskStart;

 word intAttr;

 dword extAttr;

 dword hdrOffset;

 char *GetName () const { return (char *)(this + 1); }

 char *GetExtra () const { return GetName() + fnameLen; }

 char *GetComment() const { return GetExtra() + xtraLen; }

};

// ---

#pragma pack()

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You should notice a couple of interesting things about the definition of these structures.

First, there is a #pragma pack around the code. This disables anything the C++ compiler

might do to optimize the memory speed of these structures, usually by spreading them out

so that each member variable is on a 4-byte boundary. Anytime you define a structure that
will be stored onto a disk or in a stream, you should pack them. Another thing is the

definition of a special signature for each structure. The sig member of each structure is set

to a known, constant value, and it is written out to disk. When it is read back in, if the

signatures don‘t match the known constant value, you can be sure you have a corrupted

file. It won‘t catch everything, but it is a good defense.

When a Zip file is opened, the class reads the TZipDirHeader structure at the end of the

file. If the signatures match, the file position is set to the beginning of the array of

TZipDirFileHeader structures. Note that there is a length of this array already stored

in the TZipDirHeader. This is important because there‘s actually a little extra data

stored in between each TZipDirFileHeader. It is variable length data and contains the

filename, comments, and other extras.

Enough memory is allocated to store the directory, and it is read in one chunk. The data is

then processed a bit. All the signatures are checked, the UNIX slashes are converted to
backslashes, and the pointers to each entry in the directory are set for quick access. The

filenames are also stored in an STL map for quick lookup.

The ReadFile method takes the index number of the file you want to read and a pointer

to the memory you‘ve preallocated. Prior to calling this method, you‘ll call GetFileLen to

find the size of the buffer and allocate enough memory to hold the file. It reads and

decompresses the entire file at once in a blocking call, which could be bad if you have a
large compressed file inside the Zip file. If you want to decompress something larger

asynchronously, you‘ll need to extend this class.

One thing is a matter of taste for Win32 programmers: Under UNIX operating systems
filenames are case sensitive, which means that you could have two filenames in the same

directory that differ only in case. The same thing is true of Zip files, and while it is not
exactly perfect form to convert all filenames to lowercase before you compare names, it

sure makes it easier on you and the development team. An artist might name a file

―Allbricks.bmp‖ and a programmer might expect it to be named ―allbricks.bmp.‖ If you don‘t
force the names to lowercase, the class will think the file doesn‘t exist.

With this class, you can iterate through all of the files packed in the Zip, find their names,

read and decompress the file data, and use the data in your game. Here‘s an example:

char *buffer = NULL;

ZipFile zipFile;

if (zipFile.Init(resFileName))

{

 optional<int> index = zipFile.Find(path);

 if (index.valid())

 {

 int size = zipFile->GetFileLen(*index);

 buffer = new char[size];

 if (buffer)

 {

 zipFile.ReadFile(*index, buffer);

 }

 }

}

return buffer;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This is about as easy as it gets: After the Zip file is initialized, you find the index to the
name of the file inside the Zip, grab the size, allocate the memory buffer, and read the bits.

Zip files are a good choice for the base file type of a general purpose resource file—

something you can open once and read sounds, textures, meshes, and pretty much
everything else. It‘s a common practice to load all of the resources you‘ll use for a given

level in a single Zip file. Even doing this, you might soon discover that the Zip file for any
one level is much bigger than your available memory. Some resources, like the sounds for

your character‘s footsteps, will be around all the time. Others are used more rarely, like a
special sound effect for a machine that is only activated once.

This problem calls for a cache, and luckily you‘re about to find out how one works.

The Resource Cache

Resource files need a resource cache. If your game has a tiny set of graphics and sounds

small enough to exist completely in memory for the life of your game, you don‘t need a
cache. It‘s still a good idea to use resource files to pack everything into one file; you‘ll save

disk space and speed up your game‘s load time.

Most games are bigger. If your game is going to ship on a DVD, you‘ll have almost five
gigabytes to play around in, and on Blu-ray over 25GB. Optical media will certainly be larger

than the RAM you have. What you need is a resource cache—a piece of technology that will

sit on top of your resource files and manage the memory and the process of loading
resources when you need them. Even better, a resource cache should be able to predict

resource requirements before you need them.

Resource caches work on similar principles as any other memory cache. Most of the bits
you‘ll need to display the next frame or play the next set of sounds are probably ones

you‘ve used recently. As the game progresses from one state to the next, new resources
are cached in. They might be needed, for example, to play sound effects for the first time.

Since memory isn‘t available in infinite quantities, eventually your game will run out of
memory, and you‘ll have to throw something out of the cache.

Caches have two degenerate cases: cache misses and thrashing. A cache miss occurs when

a game asks for the data associated with a resource and it isn‘t there. The game has to wait
while the hard drive or the optical media wakes up and reads the data. A cache miss is bad,

but thrashing is fatal.

Cache thrashing occurs when your game consistently needs more resource data than can fit
in the available memory space. The cache is forced to throw out resources that are still

frequently referenced by the game. The disk drives spin up and run constantly, and your
game goes into semi-permanent hibernation.

The only way to avoid thrashing is to decrease the memory needed or increase the memory

requirements. On console platforms, you don‘t get to ask for more RAM—it is what it is. On
PC projects, it‘s rare that you‘ll get the go-ahead to increase the memory requirements, so

you‘re left with slimming down the game data. You‘ll probably have to use smaller textures,

fewer sounds, or cut entire sections out of your levels to get things to fit.

Most of the interesting work in resource cache systems involves predictive analysis of your

game data in an attempt to avoid cache misses. There are some tricks to reduce this

problem, some of which reach into your level design by adding pinch points such as doors,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

elevators, or elbow hallways. Some games with open maps, like flight simulators, can‘t do

this. They have to work a lot harder. I‘ll show you a very simple resource cache so you can
get your bearings. Then I‘ll discuss why this problem generally gets its own programmer,

and a good one.

For the sake of simplicity, I‘m going to assume that the cache only handles one resource
file. It‘s easy enough to make the modifications to track resources across multiple files.

You‘ll need to attach a file identifier of some sort to each resource to track which resources
came from which file. There‘s no need to create a monolithic file that holds all the game

assets. You should just break them up into manageable chunks. Perhaps you‘ll put assets
for a given level into one resource file, and assets common to all levels in another. It‘s

totally up to you.

Resources might not exist in memory if they‘ve never been loaded or if they‘ve been thrown
out to make room for other resources. You need a way to reference them whether they are

loaded or not. You need a mechanism to uniquely identify each resource. This enables the
cache to match a particular resource identifier with its data. For our simple resource system,

we‘ll assume that resources have unique names. You might need something a little more

robust, such as a hash or GUID.

You Might Have Multiple Resource Caches in Your Game

Different assets in your game require different resource caching. Level
data, such as object geometry and textures, should be loaded in one

chunk when the level is loaded. Audio and cinematics can be streamed
in as needed. Most user interface screens should be loaded before

they are needed, since you don’t want players to wait while you cache

something in. If you are going to load something, make sure you load
it when the player isn’t going to notice. Some games just load

everything they need when you begin playing and never hit the disk
for anything else at all, so a resource cache isn’t something every

game uses.

Since the resource cache also manages memory, it‘s convenient to store the size of the
resource where it can be accessed quickly. These two members are stored together in a

structure:

class Resource

{

public:

 std::string m_name;

 Resource(std::string name)

 { m_name=name; }

 virtual ResHandle *VCreateHandle (

 const char *buffer, unsigned int size, ResCache

*pResCache);

};

ResHandle *Resource::VCreateHandle(

 const char *buffer, unsigned int size, ResCache *pResCache)

{

 return GCC_NEW ResHandle(*this, (char *)buffer, size,

pResCache);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

}

Two phases are involved in using a resource cache: creating the resource and using it.
When you create a resource, you are simply creating an identifier for the resource. It
doesn‘t really do much of anything. The heavy lifting happens when you send the resource

into the resource cache to gain access to the bits or a resource handle. Since the handle is

managed by a shared_ptr, the bits are guaranteed to be good as long as you need them.

Here‘s an example of how to use the Resource class to grab a handle and get to the bits:

Resource resource("Brick.bmp");

shared_ptr<ResHandle> texture = g_pApp->m_ResCache-

>GetHandle(&resource);

int size = texture->GetSize();

char *brickBitmap = (char *) texture->Buffer();

Now you‘re ready to see how the resource cache is coded. You‘ve already seen how a

resource is defined through the Resource structure. There are a few other parts of a

resource cache, and I‘ll go over each one in detail:

 IResourceFile interface and ResourceZipFile, the resource file

 ResHandle, a handle to track loaded resources

 ResCache, a simple resource cache

IResourceFile Interface

A resource file should be able to be opened, closed, and provide the application programmer

access to resources. Here‘s a simple interface that defines just that:

class IResourceFile

{

public:

 virtual bool VOpen()=0;

 virtual int VGetResourceSize(const Resource &r)=0;

 virtual int VGetResource(const Resource &r, char *buffer)=0;

 virtual ~IResourceFile() { }

};

There are only three pure virtual functions to implement. I told you it was simple. The

implementation of VOpen() should open the file and return success or failure based on the

file‘s existence and integrity. VGetResourceSize() should return the size of the

resource based on the name of the resource, and VGetResource() should read the

resource from the file.

The accompanying source code implements the IResourceFile interface with a

ZipFile interior, so all of the resources in Game Coding Complete source code can be

stored in a Zip file and read at will. This is a great example of using interfaces to hide the
technical implementation of something while maintaining a consistent API. If you wanted to,

you could implement this interface using a completely different file structure, like CAB or
WAD.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

ResHandle: Tracking Loaded Resources

For the cache to do its work, it must keep track of all the loaded resources. A useful class,

ResHandle, encapsulates the resource identifier with the loaded resource data:

class ResHandle

{

 friend class ResCache;

protected:

 Resource m_resource;

 char *m_buffer;

 unsigned int m_size;

 ResCache *m_pResCache;

public:

 ResHandle (Resource & resource,

 char *buffer,

 unsigned int size,

 ResCache *pResCache);

 virtual ~ResHandle();

 virtual int VLoad(IResourceFile *file)

 { return file->VGetResource(m_resource, m_buffer); }

 unsigned int Size() const { return m_size; }

 char *Buffer() const { return m_buffer; }

};

ResHandle::ResHandle(

 Resource & resource, char *buffer, unsigned int size,

ResCache *pResCache)

 : m_resource(resource)

{

 m_buffer = buffer;

 m_size = size;

 m_pResCache = pResCache;

}

ResHandle::~ResHandle()

{

 if (m_buffer) delete [] m_buffer;

 m_pResCache->MemoryHasBeenFreed(m_size);

}

When the cache loads a resource, it dynamically creates a ResHandle, allocates a buffer

of the right size, and reads the resource from the resource file. The ResHandle class

exists in memory as long as the resource caches it in, or as long as any consumer of the

bits keeps a shared_ptr to a ResHandle object. The ResHandle also tracks the size

of the memory block. If the resource cache gets full, the resource handle is discarded and

removed from the resource cache.

The destructor of ResHandle makes a call to a ResCache member, MemoryHasBeen-

Freed(). ResHandle objects are always managed through a shared_ptr, and can

http://lib.ommolketab.ir
http//lib.ommolketab.ir

therefore be actively in use at the moment the cache tries to free them. This is fine, but

when the ResHandle object goes out of scope, it needs to inform the resource cache that

it is time to adjust the amount of memory actually in use.

There‘s a useful side effect of holding a pointer to the resource cache in the ResHandle—it

is possible to have multiple resource caches in your game. One may control a specific type
of resource, such as sound effects, whereas another may control level geometry and

textures.

ResCache: A Simple Resource Cache

Since most of the players are already on the stage, it‘s time to bring out the ResCache

class, an ultra simple resource cache.

While the resource is in memory, a pointer to the ResHandle exists in two data structures.

The first, a linked list, is managed such that the nodes appear in the order in which the
resource was last used. Every time a resource is used, it is moved to the front the list, so

we can find the most and least recently used resources.

The second data structure, an STL map, provides a way to quickly find resource data with
the unique resource identifier:

// LRU (least recently used)

typedef std::list< shared_ptr <ResHandle > > ResHandleList;

// maps identifiers to data

typedef std::map<std::string, shared_ptr < ResHandle > >

ResHandleMap;

class ResCache

{

protected:

 ResHandleList m_lru; // LRU (least recently used)

list

 ResHandleMap m_resources; // STL map for fast resource

lookup

 IResourceFile *m_file; // Object that implements

IResourceFile

 unsigned int m_cacheSize; // total memory size

 unsigned int m_allocated; // total memory allocated

 shared_ptr<ResHandle> Find(Resource * r);

 const void *Update(shared_ptr<ResHandle> handle);

 shared_ptr<ResHandle> Load(Resource * r);

 void Free(shared_ptr<ResHandle> gonner);

 bool MakeRoom(unsigned int size);

 char *Allocate(unsigned int size);

 void FreeOneResource();

 void MemoryHasBeenFreed(unsigned int size);

public:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 ResCache(const unsigned int sizeInMb, IResourceFile

*resFile);

 ~ResCache();

 bool Init() { return m_file->VOpen(); }

 shared_ptr<ResHandle> GetHandle(Resource * r);

 void Flush(void);

};

The first two members of the class have already been introduced; they are the least
recently used (LRU) list and the STL map. There is a pointer to the resource file and two

unsigned integers that track the maximum size of the cache and the current size of the
cache.

The m_file member points to an object that implements the IResourceFile interface.

The two unsigned integers, m_cacheSize and m_allocated, keep track of the cache

size and how much of it is currently being used.

The constructor is pretty basic. It simply sets a few member variables. The destructor frees

every resource in the cache by making repeated calls to FreeOneRe-source until there‘s

nothing left in the cache.

ResCache::ResCache(const unsigned int sizeInMb, IResourceFile

*resFile)

{

 m_cacheSize = sizeInMb * 1024 * 1024; // total memory

size

 m_allocated = 0; // total memory

allocated

 m_file = resFile;

}

ResCache::~ResCache()

{

 while (!m_lru.empty())

 {

 FreeOneResource();

 }

 SAFE_DELETE(m_file);

}

To get the bits for a resource, you call GetHandle():

shared_ptr<ResHandle> ResCache::GetHandle(Resource * r)

{

 shared_ptr<ResHandle> handle(Find(r));

 if (handle==NULL)

 handle = Load(r);

 else

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Update(handle);

 return handle;

}

ResCache::GetHandle() is brain-dead simple: If the resource is already loaded in the

cache, update it. If it‘s not there, you have to take a cache miss and load the resource from

the file.

The process of finding, updating, and loading resources is easy.

 ResCache::Find() uses an STL map, m_resources, to locate the right

ResHandle given a Resource.

 ResCache::Update() removes a ResHandle from the LRU list and promotes it

to the front, making sure that the LRU is always sorted properly.

 ResCache::Free() finds a resource by its handle and removes it from the cache.

The other members, Load(), Allocate(), MakeRoom(), and FreeOneResource(),

are the core of how the cache works:

shared_ptr<ResHandle> ResCache::Load(Resource *r)

{

 int size = m_file->VGetResourceSize(*r);

 char *buffer = Allocate(size);

 if (buffer==NULL)

 {

 return shared_ptr<ResHandle>(); // ResCache is out of

memory!

 }

 // Create a new resource and add it to the lru list and map

 shared_ptr<ResHandle> handle (r->VCreateHandle(buffer, size,

this));

 handle->VLoad(m_file);

 m_lru.push_front(handle);

 m_resources[r->m_name] = handle;

 return handle;

}

The Load() method grabs the size of the resource from the resource file and calls

Allocate() to make room in the cache. If the memory allocation is successful, the

handle is created with a call to Resource::VCreateHandle(). This requires a bit of

explanation.

A resource handle might only need to track a buffer and a size, as you have seen in the

ResHandle class. Different kinds of resources may need additional kinds of data, such as

a sound resource, which may want to track additional things such as what kind of sound

compression is used in the buffer or its length in milliseconds.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Different kinds of resources can be created using the VCreateHandle() virtual—by

inheriting from both the Resource and ResHandle classes. You‘ll learn more about this

in Chapter 12, which discusses using the resource system to create sound resources.

Next up is the Allocate() method, which makes more room in the cache when it is

needed.

char *ResCache::Allocate(unsigned int size)

{

 if (!MakeRoom(size))

 return NULL;

 char *mem = new char[size];

 if (mem)

 m_allocated += size;

 return mem;

}

Allocate() is called from the Load() method when a resource is loaded. It calls

MakeRoom() if there isn‘t enough room in the cache, and updates the member variable to

keep track of all of the allocated resources.

bool ResCache::MakeRoom(unsigned int size)

{

 if (size > m_cacheSize)

 {

 return false;

 }

 // return null if there's no possible way to allocate the

memory

 while (size > (m_cacheSize - m_allocated))

 {

 // The cache is empty, and there's still not enough room.

 if (m_lru.empty())

 return false;

 FreeOneResource();

 }

 return true;

}

After the initial sanity check, the while loop in MakeRoom() performs the work of

removing enough resources from the cache to load the new resource by calling

FreeOneResource(). If there‘s already enough room, the loop is skipped.

void ResCache::FreeOneResource()

{

 ResHandleList::iterator gonner = m_lru.end();

 gonner--;

../../ch12#ch12
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 shared_ptr<ResHandle> handle = *gonner;

 m_lru.pop_back();

 m_resources.erase(handle->m_resource.m_name);

}

ResCache::FreeOneResource() removes the oldest resource and updates the cache

data members. Note that the memory used by the cache isn‘t actually modified here—that‘s

because any active shared_ptr<ResHandle> in use will need the bits until it actually

goes out of scope.

Here‘s an example of how this class is used. You construct the cache with a size in mind, in

our case 3MB, and an object that implements the IResourceFile interface. You then call

Init() to allocate the cache and open the file.

ResourceZipFile zipFile("data\\GameCode3.zip");

ResCache resCache (3, zipFile);

if (m_ResCache.Init())

{

 Resource resource("Brick.bmp");

 shared_ptr<ResHandle> texture = g_pApp->m_ResCache-

>GetHandle(&resource);

 int size = texture->GetSize();

 char *brickBitmap = (char *) texture->Buffer();

 // do something cool with brickBitmap !

}

If you want to use this in a real game, you‘ve got more work to do. First, there‘s hardly a

line of defensive or debugging code in ResCache. Resource caches are a significant source

of bugs and other mayhem. Data corruption from buggy cache code or something else

trashing the cache internals will cause your game to simply freak out.

A functional cache will need to be aware of more than one resource file. It‘s not reasonable

to assume that a game can stuff every resource into a single file, especially since it makes it

impossible for teams to work on different parts of the game simultaneously. Associate a
filename or number with each resource, and store an array of open resource files in

ResCache.

Write a Custom Memory Manager

Consider implementing your own memory allocator. Many resource

caches allocate one contiguous block of memory when they initialize
and manage the block internally. Some even have garbage collection,

where the resources are moved around as the internal block becomes
fragmented. A garbage collection scheme is an interesting problem,

but it is extremely difficult to implement a good one that doesn’t make
the game stutter. Ultima VIII used a scheme like this.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

That brings us to the idea of making the cache multithreading compliant. Why not have the

cache defrag itself if there‘s some extra time in the main loop, or perhaps allow a reader in
a different thread to fill the cache with resources that might be used in the near future?

With the generation of consoles after the PS2 and Xbox, this is one of the areas in game
programming getting tons of attention. The new multiprocessor systems have tons of CPU

horsepower, and resource management will surely get its own thread. The problem is going
to be synchronization and keeping all the CPUs from stalling.

It‘s also not unusual to use separate resource caches for different kinds of resources like

textures, objects, or cinematics. This is especially true for textures, since they can exist in
two different kinds of memory: video memory or system memory. A good texture cache

needs to take that into account.

Caching Resources into DirectX, et al.

Luckily for you, DirectX objects like sound effects, textures, and even meshes can all load
from a memory stream. For example, you can load a DirectX texture using the

D3DXCreateTextureFromFileInMemory() API, which means loading a texture from

your resource cache is pretty easy:

Resource resource(m_params.m_Texture);

shared_ptr<ResHandle> texture = g_pApp->m_ResCache-

>GetHandle(&resource);

if (FAILED (

 D3DXCreateTextureFromFileInMemory(

 DXUTGetD3D9Device(),

 texture->Buffer(),

 texture->Size(),

 &m_pTexture)))

{

 return E_FAIL;

}

There are some SDKs out there that don‘t let you do this. They require you to send
filenames into their APIs, and they take complete control of loading their own data. While

it‘s unfortunate, it simply means you can‘t use the resource cache for those parts of your
game.

World Design and Cache Prediction

Perhaps you‘ve just finished a supercharged version of ResCache—good for you. You‘re

not done yet. If you load resources the moment you need them, you‘ll probably suffer a
wildly fluctuating frame rate. The moment your game asks for resources outside of the

cache, the flickering hard disk light will be the most exciting thing your players will be able
to watch.

First, classify your game design into one of the following categories:

 Load Everything at Once: This is for any game that caches resources on a screen-

by-screen basis or level-by-level. Each screen of Myst is a good example, as well as

Grim Fandango. Most fighting games work under this model for each event.

 Load Only at Pinch Points: Almost every shooter utilizes this design, where

resources are cached in during elevator rides or in small barren hallways.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Load Constantly: This is for open-map games where players can go anywhere they

like. Examples include flight simulators, racing games, massively multiplayer games,

and action/adventure games like Grand Theft Auto: Vice City.

The first scheme trades one huge loading pause for lightning fast action during the game.
These games have small levels or arenas that can fit entirely in memory. Thus, there‘s

never a cache miss. The game designers can count on every CPU cycle spent on the game
world instead of loading resources. The downside is that since your entire playing area has

to fit entirely in memory, it can‘t be that big.

Shooters like Halo on the Xbox360 load resources at pinch points. The designers add buffer
zones between the action where relatively little is happening in the game. Elevators and

hallways with a few elbow turns are perfect examples of this technique. The CPU spends
almost no time rendering the tiny environment in these areas, and it uses the leftover

cycles to load the next hot zone. In elevators, players can‘t change their minds in the

middle of the trip until the elevator gets to the right floor, which happens to be timed to
open exactly when the next area is loaded. Elbow hallways are constructed so that the

loading time will always be less than the maximum running speed of the player. The more
loading is needed, the longer the hallway will be.

One thing you may notice is that with each of these designs, the ResCache needs to load

in the background while the rest of the game continues to run. This turns out to be pretty
tricky stuff.

Buffer Zones in Your Game Affect Pacing and Player Tension

These buffer zones will exist in many places throughout the game,
providing the player with a brief moment to load weapons and rest

happy trigger fingers. The designers at Bungie took advantage of this
and placed a few surprise encounters in these buffer zones, something

that always made me freak out when I was playing Halo.

Even better, the folks at Bungie were wise enough to use the hallways
to set the tone for the next fight with Covenant forces or The Flood.

Sometimes it was as simple as painting the walls with enemy blood or
playing some gruesome sound effects.

Gamers Don’t Want to Read, they Want to Play

Don’t make the player read a bunch of text in between levels just to

give yourself time to cache resources. Players figure this out right

away, and want to click past the text they’ve read five or six times.
They won’t be able to do so since you’ve got to spend a few more

seconds loading resources, and they’ll click like mad and curse your
name. If you’re lucky, the worst thing they’ll do is return your game.

Don’t open any suspicious packages you receive in the mail.

Open-mapped games such as flight simulators, racing games, fantasy role-playing games,
or action/adventure games have a much tougher problem. The maps are huge, relatively

open, and the game designers have little or no control over where the player will go next.
Players also expect an incredible level of detail in these games. They want to read the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

headlines in newspapers or see individual leaves on the trees, while tall buildings across the

river are in plain view. Players like that alternate reality. One of the best games that uses
this open world design is Grand Theft Auto.

Modern operating systems have more options for multithreading, especially for caching in

game areas while the CPU has some extra time. They use the player‘s direction of travel to
predict the most likely areas that will be needed shortly, and add those resources to a list

that is loaded on an ad hoc basis as the cache gets some time to do extra work. This is
especially beneficial if the game designers can give the cache some hints, such as the

destination of a path or the existence of pinch points, such as a tunnel. These map elements
almost serve as pinch points like the hallways in Halo, although players can always turn

around and go the other direction.

Batch Your Cache Reads if You Can

Create your cache to load multiple resources at one time, and sort

your cache reads in the order in which they appear in the file. This will
minimize any seeking activity on the part of the drive’s read head. If

your resource file is organized properly, the resources used together
will appear next to each other in the file. It will then be probable that

resource loads will be accomplished in a single read block with as few
seeks as possible.

If you want to find out how your resources are being used, you should instrument your
build. That means you should create a debug build with special code that creates a log file
every time a resource is used. Use this log as a secondary data file to your resource file

creator, and you‘ll be able to sequence the file to your game‘s best advantage.

In open world games, the maximum map density should always leave a little CPU time to
perform some cache chores. Denser areas will spend most of their CPU time on game tasks

for rendering, sound, and AI. Sparse areas will spend more time preparing the cache for
denser areas about to reach the display. The trick is to balance these areas carefully,

guiding the player through pinch points where it‘s possible, and never overloading the

cache.

If the CPU can‘t keep up with cache requests and other game tasks, you‘ll probably suffer a

cache miss and risk the player detecting a stutter in the game. Not all is lost, however,

since a cache miss is a good opportunity to catch up on the entire list of resources that will
be needed all at once. This should be considered a worst case scenario, because if your

game does this all the time, it will frustrate players. If you do this in a first-person shooter,
you‘ll end up with a lot of bad reviews.

A better solution is a fallback mechanism for some resources that suffer a cache miss. Flight

simulators and other open architecture games can sometimes get away with keeping the
uncached resource hidden until the cache can load it. Imagine a flight simulator game that

caches in architecture as the plane gets close. If the game attempts to draw a building that
hasn‘t been cached in, then the building simply won‘t show up. Think for a moment what is

more important to the player: a piece of architecture that will likely show up in 100ms or so
anyway, or a frustrating pause in the action?

Not All Resources are Equally Important

http://lib.ommolketab.ir
http//lib.ommolketab.ir

It’s a good idea to associate a priority with each resource. Some

resources are so important to the game that it must suffer a cache

miss rather than fail to render it. This is critical for sound effects,
which must sometimes be timed exactly with visual events such as

explosions.

The really tough open-map problems are those games that add a level of detail on top of an
open-map design. This approach is common with flight simulators and action adventure
games. Each map segment has multiple levels of detail for static and dynamic objects. It‘s

not a horrible problem to figure out how to create different levels of detail for each

segment. The problem is how to switch from one level of detail to another without the
player noticing. This is much easier in action/adventure games where the player is on the

ground and most objects are obscured from view when they flip to a new level of detail.

Flight simulators don‘t have that luxury. Of all the games on the market, flight simulators
spend more time on caching continuous levels of detail than any other nonrendering task.

Players want the experience of flying high enough to see the mountains on the horizon and
diving low enough to see individual trees and ground clutter whiz by at Mach 1.

This subject is way beyond the scope of this book, but I won‘t leave you hanging. There is

some amazing work done in this area, not the least of which was published in Level of Detail
for 3D Graphics by D. Luebke, M. Reddy, J. Cohen, A. Varshney, B. Watson, and R.

Huebner. They also have a Web site at http://lodbook.com.

I’m Out of Cache

Smart game programmers realize early on that some problems are harder than others. If
you thought that creating a good flight simulator was a piece of cake, I‘d tell you that the

part that‘s tricky isn‘t simulating the airplane, but simulating the ground. The newbie game
programmer could spend all his time creating a great flight model, and when he started the

enormous task of representing undulating terrain with smooth detail levels, he would fold

like laundry.

Games need enormous amounts of data to suspend disbelief on the part of players. No one,

not even Epic, can set their system RAM requirements to hold the entire contents of even

one disk of current day optical media. It‘s also not enough to simply assume that a game
will load resources as needed and the game designers can do what they want. That is a

tragic road traveled by many games that never shipped. Most games that suffer fatal frame
rate issues ignored their cache constraints.

It‘s up to programmers to code the best cache they can and figure out a way to get game

level designers, artists, and sound engineers to plan the density of game areas carefully. If
everyone succeeds in his task, you get a smooth game that plays well. If you succeed, you‘ll

get a game that can almost predict the future.

Chapter 8. Programming Input Devices

In This Chapter

../../default11.htm
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Getting the Device State

 Using DirectInput

 A Few Safety Tips

 Working with the Mouse (and Joystick)

 Working with a Game Controller

 Working with the Keyboard

 What, No Dance Pad?

Even though user interface programming seems easy, it‘s actually quite tricky, which is
ironic since most game companies assign the user interface code to their greenest

programmers. It‘s a simple matter under almost any platform to read a keyboard, mouse,
or gamepad. Most programmers take this input, like the X, Y coordinate of a mouse, and

use it to directly modify the game state, such as where the player is looking in a first-
person shooter. This technique works, all too well, until you want to do something like

switch out that mouse for a USB gamepad, or perhaps change how the controls are

interpreted by the game. Maybe your player wants to switch the up/down or Y-axis of the
camera controls from normal to inverted, like I prefer.

The framework presented in this book puts reading the hardware input devices squarely
inside the application layer, which is the layer that handles any and all operating system or

machine-dependent code. Once the application layer handles the raw input, it is handed off

to the game view layer, usually a game view written specifically for a human player, to
interpret the raw input and translate it into a command for your game. This chapter deals

with the hardware and the raw messages, and you‘ll learn how these messages are handled
in a game view in the next chapter on user interface programming.

First, we‘ll play with the hardware.

Getting the Device State

No matter what type of device you use—keyboard, mouse, joystick, and so on—you‘ll need

to understand the techniques and subtleties of getting and controlling the state of your

input devices. We‘ll start by working at the lowest level, and then we‘ll work our way up the
input device food chain. The interfaces to input devices are completely dependent on the

platforms you use, and to some extent any middleware you might be using. Many 3D
graphics engines also provide APIs to all the input hardware. Regardless of the API used or

devices they control, there are two schemes for processing user input:

 Polling: This method is a little old-fashioned but still very popular. It requires an

application to query each device to find out its state. Your code should react to the
state accordingly, usually comparing it against a previous state and calling an input

handler if anything changed. This is how DirectInput works.

 Callbacks or messages: This method is more common in advanced game engines

that handle the low level stuff for you. Here you just register input device callbacks

based on which devices you care about, and when they change state, your callback
will get control. They poll at the low level just like DirectX, but state changes are

detected for you, which will launch your callback.

../../ch08lev1sec1#ch08lev1sec1
../../ch08lev1sec2#ch08lev1sec2
../../ch08lev1sec3#ch08lev1sec3
../../ch08lev1sec4#ch08lev1sec4
../../ch08lev1sec5#ch08lev1sec5
../../ch08lev1sec6#ch08lev1sec6
../../ch08lev1sec7#ch08lev1sec7
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Meaningful changes in hardware state should be translated into a game event, whether you

use a polling method or callback method. With a little work, you can structure your code to
do this.

Of course, every platform operates a little differently, but the code looks very similar;

mouse buttons still go up and down, and the entire device moves on a two-dimensional
plane. It‘s not crazy to assume that most device-handling code reflects the nature of the

specific device.

 Buttons: They will have up and down states. The down state might have an analog

component. Most game controllers support button pressure as an 8-bit value.

 One-axis controllers: They will have a single analog state, with zero representing

the unpressed state. Game controllers usually have analog triggers for use in
features such as accelerators in driving games.

 Two-axis controllers: A mouse and joystick are 2D controllers. Their status can be

represented as integers or floating-point numbers. When using these devices, you

shouldn‘t assume anything about their coordinate space. The coordinate (0,0) might

represent the upper left-hand corner of the screen, or it might represent the device
center.

Game controllers, even complicated ones, are built from assemblies of these three

component types. The tricked-out joysticks that the flight simulator fans go for are simply
buttons and triggers attached to a 2D controller. To support such a device, you need to

write a custom handler function for each component. Depending on the way your handler
functions get the device status, you might have to factor the device status for each

component out of a larger data structure. Eventually, you‘ll call your handler functions and
change the game state.

Choose Controls with Fidelity in Mind

When you choose a control scheme for your game, be
mindful of the fidelity of each control. For example, a

gamepad thumbstick has a low fidelity because the entire
movement from one extreme to another is only a few

centimeters. The mouse, on the other hand, has a very high
fidelity since its movement is perhaps 10 times as far. This is

a fundamental difference between games that use the
gamepad, where targets are large and few in number, versus

games that require a mouse, where targets require speed

and precision, such as a headshot. If you attempt to force a
gamepad thumbstick into the same role as a mouse control,

your players will be extremely frustrated and likely will stop
playing your game. For games that are gamepad based, the

players using gamepads will certainly need a little help
aiming, as do most console shooters such as Halo. The

players still need a high degree of skill, and its design
cleverly balances the movement of the AI, the aiming help,

and the control scheme to be fun.

You can create some interface classes for each kind of device that takes as input the
translated events that you received from messages, callbacks, or even polling. You can
write these any way you want, but here are some examples to help you get started:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

class IKeyboardHandler

{

 virtual bool VOnKeyDown(unsigned int const kcode)=0;

 virtual bool VOnKeyUp(unsigned int const kcode)=0;

};

class IMouseHandler

{

 virtual bool VOnLMouseDown(int const x, int const y)=0;

 virtual bool VOnLMouseUp (int const x, int const y)=0;

 virtual bool VOnRMouseDown(int const x, int const y)=0;

 virtual bool VOnRMouseUp (int const x, int const y)=0;

 virtual bool VOnMouseMove (int const x, int const y)=0;

};

class IJoystickHandler

{

 virtual bool VOnButtonDown(int const button, int const

pressure)=0;

 virtual bool VOnButtonUp(int const button)=0;

 virtual bool VOnJoystick(float const x, float const y)=0;

};

class IGamepadHandler

{

 virtual bool VOnTrigger(bool const left, float const

pressure)=0;

 virtual bool VOnButtonDown(int const button, int const

pressure)=0;

 virtual bool VOnButtonUp(int const button)=0;

 virtual bool VOnDirectionalPad(int directionFlags)=0;

 virtual bool VOnThumbstick(int const stickNum, float const x,

 float const y)=0;

};

Each function represents an action taken by a control when something happens to an input
device. Here‘s how the return values work: If the message is handled, the functions return

true; otherwise, they return false.

You‘ll implement these interfaces in control classes to convert input from devices to
commands that can change the game state. Control objects in your game are guaranteed to

receive device input in a standard and predictable way. Thus, it should be a simple matter

to modify and change the interface of your game by attaching new control objects that care
about any device you‘ve installed.

The interface classes described previously are simple examples, and they should be coded

to fit the unique needs of your game. You can easily remove or add functions at will, and
not every game will use input exactly the same way.

Map Controls Directly to Controlled Objects

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Don’t add parameters to distinguish between multiple joysticks or

gamepads. A better solution is to create controls that map directly to

the object they are controlling. For example, if multiple gamepads
control multiple human drivers, the control code shouldn’t need to be

aware of any other driver but the one it is controlling. You could set all
this up in a factory that creates the driver and the controller and

informs the input device code where to send the input from each
gamepad.

If you follow a modular design, your game objects can be controlled via the same interface,

whether the source of that control is a gamepad or an AI character. For example, the AI
character could send commands like ―brake 75%‖ or ―steer 45%‖ into a car controller,

where the human player touches a few gamepad keys, generating translated events that
eventually result in exactly the same calls, but to a different car.

This design should always exist in any game where AI characters and humans are

essentially interchangeable. If humans and AI characters use completely different interfaces
to game objects, it becomes difficult to port a single player game to multiplayer. You‘ll soon

discover that none of the ―plugs‖ fit.

You‘ll see in Chapter 9, ―User Interface Programming,‖ how to attach a mouse handler and
keyboard handler to a game view class, and you‘ll also see in Chapter 14, ―3D Scenes,‖ how

to implement a user interface using both the mouse and the keyboard to move about a 3D
scene.

Using DirectInput

DirectInput is the DirectX API for input devices such as the mouse, keyboard, joystick,

game controllers, and force feedback devices. DirectX sits in between your application and a

physical device like a video or sound card. For video and sound systems, many things are
handled directly by the hardware, such as a video card‘s ability to texture map a polygon. If

the hardware doesn‘t have that feature, it is simulated in software. This architecture is
usually called a hardware abstraction layer, or HAL. While there is nothing for DirectInput to

hardware accelerate, it does provide an important service, which is to expose the
capabilities of the user input hardware. For example, a USB game controller might have a

rumble or force feedback feature. If it does, DirectInput will give your game a way to detect
it and use it to make your game more interesting.

Windows can certainly grab user input with DirectInput. Mouse and keyboard messages are

well understood by a Win32 programmer the moment they create their first Win32
application. You might not be aware that the Win32 Multimedia Platform SDK has

everything you need to accept messages from your joystick. You don‘t even need

DirectInput for that, so why bother? Straight Win32 code does not expose every feature of
all varieties of joysticks or PC game controller pads. For example, you can grab input from a

Logitech PC gamepad without DirectInput with this code:

bool CheckForJoystick(HWND hWnd)

{

 JOYINFO joyinfo;

 UINT wNumDevs, wDeviceID;

 BOOL bDev1Attached, bDev2Attached;

 if((wNumDevs = joyGetNumDevs()) == 0)

../../ch09#ch09
../../ch14#ch14
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 return false;

 bDev1Attached = joyGetPos(JOYSTICKID1,&joyinfo) !=

JOYERR_UNPLUGGED;

 bDev2Attached = joyGetPos(JOYSTICKID2,&joyinfo) !=

JOYERR_UNPLUGGED;

 if(bDev1Attached)

 joySetCapture(hWnd, JOYSTICKID1, 1000/30, true);

 if (bDev2Attached)

 joySetCapture(hWnd, JOYSTICKID2, 1000/30, true);

 return true;

}

After this code runs, Windows will begin sending messages to your game such as

MM_JOY1MOVE and MM_JOY2BUTTONDOWN. You might feel that this simple code is

preferable to the much larger initialization and required polling needed by Direct-Input, but
DirectInput gives you access to the entire device—all the buttons, the rumble, force

feedback, and so on. The Windows Multimedia Platform SDK only gives you the most basic
access to joystick messages.

Beyond this, another feature of DirectInput that‘s pretty useful is called action mapping.

This is a concept that binds actions to virtual controls. Instead of looking at the X-axis of
the joystick to find the direction of a car‘s steering wheel, Direct-Input can map the action

of steering the car to a virtual control. The actual controls can be mapped to the virtual
controls at the whim of the player, and are the basis for providing a completely configurable

control system. Hardcore gamers really love this. If you are making a hardcore game, you‘ll

need configurable controls. DirectInput isn‘t the only way to make that work, however, but
it does buy you a few other things like a standard way to tweak the force feedback system.

Remappable Controls are Expected by Your Players

Whether you use DirectInput or not, this action-mapping idea is

something every game should have, even if you have to code it
yourself. If you can easily switch your controls from right-handed to

left-handed, or from normal camera movement to inverted camera

movement, you’ll automatically get more people to play your game.
Actually, you’ll keep people from throwing your game in the garbage.

Players expect a customizable interface, and you’ll never convince
someone to “learn” your control scheme, no matter how much fun

your game is. Even more importantly, PC gamepads from different
manufacturers may map input completely differently—for example,

one may switch the thumbsticks from left-handed to right-handed or
give you negative values when you expect positive values. A

configurable input scheme lets you easily remap these wacky values

to a standard your game will use.

Mass market games that don‘t use any advanced features of joysticks or don‘t have insanely
configurable controls can work just fine with Windows messages and the Windows
Multimedia Platform SDK. You don‘t have to learn to use DirectInput to make games, and

Windows messages are easy and familiar. There are plenty of DirectInput samples in the

DirectX SDK for you to look at, so I‘m not going to waste your time or any trees on the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

subject. What I want to work on is the fact that there‘s plenty to talk about in terms of user

interface code, regardless of the API you use.

A Few Safety Tips

I‘ve probably spent more of my programming time on user interface tasks than almost
anything else. The design for the early Ultima games loaded tons of control on the mouse—

the idea being that the player could play the whole game without ever touching the
keyboard. As good an idea as it seemed at the time, this was a horrible idea because it

ignored simple physiology and the nature of the hardware. Remember that any input
scheme should be designed around how players physically manipulate the device, and that

they tend to do this for hours at a time.

If it ain’t broke, don’t fix it. There are plenty of standard conventions for input devices,
from Microsoft Windows to Quake. When you sit down to write your interface code, consider

your control scheme carefully and make a conscious decision whether you want to stay with
a well-known convention or go in a totally new direction. You take a risk with going rogue

on user interface controls, but it can pay off too. After all, before the shooter-style game

was popular, how many games used the mouse as a model for a human neck? This idea
worked well in a case like this for two reasons: It solved a new problem, and the solution

was intuitive.

If it Ain’t Broke, Don’t Fix it

If you’re solving an interface problem that has a standard solution and
you choose a radically different approach, you take a risk of annoying

players. If you think their annoyance will transition into wonder and

words of praise as they discover (and figure out) your novel solution,
then by all means give it a try. Make sure that you test your idea first

with some colleagues you trust. They’ll tell you if your idea belongs on
the garbage heap. After your colleagues, try the idea out on real

players. Be careful with interfaces, though. A friend of mine once
judged the many entrants into the Indie Games Festival

(www.indiegames.com) and he said the biggest mistake he saw that
killed promising entrants was poor interface controls. He was amazed

to see entries with incredible 3D graphics not make the cut because

they were simply too hard to control. What’s worse, even game
professionals get caught in this problem. The big retail buyers will give

your game just a few minutes, and if they can’t figure out your control
scheme, they won’t buy your game. Believe me, if someone like

Walmart or Best Buy doesn’t buy your game, you are destined for the
great bargain bin in the sky. In short, don’t be afraid to use a good

idea just because it’s already been done.

Be cautious with overloading simple controls with complicated results. Context
sensitivity in controls can be tough to deal with as a player. It‘s easy to make the mistake of

loading too much control onto too little a device. The Ultima games generally went a little
too far, I think, in how they used the mouse. A design goal for the games was to have every

conceivable action be possible from the mouse, so every click and double-click was used for
something. In fact, the same command would do different things if you clicked on a person,

a door, or a monster. I‘m sometimes surprised that we never implemented a special action

for the ―shave and a haircut, two bits‖ click.

../../default12.htm
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Give the player some feedback. One thing I think the Ultima games did well was how

they used the pointer or cursor. The cursor would change shape to give the player feedback
about what things were and whether they could be activated by a mouse command. This is

especially useful when your screens are very densely populated. When the mouse pointer
changes shape to signify that the player can perform an action, players immediately

understand that they can use the pointer to explore the screen. In Thief: Deadly Shadows,
the gamepad controls did very different things when the player was shooting an arrow or

picking a lock. The very first tutorial mission exposed these differences with specific tasks
the player had to complete during the tutorial mission, and the screens were very different

for both modes. The last game I was on, Mushroom Men: The Spore Wars for the Wii,

brought the changing icon back to tell the player what special power was possible on any
object being pointed to by the Wii Remote.

Players won’t use it if they don’t know about it. A great term in games is

―discoverability.‖ It describes how easy it is for a player to figure things out on his own.
Power-user moves are sometimes hidden on purpose, such as a special button combo in a

fighting game, and that‘s a fine thing to hide. A special shortcut to page through equipped
weapons is different—it is something that more advanced players will use to shorten the

time between their desire to do something and having it actually happening. Make sure that
you expose anything like this in a tutorial or in hints during loading screens. Documenting it

isn‘t good enough—players usually never read documentation.

Watch and learn. When you finish any work on any kind of interface, bring some people in
and watch them try to use it. Stand behind them and give them a task to perform, but don‘t

give them any hints. An interface should be self evident to players, and they should be able
to figure it out in 30 seconds or less on their own. A really good tip: Watch what your

impromptu testers do first, and most likely they‘ll all do something similar. If they struggle

with your solution, consider carefully whether your design will work.

Avoid pixel perfect accuracy. It‘s a serious mistake to assume that players of all ages

can target a screen area with pixel perfect accuracy. Even with a high-fidelity control like a

mouse, this task is very difficult; on a very low-fidelity control like the Wii Remote, this is
simply impossible. An example of this might be a small click target on a draggable item or a

small drop point on the screen. Anything that will change as a result of a pointing device
and a click should have a little buffer zone widening the available target area. On Thief:

Deadly Shadows, these ―sloppy‖ targeting areas would sometimes overlap on-screen, and
the code had to choose which item was the most likely one targeted. The solution was to

choose the closest one to the screen, but that doesn‘t necessarily work all the time.

Anyone who has attempted to cast spells in the original version of Ultima VIII will agree.
The reagents that made some of the spells work had to be placed exactly. This requirement

made spell casting frustrating and arbitrary.

Targeting is Always a Little Sloppy

The Ultima VII mouse code detected objects on the screen by

performing pixel collision testing with the mouse (x, y)
position and the images that made up the objects in the

world. Most of these sprites were chroma-keyed, and
therefore had spots of the transparent color all through

them. This was especially true of things like jail cell bars and

fences. Ultima VII’s pixel collision code ignored the
transparent color, allowing players to click through fences

and jail cell bars to examine objects on the other side. That
was a good feature, and it was used in many places to

advance the story. The problem it created, however, was that
sometimes the transparent colored pixels actually made it

http://lib.ommolketab.ir
http//lib.ommolketab.ir

harder for players to click on an object. For example, double-

clicking the door of the jail cell was difficult. If you use an
approach like this, take some care in designing which objects

are active, and which are simply scenery, and make sure you
make this clear to your players.

This is an extremely important issue with casual games or kids‘ games. Very young players
or older gamers enjoy games that include buffer zones in the interface because they are

easier to play.

A Fine Use of a Piece of Tape

With Ultima VIII, the left mouse button served as the
―walk/run‖ button. As long as you held it down, the Avatar

character would run in the direction of the mouse pointer.

Ultima games require a lot of running; your character will run
across an entire continent only to discover that the

thingamajig that will open the gate of whosiz is back in the
city you just left, so you go running off again. By the time I‘d

played through the game the umpteenth time, my index
finger was so tired of running I started using tape to hold the

mouse button down. One thing people do in a lot of FPS
games when playing online is set them to ―always run‖

mode. I wish we‘d had done that with Ultima VIII.

Working with the Mouse (and Joystick)

I‘m not going to talk about basic topics like grabbing WM_MOUSEMOVE and pulling screen

coordinates out of the LPARAM. Many books have been written to cover these programming

techniques. If you need a primer on Win32 and GDI, I suggest you read Charles Petzold‘s

classic book: Programming Windows: The Definitive Guide to the Win32 API.

Capturing the Mouse

I‘m always surprised that Win32 documentation doesn‘t make inside jokes about capturing
the mouse. At least we can still laugh at it. If you‘ve never programmed a user interface

before, you probably don‘t know what capturing the mouse means or why any programmer
in his right mind would want to do this. Catching a mouse isn‘t probably something that‘s

high on your list.

To see what you‘ve been missing, go to a Windows machine right now and bring up a dialog
box. Move the mouse over a button, hopefully not one that will erase your hard drive, and

click the left mouse button and hold it down. You should see the button graphic depress.
Move the mouse pointer away from the button, and you‘ll notice the button graphic pop

back up again. Until you release the left mouse button, you can move the mouse all you
want, but only the button on the dialog will get the messages. If you don‘t believe me, open

up Microsoft Spy++ and see for yourself. Microsoft Spy++ is a tool that you use to figure

out which Windows messages are going to which window, and it‘s a great debugging tool if
you are coding a GUI application. Here‘s a quick tutorial:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

1. If you are running Visual Studio, select Spy++ from the Tools menu. You can also

launch it from the Tools section of the Visual Studio area of your Start menu.

2. Close the open default window and select Find Window from the main menu or press

Ctrl-F.

3. You‘ll then see a little dialog box that looks like the one shown in Figure 8.1.

Figure 8.1. The Find Window with Spy++.

4. Click and drag the little finder tool to the window or button you are interested in, and

then click the Messages radio button at the bottom of the dialog. You‘ll get a new

window in Spy++ that shows you every message sent to the object.

Perform the previous experiment again, but this time use Spy++ to monitor the Windows

messages sent to the button. You‘ll find that as soon as you click on the button, every

mouse action will be displayed, even if the pointer is far away from the button in question.
That might be interesting, but why is it important? If a user interface uses the boundaries of

an object like a button to determine whether it should receive mouse events, capturing the
mouse is critical. Imagine a scenario where you can‘t capture mouse events:

1. The mouse button goes down over an active button.

2. The button receives the event and draws itself in the down position.

3. The mouse moves away from the button, outside its border.

4. The button stops receiving any events from the mouse since the mouse isn‘t directly

over the button.

5. The mouse button is released.

javascript:moveTo('ch08fig01');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

The result is that the button will still be drawn in the down position, awaiting a button

release event that will never happen. If the mouse events are captured, the button will
continue to receive mouse events until the button is released.

To better understand this, take a look at a code snippet that shows some code you can use

to capture the mouse and draw lines:

LRESULT APIENTRY MainWndProc(HWND hwndMain, UINT uMsg, WPARAM

wParam,

 LPARAM lParam)

{

 static POINTS ptsBegin; // beginning point

 switch (uMsg)

 {

 case WM_LBUTTONDOWN:

 // Capture mouse input.

 SetCapture(hwndMain);

 bIsCaptured = true;

 ptsBegin = MAKEPOINTS(lParam);

 return 0;

 case WM_MOUSEMOVE:

 // When moving the mouse, the user must hold down

 // the left mouse button to draw lines.

 if (wParam & MK_LBUTTON)

 {

 // imaginary code – you write this function

 pseudocode::ErasePreviousLine();

 // Convert the current cursor coordinates to a

 // POINTS structure, and then draw a new line.

 ptsEnd = MAKEPOINTS(lParam);

 // also imaginary

 pseudocode::DrawLine(ptsEnd.x, ptsEnd.y);

 }

 break;

 case WM_LBUTTONUP:

 // The user has finished drawing the line. Reset the

 // previous line flag, release the mouse cursor, and

 // release the mouse capture.

 fPrevLine = FALSE;

 bIsCaptured = false;

 ReleaseCapture();

 break;

 }

 case WM_ACTIVATEAPP:

 {

 if (wParam == TRUE)

 {

 // got focus again – regain our mouse capture

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 if (bIsCaptured)

 SetCapture(hwndMain);

 }

 break;

 }

 return 0;

}

If you were to write functions for erasing and drawing lines, you‘d have a nice rubber band
line-drawing mechanism, which mouse capturing makes possible. By using it, your lines will

continue to follow the mouse, even if you leave the window‘s client area.

One thing to note: If your application loses focus, you‘ll also lose the mouse capture, which

can be handled easily by listening to the WM_ACTIVATEAPP message.

Making a Mouse Drag Work

You might wonder why a mouse drag is so important. Drags are important because they are

prerequisites to much of the user interface code in a lot of PC games. When you select a
group of combatants in RTS games like Command & Conquer, for example, you drag out a

rectangle. When you play Freecell in Windows, you use the mouse to drag cards around. It
is quite likely that you‘ll have to code a mouse drag at some point.

Dragging the mouse adds a little complexity to the process of capturing it. Most user

interface code distinguishes a single click, double-click, and drag as three separate actions,
and therefore will call different game code. Dragging also relates to the notion of legality;

it‘s not always possible that anything in your game can be dragged to anywhere. If a drag
fails, you‘ll need a way to set things back to the way they were. This issue might seem moot

when you consider that dragging usually affects the look of the game—the dragged object
needs to appear like it is really moving around, and it shouldn‘t leave a copy of itself in its

original location. That might confuse the player big-time.

The code to support dragging requires three phases:

 Detect and initiate a drag event.

 Handle the mouse movement and draw objects accordingly.

 Detect the release and finalize the drag.

The actions that define a drag are typically a mouse press (button down) followed by a

mouse movement, but life in the mouse drag game is not always that simple. Also, during a
double-click event, a slight amount of mouse movement might occur, perhaps only a single

pixel coordinate. Your code must interpret these different cases.

In Windows, a drag event is only allowed on objects that are already selected, which is why
drags usually follow on the second ―click and hold‖ of the mouse button. The first click of

the left mouse button always selects objects. Many games differ from that standard, but it‘s

one of the easier actions to code since only selected objects are draggable.

Since a drag event involves multiple trips around the main loop, you must assume that

every mouse button down event could be the beginning of a drag event. I guess an event is

assumed draggable until proven innocent. In your mouse button down handler, you need to
look at the mouse coordinates and determine if they are over a draggable object. If the

object is draggable, you must create a temporary reference to it that you can find a few

http://lib.ommolketab.ir
http//lib.ommolketab.ir

game loops later. Since this is the first button down event, you can‘t tell if it‘s a bona fide

drag event just yet.

The only thing that will make the drag event real is the movement of the mouse, but only

movement outside of a tiny buffer zone. On an 800 × 600 screen, a good choice is five

pixels in either the x or y coordinate. This is large enough to indicate that the drag was real,
but small enough that small shakes in the mouse during a double-click won‘t unintentionally

initiate a drag. If you were to create a drag on a Wii game, you‘d want a much sloppier
buffer zone since the Wii Remote pointer can shake quite a bit. If you can set this buffer

size while the game is running, like with a hack or a cheat, you‘ll be able to tune this to suit
a majority of players quickly.

Here‘s the code that performs this dirty work of the drag:

// Place this code at the top of your mouse movement handler

if (m_aboutToDrag)

{

 CPoint offset = currentPoint - dragStartingPoint;

 if (abs(offset.x) > DRAG_THRESHOLD || abs(offset.y) >

DRAG_THRESHOLD)

 {

 // We have a real drag event!

 bool dragOK =

 pseudocode::InitiateDrag(draggedObject,

dragStartingPoint);

 SetCapture(GetWindow()->m_hWnd);

 m_dragging = TRUE;

 }

}

The call to pseudocode::InitiateDrag() is something you write yourself. Its job is

to set the game state to remove the original object from the display and draw the dragged
object in some obvious form, such as a transparent ghost object.

Until the mouse button is released, the mouse movement handler will continue to get

mouse movement commands, even those that are outside the client area of your window if
you are running in windowed mode. Make sure that your draw routines don‘t freak out when

they see these odd coordinates.

While the drag is active, you must direct all the mouse input to the control that initiated the
drag. Other controls should essentially ignore the input. The best way to do this is to keep a

pointer to the control that initiated the drag and send all input directly to it, essentially

bypassing any code that sends messages to your control list. It‘s a little like masking all the
controls in your control list, rendering them deaf to all incoming messages until the drag is

complete.

What must go down, must finally come up again. When the mouse button is released, your
drag is complete, but the drag location might not be in a legal spot, so you might have to

reset your game back to the state before the drag started, like this:

// Place this code at the top of your mouse button up handler

if (m_dragging)

{

 ReleaseCapture();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 m_bDragging = false;

 if (!pseudocode::FinishDrag(point))

 {

 pseudocode::AbortDrag(dragStartingPoint);

 }

}

This bit of code would exist in your handler for a mouse button up event. The call to

ReleaseCapture() makes sure that mouse events get sent to all their normal places

again. pseudocode::FinishDrag() is a function you‘d write yourself. It should detect

if the destination of the drag was legal, and perform the right game state manipulations to

make it so. If the drag is illegal, the object has to snap back to its previous location as if the

drag never occurred. This function can be trickier to write than you‘d think, since you can‘t
necessarily use game state information to send the object back to where it came from.

Game Editors are All Powerful

In Ultima VII and Ultima VIII, we created a complicated

system to keep track of object movement, specifically
whether or not an object could legally move from one place

to another. It was possible for a game designer to use the

all-powerful game editor to force objects into any location,
whether it was legal or not. If these objects were dragged to

another illegal location by the player, the object had to be
forced back into place. Otherwise, the object would exist in

limbo. What we learned was that the drag code could access
the game state at a low enough level to run the abort code.

You can have exactly the same problem with modern games

that use modern physics systems. These days when you
place an object like a candle inside a table or something, the

physics system essentially removes the candle completely
from the collision detector, causing it to fall through the table

and plummet downward, perhaps forever. This can make

dragging objects with real physics somewhat painful. The
best course of action is to require the world editor to place

dynamic objects in proper positions where they can be
moved by the player later.

Working with a Game Controller

Working on Ion Storm‘s Thief: Deadly Shadows game was my first experience with console

development, and my first experience with writing code for a gamepad. It was much more
of an eye opener than I thought it would be. Until I actually had one of these things in my

hot little hands and the code saturating my over-caffeinated brain, I thought these devices

were little more than a collection of buttons and joysticks. Boy, was I wrong!

Having played tons of console games, I already had a pretty good feel for a good control

scheme, but I‘d never had the chance to write one myself. The basics of the gamepad

interface code are really quite the same as a mouse, keyboard, or joystick, but subtle

http://lib.ommolketab.ir
http//lib.ommolketab.ir

differences between interface design and interpreting the device inputs warrant some

additional explanation. I‘ll talk a little about dead zones, normalizing input, input
acceleration, and the design impact of one-stick versus two-stick control schemes.

Dead Zones

A dead zone is any area of a control interface that has no input effect. This keeps small
errors in hand movement from adversely affecting game input. You know you need a dead

zone in a control when you watch players make mistakes because the controls were too

sensitive and interpreted their input in a way that they didn‘t expect.

A great example of this was on the Thief: Deadly Shadows camera control for the Xbox

gamepad. It used a two-stick control scheme like Halo or Splinter Cell, which meant that

the character moved with the left thumbstick and the camera moved with the right
thumbstick.

The first iteration of the camera movement code was pretty simple; the right thumbstick

controlled the camera. Up/down movement caused the camera to pitch, left/right
movement caused the camera to yaw. But when I went to QA and watched them play, I

noticed something really strange happening. As the QA person would spin the camera left or
right, the camera would also pitch a few degrees up or down. This happened every time in

QA, but not with me as I tested the code.

I watched QA play more to try to figure out what was happening, and I realized that when
they were actually playing the game they‘d jam the left thumb-stick left or right to see if

something was behind them, and it was a pretty fast movement. Once the thumbstick hit
the extreme position, it would stop, of course, but it would usually also be in a slightly up or

down angle as well as all the way left or right. In my tests, I wasn‘t jamming the controller,
and thus I never had the slight up/down position. Even though it was small, the up/down

error in the thumbstick movement always resulted in the camera pitching up/down, just as I

wrote the code.

Figure 8.2 shows the movement area of a thumbstick controller on a gamepad. By

convention, gamepads, joysticks, and other two-axis controllers usually have raw output

ranges from [-1.0f, 1.0f], and the neutral position returns a raw output value of (0.0f, 0.0f).
Every now and then, you might find a control device returning odd values, like integers from

[0,255] or something like that. If you ever see this happening, it‘s a good idea to remap the
output range back to [-1.0f, 1.0f]. Standardizing these ranges helps keep the code that

interprets these values nice and clean.

Figure 8.2. Dealing with a dead zone for pitch control.

javascript:moveTo('ch08fig02');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

If the thumbstick were positioned at the location of the black spot, you‘d expect an X, Y

value of (-0.80, 0.15) or thereabouts. That small positive Y input would be the cause of my
previous trouble; the camera would slowly pitch until it was looking straight up or down,

depending on the control scheme.

You might not think this is a serious problem—until you watch players play the game. Many
first-person shooter players like to twitch-look—where they snap the thumbstick quickly to

the left or right and pause for a second or two. If there‘s no dead zone, the camera will
always begin to pitch a little up or down, depending on how the player is holding the

gamepad. At some point the player has to stop and correct the camera pitch, usually with a
snort of disgust. Many players and game critics complain about bad cameras, but it seems

that what they are really complaining about is bad camera control.

The answer to my problem, and yours if you are coding thumbstick controls, is a dead zone
for pitch control. The dead zone is represented by the darkened area in Figure 8.2. Inside

this area, all Y values are forced to zero. The values of our block spot become (-0.80, 0.0),
and our camera pitch stays mercifully still.

You might be wondering why the dead zone has a bowtie shape instead of just a simple

dead area all the way across the middle of the circle. There‘s a really good reason: when
the thumbstick is close to the center, and being moved about with a fine degree of control,

the player is probably doing something like aiming a sniper rifle. A dead zone in this

situation would be really annoying, since any up/down movement would require the player
to push the thumbstick all the way out of the dead zone. That would make it almost

impossible to aim properly.

The dead zone shape also doesn‘t have to be exactly what you see in Figure 8.2. Depending
on your game and how people play it, you might change the shape by making the angle

shallower or even pull the left and right dead areas away from the center, giving the player
complete control over camera pitch until the thumbstick is closer to the extreme right or left

side. The only way to figure out the perfect shape is by watching a lot of people play your
game and seeing what they do that frustrates them. Controls that are too sensitive or too

sluggish will frustrate players, and you‘ll want to find a middle ground that pleases a
majority of people.

There‘s one additional trick to this solution. Think about what happens when the thumbstick

moves away from the dead zone into the active, clear zone. One thing players expect in all
control schemes is continuous, predictive movement. This means that you can‘t just force

the Y value to zero in the dead zone and use regular values everywhere else; you have to

smoothly interpolate the Y values outside of the dead zone from 0.0 to 1.0, or the player
will notice a pop in the movement of the camera pitch. The code to do this is not nearly as

bad as you might think:

float Interpolate(float normalizedValue, float begin, float end)

{

 // first check input values

 assert(normalizedValue>=0.0f);

 assert(normalizedValue<=1.0f);

 assert(end>begin);

 return (normalizedValue * (end - begin)) + begin;

}

void MapYDeadZone(Vec3 &input, float deadZone)

{

 if (deadZone>=1.0f)

 return;

javascript:moveTo('ch08fig02');
javascript:moveTo('ch08fig02');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 // The dead zone is assumed to be zero close to the origin

 // so we have to interpolate to find the right dead zone for

 // our current value of X.

 float actualDeadZone = Interpolate(fabs(input.x), 0.0f,

deadZone);

 if (fabs(input.y) < actualDeadZone)

 {

 input.y = 0.0f;

 return;

 }

 // Y is outside of the dead zone, but we still need to

 // interpolate it so we don't see any popping.

 // Map Y values [actualDeadZone, 1.0f] to [0.0f, 1.0f]

 float normalizedY = (input.y - actualDeadZone) / (1.0f -

actualDeadZone);

 input.y = normalizedY;

}

Normalizing Input

Even though the game controller thumbsticks have a circular area of movement, the inputs

for X and Y only reach 1.0 at the very top, bottom, left, and right of the circle. In other

words, X and Y are mapped to a Cartesian space, not a circular space. Take a look at Figure
8.3, and you‘ll see what I mean.

Figure 8.3. Normalized input from a two-axis controller.

Imagine what happens when a player pushes a control diagonally up and to the left. On
some controllers, you‘ll get values for X and Y that are close to their maximum range and

probably look something like (-0.95f, 0.95). The reason for this is how the controllers are

built. Remember the two-axis controller I mentioned earlier? X and Y are both analog
electrical devices called potentiometers. They measure electrical resistance along an analog

javascript:moveTo('ch08fig03');
javascript:moveTo('ch08fig03');
javascript:moveTo('ch08fig03');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

dial, and are used for things like volume controls on stereos and, of course, joysticks and

thumbsticks. On two-axis controllers like these, you have two potentiometers: one for each
axis.

You can see from Figure 8.3 that the Y potentiometer can reach 1.0 or -1.0 if you push the

controller all the way up or down. You can get the same values for the X potentiometer. You
might think that all you need to do to calculate the input speed is find the length of the

combined vector. That‘s just classic geometry, the Pythagorean Theorem.

This length is represented by the gray arrow in Figure 8.3. The problem is that the new
input vector is 1.414f units long, and if you feed it right into the game, you‘ll be able to

move diagonally quite a bit faster than in the cardinal directions. The direction of the new

vector is correct, but it is too long.

For character movement, the forward/back motion of the character is mapped to the

up/down movement of the thumbstick, and the left/right motion of the character is mapped

to the left/right movement of the thumbstick. Usually, the speed of the character is
controlled by how far the thumbstick is pushed. If you push the thumbstick all the way

forward, the character will run forward as fast as it can.

But look at what happens when you want the character to run and turn left at the same
time, as Figure 8.3 would suggest. Since I have to move the controller to the left, I

automatically increase the length of the X input while the Y value stays at 1.0f, and the
character begins to run too fast.

The solution to this problem is actually pretty simple: The speed of the character is mapped

to the length of the X/Y 2D vector, not the value of the Y control alone, and you have to cap
the speed at 1.0f. All you do is take the capped length and multiply it by the maximum

speed:

 int speed = maxSpeed * min(1.0f, sqrt((x * x) + (y * y)));

Of course, you may have different maximum speeds for going forward and back, or even
side to side.

You might not realize it, but you also want to use this normalizing scheme on keyboard

input. Consider the classic WASD scheme used by most first-person shooters on the PC. W
and S move the player forward and back. A and D strafe the player from side to side. If you

press W and A together, your character should move diagonally forward and to the left. If

you don‘t normalize the input, your character will move faster diagonally than in the
cardinal directions, because the combined forward and left inputs add together to create a

longer vector, just as it does on the gamepad.

One Stick, Two Stick, Red Stick, Blue Stick

It‘s never a bad thing to invoke Dr. Seuss, is it? One of the huge design decisions you‘ll

make in your game is whether to follow a one-stick or two-stick control scheme. You‘ll

attract different players for either one, and depending on your level design, you might be
much better off going with one over the other.

javascript:moveTo('ch08fig03');
javascript:moveTo('ch08fig03');
javascript:moveTo('ch08fig03');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

A one-stick design lets the player control the character movement with one thumbstick, and

the camera is usually controlled completely by the computer. There might be a camera
control, but it is usually relegated to the D-pad instead of the other thumbstick. Lots of

games do this, such as racing games like Project Gotham 4 on the Xbox360 and Mario
Galaxies on the Wii. It‘s generally seen by game designers and players as the easiest

interface to control.

The two-stick design puts complete control of camera movement in the other thumbstick.
This is done in games like Halo, Thief: Deadly Shadows, and Gears of War. This control

scheme is harder to learn and is generally reserved for a hardcore audience.

How do you decide which one to use for your game? The best thing to do in my mind is try
to compare your game design to others that have succeeded with a particular control

scheme. We chose the control scheme in Thief by looking at Halo and Splinter Cell, and
decided that the gameplay was quite close to those two products. We also realized that

because the game was first and third person, the same control interface would work exactly
the same way in both modes.

Ramping Control Values

Ramping is another way of saying accelerating. The raw control values are usually not sent

directly into things like camera rotation because the movement can be quite jarring. You
can jam a thumbstick control from the center to the edge of the control area extremely

quickly, perhaps less than 80ms. If you take a little extra time to accelerate the movement
of whatever it is you are controlling, you‘ll get a smoother acceleration, which adds a finer

degree of control and looks much better to boot.

The input parameters for this calculation are the current elapsed time, the current speed,
the maximum speed, and the number of seconds you want to accelerate.

// Ramp the acceleration by the elapsed time.

float numberOfSeconds = 2.0f;

m_currentSpeed += m_maxSpeed * ((elapsedTime*elapsedTime) /

numberOfSeconds);

if (m_currentSpeed > m_maxSpeed)

 m_currentSpeed = m_maxSpeed;

The elapsed time should be a floating-point number measuring the number of seconds it has
been since the last time this code was called. It turns out that humans have a keen sense of

how things should accelerate, probably because we watch things fall under the acceleration
of gravity all the time. If those things are coconuts and we happen to be standing beneath

them, this skill becomes quite life saving. Whenever you accelerate anything related to a
control in your game, always accelerate it with a time squared component so that it will

―feel‖ more natural.

Working with the Keyboard

There are many ways to grab keyboard input from Win32. They each have their good and
bad points, and to make the right choice, you need to know how deep you need to pry into

keyboard input data. Before we discuss these various approaches, let‘s get a few vocabulary
words out of the way so that we‘re talking the same language:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Character code: Describes the ASCII or UNICODE character that is the return value

of the C function, getchar().

 Virtual scan code: Macros defined in Winuser.h that describe the components of

data sent in the wParam value of WM_CHAR, WM_KEYDOWN, and WM_KEYUP

messages.

 OEM scan code: The scan codes provided by OEMs. They are useless unless you

care about coding something specific for a particular keyboard manufacturer.

Those definitions will resonate even more once you‘ve seen some data, so let‘s pry open the
keyboard and do a little snooping.

Mike’s Keyboard Snooper

I wrote a small program to break out all of the different values for Windows keyboard

messages, and as you‘ll see shortly, this tool really uncovers some weird things that take
place with Windows. Taken with the definitions we just discussed, however, you‘ll soon see

that the different values will make a little more sense. Each line in the tables below contains

the values of wParam and lParam for Windows keyboard messages. I typed the following

sequence of keys, 1 2 a b, to produce the first table. Look closely at the different values

that are produced for the different Windows messages:

WM_KEYDOWN, WM_CHAR, WM_KEYUP, and so on:

WM_KEYDOWN Code:49 '1' Repeat:1 Oem: 2 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:0

WM_CHAR Code:49 '1' Repeat:1 Oem: 2 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:0

WM_KEYUP Code:49 '1' Repeat:1 Oem: 2 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:1

WM_KEYDOWN Code:50 '2' Repeat:1 Oem: 3 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:0

WM_CHAR Code:50 '2' Repeat:1 Oem: 3 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:0

WM_KEYUP Code:50 '2' Repeat:1 Oem: 3 Ext'd:0 IsAlt:0

 WasDown:0 Rel'd:1

WM_KEYDOWN Code:65 'A' Repeat:1 Oem:30 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:0

WM_CHAR Code:97 'a' Repeat:1 Oem:30 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:0

WM_KEYUP Code:65 'A' Repeat:1 Oem:30 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:1

WM_KEYDOWN Code:66 'B' Repeat:1 Oem:48 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:0

WM_CHAR Code:98 'b' Repeat:1 Oem:48 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:0

WM_KEYUP Code:66 'B' Repeat:1 Oem:48 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:1

You‘ll first notice that the message pipe gets the sequence of WM_KEYDOWN, WM_CHAR, and

WM_KEYUP for each key pressed and released. The next thing you‘ll notice is that the code

returned by WM_CHAR is different from the other messages when characters are lowercase.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This should give you a clue that you can use WM_CHAR for simple character input when all

you care about is getting the right character code. What happens if a key is held down?
Let‘s find out. The next table shows the output I received by first pressing and holding an

―a‖ and then the left Shift key:

WM_KEYDOWN Code:65 'A' Repeat:1 Oem:30 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:1

WM_CHAR Code:97 'a' Repeat:1 Oem:30 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:1

WM_KEYDOWN Code:65 'A' Repeat:1 Oem:30 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:1

WM_CHAR Code:97 'a' Repeat:1 Oem:30 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:1

WM_KEYDOWN Code:65 'A' Repeat:1 Oem:30 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:1

WM_CHAR Code:97 'a' Repeat:1 Oem:30 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:1

WM_KEYDOWN Code:65 'A' Repeat:1 Oem:30 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:1

WM_CHAR Code:97 'a' Repeat:1 Oem:30 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:1

WM_KEYDOWN Code:65 'A' Repeat:1 Oem:30 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:1

WM_CHAR Code:97 'a' Repeat:1 Oem:30 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:1

WM_KEYUP Code:65 'A' Repeat:1 Oem:30 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:1

WM_KEYDOWN Code:16 '_' Repeat:1 Oem:42 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:0

WM_KEYDOWN Code:16 '_' Repeat:1 Oem:42 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:1

WM_KEYDOWN Code:16 '_' Repeat:1 Oem:42 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:1

WM_KEYDOWN Code:16 '_' Repeat:1 Oem:42 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:1

WM_KEYDOWN Code:16 '_' Repeat:1 Oem:42 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:1

WM_KEYUP Code:16 '_' Repeat:1 Oem:42 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:1

It seems that I can‘t count on the repeat value as shown here. It is completely dependent
on your equipment manufacturer and keyboard driver software. You may get repeat values

and you may not. You need to make sure your code will work either way.

For the next sequence, I held the left Shift key and typed the same original sequence—1 2 a

b:

WM_KEYDOWN Code:16 '_' Repeat:1 Oem:42 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:0

WM_KEYDOWN Code:16 '_' Repeat:1 Oem:42 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:1

WM_KEYDOWN Code:16 '_' Repeat:1 Oem:42 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:1

http://lib.ommolketab.ir
http//lib.ommolketab.ir

WM_KEYDOWN Code:16 '_' Repeat:1 Oem:42 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:1

WM_KEYDOWN Code:16 '_' Repeat:1 Oem:42 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:1

WM_KEYDOWN Code:49 '1' Repeat:1 Oem: 2 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:0

WM_CHAR Code:33 '!' Repeat:1 Oem: 2 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:0

WM_KEYUP Code:49 '1' Repeat:1 Oem: 2 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:1

WM_KEYDOWN Code:50 '2' Repeat:1 Oem: 3 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:0

WM_CHAR Code:64 '@' Repeat:1 Oem: 3 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:0

WM_KEYUP Code:50 '2' Repeat:1 Oem: 3 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:1

WM_KEYDOWN Code:65 'A' Repeat:1 Oem:30 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:0

WM_CHAR Code:65 'A' Repeat:1 Oem:30 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:0

WM_KEYUP Code:65 'A' Repeat:1 Oem:30 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:1

WM_KEYDOWN Code:66 'B' Repeat:1 Oem:48 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:0

WM_CHAR Code:66 'B' Repeat:1 Oem:48 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:0

WM_KEYUP Code:66 'B' Repeat:1 Oem:48 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:1

WM_KEYUP Code:16 '_' Repeat:1 Oem:42 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:1

There‘s nothing too surprising here; the Shift key will repeat until the next key is pressed.
Note that the repeats on the Shift key don‘t continue. Just as in the first sequence, only the

WM_CHAR message gives you your expected character.

You should realize by now that if you want to use keys on the keyboard for hot keys, you

can use the WM_KEYDOWN message and you won‘t have to care if the Shift key (or even the

Caps Lock key) is pressed. Pressing the Caps Lock key gives you this output:

WM_KEYDOWN Code: 20 '_' Repeat:1 Oem:58 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:0

WM_KEYUP Code: 20 '_' Repeat:1 Oem:58 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:1

The messages that come through for WM_CHAR will operate as if the Shift key were pressed

down.

Let‘s try some function keys, including F1, F2, F3, and the shifted versions also:

WM_KEYDOWN Code:112 'p' Repeat:1 Oem:59 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:0

http://lib.ommolketab.ir
http//lib.ommolketab.ir

WM_KEYUP Code:112 'p' Repeat:1 Oem:59 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:1

WM_KEYDOWN Code:113 'q' Repeat:1 Oem:60 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:0

WM_KEYUP Code:113 'q' Repeat:1 Oem:60 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:1

WM_KEYDOWN Code:114 'r' Repeat:1 Oem:61 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:0

WM_KEYUP Code:114 'r' Repeat:1 Oem:61 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:1

WM_KEYDOWN Code: 16 '_' Repeat:1 Oem:42 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:0

WM_KEYDOWN Code:112 'p' Repeat:1 Oem:59 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:0

WM_KEYUP Code:112 'p' Repeat:1 Oem:59 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:1

WM_KEYDOWN Code:113 'q' Repeat:1 Oem:60 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:0

WM_KEYUP Code:113 'q' Repeat:1 Oem:60 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:1

WM_KEYDOWN Code:114 'r' Repeat:1 Oem:61 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:0

WM_KEYUP Code:114 'r' Repeat:1 Oem:61 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:1

WM_KEYUP Code: 16 '_' Repeat:1 Oem:42 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:1

There‘s a distinct lack of WM_CHAR messages, isn‘t there? Also, notice that the code

returned by the F1 key is the same as the lowercase ―p‖ character. So, what does ―p‖ look
like?

WM_KEYDOWN Code: 80 'P' Repeat:1 Oem:25 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:0

WM_CHAR Code:112 'p' Repeat:1 Oem:25 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:0

WM_KEYUP Code: 80 'P' Repeat:1 Oem:25 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:1

Isn‘t that interesting? The virtual scan code for ―p‖ as encoded for WM_CHAR is exactly the

same as the code for WM_KEYUP and WM_KEYDOWN. This funky design leads to some

buggy misinterpretations of these two messages if you are looking at nothing but the virtual
scan code. I‘ve seen some games where you could use the function keys to enter your

character name!

Function Keys Require Special Handling

You can‘t use WM_CHAR to grab function key input or any

other keyboard key not associated with a typeable character.
It is confusing that the ASCII value for the lowercase ―p‖

character is also the VK_F1. If you were beginning to

http://lib.ommolketab.ir
http//lib.ommolketab.ir

suspect that you couldn‘t use the wParam value from all

these messages in the same way, you‘re right.

If you want to figure out the difference between keys, you
should use the OEM scan code.

There‘s a Win32 helper function to translate it into something useful:

// grab bits 16-23 from LPARAM

unsigned int oemScan = int(lParam & (0xff << 16))>>16;

UINT vk = MapVirtualKey(oemScan, 1);

if (vk == VK_F1)

{

 // we've got someone pressing the F1 key!

}

The VK_F1 is a #define in WinUser.h, where you‘ll find definitions for every other virtual

key you‘ll need: VK_ESCAPE, VK_TAB, VK_SPACE, and so on.

Processing different keyboard inputs seems messy, doesn‘t it? Hold on, it gets better. The

next sequence shows the left Shift key, right Shift key, left Ctrl key, and right Ctrl key:

WM_KEYDOWN Code: 16 '_' Repeat:1 Oem:42 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:0

WM_KEYUP Code: 16 '_' Repeat:1 Oem:42 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:1

WM_KEYDOWN Code: 16 '_' Repeat:1 Oem:54 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:0

WM_KEYUP Code: 16 '_' Repeat:1 Oem:54 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:1

WM_KEYDOWN Code: 17 '_' Repeat:1 Oem:29 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:0

WM_KEYUP Code: 17 '_' Repeat:1 Oem:29 Ext'd:0 IsAlt:0

WasDown:0 Rel'd:1

WM_KEYDOWN Code: 17 '_' Repeat:1 Oem:29 Ext'd:1 IsAlt:0

WasDown:0 Rel'd:0

WM_KEYUP Code: 17 '_' Repeat:1 Oem:29 Ext'd:1 IsAlt:0

WasDown:0 Rel'd:1

The only way to distinguish the left Shift key from the right Shift key is to look at the OEM
scan code. On the other hand, the only way to distinguish the left Ctrl key from the right

Ctrl key is to look at the extended key bit to see if it is set for the right Ctrl key. This insane
cobbler of aggregate design is the best example of what happens if you have a mandate to

create new technology while supporting stuff as old as my high school diploma (or is that
my grade school one?).

You Might Need Your Own Keyboard Handler

http://lib.ommolketab.ir
http//lib.ommolketab.ir

To get around the problems of processing keyboard inputs that look

the same as I’ve outlined in this section, you’ll want to write your own

handler for accepting the WM_KEYDOWN and WM_KEYUP messages. If
your game is going to have a complicated enough interface to

distinguish between left and right Ctrl or Shift keys, and will use these
keys in combination with others, you’ve got an interesting road ahead.

My best advice is to try to keep things as simple as possible. It’s a bad
idea to assign different actions to both Ctrl or Shift keys anyway. If

your game only needs some hot keys and no fancy combinations,
WM_KEYDOWN will work fine all by itself.

Here‘s a summary of how to get the right data out of these keyboard messages:

 WM_CHAR: Use this message only if your game cares about printable characters: no

function keys, Ctrl keys, or Shift keys as a single input.

 WM_KEYDOWN/WM_KEYUP: Grabs each key as you press it, but makes no

distinction between upper- and lowercase characters. Use this to grab function key

input and compare the OEM scan codes with MapVirtualKey(). You won‘t get

upper- and lowercase characters without tracking the status of the Shift keys

yourself.

It‘s almost like this system was engineered by a Congressional conference committee.

GetAsyncKeyState() and Other Evils

There‘s a Win32 function that will return the status of any key. It‘s tempting to use,
especially given the morass of weirdness you have to deal with going a more traditional

route with Windows keyboard messages. Unfortunately, there‘s a dark side to these
functions and other functions that poll the state of device hardware outside of the message

loop.

Most testing scripts or replay features pump recorded messages into the normal message
pump, making sure that actual hardware messages are shunted away. Polling functions like

GetAsyncKeyState() aren‘t easily trapped in the same way. They also make debugging

and testing more difficult, since timing of keyboard input could be crucial to re-creating a
weird bug.

There are other polled functions that can cause the same issues. One of them is the polled

device status functions in DirectInput, such as IDirectInputDevice::

GetDeviceState(). The only way I‘d consider using these functions is if I wrote my

own mini-message pump, where polled device status was converted into messages sent into
my game logic. That, of course, is a lot more work.

Handling the Alt Key Under Windows

If I use the same program to monitor keyboard messages related to pressing the right and

left Alt keys, I get nothing. No output at all. Windows keeps the Alt key for itself and uses it

to send special commands to your application. You should listen to WM_SYSCOMMAND to

find out what‘s going on. You could use the polling functions to find out if the Alt keys have
been pressed, but not only does that go against some recent advice, but it‘s not considered

―polite‖ Windows behavior. Microsoft has guidelines that well-behaved applications should

follow, including games. The Alt key is reserved for commands sent to Windows. Users will

http://lib.ommolketab.ir
http//lib.ommolketab.ir

not expect your game to launch missiles when all they want to do is switch over to Excel

and try to look busy for the boss.

What, No Dance Pad?

I freely admit that I‘m a Dance Dance Revolution junkie and anyone who knows me is
probably wondering why I didn‘t spend a few pages on dance pad controls. At first blush,

you might say that the dance pad is programmed exactly the same way as the game
controller—it has buttons that get pressed just like the controller you hold in your hand.

Now that you‘ve read this chapter, you probably realize that the programming for a dance

pad is quite different, simply because the player is using his feet and not his hands. You still
use the same code to get button down and up messages. But think for a moment about how

your feet are different from your hands. They move slower, for one thing—at least mine do.
You have two feet moving on four buttons, which is different than a handheld controller

where only your right thumb can hit those four buttons. Tuning for timing is probably really
different, too, especially since there is a vast skill difference between people like my Mom

and the kids in the arcades who can move so fast you can‘t even see their feet.

Input devices are physiological, and you can‘t ever forget that when defining how your
game gets mouse movement events or thumbstick events. One is controlled with the arm

and wrist, the other the thumb. This one fact is a key issue when working with input

devices.

Here‘s my best example. Why do you think the WASD control scheme became so popular in

first-person shooters on the PC? I‘ll take an educated guess—fine movements like aiming,

firing, and looking are mapped to the mouse, which is usually in a player‘s right hand. The
movement keys, which are W, A, S, and D, are easily controllable with the player‘s left

hand. The physical nature of the keyboard, mouse, and the fact that most people are right-
handed made this interface so popular.

Chapter 9. User Interface Programming

In This Chapter

 The Human‘s Game View

 A WASD Movement Controller

 Screen Elements

 A Custom MessageBox Dialog

 Modal Dialog Boxes

 Controls

 Control Identification

 Hit Testing and Focus Order

 Control State

../../ch09lev1sec1#ch09lev1sec1
../../ch09lev1sec2#ch09lev1sec2
../../ch09lev1sec3#ch09lev1sec3
../../ch09lev1sec4#ch09lev1sec4
../../ch09lev1sec5#ch09lev1sec5
../../ch09lev1sec6#ch09lev1sec6
../../ch09lev1sec7#ch09lev1sec7
../../ch09lev1sec8#ch09lev1sec8
../../ch09lev1sec9#ch09lev1sec9
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 More Control Properties

 Some Final User Interface Tips

After exploring input devices in the previous chapter, we‘re ready to move a little deeper

and see what happens when the raw input messages are passed from the application layer
to your game.

Games usually have a small set of user interface components, and they are almost always

custom coded. Windows games don‘t use GDI to create their menus, dialogs, or radar
screens. These special controls are always home grown. Sure, the number of controls you

can attach to dialog boxes and screens is overwhelming, but most games don‘t need rich
text editors, grid controls, OLE containers, property pages, and so on. Rather, the lack of

control over position, animation, and sounds usually compels game programmers to roll
their own simple user interface.

These simple interfaces break the job into two parts: controls and containers for controls.

Some user interface designs, such as Windows, don‘t distinguish between controls and

control containers. Everything in the Win32 GDI has an HWND. This might seem a little weird

because it would be unlikely that a button in your game would have other little buttons

attached to it.

Instead of proposing any specific design, it‘s best to discuss some of the implementation

issues and features any game will need in a user interface. I‘ll talk about the human game

view, then screens and dialog boxes, and end up with a discussion about controls.

If you‘ve seen any of DirectX Foundation, you‘ve probably noticed that Microsoft

implemented an entire GUI system that uses the DirectX rendering pipeline and yet has

most of the functionality of traditional Windows controls. This is pretty nice, and it‘s a great
place to start, but it does have its drawbacks. I‘ll show you how you can integrate this GUI

system with the game logic/game view architecture in this book, and I will suggest some
future directions.

The Human’s Game View

Recall from Chapter 2, ―What‘s in a Game?‖ that the game interface should be completely

separate from the game logic. A game view receives game events, such as ―object was

created‖ or ―object was moved,‖ and does whatever it needs to present this new game
state. In return, the view is responsible for sending any commands back to the game logic,

such as ―request throw grenade.‖ It would be up to the game logic to determine whether
this was a valid request.

I‘m about to show you a base class that creates a game view for a human player. As you

might expect, it‘s pretty heavy on user interface. I think it‘s a good idea to take somewhat
of a top-down approach, showing you major components and how they fit together.

typedef std::list<shared_ptr<IScreenElement> >

ScreenElementList;

class HumanView : public IGameView

{

protected:

 GameViewId m_ViewId;

 optional<ActorId> m_ActorId;

../../ch09lev1sec10#ch09lev1sec10
../../ch09lev1sec11#ch09lev1sec11
../../ch02#ch02
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 // this CProcessManager is for things like button animations,

etc.

 CProcessManager *m_pProcessManager;

 DWORD m_currTick; // time right now

 DWORD m_lastDraw; // last time the game rendered

 bool m_runFullSpeed; // set to true if you want to run full

speed

 ID3DXFont* m_pFont;

 ID3DXSprite* m_pTextSprite;

 virtual void VRenderText(CDXUTTextHelper &txtHelper) { };

public:

 // Implement the IGameView interface

 virtual HRESULT VOnRestore();

 virtual void VOnRender(double fTime, float fElapsedTime);

 virtual void VOnLostDevice();

 virtual GameViewType VGetType() { return GameView_Human; }

 virtual GameViewId VGetId() const { return m_ViewId; }

 virtual void VOnAttach(GameViewId vid, optional<ActorId> aid)

 {

 m_ViewId = vid;

 m_ActorId = aid;

 }

 virtual LRESULT CALLBACK VOnMsgProc(AppMsg msg);

 virtual void VOnUpdate(int deltaMilliseconds);

 // Virtual methods to control the layering of interface

elements

 virtual void VPushElement(shared_ptr<IScreenElement>

pScreen);

 virtual void VPopElement();

 ~HumanView();

 HumanView();

 ScreenElementList m_ScreenElements;

 // Interface sensitive objects

 shared_ptr<IMouseHandler> m_MouseHandler;

 shared_ptr<IKeyboardHandler> m_KeyboardHandler;

 // Audio

 bool InitAudio();

};

Let‘s take a quick look at the data members of this class.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The first two members store the view ID and the actor ID, if it exists. This makes it easy for

the game logic to determine if a view is attached to a particular actor in the game universe.

The CProcessManager was presented in Chapter 6, ―Controlling the Main Loop.‖ This

class is a convenient manager for anything that takes multiple game loops to accomplish,

such as playing a sound effect or running an animation.

The next three members deal with drawing time and frame rate. They keep track of when
the view was rendered last and whether or not to limit the frame rate. There‘s no reason to

draw the 3D scene any more than 60 times per second, or 60Hz. This leaves more time for
your game to do other things like spend CPU time on physics or AI.

The next two members are specific to DirectX—sorry about that. I‘m sure all you OpenGL

fans can easily swap in your own equivalents. They, and the virtual method

VRenderText(), help you draw text to the screen.

The next set of virtual methods completes the implementation of the IGameView interface

originally discussed back in Chapter 2. You‘ll see what each of these methods is responsible
for shortly.

The next two virtual methods, VPushElement() and VPopElement(), control the

ordering and layering of screen interface elements.

The next data member is an STL list of pointers to objects that implement the

IScreenElement interface. A screen element is a strictly user interface thing, and is a

container for user interface controls like buttons and text edit boxes. You could have a
number of these components attached to do different things, and because they are separate

entities, you could hide or show them individually. A good example of this kind of behavior

is modular toolbars in the Window GUI.

The last two members are a generic mouse handler and a keyboard handler. You‘ll create

mouse and keyboard handlers to interpret device messages into game commands.

Let‘s take a look at some of the more interesting bits of the HumanView class, starting with

the VOnRender() method. The render method is responsible for rendering the view at

either a clamped maximum refresh rate or at full speed, depending on the value of the local

variables.

void HumanView::VOnRender(double fTime, float fElapsedTime)

{

 m_currTick = timeGetTime();

 // early out – we've already drawn in this tick

 if (m_currTick == m_lastDraw)

 return;

 HRESULT hr;

 // It is time to draw ?

 if(m_runFullSpeed ||

 ((m_currTick - m_lastDraw) > SCREEN_REFRESH_RATE))

 {

 // Clear the render target and the zbuffer

 V(DXUTGetD3D9Device()->Clear((0, NULL, D3DCLEAR_TARGET |

../../ch06#ch06
../../ch02#ch02
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 D3DCLEAR_ZBUFFER, D3DCOLOR_ARGB(0, 45, 50, 170), 1.0f,

0));

 // Render the scene

 if(SUCCEEDED(DXUTGetD3D9Device()->BeginScene()))

 {

 CDXUTTextHelper txtHelper(m_pFont, m_pTextSprite, 15

);

 VRenderText(txtHelper);

 m_ScreenElements.sort(

 SortBy_SharedPtr_Content<IScreenElement>());

 for(ScreenElementList::iterator

i=m_ScreenElements.begin();

 i!=m_ScreenElements.end(); ++i)

 {

 if ((*i)->VIsVisible())

 {

 (*i)->VOnRender(fTime, fElapsedTime);

 }

 }

 // record the last successful paint

 m_lastDraw = m_currTick;

 }

 V(DXUTGetD3D9Device()->EndScene());

 }

}

If the view is ready to draw, it calls the IDirect3DDevice9::Clear() routine to wipe

the rendering surface of the last frame. If your game is guaranteed to overdraw every pixel,

you don‘t need this call. Then the IDirect3DDevice9::Begin-Scene() API is called

to get the Direct3D device ready for rendering. The VRenderText() method is next,

which will render any text applied directly to the screen. In this class, the method has a null
implementation. In Chapter 20, ―A Game of Teapot Wars,‖ a human view class will overload

this to display some debug text.

The for loop iterates through the screen layers one-by-one, and if it is visible, it calls

IScreenElement::VOnRender(). This implies that the only thing the view really

draws for itself is the text in VRenderText(), and that‘s exactly correct. Everything else

should be drawn because it belongs to the list of screens. The last thing that happens is a
call to the end scene API of DirectX.

Notice that the screen list is drawn from the beginning of the list to the end of the list.

That‘s important because screens can draw on top of one another in layers, such as when a
modal dialog box draws on top of everything else in your game.

HRESULT HumanView::VOnRestore()

{

HRESULT hr = S_OK;

 if(!m_pFont)

 {

../../ch20#ch20
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 // Initialize the font

 D3DXCreateFont(DXUTGetD3D9Device(), 15, 0, FW_BOLD, 1,

FALSE,

 DEFAULT_CHARSET, OUT_DEFAULT_PRECIS,

DEFAULT_QUALITY,

 DEFAULT_PITCH | FF_DONTCARE, L"Arial",

&m_pFont);

 }

 else

 {

 V_RETURN(m_pFont->OnResetDevice());

 }

 if (!m_pTextSprite)

 {

 // Create a sprite to help batch calls when drawing many

lines of text

 V_RETURN(D3DXCreateSprite(DXUTGetD3D9Device(),

&m_pTextSprite));

 }

 else

 {

 V_RETURN(m_pTextSprite->OnResetDevice());

 }

 for(ScreenElementList::iterator i=m_ScreenElements.begin();

 i!=m_ScreenElements.end(); ++i)

 {

 V_RETURN ((*i)->VOnRestore());

 }

 return hr;

}

void HumanView::VOnLostDevice()

{

 if(m_pFont)

 m_pFont->OnLostDevice();

 SAFE_RELEASE(m_pTextSprite);

}

The HumanView::VOnRestore() method is responsible for re-creating anything that

might be lost while the game is running. Also remember that VOnRestore() gets called

just after the class is instantiated, so this chain is just as useful for initialization as it is
restoring lost objects. These objects include the font, the text sprite, and calling all of the

attached screens. The HumanView::VOnLostDevice() method will be called prior to

VOnRestore(), so it is used to chain the ―on lost device‖ event to other objects, or simply

release the objects so they‘ll be re-created in the call to VOnRestore(). This is a common

theme in DirectX applications on the PC, since any number of things can get in the way of a
game, such as a change of video resolution or even Alt-Tabbing away to another application

that makes exclusive use of DirectX objects.

The view is called once per frame by the application layer so that it can perform

nonrendering update tasks. The VOnUpdate() chain is called as quickly as the game loops

http://lib.ommolketab.ir
http//lib.ommolketab.ir

and is used to update any object attached to the human view. In this case, the process

manager is updated, as well as any of the screen elements attached to the human view. As
you will see in Chapter 14, ―3D Scenes,‖ this includes updating the objects in the 3D scene,

which is itself a screen element.

void HumanView::VOnUpdate(int deltaMilliseconds)

{

 m_pProcessManager->UpdateProcesses(deltaMilliseconds);

 for(ScreenElementList::iterator i=m_ScreenElements.begin();

 i!=m_ScreenElements.end(); ++i)

 {

 (*i)->VOnUpdate(deltaMilliseconds);

 }

}

This code deserves a little clarity, perhaps, since there are a number of potentially confusing
things about it. A game object that exists in the game universe and is affected by game
rules, like physics, belongs to the game logic. Whenever the game object moves or changes

state, events are generated that eventually make their way to the game views, where they

update their internal representations of these objects. You‘ve all seen crates in games—you
can knock them downstairs and break them open.

There is a different set of objects that only exist visually and have no real effect on the

world themselves, such as particle effects. The VOnUpdate() that belongs to the human

view is what updates these objects. Since the game logic knows nothing about them, they

are completely contained in the human view and need some way to update them if they are
animating.

Another example of something the human perceives, but the game logic does not, is the

audio system. Background music and ambient sound effects have no effect on the game
logic per se, and therefore can safely belong to the human view. The audio system is

actually managed as a CProcess object that is attached to the CProcessManager

contained in the human view.

But wait—you might ask, didn‘t Thief: Deadly Shadows have systems that allowed the AI

characters to respond to sounds? Well, yes and no. The AI in Thief didn‘t respond directly to
what was being sent out of the sound card, but rather it responded to collision events

detected by the game logic. These collision events were sent by the game logic and were

separately consumed by both the sound manager and the AI manager. The sound manager
looked at the type of collision and determined which sound effect was most suitable. The AI

manager looked at the proximity and severity of the collision to determine if it was past the
AI‘s motivational threshold. So the AIs actually responded to collision events, not sounds.

The real meat of the human view is processing device messages from the application layer.

Somewhere in the application layer of all Windows games is the main message processor,

where you get WM_CHAR, WM_MOUSEMOVE, and all those messages. Any conceivable

message that the game views would want to see should be translated into the generic
message form and passed on to all the game views. The following is a code fragment from

GameCodeApp::MsgProc(), which is the main message handling callback that was set

up with DXUTSetCallbackMsgProc(GameCodeApp:: MsgProc).

switch (uMsg)

{

 case WM_KEYDOWN:

 case WM_KEYUP:

../../ch14#ch14
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 case WM_MOUSEMOVE:

 case WM_LBUTTONDOWN:

 case WM_LBUTTONUP:

 case WM_RBUTTONDOWN:

 case WM_RBUTTONUP:

 case MM_JOY1BUTTONDOWN:

 case MM_JOY1BUTTONUP:

 case MM_JOY1MOVE:

 case MM_JOY1ZMOVE:

 case MM_JOY2BUTTONDOWN:

 case MM_JOY2BUTTONUP:

 case MM_JOY2MOVE:

 case MM_JOY2ZMOVE:

 {

 // translate the windows message into the 'generic'

message.

 AppMsg msg;

 msg.m_hWnd = hWnd;

 msg.m_uMsg = uMsg;

 msg.m_wParam = wParam;

 msg.m_lParam = lParam;

 for (GameViewList::reverse_iterator

i=m_gameViews.rbegin();

 i!=m_gameViews.rend(); ++i)

 {

 if ((*i)->VOnMsgProc(msg))

 {

 return true;

 }

 }

 }

 break;

}

I completely admit that I‘m cheating by taking the Win32 message parameters and sticking
them into a structure. Call me lazy; I can live with that. I‘ll give you the task of completely

generalizing these messages.

If a game view returns true from VOnMsgProc(), it means that it has completely

consumed the message, and no other view should see it. In practice this makes perfect

sense, since there‘s only one keyboard, one mouse, and one human operating these devices

at once.

This architecture will still work with a multiple player, split-screen type of game—here‘s

how. The HumanView class can contain multiple screens, but instead of being layered, they

will sit side by side. The HumanView class will still grab input from all the devices and

translate it into game commands, just as you are about to see, but in this case, each device

will be treated as input for a different player.

Back to the implementation of HumanView::VOnMsgProc(). Its job is to iterate through

the list of screens attached to it, forward the message on to the visible ones, and if they

don‘t eat the message, then ask the mouse and keyboard handler if they can consume it.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

LRESULT CALLBACK HumanView::VOnMsgProc(AppMsg msg)

{

 // Iterate through the screen layers first

 // In reverse order since we'll send input messages to the

 // screen on top

 for(ScreenElementList::reverse_iterator

i=m_ScreenElements.rbegin();

 i!=m_ScreenElements.rend(); ++i)

 {

 if ((*i)->VIsVisible())

 {

 if ((*i)->VOnMsgProc(msg))

 {

 return 1;

 }

 }

 }

 LRESULT result = 0;

 switch (msg.m_uMsg)

 {

 case WM_KEYDOWN:

 if (m_Console.IsActive())

 {

 // Let the console eat this.

 }

 else if (m_KeyboardHandler)

 {

 result = m_KeyboardHandler->VOnKeyDown(

 static_cast<const BYTE>(msg.m_wParam));

 }

 break;

 case WM_KEYUP:

 if (m_Console.IsActive())

 {

 // Let the console eat this.

 }

 else if (m_KeyboardHandler)

 {

 result = m_KeyboardHandler->VOnKeyUp(

 static_cast<const BYTE>(msg.m_wParam));

 }

 break;

 case WM_MOUSEMOVE:

 if (m_MouseHandler)

 result = m_MouseHandler->VOnMouseMove(

 CPoint(LOWORD(msg.m_lParam),

HIWORD(msg.m_lParam)));

 break;

 case WM_LBUTTONDOWN:

 if (m_MouseHandler)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 {

 SetCapture(msg.m_hWnd);

 result = m_MouseHandler->VOnLButtonDown(

 CPoint(LOWORD(msg.m_lParam),

HIWORD(msg.m_lParam)));

 }

 break;

 case WM_LBUTTONUP:

 if (m_MouseHandler)

 {

 SetCapture(NULL);

 result = m_MouseHandler->VOnLButtonUp(

 CPoint(LOWORD(msg.m_lParam),

HIWORD(msg.m_lParam)));

 }

 break;

 case WM_RBUTTONDOWN:

 if (m_MouseHandler)

 {

 SetCapture(msg.m_hWnd);

 result = m_MouseHandler->VOnRButtonDown(

 CPoint(LOWORD(msg.m_lParam),

HIWORD(msg.m_lParam)));

 }

 break;

 case WM_RBUTTONUP:

 if (m_MouseHandler)

 {

 SetCapture(NULL);

 result = m_MouseHandler->VOnRButtonUp(

 CPoint(LOWORD(msg.m_lParam),

HIWORD(msg.m_lParam)));

 }

 break;

 case WM_CHAR:

 if (m_Console.IsActive())

 {

 const unsigned int oemScan =

 int(msg.m_lParam & (0xff << 16)) >> 16;

 m_Console.HandleKeyboardInput(

 msg.m_wParam, MapVirtualKey(oemScan, 1), true

);

 }

 else

 {

 //See if it was the console key.

 if (('~'==msg.m_wParam) || ('`'==msg.m_wParam))

 {

 m_Console.SetActive(true);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 }

 }

 break;

 default:

 return 0;

 }

 return 0;

}

Did you notice that I used a reverse iterator for the screens? Here‘s why: If you draw them
using a normal forward iterator, the screen on top is going to the be the last one drawn.
User input should always be processed in order of the screens from top to bottom, which in

this case would be the reverse order.

If none of the screen elements in the list processed the message, we can ask the input

device handlers, in this case m_KeyboardHandler and m_MouseHandler, to process

the messages. Of course, you could always write and add your own input device handler,

perhaps for a dance pad or gamepad—if you do, here‘s where you would hook it in.

Notice that the existence of the handler is always checked before the message is sent to it.

There‘s nothing that says you have to have a keyboard for every game you‘ll make with this

code, so it‘s a good idea to check it.

A WASD Movement Controller

You might be wondering how you use this system to create a WASD movement controller,
since this interface requires the use of a mouse and a keyboard combined. At the beginning

of the chapter, you read about the IMouseHandler and IKeyboardHandler interface

classes. You can use these to create a single controller class that can respond to both

devices:

class MovementController : public IMouseHandler, public

IKeyboardHandler

{

protected:

 Mat4x4 m_matFromWorld;

 Mat4x4 m_matToWorld;

 Mat4x4 m_matPosition;

 CPoint m_lastMousePos;

 BYTE m_bKey[256]; // Which keys are up and down

 // Orientation Controls

 float m_fTargetYaw;

 float m_fTargetPitch;

 float m_fYaw;

 float m_fPitch;

 float m_fPitchOnDown;

 float m_fYawOnDown;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 float m_maxSpeed;

 float m_currentSpeed;

 shared_ptr<SceneNode> m_object;

public:

 MovementController(shared_ptr<SceneNode> object,

 float initialYaw, float initialPitch);

 void SetObject(shared_ptr<SceneNode> newObject);

 void OnUpdate(DWORD const elapsedMs);

public:

 bool VOnMouseMove(const CPoint &mousePos);

 bool VOnLButtonDown(const CPoint &mousePos) { return false; }

 bool VOnLButtonUp(const CPoint &mousePos) { return false; }

 bool VOnRButtonDown(const CPoint &) { return false; }

 bool VOnRButtonUp(const CPoint &) { return false; }

 bool VOnKeyDown(const BYTE c) { m_bKey[c] = true; return

true; }

 bool VOnKeyUp(const BYTE c) { m_bKey[c] = false; return true;

}

 const Mat4x4 *GetToWorld() { return &m_matToWorld; }

 const Mat4x4 *GetFromWorld() { return &m_matFromWorld; }

};

I‘m giving you something of a sneak peak into Chapter 13, ―3D Basics,‖ with the

introduction of the Mat4x4 member variables. I won‘t explain them in detail here, but

suffice it to say that these members track where an object is in relation to the game world

and how it is oriented.

Since this WASD controller doesn‘t have any weapons fire, we‘ll simply return false from

the mouse button up and down handlers. Notice that the VOnKeyUp() and

VOnKeyDown() methods simply set members of a Boolean array to be true or false to

match the state of the key. Now, take a look at VOnMouseMove():

bool MovementController::VOnMouseMove(const CPoint &mousePos)

{

 if(m_lastMousePos!=mousePos)

 {

 m_fTargetYaw = m_fTargetYaw + (m_lastMousePos.x -

mousePos.x);

 m_fTargetPitch = m_fTargetPitch + (mousePos.y -

m_lastMousePos.y);

 m_lastMousePos = mousePos;

 }

 return true;

}

../../ch13#ch13
http://lib.ommolketab.ir
http//lib.ommolketab.ir

This method was probably simpler than you expected. All it does is set the target yaw and

pitch of the controller to match the mouse movement. Here‘s the real meat of the

controller, OnUpdate():

void MovementController::OnUpdate(DWORD const deltaMilliseconds)

{

 if (m_bKey['W'] || m_bKey['S'])

 {

 // code here will calculate movement forward & backward

 }

 if (m_bKey['A'] || m_bKey['D'])

 {

 // code here will calculate movement left & right

 }

 {

 // code here will set object rotation based on

 // previously calculated pitch and yaw values.

 // then, the movements forward, backward, left or

 // right will be used to send a movement command

 // to the game logic, which will evaluate them

 // for legality and actually move the object

 }

}

The full code of this routine requires some deeper knowledge of 3D transformations. To

avoid sending you into convulsions, I‘ll postpone those discussions until Chapter 13.

Screen Elements

You‘ve seen how the human view works; its big job is managing the list of screen elements,
drawing them, sending them input, and managing a couple of things like the audio system

and the process manager. The audio system is discussed in detail in Chapter 12, ―Game
Audio,‖ and you should remember the process manager from Chapter 6, ―The Main Loop.‖

A screen element is anything that draws and accepts input. It could be anything from a

button to your rendered 3D world. In Chapter 14, ―3D Scenes,‖ we create a screen element
that can draw 3D objects and accept mouse and keyboard input to move the camera

through the 3D world. In this chapter, we‘ll concentrate on user interface components like
buttons and dialog boxes.

Screen elements can be hierarchical—for example, a dialog box can have buttons attached

to it. A scroll bar has lots of moving parts: a background, two buttons, and a movable bit in
the middle to represent where the scrolled data is positioned.

Screens Need Transition Management

../../ch13#ch13
../../ch12#ch12
../../ch06#ch06
../../ch14#ch14
http://lib.ommolketab.ir
http//lib.ommolketab.ir

If your game has multiple screens, and even simple games have

many, it’s wise to manage them and the transitions between them in

a high-level API. This might seem a little strange to Windows
programmers, but it’s a little like programming multiple applications

for the same window, and you can freely move from one screen to
another by selecting the right controls.

If your screens are fairly small “memory-wise,” consider preloading

them. Any transitions that happen will be blazingly fast, and players
like responsive transitions. If your screens have tons of controls,

graphics, and sounds, you won’t necessarily be able to preload them
because of memory constraints, but you might consider loading a

small transition screen to give your players something to look at while
you load your bigger screens. Lots of console games do this, and they

usually display a bit of the next mission in the background while a nice

animation plays showing the load progress. The animation during the
load is important, because all console manufacturers require

animations during loading screens beyond some small threshold, such
as 10 seconds.

Screen elements in various configurations create the user interface for your game, such as a

menu, inventory screen, scoreboard, radar, or dialog box. Some run on top of the main
game screen, such as a radar or minimap, but others might completely overlay the main

view and even pause the game, such as an options screen. Throughout this chapter, I‘ll
generally refer to a screen as something that contains a list of screen elements, and a

control as the leaf nodes of this hierarchy. A screen is simply a container for controls, and it
knows how to parse user input messages from the application layer and translate them into

game messages.

Lots of kids‘ games and mass market titles use a screen architecture like the one shown in
Figure 9.1 throughout the entire game. When the right controls are activated in the right

order, the current screen is replaced by a new one with different controls.

Figure 9.1. Screens need a screen manager.

Other games use multiple screens to set up the characters or missions. When everything is
set up for the player, the game transitions to the game screen where most, if not all, of the

javascript:moveTo('ch09fig01');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

game is played. Almost every console game uses this model. Let‘s look at a simple interface

design for a screen:

struct AppMsg

{

 HWND m_hWnd;

 UINT m_uMsg;

 WPARAM m_wParam;

 LPARAM m_lParam;

};

class IScreenElement

{

public:

 virtual HRESULT VOnRestore() = 0;

 virtual HRESULT VOnRender(double fTime, float fElapsedTime) =

0;

 virtual void VOnUpdate(int deltaMilliseconds) = 0;

 virtual int VGetZOrder() const = 0;

 virtual void VSetZOrder(int const zOrder) = 0;

 virtual bool VIsVisible() const = 0;

 virtual void VSetVisible(bool visible) = 0;

 virtual LRESULT CALLBACK VOnMsgProc(AppMsg msg)=0;

 virtual ~IScreenElement() { };

 virtual bool const operator <(IScreenElement const &other)

 { return VGetZOrder() < other.VGetZOrder(); }

};

This interface shows that a screen knows how to restore itself when it needs to be rebuilt,
render itself when it‘s time to draw, how it should be ordered in the master draw list, and

whether it is visible. You‘ll also notice a familiar method that will accept device input. In this

case, you can see our custom AppMsg that you saw earlier in this chapter.

A Custom MessageBox Dialog

The best way to show you how this works is by example. Let‘s create a simple message box

that your game can call instead of the MessageBox API. The code for this uses the DirectX

GUI framework that is defined in DXUTgui.h. Word to the wise: The DirectX GUI framework
is a great start for a game interface, but it does make some assumptions about how you

want to load textures and some other quirks. On the other hand, it sure keeps you from
having to write a text edit control from scratch. If you simply hate DirectX and you are

sufficiently motivated, just surgically remove the DirectX components and roll your own.

This message box class conforms pretty well with the Win32 MessageBox API. You send in a
text message and what kind of buttons you want, and the dialog will store the ID of the

control that was pressed:

class CMessageBox : public IScreenElement

{

http://lib.ommolketab.ir
http//lib.ommolketab.ir

protected:

 int m_PosX, m_PosY;

 int m_Width, m_Height;

 CDXUTDialog m_UI; // DirectX dialog

 int m_ButtonId;

 optional<int> m_Result;

public:

 CMessageBox(std::wstring msg, std::wstring title, int

buttonFlags=MB_OK);

 // IScreenElement Implementation

 virtual HRESULT VOnRestore();

 virtual HRESULT VOnRender(double fTime, float fElapsedTime);

 virtual int VGetZOrder() const { return 0; }

 virtual void VSetZOrder(int const zOrder) { }

 virtual bool VIsVisible() const { return true; }

 virtual void VSetVisible(bool visible) { }

 virtual LRESULT CALLBACK VOnMsgProc(AppMsg msg);

 static void CALLBACK OnGUIEvent(

 UINT nEvent, int nControlID, CDXUTControl* pControl);

};

The class design is pretty simple. It contains DirectX‘s CDXUTDialog, and has a few

member variables to keep track of the size, position, and dialog result. The constructor sets
the callback routine and creates controls for the static text message and the buttons:

CMessageBox::CMessageBox(std::wstring msg, std::wstring title,

int buttonFlags)

{

 // Initialize dialogs

 m_UI.Init(&g_pApp->g_DialogResourceManager);

 m_UI.SetCallback(OnGUIEvent);

 // Find the dimensions of the message

 RECT rc;

 SetRect(&rc, 0,0,0,0);

 m_UI.CalcTextRect(msg.c_str(),

m_UI.GetDefaultElement(DXUT_CONTROL_STATIC,0), &rc);

 int msgWidth = rc.right - rc.left;

 int msgHeight = rc.bottom - rc.top;

 int numButtons = 2;

 if ((buttonFlags == MB_ABORTRETRYIGNORE) ||

 (buttonFlags == MB_CANCELTRYCONTINUE) ||

 (buttonFlags == MB_CANCELTRYCONTINUE))

 {

 numButtons = 3;

 }

 else if (buttonFlags == MB_OK)

 {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 numButtons = 1;

 }

 int btnWidth = 125;

 int btnHeight = 22;

 int border = 35;

 m_Width = std::max(msgWidth + 2 * border, btnWidth + 2 *

border);

 m_Height = msgHeight + (numButtons * (btnHeight+border)) +

(2 * border);

 m_PosX = (DXUTGetD3D9BackBufferSurfaceDesc()->Width-

m_Width)/2;

 m_PosY = (DXUTGetD3D9BackBufferSurfaceDesc()->Height-

m_Height)/2;

 m_UI.SetLocation(m_PosX, m_PosY);

 m_UI.SetSize(m_Width, m_Height);

 m_UI.SetBackgroundColors(g_Gray40);

 int iY = border;

 int iX = (m_Width - msgWidth) / 2;

 m_UI.AddStatic(0, msg.c_str(), iX, iY, msgWidth, msgHeight);

 iX = (m_Width - btnWidth) / 2;

 iY = m_Height - btnHeight - border;

 buttonFlags &= 0xF;

 if ((buttonFlags == MB_ABORTRETRYIGNORE) ||

 (buttonFlags == MB_CANCELTRYCONTINUE))

 {

 // The message box contains three push buttons:

 // Cancel, Try Again, Continue.

 // This is the new standard over Abort,Retry,Ignore

 m_UI.AddButton(IDCONTINUE, g_pApp-

>GetString(IDS_CONTINUE).c_str(),

 iX, iY - (2*border), btnWidth, btnHeight

);

 m_UI.AddButton(IDTRYAGAIN, g_pApp-

>GetString(IDS_TRYAGAIN).c_str(),

 iX, iY - border, btnWidth, btnHeight);

 m_UI.AddButton(IDCANCEL, g_pApp-

>GetString(IDS_CANCEL).c_str(),

 iX, iY, btnWidth, btnHeight);

 }

 else if (buttonFlags == MB_OKCANCEL)

 {

 //The message box contains two push buttons: OK and

Cancel.

 m_UI.AddButton(IDOK, g_pApp->GetString(IDS_OK).c_str(),

 iX, iY - border, btnWidth, btnHeight);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 m_UI.AddButton(IDCANCEL, g_pApp-

>GetString(IDS_CANCEL).c_str(),

 iX, iY, btnWidth, btnHeight);

 }

 else if (buttonFlags == MB_RETRYCANCEL)

 {

 //The message box contains two push buttons: Retry and

Cancel.

 m_UI.AddButton(IDRETRY, g_pApp-

>GetString(IDS_RETRY).c_str(),

 iX, iY - border, btnWidth, btnHeight);

 m_UI.AddButton(IDCANCEL, g_pApp-

>GetString(IDS_CANCEL).c_str(),

 iX, iY, btnWidth, btnHeight);

 }

 else if (buttonFlags == MB_YESNO)

 {

 //The message box contains two push buttons: Yes and No.

 m_UI.AddButton(IDYES, g_pApp->GetString(IDS_YES).c_str(),

 iX, iY - border, btnWidth, btnHeight);

 m_UI.AddButton(IDNO, g_pApp->GetString(IDS_NO).c_str(),

 iX, iY, btnWidth, btnHeight);

 }

 else if (buttonFlags == MB_YESNOCANCEL)

 {

 //The message box contains three push buttons: Yes, No,

and Cancel.

 m_UI.AddButton(IDYES, g_pApp->GetString(IDS_YES).c_str(),

 iX, iY - (2*border), btnWidth, btnHeight

);

 m_UI.AddButton(IDNO, g_pApp->GetString(IDS_NO).c_str(),

 iX, iY - border, btnWidth, btnHeight);

 m_UI.AddButton(IDCANCEL, g_pApp-

>GetString(IDS_CANCEL).c_str(),

 iX, iY, btnWidth, btnHeight);

 }

 else //if (buttonFlags & MB_OK)

 {

 // The message box contains one push button: OK. This is

the default.

 m_UI.AddButton(IDOK, g_pApp->GetString(IDS_OK).c_str(),

 iX, iY, btnWidth, btnHeight);

 }

}

First, a callback function is set. On every game user interface I‘ve ever worked on, there‘s
some mechanism for a control to send a message to the screen that it has been clicked on

or otherwise messed with. The OnGuiEvent() will trap those events so we can see which

button was clicked.

The next bit of code figures out how big the text message is, and it assumes that carriage

returns have already been inserted into the message. This is a pretty good idea since you
might want a fine control of message formatting, such as adding paragraphs to longer

http://lib.ommolketab.ir
http//lib.ommolketab.ir

sections of text. Sticking your own newline characters into the message outside of the

message box is a good way to do this.

After that, we start laying out the controls and positioning the dialog in the center of the

screen. The idea here is to find the number of buttons we‘re going to add, place them in a

vertical stack at the bottom of the dialog box, and add up all the space we‘re going to need
to make sure there‘s enough room to have the buttons and the text. Also, everything should

be centered, which is done by subtracting the inner width from the outer width and dividing
by two:

m_PosX = (DXUTGetD3D9BackBufferSurfaceDesc()->Width-m_Width)/2;

m_PosY = (DXUTGetD3D9BackBufferSurfaceDesc()->Height-

m_Height)/2;

If you subtract the width of the dialog from the width of the screen and divide by two,
you‘ve got the X position that will center the dialog. Switch all the parameters for heights,

and you‘ll have the correct Y position. You see that kind of thing a lot, and it works a hell of
a lot better than hard-coded positions and widths. Now we‘re ready to add controls to the

dialog member; you‘ll see that in the calls to AddStatic() for the message text and

AddButton() for the buttons.

One thing you should notice right away in the call to add buttons is no hard-coded text:

m_UI.AddButton(IDOK, g_pApp->GetString(IDS_OK).c_str(),

 iX, iY - border, btnWidth, btnHeight);

I mentioned this back in the application layer discussion. Instead of seeing the naked text,

―OK,‖ you see a call into the application layer to grab a string identified by IDOK. The

application layer is responsible for grabbing text for anything that will be presented to the

player because you might have multiple foreign language versions of your game. You could
create this text grabber in any number of ways, but for PC games I prefer using a string

table. The cool thing about string tables is that you can stick them in a DLL and swap them
out for whatever language you are running in, and you never have to worry about it.

In the event of a device restoration event like a full-screen/windowed mode swap, it‘s a

good idea to tell the DirectX dialog how big it is and where it is on the screen, which you

can do through the VOnRestore API:

HRESULT CMessageBox::VOnRestore()

{

 m_UI.SetLocation(m_PosX, m_PosY);

 m_UI.SetSize(m_Width, m_Height);

 return S_OK;

}

The render method for our screen class simply calls CDXUTDialog::OnRender. If you

create your own GUI system, this is where you‘d iterate through the list of controls and

draw them:

HRESULT CMessageBox::VOnRender(double fTime, float fElapsedTime)

{

 m_UI.OnRender(fElapsedTime);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 return S_OK;

};

You feed Win32 messages to the DirectX GUI controls through the VOnMsgProc()

method. If you create your own GUI, you‘d have to iterate through your controls and have

them process messages. A good example of that would be to highlight the control if the

mouse moved over it or change the graphic to depress the control if the mouse went down
over the control‘s area:

LRESULT CALLBACK CMessageBox::VOnMsgProc(AppMsg msg)

{

 return m_UI.MsgProc(msg.m_hWnd, msg.m_uMsg, msg.m_wParam,

msg.m_lParam);

}

The only thing left to handle is the processing of the control messages. In the case of a
message box, the only thing you need to do is send the button result back to a place so that

you can grab it later. We‘ll do that by posting a custom Win32 message into the message
pump:

void CALLBACK CMessageBox::OnGUIEvent(UINT nEvent, int

nControlID,

 CDXUTControl* pControl)

{

 PostMessage(g_pApp->GetHwnd(), MSG_END_MODAL, 0, nControlID);

}

This might seem confusing at first. Why not just set the member variable in the dialog box

class that holds the last button the player selected? The answer lies in how you have to go
about creating a modal dialog box in Win32 games, which is our very next subject.

Modal Dialog Boxes

Modal dialog boxes usually present the player with a question, such as ―Do you really want

to quit?‖ In most cases, the game stops while the dialog box is displayed so the player can
answer the question (see Figure 9.2). The answer is usually immediately accepted by the

game.

Figure 9.2. A modal dialog box.

javascript:moveTo('ch09fig02');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

This might seem easy to code, but it‘s actually fraught with pain and suffering. Why? Let‘s
look at the anatomy of the ―quit‖ dialog. The code to bring up a message box in Win32 looks

like this:

int answer = MessageBox(_T("Do you really want to quit?"),

 _T("Question"), MB_YESNO |

MB_ICONEXCLAMATION);

When this code is executed, a message box appears over the active window and stays there
until one of the buttons is pressed. The window disappears, and the button ID is sent back

to the calling code. If you haven‘t thought about this before, you should realize that the

regular message pump can‘t be working, but clearly some message pump is active, or the
controls would never get their mouse and mouse buttons messages. How does this work?

The trick is to create another message pump that runs in a tight loop and manage that
within a method that handles the life cycle of a modal dialog box:

#define QUIT_NO_PROMPT MAKELPARAM(-1,-1)

#define MSG_END_MODAL (WM_USER+100)

int GameCodeApp::Modal(

 shared_ptr<IScreenElement> pModalScreen, int defaultAnswer)

{

 // If we're going to display a dialog box, we need a human

view

 // to interact with.

 HumanView *pView;

 for(GameViewList::iterator i=m_pGame->m_gameViews.begin();

 i!=m_pGame->m_gameViews.end(); ++i)

 {

 if ((*i)->VGetType()==GameView_Human)

 {

 shared_ptr<IGameView> pIGameView(*i);

 pView = static_cast<HumanView *>(&*pIGameView);

 }

 }

 if (!pView)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 {

 // Whoops! There's no human view attached.

 return defaultAnswer;

 }

 assert(GetHwnd() != NULL && _T("Main Window is NULL!"));

 if ((GetHwnd() != NULL) && IsIconic(GetHwnd()))

 {

 FlashWhileMinimized();

 }

 if (m_HasModalDialog & 0x10000000)

 {

 assert(0 && "Too Many nested dialogs!");

 return defaultAnswer;

 }

 m_HasModalDialog <<= 1;

 m_HasModalDialog |= 1;

 pView->VPushElement(pModalScreen);

 LPARAM lParam = 0;

 int result = PumpUntilMessage(MSG_END_MODAL, NULL, &lParam);

 if (lParam != 0)

 result = (int)lParam;

 pView->VPopScreen();

 m_HasModalDialog >>= 1;

 return result;

}

The first thing that GameCodeApp::Modal() method does is find an appropriate game

view to handle the message. You can imagine a case where you have nothing but AI

processes attached to the game, and they couldn‘t care less about a dialog box asking them
if they want to quit. Only a human view can see the dialog and react to it, so we iterate

through the list of game views and find a view that belongs to the human view type. If we

don‘t find one, we return a default answer.

If the entire game is running in a window, and that window is minimized, the player will

never see the dialog box. The player needs a clue, and the standard Windows application

behavior is to flash the window until the player maximizes the window again, which is what

FlashWhileMinimized() accomplishes.

The next thing you see is a dirty trick, and I love it. You can imagine a situation where you

have a modal dialog on the screen, such as something to manage a player inventory, and
the player hits Alt-F4 and wants to close the game. This requires an ability to nest modal

dialog boxes, which in turn means you need some way to detect this nesting and if it has
gone too deep. This is required because the modal dialogs are managed by the game

application. I use a simple bit field to do this, shifting the bits each time we nest deeper.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The next thing that happens is we push the modal screen onto the view we found earlier,

and we call a special method that acts as a surrogate Win32 message pump for the modal
dialog:

int GameCodeApp::PumpUntilMessage (UINT msgEnd, WPARAM* pWParam,

LPARAM* pLParam)

{

 int currentTime = timeGetTime();

 MSG msg;

 for (;;)

 {

 if (PeekMessage(&msg, NULL, 0, 0, PM_NOREMOVE))

 {

 if (PeekMessage(&msg, NULL, 0, 0, 0))

 {

 if (msg.message != WM_SYSCOMMAND ||

 msg.wParam != SC_CLOSE)

 {

 TranslateMessage(&msg);

 DispatchMessage(&msg);

 }

 // Are we done?

 if (! IsIconic(GetHwnd()))

 {

 FlashWindow(GetHwnd(), false);

 break;

 }

 }

 }

 else

 {

 // Update the game views, but nothing else!

 // Remember this is a modal screen.

 if (m_pGame)

 {

 int timeNow = timeGetTime();

 int deltaMilliseconds = timeNow - currentTime;

 for(GameViewList::iterator i=m_pGame-

>m_gameViews.begin();

 i!=m_pGame->m_gameViews.end(); ++i)

 {

 (*i)->VOnUpdate(deltaMilliseconds);

 }

 currentTime = timeNow;

 DXUTRender3DEnvironment();

 }

 }

 }

 if (pLParam)

 *pLParam = msg.lParam;

 if (pWParam)

 *pWParam = msg.wParam;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 return 0;

}

The PumpUntilMessage function works similarly to the message pump in your main

loop, but it is a special one meant for modal dialog boxes. One message, WM_CLOSE, gets

special treatment since it must terminate the dialog and begin the game close process.
Other than close, the loop continues until the target message is seen in the message queue.

I define this custom message myself:

#define MSG_END_MODAL (WM_USER + 100)

If there are no messages in the queue, the pump calls the right code to make the game
views update and render. Without this, you wouldn‘t be able to see anything, especially if

you drag another window over your game.

As soon as the modal dialog wants to kill itself off, it will send the MSG_END_MODAL into

the message queue, and the PumpUntilMessage method will exit back out to the Modal

method we saw earlier. MSG_END_MODAL is a special user-defined message, and Win32

gives you a special message range starting at WM_USER. I usually like to start defining

application specific windows messages at WM_USER+100, instead of starting right at

WM_USER, since I‘ll be able to tell them apart in the message queue.

The trick to this is getting the answer back to the calling code, which is done with the

parameters to the MSG_END_MODAL. In this case, we look at the ID of the control that was

clicked on. Recall CMessageBox::OnGUIEvent():

void CALLBACK CMessageBox::OnGUIEvent(

UINT nEvent, int nControlID, CDXUTControl* pControl, void

*pUserContext)

{

 PostMessage(g_pApp->GetHwnd(), MSG_END_MODAL, 0, nControlID);

}

This posts MSG_END_MODAL to the message queue, which is what the

PumpUntilMessage method was looking for all along. This breaks the tight loop, and the

GameCodeApp::Modal() method can extract the answer the player gave to the modal

dialog box.

Controls

Controls have lots of permutations, but most of them share similar properties. I‘ve seen

push buttons, radio buttons, check boxes, combo boxes, edit boxes, expandable menus,
and all sorts of stuff. I‘ve also coded quite a few of them, I‘m sad to say.

Luckily, the DirectX Framework has already implemented most of the standard GUI controls

for you:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 CDXUTButton: A simple push button, like ―OK‖ or ―Cancel‖

 CDXUTStatic: A static text control, for putting non-active text on a dialog

 CDXUTCheckBox: A check box control for selecting on/off status for different

items

 CDXUTRadioButton: A radio button control for selecting one thing out of many

choices

 CDXUTComboBox: A combo box uses one line, but can drop down a list box of

choices

 CDXUTSlider: A simple slider to do things like volume controls

 CDXUTEditBox: A text edit box, for doing things like entering your name or a

console command

 CDXUTIMEEditBox: A foreign language edit box

 CDXUTListBox: A list of choices displayed with a scroll bar

 CDXUTScrollBar: A vertical or horizontal scroll bar

You can attach any of these controls to a CDXUTDialog object to create your own user

interface, and as you saw in the CMessageBox example in the previous section, these

interfaces can be modal or modeless.

The tough thing about implementing a new kind of control in your game isn‘t how to draw a
little ―x‖ in the check box. If you want to learn how to do that, you can trace through the

source code in the CDXUTCheckBox and find out how it works. Rather, the tough thing is

knowing what features your controls will need beyond these simple implementations. You
also need to be aware of the important ―gotchas‖ you‘ll need to avoid. Let‘s start with the

easy stuff first.

 Identification: How is the control distinguished from others on the same screen?

 Hit Testing/Focus Order: Which control gets messages, especially if they overlap

graphically?

 State: What states should controls support?

I suggest you approach the first problem from a device-centric point of view. Each device is
going to send input to a game, some of which will be mapped to the same game functions.

In other words, you might be able to select a button with the mouse to perform some game
action, like firing a missile. You might also use a hot key to do the same thing.

Control Identification

Every control needs an identifier—something the game uses to distinguish it from the other

controls on the screen. The easiest way to do this is define an enum, and when the controls

are created, they retain the unique identifier they were assigned in their construction:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

enum MAINSCREEN_CONTROL_IDS

{

 CID_EXIT,

 CID_EXIT_DESKTOP,

 CID_PREVIOUS_SCREEN,

 CID_MAIN_MENU,

 CID_OPTIONS

};

void CALLBACK CGameScreen::OnGUIEvent(UINT nEvent, int

nControlID, MyControl*

 pControl)

 {

 switch(pControl->GetID())

 {

 case CID_EXIT:

 // exit this screen

 break;

 case CID_EXIT_DESKTOP:

 // exit to the desktop

 break;

 // etc. etc.

 }

 }

This is very similar to the way Win32 sends messages from controls to windows via the

WM_COMMAND message, but simplified. The only problem with defining control IDs in this

manner is keeping them straight, especially if you create screen classes that inherit from
other screen classes, each with its own set of controls.

Flatten Your Screen Class Hierarchies

There‘s almost no end to the religious arguments about
creating new screens by inheriting from existing screen

classes. Object-oriented coding techniques make it easy to
extend one class into another, but there is a risk of confusion

and error when the new class is so different from the original

that it might as well be a completely new class. This is why
it‘s better to define functionality in terms of interfaces and

helper functions, and flatten your class hierarchy into
functional nuggets. A deep inheritance tree complicates the

problems of changing something in a base class without
adversely affecting many classes that inherit from it.

Some games define controls in terms of text strings, assigning each control a unique string.
But there is a downside to using strings to identify controls—you have to do multiple string

compares every time a control sends a message to your string class. You‘ll learn about a
more efficient and interesting solution for this problem in Chapter 10, ―Game Event

Management.‖ It does make things easier to debug, but there‘s nothing stopping you from
including a string member in the debug build of the class. You can solve this problem by

../../ch10#ch10
http://lib.ommolketab.ir
http//lib.ommolketab.ir

writing a bit of debug code that detects multiple controls with the same ID. Your code

should simply assert so you can go find the problem and redefine the offending identifier.

Hit Testing and Focus Order

There are two ways controls know they are the center of your attention. The first way is via
a hit test. This is where you use a pointer or a cursor and position it over the control by an

analog device such as a mouse. This method is prevalent in PC games, and especially
games that have a large number of controls on the screen.

The second method uses a focus order. Only one control has the focus at any one time, and

each control can get the focus by an appropriate movement of the input device. If the right
key or button is pressed, the control with focus sends a message to the parent screen. This

is how most console games are designed, and it clearly limits the number and density of
controls on each screen.

Hit testing usually falls into three categories: rectangular hit testing, polygonal hit testing,

and bitmap collision testing. The rectangle hit test is brain-dead simple. You just make sure
your hit test includes the entire rectangle, not just the inside. If a rectangle‘s coordinates

were (15,4) and (30,35), then a hit should be registered both at (15,4) and (30,35).

The hit test for a 2D polygon is not too complicated. The following algorithm was adapted
from Graphics Gems, and assumes the polygon is closed. This adaptation uses a point

structure and STL to clarify the original algorithm. It will work on any arbitrary polygons,
convex or concave:

#include <vector>

struct Point

{

 int x, y;

 Point() { x = y = 0; }

 Point(int _x, int _y) { x = _x; y = _y; }

};

typedef std::vector<Point> Polygon;

bool PointInPoly(Point const &test, const Polygon & polygon)

{

 Point newPoint, oldPoint;

 Point left, right;

 bool inside=false;

 size_t points = polygon.size();

 // The polygon must at least be a triangle

 if (points < 3)

 return false;

 oldPoint = polygon[points-1];

 for (unsigned int i=0 ; i < points; i++)

 {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 newPoint = polygon[i];

 if (newPoint.x > oldPoint.x)

 {

 left = oldPoint;

 right = newPoint;

 }

 else

 {

 left = newPoint;

 right = oldPoint;

 }

 // A point exactly on the left side of the polygon

 // will not intersect - as if it were "open"

 if ((newPoint.x < test.x) == (test.x <= oldPoint.x)

 && (test.y-left.y) * (right.x-left.x)

 < (right.y-left.y) * (test.x-left.x))

 {

 inside=!inside;

 }

 oldPoint = newPoint;

 }

 return(inside);

}

Bitmap collision is easy. You simply compare the pixel value at the (x, y) coordinate with
your definition of the transparent color.

Control State

Controls have four states: active, highlighted, pressed, and disabled, as shown in Figure

9.3. An active control is able to receive events, but it isn‘t the center of attention. When the
control gets the focus or passes a hit test from the pointing device, its state changes to

highlighted. It‘s common for highlighted controls to have separate art or even a looping

animation that plays as long as it has focus.

Figure 9.3. Four control states used with controls.

When the player presses a button on the mouse or controller, the control state changes
state to the pressed state. The art for this state usually depicts the control in a visually

pressed state so that the player can tell what‘s going on. If the cursor moves away from the

javascript:moveTo('ch09fig03');
javascript:moveTo('ch09fig03');
javascript:moveTo('ch09fig03');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

control, it will change state to active again, giving the player a clue that if the activation

button is released, nothing will happen.

Disabled controls are usually drawn darkened or grayed out, giving the impression that no

one is home. I know that Windows does this all over the place, but there is one thing about

it that really bothers me: I can never tell why the control is disabled. Its fine to have a
disabled state, but make sure that the player can figure out why it‘s disabled, or you‘ll just

cause a lot of frustration.

Use the Mouse Cursor for User Feedback

If your interface uses a mouse, change the mouse cursor to
something different, like a hand icon, when you are over an active

control. This approach will give the player another clue that something

will happen when he or she clicks the button. Use the Win32
LoadCursor() API to grab a handle to the right mouse cursor and call

SetCursor() with the cursor handle. If you want a good package to
create animated mouse pointers, try Microangelo by Impact Software

at www.impactsoftware.com.

Don‘t get confused about the control states mentioned here and control activation. Control
activation results in a command message that propagates through to the screen‘s

OnControl() function. For a standard push button control, this only happens if the

mouse button is pressed and released over the button‘s hit area.

More Control Properties

There are some additional properties you can attach to controls, mostly to give the player a

more flexible and informative interface.

Hot Keys

An excellent property to attach to any control on a PC game is a hot key. As players become
more familiar with the game, they‘ll want to ditch the mouse control in favor of pressing a

single key on the keyboard. It‘s faster, which makes hardcore players really happy. You can
distinguish between a hot key command and a normal keyboard input by checking the

keyboard focus. The focus is something your screen class keeps track of itself, since it is an
object that moves from control to control. Let‘s assume that you have a bunch of button

controls on a game screen, as well as a chat window. Normally, every key down and up

event will get sent to the controls to see if any of their hot keys match. If they do match,

the OnControl() method of the screen will get called. The only way to enable the chat

window is to click it with the mouse or provide a hot key for it that will set the keyboard
focus for the screen.

As long as the keyboard focus points to the chat control, every keyboard event will be sent

there, and hot keys are essentially disabled. Usually, the focus is released when the edit
control decides it‘s done with keyboard input, such as when the Enter key is pressed. The

focus can also be taken away by the screen, for example, if a different control were to be
activated by the mouse.

Tooltips

../../default13.htm
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Tooltips are usually controlled by the containing screen, since it has to be aware of moving

the tooltip around as different controls are highlighted. Tooltips are trickier than you‘d think,
because there‘s much more to enabling them than creating a bit of text on your screen for

each control.

For one thing, every tooltip needs to have a good position relative to the control it
describes. You can‘t just assume that every tooltip will look right if you place it in the same

relative position to every control. If you decide that every tooltip will be placed in the upper-
right area of every control, what happens when a control is already at the upper-right

border of the screen? Also, you‘ll want to make sure that tooltips don‘t cover other
important information on the screen when they appear. You don‘t want to annoy the heck

out of your users.

Tooltips Don’t Do Much Good Off-Screen

Even if you provide a placement hint, such as above or beside a

control, you’ll still need to tweak the placement of the tooltip to make
sure it doesn’t clip on the screen edge. Also, make sure that screens

can erase tooltips prematurely, such as when a dialog box appears or
when a drag begins.

Context-Sensitive Help

Context-sensitive help is useful if you have a complicated game with lots of controls. If the
player presses a hot key to launch the help window when a control is highlighted, the help

system can bring up help text that describes what the control will do. An easy way to do

this is to associate an identifier with each control that has context-sensitive help. In one
game, this identifier was the name of the HTML file associated with that control. When the

screen gets the hot key event for help, it first finds any highlighted control and asks it if it
has an associated help file.

Dragging

Controls can initiate a drag event or accept drag events. Drag initiation is simply a Boolean

value that is used to indicate if a drag event can start on top of the control or not. Drag
acceptance is a little more complicated. Most drag events have a source type, as discussed

at the beginning of this chapter. Some controls might accept drags of different types, given
only particular game states. An example of this might be dragging items around in a fantasy

role-playing game. A character in the game might not be able to accept a dragged object
because he‘s already carrying too much, and thus not be a legal target for the drag event.

Sounds and Animation

Most controls have a sound effect that launches when the button changes state. Some

games associate a single sound effect for every button, but it‘s not crazy to give each
control its own sound effect. Animation frames for buttons and other controls are usually

associated with the highlighted state. Instead of a single bitmap, you should use a bitmap
series that loops while the control is highlighted. You‘ll find out more about animations and

animating processes in Chapter 10.

../../ch10#ch10
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Some Final User Interface Tips

As parting advice, there are a few random, but important, tips I can give you on user

interface work.

 All rectangular interfaces are boring.

 Localization can make a mess of your UI.

 UI code is easy to write, but making a good UI is a black art.

If your interface code doesn‘t use polygonal hit testing or bitmap collision, you are destined

to have legions of square buttons and other controls populating your interface. That‘s not

only a dull and uncreative look, but your artists will probably strangle you before you ever
finish your game. Artists need the freedom to grow organic shapes in the interface, and will

resist all those vertical and horizontal lines.

Localization is a huge subject, but a significant part of that subject is interface design. You
may hear things like, ―make all your buttons 50 percent wider for German text,‖ as the be-

all end-all for localization. While that statement is certainly true, there‘s a lot more to it
than that. It‘s difficult to achieve an excellent interface using nothing but icons, instead of

clear text labels. We attempted that on one of the casino games we developed, and we
were completely stymied with the problem of choosing an international icon for features like

blackjack insurance and placing a repeat bet on a roulette table. The fact is that
international symbols are used and recognized for men and women‘s bathrooms and

locating baggage claim, but they are only recognized because they are advertised much
more aggressively than the unique features you use in your games. If you use icons, more

power to you, but you‘d better provide some tooltips to go along with them.

A truly international application has to conform with much more than left-to-right, top-to-
bottom blocks of text. Asian and Middle Eastern languages don‘t always follow Western

European ―sensibility.‖ All you can really count on is being able to print text to a definable

rectangle. If you have to print lots of text, consider using a well-known format like HTML
and be done with it.

When you design your user interface, know your audience. Older players are more

comfortable with menus and labeled buttons. Younger players enjoy the experience of
exploring a graphical environment with their mouse and clicking where they see highlights.

This is extremely problematic if you are a youngish programmer writing games for little kids
or your parents. They simply don‘t think the same way you do, and nothing you do in your

interface code will change that. Mimic proven solutions if you can, but always get a random
sample of your target audience by taking your interface design for a test drive.

There‘s nothing more humbling than when you stand behind someone playing your game

and silently watch them struggle with the simplest task. You want to scream at the top of
your lungs, ―Simpleton! How do you find enough neurons to respirate?‖ In a calmer

moment, perhaps you‘ll realize that the one with missing neurons looks back at you from
mirrors.

Part III: Core Game Technologies

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 10. Game Event Management

In This Chapter

 Game Events

 What Game Events Are Important?

 Distinguishing Events from Processes

 Further Reading

You‘re about to learn that this chapter might be the most important one in the book. After

all, game events touch every aspect of a game. From reading the previous chapters of this
book, I‘m hoping that you‘ve learned that the data flow or communication between all the

different subsystems in a game can get extremely complicated. Consider this example: a
game script creates an object, such as a ticking time bomb. The script inserts the time

bomb into the game object list and the physics system so it can exist in the game world.
The bomb object might then interact with the game audio system to kick off a sound effect,

likely a ticking sound. The graphics system will need to know about the bomb so it can be
drawn. The user interface will need to be informed, too, if the player has any hope of

defusing it! Finally, you might have AI characters that need to react appropriately, such as

running away in a panic, and you‘ll also need to schedule future explosion events.

A naive programmer might code this complicated system by using a series of API calls to

various subsystems of the game engine. This approach could get extremely messy, and

could require a morass of #includes at the top of every CPP file. I‘m sure that you have

come across code like this before. Each system would have to know about the public API of

every other system that it interacted with. I‘ve worked on a number of games that were
built this way, and each experience was pretty horrible. Whenever even a trivial

modification was made to a subsystem, it seemed that the whole game would have to be
recompiled.

In this chapter, you‘ll learn that you can solve the problems of communications between

game subsystems and how they interact with game objects by using a general purpose
game event system and incorporating scripting languages into your development efforts.

We‘ll start first by exploring game events, and then we‘ll build a basic event manager that

you can use as a building block for your own games.

Game Events

Whenever some authoritative system in your game makes something important happen,
such as moving a game object, it signifies an event. Your game must then notify all the

appropriate subsystems that the event has occurred so that they can handle the event in

their own way. A good example of an authoritative system is the physics system, which is
responsible for moving dynamic objects. An example of a subsystem that consumes events

is the game renderer. It needs to know about the new position and orientation of every
moving object so that it can render them in their new position.

The physics system could try to keep track of all the systems that need to know about

moving objects, such as the renderer, and call each system‘s API to tell each one that an
object has moved. If there are a number of systems that need to know about moving

objects, the physics system must call into each one, probably using a slightly different API
and parameter list. Yuck!

../../ch10lev1sec1#ch10lev1sec1
../../ch10lev1sec2#ch10lev1sec2
../../ch10lev1sec3#ch10lev1sec3
../../ch10lev1sec4#ch10lev1sec4
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Fortunately, there‘s a much better way to do this. Instead of calling each system every time

an object moves, the physics system could create a game event and send it into a system
that knows how to distribute the event to any subsystem that wants to listen. One side

effect of this solution is that it cleans up the relationship between game subsystems. Mostly,
they don‘t care about anything but themselves and the event management system.

A system such as an audio system already knows what events it should listen to. In this

case, it would listen to ―object collided‖ or ―object destroyed.‖ On the other hand, there
might be tons of other messages that the audio system could safely ignore, such as an

event that signals the end of an animation.

In a well-designed game, each subsystem should be responsible for subscribing to and
handling game events as they pass through the system. The game event system is global to

the application, and therefore makes a good candidate to sit in the application layer. It
manages all communications going on between the game logic and game views. If the game

logic moves an object, an event is sent, and all the game views will receive it. If a game
view wants to send a command to the game logic, it does so through the event system. The

game event system is the glue that holds the entire game logic and game view architecture

together.

The game event system is organized into three basic parts:

 Events and event data

 Event listeners

 Event Manager

Events and event data are generated by authoritative systems when an action of any
significance occurs, and they are sent into the Event Manager, sometimes also called a

listener registry. The Event Manager matches each event with all the subsystems that have

subscribed to the event, and calls each event listener in turn so it can handle the event in
its own way.

Events and Event Data

A classic problem in computer games is how to define types of data or objects. The easiest
way to define different types of elements, such as event types, is to put them all into a

single enumeration like this:

Enum EventType

{

 Event_Object_Moved,

 Event_Object_Created,

 Event_Object Destroyed,

 Event_Guard_Picked_Nose,

 // and on and on....

};

With this type of solution, each subsystem in your game would likely need this enumeration

because each probably generates one or more of these events. In coding this approach, you

would need to have every system #include this enumeration. Then, every time you add

to it or change it, your entire game would need to be recompiled, clearly a bad thing.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Build Times on Thief: Deadly Shadows

When I was working on Thief: Deadly Shadows at Ion Storm,

we had a few systems like this, including the event system.

Each event type was defined in a huge enumeration, and
creating a new event or deleting a deprecated one caused us

to recompile everything, and I mean everything. Thief:
Deadly Shadows had nine build targets: PC Game, Xbox

Game, and Editor, with each having Debug, Profile, and
Release build flavors. Even on a fast desktop workstation, it

would take us 15 minutes or more to build just one, and
building everything took more than an hour. Screams of

anguish could be heard when someone checked in one of

these core header files without sending a warning email with
plenty of advance notice. The moment someone had to get

code off the net, that person might as well go take a
prolonged break. Believe me, we didn‘t want the break either

because it would just turn a 12-hour day into a 13-hour day.

Fortunately, there‘s a better way to do this, at the cost of a little CPU time. Instead of

creating a massive enumeration in a core header file, you can create a unique hash from a
string and use that as your unique identifier. It‘s fast, only hits the CPU when you generate

the hash, and saves your team from the terrible monolithic enumeration that everyone has
to reference:

class HashedString

{

public:

 explicit HashedString (char const * const pIdentStr)

 : m_ident(hash_name(pIdentStr)),

 m_identStr(pIdentStr)

 {}

 unsigned long getIdent() const

 {

 return reinterpret_cast<unsigned long>(m_ident);

 }

 char const * const getStr() const { return m_identStr; }

 bool operator< (EventType const & o) const

 {

 bool r = (getIdent() < o.getIdent());

 return r;

 }

 bool operator== (EventType const & o) const

 {

 bool r = (getIdent() == o.getIdent());

 return r;

 }

 static void * hash_name(char const * pIdentStr);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

private:

 // note: m_ident is stored as a void* not an int, so that in

 // the debugger it will show up as hex-values instead of

 // integer values. This is a bit more representative of what

 // we're doing here and makes it easy to allow external code

 // to assign event types as desired.

 void * m_ident;

 char const * m_identStr;

};

void * HashedString::hash_name(char const * pIdentStr)

{

 // largest prime smaller than 65536

 unsigned long BASE = 65521L;

 // NMAX is the largest n such that

 // 255n(n+1)/2 + (n+1)(BASE-1) <= 2^32-1

 unsigned long NMAX = 5552;

 #define DO1(buf,i) {s1 += tolower(buf[i]); s2 += s1;}

 #define DO2(buf,i) DO1(buf,i); DO1(buf,i+1);

 #define DO4(buf,i) DO2(buf,i); DO2(buf,i+2);

 #define DO8(buf,i) DO4(buf,i); DO4(buf,i+4);

 #define DO16(buf) DO8(buf,0); DO8(buf,8);

if (pIdentStr == NULL)

 return NULL;

if (strcmp(pIdentStr, kpWildcardEventType) == 0)

 return 0;

unsigned long s1 = 0;

unsigned long s2 = 0;

for (size_t len = strlen(pIdentStr); len > 0 ;)

{

 unsigned long k = len < NMAX ? len : NMAX;

 len -= k;

 while (k >= 16)

 {

 DO16(pIdentStr);

 pIdentStr += 16;

 k -= 16;

 }

 if (k != 0) do

 {

 s1 += *pIdentStr++;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 s2 += s1;

 } while (--k);

 s1 %= BASE;

 s2 %= BASE;

 }

 #pragma warning(push)

 #pragma warning(disable : 4312)

 return reinterpret_cast<void *>((s2 << 16) | s1);

 #pragma warning(pop)

 #undef DO1

 #undef DO2

 #undef DO4

 #undef DO8

 #undef DO16

}

The code to compute the hash is loosely based upon the Adler-32 checksum by Mark Adler
and published as part of the Zlib compression library sources. For those of you who are a
little rusty on what a hash is and what it is used for, it is basically a way to boil down a

complicated or large data structure, such as an arbitrary string, to a unique ID code. The ID

code represents the data in as unique a way as possible. It‘s like having a unique key to
unlock a particular door—you don‘t have to carry around everything behind the door, as

long as you have the key.

Hashes are not guaranteed to be unique. It is possible that the hash_name method will

return the same hash for two different strings, although this is extremely rare. If you ever

use a hash, your code should handle this problem, which is called hash collision—the
situation where two different data items hash to the same value.

In the event system you are about to see, each event is assigned a name in a

std::string, and it is this string value that is hashed. If two different strings came up

with the same hash, the Event Manager would complain and require the programmer to

choose a different string.

You‘ll also notice that the strings are always converted to lowercase before they are sent
into the hash function. Programmers can hardly agree on anything, and capitalization of

strings is no exception. Converting the strings to lowercase also serves to cut down on the

permutations of the different strings that can be hashed, which will also lower the chance
for two strings to have the same hash.

Note that there is a special string, kpWildcardEventType, which can be used to

represent all event types. Sometimes it‘s useful for the Event Manager system to use an
event type wildcard.

Use Case Insensitive Compares on Any Programmer-Defined Strings

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Anytime you compare strings in your game, don’t make your

comparison algorithm case sensitive. It’s simply too easy for a bleary-

eyed programmer to forget to capitalize in the right place or
remember to always type strings in lowercase. In systems like this

one, the string is turned into a hash, which is essentially impossible to
match back to your original string, and therefore tough to debug if

something is mistyped. You can head these problems off easily by just
deciding ahead of time that strings are always converted to lowercase.

The pain and suffering you save may be your own.

Now you have an easy way to create as many event types as you want. Here‘s how to
create events and data that can ride along with the event:

typedef HashedString EventType;

class IEventData

{

public:

 virtual const EventType & VGetEventType(void) const = 0;

 virtual float VGetTimeStamp() const = 0;

 virtual void VSerialize(std::ostrstream &out) const = 0;

};

typedef boost::shared_ptr<IEventData> IEventDataPtr;

class BaseEventData : public IEventData

{

public:

 explicit BaseEventData(const float timeStamp = 0.0f)

 : m_TimeStamp(timeStamp) { }

 virtual ~BaseEventData() { }

 virtual const EventType & VGetEventType(void) const = 0;

 float VGetTimeStamp(void) const { return m_TimeStamp; }

 virtual void VSerialize(std::ostrstream &out) const { }

protected:

 const float m_TimeStamp;

};

Choose Your Stream Implementation Carefully

Did you note the use of std::ostrstream in the previous code

snippet? This was chosen to make the stream human readable, which

can be very useful during development, but a big mistake for any
shipping game. For one thing, a human-readable stream is trivial to

hack. More importantly, the stream is large and takes much longer to

load and parse than a binary stream. Try using std::ostream

instead or your own custom stream class.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

An event encapsulates the event type, the event data, and the time the event occurred.

Event data is defined by you, the programmer, and you are free to create ad-hoc data that
will accompany your event. It‘s a little easier to see what‘s going on with a concrete

example. Assume for a moment that every dynamic object in your game, sometimes called
an actor, has a unique identifier you can use to track it. If an actor is ever destroyed, this

Actor ID would get sent along with an event so other subsystems could remove the actor
from their lists. The event data class for an ―actor destroyed‖ event would look like this:

typedef unsigned int ActorId;

struct EvtData_Destroy_Actor : public BaseEventData

{

 static const EventType sk_EventType;

 virtual const EventType & VGetEventType(void) const

 { return sk_EventType; }

 explicit EvtData_Destroy_Actor(ActorId id)

 : m_id(id) { }

 explicit EvtData_Destroy_Actor(std::istrstream & in)

 { in >> m_id; }

 virtual ~EvtData_Destroy_Actor() {}

 virtual void VSerialize(std::ostrstream &out) const

 { out << m_id; }

 ActorId m_id;

};

const EventType EvtData_Destroy_Actor::sk_EventType(

"destroy_actor");

The event data inherits from the BaseEventData so it can be wired into the event

system. When an actor is destroyed, its ActorId is sent along with the event.

The ―destroy_actor‖ string is what is sent into the EventType for hashing. You still don‘t

know how to actually create or send the event yet. First, you need to know about the event
listener class.

The Event Listener

Events and event data need to go somewhere, and they always go to event listeners. Any

class or subsystem in your game can listen for events. All you have to do is inherit from and

implement the pure virtual functions of the IEventListener interface:

class IEventListener

{

public:

 explicit IEventListener() {}

 virtual ~IEventListener() {}

 // Returns ascii-text name for this listener, used mostly for

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 // debugging

 virtual char const * GetName(void) = 0;

 // Return 'false' to indicate that this listener did NOT

 // consume the event, (and it should continue to be

 // propogated)

 //

 // return 'true' to indicate that this listener consumed the

 //event, (and it should NOT continue to be propagated)

 virtual bool HandleEvent(Event const & event) = 0

 {

 // Note: while HandleEvent() MUST be implemented in all

 // derivative classes, (as this function is pure-virtual

 // and thus the hook for IEventListener being an

 // interface definition) a base implementation is

 // provided here to make it easier to wire up do-nothing

 // stubs that can easily be wired to log the

 // unhandled-event (once logging is available)

 // HandleEvent() functioning should be kept as brief as

 // possible as multiple events will need to be evaluated

 // per-frame in many cases.

 return true;

 }

};

There are only two pure virtuals to implement: one to return a name for the listener and the

other, HandleEvent(), to handle the event. Notice that the pure virtual does have a

default implementation, which is a little used C++ construct known as pure virtual with a
body. You must still implement the pure virtual in any derived class you want to instantiate,

but if you want to call the default implementation you can do so explicitly by naming the

abstract class in the call. In this case, the default implementation simply returns true,

indicating the event was handled.

Here‘s an example of an event listener that listens to all events:

class EventSnooper : public IEventListener

{

public:

 explicit EventSnooper(char const * const kpLogFileName =

NULL);

 ~EventSnooper();

 char const * GetName(void) { return "Snoop" };

 bool HandleEvent(Event const & event);

private:

 FILE *m_hOutFile;

 char m_msgBuf[4090];

};

This event listener looks at each event that comes in, and constructs a debug message that
will be sent to a log file and the debugger‘s output window. The constructor opens the log

file in the same directory as the executable—a handy place to put it:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

EventSnooper::EventSnooper(char const * const kpLogFileName)

 : m_hOutFile(INVALID_HANDLE_VALUE)

{

 if (kpLogFileName)

 {

 // compute the path to our current exe and use it as the

 // basis for the log file ...

 char fullPathName[MAX_PATH];

 memset(fullPathName, 0, sizeof(fullPathName));

 GetModuleFileNameA(NULL, fullPathName, MAX_PATH);

 // normalize path separators, take note of the last

 // separator found as we go ... if any

 char * pSep = NULL;

 for (size_t i = 0, j = strlen(fullPathName); i < j ; i++

)

 {

 if (fullPathName[i] == '\\')

 {

 fullPathName[i] = '/';

 pSep = & fullPathName[i];

 }

 }

 if (pSep != NULL)

 {

 strcpy(pSep + 1, kpLogFileName);

 }

 else

 {

 strcpy(fullPathName, kpLogFileName);

 }

 m_hOutFile = fopen(fullPathName, "w+");

 }

}

EventSnooper::~EventSnooper()

{

 if (m_hOutFile)

 {

 fclose(m_hOutFile);

 m_hOutFile = NULL;

 }

}

bool EventSnooper::HandleEvent(Event const & event)

{

#ifdef _DEBUG

 memset(m_msgBuf, 0, sizeof(m_msgBuf));

#pragma warning(push)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

#pragma warning(disable : 4313)

 _snprintf(m_msgBuf, sizeof(m_msgBuf)-1,

"Event Snoop : event %08lx time %g : type %08lx [%s] : \n",

 & event,

 event.getTime(),

 event.getType().getIdent(),

 event.getType().getStr(),

 0);

#pragma warning(pop)

 OutputDebugStringA(m_msgBuf);

 if (m_hOutFile != NULL)

 {

 fwrite(m_msgBuf, (DWORD) strlen(m_msgBuf), 1, m_hOutFile

);

 }

endif

 return false;

}

You now know how to create an event and write a class that listens for events, but you still
lack a crucial piece of this puzzle. The Event Manager is the nexus of events in your game.
It receives them from practically anywhere, and sends them out to classes that have

implemented the listener interface.

The Event Manager

As you might expect, the Event Manager is more complicated than the events or the
listeners. It has a tough job matching events with listeners and doing it in a manner that is

pretty fast. First, you‘ll see the IEventManager interface. The Event Manager class is set

up to be a global singleton, and it manages its own global pointer. This is pretty useful,

since virtually every system in your game will need access to the Event Manager object.
There are also some helper functions that clean up access to the Event Manager.

The interface defines the following methods:

 VAddListener: Matches a listener with an event type, so anytime the event type

is sent, the listener will be notified.

 VDelListener: Removes a listener.

 VTrigger: Immediately fires an event to listeners that care about it.

 VQueueEvent: Puts an event in a queue to be fired later.

 VAbortEvent: Removes an event from the queue.

 VTick: Processes the events in the queue. This is called every game loop.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 VValidateType: Determines if an event type is legal.

typedef boost::shared_ptr<IEventListener> EventListenerPtr;

class IEventManager

{

public:

 enum eConstants { kINFINITE = 0xffffffff };

 explicit IEventManager(char const * const pName, bool

setAsGlobal);

 virtual ~IEventManager();

 // Register a handler for a specific event type, implicitly

 // the event type will be added to the known event types if

 // not already known.

 //

 // The function will return false on failure for any

 // reason. The only really anticipated failure reason is if

 // the input event type is bad (e.g.: known-ident number

 // with different signature text, or signature text is empty

)

 virtual bool VAddListener

 (EventListenerPtr const & inHandler, EventType const &

inType) = 0;

 // Remove a listener/type pairing from the internal tables

 //

 // Returns false if the pairing was not found.

 virtual bool VDelListener

 (EventListenerPtr const & inHandler, EventType const &

inType) = 0;

 // Fire off event - synchronous - do it NOW kind of thing -

 // analogous to Win32 SendMessage() API.

 //

 // returns true if the event was consumed, false if not. Note

 // that it is acceptable for all event listeners to act on an

 // event and not consume it, this return signature exists to

 // allow complete propogation of that shred of information

 // from the internals of this system to outside uesrs.

 virtual bool VTrigger (IEventData const & inEvent) const =

0;

 // Fire off event - asynchronous - do it WHEN the event

 // system VTick() method is called, normally at a judicious

 // time during game-loop processing.

 //

 // returns true if the message was added to the processing

 // queue, false otherwise.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 virtual bool VQueueEvent (IEventDataPtr const & inEvent) =

0;

 // Find the next-available instance of the named event type

 // and remove it from the processing queue.

 //

 // This may be done up to the point that it is actively being

 // processed ... e.g.: is safe to happen during event

 // processing itself.

 //

 // if 'allOfType' is input true, then all events of that type

 // are cleared from the input queue.

 //

 // returns true if the event was found and removed, false

 // otherwise

 virtual bool VAbortEvent

 (EventType const & inType, bool allOfType = false) = 0;

 // Allow for processing of any queued messages, optionally

 // specify a processing time limit so that the event

 // processing does not take too long. Note the danger of

 // using this artificial limiter is that all messages may not

 // in fact get processed.

 //

 // returns true if all messages ready for processing were

 // completed, false otherwise (e.g. timeout)

 virtual bool VTick (unsigned long maxMillis = kINFINITE) =

0;

 // --- information lookup functions ---

 // Validate an event type, this does NOT add it to the

 // internal registry, only verifies that it is legal (

 // e.g. either the ident number is not yet assigned, or it is

 // assigned to matching signature text, and the signature

 // text is not empty).

 virtual bool VValidateType(EventType const & inType) const

= 0;

private:

 // internal use only accessor for the static methods in the

 // helper to use to get the active global instance.

 static IEventManager * Get();

 // These methods are declared friends in order to get access

to the

 // Get() method. Since there is no other private entity

declared

 // in this class this does not break encapsulation, but does

allow

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 // us to do this without requiring macros or other older-

style

 // mechanims.

 friend bool safeAddListener

 (EventListenerPtr const & inHandler, EventType const &

inType);

 friend bool safeDelListener

 (EventListenerPtr const & inHandler, EventType const &

inType);

 friend bool safeTriggerEvent(IEventData const & inEvent);

 friend bool safeQueEvent(IEventDataPtr const & inEvent);

 friend bool safeAbortEvent

 (EventType const & inType, bool allOfType = false);

 friend bool safeTickEventManager

 (unsigned long maxMillis = IEventManager::kINFINITE);

 friend bool safeValidateEventType(EventType const & inType

);

};

bool safeAddListener(EventListenerPtr const & inHandler,

EventType const &

 inType)

{

 assert(IEventManager::Get() && _T("No event manager!"));

 return IEventManager::Get()->VAddListener(inHandler, inType

);

}

bool safeDelListener(EventListenerPtr const & inHandler,

EventType const &

 inType)

{

 assert(IEventManager::Get() && _T("No event manager!"));

 return IEventManager::Get()->VDelListener(inHandler, inType

);

}

bool safeTriggerEvent(IEventData const & inEvent)

{

 assert(IEventManager::Get() && _T("No event manager!"));

 return IEventManager::Get()->VTrigger(inEvent);

}

bool safeQueEvent(IEventDataPtr const & inEvent)

{

 assert(IEventManager::Get() && _T("No event manager!"));

 return IEventManager::Get()->VQueueEvent(inEvent);

}

bool safeAbortEvent(EventType const & inType, bool allOfType

/*= false*/)

{

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 assert(IEventManager::Get() && _T("No event manager!"));

 return IEventManager::Get()->VAbortEvent(inType, allOfType

);

}

bool safeTickEventManager(unsigned long maxMillis /*=

kINFINITE*/)

{

 assert(IEventManager::Get() && _T("No event manager!"));

 return IEventManager::Get()->VTick(maxMillis);

}

bool safeValidateEventType(EventType const & inType)

{

 assert(IEventManager::Get() && _T("No event manager!"));

 return IEventManager::Get()->VValidateType(inType);

}

You can take a look at the comments above each method to see what it is supposed to do.

The implementation of IEventManager manages two sets of objects: event data and

listeners. As events are sent into the system, the Event Manager matches them up with

subscribed listeners and calls each listener‘s HandleEvent method with events they care

about.

There are two ways to send events—by queue and by trigger. By queue means the event

will sit in line with other events until the game processes IEventManager::VTick().

By trigger means the event will be sent immediately—almost like calling each listener‘s

HandleEvent directly from your calling code.

The SafeBlahBlah free functions make your code a lot cleaner, and make it easy to

remember that the Event Manager might not be created when some subsystems attempt to

send events. If this ever happens, you should always assert and figure out what is wrong
with your initialization chain. The Event Manager should be one of the very first systems

initialized in your application layer.

Remember the EventSnooper class from the last few pages? Here‘s how you would use

the safeAddListener free function to attach it to your global Event Manager:

EventListenerPtr snoop(new EventSnooper("event.log"));

safeAddListener(snoop, EventType(kpWildcardEventType));

Now you‘re ready to see how an Event Manager class implements the interface:

typedef std::vector<EventListenerPtr> EventListenerList;

typedef std::vector<EventType> EventTypeList;

class EventManager : public IEventManager

{

public:

 explicit EventManager(char const * const pName, bool

setAsGlobal);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 ~EventManager();

 bool VAddListener (EventListenerPtr const & inListener,

 EventType const & inType);

 bool VDelListener (EventListenerPtr const & inListener,

 EventType const & inType);

 bool VTrigger (Event const & inEvent) const;

 bool VQueueEvent (EventPtr const & inEvent);

 bool VAbortEvent (EventType const & inType, bool allOfType

);

 bool VTick (unsigned long maxMillis);

 bool VValidateType(EventType const & inType) const;

 // --- more information lookup functions ---

 // Get the list of listeners associated with a specific event

type.

 EventListenerList GetListenerList (EventType const &

eventType) const;

 // Get the list of known event types.

 EventTypeList GetTypeList (void) const;

private:

 // one global instance

 typedef std::set< EventType > EventTypeSet;

 // insert result into event type set

 typedef std::pair< EventTypeSet::iterator, bool >

EventTypeSetIRes;

 // one list per event type (stored in the map)

 typedef std::list< EventListenerPtr > EventListenerTable;

 // mapping of event ident to listener list

 typedef std::map< unsigned int, EventListenerTable >

EventListenerMap;

 // entry in the event listener map

 typedef std::pair< unsigned int, EventListenerTable >

EventListenerMapEnt;

 // insert result into listener map

 typedef std::pair< EventListenerMap::iterator, bool >

EventListenerMapIRes;

 // queue of pending- or processing-events

 typedef std::list< EventPtr > EventQueue;

 enum eConstants { kNumQueues = 2 };

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 // list of registered event types

 EventTypeSet m_typeList;

 // mapping of event types to listeners

 EventListenerMap m_registry;

 // double buffered event processing queue (prevents infinite

cycles)

 EventQueue m_queues[kNumQueues];

 // which queue is actively processing, en-queing events

 // goes to the opposing queue

 int m_activeQueue;

};

There‘s quite a bit here so let me break it down into four manageable chunks. First, we
have the simple constructor and destructor. Second, we have the primary use methods.

You‘ll use them to register listeners and send events. Third, we have the information lookup
methods that will help us determine if an event is legal or gain access to the lists of

listeners and event types. Fourth, we have the definition of the data types and the data
members themselves, which are all declared private. Let‘s go over the data types first and

then the public methods.

The private typedefs define data types that are used by the Event Manager. All of them

use STL, and here‘s what each of them defines:

 EventTypeSet: An STL set that holds the unique event types that the Event

Manager can handle. When an event listener tells the Event Manager it wants to be
notified of an event type, the event type is added to a set if it wasn‘t already there.

 EventTypeSetIRes: An STL pair that can hold the result of an insertion into an

EventTypeSet.

 EventListnerTable: An STL list of pointers to event listener objects.

 EventListenerMap: An STL map that relates a list of listener objects to a

specific event identifier.

 EventListnerMapEnt: An STL pair that can hold the result of a search in the

EventListenerMap.

 EventListenerMapIRes: An STL pair that can hold the result of an insertion

into an EventListenerMap.

 EventQueue: An STL list of events that are queued and ready to distribute to

listeners‘ objects.

You‘ll see these data types used throughout the Event Manager code.

There are only four data members of the EventManager class. First, there is the

EventTypeSet, and it stores all the event types that have been registered with the Event

Manager. Second, the EventListenerMap relates a list of listeners with a specific event.

The Event Manager uses it to find all the listener objects that care about a particular event.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Finally, we have the EventQueue and the integer that tracks which queue is active. You‘ll

notice there are actually two queues. When the system processes events, it is possible that
new events will be generated. Those new events go into the ―other‖ queue. This makes it

easy to just process the events that were generated during the last loop of the game code,
saving the newest events for the next time around. There‘s also the very possible situation

where a single event queue could create an infinite loop where one listener spawns an event
that is handled by itself—a single loop wouldn‘t ever finish!

The constructor and destructor are pretty bare bones:

EventManager::EventManager(char const * const pName, bool

setAsGlobal)

 : IEventManager(pName, setAsGlobal), m_activeQueue(0)

{

}

EventManager::~EventManager()

{

 m_activeQueue = 0;

}

Here‘s the code for adding a new listener. Listeners and event types are registered with a
single call. If either one is new to the system, it is validated and entered into the lookup

data structures:

bool EventManager::VAddListener (

 EventListenerPtr const & inListener, EventType const &

inType)

{

 if (! VValidateType(inType))

 return false;

 // check / update type list

 EventTypeSet::iterator evIt = m_typeList.find(inType);

 // find listener map entry, create one if no table already

 // exists for this entry ...

 EventListenerMap::iterator elmIt =

 m_registry.find(inType.getHashValue());

 if (elmIt == m_registry.end())

 {

 EventListenerMapIRes elmIRes = m_registry.insert(

 EventListenerMapEnt(inType.getHashValue(),

EventListenerTable()));

 // whoops, could not insert into map!?!?

 if (elmIRes.second == false)

 return false;

 // should not be possible, how did we insert and create

 // an empty table!?!?!

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 if (elmIRes.first == m_registry.end())

 return false;

 // store it so we can update the mapped list next ...

 elmIt = elmIRes.first;

 }

 // update the mapped list of listeners, walk the existing

 // list (if any entries) to prevent duplicate addition of

 // listeners. This is a bit more costly at registration time

 // but will prevent the hard-to-notice duplicate event

 // propogation sequences that would happen if double-entries

 // were allowed.

 // note: use reference to make following code more simple

 EventListenerTable & evlTable = (*elmIt).second;

 for (EventListenerTable::iterator it = evlTable.begin(),

 itEnd = evlTable.end(); it != itEnd ; it++)

 {

 bool bListenerMatch = (*it == inListener);

 if (bListenerMatch)

 return false;

 }

 // okay, event type validated, event listener validated,

 // event listener not already in map, add it

 evlTable.push_back(inListener);

 return true;

}

First, the event type is validated. You don‘t want an illegal event type in the event set. An
event would be illegal if, by some chance, the hash for the event type had already been
added and the two event type strings were different. This might happen about as often as

me winning the Texas lottery. Yes, I buy tickets.

If the event type has never been seen before, it is added to the event type list. Likewise for
the listener. If it has never been seen before, it is inserted into the event listener table. The

last thing that happens is the existing list of mapped listeners/event types is checked to
make sure you aren‘t adding a duplicate relationship between this listener and this event

type. If you allowed duplicates in this mapping, the listener would get multiple events when

only one was sent.

Here‘s how you remove a listener:

bool EventManager::VDelListener (

 EventListenerPtr const & inListener, EventType const & inType

)

{

 if (! VValidateType(inType))

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 return false;

 bool rc = false;

 // brute force method, iterate through all existing mapping

 // entries looking for the matching listener and remove it.

 for (EventListenerMap::iterator it = m_registry.begin(),

 itEnd = m_registry.end(); it != itEnd; it++)

 {

 unsigned int const kEventId = it->first;

 EventListenerTable & table = it->second;

 for (EventListenerTable::iterator it2 = table.begin(),

 it2End = table.end(); it2 != it2End; it2++)

 {

 if (*it2 == inListener)

 {

 // found match, remove from table,

 table.erase(it2);

 // update return code

 rc = true;

 // and early-quit the inner loop as addListener()

 // code ensures that each listener can only

 // appear in one event's processing list once.

 break;

 }

 }

 }

 return rc;

}

This is an ugly nested for loop, but there‘s really no reason to do anything more

complicated. Removing a listener should be a relatively rare event, which implies that

listeners tend to be tied to subsystems, like an audio system, and not individual objects,

like a particular AI character. You don‘t want the event system to have a giant list of
listeners to iterate through every time an event is sent, and you want the systems, such as

the AI system, to be responsible for managing objects under their control. A manager for a
subsystem can use whatever evaluation is best for the objects it manages—whether that‘s a

list, a tree, a hash table, or whatever. Here‘s a good rule of thumb to follow: Any listener
that cares about messages important to game objects like AI characters should be tied to

the system manager, not a class representing each object.

While the situation may be unusual, you may want to fire an event and have all listeners
respond to it immediately and not use the event queue. In all honesty, this method would

break the paradigm of remote event handling, as you will see done in Chapter 16, ―Network

Programming Primer,‖ but just in case you need it, here‘s the VTrigger() method:

bool EventManager::VTrigger (IEventData const & inEvent) const

{

../../ch16#ch16
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 if (! VValidateType(inEvent.VGetEventType()))

 return false;

 EventListenerMap::const_iterator itWC = m_registry.find(0);

 if (itWC != m_registry.end())

 {

 EventListenerTable const & table = itWC->second;

 bool processed = false;

 for (EventListenerTable::const_iterator it2 =

table.begin(),

 it2End = table.end(); it2 != it2End; it2++)

 {

 (*it2)->HandleEvent(inEvent);

 }

 }

 EventListenerMap::const_iterator it =

 m_registry.find(inEvent.VGetEventType().getHashValue()

);

 if (it == m_registry.end())

 return false;

 EventListenerTable const & table = it->second;

 bool processed = false;

 for (EventListenerTable::const_iterator it2 = table.begin(),

 it2End = table.end(); it2 != it2End; it2++)

 {

 EventListenerPtr listener = *it2;

 if (listener->HandleEvent(inEvent))

 {

 // only set to true, if processing eats the messages

 processed = true;

 }

 }

 return processed;

}

You should notice there are two nearly identical sections of code. Both seem to find an

event listener table, iterate through them, and call HandleEvent for every listener in the

table. Some listeners care about all events, such as the snooper listener you saw earlier.

Other listeners care only for particular events. The first section of code handles those
listeners that care about all event types, and the second section handles the listeners that

care about specific events.

Queuing events is also possible with the VQueueEvent method:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

bool EventManager::VQueueEvent (IEventDataPtr const & inEvent)

{

 assert (m_activeQueue >= 0);

 assert (m_activeQueue < kNumQueues);

 if (! VValidateType(inEvent->VGetEventType()))

 return false;

 EventListenerMap::const_iterator it =

 m_registry.find(inEvent->VGetEventType().getHashValue()

);

 if (it == m_registry.end())

 {

 // if global listener is not active, then abort queue add

 EventListenerMap::const_iterator itWC = m_registry.find(0

);

 if (itWC == m_registry.end())

 {

 // no listeners for this event, skipit

 return false;

 }

 }

 m_queues[m_activeQueue].push_back(inEvent);

 return true;

}

That one is pretty simple. It just validates the event, makes sure there‘s a listener out there
that cares about the event, and inserts it into the event queue. You might be curious about

the different effects of firing an event now versus queueing it up until the next game loop.

It‘s similar to the Win32 SendMessage and PostMessage idea, whenever you can use

the queue. It does tend to even out your game loops, pushing events created in the current
game loop in the queue for processing the next time around.

A much smarter event processor might be able to do things like collapse events or even

remove events if they are meaningless. A good example of this is two ―object moved‖
events for the same object. Clearly, only the last one is meaningful, so one could be

ignored. Also, if this system were sending, or marshalling, events across the Internet for a
multiplayer game, it would also be pretty smart about compressing and packaging multiple

events into a single squirt of data. This would be much more efficient than one event at a

time. Those examples could really only be done if messages were queued instead of
processed as they were generated.

Of course, you could change your mind about a queued message, and want to take it back,

like some of those emails I sent to my boss:

bool EventManager::VAbortEvent (EventType const & inType, bool

allOfType)

{

 assert (m_activeQueue >= 0);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 assert (m_activeQueue < kNumQueues);

 if (! VValidateType(inType))

 return false;

 EventListenerMap::iterator it = m_registry.find(

inType.getHashValue());

 if (it == m_registry.end())

 return false; // no listeners for this event, skipit

 bool rc = false;

 EventQueue &evtQueue = m_queues[m_activeQueue];

 for (EventQueue::iterator it = evtQueue.begin(),

 itEnd = evtQueue.end(); it != itEnd; it++)

 {

 if ((*it)->VGetEventType() == inType)

 {

 it = evtQueue.erase(it);

 rc = true;

 if (!allOfType)

 break;

 }

 else

 {

 ++it;

 }

 }

 return rc;

}

The VAbortEvent() method is a simple case of looking in the active queue for the event

of a given type and erasing it. Note that this method can erase the first event in the queue

of a given type or all events of a given type, depending on the value of the second
parameter. You could use this method to remove redundant messages from the queue, such

as two ―move object‖ events for the same object.

All those queued messages have to be processed sometime. Somewhere in the game‘s main

loop the Event Manager‘s VTick() method should be called, and the queued messages will

get distributed like so many pieces of mail:

bool EventManager::VTick (unsigned long maxMillis)

{

 unsigned long curMs = GetTickCount();

 unsigned long maxMs =

 (maxMillis == IEventManager::kINFINITE) ?

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 IEventManager::kINFINITE : (curMs + maxMillis);

 EventListenerMap::const_iterator itWC = m_registry.find(0);

 // swap active queues, make sure new queue is empty after the

swap ...

 int queueToProcess = m_activeQueue;

 m_activeQueue = (m_activeQueue + 1) % kNumQueues;

 m_queues[m_activeQueue].clear();

 // now process as many events as we can (possibly time

limited) ...

 // always do AT LEAST one event, if ANY are available ...

 while (m_queues[queueToProcess].size() > 0)

 {

 IEventDataPtr event = m_queues[queueToProcess].front();

 m_queues[queueToProcess].pop_front();

 EventType const & eventType = event->VGetEventType();

 EventListenerMap::const_iterator itListeners =

 m_registry.find(eventType.getHashValue());

 if (itWC != m_registry.end())

 {

 EventListenerTable const & table = itWC->second;

 bool processed = false;

 for (EventListenerTable::const_iterator

 it2 = table.begin(), it2End = table.end();

 it2 != it2End; it2++)

 {

 (*it2)->HandleEvent(*event);

 }

 }

 // no listerners currently for this event type, skip it

 if (itListeners == m_registry.end())

 continue;

 unsigned int const kEventId = itListeners->first;

 EventListenerTable const & table = itListeners->second;

 for (EventListenerTable::const_iterator

 it = table.begin(), end = table.end();

 it != end ; it++)

 {

 if ((*it)->HandleEvent(*event))

 {

 break;

 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 }

 curMs = GetTickCount();

 if (maxMillis != IEventManager::kINFINITE)

 {

 if (curMs >= maxMs)

 {

 // time ran about, abort processing loop

 break;

 }

 }

 }

 // if any events left to process, push them onto the active

 // queue.

 //

 // Note: to preserve sequencing, go bottom-up on the

 // remainder, inserting them at the head of the active

 // queue...

 bool queueFlushed = (m_queues[queueToProcess].size() == 0);

 if (!queueFlushed)

 {

 while (m_queues[queueToProcess].size() > 0)

 {

 IEventDataPtr event = m_queues[queueToProcess].back();

 m_queues[queueToProcess].pop_back();

 m_queues[m_activeQueue].push_front(event);

 }

 }

 // all done, this pass

 return queueFlushed;

 }

The Vick() method takes queued messages and sends them to the listener objects via

their HandleEvent() method. There are actually two queues. This is almost like double

buffering in a renderer. Sometimes handling events creates new events; in fact, it happens
all the time. Colliding with an object might cause it to move and collide with another object.

If you always added events to a single queue, you might never run out of events to process.
This problem is handled easily with two queues: one for the events being actively processed

and the other for new events.

The code is very much like what you saw in the VTrigger() method, with one more

difference than the fact the events are being pulled from one of the queues. It also can be

called with a maximum time allowed. If the amount of time is exceeded, the method exits,
even if there are messages still in the queue.

This can be pretty useful for smoothing out some frame rate stutter if you attempt to handle

too many events in one game loop. If your game events start to pile up, and your queue
always seems to stay full, perhaps you‘d better work on a little optimization.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The next set of methods gives you information about the Event Manager: what event types

are legal, what listeners are attached to the Event Manager, and what event types have
been registered by all the listeners:

bool EventManager::VValidateType(EventType const & inType)

const

{

 if (0 == inType.getStr().length())

 return false;

 if ((inType.getHashValue() == 0) &&

 (strcmp(inType.getStr().c_str(),kpWildcardEventType) !=

0))

 return false;

 EventTypeSet::const_iterator evIt = m_typeList.find(inType

);

 if (evIt == m_typeList.end())

 {

 assert(0 && "Failed validation of an event type; it was

probably not

 registered with the EventManager!");

 return false;

 }

 return true;

}

The first check for a legal event type is if the string description of the event type is non-null.

Every event type has to have a name or the EventType::hash_name method won‘t

work. The next check requires that the calculated identity of the string is either non-zero or

the string is the wildcard string.

If those checks pass, the manager checks all the event types that are currently registered.
If it is found, hopefully, it is because two listeners are both listening for the same event

type. This would happen quite often, especially with events such as ―object_moved.‖ Lots of
game subsystems, and therefore listener objects, would care about that kind of event. If the

strings for two event types that happened to share the same hash calculated by

EventType::hash_name are different, then the new event is declared illegal, and you

can officially call yourself horribly unlucky. Choose a new name for your event and get on

with your life.

The last two methods return lists of listeners and event types registered with the Event
Manager:

EventListenerList EventManager::getListenerList

 (EventType const & eventType) const

{

 // invalid event type, so sad

 if (! VValidateType(eventType))

 return EventListenerList();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 EventListenerMap::const_iterator itListeners =

 m_registry.find(eventType.getHashValue());

 // no listerners currently for this event type, so sad

 if (itListeners == m_registry.end()) return

EventListenerList();

 EventListenerTable const & table = itListeners->second;

 // there was, but is not now, any listerners currently for

 // this event type, so sad

 if (table.size() == 0)

 return EventListenerList();

 EventListenerList result;

 result.reserve(table.size());

 for (EventListenerTable::const_iterator it = table.begin(),

 end = table.end(); it != end ; it++)

 {

 result.push_back(*it);

 }

 return result;

 }

 EventTypeList EventManager::getTypeList (void) const

 {

 // no entries, so sad

 if (m_typeList.size() == 0)

 return EventTypeList();

 EventTypeList result;

 result.reserve(m_typeList.size());

 for (EventTypeSet::const_iterator it = m_typeList.begin(),

 itEnd = m_typeList.end(); it != itEnd; it++)

 {

 result.push_back(it->first);

 }

 return result;

 }

Further Work

One thing you might notice is the Event Manager currently doesn‘t have serialization
support. This is one homework assignment I‘ll give you—perhaps you‘ll consider using

boost::serialization to implement it. The event system will likely have events

queued every game loop, and these events will probably need a way to be saved and

reloaded at any time. Another bit of useful work you can do to make these classes more
useful for prime time game development is much better error checking and the

implementation of exceptions. Currently, the asserts in the code will help you find bugs

during development, but in a release build will happily allow the code to continue to run
with bad data.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

What Game Events Are Important?

It‘s a little something of a cop-out, but it completely depends on your game, doesn‘t it? A

game like Tetris might care about a few simple events such as ―Brick Created,‖ ―Brick
Moved,‖ ―Brick Rotated,‖ and ―Brick Collision.‖ A game like Thief: Deadly Shadows had

dozens and dozens of different game events. Here‘s an example of the kind of game events
you might send in just about any game:

Game Events Description

ActorMove A game object has moved.

ActorCollision A collision has occurred.

AICharacterState Character has changed states.

PlayerState Player has changed states.

PlayerDeath Player is dead.

GameOver Player death animation is over.

ActorCreated A new game object is created.

ActorDestroy A game object is destroyed.

Map/Mission Events

PreLoadLevel A new level is about to be loaded.

LoadedLevel A new level is finished loading.

EnterTriggerVolume A character entered a trigger volume.

ExitTriggerVolume A character exited a trigger volume.

PlayerTeleported The player has been teleported.

Game Startup Events.

GraphicsStarted The graphics system is ready.

PhysicsStarted The physics system is ready.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Game Events Description

EventSystemStarted The event system is ready.

SoundSystemStarted The sound system is ready.

ResourceCacheStarted The resource system is ready.

NetworkStarted The network system is ready.

HumanViewAttached A human view has been attached.

GameLogicStarted The game logic system is ready.

GamePaused The game is paused.

GameResumedResumed The game is resumed.

PreSave The game is about to be saved.

PostSave The game has been saved.

Animation and Sound

Events

AnimationStarted An animation has begun.

AnimationLooped An animation has looped.

AnimationNotetrack An animation dependent command event—used to time sound

effects, such as footsteps, exactly with an animation.

AnimationEnded An animation has ended.

SoundEffectStarted A new sound effect has started.

SoundEffectLooped A sound effect has looped back to the beginning.

SoundEffectEnded A sound effect has completed.

VideoStarted A cinematic has started.

VideoEnded A cinematic has ended.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Distinguishing Events from Processes

If you recall the CProcess class from Chapter 6, you might be wondering if there is a

significant difference between a game event and a process. The difference is easy—a game

event is something that has happened in the most recent frame, such as an actor has been
destroyed or moved. A process is something that takes more than one frame to process,

such as an animation or monitoring a sound effect.

These two systems are quite powerful by themselves, and can easily create a game of
significant complexity with surprisingly little code in your game logic or view classes.

Further Reading

Algorithms in C++, Robert Sedgewick

Beyond the C++ Standard Library, Björn Karlsson

Effective STL, Scott Meyers

Introduction to Algorithms, Thomas Cormen

Chapter 11. Scripting with Lua

by James Clarendon

In This Chapter

 What Is Scripting?

 Common Scripting Paradigms

 Introducing Lua

 Getting Started with a Lua Wrapper—LuaPlus

 Mind the Gap!

 Wanna Buy a Bridge?

 I‘m Totally Wired

 Do You Hear What I Hear?

 Let‘s Get OOP-Able!

../../ch06#ch06
../../ch11lev1sec1#ch11lev1sec1
../../ch11lev1sec2#ch11lev1sec2
../../ch11lev1sec3#ch11lev1sec3
../../ch11lev1sec4#ch11lev1sec4
../../ch11lev1sec5#ch11lev1sec5
../../ch11lev1sec6#ch11lev1sec6
../../ch11lev1sec6#ch11lev1sec6
../../ch11lev1sec8#ch11lev1sec8
../../ch11lev1sec9#ch11lev1sec9
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Debugging Script

 Introducing Decoda

 Famous Last Words: ―An Exercise for the Reader‖

 References

This chapter is authored by James Clarendon, a lead programmer at Red Fly
Studio. James and I have collaborated on several projects in the past, most

recently Mushroom Men: The Spore Wars and Ghostbusters: The Video Game. He
lives in Brooklyn, New York, with entirely too many classic video game systems.

Picture it: Sicily, 1922. Wait, scratch that—a drizzly October morning, 1983, Sparks

Elementary. My fellow first graders and I were led into the bowels of the school and seated
before a row of glowing monitors. I was lucky enough to nab a chair in front of one of the

color monitors, attached to a TI-99/4A running a cartridge called LOGO. On the lurid blue
screen, a small orange truck raced from left to right, wrapping around forever. With a little

instruction from Ms. Davis, our teacher, we discovered we could make all sorts of shapes
and set them in motion. Soon planes, houses, and a menagerie of others were whizzing to

and fro all over the screen.

And then I did it.

I must have hit the function key, because the screen cleared and instead of zooming
sprites, I was instead faced with a blinking cursor. What had I done?!?

Ms. Davis came over and explained that I was controlling the turtle. ―Oh...‖ I said, not quite

comprehending. Then she pointed me toward a reference card and started giving me some
instruction. I started experimenting.

FD 10

I hit the function key to return to the display. To my amazement, a small black line was in

the center of the screen, with a tiny triangle at the end, pointed right. I looked back to the
reference card and started typing more.

RT 90

The triangle had rotated, and was now pointed straight up. That was my ―turtle.‖

FD 50

Now I had a right angle drawn on my screen. I didn‘t realize it then, but I had just
discovered scripting using the LOGO language.

What is Scripting?

At its heart, scripting is a way for a user to tell a program how to behave. If you think that
sounds a lot like programming, you‘re partly correct. A script controls the behavior of a

program, but it exists as a separate entity that is loaded or entered in and acted upon by
the program. Scripts are normally in a human-readable format, and ideally they can be

edited by nonprogrammers.

../../ch11lev1sec10#ch11lev1sec10
../../ch11lev1sec10#ch11lev2sec28
../../ch11lev1sec11#ch11lev1sec11
../../ch11lev1sec12#ch11lev1sec12
http://lib.ommolketab.ir
http//lib.ommolketab.ir

One of the most important things to learn as a modern-day game developer is that it is the

content providers—not the programmers—who will make the game fun. Sure, you have to
fix the bugs and make sure everything runs just right, but the more effort you can invest

into making tools that are easy to use for creative types, the more power will be available to
them to express their vision.

To that end, you need to shift your programming philosophy from a process-driven one to

one where the external data determines the flow and behavior of the game, and where you
can expose functionality and open up the game‘s features to these creative types. This is a

data-driven philosophy, which you should adopt as soon as possible.

With a properly engineered design, scripters can bring a game world to life. From a very
high-level perspective, scripting can be used to dictate the actions of actors the way a stage

director would in a play. By giving these actors a sense of autonomy and interactivity, you
can truly leverage the strength of the medium.

Data-Driven Software Design

Writing a good data-driven engine is a difficult task. It requires the software to be

architected to accept external data, verify its contents at runtime, handle any problems, and
kick off complicated tasks from this data. This sounds simple, but you‘ll find yourself having

to re-think much of an engine‘s architecture to support this properly. Many explicit calls
must be changed to requests that are verified first.

One school of thought holds the ideal engine to be one that could essentially create any

type of game, all without changing a single line of code. Content drives this. While this
engine still remains a Platonic ideal (or Quixotic folly), realize that the scripters will be the

ones building the game, and you will be there to support them.

Data Definition Versus Runtime Game Control

Content can drive a program in one of two ways: straight up data definition, and through
runtime control. While you can certainly make a game with just data definition, more

powerful engines allow scripters to truly take advantage of exposed functionality. In
practice, and in the course of this chapter, I‘ll be showing you both facets.

Data definition is basically a way to parameterize a program‘s behavior. INI and XML files

are good examples of this; they hold static data that a program reads in at runtime and
works around. Most game editors will save out this data for a level, and later read it in to

determine the number and types of actors, as well as each of their properties. In a game
where all you need is to specify hit points and static behavior values, this is all that is

necessary to get moving.

On the other hand, you can have runtime game control from script. This opens up a level of
process control to the scripters, and it‘s one that inspires a lot of fear in programmers.

Giving up control?!? Of my program?!? Get a hold of yourself now; granting scripters their

own functions and access to the game engine‘s state and behavior will expand the
possibilities and interactivity of the final product. And it‘ll probably save you time, too.

Pros and Cons of Using a Scripting Language

Much like the classic dilemma a certain arachnid-loving superhero was faced with, the
power offered by a scripting language brings with it some additional responsibilities and

trade-offs that you‘ll need to be aware of for an optimal implementation. Next, I‘ll look at

what I consider to be the most important considerations.

Resource Efficiency

http://lib.ommolketab.ir
http//lib.ommolketab.ir

One concern for a scripting language is its efficiency in controlling resources, particularly

memory. Many scripting languages, especially those that dynamically allocate data, use a
reference count or garbage collection scheme to maintain memory usage. Still, an

interpreted language won‘t ever be as smart as a good compiler in its use of resources. By
and large, this should not be a huge issue, but be aware that it can cause headaches down

the road.

Speed

I made this concern purposely vague to illustrate a trade-off: runtime execution speed and
workflow speed. A good scripting language may not run as fast as straight C++, but you‘ll

probably wind up saving time in the long run by easily being able to prototype portions of
your game. One of the most important aspects of a scripting language is that you don‘t

need to recompile the executable to change the game. Most importantly, nonprogrammers
can work on developing the game and don‘t need to have a copy of Visual Studio, nor do

they need a degree in Computer Science.

Besides, with all that time you saved, you‘ll have plenty of time to profile and find script
functions that will run faster when shifted into native C++.

Verifying Data

Since your data will be coming in at runtime, there‘s no compiler and linker to verify

everything a priori. This is going to change the way you program, because everything that
could handle external data will need to be fault tolerant. Whether you use exceptions or

some other scheme, your code must be robust enough to interrupt itself, raise a red flag,
and get itself back on track, all the while informing the scripter of his latest bone-headed

mistake. Even if it‘s a completely fatal error, let the user know what data caused it and why
it can‘t continue.

No, you can‘t just crash to the desktop. Well, you can. Just don‘t be surprised when they

come to your office with torches and pitchforks.

Ease of Use

Isn‘t this guaranteed to be a ―pro‖? Isn‘t it great that we give all this power and freedom to
nonprogrammers? What could the ―con‖ be?

The con is that a poorly architected system can hoist an unsuspecting scripter by his or her

own petard. A system so complicated and convoluted that it is just impossible to salvage.
This can be avoided with some vigilance and some technically minded scripters.

Hoisted by Their What?

I recently learned that a petard was a small explosive used to
blow open walls and doors during the Renaissance. Its name

comes from the archaic French word peter—to fart.

Common Scripting Paradigms

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Below are listed several paradigms used by many engines. Some engines offer one or more

of them.

Data Definition Only

While your first instinct may be to sneer, there are some games for which defining static

data is perfectly adequate. Simple arcade games and linear action and racing titles can do
just fine with this. There‘s no real ―scripting‖ going on here, but there may not need to be.

This method is good for games with minimal or simple dynamic actors.

Graphical

A more modern approach is the graphical scripting system. In such a system (e.g., Unreal‘s
Kismet), the user manipulates various graphical primitives representing concepts to

accomplish the runtime scripting. Want the lights to turn on when a player opens the
refrigerator door? In a graphical scripting system, you might drag a link object from the

door object to the light bulb. This system is very powerful and very user friendly. However,

it doesn‘t offer the kind of freeform and lower-level control that some games may demand.

Interpreted Script Languages

Interpreted script languages are what we‘ll be focusing on primarily in this chapter. With

this paradigm, a scripter works in a high-level language friendlier than C++, but with a lot
of power at his disposal. Ideally, it should let the scripter go beyond the bounds of explicit

game behavior and allow him to define his own actor types and actions. This kind of

scripting paradigm enables scripters to implement (and prototype!) new and deeper
systems.

Languages such as BASIC, Python, Lua, and even LOGO may vary in terms of syntax and

implementation, but all are interpreted at runtime. Optimizations exist to get around this,
such as precompilation, but this interpretation is actually a strength of the language. As

we‘ll see later, a good interpreted language can make explicit calls through a console to
help debugging and testing.

The Future of Scripting

I‘ve lived for 30 years on this planet (three...elsewhere), and
the creativity of the games industry will never cease to

amaze me. At the 2007 Game Developers Conference, Sony
introduced Little Big Planet, a game where the ―scripting‖ is

done interactively within the game world, while playing the
game. Watching a little sack-person run around, pop open a

menu, pull out a wheel from thin air and start it spinning,
then jump on it and use it as a platform to hoist himself up

to the top of a cliff, left me—as the British would say—

―gobsmacked.‖ Could this be the future of scripting?

Introducing Lua

Ah, lovely Lua. Lua is a scripting language developed in the early nineties (back when Mr.
Mike was using a 286 to make EGA cave drawings) by a group at the Pontifical University of

Rio de Janeiro. The name, as the Brazilian origin would indicate, is the Portuguese word for
―moon.‖ Originally intended as a lightweight language usable by nonprogrammers, it

http://lib.ommolketab.ir
http//lib.ommolketab.ir

borrowed many concepts from contemporary languages. Following an article on Lua in Dr.

Dobbs Journal, it began to gain traction in the games community.

Someone’s Been Messing with the Milkman’s

Anti-Paranoia Medicine Again

To the best of my knowledge, the first games to use Lua
were LucasArts‘ adventure titles. If you‘ve played Grim

Fandango or Psychonauts—and shame on you if you

haven‘t—you‘ve played a title written primarily in Lua.

Looking at a Lua script is intuitive and simple: the structure is fluid, the syntax is lax, and
the built-in operations are limited. There‘s even a runtime interpreter; just go to the bin\

directory of the Lua source and run the executable. It will let you type things in, such as the
example code in this chapter, and see values spit out. I won‘t be going into an exhaustive

treatise on how to use Lua; better resources will be listed at the end of the chapter for that.

For now, you should find the code very C-like and understandable.

So what‘s so great about Lua?

Lack of Strong Typing

Variables in Lua aren‘t typed at all. Similar to the boost::any class, you can assign

anything to any variable you want. Take, for example, this Lua script snippet:

--Let's start 'a' off as a number.

a = 55

print(a)

b = 63.7 + a

print(b)

--Now let's toy with 'a' a little more.

a = "Hello!"

print(a)

--The '..' operator is for concatenation.

print(a .. " B = " .. b)

This produces the result:

55

118.7

Hello!

Hello! B = 118.7

Great, so all we did was assign a string to a variable that was once an integer, and then we
converted them. Let‘s look at another, more powerful script:

--Calculates the square of the value.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

function mySquare(value)

 return (value * value)

end

--Doubles the input value.

function myDouble(value)

 return (value * 2)

end

f = "I'm about to be a function!"

x = 11

print(f)

f = mySquare

print(f(x))

f = myDouble

print(f(x))

...which produces:

I'm about to be a function!

121

22

So even functions can be assigned to variables. You know how many asterisks, parentheses,

incantations, and curses are required to do a function pointer in C++? And it‘s still going to
be strongly typed? In Lua, functions can take an arbitrary number of parameters (if you

don‘t specify them all, Lua will assign them ―nil‖ for you...you can treat it almost like an
explicit NULL). But wait there‘s more! We‘re not to my favorite part yet.

Tables

The only native data type built in to Lua is the table. A table can be used for almost

anything; it‘s an associative container mapping keys (of any type) to values (of any type).
Let‘s look at an example:

function LandRover()

 print("LAND ROVER")

end

function GTI()

 print("GTi")

end

--Start with empty tables.

tblOne = {}

tblTwo = {}

--We can add elements using two types of syntax,

--the '.' or the '[]' methods, shown below.

tblOne.Name = "Mr. Mike"

tblOne["Car"] = LandRover

tblTwo["Name"] = "James"

tblTwo.Car = GTI

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Note that the brackets with quote-delimited string produce the same result as the dot
method. Let‘s see what we can do with this now:

function displayPerson(personTable)

 --Display the name member.

 print(personTable["Name"] .. " drives a:")

 --Call the function related to this table.

 --We'll put it into a local variable first.

 local func = personTable.Car

 func()

end

--Display Mike's table.

displayPerson(tblOne)

--Now James' table.

displayPerson(tblTwo)

As you can guess, the result of running this is:

Mr. Mike drives a:

LAND ROVER

James drives a:

GTi

This data structure is so powerful, you can use it to manage an array, a dictionary, lists,
and queues. You can easily iterate over a table as well:

--Create a table, with last name as key,

--and value as first name.

people =

{

 McShaffry = "Mike",

 Lake = "Jeff",

 Clarendon = "James",

}

--Let's iterate over the table.

--NOTE: As it's an associative map,

--it may not be in order!

for lastName, firstName in pairs(people) do

 print(firstName .. " " .. lastName)

end

On my machine, this produced the following results:

Jeff Lake

Mike McShaffry

James Clarendon

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Because strings are stored as hashed values, the mapping within a table does not always
correspond to the order that they were input. Lua handles strings this way primarily for

efficiency.

You can also create an indexed array by assigning entries in order of index, or just not
specifying any keys:

--Create a table to act as an array.

myArray = { 10, 20, 30, 40, 50 }

--NOTE: We're using ipairs here to iterate over indexed pairs!

for index, value in ipairs(myArray) do

 print("Index: " .. index .. " Value: " .. value)

end

Something to note here is that the first index is 1, not 0, as you and I would expect.

Lua, Like Most of Humanity, Starts Counting

at One

Be careful when treating tables as arrays in C++. All too

often, you‘ll find yourself starting to count at zero, and you‘ll
spend two hours tearing your hair out trying to find the

problem.

Tables are a flexible method of dragging around a big quantity of arbitrary data. They‘re

perfect for nonprogrammers to assemble a collection of data without having to jump
through lots of hoops. As we‘ll see later, this flexibility will pay off.

Metatables

Good use of metatables in Lua is an advanced topic, so I won‘t go too much into detail here.
Suffice it to say that a metatable enables you to (among other things) group things into a

class of sorts. Not only is this obviously useful for creating an object-oriented style

hierarchy, but it can also be used to bring a sort of virtual function table to objects as well.

Throughout the scripts in this book, you‘ll see things like:

EventManager:RegisterEventType("xyzzy");

This is very similar to calling a member function; here we‘re calling the Regis-

terEventType method within the EventManager.

When we start opening C++ functions up to script, we‘ll go through metatables to keep

them nice and organized.

Garbage Collection

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Memory management and tracking down leaky objects vexes programmers. Lua takes care

of destroying its own objects. Any object that no longer has any reference to itself will be
marked for deletion and taken care of by the system.

Virtual Machines

Lua supports multiple independent instances running as virtual machines (LuaStates).

This means that you can have a LuaState for holding one type of data while another

holds different data, and both are completely independent of each other. You could, for

example, run a separate LuaState for each actor in your world. Or you could put runtime

options in one, separate from the game variables, without fear of a name clash.

Getting Started with a Lua Wrapper—LuaPlus

Lua is written in pure ANSI C. Numerous people have written their own C++ wrappers, with

varying success. The best one I have encountered is Joshua Jensen‘s LuaPlus. Not simply a
wrapper, it actually adds new functionality. It is also by far (in my opinion) the most friendly

from a programmer‘s perspective. LuaPlus has been used in several shipped titles, and it is

incredibly easy to get up and running scripts quickly.

Where to Get LuaPlus

You can download LuaPlus from http://luaplus.org. Note that the version for direct

download isn‘t always the latest version; you can get that by connecting via a Subversion
client.

Once you‘ve gotten it installed, you may elect to link it in your project as a static library or

run it as a DLL.

Are We Actually Going to Write Some Code Now?

Now that I‘ve dragged you through the philosophical mud, let‘s get back into implementer

mode. Our core class will be the LuaStateManager, and let‘s take a look at the interface:

class LuaStateManager

{

public:

 LuaStateManager(void);

 ~LuaStateManager();

 // I hate two-stage initialization, but due to dependencies,

 // we have to have an Init called after the Event Manager

gets built.

 // This function runs the init script.

 bool Init(char const * const pInitFileName);

 // Returns the main state used by the entire game.

 // Other implementations may use multiple LuaStates, but for

our purposes

 // a single state will do just fine.

 LuaStateOwner & GetGlobalState(void) { return m_GlobalState;

}

../../default17.htm
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 // Executes a Lua script file.

 bool DoFile(char const * const pFileName);

 static bool ExecuteFile(LuaStateOwner & luaState

 , char const * const pFileName);

 // Executes an arbitrary Lua command.

 int ExecuteString(char const * const pStringToExecute);

 // Debug function for determining an object's type.

 static void IdentifyLuaObjectType(LuaObject & objToTest);

 // The table where all actor context and data is stored

 // for script accessibility.

 LuaObject GetGlobalActorTable(void);

private:

 // Debug print string function (callable from script).

 void PrintDebugMessage(LuaObject debugObject);

 // Our global LuaState.

 LuaStateOwner m_GlobalState;

 // Our portal to the outside world.

 LuaObject m_MetaTable;

};

The manager, like any good manager, encapsulates access to its minions. Note the two

member variables: m_GlobalState is our LuaState/virtual machine owned by the

manager, and the m_MetaTable member will be the interface allowing script to call

functions. Let‘s take a look inside the constructor:

LuaStateManager::LuaStateManager(void)

: m_GlobalState(true) // 'true' Indicates to init the

standard Lua library

 // for dofile, etc.

{

 //Create our metatable...

 m_MetaTable =

 m_GlobalState->

 GetGlobals().CreateTable("LuaStateManagerMetaTable");

 m_MetaTable.SetObject("__index", m_MetaTable);

 // Here we register two functions to make them accessible to

script.

 m_MetaTable.RegisterObjectDirect(

 "DoFile", (LuaStateManager *)0, &LuaStateManager::DoFile

);

 m_MetaTable.RegisterObjectDirect(

 "PrintDebugMessage", (LuaStateManager *)0,

 &LuaStateManager::PrintDebugMessage);

 LuaObject luaStateManObj = m_GlobalState->BoxPointer(this);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 luaStateManObj.SetMetaTable(m_MetaTable);

 // And here we expose the metatable as a named entity.

 m_GlobalState->GetGlobals().SetObject("LuaStateManager",

luaStateManObj);

}

Here you can see that the LuaStateOwner gets initialized with true to indicate that you

want LuaPlus to load in the standard Lua libraries for some of the core functionality. Next,
you start opening the gate to script via a metatable. These will be callable with script calls

like so:

LuaStateManager:PrintDebugMessage("Hello, world!")

Normally, I hate two-stage initialization. I want an object to be fully functional the moment

it is created. In this case, however, we have a dependency between the EventManager

and the LuaStateManager, which we‘ll get to in a bit. If you‘ll recall from Chapter 5,

―Game Initialization and Shutdown,‖ we create the LuaStateManager, followed by the

EventManager, and then we call the LuaStateManager::Init (), passing in an

initialization script file to execute. Let‘s look at that function now:

bool LuaStateManager::Init(char const * const pInitFileName)

{

 // Create our global actor table.

 // This table will hold context for all actors created in the

game world.

 LuaObject globals = m_GlobalState->GetGlobals();

 LuaObject actorTable = globals.CreateTable("ActorList");

 return DoFile(pInitFileName);

}

This function creates the global table ActorList in script. When we get around to creating

actors, they will store any data pertinent to them in that table. Your scripters will then be
able to modify and access actors from within script.

The last thing this function does is to execute the initialization Lua script provided. As you‘ll

see later, this is an important detail, because it will set some parameters and context before
the game itself gets up and running. This script can also hold any game-specific values you

may want to use—think of it as your initial data definition, in lieu of an old school INI file.

Mind the Gap!

Before we go much further, let‘s talk about organization of script and code. In this respect,
think of them as two separate worlds, and we‘ll be laying the groundwork of crossing that

gap.

What Lives in Code, and What Lives in Script?

../../ch05#ch05
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Anything engine-specific or processor intensive should go into code. Anything outside the

realm of what the basic engine provides, however, should go into script. Script should only
refer to entities from the engine via handles/IDs, or through the dedicated objects (like the

ActorList above).

Something important to remember is that script can be altered without a recompile. One
huge benefit of this is the ability, with a well-architected engine, to do large swaths of

prototyping in script. When clean recompiles start to reach dangerously high times
(anything in excess of 10 minutes), this flexibility will keep your developers in the zone and

moving forward.

Always Use Handles to Reference Code-Side Objects

Any object created by the code-side of things should be referenced via

handle or ID by script. This includes actors, sprites, and just about
everything else that needs to allocate or manage resources. While at

first it may seem cumbersome to have to look these up to get at your
data, it will ultimately serve you well in the end. When you get to the

networking chapter, you’ll see why synchronizing object IDs across
multiple clients is important. Secondly, passing an ID across the

script/code gap is more efficient than laboriously copying tables. If

your game’s biggest bottleneck is looking up objects, there’s
something wrong.

You Hired Scripters for a Reason

Do as much work as you can in script. Even if it’s slow, make it work

first. Slow things can be moved into code easily later on, but iteration
speed is important.

From Code to Script and Back Again

Figuring out how code and script communicate is important. Here we‘ll look at some of the

methods you can use to get data across using explicit functions.

Calling Code Functions from Script

As you saw above in the LuaStateManager constructor, we created a metatable that will

be the access point for script accessing the manager. The RegisterObjectDirect

function directly ties a C++ object to a Lua one. Besides mirroring our architecture
philosophy for the rest of the engine, this metatable approach offers us several advantages:

 Encapsulates functionality within managers to make a cleaner architecture.

 Reduces namespace collisions in the global state.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Script-called functions can actually be made private from C++ classes; in the

LuaStateManager header, note that PrintDebugMessage is actually declared

in the private section.

Calling Script Functions from Code

LuaPlus also offers a wonderful templated object called the LuaFunction. This makes

calling arbitrary script functions, with arbitrary return values, nice and simple. For example,

let‘s assume that you have the following script function:

function IsGreaterThan5(number)

 return (number > 5)

end

You can call this function from C++ like so:

// This Lua function returns a bool, indicated in the template

brackets.

LuaFunction< bool > myLuaFunction("IsGreaterThan5");

const bool bIsIt = myLuaFunction(50);

Executing this will call the appropriate Lua function.

Pass Tables in Lieu of Multiple Parameters

LuaFunction supports passing up to seven parameters. If you’re

going to pass more than one or two parameters (or if you’re passing a
variable number of parameters), pass a table with all of the

parameters inside it instead. This will also come in handy later when
the parameters are necessary for a function change; you won’t find

yourself changing every single call.

Pros and Cons of Explicit Calls

Explicit calls are nice because they are efficient and fast. When the parameters are known,
you can count on exactly what is expected. On the other hand, they‘re error-prone when a

scripter makes a mistake. And what happens if the parameters to a function change?

In the next section, we‘ll look at a different method of crossing the code/script gap.

Wanna Buy a Bridge?

In Chapter 10, ―Game Event Management,‖ you were introduced to the event system. What
if you could tie the scripting system into this? In this section, we will go from this realm of

computer science fiction to computer science fact. We‘ll be building a generic bridge for

script and code to communicate with each other. This system will have several advantages:

../../ch10#ch10
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Single interface

 Data-driven event system

 Flexibility with optional and variable numbered parameters

Instead of having lots and lots of explicit functions, you‘ll be communicating through a

central point of contact within the EventManager. Besides saving a lot of clutter, this also

helps debugging by having all bridge traffic go through central interfaces. Script functions
will be written one and only one way, and from the code‘s perspective, they‘re simply

handling an event. Additionally, you‘ll be able to create your own event types within script.
These event types are identical to the existing event types.

Another important aspect of this method will be a common interface (Lua tables) for

transporting event data. This lets you continue to run if function parameters change, as well
as supply a variable number of parameters. Lastly, scripters can specify just the parameters

they want, with defaults being handled by the code.

I’m Totally Wired

We‘re going to start by adding some script-callable functions in the EventManager‘s

header file:

// Registers a script-based event.

void RegisterScriptEventType(char const * const pEventName);

// Add/remove a script listener. Note that we pass a Lua

function as the

// second parameter of each of these, and tie that function to a

specific

// event name. We'll call the Lua function when the event type

comes in.

bool AddScriptListener(char const * const pEventName,

 LuaObject callbackFunction);

bool RemoveScriptListener(char const * const pEventName,

 LuaObject callbackFunction);

// Triggers an event from script. The event data will be

serialized for any

// code listeners. Script listeners will receive the data table

passed in.

bool TriggerEventFromScript(char const * const pEventName,

 LuaObject luaEventData);

As with the Lua State Manager, you‘ll be opening these functions up to script via a
metatable:

LuaObject m_MetaTable;

In the EventManager‘s constructor:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

//Create our metatable...

m_MetaTable = g_pApp->m_pLuaStateManager->GetGlobalState()-

>GetGlobals().

 CreateTable("EventManager");

m_MetaTable.SetObject("__index", m_MetaTable);

m_MetaTable.RegisterObjectDirect("RegisterEventType",

(EventManager *)0,

 &EventManager::RegisterScriptEvent

Type);

m_MetaTable.RegisterObjectDirect("TriggerEvent", (EventManager

*)0,

&EventManager::TriggerEventFromScript);

m_MetaTable.RegisterObjectDirect("AddScriptListener",

(EventManager *)0,

&EventManager::AddScriptListener);

m_MetaTable.RegisterObjectDirect("RemoveScriptListener",

(EventManager *)0,

&EventManager::RemoveScriptListener);

LuaObject luaStateManObj = g_pApp->m_pLuaStateManager->

 GetGlobalState()->BoxPointer(this);

luaStateManObj.SetMetaTable(m_MetaTable);

g_pApp->m_pLuaStateManager->GetGlobalState()->GetGlobals().

 SetObject("EventManager",

luaStateManObj);

These four functions will be your sole points of entry for the script and code bridge. In the
next sections, we‘ll go into each of these functions, as well as other code required to get

them up and running. Before we go into that, let‘s do a top-down view of what we want to
get out of this system.

For a scripter to trigger an event, they will pass in the event name and a Lua table

specifying the data for the event, like so:

eventData =

{

 Text = "Hello, World!",

 Position =

 {

 --Draw at upper left of screen; X/Y coordinates specified.

 30, 50,

 },

}

EventManager:TriggerEvent("drawText", eventData)

The above Lua snippet creates a table with the parameters for a mythical ―draw text‖ event
and then triggers it.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

We also want script to be able to listen for events. Here is a sample snippet of script that

illustrates that:

--Define the listener function.

function DrawTextListener(eventData)

 print("Attempting to draw the text: " .. eventData.Text)

 print("At location: (" .. eventData.Position[1] .. ", " ..

 eventData.Position[2] .. ")")

end

--Add a listener for the function.

EventManager:AddScriptListener("drawText", DrawTextListener)

This snippet defines a listener function and then creates a script listener for the ―draw text‖

event. Whenever a ―draw text‖ event is triggered, the function DrawTextListener will

be called.

Additions to the Event Data Class

To support what you want, you‘re going to need some method of transforming Lua event

data into the native format of the event. To that end, you‘re going to be adding some

functionality to the BaseEventData class:

public:

 // Called when sending the event data over to the script-side

listener.

 virtual LuaObject VGetLuaEventData(void) const = 0;

 // Serializes the event data into the LuaObject.

 virtual void VBuildLuaEventData(void) = 0;

 // Called when testing whether or not the event

 // has been serialized for script

 // (this allows us to only serialize ONCE per event trigger).

 virtual bool VHasLuaEventData(void) const

 {

 return m_bHasLuaEventData;

 }

protected:

 // We will build Lua data *only if necessary*

 // (i.e., there is a script-side listener).

 bool m_bHasLuaEventData;

These additional members will allow you to transform an event‘s normal data into a Lua
table for script listeners. Note that we‘ve implemented an optimization; we only do this

transformation (VBuildLuaEventData) when there is a script listener. If there is at least

one script listener, the EventManager only calls VBuildLuaEventData once, then the

transformed data is sent to each script listener.

Registering Events

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Another change you‘re going to make is to require event types to be registered with the

EventManager before they can be used. This will allow you to define the usage of the

events and define the way in which they are created and tracked. It also prevents you from

accidentally creating two event types with the same name (as I accidentally did in the
process of writing the code for this chapter). This will all make more sense in a moment, I

swear. Here‘s your interface for registration:

// This class holds meta data for each event type, and allows

// (or disallows!) creation of code-defined events from script.

class IRegisteredEvent

{

public:

 //Meta data about the type and usage of this event.

 enum eRegisteredEventMetaData

 {

 // Event is defined in script.

 kREMD_ScriptDefined,

 //Event is defined by code, and is *NOT* callable from

script.

 kREMD_CodeEventOnly,

 //Event is defined by code, but is callable from script.

 kREMD_CodeEventScriptCallable,

 };

 IRegisteredEvent(const eRegisteredEventMetaData metaData)

 : m_MetaData(metaData)

 {

 }

 virtual ~IRegisteredEvent()

 {

 }

 virtual bool VTriggerEventFromScript(LuaObject & srcData)

const = 0;

 eRegisteredEventMetaData GetEventMetaData(void) const

 {

 return m_MetaData;

 }

private:

 const eRegisteredEventMetaData m_MetaData;

};

As indicated by the enumeration, there are three types of registered events:

 Those defined by script.

 Those defined by code (and creatable by script).

 Those defined by code (but not creatable by script!).

This list is reminiscent of a scene from the short ―A Fistful of Yen‖ in The Kentucky Fried
Movie:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Loo: And who are they?

Dr. Klahn: Refuse, found in waterfront bars.

Loo: Shanghaied?

Dr. Klahn: Just lost drunken men who don‘t know where they are and no
longer care.

Prisoner #1: Where are we?

Prisoner #2: I don‘t care!

Loo: And these?

Dr. Klahn: These are lost drunken men who don‘t know where they are, but
do care! And these are men who know where they are and care, but don‘t

drink.

Why should you care if a code-defined event is created from script? It allows you to restrict
access. It‘s the only thing you have left between you and the scripters. There are some

events that need to be solely in the domain of creation by the coders, such as low-level
signals and so on. Script can still listen for these events, but it can‘t create them.

The interface also defines two virtual functions called when an event is triggered or queued

from script. The LuaObject reference parameter is a table that will hold all of the data for

the specific event.

Before we go any further in defining each derivation of IRegisteredEvent, let‘s look at

how they‘re going to be handled. Here are some additional members of the

EventManager‘s header file:

typedef boost::shared_ptr< IRegisteredEvent >

IRegisteredEventPtr;

//Verifies that such an event does not already exist, then

registers it.

void AddRegisteredEventType(const EventType & eventType,

 IRegisteredEventPtr metaData);

// one global instance

typedef std::map< EventType, IRegisteredEventPtr >

EventTypeSet;

EventTypeSet m_typeList; // list of registered

event types

So we create a mapping of EventType to IRegisteredEvents, which we can look up

when an event comes in:

void EventManager::AddRegisteredEventType(const EventType &

eventType,

 IRegisteredEventPtr

metaData)

{

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 const EventTypeSet::const_iterator iter = m_typeList.find(

eventType);

 if (iter != m_typeList.end())

 {

 assert(0 && "This event type has already been

registered!");

 }

 else

 {

 // We're good...

 m_typeList.insert(std::make_pair(eventType, metaData)

);

 }

}

When the scripter calls EventManager:TriggerEvent, it will then go through the

following process:

bool EventManager::TriggerEventFromScript(char const * const

pEventName,

 LuaObject

luaEventData)

{

 const EventType eventType(pEventName);

 // Look this event type up.

 const EventTypeSet::const_iterator iter = m_typeList.find(

eventType);

 if (iter == m_typeList.end())

 {

 assert(0 && "Attempted to trigger an event type that

doesn't exist!");

 return false;

 }

 // This level of indirection lets us create code-side events

 // or script-side events.

 IRegisteredEventPtr regEvent = iter->second;

 const bool bResult = regEvent->VTriggerEventFromScript(

luaEventData);

 return bResult;

}

The function looks up the event to find the corresponding IRegisteredEvent object and

then calls the virtual function necessary to transform the event data from a Lua table into a

usable format. This is a lot to process, so take a moment to go over this and ensure you

understand it before we move on to the derivations of IRegisteredEvent.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Register Events Before you Use Them

Don‘t forget to register every event type before you use it!

Otherwise, the engine will throw a fit when it sees an event it

hasn‘t been told about.

Registering Code-Only Events

The simplest events are those that can only be created by code:

// Code defined, but script is NOT allowed to create this event

type.

class CodeOnlyDefinedEvent : public IRegisteredEvent

{

public:

 explicit CodeOnlyDefinedEvent(void)

 : IRegisteredEvent(IRegisteredEvent::kREMD_CodeEventOnly

)

 {

 }

 virtual bool VTriggerEventFromScript(LuaObject & srcData)

const

 {

 assert(0 && "Attempted to trigger a code-ONLY triggerable

event!");

 return false;

 }

};

Sweet and to the point. Here‘s how to register a code-only event:

void EventManager::RegisterCodeOnlyEvent(const EventType &

eventType)

{

 IRegisteredEventPtr metaData(GCC_NEW CodeOnlyDefinedEvent()

);

 AddRegisteredEventType(eventType, metaData);

}

This just rezzes up a code-only defined registration and adds it to the map. If scripters try
to create one of these events, they will be met with only frustration and futile cursing.

Registering Script-Defined Events

Next up on the difficulty scale are the script-defined events. Why would you want script-
defined events? For instances where an event would be appropriate for game-specific

http://lib.ommolketab.ir
http//lib.ommolketab.ir

things, such as PlayerGotAllTheRings or DrawbridgeOpened. A scripter may want

several listeners for these events, and may only register these events for specific levels.

Here‘s your interface:

//Script defined event type.

class ScriptDefinedEvent : public IRegisteredEvent

{

public:

 ScriptDefinedEvent(const EventType & eventType)

 : IRegisteredEvent(IRegisteredEvent::kREMD_ScriptDefined

)

 , m_EventType(eventType)

 {

 }

 virtual bool VTriggerEventFromScript(LuaObject & srcData)

const;

private:

 //We need to hold onto the event type for when it gets

triggered.

 const EventType m_EventType;

};

Before you go delving into the implementation, you need to pause to introduce a new event
type:

//This type of event data is created by script-defined events.

struct EvtData_ScriptEvtData : public BaseEventData

{

public:

 virtual const EventType & VGetEventType(void) const

 {

 return m_EventType;

 }

 EvtData_ScriptEvtData(const EventType & eventType, LuaObject

& srcData)

 : m_EventType(eventType)

 , m_LuaEventData(srcData)

 {

 m_bHasLuaEventData = true; //Our Lua event data got

passed into us!

 }

 virtual LuaObject VGetLuaEventData(void) const

 {

 return m_LuaEventData;

 }

 virtual void VBuildLuaEventData(void)

 {

 assert((false == m_bHasLuaEventData) &&

 "Already built lua event data!");

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 return; //Already "built" when the event got created.

 }

private:

 const EventType m_EventType; //Type of this event.

 LuaObject m_LuaEventData;

};

This event is basically a pass-through; when script triggers a script-defined event, you

package the data table passed in and send it out to all the listeners. Now let‘s see how the

ScriptDefinedEvent works:

bool EventManager::ScriptDefinedEvent::VTriggerEventFromScript(

 LuaObject & srcData) const

{

 const EvtData_ScriptEvtData scriptEvent(m_EventType, srcData

);

 return safeTriggerEvent(scriptEvent);

}

The above function essentially packages the Lua-generated data table into a

EvtData_ScriptEvtData event object and sends it out. Now let‘s look at what the

registration actually does; this should be pretty straightforward:

void EventManager::RegisterScriptEvent(const EventType &

eventType)

{

 IRegisteredEventPtr metaData(

 GCC_NEW EventManager::ScriptDefinedEvent(eventType));

 AddRegisteredEventType(eventType, metaData);

}

It‘s all very similar to the RegisterCodeOnlyEvent call from before. Since script is

defining its own event types, let‘s look at how it goes about doing that:

void EventManager::RegisterScriptEventType(char const * const

pEventName)

{

 //Create a new script-defined event object.

 const EventType eventType(pEventName);

 RegisterScriptEvent(eventType);

}

So a scripter, if he wanted to make his own event type ―xyzzy,‖ would add the following to
the script:

EventManager:RegisterEventType("xyzzy")

Registering Code AND Script-Creatable Events

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Here‘s where it starts to get ugly. These are events that code or script can trigger, and it‘s

going to require some fancy template work. Let‘s take a look at the IRegisteredEvent-

derived definition:

//Code defined, but also creatable from script.

template < class T >

class ScriptCallableCodeEvent : public IRegisteredEvent

{

public:

 explicit ScriptCallableCodeEvent(void)

 : IRegisteredEvent(

IRegisteredEvent::kREMD_CodeEventScriptCallable)

 {

 }

 virtual bool VTriggerEventFromScript(LuaObject & srcData)

const

 {

 const T eventData(srcData); //Construct directly.

 return safeTriggerEvent(eventData);

 }

};

The interesting bit here is in the VTriggerEventFromScript; it explicitly creates the

event using the event data table as a parameter. This means that the event type must have

a constructor that accepts just a LuaObject as the sole parameter. If you attempt to

register an event that doesn‘t have such a constructor, the compiler will flip out, but at least

it‘s caught at compile time. Now let‘s look at the registration function:

//Our templated registration function.

template<class T> void EventManager::RegisterEvent(const

EventType &

 eventType)

{

 IRegisteredEventPtr metaData(GCC_NEW

ScriptCallableCodeEvent< T >());

 AddRegisteredEventType(eventType, metaData);

}

Why would you want an event that is trigger-able from script or code? Remember that the
ideal engine should be game-agnostic; while there are engine-specific elements that may
require these events, you want to define the game largely in script. A good example would

be an ―abort network game‖ event: the engine might detect that a networked client has

dropped out and send the event. But the scripter might also elect to send that event when a
player clicks the quit button.

Serializing Events for Code and Script

Now that we‘ve got a method for telling the engine how each event should work through
registration, let‘s look at how you‘re actually going to transform event data for script and

vice-versa. You‘ll be working with our hypothetical ―draw text‖ event, which is comprised of

a screen position and the text to draw. Here‘s what the definition of said event looks like:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

struct EvtData_DrawText : public BaseEventData

{

 // Define our event type and name.

 static const EventType sk_EventType;

 virtual const EventType & VGetEventType(void) const

 {

 return sk_EventType;

 }

 // Code constructor.

 explicit EvtData_DrawText(const std::string & text, const

float xPos,

 const float yPos)

 : m_Text(text)

 , m_XPos(xPos)

 , m_YPos(yPos)

{

}

// Script constructor.

Explicit EvtData_DrawText(LuaObject srcData);

// Converts code data to script.

virtual void VBuildLuaEventData(void);

// Provides access to the Lua data when converted from code.

virtual LuaObject VGetLuaEventData(void) const;

// OMITTED: Other members that we'll discuss later.

// The members of this event.

std::string m_Text;

float m_XPos;

float m_YPos;

private:

 // Holds all data for a script listener.

 LuaObject m_LuaEventData;

};

// In the implementation file:

const EventType EvtData::sk_EventType("DrawText");

From Script to Code

The first part you‘ll handle is converting a Lua table into code-accessible values. Essentially

what you‘ll be doing is reading values from the table and assigning them to the members.
You‘ll do this through the explicit script constructor, which will be invoked by a

ScriptCallableCodeEvent register:

EvtData_DrawText::EvtData_DrawText(LuaObject srcData)

//Init defaults.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

: m_Text("")

, m_XPos(0.0f)

, m_YPos(0.0f)

{

 //Ensure that what we got was a table.

 assert(srcData.IsTable() && "Wasn't given a table for

event!");

 //See if we have a text member.

 LuaObject textObj = srcData["Text"];

 if (textObj.IsString())

 {

 m_Text = textObj.GetString();

 }

 LuaObject posTableObj = srcData["Position"];

 if (posTableObj.IsTable())

 {

 //Get each position out.

 m_XPos = posTableObj[1].GetFloat();

 m_YPos = posTableObj[2].GetFloat();

 }

}

This constructor initializes default values (as the event allows the scripter to specify only the
parameters that he wants). This is important, because it allows the scripter to only worry

about the elements he wants to change.

The constructor then assesses that the data coming in is of the correct format (a table), and
proceeds to attempt to get the members out of it. When this event is triggered, it will make

a fully formed one that other listeners can rely upon.

From Code to Script

Now let‘s go the other way round—taking an event and making it usable by a script listener.

When an event is going to be sent to a script listener, the engine asks the event if it already

has Lua data via the VHasLuaEventData method. If it doesn’t, it has to build the event

data and send it on. For your sample event, it does it like so:

void EvdData_DrawText::VBuildLuaEventData(void)

{

 //Safety check; we shouldn't be building this data twice!

 assert((false == VHasLuaEventData()) &&

 "Attempted to build Lua event data when event already

has it!");

 //Now build the data.

 //Get the global state.

 LuaState * pState = g_pApp->m_pLuaStateManager-

>GetGlobalState().Get();

 m_LuaEventData.AssignNewTable(pState);

 //Serialize the data necessary.

 m_LuaEventData.SetString("Text", m_Text.c_str());

 //Create a position table with exactly two entries.

 LuaObject posTable = m_LuaEventData.CreateTable("Position",

2);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 posTable[1].SetNumber(1, m_XPos);

 posTable[2].SetNumber(2, m_YPos);

 //Indicate that we do, indeed, have Lua data here.

 m_bHasLuaEventData = true;

}

Any event that script needs to listen for will need one of these. Note that you don‘t have to
give them everything in the event; if an event passes a pointer to a texture, for example,

you can omit that from what the script listener will receive.

Do You Hear What I Hear?

Now that you‘ve wired in your paths to get event data to and from script, let‘s analyze how
it will actually get across the bridge. You‘ll be modifying Mike‘s listener class, as well as

showing how script can trigger an event.

Script-Side Listeners

You‘re going to have to create a listener type for scripters. These will tie a Lua function to a

specified event type. Here‘s the definition of that class:

//--

// The ScriptEventListener holds a script callback function that

responds

// to a particular event.

class ScriptEventListener : public IEventListener

{

public:

 ScriptEventListener(LuaObject explicitHandlerFunction);

 virtual ~ScriptEventListener()

 {

 }

 virtual char const * GetName(void)

 {

 return "Script Listener";

 }

 virtual bool HandleEvent(IEventData const & event);

 const LuaObject & GetHandlerFunction(void) const

 {

 return m_HandlerFunction;

 }

protected:

 // This function is virtual as sub-classes may pass

additional

 // parameters.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 virtual bool VCallLuaFunction(LuaObject & eventData);

 //The callback function itself.

 LuaObject m_HandlerFunction;

};

As you can see, the ScriptEventListener derives from the generic

IEventListener and extends it. The constructor takes a Lua function as a parameter,

and when it is triggered, calls that function:

ScriptEventListener::ScriptEventListener(LuaObject

explicitHandlerFunction)

: m_HandlerFunction(explicitHandlerFunction)

{

 assert(explicitHandlerFunction.IsFunction() &&

 "Script listener *MUST* be a valid function!");

}

The constructor merely verifies that what it was passed is, indeed, a function. Now let‘s look
at what the listener does when it is provided with an event:

bool ScriptEventListener::HandleEvent(IEventData const & event

)

{

 // If we don't already have Lua event data built, do so now.

 if (false == event.VHasLuaEventData())

 {

 // This goes against everything you are taught in C++

class.

 // We're going to make this const IEventData non-const

because

 // we need to serialize the event for Lua to understand

it.

 // We're doing this for three reasons:

 // a) So we only build Lua data ONCE for any triggered

event,

 // and ONLY when the event needs to be sent to a Lua

function

 // (we don't want to ALWAYS build Lua data).

 // b) We're not technically changing any of the "real"

event

 // *data*...

 // c) If we make other listener's HandleEvent() calls

take

 // a non-const event, they could alter it.

 // Don't make a habit of doing this.

 // Pray the const away.

 IEventData & NCEventData = const_cast< IEventData & >(

event);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 // Build it and never mention this again.

 NCEventData.VBuildLuaEventData();

 }

 LuaObject & eventDataObj = event.VGetLuaEventData();

 //Call the handler function.

 const bool bResult = VCallLuaFunction(eventDataObj);

 return bResult;

}

bool ScriptEventListener::VCallLuaFunction(LuaObject &

eventData)

{

 LuaFunction<bool> function(m_HandlerFunction);

 return function(eventData);

}

The listener takes the event in, checks to see if it already has Lua event data, and if it
doesn‘t, builds it. It then passes the event data on to the caller. You‘ll see later why the

VCallLuaFunction event is virtual.

Creating a ScriptEventListener

The EventManager will need a method to track all of the ScriptEventListener

objects. So you‘ll track that like so in the EventManager class definition:

// Holds all allocated script listeners.

// It maps an event ID to a set of listeners.

typedef boost::shared_ptr< ScriptEventListener >

ScriptEventListenerPtr;

typedef std::multimap< unsigned int, ScriptEventListenerPtr >

 ScriptEventListenerMap;

ScriptEventListenerMap m_ScriptEventListenerMap;

So what you have here is an STL multimap, mapping event IDs to one or more script
listeners. Why do you use a multimap instead of a map? Because you may have multiple

script listeners listening for the same event.

Using Multimaps

I discovered the need for a multimap over a map after
banging my head on the keyboard trying to figure out why

only one of my listeners was getting called back. It was

because the first listener got bumped off when a second one
got added for that event!

A script event listener is created whenever a script calls the

EventManager:AddScriptListener function:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

//--

// EventManager::AddScriptListener

// Creates a script-side event listener, given an appropriate

Lua function.

bool EventManager::AddScriptListener(

 char const * const pEventName, LuaObject callbackFunction)

{

 //Ensure this event type exists.

 const EventType testEventType(pEventName);

 const EventTypeSet::const_iterator typeIter =

 m_typeList.find(testEventType);

 if (m_typeList.end() == typeIter)

 {

 assert(0 &&

 "Attempted to listen to an event type that wasn't

registered!");

 return false;

 }

 const unsigned int eventID = testEventType.getHashValue();

 //OK, valid event type. Make sure this isn't a duplicate.

 ScriptEventListenerMap::const_iterator mapIter =

 m_ScriptEventListenerMap.find(

eventID);

 while (m_ScriptEventListenerMap.end() != mapIter)

 {

 //Iterate through and ensure no duplicates.

 const ScriptEventListenerPtr evtListener = mapIter-

>second;

 const LuaObject & evtObj = evtListener-

>GetHandlerFunction();

 if (evtObj == callbackFunction)

 {

 assert(0 && "Attempted to listen to the same event

handler twice!");

 return false;

 }

 ++mapIter;

 }

 //Now let's rez up a new script listener.

 ScriptEventListenerPtr listener(

 GCC_NEW ScriptEventListener(

callbackFunction));

 m_ScriptEventListenerMap.insert(std::make_pair(eventID,

listener));

 const bool bSuccess = VAddListener(listener, testEventType

);

 return bSuccess;

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The function first verifies that the event type has been registered. It then double-checks

that the same listener hasn‘t already been added; this could cause strange problems if a
single event makes multiple calls to the same function. Finally, it creates the new listener,

adds it to the tracking multimap, and puts the listener in the Event Manager‘s listener list.

Triggering an Event from Script

We‘ve been through a lot, and now the final puzzle piece is coming into place. I admit, it

may seem a little bit of a letdown, but by breaking down all the other code elsewhere, we‘ve

made it substantially easier to follow.

Ladies and gentlemen, I bring you what will execute when a scripter calls

EventManager:TriggerEvent...

bool EventManager::TriggerEventFromScript(char const * const

pEventName,

 LuaObject

luaEventData)

{

 const EventType eventType(pEventName);

 //Look this event type up.

 const EventTypeSet::const_iterator iter = m_typeList.find(

eventType);

 if (iter == m_typeList.end())

 {

 assert(0 && "Attempted to trigger an event type that

doesn't exist!");

 return false;

 }

 //This level of indirection lets us create code-side events

 //or script-side events.

 IRegisteredEventPtr regEvent = iter->second;

 const bool bResult = regEvent->VTriggerEventFromScript(

luaEventData);

 return bResult;

}

You verify that the event was registered, and then call the register‘s handler for the event.
And away it goes!

Let’s Get OOP-Able!

The system you‘ve built works just fine for calling global script functions. But is there a way

to encapsulate objects in script, like you do in C++? Of course there is; otherwise, I
wouldn‘t be writing this.

We could use metatables for this kind of encapsulation, but if you‘ll recall from the

LuaStateManager::Init function, we created a global script table called ActorList,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

which holds the data specific to an actor and maps Actor IDs (integers) to their specific

data. What you‘d like to be able to do is have an actor listen for an event, and when the

event gets triggered, to pass the equivalent of the actor‘s this pointer along with it. Here‘s

an example script to depict what you want to be able to do:

--These are the functions related to this actor.

function MyActorOnCreate(actorID, actorDataTable)

 print("MY ACTOR CREATED!")

 -- Set this actor's data.

 actorDataTable.MyTimer = 0.0

 --Begin letting *this actor* listen for the update tick.

 EventManager:AddScriptActorListener("update_tick",

 MyActorUpdate, actorID)

end

function MyActorOnDestroy(actorID, actorDataTable)

 print("MY ACTOR DESTROYED!")

 --Stop listening!

 EventManager:RemoveScriptActorListener("update_tick",

MyActorUpdate,

 actorID)

end

function MyActorUpdate(eventData, actorData)

 local dt = eventData["Seconds"]

 actorData.MyTimer = actorData.MyTimer + dt

end

--Now create the actor.

local MyActorParams =

{

 --Constructor and Destructor functions.

 OnCreateFunc = "MyActorOnCreate",

 OnDestroyFunc = "MyActorOnDestroy",

}

--Now that everything is in place, let's create the actor.

EventManager:TriggerEvent("request_new_actor", MyActorParams)

This script creates an actor that listens for the ―update_tick‖ event. The actor, on creation,

indicates a constructor and destructor (OnCreateFunc and OnDestroyFunc keys in the

MyActorParams table).

The constructor, when called, is passed the actor‘s ID, as well as its personal data table,

actorDataTable, from the ActorList. It then sets a data member for the actor, called

MyTimer.

You could look at this actor like a C++ class:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

class MyActor

{

public:

 MyActor(const int actorID)

 : m_MyTimer(0.0f)

 {

 OutputDebugString("MY ACTOR CREATED!");

 }

 ~MyActor(void)

 {

 OutputDebugString("MY ACTOR DESTROYED!");

 }

 void Update(const float dt)

 {

 m_MyTimer += dt;

 }

private:

 float m_MyTimer;

};

What you‘ll need to do is to allow a specific actor to listen for an event, and to get its this

pointer passed along with the callback.

Script Actor Listeners

You‘ll start by adding two functions to the Event Manager:

// Actor-specific event listener controls. These will pass in

the actor context

// upon calling.

bool AddScriptActorListener(char const * const pEventName,

 LuaObject callbackFunction, const

int actorID);

bool RemoveScriptActorListener(char const * const pEventName,

 LuaObject callbackFunction, const

int actorID);

After these functions are exposed in the Event Manager‘s metatable, they‘ll be callable from

script. Note that they are identical to the AddScriptListener and

RemoveScriptListener functions, except they take an actor ID as a third parameter.

In fact, the code is almost identical:

// Creates a script-side *ACTOR* event listener,

// given an appropriate Lua function.

bool EventManager::AddScriptActorListener(char const * const

pEventName,

 LuaObject callbackFunction,

const int actorID)

{

 //Ensure this event type exists.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 const EventType testEventType(pEventName);

 const EventTypeSet::const_iterator typeIter =

 m_typeList.find(testEventType);

 if (m_typeList.end() == typeIter)

 {

 assert(0 &&

 "Attempted to listen to an event type that wasn't

registered!");

 return false;

 }

 const unsigned int eventID = testEventType.getHashValue();

 //OK, valid event type. Make sure this isn't a duplicate.

 ScriptActorEventListenerMap::const_iterator mapIter =

 m_ScriptActorEventListenerMap.find(

eventID);

 while (m_ScriptActorEventListenerMap.end() != mapIter)

 {

 //Iterate through and ensure no duplicates.

 const ScriptActorEventListenerPtr evtListener = mapIter-

>second;

 const LuaObject & evtObj = evtListener-

>GetHandlerFunction();

 if ((evtObj == callbackFunction) &&

 (actorID == evtListener->GetActorID()))

 {

 assert(0 && "Attempted to listen to the same event

for actor!");

 return false;

 }

 ++mapIter;

 }

 //Now let's rez up a new script listener.

 ScriptActorEventListenerPtr listener(

 GCC_NEW ScriptActorEventListener(callbackFunction,

actorID));

 m_ScriptActorEventListenerMap.insert(std::make_pair(

eventID, listener));

 const bool bSuccess = VAddListener(listener, testEventType

);

 return bSuccess;

}

The only difference between this and the AddScriptListener function is that you check

the multimap for identical callback function and actor ID, you create a

ScriptActorEventListener instead of a ScriptEventListener, and your

multimap now deals with the new listener type.

Let‘s see what‘s so unique about the actor-specific listener:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

//--

// The ScriptActorEventListener holds a script callback function

tied

// to a specific actor, and when called, passes in the actor's

script

// data.

class ScriptActorEventListener : public ScriptEventListener

{

public:

 ScriptActorEventListener(LuaObject explicitHandlerFunction,

 const ActorId actorID);

 virtual ~ScriptActorEventListener()

 {

 }

 virtual char const * GetName(void)

 {

 return "Script Actor Listener";

 }

 ActorId GetActorID(void) const

 {

 return m_SrcActorID;

 }

private:

 // This will pass the event data object as well as

 // look up our actor's specific script data to pass.

 virtual bool VCallLuaFunction(LuaObject & eventData);

 // Our source actor.

 const ActorId m_SrcActorID;

};

Not much different from the base class. You keep the actor ID around, and you‘ve

overridden the VCallLuaFunction member. Let‘s take a peek in there to see what‘s up:

bool ScriptActorEventListener::VCallLuaFunction(LuaObject &

eventData)

{

 // Find our actor to pass in the actor script data context.

 // This is more sanity checking than anything, to ensure that

the actor

 // still exists.

 shared_ptr< IActor > gameActor = g_pApp->m_pGame->VGetActor(

m_SrcActorID);

 if (!gameActor)

 {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 assert(0 && "Attempted to call a script listener for an

actor that

 couldn't be found! Did you delete the actor

without

 removing all listeners?");

 return false;

 }

 // Get ahold of the actor's script data.

 LuaState * pState = g_pApp->m_pLuaStateManager-

>GetGlobalState().Get();

 LuaObject globalActorTable =

 g_pApp->m_pLuaStateManager->GetGlobalActorTable();

 assert(globalActorTable.IsTable()

 && "Global actor table is NOT a table!");

 LuaObject actorData = globalActorTable[m_SrcActorID];

 // We pass in the event data IN ADDITION TO the actor's

script data.

 LuaFunction<bool> function(m_HandlerFunction);

 return function(eventData, actorData);

}

Voila! This function looks up the actor‘s script data tied to its ID and then calls the Lua
script function with that data as the second parameter.

The only thing remaining is for the engine to take a script constructor and destructor and

call them when the actor is created or destroyed, but we‘ll worry about that in a later
chapter.

Debugging Script

One of the most frustrating things about scripting is that there often isn‘t an easy method to

debug it. Scripters should have tools at their disposal to see their data and to debug it. I‘ll
discuss some of these methods below.

Caveman Debugging

As with C++, sometimes it helps to have a debug print routine. Lua‘s print routine does

the job, but you‘ll probably want to re-route it to another system. An easy method to do
this is in your Init.lua file:

--Override the print function.

function print(printStuff)

 LuaStateManager:PrintDebugMessage(printStuff)

end

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The LuaStateManager::PrintDebugMessage can then spit it out using Output-

DebugString, or send it off to another system to sort out debug spew.

Console

A great addition to any game in development is that of an in-game console. id Software‘s

Quake was my first introduction to this powerful tool: by pressing the tilde key, a little

window would drop down with a blinking cursor. It enabled you to enter commands (and
cheats!) and to display information about the game.

Lua gives you the capability to execute arbitrary script commands via the DoString

method. You can use this to look at the state of variables, change values, or do anything
you‘d normally do in script. Building a console into your game is an excellent way for

scripters to experiment. Figure 11.1 shows an example from the console built in this book.

Figure 11.1. Use Lua to create a command console for your game.

Symbolic Debuggers

An even more powerful type of debugging comes in the form of a true symbolic debugger

for script. These give to script what any proper debugger does for code: freedom to halt the
program via breakpoints, look at (and alter) data members, view the call stack, and step

through functions. They come in two flavors: integrated and stand-alone IDEs.

Integrated Debuggers

javascript:moveTo('ch11fig01');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Some debuggers come in the form of plug-ins for an existing IDE, such as Trango

Interactive‘s VSLua, and work directly out of your programming shell. They use the same
(or similar) displays as Visual Studio, in theory making it a snap to debug problem scripts.

In this sense, the programmer doesn‘t have to leave the IDE to find out what is happening.

The catch? Well, they‘re two-fold. First, these debuggers tend to be very finicky and difficult
to get working. In my experience, they‘ve been difficult to set up, and don‘t tend to work

very well.

Breakpoints, Yes—Debugging, not so Much

While writing this chapter, I attempted to get one such

debugger working. This took several hours, and when I
finally did get it working, I could only set a breakpoint and

view the data. There was no way to resume the program or
to alter data.

More importantly, these debuggers require every scripter to have a copy of the IDE to use
them. I don‘t know about you, but at my company, we don‘t have the kind of money to

provide every scripter with a copy of Visual Studio and training on how to use it.

External Debuggers

Another solution is to package the debugger in with an external program, be it the game

editor or a stand-alone IDE. An external program alleviates, requiring scripters to have a
copy of the programming IDE, and it can also serve as a text editor with formatting options,

and so on. This is the ideal solution for any serious project involving scripting.

Introducing Decoda

The best solution I‘ve found is Unknown Worlds‘ editor/debugger/IDE hybrid called Decoda.
Max McGuire of Unknown Worlds has put together this stellar package, and I was lucky

enough to get some sneak peeks at it during development and provide feedback. In Figure
11.2, you can see me running Decoda side-by-side with the running game, with a

breakpoint hit and several watch variables active.

Figure 11.2. Use Decoda to debug Lua scripts at runtime.

javascript:moveTo('ch11fig02');
javascript:moveTo('ch11fig02');
javascript:moveTo('ch11fig02');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

This wonderful tool will let you do everything you need (and probably more):

 Edit text with color coding.

 Set breakpoints, halting execution of the main program.

 Edit and view data on the fly (even tables!).

 Manage files within a project.

 Integrate with source control.

 Walk the call stack.

 Step into, out of, and over functions.

 Debug multiple virtual machines.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Support dynamically linked or statically linked Lua libraries.

 You can even attach a (code) debugger to the process during runtime.

...all within a single self-contained editor. It really is a god-send for scripters and

programmers alike.

I‘ve included the trial version of Decoda along with the code for this book in the Tools

directory. You can also find it at www.unknownworlds.com/decoda/. While the product does

cost money, it‘s definitely affordable, and the amount of productivity and iteration will more
than make up for the small cost. It‘s infinitely better than poking around trying to figure out

why a certain script won‘t run, or worse, being pulled out of the programming zone to help
a scripter.

Famous Last Words: ―An Exercise for the Reader‖

I‘ve covered the basic system for bridging the gap between code and script, but there‘s a lot

more out there on the subject of successfully integrating a scripting language into a game
engine. Here, I‘ll discuss some of these topics, as well as a little personal advice.

Pitfalls

In the second edition of this book, Mike wrote the following:

You might believe that programming a game script is easier than C++, and

junior programmers or even newbie level builders will be able to increase
their productivity using game scripts. This is a trap. What tends to happen is

the game scripting system becomes more powerful and complicated as new
features are added during development. By the end of the project, their

complexity approaches or even exceeds that of C++. The development tools
for the game script will fall far short of the compilers and debuggers for

common languages. This makes the game scripting job really challenging. If
your game depends on complicated game scripts, make sure the development

tools are up to the task.

I both agree and disagree with Mike here, and largely my dissent is due to advances in
scripting in the years since he originally wrote this. On one hand, a poorly architected

scripted system—especially with lots of low-level code functionality exposed—can and will

cause tremendous problems. Think twice about exposing a function that, while adding
convenience in the short term, may be problematic or abused in the future. There are times

for exposing an explicit function, but do your best to prevent your scripters from becoming
entangled or causing side effects that they shouldn‘t. In many cases, you can use the event

system to overcome any problems.

Scripting languages such as Lua and Python have come to the point where, while admittedly
slower than straight code, are efficient enough to run in real time and do actual work

instead of being used solely for straight-up data definition. Prototype as much as you can in
script; you can always move it into code later if it proves to be too slow.

It‘s also imperative that someone reviews the scripters‘ output. Whether this is a

programmer or a technically minded scripter is unimportant; the key is that scripts are
checked for efficiency, and are using systems correctly. Script listeners should be laser-

focused on a single task, and should avoid cobbling together lots of work when multiple
listeners would do a better job. Keep listener callbacks succinct, small, and to the point.

../../default14.htm
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Regular reviews should be performed to ensure that the scripters‘ work is up to snuff and

written (and commented!) appropriately.

Lastly, as a programmer, you must be ever vigilant to write code that is fault-tolerant.

Check data types religiously. Ensure they are within bounds. And only crash the whole

shebang when it is absolutely necessary. Your job as a programmer is to support the
designers, and your life will be a lot easier when there‘s much less griping.

Further Study

With the core elements necessary to empower scripters under your belt, you should explore
the other features offered by Lua in order to make a more robust and powerful engine. I‘ll

dive into a few, but by no means should this list be considered comprehensive.

Multiple LuaStates

Running multiple virtual machines of Lua can be advantageous. Not only does it prevent
clutter, but it also protects your data from inadvertent (or intentionally abusive!)

overwrites. It may be wise to put all of your actors‘ data within a single LuaState, or as

some recent MMOs have done, with each actor having its own Lua-State. The downside

to this is it makes the bridges between code and script more complex. Additionally, it can

have a performance impact. In a recent postmortem in Game Developer, Twisted Pixel
Games explained a serious performance hit in their XBLA title, The Maw, involving multiple

LuaStates and the seemingly arbitrary Lua garbage collection. Ultimately, they altered

the code and script to get around this, but keep this in mind before you start creating

LuaStates willy-nilly.

Metatables

Easily one of the most fascinating and powerful constructs within Lua is the metatable.
While there wasn‘t enough space to go into a full-blown investigation, a metatable provides

some very interesting OOP-like functionality. The __index property of a metatable can be

used in a manner similar to a virtual function table and beyond. I encourage you to look into
them further when writing your own tech.

Coroutines

Another construct within Lua is the coroutine. These act like cooperative multi-tasking
threads, yielding control when they feel like it, and are re-entrant. If this sends shivers

down your spine with memories of Windows 3.x programming, you‘re not alone. However,

in the right hands, coroutines can be used to properly do ―stage direction‖ for an actor by
giving high-level instructions along the lines of the following:

WalkToDresser()

OpenDrawer()

PullOutHandgun()

Say("I always loved you best...")

SingleTear()

PullTrigger()

These high-level instructions may take many frames to execute, as the actor must pathfind

to locations, actually perform the locomotion, animate into position, and kick off dialogue.
Something worth investigating is how to properly integrate coroutines to pull off this kind of

high-level scripting.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Runtime Assertions

While the code presented here relies on assert for verification, this was done for space

considerations, as well as clarity. In a real life, honest-to-gosh production engine, you‘ll
need to create a runtime assertion routine that lets a content provider know when he has

made a mistake. This routine should bring up a dialog box with an informative text
description letting him know why and where the mistake was made, specific data values if

possible, and ideally, be fault-tolerant enough to not crash back to the desktop. This routine
needs to execute even in a Release build, which is what your scripters should be using.

It is important to remember to use this tool on any single piece of code that gets data from

script. Scripters will break everything you do in new and astounding ways, and getting as
much data as possible is important. The more data you can provide in this error message,

the more self-sufficient they will become, and the less they will hate you. They will already
hate you, but it won‘t turn into loathing or a conspiracy to assassinate you.

A Very Clear Routine Name

In an engine I worked with recently, the runtime assertion

routine was called GTFO(). I‘ll leave it up to you to decrypt

that acronym.

Special Thanks

First and foremost, I‘d like to thank Mr. Mike for giving me the opportunity to share what
I‘ve been working on for the past few years. I hope some of you take this to heart:

Scripters are what make or break a game these days, and we, the programmers, need to
support them with the best tools to attain a vision.

I‘d also like to thank Joshua Jensen for all his work on LuaPlus. Without it, this chapter

would be much longer, harder to follow, and all-around less readable.

Last-but-not-least, a big thanks goes out to Max McGuire for making an excellent scripting
tool with Decoda. He worked with me as I struggled with early beta versions, and the final

product has saved me immense amounts of time.

References

Online

 www.lua.org: Your jumping-off point for learning the language. Plenty of excellent

tutorials and history here. Get on the mailing list! You‘ll learn plenty, and a
searchable index means someone has probably already answered your question.

 www.luaplus.org: Homepage for Joshua Jensen‘s excellent extension of Lua into

C++. Newer versions are downloadable via SVN.

 www.unknownworlds.com/decoda: The source for Decoda. If you‘re running into

problems, the forums are full of knowledgeable folks who will get you fixed up in no

time.

../../default15.htm
../../default16.htm
../../decoda
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Books

 Programming in Lua, Second Edition, Roberto Ierusalimschy—This book is a must-

have for learning the language. You‘ll find yourself picking this up and paging

through it during late nights for easy-to-read sample script. Written by one of the
language‘s creators, you‘ll also get some good insight on how it was developed.

 Lua 5.1 Reference Manual by Roberto Ierusalimschy, Luiz Henrique de Figueiredo,

and Waldemar Celes—Almost a companion book to the one above, another

invaluable reference.

 Lua Programming Gems edited by Luiz Henrique de Figueiredo, Waldemar Celes, and

Roberto Ierusalimschy—More good tips and script ―gems‖ here; you‘ll also find some
tips on how to integrate Lua into your toolchain and some alternate approaches for

tying it into a game engine.

 Beginning Lua Programming (Programmer to Programmer), Kurt Jung and Aaron

Brown—Of all the books in the list, this massive tome is probably the one with the

most depth to it. Highly recommended.

 The Art of Interactive Design: A Euphonious and Illuminating Guide to Building

Successful Software, Chris Crawford—With a title as long-winded as its author, this
one may be a bit of a struggle. Never have I read anyone I disagree with more—and

as a result, felt compelled to out-do—than Chris Crawford. Not that this is a bad
book by any means, but it will challenge you and make you think hard about how

end users—including your scripters!—will use your software.

Chapter 12. Game Audio

In This Chapter

 How Sound Works

 Game Sound System Architecture

 Other Technical Hurdles

 Some Random Notes

 The Last Dance

If you have any doubt about how important sound is in games, try a little experiment. First,

find a home theater system that can turn off all the sound except for the center channel.
The center channel is almost always used for dialog, and everything else is for music and

sound effects. Pop a movie in and feel for yourself how flat the experience is without music

and sound.

The same is true for games. Done well, sound and music convey critical information to the

player as well as incite powerful emotional reactions. One of my favorite examples of

powerful music in any game is the original Halo from Bungie. When the music segues into a
driving combat tune, you can tell what is coming up—lots of carnage, hopefully on the

Covenant side of things!

../../ch12lev1sec1#ch12lev1sec1
../../ch12lev1sec2#ch12lev1sec2
../../ch12lev1sec3#ch12lev1sec3
../../ch12lev1sec4#ch12lev1sec4
../../ch12lev1sec5#ch12lev1sec5
http://lib.ommolketab.ir
http//lib.ommolketab.ir

I‘m biased, of course, but an excellent example of sound design and technology comes from

Thief: Deadly Shadows by Ion Storm. This game integrated the physics, portal, and AI
subsystems with the sound system. AI characters would receive propagated sound effect

events that happened anywhere near them and react accordingly. If you got clumsy and
stumbled Garrett, the main character in Thief, into a rack of swords, AI characters around

the corner and down the hall would hear it, and they‘d come looking for you.

Another great example is from Mushroom Men: The Spore Wars for the Wii by Red Fly
Studio. In this game, the sound system was actually integrated into the graphics and

particles system, creating a subtle but effective effect that had each sparkle of a particle
effect perfectly timed with the music.

In this chapter, I‘ll take you as far as I can into the world of sound. We‘ll explore both sound

effects and music. With a little work and imagination, you should be able to take what you
learn here and create your own sound magic.

How Sound Works

Imagine someone on your street working with a hammer. Every time the hammer strikes a
nail, or perhaps the poor schmuck‘s finger, a significant amount of energy is released

causing heat, deformation of the hammer, deformation of whatever was hit, and vibrations
in all the objects concerned as they return to an equilibrium state. A more complete

description of the situation would also include high-amplitude vibration of Mr. Schmuck‘s
vocal cords. Either way, those vibrations are propagated through the air as sound waves.

When these sound waves strike an object, sometimes they make the object vibrate at the

same frequency. This only happens if the object is resonant with the frequency of the sound
waves. Try this: Go find two guitars and make sure they are properly tuned. Then hold

them close together and pluck the biggest, fattest string of one of them. You should notice

that the corresponding string on the second guitar will vibrate, too, and you never touched
it directly.

The experiment with the guitars is similar to how the mechanical parts of your ear work.

Your ears have tiny hairs, each having a slightly different length and resonant frequency.
When sound waves get to them and make different sets of them vibrate, they trigger

chemical messages in your brain, and your conscious mind interprets the signals as
different sounds. Some of them sound like a hammer striking a nail, and others sound more

like words you‘d rather not say in front of little kids.

The tone of a sound depends on the sound frequency or how fast the vibrations hit your ear.
Vibrations are measured in cycles per second, or hertz (abbreviated Hz). The lowest tone a

normal human ear can hear is 20Hz, which is so low you almost feel it more than you hear
it! As the frequency rises, the tone of the sounds gets higher until you can‘t hear it

anymore. The highest frequency most people can hear is about 20,000Hz, or 20 kilohertz
(KHz).

The intensity of a sound is related to the number of air molecules pushed around by the

original vibration. You can look at this as the ―pressure‖ applied to anything by a sound
wave. A common measurement of sound intensity is the decibel, or dB. This measurement

is on a logarithmic scale, which means that a small increase in the dB level can be a

dramatic increase in the intensity of the sound. Table 12.1 shows the dB levels for various
common sounds.

Table 12.1. Decibel Levels for Different Sounds

dB Level Description

javascript:moveTo('ch12table01');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 12.1. Decibel Levels for Different Sounds

dB Level Description

0 The softest sound a person can hear with normal hearing

10 Normal breathing

20 Whispering at five feet

30 Soft whisper

50 Rainfall

60 Normal conversation

110 Shouting in ear

120 Thunder

150 Mr. Mike screaming when he beats his nephew Chris at Guitar Hero

The reason the scale is a logarithmic one has to do with the sensitivity of our ears. Normal
human hearing can detect sounds over an amazing range of intensity, with the lowest being
near silence and the highest being something that falls just shy of blowing your eardrums

out of your head. The power difference between the two is over one million times. Since the

range is so great, it is convenient to use a non-linear, logarithmic scale to measure the
intensity of sound.

Did you ever wonder why the volume knob on expensive audio gear is marked with negative

dB? This is because volume is actually attenuation, or the level of change of the base level
of a sound. Decibels measure relative sound intensity, not absolute intensity, which means

that negative decibels measure the amount of sound reduction. Turning the volume to 3dB
lower than the current setting reduces the power to your speakers by half. Given that, and I

can put this in writing, all the stereo heads out there will be happy to know that if you set
your volume level to 0dB, you‘ll be hearing the sound at the level intended by the audio

engineer. This is, of course, usually loud enough to get complaints from your neighbors.

Digital Recording and Reproduction

If you happen to have some speakers with the cones exposed, like my nice Boston
Acoustics™ setup, you can watch these cones move in and out in a blur when you crank the

music. It turns out that the speakers are moving in correlation to the plot of the sound wave
recorded in the studio.

You‘ve probably seen a graphic rendering of a sound wave; it looks like some random up-

and-down wiggling at various frequencies and amplitudes (see Figure 12.1).

Figure 12.1. A typical sound wave.

javascript:moveTo('ch12fig01');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

This scratching is actually a series of values that map to an energy value of the sound at a
particular moment in time. This energy value is the power level sent into a speaker magnet

to get the speaker cone to move, either in or out. The frequency, or tone, of the sound is

directly related to the number of up/down wiggles you see in the graphic representation of
the waveform. The speaker is reproducing, to the best of its ability, the identical waveform

of the sound that was recorded in the studio.

If you zoom into the waveform, you‘ll see these energy values plotted as points above and
below the X-axis (see Figures 12.2).

Figure 12.2. A closer view of a sound wave.

If all the points were in a straight line at value 0.0f, there would be complete silence. The
odd thing is, if all the points were in a straight line at 1.0, you would get a little ―pop‖ at the

very beginning and silence thereafter. The reason is the speaker cone would sit at the

maximum position of its movement, making no vibrations at all.

The amplitude, or height, of the waveform is a measure of the sound‘s intensity. Quiet

sounds only wiggle close to the 0.0 line, whereas loud noises wiggle all the way from 1.0f to

-1.0f. You can also imagine a really loud noise, like an explosion, has an energy level that
my Boston Acoustics can‘t reproduce, and can‘t be accurately recorded anyway because of

the energies involved. Figure 12.3 shows what happens to a sound wave that fails to record
the amplitude of a high-energy sound.

Figure 12.3. A clipped sound wave.

javascript:moveTo('ch12fig02');
javascript:moveTo('ch12fig03');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Instead of a nice waveform, the tops and bottoms are squared off. This creates a nasty

buzzing noise because the speaker cones can‘t follow a nice smooth waveform. Audio
engineers say that a recording like this had the ―levels too hot,‖ and they have to rerecord it

with the input levels turned down a bit. If you ever see those recording meters on a mixing
board, you‘d notice the input levels jump into the red when the sound is too hot, creating

the clipped waveforms. The same thing can happen when you record sounds straight to
your PC from a microphone, so keep an eye on those input levels.

Crusty Geezers Say the Wildest Things

On the Microsoft Casino project, the actors were encouraged
to come up with extemporaneous barks for their characters.

Not surprisingly, some of them had to be cut from the game.
One was cut by Microsoft legal because they thought it

sounded too much like the signature line, ―I‘ll be back,‖ from
Arnold Schwarzenegger. Another was cut because it made

disparaging remarks toward the waitresses at the Mirage

Resorts. My favorite one of all time, though, was a bit of
speech from a crusty old geezer, ―You know what I REALLY

love about Vegas??? The Hookers!!!‖

Sound Files

Sound files have many different formats, the most popular being WAV, MP3, OGG, and
MIDI. The WAV format stores raw sound data, the aural equivalent of a BMP or TGA file, and

is therefore the largest. MP3 and OGG files are compressed sound file formats and can
achieve about a 10:1 compression ratio over WAV, with only a barely perceptible loss in

sound quality. MIDI files are almost like little sound programs, and are extremely tiny, but

the sound quality is completely different—it sounds like those video games from the 1980s.
So why would you choose one over the other?

MIDI is popular for downloadable games and games on handheld platforms because they

are so small and efficient. Memory can be in incredibly short supply, as well as processing
power. The WAV format takes a lot of memory, but it is incredibly easy on your CPU budget.

MP3s and OGGs will save your memory budget, but will hit your CPU pretty hard for each
stream you decompress into a hearable sound.

If you‘re short on media space, you can store everything in MP3 or OGG, and decompress

the data in memory at load time. This is a pretty good idea for short sound effects that you
hear often, like weapons fire and footsteps. Music and background ambiance can be many

minutes long, and are almost always played in their compressed form.

Always Keep Your Original High-Fidelity Audio Recordings

Make sure that all of your original sound is recorded in high-resolution

WAV format, and plan to keep it around until the end of the project. If
you convert all your audio to a compressed format such as MP3, you’ll

lose sound quality, and you won’t be able to reconvert the audio
stream to a higher bit-rate if the quality isn’t good enough. This is

exactly the same thing as storing all your artwork in high-resolution
TGAs or TIFFs. You’ll always have the original work stored in the

highest possible resolution in case you need to mess with it later.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

A Quick Word About Threads and Synchronization

Sound systems run in a multithreaded architecture. I‘m talking about real multithreading
here and not the cooperative multitasking. What‘s the difference? You should already be

familiar with the CProcess and CProcessManager classes from Chapter 6. These

classes are cooperative, which means it is up to them to decide when to return control to
the calling routine. For those of you who remember coding in the old DOS or Windows 3.x

days, this is all we had without some serious assembly level coding. In a way, it was a lot
safer, for reasons you‘ll see in a minute, but it was a heck of a lot harder to get the

computer to accomplish many tasks at once.

A classic task in games is to play some neat music in the background while you are playing
the game. Like I said at the start of this chapter, sound creates emotion in your game. But

what is really going on in the background to make sound come out of your speakers?

Sound data is pushed into the sound card, and the sound card‘s driver software converts
this data into electric signals that are sent to your speakers. The task of reading new data

into the sound card and converting it into a usable format takes some CPU time away from
your computer. While modern sound cards have CPUs of their own, getting the data from

the digital media into the sound card still takes your main CPU.

Since sound data is played at a linear time scale, it‘s critical to push data into the sound
card at the right time. If it is pushed too early, you‘ll overwrite music that is about to be

played. If it is pushed too late, the sound card will play some music you‘ve already heard,

only to skip ahead when the right data gets in place.

This is the classic reader/writer problem where you have a fixed memory area with a writer

that needs to stay ahead of the reader. If the reader ever overtakes the writer or vice

versa, the reader reads data that is either too old or too new. When I heard about this in
college, the example presented was always some horribly boring data being read and

written, such as employee records or student class enrollment records. I would have paid a
lot more attention to this class if they had told me the same solutions could be applied to

computer game sound systems.

What makes this problem complicated is there must be a way to synchronize the reader and
writer to make sure the writer process only writes when it knows it is safely out of the

reader‘s way. Luckily, the really nasty parts of this problem are handled at a low level in
DirectSound, but you should always be aware of it so you don‘t pull the rug out from the

sound system‘s feet, so to speak. Let me give you an example.

In your game, let‘s assume there‘s a portable stereo sitting on a desk, and it is playing
music. You take your gun and fire an explosive round into the radio and destroy the radio.

Hopefully, the music the radio is playing stops when the radio is destroyed and the memory
used by the music is returned to the system. You should be able to see how order-

dependent all this is. If you stop the music too early, it looks like the radio was somehow

self-aware and freaked out just before it was sent to radio nirvana. If you release all the
radio‘s resources before you notify the sound system, the sound system might try to play

some sound data from a bogus area of memory.

Worse still, because the sound system runs in a different thread, you can‘t count on a

synchronous response when you tell the sound system to stop playing a sound. Granted,

the sound system will respond to the request in a few milliseconds, far shorter than any
human can perceive, but far longer than you could count on using the memory currently

allocated to the sound system for something that is still active.

All these complications require a little architecture to keep things simple for programmers
who are attaching sounds to objects or music to a game.

../../ch06#ch06
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Game Sound System Architecture

Just like a graphics subsystem, audio subsystems can have a few different implementations.

DirectSound and Miles Audio are two examples. It‘s a good idea to create an
implementation-agnostic wrapper for your sound system so that you are free to choose the

implementation right for your game. The audio system presented in this chapter can use
DirectSound or Miles, and the only change you have to make for your high-level game code

is one line of code. Figure 12.4 shows the class hierarchy for our sound system.

Figure 12.4. Sound system class hierarchy.

The sound system inherits from IAudio. This object is responsible for the list of sounds

currently active. As you might predict, you only need one of these for your game. The

Audio base class implements some implementation-generic routines, and the

DirectSoundAudio class completes the implementation with Direct-Sound specific calls.

The sound system needs access to the bits that make up the raw sound. The

IAudioBuffer interface defines the methods for an implementation-generic sound buffer.

AudioBuffer is a base class that implements some of the IAudioBuffer interface, and

the DirectSoundAudioBuffer completes the implementation of the interface class

using DirectSound calls. Each instance of a sound effect will use one of these buffer objects.

A CSoundResource encapsulates sound data, presumably loaded from a file or your

resource cache. If you had five explosions going off simultaneously, you‘d have one

CSoundResource object and five DirectSoundAudioBuffer objects.

Sound Resources and Handles

If you want to play a sound in your game, the first thing you do is load it. Sound resources

are loaded exactly the same as other game resources; they will likely exist in a resource
file. Sound effects can be tiny or quite long. Your game may have thousands of these

things, or tens of thousands as many modern games have. Just as you saw in Chapter 7,
you shouldn‘t store each effect in its own file; rather, you should pull it from a resource

cache.

javascript:moveTo('ch12fig04');
../../ch07#ch07
http://lib.ommolketab.ir
http//lib.ommolketab.ir

A resource cache is convenient if you have many simultaneous sounds that use the same

sound data, such as weapons fire. You should load this resource once, taking up only one
block of memory, and have the sound driver create many ―players‖ that will use the same

resource.

The concept of streaming sound, compressed or otherwise, is beyond the scope of this
chapter. The sound system described here uses the resource cache to load the sound data

from a resource file, decompresses it if necessary, and manages DirectSound audio buffers
if you happen to have the same sound being played multiple times. As usual, I‘m

exchanging clarity for performance, specifically memory usage, so take this into account
when looking at this system. A real sound system would do much more to manage with a

lot less memory!

With that caveat in mind, the first thing to do is define a new SoundResource class and

SoundResHandle class:

class SoundResource : public Resource

{

public:

 SoundResource(std::string name) : Resource(name) { }

 virtual ResHandle *VCreateHandle(

 const char *buffer, unsigned int size, ResCache

*pResCache);

};

ResHandle *SoundResource::VCreateHandle(

 const char *buffer, unsigned int size, ResCache *pResCache)

{

 return new SoundResHandle(

 *this, (unsigned char *)buffer, size, pResCache);

}

class SoundResHandle : public ResHandle

{

public:

 SoundResHandle(

 Resource &r,

 unsigned char *buffer,

 unsigned int size,

 ResCache *pResCache);

 virtual ~SoundResHandle();

 char const *GetPCMBuffer() const { return m_PCMBuffer; }

 int GetPCMBufferSize() const { return m_PCMBufferSize; }

 enum SoundType GetSoundType() { return m_SoundType; }

 WAVEFORMATEX const *GetFormat() { return &m_WavFormatEx; }

 int GetLengthMilli() const { return m_LengthMilli; }

 virtual bool VInitialize();

private:

 enum SoundType m_SoundType; // is this an Ogg, WAV, etc.?

 bool m_bInitialized; // has the sound been

initialized

 bool m_bFromFile; // are we reading from a file or

a buffer?

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 char *m_PCMBuffer; // the destination PCM buffer of

playable sound

 int m_PCMBufferSize; // the length of the PCM buffer

 WAVEFORMATEX m_WavFormatEx; // description of the PCM format

 int m_LengthMilli; // how long the sound is in

milliseconds

 const std::string m_SoundFile; // the name of the file or

resource

 bool ParseWave(FILE *fd);

 bool ParseOgg(FILE *fd);

 bool ParseOgg(unsigned char *oggStream, size_t length);

 bool ParseWave(unsigned char *wavStream, size_t length);

};

Take a look at the private members first. The m_SoundType members store an

enumeration that defines the different sound types you support: WAV, OGG, and so on. The

next Boolean stores whether the sound has been initialized, which is to say that the sound

is ready to play. The m_bFromFile can be set to true if you want to load this sound

directly from a file rather than the resource cache, which can be useful for testing sounds

outside of the resource cache.

The next two members store the sound in a format that is directly usable by DirectSound,

which is a PCM buffer. PCM stands for Pulse Code Modulation, and is a standard data format

used in everything from digital telephones to audio CDs and computer audio systems.
Because this format is completely uncompressed, it takes up quite a bit of memory space,

which is the main reason I consider this class more of a ―learning‖ class instead of
something you‘d use in a real game.

A real game would keep compressed sounds in memory and send bits and pieces of them

into the audio hardware as they were needed, saving precious memory space. For longer
pieces such as music, the system might even stream bits of the compressed music from

digital media, and then uncompress those bits as they were consumed by the audio card. As
you can see, that system could use its own book to describe it thoroughly.

Next up is the SoundResHandle class, which is responsible for sounds that have been

loaded by the resource cache:

SoundResHandle::SoundResHandle(

Resource &r, unsigned char *buffer,

unsigned int size, ResCache *pResCache)

: ResHandle(r, (char *)buffer, size, pResCache),

 m_PCMBuffer(NULL),

 m_PCMBufferSize(0),

 m_SoundType(SOUND_TYPE_UNKNOWN),

 m_SoundFile(r.m_name),

 m_bInitialized(false),

 m_LengthMilli(0),

 m_RawBuffer(buffer),

 m_BufferLength(size)

{

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 // don't do anything yet

 // timing sound Initialization is important!

 m_bFromFile = (buffer==NULL);

}

SoundResHandle::~SoundResHandle()

{

// Note - since SoundResources have a lifetime controlled by

shared_ptr,

// it's safe for us to nuke the memory without checking the

sound system first.

// Once the buffer is deleted, anything trying to read from it

will result

// in an Access Violation, like if the sound is still being

played in another

// thread. So... that means don't try to play this sound anymore

// after you SAFE_DELETE this buffer

 SAFE_DELETE_ARRAY(m_PCMBuffer);

}

You might think for a moment that the destructor might not have ―permission‖ from the
audio system to just nuke the PCM buffer. What if the sound is still playing? It turns out

that this is fine for multiple reasons. First, just like the ResHandle class you saw in

Chapter 7, SoundResHandle objects are always managed through a shared_ptr. If the

sound is still in the resource cache or is being actively played by the audio system, the
descructor can never be called because of the living reference to the object. Only when the

last reference to the SoundResHandle object is released will the descructor get called

and the memory released.

Let‘s take a look at the methods to initialize the sound:

bool SoundResHandle::VInitialize()

{

 if (!m_bInitialized)

 {

 m_SoundType =

Audio::FindSoundTypeFromFile(m_SoundFile.c_str());

 if (m_bFromFile)

 {

 FILE *file = NULL;

 file = fopen(m_SoundFile.c_str(), "rb");

 if (file == NULL)

 return false;

 switch (m_SoundType)

 {

 case SOUND_TYPE_WAVE:

 ParseWave(file);

 break;

 case SOUND_TYPE_OGG:

../../ch07#ch07
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 ParseOgg(file);

 break;

 default:

 assert(0 && _T("Sound Type Not Supported"));

 }

 fclose(file);

 }

 else

 {

 // initializing from a memory buffer

 switch (m_SoundType)

 {

 case SOUND_TYPE_WAVE:

 ParseWave(m_RawBuffer, m_BufferLength);

 break;

 case SOUND_TYPE_OGG:

 ParseOgg(m_RawBuffer, m_BufferLength);

 break;

 default:

 assert(0 && _T("Sound Type Not Supported"));

 }

 }

 m_bInitialized = true;

 }

 return true;

}

VInitialize() is called separately from construction. This is a good idea for two

reasons. First, sound files can get corrupted, and there‘s a chance that the load will fail. If it

does fail, you‘ll want to do something other than throw an exception in a constructor.
Second, you might want to have more control over when your sound resources actually

load. Perhaps you‘ll want to load them all at once in one set and in a particular order. Sound
tends to be the bulkiest data in your game, and keeping load times down can be tricky.

The VInitialize() method only does a few things: it figures out what kind of data to

parse, calls the correct parse routine, and calculates the length of the sound in milliseconds.
The sound data can come directly from a file, or it can come from a memory buffer.

The meaty methods of the SoundResHandle class convert sounds from their native

format to PCM format. The class supports both WAV and OGG files. Both ParseWave()

and ParseOgg() can accept a FILE * for input or a memory buffer.

Stream Your Music

http://lib.ommolketab.ir
http//lib.ommolketab.ir

A better solution for music files, which tend to be huge in an

uncompressed form, is to stream them into memory as the sound

data is played. Streaming sound is a complicated subject, so for now
we’ll simply play uncompressed sound data. Notice that even though a

multi-megabyte OGG file is loaded into a decompressed buffer, taking
up perhaps 10 times as much memory, it loads many times faster. As

you might expect, the Vorbis decompression algorithm is much faster
than your hard drive.

After the file is loaded, the WAVFORMATEX structure will reflect the nature of the

decompressed sound data. Platform-dependent sound systems like DirectSound will need
this data to interpret the uncompressed PCM data stream properly.

Loading the WAV Format

WAV files are what old-school game developers call a chunky file structure. Each chunk is

preceded by a unique identifier, which you‘ll use to parse the data in each chunk. The
chunks can also be hierarchical, that is, a chunk can exist within another chunk. Take a

quick look at the code below, and you‘ll see what I‘m talking about. The first identifier,
―RIFF,‖ is a clue that the file has an IFF, or Indexed File Format, basically the same thing as

saying a chunky format. If the next identifier in the file is ―WAVE,‖ you can be sure the file
is a WAV audio file.

You‘ll notice the identifier is always four bytes, and is immediately followed by a 4-byte

integer that stores the length of the chunk. Chunky file formats allow parsing code to ignore
chunks they don‘t understand, which is a great way to create extensible file formats. As

you‘ll see next, we‘re only looking for two chunks from our WAV file, but that doesn‘t mean

that other chunks aren‘t there:

bool SoundResHandle::ParseWave(char *wavStream, size_t

bufferLength)

{

 DWORD file = 0;

 DWORD fileEnd = 0;

 DWORD length = 0;

 DWORD type = 0;

 DWORD pos = 0;

 // mmioFOURCC -- converts four chars into a 4 byte integer

code.

 // The first 4 bytes of a valid .wav file is 'R','I','F','F'

 type = *((DWORD *)(wavStream+pos)); pos+=sizeof(DWORD);

 if(type != mmioFOURCC('R', 'I', 'F', 'F'))

 return false;

 length = *((DWORD *)(wavStream+pos)); pos+=sizeof(DWORD);

 type = *((DWORD *)(wavStream+pos)); pos+=sizeof(DWORD);

 // 'W','A','V','E' for a legal .wav file

 if(type != mmioFOURCC('W', 'A', 'V', 'E'))

 return false; //not a WAV

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 // Find the end of the file

 fileEnd = length - 4;

 memset(&m_WavFormatEx, 0, sizeof(WAVEFORMATEX));

 // Load the .wav format and the .wav data

 // Note that these blocks can be in either order.

 while(file < fileEnd)

 {

 type = *((DWORD *)(wavStream+pos)); pos+=sizeof(DWORD);

 file += sizeof(DWORD);

 length = *((DWORD *)(wavStream+pos)); pos+=sizeof(DWORD);

 file += sizeof(DWORD);

 switch(type)

 {

 case mmioFOURCC('f', 'a', 'c', 't'):

 {

 assert(false && "This wav file is compressed. We

don't handle

 compressed wav at this

time");

 break;

 }

 case mmioFOURCC('f', 'm', 't', ' '):

 {

 memcpy(&m_WavFormatEx, wavStream+pos, length);

 pos+=length;

 m_WavFormatEx.cbSize = length;

 break;

 }

 case mmioFOURCC('d', 'a', 't', 'a'):

 {

 m_PCMBuffer = GCC_NEW char[length];

 m_PCMBufferSize = length;

 memcpy(m_PCMBuffer, wavStream+pos, length);

 pos+=length;

 break;

 }

 }

 file += length;

 // If both blocks have been seen, we can return true.

 if((m_PCMBuffer != 0) && (m_PCMBufferSize != 0))

 {

 m_LengthMilli = (GetPCMBufferSize() * 1000) /

GetFormat()->nAvgBytesPerSec;

 return true;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 }

 // Increment the pointer past the block we just read,

 // and make sure the pointer is word aligned.

 if (length & 1)

 {

 ++pos;

 ++file;

 }

 }

 // If we get to here, the .wav file didn't contain all the

right pieces.

 return false;

}

The ParseWave() method has two parts. The first part initializes local and output

variables and makes sure the WAV file has the right beginning tag: ―RIFF,‖ signifying that

the file is the IFF type, and the identifier immediately following is ―WAVE.‖ If either of these
two checks fails, the method returns false.

The code flows into a while loop that is looking for two blocks: ―fmt‖ and ―data.‖ They can

arrive in any order, and there may be other chunks interspersed. That‘s fine, because we‘ll
just ignore them and continue looking for the two we care about. Once they are found, we

return with success. If for some reason we get to the end of the file and we didn‘t find the
two chunks we were looking for, we return false, indicating a failure.

Loading the OGG Format

The ParseOgg() method decompresses an OGG stream already in memory. The

OggVorbis_File object can load from a normal file or a memory buffer. Loading from a

memory buffer is a little trickier since you have to ―fake‖ the operations of an ANSI FILE *

object with your own code.

This first task is to create a structure that will keep track of the memory buffer, the size of

this buffer, and where the ―read‖ position is:

struct OggMemoryFile

{

 unsigned char* dataPtr;// Pointer to the data in memory

 size_t dataSize; // Size of the data

 size_t dataRead; // Bytes read so far

};

The next task is to write functions to mimic fread, fseek, fclose, and ftell:

size_t VorbisRead(void* data_ptr, size_t byteSize, size_t

sizeToRead, void*

 data_src)

{

 OggMemoryFile *pVorbisData = static_cast<OggMemoryFile

*>(data_src);

 if (NULL == pVorbisData)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 {

 return -1;

 }

 size_t actualSizeToRead, spaceToEOF =

 pVorbisData->dataSize - pVorbisData->dataRead;

 if ((sizeToRead*byteSize) < spaceToEOF)

 {

 actualSizeToRead = (sizeToRead*byteSize);

 }

 else

 {

 actualSizeToRead = spaceToEOF;

 }

 if (actualSizeToRead)

 {

 memcpy(data_ptr,

 (char*)pVorbisData->dataPtr + pVorbisData->dataRead,

actualSizeToRead);

 pVorbisData->dataRead += actualSizeToRead;

 }

 return actualSizeToRead;

}

int VorbisSeek(void* data_src, ogg_int64_t offset, int origin)

{

 OggMemoryFile *pVorbisData = static_cast<OggMemoryFile

*>(data_src);

 if (NULL == pVorbisData)

 {

 return -1;

 }

 switch (origin)

 {

 case SEEK_SET:

 {

 ogg_int64_t actualOffset;

 actualOffset = (pVorbisData->dataSize >= offset) ?

 offset : pVorbisData->dataSize;

 pVorbisData->dataRead =

static_cast<size_t>(actualOffset);

 break;

 }

 case SEEK_CUR:

 {

 size_t spaceToEOF =

 pVorbisData->dataSize - pVorbisData->dataRead;

 ogg_int64_t actualOffset;

 actualOffset = (offset < spaceToEOF) ? offset :

spaceToEOF;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 pVorbisData->dataRead +=

static_cast<LONG>(actualOffset);

 break;

 }

 case SEEK_END:

 pVorbisData->dataRead = pVorbisData->dataSize+1;

 break;

 default:

 assert(false && "Bad parameter for 'origin', requires same

as fseek.");

 break;

 };

 return 0;

}

int VorbisClose(void *src)

{

 // Do nothing - we assume someone else is managing the raw

buffer

 return 0;

}

long VorbisTell(void *data_src)

{

 OggMemoryFile *pVorbisData = static_cast<OggMemoryFile

*>(data_src);

 if (NULL == pVorbisData)

 {

 return -1L;

 }

 return static_cast<long>(pVorbisData->dataRead);

}

You might notice that the method that fakes the fclose() doesn‘t do anything.

Ordinarily, you might free the memory in the buffer, but since the raw sound data is

managed by the resource cache, nothing needs to be done. Here‘s what the ParseOgg()

method looks like:

bool SoundResHandle::ParseOgg(char *oggStream, size_t length)

{

 OggVorbis_File vf; // for the

vorbisfile interface

ov_callbacks oggCallbacks;

 OggMemoryFile *vorbisMemoryFile = new OggMemoryFile;

 vorbisMemoryFile->dataRead = 0;

 vorbisMemoryFile->dataSize = length;

 vorbisMemoryFile->dataPtr = (unsigned char *)oggStream;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 oggCallbacks.read_func = VorbisRead;

 oggCallbacks.close_func = VorbisClose;

 oggCallbacks.seek_func = VorbisSeek;

 oggCallbacks.tell_func = VorbisTell;

 int ov_ret =

 ov_open_callbacks(vorbisMemoryFile, &vf, NULL, 0,

oggCallbacks);

 assert(ov_ret>=0);

 // ok now the tricky part

 // the vorbis_info struct keeps the most of the interesting

format info

 vorbis_info *vi = ov_info(&vf,-1);

 memset(&m_WavFormatEx, 0, sizeof(m_WavFormatEx));

 m_WavFormatEx.cbSize = sizeof(m_WavFormatEx);

 m_WavFormatEx.nChannels = vi->channels;

 // ogg vorbis is always 16 bit

 m_WavFormatEx.wBitsPerSample = 16;

 m_WavFormatEx.nSamplesPerSec = vi->rate;

 m_WavFormatEx.nAvgBytesPerSec =

 m_WavFormatEx.nSamplesPerSec*m_WavFormatEx.nChannels*2;

 m_WavFormatEx.nBlockAlign = 2*m_WavFormatEx.nChannels;

 m_WavFormatEx.wFormatTag = 1;

 DWORD size = 4096 * 16;

 DWORD pos = 0;

 int sec = 0;

 int ret = 1;

 // get the total number of PCM samples

 DWORD bytes = (DWORD)ov_pcm_total(&vf, -1);

 bytes *= 2 * vi->channels;

 m_PCMBuffer = GCC_NEW char[bytes];

 m_PCMBufferSize = bytes;

 // now read in the bits

 while(ret && pos<bytes)

 {

 ret = ov_read(&vf, m_PCMBuffer+pos, size, 0, 2, 1, &sec);

 pos += ret;

 if (bytes - pos < size)

 {

 size = bytes - pos;

 }

 }

 m_LengthMilli = 1000.f * ov_time_total(&vf, -1);

 ov_clear(&vf);

 delete vorbisMemoryFile;

 return true;

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This method shows you how to decompress an OGG memory buffer using the Vorbis API.
First, you grab some sound stream information and use it to calculate the size of the

uncompressed sound buffer. Next, you allocate the memory for the sound data and enter a
loop to decompress the stream.

Always Show Something Moving

Any time you have a while loop that might take some time, such as

decompressing a large OGG file, it’s a good idea to create a callback

function that your game can use to monitor the progress of the
routine. This might be important for creating a progress bar or some

other animation that will give your players something to look at other
than a completely stalled screen. Console games are usually required

to have on-screen animations during loads, but this is a good idea for

PC games too.

If you are just lifting this OGG code into your game and ignoring the rest of this chapter,
don‘t forget to link the Vorbis libraries into your project. Since there‘s no encoding going on
here, you can just link the following libraries: vorbisfile_static.lib, vorbis_static.lib, and

ogg_static.lib.

To learn more about the OGG format, go to www.xiph.org/ogg/vorbis. The technology is
open source, the sound is every bit as good as MP3, and you don‘t have to worry about

paying annoying license fees. In other words, unless you have money to burn, use OGG for

sound data compression. Lots of audio tools support OGG, too. You can go to the Xiph Web
site to find out which ones.

Loading WAV or OGG files is extremely similar and actually easier. You can look at those

implementations in the Game Coding Complete source code.

IAudioBuffer Interface and AudioBuffer Class

IAudioBuffer exposes methods such as volume control, pausing, and monitoring

individual sound effects while they are in memory. IAudioBuffer, and a partial

implementation AudioBuffer, are meant to be platform agnostic. Here‘s the interface

class:

class IAudioBuffer

{

public:

 virtual ~IAudioBuffer() { }

 virtual void *VGet()=0;

 virtual shared_ptr<SoundResHandle> const VGetResource()=0;

 virtual bool VRestore()=0;

 virtual bool VPlay(int volume, bool looping)=0;

 virtual bool VStop()=0;

 virtual bool VResume()=0;

 virtual bool VTogglePause()=0;

../../vorbis
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 virtual bool VIsPlaying()=0;

 virtual bool VIsLooping() const=0;

 virtual void VSetVolume(int volume)=0;

 virtual int VGetVolume() const=0;

 virtual float VGetProgress() const=0;

};

The first method is a virtual destructor, which will be overloaded by classes that implement

the interface. If this destructor weren‘t virtual, it would be impossible to release audio
resources grabbed for this sound effect.

The next method, VGet(), is used to grab an implementation-specific handle to the

allocated sound. When I say implementation specific, I‘m talking about the piece of data
used by the audio system implementation to track sounds internally. In the case of a

DirectSound implementation, this would be a LPDIRECTSOUNDBUFFER. This is for internal

use only, for whatever class implements the IAudio interface to call. Your high-level game

code will never call this method unless it knows what the implementation is and wants to do

something really specific.

The next method, VRestore(), is primarily for Windows games since it is possible for

them to lose control of their sound buffers. You might recall a long discussion about losing

drawing surfaces in the graphics section, requiring the game to track down every lost
surface and call a method to restore it. Sound buffers under Windows operate exactly the

same way. The audio system will double-check to see if an audio buffer has been lost before
it sends commands to the sound driver to play the sound. If it has been lost, it will call the

VRestore() method and everything will be back to normal. Hopefully, anyway.

The next four methods can control the play status on an individual sound effect. VPlay()

gets a volume from 0–100 and a Boolean looping, which you set to true if you want the

sound to loop. VStop(), VResume(), and VTogglePause() let you control the

progress of a sound.

The volume methods do exactly what you‘d think they do: set and retrieve the current
volume of the sound. The method that sets the volume will do so instantly, or nearly so. If

you want a gradual fade, on the other hand, you‘ll have to use something a little higher
level. Luckily, we‘ll do exactly that later on in this chapter.

The last method returns a floating-point number between 0.0f and 1.0f, and is meant to

track the progress of a sound as it is being played. If the sound effect is one-fourth of the
way through playing, this method will return 0.25f.

All Things Go From 0.0 to 1.0

Measuring things like sound effects in terms of a coefficient instead of
a number of milliseconds is a nice trick. This abstraction gives you

some flexibility if the actual length of the sound effect changes,
especially if it is timed with animations.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

With the interface defined, we can write a little platform-agnostic code and create the

AudioBuffer class. The real meat of this class is the management of the smart pointer to

a SoundResource. This guarantees that the memory for your sound effect can‘t go out of

scope while the sound effect is being played:

class AudioBuffer : public IAudioBuffer

{

public:

 virtual shared_ptr<SoundResHandle> VGetResource() { return

m_Resource; }

 virtual bool VIsLooping() const { return m_isLooping; }

 virtual int VGetVolume() const { return m_Volume; }

protected:

 AudioBuffer(shared_ptr<SoundResHandle >resource)

 {

 m_Resource = resource;

 m_isPaused = false;

 m_isLooping = false;

 m_Volume = 0;

 } // disable public construction

 shared_ptr<SoundResHandle> m_Resource;

 // Is the sound paused

 bool m_isPaused;

 // Is the sound looping

 bool m_isLooping;

 //the volume

 int m_Volume;

};

This class holds the precious smart pointer to your sound data and implements the

IAudioBuffer interface. VIsLooping() and VGetVolume() tell you if your sound is

a looping sound and the current volume setting. VGetResource() returns a smart

pointer to the sound resource, which manages the sound data.

We‘re nearly to the point where we have to dig into DirectSound. Before that happens, take
a look at the classes that encapsulate the system that manages the list of active sounds:

IAudio and Audio.

IAudio Interface and Audio Class

IAudio has three main purposes: create, manage, and release audio buffers:

class IAudio

{

public:

 virtual bool VActive()=0;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 virtual IAudioBuffer

*VInitAudioBuffer(shared_ptr<SoundResHandle>

 soundResource)=0;

 virtual void VReleaseAudioBuffer(IAudioBuffer*

audioBuffer)=0;

 virtual void VStopAllSounds()=0;

 virtual void VPauseAllSounds()=0;

 virtual void VResumeAllSounds()=0;

 virtual bool VInitialize()=0;

 virtual void VShutdown()=0;

};

VActive() is something you can call to determine if the sound system is active. As rare

as it may be, a sound card might be disabled or not installed. It is also likely that during
initialization or game shutdown, you‘ll want to know if the sound system has a heartbeat.

The next two methods, VInitAudioBuffer() and VReleaseAudioBuffer(), are

called when you want to launch a new sound or tell the audio system you are done with it
and it can release audio resources back to the system. This is important, so read it twice.

You‘ll call these for each instance of a sound, even if it is exactly the same effect. You might
want to play the same sound effect at two different volumes, such as when two players are

firing the same type of weapon at each other, or you have multiple explosions going off at
the same time in different places.

You‘ll notice that the only parameter to the initialize method is a shared pointer to a

SoundResHandle object. This object contains the single copy of the actual decompressed

PCM sound data. The result of the call, assuming it succeeds, is a pointer to an object that

implements the IAudioBuffer interface. What this means is that the audio system is

ready to play the sound.

The next three methods are system-wide sound controls, mostly for doing things like
pausing and resuming sounds when the player Alt-Tabs away from your game. It‘s

extremely annoying to have game sound effects continue in the background if you are
trying to check email or convince your boss you aren‘t playing a game.

The last two methods, VInitialize() and VShutdown(), are used to create and tear

down the sound system. Let‘s take a look at a platform-agnostic partial implementation of

the IAudio interface:

extern TCHAR *gSoundExtentions[];

typedef std::list<IAudioBuffer *> AudioBufferList;

class Audio : public IAudio

{

public:

 Audio();

 virtual void VStopAllSounds();

 virtual void VPauseAllSounds();

 virtual void VResumeAllSounds();

 virtual void VShutdown();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 static TCHAR const * const FindExtFromSoundType(SoundType

type)

 { return gSoundExtentions[type]; }

 static SoundType FindSoundTypeFromFile(TCHAR const * const

ext);

 static bool HasSoundCard(void);

protected:

 AudioBufferList m_AllSamples; // List of all currently

allocated

 bool m_AllPaused; // Has the sound system been

paused?

 bool m_Initialized; // Has the sound system been

initialized?

};

We‘ll use STL to organize the active sounds in a linked list called m_AllSamples. This is

probably good for almost any game because you‘ll most likely have only a handful of sounds
active at one time. Linked lists are great containers for a small number of objects. You‘d use

a more complicated structure for anything with a good population, such as your game

objects.

Since the sounds are all stored in the linked list, and each sound object implements the

IAudioBuffer interface, we can define routines that perform an action on every sound in

the system:

void Audio::VShutdown()

{

 IAudioBuffer *audioBuffer = NULL;

 AudioBufferList::iterator i=m_AllSamples.begin();

 while (i!=m_AllSamples.end())

 {

 audioBuffer = (*i);

 audioBuffer->VStop();

 m_AllSamples.pop_front();

 }

}

//Stop all active sounds, including music

void Audio::VPauseAllSounds()

{

 IAudioBuffer *audioBuffer = NULL;

 AudioBufferList::iterator i;

 AudioBufferList::iterator end;

 for(i=m_AllSamples.begin(), end=m_AllSamples.end(); i!=end;

++i)

 {

 audioBuffer = (*i);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 audioBuffer->VPause();

 }

 m_AllPaused=true;

}

void Audio::VResumeAllSounds()

{

 IAudioBuffer *audioBuffer = NULL;

 AudioBufferList::iterator i;

 AudioBufferList::iterator end;

 for(i=m_AllSamples.begin(), end=m_AllSamples.end(); i!=end;

++i)

 {

 audioBuffer = (*i);

 audioBuffer->VResume();

 }

 m_AllPaused=false;

}

void Audio::VStopAllSounds()

{

 IAudioBuffer *audioBuffer = NULL;

 AudioBufferList::iterator i;

 AudioBufferList::iterator end;

 for(i=m_AllSamples.begin(), end=m_AllSamples.end(); i!=end;

++i)

 {

 audioBuffer = (*i);

 audioBuffer->VStop();

 }

 m_AllPaused=false;

}

The code for each of these routines iterates the list of currently playing sounds and calls the

appropriate stop, resume, or pause method of the IAudioBuffer object.

DirectSound Implementations

The Audio and AudioBuffer classes are useless on their own; we must still create the

platform-specific code. Since DirectSound is completely free to use by anyone, we‘ll create
our platform-specific code around that technology.

You‘ll need to extend this code if you want to play MP3 or MIDI. Still, DirectSound can make

a good foundation for a game‘s audio system. Let‘s take a look at the implementation for

DirectSoundAudio first, which extends the Audio class we just discussed:

class DirectSoundAudio : public Audio

{

public:

 DirectSoundAudio() { m_pDS = NULL; }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 virtual bool VActive() { return m_pDS != NULL; }

 virtual IAudioBuffer *VInitAudioBuffer(

 shared_ptr<SoundResHandle> soundResource);

 virtual void VReleaseAudioBuffer(IAudioBuffer* audioBuffer);

 virtual void VShutdown();

 virtual bool VInitialize(HWND hWnd);

protected:

 IDirectSound8* m_pDS;

 HRESULT SetPrimaryBufferFormat(

 DWORD dwPrimaryChannels,

 DWORD dwPrimaryFreq,

 DWORD dwPrimaryBitRate);

};

The only piece of data in this class is a pointer to an IDirectSound8 object, which is

DirectSound‘s gatekeeper, so to speak. Initialization, shutdown, and creating audio buffers

are all done through this object. One way to look at this is that DirectSoundAudio is a

C++ wrapper around IDirectSound8. Let‘s look at initialization and shutdown first:

bool DirectSoundAudio::VInitialize()

{

 if (m_Initialized)

 return true;

 m_Initialized=false;

 SAFE_RELEASE(m_pDS);

 HWND hWnd = g_App.m_hWnd;

 HRESULT hr;

 // Create IDirectSound using the primary sound device

 if(FAILED(hr = DirectSoundCreate8(NULL, &m_pDS, NULL)))

 return false;

 // Set DirectSound coop level

 if(FAILED(hr = m_pDS->SetCooperativeLevel(hWnd,

DSSCL_PRIORITY)))

 return false;

 if(FAILED(hr = SetPrimaryBufferFormat(8, 44100, 16)))

 return false;

 m_Initialized = true;

 m_AllSamples.clear();

 return true;

}

This code is essentially lifted straight from the DirectX sound samples, so it should look
pretty familiar. When you set the cooperative level on the Direct-Sound object, you‘re

telling the sound driver you want more control over the sound system, specifically how the
primary sound buffer is structured and how other applications run at the same time. The

http://lib.ommolketab.ir
http//lib.ommolketab.ir

DSSCL_PRIORITY level is better than DSSCL_NORMAL because you can change the

format of the output buffer. This is a good setting for games that still want to allow
background applications like Microsoft Messenger or Outlook to be able to send something

to the speakers.

Why bother, you might ask? If you don‘t do this, and set the priority level to

DSSCL_NORMAL, you‘re basically informing the sound driver that you‘re happy with

whatever primary sound buffer format is in place, which might not be the same sound
format you need for your game audio. The problem is one of conversion. Games use tons of

audio, and the last thing you need is for every sound to go through some conversion
process so it can be mixed in the primary buffer. If you have 100,000 audio files and they

are all stored in 44KHz, the last thing you want is to have each one be converted to 22KHz

because it‘s a waste of time. Take control and use DSSCL_PRIORITY.

The call to SetPrimaryBufferFormat() sets your primary buffer format to a flavor

you want; most likely, it will be 44KHz, 16-bit, and some number of channels that you feel

is a good trade-off between memory use and the number of simultaneous sound effects
you‘ll have in your game. For the purposes of this class, I‘m choosing eight channels, but in

a commercial game you could have 32 channels or even more. The memory you‘ll spend
with more channels is dependent on your sound hardware, so be cautious about grabbing a

high number of channels—you might find some audio cards won‘t support it.

HRESULT DirectSoundAudio::SetPrimaryBufferFormat(

DWORD dwPrimaryChannels,

DWORD dwPrimaryFreq,

DWORD dwPrimaryBitRate)

{

 // !WARNING! - Setting the primary buffer format and then

using this

 // for DirectMusic messes up DirectMusic!

 //

 // If you want your primary buffer format to be 22kHz stereo,

16-bit

 // call with these parameters: SetPrimaryBufferFormat(2,

22050, 16);

 HRESULT hr;

 LPDIRECTSOUNDBUFFER pDSBPrimary = NULL;

 if(m_pDS == NULL)

 return CO_E_NOTINITIALIZED;

 // Get the primary buffer

 DSBUFFERDESC dsbd;

 ZeroMemory(&dsbd, sizeof(DSBUFFERDESC));

 dsbd.dwSize = sizeof(DSBUFFERDESC);

 dsbd.dwFlags = DSBCAPS_PRIMARYBUFFER;

 dsbd.dwBufferBytes = 0;

 dsbd.lpwfxFormat = NULL;

 if(FAILED(hr = m_pDS->CreateSoundBuffer(&dsbd,

&pDSBPrimary, NULL)))

 return DXUT_ERR(L"CreateSoundBuffer", hr);

 WAVEFORMATEX wfx;

 ZeroMemory(&wfx, sizeof(WAVEFORMATEX));

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 wfx.wFormatTag = (WORD) WAVE_FORMAT_PCM;

 wfx.nChannels = (WORD) dwPrimaryChannels;

 wfx.nSamplesPerSec = (DWORD) dwPrimaryFreq;

 wfx.wBitsPerSample = (WORD) dwPrimaryBitRate;

 wfx.nBlockAlign = (WORD) (wfx.wBitsPerSample / 8 *

wfx.nChannels);

 wfx.nAvgBytesPerSec = (DWORD) (wfx.nSamplesPerSec *

wfx.nBlockAlign);

 if(FAILED(hr = pDSBPrimary->SetFormat(&wfx)))

 return DXUT_ERR(L"SetFormat", hr);

 SAFE_RELEASE(pDSBPrimary);

 return S_OK;

}

You have to love DirectSound. This method essentially makes two method calls, and the

rest of the code simply fills in parameters. The first call is to Create-SoundBuffer(),

which actually returns a pointer to the primary sound buffer where all your sound effects
are mixed into a single sound stream that is rendered by the sound card. The second call to

SetFormat() tells the sound driver to change the primary buffer‘s format to one that you

specify.

The shutdown method, by contrast, is extremely simple:

void DirectSoundAudio::VShutdown()

{

 if(m_Initialized)

 {

 Audio::VShutdown();

 SAFE_RELEASE(m_pDS);

 m_Initialized = false;

 }

}

The base class‘s VShutdown() is called to stop and release all the sounds still active. The

SAFE_RELEASE on m_pDS will release the IDirectSound8 object and shut down the

sound system completely.

The last two methods of the DirectSoundAudio class allocate and release audio buffers.

An audio buffer is the C++ representation of an active sound effect. In our platform-
agnostic design, an audio buffer is created from a sound resource, presumably something

loaded from a file or more likely a resource file:

IAudioBuffer

*DirectSoundAudio::VInitAudioBuffer(shared_ptr<CSoundResource>

 soundResource)

{

 const char* fileExtension =

 Audio::FindExtFromSoundType(soundResource-

>GetSoundType());

http://lib.ommolketab.ir
http//lib.ommolketab.ir

if(m_pDS == NULL)

 return NULL;

 switch(soundResource->GetSoundType())

 {

 case SOUND_TYPE_OGG:

 case SOUND_TYPE_WAVE:

 // We support WAVs and OGGs

 break;

 case SOUND_TYPE_MP3:

 case SOUND_TYPE_MIDI:

 // If it's a midi file, then do nothing at this time...

 // maybe we will support this in the future

 assert(false && "MP3s and MIDI are not supported");

 return NULL;

 break;

 default:

 assert(false && "Unknown sound type");

 return NULL;

 }

 LPDIRECTSOUNDBUFFER sampleHandle;

 // Create the direct sound buffer, and only request the flags

needed

 // since each requires some overhead and limits if the buffer

can

 // be hardware accelerated

 DSBUFFERDESC dsbd;

 ZeroMemory(&dsbd, sizeof(DSBUFFERDESC));

 dsbd.dwSize = sizeof(DSBUFFERDESC);

 dsbd.dwFlags = DSBCAPS_CTRLVOLUME;

 dsbd.dwBufferBytes = soundResource->GetPCMBufferSize();

 dsbd.guid3DAlgorithm = GUID_NULL;

 dsbd.lpwfxFormat = const_cast<WAVEFORMATEX

*>(soundResource

>GetFormat());

 HRESULT hr;

 if(FAILED(hr = m_pDS->CreateSoundBuffer(&dsbd,

&sampleHandle, NULL)))

 {

 return NULL;

 }

 // Add handle to the list

 IAudioBuffer *audioBuffer =

 (IAudioBuffer *)(new DirectSoundAudioBuffer(sampleHandle,

soundResource));

 m_AllSamples.insert(m_AllSamples.begin(), audioBuffer);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 return audioBuffer;

}

Notice the switch statement at the beginning of this code? It branches on the sound type,
which signifies what kind of sound resource is about to play: WAV, MP3, OGG, or MIDI. In

our simple example, we‘re only looking at WAV data, so if you want to extend this system to
play other kinds of sound formats, you‘ll hook that new code in right there. For now, those

other formats are short circuited, and will force a failure.

The call to IDirectSound8::CreateSoundBuffer() is preceded by setting various

values of a DSBUFFERDESC structure that informs DirectSound what kind of sound is being

created. Take special note of the flags, since that member can have all manner of things set

that and control what can happen to the sound. An example here is the

DSBCAPS_CTRLVOLUME flag, which tells DirectSound that we want to be able to control

the volume of this sound effect. Other examples include DSBCAPS_CTRL3D, which enables

3D sound, or DSBCAPS_CTRLPAN, which enables panning control. Take a look at the

DirectSound docs to learn more about this important structure.

After we‘re sure we‘re talking about WAV data, there are three things to do. First, we parse

the WAV data with the ParseWave() method we saw a little earlier in this chapter. The

results of that call are passed to DirectSound‘s CreateSound-Buffer() method, which

creates an IDirectSoundBuffer8 object. In the last step, the DirectSound sound buffer

is handed to our C++ wrapper class, DirectSoundAudioBuffer, and inserted into the

master list of sound effects managed by Audio.

Releasing an audio buffer is pretty trivial:

void DirectSoundAudio::VReleaseAudioBuffer(IAudioBuffer

*sampleHandle)

{

 sampleHandle->VStop();

 m_AllSamples.remove(sampleHandle);

}

The call to IAudioBuffer::VStop() stops the sound effect, and it is then removed

from the list of active sounds.

The second piece of this platform-dependent puzzle is the implementation of the

DirectSoundAudioBuffer, which picks up and defines the remaining unimplemented

virtual functions from the IAudioBuffer interface:

class DirectSoundAudioBuffer : public AudioBuffer

{

protected:

 LPDIRECTSOUNDBUFFER m_Sample;

public:

 DirectSoundAudioBuffer(

 LPDIRECTSOUNDBUFFER sample,

 shared_ptr<SoundResHandle> resource);

 virtual void *VGet();

 virtual bool VRestore();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 virtual bool VPlay(int volume, bool looping);

 virtual bool VStop();

 virtual bool VResume();

 virtual bool VTogglePause();

 virtual bool VIsPlaying();

 virtual void VSetVolume(int volume);

private:

 HRESULT FillBufferWithSound();

 HRESULT RestoreBuffer(BOOL* pbWasRestored);

};

The methods in this class are pretty easy C++ wrappers around IDirectSound-

Buffer8. The exceptions are FillBufferWithSound() and RestoreBuffer():

DirectSoundAudioBuffer::DirectSoundAudioBuffer(

 LPDIRECTSOUNDBUFFER sample,

 shared_ptr<CSoundResource> resource)

 : AudioBuffer(resource)

{

 m_Sample = sample;

 FillBufferWithSound();

}

void *DirectSoundAudioBuffer::VGet()

{

 if (!VRestore())

 return NULL;

 return m_Sample;

}

bool DirectSoundAudioBuffer::VPlay(int volume, bool looping)

{

 VStop();

 m_Volume = volume;

 m_isLooping = looping;

 LPDIRECTSOUNDBUFFER pDSB = (LPDIRECTSOUNDBUFFER)VGet();

 if (!pDSB)

 return false;

 float coeff = (float)volume / 100.0f;

 float range = (DSBVOLUME_MAX - DSBVOLUME_MIN);

 float fvolume = (range * coeff) + DSBVOLUME_MIN;

pDSB->SetVolume(volume);

DWORD dwFlags = looping ? DSBPLAY_LOOPING : 0L;

return (S_OK==pDSB->Play(0, 0, dwFlags));

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

bool DirectSoundAudioBuffer::VStop()

{

 LPDIRECTSOUNDBUFFER pDSB = (LPDIRECTSOUNDBUFFER)VGet();

 if(!g_Audio->VActive())

 return false;

if(pDSB == NULL)

 return false;

 m_isPaused=true;

pDSB->Stop();

 return true;

}

bool DirectSoundAudioBuffer::VResume()

{

 m_isPaused=false;

 return VPlay(VGetVolume(), VIsLooping());

}

bool DirectSoundAudioBuffer::VTogglePause()

{

 if(!g_Audio->VActive())

 return false;

 if(m_isPaused)

 {

 VResume();

 }

 else

 {

 VStop();

 }

 return true;

}

bool DirectSoundAudioBuffer::VIsPlaying()

{

 if(!g_Audio->VActive())

 return false;

 DWORD dwStatus = 0;

 LPDIRECTSOUNDBUFFER pDSB = (LPDIRECTSOUNDBUFFER)VGet();

 pDSB->GetStatus(&dwStatus);

 bool bIsPlaying = ((dwStatus & DSBSTATUS_PLAYING) != 0);

 return bIsPlaying;

}

void DirectSoundAudioBuffer::VSetVolume(int volume)

{

 if(!g_Audio->VActive())

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 return;

 LPDIRECTSOUNDBUFFER pDSB = (LPDIRECTSOUNDBUFFER)VGet();

 assert(volume>=0 && volume<=100 && "Volume must be between 0

and 100");

// convert volume from 0-100 into range for DirectX

// Don't forget to use a logarithmic scale!

 float coeff = (float)volume / 100.0f;

 float logarithmicProportion = coeff >0.1f ? 1+log10(coeff)

: 0;

 float range = (DSBVOLUME_MAX - GCC_DSBVOLUME_MIN);

 float fvolume = (range * logarithmicProportion) +

GCC_DSBVOLUME_MIN;

 pDSB->SetVolume(LONG(fvolume));

}

Most of the previous code has a similar structure and is a lightweight wrapper around

IDirectSoundBuffer8. The first few lines check to see if the audio system is running,

the audio buffer has been initialized, and parameters have reasonable values. Take one

note of the VSetVolume method; it has to renormalize the volume value from 0–100 to a

range compatible with DirectSound, and it does so with a logarithmic scale, since sound
intensity is logarithmic in nature.

The last three methods in this class are a little trickier, so I‘ll give you a little more detail on

them. The first, VRestore(), looks a little like something you‘ll recognize from the

graphics chapters, and for good reason: sound buffers under DirectSound can be lost just

like drawing surfaces or textures under Direct3D. Since Windows is inherently a
multitasking system where you can have two games running at the same time, only one of

those games will have control of the speakers. If you hit the Alt-Tab key to bring the
inactive game to the front, it will have to run some code to restore lost sound and graphics

buffers.

If the sound buffer is ever lost, you have to restore it with some DirectSound calls and then

fill it with sound data again—it doesn‘t get restored with its data intact. The VRestore()

method calls RestoreBuffer() to restore the sound buffer, and if that is successful, it

calls FillBufferWithSound() to put the sound data back where it belongs:

bool DirectSoundAudioBuffer::VRestore()

{

 HRESULT hr;

 BOOL bRestored;

 // Restore the buffer if it was lost

 if(FAILED(hr = RestoreBuffer(&bRestored)))

 return NULL;

 if(bRestored)

 {

 // The buffer was restored, so we need to fill it with

new data

 if(FAILED(hr = FillBufferWithSound()))

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 return NULL;

 }

 return true;

}

This implementation of RestoreBuffer() is pretty much lifted from the Direct-Sound

samples. Hey, at least I admit to it! If you‘re paying attention, you‘ll notice an unfortunate

bug in the code—see if you can find it:

HRESULT DirectSoundAudioBuffer::RestoreBuffer(BOOL*

pbWasRestored)

{

 HRESULT hr;

 if(m_Sample == NULL)

 return CO_E_NOTINITIALIZED;

 if(pbWasRestored)

 *pbWasRestored = FALSE;

 DWORD dwStatus;

 if(FAILED(hr = m_Sample->GetStatus(&dwStatus)))

 return DXUT_ERR(L"GetStatus", hr);

 if(dwStatus & DSBSTATUS_BUFFERLOST)

 {

 // Since the app could have just been activated, then

 // DirectSound may not be giving us control yet, so

 // the restoring the buffer may fail.

 // If it does, sleep until DirectSound gives us control.

 do

 {

 hr = m_Sample->Restore();

 if(hr == DSERR_BUFFERLOST)

 Sleep(10);

 }

 while((hr = m_Sample->Restore()) == DSERR_BUFFERLOST

);

 if(pbWasRestored != NULL)

 *pbWasRestored = TRUE;

 return S_OK;

 }

 else

 {

 return S_FALSE;

 }

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The bug in the method is the termination condition of the do/while loop; it could try

forever, assuming DirectSound was in some wacky state. This could hang your game and
cause your players to curse your name and post all kinds of nasty things on the Internet.

Making the code better depends on what you want to do when this kind of failure happens.
You likely would throw up a dialog box and exit the game. It‘s totally up to you. The lesson

here is that just because you grab something directly from a DirectX sample doesn‘t mean
you should install it into your game unmodified!

The next method is FillBufferWithSound(). Its job is to copy the sound data from a

sound resource into a prepared and locked sound buffer. There‘s also a bit of code to handle
the special case where the sound resource has no data—in that case, the sound buffer gets

filled with silence. Notice that ―silence‖ isn‘t necessarily a buffer with all zeros.

HRESULT DirectSoundAudioBuffer::FillBufferWithSound(void)

{

 HRESULT hr;

 VOID *pDSLockedBuffer = NULL; // DirectSound buffer

pointer

 DWORD dwDSLockedBufferSize = 0; // Size of DirectSound

buffer

 DWORD dwWavDataRead = 0; // Data to read from

the wav file

 if(m_Sample == NULL)

 return CO_E_NOTINITIALIZED;

 // Make sure we have focus, and we didn't just switch in from

 // an app which had a DirectSound device

 if(FAILED(hr = RestoreBuffer(NULL)))

 return DXUT_ERR(L"RestoreBuffer", hr);

 int pcmBufferSize = m_Resource->GetPCMBufferSize();

 // Lock the buffer down

 if(FAILED(hr = m_Sample->Lock(0, pcmBufferSize,

 &pDSLockedBuffer, &dwDSLockedBufferSize,

 NULL, NULL, 0L)))

 return DXUT_ERR(L"Lock", hr);

 if(pcmBufferSize == 0)

 {

 // Wav is blank, so just fill with silence

 FillMemory((BYTE*) pDSLockedBuffer,

 dwDSLockedBufferSize,

 (BYTE)(m_Resource->GetFormat()->wBitsPerSample == 8 ?

128 : 0));

 }

 else

 {

 CopyMemory(pDSLockedBuffer,

 m_Resource->GetPCMBuffer(), pcmBufferSize);

 if(pcmBufferSize < (int)dwDSLockedBufferSize)

 {

 // If the buffer sizes are different fill in the rest

with silence

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 FillMemory((BYTE*) pDSLockedBuffer + pcmBufferSize,

 dwDSLockedBufferSize - pcmBufferSize,

 (BYTE)(m_Resource->GetFormat()->wBitsPerSample == 8

? 128 : 0));

 }

 }

 // Unlock the buffer, we don't need it anymore.

 m_Sample->Unlock(pDSLockedBuffer, dwDSLockedBufferSize,

NULL, 0);

 return S_OK;

}

There‘s also some special case code that handles the case where the Direct-Sound buffer is

longer than the sound data—any space left over is filled with silence.

There‘s one last method to implement in the IAudioBuffer interface, the VGet-

Progress() method:

float DirectSoundAudioBuffer::VGetProgress()

{

 LPDIRECTSOUNDBUFFER pDSB = (LPDIRECTSOUNDBUFFER)VGet();

 DWORD progress = 0;

 pDSB->GetCurrentPosition(&progress, NULL);

 float length = (float)m_Resource->GetPCMBufferSize();

 return (float)progress / length;

}

This useful little routine calculates the current progress of a sound buffer as it is being
played. Sound plays at a constant rate, so things like music and speech will sound exactly

as they were recorded. It‘s up to you, the skilled programmer, to get your game to display
everything exactly in sync with the sound. You do this by polling the sound effect‘s progress

when your game is about to start or change an animation.

Perhaps you have an animation of a window cracking and then shattering. You‘d launch the

sound effect and animation simultaneously, call VGetProgress() on your sound effect

every frame, and set your animation progress accordingly. This is especially important

because players can detect even tiny miscues between sound effects and animation.

Sound Processes

All of the classes you‘ve seen so far, CSoundResource, DirectSoundAudio, and

Direct-SoundAudioBuffer form the bare bones of an audio system for a computer

game. What‘s missing is some way to launch and monitor a sound effect as it is playing,
perhaps to coordinate it with an animation. If you paid some attention in Chapter 6,

―Controlling the Main Loop,‖ you‘ll remember the CProcess class. It turns out to be

perfect for this job:

class SoundProcess : public CProcess

{

../../ch06#ch06
http://lib.ommolketab.ir
http//lib.ommolketab.ir

public:

 SoundProcess(

 shared_ptr<SoundResHandle> soundResource,

 int typeOfSound=PROC_SOUNDFX,

 int volume=100,

 bool looping=false);

 virtual ~SoundProcess();

 virtual void OnUpdate(const int deltaMilliseconds);

 virtual void OnInitialize();

 virtual void Kill();

 virtual void TogglePause();

 void Play(const int volume, const bool looping);

 void Stop();

 void SetVolume(int volume);

 int GetVolume();

 int GetLengthMilli();

 bool IsSoundValid() { return m_SoundResource!=NULL; }

 bool IsPlaying();

 bool IsLooping() { return m_AudioBuffer-

>VIsLooping(); }

 float GetProgress();

protected:

 SoundProcess(); //Disable Default Construction

 shared_ptr<SoundResHandle> m_SoundResource;

 shared_ptr<IAudioBuffer> m_AudioBuffer;

 int m_Volume;

 bool m_isLooping;

};

This class provides a single object that manages individual sounds. Many of the methods are

re-implementations of some IAudioBuffer methods, and while this isn‘t the best C++

design, it can make things a little easier in your code.

As you might expect, the parameters are a CSoundResource and initial sound settings.

One parameter needs a little explanation, typeOfSound. Every process has a type, and

sound processes use this to distinguish themselves into sound categories such as sound

effects, music, ambient background effects, or speech. This creates an easy way for a game
to turn off or change the volume level of a particular type of sound, which most gamers will

expect. If players want to turn down the music level so they can hear speech better, it‘s a
good idea to let them:

SoundProcess::SoundProcess(

 shared_ptr<SoundResHandle> soundResource,

 int typeOfSound, int volume, bool looping)

 : CProcess(typeOfSound, 0),

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 m_SoundResource(soundResource),

 m_Volume(volume),

 m_isLooping(looping)

{

}

SoundProcess::~SoundProcess()

{

 if (m_AudioBuffer)

 {

 g_Audio->VReleaseAudioBuffer(m_AudioBuffer.get());

 }

}

The meat of the code in SoundProcess is in the next few methods. One important

concept to understand about sounds is the code might create a sound process long before
the sound should be played or even loaded. Since sound effects tend to require a lot of

data, it‘s a good idea to be careful about when you instantiate sound effects. After all, you
don‘t want your game to stutter or suffer wacky pauses. The code shown next assumes the

simplest case, where you want the sound to begin playing immediately, but it‘s good to
know that you don‘t have to do it this way:

void SoundProcess::OnInitialize()

{

 if (! m_SoundResource)

 return;

 m_SoundResource->Initialize();

 //This sound will manage its own handle in the other thread

 IAudioBuffer *buffer = g_Audio-

>VInitAudioBuffer(m_SoundResource);

 if (!buffer)

 {

 Kill();

 return;

 }

 m_AudioBuffer.reset(buffer);

 Play(m_Volume, m_isLooping);

}

The VOnUpdate method monitors the sound effect as it‘s being played. Once it is finished,

it kills the process and releases the audio buffer. If the sound is looping, it will play until

some external call kills the process. Again, you don‘t have to do it this way in your game.

Perhaps you‘d rather have the process hang out until you kill it explicitly:

void SoundProcess::VOnUpdate(const int deltaMilliseconds)

{

 // Call base

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 CProcess::OnUpdate(deltaMilliseconds);

 if (! m_bInitialUpdate && ! IsPlaying())

 {

 VKill();

 }

 if (IsDead() && IsLooping())

 {

 Replay();

 }

}

This class overloads the VKill() method to coordinate with the audio system. If the

process is going to die, so should the sound effect:

void SoundProcess::VKill()

{

 if (IsPlaying())

 Stop();

 CProcess::VKill();

}

Notice that the base class‘s VKill() is called at the end of the method, rather than the

beginning. You can look at VKill() similar to a destructor, which means this calling order

is a safer way to organize the code.

As advertised, the remaining methods do nothing more than pass calls into the

IAudioBuffer object:

bool SoundProcess::IsPlaying()

{

 if (! m_SoundResource || ! m_AudioBuffer)

 return false;

 return m_AudioBuffer->VIsPlaying();

}

int SoundProcess::GetLengthMilli()

{

 if (m_SoundResource)

 return m_AudioBuffer->VGetLengthMilli();

 else

 return 0;

}

void SoundProcess::SetVolume(int volume)

{

 if(m_AudioBuffer==NULL)

 return;

 assert(volume>=0 &&

 volume<=100 &&

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 "Volume must be a number between 0 and 100");

 m_Volume = volume;

 m_AudioBuffer->VSetVolume(volume);

}

int SoundProcess::GetVolume()

{

 if(m_AudioBuffer==NULL)

 return 0;

 m_Volume = m_AudioBuffer->VGetVolume();

 return m_Volume;

}

void SoundProcess::TogglePause()

{

 if(m_AudioBuffer)

 m_AudioBuffer->VTogglePause();

}

void SoundProcess::Play(const int volume, const bool looping)

{

 assert(volume>=0 &&

 volume<=100 &&

 "Volume must be a number between 0 and 100");

 if(!m_AudioBuffer)

 return;

 m_AudioBuffer->VPlay(volume, looping);

}

void SoundProcess::Stop()

{

 if(m_AudioBuffer)

 m_AudioBuffer->VStop();

}

float SoundProcess::GetProgress()

{

 if (m_AudioBuffer)

 return m_AudioBuffer->VGetProgress();

 return 0.0f;

}

Launching Sound Effects

The only thing you need to see now is how to tie all this together to launch and monitor a
sound effect in your game. It may seem a little anticlimactic, but here it is:

SoundResource resource("SpaceGod7-Level2.ogg");

shared_ptr<ResHandle> rh = g_pApp->m_ResCache-

>GetHandle(&resource);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

shared_ptr<SoundResHandle> srh =

 boost::static_pointer_cast<SoundResHandle>(rh);

shared_ptr<SoundProcess> sfx(new SoundProcess(srh, PROC_MUSIC,

100, true));

m_pProcessManager->Attach(sfx);

There‘s clearly an awful lot of work going on in the background, all of which you now know
how to do. Launching a sound effect ties together much of the code you‘ve seen in this

book: a cooperative multitasker, a resource system, and a bit of DirectX, which launches an
extra thread to manage the problem of getting data to the sound card at exactly the right

speed. Still, it‘s nice to know that all that functionality can be accessed with 6 lines of code.

If you want to launch three sound effects based on the same data, one playing as soon as
the other is complete, here‘s how you‘d do it. Each one plays at a lower volume level than

the one before it:

SoundResource resource("blip.wav");

shared_ptr<SoundResHandle> srh =

boost::static_pointer_cast<SoundResHandle>(g_pApp->m_ResCache

>GetHandle(&resource));

shared_ptr<SoundProcess> sfx1(new SoundProcess(srh,

PROC_SOUNDFX, 100, false));

shared_ptr<SoundProcess> sfx2(new SoundProcess(srh,

PROC_SOUNDFX, 60, false));

shared_ptr<SoundProcess> sfx3(new SoundProcess(srh,

PROC_SOUNDFX, 40, false));

m_pView->m_pProcessManager->Attach(sfx1);

sfx1->SetNext(sfx2);

sfx2->SetNext(sfx3);

Other Technical Hurdles

There are a few more wires to connect, in code and in your brain, before you‘re ready to

install a working sound system in your game. Most sounds are tied directly to game objects
or events. Even music is tied to the intensity of the game, or even better, the impending

intensity of the game! Tying sounds to game objects and synchronization are critical
problems in any game sound system. If you have multiple effects at one time, you‘ll also

have to worry about mixing issues.

Sounds and Game Objects

Imagine the following game situation: A wacky machine in a lab is active, and makes some
kind of ―wub-wub-wub‖ sound tied to an animation. Your hero, armed with his favorite

plasma grenade, tosses one over to the machine and stands back to watch the fun. The
grenade explodes, taking the wacky machine and the ―wub-wub-wub‖ noise with it. What‘s

really going on in the background?

Your game has some grand data structure of game objects, one of which is the doomed
machine. When the grenade goes off, there‘s likely a bit of code or script that searches the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

local area for objects that can be damaged. Each object in the blast radius will get some

damage, and the code that applies damage will notice the machine is a gonner.

What happens next is a core technical problem in computer games: When the machine is

destroyed, related game objects or systems should be notified. This can include things like

sound effects or animation processes. Most games solve this with the trigger/event system,
and this is no exception.

For purposes of clarity, the audio system code presented in this chapter has no such hook,

but there‘s a great chapter in this very book that will show you how to install one! Check
out Chapter 10, ―Game Event Management,‖ and you‘ll see how the sound system gets

notified when objects are destroyed.

Timing and Synchronization

Imagine the following problem: You have a great explosion graphics effect that has a

secondary and tertiary explosion after the initial blast. How could you synchronize the

graphics to each explosion? The pacing of the sound is pretty much constant, so the
graphics effect should monitor the progress of the sound and react accordingly. We can use

the CProcess class to make this work:

class ExplosionProcess : public CProcess

{

public:

 ExplosionProcess() : Process(PROC_GAMESPECIFIC) { m_Stage=0;

}

protected:

 int m_Stage;

 shared_ptr<SoundProcess> m_Sound;

 virtual void VOnUpdate(const int deltaMilliseconds);

 virtual void VOnInitialize();

};

void ExplosionProcess::VOnInitialize()

{

 CProcess::VOnInitialize();

 SoundResource resource("explosion.wav");

 shared_ptr<SoundResHandle> srh =

boost::static_pointer_cast<SoundResHandle>

 (g_pApp->m_ResCache-

>GetHandle(&resource));

 m_Sound.reset(GCC_NEW SoundProcess(srh));

 // Imagine cool explosion graphics setup code here!!!!

 //

 //

 //

}

void ExplosionProcess::OnUpdate(const int deltaMilliseconds)

{

 // Since the sound is the real pacing mechanism - we ignore

 // deltaMilliseconds

 float progress = m_Sound->GetProgress();

 switch (m_Stage)

 {

../../ch10#ch10
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 case 0:

 if (progress>0.55f)

 {

 ++m_Stage;

 // Imagine secondary explosion effect launch right

here!

 }

 break;

 case 1:

 if (progress>0.75f)

 {

 ++m_Stage;

 // Imagine tertiary explosion effect launch right

here!

 }

 break;

 default:

 break;

 }

}

The ExplosionProcess owns a sound effect and drives the imaginary animation code.

The sound effect is initialized during the VOnInitialize() call, and the VOnUpdate()

handles the rest as you‘ve seen before. There‘s a trivial state machine that switches state
as the sound progresses past some constant points 55 percent and 75 percent of the way

through.

Do you notice the hidden problem with this code? This is a common gotcha in computer
game design. What happens if the audio designer decides to change the sound effect and

bring the secondary explosion closer to the beginning of the sound? It‘s equally likely an
artist will change the timing of an animated texture, which could have exactly the same

effect. Either way, the explosion effect looks wrong, and it‘s anyone‘s guess who will get the

bug: programmer, artist, or audio engineer.

The Butterfly Effect

Code, animations, and sound data are tightly coupled and
mutually dependent entities. You can‘t easily change one

without changing the others, and you can make your life hell
by relating all three with hard-coded constants. There‘s no

silver bullet for this problem, but there are preventative

measures. It might seem like more work, but you could

consider factoring the ExplosionClass into three distinct

entities, each with its own animation and sound data. Either
way, make sure that you have some asset tracking so you

can tell when someone changes anything in your game:
code, sounds, or animations. When something breaks

unexpectedly, the first thing you check is changes to the

files.

Mixing Issues

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Sound in your game will include sound effects, music, and speech. Depending on what‘s

going on, you might have to change the volume of one or more of these elements to
accentuate it. A good example of this is speech, and I‘m not talking about the random barks

of a drunken guard. Games will introduce clues and objectives with AI dialogue, and it‘s
important that the player be able to hear it. If you played Thief: Deadly Shadows, there‘s a

good example of this in the Seaside Mansion mission about halfway through the game. The
thunder and lightning outside was so loud it was difficult to hear the AI dialogue.

That‘s one of the reasons there is this notion of SoundType in our audio system. It gives

you a bit of data to hang on to if you want to globally change the volume of certain sounds.
In the case of Thief, it would have been a good idea to cut the volume of the storm effects

so the game clues in the AI dialogue would be crystal clear.

Don’t Depend on Dialogue

Dialogue is great to immerse players in game fiction, but you can’t

depend on it 100 percent. If you give critical clues and objectives via
dialogue, make sure that you have some secondary way to record and

represent the objectives, such as a special screen where the player
can read a synopsis. It’s too easy for a player to miss something.

While we‘re talking about mixing, you‘ve got to take some care when changing the levels of

sound effects. Any discrete jump in volume is jarring. Solve this problem with a simple fade
mechanism:

CFadeProcess::CFadeProcess(

 shared_ptr<SoundProcess> sound,

 int fadeTime,

 int endVolume)

: CProcess(PROC_INTERPOLATOR)

{

 m_Sound = sound;

 m_TotalFadeTime = fadeTime;

 m_StartVolume = sound->GetVolume();

 m_EndVolume = endVolume;

 m_ElapsedTime = 0;

 OnUpdate(0);

}

void CFadeProcess::OnUpdate(const int deltaMilliseconds)

{

 if (!m_bInitialUpdate)

 m_ElapsedTime += deltaMilliseconds;

 CProcess::OnUpdate(deltaMilliseconds);

 if (m_Sound->IsDead())

 Kill();

 float cooef = (float)m_ElapsedTime / m_TotalFadeTime;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 if (cooef>1.0f)

 cooef = 1.0f;

 if (cooef<0.0f)

 cooef = 0.0f;

 int newVolume = m_StartVolume + (float(m_EndVolume -

m_StartVolume) *

 cooef);

 if (m_ElapsedTime >= m_TotalFadeTime)

 {

 newVolume = m_EndVolume;

 Kill();

 }

 m_Sound->SetVolume(newVolume);

}

This class can change the volume of a sound effect over time, either up or down. It assumes

the initial volume of the sound effect has already been set properly and all the times are
given in milliseconds.

Here‘s how you would create some background music and fade it in over 10 seconds:

SoundResource resource("SpaceGod7-Level2.ogg");

shared_ptr<ResHandle> rh = g_pApp->m_ResCache-

>GetHandle(&resource);

shared_ptr<SoundResHandle> srh = boost::static_pointer_cast

 <SoundResHandle>(rh);

shared_ptr<SoundProcess> music(GCC_NEW SoundProcess(srh,

PROC_MUSIC, 0, true));

m_pProcessManager->Attach(music);

shared_ptr<CFadeProcess> fadeProc(new CFadeProcess(music, 10000,

100));

m_pProcessManager->Attach(fadeProc);

The fade process grabs a smart pointer reference to the sound it is modifying, and once the
volume has been interpolated to the final value, the process kills itself. Note that the

original sound is created with a zero volume, and the fade process brings it up to 100.

Some Random Notes

In the last 50 pages or so, you‘ve read about sound resources, audio buffers, audio
systems, and sound processes. This is where most books would stop. Neither my editor nor

my readers will find any surprise in me continuing on a bit about sound. Why? I haven‘t told
you a thing about how to actually use sound in your game.

Data-Driven Sound Settings

Sometimes I think this book is equally good at showing you how not to code game

technology as it is at showing you how to code correctly. The observant programmer would

http://lib.ommolketab.ir
http//lib.ommolketab.ir

notice that all my sound examples in the previous pages all had hard-coded constants for

things like volume, fade in times, or animation points.

From day one, most programmers learn that hard-coded constants are a bad thing, but they

can become a complete nightmare in computer game programming. The reason that I use

so many of them in this book is because they make the code easier to read and understand.
Real computer games would load all of this data at runtime from a data file. If the data

changes, you don‘t have to recompile. If the game can reload the data at runtime with a
cheat key, you can test and tweak this kind of data and get instant feedback.

With this kind of data-driven solution, programmers don‘t even have to be in the building.

This leaves programmers doing what they do best, programming game technology! A bit of
volume data can also be tweaked more easily than the original sound file can be re-leveled,

so your audio engineer doesn‘t have to be in the building either.

So who‘s left to set the level on new sound effects on a Saturday? It‘s so easy that even a
producer could do it. For those of you outside the game industry, I could as well have said,

―It‘s so easy, your boss could do it!‖

Record All Audio at Full Volume

Every sound effect should be recorded at full volume, even if it is way

too loud for the game. This gives the sound the highest degree of
waveform accuracy before it is attenuated and mixed with the other

sounds in the primary sound buffer.

Background Ambient Sounds and Music

Most games have a music track and an ambient noise track along with the incident sounds
you hear throughout the game. These additional tracks are usually long because they‘ll

most likely loop back to their beginning until there‘s some environmental reason to change
them.

An example of an ambient noise track could be the sounds of a factory, crowd noises,

traffic, or some other noise. Sounds like these have the effect of placing the player in the
environment and give them the impression that there‘s a lot more going on than what they

see. This technique was used brilliantly in Thief: Deadly Shadows in the city sections. You

could clearly hear city dwellers, small animals, carts, and other such noise, and it made you
feel you were in the middle of a medieval city. But, be warned—if the background ambient

has recognizable elements, such as someone saying, ―Good morning,‖ players will recognize
the loop quickly and get annoyed. Keep any ambient background close to ―noise‖ instead of

easily discernible sounds.

Music adds to this environment by communicating gut-level intensity. It helps inform the
player and add a final polish to the entire experience. Perhaps my favorite example of music

used in a game is the original Halo. Instead of only reacting to the current events in the
game, the music segues just before a huge battle, telling the player he‘d better reload his

shotgun and wipe the sweat off his controller.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Live Music Rocks—From Professional
Musicians

On the Microsoft Casino project, I thought it would be a great

idea to record live music. It would be classy and add a

unique feel to the game. I‘d never produced live music for a
game, so I was a little nervous about it. The music was

composed by an Austin composer, Paul Baker, who also
conducted the band. I got to play the part of the big-time

producer guy behind the glass in the recording studio. I
thought it was really cool until I heard the band run through

the music the first time. It was horrible! I thought I‘d be fired
and wondered quickly how I could salvage this disaster. My

problem was that I‘d never seen how professional musicians

work. They arrived that day having never seen the music
before, and the first time they played it they were all sight-

reading. After a break, they played it one more time, and it
was nearly flawless. I thought I‘d just heard a miracle, but

that‘s just my own naiveté. There was one errant horn note,
blurted a little off time, and they cleared everyone out of the

room except for the one horn player. He said, ―gimme two
measures,‖ and they ran the tape back. At exactly the right

moment, he played the single note he screwed up, and it was

mixed flawlessly into the recording. I was so impressed by
the live performance that I‘ll never be afraid of doing it in

other games.

The CPU budget for all this sound decompression is definitely a factor. The longish music
and ambient noise tracks will certainly be streamed from a compressed source rather than

loaded into memory in uncompressed PCM format. At the time of this writing,

decompressing a single MP3 track chews about 25MHz from a single core Intel Pentium. So,
it‘s not horrible, but you should keep track of this. Decompression performance will change

much faster than these pages can report, so do some benchmarks on your own and set
your budgets accordingly.

Speech

In-game character speech is a great design technique to immerse the player and add

dimension to the AI characters. Games use character speech to communicate story, provide
clues, and show alert levels in patrolling guards. Players expect a great script, smooth

integration of the speech effects with the graphics, and most importantly, the ability to
ignore it if they want to.

Random Barks

A bark is another way of saying ―filler speech.‖ It usually describes any bit of speech that is

not part of a scripted sequence. Good examples of this are AI characters talking to
themselves or reactions to game events like throwing a grenade around a corner.

Some of my favorite random barks came from the drunk guard in Thief: Deadly Shadows. It

was perfect comic relief in what is normally a dark game with long stretches of tension. If
you hid in a nearby shadow, you‘d hear this inebriated and somewhat mentally challenged

guard talk to himself for a really long time.

In the background, a piece of code selects a random speech file at random intervals. The
code must keep track of the barks so it doesn‘t play the same thing three times in a row,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

and it should also make sure that the random barks don‘t overlap any scripted speech the

AI character might have either.

Something that works well is a queue for each AI character regarding speech. Here a high-

priority scripted bark will wipe out any random barks in the queue, and you can keep

already barked elements in the queue to record which ones have played in recent history.

Too Much of a Good Thing is True

Back on Microsoft Casino, there was this ―blue-haired old
lady‖ character that was our first AI character installed in the

game. She only had one random bark: ―Have you even been

to Hoover Dam?‖ she would say, waiting for her cards. We
sent the build to Microsoft QA, and we waited patiently for

the phone call, which came way too quickly for it to be news
of acceptance. The lead QA on the phone told us that after

just one hour of testing, no one in QA was ―ever likely to
ever visit the @%$#& Hoover Dam‖ and could we please

remove the bark technology until more barks were recorded.
The bark was so reviled, we had to remove it entirely from

the game.

Game Fiction

Characters talking amongst themselves or straight to the player are an excellent way to

give objectives or clues. If you do this, you must beware of a few gotchas. First, you
shouldn‘t force the player to listen to the speech again if he‘s heard it before. Second, you

should record a summary of the clue or objective in a form that can be referenced later—it‘s
too easy to miss something in a speech-only clue. The third gotcha involves localization.

One game that comes to mind that solved the first gotcha in an interesting way was

Munch’s Odyssey, an Xbox launch title. Throughout the game, this funny mystic character
appears and tells you exactly what you need to do to beat the level. If you‘ve heard the

spiel before, you can hit a button on the controller and your character, Abe or Munch, will
interrupt and say something like, ―I‘ve heard all this before,‖ and the mystic guy will bark,

―Whatever...‖ and disappear. Very effective.

The second gotcha is usually solved with some kind of in-game notebook or objectives
page. It‘s too easy to miss something in scripted speech, especially when it tends to be

more colorful and therefore a little easier to miss the point entirely. Almost every mission-

based game has this design conceit—it keeps the players on track and keeps them from
getting lost.

The last gotcha has to do with language translation. What if you record your speech in

English and want to sell your game in Japan? Clearly, the solution involves some kind of
subtitle to go along with the scripted speech. Re-recording the audio can be prohibitively

expensive if you don‘t have a AAA budget and massive worldwide distribution.

Lip Synching

Synching the speech files to in-game character animations is challenging, both from a

technology and tools standpoint. This is one of those topics that could use an entire book,

so let me at least convince you that the problem is a big one, and not one to be taken
lightly or without experience.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

It turns out that human speech has a relatively small number of unique sounds and sound

combinations, perhaps only a few dozen. Since each sound is made with a particular
position of the mouth and tongue, it follows that an artist can create these positions in a

character ahead of time. While the speech is being played, a data stream is fed into the
animation system that tells which phoneme to show on the character at each point in time.

The animation system interpolates smoothly between each sound extreme, and you get the
illusion that the character is actually talking.

Cheap Hacks for Lip Synching

There are ways of doing lip synching on the cheap,
depending on your game. Interstate 76 solved the lip

synching problem by removing all the lips; none of their
characters had mouths at all! Another clever solution is to

have the characters animate to a particular phrase like ―peas
and carrots, peas and carrots.‖ Wing Commander II, a game

published by Origin Systems in the mid-1990s, had all its

characters lip-synched to a single phrase: ―Play more games
like Wing Commander II.‖

Recording Speech

Most games will use at most a few hundred sound effects. This relatively small number of

sound files is trivial to manage compared to speech files in some games. Thief: Deadly
Shadows had somewhere around 10,000 lines of speech. You can‘t just throw these files

into a single directory. You‘ve got to be organized.

The first thing you need is a script—one for each character. As part of the script, the
character should be described in detail, even to the point of including a rendering of the

character‘s face. Voice actors use the character description to get ―into character‖ and
create a great performance.

The recording session will most likely have the voice actor read the entire script from top to

bottom, perhaps repeating a line or phrase a few times to get it right. It‘s critical to keep
accurate records about which one of the lines you intend to keep and which you‘ll throw

away. A few days later, you could find it difficult to remember.

You‘ll record to DAT tape or some other high-fidelity media, and later split the session into
individual, uncompressed files. Here‘s where your organization will come into key

importance: you should have a database that links each file with exactly what is said. This

will help foreign language translators record localized speech or create localized subtitles.

The Last Dance

The one thing I hope you get from this chapter besides a bit of technology advice is that
sound is a critically important part of your game. Most programmers and designers tend to

wait until the very end of the production cycle before bringing in the sound engineers and
composers. By that time, it‘s usually too late to create a cohesive sound design in your

game, and the whole thing will be horribly rushed.

Get organized from the very beginning, and ask yourself whether each task in your game
schedule needs an audio component. You‘ll be surprised how many objects need sound

http://lib.ommolketab.ir
http//lib.ommolketab.ir

effects, how many levels need their own background ambient tracks, and how much speech

you need to record.

Sound technology will also stress more of your core game components than any other

system, including resource cache, streaming, memory, main loop, and more. Once your

sound system is working flawlessly, you can feel confident about your lower-level systems.
That‘s another good reason to get sound in your game as early as possible.

Chapter 13. 3D Basics

In This Chapter

 3D Graphics Pipeline

 3D Math 101

 C++ Math Classes

 Enough Math—Please Stop

 3D Graphics—It‘s Just the Beginning

I want to tell you up front that this chapter won‘t teach you everything you need to know
about 3D graphics—actually, far from it. Walk the aisle of any decent computer bookstore,

and you‘ll see racks of books, devoted entirely to 3D graphics. I‘m only including two 3D
chapters in this book, so I can‘t compete with the classics on 3D graphics. What‘s lacking in

volume, I‘ll try to make up in focus and content. My job in the next two chapters is to open
the door to 3D graphics, especially in the way game programmers utilize 3D techniques

within the Game Code Complete architecture. Once inside, I‘ll hand you a map of the place
and send you on your way.

In this chapter, I‘ll focus on the essentials, which is a nice way of saying that I‘m going to

load you down with some math you‘ll need to know. This will set the foundation so that we
can start manipulating objects and perform some of the fun stuff I have planned for later in

this chapter and Chapter 14, ―3D Scenes.‖

3D Graphics Pipeline

The word pipeline describes the process of getting a 3D scene up on a screen. It‘s a great

word because it implies a beginning that accepts raw materials, a process that occurs along
the way, and a conclusion from which pours the refined result. This is analogous to what

happens inside 3D game engines. The raw materials at the beginning include collections of

the following components:

 Geometry: Everything you see on the screen starts with descriptions of their shape.

Each shape is broken down into triangles, which is a basic drawable element in 3D
engines. Some renderers support points, lines, and even curved surfaces, but the

triangle is by far the most common. Meshes are collections of different types of
geometry.

 Materials: These elements describe appearance. You can imagine materials as paint

or wallpaper that you apply to the geometry. Each material can describe colors,

translucency, and how the material reflects light.

../../ch13lev1sec1#ch13lev1sec1
../../ch13lev1sec2#ch13lev1sec2
../../ch13lev1sec3#ch13lev1sec3
../../ch13lev1sec4#ch13lev1sec4
../../ch13lev1sec5#ch13lev1sec5
../../ch14#ch14
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Textures: These are images that can be applied to objects, just as you might have

applied decals to plastic models.

 Lights: You must have light to see anything. Light can affect an entire scene or

have a local effect that mimics a spotlight.

 Camera: Records the scene onto a render target, such as the display. It even

describes what kind of lens is used, such as a wide or narrow angle lens. You can

have multiple cameras to split the screen for a multiplayer game or render a
different view to create a rearview mirror.

 World: A data structure that organizes the raw materials so that a minimum set of

the above collections can be presented to the rendering hardware. These data
structures also relate objects hierarchically to create complicated shapes, such as

human figures.

Some of the processes applied to the raw materials include the following:

 Transformations: The same object can appear in the world in different orientations

and locations. Objects are manipulated in 3D space via matrix multiplications.

 Culling: Visible objects are inserted into a draw list.

 Lighting: Each object in range of a light source is illuminated by calculating

additional colors applied to each vertex.

 Rasterization: Polygons are drawn, sometimes in many passes, to handle

additional effects such as lighting and shadows.

Graphics pipelines also come in two flavors: fixed function and programmable. The fixed-

function pipeline sets rendering states and then uses those states to draw elements with
those exact states. A programmable pipeline is much more flexible—it allows programmers

detailed control over every pixel on the screen. Many systems, like the Nintendo Wii, still
use a fixed-function pipeline. Modern graphics cards and consoles like the Xbox360 and the

PS3 use a programmable pipeline. Knowing how to play with both is a good idea. Under
DirectX, you can actually use both.

We‘ll start to see how all of these components and processes act together shortly. I‘m going

to take a quick shortcut through two math classes you probably slept though in high school
or college. I know that because I slept through the same classes—trigonometry and linear

algebra.

3D Math 101

I‘ll try my best to make this topic interesting. I‘ll know I‘ve succeeded if I get through

writing it without losing consciousness. This stuff can make your eyes glaze over.
Remember one thing: You must understand the math or you‘ll be hopelessly confused if you

attempt any 3D programming. Sure, you‘ll be able to compile a DirectX sample program,
tweak some parameters, and make some pretty pictures. Once you leave ―Sampleland‖ and

start making changes to your 3D code, however, you won‘t have a freaking clue why your
screen is black and none of the pretty pictures show up. You‘ll attempt to fix the problem

with random tweaks of various numbers in your code, mostly by adding and removing
minus signs, and you‘ll end up with the same black screen and a mountain of frustration.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

My advice is to start small. Make sure that you understand each component fully and then

move to the next. Have patience, and you‘ll never tweak a negative sign in anger again.

3D Code can Look Correct and Still be Wrong

3D programming is easier to get wrong than right, and the
difficult part is that a completely miscoded system can look

and feel correct. There will be a point where things will begin

to break down, but by that time you might have hundreds or
thousands of lines of bogus code. If something is wrong, and

you randomly apply a negative sign to something to fix it and
don‘t understand why it fixed it, you should back up and

review the math.

Coordinates and Coordinate Systems

In a 2D graphics system, you express pixel coordinates with two numbers: (x,y). These are
screen coordinates to indicate that each integer number x and y corresponds to a row and

column of pixels, respectively. Taken together as a pair, they describe the screen location of

exactly one pixel. If you want to describe a 2D coordinate system fully, you need a little
more data, such as where (0,0) is on the screen, whether the x coordinate describes rows

or columns, and in which direction the coordinates grow—to the left or right. Those choices
are made somewhat arbitrarily. There‘s nothing that says you couldn‘t create a 2D graphics

engine that uses the lower right-hand corner of the screen as your (0,0) point—your origin.
There‘s nothing that would keep you from describing the X-axis as vertical and Y as

horizontal, and both coordinates grow positive toward the upper left-hand side of the
screen.

Nothing would keep you from doing this, except perhaps the risk of industry-wide

embarrassment. I said that these choices of coordinate system are somewhat arbitrary, but
they do have a basis in tradition or programming convenience. Here‘s an example. Since

the display memory is organized in row order, it makes sense to locate the origin at the top

left-hand side of the screen. Traditional Cartesian mathematics sets the horizontal as the X-
axis and the vertical as the Y-axis, which means that programmers can relate to the

graphics coordinates with ease. It doesn‘t hurt that the original designers of text-display
systems read text from left to right, top to bottom. If these were reversed, programmers

would be constantly slapping their foreheads and saying, ―Oh yeah, those idiots made the
X-axis vertical!‖

A 3D world requires a 3D coordinate system. Each coordinate is expressed as a triplet:

(x,y,z). This describes a position in a three-dimensional universe. As you might expect, a
location on any of the three axes is described with a floating-point number. The range that

can be expressed in a 32-bit floating-point number in IEEE format is shown in Table 13.1.

Table 13.1. Precision of Floating-Point Numbers

Single Precision, 32 bit Double Precision, 64 bit

±2-126 to (2-2-23)×2127 ±2-1022 to (2-2-52)×21023

The diameter of the known universe is on the order of 1026 meters. The smallest theoretical
structures of the universe, superstrings, have an estimated length of 10-35 meters. You

javascript:moveTo('ch13table01');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

might believe that a 32-bit floating-point number is more than sufficient to create a 3D

simulation of everything in our universe, but you‘d be wrong. Even though the range is up
to the task, the precision is not. Oddly enough, we may one day find out that the universe is

best expressed in terms of 256-bit integers, which would give enough range and precision
to represent a number from 0 to ~1076, plenty to represent the known universe and

ignoring irrational or transcendental numbers like p.

So where does that leave you and your 32-bit IEEE floating-point number with its decent
range and lacking precision? The IEEE format stores an effective 24 bits of resolution in the

mantissa. This gives you a range of 1.67 × 107. How much is that? As Table 13.2 indicates,
you should set your smallest unit based on your game design. Most games can safely use

the 100 micrometer (µm) basis since your sandbox can be as big as downtown San
Francisco. The human eye can barely detect objects 100 µm across, but can‘t discern any

detail.

Table 13.2. Units of Measurement

Smallest

Unit

Physical Description of Smallest

Representable Object (as a

Textured Polygon)

Upper

Range In

Meters

Physical Description

of Area in the Upper

Range

100m A group of redwood trees 1.67 × 109 Earth / Moon System

1m A human being 1.67 × 107 North and South

America

1cm A coin 1.67 × 106 California

1mm A flea 1.67 × 105 San Francisco Bay Area

100 µm A grain of pollen 1.67 × 104 Downtown San Francisco

This is why most games set their basic unit of measurement as the meter, constrain the
precision to 1mm, and set their maximum range to 100 kilometers. Most art packages like

3ds Max allow artists to set their basic unit of measurement. If you use such a package, you
need to make sure they set it to the right value for your game.

Agree with Your Artists on a Standard Unit of

Measurement

A common source of problems in computer game
development is when artists and programmers can‘t seem to

get their units of measurement correct. Game objects and
game logic might use different units of measurement, such

as feet instead of meters. One clue: If things in your game
appear either three times too big or three times too small,

someone screwed up the units of measurement.

javascript:moveTo('ch13table02');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Now that we‘ve nailed the range and precision of the 3D coordinates, let‘s take a few

moments to consider those arbitrary decisions about origin and axes directions. You‘ve
probably heard of 3D coordinate systems described as either left- or right-handed, and if

you‘re like me, you tend to forget which is which, and the explanation with your fingers and
thumbs was always just a little confusing because I couldn‘t remember how to hold my

hands! Here‘s another way to visualize it. Imagine that you are standing at the origin of a
classic 3D Cartesian coordinate system, and you are looking along the positive X-axis. The

positive Y-axis points straight up. If the coordinate system is right-handed, the Z-axis will
point to your right. A left-handed coordinate system will have a positive Z-axis pointed to

the left.

Why is handedness important? For one thing, when you move objects around your world,
you‘ll want to know where your positive Z-axis is and how it relates to the other two, or you

might have things zig instead of zag. The tougher answer is that it affects the formulas for

calculating important 3D equations, such as a cross product. I‘m extremely glad I don‘t
have to explain a 4D coordinate system. I don‘t think I have it in me.

Converting Handedness

Since some art packages have different handedness than 3D

rendering engines, you have to know how to convert the handedness
of objects from one coordinate system to another. Here is how you do

it:

1. Reverse the order of the vertices on each triangle. If a triangle
started with vertices v0, v1, and v2, they need to be flipped to

v2, v1, and v0.2. Multiply each Z coordinate in the model by -

1.

Here’s an example:

Original:

V0 = (2.3, 5.6, 1.2) V1 = (1.0, 2.0,

3.0)

V2 = (30.0, 20.0,

10.0)

Becomes:

V0 = (30.0, 20.0, -

10.0)

V1 = (1.0, 2.0, -

3.0)

V2 = (2.3, 5.6, -1.2)

Vector Mathematics

Vector and matrix math was always the sleepiest part of linear algebra for me. Rather than
just show you the guts of the dot product or cross product for the umpteenth time, I‘ll also

tell you what they do. That‘s more important anyway. I‘ll also show you some safety rules
regarding matrix mathematics because they don‘t act like regular numbers.

Before we go any further, you need to know what a unit vector is because it is something

you‘ll use all the time in 3D graphics programming. A unit vector is any vector that has a
length of 1.0. If you have a vector of arbitrary length, you can create a unit vector that

http://lib.ommolketab.ir
http//lib.ommolketab.ir

points in the same direction by dividing the vector by its length. This is also known as

normalizing a vector:

Vec3 v(3, 4, 0);

float length = sqrt (v.x * v.x + v.y * v.y + v.z * v.z);

Vec3 unit = v / length;

cout "Length=" << length << newline;

cout "Unit vector: X=" << v.x << " Y=" << v.y << " Z=" << v.z <<

newline;

The output generated would be:

Length=5.0

Unit vector: X=0.6 Y=0.8 Z=0.0

When we talk about dot-and-cross products, their inputs are almost always unit vectors
(also called normalized vectors). The formulas certainly work on any arbitrary vector, but
the results are relatively meaningless unless at least one of them is a unit vector. Take the

same formulas and apply unit vectors to them, and you‘ll find some interesting results that
you can use to calculate critical angles and directions in your 3D world.

A dot product of two vectors is a number, sometimes called a scalar. The cross product of

two vectors is another vector. Remember these two important facts, and you‘ll never get
one confused with the other again. Another way to say this is dot products calculate angles,

and cross products calculate direction. The dot product is calculated with the following

formula:

float dotProduct = (v1.x * v2.x) + (v1.y * v2.y) + (v1.z *

v2.z);

Unit vectors never have any coordinate with an absolute value greater than 1.0. Given that,
you‘ll notice that the results of plugging various numbers into the dot product formula have
interesting effects. Assuming V1 and V2 are unit vectors:

 V1 equals V2: If you calculate the dot product of a vector with itself, the value of

the dot product is always 1.0.

 V1 is orthogonal to V2: If the two vectors form a right angle to each other and

they are the same length, the result of the dot product is always zero.

 V1 points in the opposite direction to V2: Two vectors of the same length

pointing exactly away from each other have a dot product of -1.0.

If this relationship between vectors, right angles, and the range [-1.0, 1.0] is stirring some

deep dark memory, you‘re correct. The dark memory is trigonometry, and the function you

are remembering is the cosine. It turns out that you can use the dot product of two unit
vectors to calculate the angle between two vectors. For two unit vectors a and b, the

formula for calculating the angle between them is

http://lib.ommolketab.ir
http//lib.ommolketab.ir

That is a complicated way of saying that if you divide the dot product of two vectors by their

lengths multiplied together, you get the cosine of their angle. Take the arccosine of that
number, and you have the angle! This is extremely useful in computer games, since you are

always trying to figure out the angle between vectors.

Another way to visualize the dot product graphically is that the dot product projects one
vector onto the other, and calculates the length of that vector. This dot product relationship

is shown in Figure 13.1, where the dot product equals the length of the projection of vector
A onto B. As it turns out, this length is exactly the same as the projection of vector B onto

vector A. Weird, huh?

Figure 13.1. The dot product projects one vector onto another.

The dot product can be useful by itself, since it can determine whether the angle between

two vectors is acute, a right angle, or obtuse. The classic application of the dot product in
3D graphics is determining whether a polygon is facing toward or away from the camera

(see Figure 13.2).

Figure 13.2. Dot products are used to see if a polygon is facing the camera—the
dot product will be negative.

javascript:moveTo('ch13fig01');
javascript:moveTo('ch13fig02');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

In Figure 13.2, the camera has a unit vector called the ―look at‖ vector, and it points in the
same direction as the camera. Each polygon has a normal vector that is orthogonal to the

plane of the polygon. If the dot product between these two vectors is less than zero, the
polygon is facing the camera and should be added to the draw list. In the case of Figure

13.2, the dot product for these two vectors is close to -1.0, so the polygon will be drawn.

If you want the actual angle represented by the dot product, you must perform an arccosine
operation. If you remember those hazy trig classes at all, you‘ll know that the arccosine

isn‘t defined everywhere, only between values [-1.0, 1.0]. That‘s lucky, because dot
products from unit vectors have exactly the same range. So where‘s the problem? The

arccosine will always return positive numbers.

The dot product is directionless, giving you the same result no matter which vector you
send in first: A dot B is the same as B dot A. Still not convinced this is a problem? Let‘s

assume that you are using the dot product to determine the angle between your current
direction and the direction vector that points to something you are targeting.

In Figure 13.3, the white arrow is the current direction, and the gray arrows are oriented 45

degrees away about the Y-axis. Notice that one of the gray arrows is pointing straight to our
teapot target, but the other one is pointing in a completely wrong direction. Yet, the dot

products between the white direction vector and both gray vectors are the same because

the angles are the same!

Figure 13.3. Dot products can’t find targets.

javascript:moveTo('ch13fig02');
javascript:moveTo('ch13fig02');
javascript:moveTo('ch13fig02');
javascript:moveTo('ch13fig02');
javascript:moveTo('ch13fig03');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Remember that the dot product measures angles and not direction. As you can see from the
diagram, the dot product won‘t tell you which way to turn, only how much to turn. You need

a cross product.

Graphically, the cross product returns a vector that is orthogonal to the plane formed by the

two input vectors. The cross product vector should be normalized before you use it. Planes

have two sides, and the resulting normal vector can only point in one direction. How does it
know which way to point? It turns out that cross products are sensitive to the order of their

input vectors. In other words, A cross B is not equal to B cross A. As you might expect, it is
exactly negative. This is where the handedness of the coordinate system comes back into

play. The cross product is always calculated with this formula:

cross.x = (A.y * B.z) - (B.y * A.z)

cross.y = (A.z * B.x) - (B.z * A.x)

cross.z = (A.x * B.y) - (B.x * A.y)

I‘m going to borrow your right hand for a moment. Hold your right hand out in front of you,

fingers together and totally flat. Make sure you are looking at your palm. Extend your
thumb out, keeping your hand flat. Your thumb is vector A and your forefinger is vector B.

The result of the cross product, A cross B, is a vector pointing up out of your palm. If you
did it backward, B cross A, the vector would be pointing away from you. This is the

fundamental difference between left- and right-handed coordinate systems—determining
which vectors get sent into the cross product in which order. It matters!

The classic use of the cross product is figuring out the normal vector of a polygon (see

Figure 13.4). The normal vector is fundamental to calculating which polygons are facing the
camera, and therefore, which polygons are drawn and which can be ignored. It is also good

javascript:moveTo('ch13fig04');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

for calculating how much light reflects from the polygon back to the camera. By the way, if

you take the cross product of two parallel vectors, the result will be a null vector—x, y, and
z will all equal zero.

Figure 13.4. A cross product.

For any polygon that has three vertices, V0, V1, and V2, the normal vector is calculated
using a cross product:

Vector A = V1 - V0;

Vector B = V2 - V0;

Vector Cross = CrossProduct(A, B);

In a right-handed coordinate system, the vertices are arranged in a counterclockwise order
because they are seen when looking at the drawn side of the polygon.

Another use is figuring the direction. Returning to our chase problem, we have a dot
product that tells us that we need to steer either left or right, but we can‘t figure out which.

It turns out that the cross product between the direction vectors contains information about
which way to steer.

The cross product between the target vector and your direction vector points up, indicating

you should steer right (see Figure 13.5). If the cross product pointed down, the target
would have been off to your left. The target example is somewhat contrived because you

don‘t actually need the cross product at all. It makes a good example because it‘s a useful
experiment to visualize the usefulness of the cross product.

Figure 13.5. A cross product and a dot product together can find a target.

javascript:moveTo('ch13fig05');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Find Targets with Just a Dot Product

Through a little trickery, you can do it solely with the dot product, as
long as you choose the correct vectors. If you use a vector that points

to your right instead of straight ahead, your dot product will yield a
positive number if you need to steer right, a negative number if you

need to steer left, and something close to zero if your target is right in

front of you. Even better, if your steering parameters range from -1.0
to steer hard left and 1.0 to lock it all the way to the right, you can

send this dot product straight into your steering code. Cool, huh?

C++ Math Classes

Before we get into the guts of a scene graph and how it works, we‘ll need some simple

math classes for handling 3D and 4D vectors, matrices, and quaternions. Most programmers
will create a math library with ultra-efficient implementations of these and other useful

tidbits. For this book, I‘m using DirectX math functions and structures as a base. Here are
the two reasons why I‘m using this approach:

 The DirectX math functions are fairly well optimized for PC development, and are a

fair place to start for console development.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 By creating some platform-agnostic math classes for use in the scene graph code,

you can replace them with any C++ implementation you like. Personally I think the

C++ versions are much easier to read, too. These classes are bare bones, really not
much more than the very basics.

The classes you will use throughout the 3D code in this book include the following:

 Vec3 & Vec4: Three- and four-dimensional vectors.

 Quaternion: A quaternion that describes orientation in 3D space.

 Mat4x4: A matrix that holds both orientation and translation.

 Plane: A flat surface that stretches to infinity; it has an ―inside‖ and an ―outside.‖

 Frustum: A shape like a pyramid with the point clipped off, usually used to

describe the viewable area of a camera.

Vector Classes

You should already be very familiar with the vector structures used by DirectX—

D3DXVECTOR3 and D3DXVECTOR4. Here‘s a very simple C++ wrapper for both of those

structures:

class Vec3 : public D3DXVECTOR3

{

public:

 inline float Length()

 { return D3DXVec3Length(this); }

 inline Vec3 *Normalize()

 { return static_cast<Vec3 *>(D3DXVec3Normalize(this,

this)); }

 inline float Dot(const Vec3 &b)

 { return D3DXVec3Dot(this, &b); }

 inline Vec3 Cross(const Vec3 &b) const

 {

 Vec3 out;

 D3DXVec3Cross(&out, this, &b);

 return out;

 }

 Vec3(D3DXVECTOR3 &v3)

 { x = v3.x; y = v3.y; z = v3.z; }

 Vec3() : D3DXVECTOR3() { }

 Vec3(const float _x, const float _y, const float _z)

 { x=_x; y=_y; z=_z; }

 inline Vec3(const class Vec4 &v4)

 { x = v4.x; y = v4.y; z = v4.z; }

};

class Vec4 : public D3DXVECTOR4

{

public:

 inline float Length()

 { return D3DXVec4Length(this); }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 inline Vec4 *Normalize()

 { return static_cast<Vec4 *>(D3DXVec4Normalize(this,

this)); }

 inline float Dot(const Vec4 &b)

 { return D3DXVec4Dot(this, &b); }

 // If you want the cross product, use Vec3::Cross

 Vec4(D3DXVECTOR4 &v4)

 { x = v4.x; y = v4.y; z = v4.z; w = v4.w; }

 Vec4() : D3DXVECTOR4() { }

 Vec4(const float _x, const float _y, const float _z, const

float _w)

 { x=_x; y=_y; z=_z; w=_w; }

 Vec4(const Vec3 &v3)

 { x = v3.x; y = v3.y; z = v3.z; w = 1.0f; }

};

typedef std::list<Vec3> Vec3List;

typedef std::list<Vec4> Vec4List;

The Vec3 and Vec4 classes wrap the DirectX D3DXVECTOR3 and D3DXVECTOR4

structures. The usefulness of the Vec3 class is pretty obvious. As for Vec4, you need a

four-dimensional vector to send in to a 4 × 4-transform matrix. If you remember your high
school math, you can‘t multiply a 4 × 4 matrix and a three-dimensional vector. Only a four-

dimensional vector will do.

The methods that are provided as a part of this class are

 Length: Finds the length of the vector.

 Normalize: Changes the vector to have the same direction, but a length of 1.Of.

 Dot: Computes the dot product of the vector.

 Cross: Computes the cross product of the vector (only Vec3 does this!).

Matrix Mathematics

A 3D world is filled with objects that move around. It would seem like an impossible task to

set each vertex and surface normal of every polygon each time an object moves. There‘s a
shortcut, it turns out, and it concerns matrices. Vertices and surface normals for objects in

your 3D world are stored in object space. As the object moves and rotates, the only thing
that changes is the object‘s transform matrix. The original vertices and normals remain

exactly the same. The object‘s transform matrix holds information about its position in the

world and its rotation about the X-, Y-, and Z-axis.

Multiple instances of an object need not duplicate the geometry data. Each object instance

only needs a different transform matrix and a reference to the original geometry. As each

object moves, the only things that change are the values of each transform matrix. A
transform matrix for a 3D engine is represented by a 4 × 4 array of floating-point numbers.

This is enough information to store both the rotation and position of an object. If you only
want to store the rotation and not the position, a 3 × 3 array is just fine. This is one of the

reasons you see both matrices represented in DirectX and other renderers. I‘ll use the 4 × 4

D3DXMATRIX in this chapter for all of the examples because I want to use one data

http://lib.ommolketab.ir
http//lib.ommolketab.ir

structure for rotation and translation. The matrix elements are set in specific ways to

perform translations and different rotations. For each kind of matrix, I‘ll show you how to
set the elements yourself or how to call a DirectX function to initialize it.

A translation matrix moves vectors linearly. Assuming that you have a displacement vector

T, which describes the translation along each axis, you‘ll initialize the translation matrix with
the values shown below.

Here‘s how to do the same thing in DirectX:

// Create a DirectX matrix that will translate vectors

// +3 units along X and -2 units along Z

D3DXVECTOR3 t(3,0,-2);

D3DXMATRIX transMatrix;

D3DXMatrixTranslation(&transMatrix, t.x,t.y,t.z);

Let‘s look at a quick example.

D3DXVECTOR4 original(1, 1, 1, 1);

D3DXVECTOR4 result;

D3DXVec4Transform(&result, &original, &transMatrix);

The transform creates a new vector with values (4, 1, -1, 1). The DirectX function

D3DXVec4Transform multiplies the input vector with the transform matrix. The result is

a transformed vector.

Make Sure You Match 4 × 4 Matrices with a

4D Vector

Did you notice my underhanded use of the D3DXVECTOR4

structure without giving you a clue about its use? Matrix

mathematics is very picky about the dimensions of vectors
and matrices that you multiply. It turns out that you can only

multiply matrices where the number of rows matches the
number of columns. This is why a 4 × 4 matrix must be

multiplied with a four-dimensional vector. Also, the last value
of that 4D vector, w, should be set at 1.0, or you‘ll get odd

results.

There are three kinds of rotation matrices, one for rotation about each axis. The most
critical thing you must get through your math-addled brain is this: rotations always happen
around the origin. ―What in the hell does that mean,‖ you ask? You‘ll understand it better

after you see an example. First, you need to get your bearings. Figure 13.6 shows an image

of a teapot sitting at the origin. The squares are one unit across. We are looking at the

javascript:moveTo('ch13fig06');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

origin from (x=6, y=6, z=6). The Y-axis points up. The X-axis points off to the lower left,

and the Z-axis points to the lower right.

Figure 13.6. Displaying a teapot in 3D.

If you look along the axis of rotation, an object will appear to rotate counterclockwise if you
rotate it in a positive angle. One way to remember this is by going back to the unit circle in
trig, as shown in Figure 13.7.

Figure 13.7. The ubiquitous unit circle.

javascript:moveTo('ch13fig07');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

A special note to my high school geometry teacher, Mrs. Connally: You were right all

along—I did have use for the unit circle after all....

That means if you want to rotate the teapot so that the spout is pointing straight at us,

you‘ll need to rotate it about the Y-axis. The Y-axis points up, so any rotation about that

axis will make the teapot appear as if it is sitting on a potter‘s wheel. How do you calculate
the angle? Go back to your unit circle to figure it out. The angle you want is 45 degrees, or

p/4. We also know that the angle should be negative. Here‘s why: If we are looking along
the Y-axis, you‘d be underneath the teapot looking straight up. The teapot‘s spout needs to

twist clockwise to achieve the desired result, so the angle is negative.

A rotation matrix for the Y-axis looks like this:

Here‘s the code to create this matrix in DirectX:

float angle = -D3DX_PI / 4.0f;

D3DXMATRIX rotateY;

D3DXMatrixRotationY(&rotateY, angle);

Let‘s transform a vector with this matrix and see what happens. Since the teapot‘s spout is
pointing down the X-axis, let‘s transform (x=1, y=0, z=0):

D3DXVECTOR4 original(1, 0, 0, 1);

D3DXVECTOR4 result(0,0,0,0);

D3DXVec4Transform(&result, &original, &rotateY);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Here‘s the result:

result {...} D3DXVECTOR4

 x 0.70710677 float

 y 0.00000000 float

 z 0.70710677 float

 w 1.0000000 float

Excellent, that‘s exactly what we want. The new vector is sitting on the X-Z plane and both
coordinates are in the positive. If we take that same transform and apply it to every vertex

of the teapot and then redraw it, we‘ll get the picture shown in Figure 13.8.

Figure 13.8. The teapotahedron, rotated -p/4 radians around the Y-axis.

This matrix will create a rotation about the X-axis:

This matrix will create a rotation about the Z-axis:

javascript:moveTo('ch13fig08');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

The DirectX code to create those two rotations is exactly what you‘d expect:

float angle = -D3DX_PI / 4.0f;

D3DXMATRIX rotateX, rotateZ;

D3DXMatrixRotationX(rotateX, angle);

D3DXMatrixRotationZ(rotateZ, angle);

With simple translation and rotation transforms firmly in your brain, you need to learn how
to put multiple transforms into action. It turns out that you can multiply, or concatenate,

matrices. The result encodes every operation into a single matrix. I know, it seems like

magic. There‘s one important part of this wizardry: The concatenated matrix is sensitive to
the order in which you did the original multiplication. Let‘s look at two examples, starting

with two matrices you should be able to visualize:

D3DXMATRIX trans, rotateY;

D3DXMatrixTranslation(&trans, 3,0,0);

D3DXMatrixRotationY(&rotateY, -D3DX_PI / 4.0f);

The translation matrix will push your teapot down the X-axis, or to the lower left in your
current view. The negative angle rotation about the Y-axis you‘ve already seen.

In DirectX, you can multiply two matrices with a function call. I‘m not going to bother

showing you the actual formula for two reasons. First, you can find it for yourself on the
Internet, and second, no one codes this from scratch. There‘s always an optimized version

of a matrix multiply in any 3D engine you find, including DirectX:

D3DXMATRIX result;

D3DXMatrixMultiply(&result, &trans, &rotateY);

Note the order. This should create a transform matrix that will push the teapot down the X-
axis and rotate it about the Y-axis, in that order. Figure 13.9 shows the results.

Figure 13.9. Translate down X-axis first and then rotate about the origin.

javascript:moveTo('ch13fig09');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you expected the teapot to be sitting on the X-axis, you must remember that any rotation
happens about the origin, not the center of the object! This is a common mistake, and I‘ve

spent much of my 3D debugging time getting my matrices in the right order.

Translations Always Come Last

Always translate last. If you want to place an object in a 3D world,
you always perform your rotations first and translations afterward.

Let‘s follow my own best practice and see if we get a better result. First, we reverse the
order of the parameters into the matrix multiplication API:

D3DXMATRIX result;

D3DXMatrixMultiply(&result, &rotateY, &trans);

Figure 13.10 shows the result.

Figure 13.10. Rotate about the origin first and then translate down the X-axis.

javascript:moveTo('ch13fig10');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

I‘ll show you one more, just to make sure you get it. The goal of this transformation is two
rotations and one translation. I want the teapot to sit four units down the Z-axis, on its side

with the top toward us, and the spout straight up in the air. Here‘s the code:

D3DXMATRIX rotateX, rotateZ, trans;

D3DXMatrixRotationZ(&rotateZ, -D3DX_PI / 2.0f);

D3DXMatrixRotationX(&rotateX, -D3DX_PI);

D3DXMatrixTranslation(&trans, 0,0,4);

D3DXMATRIX temp, result;

D3DXMatrixMultiply(&temp, &rotateZ, &rotateX);

D3DXMatrixMultiply(&result, &temp, &trans);

The first rotation about the Z-axis points our teapot‘s spout down the negative Y-axis, and

the second rotation twists the whole thing around the X-axis to get the spout pointing
straight up. The final translation moves it to its resting spot on the Z-axis (see Figure

13.11).

Figure 13.11. Rotate the teapot about the Z-axis, then the X-axis, and then
translate down the Z-axis.

javascript:moveTo('ch13fig11');
javascript:moveTo('ch13fig11');
javascript:moveTo('ch13fig11');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Mat4x4 Transform Matrix Class

It can be convenient to wrap DirectX‘s D3DXMATRIX structure into a C++ class:

class Mat4x4 : public D3DXMATRIX

{

public:

 // Modifiers

 inline void SetPosition(Vec3 const &pos)

 {

 m[3][0] = pos.x;

 m[3][1] = pos.y;

 m[3][2] = pos.z;

 m[3][3] = 1.0f;

 }

 inline void SetPosition(Vec4 const &pos)

 {

 m[3][0] = pos.x;

 m[3][1] = pos.y;

 m[3][2] = pos.z;

 m[3][3] = pos.w;

 }

 // Accessors and Calculation Methods

 inline Vec3 GetPosition() const

 {

 return Vec3(m[3][0], m[3][1], m[3][2]);

 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 inline Vec4 Xform(Vec4 &v) const

 {

 Vec4 temp;

 D3DXVec4Transform(&temp, &v, this);

 return temp;

 }

 inline Vec3 Xform(Vec3 &v) const

 {

 Vec4 temp(v), out;

 D3DXVec4Transform(&out, &temp, this);

 return Vec3(out.x, out.y, out.z);

 }

 inline Mat4x4 Inverse() const

 {

 Mat4x4 out;

 D3DXMatrixInverse(&out, NULL, this);

 return out;

 }

 // Initialization methods

 inline void BuildTranslation(const Vec3 &pos)

 {

 *this = Mat4x4::g_Identity;

 m[3][0] = pos.x; m[3][1] = pos.y; m[3][2] = pos.z;

 }

 inline void BuildTranslation(const float x, const float y,

const float z)

 {

 *this = Mat4x4::g_Identity;

 m[3][0] = x; m[3][1] = y; m[3][2] = z;

 }

 inline void BuildRotationX(const float radians)

 { D3DXMatrixRotationX(this, radians); }

 inline void BuildRotationY(const float radians)

 { D3DXMatrixRotationY(this, radians); }

 inline void BuildRotationZ(const float radians)

 { D3DXMatrixRotationZ(this, radians); }

 inline void BuildYawPitchRoll(

 const float yawRadians, const float pitchRadians,

 const float rollRadians)

 { D3DXMatrixRotationYawPitchRoll(

 this, yawRadians, pitchRadians, rollRadians); }

 inline void BuildRotationQuat(const Quaternion &q)

 { D3DXMatrixRotationQuaternion(this, &q); }

 Mat4x4(D3DXMATRIX &mat) { memcpy(&m, &mat.m, sizeof(mat.m));

};

 Mat4x4() : D3DXMATRIX() { }

 static Mat4x4 g_Identity;

};

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Mat4x4

Mat4x4::g_Identity(D3DXMATRIX(1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1));

inline Mat4x4 operator * (const Mat4x4 &a, const Mat4x4 &b)

{

 Mat4x4 out;

 D3DXMatrixMultiply(&out, &a, &b);

 return out;

}

There are three sections: the modifiers, the accessors and transforms, and finally the
initializers. The modifiers simply set position; if you want to set rotations, there‘s another

way I‘ll show you in a moment. The accessor GetPosition() returns the position

component of the 4 × 4 matrix. The Xform() methods transform a Vec3 or Vec4 object

into the space and position of the matrix. Don‘t worry yet because I‘ll show you an example
of how to use this in a moment.

The initializer methods, those starting with ―Build,‖ take various parameters you might have

on hand to build a rotation or transform matrix. If you want one that encodes both rotation
and transformation, just build two of them and multiply them. Multiplying matrices is the

same thing as concatenating them.

Here‘s a quick example in C++ that does the following things:

 Builds two matrices, one for rotation and one for translation.

 Concatenates these matrices in one Mat4x4 to encode both movements.

Remember that rotation always comes first and then translation.

 Determines which direction in the 3D world is considered ―forward‖ by the new

orientation and position. This direction is sometimes referred to as a frame or
reference.

Mat4x4 rot;

rot.BuildYawPitchRoll(D3DX_PI / 2.0f, -D3DX_PI / 4.0f, 0);

Mat4x4 trans;

trans.BuildTranslation(1.0f, 2.0f, 3.0f);

// don't mess up the order! Multiplying Mat4x4s isn't like

ordinary numbers.

Mat4x4 result = rotOnly * trans;

Vec4 fwd(0.0f, 0.0f, 1.0f); // forward is defined as positive

Z

Vec4 fwdWorld = toWorld.Xform(fwd);

There you have it. The fwdWorld vector points in the ―forward‖ direction of the transform

matrix. This is important because of two reasons. First, all of the code in this chapter will

continue using these math classes, and this is exactly how you‘d tell a missile what direction
to move if you fired it from an object that was using the concatenated matrix.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

I hope you‘ve followed these bits about rotating things around an axis because it‘s a critical

concept you need to understand before we talk about quaternions. If you think you might
be hazy on the whole rotation thing, play with a Direct3D sample for a while, and you‘ll get

it.

Quaternion Mathematics

Orientation can be expressed as three angles: yaw, pitch, and roll. In our teapot example,

yaw would be around the Y-axis, pitch would be around the Z-axis, and roll would be around

the X-axis. By the way, this happens to be called the Euler representation, or Euler angles
(you pronounce Euler like ―oiler‖). This method has a critical weakness. Imagine that you

want to interpolate smoothly between two orientations. This would make sense if you had
an object like an automated cannon that slowly tracked moving objects. It would know its

current orientation and the target orientation, but getting from one to the other might be
problematic with Euler angles.

There is a special mathematical construct known as a quaternion, and almost every 3D

engine supports its use. A quaternion is a fourth-dimensional vector, and it can be
visualized as a rotation about an arbitrary axis. Let‘s look at an example:

D3DXQUATERNION q;

D3DXQuaternionIdentity(&q);

D3DXVECTOR3 axis(0,1,0);

float angle = -D3DX_PI / 4.0;

D3DXQuaternionRotationAxis(&q, &axis, angle);

D3DXMATRIX result;

D3DXMatrixRotationQuaternion(&result, &q);

This code has exactly the same effect on our teapot as the first rotation example. The
teapot rotates around the Y-axis -p/4 degrees. Notice that I‘m not setting the values of the

quaternion directly, I‘m using a DirectX API. I do this because the actual values of the

quaternion are not intuitive at all. Take a look at the resulting values from our simple twist
around the Y-axis:

q {...} D3DXQUATERNION

 x 0.00000000 float

 y -0.38268343 float

 z 0.00000000 float

 w 0.92387950 float

Not exactly the easiest thing to read, is it?

The quaternion is sent into another DirectX function to create a transformation matrix. This

is done because vectors can‘t be transformed directly with quaternions—you still have to
use a transform matrix.

If you think this seems like a whole lot of work with little gain, let‘s look at the interpolation

problem. Let‘s assume that I want the teapot to turn so that the spout is pointing down the
Z-axis, which would mean a rotation about the Y-axis with an angle of -p/2 degrees. Let‘s

also assume that I want to know what the transformation matrix is at two-thirds of the way

through the turn, as shown in Figure 13.12.

Figure 13.12. Our teapot two-thirds of the way through a rotation—using

quaternions.

javascript:moveTo('ch13fig12');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Here‘s the code:

D3DXQUATERNION start, middle, end;

D3DXQuaternionIdentity(&start);

D3DXQuaternionIdentity(&middle);

D3DXQuaternionIdentity(&end);

D3DXVECTOR3 axis(0,1,0);

float angle = -D3DX_PI / 2.0;

D3DXQuaternionRotationAxis(&start, &axis, 0);

D3DXQuaternionRotationAxis(&end, &axis, angle);

D3DXQuaternionSlerp(&middle, &end, &start, 0.66f);

D3DXMATRIX result;

D3DXMatrixRotationQuaternion(&result, &middle);

The two boundary quaternions, start and end, are initialized in the same way as you saw

earlier. The target orientation quaternion, middle, is calculated with the DirectX method

D3DXQuaternionSlerp. This creates a quaternion 66 percent of the way between our

start and end quaternions.

I might not quite have convinced you yet, but only because I used a trivial rotation that was
easy to display. Anyone can interpolate a rotation around a single axis. Since quaternions

can represent a rotation about a completely arbitrary axis, like (x=3.5, y=-2.1, z=0.04),
and they can be much more useful than Euler angles.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Compressing Quaternions? Don’t Bother!

When I was on Thief: Deadly Shadows, I was sharing an

office with a friend of mine who was tasked with the job of

compressing streams of quaternions. He was trying to save a
few precious megabytes on our animations for the main

character. His first few attempts were close, but some of the
animations were completely wacko. The character‘s legs

would lift up past his ears in a manner only suitable for a
circus performer. The problem was a loss in precision in the

quaternion stream, and when we thought about it, and truly
understood what a normalized quaternion was, it made

perfect sense. A normalized quaternion is a fourth-

dimensional vector whose origin sits at (0,0,0,0) and whose
endpoint always sits on the surface of a fourth-dimensional

hypersphere. Since a well-formed unit quaternion has a
length of 1.0f, any loss of accuracy because of compression

will trash the unit length and ruin the precision of the
quaternion. So what did we do? We used Euler angles. They

can lose precision like crazy and still work just fine.
Sometimes, the old school solution is what you need.

We‘ve just exposed the first step in getting objects to your screen. All of the matrix
concatenation, quaternions, and translations you just learned were used to place a single

object in a 3D world with an orientation you wanted and the exact position you desired. This
step is called transforming object space into world space. Object space is totally

untransformed. The vertices exist in exactly the same spots the artist or the programmer
placed them. The transform that placed the teapot exactly where you wanted it placed

transformed the object space to world space, and is generally called a world transform.

In DirectX, you set the current world transform with this line of code:

pD3DDevice->SetTransform(D3DTS_WORLD, &result);

Any untransformed polygons sent into the renderer will use this transform. Your teapot will

be exactly where you want it. I say untransformed polygons because it is possible to
transform polygons yourself and have the renderer do its magic with polygons in screen

space. We‘ll learn more about that in a moment.

The Quaternion Class

The D3DXQUATERNION structure can be wrapped in a useful C++ wrapper class:

class Quaternion : public D3DXQUATERNION

{

public:

 // Modifiers

 void Normalize() { D3DXQuaternionNormalize(this, this); };

 void Slerp(const Quaternion &begin, const Quaternion &end,

float cooef)

 {

 // performs spherical linear interpolation between begin &

end

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 // NOTE: set cooef between 0.0f-1.0f

 D3DXQuaternionSlerp(this, &begin, &end, cooef);

 }

 // Accessors

 void GetAxisAngle(Vec3 &axis, float &angle) const

 {

 D3DXQuaternionToAxisAngle(this, &axis, &angle);

 }

 // Initializers

 void BuildRotYawPitchRoll(

 const float yawRadians,

 const float pitchRadians,

 const float rollRadians)

 {

 D3DXQuaternionRotationYawPitchRoll(

 this, yawRadians, pitchRadians, rollRadians);

 }

 void BuildAxisAngle(const Vec3 &axis, const float radians)

 {

 D3DXQuaternionRotationAxis(this, &axis, radians);

 }

 void Build(const class Mat4x4 &mat)

 {

 D3DXQuaternionRotationMatrix(this, &mat);

 }

 Quaternion(D3DXQUATERNION &q) : D3DXQUATERNION(q) { }

 Quaternion() : D3DXQUATERNION() { }

 static Quaternion g_Identity;

};

inline Quaternion operator * (const Quaternion &a, const

Quaternion &b)

{

 // for rotations, this is exactly like concatenating

 // matrices - the new quat represents rot A followed by rot

B.

 Quaternion out;

 D3DXQuaternionMultiply(&out, &a, &b);

 return out;

}

Quaternion Quaternion::g_Identity(D3DXQUATERNION(0,0,0,1));

The quaternion is useful for orienting objects in a three-dimensional space. The

Quaternion class just presented gives you the three most used methods for initializing it:

from yaw-pitch-roll angles, an axis and rotation around that axis, and a 4 × 4 matrix. The

class also has an operator * to multiply two quaternions, which performs a similar

http://lib.ommolketab.ir
http//lib.ommolketab.ir

mathematical operation as concatenating matrices. The modifiers let you normalize a

quaternion and perform a spherical linear interpolation on them. You saw the interpolation
in the previous section when I showed you how to orient the teapot in between two different

rotations. Slerp() does the same thing.

The identity quaternion is also provided as a global static so you can get to it quickly,
especially for initializing a quaternion. This is something I like to do instead of forcing a

default initialization all the time. You can use it if you want, and start with the identity, or
you can use one of the builder methods.

View Transformation

If you are going to render the scene, you need to have a camera. That camera must have

an orientation and a position just like any other object in the world. Similar to any other
object, the camera needs a transform matrix that converts world space vertices to camera

space.

Calculating the transform matrix for a camera can be tricky. In many cases, you want the
camera to look at something, like a teapot. If you have a desired camera position and a

target to look at, you don‘t quite have enough information to place the camera. The missing
data is a definition of the up direction for your world. This last bit of data gives the camera a

hint about how to orient itself. The view matrix for our previous teapot experiment used a

DirectX function, D3DXMatrixLookAtLH:

D3DXMATRIX matView;

D3DXVECTOR3 vFromPt = D3DXVECTOR3(6.0f, 6.0f, 6.0f);

D3DXVECTOR3 vLookatPt = D3DXVECTOR3(0.0f, 0.0f, 0.0f);

D3DXVECTOR3 vUpVec = D3DXVECTOR3(0.0f, 1.0f, 0.0f);

D3DXMatrixLookAtLH(&matView, &vFromPt, &vLookatPt, &vUpVec);

m_pd3dDevice->SetTransform(D3DTS_VIEW, &matView);

By the way, the LH at the end of the DirectX function‘s name is a hint that this function

assumes a left-handed coordinate system. There is a right-handed version of this, and most

other matrix functions, as well.

The vFromPt is out along the positive values of X, Y, and Z, and the vLookatPt point is

right back at the origin. The last parameter defines the up direction. If you think about a

camera as having an orientation constraint similar to a camera boom like you see on ESPN,
it can move anywhere, pan around to see its surroundings, and pitch up or down. It doesn‘t

tilt, at least not normally. This is important, because if tilting were allowed in constructing a
valid view transform, there could be many different orientations that would satisfy your

input data.

Straight Up and Straight Down Aren’t

Supported!

This system isn‘t completely perfect because there are two

degenerate orientations. Given the definition of up as (x=0,
y=1, z=0) in world space, the two places you can‘t easily

look are straight up and straight down. You can construct the
view transform yourself quite easily, but don‘t expect the

look-at function to do it for you.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Remember that the camera‘s view transform is a matrix, just like any other. You don‘t have

to use the look-at function to calculate it, but it tends to be the most effective camera
positioning function there is.

Projection Transformation

So far, we‘ve taken vertices from object space and transformed them into world space, and
taken vertices from world space and transformed them into camera space. Now we need to

take all those 3D vertices sitting in camera space and figure out where they belong on your

computer screen and which objects sit in front of other objects.

Imagine sitting in front of a computer screen and seeing four lines coming from your eyeball

and intersecting with the corners of the screen. For the sake of simplicity, I‘ll assume you

have only one eyeball in the center of your head. These lines continue into the 3D world of
your favorite game. You have a pyramid shape with the point at your eyeball and its base

somewhere out in infinity somewhere. Clip the pointy end of the pyramid with the plane of
your computer screen and form a base of your pyramid at some arbitrary place in the

distance. This odd clipped pyramid shape is called the viewing frustum. The shape is
actually a cuboid, since it is topologically equivalent to a cube, although pushed out of

shape.

Every object inside this shape, the viewing frustum, will be drawn on your screen. The
projection transformation takes the camera space (x,y,z) of every vertex and transforms it

into a new vector that holds the screen pixel (x,y) location and a measure of the vertices‘
distance into the scene.

Here‘s the code to create the viewing frustum of the teapot experiments:

D3DXMATRIX matProj;

FLOAT fAspect = ((FLOAT)m_d3dsdBackBuffer.Width) /

m_d3dsdBackBuffer.Height;

D3DXMatrixPerspectiveFovLH(&matProj, D3DX_PI/4, fAspect, 1.0f,

100.0f);

m_pd3dDevice->SetTransform(D3DTS_PROJECTION, &matProj);

The DirectX function that helps you calculate a projection matrix—something you don‘t want
to do by yourself—accepts four parameters after the address of the matrix:

 Field of view: Expressed in radians, this is the width of the view angle. p/4 is a

pretty standard angle. Wider angles such as 3p/4 make for some weird results. Try it
and see what happens.

 Aspect ratio: This is the aspect ratio of your screen. If this ratio were 1.0, the

projection transform would assume you had a square screen. A 640 × 480 screen
has a 1.333 aspect ratio.

 Near clipping plane: This is the distance between your eye and the near view

plane. Any object closer will get clipped. The units are usually meters, but feel free

to set them to whatever standard makes sense for your game.

 Far clipping plane: The distance between your eye and the far clipping plane.

Anything farther away will be clipped.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Set Far Clipping Plane Distance to Something
Far, but not Too Far

Don‘t set your far clipping plane to some arbitrarily large

number in the hopes that nothing in your huge 3D world will

get clipped. The trade-off is that the huge distance between
your near and far clipping plane will create sorting problems

in objects very close or very far from the camera—depending
on your renderer. These weird sorting problems manifest

themselves as if two polygons were run through a paper
shredder, since the individual pixels on two coincident

polygons will sort incorrectly. This problem is caused by
numerical inaccuracy, and the polygons will sort into exactly

the depth in 3D space. If you see this problem, first check

the art to make sure the artists actually placed the polygons
correctly and then check your far clipping plane distance.

This problem is sometimes called ―Z fighting.‖

Also, don‘t set your near clipping plane to zero, with the hope
that you‘ll be able to see things very close to the camera.

There‘s a relationship between the near clipping plane and
the field of view. If you arbitrarily move the near clipping

plane closer to the camera without changing the field of view,
weird things begin to happen. My suggestion is to write a

little code and see for yourself.

Enough Math—Please Stop

I‘m done torturing you with linear algebra, but I‘m not quite done with geometry. Hang in
there because you‘ll soon find out some interesting things about triangles.

Triangles

Did you know that everything from teapots to cars to volleyball-playing beach bunnies can

be made out of triangles? We all know that a geometric triangle is made up of three points.
In a 3D world, a triangle is composed of three vertices. A vertex holds all of the information

the renderer will use to draw the triangle, and as you might expect, there can be a lot more
than its location in a 3D space.

Different renderers will support different kinds of triangles, and therefore different kinds of

vertices that create those triangles. Once you get your feet wet with one rendering
technology, such as DirectX 9, you‘ll quickly find analogs in any other rendering technology,

such as OpenGL. Since I‘ve already sold my soul to Bill Gates, I‘ll show you how you create

vertices in DirectX 9. A DirectX 9 vertex is a structure you define yourself. When you send
your vertex data to the renderer, you send in a set of flags that informs it about the

contents of the vertex data.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Directx Vertex Structures have Specific Order

You may define the structure yourself, but DirectX 9 expects

the data in the structure to exist in a particular order. For

example, the vertex position always comes before the
normal, which always comes before texture coordinates.

Search for ―Vertex Formats‖ in the DirectX SDK to see this
order. All hell will break loose if you don‘t.

First, you should understand the concepts of a transformed vertex versus an untransformed
vertex. A transformed vertex is defined directly in screen space. It doesn‘t need the

transformations we discussed in the last section—object to world, world to camera, and
camera to screen. You would use this kind of vertex to build triangles that create user

interface components, since they don‘t need to exist in anything else but screen space.

Screen Space Can be Maddening

Don‘t think that you can easily get away with defining
triangles in screen space that ―look‖ like they exist in world

space. On the first Microsoft Casino project, we defined our

card animations in screen space. Every corner of every card
was painstakingly recorded and entered into the card

animation code. These coordinates looked fairly good, but the
second we needed to tweak the camera angle, all the

coordinates had to be recomputed, rerecorded, and entered
into the code by hand. It seemed like a good idea at the

time, but we finally ditched this approach in favor of real
cards animating through world space.

An untransformed vertex exists in object space, like the triangles that make up our teapot.
Before the triangles are drawn, they‘ll be multiplied with the concatenated matrix that

represents the transformations that will change a location in object space to projected
screen space. Here‘s how you define a DirectX 9 vertex structure for a transformed vertex

and an untransformed vertex:

struct TRANSFORMED_VERTEX

{

 D3DXVECTOR3 position; // The screen x, y, z - x,y are pixel

coordinates

 float rhw; // always 1.0, the reciprocal of

homogeneous w

};

#define D3DFVF_TRANSFORMED_VERTEX (D3DFVF_XYZRHW)

struct UNTRANSFORMED_VERTEX

{

 D3DXVECTOR3 position; // The position in 3D space

};

#define D3DFVF_UNTRANSFORMED_VERTEX (D3DFVF_XYZ)

The #defines below the vertex definitions are the flags that you send into renderer calls

that inform the renderer how to treat the vertex data. A renderer needs to know more than

http://lib.ommolketab.ir
http//lib.ommolketab.ir

the location of a vertex in 3D space or screen space. It needs to know what it looks like.

There are a few categories of this appearance information, but the first one on your list is
lighting and color.

Lighting, Normals, and Color

In DirectX 9 and many other rendering technologies, you can assign colors to vertices
yourself, or you can instruct the renderer to calculate those colors by looking at vertex data

and the lights that illuminate the vertex. You can even do both. Everyone has seen games

that show subtle light pools shining on walls and floors—a nice and efficient effect but
completely static and unmoving. Other illumination is calculated in real time, such as when

your character shines a flashlight around a scene. Multiple lights can affect individual
vertices, each light adding a color component to the vertex color calculation.

Two flavors of dynamic lighting effects are diffuse and specular lighting. The DirectX fixed

function pipeline can calculate these values for you if you want to send unlit vertices to the
renderer, but you can also set the diffuse and specular colors directly. Almost all 3D cards

have hardware acceleration for lighting calculations. DirectX makes use of this hardware
automatically. To do this, you need to know about normal vectors, which are added to the

vertex definition to enable lighting calculations.

When light hits an object, the color of light becomes a component of the object‘s
appearance. Perform a little experiment to see this in action. Take a playing card, like the

ace of spades, and place it flat on a table lit by a ceiling lamp. The card takes on a color
component that reflects the color of that lamp. If your lamp is a fluorescent light, the card

will appear white with a slight greenish tint. If your lamp is incandescent, the card will take

on a slightly yellowish color.

If you take the card in your hand and slowly turn it over, the brightness and color of the

card changes. As the card approaches an edge-on orientation to the lamp, the effects of the

lighting diminish to their minimum. The light has its maximum effect when the card is flat
on the table, and its minimum effect when the card is edged-on to the light. This happens

because when light hits a surface at a low angle it spreads out and has to cover a larger
area with the same number of photons. This gives you a dimming effect.

Diffuse lighting attempts to simulate this effect. With the card sitting flat on the table again,

take a pencil and put the eraser end in the middle of the card and point the tip of the pencil
straight up in the air toward your ceiling lamp. You‘ve just created a normal vector. Turn

the card as before, but hold the pencil and turn it as well, as if it were glued to the card.
Notice that the light has a maximum effect when the angle between the pencil and the light

is 180 degrees and minimum effect when the angle between the light and the pencil is 90
degrees, and no effect when the card faces away from the light.

Each vertex gets its own normal vector. This might seem like a waste of memory, but

consider this: If each vertex has its own normal, you can change the direction of the normal
vectors to ―fool‖ the lighting system. You can make the 3D object take on a smoother

shading effect. This is a common technique to blend the edges of coincident triangles. The

illusion you create allows artists to create 3D models with fewer polygons.

The normals on the teapot model are calculated to create the illusion of a smooth shape, as

shown in Figure 13.13.

Figure 13.13. Vertex normals on a teapotahedron.

javascript:moveTo('ch13fig13');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Now that you know what a normal vector is, you need to know how to calculate one. If you

want to find the normal vector for a triangle, you‘ll need to use a cross product as shown
here:

Vec3 triangle[3];

triangle[0] = Vec3(0,0,0);

triangle[1] = Vec3(5,0,0);

triangle[2] = Vec3(5,5,0);

Vec3 edge1 = triangle[1]-triangle[0];

Vec3 edge2 = triangle[2]-triangle[0];

Vec3 normal = edge1.Cross(edge2);

normal.Normalize();

Our polygon is defined with three positions in 3D space. These positions are used to
construct two edge vectors, both pointing away from the same vertex. The two edges are
sent into the cross product function, which returns a vector that is pointing in the right

direction, but the wrong size. All normal vectors must be exactly one unit in length to be

useful in other calculations, such as the dot product. The D3DXVec3Normalize function

calculates the unit vector by dividing the temp vector by its length. The result is a normal

vector you can apply to a vertex.

If you take a closer look at the teapot figure, you‘ll notice that the normal vectors are really
the normals of multiple triangles, not just a single triangle. You calculate this by averaging

the normals of each triangle that shares your vertex. Calculate the average of multiple
vectors by adding them together and dividing by the number of vectors, exactly as you

would calculate the average of any other number.

Calculate Your Normals Ahead of Time

Calculating a normal is a somewhat expensive operation.

Each triangle will require two subtractions, a cross product, a
square root, and three divisions. If you create 3D meshes at

runtime, try to calculate your normals once, store them in
object space, and use transforms to reorient them.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Specular lighting is calculated slightly differently. It adds shininess to an object by
simulating the reflection of the light on the object. The light calculation takes the angle of

the camera into account along with the normal vector of the polygon and the light direction.

You might be wondering why I didn‘t mention ambient lighting—a color value that is
universally applied to every vertex in the scene. This has the effect of making an object

glow like a light bulb, and it isn‘t very realistic. Ambient lighting values are a necessary evil
in today‘s 3D games because they simulate low-light levels on the back or underside of

objects due to light reflecting all about the scene. In the next few years, I expect this light
hack to be discarded completely in favor of the latest work with pixel shaders and

environment-based lighting effects. I can‘t wait!

Here are the DirectX 9 vertex definitions for lit and unlit vertices:

struct UNTRANSFORMED_LIT_VERTEX

{

 D3DXVECTOR3 position; // The position in 3D space

 D3DCOLOR diffuse; // The diffuse color

 D3DCOLOR specular; // The specular color

};

#define D3DFVF_UNTRANS_LIT_VERTEX (D3DFVF_XYZ | D3DFVF_DIFFUSE |

 D3DFVF_SPECULAR)

struct UNTRANSFORMED_UNLIT_VERTEX

{

 D3DXVECTOR3 position; // The position in 3D space

 D3DXVECTOR3 normal; // The normal vector (must be 1.0 units

in length)

 D3DCOLOR diffuse; // The diffuse color

 D3DCOLOR specular; // The specular color

};

#define FVF_UNTRANS_UNLIT_VERT \

 (D3DFVF_XYZ | D3DFVF_NORMAL | D3DFVF_DIFFUSE |

D3DFVF_SPECULAR)

Notice that both vertex definitions were of the untransformed variety, but there‘s nothing
keeping you from making the transformed versions of these things. It‘s entirely up to you
and what you need for your game. Remember that the transformed versions will bypass the

transformation and lighting pipeline entirely. The transformation and lighting pipeline are
inseparable.

Note also that the unlit vertex still had definitions for diffuse and specular color information.

This is kind of like having the best of both worlds. You can set specific diffuse and specular
lighting on each vertex for static lights and the renderer will add any dynamic lights if they

affect the vertex.

Textured Vertices

A texture is a piece of two-dimensional art that is applied to a model. Each vertex gets a
texture coordinate. Texture coordinates are conventionally defined as (U,V) coordinates,

where U is the horizontal component and V is the vertical component. Classically, these
coordinates are described as floating-point numbers where (0.0f,0.0f) signifies the top left

of the texture and grows to the left and down. The coordinate (0.5f, 0.5f) would signify the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

exact center of the texture. Each vertex gets a texture coordinate for every texture. DirectX

9 supports up to eight textures on a single vertex.

Here‘s an example of a vertex with a texture coordinate:

// A structure for our custom vertex type. We added texture

coordinates

struct COLORED_TEXTURED_VERTEX

{

 D3DXVECTOR3 position; // The position

 D3DCOLOR color; // The color

 FLOAT tu, tv; // The texture coordinates

};

// Our custom FVF, which describes our custom vertex structure

#define D3DFVF_COLORED_TEXTURED_VERTEX \

 (D3DFVF_XYZ | D3DFVF_DIFFUSE | D3DFVF_TEX1)

This vertex happens to include a diffuse color component as well, and you should also be
able to tell by the flags that this vertex is untransformed, which means it exists in 3D world
space, as opposed to screen space. This kind of vertex is not affected by any dynamic

lighting in a scene, but it can be prelit by an artist, creating nicely lit environments. This
vertex is also extremely efficient, since it isn‘t sent into the lighting equations.

Numbers greater than 1.0 can tile the texture, mirror it, or clamp it, depending on the

addressing mode of the renderer. If you wanted a texture to tile three times in the
horizontal direction and four times in the vertical direction on the surface of a single

polygon, the texture (U,V) coordinate that would accomplish that task would be (3.0f, 4.0f).

Numbers less than 0.0f are also supported. They have the effect of mirroring the texture.

Other Vertex Data

If you happen to have the DirectX SDK documentation open and you are following along,

you‘ll notice that I skipped over a few additional vertex data components, such as blending
weight and vertex point size, and also tons of texturing minutia. All I can say is that these

topics are beyond the scope of this simple 3D primer. I hope you‘ll forgive me and perhaps

write a note to my publisher begging for me to write a more comprehensive book on the
subject. That is, of course, if my wife ever lets me write another book. You have no idea

how much housework I‘ve been able to get out of by writing.

Triangle Meshes

We‘ve been talking so far about individual vertices. Its time to take that knowledge and

create some triangle meshes. There are three common approaches to defining sets of

triangles:

 Triangle list: A group of vertices defines individual triangles, each set of three

vertices defines a single triangle.

 Triangle strip: A set of vertices that define a strip of connected triangles; this is

more efficient than a triangle list because fewer vertices are duplicated. This is
probably the most popular primitive because it is efficient and can create a wide

variety of shapes.

 Triangle fan: Similar to a triangle strip, but all the triangles share one central

vertex; also very efficient.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

When you define sets of vertices in DirectX 9, you put them in a vertex buffer. The vertex

buffer is sent to the renderer in one atomic piece, which implies that every triangle defined
in the buffer is rendered with the current state of the renderer. Every triangle will have the

same texture, be affected by the same lights, and so on.

This turns out to be a staggeringly good optimization. The teapot you saw earlier in this
chapter required 2,256 triangles and 1,178 vertices, but it could be drawn with around 50

triangle strips. It turns out that DirectX meshes are always triangle lists. Lists or strips are
much faster than sending each triangle to the card and rendering it individually, which is

what happened in the dark ages—circa 1996.

In DirectX 9, you create a vertex buffer, fill it with your triangle data, and then use it for
rendering at a time of your choosing. Before you read this code, please know that no

rational programmer would create an entire vertex buffer for a single triangle, this is just a
simple example:

class Triangle

{

 LPDIRECT3DVERTEXBUFFER9 m_pVerts;

 DWORD m_numVerts;

public:

 Triangle() { m_pVerts = NULL; m_numVerts = 3; }

 ~Triangle() { SAFE_RELEASE(m_pVerts); }

 HRESULT Create(LPDIRECT3DDEVICE9 pDevice);

 HRESULT Render(LPDIRECT3DDEVICE9 pDevice);

};

HRESULT Triangle::Create(LPDIRECT3DDEVICE9 pDevice)

{

 // Create the vertex buffer.

 m_numVerts = 3;

 if(FAILED(pDevice->CreateVertexBuffer(

 m_numVerts*sizeof(TRANSFORMED_VERTEX),

 D3DUSAGE_WRITEONLY, D3DFVF_TRANSFORMED_VERTEX,

 D3DPOOL_MANAGED, &m_pVerts, NULL)))

 {

 return E_FAIL;

 }

 // Fill the vertex buffer. We are setting the tu and tv

texture

 // coordinates, which range from 0.0 to 1.0

 TRANSFORMED_VERTEX* pVertices;

 if(FAILED(m_pVerts->Lock(0, 0, (void**)&pVertices, 0)))

 return E_FAIL;

 pVertices[0].position = D3DXVECTOR3(0,0,0);

 pVertices[0].rhw = 1.0;

 pVertices[1].position = D3DXVECTOR3(0,50,0);

 pVertices[1].rhw = 1.0;

 pVertices[2].position = D3DXVECTOR3(50,50,0);

 pVertices[2].rhw = 1.0;

 m_pVerts->Unlock();

 return S_OK;

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This is a simple example of creating a vertex buffer with a single triangle, and a

transformed one at that. The call to CreateVertexBuffer is somewhat scary looking,

but all it does is set up a piece of memory the right size, the kind of vertex that will inhabit

the buffer, and how the memory will be managed.

After the buffer is created, you have to lock it before writing data values. This should
remind you somewhat of locking a 2D surface. The single triangle has three vertices—no

surprise there. Take a quick look at the position values, and you‘ll see that I‘ve defined a
triangle that will sit in the upper left-hand corner of the screen with a base and height of 50

pixels. This triangle is defined in screen space, since the vector is defined as a transformed
vertex.

When I‘m ready to render this vertex buffer, I call this code:

HRESULT Triangle::VRender(LPDIRECT3DDEVICE9 pDevice)

{

 pDevice->SetStreamSource(0, m_pVerts, 0,

sizeof(TRANSFORMED_VERTEX));

 pDevice->SetFVF(D3DFVF_TRANSFORMED_VERTEX);

 pDevice->DrawPrimitive(D3DPT_TRIANGLELIST , 0, 1);

 return S_OK;

}

The first call sets the stream source, or vertex buffer, to our triangle. The second call tells

D3D what kind of vertices to expect in the stream buffer using the flags that you or‘ed

together when you defined the vertex structure. The last call to DrawPrimitive()

actually renders the triangle. This is an example of the fixed-function pipeline. You tell

Direct3D what vertex data to expect and send the vertex data in with a call to

DrawPrimitive(). Direct3D then uses all of the current rendering settings to render the

vertices.

This Isn’t the Whole Story

You can‘t call any drawing functions in Direct3D without first

calling IDirect3D9Device::BeginScene(), and you

must call IDirect3DDevice::EndScene() when you

are done drawing! The previous example encapsulates the

rendering of a single triangle and would be called only from
within the context of the beginning and ending of a scene.

Indexed Triangle Meshes

There‘s one more wrinkle to defining triangle meshes. Instead of sending vertex data to the

renderer alone, you can send an index along with it. This index is an array of 16- or 32-bit
numbers that define the vertex order, allowing you to avoid serious vertex duplication and

therefore save memory. Let‘s take a look at a slightly more complicated mesh example.
Here‘s the code that created the grid mesh in the teapot example:

class Grid

{

protected:

 LPDIRECT3DTEXTURE9 m_pTexture; // the grid texture

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 LPDIRECT3DVERTEXBUFFER9 m_pVerts; // the grid verts

 LPDIRECT3DINDEXBUFFER9 m_pIndices; // the grid index

 DWORD m_numVerts;

 DWORD m_numPolys;

public:

 Grid();

 ~Grid();

 HRESULT Create (

 LPDIRECT3DDEVICE9 pDevice, const DWORD gridSize, const

DWORD color);

 HRESULT Render(LPDIRECT3DDEVICE9 pDevice);

};

Grid::Grid()

{

 m_pTexture = NULL;

 m_pVerts = NULL;

 m_pIndices = NULL;

 m_numVerts = m_numPolys = 0;

}

Grid::~Grid()

{

 SAFE_RELEASE(m_pTexture);

 SAFE_RELEASE(m_pVerts);

 SAFE_RELEASE(m_pIndices);

}

HRESULT Grid::Create(

 LPDIRECT3DDEVICE9 pDevice,

 const DWORD gridSize,

 const DWORD color)

{

 if(FAILED(D3DUtil_CreateTexture(

 pDevice, "Textures\\Grid.dds", &m_pTexture)))

 {

 return E_FAIL;

 }

 // Create the vertex buffer - we'll need enough verts

 // to populate the grid. If we want a 2x2 grid, we'll

 // need 3x3 set of verts.

 m_numVerts = (gridSize+1)*(gridSize+1);

 if(FAILED(pDevice->CreateVertexBuffer(

 m_numVerts*sizeof(COLORED_TEXTURED_VERTEX),

 D3DUSAGE_WRITEONLY,

D3DFVF_COLORED_TEXTURED_VERTEX,

 D3DPOOL_MANAGED, &m_pVerts, NULL)))

 {

 return E_FAIL;

 }

 // Fill the vertex buffer. We are setting the tu and tv

texture

 // coordinates, which range from 0.0 to 1.0

 COLORED_TEXTURED_VERTEX* pVertices;

 if(FAILED(m_pVerts->Lock(0, 0, (void**)&pVertices, 0)))

 return E_FAIL;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 for(DWORD j=0; j<(gridSize+1); j++)

 {

 for (DWORD i=0; i<(gridSize+1); i++)

 {

 // Which vertex are we setting?

 int index = i + (j * (gridSize+1));

 COLORED_TEXTURED_VERTEX *vert = &pVertices[index];

 // Default position of the grid is at the origin, flat on

 // the XZ plane.

 float x = (float)i;

 float y = (float)j;

 vert->position =

 (x * D3DXVECTOR3(1,0,0)) + (y * D3DXVECTOR3(0,0,1)

);

 vert->color = color;

 // The texture coordinates are set to x,y to make the

 // texture tile along with units - 1.0, 2.0, 3.0, etc.

 vert->tu = x;

 vert->tv = y;

 }

}

m_pVerts->Unlock();

// The number of indicies equals the number of polygons times 3

// since there are 3 indicies per polygon. Each grid square

contains

// two polygons. The indicies are 16 bit, since our grids won't

// be that big!

m_numPolys = gridSize*gridSize*2;

if(FAILED(pDevice->CreateIndexBuffer(

 sizeof(WORD) * m_numPolys * 3,

 D3DUSAGE_WRITEONLY, D3DFMT_INDEX16,

 D3DPOOL_MANAGED, &m_pIndices, NULL)))

{

 return E_FAIL;

}

WORD *pIndices;

if(FAILED(m_pIndices->Lock(0, 0, (void**)&pIndices, 0)))

 return E_FAIL;

// Loop through the grid squares and calc the values

// of each index. Each grid square has two triangles:

//

// A - B

// | / |

// C - D

for(DWORD j=0; j<gridSize; j++)

{

 for (DWORD i=0; i<gridSize; i++)

 {

 // Triangle #1 ACB

 (pIndices) = WORD(i + (j(gridSize+1)));

 (pIndices+1) = WORD(i + ((j+1)(gridSize+1)));

 (pIndices+2) = WORD((i+1) + (j(gridSize+1)));

 // Triangle #2 BCD

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 (pIndices+3) = WORD((i+1) + (j(gridSize+1)));

 (pIndices+4) = WORD(i + ((j+1)(gridSize+1)));

 (pIndices+5) = WORD((i+1) + ((j+1)(gridSize+1)));

 pIndices+=6;

 }

 }

 m_pIndices->Unlock();

 return S_OK;

}

I‘ve commented the code pretty heavily to help you understand what‘s going on. An index
buffer is created and filled in much the same way as vertex buffers. Take a few minutes to

stare at the code that assigns the index numbers—it‘s the last nested for loop. If you have

trouble figuring it out, trace the code with a 2 × 2 grid, and you‘ll get it.

This code creates an indexed triangle list. If you wanted to be truly efficient, you‘d rewrite

the code to create an indexed triangle strip. All you have to do is change the index buffer.
I‘ll leave that to you. If you can get that working, you‘ll know you have no trouble

understanding index buffers. The code that renders the grid looks very similar to the

triangle example:

HRESULT Grid::Render(LPDIRECT3DDEVICE9 pDevice)

{

 // Setup our texture. Using textures introduces the texture

stage states,

 // which govern how textures get blended together (in the

case of multiple

 // textures) and lighting information. In this case, we are

modulating

 // (blending) our texture with the diffuse color of the

vertices.

 pDevice->SetTexture(0, m_pTexture);

 pDevice->SetTextureStageState(0, D3DTSS_COLOROP,

D3DTOP_MODULATE);

 pDevice->SetTextureStageState(0, D3DTSS_COLORARG1,

D3DTA_TEXTURE);

 pDevice->SetTextureStageState(0, D3DTSS_COLORARG2,

D3DTA_DIFFUSE);

 pDevice->SetStreamSource(0, m_pVerts, 0,

sizeof(COLORED_TEXTURED_VERTEX));

 pDevice->SetIndices(m_pIndices);

 pDevice->SetFVF(D3DFVF_COLORED_TEXTURED_VERTEX);

 pDevice->DrawIndexedPrimitive(

 D3DPT_TRIANGLELIST , 0, 0, m_numVerts, 0, m_numPolys);

 return S_OK;

}

You‘ll note the few extra calls to let the renderer know that the triangles in the mesh are
textured, and that the texture is affected by the diffuse color of the vertex. This means that
a black-and-white texture will take on a colored hue based on the diffuse color setting of the

vertex. It‘s a little like choosing different colored wallpaper with the same pattern.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Materials

There‘s a lot more to texturing than the few calls you‘ve seen so far. One thing you‘ll need

to check out in DirectX 9 is materials. When you look at the structure of D3DMATEIRAL9,

you‘ll see things that remind you of those color settings in vertex data:

typedef struct _D3DMATERIAL9 {

 D3DCOLORVALUE Diffuse;

 D3DCOLORVALUE Ambient;

 D3DCOLORVALUE Specular;

 D3DCOLORVALUE Emissive;

 float Power;

} D3DMATERIAL9;

If the DirectX 9 renderer doesn‘t have any specific color data for vertices, it will use the
current material to set the color of each vertex, composing all the material color information

with the active lights illuminating the scene.

Black Objects Everywhere? Set Your Default

Material!

One common mistake with using the fixed-function pipeline

in DirectX 9 is not setting a default material. If your vertex
data doesn‘t include diffuse or specular color information,

your polygons will appear completely black. If your game has
a black background, objects in your scene will completely

disappear!

Other than the critical information about needing a default material and texture, the DirectX

SDK documentation does a pretty fair job of showing you what happens when you play with
the specular and power settings. They can turn a plastic ping-pong ball into a ball bearing,

highlights and everything.

The material defines how light reflects off the polygons. In Direct3D, this includes different
colors for ambient, diffuse, specular, and emissive light. It is convenient to wrap the

D3DMATERIAL9 structure in a class, which will be used in the next chapter to control how

objects look, or even if they are transparent. Here is the source code for the class:

#define fOPAQUE (1.0f)

#define fTRANSPARENT (0.0f)

typedef D3DXCOLOR Color;

Color g_White(1.0f, 1.0f, 1.0f, fOPAQUE);

Color g_Black(0.0f, 0.0f, 0.0f, fOPAQUE);

Color g_Cyan(0.0f, 1.0f, 1.0f, fOPAQUE);

Color g_Red(1.0f, 0.0f, 0.0f, fOPAQUE);

Color g_Green(0.0f, 1.0f, 0.0f, fOPAQUE);

Color g_Blue(0.0f, 0.0f, 1.0f, fOPAQUE);

Color g_Yellow(1.0f, 1.0f, 0.0f, fOPAQUE);

Color g_Gray40(0.4f, 0.4f, 0.4f, fOPAQUE);

Color g_Gray25(0.25f, 0.25f, 0.25f, fOPAQUE);

Color g_Gray65(0.65f, 0.65f, 0.65f, fOPAQUE);

Color g_Transparent (1.0f, 0.0f, 1.0f, fTRANSPARENT);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

class Material

{

 D3DMATERIAL9 m_D3DMaterial;

public:

 Material();

 void SetAmbient(const Color &color);

 void SetDiffuse(const Color &color);

 void SetSpecular(const Color &color, const float power);

 void SetEmissive(const Color &color);

 void Set(const Color &color);

 void SetAlpha(const float alpha);

 bool HasAlpha() const { return GetAlpha() != fOPAQUE; }

 float GetAlpha() const { return m_D3DMaterial.Diffuse.a; }

 void Use();

};

Material::Material()

{

 ZeroMemory(&m_D3DMaterial, sizeof(D3DMATERIAL9));

 Set(g_White);

}

void Material::SetAmbient(const Color &color)

{

 m_D3DMaterial.Ambient = color;

}

void Material::SetDiffuse(const Color &color)

{

 m_D3DMaterial.Diffuse = color;

}

void Material::SetSpecular(const Color &color, const float

power)

{

 m_D3DMaterial.Specular = color;

 m_D3DMaterial.Power = power;

}

void Material::SetEmissive(const Color &color)

{

 m_D3DMaterial.Emissive = color;

}

void Material::Set(const Color &color)

{

 m_D3DMaterial.Diffuse = color;

 m_D3DMaterial.Ambient = color;

 m_D3DMaterial.Specular = g_White;

 m_D3DMaterial.Emissive = g_Black;

}

void Material::SetAlpha(float alpha)

{

 m_D3DMaterial.Diffuse.a =

 m_D3DMaterial.Ambient.a =

 m_D3DMaterial.Specular.a = alpha;

}

void Material::Use()

{

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 DXUTGetD3DDevice()->SetMaterial(&m_D3DMaterial);

}

The material has four different color components. Generally, you‘ll set the ambient and
diffuse color to the same thing, but you might get a black object by mistake. If you set an

object‘s diffuse and ambient material to 100% blue, and you put that object in an
environment with 100% red light, it will appear black. That‘s because a 100% blue object

doesn‘t reflect any red light. Fix this by putting a little red in either the diffuse or ambient

colors. The specular color is usually set to white or gray, and defines the color of the
shininess the object takes on. Lastly, the emissive component allows an object to light

itself. This is a good idea for things like explosions or light bulbs—anything that emits light.

The last property is used to classify how the scene node is drawn, opaque or transparent.
There are four different ways transparency can work, the first of which is completely

opaque, or not transparent.

enum AlphaType

{

 AlphaOpaque,

 AlphaTexture,

 AlphaMaterial,

 AlphaVertex

};

One way is by using a texture with an alpha channel, such as you might do to create a nice-
looking set of leaves on a tree or pickets in a fence. You might think the alpha channel
makes a bigger texture, but if your texture is 24-bit RGB, your video card will create a 32-

bit ARGB space for it. You can finely control which pixels look transparent and how

transparent they are. This is the method used for AlphaTexture.

The second way is to use the material. You can make the entire object transparent by

setting the alpha component of the material. This is the method used for

AlphaMaterial.

The last method is by vertex color. If you have the kind of vertices that have a color

component, you can set the alpha value of the vertex in any way you want. The simple 3D

engine in this book doesn‘t support that method, but perhaps you‘ll have a free weekend to
implement it. Don‘t forget to check the Web site,

www.mcshaffry.com/GameCode/portal.php, and if you‘re lucky, it might be up there right
now. Or check out www.courseptr.com/downloads.

Texturing

Back in Grid::Create(), I quietly included some texture calls into the code. Let‘s start

with what I did to actually create the texture in the first place and go through the calls that
apply the texture to a set of vertices. The first thing you‘ll do to create a texture is pop into

Photoshop, Paint, or any bitmap editing tool. That leaves out tools like Macromedia Flash or
Illustrator because they are vector tools and are no good for bitmaps.

Go into one of these tools and create an image 128 × 128 pixels in size. Figure 13.14 shows

my version.

Figure 13.14. A sample texture.

../../portal.php
../../downloads
javascript:moveTo('ch13fig14');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Save the texture as a TIF, TGA, or BMP. If you are working in Photoshop, you‘ll want to
save the PSD file for future editing, but our next step can‘t read PSDs. While you can use

the DirectX Texture Tool to save your texture in DirectX‘s DDS format, DirectX can load
BMP, DIB, HDR, JPG, PFM, PNG, PPM, and TGA files, too.

HRESULT hr;

LPDIRECT3DTEXTURE9 pTexture;

hr = D3DXCreateTextureFromFile (

 DXUTGetD3D9Device(), "texture.dds", &pTexture)))

return hr;

Sometimes you might also want to create a texture from memory, such as when you have a
resource cache load your texture files:

Resource resource("texture.dds");

shared_ptr<ResHandle> texture =

 g_pApp->m_ResCache->GetHandle(&resource);

hr = D3DXCreateTextureFromFileInMemory(

 DXUTGetD3D9Device(), texture->Buffer(), texture->Size(),

 &pTexture)))

return hr;

There is much more to creating and loading textures than you see here, because I‘m only
scratching the surface. Take a look at DirectX 9‘s documentation on texture creation

functions D3DXCreateTextureFromFileEx(),

D3DXCreateTextureFromResourceEx(), and

D3DXCreateTextureFromFileInMemoryEx().

There is one important concept, mip-mapping, that needs special attention. If you‘ve ever

seen old 3D games, or perhaps just really bad 3D games, you‘ll probably recall an odd
effect that happens to textured objects as you back away from them. This effect, called

scintillation, is especially noticeable on textures with a regular pattern, such as a black-and-
white checkerboard pattern. As the textured objects recede in the distance, you begin to

notice that the texture seems to jump around in weird patterns. This is due to an effect
called subsampling.

Subsampling

Assume for the moment that a texture appears on a polygon very close to its original size.

If the texture is 128 × 128 pixels, the polygon on the screen will look almost exactly like
the texture. If this polygon were reduced to half of this size, 64 × 64 pixels, the renderer

must choose which pixels from the original texture must be applied to the polygon. So what
happens if the original texture looks like the one shown in Figure 13.15?

Figure 13.15. A texture particularly sensitive to subsampling.

javascript:moveTo('ch13fig15');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

This texture is 128 × 128 pixels, with alternating vertical lines exactly one pixel in width. If

you reduced this texture in a simple paint program, you might get nothing but a 64 × 64
texture that is completely black. What‘s going on here?

When the texture is reduced to half its size, the naive approach would select every other

pixel in the grid, which in this case happens to be every black pixel on the texture. The
original texture has a certain amount of information, or frequency, in its data stream. The

frequency of the above texture is the number of alternating lines. Each pair of black-and-
white lines is considered one wave in a waveform that makes up the entire texture. The

frequency of this texture is 64, since it takes 64 waves of black-and-white lines to make up
the texture.

Subsampling is what occurs if any waveform is sampled at less than twice its frequency. In

the above case, any sample taken at less than 128 samples or less will drop critical
information from the original data stream.

It might seem weird to think of textures having a frequency, but they do. A high frequency

implies a high degree of information content. In the case of a texture, it has to do with the
number of undulations in the waveform that make up the data stream. If the texture were

nothing more than a black square, it has a minimal frequency, and therefore carries only
the smallest amount of information. A texture that is a solid black square, no matter how

large, can be sampled at any rate whatsoever. No information is lost because there wasn‘t

that much information to begin with.

In case you were wondering whether or not this subject of subsampling can apply to audio

waveforms, it can. Let‘s assume that you have a high-frequency sound, say a tone at

11KHz. If you attempt to sample this tone in a WAV file at 11KHz, exactly the frequency of
the tone, you won‘t be happy with the results. You‘ll get a subsampled version of the

original sound. Just as the texture turned completely black, your subsampled sound would
be a completely flat line, erasing the sound altogether.

It turns out there is a solution for this problem, and it involves processing and filtering the

original data stream to preserve as much of the original waveform as possible. For sounds
and textures, the new sample isn‘t just grabbed from an original piece of data in the

waveform. The data closest to the sample is used to figure out what is happening to the
waveform, instead of one value of the waveform at a discrete point in time.

In the case of our lined texture used previously, the waveform is alternating from black to

white as you sample horizontally across the texture, so naturally if the texture diminishes in
size the eye should begin to perceive a 50 percent gray surface. It‘s no surprise that if you

combine black and white in equal amounts you get 50 percent gray.

For textures, each sample involves the surrounding neighborhood of pixels—a process
known as bilinear filtering. The process is a linear combination of the pixel values on all

sides sampled pixel—nine values in all. These nine values are weighted and combined to
create the new sample. The same approach can be used with sounds as well, as you might

have expected.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This processing and filtering is pretty expensive so you don‘t want to do it in real time for

textures or sounds. Instead, you‘ll want to create a set of reduced images for each texture
in your game. This master texture is known as a mip-map.

Mip-Mapping

Mip-mapping is a set of textures that has been preprocessed to contain one or more levels
of size reduction. In practice, the size reduction is in halves, all the way down to one pixel

that represents the dominant color of the entire texture. You might think that this is a waste

of memory but it‘s actually more efficient than you‘d think. A mip-map uses only one-third
more memory than the original texture, and considering the vast improvement in the

quality of the rendered result, you should provide mip-maps for any texture that has a
relatively high frequency of information. It is especially useful for textures with regular

patterns, such as our black-and-white line texture.

Really Long Polygons can be Trouble

One last thing about mip-maps: As you might expect, the

renderer will choose which mip-map to display based on the
screen size of the polygon. This means that it‘s not a good

idea to create huge polygons on your geometry that can
recede into the distance. The renderer might not be able to

make a good choice that will satisfy the look of the polygon
edge, both closest to the camera and the one farthest away.

Some older video cards might select one mip-map for the

entire polygon, and it would therefore look strange. You can‘t
always count on every player to have modern hardware. If

you have to support these older cards, you should consider
breaking up longer polygons into ones that are more square.

Also, while we‘re on the subject, many other things can go

wrong with huge polygons in world space, such as lighting
and collision. It‘s always a good idea to tessellate, or break

up, larger surfaces into smaller polygons that will provide the
renderer with a good balance between polygon size and

vertex count.

The DirectX Texture Tool can generate mip-maps for you. To do this, you just load your

texture and select Format, Generate Mip Maps. You can then see the resulting reduced
textures by pressing PageUp and PageDn.

You might have heard of something called trilinear filtering. If the renderer switches

between one mip-map level on the same polygon, it‘s likely that you‘ll notice the switch.
Most renderers can sample the texels from more than one mipmap and blend their color in

real time. This creates a smooth transition from one mip-map level to another, a much
more realistic effect. As you approach something like a newspaper, the mip-maps are

sampled in such a way that eventually the blurry image of the headline can resolve into
something you can read and react to.

3D Graphics—It’s Just the Beginning

You‘ve seen enough to be dangerous in DirectX 9, and perhaps even be dangerous in any

other renderer you choose, such as OpenGL. The concepts I presented are the same. The

http://lib.ommolketab.ir
http//lib.ommolketab.ir

only thing different are the function calls, the coordinate systems, the texturing support,

how they expect your geometry, and so on. This chapter‘s goal was really not much more
than a vocabulary lesson, and a beginning one at that. We‘ll get to more 3D material in the

next chapter, so don‘t worry.

I suggest that you go play around a bit in DirectX 9‘s sample projects and get your
bearings. Don‘t feel frustrated when you get lost either. Even while writing this book, you

could see me holding my hands in front of myself twisted like some madman, attempting to
visualize rotations and cross products. With any luck, you‘ve got just enough knowledge in

your head to perform some of your own twisting and cursing.

Chapter 14. 3D Scenes

In This Chapter

 The Plane Class

 The Frustum Class

 Scene Graph Basics

 Special Scene Graph Nodes

 What About Shaders?

 What‘s Missing?

 Still Hungry?

 Further Reading

In the previous chapter, you learned something about how to draw 3D geometry, but
there‘s much more to a 3D game than drawing a few triangles. Even a relatively boring 3D

game has characters, interesting environments, dynamic objects, and a few special effects
here and there. Your first attempt at a 3D engine might be to just draw everything. You

might think that your blazing fast ATI video card can handle anything you throw at it, but
you‘d be wrong. It turns out to be pretty tricky to get 3D scenes to look right and draw

quickly.

In only one chapter, there‘s not enough time to talk about every aspect of 3D engines
because there is way too much material to cover. You will, however, develop the knowledge

of how a prototype for a 3D game engine gets its start. With any luck, you‘ll end this

chapter with a healthy respect for the programmers who build 3D engines.

First, a little more geometry.

The Plane Class

The plane is an extremely useful mathematical device for 3D games. Here‘s a simple

wrapper around the DirectX plane structure, D3DXPLANE:

class Plane : public D3DXPLANE

../../ch14lev1sec1#ch14lev1sec1
../../ch14lev1sec2#ch14lev1sec2
../../ch14lev1sec3#ch14lev1sec3
../../ch14lev1sec4#ch14lev1sec4
../../ch14lev1sec5#ch14lev1sec5
../../ch14lev1sec6#ch14lev1sec6
../../ch14lev1sec7#ch14lev1sec7
../../ch14lev1sec8#ch14lev1sec8
http://lib.ommolketab.ir
http//lib.ommolketab.ir

{

public:

 inline void Normalize();

 // normal faces away from you if you send in verts

 // in counter clockwise order....

 inline void Init(const Vec3 &p0, const Vec3 &p1, const Vec3

&p2);

 bool Inside(const Vec3 &point, const float radius) const;

 bool Inside(const Vec3 &point) const;

};

inline void Plane::Normalize()

{

 float mag;

 mag = sqrt(a * a + b * b + c * c);

 a = a / mag;

 b = b / mag;

 c = c / mag;

 d = d / mag;

}

inline void Plane::Init(const Vec3 &p0, const Vec3 &p1, const

Vec3 &p2)

{

 D3DXPlaneFromPoints(this, &p0, &p1, &p2);

 Normalize();

}

bool Plane::Inside(const Vec3 &point) const

{

 // Inside the plane is defined as the direction the normal is

facing

 float result = D3DXPlaneDotCoord(this, &point);

 return (result >= 0.0f);

}

bool Plane::Inside(const Vec3 &point, const float radius) const

{

 float fDistance; // calculate our distances to each of the

planes

 // find the distance to this plane

 fDistance = D3DXPlaneDotCoord(this, &point);

 // if this distance is < -radius, we are outside

 return (fDistance >= -radius);

}

Basically, if you know three points on the surface of the plane, you‘ll have enough

information to create it mathematically. You can also create planes in other ways, and
you‘re perfectly free to extend this bare-bones class to create more constructors, but this

simple version goes a surprisingly long way.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Once the plane is initialized, you can ask whether a point or a circle (defined by a point and

a radius) is on the inside or outside of the plane. Inside is defined by being on the same

side as the plane normal. The plane normal is defined by the coefficients a, b, and c inside

the D3DXPLANE structure, and it is calculated for you when the plane class is constructed.

The plane is rarely used by itself. It is usually used to create things like BSP trees, portals,
and a camera view frustum, which you‘ll see how to create next.

The Frustum Class

A frustum is defined as the portion of a solid, usually a cone or a pyramid, which lies

between two parallel planes that cut the solid (see Figure 14.1). View frustums are of the
pyramid variety. If you have a U.S. dollar bill in your pocket, you can see one in the form of

the unfinished pyramid that is the reverse side of the Great Seal of the United States.

Figure 14.1. The view frustum with near and far clipping planes.

The camera is at the tip of the pyramid, looking at the frustum through the near clipping
plane. Any object that is totally outside the six planes that describe the frustum are outside

the viewing area, which means they can be skipped during the rendering passes. The six
planes include the near and far clipping planes and the four other planes that make up the

top, left, right, and bottom of the frustum. It turns out to be really efficient to test a point
or a sphere against a frustum, and that is exactly how this frustum will be used to cull

objects in the scene graph.

A frustum is defined with four parameters: the field of view, the aspect ratio, the distance to
the near clipping plane, and the distance to the far clipping plane. The field of view, or FOV,

is the full angle made by the tip of the pyramid at the camera location (see Figure 14.2).
The aspect ratio is the width of the near clipping plane divided by the height of the near

clipping plane. For a 640 × 480 pixel screen, the aspect ratio would be 640.f/480.f or

1.33333334. The distance to the near and far clipping planes should be given in whatever
units your game uses to measure distance—feet, meters, cubits, whatever. With these

parameters safely in hand, the six plane objects can be built.

Figure 14.2. Calculating the points of the view frustum.

javascript:moveTo('ch14fig01');
javascript:moveTo('ch14fig02');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Here‘s the code for defining the Frustum class:

class Frustum

{

public:

 enum Side { Near, Far, Top, Right, Bottom, Left, NumPlanes };

 Plane m_Planes[NumPlanes]; // planes of the frustum in

camera space

 Vec3 m_NearClip[4]; // verts of the near clip plane

in camera space

 Vec3 m_FarClip[4]; // verts of the far clip plane in

camera space

 float m_Fov; // field of view in radians

 float m_Aspect; // aspect ratio - width divided

by height

 float m_Near; // near clipping distance

 float m_Far; // far clipping distance

public:

 Frustum();

 bool Inside(const Vec3 &point) const;

 bool Inside(const Vec3 &point, const float radius) const;

 const Plane &Get(Side side) { return m_Planes[side]; }

 void SetFOV(float fov) { m_Fov=fov; Init(m_Fov, m_Aspect,

m_Near, m_Far); }

 void SetAspect(float aspect)

 { m_Aspect=aspect; Init(m_Fov, m_Aspect, m_Near, m_Far); }

 void SetNear(float nearClip)

 { m_Near=nearClip; Init(m_Fov, m_Aspect, m_Near, m_Far); }

 void SetFar(float farClip)

 { m_Far=farClip; Init(m_Fov, m_Aspect, m_Near, m_Far); }

 void Init(const float fov, const float aspect,

 const float near, const float far);

 void Render();

};

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Frustum::Frustum()

{

 m_Fov = D3DX_PI/4.0f; // default field of view is 90 degrees

 m_Aspect = 1.0f; // default aspect ratio is 1:1

 m_Near = 1.0f; // default near plane is 1m away from

the camera

 m_Far = 1000.0f; // default near plane is 1000m away

from the camera

}

bool Frustum::Inside(const Vec3 &point) const

{

 //for (int i=0; i<NumPlanes; ++i)

 for (int i=0; i<=Far; ++i)

 {

 if (!m_Planes[i].Inside(point))

 return false;

 }

 return true;

}

bool Frustum::Inside(const Vec3 &point, const float radius)

const

{

 for(int i = 0; i < NumPlanes; ++i)

 {

 if (!m_Planes[i].Inside(point, radius))

 return false;

 }

 // otherwise we are fully in view

 return(true);

}

The next method, Init(), is a little heavy on the math. The algorithm is used to find the

eight points in space made by corners of the view frustum and use those points to define
the six planes. If you remember your high school geometry, you‘ll remember that the

tangent of an angle is equal to the length of the opposite side divided by the adjacent side.

Since we know the length D from the camera to the near clipping plane, we can find the
length between the center point of the near clipping plane to the right edge and also the top

using the aspect ratio. The same operation is repeated for the far clipping plane, and that
gives us the 3D location of the corner points:

void Frustum::Init(const float fov, const float aspect, const

float nearClip,

 const float farClip)

{

 m_Fov = fov;

 m_Aspect = aspect;

 m_Near = nearClip;

 m_Far = farClip;

 double tanFovOver2 = tan(m_Fov/2.0f);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Vec3 nearRight = (m_Near * tanFovOver2) * m_Aspect * g_Right;

 Vec3 farRight = (m_Far * tanFovOver2) * m_Aspect * g_Right;

 Vec3 nearUp = (m_Near * tanFovOver2) * g_Up;

 Vec3 farUp = (m_Far * tanFovOver2) * g_Up;

 // points start in the upper right and go around clockwise

 m_NearClip[0] = (m_Near * g_Forward) - nearRight + nearUp;

 m_NearClip[1] = (m_Near * g_Forward) + nearRight + nearUp;

 m_NearClip[2] = (m_Near * g_Forward) + nearRight - nearUp;

 m_NearClip[3] = (m_Near * g_Forward) - nearRight - nearUp;

 m_FarClip[0] = (m_Far * g_Forward) - farRight + farUp;

 m_FarClip[1] = (m_Far * g_Forward) + farRight + farUp;

 m_FarClip[2] = (m_Far * g_Forward) + farRight - farUp;

 m_FarClip[3] = (m_Far * g_Forward) - farRight - farUp;

 // now we have all eight points. Time to construct six

planes.

 // the normals point away from you if you use counter

clockwise verts.

 Vec3 origin(0.0f, 0.0f, 0.0f);

 m_Planes[Near].Init(m_NearClip[2], m_NearClip[1],

m_NearClip[0]);

 m_Planes[Far].Init(m_FarClip[0], m_FarClip[1], m_FarClip[2]);

 m_Planes[Right].Init(m_FarClip[2], m_FarClip[1], origin);

 m_Planes[Top].Init(m_FarClip[1], m_FarClip[0], origin);

 m_Planes[Left].Init(m_FarClip[0], m_FarClip[3], origin);

 m_Planes[Bottom].Init(m_FarClip[3], m_FarClip[2], origin);

}

With the location of the corner points correctly nabbed, the planes of the view frustum can
be created with three known points for each one. Don‘t forget that the order in which the

points are sent into the plane equation is important. The order determines the direction of
the plane‘s normal, and therefore which side of the plane is the inside versus the outside.

There‘s one more useful method of the Frustum class—one to render to the screen in

its familiar clipped pyramid shape:

void Frustum::Render()

{

 COLORED_VERTEX verts[24];

 for (int i=0; i<8; ++i)

 verts[i].color = g_White;

 for (int i=0; i<8; ++i)

 verts[i+8].color = g_Red;

 for (int i=0; i<8; ++i)

 verts[i+16].color = g_Blue;

 // Draw the near clip plane

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 verts[0].position = m_NearClip[0]; verts[1].position =

m_NearClip[1];

 verts[2].position = m_NearClip[1]; verts[3].position =

m_NearClip[2];

 verts[4].position = m_NearClip[2]; verts[5].position =

m_NearClip[3];

 verts[6].position = m_NearClip[3]; verts[7].position =

m_NearClip[0];

 // Draw the far clip plane

 verts[8].position = m_FarClip[0]; verts[9].position =

m_FarClip[1];

 verts[10].position = m_FarClip[1]; verts[11].position =

m_FarClip[2];

 verts[12].position = m_FarClip[2]; verts[13].position =

m_FarClip[3];

 verts[14].position = m_FarClip[3]; verts[15].position =

m_FarClip[0];

 // Draw the edges between the near and far clip plane

 verts[16].position = m_NearClip[0]; verts[17].position =

m_FarClip[0];

 verts[18].position = m_NearClip[1]; verts[19].position =

m_FarClip[1];

 verts[20].position = m_NearClip[2]; verts[21].position =

m_FarClip[2];

 verts[22].position = m_NearClip[3]; verts[23].position =

m_FarClip[3];

 DXUTGetD3DDevice()->SetRenderState(D3DRS_LIGHTING, FALSE);

 DXUTGetD3DDevice()->SetFVF(COLORED_VERTEX::FVF);

 DXUTGetD3DDevice()->DrawPrimitiveUP(

 D3DPT_LINELIST, 12, verts, sizeof(COLORED_VERTEX));

}

Scene Graph Basics

A scene graph is a dynamic data structure, similar to a multiway tree. Each node represents
an object in a 3D world or perhaps an instruction to the renderer. Every node can have zero

or more children nodes. The scene graph is traversed every frame to draw the visible world.
Many commercial renderers use a scene graph as their basic data structure, one of which is

Gamebryo from Emergent Game Technologies. Before you get too excited, what you are
about to see is a basic introduction to the concepts and code behind a scene graph—not

something you can simply install into a commercial product. Think of this as a scene graph
with training wheels.

ISceneNode Interface Class

The base class for all nodes in the scene graph is the interface class ISceneNode.

Everything else inherits from that class and extends the class to create every part of your

http://lib.ommolketab.ir
http//lib.ommolketab.ir

3D world, including the simple geometry, meshes, a camera, and so on. Here‘s the

ISceneNode class:

class ISceneNode

{

protected:

public:

 virtual const SceneNodeProperties * const VGet() const=0;

 virtual void VSetTransform(const Mat4x4 *toWorld, const

Mat4x4

 *fromWorld=NULL)=0;

 virtual HRESULT VOnUpdate(Scene *, DWORD const elapsedMs)=0;

 virtual HRESULT VOnRestore(Scene *pScene)=0;

 virtual HRESULT VPreRender(Scene *pScene)=0;

 virtual bool VIsVisible(Scene *pScene) const=0;

 virtual HRESULT VRender(Scene *pScene)=0;

 virtual HRESULT VRenderChildren(Scene *pScene)=0;

 virtual HRESULT VPostRender(Scene *pScene)=0;

 virtual bool VAddChild(shared_ptr<ISceneNode> kid)=0;

 virtual ~ISceneNode() { };

};

Each node has certain properties that affect how the node will draw, such as its material, its
geometric extents, what game actor it represents, and so on. We‘ll cover the details of the

SceneNodeProperties structure in the next section.

As you learned in the previous chapter, every object in a 3D universe needs a transform
matrix. The matrix encodes the orientation and position of the object in the environment. In

a scene graph, this idea is extended to a hierarchy of objects. This is easy to understand
with an example. Imagine a boat with people on it, and those people have guns in their

hands. When the boat moves, all the people on the boat move with it. Their position and

orientation stay the same relative to the boat. When the people aim their weapons, the
bones of their arms move and the guns move with them.

This effect is done by concatenating matrices. Every node in the hierarchy has a matrix that

describes position and orientation relative to its parent node. As the scene graph is
traversed, the matrices are multiplied to form a single matrix that perfectly describes the

position and orientation of the node in the 3D world—even if it is a gun attached to a hand
attached to a forearm attached to a shoulder attached to a guy standing on a boat.

Take notice that the VSetTransform() method takes two Mat4x4 objects, not just one.

It turns out to be really convenient to store two matrices for each scene node—the one we
just discussed about transforming object space to the space of its parent (usually world

space if there‘s no complicated hierarchy involved). This is the toWorld parameter in the

SetTransform() and GetTransform() APIs. The second one does the opposite; it

transforms 3D world back into object space. This is great if you want to know where a bullet

strikes an object. The bullet‘s trajectory is usually in world space, and the fromWorld

transform matrix will tell you where that trajectory is in object space.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This can be a little confusing, so if your brain is swimming a bit don‘t worry. Mine did too

when I first read it. You can imagine this by thinking about your hand as a self-contained
hierarchical object. The root would be your palm, and attached to it are five children—the

first segment of each of your five fingers. Each of those finger segments has one child, the
segment without a fingernail. Finally, the segment with the fingernail attaches, making the

palm its great-grandfather. If the transform matrix for one of those finger segments is
rotated around the right axis, the finger should bend, carrying all the child segments with it.

If I change the translation or rotation of the palm (the root object), everything moves. That
is the basic notion of a hierarchical animation system.

That’s Gotta Hurt!

It‘s common for artists to create human figures with the hips,
or should I say, groin, as the root node. It‘s convenient

because it is close to the center of the human body, and has
three children: the torso and the two legs. One fine day the

Ultima VIII team went to the park for lunch and played a

little Ultimate Frisbee. As happens frequently in that game,
two players went to catch the Frisbee at the same time and

collided, injuring one of the players. He was curled up on the
ground writhing in pain, and when I asked what happened I

was told that he took a blow to the root of his hierarchy.

The call to VSetTransform() will calculate the inverse transform matrix for you if you

don‘t send it in. Yes, it‘s somewhat expensive. If you‘ve ever seen the formula for
calculating the determinant of a 4 × 4 matrix, you know what I‘m talking about. If you‘ve

never seen it, just imagine an entire case of alphabet soup laid out on a recursive grid. It‘s
gross.

The two methods, VOnRestore() and VOnUpdate(), simply traverse their children

nodes and recursively call the same methods. When you inherit from SceneNode and

create a new object, don‘t forget to call the base class‘s VOnRestore() or

VOnUpdate() if you happen to overload them. If you fail to do this, your children nodes

won‘t get these calls. The VOnRestore() method is meant to re-create any

programmatically created data after it has been lost. This is a similar concept to the section

on lost 2D DirectDraw surfaces.

The VOnUpdate() method is meant to handle animations or anything else that is meant

to be decoupled from the rendering traversal. That‘s why it is called with the elapsed time,

measured in milliseconds. You can use the elapsed time to make sure animations or other
movements happen at a consistent speed, regardless of computer processing power. A

faster CPU should always create a smoother animation, not necessarily a faster one!

The VPreRender() method is meant to perform any task that must occur before the

render, such as setting render states. The VIsVisible() method performs a visibility

test. The VRender() method does exactly what it advertises: it renders the object. A

recursive call to VRenderChildren() is made to traverse the scene graph, performing

all these actions for every node. The VPostRender() method is meant to perform a post-

rendering action, such as restoring a render state to its original value.

The VAddChild() method adds a child node. You‘ll see different implementations of this

interface class add children in different ways. No, you shouldn‘t attach a node to itself;

you‘ll run out of stack space in your infinitely recursive scene graph before you know what

happened.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

SceneNodeProperties and RenderPass

When I first designed the ISceneNode class and the implementation class you‘ll see in a

few pages, SceneNode, the first attempt loaded the class full of virtual accessor methods:

VGetThis(), VGetThat(), and VGetTheOtherDamnThing(). What I really wanted

was a structure of these properties and a single virtual accessor that would give me read-

only access to the data in that structure. The structure, SceneNodeProperties, is

defined as follows:

typedef unsigned int ActorId;

class SceneNodeProperties

{

 friend class SceneNode;

protected:

 optional<ActorId> m_ActorId;

 std::string m_Name;

 Mat4x4 m_ToWorld, m_FromWorld;

 float m_Radius;

 RenderPass m_RenderPass;

 Material m_Material;

 AlphaType m_AlphaType;

 void SetAlpha(const float alpha)

 { m_AlphaType=AlphaMaterial; m_Material.SetAlpha(alpha); }

public:

 optional<ActorId> const &ActorId() const { return m_ActorId;

}

 Mat4x4 const &ToWorld() const { return m_ToWorld; }

 Mat4x4 const &FromWorld() const { return m_FromWorld; }

 void Transform(Mat4x4 *toWorld, Mat4x4 *fromWorld) const;

 const char * Name() const { return m_Name.c_str(); }

 bool HasAlpha() const { return m_Material.HasAlpha(); }

 virtual float Alpha() const { return m_Material.GetAlpha(); }

 RenderPass RenderPass() const { return m_RenderPass; }

 float Radius() const { return m_Radius; }

 Material const &Material() const { return m_Material; }

};

void SceneNodeProperties::Transform(Mat4x4 *toWorld, Mat4x4

*fromWorld) const

{

 if (toWorld)

 *toWorld = m_ToWorld;

 if (fromWorld)

 *fromWorld = m_FromWorld;

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

All of the accessors to this class are const, which gives the read-only access I wanted. The

implementation of SceneNode will perform all of the modifying, which is important since

modifying some of these values can have repercussions throughout the scene graph.

The first two data members, m_ActorId and m_Name, help to relate the scene node to an

object in your game logic and identify the scene node or the scene node type. Game
engines typically assign unique identifiers to objects in the game. An ActorId that is

basically an unsigned integer is easy for game engines to handle, but string-based names
are easy for programmers to read.

The Mat4x4 data members, m_ToWorld and m_FromWorld, define the transform

matrices. Transform() copies the member variables into memory you pass in. Generally,

you don‘t want to just allow direct access to the transform matrices because changing them

directly might break something. Various inherited classes of SceneNode or ISceneNode

might filter or otherwise set the transforms themselves.

The next data member, m_Radius, defines the radius of a sphere that includes the visible

geometry of a scene node. Spheres are really efficient for various tests, such as visibility

tests or ray-intersection tests. The only problem with spheres is that they don‘t closely
match most geometry, so you can‘t use them alone. Some commercial games actually do

this, though, and you can tell when you play. An easy way to tell is if gunshots seem to hit,
even though you aimed too far to the left or right. Better games will use the sphere as a

first pass test, since it is so fast, and go to other more expensive tests if needed.

When a scene graph is traversed, like most tree-like data structures, it is traversed in a
particular order. This order, when combined with various render state settings, creates

different effects or enables an efficient rendering of the entire scene. Every node of your

scene graph belongs to one of a few different possible render passes—one for static objects,
one for dynamic objects, one for the sky, and perhaps others.

The reason you want to do this is mainly for efficiency. The goal is to minimize re-drawing

pixels on the screen each frame. It makes sense to draw your scenery, objects, and sky in
whatever order approaches this goal, hoping to draw things mostly from front to back to get

all your closest objects drawn first. With any luck, by the time you get to your sky, you
won‘t have to render hardly any pixels from it at all. After everything, you run through your

transparent objects from back to front to make sure they look right. The m_RenderPass

data member keeps track of which render pass your scene node belongs to, and should hold

one value from the following enumeration:

enum RenderPass

{

 RenderPass_0, // A constant to define

the starting pass

 RenderPass_Static = RenderPass_0, // environments and level

geometry

 RenderPass_Actor, // objects and things that

can move

 RenderPass_Sky, // the background 'behind'

everything

 RenderPass_Last // not used - a counter

for for loops

};

SceneNode—It All Starts Here

http://lib.ommolketab.ir
http//lib.ommolketab.ir

That‘s it for the basics. You‘ve now seen the design for the ISceneNode interface and

what each scene node is supposed to implement. You‘ve also seen SceneNode-

Properties and how it stores read-only data that affect how the scene node draws.

Here‘s the base implementation of SceneNode that inherits from the ISceneNode

interface class:

typedef std::vector<shared_ptr<ISceneNode> > SceneNodeList;

class SceneNode : public ISceneNode

{

 friend class Scene;

protected:

 SceneNodeList m_Children;

 SceneNode *m_pParent;

 SceneNodeProperties m_Props;

public:

 SceneNode(optional<ActorId> actorId,

 std::string name,

 RenderPass renderPass,

 const Mat4x4 *to,

 const Mat4x4 *from=NULL)

 {

 m_pParent= NULL;

 m_Props.m_ActorId = actorId;

 m_Props.m_Name = name;

 m_Props.m_RenderPass = renderPass;

 m_Props.m_AlphaType = AlphaOpaque;

 VSetTransform(to, from);

 SetRadius(0);

 }

 virtual ~SceneNode();

 virtual const SceneNodeProperties * const VGet() const {

return &m_Props; }

 virtual void VSetTransform(

 const Mat4x4 *toWorld, const Mat4x4 *fromWorld=NULL);

 virtual HRESULT VOnRestore(Scene *pScene);

 virtual HRESULT VOnUpdate(Scene *, DWORD const elapsedMs);

 virtual HRESULT VPreRender(Scene *pScene);

 virtual bool VIsVisible(Scene *pScene) const;

 virtual HRESULT VRender(Scene *pScene);

 virtual HRESULT VRenderChildren(Scene *pScene);

 virtual HRESULT VPostRender(Scene *pScene);

 virtual bool VAddChild(shared_ptr<ISceneNode> kid);

 void SetAlpha(float alpha) { return m_Props.SetAlpha(alpha);

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Vec3 GetPosition() const { return

m_Props.m_ToWorld.GetPosition(); }

 void SetPosition(const Vec3 &pos) {

m_Props.m_ToWorld.SetPosition(pos); }

 void SetRadius(const float radius) { m_Props.m_Radius =

radius; }

 void SetMaterial(const Material &mat) { m_Props.m_Material =

mat; }

};

Every scene node has an STL <vector> of scene nodes attached to it. These child nodes,

and child nodes of child nodes and so on, create the scene graph hierarchy. Most of the
scene graph will be pretty flat, but some objects, such as articulated vehicles and

characters, have a deep hierarchy of connected parts.

You might wonder why I chose an STL <vector> instead of a <list>. It‘s an easy choice

since all scene nodes tend to keep a similar number of children. Even if the number of
children changes, say when a car loses a wheel in a crash, it‘s easy enough to make the

node invisible. Lists are much better for structures that need fast insertion and deletion, and
vectors are fastest for iteration and random access, which makes them a better candidate

to store child nodes. There‘s nothing stopping you, of course, in creating a special scene

node that uses STL <list> to store its children.

Here‘s how the SceneNode class implements the VSetTransform method:

void SceneNode::VSetTransform(const Mat4x4 *toWorld, const

Mat4x4 *fromWorld)

{

 m_Props.m_ToWorld = *toWorld;

 if (!fromWorld)

 m_Props.m_FromWorld = m_Props.m_ToWorld.Inverse();

 else

 m_Props.m_FromWorld = *fromWorld;

}

If the calling routine already has the fromWorld transform, it doesn‘t have to be

calculated with a call to the expensive D3DXMatrixInverse function. The fromWorld

transformation is extremely useful for things like picking, or finding the exact intersection of

a ray with a polygon on a scene node. You certainly shouldn‘t do this for every object in
your scene, but in this ―training wheels‖ scene graph, it is convenient for every node to

have it.

This kind of picking is similar to the ray cast provided by most physics systems, but this one
is for visible geometry, not physical geometry. Most games actually consolidate the calls to

both, giving the caller the opportunity to grab the right target based on what it looks like or
how it is physically represented in the game world. These are usually very different, since

the visible geometry is usually finely detailed, and the physical geometry is a simplified

version of that.

The VOnRestore() and VOnUpdate() implementations iterate through m_Children

and call the same method; child classes will usually do something useful, such as create

http://lib.ommolketab.ir
http//lib.ommolketab.ir

geometry, load textures, or handle animations and call these methods of SceneNode to

make sure the entire scene graph is handled:

HRESULT SceneNode::VOnRestore(Scene *pScene)

{

 SceneNodeList::iterator i = m_Children.begin();

 SceneNodeList::iterator end = m_Children.end();

 while (i != end)

 {

 (*i)->VOnRestore(pScene);

 i++;

 }

 return S_OK;

}

HRESULT SceneNode::VOnUpdate(Scene *pScene, DWORD const

elapsedMs)

{

 SceneNodeList::iterator i = m_Children.begin();

 SceneNodeList::iterator end = m_Children.end();

 while (i != end)

 {

 (*i)->VOnUpdate(pScene, elapsedMs);

 i++;

 }

 return S_OK;

}

The next two methods, VPreRender() and VPostRender(), call some of the scene

graph‘s matrix management methods. They deal with setting the world transform matrix

before the render and then restoring it to its original value afterwards. You‘ll see how this is

done in detail when I talk about the Scene class, in the next section.

HRESULT SceneNode::VPreRender(Scene *pScene)

{

 pScene->PushAndSetMatrix(m_Props.m_ToWorld);

 return S_OK;

}

HRESULT SceneNode::VPostRender(Scene *pScene)

{

 pScene->PopMatrix();

 return S_OK;

}

VIsVisible() is responsible for visibility culling. In real commercial games, this is

usually a very complicated and involved process, much more than you‘ll see here. You have
to start somewhere, though, and you can find a staggering amount of material on the

Internet that will teach you how to test for object visibility in a 3D rendered scene. What‘s

really important is that you know that you can‘t ignore it, no matter how simple your engine

is. Here is VIsVisible():

http://lib.ommolketab.ir
http//lib.ommolketab.ir

bool SceneNode::VIsVisible(Scene *pScene) const

{

 // transform the location of this node into the camera space

 // of the camera attached to the scene

 Mat4x4 toWorld, fromWorld;

 pScene->GetCamera()->VGet()->Transform(&toWorld, &fromWorld);

 Vec3 pos = VGet()->ToWorld().GetPosition();

 pos = fromWorld.Xform(pos);

 Frustum const &frustum = pScene->GetCamera()->GetFrustum();

 return frustum.Inside(pos, VGet()->Radius());

}

If you recall from the first section in this chapter that discussed the Frustum object, you‘ll

realize that this object was in camera space, with the camera at the origin and looking down

the positive Z-axis. This means we can‘t just send the object location into the

Frustum::Inside() routine; we have to transform it into camera space first. The first

lines of code in VIsVisible() do exactly that. The location of the scene node is

transformed into camera space and sent into the frustum for testing. If the object passes
the visibility test, it can be rendered.

The code in VRender() handles two things. First, it sets the current material. Second, it

sets the proper render states in case the node has a transparent texture or material:

HRESULT SceneNode::VRender(Scene *pScene)

{

 m_Props.m_Material.Use();

 switch (m_Props.m_AlphaType)

 {

 case AlphaTexture:

 // Nothing to do here....

 break;

 case AlphaMaterial:

 DXUTGetD3DDevice()->SetRenderState(D3DRS_COLORVERTEX,

true);

 DXUTGetD3DDevice()->SetRenderState(

 D3DRS_DIFFUSEMATERIALSOURCE, D3DMCS_MATERIAL);

 break;

 case AlphaVertex:

 assert(0 && _T("Not implemented!"));

 break;

 }

 return S_OK;

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Any class that inherits from SceneNode will overload VRender() and do something more

interesting. I‘ll get to that when I talk about different child classes of SceneNode, such as

CameraNode or SkyNode.

The real meat and potatoes of a scene graph happens inside VRenderChildren(). This

method is responsible for iterating the other scene nodes stored in m_Children and

calling the main rendering methods:

HRESULT SceneNode::VRenderChildren(Scene *pScene)

{

 // Iterate through the children....

 SceneNodeList::iterator i = m_Children.begin();

 SceneNodeList::iterator end = m_Children.end();

 while (i != end)

 {

 if ((*i)->VPreRender(pScene)==S_OK)

 {

 // You could short-circuit rendering

 // if an object returns E_FAIL from

 // VPreRender()

 // Don't render this node if you can't see it

 if ((*i)->VIsVisible(pScene))

 {

 float alpha = (*i)->VGet()->m_Material.GetAlpha();

 if (alpha==fOPAQUE)

 {

 (*i)->VRender(pScene);

 }

 else if (alpha!=fTRANSPARENT)

 {

 // The object isn't totally transparent...

 AlphaSceneNode *asn = GCC_NEW AlphaSceneNode;

 assert(asn);

 asn->m_pNode = *i;

 asn->m_Concat = *pScene->GetTopMatrix();

 Vec4 worldPos(asn->m_Concat.GetPosition());

 Mat4x4 fromWorld = pScene->GetCamera()->VGet()-

>FromWorld();

 Vec4 screenPos = fromWorld.Xform(worldPos);

 asn->m_ScreenZ = screenPos.z;

 pScene->AddAlphaSceneNode(asn);

 }

 }

 (*i)->VRenderChildren(pScene);

 }

 (*i)->VPostRender(pScene);

 i++;

 }

 return S_OK;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

}

Every child scene node in the m_Children vector gets the same processing. First,

VPreRender() is called, which at a minimum pushes the local transform matrix onto the

matrix stack. A visibility check is made with VIsVisible(), and if this method returns

false, the scene node isn‘t visible and doesn‘t need to be drawn. If it is visible, the scene

node is checked if it is in any way transparent, because the renderer draws them after

everything else. If the scene node is 100 percent opaque, VRender(),

VRenderChildren(), and VPostRender() are called to draw the scene node and its

children.

As I mentioned above, transparent objects need to draw after everything else in a special

render pass. If they drew in the regular order, they wouldn‘t look right, since some of the
background objects might actually draw after the transparent objects. What needs to

happen is this: All transparent objects get stuck in a special list, and after the scene graph

has been completely traversed, the scene nodes in the alpha list get drawn.

But wait, there‘s more. You can‘t just stick a pointer to the scene node in a list. You have to

remember a few more things like the value of the top of the matrix stack. When the list gets

traversed, it won‘t have the benefit of the entire scene graph and all the calls to

VPreRender() and VPostRender() to keep track of it. To make things easy, there‘s a

little structure that can help remember this data:

struct AlphaSceneNode

{

 shared_ptr<ISceneNode> m_pNode;

 Mat4x4 m_Concat;

 float m_ScreenZ;

 // For the STL sort...

 bool const operator < (AlphaSceneNode const &other)

 { return m_ScreenZ < other.m_ScreenZ; }

};

typedef std::list<AlphaSceneNode *> AlphaSceneNodes;

The m_ScreenZ member stores the depth of the object in the scene. Larger values are

farther away from the camera, and are therefore farther away. When you draw transparent

objects together, such as a forest of trees with transparent textures on them, you have to
draw them from back to front, or they won‘t look right. The list of alpha objects is stored in

the Scene class, which you‘ll see in the next section.

There‘s only VAddChild left, and besides adding a new scene node to the m_Children

member, it also sets a new radius for the parent. If the child node extends geometry

beyond the parent‘s radius, the parent‘s radius should be extended to include the children:

bool SceneNode::VAddChild(shared_ptr<ISceneNode> kid)

{

 m_Children.push_back(kid);

 // The radius of the sphere should be fixed right here

 Vec3 kidPos = kid->VGet()->ToWorld().GetPosition();

 Vec3 dir = kidPos - m_Props.ToWorld().GetPosition();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 float newRadius = dir.Length() + kid->VGet()->Radius();

 if (newRadius > m_Props.m_Radius)

 m_Props.m_Radius = newRadius;

 return true;

}

Don‘t forget that SceneNode is just a base class. You‘ll need to inherit from it to get

anything useful to draw on the screen. I‘ll show you the Scene class first—the thing that

manages the entire scene graph, and then move on to some interesting types of scene
nodes.

The Scene Graph Manager Class

The top-level management of the entire scene node hierarchy rests in the capable hands of

the Scene class. It serves as the top level entry point for updating, rendering, and adding

new SceneNode objects to the scene hierarchy. It also keeps track of which scene nodes

are visible components of dynamic actors in your game.

Here‘s the definition of the Scene, a container for SceneNode objects of all shapes and

sizes:

typedef std::map<ActorId, shared_ptr<ISceneNode> >

SceneActorMap;

class CameraNode;

class SkyNode;

class Scene

{

protected:

 shared_ptr<SceneNode> m_Root;

 shared_ptr<CameraNode> m_Camera;

 ID3DXMatrixStack *m_MatrixStack;

 AlphaSceneNodes m_AlphaSceneNodes;

 SceneActorMap m_ActorMap;

 EffectManager m_Effects;

 void RenderAlphaPass();

public:

 Scene();

 virtual ~Scene();

 HRESULT OnRender();

 HRESULT OnRestore();

 HRESULT OnUpdate(const int deltaMilliseconds);

 shared_ptr<ISceneNode> FindActor(ActorId id);

 bool AddChild(optional<ActorId> id, shared_ptr<ISceneNode>

kid)

 {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 if (id.valid())

 {

 // This allows us to search for this later based on

actor id

 m_ActorMap[*id] = kid;

 }

 return m_Root->VAddChild(kid);

 }

 bool RemoveChild(ActorId id)

 {

 m_ActorMap.erase(id);

 return m_Root->VRemoveChild(id);

 }

 // Camera accessor / modifier

 void SetCamera(shared_ptr<CameraNode> camera) { m_Camera =

camera; }

 const shared_ptr<CameraNode> GetCamera() const { return

m_Camera; }

 void PushAndSetMatrix(const Mat4x4 &toWorld);

 void PopMatrix()

 const Mat4x4 *GetTopMatrix();

 ID3DXEffect *GetEffect(std::wstring name)

 { return m_Effects.Get(name); }

 void AddAlphaSceneNode(AlphaSceneNode *asn)

 { m_AlphaSceneNodes.push_back(asn); }

};

The Scene class has seven data members:

 m_Root: The root scene node of the entire visible world. It has no parents and

everything that is drawn is attached either as a child or to a descendant scene node.

 m_Camera: The active camera. In this simple scene graph, there is only one

camera, but there‘s nothing that says you can‘t have a list of these objects.

 m_MatrixStack: A nifty DirectX object that manages a stack of transform

matrices, this data structure holds the current world transform matrix as the scene
graph is traversed and drawn.

 m_AlphaSceneNodes: A list of structures that holds the information necessary to

draw transparent scene nodes in a final render pass.

 m_ActorMap: An STL map that lets the scene graph find a scene node matched to

a particular ActorId.

 m_Effects: An STL map that lets the scene graph find a ID3DXEffect matched

to a particular effect name. This is used by the DirectX programmable pipeline, and
lets you apply vertex and pixel shaders to scene nodes in your scene graph.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 m_Light: A D3DLIGHT9 structure. This is used by the DirectX fixed-function

pipeline, and lets you define a light source for the scene.

The root node is the top-level scene node in the entire scene graph. There is some special
code associated with the root node, which I‘ll show you shortly. For now, you can consider

the root node as the same kind of object that all tree-like data structures have.

The camera node is a little special. It could be attached anywhere in the scene graph,
especially if it is a first- or third-person camera that targets a particular object. All the

same, the scene graph needs quick access to the camera node, because just before
rendering the scene, the scene graph uses the camera location and orientation to set the

rendering device‘s view transform. I‘ll show you how that is done when I talk about the

CameraNode class.

The interesting bit that you might not have seen before is a Direct3D matrix stack. In the

previous chapter, we did plenty of work with matrix concatenation. Any number of matrices
could be multiplied, or concatenated, to create any bizarre and twisted set of rotation and

translation operations. In the case of a hierarchical model like a human figure, these matrix
concatenations can get tedious unless you can push them onto and pop them from a stack.

Hang tight—examples are coming soon.

The next data member is the actor map. This is an STL map that relates unique ActorId‘s
(really just a plain old unsigned integer) with a particular scene node. This is needed when

the scene graph needs to change a scene node based on an ActorId. A good example of this

is when the physics system bounces something around. Since the physics system doesn‘t
know or care anything about a pointer to a scene node, it will inform game subsystems of

the bouncing via an event with an ActorId. When the scene graph hears about it, it uses the
ActorId to find the right scene node to manipulate.

The next data member is the effects list. Each time an effect is requested for a scene node,

it is loaded and managed by an effects list manager. The manager is ultra simple and
assumes that effects will stay loaded once they‘ve been used. This allows easy sharing of

effects by multiple scene nodes that happen to need the same effect.

The final data member is the light source that illuminates the scene. This scene graph
supports only the single light source, but it wouldn‘t be difficult for you to create a

LightNode and use it to create dynamic lights in your scene.

Here‘s the implementation of the Scene class:

Scene::Scene()

{

 m_Root.reset(GCC_NEW RootNode());

 D3DXCreateMatrixStack(0, &m_MatrixStack);

}

Scene::~Scene()

{

 SAFE_RELEASE(m_MatrixStack);

}

The constructor and destructor are simple enough. They simply manage the creation and

release of the root node and the DirectX matrix stack object. The other data structures have
default constructors and are managed by smart pointers, so there is a little more happening

here behind the scene. Yes, that was a terrible pun, but I‘m not sorry.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Let‘s now look at OnRender, OnRestore, and OnUpdate:

HRESULT Scene::OnRender()

{

 DXUTGetD3D9Device()->SetLight(1, &m_Light);

 DXUTGetD3D9Device()->LightEnable(1, TRUE);

 DXUTGetD3D9Device()->SetRenderState(D3DRS_LIGHTING, TRUE);

 if (m_Root && m_Camera)

 {

 // The scene root could be anything, but it

 // is usually a SceneNode with the identity

 // matrix

 m_Camera->SetViewTransform(this);

 if (m_Root->VPreRender(this)==S_OK)

 {

 m_Root->VRender(this);

 m_Root->VRenderChildren(this);

 m_Root->VPostRender(this);

 }

 }

 RenderAlphaPass();

 return S_OK;

}

HRESULT Scene::OnRestore()

{

 if (!m_Root)

 return S_OK;

 D3DXVECTOR3 vecLightDirUnnormalized(1.0f, -6.0f, 1.0f);

 ZeroMemory(&m_Light, sizeof(D3DLIGHT9));

 m_Light.Type = D3DLIGHT_POINT;

 m_Light.Diffuse = g_White / 5.0f;

 m_Light.Specular = g_Black;

 m_Light.Ambient = g_White / 50.0f;

 D3DXVec3Normalize((D3DXVECTOR3*)&m_Light.Direction,

 &vecLightDirUnnormalized);

 // Hard coded constants are dumb, I know.

 m_Light.Position.x = 5.0f;

 m_Light.Position.y = 5.0f;

 m_Light.Position.z = -2.0f;

 m_Light.Range = 100.0f;

 m_Light.Falloff = 1.0f;

 m_Light.Attenuation0 = 0.1f;

 m_Light.Attenuation1 = 0.0f;

 m_Light.Attenuation2 = 0.0f;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 m_Light.Theta = 0.0f;

 m_Light.Phi = 0.0f;

 return m_Root->VOnRestore(this);

}

HRESULT Scene::OnUpdate(const int deltaMilliseconds)

{

 static DWORD lastTime = 0;

 DWORD elapsedTime = 0;

 DWORD now = timeGetTime();

 if (!m_Root)

 return S_OK;

 if (lastTime == 0)

 {

 lastTime = now;

 }

 elapsedTime = now - lastTime;

 lastTime = now;

 return m_Root->VOnUpdate(this, elapsedTime);

}

These methods clearly use the root node for all the heavy lifting. (I‘ll bet you thought there
was going to be a little more meat to these methods!)

You‘ll notice that OnRender() must first check for the existence of a root node and a

camera. Without either of these, there‘s not much more that can be done. If everything

checks out fine, the camera‘s SetView() method is called to send the camera position

and orientation into the rendering device. Then the rendering methods of the root node are

called, which in turn propagate throughout the entire scene graph. Finally, the scene graph

calls the RenderAlphaPass() method to handle any scene nodes that were found to

have some translucency during this render.

The OnRestore() method is so trivial I think I can trust you to figure it out. There is one

trick, though. The camera node must clearly be attached to the scene graph as a child of a

scene node, in addition to having it as a member of the scene graph. If it isn‘t, it would
never have its critical virtual functions called properly.

Lastly, OnUpdate() is what separates rendering from updating. Updating is generally

called as fast as possible, where the render pass might be delayed to keep a particular
frame rate. Rendering is usually much more expensive than updating, too. You‘ll also notice

that the update pass is called with a delta time in milliseconds, where the render is called

with no parameters. That in itself is telling since there shouldn‘t be any time variant code
running inside the render pass, such as animations. Keep that stuff inside the update pass,

and you‘ll find your entire graphics system will be flexible enough to run on pokey hardware
and still have the chops to blaze on the fast machines.

void Scene::PushAndSetMatrix(const Mat4x4 &toWorld)

{

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 m_MatrixStack->Push();

 m_MatrixStack->MultMatrixLocal(&toWorld);

 DXUTGetD3DDevice()->SetTransform(D3DTS_WORLD, m_MatrixStack-

>GetTop());

}

void Scene::PopMatrix()

{

 m_MatrixStack->Pop();

 DXUTGetD3DDevice()->SetTransform(D3DTS_WORLD, m_MatrixStack-

>GetTop());

}

const Mat4x4 *Scene::GetTopMatrix()

{

 return static_cast<const Mat4x4 *>(m_MatrixStack->GetTop());

}

Remember matrix concatenation? I don‘t think I‘ve gone two paragraphs without
mentioning it. There‘s a useful thing in DirectX called a matrix stack, and it is used to keep

track of matrices in a hierarchy. The call to VPreRender() pushes a new matrix on the

matrix stack and then concatenates it with what was already there, creating a new matrix.

Once that is done, the new matrix is used to draw anything sent into the render pipeline.

This is a little confusing, and I won‘t ask you to visualize it because when I tried I got a

pounding headache—but here‘s the gist of it. The matrix that exists at the top of the stack

is either the identity matrix or the result of all the concatenated matrices from the hierarchy
in your scene nodes in the scene graph. As you traverse to child nodes deeper in the scene

graph during rendering, these methods manage the transform matrix on the stack and
cause it to be concatenated with every transform up the chain, but by only doing one matrix

multiplication. As you can see, this is quite efficient, and extremely flexible for implementing
hierarchical objects. The push/pop methods are called by the

SceneNode::VPreRender() and SceneNode::VPostRender(). The

GetTopMatrix() method gives you read-only access to the top matrix, which is useful

for storing off the world matrix of a scene node during the render pass.

Here‘s how the Scene class implements FindActor():

shared_ptr<ISceneNode> Scene::FindActor(ActorId id)

{

 SceneActorMap::iterator i = m_ActorMap.find(id);

 if (i==m_ActorMap.end())

 {

 shared_ptr<ISceneNode> null;

 return null;

 }

 return (*i).second;

}

This is pretty standard STL <map> usage, and since we have defined the ActorId to be

unique, we don‘t have to worry about finding multiple actors for a particular scene node.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The last method of the Scene class is RenderAlphaPass. This method is called after the

normal rendering is done, so all the transparent scene nodes will draw on top of everything
else. Here‘s basically what happens in this method:

 The current world transform is saved off.

 Z-sorting is disabled.

 Alpha blending is turned on.

 The alpha nodes in the alpha list are sorted.

 Each node in the alpha list is rendered and then removed from the list.

 The old render states are restored to their old values.

void Scene::RenderAlphaPass()

{

 Mat4x4 oldWorld;

 DXUTGetD3DDevice()->GetTransform(D3DTS_WORLD, &oldWorld);

 DWORD oldZWriteEnable;

 DXUTGetD3DDevice()->GetRenderState(D3DRS_ZWRITEENABLE,

&oldZWriteEnable);

 DXUTGetD3DDevice()->SetRenderState(D3DRS_ZWRITEENABLE,

false);

 DXUTGetD3DDevice()->SetRenderState(D3DRS_ALPHABLENDENABLE,

true);

 DXUTGetD3DDevice()->SetRenderState(D3DRS_SRCBLEND,

D3DBLEND_SRCCOLOR);

 DXUTGetD3DDevice()->SetRenderState(D3DRS_DESTBLEND,

D3DBLEND_INVSRCCOLOR);

 m_AlphaSceneNodes.sort();

 while (!m_AlphaSceneNodes.empty())

 {

 AlphaSceneNodes::reverse_iterator i =

m_AlphaSceneNodes.rbegin();

 DXUTGetD3DDevice()->SetTransform(D3DTS_WORLD, &((*i)-

>m_Concat));

 (*i)->m_pNode->VRender(this);

 delete (*i);

 m_AlphaSceneNodes.pop_back();

 }

 DXUTGetD3DDevice()->SetRenderState(D3DRS_COLORVERTEX, false);

 DXUTGetD3DDevice()->SetRenderState(D3DRS_ALPHABLENDENABLE,

false);

 DXUTGetD3DDevice()->SetRenderState(D3DRS_ZWRITEENABLE,

oldZWriteEnable);

 DXUTGetD3DDevice()->SetTransform(D3DTS_WORLD, &oldWorld);

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The SceneNode::VRender() or any virtual overload is responsible for doing anything

else to handle special transparency render states, such as if you wanted to use texture-
based alpha blending.

Special Scene Graph Nodes

The naked SceneNode class doesn‘t draw anything at all. It just performs a lot of DirectX

and 3D homework. We need some classes that inherit from SceneNode to construct an

interesting scene. Here are the ones I‘ll show you:

 class RootNode: Manages children as separate render passes for different kinds

of scene nodes.

 class CameraNode: Manages the camera and view frustum culling.

 class TestObject: Creates a textured grid.

 class SkyNode: Creates a sky that appears to be infinitely far away.

 class MeshNode: Wraps a DirectX mesh object.

 class ShaderMeshNode: Wraps a DirectX mesh object and draws the mesh

with a vertex and pixel shader.

Implementing Separate Render Passes

Different render passes help optimize the rendering. Drawing things in the right order can

do wonders for performance. Many rendering engines are fill-rate bound, which means that
it‘s relatively expensive for them to draw pixels once everything has been set up. Every

pixel you don‘t draw saves time, which sounds pretty obvious. How you do that gets pretty
complicated, but one obvious way to do this is don‘t draw any pixels that are completely

behind other pixels because it‘s a waste of time.

This means that it makes sense to draw big foreground stuff first and small background
stuff later. Draw the sky absolutely as the last thing before your transparent objects, since

it could cover the entire screen. One way to do this is by creating a special scene node that
manages all this, and that scene node happens to be the root node of the entire scene

graph:

class RootNode : public SceneNode

{

public:

 RootNode();

 virtual bool VAddChild(shared_ptr<ISceneNode> kid);

 virtual HRESULT VRenderChildren(Scene *pScene);

 virtual bool VIsVisible(Scene *pScene) const { return true; }

};

RootNode::RootNode()

: SceneNode(optional_empty(), "Root", RenderPass_0,

&Mat4x4::g_Identity)

{

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 m_Children.reserve(RenderPass_Last);

 shared_ptr<SceneNode> staticGroup(

 new SceneNode(optional_empty(),

 "StaticGroup", RenderPass_Static,

&Mat4x4::g_Identity));

 m_Children.push_back(staticGroup); // RenderPass_Static = 0

 shared_ptr<SceneNode> actorGroup(

 new SceneNode(optional_empty(),

 "ActorGroup", RenderPass_Actor, &Mat4x4::g_Identity));

 m_Children.push_back(actorGroup); // RenderPass_Actor = 1

 shared_ptr<SceneNode> skyGroup(

 new SceneNode(optional_empty(),

 "SkyGroup", RenderPass_Sky, &Mat4x4::g_Identity));

 m_Children.push_back(skyGroup); // RenderPass_Sky = 2

}

The root node has child nodes that are added directly as a part of the constructor—one child
for each render pass you define. In the previous case, there are three render passes: one
for static actors, one for dynamic actors, and one for the sky. When other scene nodes are

added to the scene graph, the root node actually adds them to one of these children based

on the new scene node‘s m_RenderPass member variable:

bool RootNode::VAddChild(shared_ptr<ISceneNode> kid)

{

 // Children that divide the scene graph into render passes.

 // Scene nodes will get added to these children based on the

value of the

 // render pass member variable.

 if (!m_Children[kid->VGet()->RenderPass()])

 {

 assert(0 && _T("There is no such render pass"));

 return false;

 }

 return m_Children[kid->VGet()->RenderPass()]->VAddChild(kid);

}

This lets the root node have a very fine control over when each pass gets rendered and
even what special render states get set for each one:

HRESULT RootNode::VRenderChildren(Scene *pScene)

{

 // This code creates fine control of the render passes.

 for (int pass = RenderPass_0; pass < RenderPass_Last; ++pass)

 {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 switch(pass)

 {

 case RenderPass_Static:

 case RenderPass_Actor:

 m_Children[pass]->VRenderChildren(pScene);

 break;

 case RenderPass_Sky:

 {

 DWORD oldZWriteEnable;

 DXUTGetD3DDevice()->GetRenderState(

 D3DRS_ZWRITEENABLE, &oldZWriteEnable);

 DXUTGetD3DDevice()->SetRenderState(

D3DRS_ZWRITEENABLE, false);

 DWORD oldLightMode;

 DXUTGetD3DDevice()->GetRenderState(D3DRS_LIGHTING,

&oldLightMode);

 DXUTGetD3DDevice()->SetRenderState(D3DRS_LIGHTING,

FALSE);

 DWORD oldCullMode;

 DXUTGetD3DDevice()->GetRenderState(D3DRS_CULLMODE,

&oldCullMode);

 DXUTGetD3DDevice()->SetRenderState(D3DRS_CULLMODE,

D3DCULL_NONE);

 m_Children[pass]->VRenderChildren(pScene);

 // Notice that the render states are returned to

 // their original settings.....

 // Could there be a better way???

 DXUTGetD3DDevice()->SetRenderState(D3DRS_LIGHTING,

oldLightMode);

 DXUTGetD3DDevice()->SetRenderState(D3DRS_CULLMODE,

oldCullMode);

 DXUTGetD3DDevice()->SetRenderState(

 D3DRS_ZWRITEENABLE, oldZWriteEnable);

 break;

 }

 }

 }

 return S_OK;

}

For static and dynamic actors, the root node doesn‘t do anything special other than draw
them. The sky node needs a little extra attention though—with three render states changed

for its benefit. First, the Z-write is turned off since you know that the sky node and anything
that draws after it, like transparent objects, doesn‘t care about Z and therefore the drawing

will go faster. Lighting is also turned off because you expect the textured sky will essentially

http://lib.ommolketab.ir
http//lib.ommolketab.ir

have the color and lighting baked into the texture. Lastly, culling is turned off since you will

clearly draw the sky polygons. They all face the camera, no matter where it is looking.

You could easily define other render passes, perhaps one for shadows or other special

effects like light bloom. It‘s totally up to you and what you want your game to look like.

A Simple Camera

You‘ll need a camera if you want to take pictures, right? The camera in a 3D scene inherits

from SceneNode just like everything else and adds some data members to keep track of

its viewable area, the projection matrix, and perhaps a target scene node that it will follow

around:

class CameraNode : public SceneNode

{

protected:

 Frustum m_Frustum;

 Mat4x4 m_Projection;

 bool m_bActive;

 bool m_DebugCamera;

 optional< shared_ptr<SceneNode> > m_pTarget;

public:

 CameraNode(Mat4x4 const *t, Frustum const &frustum)

 : SceneNode(optional_empty(), "Camera", RenderPass_0, t),

 m_Frustum(frustum),

 m_bActive(true),

 m_DebugCamera(false)

 {

 }

 virtual HRESULT VRender(Scene *pScene);

 virtual HRESULT VOnRestore(Scene *pScene);

 virtual bool VIsVisible(Scene *pScene) const { return

m_bActive;}

 virtual HRESULT SetView(Scene *pScene);

 const Frustum &GetFrustum() { return m_Frustum; }

 void SetTarget(shared_ptr<SceneNode> pTarget)

 {

 m_pTarget = pTarget;

 }

};

The VRender() method calls the Frustum::Render() method to draw the camera‘s

viewable area:

HRESULT CameraNode::VRender(Scene *pScene)

{

 if (m_DebugCamera)

 {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 m_Frustum.Render();

 }

 return S_OK;

}

The VOnRestore() chain can be called when the player resizes the game screen to a

different resolution. If this happens, the camera view frustum shape will probably change,

and so will the projection matrix, which is really a Mat4x4 structure that describes the

shape of the view frustum in a transform matrix. Notice the

D3DXMatrixPerspectiveFovLH call—the LH stands for ―left-handed.‖ You‘ll see tons

of DirectX methods dealing with transform matrices that are either left-handed or right-

handed, and using one over the other is simply a matter of choice. Sometimes, you have

better compatibility with importing meshes from modeling tools in one versus the other, but
besides that they are mathematically identical.

Create a Special Camera for Debugging

When I was working on Thief: Deadly Shadows, it was really useful to

have a special “debug” camera that moved about the scene without

affecting the code that was being checked against the “real” camera.
The process worked like this: I would key in a special debug

command, and the debug camera would be enabled. I could free-fly it
around the scene, and the “normal” camera was visible because the

view frustum of the normal camera would draw, and I could visually
debug problems like third-person movement issues, scene culling

issues, and so on. It was kind of like having a backstage pass to the
internals of the game!

virtual HRESULT CameraNode::VOnRestore(Scene *pScene)

{

 m_Frustum.SetAspect(

 DXUTGetBackBufferSurfaceDesc()->Width /

 (FLOAT)DXUTGetBackBufferSurfaceDesc()->Height);

 D3DXMatrixPerspectiveFovLH(&m_Projection,

 m_Frustum.m_Fov, m_Frustum.m_Aspect, m_Frustum.m_Near,

m_Frustum.m_Far);

 DXUTGetD3DDevice()->SetTransform(

D3DTS_PROJECTION,&m_Projection);

 return S_OK;

}

The camera‘s SetView() method is called just before rendering the scene. It reads the

―from world‖ transform stored in the scene node and sends that into the rendering device:

HRESULT CameraNode::SetView(Scene *pScene)

{

 //If there is a target, make sure the camera is

 //rigidly attached right behind the target

 if(m_pTarget.valid())

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 {

 Mat4x4 mat = (*m_pTarget)->VGet()->ToWorld();

 Vec4 at = g_Forward4 * -10.0f;

 Vec4 atWorld = mat.Xform(at);

 Vec3 pos = mat.GetPosition() + Vec3(atWorld);

 mat.SetPosition(pos);

 VSetTransform(&mat);

 }

 DXUTGetD3DDevice()->SetTransform(D3DTS_VIEW, &VGet()-

>FromWorld());

 return S_OK;

}

The simple example above also implements a bare-bones third-person follow camera—the
camera‘s position and orientation is sucked from the target scene node and moved 10

meters back. Of course, a real third-person camera would detect environment geometry and
have all kinds of interpolators to make sure the camera movement was smooth and

pleasing to the player. Sadly, that technology is beyond the scope of this chapter.

Building and Rendering Simple Geometry

We still haven‘t seen anything that will actually draw a shape on the screen yet. Here‘s a

class that will create a perfect cube or an asymmetric cuboid, useful for testing your

renderer and physics system:

class TestObject : public SceneNode

{

protected:

 LPDIRECT3DVERTEXBUFFER9 m_pVerts;

 DWORD m_numVerts;

 DWORD m_numPolys;

 DWORD m_color;

 bool m_squashed;

public:

 TestObject(ActorId id, DWORD color, bool squashed,

std::string name);

 virtual ~TestObject();

 HRESULT VOnRestore(Scene *pScene);

 HRESULT VRender(Scene *pScene);

 static WORD g_TestObjectIndices[][3];

 static Vec3 g_CubeVerts[];

 static Vec3 g_SquashedCubeVerts[];

};

TestObject::TestObject(

 ActorId id, DWORD color, bool squashed, std::string name)

 : SceneNode(id, name, RenderPass_0, &p.m_Mat)

{

 m_color = color;

 m_pVerts = NULL;

 m_numVerts = m_numPolys = 0;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Material mat;

 mat.Set(g_Green);

 SetMaterial(mat);

}

TestObject::~TestObject()

{

 SAFE_RELEASE(m_pVerts);

}

Vec3 TestObject::g_CubeVerts[] =

{

 Vec3(0.5,0.5,-0.5), // Vertex 0.

 Vec3(-0.5,0.5,-0.5), // Vertex 1.

 Vec3(-0.5,0.5,0.5), // And so on.

 Vec3(0.5,0.5,0.5),

 Vec3(0.5,-0.5,-0.5),

 Vec3(-0.5,-0.5,-0.5),

 Vec3(-0.5,-0.5,0.5),

 Vec3(0.5,-0.5,0.5)

};

Vec3 TestObject::g_SquashedCubeVerts[] =

{

 Vec3(0.5,0.5,-0.25), // Vertex 0.

 Vec3(-0.5,0.5,-0.25), // Vertex 1.

 Vec3(-0.5,0.5,0.5), // And so on.

 Vec3(0.75,0.5,0.5),

 Vec3(0.75,-0.5,-0.5),

 Vec3(-0.5,-0.5,-0.5),

 Vec3(-0.5,-0.3f,0.5),

 Vec3(0.5,-0.3f,0.5)

};

WORD TestObject::g_TestObjectIndices[][3] =

{

 { 0,1,2 }, // Face 0 has three vertices.

 { 0,2,3 }, // And so on.

 { 0,4,5 },

 { 0,5,1 },

 { 1,5,6 },

 { 1,6,2 },

 { 2,6,7 },

 { 2,7,3 },

 { 3,7,4 },

 { 3,4,0 },

 { 4,7,6 },

 { 4,6,5 }

};

HRESULT TestObject::VOnRestore(Scene *pScene)

{

 // Call the base class's restore

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 SceneNode::VOnRestore(pScene);

 Vec3 center;

 Vec3 *verts = m_squashed ? g_SquashedCubeVerts : g_CubeVerts;

 float radius;

 HRESULT hr = D3DXComputeBoundingSphere(

 static_cast<D3DXVECTOR3*>(verts), 8,

 D3DXGetFVFVertexSize(D3DFVF_XYZ),

 ¢er, &radius);

 SetRadius(radius);

 // Create the vertex buffer - this object is essentially

 // a squashed cube, but since we want each face to be flat

shaded

 // each face needs its own set of verts - because each vert

has a normal

 // and thus can't have any vert shared by adjacent faces.

 m_numPolys = 12;

 m_numVerts = m_numPolys * 3;

 if(FAILED(DXUTGetD3D9Device()->CreateVertexBuffer(

 m_numVerts*sizeof(UNTRANSFORMED_UNLIT_VERTEX),

 D3DUSAGE_WRITEONLY, UNTRANSFORMED_UNLIT_VERTEX::FVF,

 D3DPOOL_MANAGED, &m_pVerts, NULL)))

 {

 return E_FAIL;

 }

 // Fill the vertex buffer. We are setting the tu and tv

texture

 // coordinates, which range from 0.0 to 1.0

 UNTRANSFORMED_UNLIT_VERTEX* pVertices;

 if(FAILED(m_pVerts->Lock(0, 0, (void**)&pVertices, 0))

)

 return E_FAIL;

 static Color colors[6] =

 { g_White, g_Gray65, g_Cyan, g_Red, g_Green, g_Blue };

 for (DWORD face=0; face<m_numPolys; ++face)

 {

 UNTRANSFORMED_UNLIT_VERTEX* v = &pVertices[face * 3];

 v->position = verts[g_TestObjectIndices[face][0]];

 v->diffuse = colors[face/2];

 v->specular = colors[face/2];

 (v+1)->position = verts[g_TestObjectIndices[face][1]];

 (v+1)->diffuse = colors[face/2];

 (v+1)->specular = colors[face/2];

 (v+2)->position = verts[g_TestObjectIndices[face][2]];

 (v+2)->diffuse = colors[face/2];

 (v+2)->specular = colors[face/2];

 Vec3 a = v->position - (v+1)->position;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Vec3 b = (v+2)->position - (v+1)->position;

 Vec3 cross = a.Cross(b);

 cross /= cross.Length();

 v->normal = cross;

 (v+1)->normal = cross;

 (v+2)->normal = cross;

 }

 m_pVerts->Unlock();

 return S_OK;

}

HRESULT TestObject::VRender(Scene *pScene)

{

 if (S_OK != SceneNode::VRender(pScene))

 return E_FAIL;

 DXUTGetD3D9Device()->SetRenderState(D3DRS_LIGHTING, TRUE);

 DXUTGetD3D9Device()->SetRenderState(D3DRS_CULLMODE,

D3DCULL_CCW);

 DXUTGetD3D9Device()->SetTexture (0, NULL);

 // If you want colored verts, still affected by the D3DLIGHT9

in

 // the fixed function pipeline you need to call these two

 // render states:

 DXUTGetD3D9Device()->SetRenderState(D3DRS_COLORVERTEX , TRUE

);

 DXUTGetD3D9Device()->SetRenderState(

 D3DRS_DIFFUSEMATERIALSOURCE, D3DMCS_COLOR1);

 DXUTGetD3D9Device()->SetStreamSource(

 0, m_pVerts, 0, sizeof(UNTRANSFORMED_UNLIT_VERTEX));

 DXUTGetD3D9Device()->SetFVF(UNTRANSFORMED_UNLIT_VERTEX::FVF

);

 DXUTGetD3D9Device()->DrawPrimitive(D3DPT_TRIANGLELIST , 0,

12);

 return S_OK;

}

One thing is important to note about the scene graph architecture: you can‘t be sure what

the render state is at the beginning of a call to VRender(). You have two choices here.

First, you can just always set the states you need at the beginning of each call to

VRender(). That is the method I tend to choose. Another choice is to grab the current

render states with GetRenderState() and restore them before you return from

VRender().

If you think this will result in calling SetRenderState() way too many times, or perhaps

mistakenly leave the renderer with a weird state setting, you are absolutely right. This is

http://lib.ommolketab.ir
http//lib.ommolketab.ir

one of the limitations of a scene-graph architecture, whether you use a fixed-function or

programmable pipeline.

First, it‘s way too easy to forget to set the render state to something ―neutral‖ after

rendering a node that uses special render states. Second, being very cautious about saving

and restoring render states as the scene graph is traversed results in too many calls to

SetRenderState(). So what is a programmer to do?

One thing you might consider is to decouple the scene graph traversal with the actual

rendering. As the scene graph is traversed, you send the geometry, render states, and
transform matrices into a lower-level system that is smart enough to sort the geometry by

texture and material, keep large monolithic vertex and index buffers around to hold this
geometry, and above all minimize render state changes. A by-product of this system is that

it tends to send bits to the video card in larger batches, which tends to keep the video
card‘s GPU and the computers CPU busy in parallel.

Rendering the Sky

The sky in computer games is usually a very simple object, such as a cube or faceted dome.

The trick to making the sky look like it is infinitely far away is to keep its position
coordinated with the camera. The following class implements a cube-shaped sky. The

textures that are placed on the cube are created to give the players the illusion they are
looking at a dome-shaped object.

class SkyNode : public SceneNode

{

protected:

 LPDIRECT3DTEXTURE9 m_pTexture[5]; // the sky

textures

 LPDIRECT3DVERTEXBUFFER9 m_pVerts; // the sky verts

 DWORD m_numVerts;

 DWORD m_sides;

 const char * m_textureBaseName;

 shared_ptr<CameraNode> m_camera;

 bool m_bActive;

public:

 SkyNode(const char *textureFile, shared_ptr<CameraNode>

camera);

 virtual ~SkyNode();

 HRESULT VOnRestore(Scene *pScene);

 HRESULT VRender(Scene *pScene);

 HRESULT VPreRender(Scene *pScene);

 bool VIsVisible(Scene *pScene) const { return m_bActive; }

};

This class is extremely similar in construction to the TestObject class, with the small

exception of how the geometry is built and the addition of some textures. Everything else is

pretty similar:

SkyNode::SkyNode(const char *pTextureBaseName,

shared_ptr<CameraNode> camera)

: SceneNode(optional_empty(), "Sky", RenderPass_Sky,

&Mat4x4::g_Identity)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

, m_camera(camera)

, m_bActive(true)

{

 m_textureBaseName = pTextureBaseName;

 for (int i=0; i<5; ++i)

 {

 m_pTexture[i] = NULL;

 }

}

SkyNode::~SkyNode()

{

 for (int i=0; i<5; ++i)

 {

 SAFE_RELEASE(m_pTexture[i]);

 }

 SAFE_RELEASE(m_pVerts);

}

There are five textures mapped on the sky, one each for north, east, south, west, and top
sides of the cube. The texture base name sent into the constructor lets a programmer set a

base name, like ―Daytime‖ or ―Nighttime,‖ and the textures that are actually read append
side name suffixes to the actual texture filename:

HRESULT SkyNode::VOnRestore(Scene *pScene)

{

 // Call the base class's restore

 SceneNode::VOnRestore(pScene);

 const char *suffix[] =

 { "_n.jpg", "_e.jpg", "_s.jpg", "_w.jpg", "_u.jpg" };

 for (int i=0; i<5; ++i)

 {

 char name[256];

 strcpy(name, m_textureBaseName);

 strcat(name, suffix[i]);

 Resource resource(name);

 shared_ptr<ResHandle> texture = g_pApp->m_ResCache-

>GetHandle(&resource);

 if (FAILED (D3DXCreateTextureFromFileInMemory(

DXUTGetD3D9Device(),

 texture->Buffer(), texture->Size(),

&m_pTexture[i])))

 return E_FAIL;

 }

 m_numVerts = 20;

 if(FAILED(DXUTGetD3DDevice()->CreateVertexBuffer(

 m_numVerts*sizeof(COLORED_TEXTURED_VERTEX),

 D3DUSAGE_WRITEONLY, COLORED_TEXTURED_VERTEX::FVF,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 D3DPOOL_MANAGED, &m_pVerts, NULL)))

 {

 return E_FAIL;

 }

 // Fill the vertex buffer. We are setting the tu and tv

texture

 // coordinates, which range from 0.0 to 1.0

 COLORED_TEXTURED_VERTEX* pVertices;

 if(FAILED(m_pVerts->Lock(0, 0, (void**)&pVertices, 0)))

 return E_FAIL;

 // Loop through the grid squares and calc the values

 // of each index. Each grid square has two triangles:

 //

 // A - B

 // | / |

 // C - D

 COLORED_TEXTURED_VERTEX skyVerts[4];

 D3DCOLOR skyVertColor = 0xffffffff;

 float dim = 50.0f;

 skyVerts[0].position = Vec3(dim, dim, dim);

 skyVerts[0].color=skyVertColor; skyVerts[0].tu=1;

skyVerts[0].tv=0;

 skyVerts[1].position = Vec3(-dim, dim, dim);

 skyVerts[1].color=skyVertColor; skyVerts[1].tu=0;

skyVerts[1].tv=0;

 skyVerts[2].position = Vec3(dim,-dim, dim);

 skyVerts[2].color=skyVertColor; skyVerts[2].tu=1;

skyVerts[2].tv=1;

 skyVerts[3].position = Vec3(-dim,-dim, dim);

 skyVerts[3].color=skyVertColor; skyVerts[3].tu=0;

skyVerts[3].tv=1;

 Mat4x4 rotY;

 rotY. BuildRotationY(D3DX_PI/2.0f);

 Mat4x4 rotX;

 rotX.BuildRotationX(-D3DX_PI/2.0f);

 m_sides = 5;

 for (DWORD side = 0; side < m_sides; side++)

 {

 for (DWORD v = 0; v < 4; v++)

 {

 Vec4 temp;

 if (side < m_sides-1)

 {

 temp = rotY.Xform(Vec3(skyVerts[v].position));

 }

 else

 {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 skyVerts[0].tu=1; skyVerts[0].tv=1;

 skyVerts[1].tu=1; skyVerts[1].tv=0;

 skyVerts[2].tu=0; skyVerts[2].tv=1;

 skyVerts[3].tu=0; skyVerts[3].tv=0;

 temp = rotX.Xform(Vec3(skyVerts[v].position));

 }

 skyVerts[v].position = Vec3(temp.x, temp.y, temp.z);

 }

 memcpy(&pVertices[side*4], skyVerts, sizeof(skyVerts));

 }

 m_pVerts->Unlock();

 return S_OK;

}

You might even notice a cameo from the resource caching chapter; just before the texture

is created, you see a call to create a resource and g_pApp-

>m_ResCache>GetHandle(resource) to load the resource from the resource cache.

You could just as easily load the texture straight from the file using the

D3DXCreateTextureFrom-File() API, if you decide the resource cache isn‘t for you.

The real trick to making the sky node special is the code inside VPreRender().

HRESULT SkyNode::VPreRender(Scene *pScene)

{

 Vec3 cameraPos = m_camera->VGet()->ToWorld().GetPosition();

 Mat4x4 mat = m_Props.ToWorld();

 mat.SetPosition(cameraPos);

 VSetTransform(&mat);

 return SceneNode::VPreRender(pScene);

}

This code grabs the camera position and moves the sky node into place. This gives a

completely convincing illusion that the objects like sun, moon, mountains, and other
backgrounds rendered into the sky textures are extremely far away, since they don‘t appear

to move as the player moves.

The VRender() method is pretty similar to what you‘ve already seen, with the exception

that the sky has five textures, and these textures need to be set for each face as it is

rendered:

HRESULT SkyNode::VRender(Scene *pScene)

{

 DXUTGetD3DDevice()->SetTextureStageState(

 0, D3DTSS_COLOROP, D3DTOP_MODULATE);

 DXUTGetD3DDevice()->SetTextureStageState(

 0, D3DTSS_COLORARG1, D3DTA_TEXTURE);

 DXUTGetD3DDevice()->SetTextureStageState(

 0, D3DTSS_COLORARG2, D3DTA_DIFFUSE);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 DXUTGetD3DDevice()->SetStreamSource(

 0, m_pVerts, 0, sizeof(COLORED_TEXTURED_VERTEX));

 DXUTGetD3DDevice()->SetFVF(COLORED_TEXTURED_VERTEX::FVF);

 for (DWORD side = 0; side < m_sides; side++)

 {

 // TODO: A good optimization would be to transform the

camera's

 // world look vector into local space and do a dot

product. If the

 // result is positive, we shouldn't draw the side since it

has to be

 // behind the camera!

 // Sky boxes aren't culled by the normal mechanism

 DXUTGetD3DDevice()->SetTexture(0, m_pTexture[side]);

 DXUTGetD3DDevice()->DrawPrimitive(D3DPT_TRIANGLESTRIP , 4

* side, 2);

 }

 DXUTGetD3DDevice()->SetTexture (0, NULL);

 return S_OK;

}

If you read this and say to yourself, ―What a fool—McShaffry is setting a different texture
for each face of the sky and that‘s too expensive!‖ you‘d be absolutely right. I think it is just
as informative watching programmers, in this case me, make mistakes as it is watching

them be brilliant. Believe me, I‘m much better at the former than the latter.

So how would you optimize this code? I‘d do two things. First, I‘d bake all five sky textures
into one monolithic texture, taking some care I didn‘t ruin a texture size limitation

somewhere. I‘d have to tweak the (u,v) coordinates when the geometry was built, but
that‘s pretty easy. Another thing I‘d do would be to check to see which parts of the sky the

camera was actually looking at, so I didn‘t set a texture for something that never drew.

Clearly, you never have to draw the east sky and the west sky if your camera view frustum
is narrow enough.

Using Meshes in Your Scene

A 3D game would be pretty boring with nothing but grids drawing at various positions and
rotations. If you want interesting shapes, you‘ll need to create them in a modeling tool like

3D Studio Max. Modeling tools are precise tools for creating shapes for your game levels or

dynamic objects. DirectX can‘t read a MAX or 3DS file directly; you‘ll need to convert it to a
X file with DirectX‘s conv3ds.exe utility. You can find help for this program in MSDN and

elsewhere on the Web.

Once you have a X file, you can create a mesh object that DirectX can read natively, and all
you need is a way to plug this object into the scene graph.

The node you are looking for is MeshNode, which encapsulates ID3DXMesh, a D3D object

that represents an object mesh and applied materials in a 3D scene. You can create simple
meshes with the DirectX Mesh Viewer Utility, such as boxes, spheres, and all the teapots

you could ever want.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This class has two constructors. The first is used for sending in a prebuilt mesh, such as a

sphere, which can be built by DirectX. The other constructor takes a filename of a valid X
file:

class MeshNode : public SceneNode

{

protected:

 ID3DXMesh *m_pMesh;

 std::wstring m_XFileName;

public:

 MeshNode(const optional<ActorId> actorId,

 std::string name,

 ID3DXMesh *mesh,

 RenderPass renderPass,

 const Mat4x4 *t,

 const Color &color);

 MeshNode(const optional<ActorId> actorId,

 std::string name,

 std::wstring xFileName,

 RenderPass renderPass,

 const Mat4x4 *t,

 const Color &color);

 virtual ~MeshNode() { SAFE_RELEASE(m_pMesh); }

 HRESULT VRender(Scene *pScene);

 virtual HRESULT VOnRestore(Scene *pScene);

 float CalcBoundingSphere();

};

There are two data members of this class. The first, m_pMesh, stores a pointer to the

constructed mesh, which by the way is a COM object like many DirectX objects. This means

you‘ll see the expected call to SAFE_RELEASE in the methods that destruct or restore the

MeshNode class. There‘s also an STL string that stores the name of the X file if the mesh

was loaded from one. It is assumed that if the string is empty, the mesh was prebuilt

instead of being loaded from a file:

MeshNode::MeshNode(const optional<ActorId> actorId,

 std::string name,

 ID3DXMesh *mesh,

 RenderPass renderPass,

 const Mat4x4 *t,

 const Color &color)

 : SceneNode(actorId, name, renderPass, t)

{

 m_pMesh = mesh;

 m_pMesh->AddRef();

 Material mat;

 mat.Set(color);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 SetMaterial(mat);

}

MeshNode::MeshNode(const optional<ActorId> actorId,

 std::string name,

 std::wstring xFileName,

 RenderPass renderPass,

 const Mat4x4 *t,

 const Color &color)

 : SceneNode(actorId, name, renderPass, t)

{

 m_pMesh = NULL;

 m_XFileName = xFileName;

 Material mat;

 mat.Set(color);

 SetMaterial(mat);

}

The VRender() method is pretty trivial, since all it does is call the parent class‘s

VRender() method and then the DrawSubset() API of the DirectX mesh:

HRESULT MeshNode::VRender(Scene *pScene)

{

 if (S_OK != SceneNode::VRender(pScene))

 return E_FAIL;

 return m_pMesh->DrawSubset(0);

}

The parameter sent into DrawSubset() identifies a subset of the mesh to draw. Every

subset of a mesh uses a different material, which could be a different texture or alpha blend
mode. The DirectX X file format stores all of these subsets so a single mesh can be a very

complicated object—even one that can animate. For this simple scene graph, you can
assume that a mesh will have one subset.

Modeling tools allow definition of multiple subsets per mesh to separate different parts of

the mesh that have different attributes like texture or material.

The VOnRestore() method is responsible for loading the mesh, as shown here:

HRESULT MeshNode::VOnRestore(Scene *pScene)

{

 if (m_XFileName.empty())

 {

 SetRadius(CalcBoundingSphere());

 return S_OK;

 }

 SAFE_RELEASE(m_pMesh);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 WCHAR str[MAX_PATH];

 HRESULT hr;

 // Load the mesh with D3DX and get back a ID3DXMesh*. For

this

 // sample we'll ignore the X file's embedded materials since

we know

 // exactly the model we're loading. See the mesh samples

such as

 // "OptimizedMesh" for a more generic mesh loading example.

 V_RETURN(DXUTFindDXSDKMediaFileCch(str, MAX_PATH,

m_XFileName.c_str()));

 V_RETURN(D3DXLoadMeshFromX(str, D3DXMESH_MANAGED,

 DXUTGetD3DDevice(), NULL, NULL, NULL, NULL, &m_pMesh));

 DWORD *rgdwAdjacency = NULL;

 // Make sure there are normals which are required for

lighting

 if(!(m_pMesh->GetFVF() & D3DFVF_NORMAL))

 {

 ID3DXMesh* pTempMesh;

 V(m_pMesh->CloneMeshFVF(m_pMesh->GetOptions(),

 m_pMesh->GetFVF() |

D3DFVF_NORMAL,

 DXUTGetD3DDevice(), &pTempMesh)

);

 V(D3DXComputeNormals(pTempMesh, NULL));

 SAFE_RELEASE(m_pMesh);

 m_pMesh = pTempMesh;

 }

 // Optimize the mesh for this graphics card's vertex cache

 // so when rendering the mesh's triangle list the vertices

will

 // cache hit more often so it won't have to re-execute the

vertex shader

 // on those vertices so it will improve perf.

 rgdwAdjacency = GCC_NEW DWORD[m_pMesh->GetNumFaces() * 3];

 if(rgdwAdjacency == NULL)

 return E_OUTOFMEMORY;

 V(m_pMesh->ConvertPointRepsToAdjacency(NULL, rgdwAdjacency)

);

 V(m_pMesh->OptimizeInplace(D3DXMESHOPT_VERTEXCACHE,

 rgdwAdjacency, NULL, NULL, NULL));

 SAFE_DELETE_ARRAY(rgdwAdjacency);

 SetRadius(CalcBoundingSphere());

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 return S_OK;

}

This method is lifted almost verbatim from the DirectX sample code. It is responsible for
opening and loading the mesh file, calculating normals, and optimizing the mesh for the

current hardware. This optimization does slow down load times, if you are loading hundreds
of mesh files. Assuming your players can sit through that, they‘ll be rewarded with a faster

frame rate.

Watch Those Long Load Times

Balancing load times and runtime frame rate is one of the trickiest

problems in game development. Load times tend to be slow because
the files are intentionally stripped down to the bare bones and

compressed to pack as many game assets on the digital media as

possible. Frame rate suffers if the game assets have to be tweaked
every frame or if they simply aren’t formatted for the fastest

rendering on the player’s hardware. Here’s a good rule of thumb:
Don’t make the player wait more than 60 seconds for a load for every

30 minutes of game-play. And whatever you do, make sure you have
a nice screen animation during the load so players don’t confuse your

long load times with a game crash!

There‘s a useful DirectX method to calculate the bounding sphere of a group of vertices.

Since the scene node class requires the right value in m_Props.m_Radius to be properly

checked against the view frustum, the D3DXComputeBoundingSphere method comes in

quite handy:

float MeshNode::CalcBoundingSphere()

{

 HRESULT hr;

 // Find the mesh's center, then generate a centering matrix.

 IDirect3DVertexBuffer9* pVB = NULL;

 V_RETURN(m_pMesh->GetVertexBuffer(&pVB));

 void* pVertices = NULL;

 hr = pVB->Lock(0, 0, &pVertices, 0);

 if(FAILED(hr))

 {

 SAFE_RELEASE(pVB);

 return hr;

 }

 Vec3 center;

 float radius;

 hr = D3DXComputeBoundingSphere(

 (D3DXVECTOR3*)pVertices, m_pMesh->GetNumVertices(),

 D3DXGetFVFVertexSize(m_pMesh->GetFVF()), ¢er,

&radius);

 pVB->Unlock();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 SAFE_RELEASE(pVB);

 return radius;

}

The array of vertices are hidden safely away in the mesh‘s vertex buffer, and to get to
them, the vertex buffer has to be locked. Assuming the lock is successful, the vertices are

sent into the D3DXComputeBoundingSphere routine, and that gives us the right value

to store in the scene node properties.

What About Shaders?

When I first started the third edition of this book, one of my most important goals was an

ultra simple introduction to vertex and pixel shaders. Much of my own learning about them
was pretty frustrating, actually. It seemed there was no middle ground between drawing a

very lame triangle and drawing fur. I hope the following introduction will help you see a
path to getting started with shaders.

A shader is a program that can affect the position of a vertex, or the color of a pixel, or

both. Shaders can create interesting effects by manipulating geometry, as is frequently
done for water surfaces, or changing the appearance of something as mundane as a

teapotahedron (see Figure 14.3).

Figure 14.3. Different effects created by pixel and vertex shaders.

Shaders can be written in assembly or high-level languages. Microsoft developed HLSL,
which stands for High Level Shader Language, for use within DirectX. There is also a
standard for OpenGL. There is also Nivida‘s Cg, or C for Graphics, which is very similar to

HLSL. All look and feel a lot like C, but don‘t be fooled. They aren‘t C.

Just like any high-level language, shaders compile to assembler language. The shader
compiler lives in your graphics drivers, and depending on your graphics card, the compiler

can do some pretty interesting things with the resulting assembly. One example is loops,
which are generally unrolled instead of actually looping in the way you are used to. Different

shader versions have drastically different support for numbers of texture coordinates or

even the size of the shader.

javascript:moveTo('ch14fig03');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

You can compile shaders ahead of time for all the different shader versions and test them

against your video cards, and this is definitely recommended for a commercial environment.
Compiling at runtime is the way most programmers develop shaders. In the example you

are about to see, the shader will be loaded and compiled at runtime just as you would do
when developing them.

The .FX File

Let‘s have a look at the code stored in the GameCode3.fx file. This particular shader is a

simple one, because all it does is light vertices and apply a texture. The shader starts, like
all programs, by declaring variables:

//--

// Global variables

//--

float4 g_MaterialAmbientColor; // Material's ambient color

float4 g_MaterialDiffuseColor; // Material's diffuse color

int g_nNumLights;

float3 g_LightDir[3]; // Light's direction in world space

float4 g_LightDiffuse[3]; // Light's diffuse color

float4 g_LightAmbient; // Light's ambient color

float g_fAlpha; // Alpha value (0.0 totally transparent, 1.0

opaque)

texture g_MeshTexture; // Color texture for mesh

float g_fTime; // App's time in seconds

float4x4 g_mWorld; // World matrix for object

float4x4 g_mWorldViewProjection; // World * View * Projection

matrix

//---

// Texture samplers

//---

sampler MeshTextureSampler =

sampler_state

{

 Texture = <g_MeshTexture>;

 MipFilter = LINEAR;

 MinFilter = LINEAR;

 MagFilter = LINEAR;

};

You‘ll recognize the names from the set value calls in ShaderMeshNode::VRender().

The MeshTextureSampler is a declaration that allows the pixel shader to draw texels

from g_MeshTexture.

The next bit in the shader file is the declaration of the output of the vertex shader:

//--

// Vertex shader output structure

//--

struct VS_OUTPUT

http://lib.ommolketab.ir
http//lib.ommolketab.ir

{

 // vertex position

 float4 Position : POSITION;

 // vertex diffuse color (note that COLOR0 is clamped from

0..1)

 float4 Diffuse : COLOR0;

 // vertex texture coords

 float2 TextureUV : TEXCOORD0;

};

This might jog your memory from the fixed-function pipeline. Video hardware is still video
hardware, and you‘ll notice that you still have to get data to it so it can render triangles.

Next, a function is declared that calculates each vertex:

//--

// This shader computes standard transform and lighting

//--

VS_OUTPUT RenderSceneVS(float4 vPos : POSITION,

 float3 vNormal : NORMAL,

 float2 vTexCoord0 : TEXCOORD0,

 uniform int nNumLights,

 uniform bool bTexture,

 uniform bool bAnimate)

{

 VS_OUTPUT Output;

 float3 vNormalWorldSpace;

 // Transform the position from object space

 // to homogeneous projection space

 Output.Position = mul(vPos, g_mWorldViewProjection);

 // Transform the normal from object space to world space

 vNormalWorldSpace = normalize(mul(vNormal,

(float3x3)g_mWorld));

 // Compute simple directional lighting equation

 float3 vTotalLightDiffuse = float3(0,0,0);

 for(int i=0; i<nNumLights; i++)

 vTotalLightDiffuse += g_LightDiffuse[i] *

 max(0,dot(vNormalWorldSpace, g_LightDir[i]));

 Output.Diffuse.rgb = g_MaterialDiffuseColor *

vTotalLightDiffuse +

 g_MaterialAmbientColor * g_LightAmbient;

 Output.Diffuse.a = 1.0f;

 // Just copy the texture coordinate through

 if(bTexture)

 Output.TextureUV = vTexCoord0;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 else

 Output.TextureUV = 0;

 return Output;

}

The input parameters to the vertex shader come from the mesh subset: position, normal,
and texture coordinate. The parameters with the uniform keyword are set by the shader

technique, which you‘ll see in a moment.

Looking at this code, you should quickly realize that all the neat stuff in the DirectX fixed
function pipeline is clearly not at work anymore. All of the world, view, and projection

calculations, lighting calculations, and anything else you might have desired is not
working—at least not here. You‘ll see shortly that this is intentional, and you can enable

certain render states, such as alpha blending, in another part of the shader. This one is bare
bones, even to the point of calculating lighting just like I did back in the Ultima IX days.

Of course, the real power of a vertex shader is that you can also physically move the vertex

around, which is how many programmers implement cool surfaces like water or even cloth.

The output of the vertex shader is fed into the pixel shader, whose format is defined next.
This particular pixel shader is so trivial there‘s no reason we should have used it at all,

because a fixed-function method would have worked just fine. But this will give you a place
to start experimenting:

//--

// Pixel shader output structure

//--

struct PS_OUTPUT

{

 float4 RGBColor : COLOR0; // Pixel color

};

//--

// This shader outputs the pixel's color by modulating the

texture's

// color with diffuse material color

//--

PS_OUTPUT RenderScenePS(VS_OUTPUT In, bool bTexture)

{

 PS_OUTPUT Output;

 // Lookup mesh texture and modulate it with diffuse

 if(bTexture)

 Output.RGBColor =

 tex2D(MeshTextureSampler, In.TextureUV) * In.Diffuse;

 else

 Output.RGBColor = In.Diffuse;

 return Output;

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Notice that the RenderScenePS takes as its input a VS_OUTPUT parameter, which is the

output of the vertex shader. This pixel shader grabs the right texel from the texture and
modulates it with the diffuse color calculated in the vertex shader‘s lighting calculation.

The only thing that remains is the definition of the shader techniques, which allow you to

define shaders for different shader versions and set the parameters defined by the

uniform keyword. The example below will show six different techniques:

//--

// Renders scene to render target

//--

technique RenderSceneWith1Light

{

 pass P0

 {

 VertexShader = compile vs_2_0 RenderSceneVS(1, false,

true);

 PixelShader = compile ps_2_0 RenderScenePS(false);

 }

}

technique RenderSceneWith1LightAlpha

{

 pass P0

 {

 AlphaBlendEnable = true;

 SrcBlend = SrcAlpha;

 DestBlend = InvSrcAlpha;

 VertexShader = compile vs_2_0 RenderSceneVS(1, false,

true);

 PixelShader = compile ps_2_0 RenderScenePS(false);

 }

}

technique RenderSceneWithTexture1Light

{

 pass P0

 {

 VertexShader = compile vs_2_0 RenderSceneVS(1, true, true

);

 PixelShader = compile ps_2_0 RenderScenePS(true);

 }

}

technique RenderSceneWithTexture2Light

{

 pass P0

 {

 VertexShader = compile vs_2_0 RenderSceneVS(2, true, true

);

 PixelShader = compile ps_2_0 RenderScenePS(true);

 }

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

technique RenderSceneWithTexture3Light

{

 pass P0

 {

 VertexShader = compile vs_2_0 RenderSceneVS(3, true, true

);

 PixelShader = compile ps_2_0 RenderScenePS(true);

 }

}

technique RenderSceneNoTexture

{

 pass P0

 {

 VertexShader = compile vs_2_0 RenderSceneVS(1, false,

false);

 PixelShader = compile ps_2_0 RenderScenePS(false);

 }

}

There are a number of techniques listed here, some with single or multiple lights, a texture,
or an alpha component. If you wanted to support earlier pixel shader standards, such as
1.0, you would do so as follows:

VertexShader = compile vs_1_0 RenderSceneVS(1, false, false);

PixelShader = compile ps_1_0 RenderScenePS(false);

If you attempted that with the above shader, you would be sad to discover that it has too
many instructions to work on a 1.0 video card, and the effect wouldn‘t even load.

The EffectManager Class

Shaders, like textures, need a class to load and manage them. Here‘s a simple class to
manage shaders:

typedef std::map<std::wstring, ID3DXEffect *> EffectNameMap;

class EffectManager

{

protected:

 EffectNameMap m_EffectMap;

public:

 ~EffectManager() { OnLostDevice(); }

 ID3DXEffect *Get(std::wstring);

 void OnLostDevice();

};

ID3DXEffect *EffectManager::Get(std::wstring name)

{

 ID3DXEffect *pEffect = m_EffectMap[name];

 if (pEffect == NULL)

 {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 // Load the effect file

 DWORD dwShaderFlags =

 D3DXFX_NOT_CLONEABLE | D3DXSHADER_DEBUG |

D3DXSHADER_NO_PRESHADER;

 WCHAR effectFile[MAX_PATH];

 DXUTFindDXSDKMediaFileCch(effectFile, MAX_PATH,

name.c_str());

 D3DXCreateEffectFromFile(

 DXUTGetD3D9Device(), effectFile, NULL, NULL,

 dwShaderFlags, NULL, &pEffect, NULL);

 m_EffectMap[name] = pEffect;

 }

 return pEffect;

}

void EffectManager::OnLostDevice()

{

 while (! m_EffectMap.empty())

 {

 EffectNameMap::iterator i = m_EffectMap.begin();

 ID3DXEffect *effect = (*i).second;

 SAFE_RELEASE(effect);

 m_EffectMap.erase (i);

 }

}

This simple manager class loads effects directly from their .FX files if they haven‘t already
been loaded. If the Direct3D device is ever lost, all of the effects will be released and they
will be reloaded the next time they are accessed.

The effect manager is a member of the Scene class, so loading an effect is easy:

m_pScene->GetEffect(L"GameCode3.fx")

There is some discussion on forums about the relative efficiency of shader effects managed

though the ID3DXEffect interface, which is not just an interface to a shader, but also a

high-level framework to control how rendering is done. As always, the code in this book is
meant to give you a start, but needs significant work to be deployed in a commercial game.

The ShaderMeshNode Class

In order to demonstrate a simple shader, I‘ve created a child class of the MeshNode class

you saw earlier. In addition to all the MeshNode members, ShaderMeshNode can use a

vertex and pixel shader to render itself. From a high-level perspective, you access a shader

almost like you would set a material, but in reality, it is a very different beast that can do
some amazing things.

Let‘s drill down into ShaderMeshNode:

class ShaderMeshNode : public MeshNode

{

http://lib.ommolketab.ir
http//lib.ommolketab.ir

protected:

 ID3DXEffect *m_pEffect;

 std::wstring m_fxFileName;

public:

 ShaderMeshNode(const optional<ActorId> actorId,

 std::string name,

 ID3DXMesh *mesh,

 ID3DXEffect *effect,

 RenderPass renderPass,

 const Mat4x4 *t,

 const Color &color);

 ShaderMeshNode(const optional<ActorId> actorId,

 std::string name,

 std::wstring xFileName,

 std::wstring fxFileName,

 RenderPass renderPass,

 const Mat4x4 *t,

 const Color &color);

 virtual ~ShaderMeshNode() { SAFE_RELEASE(m_pEffect); }

 HRESULT VRender(Scene *pScene);

 virtual HRESULT VOnRestore(Scene *pScene);

 };

 ShaderMeshNode::ShaderMeshNode(const optional<ActorId>

actorId,

 std::string name,

 ID3DXMesh *mesh,

 ID3DXEffect *effect,

 RenderPass renderPass,

 const Mat4x4 *t,

 const Color &color)

 : MeshNode(actorId, name, mesh, renderPass, t, color)

 {

 m_pEffect = effect;

 m_pEffect->AddRef();

 }

 ShaderMeshNode::ShaderMeshNode(const optional<ActorId>

actorId,

 std::string name,

 std::wstring xFileName,

 std::wstring fxFileName,

 RenderPass renderPass,

 const Mat4x4 *t,

 const Color &color)

 : MeshNode(actorId, name, xFileName, renderPass, t, color)

 {

 m_fxFileName = fxFileName;

 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The only addition to the class and constructor is a ID3DXEffect object, which is the

interface class that gains you access to DirectX shader utility functions. The class can even

use MeshNode::VOnRestore() since the effects themselves are managed from the

Scene class.

As you might expect, ShaderMeshNode::VRender() is a completely new animal:

HRESULT ShaderMeshNode::VRender(Scene *pScene)

{

 if (S_OK != SceneNode::VRender(pScene))

 return E_FAIL;

 HRESULT hr;

 // Update the effect's variables. Instead of using strings,

it would

 // be more efficient to cache a handle to the parameter by

calling

 // ID3DXEffect::GetParameterByName

 Mat4x4 worldViewProj = pScene->GetCamera()-

>GetWorldViewProjection(pScene);

 D3DXCOLOR ambient = m_Props.GetMaterial().GetAmbient();

 V_RETURN(m_pEffect->SetValue(

 "g_MaterialAmbientColor", &ambient, sizeof(D3DXCOLOR))

);

 D3DXCOLOR diffuse = m_Props.GetMaterial().GetDiffuse();

 V_RETURN(m_pEffect->SetValue(

 "g_MaterialDiffuseColor", &diffuse, sizeof(D3DXCOLOR))

);

 V(m_pEffect->SetMatrix("g_mWorldViewProjection",

&worldViewProj));

 V(m_pEffect->SetMatrix("g_mWorld", pScene->GetTopMatrix())

);

 V(m_pEffect->SetFloat("g_fTime", (float)1.0f));

 D3DXVECTOR3 vLightDir[3];

 D3DXCOLOR vLightDiffuse[3];

 D3DXCOLOR vLightAmbient(0.35f, 0.35f, 0.35f, 1.0f);

 D3DXVECTOR3 vecLightDirUnnormalized(1.0f, 6.0f, 1.0f);

 D3DXVECTOR3 vecLightDirNormalized;

 D3DXVec3Normalize(&vecLightDirNormalized,

&vecLightDirUnnormalized);

 // Render the light arrow so the user can visually see the

light dir

 for(int i = 0; i < 3; i++)

 {

 vLightDir[i] = vecLightDirNormalized;

 vLightDiffuse[i] = D3DXCOLOR(1, 1, 1, 1);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 }

 V(m_pEffect->SetValue(

 "g_LightDir", vLightDir, sizeof(D3DXVECTOR3) * 3));

 V(m_pEffect->SetValue(

 "g_LightDiffuse", vLightDiffuse, sizeof(D3DXVECTOR4) * 3

));

 V(m_pEffect->SetInt("g_nNumLights", 1));

 V(m_pEffect->SetValue(

 "g_LightAmbient", &vLightAmbient, sizeof(D3DXVECTOR4) *

1));

 V(m_pEffect->SetFloat("g_fAlpha",

m_Props.GetMaterial().GetAlpha()));

 V(m_pEffect->SetTechnique("RenderSceneWith1Light"));

 // Apply the technique contained in the effect

 UINT iPass, cPasses;

 V(m_pEffect->Begin(&cPasses, 0));

 for(iPass = 0; iPass < cPasses; iPass++)

 {

 V(m_pEffect->BeginPass(iPass));

 // The effect interface queues up the changes and performs

them

 // with the CommitChanges call. You do not need to call

CommitChanges if

 // you are not setting any parameters between the

BeginPass and EndPass.

 // V(g_pEffect->CommitChanges());

 // Render the mesh with the applied technique

 V(m_pMesh->DrawSubset(0));

 V(m_pEffect->EndPass());

 }

 V(m_pEffect->End());

 return S_OK;

}

You‘ll notice calls to various methods of the ID3DXEffect interface, which are

summarized below:

 SetValue: Sets a shader parameter; the parameter can be of any size or type.

You can think of this as a memcpy().

 SetMatrix: Sets a matrix parameter of the shader.

 SetInt: Sets an integrer parameter of the shader.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 SetTechnique: FX files can have multiple ―techniques,‖ and you can think of

them as templatized versions of the shader.

You‘ll see each of these variables referenced in the shader, which you saw earlier. Notice

also that the ID3DXEffect::Begin() and ID3DXEffect::End() calls surround a

loop that calls ID3DXMesh::DrawSubset() for each pass of the shader. Shaders can

have multiple passes, and this is how they are activated.

What’s Missing?

That is all you need to create a simple scene graph. It may seem like an extremely

simplistic architecture, but it‘s more flexible than you‘d think. Each node you design can add
functionality and special effects to all its children nodes. Here are some examples.

 Full support for mesh subsets: See the CDXUTXFileMesh class in the DirectX

Framework to see how to fully support mesh subsets.

 Billboard node: Sets the transform matrix of all the child nodes so that they always

face the camera. Use this for trees or light glare.

 Level of detail node: A node that chooses one node in its child list for rendering

based on the node‘s distance from the camera.

 BSP node: A node that sets its visibility based on which side of the BSP plane the

camera is and where it is facing.

 Material node: Sets the default material for all children nodes.

 World sector node: Defines a 3D volume that completely contains all of its children

nodes. You use it to determine if any children need to be drawn based on camera
direction or interposed opaque world sectors.

 Mirror node: Defines a portal through which the scene is rerendered from a

different point of view and stenciled onto a texture.

 Lots more shader effects!

I‘m sure you can come up with other cool stuff.

The scene graph in this chapter is a fun toy. It‘s not nearly ready to install into a real game
engine. You‘ll want tons of new nodes, articulated figures, and other visible objects. There

are also a few other things you‘ll need to add to this system. The first and foremost is a
better way of creating and editing your world. I‘m pretty sure I mentioned somewhere in

this book that any good game engine is a data-driven creature, and then I showed you a
completely hard-coded scene graph! No, I‘m not a slacker. I opted for the cheap and easy

route because it‘s also easy to understand. Lucky for you that you can use what you learned

about Lua in Chapter 11, ―Scripting with Lua,‖ to create scripts to put all those hard-coded
constants into a Lua file.

Still Hungry?

../../ch11#ch11
http://lib.ommolketab.ir
http//lib.ommolketab.ir

When this chapter was first outlined, I knew that I was going to leave plenty of questions

completely unanswered. The chapter was going to end too soon, and I would leave the
readers with just enough vocabulary and ideas to play around in 3D without enough

knowledge to make Quake. There‘s a lot to know, for one thing.

Way back in 2003 at the Computer Game Developer‘s Conference, I watched a simulation of
fluid dynamics programmed completely with pixel shaders. Instead of manipulating texture

values and red, green, and blue components of a texture, the values were things like
pressure and velocity. The graphics card was performing partial differential equations

entirely in the GPU.

I don‘t know about you, but I haven‘t seen anything that cool since the first hardware-
accelerated 3D graphics card.

I hope you‘re hungry for more—I certainly am.

Further Reading

 3D Game Engine Design, David H. Heberly

 3D Game Engine Architecture, David H. Heberly

 Programming Vertex and Pixel Shaders, Wolfgang Engel

Chapter 15. Collision and Simple Physics

by Jeff Lake

In This Chapter

 Mathematics for Physics Refresher

 Choosing a Physics SDK

 Object Properties

 Collision Hulls

 Using a Collision System

 Integrating a Physics SDK

 But Wait, There‘s So Much More

Jeff Lake is an inveterate gameplay programmer. He started in the game industry
at Edge of Reality in Austin working on a PS2/Xbox title. He then moved to

Wolfpack Studios and Stray Bullet Games and between the two, he worked on
more unreleased MMO prototypes than you could shake a stick at. He’s spent the

last few years at Red Fly Studio wrestling with the Nintendo Wii. His most recent
released title was Mushroom Men: The Spore Wars. Jeff helped Mike with the code

in this chapter and wrote details on how you integrate a game engine with Bullet

../../ch15lev1sec1#ch15lev1sec1
../../ch15lev1sec2#ch15lev1sec2
../../ch15lev1sec3#ch15lev1sec3
../../ch15lev1sec4#ch15lev1sec4
../../ch15lev1sec5#ch15lev1sec5
../../ch15lev1sec6#ch15lev1sec6
../../ch15lev1sec7#ch15lev1sec7
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Physics.

Even the simplest 2D game needs collision. After all, if the objects in a game can‘t interact,
how fun could the game possibly be? Breakout is a great example of a simple game. A ball
bounces off walls, bricks, and the paddle. If you look at it this way, the core of the game

experience is created by the 2D collision algorithm. It‘s almost impossible to design a game
without at least some rudimentary collision. Perhaps a text adventure like Zork is one

example, but, hey, it hasn‘t exactly been flying off the shelves lately. If you are familiar

with Zork, that‘s great because you know your game history. If you‘ve actually played Zork,
well, then you are probably as ―mature‖ as I am.

Collision is a purely mathematical calculation to determine the spatial relationship between

objects such as points, lines, planes, or polygonal models. I‘ll show you a few in this chapter
to get you going, but mostly I‘ll point you to some great resources outside of this book that

provide good solutions. I‘m not going to pretend I can offer something better.

Physics, on the other hand, is a much more complicated beast altogether. A physics
simulation in your game will make it possible to stack objects on top of each other, fall

down slopes and stairs accurately, and interact with other dynamic objects in a visually
realistic fashion. It can also create motion under force such as you‘d see with motors and

springs. It can constrain the movements of objects similar to a door on hinges or a
pendulum swinging in a grandfather clock.

In the spring of 2004, I worked on Thief: Deadly Shadows. This game used the Havok

physics engine on every movable object, including rag dolls for characters. Thief might not
use physics as the core game experience, but it certainly creates a convincing illusion of a

complete world in which the player can interact with objects in a meaningful way and affect
the events of the game. Here‘s an example: You could knock a barrel down a flight of stairs,

and each impact reported by the collision system would trigger a sound effect that you

heard through the speakers. The actions would also trigger sound events into the AI
subsystem. This would bring curious guards around to investigate the noise.

You might think for a moment that you could have a similar game experience without a

complicated physics simulation, and you are right. The aforementioned barrel could have
simply shattered into bits when you knocked into it, and the same guard could have

investigated it. The fundamental difference is one of realism and how far the player has to
go to imagine what happens versus seeing it in front of his eyes.

Many games don‘t have super accurate physics simulations, something you‘ve probably

suspected, but perhaps wondered why the designers and programmers stopped short. A
truly accurate physics simulation for every game object is an expensive proposition, CPU

wise. Every game will make reasonable optimizations to make things faster. For example,
most physics simulations assume that buildings and other architecture are essentially

infinite weight and impossible to break. Load Project Gotham 4 and try running into a
barricade with a Ferrari at over 200 mph and tell me that a real barricade would survive

that impact without being horribly mangled. It won‘t, and therefore that simulation isn‘t

completely accurate.

But it is quite a bit of fun to rebound off barricades in games like Project Gotham at high

speed to get around corners faster, isn‘t it? The point I‘m trying to make is that you have to

understand your game before you decide that a physics simulation will actually add to the
fun. A game like Thief benefited from accurate physics, but Project Gotham would have

been remiss to create something perfectly accurate in every way, even if it could have
afforded the CPU budget.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Think about this for a moment: Is it better to have the pendulum in a grandfather clock act

under a completely realistic physics simulation or a simple scripted animation? The answer
is completely dependent on your game, and by the end of this chapter, hopefully, you‘ll be

able to answer that question for yourself.

Since I only have one chapter to talk about collision and physics, I only have time to show
you how to use an existing system (specifically the open source library, Bullet) in your

game. We‘ll cover the basics and get right into how you can best use these complicated
pieces of technology.

Mathematics for Physics Refresher

I don‘t know about you, but every time I read anything that has anything to do with math, I
somehow feel all the intelligence leak out of my skull. I think it has something to do with

the presentation. I hope to do better here because if you can‘t get past understanding these
concepts, you‘ll be pretty lost when you get around to debugging physics and collision code.

Meters, Feet, Cubits, or Kellicams?

What you are about to read is true (even though you might not believe it), so read it over

and over until you have no doubt:

Units of measure don’t matter in any physics calculation. All the formulas will work, as long

as you are consistent.

I‘m sure you remember the unfortunate story about the Mars Lander that crashed because
two different units of measurement were used? One team used meters, and the other team

used feet. This error is frighteningly simple to make, so don‘t laugh too hard. It‘s not just

the programmers who need to agree on the units of measure for a game project. Artists use
units of measurement, too, and they can cause all kinds of trouble by choosing the wrong

ones.

A unitless measure of distance can therefore be anything you like: meters, feet, inches, and
so on. There are two other properties that can also be unitless: mass and time. You‘ll

generally use kilograms or pounds for mass, and I‘ll go out on a limb here and suggest you
use seconds for time. Whatever you use, just be consistent. All other measurements, such

as velocity and force, are derived from various combinations of distance, mass, and time.

By the way, if you are wondering how I knew how to spell Kellicams (the unit of measure
used by the Klingon Empire), I did what any author would do: I searched Google and chose

the spelling that gave me the most returns.

Distance, Velocity, and Acceleration

When you need to work with objects moving through space, you‘ll be interested in their
position, velocity, and acceleration. Each one of these is represented by a 3D vector:

Vec3 m_Pos;

Vec3 m_Vel;

Vec3 m_Accel;

Velocity is the change in position over time, and likewise acceleration is the change in
velocity over time. You calculate them like this:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Vec3 CalcVel(const Vec3 &pos0, const Vec3 &pos1, const float

time)

{

 return (pos1 - pos0) / time;

}

Vec3 CalcAccel(const Vec3 &vel0, const Vec3 &vel1, const float

time)

{

 return (vel1 - vel0) / time;

}

This is fairly pedantic stuff, and you should remember this from the math you learned in
high school. In computer games, you frequently need to go backward. You‘ll have the
acceleration as a vector, but you‘ll want to know what happens to the position of an object

during your main loop. Here‘s how to do that:

inline Vec3 HandleAccel(Vec3 &pos, Vec3 &vel, const Vec3 &accel,

float time)

{

 vel += accel * time;

 pos += vel * time;

 return pos;

}

Notice that when the acceleration is handled, both the velocity and the position change.

Both are sent into HandleAccel() as references that will hold the new values.

Now that you‘ve seen the code, take a quick look Table 15.1, which contains mathematical

formulas for calculating positions and velocities. Hopefully, you won‘t pass out.

Table 15.1. Formulas for Calculating Positions and Velocities

Formula Description

p = p0 + vt Find a new position (p) from your current position (p0), velocity (v), and

time (t)

v = v0 + at Find a new velocity (v) from your current velocity (v0), acceleration (a),

and time (t)

p = p0 + v0t +

(at2)/2

Find a new position (p) from your current position (p0), velocity (v0),

acceleration (a), and time (t)

You probably recognize these formulas. When you first learned these formulas, you were

using scalar numbers representing simple one-dimensional measurements like distance in
feet or meters. In a 3D world, we‘re going to use the same formulas, but the inputs are

going to be 3D vectors to represent position, speed, and acceleration in 3D space. Luckily,
these vectors work exactly the same as scalar numbers in these equations, because they

are only added together or multiplied by time, a scalar number itself.

javascript:moveTo('ch15table01');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Mass, Acceleration, and Force

Whenever I have a particularly nasty crash when mountain biking, some joker in my
mountain biking group quips, ―F=ma, dood. You okay?‖ This formula is Newton‘s 2nd Law of

Motion, and says that force is calculated by multiplying the mass of the object in question

with its acceleration. In the case of an unfortunate mountain biker taking an unexpected
exit from the bike, the acceleration is the change in the biker‘s velocity over time, or

deceleration actually, multiplied by the biker‘s weight. Crashing at the same speed, the
heavier biker gets hurt more. If the same biker crashes twice in one day, the slightly faster

speed does quite a bit more damage because acceleration has a time squared component,
and is therefore much more serious than a change in mass.

If you use metric units, force is measured in Newtons. One Newton, symbolized by the

letter N, is defined as one kilogram accelerated over one meter in exactly one second, or
said another way:

Try not to confuse acceleration and force. Gravity is a force, and when it is applied to an

object, it causes acceleration. Galileo discovered an interesting property about this
acceleration by dropping things from the Leaning Tower of Pisa: it doesn‘t matter how much

something weighs because they all fall at the same rate. This turns out to be false, as the
acceleration due to gravity has to do with the masses of both objects, since they both exert

a gravitational field. In Galileo‘s time, the tiny gravitational field of a handheld object was
way too small for it to make any difference in his experiment.

Who Wins, a Tissue or the Planet?

While it might not feel this way to you, gravitation is an
incredibly weak force compared to something like electricity.

You can prove it to yourself by placing an object, like your
cell phone, on a piece of tissue paper. Grab both sides of the

tissue paper and lift it, suspending your cell phone over the
ground. The force that keeps the cell phone from tearing

through the tissue paper is the electrical force binding the

material of the tissue paper together. So the electrical bonds
present in that tiny piece of tissue paper are sufficient to

withstand the gravitational force exerted on the cell phone by
the entire planet Earth.

Heavier things exert a larger force in a gravitational field, such as when you place a weight
on your chest. At sea level, Earth‘s gravity causes an acceleration of exactly 9.80665

meters/s2 on every object. Thus, a one kilogram object exerts a force of 9.80665N. To get
an idea of how big that force is, set this book on your chest. It turns out to be about a

kilogram, give or take Chapter 5. So, one Newton is not all that big, really, if you are the
size of a human being and the force is somewhat distributed over a book-sized area.

Balance this book on a fork, tines downward, and you‘ll see how that distribution will change
your perception of one Newton. Area, as it seems, makes a huge difference.

Let‘s look at the code that would apply a constant acceleration, like gravity, to an object.

We‘ll also look at code that applies an instantaneous force. Forces are vectors, and are
therefore additive, so multiple forces (f0, f1, f2, ...) on one object are added together to get

an overall force (f):

../../ch05#ch05
http://lib.ommolketab.ir
http//lib.ommolketab.ir

f0 + f1 + f2 +...

or in shorthand, we write

Just so you know, the C++ version of that math formula is a simple for loop:

Vec3 AddVectors(const Vec3 *f, int n)

{

 Vec3 F = Vec3(0,0,0);

 for (int x = 0; x < n; x++)

 F += f[x];

 return F;

}

A constant force over time equates to some acceleration over time, depending on the
object‘s mass. An impulse is instantaneous, so it only changes the acceleration once. Think
of it like the difference between the force of a rocket motor and the force of hitting

something with a golf club: one happens over time, the other is instantaneous. Take a look
at a simple game object class:

typedef std::list<Vec3> Vec3List;

class GameObject

{

 Vec3 m_Pos;

 Vec3 m_Vel;

 Vec3 m_Accel;

 Vec3List m_Forces;

 Vec3List m_Impulses;

 float m_Mass;

 void AddForce(const Vec3 &force) {

m_Forces.push_back(force); }

 void AddImpulse(const Vec3 &impulse) {

m_Impulses.push_back(impulse); }

 void OnUpdate(const float time);

};

This class contains 3D vectors for position, velocity, and acceleration. It also has two lists:
one for constant forces and the other for impulses, each of which is modified by accessor

methods that push the force or impulse onto the appropriate list. The real action happens in

the OnUpdate call:

void GameObject::OnUpdate(const float time)

{

 if (m_Mass == 0.0f)

 return;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 // Add constant forces...

 Vec3 F(0,0,0);

 for (Vec3List::iterator it=m_Forces.begin();

it!=m_Forces.end(); it++)

 {

 F += *it;

 }

 // Also add all the impulses, and remove them from the list

 while (!m_Impulses.empty())

 {

 Vec3List::iterator impulse=m_Impulses.begin();

 F += *impulse;

 m_Impulses.pop_front();

 }

 // calculate new acceleration

 m_Accel = F / m_Mass;

 m_Vel += m_Accel * time;

 m_Pos += m_Vel * time;

}

The two loops add all the forces being applied to the game object. The first loop just iterates
through and accumulates a result. The second loop is different, because as it accumulates

the result, the list is emptied. This is because the forces are impulses, and thus they only
happen once. The resulting acceleration is calculated by dividing the accumulated force (F)

by the object‘s mass. Once that is done, you can update the object‘s velocity and position.

Physics Engines are Very Time Sensitive

You must be extremely careful with the value of time. If you

send in a value either too big or too small, you‘ll get some
unpredictable results. Very small values of time can

accentuate numerical imprecision in floating-point math, and
since time is essentially squared in the position calculation,

you can run into precision problems there, too. To be safe,
keep time in the (0.005f - 0.1f) seconds for best results in

any force or physics calculation.

Rotational Inertia, Angular Velocity, and Torque

When an object moves through space, its location always references the center of mass.

Intuitively, you know what the center of mass is, but it is interesting to note some special
properties about it. For one thing, when the object rotates freely, it always rotates about

the center of mass. If the object is sitting on the ground, you can tip it, and it will only fall
when the center of mass is pushed past the base of the object. That‘s why it‘s easier to

knock over a cardboard tube standing on its end than a pyramid sitting on its base.

Different objects rotate very differently, depending on their shape and how weight is
distributed around the volume of the shape. A Frisbee spins easily when I throw it, but

doesn‘t spin as well end-over-end, like when my youngest nephew throws it!

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Mathematically, this property of physical objects is called the inertia tensor. It has a very

cool name, and you can impress your friends by working it into conversations.

The inertia tensor is something that is calculated ahead of time and stored in the physical

properties of the object. It‘s pretty expensive to create at runtime. It is a 3 × 3 matrix

describing how difficult it is to rotate an object on any possible axis. An object‘s shape,
density, and mass are all used to compute the inertia tensor. It is usually done when you

create an object; it‘s much more preferable to precompute the inertia tensor and store it.
This calculation isn‘t trivial. As you might expect, the inertia tensor is to orientation as mass

is to position; it is a property of the object that will completely change how the object
rotates.

Angular velocity is a property of physics objects that describes the axis of spin and the

speed at the same time in one 3D vector. The magnitude of the vector is the spin in
whatever units per second, and the direction of the vector shows the rotational axis.

Angular force is called torque, and is measured by a force applied about a spin radius. Think

of a wrench. As you push on it to get a bolt loose, you apply a certain force to the end of a
wrench of some length. A particularly stubborn bolt might come loose if you put a long pipe

over the end of your wrench, but the wise mechanic knows that you have a pretty good
chance to break the end right off that nice wrench. This is a good reason to buy Craftsman.

Torque is measured by force, specified in Newton-meters for metric system or foot-pounds

for the medieval system. As you might expect, 5 Newton-meters is a 5 Newton force applied
about a 1 meter length.

Distance Calculations and Intersections

The best resource I‘ve found for calculating distances is a Web site, and it would be crazy of

me to simply regurgitate the content they have. Just visit
www.realtimerendering.com/intersections.html. This resource is so great because it has

collected the best of the best in finding these collisions and intersections, and listed them all
in a big matrix. This took a lot of research, and I‘d be completely remiss if I didn‘t point you

to it.

As of this printing, this Web site is a great resource for finding collisions/intersections
between any of the following objects:

 Ray

 Plane

 Sphere

 Cylinder

 Cone

 Triangle

 Axis-Aligned Bounding Box (AABB)

 Oriented Bounding Box (OBB)

 Viewing Frustum

 Convex Polyhedron

../../intersections.html
http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you want to perform collision detection on arbitrary static and dynamic meshes, such as a

teapot against a stairway, you‘ll need more firepower. For that, I‘d suggest going straight to
a real physics SDK like Bullet Physics—an open source SDK with source code. You can also

choose a commercial physics SDK, like Novodex or Havok.

Choosing a Physics SDK

There are a lot of options these days for programmers who don‘t want to write their own
collision system or a system to handle dynamics. Some of these systems have really

interesting components for handling nonrigid bodies like bowls of Jell-o or vehicles.

Whether you choose to grab one off-the-shelf or write your own, it should have the
following minimum set of features:

 Allow user data to relate physics objects with your game objects.

 Optimize collisions for static actors or geometry.

 Trap and report collision events.

 Provide a fast raycaster.

 Draw debug information visually.

 Output errors in a rational way.

 Override memory allocation.

 Add and remove objects, or regions of objects, from the physics simulation for

optimal CPU usage.

 Save and load its own state.

As the physics system simulates the movements of physical objects in a game, it will need

some way to associate objects in its data structures to actual objects in your game. This is
especially true since the physics object will usually have a simpler geometry than the visible

object—a good reason to keep them separate. When physics objects are created, look for a

way to provide a reference, or special user data, to these objects so you can figure out
which physics and game object pairs match.

Most physics systems allow static actors by setting their mass to zero. These objects would

be the geometry that makes the walls, floors, terrain, and the rest of the environment, as
well as any really heavy object that will never be moved, like a tree. Most physics systems

treat any object with zero mass as unmovable, and they usually take advantage of that fact
to speed dynamics calculations.

Besides moving objects around, you‘ll want to know if and when they collide. You‘ll also

want to know all kinds of things about the collision, such as the force of the collision, the
collision normal, and the two objects that collided. All these things are great for playing

back sounds, spawning particle effects, or imparting damage and destruction to the objects
concerned.

Any game is going to need a good raycaster. A raycaster is something that returns one or

more objects that intersect with a probe ray. It is an extremely useful routine for finding out

http://lib.ommolketab.ir
http//lib.ommolketab.ir

whether objects are in the line of sight of an AI process, where to put bullet holes, and

probing the surrounding geometry for moving cameras, objects, or characters. This routine
is called so often that it should be either really snappy, or you should be extra careful to call

the routine only when you really need it. If possible, you should also be able to do
something called a shape cast, which takes an entire object, like a sphere, and casts it

instead of a simple ray. This kind of thing is invaluable for creating good third-person
cameras.

Most physics SDKs can send lots of debug information into your rendering pipeline so that

things like collision shapes, acceleration vectors, and contact points are drawn so you can
actually see their magnitudes and directions. Watching physics data structures visually is

the only way to debug physics. You simply can‘t just look at the data structures and easily
diagnose problems. Consider this example: Two objects seem to react in unexpected ways

when they collide. When you look at the collision mesh data, you find that they look correct

in the debugger‘s watch window. When you turn the physics debug renderer on, you might
notice that one of the collision hulls is simply the wrong shape and needs to be fixed. You‘d

never figure this out looking at a long list of points in 3D space.

Most physics errors come from bad data or misuse of the API. For this reason, any decent
physics SDK should have a good way to report errors back to you in the debug build.

DirectX does this by sending error or informational messages to the debugger‘s output
window. A good physics system should do the same thing. If your artists have created a

collision mesh the physics system can‘t handle, it‘s nice to know right away rather than
after you‘ve spent all night debugging the problem.

Memory allocation is always a concern in computer games. They simply don‘t use memory

in the manner that best suits the standard C-runtime memory allocator, and for that
reason, most games write their own memory allocation scheme. A physics system can be

just as hard on memory as a graphics subsystem, and thus it needs to use the same
optimized memory system as the rest of your game. Look for hooks in the SDK that let you

circumvent the default memory allocator with your own.

Physics is expensive enough that you only want to simulate areas of the game the player
can actually see or be affected by. For this reason, most good physics systems have easy

ways for groups of objects to be enabled or disabled as a group, which allows you to turn on

and off areas to make the very best use of your CPU budget.

A physics system should be able to stream so that you can save and load its state. Even if

your game doesn‘t have a load/save feature, it is likely that your game editor has a save

feature; otherwise, it wouldn‘t be much of a game editor. In many game editors, physics
objects are placed in the level and simulated until they find a stable position. Usually, you‘d

do this for candles sitting on tables and other props, but you could do it for something as
complicated as a stone bridge. It might be fun to blow something like that up in your game!

Either way, you can‘t count on designers to place the objects with such accuracy, so it‘s
best to let the physics system simulate it until it stabilizes and then save the state.

Now that you‘ve got a physics SDK with everything on your checklist, let‘s talk a little about

how to actually use it.

Object Properties

Physical objects have properties that affect their movement and interactions with other
objects. We‘ve already talked about mass, position, velocity, force, the inertia tensor,

angular velocity, and torque. These properties describe object motion under force in free
space. When objects bump into each other, or into infinitely heavy objects, their reactions

are dependent on three more properties: restitution, static friction, and dynamic friction.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Restitution is the amount of bounce that an object has when it hits something, and is

usually expressed in a positive floating-point number. A good way to think of this is how
high a ball will bounce when you drop it. If the restitution is 0.0f, you‘ve got a piece of

playdough, and when it hits it will simply stick to the ground. If you‘ve got something like
0.99f, you‘ve got a nice superball that will bounce around for a long time. It‘s a bad idea to

assign restitutions of greater than 1.0f, since the object will simply continue to gain energy
forever.

Static friction and dynamic friction describe how much energy is lost when two materials

touch each other. Oddly enough, friction changes drastically when things are simply
touching but immobile, and when they are sliding over one another. This is why it‘s so hard

to regain control of a car once it‘s in a skid—the dynamic friction is lower than the static
friction. You experience this same issue when moving heavy objects; it‘s easier to keep

them moving than it is to get them moving initially.

The coefficient of friction, usually represented by μ, is a number that is calculated by the
ratio of the force (F) required to move an object over the normal force (N), which on a flat

surface is simply the mass of the object multiplied by the acceleration due to gravity:

F = μN

μ = F / N

So, if it took a 700N force to move an object that weighed 100Kg (thus exerting a 980N
force on whatever surface it was sitting on), the coefficient of static friction would be about

0.714f. Once the object was moving, if all you had to apply was 490N to keep it moving at a
steady speed, the coefficient of dynamic friction (or sliding friction) would be 0.5f.

Intuitively, the static or dynamic friction for two objects has everything to do with what

those objects are made of. Many physics systems let you specify this coefficient on a
material-by-material basis, which isn‘t exactly accurate. If you look on the Web, you‘ll find

that these numbers are presented in tables that match two materials together, such as steel
on steel or brass on oak or steel on ice. In other words, you‘ll likely need to tweak values

for your objects until they seem right. A good safety tip is to make this a data file

somewhere that you can tweak at runtime. Trust me, you will need to do this. Here are
some of the examples of this used in the Game Coding Complete source code base:

MaterialData g_PhysicsMaterials[] =

{

 // restitution friction

 { 0.05f, 0.9f }, // playdough

 { 0.25f, 0.5f }, // a 'normal' material

 { 0.95f, 0.5f }, // a 'bouncy' material

 { 0.25f, 0.0f }, // a 'slippery' material

};

One final note on the properties of restitution and friction: You‘d better have a physics SDK
that can assign these materials to specific triangles of a mesh. While this isn‘t that critical
for dynamic objects, it is surely needed for your environment mesh, or you might have to

decide to make your entire world out of plastic!

Collision Hulls

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Your physics objects will require representations in the physical world, and these might be

very different from their visible geometry. For example, a perfect sphere is a mathematical
construct in a physical world and has only a location and a radius, whereas a visible

representation might need quite a few polygons to look good. You should use mathematical
representations in the physical world where and when you can, and you‘ll save memory and

CPU time.

The trade-off is whether things will act like they appear. In the case of the sphere object
representing a bowling ball in your game, you‘ll be quite happy. If the same sphere were

representing a box or a crate, I think you‘d be a lot less happy. That example is pretty
trivial to make a point, but there are tougher problems. Before we cover some of those,

let‘s talk about how collision geometry is built. You‘ll need to know this if you want to use a
mesh editor such as 3ds Max.

Requirements of Good Collision Geometry

A collision mesh has to have a few properties to make the math in the physics SDK efficient,

or even possible. First, the mesh has to be convex. Good examples of convex meshes are
those that represent any regular solid such as a sphere, cube, or even dodecahedron.

Concave meshes, on the other hand, have valleys and holes.

The classic teapot is a good example of a concave mesh (see Figure 15.1). If I had the
actual teapot in front of me, and I had a piece of string, it would be trivial for me to place

the string on two parts of the object and observe the string cross empty space. On a
concave mesh, this can‘t be done anywhere on the object‘s surface. An easier way to

remember is by using the name concave because, simply put, it has caves.

Figure 15.1. The Classic teapot is concave.

Another requirement of a collision hull is that it be manifold, a mathematical term that
describes how the triangles fit together and form edges. A manifold edge has exactly two
triangles on either side. A manifold mesh has no holes or dangling polygons. It represents a

completely solid object. It also has no T-joints on any triangle edge. This usually isn‘t a

problem for artists because they know it screws up the object‘s lighting anyway.

This might be hard to visualize, so I‘ve dusted off my Photoshop skills and made a drawing

for you (see Figure 15.2). The left-hand triangles are clearly non-manifold because of the T-

joint. The triangles on the right satisfy the requirement that each edge must border exactly
two triangles. The remaining requirement is that the mesh be completely closed and have

no holes in it.

Figure 15.2. The left-hand triangles are nonmanifold—the right-hand triangles are
okay.

javascript:moveTo('ch15fig01');
javascript:moveTo('ch15fig02');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you‘re worried that it might be tough to make meshes that always satisfy the
requirements of your physics system, you‘re right. It‘s sometimes easy for artists to forget

what the requirements are, especially when the heat is on and they‘re trying to get a ton of
work done. The best thing is to make sure that your artists double-check their work,

hopefully, by actually importing their work into the game and seeing for themselves if
anything is awry.

Visible Geometry Versus Collision Geometry

It‘s a good thing to note that while the position and orientation of a physics object is related

to the visual position and orientation, they aren‘t necessarily the same. They are probably
the same for symmetrical objects like a sphere or a cube, but not much else. The position of

an object in the physical world is always the center of mass, and that might not be the
anchor point of the visible geometry. When you set the location for a 3D object, it is the

anchor point on that object that will be positioned precisely at the new location. Likewise,
the default orientation of an object in the physics simulation is usually an inertia tensor,

such that it aligns with the X-, Y-, and Z-axes. Maybe you can visualize this, but I certainly

can‘t, and it won‘t necessarily match a reasonable orientation for the object for
programmers and artists, such as orienting a gun with the barrel pointed straight down one

of the X-, Y-, or Z-axes. Therefore, you‘ll probably need to apply a transformation to get
from the orientation and position of your physics object to find the correct position and

orientation for your visible geometry.

Asymmetric Objects are Great for Testing

One test object you should definitely create is a completely

asymmetric object. A good example is a cube with three corner
vertices pulled or pushed around, as long as the shape is still convex.

This will help you if you think your physical and visible coordinate
systems are out of whack. If they are, the wireframe for the physical

geometry won’t match the visible geometry. If you integrate a new
physics SDK with your game engine, and you use only balls or cubes

as test objects, there’s almost no way to tell if your transforms are
correct. Use a crazy, convex object, and you’ll notice problems right

away.

If the collision and visible geometry are different, and they usually are, there are a couple of
things you‘ll want to keep in mind:

 If you can simplify the physical geometry, without sacrificing too much in the way of

geometrical accuracy, go for it.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Lean on the side of making physical geometry a little smaller than the visible

geometry for objects and static environment meshes. This will create some graphical

errors, but the objects that move won‘t get stuck so much, or appear to hit
something that isn‘t there.

Collision Hulls for Human Characters

You might think that you‘d want to represent a human character by a rag doll. If the

character is unconscious or dead and is therefore under complete control of the physics
system, that is probably okay. However, while the character is under kinematic control, in

other words under control of the animation system, you‘ll probably want something a lot
simpler. The same thing goes for the player character as human AIs. Take a look at Figure

15.3. Here, the collision hull has four parts. I‘ll describe them from top to bottom.

Figure 15.3. A collision hull for a human character.

The pointed cap at the top of the hull sits over the character‘s head. This keeps anything

from landing on the character and simply sitting there. Everything, including other
characters, will slide off to the ground.

The cylinder shape surrounds the character from shoulder height to about knee height, and

keeps the character far enough away from walls and other objects so that most animations
will look good. I say most because some animations, like wild staff swinging, will surely

leave the collision hull, which will enable the staff and likely part of the arm to intersect
walls and whatnot. This is usually normal and expected because the trade-off of making the

collision hull too big around is you can‘t slide in between closely placed columns or trees or
other tight geometry. There‘s also a problem if you make the radius of this cylinder too

small; it won‘t be able to slip easily around square objects like beams set in walls. If you‘ve

ever ridden a bicycle, you know that bigger wheels can go up bigger ledges and other
obstacles. The analogy works for your character hull; make it just big enough to get around

your most common environment geometry.

The sloped shape from the knees to the bottom of the character‘s feet allows the character
to slide up or step up objects, such as stairs or small boxes. If the character has a special

animation to climb that‘s great—I‘m talking about normal walking or running. If an object
intersects with the area below the knees, you‘ll know you don‘t have to halt the character‘s

movement, but slide up. If the object is big enough to stop the character or trigger a
different animation state, it will hit above the knees and intersect with the main body of the

character hull. Notice that the shape of the bottom of the knee-feet area is still a flat circle;
this lets the character proxy sit stable on a small flat area.

Crowded Games Require Smaller Collision Hulls

javascript:moveTo('ch15fig03');
javascript:moveTo('ch15fig03');
javascript:moveTo('ch15fig03');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

If you’ve played Valve’s Left 4 Dead, you probably recognize that the

collision hulls for the player characters and the zombies don’t interact

with each other that much, or at least not so that you can tell. That’s
because there are so many human characters running around that

large collision hull circumferences would cause you to get stuck behind
your fellow AIs and cause all manner of frustration. Also, if you notice

the game environments, there’s not a lot of vertical objects like pipes
or beams to get stuck on. Make sure you take your game design into

careful consideration when designing the collision hulls, and that will
influence the design of your game environment.

The area below the character feet will usually be below the ground, except when the
character walks off a ledge. This area is useful for detecting when there is some geometry
below the character to cause it to go into a normal step-down animation or an actual fall.

The exact shape of this character hull is totally tunable and is completely dependent on your

game. Experiment with different widths, heights, and angles until you‘ve got the kind of
behavior you are looking for. Of course, there‘s still quite a bit of code to write in the

background to detect collisions with all these shapes and impart the right impulses to
dynamic objects or move the character in the right direction, but the general shape of it

should get you started.

Just in case I wasn‘t clear, the character hull isn‘t under physics control. It is a shape that
you move around yourself and check the physics system for collisions only when you move

it. How you move the hull is completely dependent on your game. You could choose to allow

the animation data to help you and minimize foot sliding. Or you could find some flexibility
by having a totally analog movement system tied right to the controller, and have the

animation system queue off the distance you actually moved. You‘ll still get some feet
sliding, but you‘ll also have some freedom to move exactly how you want. The choice is

yours.

The Movement GYM

As part of this tuning process, you should create a special map level in

your game that looks like an obstacle course. Create every kind of
environment and object your character can navigate: stairs, ladders,

slopes, ledges, doorways, and windows of every width, a forest of
trees or columns, crawlspaces, and anything else you can think of.

Every time you make a change to any code or data, including the
shape of the character hull, run through the obstacle course and make

sure that everything still works. You’ll be surprised how easy it is to

tweak something and completely break your entire character
movement system.

I could probably write a whole chapter just on character movement. It‘s a big subject, and
one not tackled lightly. One bit of advice, if you are just starting out: Don‘t worry about

sliding feet, and certainly don‘t worry about hovering feet above stairs and ramps, at least
at first. Some games solve this problem, but they also tend to have huge budgets. The

important bit is to make your game fun first. You can spend any amount of money on cool

ankle blending on your main character, but no one will give a damn if your game isn‘t fun to
start with.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Special Objects: Stairs, Doorways, and Trees

Some objects need special collision hulls because they interact with characters or objects in
ways that don‘t necessarily have a direct correlation to their visible shape. Good examples

of these objects are stairs, doorways, and trees.

Stairs are tough because you really want two completely different collision shapes,
depending on the dynamic object interacting with them. Most objects like crates and barrels

would use a pretty similar, although simplified, version of the visible geometry. When they

fall or roll down stairs, they‘ll react to the edges and corners and bounce around exactly as
you‘d expect. Characters, on the other hand, are usually a different story.

When you watch someone ascend or descend a staircase, their head doesn‘t follow a sharp

square wave. Instead, it bobs smoothly with each step, but not too much. This bobbing is
even less when the character is moving quickly, such as running. If you put a naive solution

in your character/physics model, your character would probably follow the exact shape of
the stairway, causing a very unnatural and jerky movement. The easiest solution to this

problem is to make two collision hulls for stairs—one for characters and one for every other
kind of object. The collision hull for characters should be a simple ramp, which will create a

nice movement when characters move up and down stairs. The second collision hull for the
stairway will look like stairs, although perhaps a very low polygon version of them for

efficiency. Using this second collision hull, normal objects will roll and bounce, instead of

sliding. Using two hulls for stairways is a good economical trick to make your game look
good for characters and objects.

Get Character Movement Done Early

Your character movement really is at the heart of your game,

if you think about it. You should therefore make sure that

your character movement system is scheduled extremely
early in development, before the level geometry is built.

Then designers will be able to test everything against a
completely final character movement system. Wait too long,

and the designers will have to guess how high your character
can jump or what slopes it can climb. Believe me, you don‘t

want them to guess on stuff like that.

I like running through doorways in games, which is probably why I get fragged a lot. Your

artists probably don‘t know this, but it‘s easy to create a door that‘s hard to walk through
by making it too small or by having odd door jamb geometry. Doors should be a little bigger

than you experience every day. This helps the player have some leeway on either side when
walking through. If the character is running all the time, you‘ll want even more slop in the

door size, or the collision hull will get caught on the sides too easily. Rebounding is a
possible solution, but if the door is too small, you‘ll just hit the other side and come to a

complete halt.

Vegetation, especially trees, should have collision geometry for the big woody parts like the
trunk, but be sure to leave it completely off of the foliage. These objects are usually part of

the physics simulation as static (mass=0) objects, and as such, they won‘t move even if

they are hit by a huge force. This includes landing a 1969 Buick in the canopy of something
as wispy as an ornamental pear tree. Basically, any object stuck in a tree in your game will

likely look a little stupid or be annoying.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Using a Collision System

Any collision system worth its salt should be able to do a few basic things: report collision

events, raycast, shapecast, and handle phantom objects. Collision events have more than

just a location and two objects, and this extra information will help you spawn some
important game logic changes or game view changes. Raycasting and shapecasting are

important for a number of reasons, some of which will become apparent shortly. Phantom
volumes that can detect entry and exit events, sometimes called triggers, are usually simple

enough to be handled with your own code, unless they aren‘t simple shapes. Finally, a good
collision system should support collision groups, because not every object needs to be able

to collide with every other object.

A collision event should give you at a very minimum the following data: the two objects that
collided (or separated), the sum normal of the collision, and the force of the collision. While

it might not have occurred to you yet, objects separating are equally as important in
computer games as objects colliding. If two objects collide, the game might impart damage

to them or cause a sound effect to play. The force of the collision might alter these events.

You might want to run some kind of particle-effect animation for forceful collisions, for
example.

Some collision systems will give you more data, such as a list of contact points and the

collision normal for each of those points. This might be useful for spreading out the particle
effect, or determining whether one object had sufficient force at one point to penetrate the

other object or cause some kind of special damage. I admit, that last example is a bit of a
reach. I can‘t think of any game that really goes that far just yet, but someone might figure

out a good use for this data.

Raycasting is both a savior and a curse. It stabs a ray from a start location in your game
world to any other point and gives you the collision information for anything it intersects

along the way. This is really useful for detecting line of sight from an AI creature to your
player‘s character, or perhaps it can be used to probe the surrounding geometry to figure

out where to place a third-person camera. The problem with raycasting is that it‘s only
accurate to a point.

I know that was a horrible pun, but I‘m actually serious. The ray is infinitely thin, and can

therefore slip through the smallest cracks in your geometry. If you want to know something
about the general shape of the local geometry, such as if your character is standing next to

an open window, you can make a few stabs with these rays, but they might miss something

important, such as bars over the windows. Your raycasts could instruct your character
animation system to allow your player to climb right through those bars. I‘ll give you one

more example. Let‘s say you want to make a single raycast to determine if an AI creature
can see your player. You could easily hide behind the thinnest pole, if you were lucky

enough to stand in exactly the right place. The ray could intersect the pole, causing it to
believe there was a solid object in the way. A simple hack uses more ray-casts from the

center of the creature‘s forehead to various parts of the players body, like an arm or a foot.
Then it‘s very difficult to hide, but those raycasts are more performance intensive.

Everything is a trade-off.

This can get expensive fast, though. Raycasts can be pretty expensive, especially if you
want a list of objects sorted by distance, rather than a simple yes or no answer to the ―did

my ray hit anything‖ question. Back to the line-of-sight question—a good trick is to cache

the results of multiple raycasts over many game loops. If you cast one ray per loop from an
AI character, and your game is running at 30Hz, that‘s 30 rays per second you can cast!

Since human beings can only perceive delays lasting longer than about 100ms or 1/10th of
a second—a good general rule—you can even spread these raycasts out farther to once

every other frame or perhaps more. This is a game tuning thing, and you‘ll just have to play
with it.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Another option is the shapecast. Think of this as pushing a geometrical shape from a start

location in your game world along a straight line to somewhere else. This is more expensive
than a single raycast, but can be much more accurate if you are moving an object in your

game and want it to follow geometry closely. A good example of this is a wall-following
scheme, where your character closely follows the geometry of a wall, including beams and

wall sconces. Once you‘ve validated the move direction, move the character away from the
wall a bit and shape cast it back into the wall. If something like a beam or sconce is in the

way, the new position of your character will accommodate the annoying geometry. This is
exactly how the wall-flattening algorithm worked in Thief: Deadly Shadows.

Phantom objects, or triggers, are usually pretty simple to code without a physics or collision

system. They are usually simple proximity alarms that fire when some dynamic object gets
within range or leaves the active area. You use these things to open automatic doors, or

perhaps fire poison darts, or something like that. If you have a physics system, however,

you can make these areas into any arbitrary shape, as long as it is convex. This can be
really useful for tuning triggers into tight areas in your level. If all your trigger shapes have

to be spheres or cubes, you‘d have to make enough room for them to stay out of other
rooms or hallways nearby.

The idea behind a collision group is simple: it optimizes the entire collision system. As you

might expect, a collision system‘s algorithmic complexity grows with the complexity of the
geometry in question. Remove some of this geometry, and you speed up your simulation.

This is done by sorting objects into collision groups, essentially lists of objects that can
collide with one another and those that can‘t. For example, objects like a bunch of crates on

the first floor can‘t collide with another group of crates on the second floor if they are
physically separated by something like an elevator. Set those objects into different collision

groups, and your physics system will thank you for it by running a few milliseconds faster.

Integrating a Physics SDK

Most programmers aren‘t going to write their own physics system. They‘ll most likely grab a

physics SDK off-the-shelf and integrate it into their game. Since I‘m likely describing most
of the readers of this book, let‘s discuss this important integration task.

Note that the code presented in this section is only a tiny part of integrating a physics SDK

into a complete game. The functionality here won‘t get you much past bouncing balls on a
ground plane, so don‘t expect more than that. The goal is to show you how a third-party

physics system fits into the game architecture presented in this book. It‘s up to you to
extend this class for additional functionality or use a different SDK than the one I chose.

It helps to discuss an interface class for a simple physics system. The interface shown here

creates a few objects and manages their movements. If you want to abstract an entire
physics system, you‘d extend this class quite a lot. Actually, you‘d extend this interface and

probably create a few new ones. We‘ll keep it simple for now, just to get you started. After
the interface discussion, we‘ll implement it using the Bullet Physics SDK available from

www.bulletphysics.com, which is available for free under the Zlib license.

class IGamePhysics

{

public:

 virtual void VOnUpdate(int deltaMilliseconds) = 0;

 virtual void VSyncVisibleScene() = 0;

 virtual void VRenderDiagnostics() = 0;

../../default18.htm
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 virtual void VCreateSphere(float radius, ISceneNode

*sceneNode)=0;

 // ... you can create methods here, for other shapes or meshes

 virtual void VCreateTrigger(Vec3 const &pos, float dim, int

triggerID)=0;

 virtual ~IGamePhysics() { };

};

The first method, VOnUpdate(), starts the physics simulation, which recalculates new

positions and orientations for moving objects and queues physics event callbacks like

collision or trigger events. The second method, VSyncVisibleScene(), is responsible

for iterating through all of the physics objects and updating the visible geometry with new

locations and orientations. The VRenderDiagnostics() method is a special routine that

draws physics debug data to the renderer. It is a critical tool for you to debug physics
problems. The remaining interface methods create different physics objects and attach them

to the simulation, such as a sphere. It is through methods like VCreateSphere() that

you add physical presence to your game objects so they can move just like they would in

the real world.

Here‘s the implementation of that interface using the Bullet Physics SDK:

class BulletPhysics : public IGamePhysics, boost::noncopyable

{

 // use auto pointers to automatically call delete on these

objects

 // during ~BulletPhysics

 // these are all of the objects that Bullet uses to do its

work.

 // see BulletPhysics::VInitialize() for some more info.

 std::auto_ptr<btDynamicsWorld>

m_dynamicsWorld;

 std::auto_ptr<btBroadphaseInterface> m_broadphase;

 std::auto_ptr<btCollisionDispatcher> m_dispatcher;

 std::auto_ptr<btConstraintSolver> m_solver;

 std::auto_ptr<btDefaultCollisionConfiguration>

m_collisionConfiguration;

 std::auto_ptr<BulletDebugDrawer> m_debugDrawer;

 // keep track of the existing rigid bodies: To check them for

updates

 // to the actors' positions and to remove them when their

lives are

 // over.

 typedef std::map<ActorId, BulletActor*>

ActorIDToBulletActorMap;

 ActorIDToBulletActorMap m_actorBodies;

 // also keep a map to get the actor ID from the btRigidBody*

 typedef std::map<btRigidBody const *, ActorId>

RigidBodyToActorIDMap;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 RigidBodyToActorIDMap m_rigidBodyToActorId;

 // data used to store which collision pair (bodies that are

touching)

 // need collision events sent. When a new pair of touching

bodies are

 // detected, they are added to m_previousTickCollisionPairs

and an

 // event is sent. When the pair is no longer detected,

they are

 // removed and another event is sent.

 typedef std::pair< btRigidBody const *, btRigidBody const * >

 CollisionPair;

 typedef std::set< CollisionPair > CollisionPairs;

 CollisionPairs m_previousTickCollisionPairs;

 // helpers for sending events relating to collision pairs

 void SendCollisionPairAddEvent(btPersistentManifold const *

manifold,

 btRigidBody const * body0,

 btRigidBody const * body1);

 void SendCollisionPairRemoveEvent(btRigidBody const * body0,

 btRigidBody const * body1

);

 // common functionality used by VAddSphere, VAddBox, etc

 void AddShape(IActor * actor,

 btCollisionShape * shape,

 btScalar mass,

 enum PhysicsMaterial mat);

 // helper for cleaning up objects

 void RemoveCollisionObject(btCollisionObject * removeMe);

 // find the rigid body associated with the given actor ID

 btRigidBody * FindActorBody(ActorId id) const;

 // find the BulletActor object with the given actor ID

 BulletActor* FindBulletActor(ActorId id) const;

 // find the actor ID associated with the given body

 optional<ActorId> FindActorID(btRigidBody const *) const;

 // callback from bullet for each physics time step. set in

VInitialize

 static void BulletInternalTickCallback(btDynamicsWorld *

const world,

 btScalar const

timeStep);

public:

 BulletPhysics();

 virtual ~BulletPhysics();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 // Initialiazation and Maintenance of the Physics World

 virtual bool VInitialize();

 virtual void VSyncVisibleScene();

 virtual void VOnUpdate(float deltaSeconds);

 // Initialization of Physics Objects

 virtual void VAddSphere(float radius,

 IActor *actor,

 float specificGravity,

 enum PhysicsMaterial mat);

 virtual void VAddBox(const Vec3& dimensions,

 IActor *gameActor,

 float specificGravity,

 enum PhysicsMaterial mat);

 virtual void VAddPointCloud(Vec3 *verts,

 int numPoints,

 IActor *gameActor,

 float specificGravity,

 enum PhysicsMaterial mat);

 virtual void VRemoveActor(ActorId id);

 // Debugging

 virtual void VRenderDiagnostics();

 // Physics world modifiers

 virtual void VCreateTrigger(const Vec3 &pos,

 const float dim,

 int triggerID);

 virtual void VApplyForce(const Vec3 &dir, float newtons,

ActorId aid);

 virtual void VApplyTorque(const Vec3 &dir, float newtons,

ActorId aid);

 virtual bool VKinematicMove(const Mat4x4 &mat, ActorId aid);

 virtual void VRotateY(ActorId actorId, float angleRadians,

float time);

};

You‘ll notice our new class wraps the Bullet data structures for the SDK and a set of
components, including a world, a collision dispatcher, a constraint solver, and other

components of the Bullet physics system. They are created separately so the user (that‘s
you!) can easily customize the various behaviors of Bullet.

For our example, we‘ll use the most common default components that Bullet provides:

btBroadphaseInterface, btCollisionDispatcher, btConstraintSolver,

and btDefaultCollisionConfiguration. I‘ll describe these components in more

detail in a second.

You‘ll also notice when you look at the code that our physics system uses a physics system-

specific vector class, btVector3. It is quite common for a physics system to have its own

data structures or classes for common fundamental mathematics: vectors, matrices, and so
on. To be honest, this is one thing that annoys me, since you‘ll be forced to make

conversion functions between your physics system‘s 3D vector and your game system‘s 3D

http://lib.ommolketab.ir
http//lib.ommolketab.ir

vector, and quite possibly your renderer‘s 3D vector. Yuck. I hate it too. You almost wish

you could recompile the whole thing with your own data types! Ah well....

The Differences Between std::auto_ptr and
boost::shared_ptr

BulletPhysics uses std::auto_ptrs to store its

components. These are handy little components out of the

C++ standard whose sole purpose is to call delete on their
stored pointers when they are destructed. So, you don‘t have

to remember to call delete on them during

~BulletPhysics!

std::auto_ptrs are a class of ―smart pointers,‖ like the

boost::shared_ptrs used elsewhere. The difference is

that std::auto_ptrs have slightly less overhead, but the

downside is they can‘t be safely copied like a

boost::shared_ptr can. I use them here because we

never copy these pointers, but if you need full ―copyability‖

(or you‘re just not sure), use boost::shared_ptr!

Components of the Bullet SDK

The most important component managed by Bullet is the btDynamicsWorld object. This

is the parent object that manages the other components and provides the main interface

point to Bullet‘s internal physics system. When btDynamicsWorld’s constructor is

called, we pass in pointers to the other components in order to specify our desired behavior.

One of those components is a subclass of the btBroadphaseInterface. This class

manages the ―broad phase‖ of collision detection, which is the first test. This phase is fast

but inaccurate, and once a possible collision has passed this test, it is sent to the ―narrow

phase,‖ which is managed by btCollisionDispatcher. We use Bullet‘s

btDbvtBroadphase, which has good default behavior.

The btCollisionDispatcher handles very precise collision detection between objects

in the system. Detecting collisions this way can be very slow, however, so it only tests
collisions that have passed the broad phase. Once collisions are detected, this object also

dispatches the collision pairs to the world to be handled, hence the name.

Next, let‘s look at the subclass of btConstraintSolver. In Bullet, a ―constraint‖ is a

spring, hinge, or motor—basically anything that restricts an object‘s freedom of motion. You

can have hinge constraints on a door, or slider constraints like a piston, or basically

anything you can think of. The btSequentialImpulseConstraint-Solver manages

these. Unfortunately, the scope of our physics system is too narrow to really demonstrate

constraints, but trust me, they‘re cool.

The final initialization component is btDefaultCollisionConfiguration. This object

manages some aspects of memory usage for the physics system. We‘re using the default

configuration because we don‘t want to do anything fancy with memory allocation.

The last object created here is BulletDebugDrawer, which actually handles debugging

tasks for your game engine. After all, a physics system can‘t draw a line with a renderer it

knows nothing about, so you get to help it along. The same goes with error reporting. Your

http://lib.ommolketab.ir
http//lib.ommolketab.ir

game should be able to define how it wants to handle physics system errors or informational

messages.

For more information about any of these classes, consult the Bullet documentation, or

better yet, read the Bullet source code and examples. Open source is great that way!

Initialization

Let‘s take a look at the implementation of the IGamePhysics interface, Bullet-

Physics. The init function for this implementation class runs through the following tasks:

 Initializes the btDynamicsWorld and components‘ members.

 Creates the internal tick callback, which is used to send collision events.

 Sets debug rendering parameters.

bool BulletPhysics::VInitialize()

{

 // VInitialize creates the components that Bullet uses

 // this controls how Bullet does internal memory management

during the

 // collision pass

 m_collisionConfiguration.reset(new

btDefaultCollisionConfiguration());

 // this manages how Bullet detects precise collisions between

pairs of

 // objects

 m_dispatcher.reset(

 new btCollisionDispatcher(m_collisionConfiguration.get()

));

 // Bullet uses this to quickly (imprecisely) detect

collisions between

 // objects. Once a possible collision passes the broad phase,

it will be

 // passed to the slower but more precise narrow-phase

collision detection

 // (btCollisionDispatcher).

 m_broadphase.reset(new btDbvtBroadphase());

 // Manages constraints which apply forces to the physics

simulation.

 // Used for e.g. springs, motors. We don't use any

constraints right now.

 m_solver.reset(new btSequentialImpulseConstraintSolver);

 // This is the main Bullet interface point. Pass in all these

components

 // to customize its behavior.

 m_dynamicsWorld.reset(

 new btDiscreteDynamicsWorld(m_dispatcher.get(),

 m_broadphase.get(),

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 m_solver.get(),

m_collisionConfiguration.get()));

 // also set up the functionality for debug drawing

 m_debugDrawer.reset(new BulletDebugDrawer);

 m_dynamicsWorld->setDebugDrawer(m_debugDrawer.get());

 // and set the internal tick callback to our own method

 // "BulletInternalTickCallback"

 m_dynamicsWorld->setInternalTickCallback(

BulletInternalTickCallback);

 m_dynamicsWorld->setWorldUserInfo(this);

 return true;

}

This is nice and straightforward. This function creates the components of the physics system
and then passes them into the constructor of the physics world.

One important piece of code in the initialize function turns on a few rendering diagnostics by

setting up the BulletDebugDrawer, which has the capability of visibly rendering collision

shapes, contact points, and contact normals. Depending on what your problem is, you might

want other things, but this is a good basic set. If you were really smart, you‘d create a little
command line debug console in your game, and be able to turn on/off different physics

debug information at a whim. That‘s exactly what we had for Thief: Deadly Shadows, and it

saved our butts on more than one occasion. You don‘t want to draw them all because
there‘s too much information. In fact, you might even want to filter the information for

particular objects, which is something you can do in the debug renderer class you write
yourself.

Shutdown

Shutting down the physics system is pretty easy. Clean up all of the btRigidBody objects

that you‘ve allocated and added to the physics system and then delete the physics system

components. In the sample code, those components are stored with auto_ptrs, which

will handily invoke delete on them for us, so all you need to do is clean up the active bodies
in the system.

BulletPhysics::~BulletPhysics()

{

 // delete any physics objects which are still in the world

 // iterate backwards because removing the last object doesn't

affect the

 // other objects stored in a vector-type array

 for (int i=m_dynamicsWorld->getNumCollisionObjects()-1;

i>=0; --i)

 {

 btCollisionObject * const obj

 = m_dynamicsWorld->getCollisionObjectArray()[i];

 RemoveCollisionObject(obj);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 }

 // destroy all the BulletActor objects

 for (ActorIDToBulletActorMap::iterator it =

m_actorBodies.begin();

 it != m_actorBodies.end();

 ++it)

 {

 BulletActor* pBulletActor = it->second;

 delete pBulletActor;

 }

 m_actorBodies.clear();

 // auto_ptrs will handle deletion of m_dynamicsWorld et. al.

}

Updating the Physics System

Somewhere in the main loop of your game, you‘ll call two methods of this physics class to

update the physics simulation and then pass those updates along to the visible geometry. It
will probably look something like this:

if (m_pBaseGamePhysics)

{

 m_pBaseGamePhysics->VOnUpdate(deltaMilliseconds);

 m_pBaseGamePhysics->VSyncVisibleScene();

}

Let‘s look at the guts of these methods:

void BulletPhysics::VOnUpdate(float const deltaSeconds)

{

 // Bullet uses an internal fixed timestep (default 1/60th of

a second)

 // We pass in 4 as a max number of sub steps. Bullet will

run the

 // simulation in increments of the fixed timestep until

"deltaSeconds"

 // amount of time has passed, but will only run a maximum

of 4 steps

 // this way.

 m_dynamicsWorld->stepSimulation(deltaSeconds, 4);

}

Simple, eh? The important thing to know here is that Bullet‘s stepSimulation()

function makes sure that even if your game is running slower than 60Hz, the physics

system is always ticked at a maximum time delay of 1/60th of a second. This is important
because a large time delay can create instability in the simulation. Physics systems

generally don‘t deal well with deep interpenetrations of objects, which happens a lot when
objects move a large distance in between simulation steps.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Incredible Bouncing Camera

Physics systems are horribly sensitive to frame rate. When I

was working on Thief: Deadly Shadows, I had to program a

simple spring attached to the camera system, which created
a smooth movement of the camera under lots of game

situations, for example, when the main character jumped off
a wall. On my first attempt, I noticed that the camera could

easily bounce out of control, as if the spring were getting
more and more energy until the camera system crashed.

After a little debugging, I noticed the system crashed more
easily in areas with a low frame rate. The problem was that

my spring system wasn‘t being ticked at a high enough frame

rate, say 60Hz, and the spring calculation would accumulate
energy. The solution was pretty easy. I just called the spring

calculation in a tight loop, with a delay of no more than
1/60th of a second, and everything was fine.

The trade-off is that ticking your physics simulation multiple times in one game loop is
expensive, so try your best to keep enough CPU budget around for everything: rendering,

AI, sound decompression, resource streaming, and physics.

Another important note is that Bullet automatically calls an ―internal callback‖ once every

internal time step. This callback is specified by the user. For our purposes, let‘s set it as

BulletInternalTickCallback. This function handles dispatching collision events.

After the physics system has updated itself, you can grab the results and send it to your

game‘s data structures. Any decent physics system lets you set a user data member of its

internal physics objects. Doing this step is critical to getting the new position and
orientation data to your game. Take a look at this in action:

void BulletPhysics::VSyncVisibleScene()

{

 // Keep physics & graphics in sync

 // check all the existing actor's bodies for changes.

 // If there is a change, send the appropriate event for the

game system.

 for (ActorIDToBulletActorMap::const_iterator it =

m_actorBodies.begin();

 it != m_actorBodies.end();

 ++it)

 {

 ActorId const id = it->first;

 // get the MotionState. This object is updated by Bullet.

 // It's safe to cast the btMotionState to

ActorMotionState,

 // because all the bodies in m_actorBodies were created

through

 // AddShape()

 ActorMotionState const * const actorMotionState =

 static_cast<ActorMotionState*>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 (it->second->m_pRigidBody->getMotionState());

 assert(actorMotionState);

 shared_ptr<IActor> gameActor = g_pApp->m_pGame->VGetActor(

id);

 if (gameActor)

 {

 if (gameActor->VGetMat()

 != actorMotionState-

>m_worldToPositionTransform)

 {

 // bullet has moved the actor's physics object.

 // update the actor.

 safeQueEvent(IEventDataPtr(

 GCC_NEW EvtData_Move_Actor(id,

 actorMotionState->m_worldToPositionTransform))

);

 }

 }

 }

 }

 }

In Bullet, each physics actor has a MotionState that manages how the physics system

communicates with the game engine. As Bullet processes the physics world, it updates the

position and orientation stored in each MotionState for each actor. There are many ways

you could implement a MotionState to handle these position changes, but our system

simply stores the new data so that it can be processed in VSyncVisibleScene().

So once you get to VSyncVisibleScene, you loop through all the motion states. For

each motion state that has different data from the IActor‘s position, an event is sent so the

actor can update itself based on the physics data.

Creating A Simple Physics Object

Bullet represents all nondynamic physical bodies with the btRigidBody class. Let‘s take a

look at how you‘d create a sphere object, given a radius and a related game actor:

void BulletPhysics::VAddSphere(float const radius,

 IActor * const actor,

 float const specificGravity,

 enum PhysicsMaterial const mat)

{

 assert(actor);

 // create the collision body, which specifies the shape of

the object

 btSphereShape * const collisionShape = new btSphereShape(

radius);

 // calculate absolute mass from specificGravity

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 float const volume = (4.f / 3.f) * M_PI * radius * radius *

radius;

 btScalar const mass = volume * specificGravity;

 AddShape(actor, collisionShape, mass, mat);

}

void BulletPhysics::AddShape(IActor * const actor,

 btCollisionShape * const shape,

 btScalar const mass,

 enum PhysicsMaterial const mat)

{

 // actors get one body apiece

 optional<ActorId> const maybeID = actor->VGetID();

 assert(maybeID.valid() && "Actor with invalid ID?");

 ActorId const actorID = *maybeID;

 assert(m_actorBodies.find(actorID) == m_actorBodies.end()

 && "Actor with more than one physics body?"

);

 // localInertia defines how the object's mass is distributed

 btVector3 localInertia(0.f, 0.f, 0.f);

 if (mass > 0.f)

 shape->calculateLocalInertia(mass, localInertia);

 // set the initial position of the body from the actor

 ActorMotionState * const myMotionState

 = GCC_NEW ActorMotionState(actor->VGetMat());

 btRigidBody::btRigidBodyConstructionInfo rbInfo(mass,

 myMotionState, shape, localInertia);

 // set up the materal properties

 rbInfo.m_restitution = g_PhysicsMaterials[mat].m_restitution;

 rbInfo.m_friction = g_PhysicsMaterials[mat].m_friction;

 btRigidBody * const body = new btRigidBody(rbInfo);

 m_dynamicsWorld->addRigidBody(body);

 // create the BulletActor

 BulletActor* pBulletActor = GCC_NEW BulletActor(body);

 // add it to the collection to be checked for changes in

 // VSyncVisibleScene

 m_actorBodies[actorID] = pBulletActor;

 m_rigidBodyToActorId[body] = actorID;

}

Most physics systems have easy ways to create basic shapes like spheres, boxes, and

capsules. In Bullet, spheres are represented by the btSphereShape class. Creating an

http://lib.ommolketab.ir
http//lib.ommolketab.ir

object in the physics system is as simple as creating the object‘s shape and then passing

that shape to a new btRigidBody.

You‘ll notice that we‘ve separated out the creation of the shape in VAddSphere() and the

creation of the body in AddShape(). This is good practice because you can then reuse the

code in AddShape() when you create other types of objects.

Although we don‘t do it in this example, physics actors can be described with multiple base
shapes, which is a great feature. You could describe a hammer quite accurately with two

bodies, each with different sizes, shapes, and properties. In this case, we only have the one
sphere shape. The mass is calculated based on the volume and density of the material, so

the user can customize whether he wants an object that is dense like iron or light like
styrofoam.

Next comes the position, which is sucked right out of the actor‘s transform matrix. You pass

this in to a new MotionState. As discussed earlier, the MotionState is the interface

object that the physics system uses to notify your game of changes to the physics object‘s
position and orientation (from gravity, collisions, and so on). You pass this motion state

along with other configuration info into the constructor for the new btRigidBody and add

the btRigidBody object to the physics system.

The last part of the AddShape() method creates a BulletActor, which you can use as

a handle to the created physics object. Let‘s use it to check for updates to the

MotionState and also for removing the physics objects on shutdown.

Creating a Convex Mesh

Spheres are nice, but they aren‘t all that interesting. You‘ll probably want to create an

object that has a more interesting shape, and one way to do that is to use a convex mesh.
This is an object that has an arbitrary shape, with one restriction: it can‘t have any holes or

empty space in between parts of the same object. So, a potato is a convex mesh but a
donut is not.

Creating them in Bullet is pretty easy:

void BulletPhysics::VAddPointCloud(Vec3 *verts,

 int numPoints,

 IActor *actor,

 float specificGravity,

 enum PhysicsMaterial mat)

{

 assert(actor);

 btConvexHullShape * const shape = new btConvexHullShape();

 // add the points to the shape one at a time

 for (int ii=0; ii<numPoints; ++ii)

 shape->addPoint(Vec3_to_btVector3(verts[ii]));

 // approximate absolute mass using bounding box

 btVector3 aabbMin(0,0,0), aabbMax(0,0,0);

 shape->getAabb(btTransform::getIdentity(), aabbMin, aabbMax

);

 btVector3 const aabbExtents = aabbMax - aabbMin;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 float const volume = aabbExtents.x() * aabbExtents.y() *

aabbExtents.z();

 btScalar const mass = volume * specificGravity;

 AddShape(actor, shape, mass, mat);

}

Notice we‘re using our friend AddShape() to avoid duplicating work.

What this does is add the vertices of the convex mesh one by one, and Bullet will create a

shrink-wrap of polygons that represents the minimum volume object that contains all the
points. It will even reorder the polygons from your rendering representation, so it might

turn out more efficient for the collision system‘s algorithms. That‘s cool!

Creating a Trigger

Another useful object is the trigger. A trigger is something that gives you a callback if

objects enter or leave it, which can be very useful for many things. For example, you can

spawn some AIs when the player moves through a certain doorway.

Bullet triggers are the same as other objects, except they have no mass and they don‘t

collide with anything. Not colliding means that objects will move straight through them as if

they‘re not even there. The only thing they need to do is generate an event for the game
system when something touches them.

void BulletPhysics::VCreateTrigger(

 const Vec3 &pos, const float dim, int triggerID)

{

 // create the collision body, which specifies the shape of

the object

 btBoxShape * const boxShape

 = new btBoxShape(Vec3_to_btVector3(Vec3(dim,dim,dim))

);

 // triggers are immoveable. 0 mass signals this to Bullet.

 btScalar const mass = 0;

 // set the initial position of the body from the actor

 Mat4x4 triggerTrans = Mat4x4::g_Identity;

 triggerTrans.SetPosition(pos);

 ActorMotionState * const myMotionState

 = GCC_NEW ActorMotionState(triggerTrans);

 btRigidBody::btRigidBodyConstructionInfo

 rbInfo(mass, myMotionState, boxShape, btVector3(0,0,0));

 btRigidBody * const body = new btRigidBody(rbInfo);

 m_dynamicsWorld->addRigidBody(body);

 // a trigger is just a box that doesn't collide with

anything. That's

 // what "CF_NO_CONTACT_RESPONSE" indicates.

 body->setCollisionFlags(

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 body->getCollisionFlags() |

btRigidBody::CF_NO_CONTACT_RESPONSE);

 body->setUserPointer(GCC_NEW int(triggerID));

}

Of course, as long as the mesh components are convex, you could create a complicated

trigger zone on virtually any shape at all. Zones like that can be quite useful if you want
something to fire the trigger when it is in exactly the right place, and yet not intruding on

other spaces, perhaps behind walls.

The Physics Debug Renderer

One other important method of the IPhysics interface is VRenderDiagnostics:

void BulletPhysics::VRenderDiagnostics()

{

 m_dynamicsWorld->debugDrawWorld();

}

This method obviously doesn‘t do any of the rendering. Part of the BaseGamePhysics

class is a member that does the heavy lifting. Bullet lets you inherit from one of their base
classes and implement your own draw routines.

A physics system can‘t know or care how you render your visible geometry. It could be a

text display, and it wouldn‘t know any different except for all the extra CPU time it would
get! You simply can‘t debug physics problems looking at raw data, so the easiest debugging

technique for physics problems is to draw physics data as visible geometry. Collision hulls

show up as wireframes around your objects. Contact points and normals are drawn as lines,
and forces can be drawn as lines of different lengths in the direction of the force. Bullet

provides an easy way for you to do this. You simply inherit from the btIDebugDraw class,

overload a few methods, and you‘ll see everything you need to debug physics:

class BulletDebugDrawer : public btIDebugDraw

{

public:

 // btIDebugDraw interface

 virtual void drawLine(const btVector3& from,

 const btVector3& to,

 const btVector3& color);

 virtual void drawContactPoint(const btVector3& PointOnB,

 const btVector3& normalOnB,

 btScalar distance,

 int lifeTime,

 const btVector3& color);

 virtual void reportErrorWarning(const char*

warningString);

 virtual void draw3dText(const btVector3& location,

 const char* textString);

 virtual void setDebugMode(int debugMode);

 virtual int getDebugMode() const;

};

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Pretty simple. You just overload the provided methods to render on-screen and there‘s your

debug info! There‘s an incredible amount of useful stuff you can do with this data, including
histories, averages, and statistics of all sorts, but for this example, you just draw on-screen

in the simplest manner possible.

The most important method that we‘ve overridden is drawLine():

void BulletDebugDrawer::drawLine(const btVector3& from,

 const btVector3& to,

 const btVector3& lineColor)

{

 if (IDirect3DDevice9 * d3ddevice = DXUTGetD3D9Device())

 {

 DWORD oldLightingState;

 d3ddevice->GetRenderState(D3DRS_LIGHTING,

&oldLightingState);

 // disable lighting for the lines

 d3ddevice->SetRenderState(D3DRS_LIGHTING, FALSE);

 COLORED_VERTEX verts[2];

 verts[0].position.x = from.x();

 verts[0].position.y = from.y();

 verts[0].position.z = from.z();

 verts[0].color = D3DCOLOR_XRGB(BYTE(255*lineColor.x()),

 BYTE(255*lineColor.y()),

 BYTE(255*lineColor.z()));

 verts[1].position.x = to.x();

 verts[1].position.y = to.y();

 verts[1].position.z = to.z();

 verts[1].color = verts[0].color;

 d3ddevice->SetFVF(COLORED_VERTEX::FVF);

 d3ddevice->DrawPrimitiveUP(

 D3DPT_LINELIST, 1, verts, sizeof(COLORED_VERTEX));

 // restore original lighting state

 d3ddevice->SetRenderState(D3DRS_LIGHTING,

oldLightingState);

 }

}

Most of this information should be pretty familiar from the rendering chapter.

One point of interest is that lighting is turned off, so the debug lines will always be seen,

even in pitch darkness. The color of the lines is set by the physics system so you can tell
the different points, lines, and triangles apart from each other and what they mean.

Keeping the vertex buffer around from call to call is a good optimization at the cost of video
memory, but your development machines will likely have video cards with a little more

headroom anyway.

Don’t Count Memory Used Only for Debugging

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This tip might be a little off the subject, but the last paragraph

reminded me of it so here goes. Whenever you have memory

allocated for diagnostic or debugging purposes, make sure that you
don’t count it in your game’s memory budget! You can send the

testers into a panic if they see the memory budget skyrocket, and the
only reason it did so was that you allocated a couple of megabytes for

some debugging routine.

Another simple yet interesting method is reportErrorWarning:

void BulletDebugDrawer::reportErrorWarning(const char*

warningString)

{

 OutputDebugString(warningString);

}

The reason you want to do send errors and warnings to the debug window is pretty simple;

there is a wealth of information that can help you diagnose problems sitting in the error
stream. You must trap it yourself and send it somewhere useful, such as the output window

in the debugger, a log file, or preferably both. While writing this chapter, I used this very
code to figure out that I was sending in incorrect data while trying to create a collision hull

for a test object. If that‘s not good advertising, I don‘t know what is.

This version merely forwards the error message to the debug output stream. It‘s a good
start, but there‘s a whole world of things you can do with this information, including popping

up a dialog box, recording the data in a database, emailing a message to your physics
programmer, and so on.

Receiving Collision Events

Moving objects around realistically provides a great visual look to your game, but when

objects collide and interact, your game gets really interesting. A collision event can be
defined as when two objects change their contacts either by colliding or separating. In

Bullet, generating these events is a little tricky, but you can do it by using the internal tick

callback. This callback is set up in VInitialize(), and Bullet calls it once every internal

time step. It‘s a great place to put any work that needs to happen continuously within the

physics system.

void BulletPhysics::BulletInternalTickCallback(btDynamicsWorld

* const world,

 btScalar const

timeStep)

{

 assert(world);

 assert(world->getWorldUserInfo());

 BulletPhysics * const bulletPhysics

 = static_cast<BulletPhysics*>(world->getWorldUserInfo()

);

 CollisionPairs currentTickCollisionPairs;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 // look at all existing contacts

 btDispatcher * const dispatcher = world->getDispatcher();

 for (int manifoldIdx=0;

 manifoldIdx<dispatcher->getNumManifolds();

 ++manifoldIdx)

 {

 // get the "manifold", which is the set of data

corresponding to a

 // contact point between two physics objects

 btPersistentManifold const * const manifold

 = dispatcher->getManifoldByIndexInternal(manifoldIdx

);

 assert(manifold);

 // get the two bodies used in the manifold. Bullet stores

them as

 // void*, so we must cast them back to btRigidBody*s.

 // Manipulating void* pointers is usually a bad idea,

but we

 // have to work with the environment that we're given.

We know

 // this is safe because we only ever add btRigidBodys to

the

 // simulation

 btRigidBody const * const body0

 = static_cast<btRigidBody const *>(manifold-

>getBody0());

 btRigidBody const * const body1

 = static_cast<btRigidBody const *>(manifold-

>getBody1());

 // always create the pair in a predictable order

 bool const swapped = body0 > body1;

 btRigidBody const * const sortedBodyA = swapped ? body1 :

body0;

 btRigidBody const * const sortedBodyB = swapped ? body0 :

body1;

 CollisionPair const thisPair

 = std::make_pair(sortedBodyA, sortedBodyB);

 currentTickCollisionPairs.insert(thisPair);

 if (bulletPhysics->m_previousTickCollisionPairs.find(

thisPair)

 == bulletPhysics->m_previousTickCollisionPairs.end())

 {

 // this is a new contact, which wasn't in our list

before.

 // send an event to the game.

 bulletPhysics->SendCollisionPairAddEvent(

 manifold, body0, body1);

 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 }

 CollisionPairs removedCollisionPairs;

 // use the STL set difference function to find collision

pairs that

 // existed during the previous tick but not any more

 std::set_difference(bulletPhysics-

>m_previousTickCollisionPairs.begin(),

 bulletPhysics-

>m_previousTickCollisionPairs.end(),

 currentTickCollisionPairs.begin(),

 currentTickCollisionPairs.end(),

 std::inserter(removedCollisionPairs,

 removedCollisionPairs.begin()));

 for (CollisionPairs::const_iterator it =

removedCollisionPairs.begin(),

 end = removedCollisionPairs.end(); it != end; ++it)

 {

 btRigidBody const * const body0 = it->first;

 btRigidBody const * const body1 = it->second;

 bulletPhysics->SendCollisionPairRemoveEvent(body0, body1

);

 }

 // the current tick becomes the previous tick. this is the

way of all

 // things.

 bulletPhysics->m_previousTickCollisionPairs =

currentTickCollisionPairs;

}

This code does three things: First it collects all of the collision pairs from the physics
system. A collision pair is any two objects whose physics shapes overlap in the physics
world. So a box sitting on the floor is a collision pair, just like an arrow passing through a

tent is a collision pair. Our code finds all the pairs of objects that are touching each other
this tick.

Next, once all the collision pairs are collected, it compares them with the previous tick‘s

collision pairs. If there are any new ones, then an event is sent indicating that the two
objects came into contact with one another. If there are any pairs that existed in the

previous tick but no longer exist, an event is sent to tell the game system that the objects

separated from each other. Both of these events are quite useful in a game.

The great thing about using an event system for handling collision and separation is that the

physics system doesn‘t have to interpret the event and figure out what to do with it. That

should be up to the subsystems themselves. The sound system, for example, will listen for
collisions and play sounds based on the force and type of object. You might have a damage

manager that controls things like hit point reduction or spawning a destruction event. Either
way, the physics system doesn‘t have to know or care about all these other things in your

game.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Also note that usually we send a generic collision event for each collision, but we handle

triggers differently. Although they are handled the same by Bullet, triggers and collision
objects are logically different, and the game expects them to work differently. So the game

gets different events when the objects colliding include a trigger, and the game engine
doesn‘t know anything about what goes on under the hood. This way, you can change the

implementation if you want and the game engine doesn‘t have to know anything about it.
That‘s the beauty of this polymorphic interface.

The final thing that this internal tick callback does is store the list of collision pairs. This

saves them for you so you can compare them during the next tick.

A Final Word on Integrating Physics SDKs

Throughout this chapter, I‘ve described physics in general and one SDK in particular from
Bullet (www.bulletphysics.com). There are certainly others:

 Havok (www.havok.com): An extremely fully-featured commercially licensable

physics engine, but expensive and likely out of reach for small game companies or

individuals.

 PhysX (www.nvidia.com/object/nvidia_physx.html): A commercial grade

physics engine owned by NVidia and optimized for use with GPU based physics. A
software driver is also available.

 Newton Game Dynamics (http://physicsengine.com): A commercially

licensable game engine within reach of budget games.

 Open Dynamics Engine (www.ode.org): An open source engine that anyone can

use for free.

 Tokamak Physics Engine (www.tokamakphysics.com): Older versions are free,

newer versions are commercially licensable and within reach of budget games.

The SDKs are developed so rapidly that an exhaustive review of each of them in this book

would quickly become stale. I suggest you go to their Web sites, check out the developer

forums and licensing terms, and do a little surfing for others. New ones come out all the
time.

Whatever you do, don‘t think for a minute that you can plug in one of these physics systems

in a day or two and completely change the feel of your game. Integrating this technology is
much more than making it link and getting collision events sent around. You have to write a

lot of code to have your game react to what the physics system does to your dynamic
objects and the events it detects. That, my young Feynman, is an amazing amount of work,

and you shouldn‘t underestimate it.

Super Bouncy Barrels

I think I mentioned before that Thief: Deadly Shadows used

the Havok Physics SDK. The version of Unreal didn‘t really
have a good dynamics simulation, and Havok seemed to be

pretty cool. For the longest time the correct impulses created
by kinematic animation, such as characters bumping into

things, were drastically exaggerated. These huge impulses
would send huge barrels and crates spinning across the map

just by touching them, and while it was funny at first, after a

few weeks everyone just wanted things to work. The problem

../../default18.htm
../../default19.htm
../../nvidia_physx.html
../../default20.htm
../../default21.htm
../../default22.htm
http://lib.ommolketab.ir
http//lib.ommolketab.ir

was that the two physics programmers were so busy wiring

everything else that they didn‘t get around to fixing this
problem until after it had been seen by many a head honcho,

none of whom understood the real problem. There was just
too much work and too few people doing it.

But Wait, There’s So Much More

I have to admit to you right now that I changed my major in college from Computer

Science, Science Option to the Business Option because I failed a physics test. Granted, I
had totally forgotten that the test was going to happen, and had I studied for it, I probably

would have stuck with it.

I suggest you have a little more patience than I do. This stuff is devilishly difficult, and is
probably one of the most challenging areas of game programming. It tricks you by making a

20-minute task to get a sphere bouncing around on a checkerboard floor seem easy, and
then forces you into six months of solid hell getting elevators to lift objects properly.

Physics is already being hardware accelerated in our game machines, especially those

equipped with NVidia graphics cards. When I wrote the second edition of this book, I
predicted it would take until the fourth edition for this to happen, and I guess I was wrong.

It happened faster than that. I did predict that it would be integrated into video cards,

though! Read the second edition if you don‘t believe me.

Either way, collision, physics, and dynamics are in our games to stay. The challenge is

making a great physics simulation in your game translate directly to the fun factor. That‘s

not as easy as you think, but I have faith, and I can‘t wait to see where this goes.

Chapter 16. Network Programming Primer

In This Chapter

 How the Internet Works

 Sockets API

 Making a Multiplayer Game with Sockets

 Core Client-Side Classes

 Core Server-Side Classes

 Wiring Sockets into the Event System

 Gosh, if It‘s That Easy

I remember the very moment the Internet became relevant to my job, and it completely

changed the way I worked. A colleague of mine walked into my office and showed me a
Web site for the very first time. He‘d made it himself, and although it was very simple, I

../../ch16lev1sec1#ch16lev1sec1
../../ch16lev1sec2#ch16lev1sec2
../../ch16lev1sec3#ch16lev1sec3
../../ch16lev1sec4#ch16lev1sec4
../../ch16lev1sec5#ch16lev1sec5
../../ch16lev1sec6#ch16lev1sec6
../../ch16lev1sec7#ch16lev1sec7
http://lib.ommolketab.ir
http//lib.ommolketab.ir

knew right away that the Internet was going to change the world. Well, maybe it wasn‘t

quite that clear. I missed out on the Netscape IPO, but it was certainly clear after that.

At the time, computer games could be played via modem or over a LAN, but they were

quite the bear to program. Once gamers populated the Net, game companies started using

the Internet, and the communications protocols it uses, for hooking up fragfests. Now,
whether you‘re playing with a buddy in the next office or a friend from overseas, pretty

much all the network games use Internet protocols to communicate.

As it turns out, getting two computers to talk to each other is pretty dang easy. The trouble
happens when you try to make some sense of the bits coming in from the other side:

keeping track of them and their memory buffers, changing the raw data stream into useful
game data, and trying to create a plug-in architecture that doesn‘t care if you are playing

locally or from afar.

This chapter covers moving bits across the network, how you come up with the bits to send,
and how you transform that raw data back into something your game can use just as if

there were no network at all. First, we‘ll start with a little primer on the Internet and its two
most common Internet protocols: the transport control protocol (TCP) and user datagram

protocol (UDP).

How the Internet Works

You probably have some familiarity with TCP and UDP. You might have heard that UDP is

what all good network games use and TCP is for chat windows. The truth, as usual, is a little
more complicated than that. TCP is a guaranteed, full-duplex protocol. It looks and feels

just as if there were no remote connection at all. You can write code that simply pulls bits
out just as they were sent in, in the right order, with nothing missing and no duplications. It

is easier to program because you don‘t have to worry so much about wacky Internet

problems that can happen during packet transmission: packet loss, packet splitting, or even
corruption. The best analogy is a pipe—what goes in will come out the other side, or you‘ll

receive an error telling you something bad happened to the connection. The possibility of
problems exists, and you should watch out for socket exceptions. Unlike files or UNIX-style

pipes, you won‘t get an ―end of file‖ marker.

UDP is a little more like sending messages by using those crazy bicycle messengers you see
in downtown areas. You don‘t know when or even if your package will get to its destination.

You also won‘t be informed if the package (your data) was split into multiple pieces during
the transmission. I guarantee you that if you required a bicycle messenger to carry a

10,000-page document, that person would get friends to help, and it would be up to the
receiver to make some sense of it when it all arrived.

By design, UDP is fairly lightweight, but the messages aren‘t guaranteed to arrive at their

destination in any order, to arrive in one piece, or to arrive at all. TCP, the guaranteed
delivery service, doesn‘t give its guarantees of a pipe-like connection lightly. It does its

work by having the receiver acknowledge the reception of a complete, uncorrupted packet

of data by sending a message back, essentially saying, ―OK, I got packet #34, and it checks
out, thanks.‖ If the sender doesn‘t receive an acknowledgement, or an ACK, it will resend

the missing or otherwise corrupted packet.

Of course, you don‘t have to wait to receive the ACK before sending another message; you
can set your TCP connection to allow you to stuff data in as fast as you want. It will send

the data as quickly as possible and worry about keeping track of the ACKs internally. This
kind of socket is called a nonblocking socket because it operates asynchronously. A blocking

socket can be useful if you want to enforce a rigid exchange between two computers,
something like talking over a two-way radio. One computer sends data, and it blocks until

the data is received by the other side. When I say ―blocks,‖ I mean exactly that—the socket
function that sends data will not return until the data actually gets to the other side. You

http://lib.ommolketab.ir
http//lib.ommolketab.ir

can see that this kind of thing would be bad for servers or clients; you generally want to

send and receive data without waiting for the other side to get it and answer. This is the
same, regardless of whether you use TCP or UDP.

Winsock or Berkeley?

You may have heard about Berkeley sockets, or the Berkeley implementation of the sockets
API. It‘s called that because it was developed for the Berkeley UNIX operating system, and

it is a commonly used implementation of the TCP/UDP protocols. Of course, Microsoft

developed an implementation of TCP/UDP as well, called WinSock. You might wonder which
one is better and debate endlessly about it, but I‘ll leave it to the experts and Internet

forums. I like to use Berkeley sockets for multiplayer games, even under Windows. There‘s
a caveat to that, and I‘ll clue you in on it later.

Here is why I like to use Berkeley. When there‘s a more standard API out there that works,

I‘ll tend to gravitate toward it. It‘s really a little like why Sony VHS won over Betamax; it
had more to do with the fact that more people were using VHS and nothing at all to do with

the fact that Betamax was a superior format. Actually, the people that were using VHS
represented the porn industry, and some say that‘s why it succeeded so quickly! But I

digress....

You are free to use Berkley style sockets on a Windows machine, as I have done throughout
this chapter. Since space is such a premium—God knows this book is heavy enough to give

you cramps if you hold it too long—I‘ll show you how to use TCP to get your game running
as a multiplayer game. You can investigate UDP once you‘ve mastered TCP. First, you have

to know something about the Internet. After all, you can‘t send data to another computer

on the Internet until you connect to the computer, and you can‘t connect to it until you can
identify it uniquely from every other computer on the Net.

You are also free to use WinSock or Berkeley and as long as you use the same protocols,

which you‘ll see in a moment, you can set up network communications with any other
computer on the Internet. You can use your program to connect to Web servers, FTP sites,

whatever you want. You just have to know what IP address to connect to, how to format
the bytes you send, and how to parse the bytes you receive.

Internet Addresses

Every computer that has TCP/IP installed has an IP address to identify the computer on the

network. I say ―the network‖ and not ―the Internet‖ very specifically because not every
network is visible to the Internet. Some, like the one in my house and the network where I

work, are hidden from the Internet at large. They act like their very own mini-Internets. The
computers on these mini-Internets only need a unique IP address for their network. Other

computers, like the one that hosts my Web site, are attached directly. These computers
need a unique IP address for the Internet at large.

The IP address is a 4-byte number, something you can store in an unsigned int. Here‘s the

address for the computer that hosts my Web site, for example: 3486000987, or expressed
in hexadecimal: 0xCFC8275B. People usually write Internet addresses in dotted decimal

format to make them easier to remember. The above address would be expressed like this:
207.200.39.91. This may be easier to remember than 3486000987, but it‘s still no

cakewalk.

This address has two parts: the network ID number and the host ID number. The host ID is
the individual computer. Different networks have different sizes, and the designers of the

Internet were wise to realize this. If they had simply chosen to use two bytes to represent

the network ID and the host ID, the Internet would be limited to 65,536 networks and
65,536 computers on each network. While that might have seemed fine back in 1969 when

the first four computers inaugurated ARPANET, as it was called, it would hardly seem

http://lib.ommolketab.ir
http//lib.ommolketab.ir

sufficient now. The solution was to separate the network into address classes, as shown in

Table 16.1.

Table 16.1 provides a summary of the IP address classes that are used to create IP

addresses. The total size of the Internet, if you have a calculator handy, is about 3.7 billion

computers on 2.1 million networks of various sizes, most of them very small. Here‘s a quick
example of some of the holders of Class A address blocks on the Internet:

Table 16.1. IP Address Classes

Class Network ID Bytes Hosts on Network Networks on Internet

A 1 16,777,216 127

B 2 65,536 16,384

C 3 254 2,097,152

 BBN Planet, MA (NET-SATNET)

 IBM Corporation, NY (NET-IBM)

 DoD Intel Information Systems, Defense Intelligence Agency, Washington DC (NET-

DODIIS)

 AT&T (NET-ATT)

 Xerox Palo Alto Research Center, CA (NET-XEROX-NET)

 Hewlett-Packard Company, CA (NET-HP-INTERNET)

 Apple Computer Inc., CA (NET-APPLE-WWNET)

 Massachusetts Institute of Technology, MA (NET-MIT-TEMP)

 Ford Motor Company, MI (NET-FINET)

 Computer Sciences Corporation, VA (NET-CSC)

 U.S. Defense Information Systems Agency (DDN-RVN), VA (NET-DDN-RVN)

 Defense Information Systems Agency, Washington DC (NET-DISNET)

 U.S. Cable Networks

 Royal Signals and Radar Establishment, UK (NET-RSRE-EXP)

 Defense Information Systems Agency, VA (NET-MILNET)

 ARPA DSI JPO, VA (NET-DSI-NORTH)

 IBM Global Services, NH (NETBLK-IBMGLOBALSERV)

javascript:moveTo('ch16table01');
javascript:moveTo('ch16table01');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Halliburton Company, TX (NET-HALLIBURTON)

 Stanford University, CA (NET-SU-NET-TEMP)

 Japan Inet, Japan (NET-JAPAN-A)

 Bell-Northern Research, Canada (NET-BNR)

 Joint Tactical Command, Control, and Communications Agency, AZ (NET-JITCNET1)

 Joint Tactical Command, Control, and Communications Agency, AZ (NET-JITCNET2)

 Department of Social Security of UK, England (NET-ITSANET)

 Merck and Co., Inc., NJ (NET-MERCK2)

 Army National Guard Bureau, VA (NET-RCAS2)

 U.S. Postal Service, NC (NET-USPS1)

 Asia Pacific Network Information Center (NETBLK-APNIC2)

 European Regional Internet Registry/RIPE NCC (NETBLK-RIPE-C3)

 InterNIC Registration (NETBLK-INTERNIC-2)

Interesting list of organizations, isn‘t it? It‘s a virtual who‘s who of the military industrial
complex.

As you might have guessed, there‘s a central authority for handing out unique network ID

numbers to those who want to get on the Net. This authority is called the Internet
Corporation for Assigned Names and Numbers (ICANN). Once the network ID is assigned,

it‘s up to the local network administrator to hand out unique host IDs. In the case of the
network in my house, the unique host IDs are handed out by a device I have hooked up to

my network. Whenever one of my computers boots, it is assigned a host ID automatically.
The device that hands out the addresses is called a Dynamic Host Configuration Protocol

(DHCP) server, and is exactly what you find on most wireless routers. If I didn‘t have one of

these devices, I‘d have to assign each of my computers a unique IP address. What a hassle.

There are some special IP addresses you should know about, as well as some special

network IDs (see Table 16.2).

Table 16.2. Special IP Addresses and Network IDs

Address Description

127.0.0.1 Called the loopback address, and always refers to your computer. It is

also called the localhost.

127.x.x.x Loopback subnet; this network ID is used for diagnostics.

255.255.255.255 This IP address refers to all hosts on the local network.

javascript:moveTo('ch16table02');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 16.2. Special IP Addresses and Network IDs

Address Description

10.x.x.x

172.(16-31).x.x

192.168.x.x

Private networks; any address with these network IDs is considered on

the local network, and not on the Internet at large. Use these addresses

for your home or local company network if they don‘t need to be visible

on the Internet.

The Domain Name System

When you browse the Web, your Web browser program attaches to another computer on
the Internet, downloads a Web page and anything attached to it, and renders the Web page

so you can see it. But when you browse the Web, you don‘t go to http://207.46.19.254, do
you? If you put this specific address in your browser, you‘ll be rewarded with Microsoft‘s

Web page.

Luckily for us, there‘s an easier way to find computers on the Internet. Clearly,
www.microsoft.com is easier to read and remember than 207.46.245.42. The designers of

the Internet designed a distributed database called the Domain Name System, or DNS.

This system is structured like a hierarchical tree. The first level of the tree consists of the
top-level domains (TLD), as listed in Table 16.3.

Table 16.3. Top-Level Domains

TLD Description

.edu Educational institutions, mainly in the U.S. (reserved)

.gov United States government (reserved)

.int International Organizations (reserved)

.mil United States military (reserved)

.com Commercial (open for general use)

.net Networks (open for general use)

.org Organizations (open for general use)

.coop Cooperatives (sponsored)

.aero Air-Transport Industry (sponsored)

../../default23.htm
javascript:moveTo('ch16table03');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 16.3. Top-Level Domains

TLD Description

.museum Museums (sponsored)

.biz Business (open for general use)

.info Information (open for general use)

.name Individuals, by name (open for general use)

.pro Profession (open for general use)

TLDs are also available for foreign countries to use, although they are generally used in as
free and open a manner as the rest of the Internet. For example, .uk is used for the United

Kingdom and .cn is used for mainland China. Funny, the Pacific island of Tuvalu that sits

midway between Hawaii and Australia got lucky and pulled .tv as its TLD. The television
industry has made excellent use of these addresses.

As you can tell from Table 16.3, some of these TLDs are restricted and either managed by

ICANN or somehow sponsored by an authority agreed upon to manage assigning unique
names within their domain. The open, general use TLDs like .com, .net, and .org are

managed by ICANN.

Domain names within these top-level domains are issued by ICANN or another sponsoring
authority. When you register for a domain name, you have to provide all kinds of

information, but the really important piece of information is the primary name server. The
primary name server is the IP address of the computer that retains the authoritative version

of your domain name. It propagates this information to other name servers all over the
Internet. Name servers generally update themselves every few hours. Any new or changed

domain name takes a few days to register with enough name servers to be resolved quickly
by anyone on the Internet.

I‘ll show you how to use the sockets API to find Internet addresses in just a bit.

Useful Programs and Files

There are a couple of useful programs you‘ll find installed on virtually any computer, UNIX

or Windows. You‘ll use them for checking Internet connectivity and other useful things. They
are listed in Table 16.4.

Table 16.4. Useful Programs and Files for Internet Work

Name Description

ping This little program attempts to send information to another computer, and tells you

the time in milliseconds it took for the packets to arrive.

javascript:moveTo('ch16table03');
javascript:moveTo('ch16table04');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 16.4. Useful Programs and Files for Internet Work

Name Description

netstat This program can show you the state of current sockets on your computer. It can

tell you if they are listening for connections, connected, or about to be closed.

tracert This program tells you what Internet hops your packets have to make before they

are received by the host computer.

telnet This program attaches to a host computer and sends/receives text messages. It

can be great for debugging network code if your debug code can send/receive in

text mode.

hosts This is a file that holds locally overridden DNS information. If you want to force a

DNS name, like goober.mcfly.com to be any legal IP address, you can do it in this

file. On Windows machines, look for it in the system32\drivers\etc directory.

Windows machines also have a file ―lmhosts,‖ which stands for LanManHosts,

which is used by the Windows peer networking protocol, or SMB protocol. UNIX

machines running the free Samba server may also have an ―lmhosts‖ file.

Sockets API

Well, I‘ve now given you enough knowledge to be dangerous. All you need is some source

code. The sockets API is divided into a few different useful areas of code:

 Utility functions

 Domain Name Service (DNS) functions

 Initialization and shutdown

 Creating sockets and setting socket options

 Connecting client sockets to a server

 Server functions

 Reading and writing from sockets

Sockets Utility Functions

There are some useful conversion functions that help you deal with Internet addresses and

data that has been sent by another computer. The first two functions, inet_addr() and

inet_ntoa(), perform conversions from a text string dotted decimal IP address and the

four-byte unsigned integer. You‘ll notice the input parameter for inet_ntoa() is a

structure called in_addr:

../../default24.htm
http://lib.ommolketab.ir
http//lib.ommolketab.ir

unsigned long

inet_addr (

 const

char* cp

);

Takes a string value like ―127.0.0.1‖ and converts it to an unsigned

integer you can use as an IP address.

char* FAR

inet_ntoa(

 struct

in_addr in

);

Takes an in_addr structure and converts it to a string. Note: Copy the

string from the return pointer; don‘t assume it will be there for long. It

points to a static char buffer and may be overwritten the next time a

socket‘s function is called.

The in_addr structure is something that helps you break up IP addresses into their

component parts. It‘s not just a normal unsigned integer, because the values of the bytes
are in a specific order. This might seem confusing until you recall that different machines

store integers in Big-endian or Little-endian order. In a Bigendian system, the most

significant value in the sequence is stored at the lowest storage address (for example, ―big
end first‖). In a Little-endian system, the least significant value in the sequence is stored

first. Take a look at how the two systems store the 4-byte integer 0x80402010:

Big-endian 80 40 20 10

Little-endian 10 20 40 80

It‘s exactly backward from each other. Intel processors use Little-endian, and Motorola
processors use Big-endian. The Internet standard is Big-endian. This means that you have

to be really careful with the data you get from strange computers because it might be in the
wrong order. For certain sockets data structures, you are also expected to put things in

network order. Luckily, there are some helper functions for that.

The Rules are There for a Reason

It’s a good idea to always use the converter functions, even if you
know you’ll never have an Internet application that has to talk to

something with a different endian-ness. After all, there were a lot of

programmers in the 1960s that never thought they’d need more than
two digits to store the year, right?

The helper functions convert 4-byte and 2-byte values to and from network order:

u_long htonl(

 u_long

hostlong

);

Converts a 4-byte value from the host-byte order to network-

byte order.

u_long ntohl(

 u_long

hostlong

);

Converts a 4-byte value from the network-byte order to host-

byte order.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

u_long htonl(

 u_long

hostlong

);

Converts a 4-byte value from the host-byte order to network-

byte order.

u_short htons(

 u_short

hostshort

);

Converts a 2-byte value from the host-byte order to network-

byte order.

u_short ntohs(

 u_short

hostshort

);

Converts a 2-byte value from the network-byte order to host-

byte order.

Here‘s a short bit of code that uses the utility/conversion functions:

unsigned long ipAddress = inet_addr("128.64.16.2");

struct in_addr addr;

addr.S_un.S_addr = htonl(0x88482818);

char ipAddressString[16];

strcpy(ipAddressString, inet_ntoa(addr));

printf("0x%08x 0x%08x %s\n:", ipAddress, addr.S_un.S_addr,

ipAddressString);

The output, on my decidedly Little-endian Dell Inspiron, is this:

0x02104080 0x18284888 136.72.40.24

The first value, 0x02104080, is the unsigned long that is the converted IP address for
128.64.16.2. This is already in network order, so you can use it in sockets functions without

converting it. The next value, 0x18288488, shows you what happens when you send

0x88482818 through the htonl() function on my Dell. Your mileage may vary if you

happen to use a Mac! The last string on the output line is 136.72.40.24, which is the dotted

decimal format for the IP address given by htonl(0x88482818).

This can be devilishly confusing, so choose a nice calm day to start playing with network
programming.

Domain Name Service (DNS) Functions

The next set of functions helps you make use of DNS:

struct hostent* FAR

gethostbyname(

 const char* name

);

Retrieves host information, such as IP address, from a

dotted-decimal format string. If the host doesn‘t exist,

you‘ll get back NULL.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

struct hostent* FAR

gethostbyname(

 const char* name

);

Retrieves host information, such as IP address, from a

dotted-decimal format string. If the host doesn‘t exist,

you‘ll get back NULL.

struct hostent* FAR

gethostbyaddr(

 const char*

addr,

 int len,

 int type

);

Retrieves host information given a network address in

network byte order, the network address length, and

network type, such as AF_INET.

Both of these functions look up host information based on an address, either a text string in

dotted-decimal notation or an IP address in network order. Don‘t let the const char *

fool you in gethostbyaddr() because it doesn‘t want a text string. Here‘s a quick

example of using both of these:

const char *host = "ftp.microsoft.com";

struct hostent *pHostEnt = gethostbyname(host);

if (pHostEnt == NULL)

{

 fprintf(stderr, "No such host");

}

else

{

 struct sockaddr_in addr;

 memcpy(&addr.sin_addr,pHostEnt->h_addr,pHostEnt->h_length);

 printf("Address of %s is 0x%08x\n", host,

ntohl(addr.sin_addr.s_addr));

}

Both functions return a pointer to a data structure, hostent. The data structure stores

information about the host, such as its name, IP address, and more. It is allocated and

managed by the sockets system, so don‘t do anything other than read it. Notice the liberal
sprinkling of network-to-host conversion functions.

The output of the code is this line:

Address of ftp.microsoft.com is 0xcf2e858c

Instead of using the gethostbyname() function, I could have used these lines and used

gethostbyaddr():

unsigned int netip = inet_addr("207.46.133.140");

pHostEnt = gethostbyaddr((const char *)&netip, 4, PF_INET);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The DNS lookup functions make it easy for you to specify IP addresses in a human readable

form, which is important for setting up a server IP address in an options file or in a dialog
box without getting out the calculator.

DNS Functions Failing?

You can call the conversion functions anytime you want, but

the DNS lookup functions will fail if you try to call them

before you‘ve initialized the sockets API.

Sockets Initialization and Shutdown

Even if you are programming Berkeley style sockets on a Windows machine, you‘ll call the
Windows Sockets API to initialize the sockets system and shut it down:

int WSAStartup(

 WORD

wVersionRequested,

 LPWSADATA

lpWSAData

);

Initializes the sockets API; you must call it before calling

any other sockets function.

int WSACleanup(void); Call this to deregister the application from using sockets,

usually in your application cleanup code.

In the first function, WSAStartup(), you send in the version number of the sockets

implementation you want. At this writing, the most recent version of sockets is version 2.2,

and it has been that way for years. Notice that you want to send in the minor version

number in the high order byte, and the major version in the low order byte. If for some
reason you wanted to initialize Windows Sockets version 2.0, you‘d send in 0x0002 into the

WSAStartup() function. As you can see below, you can also use the MAKEWORD macro to

set the version number properly:

WORD wVersionRequested = MAKEWORD(0, 2); // set to 2.0

WSADATA wsaData;

int err WSAStartup(wVersionRequested, &wsaData);

WSAStartup() also takes a pointer to the WSADATA structure. This structure is filled with

data that describes the socket implementation and its current status, but that‘s about it.

WSACleanup() is called when you are ready to shut down your application.

Creating Sockets and Setting Socket Options

The embodiment of a socket is the socket handle. You should already be familiar with using
handles for everything from files to resources in a resource cache. The difference comes in

the multistep manner in which you create a connected socket. The easiest connection style

is a client-side connection. Doing this requires three steps. First, you ask the sockets API to

http://lib.ommolketab.ir
http//lib.ommolketab.ir

create a socket handle of a particular type. You have the option of changing socket options,

which tells the sockets API more information about how you want the socket to act. After
that, you can connect the socket with another computer. It is a little more involved than

opening a file, but sockets are a little more complicated.

socket()

The following is the API to create a socket, interestingly enough:

SOCKET socket (

 int address_family,

 int socket_type,

 int protocol);

Parameters:

 Address family: Will always be PF_INET for communicating over the Internet.

Other address families include PF_IPX, PF_DECnet, PF_APPLETALK, PF_ATM,

and PF_INET6.

 Socket type: Use SOCK_STREAM for connected byte streams. SOCK_DGRAM is for

connectionless network communication and SOCK_RAW is for raw sockets, which lets

you write socket programs at a lower level than TCP or UDP.

 Protocol: Use IPPROTO_TCP for TCP and IPPROTO_UDP for UDP sockets.

Return Value:

The socket() function returns a valid handle for a socket if one was created or

INVALID_SOCKET if there was some kind of error.

Here‘s an example of how to create a TCP socket handle:

SOCKET sock = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP);

if ((sock == INVALID_SOCKET)

{

 // handle error!

}

setsockopt()

Now that you have a socket handle, you can decide how you‘d like the socket to act when it

is open. You do this by setting the socket options through a function called

setsockopt(). There are a wide variety of options, and I‘m happy to show you some

common ones, specifically the ones used in the client/server code in this chapter. Make sure
you look at the complete sockets documentation for socket options. I‘m only scratching the

surface here:

int setsockopt (

 SOCKET socket,

 int level,

 int optionName,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 const char* optionValue,

 int optLen);

Parameters:

 Socket: A valid socket handle.

 Level: Either SOL_SOCKET or IPPROTO_TCP, depending on the option chosen.

 Option Name: The identifier of the socket option you want to set.

 Option Value: The address of the new value for the option. For Boolean values, you

should send in a 4-byte integer set to either 1 or 0.

 Option Length: The length in bytes of the option value.

Return Value:

Returns zero if the option was set or SOCKET_ERROR if there was an error.

Here are some examples of setting socket options:

int x = 1;

setsockopt(sock, IPPROTO_TCP, TCP_NODELAY, (char *)&x,

sizeof(x));

setsockopt(sock, SOL_SOCKET, SO_DONTLINGER, (char *)&x,

sizeof(x));

setsockopt(sock, SOL_SOCKET, SO_KEEPALIVE, (char *)&x,

sizeof(x));

The first option, TCP_NODELAY, disables an internal buffering mechanism in an attempt to

sacrifice some network bandwidth for a speedier sending of packets. It is especially

important when you want to send a high number of small packets, as is common in many
multiplayer computer games.

The next option, SO_DONTLINGER, ensures a speedy return from a call to close the socket.

The socket will be closed gracefully, but the call will essentially happen in the background.
This is a clear win for any application that has to support a high number of connections, but

is still good for a computer game, no matter how many connections you have.

The last one of interest is SO_KEEPALIVE. It sends a packet of data at regular intervals if

no other data has been sent. The default interval is two hours, but on some systems it can
be configurable. This is probably only useful for a server system that supports a high

number of connections. In a multiperson shooter, it will be pretty obvious if someone‘s
remote connection goes dark.

ioctlsocket()

Another useful socket control function is ioctlsocket(), which has a few uses but the

most important one to you, the fledgling multiplayer game programmer, is to set whether a
socket is a blocking socket or a nonblocking socket:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

int ioctlsocket(SOCKET s, long command, u_long*

argumentPointer);

Parameters:

 Socket: A valid socket handle.

 Command: FIONBIO controls blocking. FIONREAD will return the number of bytes

ready in the socket‘s input buffer, and SIOCATMARK will tell you if there is any out-

of-band (OOB) data to be read. OOB data is only available for sockets that have the

SO_OOBINLINE socket options set.

 Argument Pointer: A pointer to a u_long that holds the argument to the

command or stores the result of the command.

Return Value:

Returns zero if the option was set or SOCKET_ERROR if there was an error.

A blocking socket is one that will wait to send or receive data. A nonblocking socket

performs these tasks asynchronously. When you call the socket‘s function to receive data on
a blocking socket, it won‘t return until there is actually data to receive. Blocking sockets are

easier to program, but aren‘t nearly as useful in game programming. Imagine using a

blocking socket on a multiplayer game. Each client would be completely stopped, frozen in
place, until some data was received. A nonblocking socket is the only way a game can

continue processing anything in the same thread, which is why it is used overwhelmingly
over the blocking sort.

Here‘s how you call the ioctlsocket() function to set your socket to nonblocking:

const unsigned long BLOCKING = 0;

const unsigned long NONBLOCKING = 1;

unsigned long val = NONBLOCKING;

ioctlsocket(m_sock, FIONBIO, &val);

There‘s one thing you should watch out for, however. You can only call this function on a

―live‖ socket, meaning that it is a client socket that has been connected to a server or a
server socket that is listening for clients.

Connecting Sockets to a Server and Understanding Ports

Once you have a socket handle and set the options with ioctlsocket(), the socket will

be ready to connect to another computer. For a socket to connect, the computer accepting
the connection must be listening for it. This differentiates server-side sockets from client-

side sockets, even though they all use the same SOCKET handle structure and they all use

the same functions to send and receive data.

For now, imagine you are simply creating a socket to attach to something like an FTP

server, such as ftp.microsoft.com. Here you are, over a dozen pages into a networking
chapter, and I haven‘t even mentioned ports yet. Well, I can‘t put it off any longer.

The designers of the Internet realized that computers on the Internet might have multiple

connections to other computers simultaneously. They facilitated this by adding ports to the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

IP protocol. In addition to specifying an IP address of a computer, you must specify a port

as well. Ports can be numbered from 1 to 65535, 0 is reserved. Various client/server
applications like FTP and Telnet use well-known port assignments, which is simply an

agreement that certain server applications will use certain ports. Most popular server
applications like Telnet and FTP use ports in the 0..1024 range, but new server applications,

like those for common chat programs and multiplayer games, use higher port numbers. This
keeps popular client/server applications from using the same port. Table 16.5 provides a

short list of commonly used ports you might recognize.

Table 16.5. Commonly Used Internet Ports

Protocol Port Number Protocol Port Number

Echo 7 HTTP 80

Daytime 13 Doom 666

Quote of the Day 17 Kazaa 1214

FTP-data 20 MSN Messenger 1863

FTP 21 Apple iTunes 3689

SSH 22 Ultima Online 5001-5010

Telnet 23 Yahoo Messenger 5050

SMTP 25 AOL Instant Messenger 5190

Time 37 Quake 26000

Whois 43

If you are creating a server, it‘s up to you to choose a good port that isn‘t already
dominated by something else that everyone uses. There are plenty to go around, and some

quick searches on the Internet will give you plenty of current information about which
applications are using which port.

The port and IP address make a unique connection identifier. A server that listens on a

particular port, like 5190 for AOL Instant Messenger, can accept many hundreds, if not
thousands, of connections. A client can even make multiple connections to the same server

on the same port. The IP protocol distinguishes actual connections internally so they don‘t
get confused, although I‘d hate to be a programmer trying to debug an application like that!

connect()

Enough already. Here‘s the API for actually connecting a socket to a server that is listening

for connections:

javascript:moveTo('ch16table05');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

int connect(SOCKET s, const struct sockaddr* name, int

namelen);

Parameters:

 Socket: A valid socket handle.

 Name: A structure that holds the address family, port, and address of the server.

 NameLen: Always sizeof(struct sockaddr).

Return Value:

Returns zero if the function succeeded or SOCKET_ERROR if there was an error.

Here‘s an example of how you connect a socket:

struct sockaddr_in sa;

sa.sin_family = AF_INET;

sa.sin_addr.s_addr = htonl(ip);

sa.sin_port = htons(port);

if (connect(m_sock, (struct sockaddr *)&sa, sizeof(sa)))

{

 // HANDLE ERROR HERE

}

The address family is set to AF_INET since we‘re using the Internet. The IP address and

port are set, and the structure is sent into the connect() function along with the socket

handle. If this didn‘t work for some reason, there are two things to try to help figure out

what the problem is.

 First, try connecting with Telnet, one of the utility programs you can access from the

command line. If it doesn‘t work, there‘s something wrong with the address, port, or

perhaps your network can‘t see the remote computer.

 If Telnet works, try reversing the byte order of the port or IP address. This is easy to

screw up.

Server Functions

You‘ve seen how to create sockets on the client side, so now you‘re ready to create a

server-side socket. You create the socket handle with the same socket() function you

saw earlier, and you are free to also call the setsockopt() function to set the options

you want. Instead of calling connect(), though, you call two other functions: bind()

and listen().

bind()

A server has to bind a socket to a particular IP address and port within the system before it

can accept connections. After it is bound to an address and a port, you call listen() to

open the server side for client connections:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

int bind(SOCKET s, const struct sockaddr* name, int

namelen);

Parameters:

 Socket: A valid socket handle.

 Name: A structure that holds the address family, port, and address of the server.

 NameLen: always sizeof(struct sockaddr).

Return Value:

Returns zero if the function succeeded or SOCKET_ERROR if there was an error.

Here‘s an example of how you bind a socket to a particular port using the local IP address of

the server. The port is specified in the struct sockaddr in network byte order. The

address family is AF_INET for Internet addresses, and since we want the socket to be

bound to the local IP address, the address member is set to ADDR_ANY:

struct sockaddr_in sa;

sa.sin_family = AF_INET;

sa.sin_addr = ADDR_ANY;

sa.sin_port = htons(portnum);

if (bind(m_sock, (struct sockaddr *)&sa, sizeof(sa)))

{

 // HANDLE ERROR HERE

}

listen()

After you‘ve bound a socket to a particular port, you can open it up to accept connections

with the listen() function:

int listen(SOCKET s, int backlog);

Parameters:

 Socket: A valid socket handle.

 Backlog: The maximum length of the queue of incoming connections. Set it to

SOMAXCONN if you want the underlying service provider to use its default value. If a

client attempts to connect and the backlog is full, the connection will be refused.

Return Value:

Returns zero if the function succeeded or SOCKET_ERROR if there was an error.

Here‘s an example of using listen() to set the backlog to 256:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

if (listen(m_sock, 256) == SOCKET_ERROR)

{

 // HANDLE ERROR HERE

}

accept()

When a remote client attaches to the listen socket with connect(), the server side will

detect input on the listen socket. Exactly how this happens you‘ll see in a moment with the

select() function. Once input is detected on a listen socket, you call accept() to

establish the connection:

SOCKET accept(SOCKET listenSock, const struct sockaddr*

name, int namelen);

Parameters:

 Listen Socket: A valid socket handle to a listen socket.

 Name: A structure that receives the address of the connecting client.

 NameLen: Always sizeof(struct sockaddr).

Return Value:

Returns zero if the function succeeded or INVALID_SOCKET if there was an error.

There are a few things to be aware of when using accept(). First and foremost, it will

block if there are no client connections ready and the listen socket is set to blocking. If the
listen socket is set to nonblocking and there are no client connections ready, it will return an

error and could put the listen socket in an unusable state. Basically, don‘t call accept()

until you have input on the listen socket connection and can be sure you have at least one

client ready to start talking. You can check for this by calling the select() function, which

is up next.

The last server side method is select(). This function lets you poll the state of all your

open sockets. You create three arrays of socket pointers that will be polled. The first set will

be polled for input, the second set for output, and the third set for exceptions. Here‘s the

fd_set structure definition and the definition for select().

typedef struct fd_set {

 u_int fd_count;

 SOCKET fd_array[FD_SETSIZE];

} fd_set;

int select(

 int nfds,

 fd_set* readfds,

 fd_set* writefds,

 fd_set* exceptfds,

 const struct timeval* timeout);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Parameters:

 nfds: Ignored in WinSock; only included for compatibility with Berkeley sockets.

 readfds, writefds, exceptfds: The arrays of pointers to sockets to be polled for

input, output, and exceptions.

 timeout: A pointer to a timeout structure. Set it to NULL if you want select() to

block until something happens on one of the sockets, or set it to a valid timeout

structure with all zeros to make a quick poll.

Return Value:

Returns zero if the function timed out, SOCKET_ERROR if there was an error, or the

number of sockets contained within the structures that are ready to process.

This function is a real boon for the server-side programmer. It helps with servers that have
tons of client connections and you don‘t want to block on any of them, whether they are set

to blocking or nonblocking. This function can tell your program which sockets are ready to

read from, write to, or have suffered an exception of some kind. By the way, one of those
exceptions is the reception of out-of-band data.

Maximum Client Connections is 64 by Default

By default, the fd_set structure can hold 64 sockets. That

size is defined as FD_SETSIZE in the WINSOCK2.H header

file. In C++, you can define your own FD_SETSIZE, as long

as it‘s defined before the WINSOCK2 header file is included.

You can set this compiler #define in the command line or

project properties. If it is defined anywhere after #include

WinSock2.h, it will break horribly.

Socket Reading and Writing

The two most common functions used for sending and receiving data are send() and

recv(). They each take similar parameter lists, with the exception that they use different

flags and one of them will clearly stomp all over the buffer you send in:

int send(SOCKET s, const char* buffer, int length, int

flags);

int recv(SOCKET s, char* buffer, int length, int flags);

Parameters:

 Socket: A valid socket handle.

 Buffer: Either the source data buffer for sending or the destination buffer for

receiving.

 Length: The size of the buffer in bytes.

 Flags:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

o For Send: MSG_DONTROUTE informs sockets you don‘t want the data routed,

which can be ignored on WinSock. MSG_OOB tells sockets to send this packet

as out-of-band data.

o For Recv: MSG_PEEK peeks at the data, but doesn‘t remove it from the input

buffer, and MSG_OOB processes out-of-band data.

Return Value:

Returns the number of bytes actually sent or received or SOCKET_ERROR if there was an

error. The recv() function will return 0 if the socket was gracefully closed.

There‘s a few points to clarify. If you have a 10-byte receive buffer, and there are 20 bytes

ready to read, the remaining 10 bytes will be there when you call recv() a second time.

Conversely, if you have a 10-byte buffer, and there are only 5 bytes ready to read, the

function will dutifully return 5, and the first 5 bytes of your buffer will have new data.

Also, MSG_PEEK and MSG_OOB seem to be ill supported and even broken, depending on

the various implementations of TCP/IP on all the equipment and operating systems between

the two connected computers. Trust them at your own risk.

That‘s certainly a whirlwind tour of the most used sockets functions. There are certainly
more of them to learn, but what you just read will give you an excellent start. What you are

about to see next is one way to organize these C functions into a usable set of classes

designed to make your single-player game a multiplayer game.

Making a Multiplayer Game with Sockets

If you‘ve followed the advice in this book, you‘ve organized your game into three major
components: the application layer, the game logic layer, and the game view layer. The

game logic and game view can call directly into the application layer for performing tasks
like opening files and allocating memory. The game view and game logic talk to each other

through an event system, as described in Chapter 11, ―Scripting with Lua.‖

If you guessed that the sockets classes belong in the application layer, you‘d be exactly
right. They are similar to files, really, in that they provide a stream of data your game can

use. Sockets also tend to be slightly different on Windows and UNIX platforms, which is
another good reason to stick them in the application layer.

I provided an important diagram in Chapter 2, ―What‘s in a Game?‖ to describe how the

logic/view architecture could easily support a networked game. Figure 16.1 shows this
diagram again so that you don‘t have to go all the way back to Chapter 2.

Figure 16.1. A remote game client attaching to a server.

../../ch11#ch11
../../ch02#ch02
javascript:moveTo('ch16fig01');
../../ch02#ch02
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Recall that this game architecture supports game logic and multiple views on that logic.
These might include a human player view, an AI player view, and a remote player view. The

events that are being generated by the authoritative machine acting as the game server can

be serialized, sent over the Internet, and reconstructed as the same events on the remote
machine. The remote machine can also send events in the form of game commands, like

―fire my 105mm cannon at the newbie‖ back to the server.

While this high-level explanation seems easy, the reality is, as always, a bit more
complicated. I‘ll take you through the whole thing, step-by-step. I‘m going to break this job

into four pieces so our brains don‘t explode.

 Packet Classes: Create objects to handle packets of data that will be sent and

received through socket connections.

 Core Socket Classes: Create base objects to handle client connections.

 Core Server Classes: Create base objects to handle server connections.

 Wire Sockets Classes into the Event System: Create an event forwarder that

listens to events locally and sends them on to a remote computer.

One thing you should know right away—all the code samples in this chapter assume a
single-threaded environment. There are plenty of network programming examples out there

that use one thread per connection and blocking calls to every socket. This may be an easy
way to implement network communications, but it isn‘t the most efficient way.

Packet Classes

Data that is sent or received via sockets has a format, just like any file you would read from

beginning to end. The format of the data will usually come in chunks, or packets, of discrete
units, each of which is essentially a stand-alone piece of data. The format and interpretation

of these packets is totally up to you. Just as you define the structure of your data files, you
can define the structure of your packet stream. These packets might carry username and

password data, data for events like ―change game state missile‖ or ―move actor,‖ or game

commands like ―set throttle to 100%.‖

As your program reads data from a socket, it needs to have some way of determining what

kind of packet is coming in and how many bytes to expect. When the correct number of

bytes is ready, the packet is read from the socket as an atomic unit, encapsulated with a
C++ packet object, and then handled by your game.

The exact opposite happens when you want to send a packet. The block of bytes that makes

up the packet is assembled, or streamed, into a memory buffer. The size of the buffer is
sent along with the packet, as well as some identifier that distinguishes the type of packet.

The receiving end will probably handle packets of different types in different ways. A good

http://lib.ommolketab.ir
http//lib.ommolketab.ir

example of this might be the difference between a text packet and a binary packet. The text

packet might require additional processing for carriage returns and line feeds for the host
system, whereas the binary packet might simply be a block of data.

The classes you are about to see encapsulate these ideas into C++ classes. The first class is

an interface class that defines the API for any kind of packet that you‘d care to define:

class IPacket

{

public:

 virtual char const * const VGetType() const=0;

 virtual char const * const VGetData() const=0;

 virtual u_long VGetSize() const =0;

 virtual ~IPacket() { }

};

This definitely follows the KISS (keep it simple, stupid!) rule. A packet‘s basic accessors
simply gain access to the packet type, which I‘ve defined as a unique text string, the packet

data, and the size in bytes.

Most multiplayer games send binary data over network connections. This is because the
information in the packets contains things like game events, movement deltas, and game

commands that can be encoded very efficiently in a binary format. If this data were sent in
clear text, it would be much larger. Think of it as the same thing as storing your data in a

database or XML. XML might be easier to read, but it takes more space.

The first packet class is for binary packets. It allocates its own buffer of bytes and stores the
size of the buffer in the first four bytes, but note that it stores them in network order. This

is generally a good idea, even though I know I might never be using this system on
anything other than my Dell:

class BinaryPacket : public IPacket

{

protected:

 char *m_Data;

public:

 inline BinaryPacket(char const * const data, u_long size);

 inline BinaryPacket(u_long size);

 virtual ~BinaryPacket() { SAFE_DELETE(m_Data); }

 virtual char const * const VGetType() const { return g_Type;

}

 virtual char const * const VGetData() const { return m_Data;

}

 virtual u_long VGetSize() const { return ntohl(*(u_long

*)m_Data); }

 inline void MemCpy(char const *const data, size_t size, int

destOffset);

 static const char *g_Type;

};

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Here I‘ve defined two different constructors, both of which take the size of the buffer as an

expected parameter. The first one takes a pointer to a data buffer that the BinaryPacket

object will copy into its own buffer. The second expects the API programmer, that‘s you, to

make repeated calls to MemCpy() to fill the buffer.

Here‘s the implementation of the constructors and MemCpy().

const char *BinaryPacket::g_Type = "BinaryPacket";

inline BinaryPacket::BinaryPacket(char const * const data,

u_long size)

{

 m_Data = GCC_NEW char[size + sizeof(u_long)];

 assert(m_Data);

 *(u_long *)m_Data = htonl(size+sizeof(u_long));

 memcpy(m_Data+sizeof(u_long), data, size);

}

inline BinaryPacket::BinaryPacket(u_long size)

{

 m_Data = GCC_NEW char[size + sizeof(u_long)];

 assert(m_Data);

 *(u_long *)m_Data = htonl(size+sizeof(u_long));

}

inline void BinaryPacket::MemCpy(char const *const data, size_t

size, int

 destOffset)

{

 assert(size+destOffset <= VGetSize()-sizeof(u_long));

 memcpy(m_Data + destOffset + sizeof(u_long), data, size);

}

Another kind of packet that is pretty useful to have around is the TextPacket. It is a

trivial class that takes a pointer to a character string, determines its own size, and sets the

type as a text packet:

class TextPacket : public BinaryPacket

{

public:

 TextPacket(char const * const text);

 virtual char const * const VGetType() const { return g_Type;

}

 static const char *g_Type;

};

TextPacket::TextPacket(char const * const text)

 : BinaryPacket(static_cast<u_long>(strlen(text) + 2))

{

 MemCpy(text, strlen(text), 0);

 MemCpy("\r\n", 2, 2);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 *(u_long *)m_Data = 0;

}

const char *TextPacket::g_Type = "TextPacket";

Core Socket Classes

As you might expect, I‘ve written a class to encapsulate a socket handle. It has four virtual
functions that can be overridden by implementers of child classes, or the class can even be

used as is.

#define MAX_PACKET_SIZE (256)

#define RECV_BUFFER_SIZE (MAX_PACKET_SIZE * 512)

typedef std::list< shared_ptr <IPacket> > PacketList;

class NetSocket

{

public:

 NetSocket();

 NetSocket(SOCKET new_sock, unsigned int hostIP);

 virtual ~NetSocket();

 bool Connect(unsigned int ip, unsigned int port, int

fCoalesce = 0);

 void SetBlocking(int block);

 void Send(shared_ptr<IPacket> pkt, bool clearTimeOut=1);

 virtual int HasOutput() { return !m_OutList.empty(); }

 virtual void HandleOutput();

 virtual void HandleInput();

 virtual void TimeOut() { m_timeOut=0; }

 void HandleException() { m_deleteFlag |= 1; }

 void SetTimeOut(int ms=45*1000) { m_timeOut = timeGetTime() +

ms; }

protected:

 SOCKET m_sock; // the socket handle

 int m_id; // a unique ID given by the socket

manager

 // note: if deleteFlag has bit 2 set, exceptions only close

the

 // socket and set to INVALID_SOCKET, and do not delete the

NetSocket

 int m_deleteFlag;

 PacketList m_OutList; // packets to send

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 PacketList m_InList; // packets just

received

 char m_recvBuf[RECV_BUFFER_SIZE]; // receive buffer

 unsigned int m_recvOfs, m_recvBegin; // tracking the read

head of the

 // buffer

 bool m_bBinaryProtocol; // is the socket in binary or

text mode

 int m_sendOfs; // tracking the output buffer

 unsigned int m_timeOut; // when will the socket time

out

 unsigned int m_ipaddr; // the ipaddress of the remote

connection

 int m_internal; // is the remote IP internal or

external?

 int m_timeCreated; // when the socket was created

};

The class is relatively self-documenting, but there are a couple of things worthy of
discussion. First, the delete flag is set to different values by the socket manager class if it
wants to delete the class object, or simply close the socket but keep the class object

around. This can help handle reconnections if the remote side drops out for a little while.

Next, the input and output lists are ordered lists of packets to be sent and received, and
they are implemented as STL lists. There is no output buffer, since it can use the already

allocated memory of the packets in the output list. There is an input buffer, since you‘ll use
it to compose packets as they stream in from the remote computer.

Also, note the maximum packet size and the size of the receive buffer defined just before

the class. These sizes are totally up to you and what you expect to receive in the way of
packets from the remote computers. Your mileage may vary with different choices,

especially in terms of server memory. If you expect to have a few hundred clients attached,
this memory buffer can get pretty big indeed.

Here are the constructors and destructor:

NetSocket::NetSocket()

{

 m_sock = INVALID_SOCKET;

 m_deleteFlag = 0;

 m_sendOfs = 0;

 m_timeOut = 0;

 m_recvOfs = m_recvBegin = 0;

 m_internal = 0;

}

NetSocket::NetSocket(SOCKET new_sock, unsigned int hostIP)

{

 // set everything to zero

 m_sock = INVALID_SOCKET;

 m_deleteFlag = 0;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 m_sendOfs = 0;

 m_timeOut = 0;

 // set the socket to receive binary packets

 m_bBinaryProtocol = 1;

 m_recvOfs = m_recvBegin = 0;

 m_internal = 0;

 // check the time

 m_timeCreated = timeGetTime();

 m_sock = new_sock;

 m_ipaddr = hostIP;

 // ask the socket manager if the socket is on our internal

network

 m_internal = g_pSocketManager->IsInternal(m_ipaddr);

 setsockopt (m_sock, SOL_SOCKET, SO_DONTLINGER, NULL, 0);

 // NOTE! Don't do the following if you want high performance

on a server!!!!

 if (m_ipaddr)

 {

 TCHAR buffer[128];

 const char *ansiIpaddress = g_pSocketManager-

>GetHostByAddr(m_ipaddr);

 if (ansiIpaddress)

 {

 TCHAR genIpaddress[64];

 AnsiToGenericCch(

 genIpaddress,

 ansiIpaddress,

 static_cast<int>(strlen(ansiIpaddress)+1));

 _tcssprintf(buffer,

 _T("User connected: %s %s"),

 genIpaddress,

 (m_internal) ? _T("(internal)") : _T(""));

 OutputDebugString(buffer);

 }

 }

}

NetSocket::~NetSocket()

{

 if (m_sock != INVALID_SOCKET)

 {

 closesocket(m_sock);

 m_sock = INVALID_SOCKET;

 }

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The only thing to watch out for is the code at the last part of the second constructor, which

takes a valid socket handle and the IP address of the remote computer. It calls a method of
the socket manager, which you‘ll see shortly. But as you can probably tell by the name of

the method, it wraps one of those DNS utility functions. These functions are not usable for
super-fast server applications, as DNS lookups take hundreds of milliseconds, maybe more,

if the DNS system can‘t find the name of the IP address in question. If you have a high-

performance server application, you can just eliminate the call to GetHostByAddr(),

since it is really only used for a debug message.

Also, notice the conversion function AnsiToGenericCch(). This function is adapted from

some early DirectX utility code that converts text strings, by force if necessary, from generic

format to ANSI format. The function is actually in the source code that goes along with this

book, and you can find it on the book‘s Web site. The point is, sometimes you have to do
these forced conversions when dealing with older APIs, like you find in sockets, that don‘t

have any internal support for wide character strings. It‘s a pain in the butt, I know, but
you‘ve got to do it if you have a UNICODE or MBCS application that uses sockets like this.

The next method is called when you want to connect a new NetSocket to a remote client:

bool NetSocket::Connect(unsigned int ip, unsigned int port, int

fCoalesce)

{

 struct sockaddr_in sa;

 int x = 1;

 // create the socket handle

 if ((m_sock = socket(AF_INET, SOCK_STREAM, 0)) ==

INVALID_SOCKET)

 return false;

 // set socket options - in this case turn off Nagle algorithm

if desired

 if (!fCoalesce)

 {

 setsockopt(m_sock, IPPROTO_TCP, TCP_NODELAY, (char *)&x,

sizeof(x));

 }

 // last step - set the IP adress and port of the server, and

call connect()

 sa.sin_family = AF_INET;

 sa.sin_addr.s_addr = htonl(ip);

 sa.sin_port = htons(port);

 if (connect(m_sock, (struct sockaddr *)&sa, sizeof(sa)))

 {

 closesocket(m_sock);

 m_sock = INVALID_SOCKET;

 return false;

 }

 return true;

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Just as described in the socket primer earlier in this chapter, the process for connecting a

socket to a server has three steps. First, you create the socket handle. Second, you call the

socket options. In this case, NetSocket supports disabling the packet-grouping algorithm

by default. This increases network traffic, but can improve performance if you send/receive
tons of tiny packets like games tend to do. Finally, you connect the socket to the remote

server.

Right after the socket is connected, you probably want to set it to nonblocking. Here‘s a
method that does exactly that, and it is exactly like you saw in the primer:

void NetSocket::SetBlocking(int block)

{

 unsigned long val = block ? 0 : 1;

 ioctlsocket(m_sock, FIONBIO, &val);

}

It‘s now time to learn how this class sends packets to the remote computer. Whenever you

have a packet you want to send, the Send() method simply adds it to the end of the list of

packets to send. It doesn‘t send the packets right away. This is done once per update loop

by the HandleOutput() method:

void NetSocket::Send(shared_ptr<IPacket> pkt, bool clearTimeOut)

{

 if (clearTimeOut)

 m_timeOut = 0;

 m_OutList.push_back(pkt);

}

The HandleOutput() method‘s job is to iterate the list of packets in the output list and

call the sockets send() API until all the data is gone or there is some kind of error:

void NetSocket::HandleOutput()

{

 int fSent = 0;

 do

 {

 assert(!m_OutList.empty());

 PacketList::iterator i = m_OutList.begin();

 shared_ptr<IPacket> pkt = *i;

 const char *buf = pkt->VGetData();

 int len = static_cast<int>(pkt->VGetSize());

 int rc = send(m_sock, buf+m_sendOfs, len-m_sendOfs, 0);

 if (rc > 0)

 {

 g_pSocketManager->m_Outbound += rc;

 m_sendOfs += rc;

 fSent = 1;

 }

 else if (WSAGetLastError() != WSAEWOULDBLOCK)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 {

 HandleException();

 fSent = 0;

 }

 else

 {

 fSent = 0;

 }

 if (m_sendOfs == pkt->VGetSize())

 {

 m_OutList.pop_front();

 m_sendOfs = 0;

 }

 } while (fSent && !m_OutList.empty());

}

The idea behind reading the socket for input is similar, but there‘s some buffer management
to worry about. For efficiency‘s sake, there‘s a single monolithic buffer for each

NetSocket object. Depending on how the remote sends data, you might get your packet

in chunks. TCP is guaranteed to send things in the right order and it won‘t split them up,

but you might attempt to send something large, like a movie file. In any case, you want to
collect bytes in the read buffer until you have a valid packet and then copy those bytes into

a dynamic data structure like BinaryPacket or TextPacket so your game can process

it.

Since you might receive multiple packets in a single read, the read buffer operates in a

round-robin fashion. The read/write heads continually advance until they get too close to
the end of the buffer and then they copy any partial packets to the beginning of the buffer

and start the whole process over:

void NetSocket::HandleInput()

{

 bool bPktReceived = false;

 u_long packetSize = 0;

 int rc = recv(m_sock,

 m_recvBuf+m_recvBegin+m_recvOfs,

 RECV_BUFFER_SIZE-m_recvOfs, 0);

 if (rc==0)

 return;

 if (rc < 0)

 {

 m_deleteFlag = 1;

 return;

 }

 const int hdrSize = sizeof(u_long);

 unsigned int newData = m_recvOfs + rc;

 int processedData = 0;

 while (newData > hdrSize)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 {

 // There are two types of packets at the lowest level of

our design:

 // BinaryPacket - Sends the size as a positive 4 byte

integer

 // TextPacket - Sends 0 for the size, the parser will

search for a CR

 packetSize =

(reinterpret_cast<u_long>(m_recvBuf+m_recvBegin));

 packetSize = ntohl(packetSize);

 if (m_bBinaryProtocol)

 {

 // we don't have enough new data to grab the next

packet

 if (newData < packetSize)

 break;

 if (packetSize > MAX_PACKET_SIZE)

 {

 // prevent nasty buffer overruns!

 HandleException();

 return;

 }

 if (newData >= packetSize)

 {

 // we know how big the packet is...and we have the

whole thing

 shared_ptr<BinaryPacket> pkt(

 GCC_NEW BinaryPacket(

 &m_recvBuf[m_recvBegin+hdrSize], packetSize-

hdrSize));

 m_InList.push_back(pkt);

 bPktRecieved = true;

 processedData += packetSize;

 newData -= packetSize;

 m_recvBegin += packetSize;

 }

 }

 else

 {

 // the text protocol waits for a carriage return and

creates a string

 char *cr = static_cast<char *>(

 memchr(&m_recvBuf[m_recvBegin], 0x0a, rc));

 if (cr)

 {

 *(cr+1) = 0;

 shared_ptr<TextPacket> pkt(

 GCC_NEW TextPacket(&m_recvBuf[m_recvBegin]));

 m_InList.push_back(pkt);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 packetSize = cr - &m_recvBuf[m_recvBegin];

 bPktRecieved = true;

 processedData += packetSize;

 newData -= packetSize;

 m_recvBegin += packetSize;

 }

 }

 }

 g_pSocketManager->m_Inbound += rc;

 m_recvOfs = newData;

 if (bPktRecieved)

 {

 if (m_recvOfs == 0)

 {

 m_recvOfs = 0;

 m_recvBegin = 0;

 }

 else if (m_recvBegin + m_recvOfs + MAX_PACKET_SIZE >

RECV_BUFFER_SIZE)

 {

 // we don't want to overrun the buffer - so we copy the

leftover bits

 // to the beginning of the receive buffer and start

over

 int leftover = m_recvOfs;

 memcpy(m_recvBuf, &m_recvBuf[m_recvBegin], m_recvOfs);

 m_recvBegin = 0;

 }

 }

}

Notice the predicate in the middle that checks for m_bBinaryProtocol? The

NetSocket class by default reads binary packets. It is up to child classes to switch

between a binary and text packet protocol. If this annoys you, you could even encode the
packet type inside the packet itself at the cost of additional network bytes. It‘s a better

plan, perhaps, to define a special binary packet that signals the socket to switch.

When you are coding a server application, such as Ultima Online, believe me every byte
counts. It makes tons of sense to save bytes if you can. In the case of this class, one way

you could clearly save space is to change the amount of space saved for the packet size.

Right now, we are using a u_long, which is clearly way too big for a single packet.

Easy to Read or Super Efficient? Do Both!

http://lib.ommolketab.ir
http//lib.ommolketab.ir

When you define your packet definitions and protocols, make sure you

can easily switch between a tight, efficient packet definition and an

easy-to-read definition such as clear text. You’ll use one for
production, but the other is invaluable for debugging.

A Socket Class for Listening

A listen socket is an easy extension of the NetSocket class. It adds the capability to listen

for client connections and accept them, adding new sockets to the global socket manager:

class NetListenSocket: public NetSocket

{

public:

 NetListenSocket() { };

 NetListenSocket(int portnum) { port = 0; Init(portnum); }

 void Init(int portnum);

 SOCKET AcceptConnection(unsigned int *pAddr);

 unsigned short port;

};

There are five steps to create a listen socket: You create a socket handle, set the socket

options, bind the socket to a listen port, set it to nonblocking, and finally call listen():

void NetListenSocket::Init(int portnum)

{

 struct sockaddr_in sa;

 int x = 1;

 // create socket handle

 if ((m_sock = socket(AF_INET, SOCK_STREAM, 0)) ==

INVALID_SOCKET)

 {

 EXIT_ASSERT

 }

 // set socket options to reuse server socket addresses even

if they are

 // busy - this is important if your server restarts and you

don't want

 // to wait for your sockets to time out.

 if (setsockopt(

 m_sock, SOL_SOCKET, SO_REUSEADDR, (char *)&x, sizeof(x))==

SOCKET_ERROR)

 {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 closesocket(m_sock);

 m_sock = INVALID_SOCKET;

 EXIT_ASSERT

 }

 memset(&sa, 0, sizeof(sa));

 sa.sin_family = AF_INET;

 sa.sin_port = htons(portnum);

 // bind to port

 if (bind(m_sock, (struct sockaddr *)&sa, sizeof(sa)) ==

SOCKET_ERROR)

 {

 closesocket(m_sock);

 m_sock = INVALID_SOCKET;

 EXIT_ASSERT

 }

 // set nonblocking - accept() blocks under some odd

circumstances otherwise

 SetBlocking(NONBLOCKING);

 // start listening

 if (listen(m_sock, 256) == SOCKET_ERROR)

 {

 closesocket(m_sock);

 m_sock = INVALID_SOCKET;

 EXIT_ASSERT

 }

 port = portnum;

}

If the listen socket gets any input, it means there‘s a client ready to attach. The method

that handles the attachment and creates a new socket handle is AcceptConnection():

SOCKET NetListenSocket::AcceptConnection(unsigned int *pAddr)

{

 SOCKET new_sock;

 struct sockaddr_in sock;

 int size;

 size = sizeof(sock);

 if ((new_sock = accept(m_sock, (struct sockaddr *)&sock,

&size))==

 INVALID_SOCKET)

 return INVALID_SOCKET;

 if (getpeername(new_sock, (struct sockaddr *)&sock, &size) ==

SOCKET_ERROR)

 {

 closesocket(new_sock);

 return INVALID_SOCKET;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 }

 *pAddr = ntohl(sock.sin_addr.s_addr);

 return new_sock;

}

This method is a simple wrapper around accept(), which does all the heavy lifting.

There‘s a utility function, getpeername(), which basically grabs the IP address of the

new client and returns it in an output parameter.

You should be asking two questions right now. First, why don‘t I simply create a

NetSocket() object right here and return that? Second, who or what ever actually calls

this AcceptConnect() method? The answer to the first question is: I don‘t return a

NetSocket object because I assume you‘ll want to create your own child class that

inherits from NetSocket, but overloads the HandleInput() and HandleOutput()

methods. You‘ll see a class that does exactly that when I show you some more server-side

code. Here‘s the answer to the second question: the server-side code itself! You‘ll see that
in a few pages.

A Socket Manager Class

Sockets need a socket manager, whether they are on a client or on a server. A socket

manager organizes multiple sockets into a manageable group, takes care of handling the
initialization and shutdown of the sockets system, and provides some useful utility

functions. It also provides a useful base class for more specialized socket managers for
servers and clients:

// defines a socket list

typedef std::list<NetSocket *> SocketList;

// maps an ID number to a socket handle

typedef std::map<int, NetSocket *> SocketIdMap;

class BaseSocketManager

{

 friend class NetSocket;

public:

 BaseSocketManager();

 virtual ~BaseSocketManager() { Shutdown(); }

 bool Init();

 void Shutdown();

 int AddSocket(NetSocket *socket);

 void RemoveSocket(NetSocket *socket);

 bool Send(int sockId, shared_ptr<IPacket> packet);

 void DoSelect(int pauseMicroSecs, int handleInput = 1);

 void SetSubnet(unsigned int subnet, unsigned int subnetMask)

 {

 m_Subnet = subnet;

 m_SubnetMask = subnetMask;

 }

 bool IsInternal(unsigned int ipaddr);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 unsigned int GetHostByName(std::string hostName);

 const char *GetHostByAddr(unsigned int ip);

protected:

 WSADATA m_WsaData; // describes sockets system

implementation

 SocketList m_SockList; // a list of sockets

 SocketIdMap m_SockMap; // a map from integer IDs to

socket handles

 int m_NextSocketId; // a ticker for the next socket

ID

 int m_Inbound; // statistics gathering -

inbound data

 int m_Outbound; // statistics gathering -

outbound data

 int m_MaxOpenSockets; // statistics gathering - max

open sockets

 unsigned int m_SubnetMask; // the subnet mask of the

internal network

 unsigned int m_Subnet; // the subnet of the internal

network

 NetSocket *FindSocket(int sockId);

};

One of the core features of the socket manager is the notion that each socket has a
companion identifier. In this implementation of the manager, a counter is used to guarantee

a unique ID for each socket in the system. This is different than a handle because this ID
could be something much more significant, such as a player ID number or an account ID

number or whatever. On Ultima Online, this ID was a unique player ID number that was
assigned to it by the account login system when new accounts were created. You can use

whatever you want, but it is a good thing to associate an unchanging ID number with each
socket, since socket handles can change if the socket is dropped and reconnected.

Another thing that the socket manager tracks is statistics for socket traffic and the

maximum number of sockets the manager has managed at one time. This can be useful if
you decide to track that sort of thing in production or even after release. As an example,

Ultima Online tracked all manner of statistics about player activity, network activity, and so
on.

If you set the subnet members, the socket manager can tell if a socket is coming from an

internal IP address. For example, it can ensure an IP address is on the local network and
deny access from an IP address coming from the Internet. This feature proved to be pretty

useful to mask off special functions, like the ―God‖ commands in Ultima Online, from anyone

outside of the development team.

Like other members of the application layer, the socket manager is a singular object that

exists once for the application. It can manage both client and listen sockets, although the

implementations in this chapter favor a straight client or straight server paradigm:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

BaseSocketManager *g_pSocketManager = NULL;

BaseSocketManager::BaseSocketManager()

{

 m_Inbound = 0;

 m_Outbound = 0;

 m_MaxOpenSockets = 0;

 m_SubnetMask = 0;

 m_Subnet = 0xffffffff;

 g_pSocketManager = this;

 ZeroMemory(&m_WsaData, sizeof(WSADATA));

}

bool BaseSocketManager::Init()

{

 int errorCode = WSAStartup(0x0202, &m_WsaData);

 testCode();

 if (errorCode==0)

 return true;

 else

 {

 assert(0 && "WSAStartup failure!");

 return false;

 }

}

void BaseSocketManager::Shutdown()

{

 // Get rid of all those pesky kids...

 while (!m_SockList.empty())

 {

 delete *m_SockList.begin();

 m_SockList.pop_front();

 }

 WSACleanup();

}

You‘ve seen before that performing any task that can fail in a constructor is generally a bad

idea. Therefore, the socket manager class uses an initialization method that can return a

Boolean value. It also uses a Shutdown() method apart from the destructor so you can

have more control over the life and death of sockets in your application.

Once a NetSocket object exists, it is added to the socket manager with the

AddSocket() method. It adds the socket to the socket list, updates the map of socket

IDs to socket handles, and updates the maximum number of sockets opened. The

RemoveSocket() method removes the socket from the list and the map, and then it frees

the socket:

int BaseSocketManager::AddSocket(NetSocket *socket)

{

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 socket->m_id = m_NextSocketId;

 m_SockList.push_front(socket);

 int openSockets = static_cast<int>(m_SockList.size());

 if (openSockets > m_MaxOpenSockets)

 ++m_MaxOpenSockets;

 m_SockMap[m_NextSocketId] = socket;

 ++m_NextSocketId;

 return socket->m_id;

}

void BaseSocketManager::RemoveSocket(NetSocket *socket)

{

 m_SockList.remove(socket);

 m_SockMap.erase(socket->m_id);

 SAFE_DELETE(socket);

}

Your game needs a high-level function to send a packet to a particular socket ID. High-level

game systems certainly won‘t care to have a direct reference to a socket handle, so they
use the socket ID to figure out which socket is going to get the packet. In the case of a

server system with hundreds of attached clients, this function makes short work of finding a
socket handle that corresponds to a generic socket ID:

NetSocket *BaseSocketManager::FindSocket(int sockId)

{

 SocketIdMap::iterator i = m_SockMap.find(sockId);

 if (i==m_SockMap.end())

 return NULL;

 return (*i).second;

}

bool BaseSocketManager::Send(int sockId, shared_ptr<IPacket>

packet)

{

 NetSocket *sock = FindSocket(sockId);

 if (!sock)

 return false;

 sock->Send(packet);

 return true;

}

The real meat of the socket manager class is DoSelect(). There are four stages of this

method:

 Set up which sockets are going to be polled for activity.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Call the select() API.

 Handle processing of any socket with input, output, or exceptions.

 Close any sockets that need closing.

void BaseSocketManager::DoSelect(int pauseMicroSecs, int

handleInput)

{

 timeval tv;

 tv.tv_sec = 0;

 // 100 microseconds is 0.1 milliseconds or .0001 seconds

 tv.tv_usec = pauseMicroSecs;

 fd_set inp_set, out_set, exc_set;

 int maxdesc;

 NetSocket *pSock;

 FD_ZERO(&inp_set);

 FD_ZERO(&out_set);

 FD_ZERO(&exc_set);

 maxdesc = 0;

 // set everything up for the select

 for (SocketList::iterator i = m_SockList.begin();

 i != m_SockList.end(); ++i)

 {

 pSock = *i;

 if ((pSock->m_deleteFlag&1) || pSock->m_sock ==

INVALID_SOCKET)

 continue;

 if (handleInput)

 FD_SET(pSock->m_sock, &inp_set);

 FD_SET(pSock->m_sock, &exc_set);

 if (pSock->HasOutput())

 FD_SET(pSock->m_sock, &out_set);

 if ((int)pSock->m_sock > maxdesc)

 maxdesc = (int)pSock->m_sock;

 }

int selRet = 0;

// do the select (duration passed in as tv, NULL to block until

event)

selRet = select(maxdesc+1, &inp_set, &out_set, &exc_set, &tv) ;

if (selRet == SOCKET_ERROR)

{

 // todo - handle error!

 return;

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

// handle input, output, and exceptions

if (selRet)

{

 for (SocketList::iterator i = m_SockList.begin();

 i != m_SockList.end(); ++i)

 {

 pSock = *i;

 if ((pSock->m_deleteFlag&1) || pSock->m_sock ==

INVALID_SOCKET)

 continue;

 if (FD_ISSET(pSock->m_sock, &exc_set))

 pSock->HandleException();

 if (!(pSock->m_deleteFlag&1) && FD_ISSET(pSock->m_sock,

&out_set))

 pSock->HandleOutput();

 if (handleInput

 && !(pSock->m_deleteFlag&1) && FD_ISSET(pSock-

>m_sock, &inp_set))

 {

 pSock->HandleInput();

 }

 }

}

unsigned int timeNow = timeGetTime();

// handle deleting any sockets

for (SocketList::iterator i = m_SockList.begin();

 i != m_SockList.end(); ++i)

{

 pSock = *i;

 if (pSock->m_timeOut)

 {

 if (pSock->m_timeOut < timeNow)

 pSock->TimeOut();

 }

 if (pSock->m_deleteFlag&1)

 {

 switch (pSock->m_deleteFlag)

 {

 case 1:

 --i;

 g_pSocketManager->RemoveSocket(pSock);

 break;

 case 3:

 pSock->m_deleteFlag = 2;

 if (pSock->m_sock != INVALID_SOCKET)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 {

 closesocket(pSock->m_sock);

 pSock->m_sock = INVALID_SOCKET;

 }

 break;

 }

 }

 }

}

Notice the liberal use of FD_ZERO, FD_SET, and FD_ISSET. These are accessors to the

fd_set structures that are sent into the select() method and store the results. This

method‘s job is to poll all the sockets you send into it for input, output, and exceptions. The

socket list is iterated three times in this method, which may seem inefficient. The truth is if

you use select(), which polls sockets, the real inefficiency is inside the select statement

itself. The other code doesn‘t really take that much more time. Sockets could also have

their delete flags set inside calls to HandleInput() or HandleOutput(), so it makes

sense to iterate through them after those methods are finished.

The code at the end of the method has two kinds of socket shutdown. The first, if the delete
flag is set to 1, removes the socket entirely from the socket manager. This would occur if

the socket were shut down elegantly from both sides, perhaps by trading an ―L8R‖ packet or

something. The second case allows the NetSocket object to exist, but the socket handle

will be shut down. This allows for a potential reconnection of a socket if a player drops off

the game for a moment, but then comes back. If that happened, the unsent packets still in

the NetSocket object would still be ready to send to the newly reconnected player.

The DoSelect() method is the only thing you need to call in your main loop to make the

entire sockets system work. You‘ll want to call this method after you tick the Event Manager
but before updating the game, assuming you are using the socket system to send events

across the network:

safeTickEventManager(20); // allow event queue to process for

up to 20 ms

if (g_pApp->m_pBaseSocketManager)

 g_pApp->m_pBaseSocketManager->DoSelect(0); // pause 0

microseconds

g_pApp->m_pGame->VOnUpdate(fTime, fElapsedTime);

The last three methods in the socket manager class are some utility methods. The first one

uses the subnet and subnet mask members to figure out if a particular IP address is coming
from the internal network or from somewhere outside:

bool BaseSocketManager::IsInternal(unsigned int ipaddr)

{

 bool internal = false;

 if (m_SubnetMask)

 {

 unsigned int hostSubnet = ipaddr & m_SubnetMask;

 if (hostSubnet == m_Subnet)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 {

 internal = 1;

 }

 }

 return internal;

}

The next two methods wrap the DNS functions you already know how to use:

gethostbyname() and gethostbyaddr().

unsigned int BaseSocketManager::GetHostByName(const std::string

&hostName)

{

 struct hostent *pHostEnt;

 struct sockaddr_in tmpSockAddr; //placeholder for the ip

address

 //This will retrieve the ip details and put it into pHostEnt

structure

 pHostEnt = gethostbyname(hostName.c_str());

 if(pHostEnt == NULL)

 {

 assert(0 && _T("Error occurred"));

 return 0;

 }

 memcpy(&tmpSockAddr.sin_addr,pHostEnt->h_addr,pHostEnt-

>h_length);

 return ntohl(tmpSockAddr.sin_addr.s_addr);

}

const char *BaseSocketManager::GetHostByAddr(unsigned int ip)

{

 static char host[32];

 int netip = htonl(ip);

 LPHOSTENT lpHostEnt = gethostbyaddr((const char *)&netip, 4,

PF_INET);

 if (lpHostEnt)

 {

 strcpy(host, lpHostEnt->h_name);

 return host;

 }

 return NULL;

}

The BaseSocketManager class is about 99 percent of what you need to create a client-

side socket manager or a server-side socket manager. Classes that inherit from it can make
it easy to create connections between clients and servers.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Core Client-Side Classes

An easy example of an extension of the BaseSocketManager class is a class to manage

the client side of a game. Its job is to create a single socket that attaches to a known
server:

class ClientSocketManager : public BaseSocketManager

{

 std::string m_HostName;

 unsigned int m_Port;

public:

 ClientSocketManager(const std::string &hostName, unsigned int

port)

 {

 m_HostName = hostName;

 m_Port = port;

 }

 bool Connect();

};

bool ClientSocketManager::Connect()

{

 if (!BaseSocketManager::Init())

 return false;

 RemoteEventSocket *pSocket = GCC_NEW RemoteEventSocket;

 if (!pSocket->Connect(GetHostByName(m_HostName), m_Port))

 {

 SAFE_DELETE(pSocket);

 return false;

 }

 AddSocket(pSocket);

 return true;

}

I haven‘t shown you the RemoteEventSocket class yet, so hang tight because you‘ll see

it shortly. All you need to know for now is that RemoteEventSocket is an extension of

the NetSocket class, and it handles all the input and output for the local game client. In

practice, you‘d define whatever socket you want to handle all your client packets and

initialize it in your version of the ClientSocketManager class.

Here‘s an example of how you might use this class to create a client connection to a server

at shooter.fragfest.com, listening on port 3709:

ClientSocketManager *pClient = GCC_NEW

http://lib.ommolketab.ir
http//lib.ommolketab.ir

ClientSocketManager(_T("shooter.fragfest.com", 3709));

if (!pClient->Connect())

{

 assert(0 && _T("Couldn't attach to game server."));

}

Core Server-Side Classes

The server side is a little trickier, but not terribly so. The complexity comes from how
sockets work on the server side. Let‘s review what happens on the server side once the

sockets system is running and the server has a listen socket open:

 Initialize the server socket manager and attach a listen socket.

 Call DoSelect() on the server socket manager.

 If there‘s input on the listen socket, create a new socket and attach it to the socket

manager.

 Handle input/output/exceptions on all other sockets.

What we need is a class that extends NetListenSocket by overloading

HandleInput() to create new clients. The clients are encapsulated by the

RemoteEventSocket, which is the final piece to this puzzle. Its job is to send game

events generated on the server to a remote client and fool the client into thinking that the
events were actually generated locally:

class GameServerListenSocket: public NetListenSocket

{

public:

 GameServerListenSocket(int portnum) { Init(portnum); }

 void HandleInput();

};

void GameServerListenSocket::HandleInput()

{

 SOCKET new_sock;

 unsigned int theipaddr;

 new_sock = AcceptConnection(&theipaddr);

 int x = 1;

 setsockopt(new_sock, SOL_SOCKET, SO_DONTLINGER, (char *)&x,

sizeof(x));

 if (new_sock != INVALID_SOCKET)

 {

 RemoteEventSocket * sock =

 GCC_NEW RemoteEventSocket(new_sock, theipaddr);

 int sockId = g_pSocketManager->AddSocket(sock);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 safeQueEvent(EventPtr(GCC_NEW Evt_Remote_Client(sockId

)));

 }

}

Notice another cameo from Chapter 10, ―Game Event Management‖? The call to

safeQueEvent() with a new event: Evt_Remote_Client. The event takes the socket

ID and passes it onto any game subsystem that is listening. This is how the game attaches

new players. It relates the socket ID to an object or actor in the game, and a special game
view that fools the server into thinking that the client is actually a human player playing on

the same system.

You are now ready to see the final piece of this puzzle—how the sockets system ties into the
event system and the game views.

Wiring Sockets into the Event System

Let‘s take inventory. What have you learned so far in this chapter?

 NetSocket() and ClientSocketManager() work together to create the

generic client side of the network communications.

 NetListenSocket() and BaseSocketManager() work together to create the

generic server side of the network communications.

 GameServerListenSocket() is a custom server-side class that creates special

sockets that can take network data and translate them into events that game
systems can listen to, just like you saw in Chapter 10.

So what‘s left? A few things, actually. You need a socket that can translate network data

into events, and you also need a class that can take events and create network packets to
be sent along to remote computers—client or server. Both the client and the server will do

this because they both generate and listen for events coming from the other side.

Translating C++ objects of any kind requires streaming. There are tons of useful
implementations of streams out there, and in my great practice of doing something rather

stupid to make a point, I‘m going to show you how to use STL istrstream and

ostrstream templates.

Even though I‘m an old-school C hound and still use printf() everywhere, I‘m sure many

of you have seen streams like this:

char nameBuffer[1024];

cout << "Hello World! What is your name?";

cin >> name;

The istrstream and ostrstream work very similarly. Think of them as a string-based

memory stream that you can read from and write to very easily. At some point in this book,

I mentioned how useful it was to use streams to initialize C++ objects and use them to save
them out to disk for saved games. Well, here‘s an example of what this looks like with a

simple C++ object:

../../ch10#ch10
../../ch10#ch10
http://lib.ommolketab.ir
http//lib.ommolketab.ir

struct ActorParams

{

 int m_Size;

 optional<ActorId> m_Id;

 Vec3 m_Pos;

 ActorType m_Type;

 ActorParams()

 { m_Pos=Vec3(0,0,0); m_Type=AT_Unknown;

m_Size=sizeof(ActorParams); }

 virtual bool VInit (std::istrstream &in)

 {

 int hasActorId = 0;

 in >> m_Size;

 in >> hasActorId;

 if (hasActorId)

 {

 in >> hasActorId;

 m_Id = hasActorId;

 }

 in >> m_Pos.x >> m_Pos.y >> m_Pos.z;

 return true;

 }

 virtual void VSerialize(std::ostrstream &out)

 {

 out << m_Type << " ";

 out << m_Size << " ";

 out << static_cast<int>(m_Id.valid()) << " ";

 if (m_Id.valid())

 {

 out << *m_Id << " ";

 }

 out << m_Pos.x << " " << m_Pos.y << " " << m_Pos.z << " ";

 }

};

This object represents the parameters that are common to many actors in a game: it stores
the size of the structure, the actor ID, location, and type. Notice two virtual functions for

initializing the object and serializing the object with streams? The methods are virtual so
that entire class hierarchies can stream themselves to and from files for save games or

even network communications. By the way, my choice for the stream class being string-
based and not binary makes my network packets completely enormous, but they are easy

on my eyes and easy to debug. The best thing is, once the basic system is running, I can
even replace these text stream objects with something cool—like something that

compresses streams on the fly. Look on the Internet, and you‘ll find neat stream technology

out there.

Back to the task at hand, you‘ve seen a quick introduction into using streams to turn C++

objects into raw bits that can be sent to a disk or across the Internet. Now you‘re ready to

http://lib.ommolketab.ir
http//lib.ommolketab.ir

see the RemoteEventSocket class, which converts the network socket data into events

that can be sent on to the local event system. There are only two methods in this class, one

overloads HandleInput() and the other takes the incoming packets and turns them into

events:

class RemoteEventSocket: public NetSocket

{

public:

 enum

 {

 NetMsg_Event,

 NetMsg_PlayerLoginOk,

 };

 // server accepting a client

 RemoteEventSocket(SOCKET new_sock, unsigned int hostIP)

 : NetSocket(new_sock, hostIP)

 {

 }

 // client attach to server

 RemoteEventSocket() { };

 virtual void HandleInput();

protected:

 void CreateEvent(std::istrstream &in);

};

void RemoteEventSocket::HandleInput()

{

 NetSocket::HandleInput();

 // traverse the list of m_InList packets and do something

useful with them

 while (!m_InList.empty())

 {

 shared_ptr<IPacket> packet = *m_InList.begin();

 m_InList.pop_front();

 const char *buf = packet->VGetData();

 int size = static_cast<int>(packet->VGetSize());

 std::istrstream in(buf+sizeof(u_long), (size-

sizeof(u_long)));

 int type;

 in >> type;

 switch(type)

 {

 case NetMsg_Event:

 CreateEvent(in);

 break;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 case NetMsg_PlayerLoginOk:

 {

 int vid;

 in >> vid;

 g_pApp->m_pGame->SetPlayer(GameView_Human, vid, 0);

 break;

 }

 default:

 assert(0 && _T("Unknown message type."));

 }

 }

}

You‘ll see that I‘ve created a little handshaking; actually, it‘s completely onesided, so it‘s

not really handshaking in the sense that I‘m reading one byte from the incoming packet and
using that byte to determine a message type. There are two types of messages in this

simple design. The first is a normal event, in which case, the packet is sent on to

CreateEvent(). The second is a special case message from the server that tells the local

client what its game view ID is. This is how different clients, all playing the same
multiplayer game, tell each other apart: their game views will all have a unique ID set by

the server. If they didn‘t do this, all their game view IDs would be set to zero, and it would

be difficult for the local clients to do the right thing with all manner of things, such as
displaying a score for each player. After all, if I‘m playing poker, I need to know what seat

I‘m sitting in.

The CreateEvent() method looks in the stream for an event type, which is sent in string

format. The event type is used to create a new event object, which then uses the stream to

initialize itself:

void RemoteEventSocket::CreateEvent(std::istrstream &in)

{

 char eventType[256];

 in >> eventType;

 if (!stricmp(eventType, Evt_New_Game::gkName))

 {

 safeQueEvent(EventPtr(GCC_NEW Evt_New_Game(in)));

 }

 else if (!stricmp(eventType, Evt_Game_State::gkName))

 {

 safeQueEvent(EventPtr(GCC_NEW Evt_Game_State(in)));

 }

 else if (!stricmp(eventType, Evt_New_Actor::gkName))

 {

 safeQueEvent(EventPtr(GCC_NEW Evt_New_Actor(in)));

 }

 else if (!stricmp(eventType, Evt_Move_Actor::gkName))

 {

 safeQueEvent(EventPtr(GCC_NEW Evt_Move_Actor(in)));

 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 else if (!stricmp(eventType, Evt_Destroy_Actor::gkName))

 {

 safeQueEvent(EventPtr(GCC_NEW Evt_Destroy_Actor(in)));

 }

 else

 {

 char debugMessage[256];

 sprintf(debugMessage,

 "ERROR Unknown event type from remote: %s\n",

eventType);

 OutputDebugStringA(debugMessage);

 }

}

This event was generated on a remote machine, sent over the network, recreated from the

bit stream, and put back together again just like Dr. McCoy in a transporter beam. The local
game systems really have no idea the event was generated from afar.

One last thing—you need to see how local events are sent into the network. If you think I‘m

going to use streams again, you are right. The class inherits from the IEventListener

class you read about in Chapter 10, but it knows about a socket ID:

class NetworkEventForwarder : public IEventListener

{

public:

 // IEventListener

 NetworkEventForwarder(int sockId) { m_sockId = sockId; }

 bool HandleEvent(Event const & event);

 char const * GetName(void) { return "NetworkEventForwarder";

}

protected:

 int m_sockId;

};

The HandleEvent() implementation creates a stream that has the event message

identifier first, followed by the event type (which is really the name of the event), followed

finally by the event itself. This stream object now contains the serialized event and enough
data to be reconstructed on the remote computer.

bool NetworkEventForwarder::HandleEvent(Event const & event)

{

 std::ostrstream out;

 out << static_cast<int>(RemoteEventSocket::NetMsg_Event) << "

";

 out << event.getType().getStr() << " ";

 event.serialize(out);

../../ch10#ch10
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 out << "\r\n";

 shared_ptr<BinaryPacket> eventMsg(

 GCC_NEW BinaryPacket(out.rdbuf()->str(), out.pcount()));

 g_pSocketManager->Send(m_sockId, eventMsg);

 return true;

}

You Can’t Serialize Pointers

You have to be really careful when designing any C++
objects that are going to be serialized. For one thing, they

can‘t contain pointers. If a local C++ object had a direct

pointer to another game data structure like an actor or a
sound, once it got to the remote computer the pointer would

surely point to garbage. This is why you see so many
handles, ID numbers, and other stuff that refers to objects

indirectly through a manager of some sort. An actor ID
should be guaranteed to be unique on the server, and thus it

will be unique on all the clients, too.

There‘s one last class you need to know about—the NetworkGameView. This is a ―fake‖

view that fools the authoritative game server into thinking someone is sitting right there
playing the game, instead of a few hundred milliseconds by photon away. As you can see,

it‘s not much more than a pretty face:

class NetworkGameView : public IGameView

{

public:

 // IGameView Implementation - everything is stubbed out.

 virtual HRESULT VOnRestore() { return S_OK; }

 virtual void VOnRender(double fTime, float fElapsedTime) { }

 virtual void VOnLostDevice() { }

 virtual GameViewType VGetType() { return GameView_Remote; }

 virtual GameViewId VGetId() const { return m_ViewId; }

 virtual void VOnAttach(GameViewId vid, optional<ActorId>

aid);

 virtual LRESULT CALLBACK VOnMsgProc(AppMsg msg) { return 0;

}

 virtual void VOnUpdate(int deltaMilliseconds) { };

 NetworkGameView(int sockId)

 {

 m_SockId = sockId;

 }

protected:

 GameViewId m_ViewId;

 optional<ActorId> m_PlayerActorId;

 int m_SockId;

};

http://lib.ommolketab.ir
http//lib.ommolketab.ir

There‘s really only one method, VOnAttach(), which is called by the game logic when

new views are added. You should see the other side of that NetMsg_Player-LoginOk

message you saw a moment ago. This is where the server sends the unique view ID number

down to the client so all the players of a multiplayer game don‘t get confused:

void NetworkGameView::VOnAttach(GameViewId viewId,

optional<ActorId> aid)

{

 m_ViewId = viewId;

 m_PlayerActorId = aid;

 // this is the first thing that happens when the

 // network view is attached. The view id is sent,

 // which we'll add to the binary events that get sent.

 std::ostrstream out;

 out <<

static_cast<int>(RemoteEventSocket::NetMsg_PlayerLoginOk) << "

";

 out << viewId << " ";

 out << "\r\n";

 shared_ptr<BinaryPacket> gvidMsg(

 GCC_NEW BinaryPacket(out.rdbuf()->str(), out.pcount()));

 g_pSocketManager->Send(m_SockId, gvidMsg);

}

Gosh, if It’s That Easy

There is much more to network programming than I‘ve had the pages to teach you here.
First, remote games need to be very smart about handling slow Internet connectivity by

predicting moves and handling things elegantly when those predictions are wrong. For
enterprise games like Star Wars Galaxies, Everquest, or Ultima Online, you have to take the

simple architecture in this book and extend it into a hierarchy of server computers. You also
have to create technology that prevents cheating and hacking. These tasks could use a book

all by themselves to cover them adequately.

Still, I feel that what you‘ve seen in this chapter is an excellent start. Certainly, if you want
to learn network programming without starting from scratch, the code in this chapter and

on the book‘s Web site will give you something you can play with. You can experiment with
it, break it, and put it back in good order. That‘s the best way to learn.

That is, of course, how I started, only I believe the little record player I ruined when I was a

kid never did work again. Sorry Mom!

Part IV: Advanced Topics and Bringing IT All Together

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 17. An Introduction to Game AI

by David ―Rez‖ Graham

In This Chapter

 Intro to AI concepts

 Movement

 Path Finding

 Simple Decision Making

 Advanced Decision Making

 Types of Game AI

 Further Reading

David “Rez” Graham works at Planet Moon Studios as an AI programmer. His

credits include: Barbie Diaries: High School Mystery, Rat Race, and Brain Quest.
He lives in Berkeley, California with two cats and enjoys playing music, performing

random programming experiments, and changing his hair color to various odd
shades. I met Rez at the Game Developer’s Conference through the Game Coding

Complete forums.

Put simply, artificial intelligence (or simply ―AI‖) is our attempt to make computers think.
While we‘ve gotten rather good at mimicking certain behaviors, especially in a medium such

as games where the suspension of disbelief is very much present, we have yet to come
anywhere close to truly emulating the human brain. I have no doubt that we will one day

achieve this feat, and very much hope that I‘m alive to see it. I am forced to wonder what
will become of these artificial creations of ours and how they will be treated. Think about

it—an artificial brain with the capability to think and reason as we do. Will it also be able to
feel? Dream? Love? Hate? If so, what does that say about our own consciousness?

Artificial intelligence is a very broad subject that covers a number of real-world applications.

Many of them are not at all related to games. A patient may call into a hospital and speak
with an automated representative controlled by complex speech recognition software and

ask about test results. These tests may have been performed by an expert system written

and trained to deal with his particular illness. The fuel he puts into his car on his way to pick
up his prescription is a mixture that‘s refined and processed by complex analysis software.

The opponent he curses under his breath in the video game he plays on his handheld in the
waiting room is really just a set of simple control states with transitional branches between

those states, but it still manages to out-maneuver his troops.

Game AI seems to be in a class all its own. We have a unique set of problems where we
have to make the game ―fun‖ while not bringing the CPU to a grinding halt. Whenever I go

to the AI round-tables at the Game Developer‘s Conference, I‘m continually intrigued by the
dichotomy between experienced video game AI developers and developers coming from

academia or other fields of AI. They tend to want to create as intelligent an agent as
possible, whereas we just want the player to have fun. Game AI is not about trying to make

something smart, it‘s about making something look smart while still being able to be

../../ch17lev1sec1#ch17lev1sec1
../../ch17lev1sec2#ch17lev1sec2
../../ch17lev1sec3#ch17lev1sec3
../../ch17lev1sec4#ch17lev1sec4
../../ch17lev1sec5#ch17lev1sec5
../../ch17lev1sec6#ch17lev1sec6
../../ch17lev1sec7#ch17lev1sec7
http://lib.ommolketab.ir
http//lib.ommolketab.ir

beaten, though not too easily. That‘s what makes the game fun, and the key to game AI is

fun through illusion, not true intelligence. If you have a military shooter game, who cares
whether or not the enemies really work together as a team as long as the player believes

they do? As AI programmers, we‘re the ultimate illusionists. And we have to do it all within
a tiny fraction of CPU time.

Intro to AI concepts

AI programming is one part science and two parts art. As I write this chapter, I‘m working
at Planet Moon Studios on an unannounced title. It took me a week or so to write the core

AI system, but I‘ve spent nearly twice that time just making little tweaks and rewriting
behaviors for specific enemies. It‘s hard to strike that perfect balance between too easy and

too hard. The best thing you can do for yourself is to expose as much relevant data as
possible to the designers, especially all those little things that will constantly change. Should

the creature see you at 300 units or 600 units? Should they move at a velocity of 50 or
150?

On the other hand, you have to be careful about exposing too much to the designers. If you

do, they‘ll be too afraid to make changes because they won‘t understand what ramifications
their changes will have, which means you‘ll end up having to make all the tweaks yourself.

Remember, as the AI programmer, your job is to enable designers to do their jobs.

The AI on Barbie Diaries: High School Mystery was a goal-based system that was balanced
through a series of desires, which were tempered by drives. These were all configured with

a gigantic XML file that allowed the designer to define the agent‘s needs, how much they

desired that need, which entities in the world could satisfy the need, and so on. The system
was nice and generic and allowed tons of different options. Unfortunately, that agility came

with a cost. The XML file was very hard to read because it contained arcane names and
values that really didn‘t mean anything to anyone who didn‘t know the underlying code

(which was me and the original author of the system). There was no way a designer without
significant scripting experience was going to touch that file. In retrospect, a better solution

would have been to split it into two files. The first would contain those arcane values and
configurations, while the second would be simple values a designer might want to mess

with, such as an agent‘s desire to speak versus its desire to sit down and do homework.

Movement

Before we start looking at decision making and providing the illusion of intelligence, we
need to learn the fundamentals of movement. If you‘re simply trying to move in a straight

line toward some destination, the following code is all you need:

// get the direction vector from the actor to the target and

normalize it

Vec3 diff = m_target - pActor->VGetMat().GetPosition();

diff.Normalize();

// calculate our speed this frame

float speed = AI_TEAPOT_SPEED * ((float)deltaMilliseconds /

1000.0f);

// multiply the direction vector by our speed and translate to

our new point

diff *= speed;

pPhysics->VTranslate(m_actorId,diff);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

As you can see, the position of the agent is subtracted from the target‘s position, which is
then normalized and multiplied by the calculated speed. This calculates the position the

agent needs to be at by the end of the frame. The physics system is told to translate the
actor to the correct position. Depending on the system you‘re working on, this function may

look very different. You might simply give the physics system a scalar velocity value and tell
it to apply a force to your agent, which will send it in the direction it‘s currently facing. For

simpler games, you may end up updating the model-to-world transform matrix directly.

There may be some animation syncing that needs to happen as well.

Most of the time, you‘ll want to have your agent face where it‘s going before you move it,

which involves rotating the agent to face that orientation. Here‘s a simple snippet of code

that does just that:

// get our current world orientation

float orientation = pPhysics->VGetOrientationY(m_actorId);

// figure our what direction we need to be facing

Vec3 diff = m_target - pActor->VGetMat().GetPosition();

// calculate the target orientation

Vec3 zUnit(0,0,1); // 0 orientation means staring down the

positive Z axis

// calculate the world orientation

float angle = (atan2(diff.z,diff.x*-1) -

atan2(zUnit.z,zUnit.x));

m_targetOrientation = WrapPi(angle); // WrapPi() just wraps the

angle so

 // it's between -PI and PI

// if we're not facing the right direction, start rotating

if (fabs(m_targetOrientation - orientation) > 0.001f)

 pActor->VRotateY(m_targetOrientation);

Of course, you usually don‘t want to snap to a particular orientation, so this is typically done
over time. To see an example of how this works, check out the

MoveState::RotateAndMove() function in TeapotStates.cpp of the Game Coding

Complete source code in Source\TeapotWars\TeapotStates.cpp. The code snippets above

were adapted from this function, which we will look at in greater detail later in this chapter.

I haven‘t started talking about AI states yet, but this should give you an idea of how to
rotate and move something over time.

Path Finding

The code in the previous section is fine for simple, short movements in unobstructed

terrain, but what happens when you want to move the agent long distances through more
complicated terrain? While it‘s possible to write code that will scan every possibility and find

the best route, this really isn‘t the most efficient way. Trying to have every creature analyze
the terrain in real time is typically way too expensive in terms of CPU time to be a viable

http://lib.ommolketab.ir
http//lib.ommolketab.ir

option. A better solution would be to find a way to represent the world in much simpler

terms to cut the cost of trying to find a path. One such technique for doing this is by using a
graph where the nodes and arcs connecting them define the movable space. This is the

technique we used at Super-Ego Games in Rat Race (see Figure 17.1).

Figure 17.1. Pathing graph for Rat Race.

So how do we go about creating such a system? Let‘s start with the nodes. A node
describes a point in space that the agent must reach. Nodes are connected by arcs, which

are essentially straight lines. For our graph, we‘re going to guarantee that an agent may

freely move between any two nodes directly connected by an arc. Thus, in order to move
from one node to its neighboring node, all you need to do is rotate to face the correct

direction and move in a straight line as described earlier in this chapter.

There‘s a slight problem with this method. Since the nodes are all connected by straight
lines, it‘s possible that the agent‘s motion will look a bit robotic, especially if the graph is

laid out like a grid. If the agent wanted to move onto a perpendicular arc, it would walk to
the node, make a 90-degree turn, and then walk to the next point. This doesn‘t look natural

at all. There are two things we can do to combat this problem. The first is to ensure that the
nodes are not placed in an obvious grid-like fashion. Place a few nodes around a turn to

create a curve instead of simply placing the corner node with two perpendicular arcs. I like
to make a little Y-shaped triangle of nodes and arcs near such corners.

The second thing we can do is allow each node to have a tolerance that describes how close

the agent has to be to the node in order to be considered to have hit it. Using these two
techniques together, you can get a much smoother path. If you really want to go for broke,

you can do a little prediction and figure out when to start turning and how sharply you need

to turn. This will give your agents a very smooth curve, though perhaps it will be too
smooth in some instances. For example, when someone is near a wall and turns a corner,

there is very little curve. Another alternative would be to add that information into the node
classes, but this may be a bit much to ask the designers (who typically create and tweak

these graphs) to do. I‘ve found that you can get some pretty decent results with the first
two methods.

Now we need to describe the arc that connects these nodes. We could make arcs

unidirectional, bidirectional, or both. We could give each arc a weight that gives a rough

javascript:moveTo('ch17fig01');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

description of the difficulty for traversing that area. We could even allow multiple arcs to

connect the same nodes but have different weights on those arcs for different types of
agents. For example, we could have one arc used by ground-based agents and another

used by flying agents. That way, you could easily have it so the ground agents tend to stick
to the roads while the flying agents wouldn‘t really care. The weights can even be dynamic.

Let‘s say you‘re making a real-time strategy game, and you want the flying units to avoid
the guard towers the player sets up. One way of solving this problem would be to have the

guard towers themselves increase the weight of nearby arcs. The flying units would tend to
avoid them. For now, let‘s just give our arcs a weight.

Rude NPC Behavior Should Be Corrected

When I was working at Super-Ego Games, I worked on an

adventure game for the PlayStation 3 called Rat Race,

which was set in an office. Being an adventure game, one of
the major things you did was talk to the NPCs. Unfortunately,

other NPCs would plow right through the middle of these

conversations. We ended up creating conversation pathing
objects that would spawn in the middle of conversations,

which would significantly raise the weight of any arcs within a
radius around that point. We also forced NPCs with affected

arcs in their path to replan. This caused NPCs to do the polite
thing and walk around the conversation.

Okay, let‘s take a look at our node class. Here‘s the PathingNode class:

typedef std::list<PathingNode*> PathingNodeList;

typedef std::list<PathingArc*> PathingArcList;

class PathingNode

{

 float m_tolerance;

 Vec3 m_pos;

 PathingArcList m_arcs;

public:

 explicit PathingNode(

 const Vec3& pos, float tolerance =

PATHING_DEFAULT_NODE_TOLERANCE)

 : m_pos(pos)

 { m_tolerance = tolerance; }

 const Vec3& GetPos(void) const { return m_pos; }

 float GetTolerance(void) const { return m_tolerance; }

 void AddArc(PathingArc* pArc);

 void GetNeighbors(PathingNodeList& outNeighbors);

 float GetCostFromNode(PathingNode* pFromNode);

private:

 PathingArc* FindArc(PathingNode* pLinkedNode);

};

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The PathingNode class has three members: m_tolerance is the tolerance of the node,

m_pos is the position of the node, and m_arcs is a list of arcs connecting this node to

other nodes.

Most of the functions are pretty self-explanatory. GetPos() and GetTolerance() are

just getters. AddArc() pushes a new arc onto the list. GetNeighbors() fills the

outNeighbors parameter with a list of all neighboring nodes. GetCostFromNode()

looks at the arc connecting this node to the other node and returns the cost, which is the

distance between the two nodes multiplied by the arc‘s weight. Find-Arc() is a helper

function that finds the arc connecting this node with the pLinkedNode parameter. As you

can see, this class is very simple.

Here‘s the PathingArc class:

class PathingArc

{

 float m_weight;

 PathingNode* m_pNodes[2]; // an arc always connects two nodes

public:

 explicit PathingArc(float weight =

PATHING_DEFAULT_ARC_WEIGHT;)

 { m_weight = weight; }

 float GetWeight(void) const { return m_weight; }

 void LinkNodes(PathingNode* pNodeA, PathingNode* pNodeB);

 PathingNode* GetNeighbor(PathingNode* pMe);

};

The PathingArc class only has two members. The first is m_weight, which is the weight

of this arc. It gets multiplied by the distance between the nodes this arc connects (for

example, the length of the arc). m_pNodes is an array of PathingNode objects and has

exactly two elements. Each arc is guaranteed to connect exactly two nodes and each arc is
bidirectional. This simplifies things considerably.

As for the member functions, GetWeight() is a simple getter. LinkNodes() links the

two passed-in nodes together by calling AddArc() on each and adding them to its own

internal array. GetNeighbor() gets the node this arc is pointing to that‘s not equal to the

node we pass in.

As you can see, these classes are very straightforward with a minimal set of features, yet

they are also easily extended. This is how I prefer to design my systems.

Start Simple and Try To Stay That Way

It’s usually best to write the least amount of code possible to get the
job done, while still allowing the system to be flexible enough to be

easily expanded. The system I’m designing here could be easily

modified to add any of the features I discussed previously without a
lot of refactoring.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Now that you have a couple of nice classes that define your pathing primitives, you need to

have a way to encapsulate all the objects you‘re about to create. This brings us to the

PathingGraph class. The PathingGraph class acts as the main interface into the whole

pathing system. There is currently only one PathingGraph object alive in the system at

any given time, but there‘s no reason you couldn‘t have more. For example, one possible

solution to having both flying enemies and ground enemies in your game would be to have

two separate PathingGraph objects, one for each type of enemy. Let‘s take a look at this

important class in detail:

typedef std::list<PathingArc*> PathingArcList;

typedef std::vector<PathingNode*> PathingNodeVec;

class PathingGraph

{

 PathingNodeVec m_nodes; // master list of all nodes

 PathingArcList m_arcs; // master list of all arcs

public:

 PathingGraph(void) {}

 ~PathingGraph(void) { DestroyGraph(); }

 void DestroyGraph(void);

 PathingNode* FindClosestNode(const Vec3& pos);

 PathingNode* FindFurthestNode(const Vec3& pos);

 PathingNode* FindRandomNode(void);

 PathPlan* FindPath(const Vec3& startPoint, const Vec3&

endPoint);

 PathPlan* FindPath(const Vec3& startPoint, PathingNode*

pGoalNode);

 PathPlan* FindPath(PathingNode* pStartNode, const Vec3&

endPoint);

 PathPlan* FindPath(PathingNode* pStartNode, PathingNode*

pGoalNode);

 void BuildTestGraph(void);

private:

 // helpers

 void LinkNodes(PathingNode* pNodeA, PathingNode* pNodeB);

};

The m_nodes and m_arcs members are the master lists of those objects. The

PathingGraph class owns the creation and destruction of all PathingNode and

PathingArc objects. The DestroyGraph() iterates over the two lists and destroys all

the objects. This function is public so you can call it to reset the PathingGraph object.

This is useful when you load a new level.

There are three functions for finding a particular node. FindClosestNode() finds the

node closest to the position passed in. FindFurthestNode() does the opposite.

FindRandomNode() will return a completely random node, which is nice if you just want

the agent to wander somewhere. FindClosestNode() is used extensively since most

agents will never be right on top of a node.

BuildTestGraph() is a simple helper function that generates the pathing graph. There

are two major ways to create a pathing graph. The first is to have someone create it by

http://lib.ommolketab.ir
http//lib.ommolketab.ir

hand. This can be very tedious, especially for large worlds, but it‘s the best way to get

exactly what you want. The second way is to generate it with code, usually as an offline
process. Many projects do both. They‘ll generate the first pass in code and then hand it off

to a designer who can then tweak weights and move nodes around to optimize the map.

The four overloaded FindPath() functions call your path-finding algorithm to get a

PathPlan object. The PathPlan object represents a single path through the world from

a start node to an end node. Here‘s the class definition:

typedef std::list<PathingNode*> PathingNodeList;

class PathPlan

{

 friend class AStar;

 PathingNodeList m_path;

 PathingNodeList::iterator m_index;

public:

 PathPlan(void) { m_index = m_path.end(); }

 void ResetPath(void) { m_index = m_path.begin(); }

 const Vec3& GetCurrentNodePosition(void) const

 { assert(m_index != m_path.end()); return (*m_index)-

>GetPos(); }

 bool CheckForNextNode(const Vec3& pos);

 bool CheckForEnd(void);

private:

 void AddNode(PathingNode* pNode);

};

The m_path member is a list of PathingNode objects sorted in the order in which they

are meant to be traversed. The m_index member is the tracking variable used to track the

agent‘s progress.

The ResetPath() and GetCurrentNodePosition() functions are self-explanatory.

The CheckForEnd() function simply returns true if the agent has reached the end of the

path, and the AddNode() helper function adds a node to the list.

The CheckForNextNode() function does most of the useful housekeeping:

bool PathPlan::CheckForNextNode(const Vec3& pos)

{

 if (m_index == m_path.end())

 return false;

 Vec3 diff = pos - (*m_index)->GetPos();

 if (diff.Length() <= (*m_index)->GetTolerance())

 {

 ++m_index;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 return true;

 }

 return false;

 }

This function checks to see if the agent is close enough to the node based on the node‘s

tolerance. If it is, the m_index variable is updated and this function returns true.

Otherwise, the function returns false.

A* (A-Star)

Now we have a system for building a graph of nodes connected by arcs and even returning
a path through that graph, but how do we use it? How do we efficiently scan this graph to

find the best route through it to our destination? There are many different searching

algorithms to choose from, but A* (pronounced A-Star) happens to be the best choice for
our purposes. It will find the path with the smallest cost and do it fairly quickly. There are

many different implementations of A*, but they all come from the same basic algorithm. A*
was first described in 1968 by Peter Hart, Nils Nilsson, and Bertram Raphael. In their paper,

it was called algorithm A. Since using this algorithm yields optimal behavior, it has been
called A*.

The A* algorithm works by analyzing each node it comes across and assigning three values

to each. The first is the total cost to this node by the current path so far. This value is
usually referred to as g, or goal. The second value is an estimated cost from this node to

the goal. It‘s often referred to as h, or heuristic. The third value is an estimated cost from
the start of the path through this node to the goal, which is really just g + h. This value is

often called f, or fitness.

The point of these three values is to keep track of your progress so you know how well
you‘re doing. The value of g is something you know for sure since it‘s a calculated value

(the sum of the costs of every node in the path so far), but how do you find out how to

calculate h and by extension, f? The only rule for calculating h is that it can‘t be greater
than the actual cost between this node and the goal node. Of course, the more accurate the

guess, the faster you can find a path. In this case, a simple distance check will suffice:

Vec3 diff = m_pPathingNode->GetPos() - s_pGoalNode->GetPos();

m_heuristic =diff.Length();

This allows us to easily calculate f.

The algorithm also maintains a priority queue called the open set. The open set is a list of

nodes that are being considered, and the node with the lowest fitness score is at the front of
the queue. The process starts with the node nearest the starting location. During each

iteration of the algorithm, the front node is popped off the queue. The neighbors of this
node are evaluated (potentially updating their magic values) and added to the open set.

This process continues until the node removed from the queue is the goal node. Note that

it‘s quite possible to see the goal node from a particular neighbor and ignore it if its f score
is not low enough. This simply means that you haven‘t found the best path yet. Once you

have processed a node, you mark it as closed. This allows you to ignore neighbors you‘ve
already processed. If the open set ever becomes empty before finding the goal node, it

means you‘re done and no path could be found.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You Can’t Always Get There From Here

No matter how solid you think the data is, there are times

when you won‘t be able to find a path. Make sure that you

have a graceful recovery plan.

Agents Can Be Stubborn

While working on Rat Race for Super-Ego Games, our
solution to failing to find a path was to re-run the higher

decision-making logic. Unfortunately, the decision was almost
always to try and do the exact same thing. Since AI was only

updating once a second, the NPC would take a half step,
stop, play a confused-looking idle animation (many of our

idle animations were confused looking; it was a comedy

game after all), and then repeat the process. The solution
was to have them abandon that particular decision, which

meant that they couldn‘t choose it the second time around.

Okay, enough theory! Let‘s look at an A* implementation. First, we‘ll need a new node

class. This is a special class used only during pathing. We can‘t use the PathingNode

class because multiple agents may be building completely different paths through the same

node. These two paths will have very different g, h, and f values. The solution is to create a

new PathPlanNode class that links to the PathingNode object it represents. Here‘s our

new class:

class PathPlanNode

{

 PathPlanNode* m_pPrev; // node we just came from

 PathingNode* m_pPathingNode; // pointer to the pathing node

from

 // the pathing graph

 PathingNode* m_pGoalNode; // pointer to the goal node

 bool m_closed; // the node isclosed if it'salready been

processed

 float m_goal; // cost of the entire path up to this point

(often called g)

 float m_heuristic; // estimated cost of this node tothegoal

 // (often called h)

 float m_fitness; // estimated cost from start to the goal

through this

 // node (often called f)

public:

 explicit PathPlanNode(PathingNode* pNode, PathPlanNode*

pPrevNode,

 PathingNode* pGoalNode);

 PathPlanNode* GetPrev(void) const { return m_pPrev; }

 PathPlanNode* GetNext(void) const { return m_pNext; }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 PathingNode* GetPathingNode(void) const { return

m_pPathingNode; }

 bool IsClosed(void) const { return m_closed; }

 float GetGoal(void) const { return m_goal; }

 float GetHeuristic(void) const { return m_heuristic; }

 float GetFitness(void) const { return m_fitness; }

 void UpdatePrevNode(PathPlanNode* pPrev);

 void SetClosed(bool toClose = true) { m_closed = toClose; }

 bool operator<(PathPlanNode* pRight)

 { return (m_fitness < pRight->GetFitness()); }

private:

 void UpdateHeuristics(void);

};

The m_pPrev member is a pointer to the previous node. This is used to help calculate the

magic values and to rebuild the path when a solution is found. The m_pPathingNode

member is a pointer to the PathingNode object this node represents, and the

m_pGoalNode is a pointer to the node the agent is trying to reach. If m_closed is true,

the node has been processed and is in the ―closed set.‖ The m_goal, m_heuristic, and

m_fitness members were explained in detail previously.

Most of the functions are simple getters except for the private UpdateHeuristics()

function, which calculates the three magic values. Notice the overloaded operator<

function. The open set is really a priority queue, so this function is needed to figure out

where in the queue to insert the node.

Next, let‘s take a look at the AStar class:

typedef std::map<PathingNode*, PathPlanNode*>

PathingNodeToPathPlanNodeMap;

typedef std::list<PathPlanNode*> PathPlanNodeList;

class AStar

{

 PathingNodeToPathPlanNodeMap m_nodes;

 PathingNode* m_pStartNode;

 PathingNode* m_pGoalNode;

 PathPlanNodeList m_openSet;

public:

 AStar(void);

 ~AStar(void);

 void Destroy(void);

 PathPlan* operator()(PathingNode* pStartNode, PathingNode*

pGoalNode);

private:

 PathPlanNode* AddToOpenSet(PathingNode* pNode, PathPlanNode*

pPrevNode);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 void AddToClosedSet(PathPlanNode* pNode);

 void InsertNode(PathPlanNode* pNode);

 void ReinsertNode(PathPlanNode* pNode);

 PathPlan* RebuildPath(PathPlanNode* pGoalNode);

};

This class is a functor, which is simply a class whose objects are meant to be called like

functions (see the PathingGraph::FindPath() functions to see an example of how

they‘re called).

The m_nodes member is a mapping of PathingNode objects to PathPlanNode

objects. This map keeps track of all the PathPlanNode objects that are created so they

can be destroyed when this class is destroyed. Whenever a new node is evaluated, the map

is searched to see if a PathPlanNode object representing this node already exists and

what its status is. I chose to use a map here because it has to be searched in every

iteration, and searching a map is a lot faster than searching a list or array.

m_pStartNode and m_pGoalNode are the nodes to start at and end at, respectively.

m_openSet is the priority queue of nodes being evaluated. Notice that it‘s really just an

STL list under the covers. A simple insertion sort is used to turn it into a priority queue:

void AStar::InsertNode(PathPlanNode* pNode)

{

 assert(pNode);

 // just add the node if the open set is empty

 if (m_openSet.empty())

 {

 m_openSet.push_back(pNode);

 return;

 }

 // otherwise, perform an insertion sort

 PathPlanNodeList::iterator it = m_openSet.begin();

 PathPlanNode* pCompare = *it;

 while (pCompare < pNode)

 {

 ++it;

 if (it != m_openSet.end())

 pCompare = *it;

 else

 break;

 }

 m_openSet.insert(it,pNode);

}

The first thing that happens is a test to see if the open set is empty. If it is, the node is
simply pushed to the back. Otherwise, the list is searched until the appropriate insertion

spot is found, at which point the node is inserted and the loop is broken.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The bulk of the work in this class is done in the overloaded function call operator:

PathPlan* AStar::operator()(PathingNode* pStartNode, PathingNode

* pGoalNode)

{

 assert(pStartNode);

 assert(pGoalNode);

 // if the start and end nodes are the same, we're close

enough to

 // b-line to the goal

 if (pStartNode == pGoalNode)

 return NULL;

 // set our members

 m_pStartNode = pStartNode;

 m_pGoalNode = pGoalNode;

 // The open set is a priority queue of the nodes to be

evaluated.

 // If it's ever empty, it means we couldn't find a path to

the goal.

 // The start node is the only node that is initially in the

open set.

 AddToOpenSet(m_pStartNode, NULL);

 while (!m_openSet.empty())

 {

 // grab the most likely candidate

 PathPlanNode* pNode = m_openSet.front();

 // If this node is our goal node, we've successfully found

a path.

 if (pNode->GetPathingNode() == m_pGoalNode)

 return RebuildPath(pNode);

 // we're processing this node so remove it from the open

set and

 // add it to the closed set

 m_openSet.pop_front();

 AddToClosedSet(pNode);

 // get the neighboring nodes

 PathingNodeList neighbors;

 pNode->GetPathingNode()->GetNeighbors(neighbors);

 // loop though all the neighboring nodes and evaluate each

one

 for (PathingNodeList::iterator it = neighbors.begin();

 it != neighbors.end(); ++it)

 {

 PathingNode* pNodeToEvaluate = *it;

 // Try and find a PathPlanNode object for this node.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 PathingNodeToPathPlanNodeMap::iterator findIt =

 m_nodes.find(pNodeToEvaluate);

 // If one exists and it's in the closed list, we've

already

 // evaluated the node. We can safely skip it.

 if (findIt != m_nodes.end() && findIt->second-

>IsClosed())

 continue;

 // figure out the cost for this route through the node

 float costForThisPath = pNode->GetGoal() +

 pNodeToEvaluate->GetCostFromNode(pNode-

>GetPathingNode());

 bool isPathBetter = false;

 // Grab the PathPlanNode if there is one.

 PathPlanNode* pPathPlanNodeToEvaluate = NULL;

 if (findIt != m_nodes.end())

 pPathPlanNodeToEvaluate = findIt->second;

 // No PathPlanNode means we've never evaluated this

pathing node

 // so we need to add it to the open set, which has the

side effect

 // of setting all the heuristic data. It also means that

this is

 // the best path through this node that we've found so the

nodes are

 // linked together (which is why we don't bother setting

isPathBetter

 // to true; it's done for us in AddToOpenSet()).

 if (!pPathPlanNodeToEvaluate)

 pPathPlanNodeToEvaluate =

AddToOpenSet(pNodeToEvaluate,pNode);

 // If this node is already in the open set, check to see

if this

 // route to it is better than the last.

 else if (costForThisPath < pPathPlanNodeToEvaluate-

>GetGoal())

 isPathBetter = true;

 // If this path is better, relink the nodes appropriately,

update

 // the heuristics data, and reinsert the node into the

open list

 // priority queue.

 if (isPathBetter)

 {

 pPathPlanNodeToEvaluate->UpdatePrevNode(pNode);

 ReinsertNode(pPathPlanNodeToEvaluate);

 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 }

 }

 // If we get here, there's no path to the goal.

 return NULL;

}

To start everything off, the member variables are set and the starting node is added to the

open set. As long as there are nodes left in the open set, there is still a chance to find the
path. The first node is removed from the queue and checked to see if it‘s a goal node. If it

is, the path is rebuilt from this spot and the plan is returned. Otherwise, this node is added
to the closed set so that it‘s not double-processed. The node is then asked for a list of all its

neighbors. The m_nodes list is searched to see if the first neighbor exists there. If it‘s

found and has been closed, it can safely be ignored and the neighbor is evaluated. Next, the

cost to this node for the current path is calculated. If there isn‘t a PathPlanNode object

for this node, it means it has never been looked at it and will need to be added to the open
set. If it already has one, the node is evaluated to see if this path through then node is

better. If it is, the node is updated with the new path and magic values. This is repeated for
every neighbor and then the algorithm starts all over, evaluating the highest priority in the

queue.

An interesting side note about A* is that it‘s not specific to path finding. It‘s really just a
search algorithm suited to find the lowest cost solution to any problem that can be

represented by a graph or tree. For example, in the game Fear by Monolith Productions, the
agents used a decision tree to decide what they wanted to do next, like toss a grenade,

shoot, patrol, etc. This decision tree was traversed using an A* algorithm.

Take some time to read through the code—it all lives in the Game Code Complete source
files, in Source\AI\Pathing.h and Source\AI\Pathing.cpp. Make sure that you have a good

grasp of what‘s going on and how it all fits together.

The techniques and code presented here are by no means the only way to navigate through
the world. Remember, the key to successful navigation is to simplify the agents‘ view of the

world so you can cut down on how much you have to process. A few hundred or even a few

thousand pathing nodes are much faster to process than trying to deal with world geometry
at runtime.

Another very common technique is something called a navigation mesh, which is a simple

mesh that can be built by the artists or designers and represents the walkable terrain. The
concept is really no different than the graph above. The center of each triangle is a node,

and the edges that connect to other triangles are the arcs. There will probably have to be a
bit more smoothing involved or else the paths may not look good, but if your meshes are

dense enough with decent tolerances, it may not be much of an issue. Game Programming
Gems has an article called ―Simplified 3D Movement and Pathfinding Using Navigation

Meshes‖ that serves as a great introduction to using navigation meshes if you find yourself
interested in learning more.

Making a Professional Game

This is a nice little path-finding system we‘ve developed together, but is it ready for prime

time? Probably not. There are a few issues that would need to be resolved before this would
fly in a commercial game. The biggest one is probably optimization. I wrote the code to be

easy to understand, not fast. The A* algorithm itself could definitely stand some
optimization. I think a big performance gain could be made by simply pooling the

PathPlanNode objects. We‘re constantly destroying and re-creating them, which is

thrashing memory and fragmenting it all to hell. This will kill you on a console, and you‘ll

http://lib.ommolketab.ir
http//lib.ommolketab.ir

probably end up with some mysterious out-of-memory error that will take you weeks to

track down. Allocating 100 or so of these PathPlanNode objects isn‘t such a bad idea. It‘s

a bit more wasteful on memory, but it‘ll be considerably faster. An even better solution

would be to write a custom memory pool allocator that already had chunks of memory set
aside of the appropriate size for this data structure. This is what we did at Planet Moon for

Brain Quest, our GameBoy DS title, and it worked very well.

Most of the time, you‘ll probably want to have multiple agents all navigating through the
world at once. What happens if two or more agents are trying to hit the same node at the

same time? What about two agents coming toward each other along the same arc? Figure
17.2 shows exactly what could happen.

Figure 17.2. Multiple agents trying to reach a single node.

The simplest solution to both of these issues is to turn off the node or arc in question. As
soon as an agent starts traveling down an arc, give it exclusive access to that arc. If
another agent happens to reach a point in its path where it has to travel down that same

arc in the opposite direction, force it to replan from its current node to its target node,
ignoring that particular arc.

The above scenario works well for relatively open areas, but what happens when your

agents are in a confined space, like an office building? When I worked on Rat Race at
Super-Ego Games, we had this exact problem. There were over a dozen agents in a small

office building all pathing around the world. It was okay most of the time, but there were

several choke points where it all just broke down, like the stairwell. The solution to this
problem was to implement a dynamic avoidance algorithm. Each agent was given a personal

comfort radius around it. If another agent enters that radius and they‘re both moving, they
calculate how much they have to turn to avoid each other‘s comfort zones. This ended up

working really well and solved most of our issues concerning people running into each
other.

Having multiple agents all moving around using complex pathing graphs can be very taxing

on the system. In larger game worlds, a common practice is to allow the A* algorithm to
stop at any time so that a single path can be built across multiple frames. This is easy

enough to implement with the system you‘ve built. All you need to do is to store the AStar

object for each path being built and have an event sent when the path is done. This sounds

like a perfect job for a CProcess object. In Chapter 18, ―Introduction to

Multiprogramming,‖ you‘ll learn an even better solution using threads.

Simple Decision Making

javascript:moveTo('ch17fig02');
javascript:moveTo('ch17fig02');
javascript:moveTo('ch17fig02');
../../ch18#ch18
http://lib.ommolketab.ir
http//lib.ommolketab.ir

By now, you should have a good grasp of how an agent moves from point A to point B, but

how does the agent decide that he wants to be at point B instead of point C? After all, point
C might be closer.

There are many different kinds of agents and many different types of decision making.

Some agents are proactive, likes the ones in The Sims or the opponent AI in Dawn of War.
Other agents are very reactive, like the NPCs in Assassin’s Creed or the soldiers in Thief:

Deadly Shadows. They just run their routine until something interesting happens, like the
player killing someone he shouldn‘t. In either case, the foundation for most AI systems is

the state machine.

State Machines

A state machine consists of a set of states, each encapsulating a particular behavior such as
moving, attacking, getting a soda from the refrigerator, assaulting the player‘s town, or

even just loitering. State machines usually have an event for entering a state, leaving a
state, and an update function called every frame. Hmm, this is starting to sound a lot like

the CProcess class you learned about in Chapter 6, ―Controlling the Main Loop.‖ In fact,

states are a perfect candidate to be children of CProcess. Let‘s take a look at the base

AiState class:

class AiState : public CProcess

{

protected:

 int m_timer;

 PathPlan* m_pPlan;

 Vec3 m_target;

 ActorId m_actorId;

 StateMachine* m_pStateMachine;

public:

 AiState(const ActorId& actorId, StateMachine* pStateMachine,

 int processType);

 virtual ~AiState(void);

 virtual void VOnUpdate(const int deltaMilliseconds);

};

This is a pretty simple class. All it does is add a bit of extra AI-related data to the

functionality that CProcess already had.

Don’t Reinvent the Wheel

If you’re working as part of a team, always take the time to look

through the code base for something you need. It’s often already been

written for you. A real-life example of this is the WrapPi() function

you may have noticed in the pathing code. I started to write that
function myself and did a quick search for something similar. There it

was in CMath.cpp, kindly written by someone before me.

The purpose of the m_timer member variable is to allow states to delay execution. This is

particularly useful for noncritical states that don‘t need to be updated every frame. In fact,

../../ch06#ch06
http://lib.ommolketab.ir
http//lib.ommolketab.ir

most AI states probably don‘t need to be updated every single frame. The m_pPlan

variable is a pointer to the agent‘s current pathing plan (see the path-finding section

previously) or NULL if the agent doesn‘t have a path. m_target is the agent‘s current

target, which is either a specific location or the location of the current path node. You need

a way to talk to the actor itself, so you can store the actor ID in the m_actorId variable.

m_pStateMachine is a pointer to the StateMachine object that created this state.

All states are managed by a StateMachine class, which can be thought of as the agent‘s

brain. The StateMachine class is responsible for creating and destroying the appropriate

AiState objects and is owned by the agent‘s game view object.

Intelligent agents need to have a view of the game world, similar in many ways to the

HumanView class you read about in Chapter 19, ―A Game of Teapot Wars,‖ a class called

AITeapotView will do exactly that, and handle the AI behavior of teapots by using the

StateMachine class. While AI agents can easily ask about the state of the world, such as

where actors are or where the exit for the room is, they can also use the Event Manager to
receive information about the changing state of the world. In Thief: Deadly Shadows, for

example, the agents listened for collision events and if they were energetic enough, they
would begin a search to see what made the noise. You can drastically alter AI behavior by

changing what game events an AI cares about and how they will change their state.

Let‘s take a look at the StateMachine class and see how it works:

class StateMachine

{

protected:

 shared_ptr<PathingGraph> m_pPathingGraph;

 shared_ptr<AiState> m_pCurrState;

 ActorId m_actorId;

public:

 StateMachine(const ActorId& actorId, shared_ptr<PathingGraph>

 pPathingGraph);

 virtual ~StateMachine(void);

 void SetState(const std::string& stateName);

 shared_ptr<PathingGraph> GetPathingGraph(void) { return

m_pPathingGraph; }

protected:

 // This is the factory method for spawning concrete state

objects.

 // Since the state classes all live in the game layer, it's

up to that

 // layer to inherit from this class and implement this

function.

 virtual void CreateState(const std::string& stateName) = 0;

};

The m_pPathingGraph variable is a smart pointer to the PathingGraph object, which

is passed in upon construction. This allows you to easily have multiple pathing graphs if you

want, or to swap out the existing graph. m_pCurrState is the base class pointer to the

current AI state and m_actorId is the actor‘s ID.

../../ch19#ch19
http://lib.ommolketab.ir
http//lib.ommolketab.ir

The process for setting AI states is a bit tricky. There‘s a protected pure virtual function

hiding at the bottom of this class definition named CreateState(). This is the factory

method used for creating states. In order to use this class, you must write a game-specific

class that inherits from this one and implement CreateState(). Here‘s the subclass I

created for the Teapot Wars demo:

class TeapotStateMachine : public StateMachine

{

public:

 TeapotStateMachine(const ActorId& actorId,

 shared_ptr<PathingGraph> pPathingGraph) :

 StateMachine(actorId,pPathingGraph) {}

 virtual void CreateState(const std::string& stateName);

};

As you can see, this class is pretty trivial. All it does is implement the CreateState()

function:

void TeapotStateMachine::CreateState(const std::string&

stateName)

{

 if (stateName == "attack")

 m_pCurrState.reset(GCC_NEW AttackState(m_actorId,this));

 else if (stateName == "chase")

 m_pCurrState.reset(GCC_NEW

ChaseTargetState(m_actorId,this));

 else if (stateName == "wander")

 m_pCurrState.reset(GCC_NEW WanderState(m_actorId,this));

 else if (stateName == "spin")

 m_pCurrState.reset(GCC_NEW SpinState(m_actorId,this));

 else if (stateName == "wait")

 m_pCurrState.reset(GCC_NEW WaitState(m_actorId,this));

 else

 OutputDebugString(_T("Couldn't find state"));

}

This function is a simple series of if/then blocks that figures out what state you‘re asking

for and instantiates the correct concrete class. This function is called from the

SetState() function in StateMachine:

void StateMachine::SetState(const std::string& stateName)

{

 // kill the old state if there is one

 if (m_pCurrState)

 {

 m_pCurrState->VKill();

 m_pCurrState.reset();

 }

 // instantiate the concrete state object

 CreateState(stateName);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 // attach the state process

 if (m_pCurrState)

 g_pApp->m_pGame->AttachProcess(m_pCurrState);

}

This function checks to see if the agent already has a state. If it does, it sends the kill

message, which will safely remove it from the list. Next, the CreateState() function is

called, and if a valid AiState was created, the process is attached to the process

manager.

One very common bug in state systems is something known as state oscillation, which is

caused by one state transitioning to another and that state transitioning right back. For
example, say you have a conditional statement that says this:

if (playerDistance < 600.0f)

 m_pStateMachine->SetState("chase");

And then in the chase state, you have a conditional that says this:

if (playerDistance > 300.0f)

 m_pStateMachine->SetState("wander");

If the player were 400 units away, the agent would get confused and constantly shift
between those two states. These bugs are hard enough in a simple, deterministic system

like the one that‘s been built in this chapter, but they become nightmarish in a really
complex, nondeterministic system like some of the ones described next.

Let‘s take a look at a sample state, ChaseTargetState:

class ChaseTargetState : public MoveState

{

 ActorId m_victim;

 int m_pathingTimer;

public:

 ChaseTargetState(const ActorId& actorId, StateMachine*

pStateMachine) :

MoveState(actorId,pStateMachine,PROC_AISTATE_CHASETARGET)

 { m_hasStartedRotation = false;

m_pathingTimer = 0; }

 virtual void VOnUpdate(const int deltaMilliseconds);

 virtual void VOnInitialize(void);

};

This class inherits from the MoveState class:

class MoveState : public AiState

{

http://lib.ommolketab.ir
http//lib.ommolketab.ir

protected:

 bool m_hasStartedRotation;

 float m_targetOrientation;

public:

 MoveState(const ActorId& actorId, StateMachine*

pStateMachine,

 int processType) :

AiState(actorId,pStateMachine,processType)

 {m_hasStartedRotation = false; m_targetOrientation

= FLT_MAX;}

protected:

 void RotateAndMove(const int deltaMilliseconds);

};

This class is simply a helper. As I was writing these states, I noticed that I was starting to

write some of the same code over again, so I extracted some common functionality and put

it in a base class. This way, RotateAndMove() can be used by other classes.

m_hasStartedRotation and m_targetOrientaton are used by RotateAnd-

Move() to keep track of rotations.

The purpose of the ChaseTarget state is to find a target and chase it. Once it gets within

firing range, the agent will launch a deadly assault! It has an m_victim variable to keep

track of its poor target and an m_pathingTimer variable to ensure that the expensive A*

algorithm isn‘t run too often.

The VOnInitialize() function just calls the base class VOnInitialize() and grabs

a random actor from the global list of actors as its victim. The juicy part is in the

VOnUpdate() function:

void ChaseTargetState::VOnUpdate(const int deltaMilliseconds)

{

 AiState::VOnUpdate(deltaMilliseconds);

 m_pathingTimer += deltaMilliseconds;

 // grab the necessary interfaces

 shared_ptr<IGamePhysics> pPhysics = g_pApp->m_pGame-

>VGetGamePhysics();

 assert(pPhysics);

 shared_ptr<IActor> pActor = g_pApp->m_pGame-

>VGetActor(m_actorId);

 assert(pActor);

 // Try to grab the victim. If we can't, he's probably dead

already

 // so switch to wander.

 shared_ptr<IActor> pVictim = g_pApp->m_pGame-

>VGetActor(m_victim);

 if (!pVictim)

 {

 m_pStateMachine->SetState("wander");

 return;

 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 // grab the actors' positions

 Vec3 actorPos(pActor->VGetMat().GetPosition());

 Vec3 victimPos(pVictim->VGetMat().GetPosition());

 Vec3 diff = victimPos - actorPos;

 float dist = diff.Length();

 // check to see if we're close enough to start attacking

 if (dist >= AI_TEAPOT_ATTACK_MIN && dist <=

AI_TEAPOT_ATTACK_MAX)

 {

 m_pStateMachine->SetState("attack");

 return;

 }

 // If we're not within range, path to where we need to be. We

 // need to actually reach our goal because the agent will be

 // within weapons range first.

 else

 {

 // if we have an invalid pathing plan or the plan we do

have is

 // stale, replan

 if (!m_pPlan || m_pathingTimer >= AI_TEAPOT_PATHING_TIMER

||

 m_pPlan->CheckForEnd())

 {

 // path to victim

 SAFE_DELETE(m_pPlan);

 if (dist > AI_TEAPOT_ATTACK_MAX) // too far away, try and

path

 // to his location

 m_pPlan = m_pStateMachine->GetPathingGraph()-

>FindPath(actorPos,

victimPos);

 else // too close, try and path to furthest node away from

him

 {

 PathingNode* pFurthestNode =

 m_pStateMachine->GetPathingGraph()->

 FindFurthestNode(victimPos);

 m_pPlan = m_pStateMachine->GetPathingGraph()->

 FindPath(actorPos,pFurthestNode);

 }

 // if we can't find a path to the victim, give up

 if (!m_pPlan)

 {

 m_pStateMachine->SetState("wander");

 return;

 }

 // set our target pos

 m_pPlan->ResetPath();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 m_target = m_pPlan->GetCurrentNodePosition();

 m_pathingTimer = 0;

 }

 // If we get here, we have a valid plan that we're executing.

 // Calculate our target orientation.

 // check to see if we're close enough to the next node

 if (m_pPlan->CheckForNextNode(actorPos))

 {

 m_target = m_pPlan->GetCurrentNodePosition();

 m_hasStartedRotation = false;

 return;

 }

 // still too far so check to see that we're facing the right

way

 else

 RotateAndMove(deltaMilliseconds);

 }

}

First, the base class VOnUpdate() function is called, the timer is updated, and the

interfaces that are needed are stored. Then an attempt to get the victim is made. If it fails,
the victim is assumed to be dead and the agent‘s state is set to ―wander.‖ Next, a little

math is done to get the actor‘s positions and the difference between them. The next block
checks to see if the agent is close enough to the victim to start attacking. Incidentally,

these constants are perfect candidates to be moved out of the C++ code and into a Lua file
somewhere.

If the agent is not close enough to the victim, it will try to path there. Notice the checks to

make sure the plan is stale or invalid before attempting to replan. A* is an algorithm you
want to run as seldom as you can, especially when you have many agents pathing around

the world. Five might be okay, but 50 certainly wouldn‘t be!

It‘s possible that the agent is either too close or too far from the victim since the bullets
travel in a pretty big arc. If this is the case, the agent figures out which direction it needs to

go and finds a path there. If it can‘t, its state is set to ―wander‖ (remember, always handle

the failure to find a path). The PathingPlan object is reset, and the agent heads off in

the appropriate direction.

The next section of the function is executed if the agent is running a valid plan. All it does is

check to see if the agent is at the next node. If it is, then m_hasStartedRotation flag

is reset so that RotateAndMove() knows that a rotation may be needed. If the agent is

not yet at the next node, RotateAndMove() is called to update its position. Let‘s take a

look at that function to see how it works:

void MoveState::RotateAndMove(const int deltaMilliseconds)

{

 // grab the necessary interfaces

 shared_ptr<IGamePhysics> pPhysics = g_pApp->m_pGame-

>VGetGamePhysics();

 assert(pPhysics);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 shared_ptr<IActor> pActor = g_pApp->m_pGame-

>VGetActor(m_actorId);

 assert(pActor);

 // calculate orientation

 float orientation = pPhysics->VGetOrientationY(m_actorId);

 Vec3 diff = m_target - pActor->VGetMat().GetPosition();

 if (m_targetOrientation == FLT_MAX)

 m_targetOrientation = GetYRotationFromVector(diff);

 // if we're not facing the right direction, start rotating if

we

 // haven't already

 if (fabs(m_targetOrientation - orientation) > 0.001f)

 {

 if (!m_hasStartedRotation)

 {

 pActor->VRotateY(m_targetOrientation);

 m_hasStartedRotation = true;

 }

 }

 // if we're already facing the right direction, pretend we

rotated there

 else if (!m_hasStartedRotation)

 m_hasStartedRotation = true;

 // if we get here, we're done rotating so start moving

 else

 {

 m_targetOrientation = FLT_MAX;

 m_hasStartedRotation = false;

 diff.Normalize();

 float speed = AI_TEAPOT_SPEED * ((float)deltaMilliseconds

/ 1000.0f);

 diff *= speed;

 pPhysics->VTranslate(m_actorId,diff);

 }

}

The code in this function should look familiar. It‘s based on the principles discussed in the

very beginning of this chapter. The first thing that happens (besides grabbing the
appropriate interfaces) is a query to the physics system for the agent‘s current orientation

about the Y axis. The agent‘s target orientation is then calculated. If it‘s not facing the right
direction and hasn‘t started rotating, the physics system is told to start the rotation and the

m_hasStartedRotation flag is set. The next time through this function, the target

orientation is calculated again and, if the agent hasn‘t reached the target yet, the function

returns. This effectively causes the state to wait until the agent has completed its rotation.

Once the rotation is complete, the final else block at the bottom of the function gets

executed. This signals that the agent is ready to be moved. The agent will move until

something tells it to stop, which is exactly what happens when it‘s close enough to the

target. This is checked back in the ChaseTargetState::VOnUpdate() function.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Spend some time studying ChaseTargetState and get to know how it works. It‘s a nice

vertical slice of the AI system and uses everything we‘ve covered.

Making a Professional Game

What needs to change in your StateMachine system before you can use this in a

commercial game? The CreateState() factory method isn‘t exactly ideal. You really

don‘t want to create a series of if/then statements that do a bunch of string compares.

Furthermore, the state transitions are all hard coded. This is fine if you‘re making a

relatively simple game, but once you delve into something more complex, you‘ll want to
abstract the transitions themselves. One way to do this would be to create functors (similar

to the A* functor described above) that can be instantiated just like states. Each functor
represents a conditional that can be mapped to a state. If the condition is true, you

transition to that state. You can build a sorted list of these transition-to-state pairs and in

the VOnUpdate() function of each state, it simply goes through its list of transitions and

checks each one.

Another thing this system sorely lacks is some exposure to Lua. These states should all be

exposed and designers should have the ability to force state changes on script events. Right
now, it‘s all controlled by the programmer. The pathing graph is currently generated with a

simple grid-building algorithm. The designers need to have some control over this, too. One
solution would be to write an offline tool that analyzes the world geometry and builds a

simple pathing graph based on that. Then the designers can go into the level editing tool
and muck around with values as needed.

Advanced Decision Making

State machines are really just the beginning. I want to touch on a few advanced techniques

for decision making to give you an idea of what else is out there. I can‘t do these topics any

justice in a single chapter since entire books have been written about each one, but this
should be enough to pique your curiosity to start looking into them when you‘re ready.

Fuzzy Logic

In traditional logical systems, things are very Boolean. Either you are tired, or you are not;
there‘s no in between. At its most basic, fuzzy logic simply turns this into a variable.

For example, let‘s say you have an agent with a value for ―rest‖ that goes from 0–100

where 0 is passed out and 100 is fully rested. In your state transition code, you have it set
that if the agent‘s ―rest‖ falls to 50, it starts heading for bed. If it falls below 25, it urgently

looks for a safe place to sleep. This is pretty standard rigid logic.

A fuzzy approach to this same problem would be to define a fuzzy set called ―rested‖ and
another called ―tired.‖ The agent would usually belong to both of these sets, but in different

degrees. For example, if its rest meter were at 75, it would be 0.75 in the rested set and

0.25 in the tired set. As its membership in the tired set increases, it becomes more and
more important for it to find a place to sleep. With this simple example, you could define its

percentage chance of wanting to find a place to sleep as the degree of membership in the
tired set divided by 0.80. This means it‘s guaranteed to find a place to sleep once its degree

of membership is greater than 0.8. If its meter were at 75 (giving him a 0.25 degree of
membership in the tired set), it would have a 31.25% chance to want to rest.

Fuzzy systems get really interesting when you introduce several fuzzy sets to which all

agents belong. You can get some really complex emergent behavior with just a few simple

http://lib.ommolketab.ir
http//lib.ommolketab.ir

fuzzy sets. For example, your agent might be really tired, but if it‘s starving to death, it

shouldn‘t matter how hungry it is.

One of the really interesting side effects of fuzzy systems is that agents will sometimes

behave unpredictably. They‘ll do the expected thing most of the time, but every now and

then they‘ll do something a bit strange. In my experience, I‘ve found that a little tuning of
simple fuzzy systems can imbue otherwise static NPCs with personality and life.

Goal-Oriented Agents

Goal-oriented agents just want to be happy. All of their decision making is a prediction of
the future, and they always try to choose the option that will maximize their happiness. In

AI terms, this happiness is often called utility. Each agent has a series of desires and a

number of possible actions that may or may not satisfy those desires. The desires can be
thought of as little meters or buckets that the agent wants to fill. Sometimes, they go down

with time (like hunger), and sometimes it takes an event (like taking damage). In a simple
world, all desires are equal, and the agent simply chooses to satisfy the one that has the

lowest value. However, in most cases, things are not at all equal, and the agent ends up
doing a juggling act. Whenever it has to make a decision about what to do next, it looks at

all of its options and chooses the one that it feels will maximize his overall utility score.
Goal-oriented agents can be hard to tune, especially if there are a lot of desires. Usually,

there‘s some fuzzy logic going on there as well, so the system becomes very

nondeterministic.

The Sims is a perfect example of how goal-oriented agents behave. Each sim has a series of

needs, and all of their AI controlled actions are based on satisfying those needs. In their

case, nearly every need decays with time, though they are clearly not all weighted equally.
If your sim is about to starve to death but also smells really bad, it will typically go get

something to eat first.

Agents Can Complain About Work Just Like Us

Rat Race used a system called UtilEcon, which stood for

Utility Economy. The system was designed to be a goal-
oriented system where agents would wander around the

world and trade utility with each other through speech. We
had a whole speech system tied into this so there were

different types of utility for different types of conversations.
That way you‘d tend to hear the gossipy people in the office

say the gossip lines while the workaholics would say the work
lines. The system worked really well and added quite a bit to

the atmosphere. ―Oh look, there‘s Joy complaining again.‖

Types of Game AI

Before I wrap up this chapter, I want to talk briefly about a few different genres of games

and some of the challenges AI developers face with them.

Simple Action Games and Platformers

Simple action/platformer games rely on reflex and patterns. Some examples include the

various Mega Man games, Little Big Planet, Paper Mario for the Wii, and Braid. The AI for
this genre tends to be very simple. It‘s often just simple, preprogrammed patterns with a

http://lib.ommolketab.ir
http//lib.ommolketab.ir

very simple state machine. For some games (like Mega Man), the fun is trying to figure out

that pattern so you can use it to defeat the enemy. Other games are even simpler.

The techniques presented in this book are more than sufficient to build a game like this. In

fact, many platformers (especially side-scrollers like Mega Man) don‘t use path-finding

algorithms at all.

Shooters

Shooters are the next generation of action game where the primary goal is typically to

destroy the enemy. Examples of these games are Half Life, Quake, Doom, Fear, Gears of
War, and Left 4 Dead. The AI in these games is often a bit more complex. The enemies

need to move around in a bigger, more complex space. They‘ll need some shooting control

code and perception algorithms (line-of-sight, hearing, and so on). Decision making is often
handled with a more complex state machine, and the enemies will probably need a way to

communicate with each other so they can work together. It would look pretty dumb if two
enemies closed in on the player while a third threw a grenade at him!

The principles you learned in this chapter still hold true. Keep in mind that the average

lifetime of a single AI-controlled enemy in a shooter game is pretty short; doing much more
than simple tactics is usually overkill. The system in this chapter would need to be

expanded, but the core of it would be perfectly suited to this genre of game.

Strategy Games

Strategy games are an order of magnitude more complex than shooters, especially real-
time strategy games. Some examples of strategy games include Civilization, Dawn of War,

Starcraft, and Warcraft. Strategy games typically have two major components to their AI.
The first is the individual unit AI, which includes path finding, basic attack states, and so on.

A relatively simple state machine is usually enough for these guys. Path finding is another
story. The path finding in real-time strategy (RTS) games is usually very complex and often

involves a considerable amount of optimization. At the very least, it should be run in a
separate thread.

The second component of strategy AI is the opponent. This is a much higher level of AI that

determines which units to build and when to attack. A goal-oriented agent would be
appropriate here as would adding some simple learning algorithms to help anticipate the

player‘s attacks.

Role-Playing Games

Role-playing games come in many different flavors. Some have very scripted NPCs while
others have living, breathing worlds. The former is created easily enough using simple

waypoints. The latter is much more of an interesting challenge. Games like Oblivion, Fallout
3, and the Ultima series would simulate entire worlds. People wake up, eat breakfast,

wander outside, go to work, hunt, come home, and sleep. Ultima VII did this with an

internal schedule for each NPC that would dictate what it was doing at any given time.

Games like this usually require complex state machines with some decent culling

techniques. As you get farther away from a particular area, the game can give the NPC less

CPU time to update. Maybe in the beginning, it just runs a really dumb but really fast path-
finding algorithm. As you get farther away, perhaps pathing is turned off completely, and it

merrily clips through any geometry in its way (at this point, it probably has no physical
presence, just a position). It will eventually get turned off completely. This is the basis

behind LOD (level of detail). LOD has been in use in the graphics world for quite some time.
You can think of AI LOD as a form of logical mip-mapping. As the player gets farther away,

the AI is swapped for more simplified versions. This helps tremendously when there are
dozens of very complex agents roaming around the world.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Further Reading

Here is a short list of books I‘ve found very helpful in becoming a better AI programmer:

 Artificial Intelligence for Games, Ian Millington, published by The Morgan Kaufmann

Series in Interactive 3D Technology

 Artificial Intelligence: A Modern Approach, Stuart Russell and Peter Norvig, published

by Prentice-Hall Inc.

 The AI Game Programming Wisdom series, Charles River Media

 The Game Programming Gems series, Charles River Media

Chapter 18. Introduction to Multiprogramming

In This Chapter

 What Multiprogramming Does

 Creating Threads

 Process Synchronization

 Interesting Threading Problems

 Thread Safety

 Multithreading Classes

 Background Decompression of a ZIP File

 Further Work

 About the Hardware

 About the Future

I‘ll be honest with you, gentle reader, that the thought of writing this chapter was quite

intimidating. I‘ve spent many hours of my programming career attempting to solve bugs
that were caused by some multithreaded or multicore madness. Adding this potential source

of pain and suffering to the Game Code 3 source was somewhat terrifying. But, as it turned

out, I was saved by a few things: a great core architecture, very careful coding with
constant testing, and lots of planning ahead of time.

The general term for creating software that can figuratively or actually run in multiple,

independent pieces simultaneously is multiprogramming.

There are few subjects in programming as tricky as this. It turns out to be amazingly simple

to get multiple threads chewing on something interesting, like calculating π to 1,000,000

digits. The difficulty comes in getting each of these jobs to play nice with each other‘s

../../ch18lev1sec1#ch18lev1sec1
../../ch18lev1sec2#ch18lev1sec2
../../ch18lev1sec3#ch18lev1sec3
../../ch18lev1sec4#ch18lev1sec4
../../ch18lev1sec5#ch18lev1sec5
../../ch18lev1sec6#ch18lev1sec6
../../ch18lev1sec7#ch18lev1sec7
../../ch18lev1sec8#ch18lev1sec8
../../ch18lev1sec9#ch18lev1sec9
../../ch18lev1sec10#ch18lev1sec10
http://lib.ommolketab.ir
http//lib.ommolketab.ir

memory, and getting them to send information to each other so that the results of their

work can be put to good use.

The code you will learn in this chapter will work on single or multiprocessor Win32 systems,

but it is easy enough to port to others. The concepts you will learn, such as process

synchronization, are also portable to any system that has threading built into the operating
system.

The first question you should ask is why should we bother with multithreading at all? Isn‘t

one thread on one CPU enough?

What Multiprogramming Does

A CPU is amazingly fast, and many desktop CPUs are now sitting solidly in the 2-3GHz
range. If you happen to have a really nice lab and can get your CPU down to near absolute

zero, you can squeeze 500GHz out of one, like IBM and Georgia Tech did back in 2006. But

what does that really mean?

Gigahertz as it is applied to CPUs, measure the clock speed of the CPU. The clock speed is

the basic measure of how fast things happen—anything from loading a bit of memory into a

register or doing a mathematical operation like addition. Different instructions take different
cycles, or ticks, of the clock. With the advent of multicore processors, it is even possible to

perform more than one instruction in a single cycle. Many processors are capable of
executing instructions in parallel in a single core if they use different parts of the processor.

As fast as CPUs are, they spend most of their time waiting around. Take a look at Figure

18.1, a snapshot of the CPU load running Teapot Wars, which you‘ll see in Chapter 19.

Figure 18.1. CPU load running Teapot Wars.

javascript:moveTo('ch18fig01');
javascript:moveTo('ch18fig01');
javascript:moveTo('ch18fig01');
../../ch19#ch19
http://lib.ommolketab.ir
http//lib.ommolketab.ir

The figure shows a few spikes, but there‘s still plenty of headroom—so what‘s going on? Is

Teapot Wars written so efficiently? Hardly. The CPU, or CPUs in this case, spend most of
their time waiting on the video hardware to draw the scene. This is a pretty common thing

in computer game software, since preparing the scene and communicating to the video card
takes so much time.

It turns out there is a solution for this problem, and it involves multithreading. Instead of

creating a monolithic program that runs one instruction after another, the programmer
splits the program into multiple, independent pieces. Each piece is launched independently,

and can run on its own. If one piece, or thread, becomes stuck waiting for something, like
the CD-ROM to spin up so a file can be read, the processor can switch over to another

thread and process whatever instructions it has.

If you think this is similar to what happens when you run 50 different applications on your
desktop machine, you are very close to being right. Each application exists independently of

other applications and can access devices like your hard drive or your network without any
problems at all, at least until you run out of memory or simply bog your system down.

Under Windows and most operating systems, applications run as separate processes, and

the operating system has very special rules for switching between processes since they run
in their own memory space. This switching is relatively expensive, since a lot of work has to

happen so that each application believes it has the complete and full attention of the CPU.

The good news is that under Win32 and other operating systems each process can have
multiple threads of its own, and switching between them is relatively inexpensive. Each

thread has its own stack space and full access to the same memory as the other threads

created by the process. Being able to share memory is extremely useful, but it does have its
problems.

The operating system can switch from one thread to another at any time. When a switch

happens, the values of the current thread‘s CPU registers are saved. They are then
overwritten by the next thread‘s CPU registers, and the CPU begins to run the code for the

new thread. This leads to some interesting behaviors if multiple threads manipulate the
same bit of memory. Take a look at the assembler for incrementing a global integer:

++g_ProtectedTotal;

006D2765 mov eax,dword ptr [g_ProtectedTotal (9B6E48h)]

006D276A add eax,1

006D276D mov dword ptr [g_ProtectedTotal (9B6E48h)],eax

There are three instructions. The first loads the current value of the variable from main

memory into eax, one of the general purpose registers. The second increments the

register, and the third stores the new value back into memory. Remember that each thread

has full access to the memory pointed to by g_ProtectedTotal, but its copy of eax is

unique. A thread switch can happen after each assembler level instruction completes.

If a dozen or so threads were running these three instructions simultaneously, it wouldn‘t be

long before a switch would happen right after the add instruction but before the results

were stored back to main memory.

In my own experiments, the results were pretty sobering: 20 threads each incrementing the

variable 100,000 times created an end result of 1,433,440. This means 566,560 additions
were completely missed. I ran this experiment on a Dell M1710 equipped with an Intel

Centrino Duo.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Lucky for you and everyone else out there wanting to take full advantage of their CPUs,

there are ways to solve this problem. First, you should know how you create the thread in
the first place.

Creating Threads

Under Win32, you use the CreateThread() API. For you programmers who desire a

more portable solution, you can also choose the ANSI C _beginthread() call. They are

similar enough that with a little work you can port this code to ANSI C thread calls.

DWORD g_maxLoops = 20; // shouldn't be on a stack!

DWORD g_UnprotectedTotal = 0; // the variable we want to

increment

DWORD WINAPI ThreadProc(LPVOID lpParam)

{

 DWORD maxLoops = *static_cast<DWORD *>(lpParam);

 DWORD dwCount = 0;

 while(dwCount < maxLoops)

 {

 ++dwCount;

 ++g_UnprotectedTotal;

 }

 return TRUE;

}

void CreateThreads()

{

 for (int i=0; i<20; i++)

 {

 HANDLE m_hThread = CreateThread(

 NULL, // default security attributes

 0, // default stack size

 (LPTHREAD_START_ROUTINE) ThreadProc,

 &g_maxLoops, // thread parameter is how many

loops

 0, // default creation flags

 NULL); // receive thread identifier

 }

}

To create a thread, you call the CreateThread() API with a pointer to a function that will

run as the thread procedure. The thread will cease to exist when the thread procedure exits,

or something external stops the thread, such as a call to TerminateThread(). The

thread procedure, ThreadProc, takes one variable, a void pointer which you may use to

send any bit of data your thread procedure needs. In the previous example, a DWORD was

set to the number of loops and used as the thread parameter. The thread can be started in

a suspended state if you set the default creation flags to CREATE_SUSPENDED, in which

case you‘ll need to call ResumeThread(m_hThread) to get it started.

Take special note of where the parameter to the thread process is stored, because it is a

global. Had it been local to the CreateThreads() function, it would have been stored on

http://lib.ommolketab.ir
http//lib.ommolketab.ir

the stack. The address of this would have been passed to the thread procedures, and

goodness knows what it would have in it at any given moment. This is a great example of
how something seemingly trivial can have a huge effect on how your threads run.

The Stack can be a Dangerous Place

Be careful about where you store data that will be accessed

by thread procedures. The stack is right out, since it will be

constantly changing. Allocate specific memory for your
thread procedures or store them globally.

When you have multiple threads running in your game, you can debug each of them, to a
point. In Visual Studio you can show the Threads window by selecting Debug->Window-

>Threads from the main menu (see Figure 18.2).

Figure 18.2. The Threads window in Visual Studio.

When you hit a breakpoint, all threads stop execution. If you double-click on a row in the
Threads window, you will see where execution has stopped in that thread. You can easily

set breakpoints in the thread procedure, but if you run multiple threads using the same
procedure, you can never tell which thread will hit the breakpoint first! It can become a little

confusing.

Creating a thread is pretty trivial, as you have seen. Getting these threads to work
together, and not wipe out the results of other threads working on the same memory, is a

little harder.

Process Synchronization

There‘s really no use in having threads without having some way to manage their access to

memory. In the early days of computing, programmers tried to solve this with software.
When I was in college, one of my favorite instructors, Dr. Rusinkiewicz, had a great story he

told to show us how these engineers tried to create a heuristic to handle this problem.

Imagine two railways that share a section of track in the Andes Mountains in South
America. One railway runs in Bolivia and the other runs in neighboring Peru. The engineers

javascript:moveTo('ch18fig02');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

are both blind and deaf, so they can‘t hear or see the other. For a few months, nothing bad

happened—the trains simply weren‘t in the pass long enough to be a problem. But, one day
the trains crashed. The governments of the two countries agreed that something must be

done.

No, they didn‘t hire train engineers that could see and hear. That would be too easy.

A bowl was placed at the beginning of the shared section of track. When an engineer

arrived, he would check the bowl. If it was empty, he would put a rock in it and drive across

the pass. He would then walk back, remove the rock, and continue on his trip. This worked
for a few days, and then the Peruvians noticed that their train never arrived. Fearing the

worst, a search team was sent out to find the train. It was waiting at the junction, and as
the search team watched, the Bolivian train roared by, not even stopping. The Bolivian

engineer ignored the rules, just put a rock in the bowl, and never intended to take it out. He
was fired and another, more honest, blind and deaf Bolivian engineer replaced him.

For years nothing bad happened, but one day neither train arrived. A team was sent to

investigate, and they found that the trains had crashed, and two rocks were in the bowl.
The two countries decided that the current system wasn‘t working, and something must be

done to fix the problem. Yes, they still hired blind and deaf engineers. Instead, they decided
that the bowls were being used the wrong way. The Bolivian engineer would put a rock in

the bowl when he was driving across, and the Peruvian engineer would always wait until the

bowl was empty before driving across.

This didn‘t even work for a single day. The Peruvian train had until this time run twice per

day, and the Bolivian train once per day. The new system prevented crashes, but now each

train could only run once per day since it relied on trading permission to run through the
pass. Again, the governments put their best minds at work to solve the problem.

They bought another bowl.

Now, two bowls were used at the pass. Each engineer had his own bowl. When he arrived,
he would drop a rock into his bowl, walk to the other engineer‘s bowl, and check it. If there

was a rock there, he would go back to his bowl, remove the rock, and take a siesta. This

seemed to work for many years, until both trains were so late a search team was sent out
to find out what happened.

Luckily, both trains were there, and both engineers were simultaneously dropping rocks into

their bowls, checking the other, finding a rock, and then taking a siesta. Finally, the two
governments decided that bowls and rocks were not going to solve this problem.

What they needed was a semaphore.

Test and Set, the Semaphore, and the Mutex

The computer software version of a semaphore relies on a low-level hardware instruction
called a test-and-set instruction. It checks the value of a bit, and if it is zero, it sets the bit

to one, all in one operation that cannot be interrupted by the CPU switching from one thread
to another.

Traditionally, a semaphore is set to an integer value that denotes the number of resources

that are free. When a process wishes to gain access to a resource, it decrements the
semaphore in an atomic operation using a test-and-set. When it is done with the resource,

it increments the semaphore in with the same atomic operation. If a process finds the

semaphore equal to zero, it must wait.

A mutex is a binary semaphore, and it is generally used to give access to a resource for a

single process. All others must wait.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Win32 has many different ways to handle process synchronization. A mutex can be created

with CreateMutex(), and a semaphore can be created with Create-Semaphore().

But since these synchronization objects can be shared between Windows applications, they

are fairly heavyweight and shouldn‘t be used for high performance. Windows programmers
should use the critical section.

The Win32 Critical Section

The critical section under Windows is a less expensive way to manage synchronization

among the threads of a single process. Here‘s how to put it to use:

DWORD g_ProtectedTotal = 0;

DWORD g_maxLoops = 20;

CRITICAL_SECTION g_criticalSection;

DWORD WINAPI ThreadProc(LPVOID lpParam)

{

 DWORD maxLoops = *static_cast<DWORD *>(lpParam);

 DWORD dwCount = 0;

 while(dwCount < maxLoops)

 {

 ++dwCount;

 EnterCriticalSection(&g_criticalSection);

 ++g_ProtectedTotal;

 LeaveCriticalSection(&g_criticalSection);

 }

 return TRUE;

}

void CreateThreads()

{

 DWORD maxLoops = 100000;

 InitializeCriticalSection(&g_criticalSection);

 for (int i=0; i<20; i++)

 {

 HANDLE m_hThread = CreateThread(

 NULL, // default security attributes

 0, // default stack size

 (LPTHREAD_START_ROUTINE) ThreadProc,

 &g_maxLoops, // thread parameter is how many loops

 0, // default creation flags

 NULL); // receive thread identifier

 }

}

The call to InitializeCriticalSection() does exactly what it advertises—initializes

the critical section object, declared globally as CRITICAL_SECTION

g_criticalSection. You should treat the critical section object as opaque, and do not

copy it or attempt to modify it. The thread procedure makes calls to

EnterCriticalSection() and LeaveCriticalSection() around the access to

the shared global variable, g_ProtectedTotal.

If another thread is already in the critical section, the call to EnterCriticalSection()

will block and wait until the other thread leaves the critical section. Windows does not

guarantee any order in which the threads will get access, but it will be fair to all threads.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Notice that the critical section is made as small as possible—not even the increment to the

dwCount member variable is inside. This is to illustrate an important point about critical

sections: in order to achieve the maximum throughput, you should minimize the time spent

in critical sections as much as possible.

If you don‘t want your thread to block when it attempts to enter a critical section, you can

call TryEnterCriticalSection(), which will return true only if the critical section is

validly entered.

Interesting Threading Problems

There are a number of interesting threading problems you should be aware of: racing,
starvation, and deadlock.

Racing is a condition where two or more threads are reading or writing shared data and the

final result requires the threads to run in a precise order, which can never be guaranteed.
The classic problem is the writer-reader problem, where a writer thread fills a buffer and a

reader thread processes the buffer. If the two threads aren‘t synchronized properly, the
reader will overtake the writer and read garbage.

The solution to this problem is easy with a shared count of bytes in the buffer, changed only

by the writer thread using a critical section.

Starvation and deadlock is a condition where one or more threads gains access to a shared
resource and continually blocks access to the starving thread. The classic illustration of this

problem is called the dining philosophers problem, first imagined by Tony Hoare, a British
computer scientist best known for creating the Quicksort algorithm. It goes like this. Five

philosophers sit around a circular table, and they are doing one of two things: eating or

thinking. When they are eating, they are not thinking, and when they are thinking, they are
not eating. The table has five chopsticks, one sitting between each philosopher. In order to

eat, each person must grab two chopsticks, and he must do this without speaking to anyone
else.

Figure 18.3. The dining philosophers.

You can see that if every philosopher grabbed the chopstick on his left and held onto it,
none of them could ever grab a second chopstick, and they would all starve. This is

analogous to deadlock.

If they were eating and thinking at different times, one philosopher could simply get
unlucky and never get the chance to get both chopsticks. He would starve, even though the

others could eat. That is similar to process starvation.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

There are two solutions to the dining philosophers problem: one of them involves something

I told you about way back in Chapter 5, ―Game Initialization and Shutdown.‖ If you want to
avoid deadlock in any shared resource situation, always ask for resources in a particular

order and release them in the reverse order. If you find yourself at a table with four other
people and only five chopsticks between you, simply agree to pick up the left chopstick first,

and the right chopstick second. When you are ready to stop eating and start thinking, put
them down in the reverse order. Believe it or not, no deadlock will happen, and no one will

starve.

There are a number of these interesting problems, which you should look up and try to
solve on your own:

 Cigarette smokers problem

 Sleeping barbers problem

 Dining cryptographers protocol

Thread Safety

As you might imagine, there are often more things you shouldn’t do in a thread than you
should. For one thing, most STL and ANSI C calls are not thread safe. In other words, you

can‘t manipulate the same std::list or make calls to fread() from multiple threads

without something bad happening to your program. If you need to do these things in
multiple concurrent threads, you need to manage the calls with critical sections. A good

example of this is included in the Game Code 3 source code, which manages any

std::basic_ostream< char_type, traits_type#gt; and allows you to safely

write to it from multiple threads. Look in the Multicore\SafeStream.h file for the template
class and an example on how it can be used.

Multithreading Classes

You are ready to see how these concepts are put to work in the Game Code 3 architecture.

There are two systems that make this easy: the Process Manager and the Event Manager. If

you recall from Chapter 6, ―Controlling the Main Loop,‖ the Process Manager is a container

for cooperative processes that inherit from the CProcess class. It is simple to extend the

CProcess class to create a real-time version of it, and while the operating system

manages the thread portion of the class, the data and existence of it is still managed by the

CProcessManager class. This turns out to be really useful, since initialization and process

dependencies are still possible, even between normal and real-time processes.

Communication between real-time processes and the rest of the game happens exactly

where you might expect—in the Event Manager. A little bit of code has to be written to

manage the problem of events being sent to or from real-time processes, but you‘ll be
surprised how little.

After the basic classes are written, you‘ll see how you can write a background real-time

process to handle decompression of a part of a ZIP file.

The RealtimeProcess Class

../../ch05#ch05
../../ch06#ch06
http://lib.ommolketab.ir
http//lib.ommolketab.ir

The goal with the RealtimeProcess class is to make it really easy to create real-time

processes. Here‘s the class definition:

class RealtimeProcess : public CProcess

{

protected:

 HANDLE m_hThread;

 DWORD m_ThreadID;

 int m_ThreadPriority;

 LPTHREAD_START_ROUTINE m_lpRoutine;

public:

 // Other prioities can be:

 // THREAD_PRIORITY_ABOVE_NORMAL

 // THREAD_PRIORITY_BELOW_NORMAL

 // THREAD_PRIORITY_HIGHEST

 // THREAD_PRIORITY_TIME_CRITICAL

 // THREAD_PRIORITY_LOWEST

 // THREAD_PRIORITY_IDLE

 //

 RealtimeProcess(LPTHREAD_START_ROUTINE lpRoutine,

 int priority = THREAD_PRIORITY_NORMAL);

 virtual void VKill()

 {

 CloseHandle(m_hThread);

 CProcess::VKill();

 }

 virtual void VTogglePause()

 {

 assert(0 && "This is not supported.");

 }

 virtual void VOnInitialize();

};

RealtimeProcess::RealtimeProcess(

 LPTHREAD_START_ROUTINE lpRoutine, int priority)

 : CProcess(PROC_REALTIME)

{

 m_lpRoutine = lpRoutine;

 m_ThreadID = 0;

 m_ThreadPriority = priority;

}

The members of this class include a Win32 HANDLE to the thread, the thread ID, and the

current thread priority. This is set to THREAD_PRIORITY_NORMAL, but depending on

what the process needs to do, you might increase or decrease the priority. Note that if you

set it to THREAD_PRIORITY_TIME_CRITICAL, you‘ll likely notice a serious sluggishness

of the user interface, particularly the mouse pointer. It‘s a good idea to play nice and leave

it at the default or even put it at a lower priority.

The thread process is pointed to by LPTHREAD_START_ROUTINE m_lpRoutine. The

RealtimeProcess class is meant to be a base class. Child classes will write their own

thread process and send a pointer to it in the constructor.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The VKill() method calls CloseHandle() and then CProcess::VKill(). By

design, the VKill() method does not call TerminateThread(). Following the same

rules as other cooperative processes, VKill() is only called by itself when the process has

finished its work.

 VOnInitialize() is where the call to CreateThread() happens:

void RealtimeProcess::VOnInitialize(void)

{

 CProcess::VOnInitialize();

 m_hThread = CreateThread(

 NULL, // default security attributes

 0, // default stack size

 (LPTHREAD_START_ROUTINE) m_lpRoutine,

 this, // thread parameter is a pointer

to the process

 0, // default creation flags

 &m_ThreadID); // receive thread identifier

 if(m_hThread == NULL)

 {

 assert(0 && "Could not create thread!");

 VKill();

 }

 SetThreadPriority(m_hThread, m_ThreadPriority);

}

Note the thread parameter in the call to CreateThread(). It is a pointer to the instance

of the calling class, which will make it possible to access a member variable in the thread

process. The only new call you haven‘t seen yet is the call to SetThreadPriority(),

where you tell Win32 how much processor time to allocate to this thread.

Here‘s how you would create a real-time process to increment a global integer, just like
you‘ve seen earlier:

class ProtectedProcess : public RealtimeProcess

{

public:

 static DWORD WINAPI ThreadProc(LPVOID lpParam);

 static DWORD g_ProtectedTotal;

 static CRITICAL_SECTION g_criticalSection;

 DWORD m_MaxLoops;

 ProtectedProcess(DWORD maxLoops)

 : RealtimeProcess(ThreadProc)

 { m_MaxLoops = maxLoops; }

};

DWORD ProtectedProcess::g_ProtectedTotal = 0;

CRITICAL_SECTION ProtectedProcess::g_criticalSection;

DWORD WINAPI ProtectedProcess::ThreadProc(LPVOID lpParam)

{

 ProtectedProcess *proc = static_cast<ProtectedProcess

*>(lpParam);

 DWORD dwCount = 0;

 while(dwCount < proc->m_MaxLoops)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 {

 ++dwCount;

 // Request ownership of critical section.

 EnterCriticalSection(&g_criticalSection);

 ++g_ProtectedTotal;

 LeaveCriticalSection(&g_criticalSection);

 }

 proc->VKill();

 return TRUE;

}

The thread process is defined by the static member function, ThreadProc(). Two other

static members of this class are the variable the process is going to increment and the
critical section that will be shared between multiple instances of the real-time process. Just

before the thread process returns, proc-;#gt;VKill() is called to tell the Process

Manager to clean up the process and launch any dependent processes.

As it turns out, you instantiate a real-time process in exactly the same way you do a
cooperative process:

for(i=0; i < 20; i++)

{

 shared_ptr<CProcess> proc(GCC_NEW ProtectedProcess(100000));

 procMgr->Attach(proc);

}

The above example instantiates 20 processes that will each increment the global variable
100,000 times. The use of the critical sections ensure that when all the processes are

complete, the global variable will be set to exactly 2,000,000.

Sending Events from Real-Time Processes

There‘s probably no system in the Game Code 3 architecture that uses STL containers more

than the EventManager class. Given that STL containers aren‘t thread safe by

themselves, there‘s one of two things that can be done.

We could make all the containers in the Event Manager thread safe. This includes two

std::map objects, three std::pair objects, and two std::list objects. This would

be a horrible idea, since the vast majority of the event system is accessed only by the main
process and doesn‘t need to be thread safe. A better idea would be to create a single,

thread-safe container that could accept events that were sent by real-time processes. When

the event system runs its VTick() method, it can empty this queue in a thread-safe

manner and handle the events sent by real-time processes along the rest.

A thread-safe queue was posted by Anthony Williams on www.justsoftwaresolutions.co.uk.

It uses two synchronization mechanisms in the Boost C++ Thread library, boost::mutex

and boost::condition_variable:

template<typename Data>

class concurrent_queue

{

private:

../../default25.htm
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 std::queue<Data> the_queue;

 mutable boost::mutex the_mutex;

 boost::condition_variable the_condition_variable;

public:

 void push(Data const& data)

 {

 boost::mutex::scoped_lock lock(the_mutex);

 the_queue.push(data);

 lock.unlock();

 the_condition_variable.notify_one();

 }

 bool empty() const

 {

 boost::mutex::scoped_lock lock(the_mutex);

 return the_queue.empty();

 }

 bool try_pop(Data& popped_value)

 {

 boost::mutex::scoped_lock lock(the_mutex);

 if(the_queue.empty())

 {

 return false;

 }

 popped_value=the_queue.front();

 the_queue.pop();

 return true;

 }

 void wait_and_pop(Data& popped_value)

 {

 boost::mutex::scoped_lock lock(the_mutex);

 while(the_queue.empty())

 {

 the_condition_variable.wait(lock);

 }

 popped_value=the_queue.front();

 the_queue.pop();

 }

};

The boost::mutex is similar to the critical section object you‘ve already seen. It has a

useful scoped_lock object that blocks on construction until the shared resource is

available, then automatically releases the resource on destruction.

The boost::condition_variable is a mechanism that allows one thread to notify

another thread that a particular condition has become true. Without it, a reader thread
manipulating the queue would have to lock the mutex, check the queue, find that it was

empty, release the lock, and then find a way to wait for a while before checking it all over
again. Using the condition variable, a writer thread can notify the reader thread the moment

something interesting is in the queue. This increases concurrency immensely.

Here‘s how the EventManager class you saw in Chapter 10 needs to change to be able to

receive events from real-time processes:

../../ch10#ch10
http://lib.ommolketab.ir
http//lib.ommolketab.ir

typedef concurrent_queue<IEventDataPtr> ThreadSafeEventQueue;

class EventManager : public IEventManager

{

 // Add a new method and a new member:

public:

 virtual bool VThreadSafeQueueEvent (IEventDataPtr const &

inEvent);

private:

 ThreadSafeEventQueue m_RealtimeEventQueue;

}

bool EventManager::VThreadSafeQueueEvent (IEventDataPtr const &

inEvent)

{

 m_RealtimeEventQueue.push(inEvent);

 return true;

}

The concurrent queue template is used to create a thread-safe queue for IEventDataPtr

objects, which are the mainstay of the event system. The method

VThreadSafeQueueEvent() can be called by any process in any thread at any time. All

that remains is to add the code to EventManager::VTick() to read the events out of

the queue:

bool EventManager::VTick (unsigned long maxMillis)

{

 unsigned long curMs = GetTickCount();

 unsigned long maxMs =

 maxMillis == IEventManager::kINFINITE

 ? IEventManager::kINFINITE

 : (curMs + maxMillis);

 EventListenerMap::const_iterator itWC = m_registry.find(0);

 // This section added to handle events from other threads

 // --

 IEventDataPtr rte;

 while (m_RealtimeEventQueue.try_pop(rte))

 {

 VQueueEvent(rte);

 curMs = GetTickCount();

 if (maxMillis != IEventManager::kINFINITE)

 {

 if (curMs >= maxMs)

 {

 assert(0 && "A realtime process is spamming the event

manager!");

 }

 }

 }

 // --

 // swap active queues, make sure new queue is empty after the

 // swap ...

 // THE REST OF VTICK IS UNCHANGED!!!!

http://lib.ommolketab.ir
http//lib.ommolketab.ir

There is a new section of code at the top of the method to handle events from real-time

processes. The call to try_pop grabs an event out of the real-time queue if it exists, but if

the queue is empty, it returns immediately. Since real-time processes can run at a higher

priority, it is possible they could spam the Event Manager faster than the Event Manager
could consume them, so a check is made to compare the current tick count against the

maximum amount of time the Event Manager is supposed to run before exiting.

The RealtimeEventListener Class

Real-time processes should also be able to receive events from other game subsystems.
This requires the same strategy as before, using a thread-safe queue. The

RealtimeEventListener class inherits from IEventListener just like other

listeners, but instead of handling the event as it is received, the event is placed in the

thread-safe queue:

class RealtimeEventListener : public IEventListener

{

 ThreadSafeEventQueue m_RealtimeEventQueue;

public:

 char const* GetName(void) { return "RealtimeEventListener"; }

 virtual bool HandleEvent(IEventData const & event)

 {

 IEventDataPtr pEvent = event.VCopy();

 g_RealtimeEventQueue.push(pEvent);

 return true;

 };

};

Then the thread process reads events out of this queue and handles them as a part of its
inner loop:

DWORD WINAPI MyRealtimeProcess::ThreadProc(LPVOID lpParam)

{

 MyRealtimeProcess *proc =

 static_cast< MyRealtimeProcess *>(lpParam);

 while (1)

 {

 // check the queue for events we should consume

 IEventDataPtr e;

 if (g_RealtimeEventQueue.try_pop(e))

 {

 // there's an event! Something to do....

 if (EvtData_Random_Event::sk_EventType == e-

>VGetEventType())

 {

 // Handle the event right here!!!

 }

 }

 // other random thread code goes here

 }

 proc->VKill();

 return true;

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

With those tools, you have everything you need to write your own real-time processes,
including having them send and receive events from other threads and game subsystems.

Background Decompression of a ZIP File

One classic problem in game software is how to decompress a stream without halting the

game. The stream could be anything from a portion of a music file, to a movie, to level
data. The following class and code shows how you can set up a background process to

receive requests from the game to decompress something in the background and send an
event when the decompression is complete.

class DecompressionProcess : public RealtimeProcess

{

public:

 EventListenerPtr m_pListener;

 static DWORD WINAPI ThreadProc(LPVOID lpParam);

 static void Callback(int progress, bool &cancel);

 DecompressionProcess();

};

DecompressionProcess::DecompressionProcess()

 : RealtimeProcess(ThreadProc)

{

 m_pListener = EventListenerPtr (GCC_NEW

RealtimeEventListener);

 safeAddListener(m_pListener,

EvtData_Decompress_Request::sk_EventType);

}

The DecompressionProcess class has an EventListenerPtr member that is

initialized to a new RealtimeEventListener. It has one event that it listens for, the

EvtData_Decompress_Request event, which simply stores the name of the ZIP file

and the name of the resource in the ZIP file to decompress. It is declared exactly the same
as other events you‘ve seen.

Here‘s the ThreadProc():

DWORD WINAPI DecompressionProcess::ThreadProc(LPVOID lpParam)

{

 DecompressionProcess *proc = static_cast<DecompressionProcess

*>(lpParam);

 while (1)

 {

 // check the queue for events we should consume

 IEventDataPtr e;

 if (g_RealtimeEventQueue.try_pop(e))

 {

 // there's an event! Something to do....

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 if (EvtData_Decompress_Request::sk_EventType == e-

>VGetEventType())

 {

 shared_ptr<EvtData_Decompress_Request> decomp =

boost::static_pointer_cast<EvtData_Decompress_Request>(e);

 ZipFile zipFile;

 bool success = FALSE;

 if (zipFile.Init(decomp->m_zipFileName.c_str()))

 {

 int size = 0;

 optional<int> resourceNum =

 zipFile.Find(decomp->m_fileName.c_str());

 if (resourceNum.valid())

 {

 size = zipFile.GetFileLen(*resourceNum);

 void *buffer = GCC_NEW char[size];

 zipFile.ReadFile(*resourceNum, buffer);

 // send decompression result event

 threadSafeQueEvent(IEventDataPtr (

 GCC_NEW EvtData_Decompression_Progress (

 100, decomp->m_zipFileName,

 decomp->m_fileName, buffer)));

 }

 }

 }

 }

 else

 {

 Sleep(10);

 }

 }

 proc->VKill();

 return TRUE;

}

This process is meant to loop forever in the background, ready for new decompression
requests to come in from the Event Manager. Once the decompression request comes in,

the method initializes a ZipFile class, exactly as you saw in Chapter 7, ―Loading and

Caching Game Data.‖

After the resource has been decompressed, an event is constructed that contains the

progress (100%), the ZIP file name, the resource name, and the buffer. It is sent to the

Event Manager with threadSafeQueueEvent() helper function.

The event is handled in the usual way:

if (EvtData_Decompression_Progress::sk_EventType ==

event.VGetEventType())

{

 const EvtData_Decompression_Progress & castEvent =

../../ch07#ch07
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 static_cast< const EvtData_Decompression_Progress & >(

event);

 if (castEvent.m_buffer != NULL)

 {

 const void *buffer = castEvent.m_buffer;

 // do something with the buffer!!!!

 }

}

Note that I‘m bending one of my own rules here by allowing a pointer to sit in an event. The
only reason that I can sleep at night is that I know that this particular event won‘t ever be
serialized, so the pointer will always be good.

Further Work

Decompressing a data stream is a good example, but there are plenty of other tasks you

could use this system for if you had a spare weekend. These include AI tasks such as path
finding, physics, and others.

AI is a great choice to put in a background process. Whether you are programming a chess

game or calculating an A* solution in a particularly dense path network, doing this in its
own thread might buy you some great results. The magic length of time a human can easily

perceive is 1/10th of one second, or 100 milliseconds. A game running at 60 frames per

second has exactly 16 milliseconds to do all the work needed to present the next frame, and
believe me, rendering and physics are going to take most of that. This leaves AI with a

paltry 2–3 milliseconds to work. Usually, this isn‘t nearly enough time to do anything
interesting.

So, running a thread in the background, you can still take those 2–3 milliseconds per frame,

spread it across 10 or so frames, and all the player will perceive is just a noticeable delay
between the AI changing a tactic or responding to something new. This gives your AI

system much more time to work, and the player just notices a better game.

Running physics in a separate thread is a truly interesting problem. On one hand, it seems
like a fantastic idea, but the moment you dig into it, you realize there are significant process

synchronization issues to solve. Remember that physics is member of the game logic, which
runs the rules of your game universe. Physics is tied very closely with the game logic, and

having to synchronize the game logic and the physics systems in two separate threads
seems like an enormous process synchronization problem, and it is.

Currently, the physics system sends movement events when actors move under physics

control. Under a multithreaded system, more concurrent queues would have to buffer these
movement events, and since they would happen quite a bit, would drop the system‘s

efficiency greatly.

One solution to this would be to tightly couple the physics system to the game logic and
have the game logic send movement messages to other game subsystems, like AI views or

human views. Then it might be possible to detach the entire game logic into its own thread,

running separately from the HumanView. With a little effort, it may even be possible to

efficiently separate each view into its own thread. I‘ll leave that exercise to a sufficiently

motivated reader.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

About the Hardware

Games have had multiple processors since the early 1990s, but the processors were very

dedicated things. They were a part of audio hardware first, and then in the mid to late

1990s, the advent of dedicated floating-point (FPU) and video processors revolutionized the
speed and look of our games. Both were difficult for programmers to deal with, and in many

ways, most game programmers, except for perhaps John Miles, the author of the Miles
Sound System, were happily coding in a completely single-threaded environment. They let

the compiler handle anything for the FPU, and pawned tough threading tasks off to gurus
who were comfortable with the reader/writer problems so common with sound systems.

The demands of the gaming public combined with truly incredible hardware from Intel, IBM,

and others has firmly put those days behind us. Mostly, anyway. The Nintendo Wii is the
only holdout of the bunch, sporting a single core PowerPC CPU built especially for the Wii by

IBM.

Nintendo Wii Might Win?

While the other consoles have a much more capable

architecture, which you‘ll be introduced to shortly, I have to
observe that as I write this in the first months of 2009, the

Nintendo Wii is outselling the other consoles, and it will be
tough for Sony or Microsoft to beat. I‘ll let the pundits and

industry yahoos debate about why, but perhaps the fact that
my Mom, a retired schoolteacher, bought one for herself and

now loves bowling is the best example of why this is

occurring. Go figure.

The other consoles have a much more interesting and capable hardware. The PS3 has a Cell
processor jointly designed by IBM, Sony Computer Entertainment, and Toshiba. The main

processor, the Power Processing Element, or PPE, is a general purpose 64-bit processor and
handles most of the workload on the PS3. In addition, there are eight other special purpose

processors called Synergistic Processing Elements or SPEs. Each has 256KB of local memory

that may be used to store instructions and data. Each SPE runs at 3.2GHz, which is quite
amazing since there are eight of them.

To get the best performance out of the PS3, a programmer would have to create very small

threads on each one to handle one step of a complicated task. That last sentence, I assure
you, was about 1,000,000 times easier for me to write than it would be to actually

accomplish on a game.

The Xbox360 from Microsoft has a high-performance processor, also designed by IBM,
based on a slightly modified version of the Cell PPE. It has three cores on one die, runs at

3.2GHz each, and has six possible total hardware threads available to the happy engineer
writing the next Xbox360 blockbuster.

While it doesn‘t take a math genius to see that the PS3 cell processor seems to have the

upper hand on the Xbox360 Xenon, from a programming perspective, the Xenon is a much
friendlier programming environment, capable of handling general purpose threads that don‘t

need to fit in a tiny 256KB space.

About the Future

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Looking at the past, it is easy to see a trend. Smaller sizes and higher speeds are getting

exponentially more difficult for companies like IBM to achieve on new processor designs. It
seems the most cost-effective solution for consumers is to simply give the box more CPUs,

albeit extremely capable ones. The truth is that programmers who haven‘t played in the
somewhat frightening but challenging multiprogramming arena are going to be left behind.

It takes an order of magnitude of more planning and sincere care and dedication to avoid
seriously difficult bugs in this kind of environment.

At some point, we can all hope that compilers will become smart enough, or will develop

languages specifically for the purpose of handling tricky multiprogramming problems. There
have been attempts, such as Modula and concurrent Pascal, but nothing so far seems to be

winning out over us monkeys smashing our femur bones on the monolith of C++.

Perhaps a reader of this book will think about that problem and realize we don‘t need new
techniques, but simply a new language to describe new techniques.

Either way, multiprogramming is in your future whether you like it or not. So go play,

carefully, and learn.

Chapter 19. A Game of Teapot Wars!

In This Chapter

 Game Actors

 Game Events

 The Application Layer

 The Game Logic

 The Game View for a Human Player

 The AI View and Listener

 More Teapot Wars, if You Are Willing

You‘ve seen a lot of source code in this book, including everything from resource

management to rendering to network code. In the first edition, I tried to give good source
examples, and I found out firsthand how hard that was. It was important to me that the

code you saw had come directly from, or had been adapted from, a computer game that
actually saw real players and some time in the sun. It turned out that those two goals were

quite lofty indeed, and the source code in the first edition was like a family reunion on the

Jerry Springer Show—nobody got along, and it was generally pretty ugly all around!

With the second edition, I decided to create a little game using the code you‘ve seen so far

in this book. Not being a great artist, I used the DirectX teapot mesh as my main characters

in the game, and lo and behold Teapot Wars was born! A screen for the game is shown in
Figure 19.1.

Teapot Wars is a game where teapots battle each other to the death utilizing their fearsome

spout cannon. This game features the use of advanced physics, networked multiplayer, AI,
and everything else you‘ve learned. This is a simple game, but in this simplicity is hidden

nearly all of the code you‘ve seen in this book. It ties together the architecture I‘ve been

../../ch19lev1sec1#ch19lev1sec1
../../ch19lev1sec2#ch19lev1sec2
../../ch19lev1sec3#ch19lev1sec3
../../ch19lev1sec4#ch19lev1sec4
../../ch19lev1sec5#ch19lev1sec5
../../ch19lev1sec6#ch19lev1sec6
../../ch19lev1sec7#ch19lev1sec7
javascript:moveTo('ch19fig01');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

pushing; it uses the application layer, the game logic, and game views as a basis for the

game and ties them together with the event system. The game even works as a multiplayer
game over the Internet, believe it or not. Some of the new things you‘re going to see are

how to create and manage game actors, and how to extend the basic logic and human view
classes into game-specific classes.

Figure 19.1. Teapot Wars—the next AAA game on the Xbox 360!

The teapot has an interesting history. You might wonder why you see it virtually
everywhere. DirectX even has a built-in function to create one. I did a little research on the

Internet and found this explanation:

―Aside from that, people have pointed out that it is a useful object to test
with. It‘s instantly recognizable, it has complex topology, it self-shadows,

there are hidden surface issues, it has both convex and concave surfaces, as
well as ‗saddle points.‘ It doesn‘t take much storage space—it‘s rumored that

some of the early pioneers of computer graphics could type in the teapot from
memory,‖ quoted directly from http://sjbaker.org/teapot.

Some 3D graphics professionals have even given this shape a special name—the

―teapotahedron.‖ It turns out that the original teapot that has come to be the official symbol
of SIGGRAPH now lies in the Ephemera Collection of the Computer History Museum in

Mountain View, California. Someday, I should make a pilgrimage. These lovely teapots, in a
way, are the founding shapes of the 3D graphics industry, and therefore the computer game

industry.

It‘s quite fitting that we make them the heroes of our game.

Game Actors

../../teapot
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Game actors are objects in your game, and they can be either static or dynamic. Games

need ways to define and create actors, and they usually have some common properties like
position, type, color, and a unique ID. Different types of actors will inherit from the common

data and extend it, perhaps adding things like color or what player is controlling them.

Since actors are common to both the game logic and the game view, you can bet that when
the game sends a new actor event, it will contain all the parameters necessary for the game

logic, game view, or any other subsystem to handle the ―new actor‖ event in its own way.

Most games have different actor types, and Teapot Wars is no exception. Actor types are
meant to be broad categories that have identical property types and are managed by the

game‘s logic and view classes in a similar way. In Teapot Wars, there are four main types of
actors: the ubiquitous teapotahedron for the player, teapots for the AI agents, a sphere that

serves as a projectile, and a grid actor that serves as a surface for teapots to roam on or

bump against. These are defined in a simple enum of actor types:

enum ActorType { AT_Unknown, AT_Sphere, AT_Teapot, AT_Grid };

enum ActorType Might be a Dumb Idea

By the way, ActorType should probably be a string or

stringhash, like you saw in the event subsystem. Left as an

enum, any new actor classes that get created in the future

would require the coder to touch this base class and update

enumerations, and cause the entire universe to recompile. A

simple enum was fine for this simple example, but you‘ll

want to do something more robust in your game.

Every actor object in the game inherits from the IActor interface:

 class IActor

 {

 friend class IGame;

 public:

 virtual ~IActor() { }

 virtual Mat4×4 const &VGetMat()=0;

 virtual void VSetMat(const Mat4×4 &newMat)=0;

 virtual ActorId VGetID()=0;

 virtual void VSetID(ActorId id)=0;

 virtual const int VGetType()=0;

 virtual shared_ptr<ActorParams> VGetParams()=0;

 virtual bool VIsPhysical()=0;

 virtual bool VIsGeometrical()=0;

 virtual void VOnUpdate(int deltaMilliseconds)=0;

 virtual void VRotateY(float angleRadians) = 0;

 };

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This class defines the most basic capabilities of a game actor. A commercial game would

likely define a few more operations—it would be completely dependent on what kinds of

things your game actors could do. Add to the IActor class frugally. Here‘s my

implementation of the IActor interface:

class BaseActor : public IActor

{

 friend class BaseGameLogic;

protected:

 ActorId m_id;

 Mat4×4 m_Mat;

 int m_Type;

 shared_ptr <ActorParams> m_Params;

 virtual void VSetID(ActorId id) { m_id = id; }

 virtual void VSetMat(const Mat4×4 &newMat) { m_Mat = newMat;

}

public:

 BaseActor(Mat4×4 mat, int type, shared_ptr<ActorParams>

params)

 { m_Mat=mat; m_Type=type; m_Params=params; }

 virtual Mat4×4 const &VGetMat() { return

m_Mat; }

 virtual const int VGetType() { return

m_Type; }

 virtual ActorId VGetID() { return

m_id; }

 virtual shared_ptr<ActorParams> VGetParams() { return

m_Params; }

 virtual bool VIsPhysical() { return

true; }

 virtual bool VIsGeometrical() { return

true; }

 virtual void VOnUpdate(int deltaMilliseconds) { }

};

The BaseActor class is pretty simple. It contains various get and set methods that the

game logic will use to manipulate actors in the game world. The BaseActor class is so

simple, that you might wonder how it is useful at all. By itself, it isn‘t that useful. The really

useful class is the ActorParams class.

The ActorParams Class

Since actors can be saved onto disk or streamed across a network, it is a good design to

create a general purpose parameter class that all actors can use to manage their
parameters. These parameters are the core of how most games manage different kinds of

actors in their game world.

struct ActorParams

http://lib.ommolketab.ir
http//lib.ommolketab.ir

{

 int m_Size;

 optional<ActorId> m_Id;

 Vec3 m_Pos;

 ActorType m_Type;

 Color m_Color;

 // Lua functions to call for actors upon creation or

destruction.

 static const int sk_MaxFuncName = 64;

 char m_OnCreateLuaFunctionName[sk_MaxFuncName];

 char m_OnDestroyLuaFunctionName[sk_MaxFuncName];

 ActorParams();

 virtual ~ActorParams() { }

 virtual bool VInit(std::istrstream &in);

 virtual void VSerialize(std::ostrstream &out) const;

 typedef std::deque< std::string > TErrorMessageList;

 virtual bool VInit(

 LuaObject srcData, TErrorMessageList & errorMessages);

 static ActorParams *CreateFromStream(std::istrstream &in);

 static ActorParams *CreateFromLuaObj(LuaObject srcData);

 virtual shared_ptr<IActor> VCreate(BaseGameLogic *logic)

 { shared_ptr<IActor> p; return p; }

 virtual shared_ptr<SceneNode>

VCreateSceneNode(shared_ptr<Scene> pScene)

 { shared_ptr<SceneNode> p; return p; }

};

The ActorParams class is meant to be a base class. New actor types inherit from it and

define specialized parameters and virtual methods. The m_Size member holds the size of

the structure, and helps with streaming since child classes will add new parameter members

and increase the size. Other members include an actor ID, the actor‘s position in the world,
its type, and finally color.

The next two members hold the name of a Lua function to run when actors are created or

destroyed, which can be especially useful if you want to push some game-specific actor
code out of the engine and into a Lua script.

The next two methods, VInit() and VSerialize(), allow actors to be streamed:

bool ActorParams::VInit(std::istrstream &in)

{

 int hasActorId = 0;

 in >> m_Size;

 in >> hasActorId;

 if (hasActorId)

 {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 in >> hasActorId;

 m_Id = hasActorId;

 }

 in >> m_Pos.x >> m_Pos.y >> m_Pos.z;

 in >> m_Color.r >> m_Color.g >> m_Color.b >> m_Color.a;

 in >> m_OnCreateLuaFunctionName;

 in >> m_OnDestroyLuaFunctionName;

 return true;

}

void ActorParams::VSerialize(std::ostrstream &out) const

{

 out << m_Type << " ";

 out << m_Size << " ";

 out << static_cast<int>(m_Id.valid()) << " ";

 if (m_Id.valid())

 {

 out << *m_Id << " ";

 }

 out << m_Pos.x << " " << m_Pos.y << " " << m_Pos.z << " ";

 out << m_Color.r << " "

 << m_Color.g << " " << m_Color.b << " " << m_Color.a << " ";

 out << m_OnCreateLuaFunctionName << " ";

 out << m_OnDestroyLuaFunctionName << " ";

}

Streaming is useful if you want to save the actor parameters, either on disk or send them
over a network. In fact, this is exactly how new actors are marshalled from a server to a

client, as you learned in Chapter 16, ―Network Programming for Multiplayer Games.‖

The next three methods create an interface between actor parameters and Lua:

bool ActorParams::VInit(LuaObject srcData, TErrorMessageList &

errorMessages)

{

 LuaObject actorIDObj = srcData["ActorID"];

 if (actorIDObj.IsInteger())

 {

 m_Id = actorIDObj.GetInteger();

 }

 LuaObject posObj = srcData["Pos"];

 if (posObj.IsTable())

 {

 const int tableCount = posObj.GetTableCount();

 if (3 != tableCount)

 {

 const std::string err(

 'Incorrect number of parameters in the 'Pos' member."

);

 errorMessages.push_back(err);

 return false;

../../ch16#ch16
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 }

 else

 {

 //Get the three values.

 m_Pos.x = posObj[1].GetFloat();

 m_Pos.y = posObj[2].GetFloat();

 m_Pos.z = posObj[3].GetFloat();

 }

}

LuaObject colorObj = srcData["Color"];

if (colorObj.IsTable())

{

 //Get the RGBA off of it.

 LuaObject r = colorObj["R"];

 if (r.IsNumber())

 {

 m_Color.r = r.GetFloat();

 }

 LuaObject g = colorObj["G"];

 if (g.IsNumber())

 {

 m_Color.g = g.GetFloat();

 }

 LuaObject b = colorObj["B"];

 if (b.IsNumber())

 {

 m_Color.b = b.GetFloat();

 }

 LuaObject a = colorObj["A"];

 if (a.IsNumber())

 {

 m_Color.a = a.GetFloat();

 }

}

//See if we have any on create/destroy handlers.

LuaObject onCreateObj = srcData["OnCreateFunc"];

if (onCreateObj.IsString())

{

 const char * pString = onCreateObj.GetString();

 strcpy_s(m_OnCreateLuaFunctionName,

 sk_MaxFuncName, onCreateObj.GetString());

 }

 LuaObject onDestroyObj = srcData["OnDestroyFunc"];

 if (onDestroyObj.IsString())

 {

 strcpy_s(m_OnDestroyLuaFunctionName,

 sk_MaxFuncName, onDestroyObj.GetString());

 }

 return true;

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

VInit() is used to create an ActorParams object from a Lua object, such as you might

define in a Lua script, to create a long list of actors. In this engine, Lua is used not only as a

scripting language, but also as a game world definition system. The Teapot Wars editor, as
you will see in the next chapter, saves your work in a Lua file. When this Lua file is loaded

by the game, it re-creates ActorParams objects using VInit().

The two static functions are helpers that encode two different ways: Actor-Params

objects can be created from Lua—either a clear text stream formatted with Lua syntax or

directly from a LuaObject:

ActorParams *ActorParams::CreateFromStream(std::istrstream &in)

{

 int actorType;

 in >> actorType;

 ActorParams *actor = NULL;

 switch (actorType)

 {

 case AT_Sphere:

 actor = GCC_NEW SphereParams;

 break;

 case AT_Teapot:

 actor = GCC_NEW TeapotParams;

 break;

 case AT_Grid:

 actor = GCC_NEW GridParams;

 break;

 default:

 assert(0 && _T("Unimplemented actor type in stream"));

 return 0;

 }

 if (! actor->VInit(in))

 {

 // something went wrong with the serialization...

 assert(0 && _T("Error in Actor stream initialization"));

 SAFE_DELETE(actor);

 }

 return actor;

}

ActorParams * ActorParams::CreateFromLuaObj(LuaObject srcData)

{

 //Make sure this is legit.

 if (false == srcData.IsTable())

 {

 assert(0 && "No table was passed with actor params!");

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 return NULL;

 }

 //Find out the actor type.

 LuaObject actorTypeObj = srcData["ActorType"];

 if (false == actorTypeObj.IsString())

 {

 assert(0 && "Member 'ActorType' wasn't found!");

 return NULL;

 }

 // OK, we've got a string.

 // Match it up with the appropriate constructor to build the

data.

 const char * pActorType = actorTypeObj.GetString();

 ActorParams * pActorParams = NULL;

 if (0 == stricmp(pActorType, "sphere"))

 {

 pActorParams = GCC_NEW SphereParams();

 }

 else if (0 == stricmp(pActorType, "teapot"))

 {

 pActorParams = GCC_NEW TeapotParams();

 }

 else if (0 == stricmp(pActorType, "grid"))

 {

 pActorParams = GCC_NEW GridParams();

 }

 else

 {

 assert(0 && "Unknown/unsupported member in 'ActorType'

encountered!");

 return NULL;

 }

 if (NULL != pActorParams)

 {

 TErrorMessageList errorMessages;

 if (false == pActorParams->VInit(srcData, errorMessages

))

 {

 assert(0 && "Error in actor parameter creation from

script!");

 SAFE_DELETE(pActorParams);

 }

 }

 return pActorParams;

}

Both static methods require you to do a little bit of ugly wiring to get the full benefit of
linking Lua scripts with your actor system, but it is worth it. If you create totally new actor

http://lib.ommolketab.ir
http//lib.ommolketab.ir

types, such as a SkeletalActor or a ClothActor, you would add them to these

methods only if you wanted a tight integration with Lua scripts. It‘s totally up to you.

The last two methods of the ActorParams class are used by the game logic and game

view to create their representations of the actor. The game logic calls VCreate(), which

creates an object that implements the IActor interface, something you will see shortly.

The game view calls VCreateSceneNode(), which implements the ISceneNode

interface that you learned back in Chapter 14, ―3D Scenes.‖ You‘ll see a concrete example

of both with the TeapotParams class.

Actor Parameters on Thief: Deadly Shadows

Thief: Deadly Shadows had a pretty amazing and extensible
actor parameter system. It was hierarchical in nature, and

allowed multiple actors to share the same parameter set or

break off and have their own copy. This was all managed at
runtime, and while the designers really loved it, it was hard

to tell if the complexity of the system really paid off in
something players noticed.

TeapotParams and TeapotMeshNode Classes

Now that you‘ve seen the ActorParams class, take a look at the TeapotParams class:

struct TeapotParams : public ActorParams

{

 float m_Length;

 GameViewId m_ViewId;

 Mat4×4 m_Mat;

 TeapotParams();

 virtual bool VInit(std::istrstream &in);

 virtual bool VInit(

 LuaObject srcData, TErrorMessageList & errorMessages);

 virtual void VSerialize(std::ostrstream &out) const;

 virtual shared_ptr<IActor> VCreate(BaseGameLogic *logic);

 virtual shared_ptr<SceneNode>

VCreateSceneNode(shared_ptr<Scene> pScene);

};

This class adds the physical length of the teapot, a view ID, and a transform matrix to the

basic ActorParams class. Take a look at the constructor:

TeapotParams::TeapotParams()

 : ActorParams()

{

 m_Type=AT_Teapot;

 m_Length=1.0f;

 m_ViewId = VIEWID_NO_VIEW_ATTACHED;

 m_Mat=Mat4×4::g_Identity;

../../ch14#ch14
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 m_Size=sizeof(TeapotParams);

}

The constructor sets the type to AT_Teapot and its game world length to 1.0 units. Since

teapots are agents that will be controlled by either a human player or an AI, it also holds a

view ID that is currently set to a default value. Finally, the transform matrix is intialized to a

reasonable value and the m_Size member is set to the size of the TeapotParams class.

If you create your own extension of the Actor-Params class, you‘ll want to write a similar

constructor, taking special care to set the m_Size and m_Type member properly.

The stream based VInit() and VSerialize() methods look exactly as you would

expect:

bool TeapotParams::VInit(std::istrstream &in)

{

 if (ActorParams::VInit(in))

 {

 m_Type=AT_Teapot;

 in >> m_Length;

 in >> m_ViewId;

 for (int i=0; i<4; ++i)

 for (int j=0; j<4; ++j)

 in >> m_Mat.m[i][j];

 return true;

 }

 return false;

}

void TeapotParams::VSerialize(std::ostrstream &out) const

{

 ActorParams::VSerialize(out);

 out << m_Length << " ";

 out << m_ViewId;

 for (int i=0; i<4; ++i)

 for (int j=0; j<4; ++j)

 out << m_Mat.m[i][j] << " ";

}

Clear Text is useful, but not Always

The previous streaming code uses std::istrstream and std::ostrstream

from STL. This is fine for a game engine on training wheels like Game

Coding Complete, but you’ll want to ditch this for a high-powered,
efficient binary stream. With luck, this mythical stream class will have

an option to switch from binary to clear text, especially if you need to
debug a heinous network or load/save problem.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Next up is the VInit() method that can load our TeapotParams object from Lua:

bool TeapotParams::VInit(

 LuaObject srcData, TErrorMessageList & errorMessages)

{

 if (false == ActorParams::VInit(srcData, errorMessages))

 {

 return false;

 }

 m_Type = AT_Teapot;

 LuaObject lengthObj = srcData["Length"];

 if (lengthObj.IsNumber())

 {

 m_Length = lengthObj.GetFloat();

 }

 m_Mat = Mat4×4::g_Identity;

 LuaObject matObj = srcData["Mat"];

 if (matObj.IsTable())

 {

 const int tableCount = matObj.GetTableCount();

 if (16 != tableCount)

 {

 const std::string err("Incorrect number of parameters

in 'Mat'");

 errorMessages.push_back(err);

 return false;

 }

 else

 {

 char name[4] = "_00";

 for(int i = 1; i <= 4; ++i)

 {

 name[1] = '0' + i;

 for(int j = 1; j <= 4; ++j)

 {

 name[2] = '0' + j;

 LuaObject entry = matObj[name];

 if(entry.IsNumber())

 {

 m_Mat.m[i - 1][j - 1] = entry.GetFloat();

 }

 }

 }

 }

 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 LuaObject viewIDObj = srcData["GameViewID"];

 if (viewIDObj.IsInteger())

 {

 m_ViewId = viewIDObj.GetInteger();

 }

 return true;

 }

This should look a little familiar to you, assuming you didn‘t skip Chapter 11, ―Scripting with

Lua.‖ The srcData object passed in is queried for each and every member the

TeapotParams class needs to intialize.

Next, let‘s looks at the all-important method used by the game logic to actually create an

instance of an actor given an object based on ActorParams. Here‘s the method to create

an actual teapot actor:

shared_ptr<IActor> TeapotParams::VCreate(BaseGameLogic *logic)

{

 Mat4×4 mat;

 mat = m_Mat;

 shared_ptr<IActor> pTeapot(

 GCC_NEW BaseActor(mat, AT_Teapot,

 shared_ptr<TeapotParams>(GCC_NEW TeapotParams(*this))));

 logic->VAddActor(pTeapot, this);

 logic->VGetGamePhysics()->VAddBox(

Vec3(m_Length, m_Length/3, m_Length), &*pTeapot,

 SpecificGravity(PhysDens_Water)*.8f, PhysMat_Normal);

 return pTeapot;

}

The teapot actor is really a BaseActor class, created with its own copy of the teapot

parameters object. Having a separate copy lets you change the color of one teapot without

changing them all at the same time, although that might be a cool feature. Once created,
the actor is added to the game logic and the physics system.

Finally, here‘s how the teapot is created for the view:

shared_ptr<SceneNode>

TeapotParams::VCreateSceneNode(shared_ptr<Scene> pScene)

{

 shared_ptr<SceneNode> teapot(

 GCC_NEW TeapotMeshNode(m_Id, "Teapot", L"GameCode3.fx",

 RenderPass_Actor, &m_Mat, m_Color));

 return teapot;

}

The TeapotMeshNode class is a simple extension of the ShaderMeshNode class you

saw in Chapter 14.

../../ch11#ch11
../../ch14#ch14
http://lib.ommolketab.ir
http//lib.ommolketab.ir

class TeapotMeshNode : public ShaderMeshNode

{

public:

 TeapotMeshNode(

 const optional<ActorId> actorId,

 std::string name,

 std::wstring fxFileName,

 RenderPass renderPass,

 const Mat4×4 *t,

 const Color &color);

 virtual HRESULT VOnRestore(Scene *pScene);

};

TeapotMeshNode::TeapotMeshNode(

 const optional<ActorId> actorId,

 std::string name,

 std::wstring fxFileName,

 RenderPass renderPass,

 const Mat4×4 *t,

 const Color &color)

: ShaderMeshNode(actorId, name, NULL, fxFileName, renderPass, t,

color)

{

 // do nothing

}

The only tricky bit is the VOnRestore() method. It calls the D3DXCreateTeapot()

API, but by default, the teapot‘s spout is pointing off to the side instead of straight ahead.

By default, our game‘s direction vectors are set to

Vec3 g_Right(1.0f, 0.0, 0.0f);

Vec3 g_Up(0.0f, 1.0f, 0.0f);

Vec3 g_Forward(0.0f, 0.0f, 1.0f);

As you can see, the forward direction is defined as down the positive Z-axis. The DirectX
teapots, by default, have their spouts turned down the positive X-axis. The

VOnRestore() method fixes this problem by locking the vertex buffer and transforming

each one 90 degrees about the up vector, or Y-axis. Doing this once for each teapot is much
smarter than performing this transformation every time the teapot renders.

HRESULT TeapotMeshNode::VOnRestore(Scene *pScene)

{

 HRESULT hr;

 IDirect3DDevice9 * pDevice = DXUTGetD3D9Device();

 V(D3DXCreateTeapot(pDevice, &m_pMesh, NULL));

 // Rotate the teapot 90 degrees from default so that the

spout faces forward

 Mat4×4 rotateY90 = m_Props.ToWorld();

 rotateY90.SetPosition(Vec3(0.0f, 0.0f, 0.0f));

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 IDirect3DVertexBuffer9* pVB = NULL;

 m_pMesh->GetVertexBuffer(&pVB);

 Vec3* pVertices = NULL;

 pVB->Lock(0, 0, (void**)&pVertices, 0);

 for (unsigned int i=0; i<m_pMesh->GetNumVertices(); ++i)

 {

 *pVertices = rotateY90.Xform(*pVertices);

 ++pVertices;

 // The structs depicted in this vertex buffer actually

store

 // information for normals in addition to xyz, thereby

 // making the vertices in pVB twice the size of the one

described

 // by *pVertices. So we address that here.

 *pVertices = rotateY90.Xform(*pVertices); //rotate the

normals, too

 ++pVertices;

 }

 pVB->Unlock();

 SAFE_RELEASE(pVB);

 //...end rotation

 // Note - the mesh is needed BEFORE calling the base class

VOnRestore.

 V (ShaderMeshNode::VOnRestore (pScene));

 return S_OK;

 }

Another gotcha in VOnRestore() is that the call to the parent class‘s VOnRestore()

method happens at the end of the method, rather than the traditional beginning.

ShaderMeshNode::VOnRestore() assumes that the mesh already exists, so it is up to

us to create the mesh before calling it. Had I called ShaderMesh-

Node::VOnRestore() at the beginning of this method, it would have caused a crash

because of a NULL mesh.

Which way is up?

The badly oriented teapot mesh implies something very
serious about how your artists create their 3D models. One

standard sets ―up‖ as the Y-axis and ―forward‖ as the Z-axis.
You‘ll want to communicate this standard clearly to any artist

making models for your game. Otherwise, an artist might

create a rocket model in the classic pose, standing straight
up, ready for launch. This would be wrong. The artist should

create it with its body skewered on the Z-axis. When you
move it ―forward,‖ along its transformed Z-axis in world

space, it will do exactly as you expect and look like it is being
pushed by the rocket exhaust.

One more nit about model creation: Try to think about

convenient origins for each model. For example, an artist
might create a model of a door standing straight up,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

centered on the origin, which would also be wrong. The door

should be able to rotate around its hinge without figuring out
wacky interim translations. A better approach would have the

artist place the door‘s hinge directly above the origin. When
someone opens the door, all that will be needed in the game

is a simple rotation about the up vector. This kind of thing
can be unintuitive for artists and programmers, and also isn‘t

encouraged by many modeling tools. Most tools like 3D
Studio Max tend to model things centered on the origin, and

not every object has a natural rotation about its center of

mass—a door being the best example.

How About GridParams and SphereParams?

The code for creating a GridParams object and SphereParams object is so similar to

TeapotParams that I‘ll assign you, my reader, to not only study it in the Game Coding

Complete source code, but also to create your own special actor type. Doing this

―homework‖ involves nearly all of the systems you‘ve learned in this book, making it an
excellent exercise.

Game Events

You‘ve already seen most of the events that will be fired during a highly addictive session of

Teapot Wars. When objects collide, for example, the physics system sends a collision event
just like the one you saw in Chapter 15, ―Collision and Simple Physics.‖ There are three new

events that are specific to Teapot Wars: EvtData_Fire_Weapon, EvtData_Thrust,

and EvtData_Steer:

class EvtData_Fire_Weapon : public BaseEventData

{

public:

 static const EventType sk_EventType;

 virtual const EventType & VGetEventType() const

 { return sk_EventType; }

 explicit EvtData_Fire_Weapon(ActorId id)

 : m_id(id) { }

 explicit EvtData_Fire_Weapon(std::istrstream & in)

 { in >> m_id; }

 virtual IEventDataPtr VCopy() const

 {

 return IEventDataPtr (GCC_NEW EvtData_Fire_Weapon (m_id)

);

 }

 virtual ~EvtData_Fire_Weapon() {}

 virtual LuaObject VGetLuaEventData() const

 {

../../ch15#ch15
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 assert((true == m_bHasLuaEventData) &&

 "Call BulidLuaEventData() first!");

 return m_LuaEventData;

 }

 virtual void VBuildLuaEventData()

 {

 assert((false == m_bHasLuaEventData) &&

 "Already built lua event data!");

 // Get the global state.

 LuaState * pState = g_pApp->m_pLuaStateManager-

>GetGlobalState().Get();

 m_LuaEventData.AssignNewTable(pState);

 // Serialize the data necessary.

 m_LuaEventData.SetInteger("ActorId", m_id);

 m_bHasLuaEventData = true;

 }

 virtual void VSerialize(std::ostrstream & out) const

 {

 out << m_id << " ";

 }

 ActorId m_id;

private:

 LuaObject m_LuaEventData;

};

The ―fire weapon‖ event is pretty similar to what you‘ve seen in other chapters.

Events for thrusting send game commands to move the teapot forward or backward, and

steering sends commands to steer left or right. For these kinds of control events, it is

common to send control values in terms of a floating-point number from -1.0 to 1.0. For the
thruster, 0.0 means no thrust at all; -1.0 means 100% backward; and 1.0 means 100%

forward. For the steering, -1.0 means 100% left and 1.0 corresponds to 100% right. It
makes it pretty easy to map keyboard commands to these coefficients:

struct EvtData_Thrust : public BaseEventData

{

 static const EventType sk_EventType;

 virtual const EventType & VGetEventType(void) const

 {

 return sk_EventType;

 }

 explicit EvtData_Thrust(ActorId id, float throttle)

 : m_id(id),

 m_throttle(throttle)

 {}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 explicit EvtData_Thrust(std::istrstream & in)

 {

 in >> m_id;

 in >> m_throttle;

 }

 virtual IEventDataPtr VCopy() const

 {

 return IEventDataPtr (GCC_NEW EvtData_Thrust (m_id,

m_throttle));

 }

 virtual ~EvtData_Thrust()

 {

 }

 ActorId m_id;

 float m_throttle;

 virtual LuaObject VGetLuaEventData(void) const

 {

 assert((true == m_bHasLuaEventData) &&

 "Can't get lua event data yet - call BulidLuaEventData()

first!");

 return m_LuaEventData;

 }

 virtual void VBuildLuaEventData(void)

 {

 assert((false == m_bHasLuaEventData) &&

 "Already built lua event data!");

 // Get the global state.

 LuaState * pState = g_pApp->m_pLuaStateManager-

>GetGlobalState().Get();

 m_LuaEventData.AssignNewTable(pState);

 // Set the appropriate data.

 m_LuaEventData.SetInteger("ActorId", m_id);

 m_LuaEventData.SetNumber("Throttle", m_throttle);

 m_bHasLuaEventData = true;

 }

 virtual void VSerialize(std::ostrstream & out) const

 {

 out << m_id << " ";

 out << m_throttle << " ";

 }

private:

 LuaObject m_LuaEventData;

};

http://lib.ommolketab.ir
http//lib.ommolketab.ir

//

///////////////

struct EvtData_Steer : public BaseEventData

{

 static const EventType sk_EventType;

 virtual const EventType & VGetEventType(void) const

 {

 return sk_EventType;

 }

 explicit EvtData_Steer(ActorId id, float dir)

 : m_id(id),

 m_dir(dir)

 {}

 explicit EvtData_Steer(std::istrstream & in)

 {

 in >> m_id;

 in >> m_dir;

 }

 virtual IEventDataPtr VCopy() const

 {

 return IEventDataPtr (GCC_NEW EvtData_Steer (m_id, m_dir)

); }

 }

 virtual ~EvtData_Steer()

 {

 }

 virtual LuaObject VGetLuaEventData(void) const

 {

 assert((true == m_bHasLuaEventData) &&

 "Can't get lua event data yet - call

BulidLuaEventData() first!");

 return m_LuaEventData;

 }

 virtual void VBuildLuaEventData(void)

 {

 assert((false == m_bHasLuaEventData) &&

 "Already built lua event data!");

 // Get the global state.

 LuaState * pState = g_pApp->m_pLuaStateManager-

>GetGlobalState().Get();

 m_LuaEventData.AssignNewTable(pState);

 // Set appropriate data.

 m_LuaEventData.SetInteger("ActorId", m_id);

 m_LuaEventData.SetNumber("Dir", m_dir);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 m_bHasLuaEventData = true;

 }

 virtual void VSerialize(std::ostrstream & out) const

 {

 out << m_id << " ";

 out << m_dir << " ";

 }

 ActorId m_id;

 float m_dir; // -1.0 is all the way left, 0 is straight,

1.0 is right

private:

 LuaObject m_LuaEventData;

};

char const * const Evt_Fire_Weapon::gkName = "fire_weapon";

char const * const Evt_Thrust::gkName = "thrust";

char const * const Evt_Steer::gkName = "steer";

Network Games shouldn’t Trust Client Data

While the event data just presented is easy to learn and use,

it isn‘t a good choice for a networked game. Network game
clients shouldn‘t be allowed to set the thrust value for just

any actor in the game, and even though there might not be a
way in your game client to actually tweak the actor ID

illegally, you can bet that someone will hack into your packet
data and figure out how to replace that actor ID with

something that will let them cheat. Real networking code has

many layers of security built into the packet definitions.

The Application Layer

The application layer is the object that holds all the operating system dependent code like
initialization, strings, the resource cache, and so on. Teapot Wars extends the

GameCodeApp class you saw in Chapter 5, ―Game Initialization and Shutdown.‖ It adds

three methods. The virtual overload of VCreateGameAndView() is responsible for

initializing the game logic and any game views. VLoadGame() loads the game from an

initial state. GetGame() is an accessor for getting a pointer to the base game logic class:

class TeapotWarsGameApp : public GameCodeApp

{

private:

 void RegisterGameSpecificEvents(void); // Registers game-

specific events

 // for later usage.

protected:

../../ch05#ch05
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 virtual BaseGameLogic *VCreateGameAndView();

 virtual bool VLoadGame();

public:

 TeapotWarsGameApp() : GameCodeApp() { }

 inline TeapotWarsBaseGame const * const GetGame() const

{

 return dynamic_cast<TeapotWarsBaseGame*>(m_pGame);

}

 virtual TCHAR *VGetGameTitle() { return _T("Teapot Wars"); }

 virtual TCHAR *VGetGameAppDirectory()

 { return _T("Game Coding Complete 3.0\\Teapot Wars\\3.0");

}

 virtual HICON VGetIcon();

};

BaseGameLogic *TeapotWarsGameApp::VCreateGameAndView()

{

 BaseGameLogic *game = NULL;

 assert(m_pOptions && _T("The game options object is

uninitialized."));

 // Register any game-specific events here.

 RegisterGameSpecificEvents();

 if (m_pOptions->m_gameHost.empty())

 {

 game = GCC_NEW TeapotWarsGame(*m_pOptions);

 }

 else

 {

 game = GCC_NEW TeapotWarsGameProxy(*m_pOptions);

 EventListenerPtr listener (GCC_NEW NetworkEventForwarder(

0));

 extern void ListenForTeapotGameCommands(EventListenerPtr

listener);

 ListenForTeapotGameCommands(listener);

 }

 shared_ptr<IGameView> gameView(GCC_NEW MainMenuView());

 game->VAddView(gameView);

 return game;

 }

There are two types of possible game logic that can be created here, based on the value of

the m_gameHost member of the GameOptions class. Game options are commonly

loaded from an initialization file like you saw in Chapter 5, and this one was no exception. If

the game is going to be the authoritative server, the game logic class called for is

TeapotWarsGame. If the game is a client attaching to a remote server, the

TeapotWarsGameProxy class is a stand-in for the real game logic on the server. It

../../ch05#ch05
http://lib.ommolketab.ir
http//lib.ommolketab.ir

basically does nothing but convince the game subsystems that a valid game logic is

instantiated. You‘ll see both of them in the next section on game logic.

The method to load the game could actually do something complicated, like search the local

directory tree and send messages to the game view so it can present a menu of load games

to choose from, or have the player start a new game. We‘re not going to be nearly that
complicated. We‘ll simply tell the game logic to build a new game through a special text

command:

bool TeapotWarsGameApp::VLoadGame()

{

 // Ordinarily you'd read the game options and see what the

current game

 // needs to be - or perhaps pop up a dialog box and ask

which game

 // needed loading. All of the game graphics are initialized

by now, too...

 return m_pGame->VLoadGame("NewGame");

}

That‘s all there is to the Teapot Wars application layer. The base class Game-CodeApp

does almost all the work for you.

The Game Logic

As you saw before, there are two classes for game logic: a smart one and a sidekick. The

smart one is the authoritative game logic for any game of Teapot Wars, and the dumb one

is a stand-in for clients that are playing remotely. They have things in common, including
some game data, and these common elements are stored in a base class.

The game data is nothing more than the scores of the players. But wait, you say, where are

all the actors managed? Actors are stored and managed in the BaseGameLogic class. You

can see the BaseGameLogic class in its full glory in the companion source code, but some

of the more important methods are included and discussed here.

Let‘s get back to the Teapot Wars common game data and logic class:

class TeapotWarsGameData

{

public:

 ActorScoreMap m_actorScores;

 const ActorScoreMap &GetActorScores() const { return

m_actorScores; }

 void RemoveActor(ActorId id) { m_actorScores.erase(id); }

};

class TeapotWarsBaseGame : public BaseGameLogic

{

protected:

 TeapotWarsGameData m_data;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

public:

 TeapotWarsBaseGame(GameOptions const &options)

 : BaseGameLogic(options)

 { }

 bool VLoadGame(std::string gameName);

 void VRemoveActor(ActorId id);

 void VAddActor(shared_ptr<IActor> actor, ActorParams *p);

 void VSetProxy() { BaseGameLogic::VSetProxy(); }

 // overloadable

 virtual void VRegisterHit(const ActorId sphere, const ActorId

teapot) { }

 const TeapotWarsGameData& GetData() const { return m_data; }

 };

The common game logic for Teapot Wars is pretty simple: it is responsible for loading
games, adding some actor management tasks to keep the score data up to date, and

creating a virtual stub for VRegisterHit(), which the ―real‖ logic will overload.

Three methods that are defined are VLoadGame(), VAddActor(), and

VRemoveActor():

bool TeapotWarsBaseGame::VLoadGame(std::string gameName)

{

 if (gameName=="NewGame")

 {

 VBuildInitialScene();

 safeTriggerEvent(EvtData_New_Game());

 }

 return true;

}

You probably thought you were going to see a little game loading/creating code, but really

all VLoadGame() does is call VBuildInitialScene() and send an event.

VBuildInitialScene() is not defined in this class—it depends on child classes to

implement it.

Next is VAddActor(), which adds the actor to the BaseGameLogic class, sets actor

scores if the actor happens to be a teapot or AI teapot, and manages the calls to Lua scripts

that activate when actors are created:

void TeapotWarsBaseGame::VAddActor(shared_ptr<IActor> actor,

ActorParams *p)

{

 BaseGameLogic::VAddActor(actor, p);

 if (p->m_Type==AT_Teapot && p->m_Id.valid())

 {

 m_data.m_actorScores[*p->m_Id] = 0;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 }

 // Ensure script knows about this actor, too.

 LuaState * pState = g_pApp->m_pLuaStateManager-

>GetGlobalState().Get();

 LuaObject globalActorTable =

 g_pApp->m_pLuaStateManager->GetGlobalActorTable();

 assert(globalActorTable.IsTable() &&

 "Global actor table is NOT a table!");

 // The actor ID is the key.

 LuaObject addedActorData = globalActorTable.CreateTable(*p-

>m_Id);

 addedActorData.SetInteger("ActorID", *p->m_Id);

 if (0 != p->m_OnCreateLuaFunctionname[0])

 {

 addedActorData.SetString("OnCreateFunc", p-

>m_OnCreateLuaFunctionName);

 }

 if (0 != p->m_ OnDestroyLuaFunctionName[0])

 {

 addedActorData.SetString("OnDestroyFunc", p-

>m_OnDestroyLuaFunctionName);

 }

 //If this actor has any script-specific functions to call, do

so now.

 if (0 != strlen(p->m_OnCreateLuaFunctionName))

 {

 //First attempt to FIND the function specified.

 LuaObject foundObj = g_pApp->m_pLuaStateManager->

 GetGlobalState()->GetGlobal(p-

>m_OnCreateLuaFunctionName);

 if (foundObj.IsNil())

 {

 assert(0 && "Unable to find specified OnCreateFunc

function!");

 }

 else

 {

 // Make sure it actually *IS* a function.

 if (false == foundObj.IsFunction())

 {

 assert(0 && "Specified OnCreateFunc doesn't exist!"

);

 }

 else

 {

 // Attempt to call the function.

 LuaFunction< void > onCreateFunc(foundObj);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 // Pass in the actor ID and this actor's user-owned

data table.

 onCreateFunc(*p->m_Id, addedActorData);

 }

 }

 }

 }

Notice the first few lines of Lua interface code? The Lua state manager and the actor table
are accessed, which are needed to grab the Lua actor data for this actor instance. If there is

an ―on create‖ Lua method defined for this actor, it is called.

Besides being in reverse order from VAddActor(), VRemoveActor() is almost

identical, so to save a little paper I‘ll ask you to find it in the Game Coding Complete source

code.

The TeapotWarsBaseGame class is meant to serve as a base class for one of two

implementations: an authoritative server and a proxy. The proxy is something that would

exist on a remote client machine attached to a game server over the Internet.

The TeapotWarsGame Class

Now you‘re ready to see the real Teapot Wars game logic class, TeapotWarsGame. This is

the authoritative server, and it makes all the decisions regarding changes to the game

world. If a teapot dies, this class swings the ax:

class TeapotWarsGame : public TeapotWarsBaseGame

{

 friend class TeapotWarsEventListener;

protected:

 float m_Lifetime; //indicates how long this game has been in

session

 Vec3 m_StartPosition;

 int m_HumanPlayersAttached;

 int m_AIPlayersAttached;

 EventListenerPtr m_teapotWarsEventListener;

public:

 TeapotWarsGame(struct GameOptions const &options);

 ~TeapotWarsGame();

 // TeapotWars Methods

 // Update

 virtual void VOnUpdate(float time, float elapsedTime);

 virtual void VSetProxy();

 // Overloads

 virtual void VRegisterHit(const ActorId sphere, const ActorId

teapot);

 virtual void VBuildInitialScene();

 virtual void VChangeState(BaseGameState newState);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 virtual void VAddView(

 shared_ptr<IGameView> pView, optional<ActorId>

actor=optional_empty());

 virtual shared_ptr<IGamePhysics> VGetGamePhysics(void)

 { return m_pPhysics; }

 // set/clear render diagnostics

 void ToggleRenderDiagnostics() { m_RenderDiagnostics =

!m_RenderDiagnostics; }

private:

 //Allows access for script calls.

 LuaObject m_MetaTable;

 //Script accessible functions.

 void SetCameraOffset(LuaObject gameViewIndex, LuaObject

offsetTable);

};

This class has members to track the lifetime of the game, what players or AI agents are
attached, the next teapot starting position, and a member to listen for events. Here‘s the

constructor for the TeapotWarsGame class:

TeapotWarsGame::TeapotWarsGame(GameOptions const &options)

 : TeapotWarsBaseGame(options)

 , m_Lifetime(0)

 , m_StartPosition(6.0f, 1.5f, 3.0f)

 , m_HumanPlayersAttached(0)

 , m_AIPlayersAttached(0)

{

 m_pPhysics.reset(CreateGamePhysics());

 m_teapotWarsEventListener =

shared_ptr<TeapotWarsEventListener>

 (GCC_NEW TeapotWarsEventListener (this));

 safeAddListener(m_teapotWarsEventListener,

 EvtData_Remote_Client::sk_EventType);

 safeAddListener(m_teapotWarsEventListener,

 EvtData_PhysCollision::sk_EventType);

 safeAddListener(m_teapotWarsEventListener,

 EvtData_New_Actor::sk_EventType);

 safeAddListener(m_teapotWarsEventListener,

 EvtData_Destroy_Actor::sk_EventType);

 safeAddListener(m_teapotWarsEventListener,

 EvtData_Move_Actor::sk_EventType);

 safeAddListener(m_teapotWarsEventListener,

 EvtData_Request_New_Actor::sk_EventType);

 safeAddListener(m_teapotWarsEventListener,

 EvtData_Request_Start_Game::sk_EventType);

 safeAddListener(m_teapotWarsEventListener,

 EvtData_Network_Player_Actor_Assignment::sk_EventType);

 safeAddListener(m_teapotWarsEventListener,

 EvtData_UpdateActorParams::sk_EventType);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 extern void ListenForTeapotGameCommands(EventListenerPtr

listener);

 ListenForTeapotGameCommands(m_teapotWarsEventListener);

 // Open up access to script.

 {

 // Create our metatable...

 m_MetaTable = g_pApp->m_pLuaStateManager->

 GetGlobalState()-

>GetGlobals().CreateTable("TeapotWarsGame");

 m_MetaTable.SetObject("__index", m_MetaTable);

 m_MetaTable.RegisterObjectDirect("SetCameraOffset",

 (TeapotWarsGame *)0, &TeapotWarsGame::SetCameraOffset);

 LuaObject luaStateManObj = g_pApp->m_pLuaStateManager->

 GetGlobalState()->BoxPointer(this);

 luaStateManObj.SetMetaTable(m_MetaTable);

 g_pApp->m_pLuaStateManager->GetGlobalState()->

 GetGlobals().SetObject("TeapotWarsGame",

luaStateManObj);

 }

}

Besides initializing the member variables and the physics system, the game logic registers
to receive game events. The last few lines open access to Lua script, creating the right

tables and objects for Lua to be wired into our game logic.

VOnUpdate() is the method that is called once per game loop, and may be called at a

different rate than the screen is rendered, depending on the speed of the renderer and the

logic:

void TeapotWarsGame::VOnUpdate(float time, float elapsedTime)

{

 int deltaMilliseconds = int(elapsedTime * 1000.0f);

 m_Lifetime += elapsedTime;

 BaseGameLogic::VOnUpdate(time, elapsedTime);

 if (m_bProxy)

 return;

 switch(m_State)

 {

 case BGS_LoadingGameEnvironment:

 break;

 case BGS_MainMenu:

 break;

 case BGS_WaitingForPlayers:

 if (m_ExpectedPlayers + m_ExpectedRemotePlayers ==

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 m_HumanPlayersAttached)

 {

 VChangeState(BGS_LoadingGameEnvironment);

 }

 break;

 case BGS_SpawnAI:

 // five seconds to wait for a human opponent

 if(g_pApp->m_pOptions->m_numAIs && m_Lifetime>5)

 {

 for (int i=0; i<g_pApp->m_pOptions->m_numAIs; ++i)

 {

 shared_ptr<IGameView> gameView(

 GCC_NEW AITeapotView(m_pPathingGraph));

 VAddView(gameView);

 m_Lifetime = 0;

 }

 VChangeState(BGS_Running);

 }

 break;

 case BGS_Running:

 break;

 default:

 assert(0 && _T("Unrecognized state."));

 }

 // look in Chapter 15, page 563 for more on this bit of code

 if(m_pPhysics)

 {

 m_pPhysics->VOnUpdate(elapsedTime);

 m_pPhysics->VSyncVisibleScene();

 }

 }

VOnUpdate() does a few other jobs besides calling the base class‘s update method. The

first is to detect if the game logic is acting as a proxy—if so, the meaty parts of the logic are
short-circuited. The rest of the method works as a simple state machine with the following

states:

enum BaseGameState

{

 BGS_Initializing, // resource check and systems

initialization

 BGS_LoadingGameEnvironment, // loading the game environment

 BGS_MainMenu, // present the main menu

 BGS_WaitingForPlayers, // wait for all human players to

join

 BGS_SpawnAI, // spawn AI

 BGS_Running // run the game!

};

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The states follow one after the other, and are controlled by the game logic class. The game

view classes respond to the game states, such as when they need to show a main menu or
display messages that the game is starting.

When the game state is set to BGS_SpawnAI, a timer detects when five seconds have

passed before creating the AI views. It‘s a good idea to give the human players a moment
to get their bearings. The AI teapots are, as you will shortly see, so smart they can nearly

predict the future. I‘m joking, of course.

Now that you‘ve been introduced to the game logic‘s state machine, take a look at the

VChangeState() methods for both the BaseGameLogic class and the

TeapotWarsGame class:

void BaseGameLogic::VChangeState(BaseGameState newState)

{

 if (newState==BGS_WaitingForPlayers)

 {

 // Note: Split screen support would require this to change!

 m_ExpectedPlayers = 1;

 m_ExpectedRemotePlayers = g_pApp->m_pOptions-

>m_expectedPlayers - 1;

 m_ExpectedAI = g_pApp->m_pOptions->m_numAIs;

 if (!g_pApp->m_pOptions->m_gameHost.empty())

 {

 // REMOTE CLIENT!

 VSetProxy();

 m_ExpectedAI = 0; // the server will create

these

 m_ExpectedRemotePlayers = 0; // the server will create

these

 ClientSocketManager *pClient = GCC_NEW ClientSocketManager(

 g_pApp->m_pOptions->m_gameHost,

 g_pApp->m_pOptions->m_listenPort);

 if (!pClient->Connect())

 {

 VChangeState(BGS_MainMenu);

 return;

 }

 g_pApp->m_pBaseSocketManager = pClient;

 }

 else if (m_ExpectedRemotePlayers > 0)

 {

 // WE ARE CREATING A SERVER!

 BaseSocketManager *pServer = GCC_NEW BaseSocketManager();

 if (!pServer->Init())

 {

 // TODO: Throw up a main menu

 VChangeState(BGS_MainMenu);

 return;

 }

 pServer->AddSocket(GCC_NEW

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 GameServerListenSocket(g_pApp->m_pOptions-

>m_listenPort));

 g_pApp->m_pBaseSocketManager = pServer;

 }

 }

 m_State = newState;

 if (!m_bProxy)

 {

 safeQueEvent(IEventDataPtr(GCC_NEW

EvtData_Game_State(m_State)));

 }

}

The BaseGameLogic state machine handles some core aspects of the BGS_Waiting-

ForPlayers state, namely the network connection for multiplayer games. Some method,

such as a menu interface or simple game options file, will set the game host before the

BGS_WaitingForPlayers state is entered. If the game is a remote client, the logic is

set to a proxy logic by setting the m_bProxy member of the BaseGameLogic class to

true. After that point, most of the game logic is short-circuited, and the game events will

simply come in from the remote server. If the game is an authoritative server expecting

remote players, a GameServerListenSocket is created. This class was covered in

Chapter 16. Finally, an event is sent telling other game subsystems that the state has
changed.

The grandchild of BaseGameLogic, TeapotWarsGame, also has a VChangeState()

method:

void TeapotWarsGame::VChangeState(BaseGameState newState)

{

 TeapotWarsBaseGame::VChangeState(newState);

 switch(newState)

 {

 case BGS_WaitingForPlayers:

 if (m_bProxy)

 break;

 for (int i=0; i<m_ExpectedPlayers; i++)

 {

 shared_ptr<IGameView> playersView(GCC_NEW

TeapotWarsGameView());

 VAddView(playersView);

 TeapotParams tp;

 tp.m_Mat = Mat4×4::g_Identity;

 tp.m_Mat.BuildRotationY(-D3DX_PI / 2.0f);

 tp.m_Mat.SetPosition(m_StartPosition);

 tp.m_Length = 2.5; tp.m_ViewId = playersView->VGetId();

 tp.m_Color = g_Green;

 const EvtData_Request_New_Actor requestActor(&tp);

../../ch16#ch16
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 safeTriggerEvent(requestActor);

 m_StartPosition += Vec3(8, 0, 8);

 }

 for (int i=0; i<m_ExpectedRemotePlayers; i++)

 {

 TeapotParams tp;

 tp.m_Mat = Mat4×4::g_Identity;

 tp.m_Mat.BuildRotationY(-D3DX_PI / 2.0f);

 tp.m_Mat.SetPosition(m_StartPosition);

 tp.m_Length = 2.5;

 tp.m_ViewId = VIEWID_NO_VIEW_ATTACHED;

 tp.m_Color = g_Red;

 const EvtData_Request_New_Actor requestActor(&tp);

 safeTriggerEvent(requestActor);

 m_StartPosition += Vec3(8, 0, 8);

 }

 for (int i=0; i<m_ExpectedAI; i++)

 {

 shared_ptr<IGameView> aiView(GCC_NEW

AITeapotView(m_pPathingGraph));

 VAddView(aiView);

 TeapotParams tp;

 tp.m_Mat = Mat4×4::g_Identity;

 tp.m_Mat.BuildRotationY(-D3DX_PI / 2.0f);

 tp.m_Mat.SetPosition(m_StartPosition);

 tp.m_Length = 2.5; tp.m_ViewId = aiView->VGetId();

 tp.m_Color = g_Yellow;

 const EvtData_Request_New_Actor requestActor(&tp);

 safeTriggerEvent(requestActor);

 m_StartPosition += Vec3(8, 0, 8);

 }

 break;

 }

}

VChangeState() will wait for the game state to be set to BGS_WaitingForPlayers,

then look at the members for m_ExpectedPlayers, m_ExpectedRemotePlayers,

and m_ExpectedAI and create the correct views for each. The code will send ―request

new actor‖ events, and each teapot will get matched with a view. A normal human player
gets a green teapot. The network player gets a red one, and the AI gets a yellow one. Each

time the starting position gets moved so the teapots aren‘t sitting on top of one another.

There are two more methods for the TeapotWarsGame class. The first adds new views of

various flavors to logic:

void TeapotWarsGame::VAddView(

 shared_ptr<IGameView> pView, optional<ActorId> actor)

{

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 TeapotWarsBaseGame::VAddView(pView, actor);

 if (boost::dynamic_pointer_cast<NetworkGameView>(pView))

 {

 m_HumanPlayersAttached++;

 }

 else if

(boost::dynamic_pointer_cast<TeapotWarsGameView>(pView))

 {

 m_HumanPlayersAttached++;

 }

 else if (boost::dynamic_pointer_cast<AITeapotView>(pView))

 {

 m_AIPlayersAttached++;

 }

}

Besides calling the base class method, all this does is track the counters for the different
number of views attached. Notice that this is one of the methods that isn‘t short-circuited

by the m_bProxy member, since views are always added by authoritative methods and are

therefore legal to do whether the logic is in proxy mode or not.

The last method of the game logic for Teapot Wars is VRegisterHit(), which is called

when an accurate teapot lands a blue sphere of doom on one of its brethren:

void TeapotWarsGame::VRegisterHit(const ActorId sphere, const

ActorId teapot)

{

 if (m_bProxy)

 return;

 //Make the teapot dizzy if it hits

 const float hitForce = 80.f;

 m_pPhysics->VApplyTorque(Vec3(0,1,0), hitForce, teapot);

 //everyone else gets a point, hahaha

 for(ActorScoreMap::iterator i=m_data.m_actorScores.begin()

 ;i!=GetData().GetActorScores().end(); ++i)

 {

 if(i->first!=teapot)

 {

 ++(i->second);

 }

 }

 VRemoveActor(sphere);

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The game logic does two things when a teapot gets hit with a sphere. First, it tells the

physics system to spin the thing about the Y-axis like there‘s no tomorrow. A dizzying
effect, if you happen to be the one that gets hit. Second, the scoreboard is updated. In

Teapot Wars, everyone but the damaged teapot gets a point. If you wanted to be a little
greedier, it would require a little more data on the sphere actor. If extra data were stored

with the sphere that contained the actor ID of the teapot that shot it, it would be trivial to
give the shooting teapot the points it so gallantly earned.

The TeapotWarsEventListener Class

The real meat of the Teapot Wars game is in the event listener class. There‘s still a lot more

logic code to run through, and that code belongs to the TeapotWarsEventListener.

Since the HandleEvent() method is so long, I‘ll show how each event is handled one at

a time rather than list the entire method in one chunk:

The first event is the ―request start game‖ event:

 if (EvtData_Request_Start_Game::sk_EventType ==

event.VGetEventType())

 {

 m_TeapotWars->VChangeState(BGS_WaitingForPlayers);

 }

The response to this event is simply to change state to BGS_WaitingForPlayers. You

might do other things in extensions to the game, such as check a player‘s account balance
or something that would gate the beginning of a game.

Here‘s how the game logic reponds to the ―remote client‖ event, which is sent when a

remote player attaches to the game logic:

 else if (EvtData_Remote_Client::sk_EventType ==

event.VGetEventType())

 {

 // This event is always sent from clients to the game

server.

 const EvtData_Remote_Client & castEvent =

 static_cast< const EvtData_Remote_Client & >(event);

 const int sockID = castEvent.m_socketId;

 const int ipAddress = castEvent.m_ipAddress;

 // The teapot has already been created - we need to go

find it.

 ActorMap::iterator i = m_TeapotWars->m_ActorList.begin();

 ActorMap::iterator end = m_TeapotWars->m_ActorList.end();

 shared_ptr<IActor> actor = shared_ptr<BaseActor>();

 while (i != end)

 {

 actor = (*i).second;

 if (actor->VGetType() == AT_Teapot)

 {

 shared_ptr<ActorParams> params = actor->VGetParams();

 shared_ptr<TeapotParams> teapotParams =

 boost::static_pointer_cast<TeapotParams>(params);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 if (teapotParams->m_ViewId == VIEWID_NO_VIEW_ATTACHED)

 {

 break;

 }

 }

 ++i;

 }

if (actor != shared_ptr<BaseActor>())

 {

 NetworkGameView *netGameView = GCC_NEW NetworkGameView(

sockID);

 shared_ptr<IGameView> gameView(netGameView);

 m_TeapotWars->VAddView(gameView, actor->VGetID());

 extern void ListenForTeapotViewEvents(EventListenerPtr

listener);

 EventListenerPtr listener (GCC_NEW NetworkEventForwarder(

sockID));

 ListenForTeapotViewEvents(listener);

 }

}

The code searches the actor lists for an AT_Teapot that doesn‘t have a view attached to

it. Once found, a NetworkGameView is created and wired to listen for events sent to

teapot view classes.

The other side of this equation is when a remote player gets an actor ID assignment. This

message is sent by the NetworkGameView::VOnAttach() method, which is

marshalled from the server across the network to the client:

 else if (

EvtData_Network_Player_Actor_Assignment::sk_EventType ==

 event.VGetEventType())

 {

 // we're a remote client getting an actor assignment.

 // the server assigned us a playerId when we first

attached

 // (the server's socketId, actually)

 const EvtData_Network_Player_Actor_Assignment & castEvent

=

 static_cast<const

EvtData_Network_Player_Actor_Assignment &>(event);

 shared_ptr<IGameView> playersView(GCC_NEW

TeapotWarsGameView());

 m_TeapotWars->VAddView(playersView, castEvent.m_actorId);

 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

This code instructs the remote client to create a TeapotWarsGameView() object and

associate it with the actor ID sent by the server.

Next up is the ―physics collision‖ event, which is sent by the physics system whenever a
moving object collides with something:

 else if (EvtData_PhysCollision::sk_EventType ==

event.VGetEventType())

 {

 const EvtData_PhysCollision & castEvent =

 static_cast< const EvtData_PhysCollision & >(event

);

 shared_ptr<IActor> pGameActorA =

 m_TeapotWars->VGetActor(castEvent.m_ActorA);

 shared_ptr<IActor> pGameActorB =

 m_TeapotWars->VGetActor(castEvent.m_ActorB);

 if (!pGameActorA || !pGameActorB)

 return false;

 int typeA = pGameActorA->VGetType();

 int typeB = pGameActorB->VGetType();

 if (AT_Sphere==typeA && AT_Teapot==typeB)

 {

 m_TeapotWars->VRegisterHit(pGameActorA->VGetID(),

 pGameActorB->VGetID());

 m_TeapotWars->VRemoveActor(pGameActorA->VGetID

 }

 if (AT_Teapot==typeA && AT_Sphere==typeB)

 {

 m_TeapotWars->VRegisterHit(pGameActorB->VGetID(),

 pGameActorA->VGetID());

 m_TeapotWars->VRemoveActor(pGameActorB->VGetID

 }

 }

This one is pretty simple. The code detects if one actor was a teapot and the other actor

was a sphere, and if so, registers a hit on the teapot and destroys the sphere.

Let‘s look at the ―thrust‖ event, which is sent by the game view class in response to a player

pressing the right button on the mouse or keyboard:

 else if (EvtData_Thrust::sk_EventType ==

event.VGetEventType())

 {

 const EvtData_Thrust & castEvent =

 static_cast<const EvtData_Thrust &>(event);

 shared_ptr<IActor> pActor = m_TeapotWars-

>VGetActor(castEvent.m_id);

 if(pActor)

 {

 static const float newtonForce = 1.f;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 float thrustForce = castEvent.m_throttle *

newtonForce;

 Mat4×4 rotation = pActor->VGetMat();

 rotation.SetPosition(Vec3(0,0,0));

 Vec3 dir = rotation.Xform(g_Forward);

 dir.Normalize();

 m_TeapotWars->m_pPhysics->

 VApplyForce(dir, thrustForce, castEvent.m_id);

 }

 }

Even though the ―thrust‖ event just applies the thrust via the VApplyForce() method of

the physics class, you could have just as well checked the teapot‘s fuel supply and done
nothing. This is a great example of how the view and logic work together.

The next two events, ―steer‖ and ―fire,‖ are similar to the ―thrust‖ event:

 else if (EvtData_Steer::sk_EventType ==

event.VGetEventType())

 {

 static const float newtonForce = -.25 * 1.8f;

 const EvtData_Steer & castEvent =

 static_cast< const EvtData_Steer & >(event);

 float steerForce = -castEvent.m_dir * newtonForce;

 m_TeapotWars->m_pPhysics->VApplyTorque(

 Vec3(0,1,0), steerForce, castEvent.m_id);

 }

 else if (EvtData_Fire_Weapon::sk_EventType ==

event.VGetEventType())

 {

 const EvtData_Fire_Weapon & castEvent =

 static_cast< const EvtData_Fire_Weapon & >(event);

 ActorId gunnerId = castEvent.m_id;

 shared_ptr<IActor> pGunner = m_TeapotWars-

>VGetActor(gunnerId);

 if (pGunner)

 {

 // TODO: You should check his stores of ammo right

here!!!

 // Calculate depth offset from the controller

 Vec4 at = g_Forward4 * 2.0f;

 Vec4 atWorld = pGunner->VGetMat().Xform(at);

 // Calculate up offset from the controller

 Vec4 up = g_Up4 * 2.f;

 Vec4 upWorld = pGunner->VGetMat().Xform(up);

 Vec4 direction = atWorld + upWorld;

 Vec3 normalDir(direction);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 normalDir.Normalize();

 SphereParams sp;

 sp.m_Pos = pGunner->VGetMat().GetPosition() +

Vec3(direction);

 sp.m_Radius = 0.25;

 sp.m_Segments = 16;

 sp.m_Color = g_Cyan;

 sp.m_NormalDir = normalDir;

 sp.m_Force = g_WeaponForce;

 //Request creation of this actor.

 const EvtData_Request_New_Actor cannonBallEvt(&sp);

 safeTriggerEvent(cannonBallEvt);

 }

 }

Both simply do what is asked, but if you wanted the teapots to have limited ammunition,
you could check the ammo supply before firing. Notice the 3D math in the ―fire‖ event code.

If you are a little shaky on that, here‘s what‘s going on. The g_Forward4 vector is

transformed into at, which now is the world space vector of the gunner teapot‘s spout. The

same happens with the g_Up4 vector, and when you add these together, you get a 45-

degree angle pointing along the direction of the gunner‘s spout. Because the global direction
vectors are only 1.0 units long, each is doubled in length before they are added, which

places the initial spot of the sphere far enough away from the teapot that it won‘t collide
with it. After all that, the sphere actor is requested.

That event, as it turns out, is the next one on our list: ―request new actor.‖

 else if (EvtData_Request_New_Actor::sk_EventType ==

event.VGetEventType())

 {

 const EvtData_Request_New_Actor & castEvent =

 static_cast< const EvtData_Request_New_Actor & >(

event);

 ActorParams * pActorParams = NULL;

 const bool bCreateEventData =

castEvent.VHasLuaEventData();

 if (false == bCreateEventData)

 {

 // Actor params were created FOR us, so we won't need to

allocate it.

 pActorParams = castEvent.m_pActorParams;

 }

 else

 {

 // Create actor params from the Lua object.

 LuaObject actorDef = castEvent.VGetLuaEventData();

 pActorParams = ActorParams::CreateFromLuaObj(actorDef);

 }

 // Did we get valid actor params?

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 if (NULL == pActorParams)

 {

 assert(0 && "Invalid parameters specified for actor!"

);

 return false;

 }

 // Valid params.

 const ActorId actorID = m_TeapotWars->GetNewActorID();

 pActorParams->m_Id = actorID;

 // Package as a new actor event.

 const EvtData_New_Actor actorEvent(actorID, pActorParams

);

 const bool bSuccess = safeTriggerEvent(actorEvent);

 if (bCreateEventData)

 {

 SAFE_DELETE(pActorParams);

 }

 return bSuccess;

 }

Since new actors can be requested from virtually anywhere, their parameters should be

checked, which is exactly what the ―request new actor‖ event does. If the parameters check
out, a new event, ―new actor,‖ is sent:

 else if (EvtData_New_Actor::sk_EventType ==

event.VGetEventType())

 {

 const EvtData_New_Actor & castEvent =

 static_cast< const EvtData_New_Actor & >(event);

 ActorParams * pActorParams = castEvent.m_pActorParams;

 if (NULL == pActorParams)

 {

 assert(0 && "NULL actor parameters!");

 return false;

 }

 // ActorParams::VCreate actually creates the actor for

the logic

 pActorParams->VCreate(m_TeapotWars);

 if (false == castEvent.m_id)

 {

 assert(0 && "Unable to construct desired actor type!"

);

 return false;

 }

 else

 {

 return true;

 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 }

After all the preliminary checking, the actor is created with the

ActorParams::VCreate() method, which you learned about earlier in this chapter.

Each actor type get its own ActorParams child class and overloads the VCreate()

method.

The next event is received if anything in the ActorParams class changes via a Lua script,

such as if a Lua script changed the color of an actor:

 else if (EvtData_UpdateActorParams::sk_EventType ==

event.VGetEventType())

 {

 //Update the parameters for the specified actor.

 const EvtData_UpdateActorParams & castEvent =

 static_cast< const EvtData_UpdateActorParams & >(

event);

 shared_ptr< IActor > destActor =

 g_pApp->m_pGame->VGetActor(castEvent.m_ActorID);

 //Re-jigger the actor params.

 BaseActor * pBaseActor = static_cast< BaseActor * >(

destActor.get());

 shared_ptr<ActorParams> params = pBaseActor-

>VGetParams();

 ActorParams::TErrorMessageList errorMessages;

 params->VInit(castEvent.VGetLuaEventData(),

errorMessages);

 }

 return false;

 }

Earlier in this chapter, you learned about the ActorParams::VInit() method that took

a LuaObject as its first parameter—this is where this method actually gets called.

Last, but most certainly not least, is the ―move actor‖ event, which is sent if an
authoritative source needs to move an actor:

 else if (EvtData_Move_Actor::sk_EventType ==

event.VGetEventType())

 {

 const EvtData_Move_Actor & castEvent = static_cast< const

 EvtData_Move_Actor

& >(event);

 m_TeapotWars->VMoveActor(castEvent.m_Id, castEvent.m_Mat);

 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

That wraps up the TeapotWarsGame class, which controls the ―rules‖ of Teapot Wars.

Next is the view class for a human player, so you can see what‘s going on and interact with
the game.

The Game View for a Human Player

The game view‘s job is to present the game, accept input, and translate that input into

commands for the game logic. There are three kinds of views that can attach to Teapot
Wars: a view for a local human player, a view for an AI player, and a view that represents a

player on a remote machine. The last one, NetworkGameView, was presented at the end

of Chapter 16.

The view for the human player is responsible for the 3D graphics, audio, and user interface

of the game. There are four classes that make this system work:

 ScreenElementScene: Inherits from the Scene class presented in Chapter 14

to draw a 3D view of the game world and also from the ISceneElement interface

class in Chapter 9, ―User Interface Programming,‖ to hook into the base game view‘s

layered user interface system.

 TeapotWarsGameView: Inherits from the HumanView class presented in Chapter

9, which has hooks into the Windows application layer message pump for user

interface processing and organizes user interface objects, like buttons and text
strings on top of a 3D scene background.

 TeapotWarsGameViewListener: Listens to and handles events coming from

the game logic, such as object movement events.

 TeapotController: Reads input from the keyboard and mouse and translates

input into commands that are sent to the game logic.

The ScreenElementScene Class

Chapter 9 used a layered approach to drawing objects on a window. All of the objects

attached to the draw list in the HumanView class were required to implement the

IScreenElement interface. In the case of Teapot Wars, the background layer is actually

a 3D scene. Interface classes are safe to use in a multiple inheritance situation, which is

exactly how a 3D scene can become a screen element of a HumanView:

class ScreenElementScene : public IScreenElement, public Scene

{

public:

 ScreenElementScene() : Scene() { }

 // IScreenElement Implementation

 virtual void VOnUpdate(int deltaMS) { OnUpdate(deltaMS); };

 virtual HRESULT VOnRestore()

 { OnRestore(); return S_OK; }

 virtual HRESULT VOnRender(double fTime, float fElapsedTime)

 { OnRender(); return S_OK; }

 virtual int VGetZOrder() const { return 1; }

 virtual void VSetZOrder(int const zOrder) { }

../../ch16#ch16
../../ch14#ch14
../../ch09#ch09
../../ch09#ch09
../../ch09#ch09
../../ch09#ch09
../../ch09#ch09
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 // Don't handle any messages

 virtual LRESULT CALLBACK VOnMsgProc(AppMsg msg) { return 0;

}

 virtual bool VIsVisible() const { return true; }

 virtual void VSetVisible(bool visible) { }

 virtual bool VAddChild(optional<ActorId> id,

shared_ptr<ISceneNode> kid)

 { return Scene::AddChild(id, kid); }

 };

Since the 3D scene doesn‘t accept any messages from the application layer, such as a
keyboard or mouse event, it is always visible, and it is always in the background. This class

is trivial to define. Most of the methods needed to implement the IScreenElement

interface are one-liners. If you ever wondered whether interface classes were worth the
trouble, this example should seal the deal.

The TeapotWarsGameView Class

The code for the TeapotWarsGameView is quite a bit longer. It has a lot of work to do,

keeping track of the 3D scene, audio, graphical object creation, and presenting the user
interface.

 class TeapotWarsGameView : public HumanView

 {

 friend class TeapotWarsGameViewListener;

 protected:

 bool m_bShowUI; // If true, it renders

the UI control text

 BaseGameState m_BaseGameState; // what is the current

game state

 shared_ptr<ScreenElementScene> m_pScene;

 shared_ptr<SoundProcess> m_music;

 shared_ptr<TeapotController> m_pTeapotController;

 shared_ptr<MovementController> m_pFreeCameraController;

 shared_ptr<CameraNode> m_pCamera;

 shared_ptr<SceneNode> m_pTeapot;

 shared_ptr<StandardHUD> m_StandardHUD;

 void BuildInitialScene();

 void MoveActor(ActorId id, Mat4×4 const &mat);

 void HandleGameState(BaseGameState newState);

 public:

 TeapotWarsGameView();

 virtual LRESULT CALLBACK VOnMsgProc(AppMsg msg);

 virtual void VRenderText(CDXUTTextHelper &txtHelper);

 virtual void VOnUpdate(int deltaMilliseconds);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 virtual void VOnAttach(GameViewId vid,

optional<ActorId> aid);

 virtual void VSetCameraOffset(const Vec4 & camOffset);

 };

 TeapotWarsGameView::TeapotWarsGameView()

 {

 m_BaseGameState = BGS_Initializing;

 m_bShowUI = true;

 m_pScene.reset(GCC_NEW TeapotWarsScene());

 Frustum frustum;

 frustum.Init(D3DX_PI/4.0f, 1.0f, 1.0f, 100.0f);

 m_pCamera.reset(GCC_NEW CameraNode(&Mat4×4::g_Identity,

frustum));

 assert(m_pScene && m_pCamera && _T("Out of memory"));

 m_pScene->VAddChild(optional_empty(), m_pCamera);

 m_pScene->SetCamera(m_pCamera);

 EventListenerPtr listener (GCC_NEW

TeapotWarsGameViewListener(this));

 ListenForTeapotViewEvents(listener);

 }

 void ListenForTeapotViewEvents(EventListenerPtr listener)

 {

 // hook in the physics event listener

 safeAddListener(listener,

EvtData_PhysCollision::sk_EventType);

 safeAddListener(listener,

EvtData_Destroy_Actor::sk_EventType);

 safeAddListener(listener,

EvtData_Fire_Weapon::sk_EventType);

 safeAddListener(listener,

EvtData_New_Game::sk_EventType);

 safeAddListener(listener,

EvtData_New_Actor::sk_EventType);

 safeAddListener(listener,

EvtData_Move_Actor::sk_EventType);

 safeAddListener(listener,

EvtData_Game_State::sk_EventType);

 safeAddListener(listener,

EvtData_Request_New_Actor::sk_EventType);

 safeAddListener(listener,

EvtData_Debug_String::sk_EventType);

 safeAddListener(listener,

EvtData_UpdateActorParams::sk_EventType);

 safeAddListener(listener,

EvtData_Decompression_Progress::sk_EventType);

 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The constructor creates the ScreenElementScene object and a camera, and it registers

to listen for events coming from the game logic. There is a C function that takes a listener
as a parameter and registers a group of events for any human views of Teapot Wars, local

or remote. It‘s in a C function because it is convenient to group these calls into a function
that any view class can call.

Here‘s how the game view builds the initial scene. This is done as soon as the game logic

signals the view that a new game needs to be loaded:

void TeapotWarsGameView::BuildInitialScene()

{

 SoundResource resource("SpaceGod7-Level2.ogg");

 shared_ptr<ResHandle> rh = g_pApp->m_ResCache-

>GetHandle(&resource);

 shared_ptr<SoundResHandle> srh =

 boost::static_pointer_cast<SoundResHandle>(rh);

 shared_ptr<SoundProcess> music(

 GCC_NEW SoundProcess(srh, PROC_MUSIC, 0, true));

 m_pProcessManager->Attach(music);

 shared_ptr<CFadeProcess> fadeProc(new CFadeProcess(music,

10000, 100));

 m_pProcessManager->Attach(fadeProc);

 // Here's our sky node

 shared_ptr<SkyNode> sky(GCC_NEW SkyNode("Sky2", m_pCamera));

 m_pScene->VAddChild(optional_empty(), sky);

 m_StandardHUD.reset(GCC_NEW StandardHUD);

 VPushElement(m_pScene);

 VPushElement(m_StandardHUD);

 // A movement controller is going to control the camera,

 // but it could be constructed with any of the objects you

see in this

 // function. You can have your very own remote controlled

sphere.

 m_pFreeCameraController.reset(

 GCC_NEW MovementController(m_pCamera, 0, 0, false));

 VOnRestore();

}

The initial scene is pretty simple. A piece of music is loaded using the audio classes you
read about in Chapter 12, ―Game Audio.‖ There‘s also a nice fade process that fades the

music in over time so it doesn‘t hit you all at once. This is a pretty common thing to do in

games when you have discrete pieces of music you want to play, but don‘t have custom
transitions to seamlessly go from one piece to another. You might also recognize the

process manager code from Chapter 6, ―Controlling the Main Loop.‖ The process manager
keeps track of the sound as it plays, but it could also handle animations or other objects

that move outside of the control of the physics system.

../../ch12#ch12
../../ch06#ch06
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Finally, the sky is added to the scene. VOnRestore() is called immediately, since most of

the constructors for these objects don‘t really do much of anything. Rather, each object is

wired into the VOnRestore() call, which recurses all of the objects attached to the game

that need to be restored. Restoring must happen when the objects are first created, as you
see here, but it can also happen if the objects are somehow lost to DirectX. If the D3D

device loses scope to another 3D game all objects need to be restored. Switching to other
3D games happens mostly in the test department at Microsoft, but you should make sure

your game also handles this kind of thing elegantly.

Shame on Mr.Mike—Hard-Coded Scene Elements?

I actually left this remnant of code in from the second edition of the

book and the 2.x version of the source code to make a point, and to
give you an assignment. The second edition didn’t have a Lua

scripting system, and the entire scene, grid actors, teapots, the

works, was all hard coded. Try your hand at extending the Lua
scripting system, and the C# editor you will see in the next chapter,

to completely retire BuildInitialScene().

It‘s now time to see a little bit of user interface code. First, we‘ll look at the method that
grabs some messages sent by the application layer:

 LRESULT CALLBACK TeapotWarsGameView::VOnMsgProc(AppMsg msg

)

 {

 if (HumanView::VOnMsgProc(msg))

 return 1;

 if (msg.m_uMsg==WM_KEYDOWN)

 {

 if (msg.m_wParam==VK_F1)

 {

 m_bShowUI = !m_bShowUI;

 m_StandardHUD->VSetVisible(m_bShowUI);

 return 1;

 }

 else if (msg.m_wParam=='Q')

 {

 if (GameCodeApp::Ask(QUESTION_QUIT_GAME)==IDYES)

 {

 g_pApp->SetQuitting(true);

 }

 return 1;

 }

 }

 return 0;

 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

In this case, the only message handled is a keyboard event. If the player hits the F1 key,

the m_bShowUI member variable is toggled, which controls some extra text on the screen,

such as a frame counter or help text. The other key, Q, allows the player to quit the game.

The next method is VRenderText(), which is called after all the other screen elements of

the human view have been drawn:

void TeapotWarsGameView::VRenderText(CDXUTTextHelper &txtHelper)

{

 HumanView::VRenderText(txtHelper);

 const D3DSURFACE_DESC* pd3dsdBackBuffer =

 DXUTGetD3D9BackBufferSurfaceDesc();

 txtHelper.Begin();

 // Scoreboard (with shadow)...

 const ActorScoreMap& actorScores =

 g_TeapotWarsApp.GetGame()->GetData().GetActorScores();

 std::wstring scoreStr;

 TCHAR tempBuffer[256];

 int player = 1;

 for(ActorScoreMap::const_iterator i=actorScores.begin();

 i!=actorScores.end(); ++i)

 {

 // It's good practice to use the string table

 wsprintf(tempBuffer, _T("%s %d: %d\n"),

 g_pApp->GetString(IDS_PLAYER).c_str(), player, i-

>second);

 ++player;

 scoreStr.append(tempBuffer);

 }

 txtHelper.SetInsertionPos(pd3dsdBackBuffer->Width/2, 5);

 txtHelper.SetForegroundColor(D3DXCOLOR(0.0f, 0.0f, 0.0f,

1.0f));

 txtHelper.DrawTextLine(scoreStr.c_str());

 txtHelper.SetInsertionPos(pd3dsdBackBuffer->Width/2-1, 5-1

);

 txtHelper.SetForegroundColor(D3DXCOLOR(0.25f, 1.0f, 0.25f,

1.0f));

 txtHelper.DrawTextLine(scoreStr.c_str());

 //...Scoreboard

 if(m_bShowUI)

 {

 // Output statistics...

 txtHelper.SetInsertionPos(5, 5);

 txtHelper.SetForegroundColor(D3DXCOLOR(1.0f, 1.0f,

0.0f, 1.0f));

 txtHelper.DrawTextLine(DXUTGetFrameStats());

 txtHelper.DrawTextLine(DXUTGetDeviceStats());

 txtHelper.SetForegroundColor(D3DXCOLOR(0.0f, 0.0f,

0.0f, 0.5f));

 //Game State...

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 switch (m_BaseGameState)

 {

 case BGS_Initializing:

 txtHelper.DrawTextLine(

 g_pApp->GetString(IDS_INITIALIZING).c_str());

 break;

 case BGS_MainMenu:

 txtHelper.DrawTextLine(L"Main Menu");

 break;

 case BGS_SpawnAI:

 txtHelper.DrawTextLine(L"Spawn AI");

 break;

 case BGS_WaitingForPlayers:

 txtHelper.DrawTextLine(g_pApp-

>GetString(IDS_WAITING).c_str());

 break;

 case BGS_LoadingGameEnvironment:

 txtHelper.DrawTextLine(g_pApp-

>GetString(IDS_LOADING).c_str());

 break;

 case BGS_Running:

 txtHelper.DrawTextLine(g_pApp-

>GetString(IDS_RUNNING).c_str());

 break;

 }

 //...Game State

 //Camera...

 TCHAR buffer[256];

 const TCHAR *s = NULL;

 Mat4×4 toWorld;

 Mat4×4 fromWorld;

 if (m_pCamera)

 {

 m_pCamera->VGet()->Transform(&toWorld, &fromWorld);

 }

 swprintf(buffer, g_pApp-

>GetString(IDS_CAMERA_LOCATION).c_str(),

 toWorld.m[3][0], toWorld.m[3][1], toWorld.m[3][2]);

 txtHelper.DrawTextLine(buffer);

 //...Camera

 //Help text. Right justified, lower right of screen.

 RECT helpRect;

 helpRect.left = 0;

 helpRect.right = pd3dsdBackBuffer->Width - 10;

 helpRect.top = pd3dsdBackBuffer->Height-15*8;

 helpRect.bottom = pd3dsdBackBuffer->Height;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 txtHelper.SetInsertionPos(helpRect.right, helpRect.top);

 txtHelper.SetForegroundColor(D3DXCOLOR(1.0f, 0.75f, 0.0f,

1.0f));

 txtHelper.DrawTextLine(helpRect, DT_RIGHT,

 g_pApp->GetString(IDS_CONTROLS_HEADER).c_str());

 helpRect.top = pd3dsdBackBuffer->Height-15*7;

 txtHelper.DrawTextLine(helpRect, DT_RIGHT,

 g_pApp->GetString(IDS_CONTROLS).c_str());

 //...Help

 }//end if (m_bShowUI)

 txtHelper.End();

 }

The text renderer draws text for the player scores and some optional text for things like

frame rate and game state. Notice that there are no hard-coded strings here. This code
loads strings using the game‘s application layer. The application layer loads them from a

string table, which makes your game much easier to localize into foreign languages. What‘s
more, your game could easily load these string tables on game initialization, which means

you could ship your game in multiple languages with the same executable. Not to brag, but
this is very similar to what we did back at Origin to ship Ultima VIII: Pagan. We didn‘t have

string tables, per se, but the U8.EXE could run in English, French, or German just by
swapping a command line parameter.

Next is VOnUpdate():

void TeapotWarsGameView::VOnUpdate(int deltaMilliseconds)

{

 HumanView::VOnUpdate(deltaMilliseconds);

 if (m_pFreeCameraController)

 {

 m_pFreeCameraController->OnUpdate(deltaMilliseconds);

 }

 if (m_pTeapotController)

 {

 m_pTeapotController->OnUpdate(deltaMilliseconds);

 }

 //Send out a tick to script listeners.

 const EvtData_Update_Tick tickEvent(deltaMilliseconds);

 safeTriggerEvent(tickEvent);

}

VOnUpdate() calls the base class version and also updates the controller, whichever one

happens to be active. I found it useful to be able to have multiple controllers in a game, one
of which was always a free camera that could fly anywhere and look at anything. It made

things really easy to debug. It also sends a ―tick‖ event, which could be listened to by any
subsystem but is really meant for Lua script listeners.

 VOnAttach() is pretty straightforward:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 void TeapotWarsGameView::VOnAttach(GameViewId vid,

optional<ActorId> aid)

 {

 HumanView::VOnAttach(vid, aid);

 BuildInitialScene();

 }

It simply calls the base class and BuildInitialScene(). Once you follow my

assignment and get rid of BuildInitialScene() and replace it with a Lua file, you will

be able to get rid of this overload as well.

MoveActor() is what is called if the view is informed that an actor in the game logic has

changed position:

void TeapotWarsGameView::MoveActor(ActorId id, Mat4×4 const

&mat)

{

 shared_ptr<ISceneNode> node = m_pScene->FindActor(id);

 if (node)

 {

 node->VSetTransform(&mat);

 }

}

Again, very simple—all it does is find the actor using the ID and set the transform to the

requested value.

Finally, let‘s look at HandleGameState():

void TeapotWarsGameView::HandleGameState(BaseGameState newState)

{

 m_BaseGameState = newState;

}

This method might do more if certain actions were needed when the game state changed,
but for now all Teapot Wars needs to do is record the new value in a member variable.

The TeapotWarsGameViewListener Class

Just as you saw with the TeapotWarsGame class, the view class has a companion event

listener. This event listener responds to all the events sent to the view from any subsystem

in the game, including the game logic. Just as I did before, I‘ll show you how each event is

handled one at a time, as it appears in the listener‘s HandleEvent() method:

First on the list is the ―collide‖ event, which is sent when the physics system detects a

collision:

if (EvtData_PhysCollision::sk_EventType ==

event.VGetEventType())

http://lib.ommolketab.ir
http//lib.ommolketab.ir

{

 EvtData_PhysCollision const & ed =

 static_cast< const EvtData_PhysCollision & >(event);

 shared_ptr<IActor> pGameActorA = g_pApp->m_pGame-

>VGetActor(ed.m_ActorA);

 shared_ptr<IActor> pGameActorB = g_pApp->m_pGame-

>VGetActor(ed.m_ActorB);

 if (!pGameActorA || !pGameActorB)

 return false;

 int typeA = pGameActorA->VGetType();

 int typeB = pGameActorB->VGetType();

 if((AT_Teapot==typeA && AT_Sphere==typeB)

 || (AT_Sphere==typeA && AT_Teapot==typeB))

 {

 // play the sound a bullet makes when it hits a teapot

 SoundResource resource("computerbeep3.wav");

 shared_ptr<SoundResHandle> srh =

 boost::static_pointer_cast<SoundResHandle>(

 g_pApp->m_ResCache->GetHandle(&resource));

 shared_ptr<SoundProcess> sfx(

 GCC_NEW SoundProcess(srh, PROC_SOUNDFX, 100, false));

 m_pView->m_pProcessManager->Attach(sfx);

 }

 }

The view responds by detecting if the collision was between any kind of teapot and a
sphere, and if so, a sound effect is played. Notice that the human view interprets this event
and does things that only matter to the human player and are inconsequential to any other

system. You might also spawn a particle effect here, since that doesn‘t affect anything in

the game logic.

Now, let‘s look at the ―destroy actor,‖ which simply finds the actor requested and removes it

from the scene:

else if (EvtData_Destroy_Actor::sk_EventType ==

event.VGetEventType())

{

 const EvtData_Destroy_Actor & castEvent = static_cast< const

 EvtData_Destroy_Actor & >(

event);

 ActorId aid = castEvent.m_id;

 m_pView->m_pScene->RemoveChild(aid);

}

The ―fire weapon‖ event is interesting. It is sent when the game logic determines a valid
request to fire results in an actual sphere arcing away from the gunner teapot:

 else if (EvtData_Fire_Weapon::sk_EventType ==

event.VGetEventType())

 {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 // play a weapon fire sound

 SoundResource resource("blip.wav");

 shared_ptr<SoundResHandle> srh =

 boost::static_pointer_cast<SoundResHandle>(

 g_pApp->m_ResCache->GetHandle(&resource));

 shared_ptr<SoundProcess> sfx1(

 GCC_NEW SoundProcess(srh, PROC_SOUNDFX, 100, false));

 shared_ptr<SoundProcess> sfx2(

 GCC_NEW SoundProcess(srh, PROC_SOUNDFX, 60, false));

 shared_ptr<SoundProcess> sfx3(

 GCC_NEW SoundProcess(srh, PROC_SOUNDFX, 40, false));

 m_pView->m_pProcessManager->Attach(sfx1);

 sfx1->SetNext(sfx2);

 sfx2->SetNext(sfx3);

 }

You can set up a chain of processes to run one after another in sequence. In this example,

three SoundProcess objects are created and chained so that you hear three ―blip‖

sounds, one after another, with decreasing volume. As you recall from Chapter 6, the

SetNext() set the process chain in action.

The next two events are fairly simple housekeeping things, ―move actor‖ and ―game state‖:

 else if (EvtData_Move_Actor::sk_EventType ==

event.VGetEventType())

 {

 const EvtData_Move_Actor & ed =

 static_cast< const EvtData_Move_Actor & >(event);

 m_pView->MoveActor(ed.m_Id, ed.m_Mat);

 }

 else if (EvtData_Game_State::sk_EventType ==

event.VGetEventType())

 {

 const EvtData_Game_State & ed =

 static_cast< const EvtData_Game_State & >(event);

 BaseGameState gameState = ed.m_gameState;

 m_pView->HandleGameState(gameState);

 }

Both events simply call the right view methods to respond to the event.

Next is the ―new actor‖ event, which is sent by the game logic when a new actor should be
created:

 else if (EvtData_New_Actor::sk_EventType ==

event.VGetEventType())

 {

 const EvtData_New_Actor & ed =

 static_cast< const EvtData_New_Actor & >(event);

../../ch06#ch06
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 // These next lines actually create the actor through

ActorParams...

 shared_ptr<SceneNode> node =

 ed.m_pActorParams->VCreateSceneNode(m_pView-

>m_pScene);

 m_pView->m_pScene->VAddChild(ed.m_pActorParams->m_Id,

node);

 node->VOnRestore(&(*(m_pView->m_pScene)));

 if (ed.m_pActorParams->m_Type == AT_Teapot)

 {

 TeapotParams *p = static_cast<TeapotParams

*>(ed.m_pActorParams);

 if (p->m_ViewId == m_pView->m_ViewId)

 {

 m_pView->m_pTeapot = node;

 m_pView->m_pTeapotController.reset(

 GCC_NEW TeapotController(m_pView->m_pTeapot, 0,

0));

 m_pView->m_KeyboardHandler = m_pView-

>m_pTeapotController;

 m_pView->m_MouseHandler = m_pView-

>m_pTeapotController;

 m_pView->m_pCamera->SetTarget(m_pView->m_pTeapot);

 m_pView->m_pTeapot->SetAlpha(0.8f);

 }

 }

 }

 return false;

 }

Just as the game logic called a virtual member of the ActorParams class to create the

game actor, the view class calls ActorParams::VCreateSceneNode() to create the

visual representation of an actor. It is added to the scene and ISceneNode::

VOnRestore() is called to create the actual geometry or load mesh files.

If the actor happens to be a teapot, and the ID of the view class is the same as the view ID

sent with the teapot actor parameters, then this particular teapot is the one controlled by

the human player. In that case a TeapotController is created.

The Teapot Controller

A game view that presents the game to a human needs a way for that very human to affect

the game. It‘s a common practice to factor control systems that have a particular interface,
like the keyboard WASD controls, into a class that can be attached and detached as

necessary. This controller class isn‘t exactly WASD, since the A and D keys control steering

rather than strafing, but I‘m sure you‘ll forgive the departure:

class TeapotController : public IMouseHandler, public

IKeyboardHandler

{

protected:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 BYTE m_bKey[256]; // Which keys are

up and down

 shared_ptr<SceneNode> m_object;

public:

 TeapotController(shared_ptr<SceneNode> object,

 float initialYaw, float initialPitch);

 void OnUpdate(DWORD const elapsedMs);

public:

 bool VOnMouseMove(const CPoint &mousePos) { return true; }

 bool VOnLButtonDown(const CPoint &mousePos);

 bool VOnLButtonUp(const CPoint &mousePos) { return true; }

 bool VOnRButtonDown(const CPoint &) { return false; }

 bool VOnRButtonUp(const CPoint &) { return false; }

 bool VOnKeyDown(const BYTE c) { m_bKey[c] = true; return

true; }

 bool VOnKeyUp(const BYTE c) { m_bKey[c] = false; return true;

}

};

TeapotController::TeapotController(shared_ptr<SceneNode> object,

 float initialYaw, float initialPitch)

: m_object(object)

{

 memset(m_bKey, 0x00, sizeof(m_bKey));

}

As you can see from the class definition, really the only methods that have any meat to

them are the response to the left mouse button and OnUpdate(). Keyboard events are

recorded as they happen, which are used in OnUpdate().

Here‘s what happens when the player clicks the left mouse button:

bool TeapotController::VOnLButtonDown(const CPoint &mousePos)

{

 optional<ActorId> aid = m_object->VGet()->ActorId();

 assert(aid.valid() && _T("Invalid actor!"));

 safeQueEvent(IEventDataPtr(GCC_NEW EvtData_Fire_Weapon(

*aid)));

 return true;

}

The code queues a ―fire weapon‖ event. Note that in a commercial game, this wouldn‘t be
hard coded to the left mouse button necessarily. Instead, there would be an intermediate

layer that translates specific user interface events into mappable game events, which
enables users to set up their keyboard and mouse the way they like it.

Here‘s the OnUpdate() method of the controller:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

void TeapotController::OnUpdate(DWORD const deltaMilliseconds)

{

 if (m_bKey['W'] || m_bKey['S'])

 {

 const ActorId actorID = *m_object->VGet()->ActorId();

 safeQueEvent(IEventDataPtr(

 GCC_NEW EvtData_Thrust(actorID, m_bKey['W']? 1.0f : -

1.0)));

 }

 if (m_bKey['A'] || m_bKey['D'])

 {

 const ActorId actorID = *m_object->VGet()->ActorId();

 safeQueEvent(IEventDataPtr(

 GCC_NEW EvtData_Steer(actorID, m_bKey['A']? -1.0 : 1.0

)));

 }

}

The controller keeps a record of what keys are down on the keyboard, and it responds to

the mouse-down event as well. Since the controller implements the IMouseHandler and

IKeyboardHandler interfaces, it wires in nicely to the base Human-View class. The

interface events are translated into the two game command events you‘ve already seen:

―thrust‖ and ―steer.‖

The AI View and Listener

What you learned in Chapter 17, ―An Introduction to Game AI,‖ will be put to good use in
this section. In the second edition of this book, the teapot AI was nothing more than a

random series of pauses, thrusts, fires, and whatnot. Not anymore!

What‘s important here is how the AI plugs into the system as another type of view of the
game. Between what you learned in Chapter 17 and the many excellent books available on

AI, you will soon have an excellent framework to plug them into Teapot Wars. There are two
classes that interface to AI systems such as path finding and state machines. The first is the

AITeapotView class, which implements the IGameView interface:

 class AITeapotView : public IGameView

 {

 friend class AITeapotViewListener;

 private:

 shared_ptr<PathingGraph> m_pPathingGraph;

 StateMachine* m_pStateMachine;

 protected:

 GameViewId m_ViewId;

 optional<ActorId> m_PlayerActorId;

 public:

 AITeapotView(shared_ptr<PathingGraph> pPathingGraph);

 virtual ~AITeapotView();

../../ch17#ch17
../../ch17#ch17
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 virtual HRESULT VOnRestore() { return S_OK; }

 virtual void VOnRender(double fTime, float fElapsedTime)

{}

 virtual void VOnLostDevice() {}

 virtual GameViewType VGetType() { return GameView_AI; }

 virtual GameViewId VGetId() const { return m_ViewId; }

 virtual void VOnAttach(GameViewId vid, optional<ActorId>

aid)

 { m_ViewId = vid; m_PlayerActorId = aid; }

 virtual LRESULT CALLBACK VOnMsgProc(AppMsg msg) {

return 0; }

 virtual void VOnUpdate(int deltaMilliseconds) {}

 shared_ptr<PathingGraph> GetPathingGraph(void) const

 { return m_pPathingGraph; }

 void RotateActorY(float angleRadians);

 };

 AITeapotView::AITeapotView(shared_ptr<PathingGraph>

pPathingGraph)

 : IGameView(), m_pPathingGraph(pPathingGraph)

 {

 m_pStateMachine = NULL;

 EventListenerPtr listener (GCC_NEW AITeapotViewListener(

this));

 safeAddListener(listener,

EvtData_New_Actor::sk_EventType);

 }

 AITeapotView::~AITeapotView(void)

 {

 SAFE_DELETE(m_pStateMachine);

 OutputDebugString(_T("Destroying AITeapotView\n"));

 }

This class contains the pathing graph and state machine through a view class that can be
wired into the game logic, and therefore an actor in the game world. It is really not much
more than a simple container to encapsulate these objects.

The AI has a companion listener class, AITeapotViewListener.

class AITeapotViewListener : public IEventListener

{

 AITeapotView *const m_pView;

public:

 explicit AITeapotViewListener(AITeapotView *pView)

 : IEventListener(), m_pView(pView) {}

 virtual char const* GetName(void) { return

"AITeapotViewListener"; }

 virtual bool HandleEvent(IEventData const& event);

};

http://lib.ommolketab.ir
http//lib.ommolketab.ir

bool AITeapotViewListener::HandleEvent(IEventData const & event

)

{

 if (EvtData_New_Actor::sk_EventType == event.VGetEventType()

)

 {

 const EvtData_New_Actor & ed =

 static_cast< const EvtData_New_Actor & >(event);

 switch(ed.m_pActorParams->m_Type)

 {

 case AT_Sphere:

 {

 // somebody took a shot!

 break;

 }

 case AT_Teapot:

 {

 TeapotParams *p =

 static_cast<TeapotParams *>(ed.m_pActorParams);

 if (p->m_ViewId == m_pView->m_ViewId)

 {

 // we need a valid ID

 assert(p->m_Id.valid());

 m_pView->m_PlayerActorId = p->m_Id;

 // create the state machine, set the initial

state

 m_pView->m_pStateMachine = GCC_NEW

 TeapotStateMachine(*(p->m_Id),

 m_pView->m_pPathingGraph);

 m_pView->m_pStateMachine->SetState("wander");

 }

 break;

 }

 default:

 OutputDebugString(

 _T("AI Listener - Unsupported Actor Type\n"));

 }

 }

 return false;

}

The only event that the listener responds to is the ―new actor‖ event. Just as you saw with
the human view class, the code looks through the game actors to find an actor that has the

same view ID stored in the actor parameters as the AITeapotView ID. Once found, a new

TeapotStateMachine object is created and set to ―wander.‖

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Once that is done, the AI system described in Chapter 17 takes over, giving AI teapots the

power to attack, chase, wander, spin, or wait around.

More Teapot Wars, if You Are Willing

As I‘m sure you are aware, Game Coding Complete is really an architecture book that paints
broad strokes through a vast array of tools and technologies that make up professional

computer gaming. One of the observations about the first edition of this book, and I‘m sure
of this one, is that the book doesn‘t cover each subject in rigorous detail, completely

exposing every last bit. That was by design, not fiat.

Sometimes the hardest part of writing code is knowing where to begin. Once you get
started and build a suitable framework around a new system, your fingers fly across the

keyboard until numbness takes them, and still you don‘t stop. My goal with this book and all
the code therein was to give you some interesting tidbits, save you from nasty pitfalls, tell a

few funny stories, and cover as much territory of game programming as I possibly could.

I have also given you, my valued reader and colleague, a place to start.

Chapter 20. A Simple Game Editor in C#

by Quoc Tran

In This Chapter

 What Should a Level Editor Do?

 The Editor Architecture

 Creating the DLL

 The C# Editor Application

 Getting Information About Actors in the Level

 Creating, Changing, and Removing Actors

 Saving and Loading Levels

 Future Work

 Special Thanks

 Further Reading

Quoc Tran is a programmer/designer for Gendai Games. Quoc and Mr. Mike also

work on the side creating MrMike‘s Addins, tasked with the noble goal of making
Microsoft Project usable for the majority of project managers in the game industry.

../../ch17#ch17
../../ch20lev1sec1#ch20lev1sec1
../../ch20lev1sec2#ch20lev1sec2
../../ch20lev1sec3#ch20lev1sec3
../../ch20lev1sec4#ch20lev1sec4
../../ch20lev1sec5#ch20lev1sec5
../../ch20lev1sec6#ch20lev1sec6
../../ch20lev1sec7#ch20lev1sec7
../../ch20lev1sec8#ch20lev1sec8
../../ch20lev1sec9#ch20lev1sec9
../../ch20lev1sec10#ch20lev1sec10
http://lib.ommolketab.ir
http//lib.ommolketab.ir

In a prolonged fit of wanderlust, Quoc has worked as a producer, designer, and

programmer and hopes to become the game industry equivalent of Dick Van Dyke

from Mary Poppins.

Back in Chapter 11, ―Scripting with Lua,‖ we talked about how the content providers make
the game fun, and since modern games require so much content, it stands to reason that
you‘ll want to make it as easy as possible for content providers to generate content for your

games. That‘s why you need a variety of tools to help support your content providers: so

they spend less time trying to figure out how to add art assets or generate levels, and
spend more time tweaking the content to make the game better. Game engines provide a

variety of tools, but the most common tool is the level editor.

What Should a Level Editor Do?

One of the most popular level editors, the Unreal Editor, allows its users control over things

like lighting, scripted camera control, and shader creation, as well as basic geometry
placement. Let‘s not forget about saving and loading the levels as well, which is also pretty

important. Some editors allow you to view animations on characters, while other engines
break things like that into separate tools. For our purposes, we want to make sure that our

editor handles the most essential task for a level editor—adding objects to our level,
adjusting its properties, and saving the level to file.

You‘ll see things you‘ve learned over the previous chapters, while adding a new wrinkle. The

application layer, view, and logic will be written in C++, but the editor application itself will
be written in C#.

Why C#?

Why would anyone want to write an editor in C#? C# isn‘t very fast, and for performance-

intensive applications, you‘ll still want to use C++. Try Googling ―C# performance,‖ and you
should find multiple C++ to C# performance benchmarks. However, C# enables you to

develop Windows applications quickly with a minimum of fuss, and if your application
doesn‘t need to run at 60fps, you should be in good shape. C# has great GUI integration,

and for you C++ programmers out there, C# should look much more familiar than VB.net.
The lack of semicolons in VB.net consistently throws me for a loop, although fortunately not

an infinite one. In my opinion, C# code also looks much cleaner than writing Windows

Forms using C++. All in all, you can throw a decent application together pretty quickly in
C#.

How the Editor Is Put Together

A level editor is an application with a complicated user interface, which makes it a good
candidate for C#. The core game technologies that you‘ve seen throughout this book are

written in C++. You can‘t just force them into the same application —some gentle

persuasion is required. What you are going to see is how a C# application can load and
interface with a DLL created from C++.

There are three steps to this. First, the editor architecture is created in C++, including the

application layer, the logic layer, and the view layer. Next, a C++ DLL is created that wraps
key editor classes and methods with C free functions that create an easy interface into the

DLL. Finally, a C# application is created that can load the DLL and use these free functions
to access the editor DLL and create game worlds.

../../ch11#ch11
http://lib.ommolketab.ir
http//lib.ommolketab.ir

The Editor Architecture

Just like you‘ve seen in the game architecture, you need to create the application layer,

logic, and view for the editor. They‘ll be written in C++, since these objects are

performance critical. Since the engine code is in C++, creating derived classes will have to
be done in C++ as well. There‘s some trickiness involved in getting C# to talk to C++, but

we‘ll handle that further down the line.

The Editor is an Extension of the Game

As you review the code for the application layer, logic, and view, you’ll
notice that their classes look very similar to their Teapot Wars

counterparts. When writing a real editor, you’ll want your level editor

to use the same engine that runs your game. In our case, the classes
look like simplified versions of their Teapot Wars counterparts to make

it easier to explain how the level editor works.

The Application Layer

The level editor‘s application layer does not differ significantly from the application layer for
Teapot Wars. We‘ll look at the differences below. For the rest of the code, be sure to look at

Source\Editor\Editor.cpp:

BaseGameLogic* Editor::VCreateGameAndView()

{

 BaseGameLogic *game = NULL;

 assert(m_pOptions && _T("The game options object is

uninitialized."));

 // Register any game-specific events here.

 RegisterGameSpecificEvents();

 game = GCC_NEW EditorGame(*m_pOptions);

 shared_ptr<IGameView> gameView(GCC_NEW EditorGameView());

 game->VAddView(gameView);

 return game;

}

inline EditorGame const * const Editor::GetGame() const

{

 return dynamic_cast<EditorGame*>(m_pGame);

}

This should be pretty familiar, because you looked at code like this in Chapter 5, ―Game
Initialization and Shutdown.‖ This code creates an instance of the game logic class

EditorGame, which will inherit from BaseGameLogic. It also creates a view class,

EditorGameView:

void Editor::RegisterGameSpecificEvents(void)

../../ch05#ch05
http://lib.ommolketab.ir
http//lib.ommolketab.ir

{

 // We only care about two events - when the game is starting,

and when

 // a new actor is being requested. All other relevant events

are registered

 // by GameCode.

 m_pEventManager->RegisterCodeOnlyEvent(

EvtData_New_Game::sk_EventType);

 m_pEventManager->RegisterEvent< EvtData_Request_New_Actor >(

 EvtData_Request_New_Actor::sk_EventType);

}

Events the editor cares about are registered with the Event Manager. In this case, the editor
wants to know when new actors are requested and when a new game has started. The

editor is not actually running a game, but this event will let it know when it can start doing

things like adding basic geometry and setting up input controllers.

The Editor’s Logic Class

The editor logic is pretty simple. Since this is a basic level editor, it doesn‘t need physics. In

a level editor for a commercial game, a running physics system will ensure legal placement
of objects and make sure they settle properly. In the example below, there is a physics

system, but it is completely empty of code—a NULL physics system. I‘ll leave implementing

a real physics system in the editor to you as an exercise. Throughout this chapter, you‘ll see
calls to the physics system, but just remember that right now it doesn‘t do anything.

The EditorGame class will look familiar to you if you‘ve looked over the

TeapotWarsBaseGame class in the previous chapter:

class EditorGame : public BaseGameLogic

{

 friend class EditorEventListener;

protected:

 float m_Lifetime; //indicates how long this game has been

in session

 EventListenerPtr m_editorEventListener;

public:

 EditorGame(GameOptions const &options);

 ~EditorGame();

 bool VLoadGame(string gameName);

 virtual void VOnUpdate(float time, float elapsedTime);

 // We need to expose this information so that the C# app can

 // know how big of an array to allocate to hold the list of

 // actors

 int GetNumActors() { return (int)m_ActorList.size(); }

 // Exposes the actor map so that the global functions

 // can retrieve actor information

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 ActorMap::iterator GetActorMapBegin() { return

m_ActorList.begin(); }

 ActorMap::iterator GetActorMapEnd() { return

m_ActorList.end(); }

 bool IsRunning() { return (BGS_Running == m_State); }

 shared_ptr<IGameView> GetView();

 void OpenLevelFile(char* fileName);

};

As you can see, most of the EditorGame class is defined right in the constructor.

EditorGame is a thin wrapper around BaseGameLogic, since all it has to do is provide

some accessor methods to the actor lists and manage a view. Here‘s the constructor:

EditorGame::EditorGame(GameOptions const &options)

: BaseGameLogic(options)

, m_Lifetime(0)

{

 m_pPhysics.reset(CreateNullPhysics());

 m_editorEventListener = shared_ptr<EditorEventListener>

(GCC_NEW

 EditorEventListener (this));

 safeAddListener(m_editorEventListener,

EvtData_New_Actor::sk_EventType);

 safeAddListener(m_editorEventListener,

 EvtData_Destroy_Actor::sk_EventType);

 safeAddListener(m_editorEventListener,

EvtData_Move_Actor::sk_EventType);

 safeAddListener(m_editorEventListener,

 EvtData_Request_New_Actor::sk_EventType);

}

The constructor initializes the physics system with a NULL physics stub and adds listeners
for the ―new actor‖ and ―move actor‖ events. Next up is the update loop:

void EditorGame::VOnUpdate(float time, float elapsedTime)

{

 int deltaMilliseconds = int(elapsedTime * 1000.0f);

 m_Lifetime += elapsedTime;

 BaseGameLogic::VOnUpdate(time, elapsedTime);

 switch(m_State)

 {

 case BGS_MainMenu:

 // If we are at the main menu, go ahead and

 // start loading the game environment since the

 // editor doesn't have a main menu.

 VChangeState(BGS_LoadingGameEnvironment);

 break;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 case BGS_LoadingGameEnvironment:

 break;

 case BGS_WaitingForPlayers:

 break;

 case BGS_Running:

 break;

 case BGS_SpawnAI:

 break;

 default:

 assert(0 && _T("Unrecognized state."));

 }

 if(m_pPhysics)

 {

 m_pPhysics->VOnUpdate(elapsedTime);

 m_pPhysics->VSyncVisibleScene();

 }

}

The game logic for EditorGame doesn‘t have to worry about waiting for players or

spawning AI. As BaseGameLogic initializes, it sets its state to BGS_MainMenu. Since

you also don‘t have a main menu (you‘ll be handling UI within C#), you can set your state

directly to BGS_LoadingGameEnvironment.

We have a few more functions to look at, and then we‘ll be finished with the editor‘s logic
class:

void EditorGame::OpenLevelFile(char* fileName)

{

 while (m_ActorList.size() > 0)

 {

 ActorId id = m_ActorList.begin()->first;

 const EvtData_Destroy_Actor destroyActor(id);

 safeTriggerEvent(destroyActor);

 }

 const bool bStartupScriptSuccess =

 g_pApp->m_pLuaStateManager->DoFile(fileName);

 if (false == bStartupScriptSuccess)

 {

 assert(0 && "Unable to execute level file!");

 }

}

shared_ptr<IGameView> EditorGame::GetView()

{

 shared_ptr<IGameView> pGameView = *m_gameViews.begin();

 return pGameView;

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

OpenLevelFile() executes a Lua script. Level files will be stored as Lua files, which will

contain parameters on the actors in our level and a Lua command for each actor that will
trigger a ―request new actor‖ event.

The last function returns a function pointer to the game view. Again, since we don‘t have

any AIs or extra players, we‘ll only have one view for the editor, which simplifies things
greatly.

Just like the game, the editor has a VLoadGame() method:

bool EditorGame::VLoadGame(string gameName)

{

 if (gameName=="NewGame")

 {

 VBuildInitialScene();

 // After we build the initial scene, change the game

 // to New Game. The Editor Game View will do what it

 // needs to do, and then GameCode will transition

 // the game state into Running.

 safeTriggerEvent(EvtData_New_Game());

 }

 return true;

}

This code should look familiar because it is implemented identically to what you saw in the
TeapotWarsBaseGame class. In a real game, you might change this method to automatically

load whatever level was worked on last.

Fewer Clicks make Happier Game Developers

In any software development, from Web sites to tool development, it

makes sense to do everything you can to minimize the number of
mouse clicks it takes to do anything. This is especially true with the

most commonly used features. Put buttons for them right on the main
menu and provide hot keys!

Before we move on to the editor view, a quick mention about the

EditorEventListener. This listener listens for events and runs code to handle each

one. It is very similar to the TeapotWarsEventListener you saw in Chapter 19, ―A

Game of Teapot Wars!‖ but handles only the events related to creating, moving, and
destroying actors. For more information, take a look at Source\Editor\Editor.cpp in the

Game Coding Complete source code.

The Editor View

The classes for the editor view are very similar to their Teapot Wars counterparts.

In a normal game, the human view is responsible for the sound manager, drawing the

world, and grabbing user input. The editor view is a little simpler in one way, not needing a

../../ch19#ch19
http://lib.ommolketab.ir
http//lib.ommolketab.ir

sound system, but more complicated since it receives input from the C# side of things. The

following code is in Source\Editor\EditorGameView.cpp:

void ListenForEditorEvents(EventListenerPtr listener)

{

 // Note that the only events we really care about are related

 // to when the app is starting up, and events related to

 // creating, destroying, or moving actors in the scene

 safeAddListener(listener,

EvtData_Destroy_Actor::sk_EventType);

 safeAddListener(listener, EvtData_New_Game::sk_EventType);

 safeAddListener(listener, EvtData_New_Actor::sk_EventType);

 safeAddListener(listener, EvtData_Move_Actor::sk_EventType

);

}

EditorGameView::EditorGameView()

{

 // The EditorGameView differs from its counterpart in

TeapotWars primarily

 // in the fact that we don't have any UI classes. Any level

information

 // should be displayed in the C# app.

 m_pScene.reset(GCC_NEW EditorScene());

 Frustum frustum;

 frustum.Init(D3DX_PI/4.0f, 1.0f, 1.0f, 100.0f);

 m_pCamera.reset(GCC_NEW CameraNode(&Mat4×4::g_Identity,

frustum));

 assert(m_pScene && m_pCamera && _T("Out of memory"));

 m_pScene->VAddChild(optional_empty(), m_pCamera);

 m_pScene->SetCamera(m_pCamera);

 EventListenerPtr listener (GCC_NEW EditorGameViewListener(

this));

 ListenForEditorEvents(listener);

}

The same conceit you saw earlier with the game logic works here, too; there is a C function
that takes a listener as a parameter and registers a group of events for any human views of

the editor. We only register events that create, modify, or remove actors.

Here‘s what the view does when a new game is started:

void EditorGameView::BuildInitialScene()

{

 // EditorGameView::BuildInitialScene differs from the

TeapotWarsView

 // version of this function in that we don't have a sound

manager

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 // or HUD.

 // Here's our sky node

 // This would be good to put into a file loaded into the

editor,

 // rather than hardcoded. Another homework assignment!

 shared_ptr<SkyNode> sky(GCC_NEW SkyNode("Sky2", m_pCamera));

 m_pScene->VAddChild(optional_empty(), sky);

 VPushElement(m_pScene);

 // We also make sure that the MovementController is hooked up

 // to the keyboard and mouse handlers, since this is our

primary method

 // for moving the camera around.

 m_pFreeCameraController.reset(GCC_NEW

MovementController(m_pCamera, 90, 0));

 m_KeyboardHandler = m_pFreeCameraController;

 m_MouseHandler = m_pFreeCameraController;

 m_pCamera->ClearTarget();

 VOnRestore();

}

This is a simplified version of TeapotWarsView::BuildInitialScene(), since we

don‘t have to worry about stuff like music. Just as in Teapot Wars, the sky node should

really be in a Lua file, and the entire BuildInitialScene() method should be retired.

Take a weekend and see if you can do it.

The EditorEventListener listens for registered events and calls code within the view

class. This looks like the corresponding listener within TeapotWarsView, except the

EditorEventListener doesn‘t need any code for teapots firing weapons and other

game-specific events.

bool EditorGameViewListener::HandleEvent(IEventData const &

event)

{

 // As mentioned earlier, the only events we really care about

here

 // are events related to changes in the actors in the scene

 if (EvtData_Destroy_Actor::sk_EventType ==

event.VGetEventType())

 {

 const EvtData_Destroy_Actor & castEvent =

 static_cast< const EvtData_Destroy_Actor & >(event);

 ActorId aid = castEvent.m_id;

 m_pView->m_pScene->RemoveChild(aid);

 }

 else if (EvtData_New_Game::sk_EventType ==

event.VGetEventType())

 {

 m_pView->BuildInitialScene();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 }

 else if (EvtData_Move_Actor::sk_EventType ==

event.VGetEventType())

 {

 const EvtData_Move_Actor & ed =

 static_cast< const EvtData_Move_Actor & >(event);

 m_pView->MoveActor(ed.m_Id, ed.m_Mat);

 }

 else if (EvtData_New_Actor::sk_EventType ==

event.VGetEventType())

 {

 const EvtData_New_Actor & ed =

 static_cast< const EvtData_New_Actor & >(event);

 shared_ptr<SceneNode> node =

 ed.m_pActorParams->VCreateSceneNode(m_pView->m_pScene);

 m_pView->m_pScene->VAddChild(ed.m_pActorParams->m_Id,

node);

 node->VOnRestore(&(*(m_pView->m_pScene)));

 }

 return false;

}

The EditorGameViewListener handles four events, and ―move actor‖ and ―destroy

actor‖ are handled exactly the same way the game view does. The other two events are

different. The Editor::VLoadGame() method you saw earlier sends the ―new game‖

event, and the view responds by building its initial scene. The ―new actor‖ event is handled

similarly, but has no need to marry a teapot with a controller as the game does.

Wrapping Up the Editor Architecture

The editor is a stripped-down version of a game engine. It can add actors to a scene, render
them, and receive events on how to modify the actors, either by moving them around or

deleting them. It doesn‘t handle a lot of the higher functions of a game, which this simple
editor doesn‘t really need. Next, we need to wire the editor game engine into our C#

application.

Fast Iteration makes Games more Fun

In a commercial game editor, rather than using a stripped-down

version of the game, many editors completely surround and extend
the game. This enables content developers like level designers and

artists to run the game inside the editor so they can test their work.
Editors that don’t work this way force content developers to change

something in the editor, save the level, load the game, find the spot
they changed, see the change in the game, and decide whether they

like what they did. If they don’t like it, and I guarantee they won’t,

they exit the game, load the editor, find the spot they changed again,
and start the whole process over.

Before you can start adding features essential to the level editor, you need to add new
things to the Editor C++ library to get the editor game engine and the C# editor app

http://lib.ommolketab.ir
http//lib.ommolketab.ir

communicating. This part gets a little tricky, and for context, we need to go over differences

between managed and unmanaged code.

Differences Between Managed-Code Land and Unmanaged-Code Land

With .Net, managed code is not actually compiled into machine code, but is instead written

into an intermediary format. The .Net common language runtime (CLR) compiles the
intermediary code into machine code at the time of execution and caches this machine code

for when the application is run again. Unmanaged code is compiled directly into machine

code. Some of the benefits from managed code are that it is portable to any machine that
has the .Net CLR installed, but this comes at the cost of performance. In addition, C# uses

a garbage collector, meaning that programs are not strictly responsible for cleaning up
memory after themselves, although there are exceptions.

In addition, C# cannot load static libraries, but only dynamically linked libraries. Any

unmanaged code that you call from C# will have to live inside a DLL.

Functions to Access the Editor Game Engine

Before you begin, a quick note on how you‘ll be passing data and calling functions in C++

from C#. While it is possible to instantiate objects in C++ and pass their pointers to C#,

doing so requires a lot of preparation work, and it makes this sample editor a lot more
complicated. Instead of creating an instance of the editor application layer and passing that

pointer to the C# editor app, I‘ll use C-style functions that will access the global instance of
the application layer. This will greatly simplify the explanation on how to wire the C#

application with the editor game engine.

One of the functions that definitely needs to be exposed is our old friend Win-Main(),

which you read about back in Chapter 5. It is very similar to the original, but there it had a

different beginning and end:

// This function is similar to the Main in GameCode3, but with a

few

// key differences. We don't want to use GameCode's main loop

since

// that would lock out the C# app.

int EditorMain(int *instancePtrAddress,

 int *hPrevInstancePtrAddress,

 int *hWndPtrAddress,

 int nCmdShow,

 int screenWidth, int screenHeight)

{

 // C# gets unhappy passing pointers to unmanaged dlls, so

instead we pass

 // the actual address of the pointer itself as an int. Then

we convert

 // the ints into pointer values.

 // In general, we do this for any pointers that we pass

 // from C# to the unmanaged dll.

 HINSTANCE hInstance = (HINSTANCE)instancePtrAddress;

 HINSTANCE hPrevInstance = (HINSTANCE)

hPrevInstancePtrAddress;

 HWND hWnd = (HWND)hWndPtrAddress;

 WCHAR *lpCmdLine = L"";

../../ch05#ch05
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 // Set up checks for memory leaks.

 //

 int tmpDbgFlag = _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG);

 // set this flag to keep memory blocks around

 tmpDbgFlag |= _CRTDBG_DELAY_FREE_MEM_DF;

 // this flag will cause intermittent pauses in your game!

 // perform memory check for each alloc/dealloc

 //tmpDbgFlag |= _CRTDBG_CHECK_ALWAYS_DF;

 // remember this is VERY VERY SLOW!

 // always perform a leak check just before app exits.

 tmpDbgFlag |= _CRTDBG_LEAK_CHECK_DF;

 _CrtSetDbgFlag(tmpDbgFlag);

 // Set the callback functions. These functions allow the

sample framework

 // to notify the application about device changes, user

input, and windows

 // messages. The callbacks are optional so you need only set

callbacks for

 // events you're interested in. However, if you don't handle

the device

 // reset/lost callbacks, the sample framework won't be able

to reset

 // your device since the application must first release all

device

 // resources before resetting. Likewise, if you don't handle

the

 // device created/destroyed callbacks, the sample framework

won't be

 // able to recreate your device resources.

 DXUTSetCallbackD3D9DeviceCreated(GameCodeApp::OnCreateDevice

);

 DXUTSetCallbackD3D9DeviceDestroyed(

GameCodeApp::OnDestroyDevice);

 DXUTSetCallbackMsgProc(GameCodeApp::MsgProc);

 DXUTSetCallbackD3D9DeviceReset(GameCodeApp::OnResetDevice);

 DXUTSetCallbackD3D9DeviceLost(GameCodeApp::OnLostDevice);

 DXUTSetCallbackD3D9FrameRender(GameCodeApp::OnRender);

 DXUTSetCallbackFrameMove(GameCodeApp::OnUpdateGame);

 // Show the cursor and clip it when in full screen

 DXUTSetCursorSettings(true, true);

 // Perform application initialization

 if (!g_pApp->InitInstance (hInstance, lpCmdLine, hWnd,

screenWidth,

 screenHeight))

 {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 return FALSE;

 }

 // Instead of calling Main Loop, we set up everything for the

main loop

 DXUTSetUpMainLoop();

 return true;

}

EditorMain() looks very similar to GameCode3() except for the very beginning and

the very end. The first few lines of EditorMain() cast some integer pointers into

Windows handles for the application instance and window. C# pointers are very different

beasts since the CLR uses managed memory. But, all we need for C# to do is hold these

pointers and pass them into the C free functions that access the editor code. Because of
this, it‘s safe to hold these pointers as integers in C# and cast them to real C++ pointers

inside the free functions. One more note—any C# methods that do this should be declared

with the unsafe keyword.

The very end of the function is different from its game engine counterpart. Instead of

starting the main loop with DXUTMainLoop(), you call DXUTSetUpMainLoop(). If you

look inside DXUTMainLoop(), you‘ll see that you call DXUTSetUpMainLoop() just

before entering the message loop. You avoid entering the main loop here because you want

the C# app to handle messages from its own loop. Otherwise, if you called the main loop
here, control wouldn‘t return to the C# application until the main loop quit.

If the C# editor application‘s main loop is going to be responsible for handling messages,

the editor needs to expose a few other functions as C free functions:

void RenderFrame()

{

 // In TeapotWars, this would be called by GameCode's main

loop

 // Since the C# app has its own main loop, we expose this

 // function so that C# app can call from its main loop

 DXUTRender3DEnvironment();

}

void WndProc(int *hWndPtrAddress, int msg, int wParam, int

lParam)

{

 HWND hWnd = (HWND)hWndPtrAddress;

 DXUTStaticWndProc(hWnd, msg, WPARAM(wParam), LPARAM(lParam)

);

}

int DXShutdown()

{

 // Normally this is called after the GameCode main loop ends.

We

 // expose this here so that the C# app can shut down after it

finishes

 // its main loop

 DXUTShutdown();

 _CrtDumpMemoryLeaks(); // Reports leaks to stderr

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 return g_pApp->GetExitCode();

}

RenderFrame() exposes the rendering call, DXUTRender3DEnvironment(), to the

C# app, so it can render a frame if the editor isn‘t handling any other messages.

WndProc() exposes the editor‘s message handling function so that the editor can forward

any appropriate messages to be handled by the editor game engine, such as user input to

move the camera position around. Finally, DXShutdown() shuts down the DirectX device

and exits the editor.

These C-style functions are in Source\Editor\EditorGlobalFunctions.cpp, which is part of the

Editor project in Visual Studio, which compiles to the Editor.Dll loaded by the C# editor.

Creating the DLL

When you create a DLL, you usually want to expose functions to any consumer of that DLL.

This is done with the _declspec keyword in a C++ header file. Here‘s what this looks

like:

#define DllExport _declspec(DLLexport)

#include "..\Editor\EditorGlobalFunctions.h"

//==

=====

//

// This file exposes the functions in the EditorGlobalFunctions

file

// for use by the C# app.

//

//==

=====

extern "C" DllExport int EditorMain(

 int *instancePtrAddress,

 int *hPrevInstancePtrAddress,

 int *hWndPtrAddress,

 int nCmdShow, int screenWidth, int screenHeight);

extern "C" DllExport void RenderFrame();

extern "C" DllExport void DXShutdown();

extern "C" DllExport void WndProc(int *hWndPtrAddress, int msg,

 int wParam, int lParam);

Let‘s start by looking at this line:

#define DllExport _declspec(DLLexport)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Each exported function must have extern "C" _declspec(DLLexport) before the

declaration. The macro at the top of the last code segment helps keep the code looking
cleaner.

The C# Editor Application

Get ready to switch gears from C++ to C#. It feels like we haven‘t touched this in a while,

huh? When the editor is complete, it should look like what you see in Figure 20.1.

The window on the left is what you created at the beginning of this chapter, a panel that
forms the surface for DirectX to render the game world. The C# form on the right is the

Actor Properties form, which is used to create new actors in the game world and manipulate
their properties. During the rest of this chapter, you‘ll hear references to the

EngineDisplayForm and ActorProperties classes, all of which belong to the

EditorApp C# namespace.

Figure 20.1. The final product—a C# editor using a C++ DLL.

One Window isn’t Enough

javascript:moveTo('ch20fig01');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Most commercial game editors have multiple windows rendering

simultaneously. One of these windows looks like the

EngineDisplayForm in Figure 20.2, which renders the game world

from any angle and looks pretty much as you would expect the game

to look. Other windows show the world in wireframe, usually directly
along the X-, Y-, and Z-axes. This can really help content creators see

exactly where an object is placed in the world. In many of these
editors, each window is completely configurable, too, allowing the user

to set up his display panels in exactly the right way to help him work

quickly and correctly.

C# Basic Editor App

For starters, you‘ll want to create a simple application using C#. Rather than going over the

minutiae of how to create a C# project, I recommend using MSDN. MSDN is at times
infuriating, especially when you need information on how to use a function call and the only

information MSDN has is basically the parameters. But in this case, you should be able to
find a lot of information on how to set up C# projects using Visual Studio.

First, create a new form and add a Systems.Windows.Form.Panel to the form. Check

out Source\EditorApp\EngineDisplayForm.cs in the Game Coding Complete

source for an example.

You should have an empty form that looks like the one shown in Figure 20.2.

Figure 20.2. EngineDisplayForm.

If you run the app, you should see an empty Windows form appear on your screen. This
isn‘t too exciting, but it will eventually be used by the application layer to render your level.

javascript:moveTo('ch20fig02');
javascript:moveTo('ch20fig02');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

C# Nativemethods Class

You are now ready to see how C# loads the editor DLL. The NativeMethods class

declares hooks into the C++ DLL so that they can be called from C#:

namespace EditorApp

{

 // We also need to import some functions that will allow us

to load

 // the dll, and free it when we're done.

 static class NativeMethods

 {

#if DEBUG

 const string editorDllName = "Editord.dll";

#else

 const string editorDllName = "Editor.dll";

#endif

 [DllImport(editorDllName)]

 public unsafe static extern int EditorMain(

 IntPtr instancePtrAddress,

 IntPtr hPrevInstancePtrAddress,

 IntPtr hWndPtrAddress,

 int nCmdShow,

 int screenWidth, int screenHeight);

 [DllImport(editorDllName)]

 public static extern void RenderFrame();

 [DllImport(editorDllName)]

 public static extern void DXShutdown();

 [DllImport(editorDllName)]

 public unsafe static extern void WndProc(

 IntPtr hWndPtrAddress, int msg, int wParam, int

lParam);

 }

}

This code lives in Source\EditorApp\NativeMethods.cs and shows you how to

import functions from an unmanaged DLL. Anytime you export a C free function with the

DLLExport macro, you‘ll also need to change the NativeMethods class so C# can see

it.

The EngineDisplayForm Class

The EngineDisplayForm class is the primary interface into the game world, not only

visually but programmatically as well. It loads the C++ DLL and makes calls through the

NativeMethods class to access the C++ data structures and objects. The C++ DLL is

loaded with the constructor of the EngineDisplayForm class:

public partial class EngineDisplayForm : Form

{

 const int INVALID_ID = -1;

 private MessageHandler m_messageFilter;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 public unsafe EngineDisplayForm()

 {

 InitializeComponent();

 try

 {

 // This is how we get the instance handle for our C#

app.

 System.IntPtr hInstance =

System.Runtime.InteropServices.Marshal.GetHINSTANCE(this.GetType

().Module);

 // This is how we get the window handle for

 // the panel we'll be rendering into.

 IntPtr hwnd = this.DisplayPanel.Handle;

 // Call into our Dll main function, which will set up

an

 // instance of the EditorApp project.

 // Remember that we can't pass the pointer itself,

 // so we'll pass the pointer value.

 // The int will be converted into a pointer value

later.

 NativeMethods.EditorMain(

 hInstance, IntPtr.Zero, hwnd, 1,

 this.DisplayPanel.Width, this.DisplayPanel.Height);

 m_messageFilter = new MessageHandler(

 this.Handle, this.DisplayPanel.Handle, this);

 m_actorPropertiesForm = new ActorPropertiesForm(this);

 m_actorPropertiesForm.Show();

 }

 catch() { }

 }

}

First, you specify the name of the DLL itself. You should make sure the DLL is in the same
directory as the C# editor application executable. This example takes into account the fact

that the DLL has a different name for debug and release builds.

The call to GetHINSTANCE() grabs the instance handle for this application, and the next

line gets the window handle for the panel that will become the main rendering area on the

C# form. These handles are converted into integer values and then passed into the

EditorMain function in the unmanaged C++ DLL.

The next methods manage initialization of the ActorPropertiesForm:

public void SetEditorReadyForUse()

{

 m_actorPropertiesForm.InitScene();

}

public EditorActorParams GetActorInformation(uint actorId)

{

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 EditorActorParams actorParams;

 try

 {

 // We're getting a position array from the unmanaged DLL,

so

 // allocate space in memory that can hold 3 floats.

 IntPtr tempArray = Marshal.AllocCoTaskMem(3 *

sizeof(float));

 NativeMethods.GetActorPos(tempArray, actorId);

 // Copy the memory into a float array and dispose of our

memory.

 float[] actorPos = new float[3];

 Marshal.Copy(tempArray, actorPos, 0, 3);

 Marshal.FreeCoTaskMem(tempArray);

 int actorType = NativeMethods. GetActorType(actorId);

 UInt32 actorColor = NativeMethods. GetActorColor(actorId);

 actorParams = new EditorActorParams(actorId,

(ActorType)actorType,

 actorPos, Color.FromArgb((int)actorColor), 0.0f, 0.0f);

 return actorParams;

 }

 catch

 {

 return actorParams =

 new EditorActorParams(EditorActorParams.INVALID_ID);

 }

}

public unsafe int[] GetActorList()

{

 // We need to know how many actors there are,

 // in order to find out how much memory to allocate

 int numActors = NativeMethods.GetNumActors();

 IntPtr tempArray = Marshal.AllocCoTaskMem(numActors *

sizeof(int));

 NativeMethods.GetActorList(tempArray.ToInt32(), numActors);

 // Copy the memory into an array of ints, and dispose of our

memory

 int[] actorList = new int[numActors];

 Marshal.Copy(tempArray, actorList, 0, numActors);

 Marshal.FreeCoTaskMem(tempArray);

 return actorList;

}

public unsafe void SelectActor()

http://lib.ommolketab.ir
http//lib.ommolketab.ir

{

 IntPtr hWnd = this.DisplayPanel.Handle.

 int actorId = NativeMethods.PickActor(hWnd);

 if (actorId != INVALID_ID)

 {

 m_actorPropertiesForm.SelectTreeNode(actorId);

 }

}

SetEditorReadyForUse() is called when the application layer, game logic, and views

have finished with their initialization tasks. You can see that SetEditorReadyForUse()

calls InitScene(), which populates the tree view with actor IDs from this level.

GetActorInformation(), if you recall, is called by the ActorPropertiesForm

whenever the user clicks on a TreeNode or directly on an actor in the level. You allocated

space in memory that can hold three floating-point values. Pass the pointer address and

actor ID into DllWrapperGetActorPos(), and that memory should be filled with the

three floating-point values for the actor‘s X, Y, and Z coordinates. You can copy this into a
floating-point array and then make sure to free this memory. Then you grab the actor type

and color, and then return a new EditorActorParams object containing the actor

information.

GetActorList is called whenever you are populating the TreeView. GetActorList

first finds out how many actors are in this level. It allocates memory to hold the specified

number of integers and passes the pointer address into DllWrapperGetActorList,

which will copy the actor IDs into that memory location. You copy these values into an

integer array and then free the memory.

SelectActor is called whenever you click directly on an actor in the level. Remember

that the PickActor function in your accessor functions directly grabs the cursor position,

so you don‘t need to pass the cursor address. You just need to pass the window handle for

the Panel in the EngineDisplayForm. Once you get the actor ID back from the

unmanaged DLL, you call SelectTreeNode.

The C# MessageHandler Class

Next, you set up your message filter with both the window handle for this form and the

window handle for the Panel. So here‘s something slightly annoying about C#—there are

tons of event handlers you can use, ranging from key presses on forms to button presses or

mouse actions, but the event handlers require work to convert the data into traditional

Win32 message data. However, the IMessageFilter class actually does give you the

Win32 message data, and you need a helper class to manage this,

NativeMessageHandler:

using System;

using System.Collections.Generic;

using System.Text;

using System.Windows.Forms;

namespace EditorApp

{

http://lib.ommolketab.ir
http//lib.ommolketab.ir

//==

==========

 //

 // We need to hook up our own message handler, since it's

difficult

 // getting the proper C wndProc params from using the

standard C#

 // event handlers.

 //

//==

==========

 public class MessageHandler : IMessageFilter

 {

 const int WM_LBUTTONDOWN = 0x0201;

 const int WM_LBUTTONUP = 0x0202;

 const int WM_LBUTTONDBLCLK = 0x0203;

 const int WM_RBUTTONDOWN = 0x0204;

 const int WM_RBUTTONUP = 0x0205;

 const int WM_RBUTTONDBLCLK = 0x0206;

 const int WM_MBUTTONDOWN = 0x0207;

 const int WM_MBUTTONUP = 0x0208;

 const int WM_MBUTTONDBLCLK = 0x0209;

 const int WM_KEYDOWN = 0x0100;

 const int WM_KEYUP = 0x0101;

 const int WM_SYSKEYDOWN = 0x0104;

 const int WM_SYSKEYUP = 0x0105;

 const int WM_CLOSE = 0x0010;

 IntPtr m_formHandle;

 IntPtr m_displayPanelHandle;

 EngineDisplayForm m_parent;

 bool m_gameIsRunning;

 // We take both the EngineDisplayForm's handle and its

 // displayPanel handle, since messages will sometimes be

for the

 // form, or the display panel.

 public MessageHandler(IntPtr formHandle,

 IntPtr displayPanelHandle, EngineDisplayForm parent)

 {

 m_formHandle = formHandle;

 m_displayPanelHandle = displayPanelHandle;

 m_parent = parent;

 m_gameIsRunning = false;

 }

 public bool PreFilterMessage(ref Message m)

 {

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 // Intercept messages only if they occur for the

EngineDisplayForm

 // or its display panel.

 if (m.HWnd == m_displayPanelHandle || m.HWnd ==

m_formHandle)

 {

 switch (m.Msg)

 {

 case WM_LBUTTONDOWN:

 case WM_LBUTTONUP:

 case WM_LBUTTONDBLCLK:

 case WM_RBUTTONDOWN:

 case WM_RBUTTONUP:

 case WM_RBUTTONDBLCLK:

 case WM_MBUTTONDOWN:

 case WM_MBUTTONUP:

 case WM_MBUTTONDBLCLK:

 case WM_KEYDOWN:

 case WM_KEYUP:

 case WM_SYSKEYDOWN:

 case WM_SYSKEYUP:

 case WM_CLOSE:

 {

 NativeMethods.WndProc(m_displayPanelHandle,

 m.Msg, m.WParam.ToInt32(),

m.LParam.ToInt32());

 // If the left mouse button is up, try doing a

 // ray cast to see if it intersects with an actor

 if (m.Msg == WM_LBUTTONUP)

 {

 m_parent.SelectActor();

 }

 return true;

 }

 }

 }

 return false;

}

The PreMessageFilter class lives in the Source\Editor\MessageHandler.cs

file. This class determines if the window handle for these messages matches either the

EngineDisplayForm or the Panel. This would happen if the EngineDisplayForm

had focus and the user moves his mouse around or presses keys on the keyboard. In this

instance, it would be appropriate for the editor game engine to handle these messages, so

you call the unmanaged DLL‘s function WndProc(). If this were a message that occurred

for some other form, PreMessageFilter would simply ignore the message. You would

run into this occurrence if the user clicked on a form that wasn‘t the

EngineDisplayForm, such as a form that displayed properties for the objects in the

level. You‘ll see that in a little bit.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

One message that the C# editor application needs to trap is WM_LBUTTONUP. This will call

EngineDisplayForm::SelectActor() so that you can click directly on the actor you

are interested in and have its properties show up in the ActorPropertiesForm.

Similar to the main loop in C++, when the editor application isn‘t processing messages, it is

idle, and can do other jobs like render the 3D world:

public void Application_Idle(object sender, EventArgs e)

{

 try

 {

 // Render the scene if we are idle

 NativeMethods.RenderFrame();

 if (!m_gameIsRunning)

 {

 // In addition, test to see if the editor is

 // fully initialized and running.

 bool isRunning = false;

 isRunning = NativeMethods.IsGameRunning();

 if (isRunning)

 {

 // If the editor is running, then we should

 // populate the editor form with information

 // about the scene.

 // We just need to do this once.

 m_actorPropertiesForm.InitScene();

 m_gameIsRunning = true;

 }

 }

 }

 catch (Exception ex)

 {

 MessageBox.Show(ex.Message);

 }

 m_parent.Invalidate();

 }

}

Application_Idle() calls into NativeMethods.RenderFrame(). Obviously, this

function is called during any idle time, at which point you render the level. Remember in the

constructor for EngineDisplayForm that you passed the window handle for the

EngineDisplayForm's Panel into the unmanaged DLL? The editor game engine will

use the Panel as a surface to render onto.

The check m_gameIsRunning handles the time when the unmanaged DLL is still

initializing. When the game logic is running, then you can start querying the game logic for

information about actors in the level.

At the end of the Application_Idle(), you call m_parent.Invalidate() so that

Application_Idle() will continue to be called as long as there aren‘t any other

messages.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The C# Program Class

The C# Program class is the main entry point to the C# editor application. It constructs a

new EngineDsplayForm and hooks up the MessageHandler so it can handle Windows

messages and rendering.

using System;

using System.Collections.Generic;

using System.Windows.Forms;

namespace EditorApp

{

 static class Program

 {

 /// <summary>

 /// The main entry point for the application.

 /// </summary>

 [STAThread]

 static void Main()

 {

 Application.EnableVisualStyles();

 Application.SetCompatibleTextRenderingDefault(false);

 EngineDisplayForm form = new EngineDisplayForm();

 // Hook up our message handler

 MessageHandler messageHandler =

form.GetMessageHandler();

 Application.AddMessageFilter(messageHandler);

 Application.Idle += new

EventHandler(messageHandler.Application_Idle);

 Application.Run(form);

 }

 }

}

We‘re looking at the entry point to the C# editor app in Source\Editor\Program.cs.

This code tells the application to use the message handler described in the last section. C#
applications can process a special event handler just before they go idle, defined by

Application.Idle. This is when the

NativeMessageHandler::Application_Idle() will get called, which will render

the view of the game world on the EngineDisplayForm window.

Now you can build everything and fire up a basic version of the editor. WM_KEYDOWN and

WM_MOUSEMOVE messages are forwarded from EngineDisplayForm into the C++

Editor.Dll, letting you define how they change the world state or camera position by

changing the EditorGameView class.

This is definitely important for a level editor. You need to be able to move around and
survey your level. There‘s still no way for you to add actors or change their properties.

That‘s what you‘ll see next.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Getting Information About Actors in the Level

What information do you need about actors in the level? At a minimum, you want to know

about their location. You may also want to know the unique identifier for each actor in the

level. In this case, it will be the actor ID for each actor. You may also want to know if there
are any AI scripts attached to your actor, and some level editors allow you to attach special

tags to your actors so that the actors respond to events in the world. In this case, let‘s just

grab the basic information in the ActorParams—the actor ID, actor type, position, and

color.

Adding Accessor Functions to the Editor Game Engine

In order to provide actor information to the C# editor application, a few more C style

functions are added to the Source\Editor\EditorGlobalFunctions.h file:

int GetNumActors()

{

 EditorGame* pGame = (EditorGame*)g_pApp->m_pGame;

 if (pGame)

 {

 return pGame->GetNumActors();

 }

 else

 {

 return 0;

 }

}

void GetActorList(int *ptr, int numActors)

{

 // To keep things simple, we pass the actor ids to the C# app

 // the C# app iterates through the actor ids, and calls back

into

 // the unmanaged DLL to get the appropriate information about

each

 // actor

 EditorGame* pGame = (EditorGame*)g_pApp->m_pGame;

 if (pGame)

 {

 ActorMap::iterator itr;

 int actorArrayIndex;

 for (itr = pGame->GetActorMapBegin(), actorArrayIndex =

0;

 itr != pGame->GetActorMapEnd() && actorArrayIndex <

numActors; itr++,

 actorArrayIndex++)

 {

 ActorId actorId = itr->first;

 ptr[actorArrayIndex] = actorId;

 }

 }

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

GetNumActors() is pretty simple. It uses the global application layer pointer to get to

the game logic. Once it has a pointer to the game logic, it gets the number of actors in the
level and returns that. The reason why you need the number of actors is that the C# editor

application will be allocating space for an array of integers. The editor will use the number

of actors to determine how large of an array to allocate. GetActorList() fills that array

with the actors in this level by iterating through the actor data structure stored in the editor
logic.

The next three functions get information about actors:

void GetActorPos(int *actorPosPtrAddress, ActorId actorId)

{

 float* ptr = (float*)actorPosPtrAddress;

 shared_ptr<IActor> pActor = g_pApp->m_pGame->VGetActor(

actorId);

 if (!pActor)

 {

 return;

 }

 // Just to keep things simple, the C# app allocates memory,

 // and we populate that memory with position information.

 // This way, the C# app can free this memory when it's

 // finished.

 Vec3 position = pActor->VGetMat().GetPosition();

 ptr[0]=position.x;

 ptr[1]=position.y;

 ptr[2]=position.z;

}

int GetActorType(ActorId actorId)

{

 shared_ptr<IActor> pActor = g_pApp->m_pGame->VGetActor(

actorId);

 if (!pActor)

 {

 return 0;

 }

 return pActor->VGetType();

}

DWORD GetActorColor(ActorId actorId)

{

 shared_ptr<IActor> pActor = g_pApp->m_pGame->VGetActor(

 actorId);

 if (!pActor)

 {

 return 0;

 }

 shared_ptr<ActorParams> pActorParams = pActor->VGetParams();

 if (!pActorParams)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 {

 return 0;

 }

 return pActorParams->m_Color;

}

These functions provide information on the actor‘s position and the actor type.

GetActorPos() receives a pointer to an array of floating-point values and copies the

position information into that array. GetActorType() returns the type of actor, and

GetActorColor() returns a DWORD containing the RGBA values of the actor, given a

valid actor ID.

Every game editor needs a method to select an actor from the visual display. To do this

requires a special bit of technology called a raycaster, which mathematically calculates
which objects in the game world are intersected by a ray given two endpoints.

PickActor() is a function that does exactly this:

int PickActor(int hWndPtrAddress)

{

 HWND hWnd = (HWND)hWndPtrAddress;

 CPoint ptCursor;

 GetCursorPos(&ptCursor);

 // Convert the screen coordinates of the mouse cursor into

 // coordinates relative to the client window

 ScreenToClient(hWnd, &ptCursor);

 RayCast rayCast(ptCursor);

 EditorGame* pGame = (EditorGame*)g_pApp->m_pGame;

 if (!pGame)

 {

 return INVALID_ID;

 }

 shared_ptr<IGameView> pView = pGame->GetView();

 if (!pView)

 {

 return INVALID_ID;

 }

 shared_ptr<EditorGameView> gameView =

 boost::static_pointer_cast<EditorGameView>(pView);

 // Cast a ray through the scene. The RayCast object contains

an array of

 // Intersection objects.

 gameView->GetScene()->Pick(&rayCast);

 rayCast.Sort();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 // If there are any intersections, get information from the

first

 // intersection.

 if (rayCast.m_NumIntersections)

 {

 Intersection firstIntersection =

rayCast.m_IntersectionArray[0];

 optional<ActorId> maybeID = firstIntersection.m_actorId;

 if (maybeID.valid())

 {

 ActorId id = *maybeID;

 return id;

 }

 }

 return INVALID_ID;

}

PickActor() will take the current cursor position and convert the position into

coordinates relative to the editor window. If you remember the Frustum class from

Chapter 14, ―3D Scenes,‖ the ray will go from the camera location through the near clipping
plane at exactly the mouse position.

The RayCast class is designed with this purpose in mind, and is a part of the Game Coding

Complete source code. RayCast::Pick() will fill member variables, indicating the

number of intersections and the actor information of all actors intersected by the ray sorted
by their distance from the camera. The code grabs the first actor ID in the list of

intersection and returns the actor ID. This will allow users to click on objects in the world
and then find out information about them.

One last function will return whether the editor logic has been initialized and is running:

bool IsRunning()

{

 EditorGame* game = (EditorGame*)g_pApp->m_pGame;

 if (game)

 {

 bool isRunning = game->IsRunning();

 return isRunning;

 }

 return false;

}

By this point, you could have probably written that function yourself! It simply grabs a

pointer to the EditorGame object and queries the IsRunning() method, indicating

whether the game logic has finished initializing and building the initial scene. If this returns
true, then you are ready to start querying the game logic for actors and eventually add and

modify actors.

Adding Functions to the Editor DLL

Now that you have functions that can access actor information in the level, you need to

expose them so that the C# editor app can query the editor game engine for information.

../../ch14#ch14
http://lib.ommolketab.ir
http//lib.ommolketab.ir

The C free functions need to be exported, and declared in

Source\Editor\EditorGlobalFunctions.h:

extern "C" DllExport bool IsGameRunning();

extern "C" DllExport int GetActorType(ActorId actorId);

extern "C" DllExport int GetNumActors();

extern "C" DllExport void GetActorList(int

*actorIdArrayPtrAddress,

 int size);

extern "C" DllExport DWORD GetActorColor(ActorId actorId);

extern "C" DllExport void GetActorPos(int *actorPosPtrAddress,

 ActorId actorId);

extern "C" DllExport int PickActor(int *hWndPtrAddress);

To plug in the other end of your DLL wire, the NativeMethods class in the C# code needs

to have this code:

public static extern bool IsGameRunning();

[return: MarshalAs(UnmanagedType.I1)]

[DllImport(editorDllName)]

public static extern int GetActorType(uint actorId);

[DllImport(editorDllName)]

public static extern int GetNumActors();

[DllImport(editorDllName)]

public unsafe static extern void GetActorList(IntPtr

actorIdArrayPtrAddress, int size);

[DllImport(editorDllName)]

public static extern UInt32 GetActorColor(uint actorId);

[DllImport(editorDllName)]

public unsafe static extern void GetActorPos(IntPtr

actorPosPtrAddress, uint actorId);

[DllImport(editorDllName)]

public unsafe static extern int PickActor(IntPtr

hWndPtrAddress);

One minor thing to note is the return value for IsGameRunning. An ANSI C-style bool is

a single byte value, while most Win 32 APIs return a bool as a 4-byte value. You need to

marshal the return type so that you get the proper value.

Displaying Actor Properties in the Editor

On the C# side, you need to call these functions and display the information using C# user

interface controls on the ActorPropertiesForm. An example of this is using a

Treeview to show a list of all the actors in the world. Textboxes can be used to enter and

display actor properties, such as its position in the world. Look at

Source\Editor\ActorPropertiesForm.cs to see how it‘s put together.

The ActorPropertiesForm is shown in Figure 20.3.

javascript:moveTo('ch20fig03');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

For the C# editor to view and modify actor parameters, it needs a parallel structure to the

ActorParams in C++. This is declared in

Source\Editor\EngineDisplayForm.cs:

Figure 20.3. The ActorPropertiesForm.

public enum ActorType

{

 AT_Unknown,

 AT_Sphere,

 AT_Teapot,

 AT_Grid,

 AT_GenericMeshObject

};

public struct EditorActorParams

{

 public const uint INVALID_ID = 0;

 public uint m_actorId;

 public ActorType m_actorType;

 public float[] m_pos;

 public Color m_color;

 public float m_length;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 public float m_radius;

 public string m_effectFile;

 public string m_meshFile;

 public EditorActorParams(uint actorId)

 {

 m_actorId = actorId;

 m_actorType = ActorType.AT_Unknown;

 m_pos = new float[0];

 m_color = Color.White;

 m_length = 0;

 m_radius = 0;

 m_effectFile = String.Empty;

 m_meshFile = String.Empty;

 }

 public EditorActorParams(uint actorId, ActorType actorType,

float[] pos,

 Color color, float length, float radius)

 {

 m_actorId = actorId;

 m_actorType = actorType;

 m_pos = pos;

 m_color = color;

 m_length = length;

 m_radius = radius;

 m_effectFile = String.Empty;

 m_meshFile = String.Empty;

 }

}

The unmanaged C++ DLL won‘t actually be passing any ActorParams pointers. Instead,

EngineDisplayForm will query for various pieces of information on the different actors,

using that information to create an EngineActorParams object, and then passing that

object to the ActorPropertiesForm to populate the form with information on each

actor. Since you haven‘t exposed the ActorTypes in the DLL, you‘ll need to create your

own ActorTypes enumeration here as well.

Keep the Game and Editor in Sync

Note that we create two structures that have to remain in

sync. As previously stated, we don‘t export the C++ version

of ActorTypes to keep the C++/C# inter-operability

simple, so whenever you change one, you have to remember
to change the other.

This kind of thing happens in commercial game editors all the

time. When a particular bit of the editor changes to
manipulate something new in the game, both the editor and

the game code have to change simultaneously. Making this
even trickier is the whole development team must usually

update their code and tools in a coordinated fashion, lest the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

editor or game not match the latest data on the development

server. If you think this causes headaches in game
development, believe me you have no idea.

Now let‘s go back to the ActorPropertiesForm and see how it is structured to get and

set actor properties viewed in the 3D scene in the EngineDisplayForm. You‘ll see the

entire class from top to bottom, with some explanations in between snippets of code:

using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

using System.Collections;

using System.Windows.Forms;

using System.IO;

namespace EditorApp

{

 public partial class ActorPropertiesForm : Form

 {

 EngineDisplayForm m_parent;

 ArrayList m_types;

 TreeNode m_mainNode;

 ActorCreationForm m_createForm;

 public ActorPropertiesForm(EngineDisplayForm parent)

 {

 InitializeComponent();

 m_parent = parent;

 m_types = new ArrayList();

 m_types.Add("Unknown");

 m_types.Add("Sphere");

 m_types.Add("Teapot");

 m_types.Add("AiTeapot");

 m_types.Add("Test Object");

 m_types.Add("Grid");

 m_types.Add("Generic Mesh Object");

 m_createForm = new ActorCreationForm();

 m_mainNode = new TreeNode();

 m_mainNode.Name = "mainNode";

 m_mainNode.Text = "Scene";

 this.m_treeView.Nodes.Add(m_mainNode);

 // Make sure nothing that can change the scene

 // is active until the Editor itself has been

 // initialized

 m_fileToolStripMenuItem.Enabled = false;

 m_addActorBtn.Enabled = false;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 m_removeActorBtn.Enabled = false;

 m_updateActorPosBtn.Enabled = false;

 m_restoreActorPosBtn.Enabled = false;

 m_rotateActorYAxisBtn.Enabled = false;

 m_rotateActorXAxisBtn.Enabled = false;

 }

 public void InitScene()

 {

 // This gets called when we are ready to make

 // adjustments to the scene.

 m_fileToolStripMenuItem.Enabled = true;

 m_addActorBtn.Enabled = true;

 m_removeActorBtn.Enabled = true;

 m_updateActorPosBtn.Enabled = true;

 m_restoreActorPosBtn.Enabled = true;

 m_rotateActorXAxisBtn.Enabled = true;

 m_rotateActorYAxisBtn.Enabled = true;

 m_mainNode.Nodes.Clear();

 int[] actorList = m_parent.GetActorList();

 // Get a list of actors in the scene, and add

 // the appropriate information to our treeview

 PopulateTreeView(actorList);

 }

InitScene() is called to enable the forms buttons and initialize the TreeView with the

actors in the level. It is also called when you add or remove an actor to the level. The real

work to initialize the TreeView is done in PopulateTreeView():

private void PopulateTreeView(int[] actorList)

{

 // Add each actor as its own node in the treeview.

 for (int i = 0; i < actorList.GetLength(0); i++)

 {

 TreeNode node = new TreeNode();

 node.Name = actorList[i].ToString();

 node.Text = "Actor " + actorList[i];

 m_mainNode.Nodes.Add(node);

 }

}

PopulateTreeView takes an array of actor IDs as integers and creates new

TreeNodes. Each TreeNode is identified by an actor ID.

When you click on a node in the TreeView, the ActorPropertiesForm should display

information about the tree node‘s corresponding actor. That happens in Tree-

View_NodeMouseClick():

private void TreeView_NodeMouseClick(object sender,

 TreeNodeMouseClickEventArgs e)

{

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 TreeNode node = e.Node;

 if (node != m_mainNode)

 {

 // If we click on an actor node, have the

EngineDisplayForm

 // get information on that actor from the unmanaged DLL.

 EditorActorParams actorParams =

 m_parent.GetActorInformation(UInt32.Parse(node.Name));

 PopulateActorInformation(actorParams);

 }

}

TreeView_NodeMouseClick checks to make sure the node isn‘t the main or root node

and then accesses the actor ID associated with the node. Then it asks the

EngineDisplayForm to grab information about this actor. The information is returned as

an EditorActorParams object.

private void PopulateActorInformation(EditorActorParams

actorParams)

{

 m_actorIdTextbox.Text = actorParams.m_actorId.ToString();

 m_actorTypeTextbox.Text =

(String)m_types[(int)actorParams.m_actorType];

 m_actorXTextbox.Text = actorParams.m_pos[0].ToString();

 m_actorYTextbox.Text = actorParams.m_pos[1].ToString();

 m_actorZTextbox.Text = actorParams.m_pos[2].ToString();

 m_colorPreviewPanel.BackColor = actorParams.m_color;

}

The ActorPropertiesForm uses PopulateActorInformation to display

information about the currently selected actor in the TreeView. Use the ActorType to

index into the m_types ArrayList to find the appropriate string to display, describing

this actor‘s type.

A similar thing needs to happen if you click on the graphics version of the actor in the

EngineDisplayForm. If an actor is returned from PickActor(), the corresponding

actor in the TreeView is found, selected, and its properties are displayed in the

ActorPropertiesForm:

public void SelectTreeNode(int actorId)

{

 // There are two methods of populating actor information. We

can

 // select a node in the treeview, or we can click on the

actor

 // in the world view. If we click on the actor in the world

view,

 // we use this function to update the actor information.

 TreeNode[] node = m_mainNode.Nodes.Find(actorId.ToString(),

true);

 if (node.GetLength(0) > 0)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 {

 m_treeView.SelectedNode = node[0];

 EditorActorParams actorParams =

 m_parent.GetActorInformation((uint)actorId);

 PopulateActorInformation(actorParams);

 }

}

An actor ID is used to find the corresponding TreeNode in the TreeView. Then

EngineDisplayForm::GetActorInformation() is called to get the ActorParams

from this actor, and that in turn is passed into PopulateActorInformation.

Creating, Changing, and Removing Actors

The very first thing you‘ll do to a new level is add its first actor. You also want to remove
actors and change their properties. Just as you saw with displaying actor properties, new

accessor functions need to be added to the C++ DLL in

Source\Editor\EditorGlobalFunctions.cpp. The first are CreateActor()

and RemoveActor():

void CreateActor(ActorType type, DWORD color, float length,

float radius,

 char* effectFileName, char* meshFileName)

{

 Vec3 startPosition(0.0f, 1.5f, 0.0f);

 switch (type)

 {

 case AT_Teapot:

 {

 TeapotParams tp;

 tp.m_Mat.SetPosition(startPosition);

 tp.m_Length = 2.5;

 tp.m_Color = color;

 const EvtData_Request_New_Actor requestActor(&tp);

 safeTriggerEvent(requestActor);

 }

 break;

 case AT_Grid:

 {

 GridParams grid;

 grid.m_Color = color;

 strcpy_s(grid.m_Texture,

GridParams::sk_MaxTextureNameLen,

 "grid.dds");

 grid.m_Mat = Mat4×4::g_Identity;

 grid.m_Squares = length;

 grid.m_Mat.SetPosition(startPosition);

 const EvtData_Request_New_Actor gridEvt(&grid);

 safeTriggerEvent(gridEvt);

 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 break;

 case AT_Sphere:

 {

 SphereParams sp;

 sp.m_Pos = startPosition;

 sp.m_Radius = radius;

 sp.m_Segments = 16;

 sp.m_Color = color;

 const EvtData_Request_New_Actor requestActor(&sp);

 safeTriggerEvent(requestActor);

 }

 break;

 case AT_GenericMeshObject:

 {

 GenericMeshObjectParams gmp;

 gmp.m_Color = color;

 strcpy_s(gmp.m_FXFileName,

 GenericMeshObjectParams::sk_MaxFileNameLen,

effectFileName);

 strcpy_s(gmp.m_XFileName,

GenericMeshObjectParams::sk_MaxFileNameLen,

 meshFileName);

 gmp.m_Mat = Mat4×4::g_Identity;

 gmp.m_Mat.SetPosition(startPosition);

 const EvtData_Request_New_Actor gmpEvt(&gmp);

 safeTriggerEvent(gmpEvt);

 }

 break;

 default:

 break;

 }

}

void RemoveActor(ActorId actorId)

{

 EditorGame* pGame = (EditorGame*)g_pApp->m_pGame;

 if (pGame)

 {

 const EvtData_Destroy_Actor destroyActor(actorId);

 safeTriggerEvent(destroyActor);

 }

}

CreateActor() takes several parameters and triggers a ―request new actor‖ event for an

actor with the requested properties. Not all actors share the same properties. Teapots don‘t
have a segment or radius property, for example. As a result, you create the specific

subclass of ActorParams that corresponds to the type of actor being created.

RemoveActor() simply takes the actor ID for the actor to be removed and triggers a

―destroy actor‖ event.

The next functions can change the actor‘s position or its orientation in the world:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

void SetActorPos(ActorId actorId,

 const float x, const float y, const float z)

{

 shared_ptr<IActor> pActor = g_pApp->m_pGame->VGetActor(

actorId);

 if (!pActor)

 {

 return;

 }

 Mat4×4 position = pActor->VGetMat();

 position.SetPosition(Vec3(x, y, z));

 safeQueEvent(IEventDataPtr(GCC_NEW

 EvtData_Move_Actor(actorId, position)));

}

void RotateActorXAxis(ActorId actorId, float radians)

{

 shared_ptr<IActor> pActor = g_pApp->m_pGame->VGetActor(

actorId);

 if (!pActor)

 {

 return;

 }

 Mat4×4 initialRotationMatrix = pActor->VGetMat();

 Vec3 position = initialRotationMatrix.GetPosition();

 initialRotationMatrix.SetPosition(Vec3(0.0f, 0.0f, 0.0f));

 Mat4×4 rotation = Mat4×4::g_Identity;;

 rotation.BuildRotationX(radians);

 initialRotationMatrix *= rotation;

 initialRotationMatrix.SetPosition(position);

 safeQueEvent(IEventDataPtr(GCC_NEW

 EvtData_Move_Actor(actorId, initialRotationMatrix)));

}

SetActorPos() takes an actor ID and the three coordinates for the actor‘s position. It

takes the transformation matrix, updates the position, and then queues a move event for
the actor.

RotateActorXAxis() operates in the same manner. It takes an actor ID and the

rotation amount in radians. It grabs the transformation matrix and caches away the
position, before setting the transformation matrix‘s position to the zero vector. You always

want to handle rotation before translation. The code does this by calculating the rotation in

initialRotationMatrix and then calling SetPosition() to translate.

These functions need to be exported, so these lines are added to EditorGlobalFunctions.h:

extern "C" DllExport void CreateActor(ActorType actorType,

 DWORD color, float length, float radius, LPCTSTR

lEffectFileName,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 LPCTSTR lMeshFileName);

extern "C" DllExport void RemoveActor(ActorId actorId);

extern "C" DllExport void SetActorPos(ActorId actorId, const

float x,

 const float y, const float z);

extern "C" DllExport void RotateActorXAxis(ActorId actorId,

 float radians);

The C# editor application needs parallel definitions in

Source\EditorApp\NativeMethods.cs:

[DllImport(editorDllName)]

public static extern void CreateActor(int type, UInt32 color,

 float length, float radius, string lEffectFileName, string

lMeshFileName);

[DllImport(editorDllName)]

public static extern void RemoveActor(uint actorId);

[DllImport(editorDllName)]

public static extern void SetActorPos(uint actorId, float x,

float y, float z);

[DllImport(editorDllName)]

public static extern void RotateActorXAxis(uint actorId, float

radians);

C# does not have a DWORD data type, so you use a UInt32 for the color value in

CreateActor().

The Actorcreationform Class

If you are going to create new actors, you need a dialog to enter parameters for the new

actor. Take a look at it in Figure 20.4.

The ActorCreationForm has controls that let you enter initial values for any of the

actor parameters. In this architecture, the parameter types of different actors are hard

coded to the form. In a real editor, the parameter types would be data defined, and the
form would be created on the fly. Since my editor is already wincing at the length of this

chapter, I‘ll go for the simple and easy-to-explain route. You can try your hand at extending
this system to allow for completely data-defined actor parameters. Now, on to the code for

the ActorCreationForm:

Figure 20.4. The ActorCreationForm.

javascript:moveTo('ch20fig04');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

namespace EditorApp

{

//==

==========

 //

 // This form is used to gather information about new actors

that will be

 // added to the scene.

 //

//==

==========

public partial class ActorCreationForm : Form

{

 EditorActorParams m_actorParams;

 public ActorCreationForm()

 {

 InitializeComponent();

 m_actorParams.m_color = Color.White;

 m_actorParams.m_length = 0;

 m_actorParams.m_radius = 0;

 m_actorParams.m_actorType = ActorType.AT_Unknown;

 m_actorTypeComboBox.Items.Add("Sphere");

 m_actorTypeComboBox.Items.Add("Grid");

 m_actorTypeComboBox.Items.Add("Teapot");

 m_actorTypeComboBox.Items.Add("Test Object");

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 m_actorTypeComboBox.Items.Add("Generic Mesh Object");

 // Display the controls for modifying actor properties

 // only after the user has selected what type of actor

 // to create

 m_createActorBtn.Visible = false;

 m_cancelBtn.Visible = false;

 m_colorDisplayPanel.Visible = false;

 m_colorLabel.Visible = false;

 m_LengthTextbox.Visible = false;

 m_lengthLabel.Visible = false;

 m_RadiusTextbox.Visible = false;

 m_radiusLabel.Visible = false;

 m_effectFileLabel.Visible = false;

 m_meshFileLabel.Visible = false;

 m_effectFileTextbox.Visible = false;

 m_meshFileTextbox.Visible = false;

 m_browseEffectFileBtn.Visible = false;

 m_browseMeshFileBtn.Visible = false;

 }

 public EditorActorParams GetParams()

 {

 return m_actorParams;

 }

The constructor makes most of the controls invisible. Since controls will be selectively
displayed depending on the type of the actor selected in the combo box, the form starts
with them all invisible.

ActorTypeComboBox_SelectedIndexChanged() is called whenever the user selects

a new value in the combo box. This function selectively displays controls on the form. If the
user wants a teapot, it doesn‘t make much sense to display the controls for radius.

// Display the appropriate controls for each actor type

switch (m_actorTypeComboBox.Text)

{

 case "Sphere":

 m_createActorBtn.Visible = true;

 m_cancelBtn.Visible = true;

 m_colorDisplayPanel.Visible = true;

 m_colorLabel.Visible = true;

 m_RadiusTextbox.Visible = true;

 m_radiusLabel.Visible = true;

 break;

 case "Teapot":

 case "Test Object":

 m_createActorBtn.Visible = true;

 m_cancelBtn.Visible = true;

 m_colorDisplayPanel.Visible = true;

 m_colorLabel.Visible = true;

 break;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 // more actor types will follow...

When the parameters for the selected actor are filled in and the ―Create Actor‖ button is

pressed, the CreateActorBtn_Click() method is called. It copies the control values

into the m_actorParams member variable and closes the dialog.

*private void CreateActorBtn_Click(object sender, EventArgs e)

{

 switch (m_actorTypeComboBox.Text)

 {

 case "Sphere":

 m_actorParams.m_actorType = ActorType.AT_Sphere;

 m_actorParams.m_radius =

float.Parse(m_RadiusTextbox.Text);

 m_actorParams.m_color =

m_colorDisplayPanel.BackColor;

 this.DialogResult = DialogResult.OK;

 this.Close();

 break;

 case "Teapot":

 m_actorParams.m_actorType = ActorType.AT_Teapot;

 m_actorParams.m_color =

m_colorDisplayPanel.BackColor;

 this.DialogResult = DialogResult.OK;

 this.Close();

 break;

 case "Grid":

 m_actorParams.m_actorType = ActorType.AT_Grid;

 m_actorParams.m_color =

m_colorDisplayPanel.BackColor;

 m_actorParams.m_length =

float.Parse(m_LengthTextbox.Text);

 this.DialogResult = DialogResult.OK;

 this.Close();

 break;

 case "Generic Mesh Object":

 m_actorParams.m_actorType =

ActorType.AT_GenericMeshObject;

 m_actorParams.m_color =

m_colorDisplayPanel.BackColor;

 m_actorParams.m_effectFile =

m_effectFileTextbox.Text;

 m_actorParams.m_meshFile = m_meshFileTextbox.Text;

 this.DialogResult = DialogResult.OK;

 this.Close();

 break;

 default:

 MessageBox.Show("You must select an actor type!");

 break;

 }

 }

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

There are a few more methods that are wired into the controls on the

ActorPropertiesForm:

private void ColorDisplayPanel_MouseDown(object sender,

MouseEventArgs e)

{

 m_colorDialog.ShowDialog();

 m_colorDisplayPanel.BackColor = m_colorDialog.Color;

 }

 private void BrowseEffectFileBtn_Click(object sender,

EventArgs e)

 {

 DialogResult res = m_openFileDialog.ShowDialog();

 if (res != DialogResult.OK)

 {

 return;

 }

 m_effectFileTextbox.Text = m_openFileDialog.FileName;

 }

 private void BrowseMeshFileBtn_Click(object sender, EventArgs

e)

 {

 DialogResult res = m_openFileDialog.ShowDialog();

 if (res != DialogResult.OK)

 {

 return;

 }

 m_meshFileTextbox.Text = m_openFileDialog.FileName;

}

These methods use other C# dialogs, such as the ColorDialog and the

OpenFileDialog, to make it easy for users of the ActorPropertiesForm to fill in

actor parameters. Now that that little sidetrack is completed, I can get back to explaining

how the actor update methods are wired into the ActorPropertiesForm.

Adding Actor Update Methods to Actorpropertiesform

There are just a few methods to add, since the editor is so basic. These will update the

actor position, revert to an old position, rotate the actor, and remove the actor:

private void UpdateActorPosBtn_Click(object sender, EventArgs e)

{

m_parent.SetActorInformation(UInt32.Parse(this.m_actorIdTextbox.

Text),

 float.Parse(this.m_actorXTextbox.Text),

 float.Parse(this.m_actorYTextbox.Text),

 float.Parse(this.m_actorZTextbox.Text));

http://lib.ommolketab.ir
http//lib.ommolketab.ir

}

private void RestoreActorPosBtn_Click(object sender, EventArgs

e)

{

 // The position has been changed in the EditorForm, but the

user wants to

 // get the old position information on this actor before

updating the

 // position. The EngineDisplayForm should retrieve

information on this

 // actor, which the EditorForm will use to repopulate actor

information.

 EditorActorParams actorParams =

m_parent.GetActorInformation(UInt32.Parse(this.m_actorIdTextbox.

Text));

 PopulateActorInformation(actorParams);

}

private void RotateActorXAxisBtn_Click(object sender, EventArgs

e)

{

 if (m_treeView.SelectedNode != m_mainNode)

 {

 float degrees =

float.Parse(m_rotateActorXAxisDegreesTextbox.Text);

m_parent.RotateObjectX(UInt32.Parse(m_treeView.SelectedNode.Name

),

 (float)(Math.PI * degrees / 180.0));

 }

}

private void RemoveActorBtn_Click(object sender, EventArgs e)

{

 if (m_treeView.SelectedNode != m_mainNode)

 {

 UInt32 id = UInt32.Parse(m_treeView.SelectedNode.Name);

 m_mainNode.Nodes.Remove(m_treeView.SelectedNode);

 m_parent.RemoveActor(id);

 }

}

The first function, UpdateActorPosBtn_Click, grabs the values from the textboxes

containing coordinate information and sends the actor ID and coordinate information to the

EngineDisplayForm. If the user makes any changes to the position, this information

gets passed onward.

RestoreActorPosBtn_Click simply restores the position, in case you entered any

new position information into the form but decided you would rather revert to the existing

http://lib.ommolketab.ir
http//lib.ommolketab.ir

values. The rotate function converts the value of the rotate textboxes from degrees into

radians and then passes that information on to the EngineDisplayForm.

RemoveActorBtn_Click checks to be sure a legitimate actor is selected and then tells

EngineDisplayForm to remove the actor.

Editors need Robust Error Checking

One thing that is missing is checks on the data types. This occurred

because the author was focusing most of his time on getting C# and

C++ to play nice and trying to stamp out linker errors! However, you
should make sure that data being passed to the editor game engine is

all legitimate. You don’t want to send any data that isn’t appropriate
to the unmanaged DLL. At best, nothing happens. At worst, the entire

application crashes, taking with it several hours of work! There is
nothing more dangerous to a programmer’s well being than a person

whose finest work has been lost by an editor bug.

Now the editor can add objects to the level, move them around, rotate them, and remove
them if they displease you. The editor also needs to save its fabulous creations out to a file

and reload them.

Saving and Loading Levels

The game‘s save game format is a Lua table. Loading it is relatively trivial since you can just

call LuaStateManager::DoFile() with the level filename. Saving out the files isn‘t

tricky, but it is a little tedious.

Switch gears again to the C++ Editor DLL since it needs C-style accessor functions added to

Source\Editor\EditorGlobalFunctions.cpp:

void OpenLevel(char fileName)

{

 EditorGame* pGame = (EditorGame*)g_pApp->m_pGame;

 if (pGame)

 {

 pGame->OpenLevelFile(fileName);

 }

}

OpenLevel() checks to make sure the pointer to the game logic is valid and then calls

the EditorGame::OpenLevelFile() method with the name of your level file. Believe

it or not you saw that back at the beginning of the chapter in the section on ―The Editor‘s
Logic Class.‖

For a file to be opened, it must first be saved. Take a look at what the save file will

ultimately look like:

*local gridParams2=

http://lib.ommolketab.ir
http//lib.ommolketab.ir

{

 ActorType = "grid",

 Color =

 {

 R = 0.400000, G = 0.400000, B = 0.400000, A = 1.000000,

 },

 Mat =

 {

 _11 = 1.000000, _12 = 0.000000, _13 = 0.000000, _14 =

0.000000,

 _21 = 0.000000, _22 = 1.000000, _23 = 0.000000, _24 =

0.000000,

 _31 = 0.000000, _32 = 0.000000, _33 = 1.000000, _34 =

0.000000,

 _41 = 0.000000, _42 = 0.000000, _43 = 0.000000, _44 =

1.000000,

 },

 Texture = "grid.dds",

 Squares = 100,

}

EventManager:TriggerEvent("request_new_actor", gridParams2)

local genericMeshObjectParams3=

{

 ActorType = "genericMeshObject",

 Color =

 {

 R = 1.000000, G = 0.501961, B = 0.000000, A = 1.000000,

 },

 Mat =

 {

 _11 = -0.866025, _12 = 0.000000, _13 = 0.500000, _14 =

0.000000,

 _21 = 0.000000, _22 = 1.000000, _23 = 0.000000, _24 =

0.000000,

 _31 = -0.500000, _32 = 0.000000, _33 = -0.866025, _34 =

0.000000,

 _41 = 5.000000, _42 = 1.500000, _43 = 0.000000, _44 =

1.000000,

 },

 XFile = "C:\\GCC root\\GameCode3\\Dev\\test\\airplane 2.x",

 FXFile = "C:\\GCC root\\GameCode3\\Dev\\test\\GameCode3.fx",

}

EventManager:TriggerEvent("request_new_actor",

genericMeshObjectParams3)

local sphereParams5=

{

 ActorType = "sphere",

 Pos =

 {

 0.000000, 5.000000, 0.000000,

 },

 Radius = 1.000000,

 Segments = 16,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Color =

 {

 R = 0.000000, G = 0.501961, B = 1.000000, A = 1.000000,

 },

}

EventManager:TriggerEvent("request_new_actor", sphereParams5)

local teapotParams6=

{

 ActorType = "teapot",

 Color =

 {

 R = 0.501961, G = 0.000000, B = 0.501961, A = 1.000000,

 },

 Mat =

 {

 _11 = 1.000000, _12 = 0.000000, _13 = 0.000000, _14 =

0.000000,

 _21 = 0.000000, _22 = 1.000000, _23 = 0.000000, _24 =

0.000000,

 _31 = 0.000000, _32 = 0.000000, _33 = 1.000000, _34 =

0.000000,

 _41 = 0.000000, _42 = 1.500000, _43 = 0.000000, _44 =

1.000000,

 },

}

EventManager:TriggerEvent("request_new_actor", teapotParams6)

Each actor‘s parameters are stored in a Lua table. The name of the table is the type of

ActorParams you are saving and the actor ID. This ensures that every table has a unique

name. The first value in the table is the actor type, followed by the parameters specific for

that actor type. For spheres, you save the position information (since the rotation matrix for

a sphere is meaningless) and the color. GenericMeshObjects need to save the file that

its mesh is loaded from, its effect file, transformation matrix, and color. Grids must save

their color, transformation matrix, number of squares (for example, size), and their texture
file. Teapots save their color and transformation matrix. After each parameter block, there

is a function call to trigger a ―request new actor‖ event with the parameters. When the

LuaStateManager runs this file, it should trigger several ―request new actor‖ events with

the parameters for each actor.

Always Use Relative Path Names

Learning from someone else‘s mistakes is vastly better than

learning from your own. Did you notice the file specification

for XFile and FXFile in the previous code snippet? You

should never do it this way in a commercial game editor,

since it makes it impossible for you to move the game to a
new directory or allow content developers to store editor files

on different hard disks. Always store relative path names
from your content root directory.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The purpose of the SaveLevel function is to construct this Lua file. It is declared in

Source\Editor\EditorGlobalFunctions.cpp:

void SaveLevel(char fileName)

{

 FILE * pFile;

 pFile = fopen (fileName, "w");

 if (!pFile)

 {

 return;

 }

 EditorGame* pGame = (EditorGame*)g_pApp->m_pGame;

 if (!pGame)

 {

 return;

 }

 ActorMap::iterator itr;

 int actorArrayIndex;

 // To save out our level, we want to iterate through all the

actors

 // and then write out information that will enable the editor

to

 // recreate and reposition each actor when we want to reload

this level

 for (itr = pGame->GetActorMapBegin(), actorArrayIndex = 0;

 itr != pGame->GetActorMapEnd() &&

 actorArrayIndex < pGame->GetNumActors(); itr++,

actorArrayIndex++)

 {

 shared_ptr<IActor> pActor = itr->second;

 if (!pActor)

 {

 continue;

 }

 shared_ptr<ActorParams> pActorParams = pActor-

>VGetParams();

 if (!pActorParams)

 {

 continue;

 }

 ActorId actorId;

 optional<ActorId> maybeID = pActor->VGetID();

 if (maybeID.valid())

 {

 actorId = *maybeID;

 }

 else

 {

 continue;

 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 switch (pActor->VGetType())

 {

 case AT_Sphere:

 {

 // For the sphere, the relevant params we want to

save are its

 // radius and segments. We don't care about its

transform matrix

 // since, as a sphere, the only thing that really

matters is its

 // position.

 WriteBeginningParamsBlock(pFile, "sphere", actorId);

 WritePosParams(pFile, pActor-

>VGetMat().GetPosition());

 shared_ptr<SphereParams> sphereParams =

 boost::static_pointer_cast<SphereParams>(

pActorParams);

 fprintf(pFile, " Radius = %f,\n", sphereParams-

>m_Radius);

 fprintf(pFile, " Segments = %i,\n", sphereParams-

>m_Segments);

 WriteColorParams(pFile, sphereParams->m_Color);

 WriteEndParamsBlock(pFile, "sphere", actorId);

 }

 break;

 case AT_Teapot:

 {

 // We want to write out the matrix params for the

teapot, since

 // we're interested in saving its position and

rotation.

 WriteBeginningParamsBlock(pFile, "teapot", actorId);

 shared_ptr<TeapotParams> teapotParams =

 boost::static_pointer_cast<TeapotParams>(

pActorParams);

 WriteColorParams(pFile, teapotParams->m_Color);

 WriteMatrixParams(pFile, pActor->VGetMat());

 WriteEndParamsBlock(pFile, "teapot", actorId);

 }

 break;

 case AT_Grid:

 {

 // The grid contains some extra information, like

its texture and

 // number of squares.

 WriteBeginningParamsBlock(pFile, "grid", actorId);

 shared_ptr<GridParams> gridParams =

 boost::static_pointer_cast<GridParams>(

pActorParams);

 WriteColorParams(pFile, gridParams->m_Color);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 WriteMatrixParams(pFile, pActor->VGetMat());

 fprintf(pFile, " Texture = \"%s\",\n", gridParams-

>m_Texture);

 fprintf(pFile, " Squares = %i,\n", gridParams-

>m_Squares);

 WriteEndParamsBlock(pFile, "grid", actorId);

 }

 break;

 case AT_GenericMeshObject:

 {

 WriteBeginningParamsBlock(pFile,

"genericMeshObject", actorId);

 shared_ptr<GenericMeshObjectParams>

genericMeshObjectParams =

boost::static_pointer_cast<GenericMeshObjectParams>(

 pActorParams);

 WriteColorParams(pFile, genericMeshObjectParams-

>m_Color);

 WriteMatrixParams(pFile, pActor->VGetMat());

 std::string meshFileName(genericMeshObjectParams-

>m_XFileName);

 std::string effectFileName(genericMeshObjectParams-

>m_FXFileName);

 ReplaceAllCharacters(meshFileName, "\\", "\\\\");

 ReplaceAllCharacters(effectFileName, "\\", "\\\\");

 fprintf(pFile, " XFile = \"%s\",\n",

meshFileName.c_str());

 fprintf(pFile, " FXFile = \"%s\",\n",

effectFileName.c_str());

 WriteEndParamsBlock(pFile, "genericMeshObject",

actorId);

 }

 break;

 default:

 break;

 };

 }

 fclose (pFile);

}

A new File object is created at the beginning of the function. The entire actor list is iterated,
with each actor type having a custom bit of code to save its unique structure.

WriteBeginningParamsBlock() is called for every actor type, since the beginning of

each parameter block in the save file has the same format:

void WriteBeginningParamsBlock(FILE pFile, std::string

paramType, ActorId

 actorId)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

{

 // Each param block in a lua file starts the same way. The

only difference

 // is in the type of actor, and their id - which we add to

make sure each

 // param block is unique.

 fprintf(pFile, "local %sParams%i=\n", paramType.c_str(),

actorId);

 fprintf(pFile, "{\n");

 fprintf(pFile, " ActorType = \"%s\",\n",

paramType.c_str());

}

WriteBeginningParamsBlock() writes out the type of the parameters you are saving

and appends the actor ID to the end. Each data type stored in the actor parameters gets its

own method. The first two are for a Mat4×4 object and a Vec3 object:

void WriteMatrixParams(FILE* pFile, const Mat4×4 &mat)

{

 fprintf(pFile, " Mat =\n");

 fprintf(pFile, " {\n");

 for(int i = 0; i < 4; i++)

 {

 for (int j = 0; j < 4; j++)

 {

 fprintf(pFile, " _%i%i = %f,\n", i+1, j+1,

mat.m[i][j]);

 }

 }

 fprintf(pFile, " },\n");

}

void WritePosParams(FILE* pFile, const Vec3 &pos)

{

 fprintf(pFile, " Pos =\n");

 fprintf(pFile, " {\n');

 fprintf(pFile, " %f,\n", pos.x);

 fprintf(pFile, " %f,\n", pos.y);

 fprintf(pFile, " %f,\n", pos.z);

 fprintf(pFile, " },\n");

}

If this is an actor type that saves its transformation matrix, you call

WriteMatrixParams(), which iterates through all the matrix values in the

transformation matrix and writes it to your level file. If this is an actor type that saves its

position, you call WritePosParams(), which writes the position information.

All the actor types have a color parameter, so that gets written to the save file using

WriteColorParams():

void WriteColorParams(FILE* pFile, const Color &color)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

{

 fprintf(pFile, " Color =\n");

 fprintf(pFile, " {\n');

 fprintf(pFile, " R = %f,\n", color.r);

 fprintf(pFile, " G = %f,\n", color.g);

 fprintf(pFile, " B = %f,\n", color.b);

 fprintf(pFile, " A = %f,\n", color.a);

 fprintf(pFile, " },\n");

}

A few of the actor types have very specific parameters, like radius or squares. For those
parameters, you write those to file directly, rather than using any helper functions.

Some actors contain filenames in their parameter lists, such as the GenericMeshObject.

Unfortunately, the filename contains single instances of the backslash character, \, which is

interpreted as an escape character in Lua. The ReplaceAllCharacters() function can

replace all instances of the single backslash with two backslashes, like this \\, which will

create valid directory paths in Lua. This is a lot simpler to do in C#, where the replace

function is built into the std::string class!

void ReplaceAllCharacters(std::string& origString, std::string

subString,

 std::string newSubString)

{

 size_t subStringPos = origString.find(subString, 0);

 while (subStringPos != std::string.npos)

 {

 origString.replace(subStringPos, subString.length(),

newSubString);

 subStringPos += newSubString.length();

 subStringPos = origString.find(subString, subStringPos);

 }

}

After saving all the parameters, WriteEndParamsBlock() closes off the parameter

block in the save file:

void WriteEndParamsBlock(FILE* pFile, std::string paramType,

ActorId actorId)

{

 // Each param block in a lua file ends the same way. We make

sure to

 // get the actor id and the actor type, so we can add a final

line at the

 // end of the param block that will cause the Lua Manager to

trigger

 // a new event when this file is reloaded.

 fprintf(pFile, "}\n");

 fprintf(pFile, "EventManager:TriggerEvent(

\"request_new_actor\",

 %sParams%i)\n", paramType.c_str(), actorId);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

}

WriteEndParamsBlock() also writes the function call that will trigger the ―request new

actor‖ event.

Future Work

Well, that‘s it for our simple game editor! Woo! As I‘ve mentioned throughout this chapter,
this is by no means a complete set of features. If you feel compelled to take this code and

tweak, you may want to add additional functionality. One thing you should do early on is

integrate a real physics system into the level editor so you can see interactions between
actors and the environment. You‘ll also want to be able to export an archive file that

contains the resources used by the levels you create. This saves you the hassle of having to
hunt for all the textures, meshes, and shaders you used in your level if you want to open

your level on another machine. And you‘ll also want to add mouse-driven actor position and
orientation, an undo/redo feature, an ability to launch a running game, simultaneous user

configurable views, and about 10,000 other features. Like most chapters in this book, a few
dozen pages is just not enough to really cover such a deep subject, but it is enough to get

you started.

Special Thanks

I‘d like to thank Mr. Mike for giving me the opportunity to write about level editors. Having

been on both ends, as a level designer and as a tools programmer, it‘s been a real hoot
being able to write about this subject.

Further Reading

Online

 http://msdn.microsoft.com: A lot of the reference material in MSDN is hair-

rippingly frustrating, but they‘ve got some good examples on how to set up C#

projects.

 http://blogs.msdn.com/csharpfaq/default.aspx: And while we‘re talking about

C#, this FAQ is a helpful guide to some common questions.

 www.swig.org/: It was sometimes frustrating getting the code to run in a

managed environment. As you can see, I eventually went with exporting C-style
functions, but ideally you‘d want to be able to export entire classes. SWIG will take

your C++ classes and wrap them in a manner that is usable from C#. Not only that,
but it‘ll wrap your classes for other languages as well!

 www.garagegames.com/: The Torque Game Engine is one of the most

inexpensive game engines you can find, and it comes with a level editor that enables
you to script in game events.

../../default26.htm
../../default.aspx
../../default27.htm
../../default28.htm
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 www.unrealtechnology.com/: I can‘t have a list of game editor resources and

not mention Unreal. They probably have the most in-depth, feature-rich level editor

out there. It comes at a pretty hefty cost if you‘re licensing Unreal to develop a
game, but if you just want to use the editor itself, just pick up a copy of Unreal

Tournament 3.

Chapter 21. Debugging Your Game

In This Chapter

 The Art of Handling Failure

 Debugging Basics

 Debugging Techniques

 Different Kinds of Bugs

 Parting Thoughts

 Further Reading

By the end of any game development project, the programmers and their teammates spend
all of their time fixing bugs and tweaking performance. As important as debugging is

(especially in game development), techniques in debugging are rarely taught. They tend to
just come from experience, or are traded around the programming team. Since I‘m

communicating to you through a book, we can‘t trade much, but since you bought the book,

I think we can call it even.

Games are complicated pieces of software, and they push every piece of hardware in the

system. Bugs are usually pilot error, but there are plenty of cases where bugs trace their

roots to the compiler, operating system, drivers, and even specific pieces of hardware. Bugs
also happen as a result of unexpected interactions between code written by different

programmers; each module functions perfectly in a unit test but failures are seen after they
are integrated. Programmers spend lots of time hunting down issues in code they didn‘t

write.

If you are going to have a chance in hell of fixing broken code, whether you wrote it or not,
you should have a few ideas and techniques in your toolbox. I‘ve often considered myself a

much better debugger than a programmer, which is lucky because I tend to find bugs
caused by my own flawed code pretty fast. As I say, be careful of harping on other people‘s

mistakes, because the next person to screw up could be you! This happened, I‘m sure,
because of how I learned to program. I programmed for years in BASIC on the old Apple][,

which didn‘t have a debugger. When I went to college, I programmed in PASCAL on the VAX

mini computer at the University of Houston. After four years of college, I noticed an odd-
looking screen in the computer lab. I asked the person sitting there what I was seeing. ―A

debugger,‖ he replied. ―What‘s a debugger?‖ I asked. I got this blank stare back as if I‘d
asked what electricity was.

I‘d spent my entire college experience coding programs without using a symbolic debugger.

Needless to say, programming got a lot easier after I was introduced to my first debugger,
but the experience I gained without one left me with some good programming practices and

solution strategies that you can use whether you use debuggers or not.

../../default29.htm
../../ch21lev1sec1#ch21lev1sec1
../../ch21lev1sec2#ch21lev1sec2
../../ch21lev1sec3#ch21lev1sec3
../../ch21lev1sec4#ch21lev1sec4
../../ch21lev1sec5#ch21lev1sec5
../../ch21lev1sec6#ch21lev1sec6
http://lib.ommolketab.ir
http//lib.ommolketab.ir

I need to warn you up front that you‘re going to see some assembly code and other heavy

metal in this chapter. You simply can‘t perform the task of debugging without a basic
working knowledge of assembly code and how the CPU really works. This is not a gentle

chapter, because we‘re not discussing a gentle problem. However, it‘s not brutally hard to
learn assembly, and you have an excellent teacher—your debugger.

All debuggers, Visual Studio included, let you look at your source code at the same time as

the assembly. Take some time to learn how each C++ statement is broken down into its
assembly instructions, and you‘ll end up being a much better programmer for it. Fear not—

I‘m with you in spirit, and I wasn‘t born with a full knowledge of assembly. You can learn it
the same way I did, which was playing with the debugger.

The Art of Handling Failure

If you are looking for some wisdom about handling personal failure, stop reading and call a
shrink. My focus here is to discuss application failure, the situation where some defensive

code has found an anomaly and needs to handle it. There‘s a great conversation you can
start with a group of programmers about how to handle errors or failures in games. The

subject has more gray area than you‘d think, and therefore doesn‘t have a single best
strategy. The debate starts when you ask if games should ignore failures or if they should

stop execution immediately.

I‘m talking about the release build, of course. The debug build should always report any
oddity with an assert so that programmers can catch more bugs in the act. The release

build strips asserts, so there‘s a good question about what should happen if the assert

condition would have been satisfied in the release build. Does the game continue, or should
it halt? As with many things, there‘s no right answer. Here‘s an example of two functions

that handle the same error in two different ways:

void DetectFixAndContinue(int variable)

{

 if (variable < VARIABLE_MINIMUM)

 {

 variable = VARIABLE_MINIMUM;

 assert(0 && "Parameter is invalid");

 }

 // More code follows...

}

void DetectAndBail(int variable)

{

 if (variable < VARIABLE_MINIMUM)

 {

 throw ("Parameter is invalid");

 }

 // More code follows...

}

The first function resets the errant variable and calls an assert to alert a programmer that
something has gone wrong. The execution continues, since the variable now has a legal

value. The second function throws an exception, clearly not allowing the execution to
continue.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Use Text Strings in Assert Statements

Notice the assert statement in this example. It’s a conditional that

includes a text string. Since the conditional is always false, the assert
will always fire. The text string will appear in the assert dialog box,

and can give testers a clue about reporting the problem and even

what to do about it. You might add, “You can always ignore this” to
the text string so testers can continue playing.

The debate most programmers have goes something like this: If you ever reach code where
an assert condition in debug mode evaluates to false, then something has gone horribly
wrong. Since you can‘t predict the nature of the failure, you must assume a worst-case

scenario and exit the program as elegantly as possible. After all, the failure could be bad
enough to corrupt data, save game files, or worse.

The other side of the argument takes a kinder, gentler approach. Failures can and will

happen, even in the shipping product. If the program can fix a bogus parameter or ignore
corrupt data and continue running, it is in the best interests of the player to do so. After all,

they might get a chance to save their game and reload it later without a problem. Since

we‘re working on computer games, we have the freedom to fudge things a little; there are
no human lives at stake, and there is no property at risk due to a program failure. Both

arguments are valid. I tend to favor the second argument because computer games are
frequently pushed into testing before they are ready and released way before testing is

completed. Bugs will remain in the software, and if the game can recover from them it
should.

That‘s not to say that games can‘t find themselves in an unrecoverable situation. If a

computer game runs out of memory, you‘re hosed. You have no choice but to bring up a
dialog and say, ―Sorry dude. You‘re hosed,‖ and start throwing exceptions. If you‘re lucky,

your exit code might be able to save the game into a temporary file, much like Microsoft
Word sometimes does when it crashes. When the game reloads, it can read the temporary

file and attempt to begin again just before everything went down the toilet. If this fails, you

can exit again and lose the temporary file. All hope is lost. If it succeeds, your players will
worship the ground you walk on. Trust me, as many times as Microsoft Word has recovered

pieces of this book after my portable‘s batteries ran out of electrons, I can appreciate a little
data recovery.

Some Bugs are Acceptable, aren’t they?

Never forget that your game’s purpose is entertainment. You aren’t
keeping an airplane from getting lost, and you aren’t reporting

someone’s heartbeat. Remember that games can get away with lots of
things that other software can’t. If you are relatively sure that you can

make a choice to allow the game to continue instead of crash, I
suggest you do it.

Of course, this is true unless you work on a massive multiplayer title,

and you are working on anything server side. Bugs here affect
everyone on the server, and can result in actual lost value for players,

and in turn the company. In that case, you get to code and test every
bit as carefully as the programmer down the street working on

banking software.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Use @Err, Hr in your Watch Window

If a Win32 function fails, you must usually call GetLastError() to

determine the exact nature of the error. Instead, simply put @err,hr
in your debugger’s watch window. This will show you a string-

formatted version of the error.

Debugging Basics

Before you learn some debugging tricks, you should know a little about how the debugger
works and how to use it. Almost every computer has special assembly language instructions

or CPU features that enable debugging. The Intel platform is no exception. A debugger
works by stopping execution of a target program and associating memory locations and

values with variable names. This association is possible through symbolic information that is
generated by the compiler. One human readable form of this information is a MAP file.

Here‘s an example of a MAP file generated by the linker in Visual Studio:

Sample

 Timestamp is 3c0020f3 (Sat Nov 24 16:36:35 2001)

 Preferred load address is 00400000

 Start Length Name Class

 0001:00000000 000ab634H .text CODE

 0001:000ab640 00008b5fH .text$AFX_AUX CODE

 0001:000b41a0 0000eec3H .text$AFX_CMNCTL CODE

 0002:00000000 000130caH .rdata DATA

 0002:000130d0 00006971H .rdata$r DATA

 0002:000275d0 00000000H .edata DATA

 0003:00000000 00000104H .CRT$XCA DATA

 0003:00000104 00000109H .CRT$XCC DATA

 0003:00001120 00026e6aH .data DATA

 0003:00027f90 00011390H .bss DATA

 0004:00000000 00000168H .idata$2 DATA

 0004:00000168 00000014H .idata$3 DATA

 0005:00000000 00000370H .rsrc$01 DATA

 Address Publics by Value Rva+Base

Lib:Object

0001:00000b80 ??0GameApp@@QAE@XZ 00401b80 f

GameApp.obj

0001:00000ca0 ??_EGameApp@@UAEPAXI@Z 00401ca0 f i

GameApp.obj

0001:00000ca0 ??_GGameApp@@UAEPAXI@Z 00401ca0 f i

GameApp.obj

http://lib.ommolketab.ir
http//lib.ommolketab.ir

0001:00000d10 ??1GameApp@@UAE@XZ 00401d10 f

GameApp.obj

0001:00000e20 ?OnClose@GameApp@@UAEXXZ 00401e20 f

GameApp.obj

0001:00000ec0 ?OnRun@GameApp@@UAE_NXZ 00401ec0 f

GameApp.obj

0001:00001a10 ??0CFileStatus@@QAE@XZ 00402a10 f i

GameApp.obj

0001:00001d00 ?OnIdle@GameApp@@UAEHJ@Z 00402d00 f

GameApp.obj

0001:00001e30 ?Update@GameApp@@UAEXK@Z 00402e30 f

GameApp.obj

The file maps the entire contents of the process as it is loaded into memory. The first
section describes global data. The second section, which is much more interesting and

useful, describes the memory addresses of methods and functions in your game.

Notice first that the symbol names are ―munged.‖ These are the actual name of the

methods after the C++ symbol manager incorporates the class names and variable types

into the names. The number that appears right after the name is the actual memory
address of the entry point of the code. For example, the last function in the MAP file is

?Update@GameApp@@UAEXK@Z and is loaded into memory address 0x00402e30. You can

use that information to track down crashes.

Have you ever seen a crash that reports the register contents? Usually, you‘ll see the entire

set of registers: EAX, EBX, and so on. You‘ll also see EIP, the extended instruction pointer.
You may have thought that this dialog box was nothing more than an annoyance—a slap in

the face that your program is flawed. Used with the MAP file, you can at least find the name
of the function that caused the crash. Here‘s how to do it:

1. Assume the crash dialog reported an EIP of 0x00402d20.

2. Looking at the MAP file above, you‘ll see that GameApp::OnIdle has an entry

point of 0x00402d00 and GameApp::Update has an entry point of 0x00402e30.

3. The crash thus happened somewhere inside GameApp::OnIdle, since it is located

in between those two entry points.

A debugger uses a much more complete symbol table. For example, Visual Studio stores

these symbols in a PDB file, or program database file. That‘s one of the reasons it‘s so huge
because it stores symbolic information of every identifier in your program. The debugger

can use this information to figure out how to display the contents of local and global
variables and figure out what source code to display as you step through the code. This

doesn‘t explain how the debugger stops the debugged application cold in its tracks,

however. That trick requires a little help from the CPU and a special interrupt instruction. If
you use Visual Studio and you are running on an Intel processor, you can try this little

program:

void main()

{

 __asm int 3

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You may never have seen a line of code that looks like this. It is a special line of code that

allows inline assembly. The assembly statement evokes the breakpoint interrupt. Without
dragging you through all the gory details of interrupt tables, it suffices to say that a

program with sufficient privileges can ―trap‖ interrupts so that when they are evoked, a
special function is called. This is almost exactly like registering a callback function, but it

happens at a hardware level. DOS-based games used to grab interrupts all the time to
redirect functions such as the mouse or display system to their own evil ends. Debuggers

trap the breakpoint interrupt, and whenever you set a breakpoint, the debugger overwrites
the opcodes, or the machine level instructions, at the breakpoint location with those that

correspond to __asm int 3. When the breakpoint is hit, control is passed to the

debugger, and it puts the original instructions back. If you press the ―Step into‖ or ―Step
over‖ commands, the debugger finds the right locations for a new breakpoint and simply

puts it there without you ever being the wiser.

Hard-Coded Breakpoints are Cool

I’ve found it useful to add hard-coded breakpoints, like the one in the

earlier code example, to functions in the game. It can be convenient
to set one to make sure that if control ever passes through that

section of code, the debugger will always trap it. If a debugger is not
present, it has no effect whatsoever. Windows programmers on other

processors can use SetDebugBreak().

So now you have the most basic understanding of how a debugger does its work. It has a
mechanism to stop a running program in its tracks, and it uses a compiler and linker

generated data file to present symbolic information to programmers.

Using the Debugger

When you debug your code, you usually set a few breakpoints and watch the contents of
variables. You have a pretty good idea of what should happen, and you‘ll find bugs when

you figure out why the effect of your logic isn‘t what you planned. This assumes a few
things. First, you know where to set the breakpoints, and second, you can interpret the

effect the logic has on the state of your game. These two things are by no means trivial in

all cases. This problem is made difficult by the size and complexity of the logic.

Where is that Bug Anyway?

It‘s not necessarily true that a screwed-up sound effect has
anything at all to do with the sound system. It could be a

problem with the code that loads the sound from the game
data files, or it could be a random memory ―trasher‖ that

changed the sound effect after it was loaded. The problem

might also be a bad sound driver, or it might even be a
bogus sound effect file from the original recording. Knowing

where to look first has more to do with gut feeling than
anything else, but good debugger skills can certainly speed

up the process of traversing the fault tree—a catch phrase
NASA uses to describe all possible permutations of a possible

systems failure.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Debuggers like the one in Visual Studio can present an amazing amount of information, as

shown in Figure 21.1.

Figure 21.1. Using the Visual Studio debugger.

The debugger provides some important windows beyond the normal source code window
you will use all of the time.

 Call stack: From bottom to top, this window shows the functions and parameters

that were used to call them. The function at the top of the list is the one you are

currently running. It‘s extremely useful to double-click on any row of the call stack

window; the location of the function call will be reflected in the source code window.
This helps you understand how control passes from the caller to the called.

 Watch/Locals/etc: These windows let you examine the contents of variables.

Visual Studio has some convenient debug windows like ―Locals‖ and ―This‖ that keep

track of specific variables so you don‘t have to type them in yourself.

 Breakpoints: This window shows the list of breakpoints. Sometimes you want to

enable/disable every breakpoint in your game at once or perform other bits of
homework.

 Threads: This is probably the best addition to the debug window set in Visual

Studio. Most games run multiple threads to manage the sound system, resource

caching, or perhaps the AI. If the debugger hits a breakpoint or is stopped, this
window will show you what thread is running. This window is the only way to

distinguish between different threads of execution, and it is critical to debugging

multithreaded applications. If you double-click on any line in this window, the source
window will change to show the current execution position of that thread.

 Disassembly: This is a window that shows the assembly code for the current

function. Sometimes you need to break a C++ statement down into its components

javascript:moveTo('ch21fig01');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

to debug it or perhaps skip over a portion of the statement. I‘ll have more to say

about these techniques later.

Beyond the windows, there are some actions that you‘ll need to know how to perform:

 Set/Clear Breakpoints: A basic debugging skill.

 Stepping the Instruction Pointer: These are usually controlled by hot keys

because they are so frequently used. Debuggers will let you execute code one line at

a time, and either trace into functions or skip over them (F11 and F10). There‘s also
a really useful command that will let you step out of a current function (Shift-F11)

without having to watch each line execute.

 Setting the Instruction Pointer: This takes a little care to use properly, since you

can mess up the stack. I like to use it to skip over function calls or skip back to a
previous line of code so that I can watch it execute again.

As we run through some debugging techniques I‘ll refer to these windows and actions. If

you don‘t know how to do them in your debugger, now is a good time to read the docs and
figure it out.

Installing Windows Symbol Files

If you‘ve ever had a program crash deep in some Windows API call, your call stack might

look like this:

 ntdll.dll!77f60b6f()

 ntdll.dll!77fb4dbd()

 ntdll.dll!77f79b78()

 ntdll.dll!77fb4dbd()

Useless, right? Yes, that call stack is useless, but only because you didn‘t install the
Windows symbol files. Even though I write letters to Bill Gates every day, Microsoft still

hasn‘t published the source code for pretty much anything they ever wrote. Yet they have,
in their infinite wisdom, graciously supplied the next best thing.

You can install the debug symbols for your operating system, and that indecipherable call

stack will turn into something you and I can read. Here‘s the same debug stack after the
debug symbols have been installed:

 ntdll.dll!_RtlDispatchException@8() + 0x6

 ntdll.dll!_KiUserExceptionDispatcher@8() + 0xe

 00031328()

 ntdll.dll!ExecuteHandler@20() + 0x24

 ntdll.dll!_KiUserExceptionDispatcher@8() + 0xe

 000316f4()

 ntdll.dll!ExecuteHandler@20() + 0x24

 ntdll.dll!_KiUserExceptionDispatcher@8() + 0xe

 00031ac0()

You might not know exactly what that call stack represents, but now you have a function
name to help you, so you can search the Web or MSDN for help, whereas before you

installed the debug symbols, you had nothing but a number.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

There are a few ways to install debug symbols. You can install them from the Visual Studio

CD-ROM, or you can download them from MSDN. Search for ―System Debug Symbols,‖ and
you‘re sure to find them. The last time I downloaded them they were more than 170MB, so

make sure you have reasonable bandwidth. Once you have the right symbols installed for
your OS, the debugger will happily report the loaded symbols when you begin a debug

session:

'BCard2d.exe': Loaded 'C:\WINDOWS\system32\ntdll.dll', Symbols

loaded.

'BCard2d.exe': Loaded 'C:\WINDOWS\system32\kernel32.dll',

Symbols loaded.

'BCard2d.exe': Loaded 'C:\WINDOWS\system32\gdi32.dll', Symbols

loaded.

 Etc., etc....

The problem with this solution is that the symbols you install will eventually become stale
since they won‘t reflect any changes in your operating system as you update it with service

packs. You can find out why symbols aren‘t loading for any EXE or DLL with the help of

DUMPBIN.EXE, a utility included with Visual Studio. Use the /PDBPATH:VERBOSE switch as
shown here:

Microsoft (R) COFF/PE Dumper Version 7.00.9466

Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file c:\windows\system32\user32.dll

File Type: DLL

 PDB file 'c:\windows\system32\user32.pdb' checked. (File not

found)

 PDB file 'user32.pdb' checked. (File not found)

 PDB file 'C:\WINDOWS\symbols\dll\user32.pdb' checked. (PDB

signature

 mismatch)

 PDB file 'C:\WINDOWS\dll\user32.pdb' checked. (File not

found)

 PDB file 'C:\WINDOWS\user32.pdb' checked. (File not found)

 Summary

 2000 .data

 4000 .reloc

 2B000 .rsrc

 54000 .text

Do you see the ―PDB signature mismatch‖ line about halfway down this output? That‘s what

happens when the user32.pdb file is out of sync with the user32.dll image on your
computer. It turns out this is easy to fix, mainly because Microsoft engineers had this

problem multiplied by about 100,000. They have thousands of applications out there with
sometimes hundreds of different builds. How could they ever hope to get the debug symbols

straight for all these things? They came up with a neat solution called the Microsoft Symbol
Server. It turns out you can use this server, too. Here‘s how to do it.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

First, install the Microsoft Debugging Tools, which can be found at

www.microsoft.com/ddk/debugging. Use the SYMCHK utility to pull the latest symbol
information from Microsoft that matches a single EXE or DLL, or all of the ones in your

Windows directory. Don‘t grab them all, though, if you can help it because you‘ll be
checking and downloading hundreds of files. Here‘s how to grab an individual file:

C:\Program Files\Debugging Tools for Windows>symchk

 c:\windows\system32\user32.dll /s

SRV*c:\windows\symbols*http://msdl.microsoft.com/download/

 symbols

SYMCHK: FAILED files = 0

SYMCHK: PASSED + IGNORED files = 1

This crazy utility doesn‘t actually put the new USER32.DLL where you asked. On a Windows
XP system, it actually stuck it in C:\WINDOWS\Symbols\user32.pdb\3DB6D4ED1, which
Visual Studio will never find. The reason it does this is to keep all the USER32.PDB files from

different operating systems or different service packs apart. If you installed the Windows

symbols from MSDN into the default location, you‘ll want to copy it back into
C:\Windows\Symbols\dll where Visual Studio will find it.

You can also set up your own symbol server, and even include symbols for your own

applications. To find out how to do this, go up to http://msdn.microsoft.com and search for
―Microsoft Symbol Server.‖

Debugging Full-Screen Games

Back when I wrote the first edition of this book, multiple monitor setups were rare. Now I
walk around my workplace and that‘s all I see. If you can afford it, a multiple monitor setup

is the easiest way to debug full-screen applications, and it is the only way to develop

console applications.

As much work as the Microsoft DirectX team has put into the effort of helping you debug

full-screen games, this still doesn‘t work very well if you have a single monitor setup. This

has nothing to do with the folks on DirectX; it has more to do with Visual Studio not
overriding exclusive mode of the display. One manifestation of the problem occurs when

your game hits a breakpoint while it‘s in full-screen mode. The game stops cold, but the
computer doesn‘t switch focus to the debugger. Basically, the only thing you can do at this

point is tap the F5 button to resume execution of the game.

If your game runs exclusively in full-screen mode, your only solution is a multimonitor
setup. Every programmer should have two monitors: one for displaying the game screen

and the other for displaying the debugger. DirectX will use the primary display for full-
screen mode by default. It is possible to write code that enumerates the display devices so

your game can choose the best display. This is a good idea because you can‘t count on
players to set their display properties up in the way that benefits your game. If your game

runs in windowed mode as well as full-screen mode, you have a few more options, even in a

single monitor setup.

../../debugging
../../default26.htm
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Deal with Directx Lost Devices and Resources

Most of the bugs in full-screen mode happen as a result of

switching from full-screen to windowed mode or vice versa.

This happens because DirectX features are lost and need to
be restored after the switch, something that is easily

forgotten by coders. Another problem that happens as a
result of the switch is that surfaces can have the wrong pixel

format. There‘s no guarantee that the full-screen pixel depth
and format is identical to that of windowed mode. When the

switch happens, lost or invalid surfaces refuse to draw and
return errors. Your program might handle these errors by

exiting or attempting to restore all the surfaces again. Of

course, since the surface in question won‘t get restored in
the first place, your game might get caught in a weird

obsessive and repetitive attempt to fix something that can‘t
be fixed.

It would be nice if you could simulate this problem entirely in windowed mode. To a large
extent, you can. If you‘ve followed the advice of the DirectX SDK, you always should check

your display surfaces to see if they have been lost before you perform any action on them.
It turns out that if you change your display settings while your game is running in windowed

mode, you will essentially simulate the event of switching between windowed mode and full-
screen mode. There are a few windows messages your game should handle to make this a

little easier. You can see how to do this in the Game Coding Complete source code. Just
look for ―WM_‖ and you‘ll see how all these messages are handled. You‘ll need to handle

WM_DISPLAYCHANGE, the message that is sent when the display changes, and

WM_ACTIVATE, the message that signifies gain and loss of focus.

Got Full-Screen Display Bugs?

About 90 percent of all full-screen display bugs can be found and
solved with a single monitor setup using windowed mode. Just start

your game, change the bit depth, and see what happens. The other 10
percent can only be solved with a multimonitor setup or via remote

debugging. It’s much easier to debug these problems on a

multimonitor rig, so make sure that at least one programmer has two
monitors.

Remote Debugging

One solution for debugging full-screen-only games is remote debugging. The game runs on
one computer and communicates to your development box via your network. One

interesting thing about this setup is that it is as close to a pristine runtime environment as
you can get (another way of saying it‘s very close to the environment people have when

actually playing the game). I don‘t know about you, but people like my Mom don‘t have a

copy of Visual Studio lying around. The presence of a debugger can subtly change the
runtime environment, something that can make the hardest, nastiest bugs very difficult to

find.

Remote debugging is a pain in the butt, not because it‘s hard to set up but because you
have to make sure that the most recent version of your game executable is easily available

http://lib.ommolketab.ir
http//lib.ommolketab.ir

for the remote machine. Most debuggers have a mechanism for remote debugging, and

Visual Studio is no exception. The dirty secret is that Visual Studio doesn‘t run on Win9x
architectures, which includes Windows 95, Windows 98, and Windows ME. Not that you‘d

want to run on these finicky operating systems, but it is a little surprising that remote
debugging is your only choice if you want to find OS-specific bugs in a Visual Studio

compiled application.

To Copy or to Share, that is the Question

Any wired or even a wireless network can allow you to share a

directory on your development machine and have the Win9x machine
read your game’s executable and data files right where you develop. If

your network is really slow or your game image is huge, it’s going to
be faster to copy the entire image of your game over to the test

machine and run it from there. The only problem with this solution is
that you have to constantly copy files from your development box

over to the test machine, and it’s easy to get confused regarding
which files have been copied where. On a fast network, you can also

eliminate file copying by sharing your development directory so the

remote machine can directly access the most recent build.

On the remote system, you will run a little utility that serves as a communications conduit
for your debugger. This utility for Visual Studio is called MSVSMON.EXE. Run a search for
this file where you installed Visual Studio and copy the contents of the entire directory to a

shared folder on your primary development machine. The utility runs on the remote

machine, and a convenient way to get it there is to place it in a shared spot on your
development machine. MSVSMON.EXE requires some of the DLLs in that directory and it‘s

small enough to just copy the whole thing to the remote machine.

Since the methods for running the remote debugger change with updates to Visual Studio,
the best way to learn how to do this is to go up to MSDN and search for ―Set Up Remote

Debugging.‖ There are a few steps you need to follow. First, you share or copy your
application to the remote machine. Next, run MSVSMON.EXE on the remote machine to

start the remote debugging monitor (see Figure 21.2). Back on your development machine,
set your debugging properties to launch a remote debugger, and the remote debugging

properties to find your remote machine. Make sure you have the right permissions or an
administrator account on the remote machine, or you won‘t be able to connect. You‘ll also

need to open ports in your firewall.

Figure 21.2. Running MSVSMON with the /noauth switch.

javascript:moveTo('ch21fig02');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Once you get the connection madness out of the way, the remote machine is ready to start
your game. Start the debugging session on your development machine (F5 in Visual

Studio), and you‘ll see your game initialize on the remote machine. When you find a bug
and rebuild your application, make sure that the remote machine has access to the most

recent bits.

Debugging Minidumps

UNIX programmers have had a special advantage over Win32 programmers since the

beginning of time because when a UNIX program crashes, the operating system copies the

entire memory image of the crashed program to disk. This is called a core dump.

Needless to say, the core dump is usually quite large. UNIX debuggers can read the core

dump and allow a programmer to look at the state of the process at the moment the crash

occurred. Assuming the symbol files for the executable in question are available, they can
see the entire call stack and even find the contents of local variables. This doesn‘t always

expose the bug entirely, as some crashes can happen as a result of a bug‘s misbehavior in a
completely separate part of the program, but this information is much better than a tester

just telling you the game crashed.

Win32 dump files have been debuggable by a little known Windows debugger called
WinDBG since the Windows NT days. These dump files were just as huge as the UNIX core

dumps. It didn‘t matter very much, since most Windows developers didn‘t even know that
WinDBG even existed—they always used the debugger in Visual Studio.

Since Windows XP applications don‘t just crash and burn, a little dialog box appears asking

you if you want to send the crash information to Microsoft. One button click and a few short
seconds later, and the dialog thanks you for your cooperation. What in the heck is going on

here? Windows is sending a minidump of the crashed application to Microsoft. A minidump,
as the name implies, is a tiny version of the UNIX style core dump. You can generate one

yourself by going into the Debug menu under Visual Studio and selecting ―Save Dump As...‖

when your application is sitting at a breakpoint. This tiny file stores enough information to
give you some clues about the crash.

For Windows geeks, it‘s time to let you in on a little secret: Visual Studio can debug these

very same minidump files. Here‘s how to reload it, because it isn‘t exactly obvious. Double-
click on the minidump file in the Windows Explorer, and it will launch a surprisingly blank

http://lib.ommolketab.ir
http//lib.ommolketab.ir

looking Visual Studio. The trick is to execute the minidump by hitting F5. Visual Studio will

prompt you to save a solution file. Go ahead and save it alongside the minidump. Once you
save, the last state of your debugged process will appear before your very eyes.

Keep your Source Tree and PDBS Forever

The minidump is really convenient, but there are a few

gotchas to using minidumps. First, you must ensure that the

minidump file matches exactly with the source code and
symbol tables that were used to build the executable that

crashed. This means that for any version of the executable
that goes into your test department, you must save a

complete build tree with source code and PDB files or the
minidump will be useless. Second, the minidump‘s SLN file

might need a hint about where to find the symbols. If the
source window shows up with nothing but an assembler, it‘s

likely that your source code tree can‘t be located. Open the

properties page, and you‘ll see only one item under the
Configuration tree: Debugging. Set the Symbol Path to the

directory containing your PDB files, and you‘ll see the source
tree.

The only thing left out of this discussion is how to have your game-generated minidump

files when bad goes to worse. You‘ll need to call the MiniDumpWrite-Dump() in your

general exception handler, which is one of the functions exported from DBGHELP.DLL. This
call will generate a DMP file. You can add more information to the DMP file if you define a

callback function that can insert more information into the dump file, such as some specific
game state information that might give a programmer a leg up on investigating the crash.

Minidumps Rock

In 2001, Microsoft introduced our team to using minidumps.
Microsoft‘s Dr. Watson team has established a huge database

of minidumps for applications like Office and every OS
release since XP. At first we were skeptical about using them.

We thought that these dump files wouldn‘t provide enough
information to diagnose crashes. We were wrong. After the

first week, we were able to diagnose and solve some of the
most elusive crashes in our game. Every Windows game

should make use of this technology.

Here‘s a simple class you can use to write your own minidumps:

#include "dbghelp.h"

class MiniDumper

{

protected:

 static MiniDumper *gpDumper;

 static LONG WINAPI Handler(struct _EXCEPTION_POINTERS

*pExceptionInfo);

 _EXCEPTION_POINTERS *m_pExceptionInfo;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 TCHAR m_szDumpPath[_MAX_PATH];

 TCHAR m_szAppPath[_MAX_PATH];

 TCHAR m_szAppBaseName[_MAX_PATH];

 LONG WriteMiniDump(_EXCEPTION_POINTERS *pExceptionInfo);

 virtual void VSetDumpFileName(void);

 virtual MINIDUMP_USER_STREAM_INFORMATION

*VGetUserStreamArray()

 { return NULL; }

public:

 MiniDumper(void);

};

// based on dbghelp.h

typedef BOOL (WINAPI *MINIDUMPWRITEDUMP)(HANDLE hProcess,

 DWORD dwPid, HANDLE hFile, MINIDUMP_TYPE DumpType,

 CONST PMINIDUMP_EXCEPTION_INFORMATION ExceptionParam,

 CONST PMINIDUMP_USER_STREAM_INFORMATION UserStreamParam,

 CONST PMINIDUMP_CALLBACK_INFORMATION CallbackParam);

MiniDumper *MiniDumper::gpDumper = NULL;

MiniDumper::MiniDumper()

{

 // Detect if there is more than one MiniDumper.

 assert(!gpDumper);

 if (!gpDumper)

 {

 // set the trap for all your crashes

 ::SetUnhandledExceptionFilter(Handler);

 gpDumper = this;

 }

}

LONG MiniDumper::Handler(_EXCEPTION_POINTERS *pExceptionInfo)

{

 LONG retval = EXCEPTION_CONTINUE_SEARCH;

 if (!gpDumper)

 {

 return retval;

 }

 return gpDumper->WriteMiniDump(pExceptionInfo);

}

LONG MiniDumper::WriteMiniDump(_EXCEPTION_POINTERS

*pExceptionInfo)

{

 LONG retval = EXCEPTION_CONTINUE_SEARCH;

 m_pExceptionInfo = pExceptionInfo;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 // You have to find the right dbghelp.dll.

 // Look next to the EXE first since the one in System32 might

be old (Win2k)

 HMODULE hDll = NULL;

 TCHAR szDbgHelpPath[_MAX_PATH];

 if (GetModuleFileName(NULL, m_szAppPath, _MAX_PATH))

 {

 TCHAR *pSlash = _tcsrchr(m_szAppPath, '\\');

 if (pSlash)

 {

 _tcscpy(m_szAppBaseName, pSlash + 1);

 *(pSlash+1) = 0;

 }

 _tcscpy(szDbgHelpPath, m_szAppPath);

 _tcscat(szDbgHelpPath, _T("DBGHELP.DLL"));

 hDll = ::LoadLibrary(szDbgHelpPath);

}

if (hDll==NULL)

{

 // If we haven't found it yet - try one more time.

 hDll = ::LoadLibrary(_T("DBGHELP.DLL"));

}

LPCTSTR szResult = NULL;

if (hDll)

{

 MINIDUMPWRITEDUMP pMiniDumpWriteDump =

 (MINIDUMPWRITEDUMP)::GetProcAddress(hDll,

"MiniDumpWriteDump");

 if (pMiniDumpWriteDump)

 {

 TCHAR szScratch [_MAX_PATH];

 VSetDumpFileName();

 // ask the user if they want to save a dump file

 if (::MessageBox(NULL, _T("There was an unexpected

error, would you

 like to save a diagnostic

file?"),

 NULL, MB_YESNO)==IDYES)

 {

 // create the file

 HANDLE hFile =

 ::CreateFile(m_szDumpPath, GENERIC_WRITE,

 FILE_SHARE_WRITE, NULL, CREATE_ALWAYS,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 FILE_ATTRIBUTE_NORMAL, NULL);

 if (hFile!=INVALID_HANDLE_VALUE)

 {

 _MINIDUMP_EXCEPTION_INFORMATION ExInfo;

 ExInfo.ThreadId = ::GetCurrentThreadId();

 ExInfo.ExceptionPointers = pExceptionInfo;

 ExInfo.ClientPointers = NULL;

 // write the dump

 BOOL bOK = pMiniDumpWriteDump(

 GetCurrentProcess(), GetCurrentProcessId(),

 hFile, MiniDumpNormal, &ExInfo,

 VGetUserStreamArray(), NULL);

 if (bOK)

 {

 szResult = NULL;

 retval = EXCEPTION_EXECUTE_HANDLER;

 }

 else

 {

 sprintf(szScratch, _T("Failed to save dump file

to '%s'

 (error %d)"),

m_szDumpPath,

 GetLastError());

 szResult = szScratch;

 }

 ::CloseHandle(hFile);

 }

 else

 {

 sprintf(szScratch, _T('Failed to create dump file

'%s' (error

 %d)"), m_szDumpPath,

GetLastError());

 szResult = szScratch;

 }

 }

 }

 else

 {

 szResult = _T("DBGHELP.DLL too old");

 }

 }

 else

 {

 szResult = _T("DBGHELP.DLL not found");

 }

 if (szResult)

 ::MessageBox(NULL, szResult, NULL, MB_OK);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 TerminateProcess(GetCurrentProcess(), 0);

 return retval;

}

void MiniDumper::VSetDumpFileName(void)

{

 _tcscpy(m_szDumpPath, m_szAppPath);

 _tcscat(m_szDumpPath, m_szAppBaseName);

 _tcscat(m_szDumpPath, _T(".dmp"));

}

If you want to save the minidump file with a different name, inherit from the MiniDump

class and overload VSetDumpFileName. One thing you might consider doing is putting a

timestamp in the dump filename so that one minidump file doesn‘t overwrite another. If

you‘d like to include your own data stream, overload VGetUserStreamArray().

Here‘s an example of this class at work:

MiniDumper gMiniDumper;

int main()

{

 *(int *)0 = 12; // CRASH!!!!!

 return 0;

}

Just declare a global singleton of the MiniDumper, and when an unhandled exception

comes along, your player will be asked if he or she wants to write out some diagnostic
information. The minidump file will appear in the same directory as your executable, ready

for debugging.

Debugging Techniques

I think I could write an entire book about debugging. Certainly many people have, and for
good reason. You can‘t be a good programmer unless you have at least passable debugging

skills. Imagine for a moment that you are a programmer who never writes buggy code. Hey,
stop laughing. I also want you to close your eyes and imagine that you have absolutely no

skill at debugging. Why would you? Your code is always perfect! But the moment you are

assigned to a team of programmers, your days are numbered. If you can‘t solve logic
problems caused by another programmer‘s code, you are useless to a team.

If you have good debugging skills, you‘ll have much more fun programming. I‘ve always

looked at really tough bugs as a puzzle. Computers are deterministic, and they execute
instructions without interpretation. That truth paves your way to solve every bug if you

devote enough patience and skill to the problem.

Debugging Is an Experiment

When you begin a bug hunt, one implication is that you know how to recognize a properly

running program. For any piece of code, you should be able to predict its behavior just by

carefully reading each line. As an aggregate of modules, a large program should, in theory,
accept user input and game data and act in a deterministic way.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Debugging a program requires that you figure out why the behavior of the program is

different than what you expect. Certainly the computer‘s CPU isn‘t surprised. It executes
exactly what you instructed. This delta is the cornerstone of debugging. As each instruction

executes, the programmer tests the new state of the process against the predicted state by
looking at memory and the contents of variables. The moment the prediction is different

than the observed, the programmer has found the bug.

Clearly, you have to be able to predict the behavior of the system given certain stimuli,
such as user input or a set of game data files. You should be able to repeat the steps to

watch the behavior on your machine or anyone else‘s machine. When the bug manifests
itself as a divergence from nominal operation, you should be able to use what you observed

to locate the problem or at least narrow the source of the problem. Repeat these steps
enough times, and you‘ll find the bug. What I‘ve just described is the method any scientist

uses to perform experiments.

It might seem odd to perform experiments on software, certainly odd when you wrote the
software in question. Scientists perform experiments on complicated phenomena that they

don‘t understand in the hopes that they will achieve knowledge. Why then must

programmers perform experiments on systems that spawned from their own minds? The
problem is that even the simplest, most deterministic systems can behave unpredictably

given particular initial states. If you‘ve never read Stephen Wolfram‘s book, A New Kind of
Science, take a few months off and try to get through it. This book makes some surprising

observations about complex behavior of simple systems. I‘ll warn you that once you read it,
you may begin to wonder about the determinism of any system, no matter how simple!

Complex and unpredicted behavior in computer programs requires setting up good

debugging experiments. If you fell asleep during the lecture in high school on the scientific
method, now‘s a good time to refresh your memory. The examples listed in Table 21.1 show

you how to run a successful experiment, but there‘s a lot more to good debugging than
blindly running through the experimental method.

Hypothesis, Experimentation, and Analysis

Debugging is a serious scientific endeavor. If you approach each
debugging task as an experiment, just like you were taught in high

school, you’ll find that debugging is more fun and less frustrating.

Table 21.1. How to Run a Successful Debugging Experiment

Scientific Method as It

Applies to Software

Systems Example #1 Example #2

Step 1: Observe the behavior

of a computer game.

Observation: A call to

OpenFile() always fails.

Observation: The game crashes

on the low-end machine when

it tries to initialize.

Step 2: Attempt to explain

the behavior that is

consistent with your

Hypothesis: The input

parameters to

Hypothesis: The game is

crashing because it is running

javascript:moveTo('ch21table01');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

Table 21.1. How to Run a Successful Debugging Experiment

Scientific Method as It

Applies to Software

Systems Example #1 Example #2

observations and your

knowledge of the system.
OpenFile() are

incorrect, specifically the

filename.

out of video memory.

Step 3: Use your explanation

to make predictions.

Predictions: If the proper

filename is used,

OpenFile() will execute

successfully.

Predictions: If the amount of

video memory were increased,

the game would initialize

properly. The game will crash

when the original amount of

video memory is restored.

Step 4: Test your predictions

by performing experiments

or making additional

observations. Modify the

hypothesis and predictions

based on the results.

Experiment: Send the fully

qualified path name of the

file and try OpenFile()

again.

Experiment: Switch the current

video card with others that

have more memory.

Step 5: Repeat steps three

and four until there is no

discrepancy between your

explanations and the

observations.

Results: OpenFile()

executed successfully with

a fully qualified path name.

Results: The game properly

initializes with a better video

card installed.

Step 6: Explain the results. Explanation: The current

working directory is

different than the location

of the file in question. The

path name must be fully

qualified.

Explanation: Video memory

requirements have grown

beyond expectations.

The first step seems easy: Observe the behavior of the system. Unfortunately, this is not so

easy. The most experienced software testers I know do their very best to accurately
observe the behavior of a game as it breaks. They record what keys they pressed, what

options they turned off, and as best they can exactly what they did. In many cases, they
leave out something innocuous. One of the first things I do when I don‘t observe the same

problem a tester observed is go down to the test lab and watch them reproduce the bug
myself. Sometimes I‘ll notice a little wiggle of the mouse or the fact that they‘re running in

full-screen mode and have a ―Eureka‖ moment.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Bugs in Games are Extremely Tricky to Find

Unlike most software systems, games rely not only on

random numbers but they also change vast amounts of data

extremely quickly in seemingly unpredictable ways. The
difficulty in finding game bugs lies in the simple fact that

games run so much code so quickly that it‘s easy for a bug to
appear to come from any of the many subsystems that

manipulate the game state.

The second step, attempt to explain the behavior, can be pretty hard if you don‘t know the

software like the back of your hand. It‘s probably safe to say that you should know the
software, the operating system, the CPU, video hardware, and audio hardware pretty well

too. Sound tough? It is. It also helps to have a few years of game programming under your
belt so that you‘ve been exposed to the wacky behavior of broken games. This is probably

one of the most frustrating aspects of programming in general: A lack of understanding and
experience can leave you shaking your head in dismay when you see your game blow up in

your face. Everybody gets through it, though, usually with the help of, dare I say, more
experienced programmers.

Steps three through five represent the classic experimental phase of debugging. Your

explanation will usually inspire some sort of test, input modification, or code change that
should have predictable results. There‘s an important trick to this rinse and repeat cycle:

Take detailed notes of everything you do. Inevitably, your notes will come in handy as you

realize that you‘re chasing a dead-end hypothesis. They should send you back to the point
where your predictions were accurate. This will put you back on track.

Change One Thing at a Time—and don’t Rewrite anything—Yet

Another critical aspect to the experiment-driven debugging process is

that you should try to limit your changes to one small thing at a time.
If you change too much during one experiment cycle, you won’t be

able to point to the exact change that fixed the problem. Change for

change’s sake is a horrible motivation to modify buggy code. Resist
that temptation. Sometimes there is a desire to rip a subsystem out

altogether and replace it without truly understanding the nature of the
problem. This impulse is especially strong when the subsystem in

question was written by a programmer that has less than, shall we
say, stellar design and coding skills. The effect of this midnight

remodeling is usually negative because it isn’t guaranteed to fix the
bug, and you’ll demoralize your teammate at the same time.

Assuming that you follow Table 21.1, you‘ll eventually arrive at the source of the problem.
If you‘re lucky, the bug can be fixed with a simple tweak of the code. Perhaps a loop exited
too soon or a special case wasn‘t handled properly. You make your mod, rebuild the game,

and perform your experiments one last time. Congratulations, your bug is fixed. Not every
programmer is so lucky, and certainly I haven‘t been. Some bugs, once exposed in their full

glory, tell you things about your game that you don‘t want to hear. I‘ve seen bugs that told

us we had to completely redesign the graphics system we were using. Other bugs enjoy
conveying the message that some version of Windows can‘t be supported without sweeping

modifications. Others make you wonder how the game ever worked in the first place.

javascript:moveTo('ch21table01');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

If this ever happens to you, and I‘m sure it will, I feel your pain. Grab some caffeine and

your sleeping bag; it‘s going to be a long week.

Reproducing the Bug

A prerequisite of observing the behavior of a broken game is reproducing the bug. I‘ve seen

bug reports that say things like, ―I was doing so-and-so, and the game crashed. I couldn‘t
get it to happen again.‖ In the light of an overwhelming number of reports of this kind, you

might be able to figure out what‘s going on. Alone, these reports are nearly useless. You

cannot fix what you cannot observe. After all, if you can‘t observe the broken system with
certainty, how can you be sure you fixed the problem? You can‘t.

Most bugs can be reproduced easily by following a specific set of steps, usually observed

and recorded by a tester. It‘s important that each step, however minor, is recorded from
the moment the game is initialized. Anything missing might be important. Also, the state of

the machine, including installed hardware and software, might be crucial to reproducing the
bug‘s behavior.

Reduce Complexity to Increase Predictability

Bugs are sometimes tough to nail down. They can be
intermittent or disappear altogether as you attempt to create

a specific series of steps that will always result in a
manifestation of the problem. This can be explained in two

ways: Either an important step or initial state has been left
out, or the bug cannot be reproduced because the system

being tested is too complex to be deterministic. Even if the
bug can be reproduced exactly, it might be difficult to create

an explanation of the problem. In both of these cases, you

must find a way to reduce the complexity of the system; only
then can the problem domain become small enough to

understand.

Eliminating Complexity

A bug can only manifest itself if the code that contains it is executed. Eliminate the buggy
code, and the bug will disappear. By the process of elimination, you can narrow your search

over a series of steps to the exact line of code that is causing the problem. You can disable
subsystems in your game, one by one. One of the first things to try is to disable the entire

main loop and have your game initialize and exit without doing anything else. This is a good

trick if the bug you‘re hunting is a memory leak. If the bug goes away, you can be sure that
it only exists in the main loop somewhere.

Disable Your Sound System as a First Step

Sound systems are usually multithreaded and can be a source of

heinous problems. If you believe a bug is somewhere in the sound
system, disable your sound system and rerun the game. If the bug

disappears, turn the sound system back on, but eliminate only sound

effects. Leave the music system on. Divide and conquer as necessary
to find the problem. If the bug is in the sound system somewhere,

you’ll find it.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You should be able to creatively disable other systems as well, such as animation or AI.

Once these systems are stubbed out, your game will probably act pretty strangely, and you
don‘t want this strangeness to be interpreted as the bug you are looking for. You should

have a pretty complete understanding of your game before you embark on excising large
pieces of it from execution.

It’s Possible, but Tough, to Stub out AI Systems

If you can’t simply stub out the AI of your game, replace the AI

routines with the most trivial AI code you can write, and make triply

sure it is bug free and will have limited, predictable side effects. An
example of this is to replace the entire pathfind system with a simple

teleport with calculated time delays. You can then slowly add the
complex AI systems back in, one at a time, and rerun your tests to

see when the bug pops back in.

If your game has options for sound, animation, and other subsystems, you can use these as
debugging tools without having to resort to changing code. Turn everything off via your

game options and try to reproduce the bug. Whether the bug continues to exist or
disappears, the information you‘ll gain from the experiment is always valuable. As always,

keep good records of what you try and try to change only one option at a time.

You can take this tactic to extremes and perform a binary search of sorts to locate a bug.
Stub out half of your subsystems and see if the bug manifests itself. If it does, stub out half

of what remains and repeat the experiment. Even in a large code base, you‘ll quickly locate
the bug.

If the bug eludes this process, it might depend on the memory map of your application.

Change the memory contents of your game, and the bug will change, too. Because this
might be true, it‘s a good idea to stub out subsystems via a simple Boolean value, but leave

their code and global data in place as much as possible. This is another example of making
small changes rather than large ones.

Setting the Next Statement

Most debuggers give you the power to set the next statement to be executed, which is

equivalent to setting the instruction pointer directly. This can be useful if you know what
you are doing, but it can be a source of mayhem when applied indiscriminately. You might

want to do this for a few reasons. You may want to skip some statements or rerun a section
of code again with different parameters as a part of a debugging experiment. You might

also be debugging through some assembler, and you want to avoid calling into other pieces

of code.

You can set the next statement in Visual Studio by right-clicking on the target statement

and selecting ―Set Next Statement‖ from the pop-up menu. In other debuggers, you can

bring up a register window and set the EIP register, also known as the instruction pointer,
to the address of the target statement, which you can usually find by showing the

disassembly window. You must be mindful of the code that you are skipping and the current
state of your process. When you set the instruction pointer, it is equivalent to executing an

assembly level JMP statement, which simply moves the execution path to a different
statement.

In C++, objects can be declared inside local scopes such as for loops. In normal

execution, these objects are destroyed when execution passes out of that scope. The C++
compiler inserts the appropriate code to do this, and you can‘t see it unless you look at a

http://lib.ommolketab.ir
http//lib.ommolketab.ir

disassembly window. What do you suppose happens to C++ objects that go out of scope if

you skip important lines of code? Let‘s look at an example:

class MyClass

{

public:

 int num;

 char *string;

 MyClass(int const n)

 {

 num = n;

 string = new char[128];

 sprintf(string, "%d ", n);

 }

 ~MyClass() { delete string; }

};

void SetTheIP()

{

 char buffer[2048];

 buffer[0] = 0;

 for (int a=0; a<128; ++a)

 {

 MyClass m(a);

 strcat(buffer, m.string); // START HERE...

 }

} // JUMP TO HERE...

Normally, the MyClass object is created and destroyed once for each run of the for loop.

If you jump out of the loop using ―Set Next Statement,‖ the destructor for MyClass never

runs, leaking memory. The same thing would happen if you jumped backward to the line

that initializes the buffer variable. The MyClass object in scope won‘t be destroyed

properly.

Luckily, you don‘t have to worry about the stack pointer as long as you do all your jumping

around within one function. Local scopes are creations of the compiler; they don‘t actually
have stack frames. That‘s a good thing, because setting the next statement to a completely

different function is sure to cause havoc with the stack. If you want to skip the rest of the
current function and keep it from executing, just right-click on the last closing brace of the

function and set the next statement to that point. The stack frame will be kept intact.

Assembly Level Debugging

Inevitably, you‘ll get to debug through some assembly code. You won‘t have source code or
even symbols for every component of your application, so you should understand a little

about the assembly window. Here‘s the assembly for the SetTheIP function we just talked

about. Let‘s look at the debug version of this code:

void SetTheIP()

{

00411A10 55 push ebp

http://lib.ommolketab.ir
http//lib.ommolketab.ir

00411A11 8B EC mov ebp,esp

00411A13 81 EC E8 08 00 00 sub esp,8E8h

00411A19 53 push ebx

00411A1A 56 push esi

00411A1B 57 push edi

00411A1C 8D BD 18 F7 FF FF lea edi,[ebp-8E8h]

00411A22 B9 3A 02 00 00 mov ecx,23Ah

00411A27 B8 CC CC CC CC mov eax,0CCCCCCCCh

00411A2C F3 AB rep stos dword ptr [edi]

 char buffer[2048];

 buffer[0] = 0;

00411A2E C6 85 F8 F7 FF FF 00 mov byte ptr [buffer],0

 for (int a=0; a<128; ++a)

00411A35 C7 85 EC F7 FF FF 00 00 00 00 mov dword ptr

[a],0

00411A3F EB 0F jmp SetTheIP+40h

(411A50h)

00411A41 8B 85 EC F7 FF FF mov eax,dword ptr [a]

00411A47 83 C0 01 add eax,1

00411A4A 89 85 EC F7 FF FF mov dword ptr [a],eax

00411A50 81 BD EC F7 FF FF 80 00 00 00 cmp dword ptr

[a],80h

00411A5A 7D 35 jge SetTheIP+81h

(411A91h)

 {

 MyClass m(a);

00411A5C 8B 85 EC F7 FF FF mov eax,dword ptr [a]

00411A62 50 push eax

00411A63 8D 8D DC F7 FF FF lea ecx,[m]

00411A69 E8 9C FA FF FF call MyClass::MyClass

(41150Ah)

 strcat(buffer, m.string);

00411A6E 8B 85 E0 F7 FF FF mov eax,dword ptr [ebp-

820h]

00411A74 50 push eax

00411A75 8D 8D F8 F7 FF FF lea ecx,[buffer]

00411A7B 51 push ecx

00411A7C E8 46 F7 FF FF call @ILT+450(_strcat)

(4111C7h)

00411A81 83 C4 08 add esp,8

 }

00411A84 8D 8D DC F7 FF FF lea ecx,[m]

00411A8A E8 76 FA FF FF call MyClass::~MyClass

(411505h)

00411A8F EB B0 jmp SetTheIP+31h

(411A41h)

}

00411A91 52 push edx

00411A92 8B CD mov ecx,ebp

00411A94 50 push eax

00411A95 8D 15 B6 1A 41 00 lea edx,[(411AB6h)]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

00411A9B E8 FA F6 FF FF call

@ILT+405(@_RTC_CheckStackVars@8)

 (41119Ah)

00411AA0 58 pop eax

00411AA1 5A pop edx

00411AA2 5F pop edi

00411AA3 5E pop esi

00411AA4 5B pop ebx

00411AA5 81 C4 E8 08 00 00 add esp,8E8h

00411AAB 3B EC cmp ebp,esp

00411AAD E8 F0 F8 FF FF call

@ILT+925(__RTC_CheckEsp) (4113A2h)

00411AB2 8B E5 mov esp,ebp

00411AB4 5D pop ebp

00411AB5 C3 ret

One thing you‘ll realize immediately is that the disassembly window can be a big help in

beginning to understand what assembly language is all about. I wish I had more time to go
over each statement, addressing modes, and whatnot, but there are better resources for

that anyway.

Notice first the structure of the disassembly window. The column of numbers on the left-
hand side of the window is the memory address of each instruction. The list of one to 10

hexadecimal codes that follows each address represents the machine code bytes. Notice
that the address of each line coincides with the number of machine code bytes. The more

readable instruction on the far right is the assembler statement. Each group of assembler
statements is preceded by the C++ statement that they compiled from, if the source is

available. You can see that even a close brace can have assembly instructions, usually to

return to the calling function or to destroy a C++ object.

The first lines of assembly, pushing various things onto the stack and messing with EBP and

ESP, establish a local stack frame. The value 8E8h is the size of the stack frame, which is

2,280 bytes.

Check out the assembly code for the for loop. The beginning of the loop has seven lines of

assembly code. The first two initialize the loop variable and jump over the lines that

increment the loop variable. Skip over the guts of the loop for now and check out the last

three assembly lines. Collectively, they call the destructor for the MyClass object and skip

back to the beginning part of the loop that increments the loop variable and performs the
exit comparison. If you‘ve ever wondered why the debugger always skips back to the

beginning of for loops when the exit condition is met, there‘s your answer. The exit

comparison happens at the beginning.

The inside of the loop has two C++ statements: one to construct the MyClass object and

another to call strcat(). Notice the assembly code that makes these calls work. In both

cases, values are pushed onto the stack by the calling routine. The values are pushed from
right to left, that is to say that the last variable in a function call is pushed first. What this

means for you is that you should be mindful of setting the next statement. If you want to
skip a call, make sure that you skip any assembly statements that push values onto the

stack, or your program will lose its mind.

One last thing: Look at all the code that follows the closing brace of Set-TheIP(). There

are two calls here to CheckStackVars() and CheckESP(). What the heck are those

things? These are two functions inserted into the exit code of every function in debug builds

that perform sanity checks on the integrity of the stack. You can perform a little experiment

http://lib.ommolketab.ir
http//lib.ommolketab.ir

to see how these things work. Put a breakpoint on the very first line of SetTheIP(), skip

over all the stack frame homework, and set the next statement to the one where the buffer
gets initialized. The program will run fine until the sanity check code runs. You‘ll get a dialog

box telling you that your stack has been corrupted.

It‘s nice to know that this check will keep you from chasing ghosts. If you mistakenly screw
up the stack frame by moving the instruction pointer around, these sanity checks will catch

the problem.

Peppering the Code

If you have an elusive bug that corrupts a data structure or even the memory system, you
can hunt it down with a check routine. This assumes that the corruption is somewhat

deterministic, and you can write a bit of code to see if it exists. Write this function and begin
placing this code in strategic points throughout your game.

A good place to start this check is in your main loop and at the top and bottom of major

components like your resource cache, draw code, AI, or sound manager. Place the check at
the top and bottom to ensure that you can pinpoint a body of code that caused the

corruption. If a check succeeds before a body of code and fails after it, you can begin to drill
down into the system, placing more checks, until you nail the exact source of the problem.

Here‘s an example:

void BigBuggySubsystem()

{

 BuggyObject crasher;

 CheckForTheBug("Enter BigBuggySubSystem.");

 DoSomething();

 CheckForTheBug("Calling DoSomethingElse");

 DoSomethingElse();

 CheckForTheBug("Calling CorruptEverything");

 CorruptEverything();

 CheckForTheBug("Leave BigBuggySubSystem");

}

In this example, CheckForTheBug() is a bit of code that will detect the corruption, and

the other function calls are subsystems of the BigBuggySubsystem. It‘s a good idea to

put a text string in your checking code so that it‘s quick and easy to identify the corruption
location, even if the caller‘s stack is trashed.

Since there‘s plenty of C++ code that runs as a result of exiting a local scope, don‘t fret if

your checking function finds a corruption on entry. You can target your search inside the
destructors of any C++ objects used inside the previous scope. If the destructor for the

BuggyObject code was wreaking some havoc, it won‘t be caught by your last call to your

checking function. You wouldn‘t notice it until some other function called your checking
code.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Draw Debug Information

This might seem incredibly obvious, but since I forget it all the time myself I figure it
deserves mentioning. If you are having trouble with graphics- or physics-related bugs, it

can be invaluable to draw additional information on your screen such as wireframes,

direction vectors, or coordinate axes. This is especially true for 3D games, but any game
can find visual debug helpers useful. Here are a few ideas:

 Hot Areas: If you are having trouble with user interface code, you can draw

rectangles around your controls and change their color when they go active. You‘ll be

able to see why one control is being activated when you didn‘t expect it.

 Memory/Frame Rate: In debug versions of your game, it can be very useful to

draw current memory and frame rate information every few seconds. Don‘t do it
every frame because you can‘t really see things that fast, and it will affect your

frame rate.

 Coordinate Axes: A classic problem with 3D games is that the artist will create 3D

models in the wrong coordinate system. Draw some additional debug geometry that

shows the positive X-axis in red, the Y-axis in green, and the positive Z-axis in blue.
You‘ll always know which way is up!

 Wireframe: You can apply wireframe drawing to collision geometry to see if they

match up properly. A classic problem in 3D games is when these geometries are out

of sync, and drawing the collision geometry in wireframe can help you figure out
what‘s going on.

 Targets: If you have AI routines that select targets or destinations, it can be useful

to draw them explicitly by using lines. Whether your game is 3D or 2D, line drawing

can give you information about where the targets are. Use color information to
convey additional information such as friend or foe.

Every 3D Game Needs A Test Object

In 3D games, it’s a good idea to construct a special test object that is
asymmetrical on all three coordinate axes. Your game renderer and

physics system can easily display things like cubes in a completely
wrong way, but they will look right because a cube looks the same

from many different angles. A good example of an asymmetrical

object is a shoe, since there’s no way you can slice it and get a mirror
image from one side to another. In your 3D game, build something

with similar properties, but make sure the shape is so asymmetrical
that it will be obvious if any errors pop up.

Lint and Other Code Analyzers

These tools can be incredibly useful. Their best application is one where code is being
checked often, perhaps each night. Dangerous bits of code are fixed as they are found, so

they don‘t get the chance to exist in the system for any length of time. If you don‘t have
Lint, make sure that you ramp up the warning level of the compiler as high as you can

stand it. It will be able to make quite a few checks for you and catch problems as they

happen.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

A less useful approach involves using code analysis late in your project with the hope it will

pinpoint a bug. You‘ll probably be inundated with warnings and errors, any of which could
be perfectly benign for your game. The reason this isn‘t as useful at the end of your project

is that you may have to make sweeping changes to your code to address every issue. This
is not wise. It is much more likely that sweeping changes will create a vast set of additional

issues, the aggregate of which could be worse than the original problem. It‘s best to
perform these checks often and throughout the life of your project.

Nu-Mega’s BoundsChecker and Runtime Analyzers

BoundsChecker is a great program, and every team should have at least one copy. In some

configurations, it can run so slowly that your game will take three hours to display a single
screen. Rather, use a targeted approach and filter out as many checks as you can and leave

only the checks that will trap your problem.

Disappearing Bugs

The really nasty bug seems to actually possess intelligence, as well as awareness of itself
and your attempts to destroy it. Just as you get close, the bug changes, and it can‘t be

reproduced using your previously observed steps. It‘s likely that recent changes such as
adding checking code have altered the memory map of your process. The bug might be

corrupting memory that is simply unused. This is where your notes will really come in
handy. It‘s time to backtrack, remove your recent changes one at a time, and repeat until

the bug reappears. Begin again, but try a different approach in the hopes you can get
closer.

Bugs Fixing Themselves?

Another version of the disappearing bug is one where a known failure
simply disappears without any programmer actually addressing it. The

bug might have been related to another issue that someone fixed—
you hope. The safest thing to do is to analyze recent changes and

attempt to perform an autopsy of sorts. Given the recent fixes, you
might even be able to recreate the original conditions and code that

made the bug happen, apply the fix again, and prove beyond a

shadow of a doubt that a particular fix addressed more than one bug.

What‘s more likely is that the number of changes to the code will preclude the possibility of
this examination, especially on a large team. Then you have a decision to make: Is the bug
severe enough to justify a targeted search through all the changes to prove the bug is truly

fixed? It depends on the seriousness of the bug.

Tweaking Values

A classic problem in programming is getting a constant value ―just right.‖ This is usually the
case for things like the placement of a user interface object like a button or perhaps the

velocity value of a particle stream. While you are experimenting with the value, put it in a
static variable in your code:

void MyWeirdFountain::Update()

{

 static float dbgVelocity = 2.74f;

 SetParticleVelocity(dbgVelocity);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 // More code would follow....

}

It then becomes a trivial thing to set a breakpoint on the call to

SetParticleVelocity() to let you play with the value of dbgVelocity in real time.

This is much faster than recompiling, and even faster than making the value data driven,

since you won‘t even have to reload the game data.

Once you find the values you‘re looking for, you can take the time to put them in a data file.

Caveman Debugging

If you can‘t use a debugger, or didn‘t even know they existed as I didn‘t in college, you get

to do something I call caveman debugging. You might be curious as to why you wouldn‘t be
able to use a debugger, and it‘s not because you work for someone so cheap that they

won‘t buy one. Sometimes you‘ll see problems only in the release build of the application.
These problems usually result from uninitialized variables or unexpected or even incorrect

code generation. The problem simply goes away in the debug version. You might also be

debugging a server application that fails intermittently, perhaps after hours of running
nominally. It‘s useless to attempt debugging in that case.

Outputdebugstring() is your Friend

Make good use of stderr if you program in UNIX or

OutputDebugString() if you program under Windows. These are

your first and best tools for caveman debugging.

In both cases, you should resort to the caveman method. You‘ll write extra code to display
variables or other important information on the screen, in the output window, or in a
permanent log file. As the code runs, you‘ll watch the output for signs of misbehavior, or

you‘ll pour over the log file to try to discern the nature of the bug. This is a slow process

and takes a great deal of patience, but if you can‘t use a debugger, this method will work.

Being Hypnotized by the Ultima Online Login

Servers...

When I was on Ultima Online, one of my tasks was to write
the UO login servers. These servers were the main point of

connection for the Linux game servers and the SQL server,

so login was only a small portion of what the software
actually did. An array of statistical information flowed from

the game servers, was collated in the login server, and was
written to the SQL database. The EA executives liked pretty

charts and graphs, and we gave them what they wanted.
Anyway, the login process was a Win32 console application,

and to help me understand what was going on, I printed
debug messages for logins, statistics data, and anything else

that looked reasonable. When the login servers were running,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

these messages were scrolling by so fast that I certainly

couldn‘t read them, but I could feel them. Imagine me sitting
in the UO server room, staring blankly at three login server

screens. I could tell just by the shape of the text flowing by
whether or not a large number of logins were failing or a UO

server was disconnected. It was very weird.

Debugging with Music

The best caveman debugging solution I ever saw was one
that used the PC speaker. Herman was a programmer who

worked on Ultima V through Ultima IX, and one of his talents
was perfect pitch. He could tell you the difference between a

B and a B flat and get it right every time. He used this to his

advantage when he was searching for the nastiest crasher
bugs of them all—they didn‘t even allow the debugger

window to pop up. He wrote a special checker program that
output specific tones through the PC speaker, and peppered

the code with these checks. If you walked into his office while
his spiced-up version of the game was running, it sounded a

little like raw modem noise, until the game crashed. Because
the PC speaker wasn‘t dependent on the CPU, it would

remain emitting the tone of his last check. ―Hmm...that‘s a

D,‖ he would say, and zero in on the line of code that caused
the crash.

When All Else Fails

So you tried everything and hours later you are no closer to solving the problem than when

you started. Your boss is probably making excuses to pass by your office and ask you
cheerily, ―How‘s it going?‖ You suppress the urge to jump up and make an example of his

annoying behavior, but you still have no idea what to do. Here‘s a few last resort ideas.

First, go find another programmer and explain your problem. It doesn‘t really matter if you
can find John Carmack or the greenest guy in your group, just find someone. Walk them

through each step, explaining the behavior of the bug and each hypothesis you had—even it
failed. Talk about your debugging experiments and step through the last one with him (or

her) watching over your shoulder. For some odd reason, you‘ll find the solution to your

problem without that person ever even speaking a single word. It will just come as if it were
handed to you by the universe itself. I‘ve never been able to explain that phenomenon, but

it‘s real. This will solve half of the unsolvable bugs.

Another solution is static code analysis. You should have enough observations to guess at
what is going on, you just can‘t figure out how the pieces of the puzzle fit together. Print

out a suspect section of code on paper—the flat stuff you find in copy machines—and take it
away from your desk. Study it and ask yourself how the code could fail. Getting away from

your computer and the debugger helps to open your mind a bit, and removes your
dependency on them.

If you get to this point and you still haven‘t solved the problem, you‘ve probably been at it

for a few solid hours, if not all night. It‘s time to walk away—not from the problem, but from
your computer. Just leave. Do something to get your mind off the problem. Drive home. Eat

dinner. Introduce yourself to your family. Take a shower.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

The last one is particularly useful for me, not that I need any of you to visualize me in the

shower. The combination of me being away from the office and in a relaxing environment
frees a portion of my mind to continue working on the problem without adding to my stress

level. Sometimes, a new approach to the problem or even better, a solution, will simply
deposit itself in my consciousness. That odd event has never happened to me when I‘m

under pressure sitting at the computer. It‘s scary when you‘re at dinner, it dawns on you
suddenly, and you‘ve solved a bug just by getting away from it.

Different Kinds of Bugs

Tactics and technique are great, but that only describes debugging in the most generic

sense. Everyone should build a taxonomy of bugs, a dictionary of bugs as it were, so that
you can instantly recognize a type of bug and associate it with the beginning steps of a

solution. One way to do this is to constantly trade ―bug‖ stories with other programmers—a

conversation that will bore nonprogrammers completely to death.

Memory Leaks and Heap Corruption

A memory leak is caused when a dynamically allocated memory block is ―lost.‖ The pointer

that holds the address of the block is reassigned without freeing the block, and it will remain
allocated until the application exits. This kind of bug is especially problematic if this happens

frequently. The program will chew up physical and virtual memory over time, and eventually

fail. Here‘s a classic example of a memory leak. This class allocates a block of memory in a
constructor, but fails to declare a virtual destructor:

class LeakyMemory : public SomeBaseClass

{

protected:

 int *leaked;

 LeakyMemory() { leaked = new int[128]; }

 ~LeakyMemory() { delete leaked; }

};

This code might look fine but there‘s a potential memory leak in there. If this class is

instantiated and is referenced by a pointer to SomeBaseClass, the destructor will never

get called:

void main()

{

 LeakyMemory *ok = new LeakyMemory;

 SomeBaseClass *bad = new LeakyMemory;

 delete ok;

 delete bad; // MEMORY LEAK RIGHT HERE!

}

You fix this problem by declaring the destructor in LeakyMemory as virtual. Memory leaks

are easy to fix if the leaky code is staring you in the face. This isn‘t always the case. A few

bytes leaked here and there as game objects are created and destroyed can go unnoticed

http://lib.ommolketab.ir
http//lib.ommolketab.ir

for a long time until it is obvious that your game is chewing up memory without any valid

reason.

Memory bugs and leaks are amazingly easy to fix, but tricky to find, if you use a memory

allocator that doesn‘t have special code to give you a hand. Under Win32, the C runtime

library lends a hand under the debug builds with the debug heap. The debug heap sets the
value of uninitialized memory and freed memory.

 Uninitialized memory allocated on the heap is set to 0xCDCDCDCD.

 Uninitialized memory allocated on the stack is set to 0xCCCCCCCC. This is

dependent on the /GX compiler option in Microsoft Visual Studio.

 Freed heap memory is set to 0xFEEEFEEE, before it has been reallocated.

Sometimes, this freed memory is set to 0xDDDDDDDD, depending on how the
memory was freed.

 The lead byte and trailing byte to any memory allocated on the heap is set to

0xFDFDFDFD.

Win32 programmers commit these values to memory. They‘ll come in handy when you are

viewing memory windows in the debugger. You can tell what has happened to a block of
dynamic memory.

The C-Runtime debug heap also provides many functions to help you examine the heap for

problems. I‘ll tell you about three of them, and you can hunt for the rest in the Visual
Studio help files or MSDN:

 _CrtSetDbgFlag (int newFlag): Sets the behavior of the debug heap.

 _CrtCheckMemory (void): Runs a check on the debug heap.

 _CrtDumpMemoryLeaks (void): Reports any leaks to stdout.

Here‘s an example of how to put these functions into practice:

#include <crtdbg.h>

#if defined _DEBUG

 #define GCC_NEW new(_NORMAL_BLOCK,__FILE__, __LINE__)

#endif

int main()

{

 // get the current flags

 int tmpDbgFlag = _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG);

 // don't actually free the blocks

 tmpDbgFlag |= _CRTDBG_DELAY_FREE_MEM_DF;

 // perform memory check for each alloc/dealloc

 tmpDbgFlag |= _CRTDBG_CHECK_ALWAYS_DF;

 _CrtSetDbgFlag(tmpDbgFlag);

 char *gonnaTrash = GCC_NEW char[15];

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 _CrtCheckMemory(); // everything is

fine....

 strcpy(gonnaTrash, "Trash my memory!"); // overwrite the

buffer

 _CrtCheckMemory(); // everything is NOT

fine!

 delete gonnaTrash; // This brings up a

dialog box too...

 char *gonnaLeak = GCC_NEW char[100]; // Prepare to leak!

 _CrtDumpMemoryLeaks(); // Reports leaks to

stderr

 return 0;

}

Notice that the new operator is redefined. A debug version of new is included in the debug

heap that records the file and line number of each allocation. This can go a long way toward

detecting the cause of a leak.

The first few lines set the behavior of the debug heap. The first flag tells the debug heap to
keep deallocated blocks around in a special list instead of recycling them back into the

usable memory pool. You might use this flag to help you track a memory corruption or

simply alter your processes‘ memory space in the hopes that a tricky bug will be easier to
catch. The second flag tells the debug heap that you want to run a complete check on the

debug heap‘s integrity each time memory is allocated or freed. This can be incredibly slow,
so turn it on and off only when you are sure it will do you some good.

The output of the memory leak dump looks like this:

Detected memory leaks!

Dumping objects ->

c:\tricks\tricks.cpp(78) : {42} normal block at 0x00321100, 100

bytes long.

 Data: < > CD CD CD CD CD CD CD CD CD CD CD CD CD

CD CD CD

Object dump complete.

The program '[2940] Tricks.exe: Native' has exited with code 0

(0x0).

As you can see, the leak dump pinpoints the exact file and line of the leaked bits. What
happens if you have a core system that allocates memory like crazy, such as a custom

string class? Every leaked block of memory will look like it‘s coming from the same line of
code, because it is. It doesn‘t tell you anything about who called it, which is the real

perpetrator of the leak. If this is happening to you, tweak the redeclaration of new and

store a self-incrementing counter instead of __LINE__:

#include <crtdbg.h>

#if defined _DEBUG

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 static int counter = 0;

 #define GCC_NEW new(_NORMAL_BLOCK,__FILE__, counter++)

#endif

The memory dump report will tell you exactly when the leaky bits were allocated, and you
can track the leak down easily. All you have to do is put a conditional breakpoint on

GCC_NEW, and break when the counter reaches the value that leaked.

The Task Manger Lies About Memory

You can‘t look at the Task Manager under Windows to
determine if your game is leaking memory. The Task

Manager is the process window you can show if you press

Ctrl-Alt-Del and then click the Task Manager button. This
window lies. For one thing, memory might be reported wrong

if you have set the _CRTDBG_DELAY_FREE_MEM_DF flag.

Even if you are running a release build, freed memory isn‘t

reflected in the process window until the window is minimized
and restored. Even the Microsoft test lab was stymied by this

one. They wrote a bug telling us that our game was leaking
memory like crazy, and we couldn‘t find it. It turned out that

if you minimize the application window and restore it, the

Task Manager will report the memory correctly, at least for a
little while.

If you happen to write your own memory manager, make sure that you take the time to
write some analogs to the C runtime debug heap functions. If you don‘t, you‘ll find chasing
memory leaks and corruptions a full-time job.

Don’t Ignore Memory Leaks—Ever

Make sure that your debug build detects and reports memory leaks,
and convince all programmers that they should fix all memory leaks

before they check in their code. It’s a lot harder to fix someone else’s
memory leak than your own.

COM objects can leak memory, too, and those leaks are also painful to find. If you fail to

call Release() on a COM object when you‘re done with it, the object will remain allocated

because its reference count will never drop to zero.

Here‘s a neat trick. First, put the following function somewhere in your code:

int Refs (IUnknown* pUnk)

{

 pUnk->AddRef();

 return pUnk->Release();

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

You can then put Refs(myLeakingResourcePtr) in the watch window in your

debugger. This will usually return the current reference count for a COM object. Be warned,

however, that COM doesn‘t require that Release() return the current reference count,

but it usually does.

Game Data Corruption

Most memory corruptions are easy to diagnose. Your game crashes, and you find funky

trash values where you were used to seeing valid data. The frustrating thing about memory
corrupter bugs is that they can happen anywhere, anytime. Since the memory corruption is

not trashing the heap, you can‘t use the debug heap functions, but you can use your own
homegrown version of them. You need to write your own version of

_CrtCheckMemory(), built especially for the data structures being vandalized. Hopefully,

you‘ll have a reasonable set of steps you can use to reproduce the bug. Given those two
things, the bug has only moments to live. If the trasher is intermittent, leave the data

structure check code in the game. Perhaps someone will begin to notice a pattern of steps
that cause the corruption to occur.

The Best Hack I Ever Saw

I recall a truly excellent hack we encountered on Savage
Empire, an Ultima VI spinoff that Origin shipped in late 1990.

Origin was using Borland‘s 3.1 C Compiler, and the runtime
module‘s exit code always checked memory location zero to

see if a wayward piece of code accidentally overwrote that
piece of memory, which was actually unused. If it detected

the memory location was altered, it would print out ―Error:

(null) pointer assignment‖ at the top of the screen. Null
pointer assignments were tough to find in those days since

the CPU just happily assumed you knew what you were
doing. Savage Empire programmers tried in vain to hunt

down the null pointer assignment until the very last day of
development. Origin‘s QA had signed off on the build, and

Origin execs wanted to ship the product, since Christmas was
right around the corner. Steve, one of the programmers,

―fixed‖ the problem with an amazing hack. He hex edited the

executable, savage.exe, and changed the text string ―Error:
(null) pointer assignment.‖ to another string exactly the

same length: ―Thanks for playing Savage Empire.‖

If the memory corruption seems random—writing to memory locations here and there
without any pattern—here‘s a useful but brute force trick: Declare an enormous block of

memory and initialize it with an unusual pattern of bytes. Write a check routine that runs

through the memory block and finds any bytes that don‘t match the original pattern, and
you‘ve got something that can detect your bug. I‘ve been using this trick since Ultima VII.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

A Sad Triceratops

Ultima games classically stored their game data in large

blocks of memory, and the data was organized as a linked

list. If the object lists became corrupted, all manner of
mayhem would result. If you ever played Savage Empire,

you might have been one of the lucky people to see a
triceratops walking across the opening screen—in two pieces.

Another example of this object corruption was a bug I saw in Martian Dreams. As I was
walking my character across the alien landscape, all the plants turned into pocket watches

and my character turned into a pair of boots. If I hadn‘t seen it with my own eyes, I
wouldn‘t have believed it.

The worst of these bugs became something of a legend at Origin Systems—―The Barge

Bug.‖ The Ultima VI team found that the linked object lists could be used to create barges,
a generic term for a bunch of linked objects that could move about the map as a group. This

led to neat stuff like flying carpets, boats, and the barges of Martian Dreams that navigated
the canals.

QA was observing a bug that made barges explode. The objects and their passengers would

suddenly shatter into pieces, and if you attempted to move them one step in any direction
that game would crash. I was assigned the task of fixing this bug. I tried again and again.

Each time I was completely sure that the barge bug was dead. QA didn‘t share my
optimism, and for four versions of the game I would see the bug report come back: ―Not

fixed.‖

The fourth time I saw the bug report, my exhausted mind simply snapped. I don‘t need to
tell you what happened, because an artist friend of mine, Denis, drew this picture of me in

Figure 21.3.

Figure 21.3. Artist’s rendering of earwax blowing out of Mr. Mike’s ears.

Stack Corruption

Stack corruption is evil because it wipes evidence from the scene of the crime. Take a look

at this lovely code:

void StackTrasher()

javascript:moveTo('ch21fig03');
http://lib.ommolketab.ir
http//lib.ommolketab.ir

{

 char hello[10];

 memset(hello, 0, 1000);

}

The call to memset() never returns, since it wipes the stack clean, including the return

address. The most likely thing your computer will do is break into some crazy, codeless
area—the debugger equivalent of shrugging its shoulders and leaving you to figure it out for

yourself. Stack corruptions almost always happen as a result of sending bad data into an

otherwise trusted function, like memset(). Again, you must have a reasonable set of steps

you can follow to reproduce the error.

Begin your search by eliminating subsections of code, if you can. Set a breakpoint at the
highest level of code in your main loop and step over each function call. Eventually, you

should be able to find a case where stepping over a function call will cause the crash. Begin
your experiment again, only this time step into the function and narrow the list of

perpetrators. Repeat these steps until you‘ve found the call that causes the crash.

Notice carefully with each step the call stack window. The moment it is trashed, the
debugger will be unable to display the call stack. It is unlikely that you‘ll be able to continue

or even set the next statement to a previous line for retesting, so if you missed the cause of

the problem, you‘ll have to begin again. If the call that causes that stack to go south is

something trusted like memset(), study each input parameter carefully. Your answer is

there: one of those parameters is bogus.

Cut and Paste Bugs

This kind of bug doesn‘t have a specific morphology, an academic way of saying ―pattern of

behavior.‖ It does have a common source, which is cutting and pasting code from one place

to another. I know how it is; sometimes it‘s easier to cut and paste a little section of code
rather than factor it out into a member of a class or utility function. I‘ve done this myself

many times to avoid a heinous recompile. I tell myself that I‘ll go back and factor the code
later. Of course, I never get around to it. The danger of cutting and pasting code is pretty

severe.

First, the original code segment could have a bug that doesn‘t show up until much later. The
programmer who finds the bug will likely perform a debugging experiment where a tentative

fix is applied to the first block of code, but he misses the second one. The bug may still
occur exactly as it did before, convincing our hero that he has failed to find the problem, so

he begins a completely different approach. Second, the cut-and-pasted code might be
perfectly fine in its original location, but cause a subtle bug in the destination. You might

have local variables stomping on each other or some such thing.

If you‘re like me at all, you feel a pang of guilt every time you hit Ctrl-V and you see more
than two or three lines pop out of the clipboard. That guilt is there for a reason. Heed it and

at least create a local free function while you get the logic straightened out. When you‘re

done, you can refactor your work, make your change to game.h, and compile through the
night.

There‘s another reason to feel guilty, too. If you have Visual Studio 2005 or later, you can

use a free plug-in from Developer Express, Inc. called Refactor! It can extract functions
from existing code, simplify expressions, and all manner of useful things. Cut-and-paste

bugs might just become a thing of the past.

Running Out of Space

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Everyone hates to run out of space. By space, I mean any consumable resource: memory,

hard drive space, Windows handles, or memory blocks on a console‘s memory card. If you
run out of space, your game is either leaking these resources or never had them to begin

with.

Nine Disks is way too many

In the final days of Ultima VIII, it took nine floppy disks to

hold all of the install files. Origin execs had a hard limit on
eight floppy disks, and we had to find some way of

compressing what we had into one less disk. It made sense
to concentrate on the largest file, SHAPES.FLX, which held all

of the graphics for the game.

Zack, one of Origin‘s best programmers, came up with a
great idea. The SHAPES.FLX file essentially held filmstrip

animations for all the characters in Ultima VIII, and each
frame was only slightly different from the previous frame.

Before the install program compressed SHAPES.FLX, Zack
wrote a program to delta-compress all of the animations.

Each frame stored only the pixels that changed from the

previous frame, and the blank space left over was run-length
encoded. The whole shebang was compressed with a general

compression algorithm for the install program.

It didn‘t make installation any faster, that‘s for sure, but
Zack saved Origin a few tens of thousands of dollars with a

little less than a week of hard-core programming.

We‘ve already talked about the leaking problem, so let‘s talk about the other case. If your
game needs certain resources to run properly, like a certain amount of hard drive space or

memory blocks for save game files, then by all means check for the appropriate headroom

when your game initializes. If any consumable is in short supply, you should bail right there
or at least warn players that they won‘t be able to save games.

Release Mode Only Bugs

If you ever have a bug in the release build that doesn‘t happen in the debug build, most
likely you have an uninitialized variable somewhere. The best way to find this type of bug is

to use a runtime analyzer like BoundsChecker.

Another source of this problem can be a compiler problem, in that certain optimization
settings or other project settings are causing bugs. If you suspect this, one possibility is to

start changing the project settings one by one to look more like the debug build until the

bug disappears. Once you have the exact setting that causes the bug, you may get some
intuition about where to look next.

Multithreading Gone Bad

Multithreaded bugs are really nasty because they can be nigh impossible to reproduce
accurately. The first clue that you may have a multithreaded issue is by a bug‘s

unpredictable behavior. If you think you have a multithreaded bug on your hands, the first

thing you should do is disable multithreading and try to reproduce the bug.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

A good example of a classic multithreaded bug is a sound system crash. The sound system

in most games runs in a separate thread, grabbing sound bits from the game every now
and then as it needs them. It‘s these communication points where two threads need to

synch up and communicate that most multithreading bugs occur.

Sound systems like Miles from RAD Game Tools are extremely well tested. It‘s much more
likely that a sound system crash is due to your game deallocating some sound memory

before its time or perhaps simply trashing the sound buffer. In fact, this is so likely, that my
first course of action when I see a really strange, irreproducible bug is to turn off the sound

system and see if I can get the problem to happen again.

The same is true for other multithreaded subsystems, such as AI or resource preloading. If
your game uses multiple threads for these kinds of systems, make sure that you can turn

them off easily for testing. Sure, the game will run in a jerky fashion since all the processing
has to be performed in a linear fashion, but the added benefit is that you can eliminate the

logic of those systems and focus on the communication and thread synchronization for the
source of the problem.

The Pitch Debugger Comes to the Rescue

Ultima VIII had an interrupt-driven multitasking system,
which was something of a feat in DOS 5. A random crash was

occurring in QA, and no one could figure out how to
reproduce it, which meant there was little hope of it getting

fixed. It was finally occurring once every 30 minutes or so—

way too often to be ignored.

We set four or five programmers on the problem—each one

attempting to reproduce the bug. Finally, the bug was

reproduced by a convoluted path. We would walk the Avatar
character around the map in a specific sequence, teleporting

to one side of the map, then the other, and the crash would
happen. We were getting close.

Herman, the guy with perfect pitch, turned on his pitch

debugger. We followed the steps exactly, and when the crash
happened, Herman called it: a B-flat meant that the bug was

somewhere in the memory manager.

We eventually tracked it down to a lack of protection in the
memory system—two threads were accessing the memory

management system at the same time, and the result was a
trashed section of memory. Since the bug was related to

multithreading, it never corrupted the same piece of memory
twice in a row.

Had we turned multithreading off, the bug would have

disappeared, causing us to focus our effort on any shared
data structure that could be corrupted by multiple thread

access. In other words, we were extremely lucky to find this

bug, and the only thing that saved us was a set of steps we
could follow that made the bug happen.

Weird Ones

http://lib.ommolketab.ir
http//lib.ommolketab.ir

There are some bugs that are very strange, either by their behavior, intermittency, or the

source of the problem. Driver-related issues are pretty common, not necessarily because
there‘s a bug in the driver. It‘s more likely that you are assuming the hardware or driver

can do something that it cannot. Your first clue that an issue is driver related is that it only
occurs on specific hardware, such as a particular brand of video card. Video cards are

sources of constant headaches in Windows games because each manufacturer wants to
have some feature stand out from the pack, and do so in a manner that keeps costs down.

More often than not, this will result in some odd limitations and behavior.

Weird bugs can also crop up in specific operating system versions, for exactly the same
reasons. Windows 9x based operating systems are very different than Windows 2000 and

Windows XP, based on the much beefier NT kernel. These different operating systems make
different assumptions about parameters, return values, and even logic for the same API

calls. If you don‘t believe me, just look at the bottom of the help files for any Win32 API like

GetPrivateProfileSection(). That one royally screwed me.

Hardware Limitations can be Surprising

A great example of an unruly video card was found on an old
video card that was once made by the now defunct 3Dfx

company. This card had a limitation that no video memory

surface could have a width to height ratio greater than 8:1. A
256 × 32 surface would work just fine, but a 512 × 32

surface would fail in a very strange way. It would create a
graphic effect not unlike a scrambled TV channel. If you

weren‘t aware of this limitation, you would debug relentlessly
through every line of code in your whole game, and you‘d

never find the problem. It turns out that problems like this
are usually found through a targeted search of the Internet.

Google groups (http://groups.google.com) is my personal

favorite.

Again, you diagnose the problem by attempting to reproduce the bug on a different
operating system. Save yourself some time and try a system that is vastly different. If the

bug appears in Windows 98, try it again in Windows XP. If the bug appears in both
operating systems, it‘s extremely unlikely that your bug is OS specific.

A much rarer form of the weird bug is a specific hardware bug, one that seems to manifest

as a result of a combination of hardware and operating systems, or even a specific piece of
defective or incompatible hardware. These problems can manifest themselves most often in

portable computers, oddly enough. If you‘ve isolated the bug to something this specific, the

first thing you should try is to update all the relevant drivers. This is a good thing to do in
any case, since most driver-related bugs will disappear when the fresh drivers are installed.

Be Careful of the Bleeding Edge

Be especially aware of new things. Back when MFC& was

brand new, one of the latest changes to MFC7 was a

complete restructuring of how it handled strings. The old
code was thrown out in favor of an ATL-based system. MFC7

was distributed with Visual Studio, and we noticed
immediately that our game was failing under Windows 98.

After a painful remote debugging session, it seemed that the

tried-and-true CFileFind class was corrupting memory. Go

../../default30.htm
http://lib.ommolketab.ir
http//lib.ommolketab.ir

figure! One of the reasons it took me so long to find it was

that I wasn‘t looking inside CfileFind, even though the

source code was there right in front of me. I guess I‘m just

too trusting.

Finally, the duckbilled platypus of weird bugs are the ones generated by the compiler. It

happens more often than anyone would care to admit. The bug will manifest itself most
often in a release build with full optimizations. This is the most fragile section of the

compiler. You‘ll be able to reproduce the bug on any platform, but it may disappear when
release mode settings are tweaked. The only way to find this problem is to stare at the

assembly code and figure out that the compiler-generated code is not semantically equal to
the original source code. This is not that easy, especially in fully optimized assembly.

By the way, if you are wondering what you do if you don‘t know assembly, here‘s a clue: go

find a programmer who knows assembly. Watch that person work, and learn something.
Then convince yourself that maybe learning a little assembly is a good idea.

Report Every Compiler Bug you Find

If you happen to be lucky (or unlucky) enough to find a weird compiler
problem (especially one that could impact other game developers), do

everyone a favor and write a tiny program that isolates the compiler
bug and post it so everyone can watch out for the problem. You’ll be

held in high regard if you find a workaround and post that too. Be
really sure that you are right about what you see. The Internet lasts

forever, and it would be unfortunate if you blamed the compiler
programmers for something they didn’t do. In your posts, be gentle.

Rather than say something like, “Those idiots who developed the xyz

compiler really screwed up and put in this nasty bug ...,” try, “I think I
found a tricky bug in the xyz compiler ...”

Parting Thoughts

An important thing to keep in mind when debugging is that computers are at their core
deterministic entities. They don‘t do things unless instructions are loaded into the CPU. This

should give you hope, since the bug you seek is always findable.

You know that with enough time and effort, you‘ll squash that bug. That thought alone can
be a powerful motivating force.

Further Reading

Reversing: Secrets of Reverse Engineering, von Eldad Eilam

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Chapter 22. Driving to the Finish

In This Chapter

 Finishing Issues

 Dealing with Big Trouble

 The Light—It‘s Not a Train After All

At some point in your schedule, you begin to realize that you‘re a lot closer to the end than
the beginning. While the calendar might imply this harsh fact, your workload seems to

increase exponentially. For every task that goes final, two or three seem to take its place.

What‘s more, the team is likely working overtime, already exhausted, and somehow
everyone has to pull together for another long weekend.

Sound familiar?

If you‘ve ever worked on a game, it should. This phenomenon is pretty common in many
project-oriented businesses, but games are especially susceptible because there‘s

something games are required to deliver that doesn‘t exist anywhere else. Games have to

be fun.

I‘ve said it a few times in this book already, but it deserves another mention. You can‘t

schedule fun, and you can‘t predict fun. Fun is the direct result of a few things: a great

vision, lots of iteration, a mountain of effort, lots of playtesting and redesign, and a flexible
plan. Any one of these things in abundance can make up something lacking in the other

two. Most game companies simply rely on the effort component—a valiant but somewhat
naive mistake.

If you‘ve ever been in a sustained endurance sport like biking, you know that you start any

event with lots of excitement and energy. Toward the end of the ride, you‘ve probably
suffered a few setbacks, like a flat tire or running out of water, making it hard to keep your

rhythm. Your tired body begins to act robotically, almost as if your brain has checked out,
and the highest thinking you are doing is working a few muscle groups. You refuse food and

water, believing you don‘t need it. Then things really start to go wrong. You‘ll be lucky to
cross the finish line.

The same thing happens to game development teams after a long stretch of overtime. Tired

minds can‘t think, and not only do they make mistakes, but they don‘t even recognize them
when they happen, and they attempt to solve the entire mess with even more mandatory

overtime. This is not only tragic, but it is a choice doomed to fail.

Getting a project over the finish line is tough, and you‘ll be called upon to solve some sticky
problems along the way. Some of these problems will happen fast, too fast for you to have

a solution in your back pocket. You‘ll have to think on your feet—not unlike someone who
happens upon an emergency situation. When you learn first aid, you are taught that you

must be able to recognize a problem when you see it, have the skills to do something about

it, and most importantly, you must decide to act.

I can give you the first two. The final one is up to you.

Finishing Issues

If your project is going well, you‘ll likely only need a few tweaks here and there to make
sure you ―stick the landing,‖ so to speak. You can recognize this on your project by looking

for a few telltale signs:

../../ch22lev1sec1#ch22lev1sec1
../../ch22lev1sec2#ch22lev1sec2
../../ch22lev1sec3#ch22lev1sec3
http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Your bug count is under control. Your developers have fewer than four active

bugs to fix per day until the ―zero bugs‖ date.

 Everyone is in good spirits.

 The game is fun to play, performs well, and has only polishing issues

remaining.

If this describes your project, congratulations! But don‘t get too cocky, because there are
some easy missteps you can make, even at this late stage.

Quality

Perhaps the two biggest questions you and everyone else on the team asks at this point are

likely to be, ―Is the game good enough? Is it fun?‖ If a bug comes out of the testing group,
it‘s because they want something changed to make the game better. Anyone on the

development team can motivate a change as well, and they should if they think the game
will become better because of it.

The closer the project gets to the scheduled zero bugs milestone, the less likely minor, C

level bugs will actually get fixed. This rule of thumb is directly related to the fact that any
change in content or code induces some risk. I‘ve seen a single bug fix create multiple new

bugs. This implies that any high-risk change should either happen much earlier in the
schedule, or there has to be some incredibly compelling reason, like there‘s no other choice

and the project is in jeopardy if the change isn‘t made. These problems are usually elevated
to the highest level severity in the bug database, and your game shouldn‘t ship if it hasn‘t

been fixed.

Everyone on a project has his or her pet feature, something he or she really wants to see in
the game. The best time to install these features is before the code complete milestone

(some people call this alpha). There are a few good reasons for this. First, it gives the team

a huge burst of energy. Everyone is working on their top-tier wish lists, and tons of
important features make it into the game at a time where the risk of these changes is pretty

tolerable. Second, it gives the team a message: either put your change in now or forever
hold your peace. After code complete, nothing new code-wise should be installed into the

game. For artists and other content folks, this rule is the same, just the milestone is
different. They use the content complete milestone (or beta) as their drop-dead date for pet

features. One more note about programmers and artists adding anything. If the game isn‘t
reaching target performance goals, it‘s a bad idea to add anything. Adding things won‘t

make your game any faster. Make sure the performance issues are completely taken care of

before code complete, and monitor it closely until the project ships.

Lord British must Die

It‘s a common practice to put inside jokes or ―Easter Eggs‖
into a game. On Ultima VII, the team installed a special way

to kill Lord British, especially since Richard Garriott wanted
Lord British to be completely invincible. You need a little

background first.

Origin was in an office building in the west Austin hill
country, and the building had those glass front doors secured

with powerful magnets at the top of the door. One day,

Richard and some other folks were headed out to lunch, and
when Richard opened the door, the large block of metal that

formed a part of the magnetic lock somehow became
detached from the glass and fell right on Richard‘s head. Lord

http://lib.ommolketab.ir
http//lib.ommolketab.ir

British must truly be unkillable, because that metal block

weighed something like 10 pounds and had sharp edges....

The team decided to use that event as an inside way to kill

the monarch of Britannia. At noon, the Lord British

character‘s schedule took him into the courtyard of the
castle. He would pause briefly under the doorway, right

under a brass plaque that read, ―Lord British‘s Throne
Room.‖ If you double-clicked the sign, it would fall on his

head and kill him straightaway.

Perhaps the weirdest thing about this story is that a few
weeks later the same metal block on the same door fell on

Richard a second time, again with no permanent damage.
The guy is truly protected by some supernatural force, but he

did buy a hard-shell construction helmet, and he wasn‘t so
speedy to be the first person to open the door anymore.

By the time the team is working solidly to zero bugs, all the code and content is installed,
and there is nothing to do but fix bugs. It‘s a good idea to add a few steps to the bug-fixing

protocol. Here‘s the usual way bugs get assigned and fixed:

1. A bug is written up in test and assigned to a team member to fix.

2. The bug is fixed and is sent back to test for verification.

3. The bug is closed when someone in test gets a new version and observes the game

behaving properly.

Close to the zero bug date, a bit of sanity checking is in order. This sanity checking puts
some safety valves on the scope of any change. By this time in the project, it usually takes

two overworked human brains to equal the thinking power of one normal brain.

1. A bug is written up in test and discussed in a small group—usually, the team leads.

2. If the bug is serious enough, it is assigned to someone on the team to investigate a
solution.

3. Someone investigates a potential solution. If a solution seems too risky, that person

pulls the plug then and there and reports back that the bug should remain in its
natural habitat.

4. The solution is coded and checked on the programmer‘s machine by a colleague.

5. The solution is presented to the leads, and a final decision to check in the code or

abandon the change is made.

6. The bug is sent back to test for verification.

7. The bug is closed when someone in test gets a new version and observes the game

behaving properly.

If you think that the bureaucracy is a little out of control, I‘d understand your concerns. It
does seem out of control, but it‘s out of control for a reason. Most bugs, about 70 percent to

http://lib.ommolketab.ir
http//lib.ommolketab.ir

80 percent, never make it out of step #1. Of those that remain, one-half to three-quarters

of those are deemed too minor or too risky to fix, and never make it out of step #4.

Bug Meeting on Martian Dreams

My first experience with bugs in games was on Martian
Dreams at Origin Systems. The whole team gathered in the

conference room and each new bug from test was read aloud

to the entire team. Sometimes the bugs were so funny the
whole room was paralyzed with laughter, and while it wasn‘t

the most efficient way to run a meeting, it sure took the edge
off the day.

On Ultima VII, Ultima VIII, and Ultima Online, the teams

were simply too big, and the bugs too numerous, to read
aloud in a team meeting. Between the inevitable laughter

and complaining about fixing the object lists again, we‘d
probably still be working on those games.

Even on smaller projects, like Bicycle Casino and

Magnadoodle, we held bug meetings with the team leads. It
turned out that the rest of the developers would rather spend

their time making the game better and fixing as many bugs
as they could than sitting in meetings. Outside of that, time

away from the computer and sleep was a great diversion.

Of course, everything hinges on your active bug count. If you are two months away from
your scheduled zero bug date, and you are already sitting at zero bugs (yeah, right!), then
you have more options than a team skidding into their zero bug date with a high bug count.

I hope you find yourself in the former situation someday. I‘ve never seen it myself.

The only hard and fast rule is how many bugs your team can fix per day—this bug fix rate
tends to be pretty predictable all through your testing period. It will be different for

programmers than artists, because art bugs can be fixed faster and easier. Programmers
tend to fix somewhere between three and 10 bugs per day per person, but your mileage

may vary. The point is, measure how fast your bugs are dropping to zero and draw the line

out to see when you‘ll actually reach zero. If the date looks grim, or doesn‘t even slope
toward zero, you‘ve got a serious problem on your hands. If things are looking good, loosen

the screws a little and make your game better while you can.

You could just decide to fix fewer bugs, and while this will get you to zero bugs, it can
create an overall game experience that seems sloppy. If you have no choice but to do this,

make sure you focus on fixing bugs that materially affect the game experience. Minor
graphical glitches you can ignore, but a repeatable crash on the common play path should

get fixed no matter what.

Code

At the end of every game project, the programmers and scripters are the ones who are
hammered the most. Artists, level builders, and audio are hit especially hard during the

content complete milestone, but after that their work levels off, mostly because it is usually
more predictable. If you don‘t believe me, just ask an artist how long it will take him to

tweak the lighting on a model. Or ask a level designer how long it will take to place a few
more power-ups in a level, and she will not only give you a solid answer, but she will also

be right about it.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Ask a programmer how long it will take to find the random memory trasher bug, and he will

shrug and say something like, ―I don‘t know—a few hours maybe?‖ You may find that same
programmer, 48 hours later, bashing his head against the same bug, no closer to fixing it

than when he started.

These setbacks happen all the time, and there‘s not much that can be done except to get as
much caffeine into the programmer‘s bloodstream as he can stand, get the other

programmers to take up the slack in the bug debt, and maybe lend a few more neurons to
the problem. Don‘t forget about the advice earlier in the book: Any two programmers

looking at the same problem are at least three times as smart as a lone programmer.

When the bug is eventually found, there is often a decision that has to be made about the
nature of the solution. A simple hack may suffice, but a ―real‖ solution exists that will touch

a lot of code and perhaps induce more risk. At the very late stages of a project, I suggest
hacking. Wonton, unabashed hacking.

Some of you may be reeling at this sacrilege, but I‘m sure as many of you are cheering. The

fact is that a well thought-out hack can be the best choice, especially if you can guarantee
the safety and correctness of the change. ―Hack‖ is probably a bad word to use to fully

describe what I‘m talking about, because it has somewhat negative connotations. Let me try
to be specific in my definition:

Hack – n. A piece of code written to solve a specific corner case of a specific problem, as

opposed to code written to solve a problem in the general case.

Let me put this in a different light. Everyone should be familiar with searching algorithms,
where the choice of a particular search can achieve a ―first solution‖ or a ―best solution‖

criteria. At the beginning of a project, coding almost always follows the ―best solution‖ path,
because there is sufficient time to code a more complicated, albeit more general algorithm.

At the end of the project, it is frequently the case that the best solution will lead a

programmer down a complete reorganization of an entire subsystem, if not the entire code
base.

Instead, games have a ―get-out-of-jail-free‖ card, because the players don‘t generate the

game data. Since the game inputs are predictable, or even static, the problem domain is
reduced to a manageable level. A programmer can be relatively sure that a specific bit of

code can be written to solve a specific problem, on a specific map level, with specific
character attributes. It seems ugly, and to be honest, it is ugly. As a friend of mine at

Microsoft taught me, shipping your game is its most important feature.

The hack doesn‘t have to live in the code base forever, although it frequently does. If your
game is even mildly successful, and you get the chance to do a sequel, you might have time

to rip out the hacks and install an upgraded algorithm. You‘ll then be able to sleep at night.

Hacks in U7 and Strike Commander

At Origin it was common practice for programmers to add an

appropriate comment if they had to install a hack to fix a
bug. A couple of programmers were discussing which game

had the most hacks—Ultima VII or Strike Commander. There
was a certain pride in hacking in those days, since we were

all young, somewhat arrogant, and enjoyed a good hack from
time to time. The issue was settled with grep—a text file

search utility. The Strike Commander team was the clear

winner, with well over 500 hacks in their code. Ultima VII
wasn‘t without some great comments, though. My favorite

one was something like, ―This hack must be removed before

http://lib.ommolketab.ir
http//lib.ommolketab.ir

the game ships.‖ It never was. What‘s more I think the same

hack made it into Ultima VIII.

Commenting your code changes is a fantastic idea, especially late in the project. After the
code complete milestone, the changes come so fast and furious that it‘s easy to lose track

of what code changed, who changed it, and why. It‘s not uncommon for two programmers
to make mutually exclusive changes to a piece of code, each change causing a bug in the

other‘s code. You‘ll recognize this pretty fast, usually because you‘ll go into a piece of code

and fix a bug, only to have the same bug reappear a few versions later. When you pop back
into the code you fixed, you‘ll see the code has mysteriously reverted to the buggy version.

This might not be a case of source code control gone haywire, as you would first suspect. It
could be another programmer reverting your change because it caused another bug.

That situation is not nearly as rare as you think, but there is a more common scenario.

Every now and then, I‘ll attempt a bug fix, only to have the testers throw it back to me
saying that the bug still lives. By the time it comes back, I may have forgotten why I chose

the solution, or what the original code looked like. Even better, I may look at the same
block of code months later, and not have a clue what the fix was attempting to fix, or what

test case exposed the bug.

The solution to the problem of short-term programmer memories is comments, as always,
but comments in the late stages of development need some extra information to be

especially useful. Here‘s an example of a late-stage comment structure we used on the
Microsoft projects:

if (CDisplay::m_iNumModals == 0)

 {

 // ET - 04/10/02 - Begin

 // Jokerz #2107 - Close() here causes some errors,

 // instead use Quit() as it allows the app to shutdown

 // gracefully

 Quit(); // Close();

 // ET - 04/10/02 - End

 }

The comment starts with the initials of the programmer and the date of the change. The

entire change is bracketed with the same thing, the only difference between the two being a
―begin‖ and ―end‖ keyword. If the change is a trivial one-liner with an ultra short

explanation, the comment can sit on the previous line or out to the right.

The explanation of the change is preceded with the code name for the project and the bug
number that motivated the change. Code names are important because the bug might exist

in code shared between multiple projects, which might be in parallel development or as a
sequel. The explanation of the change follows, and where it makes sense, the old code is

left in, but commented out.

Most programmers will instantly observe that the source code repository should be the
designated keeper of all this trivia, and the code should be left clean. I respectfully

disagree. I think it belongs in both places. Code reads like a story, and if you are constantly
flipping from one application to another to find out what is going on, it is quite likely you‘ll

miss the meaning of the change.

There are plenty of software companies that employ some form of code review in their
process. The terms ―code review‖ and ―computer game development‖ don‘t seem to belong

http://lib.ommolketab.ir
http//lib.ommolketab.ir

in the same universe, let alone the same book. This false impression comes from

programmers who don‘t understand how a good code review process can turn a loose
collection of individual programmers into a well-oiled team of coding machines.

Each Change gets a Bug Number

At the end of the project, it’s a good idea, although somewhat

draconian, to convince the team to attach an approved bug number
with every change made to the code. This measure might seem

extreme, but I’ve seen changes “snuck” into the code base at the last

minute without any involvement from the rest of the team. The
decision to do that shouldn’t be made by a programmer at 3 a.m. on

Sunday morning. If every change is required to have a bug number, it
becomes a trivial matter to hunt down and revert any midnight

changes made by well meaning but errant programmers.

When most programmers think of code reviews, they picture themselves standing in front of
a bunch of people who laugh at every line of code they present. They think it will cramp

their special programming style. Worst of all, they fear that a bad code review will kill their
chances at a lead position or a raise.

I‘ve been working with code reviews in a very informal sense for years, and while it

probably won‘t stand up to NASA standards, I think it performs well in creative software,
especially games. It turns out there are two primary points of process that make code

reviews for games work well: who initiates the review, and who performs the review.

The person who writes the code that needs review should actually initiate the review. This
has a few beneficial side effects. First, the code will definitely be ready to review, since the

person needing it won‘t ask otherwise. Programmers hate surprises of the ―someone just
walked in my office and wants to see my code‖ kind. Because the code is ready, the

programmer will be in a great state of mind to explain it. After all, they should take a little
pride in their work, right? Even programmers are capable of craftsmanship, and there‘s not

nearly enough opportunity to show it off. A code review should be one of those

opportunities.

The person performing the review isn‘t the person you think it should be. Most of you

reading this would probably say, ―the lead programmer.‖ This is especially true if you are

the lead programmer. Well, you‘re wrong. Any programmer on the team should be able to
perform a code review. Something that is a lot of fun is to have a junior programmer

perform code reviews on the lead programmer‘s code. It‘s a great chance for everyone to
share his or her tricks, experience, and double-check things that are critical to your project.

This implies that the programmers all trust each other, respect each other, and seek to

learn more about their craft. I‘ve had the privilege of working on a programming team that
is exactly like that, and the hell of being on the other side as well. I‘ll choose the former,

thank you very much. Find me a team that enjoys code reviews and performs them often,
and I‘ll show you a programming team that will ship their games on time.

When I worked on the Microsoft casual games, the programmers performed code reviews

for serious issues throughout the project, but they were done constantly after content
complete, for each change, no matter how minor. Most of the time, a programmer would

work all day on five or six bugs, and call someone who happened to be on his way back
from the bathroom to do a quick code review before he checked everything in. This was

pretty efficient, since the programmer doing the review was already away from his

http://lib.ommolketab.ir
http//lib.ommolketab.ir

computer. Studies have shown that a programmer doesn‘t get back into the ―zone‖ until 30

minutes after an interruption. I believe it, too.

Bottom line: The closer you get to zero bugs, the more checking and double-checking you

do, on every semicolon. You even double-check the need to type a semicolon. This checking

installs a governor on the number and the scope of every code change, and the governor is
slowly throttled down to zero until the last bug is fixed. This increases the quality of every

change and the quality of the whole game as a result. After that, the game is ready to ship.

Content

Programmers aren‘t immune to the inevitable discussions, usually late at night, about

adding some extra content into the game at the eleventh hour. It could be something as

innocuous as a few extra names in the credits, or it could be a completely new terrain
system. You think I‘m kidding, don‘t you?

Whether it is code, art, sounds, models, map levels, weapons, or whatever makes your

game fun, you‘ve got to be serious about finishing your game. You can‘t finish it if you keep
screwing with it! If you are really lucky, you‘ll wind up at a company like Valve or id, who

can pretty much release games when they‘re damn good and ready. The rest of us have to
ship games when we get hungry, and the desire to make the best game can actually

supersede basic survival. At some point, no matter how much you tweak it, your game is
what it is, and even superhuman effort will only achieve a tiny amount of quality

improvement. If you‘ve ever heard of something called the ―theory of diminishing returns,‖
you know what I‘m talking about. When this happens, you‘ve already gone too far. Pack

your game up and ship it, and hope it sells well enough for you to get a second try.

The problem most people have is recognizing when this happens—it‘s brutally difficult. If
you‘re like me, you get pretty passionate about games, and sometimes you get so close to

a project that you can‘t tell when it‘s time to throw in the towel.

Find your own Beta Testers

Microsoft employs late stage beta testers. These people work in other

parts of Microsoft but play their latest games. Beta testers are
different from playtesters because they don’t play the game every

day. They are always just distant enough and dispassionate enough to
make a good judgment about when the game is fun, or when it’s not.

If you don’t have Microsoft footing your development bills, find ad-hoc

testers from just about anywhere. You don’t need professional testing
feedback. You just need to know if people would be willing to plunk

down $60 for your game and keep it forever.

A Bug becomes a Feature

When I worked on the Ultima series, it wasn‘t uncommon for

truly interesting things to be possible, code-wise, at a very
late stage of development. On Ultima VIII, a particular magic

spell had a bug that caused a huge wall of fire that destroyed
everything in its path. It was so cool we decided to leave it in

the game and replace one of the lamer spells. It wasn‘t

exactly a low-risk move, completely replacing a known spell
with a bug-turned-feature, but it was an awesome effect, and

we all felt the game was better for it.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

I‘m trying my very best to give you some solid advice instead of some wishywashy
pabulum. The truth is there‘s no right answer regarding last-minute changes to your game.

The only thing you can count on is 20-20 hindsight, and only the people that write the
history books are the winners. In other words, when you are faced with a decision to make

a big change late in the game, trust your experience, try to be at least a little bit
conservative and responsible in your choices, and hope like hell that you are right.

Let the Team Vote on Bugs

On Mushroom Men: The Spore Wars, we did something
unusual. We had already established a ―Bug Triage‖ room

where all the team leads could discuss each bug as it came in
from the testing team and either kill it or assign it to

someone. A few weeks before we went into total lockdown

mode, we gathered a list of 100 bugs that the team really
wanted to see fixed, and let the entire team vote on them.

This took a few rounds, but it was great to see things that
were close to a developer‘s heart get fixed. We‘ll do this

again.

Dealing with Big Trouble

Murphy is alive and well in the computer game industry, and I‘m sure he‘s been an invisible
team member on most of my projects—some more than others, but most especially at

Origin Systems, where Murphy had a corner office. I think his office was nicer than mine!

Big trouble on game projects comes in a few flavors: too much work and too little time,
human beings under too much pressure, competing products in the target market, and

dead-ends. There aren‘t necessarily standard solutions for these problems, but I can tell you
what has been tried and how well it worked, or didn‘t work, as the case may be.

Projects Seriously Behind Schedule

Microsoft has a great way of describing a project behind schedule. They say it‘s ―coming in

hot and steep.‖ I know because the first Microsoft Casino project was exactly like that. We
had too much work to do, but too little time to do it in. There are a few solutions to this

problem, such as working more overtime or throwing bodies at the problem. Each solution
can work, but it can also have a dark side.

The Dreaded Crunch Mode—Working More Hours

It amazes me how much project managers choose to work their teams to death when the

project falls behind schedule.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

84-Hour workweeks at Origin

On my very first day at Origin Systems, October 22, 1990, I

walked by a white-board with an ominous message written in

block letters: ―84-Hour Workweeks—MANDATORY.‖ With
simple division, I realized that 84 divided by 7 is 12. Twelve

hours per day, seven days per week was Origin‘s solution for
shipping Savage Empire for the Christmas, 1990 season. To

the Savage Empire team‘s credit, they shipped the game a
few tortured weeks later, and this ―success‖ translated into

more mandatory overtime to solve problems.

We were all young, mostly in our late 20s, and the amount of
overtime that was worked was bragged about. There was a

company award called the ―100 Club,‖ which was awarded to
anyone who worked more than 100 hours in a single

workweek. At Origin, this club wasn‘t very exclusive.

Humans are resilient creatures, and under extraordinary circumstances they can go long
stretches with very little sleep or a break from work. Winston Churchill, during World War
II, was famous for taking little catnaps in the Cabinet War Rooms lasting just a cumulative

few hours per day, and he did this for years. Mr. Churchill had good reason to do this. He
was trying to lead England in a war against Nazi Germany, and the cost of failure would

have been catastrophic for his country and the entire world.

Game companies consistently ask for a similar commitment on the part of their employees—
to work long hours for months, even years on end. What a crime! It‘s one thing to save a

nation from real tyranny, it‘s quite another to make a computer game. This is especially

true when the culprit is overscoping the project, blind to the reality of a situation, and has a
lack of skill in project management.

It is a known fact that under a normal working environment, projects can be artificially

time-compressed up to 20 percent by working more hours. This is the equivalent of asking
the entire team to work eight extra hours on Saturday. I define a normal working

environment as one where people don‘t have their lives, liberty, or family at stake. This
schedule can be kept up for months, if the team is well motivated.

Take a Break—you’ll be better for it

It was this schedule that compressed Ultima VIII after a last-

minute feature addition: Origin asked the team to ship the

game in two extra languages, German and French. The team
bloated to nearly three times its original size, adding native

German and French speakers to write the tens of thousands
of lines of conversation and test the results. We worked

overtime for five weeks—60 hours per week, and we took the
sixth week and worked a normal workweek, which averaged

50 hours. This schedule went on from August to March, or
eight months. Youth and energy went a long way, and in the

end, we did ship the game when the team thought we were

going to ship the game, but everyone was exhausted beyond
their limits.

Weeks later, however, it was clear that the game wasn‘t all

we wanted it to be. Our collective exhaustion at the end

http://lib.ommolketab.ir
http//lib.ommolketab.ir

caused me and others to make some bad decisions about

what we should fix. Reviews were coming in, and they
weren‘t good. A few months down the road, the team got

back together to fix many of the biggest problems, and we
released a patch, which by all accounts was much better.

The moral of this story—it is possible to crunch like crazy,

and it may seem like you are achieving your goals, but in the
end, your game will suffer for it. Working overtime works

only to solve short-term problems, not long-term disasters.

For short periods of time, perhaps a week or two weeks, truly extraordinary efforts are

possible. Twelve-hour days for a short burst can make a huge difference in your game. Well
managed and planned, it can even boost team morale. It feels a little like summer camp. A

critical piece of this strategy is a well-formed goal such as the following:

 Fix 50 bugs per developer in one week.

 Finish integrating the major subsystems of the game.

 Achieve a playthrough of the entire game without cheating.

The goal should be something the team can see on the horizon, well within sprinting

distance. They also have to be able to see their progress on a daily basis. It can be quite
demoralizing to sprint to a goal you can‘t see, because you have no idea how to gauge your

level of effort.

Richard’s Midnight BBQ

On Ultima VII, Richard Garriott was always doing crazy

things to support the development team. One night he
brought in steaks to grill on Origin‘s BBQ pit. Another night,

very late, he brought in his monster cappuccino machine
from home and made everyone on the team some latte. One

Saturday, he surprised the team and declared a day off,
taking everyone sky diving. Richard was long past the time

where he could jump into C++ and write some code, but his

support of the team and simply being there during the wee
hours made a huge difference.

There‘s a dark side to overtime in the extreme that many managers and producers can‘t see
until it‘s too late. It happened at Origin, and it happens all the time in other companies.
When people work enough hours to push their actual pay scale below minimum wage, they

begin to expect something extraordinary in return, perhaps in the form of end-of-project

bonuses, raises, promotions, and so on.

The evil truth is that the company usually cannot pay anything that will equal their level of

effort. The crushing overtime is a result of a project in trouble, and that usually equates to a

company in trouble. If it weren‘t so, company managers wouldn‘t push staggering overtime
onto the shoulders of the team. At the end of the day, the project will ship, probably vastly

over budget and most likely at a lower quality than was hoped. Unfortunately, these two
things do not translate into huge amounts of money flowing into company coffers and

subsequently into the pockets of the team.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

A few months after these nightmare projects ship, the team begins to realize that all those

hours amounted to nothing more than lost time away from home. Perhaps their firstborn
took a few wobbling steps or spoke his or her first words, ―Hey where in the hell is Daddy,

anyway?‖ This frustration works into anger, and finally into people leaving the company for
what they think are greener pastures. High turnover right after a project ships is pretty

common in companies that require tons of overtime.

Someone once told me that you‘ll never find a tombstone with the following epitaph: ―I wish
I worked more weekends.‖ As team member, you can translate that into a desire to predict

your own schedule as best you can, and send up red flags when things begin to get off
track. If you ever get to be a project lead, I hope you realize that there‘s a place for

overtime, but it can‘t replace someone‘s life.

Pixel Fodder—Throw Warm Bodies at the Problem

Perhaps the second most common solution to projects seriously behind schedule is to throw
more developers on the project. Well managed, this can have a positive effect, but it‘s

never very cost effective, and there‘s a higher risk of mistakes. It turns out there‘s a sweet
spot in the number of people who can work on any single project.

More People Make Work Go Faster, Right?

Ultima Online was the poster child of a bloated team. In
December of 1996, the entire Ultima IX team was moved to

Ultima Online in the hopes that throwing bodies at the
problem would speed the project to completion. This ended

up being something of a disaster, for a few reasons. First, the
Ultima IX team really wanted to work on Ultima IX. Their

motivation to work on another project was pretty low.

Second, the Ultima Online team had a completely different
culture and experience level, and there were clashes of

philosophy and control. Third, Ultima Online didn‘t have a
detailed project plan, somewhat due to the fact that no one

had ever made a massive multiplayer game before. This
made it difficult to deploy everyone in his or her area of

expertise. I happened to find myself working with SQL
servers, for example, and I didn‘t have a shred of

experience!

Through a staggering amount of work—an Origin hallmark—
on the part of the original Ultima Online team and the Ultima

IX newcomers, the project went live less than nine months

after the team was integrated. The cost was overwhelming,
however, especially in terms of employee turnover in the old

Ultima IX team. Virtually none of the programmers,
managers, or designers of Ultima IX remained at Origin to

see it completed.

One effect of overstaffing is an increased need to communicate and coordinate among the

team members. It‘s a generally accepted fact that a manager‘s effectiveness falls sharply if
he has any more than seven reports, and it is maximized at five reports. If you have a

project team of 12 programmers, 14 artists, and 10 designers, you‘ll have two
programming leads reporting to a technical director, and a similar structure for artists and

designers. You‘ll likely have a project director as well, creating a project management staff
of 10 people.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

If your management staff is anything less than that, you‘ll probably run into issues like two

artists working on the same model, or perhaps a programming task that falls completely
through the cracks. To be honest, even with an experienced management team, you‘ll never

be completely free of these issues.

Working in Parallel on Bicycle Cards

Occasionally, you get lucky, and you can add people to a

project simply because a project is planned and organized in
the right way. A good example of this was the Bicycle Cards

project, basically a bunch of little games packaged up in one
product. When some of the games began to run behind

schedule, we hired two contractors to take on a few games
apiece. The development went completely smoothly with

seven programmers in parallel. Their work was
compartmentalized, communication of their tasks were

covered nearly 100 percent by the design document, and this

helped ease any problems.

They say that nine women can‘t make a baby in one month. That‘s true. There is also a
documented case of a huge group of people who built an entire house from the ground up in

three days due to an intricately coordinated plan, extremely skilled people, and very
specialized building techniques. Your project could exist on either side of these extremes.

Slipping The Schedule

This solution seems de rigueur in the games industry, even with a coordinated application of

crunch mode and bloating the team. There‘s a great poster of Ultima VII and Strike
Commander that Origin published in 1992, in the style of movie posters that bragged

―Coming this Christmas.‖ It turns out that those posters got the season right, but they just
had the wrong year.

There‘s a long list of games that shipped before their time, but perhaps the worst offender

in my personal history was Ultima Online. There was even a lawsuit to that effect, where
some subscribers filed a class action lawsuit against Electronic Arts for shipping a game that

wasn‘t ready. Thankfully, it was thrown out of court. A case like that could have had drastic

effects on the industry!

The pressure to ship on schedule is enormous. You might think that companies want to ship

on time because of the additional costs of the development team, and while the weekly burn

rate of a gigantic team can be many hundreds of thousands of dollars, it‘s not the main
motivation. While I worked with Microsoft, I learned that the manufacturing schedule of our

game was set in stone. We had to have master disks ready by such and such a date, or we
would lose our slot in the manufacturing facility. Considering that the other Microsoft project

coming out that particular year was Windows XP, I realized that losing my place in line
meant a huge delay in getting the game out. Console games can have the same problem. If

you miss your submission date to Nintendo, Sony, or Microsoft, you get to go on ―standby,‖
waiting for another empty slot so they can test your game for technical standards

compliance.

While things like manufacturing and submission can usually be worked out, there‘s another,
even bigger motivation for shipping on time. Months before the game is done, most

companies begin spending huge money on marketing. Ads are bought in magazines or

television, costing hundreds of thousands of dollars. You might not know this, but those
special kiosks at the end of the shelves in retail stores, called endcaps, are bought and paid

for like prime rental real estate, usually on a month-by-month basis. If your game isn‘t

http://lib.ommolketab.ir
http//lib.ommolketab.ir

ready for the moment those ads are published or those kiosks are ready to show off your

game, you lose the money. No refunds here!

This is one of the reasons you see the executives poking around your project six to eight

months before you are scheduled to ship. It‘s because they are about to start writing big

checks to media companies and game retail chains in the hopes that all this cash will drive
up the sales of your game. The irony is, if the execs didn‘t believe you could finish on time,

they wouldn‘t spend the big bucks on marketing, and your game would be buried
somewhere on a bottom shelf in a dark corner of the store. Oh, and no ads either. Your best

advertising will be by personal email to all your friends, and that just won‘t cut it. In other
words, your game won‘t sell.

The difference between getting your marketing pressure at maximum and nothing at all

may only be a matter of slipping a few weeks, or even a few days. What‘s worse, this
judgment call is made months before you are at code complete—a time when your game is

crashing every three minutes. Crazy, huh?

Probably the best advice I can give you is to make sure you establish a track record of
hitting each and every milestone on time throughout the life of your project. Keep your bug

count under control, too. These two things will convince the suits that you‘ll ship on time
with all the features you promised. Whatever you do, don‘t choose schedule slippage at the

last minute. If you must slip, slip it once and make sure you give the suits enough time to

react to all the promises they made on your behalf. This is probably at least six months
prior to your release date, but it could be even more.

Cutting Features and Postponing Bugs

Perhaps the most effective method of pulling a project out of the fire is reducing the scope
of work. You can do it in two ways: nuke some features of the game and choose to leave

some bugs in their natural habitat, perhaps to be fixed on the sequel. Unless you‘ve been a

bit arrogant in your project, the players and the media won‘t know about everything you
wanted to install in the game. You might be able to shorten or remove a level from your

game, reduce the number of characters or equipment, or live with a less accurate physics
system.

Clearly, if you are going to cut something big, you have to do it as early in the project as

you can. Game features tend to work themselves in to every corner of the project, and
removing them wholesale can be tricky at best, impossible at worst. Also, you can‘t have

already represented to the outside world that your game has 10,000 hours of gameplay
when you‘re only going to have time for a fraction of that. It makes your team look young

and a little stupid.

After code complete, the programmers are fixing bugs like crazy. One way to reduce the
workload is to spirit away some of the less important bugs. As the ship date approaches,

management‘s desire to ―fix‖ bugs in this manner becomes somewhat ravenous, even to the
point of leaving truly embarrassing bugs in the game, such as misspelled names in the

credits or nasty crashes.

Shipping Christmas, 201?

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Always give yourself some elbow room when making promises to

anyone, but especially the game industry media. They love catching

project teams in arrogant promises. It’s great to tell them things
about your game, but try to give them specifics in those features you

are 100 percent sure are going be finished.

Anything can be bad in great quantities, and reducing your game‘s scope or quality is no
exception. One thing is certainly true—your players won‘t miss what they never knew about
in the first place.

This One must die so that others may Live

Mushroom Men: The Spore Wars on the Wii was in late
development, and one of the levels was falling behind. Art

was unfinished, scripted events were still undone, and many
other things left the team with the distinct impression that

getting the level done was going to take a lot of work. After

some serious soul searching, the team decided to cut the
entire level and spend time making the other levels in the

game better. It was a very hard decision, because so much
work and care had already been spent on it—and had it been

completed, it would have been one of the cooler parts of the
game. In the end, it was the right decision.

It is incredibly difficult to step away from the guts of your project and look at it objectively
from the outside. I‘ve tried to do this many times, and it is one of the most difficult things

to do, especially in those final days. Anyone who cares about his or her game won‘t want to
leave a bug unfixed or cut a feature.

Ask yourself three serious questions when faced with this kind of decision: Will my decision

sell more copies? Will the players really notice this change? Will it keep someone from
returning the game? If your answer is yes, do what it takes. Otherwise, move on and get

your game shipped.

Personnel-Related Problems

At the end of a project, everyone on the team is usually stretched to the limit. Good-
natured and even-keeled people aren‘t immune to the stresses of overtime and the pressure

of a mountain of tasks. Some game developers are far from good natured and even keeled!
Remember always that whatever happens at the end of a project, it should be taken in the

context of the stresses of the day, not necessarily as someone‘s habitual behavior. After all,
if someone loses his cool at 3 a.m. after having worked 36 hours straight, I think a little

slack is in order. If this same person loses his cool on a normal workday after a calm
weekend, perhaps some professional adjustments are a good idea.

Exhaustion

The first and most obvious problem faced by teams is simple exhaustion. Long hours and

missed weekends create pressure at home and a robotic sense of purpose at work. The
team begins to make mistakes, and for every hour they work, the project slips back three

hours. The only solution for this is a few days away from the project. Hopefully, you and

http://lib.ommolketab.ir
http//lib.ommolketab.ir

your team won‘t let the problem get this bad. Sometimes, all it takes is for someone to

stand up and point to the last three days of nonprogress and notice that the wheels are
spinning, but the car isn‘t going anywhere. Everyone should go home for 48 hours, even if

it‘s Tuesday. You‘d be surprised how much energy people will bring back to the office.

One other thing: They may be away from their desks for 48 hours, but their minds will still
have some background processes mulling over what they‘ll do when they get back to work.

Oddly enough, these background thoughts can be amazingly productive, since they tend to
concentrate on planning and the big picture rather than every curly brace. When they get

back, the additional thought works to create an amazing burst of productivity.

4 Hours > 15 Seconds

Late in the Magnadoodle project for Mattel Media, I was

working hard on a graphics bug. I had been programming
nearly 18 hours per day for the last week, and I was

completely spent. At 3 a.m., I finally left the office,
unsuccessful after four hours working on the same problem,

and went to sleep. I specifically didn‘t set my alarm, and I
unplugged all the telephones. I slept. The next morning, I

awoke at a disgusting 11 a.m. and walked into the office with

a fresh cup of Starbuck‘s in hand. I sat down in front of the
code I was struggling with the night before and instantly

solved the problem. The bug that had eluded me for four
hours the day before was solved in less than 15 seconds. If

that isn‘t a great advertisement for sleep gaining efficiency in
a developer, I don‘t know what is.

Morale

Team morale is directly proportional to their progress toward their goal, and isn‘t related to

their workload. This may seem somewhat counterintuitive, but it‘s true. One theory that has

been proposed regarding the people that built the great pyramids of Egypt is that teams of
movers actually competed with each other to see how many blocks they could move up the

ramps in a single day. Their workload and effort was backbreaking and their project
schedule spanned decades. The constant competition, as the theory suggests, created high

productivity and increased morale at the same time.

Morale can slide under a few circumstances, all of which are completely controllable. As the
previous paragraph suggests, the team must be convinced they are on track to achieve

their goal. This implies that the goal shouldn‘t be a constantly moving target. If a project
continually changes underneath the developers, they‘ll lose faith that it will ever be

completed. The opposite is also true—a well designed project that is under control is a joy
to work on, and developers will work amazingly hard to get to a finish line they can see.

There‘s also a lot to be said for installing a few creature comforts for the development team.

If they are working long hours, you‘ll be surprised what a little effort toward team
appreciation will accomplish.

Spend a Little Money—it’s your Team

http://lib.ommolketab.ir
http//lib.ommolketab.ir

Get out the company credit card and make sure people on the project

are well cared for. Stock the refrigerator with drinks and snacks, buy

decent dinners every night, and bring in donuts in the morning. Bring
in good coffee and get rid of the cheap stuff. Every now and then,

make sure the evening meal is a nice one, and send them home
afterward instead of burning the midnight oil for the tenth night in a

row.

Something I‘ve seen in the past that affects morale is the relationship between the
development team and the testing team. I‘ve seen the entire range, from teams that

wanted to beat each other with pipes to others that didn‘t even communicate verbally—they
simply read each other‘s minds and made the game better. Someone needs to take this

pulse every now and then, and apply a little rudder pressure when needed to keep things
nice and friendly. Some warning signs to watch for include unfriendly japes in the bug

commentary, discussion about the usefulness of an individual on either team or their
apparent lack of skill, or the beginnings of disrespect for their leadership.

Perhaps the best insurance against this problem is forging personal relationships among the

development leadership and testing leadership, and if possible, with individuals on the
team. Make sure they get a chance to meet each other in person if at all possible, which can

be difficult since most game developers are a few time zones away from their test team.

Personal email, telephone conversations, conference calls, and face-to-face meetings can
help forge these professional friendships and keep them going when discussions about bugs

get heated.

This leads into something that may have the most serious affect on morale, both positive
and negative. The developers need to feel like they are doing something worthwhile, and

that they have the support of everyone. The moment they feel that their project isn‘t worth
anything, due to something said in the media or perhaps an unfortunate comment by an

executive, you can see the energy drain away to nothing. The opposite of this can be used
to boost morale. Bring in a member of the press to see some kick-ass previews, or have a

suit from the publisher shower the team with praise, and they‘ll redouble their effort. If you
happen to work in a company with multiple projects, perhaps the best thing I‘ve seen is one

project team telling another that they have a great game. Praise from one‘s closest

colleagues is far better than any other.

Other Stuff

Perhaps the darkest side of trouble on teams is when one person crosses the line and

begins to behave in an unprofessional manner. I‘ve seen everything from career blackmail
to arrogant insubordination, and the project team has to keep this butthead on the team or

risk losing their ―genius.‖ My suggestion here is to remember that the team is more

important than any single individual. If someone leaves the team, even figuratively, during
the project you should invite him/her to please leave in a more concrete manner.

Your Competition Beats You to the Punch

There‘s nothing that bursts your bubble quite as much as having someone walk into your
office with a game in his hand, just released, that not only kicks butt but is exactly like your

game in every way. You might think I‘m crazy, but I‘ll tell you that you have nothing to

worry about. The fact is that you can learn a lot from someone else‘s game simply by
playing it, studying their graphics system, testing their user interface, and finding other

chinks in their armor. After all, you can still compile your game, whereas they‘ve burned
theirs on optical media.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

True, you won‘t be the first to market. Yes, you‘d better be no later than second to market,

and certainly you‘d better make sure that you don‘t repeat their mistakes. At least you have
the benefit of having a choice, and you also have the benefit of dissecting another

competitor‘s product before you put your game on the shelf.

Don’t give away all your Secrets

They say that loose lips sink ships, right? This is certainly

true in the game industry. Strike Commander, Origin‘s first
3D game, was due out in Christmas of 1992. In the summer

of 1992, Origin took Strike Commander to the big industry
trade show at the time, the Consumer Electronics Show, and

made a big deal of Strike Commander’s advanced 3D
technology. They went so far as to give away technical

details of the 3D engine, which the competition immediately
researched and installed in their own games. Origin‘s

competitive advantage was trumped by their own marketing

department, and since the team had to slip the schedule past
Christmas, the competition had more time to react. What a

disaster!

The game industry tends to follow trends until they bleed out. That‘s because there‘s a
surprisingly strong aversion to unique content on the part of game executives. If a

particular game is doing well, every company in the industry puts out a clone until there are

50 games out there that all look alike. Only the top two or three will sell worth a damn, so
make sure you are in that top two or three.

There’s No Way Out—or Is There?

Sometimes, you have to admit there‘s a grim reality—your game has coded itself into a
corner. The testers say the game just isn‘t any fun. You might have gone down a dead-end

technology track, such as coding your game for a dying platform.

What in the hell do you do now?

Mostly, you find a way to start over. If you‘re lucky, you might be able to recycle some
code, art, map levels, or sounds. If you‘re really lucky, you might be able to replace a minor

component and save the project. Either way, you have to find the courage to see the
situation for what it is and act. Putting your head in the sand won‘t do any good.

One Last Word—Don’t Panic

There are other things that can go terribly wrong on projects, such as when someone

deletes the entire project from the network or when the entire development team walks out
the door to start their own company. Yes, I‘ve seen both of these things happen, and no,

the projects in question didn‘t instantly evaporate. Every problem can be fixed, but it does
take something of a cool head. Panic and over-reaction—some might say these are

hallmarks of your humble author—rarely lead to good decisions.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

I Never gave up on Ultima IX

After Ultima IX was put on ice, and I was working hard on

the Ultima Online project, I secretly continued work on

Ultima IX at my house in the evenings and on weekends. My
goal wasn‘t so much to resurrect Ultima IX or try to finish it

single-handedly. I just wanted to learn more about 3D
hardware-accelerated polygon rasterization, which was pretty

new at the time. I was playing around with Glide, a 3D API
from 3DFx that worked on the VooDoo series of video cards.

In a surprisingly little amount of work, I installed a Glide-
compliant rasterizer into Ultima IX, complete with a basic,

ultra stupid, texture cache.

What I saw was really amazing—Ultima IX running at over
40fps. The best frame rate I‘d seen so far was barely 10fps

using our best software rasterizer. I took my work into Origin

to show it off a bit, and the old Ultima IX team just went
wild. A few months later, the project was back in

development with a new direction. Ultima IX would be the
first Origin game that was solely written for hardware-

accelerated video cards. A bold statement, but not out of
character with the Ultima series. Each Ultima game pushed

the limits of bleeding edge technology every time a new one
was published, and Ultima IX was no exception.

Try to stay calm, and try to gather as much information about whatever tragedy is befalling
you. Don‘t go on a witch hunt. You‘ll need every able-bodied programmer and artist to get

you out of trouble. Whatever it is, your problem is only a finite string of 1s and 0s in the
right order. Try to remember that, and you‘ll probably sleep better.

The Light—It’s Not a Train After All

It‘s a day you‘ll remember for every project. At some point, there will be a single approved

bug in your bug database. It will be assigned to someone on the team, and likely it will be
fixed in a crowded office with every team member watching. Someone will start the build

machine, and after a short while, the new game will be sent to the testing folks. Then the

wait begins for the final word the game has been signed off and sent to manufacturing. You
may have to go through this process two or three times—something I find unnerving but

inevitable. Eventually though, the phone will ring, and the lead tester will give you the good
news. The final build has been accepted, and the game is going to be manufactured.

Your game is done. There will likely be a free flow of appropriate beverages. I keep a bottle

of nice tequila or maybe a good single malt scotch in my office for just such an occasion.
You have a few weeks to wait for the channel to push your game into every store and online

site, so what do you do in the meantime?

Test the Archive

The first thing you do is take a snapshot of the build machine and the media files on your
network. Your job is to rebuild the game from scratch, using all your build scripts, to make

sure that if you ever need to, you can restore a backup of the game source and rebuild your
game. Start with a completely clean machine and install the build machine backup. It should

http://lib.ommolketab.ir
http//lib.ommolketab.ir

include all the build tools, such as your compiler and special tools that you used to create

your game.

Restore a backup of the network files to a clean spot on your network. This may take some

doing, since your network might be pretty full. It‘s a good idea to buy some extra hard

drives to perform this task, since it is the only way you can be 100 percent sure your
project backup will work.

After you have a duplicate of your build machine and a second copy of the network files,

build your game again and compare it to the image that is signed off. If they compare bit
for bit, make some copies of the backups and store them in a cool dark place, safe for all

eternity. It is quite likely that your publisher will want a copy of the backup, too, so don‘t
forget to make enough copies. If the files don‘t match, do your best to figure out why. It

wouldn‘t be completely unusual for a few bits to be mysteriously different on the first
attempt. The existence of a completely automated build process usually makes the archive

perfectly accurate, which is a great reason to have it in the first place.

As a last resort, if your files don‘t match, the best thing you can do is document the delta
and have your testers run the rebuilt archive through the testing process once more. This

will ensure that at least the game is still in a shippable state, even though some of the bits
are different.

Archive the Bug Database

Don’t forget to back up the bug database in some readable format,
such as an Excel spreadsheet or even a CSV file. Store it along with

your project archive and if you ever want to start a sequel, the first
thing you’ll do is figure out which postponed bugs you’ll fix.

The Patch Build or the Product Demo

It‘s not crazy to start working on a patch build or downloadable demo immediately after the

project signs off. The patch build is something PC developers are somewhat well known for,

and if you know you need to build one, there‘s no reason to wait. Console developers can
work on patches too, now that they all connect to the Internet. A downloadable demo is

always a good idea, and many game industry magazines can also place a demo in an
included disc.

I suggest you leave the patch build in your main line of development in your source code

repository. The patch build should simply be the next minor version of your game, and is
exactly what you‘ve been doing since your zero bug date. You can release the thumbscrews

a little, and consider some slightly more radical solutions to problems that you wouldn‘t
have considered just a few days ago—it all depends on your schedule for the patch.

It wouldn‘t be uncommon to wait for initial customer feedback for finalizing the features and

fixes that you‘ll include in your patch. Your customer base can be tens of thousands, if not
hundreds of thousands, of people. They will likely find something your testers missed, or

you may discover that a known problem is a much bigger deal than anyone expected.

The downloadable demo should exist in a separate branch in your source code repository.

This is especially true if you code the demo with #ifdef _DEMO blocks or some such

mechanism to cut your game down to a tiny version of itself. It wouldn‘t be crazy for some

http://lib.ommolketab.ir
http//lib.ommolketab.ir

programmers to work on the demo and the patch simultaneously, and a separate code

branch will help keep everything organized.

The Post-Mortem

A good post-mortem should be held a few weeks after you sign off your game. There are

tons of ways to handle it, but there are a few common goals. Every project is a chance to
learn about game development, and the post mortem is a mechanism that formalizes those

lessons, which will ultimately change the way you work. It isn‘t a forum to complain about

things that went wrong and leave it at that. Instead, your post mortem should identify
opportunities to improve your craft. It is a forum to recognize a job well done, whether on

the part of individuals or as a group.

In post-mortems, it‘s really easy to get off track because everyone on the team wants to
say his or her piece about nearly everything. That‘s good, but it can degenerate into a

chaotic meeting. It‘s also not a crazy idea to split the team into their areas of expertise and
have them conduct mini post-mortems in detail. For example, the programmers might get

together to talk about aspects of the technology or their methodologies, surely stuff that will
bore the artists to the point of chewing their own limbs off to escape the meeting. Each

group, programmers, artists, designers, producers, and whomever, can submit their
detailed report for any other similar group who wants to learn their lessons.

The team post-mortem should focus on the game design, the project schedule, lines of

communication, and team process. If someone believes they have a good idea of how to
improve things, he should speak up and if the group thinks the idea has merit, then they

should act on the idea.

One thing that isn‘t immediately obvious is the fact that you won‘t learn everything in a
public meeting. Some of the most important information might be better discussed in

private, in the hopes that someone‘s feelings won‘t be bruised. If you get the chance to run

a post-mortem, don‘t forget to follow the public meeting with private interviews with the
team. It will take a long time, but it‘s a good idea.

What to Do with Your Time

When I reached the end of my longest project to date, Ultima VIII, my first act was to walk
outside Origin‘s offices, sit down at a picnic table, and enjoy the light, smells, and sounds of

a springtime Texas afternoon. I had been in a dark office working overtime for two years,

and I‘d forgotten what daytime was like. I went home and found a person there. After
introductions, and reviewing surprising evidence in the form of a photo album, I realized

that the person in my apartment was actually my wife for over three years. I asked her out
on a date, and she accepted. Then I asked her to accompany me on a diving trip to

Cozumel. She accepted that, too.

I suggest you follow my lead. If you don‘t have a spouse, go somewhere fun with a friend.
See the world. Get away from your computer at all costs. It will do you some good, and

may give you some fun ideas.

You won‘t be able to stay away from work forever. The paycheck is nice, but the desire to
make another great game will soon overwhelm you. You may embark on a sequel to the

game you just shipped, or you might get to do something entirely new. Either way, you‘ll be
surprised at the energy level. People on the team who looked like the living dead just a few

weeks ago will be ready to go around again.

There‘s nothing quite like starting a new project. You feel renewed, smarter, and if you‘re
really lucky, you‘ll get to work with the same team. After what you‘ve just been through, it‘s

likely you‘ll have a good portion of mental telepathy worked out, and you won‘t need quite
so many meetings.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

One thing everyone will quietly do is make excuses to walk into computer game stores

looking for the box. Eventually, you‘ll see it for the first time. There‘s nothing like it, holding
a shrink-wrapped version of your game in your own hands. I sincerely hope you get the

chance to do that someday. Everybody deserves that kind of reward for such a mammoth
effort.

The game industry is a wacky place. The hours are long, and the money isn‘t that great. I

know because I‘ve been in it up to my neck since games ran on floppy disks. Somehow I
find the energy to stay in the game. Am I just a glutton for punishment?

I guess there‘s a lot to be said for a profession that has one goal—fun. I learned in scouting

that you should always leave a campsite better than you found it. I guess that working on
computer games is a way to do that for much more than a campsite. My work in the

computer game industry has hopefully had an effect on the people that enjoyed the games
with my name somewhere in the credits. My work on this book has hopefully made working

on the games themselves more fun and more enjoyable.

Only time will tell, eh?

http://lib.ommolketab.ir
http//lib.ommolketab.ir

