
 Java Servlet Programming

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Exploring Java

Java Threads
Java Network Programming

Java Virtual Machine
Java AWT Reference

Java Language Reference
Java Fundamental Classes Reference

Database Programming with JDBC and Java

Java Distributed Computing
Developing Java Beans

Java Security
Java Cryptography

Java Swing
Java Servlet Programming
Also from O’Reilly

Java in a Nutshell
Java in a Nutshell, Deluxe Edition

Java Examples in a Nutshell

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Java Servlet Programming
Jason Hunter
with William Crawford
Beijing • Cambridge • Farnham • Köln • Paris • Sebastopol • Taipei • Tokyo

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Java ™ Servlet Programming
by Jason Hunter with William Crawford

Copyright © 1998 O’Reilly & Associates, Inc. All rights reserved.
Printed in the United States of America.

Published by O’Reilly & Associates, Inc., 101 Morris Street, Sebastopol, CA 95472.

Editor: Paula Ferguson

Production Editor: Paula Carroll

Editorial and Production Services: Benchmark Productions, Inc.

Printing History:

October 1998: First Edition

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered
trademarks and The Java™ Series is a trademark of O’Reilly & Associates, Inc. The association
of the image of a copper teakettle with the topic of Java™ Servlet programming is a trademark
of O’Reilly & Associates, Inc. Java™ and all Java-based trademarks and logos are trademarks
or registered trademarks of Sun Microsystems, Inc., in the United States and other countries.
O’Reilly & Associates, Inc. is independent of Sun Microsystems.

Many of the designations used by manufacturers and sellers to distinguish their products are
claimed as trademarks. Where those designations appear in this book, and O’Reilly &
Associates, Inc. was aware of a trademark claim, the designations have been printed in caps
or initial caps.

While every precaution has been taken in the preparation of this book, the publisher assumes
no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 1-56592-391-X [1/00]
[M]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

:

opd

0:Table of Contents

Preface ... ix

1. Introduction ...1

History of Web Applications ...1

Support for Servlets ...7

The Power of Servlets ..10
Java™
Copyright © 2
0

2. HTTP Servlet Basics ...14

HTTP Basics ...14

The Servlet API ..17

Page Generation ..19

Server-Side Includes ..27

Servlet Chaining and Filters ...30

JavaServer Pages ...37

Moving On ...46

3. The Servlet Life Cycle ..48

The Servlet Alternative ..48

Servlet Reloading ...55

Init and Destroy ...56

Single-Thread Model ...62

Background Processing ...64

Last Modified Times ..67
v
 Servlet Programming, eMatter Edition

000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

vi TABLE OF CONTENTS
4. Retrieving Information ..70

Initialization Parameters ...72

The Server ..74

The Client ..79

The Request ...84

5. Sending HTML Information .. 124

The Structure of a Response .. 124

Sending a Normal Response .. 125

Using Persistent Connections .. 127

HTML Generation .. 129

Status Codes ... 142

HTTP Headers ... 145

When Things Go Wrong ... 151

6. Sending Multimedia Content .. 159

Images ... 159

Compressed Content ... 188

Server Push ... 191

7. Session Tracking .. 195

User Authorization .. 196

Hidden Form Fields .. 197

URL Rewriting ... 200

Persistent Cookies .. 202

The Session Tracking API ... 206

8. Security .. 221

HTTP Authentication ... 222

Digital Certificates ... 232

Secure Sockets Layer (SSL) .. 234

Running Servlets Securely .. 237

9. Database Connectivity ... 242

Relational Databases ... 243

The JDBC API .. 246
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TABLE OF CONTENTS vii
Reusing Database Objects ... 259

Transactions ... 261

Advanced JDBC Techniques .. 272

10. Applet-Servlet Communication .. 277

Communication Options .. 277

Daytime Server ... 284

Chat Server ... 317

11. Interservlet Communication .. 337

Servlet Manipulation ... 337

Servlet Reuse .. 342

Servlet Collaboration .. 349

Recap .. 363

12. Internationalization ... 365

Western European Languages ... 366

Conforming to Local Customs ... 369

Non-Western European Languages ... 371

Multiple Languages ... 376

Dynamic Language Negotiation .. 379

HTML Forms ... 389

Receiving Multilingual Input ... 395

13. Odds and Ends .. 397

Parsing Parameters .. 397

Sending Email .. 401

Using Regular Expressions ... 404

Executing Programs .. 407

Using Native Methods ... 412

Acting as an RMI Client .. 413

Debugging .. 415

Performance Tuning ... 423
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

viii TABLE OF CONTENTS
A. Servlet API Quick Reference .. 425

B. HTTP Servlet API Quick Reference .. 447

C. HTTP Status Codes ... 472

D. Character Entities ... 478

E. Charsets ... 484

Index ... 487
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

:

In late 1996, Java on the serv
vendors were marketing tech
developers do their jobs mor
built infrastructure that coul
level into the more product
duced something it named “s
included extensible module
server; and with its WebSite s
Java™
Copyright © 2
0.Preface 0
er side was coming on strong. Several major software
nologies specifically aimed at helping server-side Java
e efficiently. Most of these products provided a pre
d lift the developer’s attention from the raw socket
ive application level. For example, Netscape intro-
erver-side applets”; the World Wide Web Consortium
s called “resources” with its Java-based Jigsaw web
erver, O’Reilly Software promoted the use of a tech-

nology it (only coincidentally) dubbed “servlets.” The drawback: each of these
technologies was tied to a particular server and designed for very specific tasks.

Then, in early 1997, JavaSoft (a company that has since been reintegrated into Sun
Microsystems as the Java Software division) finalized Java servlets. This action
consolidated the scattered technologies into a single, standard, generic mecha-
nism for developing modular server-side Java code. Servlets were designed to work
with both Java-based and non-Java-based servers. Support for servlets has since
been implemented in nearly every web server, from Apache to Zeus, and in many
non-web servers as well.

Servlets have been quick to gain acceptance because, unlike many new technolo-
gies that must first explain the problem or task they were created to solve, servlets
are a clear solution to a well-recognized and widespread need: generating dynamic
web content. From corporations down to individual web programmers, people
who struggled with the maintenance and performance problems of CGI-based web
programming are turning to servlets for their power, portability, and efficiency.
Others, who were perhaps intimidated by CGI programming’s apparent reliance
on manual HTTP communication and the Perl and C languages, are looking to
servlets as a manageable first step into the world of web programming.
ix
 Servlet Programming, eMatter Edition

000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

x PREFACE
This book explains everything you need to know about Java servlet programming.
The first five chapters cover the basics: what servlets are, what they do, and how
they work. The following eight chapters are where the true meat is—they explore
the things you are likely to do with servlets. You’ll find numerous examples, several
suggestions, a few warnings, and even a couple of true hacks that somehow made it
past technical review.

We cover Version 2.0 of the Servlet API, which was introduced as part of the Java
Web Server 1.1 in December 1997 and clarified by the release of the Java Servlet
Development Kit 2.0 in April 1998. Changes in the API from Version 1.0, finalized
in June 1997, are noted throughout the text.

Audience
Is this book for you? It is if you’re interested in extending the functionality of a
server—such as extending a web server to generate dynamic content. Specifically,
this book was written to help:

CGI programmers
CGI is a popular but somewhat crude method of extending the functionality
of a web server. Servlets provide an elegant, efficient alternative.

NSAPI, ISAPI, ASP, and Server-Side JavaScript programmers
Each of these technologies can be used as a CGI alternative, but each has limi-
tations regarding portability, security, and/or performance. Servlets tend to
excel in each of these areas.

Java applet programmers
It has always been difficult for an applet to talk to a server. Servlets make it
easier by giving the applet an easy-to-connect-to, Java-based agent on the
server.

Authors of web pages with server-side includes
Pages that use server-side includes to call CGI programs can use <SERVLET>
tags to add content more efficiently to a page.

Authors of web pages with different appearances
By this we mean pages that must be available in different languages, have to be
converted for transmission over a low-bandwidth connection, or need to be
modified in some manner before they are sent to the client. Servlets provide
something called servlet chaining that can be used for processing of this type.
Each servlet in a servlet chain knows how to catch, process, and return a
specific kind of content. Thus, servlets can be linked together to do language
translation, change large color images to small black-and-white ones, convert
images in esoteric formats to standard GIF or JPEG images, or nearly anything
else you can think of.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PREFACE xi
What You Need to Know
When we first started writing this book, we found to our surprise that one of the
hardest things was determining what to assume about you, the reader. Are you
familiar with Java? Have you done CGI or other web application programming
before? Or are you getting your feet wet with servlets? Do you understand HTTP
and HTML, or do those acronyms seem perfectly interchangeable? No matter
what experience level we imagined, it was sure to be too simplistic for some and
too advanced for others.

In the end, this book was written with the notion that it should contain predomi-
nantly original material: it could leave out exhaustive descriptions of topics and
concepts that are well described online or in other books. Scattered throughout
the text, you’ll find several references to these external sources of information.

Of course, external references only get you so far. This book expects you are
comfortable with the Java programming language and basic object-oriented
programming techniques. If you are coming to servlets from another language, we
suggest you prepare yourself by reading a book on general Java programming,
such as Exploring Java, by Patrick Niemeyer and Joshua Peck (O’Reilly). You may
want to skim quickly the sections on applets and AWT (graphical) programming
and spend extra time on network and multithreaded programming. If you want to
get started with servlets right away and learn Java as you go, we suggest you read
this book with a copy of Java in a Nutshell, by David Flanagan (O’Reilly), or
another Java reference book, at your side.

This book does not assume you have extensive experience with web programming,
HTTP, and HTML. But neither does it provide a full introduction to or exhaus-
tive description of these technologies. We’ll cover the basics necessary for effective
servlet development and leave the finer points (such as a complete list of HTML
tags and HTTP 1.1 headers) to other sources.

About the Examples
In this book you’ll find nearly 100 servlet examples. The code for these servlets is
all contained within the text, but you may prefer to download the examples rather
than type them in by hand. You can find the code online and packaged for down-
load at http://www.oreilly.com/catalog/jservlet/. You can also see many of the servlets
in action at http://www.servlets.com.

All the examples have been tested using Sun’s Java Web Server 1.1.1, running in
the Java Virtual Machine (JVM) bundled with the Java Development Kit (JDK) 1.
1.5, on both Windows and Unix. A few examples require alternate configura-
tions, and this has been noted in the text. The Java Web Server is free for
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

xii PREFACE
education use and has a 30-day trial period for all other use. You can download a
copy from http://java.sun.com/products. The Java Development Kit is freely down-
loadable from http://java.sun.com/products/jdk or, for educational use, from http://
www.sun.com/products-n-solutions/edu/java/. The Java Servlet Development Kit
(JSDK) is available separately from the JDK; you can find it at http:// java.sun.com/
products/servlet/.

This book also contains a set of utility classes—they are used by the servlet exam-
ples, and you may find them helpful for your own general-purpose servlet
development. These classes are contained in the com.oreilly.servlet package.
Among other things, there are classes to help servlets parse parameters, handle file
uploads, generate multipart responses (server push), negotiate locales for interna-
tionalization, return files, manage socket connections, and act as RMI servers.
There’s even a class to help applets communicate with servlets. The source code
for the com.oreilly.servlet package is contained within the text; the latest
version is also available online (with javadoc documentation) from http://www.
oreilly.com/catalog/jservlet/ and http://www.servlets.com.

Organization
This book consists of 13 chapters and 5 appendices, as follows:

Chapter 1, Introduction
Explains the role and advantage of Java servlets in web application
development.

Chapter 2, HTTP Servlet Basics
Provides a quick introduction to the things an HTTP servlet can do: page
generation, server-side includes, servlet chaining, and JavaServer Pages.

Chapter 3, The Servlet Life Cycle
Explains the details of how and when a servlet is loaded, how and when it is
executed, how threads are managed, and how to handle the synchronization
issues in a multithreaded system. Persistent state capabilities are also covered.

Chapter 4, Retrieving Information
Introduces the most common methods a servlet uses to receive information—
about the client, the server, the client’s request, and itself.

Chapter 5, Sending HTML Information
Describes how a servlet can generate HTML, return errors and other status
codes, redirect requests, write data to the server log, and send custom HTTP
header information.

Chapter 6, Sending Multimedia Content
Looks at some of the interesting things a servlet can return: dynamically
generated images, compressed content, and multipart responses.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PREFACE xiii
Chapter 7, Session Tracking
Shows how to build a sense of state on top of the stateless HTTP protocol. The
first half of the chapter demonstrates the traditional session-tracking tech-
niques used by CGI developers; the second half shows how to use the built-in
support for session tracking in the Servlet API.

Chapter 8, Security
Explains the security issues involved with distributed computing and demon-
strates how to maintain security with servlets.

Chapter 9, Database Connectivity
Shows how servlets can be used for high-performance web-database
connectivity.

Chapter 10, Applet-Servlet Communication
Describes how servlets can be of use to applet developers who need to commu-
nicate with the server.

Chapter 11, Interservlet Communication
Discusses why servlets need to communicate with each other and how it can be
accomplished.

Chapter 12, Internationalization
Shows how a servlet can generate multilingual content.

Chapter 13, Odds and Ends
Presents a junk drawer full of useful servlet examples and tips that don’t really
belong anywhere else.

Appendix A, Servlet API Quick Reference
Contains a full description of the classes, methods, and variables in the
javax.servlet package.

Appendix B, HTTP Servlet API Quick Reference
Contains a full description of the classes, methods, and variables in the
javax.servlet.http package.

Appendix C, HTTP Status Codes
Lists the status codes specified by HTTP, along with the mnemonic constants
used by servlets.

Appendix D, Character Entities
Lists the character entities defined in HTML, along with their equivalent
Unicode escape values.

Appendix E, Charsets
Lists the suggested charsets servlets may use to generate content in several
different languages.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

xiv PREFACE
Please feel free to read the chapters of this book in whatever order you like.
Reading straight through from front to back ensures that you won’t encounter any
surprises, as efforts have been taken to avoid forward references. If you want to
skip around, however, you can do so easily enough, especially after Chapter 5—the
rest of the chapters all tend to stand alone. One last suggestion: read the “Debug-
ging” section of Chapter 13 if at any time you find a piece of code that doesn’t
work as expected.

Conventions Used in This Book
Italic is used for:

• Pathnames, filenames, and program names

• New terms where they are defined

• Internet addresses, such as domain names and URLs

Boldface is used for:

• Particular keys on a computer keyboard

• Names of user interface buttons and menus

Constant Width is used for:

• Anything that appears literally in a Java program, including keywords, data
types, constants, method names, variables, class names, and interface names

• Command lines and options that should be typed verbatim on the screen

• All Java code listings

• HTML documents, tags, and attributes

Constant Width Italic is used for:

• General placeholders that indicate that an item is replaced by some actual
value in your own program

Request for Comments
Please help us to improve future editions of this book by reporting any errors,
inaccuracies, bugs, misleading or confusing statements, and plain old typos that
you find anywhere in this book. Email your bug reports and comments to us at:
bookquestions@oreilly.com. (Before sending a bug report, however, you may want to
check for an errata list at http://www.oreilly.com/catalog/jservlet/ to see if the bug has
already been submitted.)

Please also let us know what we can do to make this book more useful to you. We
take your comments seriously and will try to incorporate reasonable suggestions
into future editions.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PREFACE xv
Acknowledgments
The authors would like to say a big thank you to the book’s technical reviewers,
whose constructive criticism has done much to improve this work: Mike Slinn,
Mike Hogarth, James Duncan Davidson, Dan Pritchett, Dave McMurdie, and Rob
Clark. We’re still in shock that it took one reviewer just three days to read what
took us a full year to write!

Jason Hunter
In a sense, this book began March 20, 1997, at the Computer Literacy bookstore in
San Jose, California. There—after a hilarious talk by Larry Wall and Randall
Schwartz, where Larry explained how he manages to automate his house using
Perl—I met the esteemed Tim O’Reilly for the first time. I introduced myself and
brazenly told him that some day (far in the future, I thought) I had plans to write
an O’Reilly book. I felt like I was telling Steven Spielberg I planned to star in one
of his movies. To my complete and utter surprise, Tim replied, “On what topic?”
So began the roller coaster ride that resulted in this book.

There have been several high points I fondly remember: meeting my editor (cool,
she’s young, too!), signing the official contract (did you know that all of O’Reilly’s
official paper has animals on it?), writing the first sentence (over and over),
printing the first chapter (and having it look just like an O’Reilly book), and then
watching as the printouts piled higher and higher, until eventually there was
nothing more to write (well, except the acknowledgments).

There have been a fair number of trying times as well. At one point, when the
book was about half finished, I realized the Servlet API was changing faster than I
could keep up. I believe in the saying, “If at first you don’t succeed, ask for help,”
so after a quick talent search I asked William Crawford, who was already working
on Java Enterprise in a Nutshell, if he could help speed the book to completion. He
graciously agreed and in the end wrote two chapters, as well as portions of the
appendices.

There are many others who have helped in the writing of this book, both directly
and indirectly. I’d like to say thank you to Paula Ferguson, the book’s editor, and
Mike Loukides, the Java series editor, for their efforts to ensure (and improve) the
quality of this book. And to Tim O’Reilly for giving me the chance to fulfill a
dream.

Thanks also to my managers at Silicon Graphics, Kathy Tansill and Walt Johnson,
for providing me with more encouragement and flexibility than I had any right to
expect.

I can’t say thank you enough to the engineers at Sun who were tremendously
helpful in answering questions, keeping me updated on changes in the Servlet
API, and promptly fixing almost every bug I reported: James Duncan Davidson
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

xvi PREFACE
(who looks the spitting image of James Gosling), Jim Driscoll, Rob Clark, and Dave
Brownell.

Thanks also to the members of the jserv-interest mailing list, whose questions and
answers have shaped the content of this book; Will Ramey, an old friend who
didn’t let friendship blind his critical eye; Mike Engber, the man to whom I turned
when I had run out of elegant workarounds and was ready to accept the crazy
things he comes up with; Dave Vandegrift, the first person to read many of the
chapters; Bill Day, author of Java Media Players, who helped intangibly by going
through the book writing process in parallel with me; Michael O’Connell and Jill
Steinberg, editors at JavaWorld, where I did my first professional writing; Doug
Young, who shared with me the tricks he learned writing seven technical books of
his own; and Shoji Kuwabara, Mieko Aono, Song Yung, Matthew Kim, and Alex-
andr Pashintsev for their help translating “Hello World” for Chapter 12.

Finally, thanks to Mom and Dad, for their love and support and for the time they
spent long ago teaching me the basics of writing. And a special thanks to my girl-
friend, Kristi Taylor, who made the small time away from work a pleasure.

And Grandpa, I wish you could have seen this.

Jason Hunter
July 1998

William Crawford
First and foremost, thanks to Shelley Norton, Dr. Isaac Kohane, Dr. James Fackler,
and Dr. Richard Kitz (plus a supporting cast whose contributions were invalu-
able), whose assistance and early support have made everything since possible.
Also, to Martin Streeter of Invantage, Inc., for his support during this project.

Without Rob Leith, Roger Stacey, and Fred Strebeigh, I would probably still be
stuck in the passive voice. Dale Dougherty offered me money in exchange for
words, a twist of events that I still haven’t gotten over. Andy Kwak, Joel Pomerantz,
and Matthew Proto, brave souls all, were willing to read drafts and listen to
complaints at one o’clock in the morning.

And, of course, to Mom and Dad for their years of support, and to my sister Faith
for (usually) letting me get away with being a nerd.

William Crawford
July 1998
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

:

Chapter 1

In this chapter:
• History of Web

Applications
• Support for Servlets
• The Power of Servlets

The rise of server-side Java
trends in Java programming.
small, embedded devices. It w
client-side web content in the
server-side development platf
into its own as a language ide

Businesses in particular hav
Java™
Copyright © 2
1

1.Introduction 1
applications is one of the latest and most exciting
The Java language was originally intended for use in
as first hyped as a language for developing elaborate
form of applets. Until recently, Java’s potential as a

orm had been sadly overlooked. Now, Java is coming
ally suited for server-side development.

e been quick to recognize Java’s potential on the
server—Java is inherently suited for large client/server applications. The cross-
platform nature of Java is extremely useful for organizations that have a heteroge-
neous collection of servers running various flavors of the Unix and Windows
operating systems. Java’s modern, object-oriented, memory-protected design
allows developers to cut development cycles and increase reliability. In addition,
Java’s built-in support for networking and enterprise APIs provides access to legacy
data, easing the transition from older client/server systems.

Java servlets are a key component of server-side Java development. A servlet is a
small, pluggable extension to a server that enhances the server’s functionality.
Servlets allow developers to extend and customize any Java-enabled server—a web
server, a mail server, an application server, or any custom server—with a hitherto
unknown degree of portability, flexibility, and ease. But before we go into any
more detail, let’s put things into perspective.

History of Web Applications
While servlets can be used to extend the functionality of any Java-enabled server,
today they are most often used to extend web servers, providing a powerful, effi-
cient replacement for CGI scripts. When you use a servlet to create dynamic
1
 Servlet Programming, eMatter Edition

000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2 CHAPTER 1: INTRODUCTION
content for a web page or otherwise extend the functionality of a web server, you
are in effect creating a web application. While a web page merely displays static
content and lets the user navigate through that content, a web application
provides a more interactive experience. A web application can be as simple as a
keyword search on a document archive or as complex as an electronic storefront.
Web applications are being deployed on the Internet and on corporate intranets
and extranets, where they have the potential to increase productivity and change
the way that companies, large and small, do business.

To understand the power of servlets, we need to step back and look at some of the
other approaches that can be used to create web applications.

Common Gateway Interface
The Common Gateway Interface, normally referred to as CGI, was one of the first
practical techniques for creating dynamic content. With CGI, a web server passes
certain requests to an external program. The output of this program is then sent
to the client in place of a static file. The advent of CGI made it possible to imple-
ment all sorts of new functionality in web pages, and CGI quickly became a de
facto standard, implemented on dozens of web servers.

It’s interesting to note that the ability of CGI programs to create dynamic web
pages is a side effect of its intended purpose: to define a standard method for an
information server to talk with external applications. This origin explains why CGI
has perhaps the worst life cycle imaginable. When a server receives a request that
accesses a CGI program, it must create a new process to run the CGI program and
then pass to it, via environment variables and standard input, every bit of informa-
tion that might be necessary to generate a response. Creating a process for every
such request requires time and significant server resources, which limits the
number of requests a server can handle concurrently. Figure 1-1 shows the CGI
life cycle.

Figure 1-1. The CGI life cycle

CGI-based Web Server

Main Process
Request for CGI1

Request for CGI2

Request for CGI1

Child Process for CGI1

Child Process for CGI2

Child Process for CGI1
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HISTORY OF WEB APPLICATIONS 3
Even though a CGI program can be written in almost any language, the Perl
programming language has become the predominant choice. Its advanced text-
processing capabilities are a big help in managing the details of the CGI interface.
Writing a CGI script in Perl gives it a semblance of platform independence, but it
also requires that each request start a separate Perl interpreter, which takes even
more time and requires extra resources.

Another often-overlooked problem with CGI is that a CGI program cannot
interact with the web server or take advantage of the server’s abilities once it
begins execution because it is running in a separate process. For example, a CGI
script cannot write to the server’s log file.

For more information on CGI programming, see CGI Programming on the World
Wide Web by Shishir Gundavaram (O’Reilly).

FastCGI

A company named Open Market developed an alternative to standard CGI named
FastCGI. In many ways, FastCGI works just like CGI—the important difference is
that FastCGI creates a single persistent process for each FastCGI program, as
shown in Figure 1-2. This eliminates the need to create a new process for each
request.

Although FastCGI is a step in the right direction, it still has a problem with process
proliferation: there is at least one process for each FastCGI program. If a FastCGI
program is to handle concurrent requests, it needs a pool of processes, one per
request. Considering that each process may be executing a Perl interpreter, this
approach does not scale as well as you might hope. (Although, to its credit, FastCGI
can distribute its processes across multiple servers.) Another problem with FastCGI
is that it does nothing to help the FastCGI program more closely interact with the
server. As of this writing, the FastCGI approach has not been implemented by some

Figure 1-2. The FastCGI life cycle

Main Process
Request for CGI1

Request for CGI2

Request for CGI1

Single Child Process for CGI1

Single Child Process for CGI2

FastCGI-based Web Server
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4 CHAPTER 1: INTRODUCTION
of the more popular servers, including Microsoft’s Internet Information Server.
Finally, FastCGI programs are only as portable as the language in which they’re
written.

For more information on FastCGI, see http://www.fastcgi.com/.

mod_perl

If you are using the Apache web server, another option for improving CGI perfor-
mance is using mod_perl. mod_perl is a module for the Apache server that embeds a
copy of the Perl interpreter into the Apache httpd executable, providing complete
access to Perl functionality within Apache. The effect is that your CGI scripts are
precompiled by the server and executed without forking, thus running much
more quickly and efficiently. For more information on mod_perl, see http://perl.
apache.org/.

PerlEx

PerlEx, developed by ActiveState, improves the performance of CGI scripts written
in Perl that run on Windows NT web servers (Microsoft’s Internet Information
Server, O’Reilly’s WebSite Professional, and Netscape’s FastTrack Server and
Enterprise Server). PerlEx uses the web server’s native API to achieve its perfor-
mance gains. For more information, see http://www.activestate.com/plex/.

Other Solutions
CGI/Perl has the advantage of being a more-or-less platform-independent way to
produce dynamic web content. Other well-known technologies for creating web
applications, such as ASP and server-side JavaScript, are proprietary solutions that
work only with certain web servers.

Server Extension APIs

Several companies have created proprietary server extension APIs for their web
servers. For example, Netscape provides an internal API called NSAPI (now
becoming WAI) and Microsoft provides ISAPI. Using one of these APIs, you can
write server extensions that enhance or change the base functionality of the server,
allowing the server to handle tasks that were once relegated to external CGI
programs. As you can see in Figure 1-3, server extensions exist within the main
process of a web server.

Because server-specific APIs use linked C or C++ code, server extensions can run
extremely fast and make full use of the server’s resources. Server extensions,
however, are not a perfect solution by any means. Besides being difficult to
develop and maintain, they pose significant security and reliability hazards: a
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HISTORY OF WEB APPLICATIONS 5
crashed server extension can bring down the entire server. And, of course, propri-
etary server extensions are inextricably tied to the server API for which they were
written—and often tied to a particular operating system as well.

Active Server Pages

Microsoft has developed a technique for generating dynamic web content called
Active Server Pages, or sometimes just ASP. With ASP, an HTML page on the web
server can contain snippets of embedded code (usually VBScript or JScript—
although it’s possible to use nearly any language). This code is read and executed
by the web server before it sends the page to the client. ASP is optimized for gener-
ating small portions of dynamic content.

Support for ASP is built into Microsoft Internet Information Server Version 3.0
and above, available for free from http://www.microsoft.com/iis. Support for other
web servers is available as a commercial product from Chili!Soft at http://www.
chilisoft.com.

For more information on programming Active Server Pages, see http://www.
microsoft.com/workshop/server/default.asp and http://www.activeserverpages.com/.

Server-side JavaScript

Netscape too has a technique for server-side scripting, which it calls server-side
JavaScript, or SSJS for short. Like ASP, SSJS allows snippets of code to be
embedded in HTML pages to generate dynamic web content. The difference is
that SSJS uses JavaScript as the scripting language. With SSJS, web pages are
precompiled to improve performance.

Support for server-side JavaScript is available only with Netscape FastTrack Server
and Enterprise Server Version 2.0 and above.

Figure 1-3. The server extension life cycle

Main Process
Request for
ServerExtension1

Request for
ServerExtension2

Request for
ServerExtension1

ServerExtension1

ServerExtension2

Web Server with Server Extension API
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6 CHAPTER 1: INTRODUCTION
For more information on programming with server-side JavaScript, see http://
developer.netscape.com/tech/javascript/ssjs/ssjs.html.

Java Servlets
Enter Java servlets. As was said earlier, a servlet is a generic server extension—a
Java class that can be loaded dynamically to expand the functionality of a server.
Servlets are commonly used with web servers, where they can take the place of CGI
scripts. A servlet is similar to a proprietary server extension, except that it runs
inside a Java Virtual Machine (JVM) on the server (see Figure 1-4), so it is safe and
portable. Servlets operate solely within the domain of the server: unlike applets,
they do not require support for Java in the web browser.

Unlike CGI and FastCGI, which use multiple processes to handle separate
programs and/or separate requests, servlets are all handled by separate threads
within the web server process. This means that servlets are also efficient and scal-
able. Because servlets run within the web server, they can interact very closely with
the server to do things that are not possible with CGI scripts.

Another advantage of servlets is that they are portable: both across operating
systems as we are used to with Java and also across web servers. As you’ll see
shortly, all of the major web servers support servlets. We believe that Java servlets
offer the best possible platform for web application development, and we’ll have
much more to say about this later in the chapter.

Although servlets are most commonly used as a replacement for CGI scripts on a
web server, they can extend any sort of server. Imagine, for example, a Java-based
FTP server that handles each command with a separate servlet. New commands
can be added by simply plugging in new servlets. Or, imagine a mail server that

Figure 1-4. The servlet life cycle

Servlet1

Main Process

Request for Servlet1

Request for Servlet2

Request for Servlet1

Java Servlet-based Web Server

JVM
Thread

Thread

Thread Servlet2
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SUPPORT FOR SERVLETS 7
allows servlets to extend its functionality, perhaps by performing a virus scan on all
attached documents or handling mail filtering tasks.

This book emphasizes the use of servlets as a replacement for CGI programs. We
believe that, at least in the near term, most servlet developers will design and
deploy servlets for use with HTTP servers. In the long term, however, other uses
are likely to catch on, so this book takes pains to point out what functionality is
applicable to generic servlets and what applies only to HTTP servlets. Whatever
you hope to do with servlets, this book can help you with your task.

Support for Servlets
Like Java itself, servlets were designed for portability. Servlets are supported on all
platforms that support Java, and servlets work with all the major web servers.* Java
servlets, as defined by the Java Software division of Sun Microsystems (formerly
known as JavaSoft), are the first standard extension to Java. This means that serv-
lets are officially blessed by Sun and are part of the Java language, but they are not
part of the core Java API. Therefore, although they may work with any Java Virtual
Machine (JVM), servlet classes need not be bundled with all JVMs. More informa-
tion about the Java Extension Framework is available at http//java.sun.com/
products/jdk/1.2/docs/guide/extensions.

To make it easy for you to develop servlets, Sun has made publicly available a set of
classes that provide basic servlet support. The javax.servlet and javax.
servlet.http packages constitute this Servlet API. Version 2.0 of these classes
comes bundled with the Java Servlet Development Kit (JSDK) for use with the Java
Development Kit version 1.1 and above; the JDSK is available for download from
http://java.sun.com/products/servlet/.†

Many web server vendors have incorporated these classes into their servers to
provide servlet support, and several have also provided additional functionality.
Sun’s Java Web Server, for instance, includes a proprietary interface to the server’s
security features.

It doesn’t much matter where you get the servlet classes, as long as you have them on
your system, since you need them to compile your servlets. In addition to the servlet
classes, you need a servlet engine, so that you can test and deploy your servlets. Your

* Note that several web server vendors have their own server-side Java implementations, some of which
have also been given the name “servlets”. These are generally incompatible with Java servlets as de-
fined by Sun. Most of these vendors are converting their Java support to standard servlets, or are in-
troducing standard servlet support in parallel, to allow backward compatibility.

† At one point it was planned the contents of the JSDK would come bundled as part of JDK 1.2. How-
ever, it was later decided to keep the servlet classes separate from the JDK, to better allow for timely
revisions and corrections to the JSDK.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8 CHAPTER 1: INTRODUCTION
choice of servlet engine depends in part on the web server(s) you are running.
There are three flavors of servlet engines: standalone, add-on, and embeddable.

Standalone Servlet Engines
A standalone engine is a server that includes built-in support for servlets. Such an
engine has the advantage that everything works right out of the box. One disad-
vantage, however, is that you have to wait for a new release of the web server to get
the latest servlet support. Because servlets are still fairly new, this sort of server is
still a bit of a rarity. As the various vendors upgrade their web servers, we expect
that many of the servers will provide built-in support for servlets.

Standalone engines in web servers include the following:

• Sun’s Java Web Server (formerly called “Jeeves”), unofficially considered the
reference implementation for how a servlet engine should support servlets.
Written entirely in Java (except for two native code libraries that enhance its
functionality but are not needed). See http://java.sun.com/products/.

• The World Wide Web Consortium’s Jigsaw Server, freely available and also
written entirely in Java. See http://www.w3.org/Jigsaw.

• O’Reilly’s WebSite Professional (Version 2.1 and later), the first server not
written in Java to provide built-in servlet support. See http://website.oreilly.com.

• Netscape’s Enterprise Server (Version 3.51 and later), the most popular web
server to provide built-in servlet support. Unfortunately, Version 3.51 sup-
ports only the early Servlet API 1.0 and suffers from a number of bugs so sig-
nificant it’s almost unusable. For the time being, use an add-on servlet engine
with Netscape servers instead. See http://home.netscape.com/download.

• Lotus’s Domino Go Webserver (Version 4.6 and later), another popular web
server with built-in servlet support. Version 4.6.x supports only the early Serv-
let API 1.0; however, Lotus claims to be replacing its proprietary GWAPI server
extension technology with Java servlets, so it’s likely that future versions of the
Domino Go Webserver will include robust servlet support. See http://www.
lotus.com/dominogowebserver/.

Application servers are a fertile new area of development. An application server
offers server-side support for developing enterprise-based applications. Here are
two application servers that include servlet engines:

• WebLogic’s Tengah Application Server, a high-end server written entirely in
Java. See http://www.weblogic.com/products/tengahindex.html.

• ATG’s Dynamo Application Server 3, another high-end server written entirely
in Java. See http://www.atg.com/.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SUPPORT FOR SERVLETS 9
Add-on Servlet Engines
An add-on servlet engine functions as a plug-in to an existing server—it adds
servlet support to a server that was not originally designed with servlets in mind.
Add-on servlet engines have been written for many servers including Apache,
Netscape’s FastTrack Server and Enterprise Server, Microsoft’s Internet Informa-
tion Server and Personal Web Server, O’Reilly’s WebSite, Lotus Domino’s Go
Webserver, StarNine’s WebSTAR, and Apple’s AppleShare IP. This type of engine
acts as a stopgap solution until a future server release incorporates servlet support.
A plug-in also can be used with a server that provides a poor or outdated servlet
implementation.

Add-on servlet engines include these:

• The Java-Apache project’s JServ module, a freely available servlet engine that
adds servlet support to the extremely popular Apache server. See http://java.
apache.org/.

• Live Software’s JRun, a freely available plug-in designed to support the full
Servlet API on all the popular web servers on all the popular operating systems.
The latest version even features a basic web server for development purposes.
See http://www.livesoftware.com/products/jrun/.

• IBM’s WebSphere Application Server (formerly known as ServletExpress), a
plug-in that is being called an application server. It is designed to support the
full Servlet API on several popular web servers on several popular operating
systems. See http://www.software.ibm.com/webservers/.

• New Atlanta’s ServletExec, a plug-in designed to support the full Servlet API
on several web servers on several operating systems. See http://www.newatlanta.
com/.

• Gefion Software’s WAICoolRunner, a freely available plug-in that supports
most of the Servlet API on Netscape’s FastTrack Server and Enterprise Server
versions 3.x and later, written in Java using Netscape’s WAI interface. See
http://www.gefionsoftware.com/WAICoolRunner/.

• Unicom’s Servlet CGI Development Kit, a freely available framework that sup-
ports servlets on top of CGI. What it lacks in efficiency it makes up for in ubiq-
uity. See http://www.unicom.net/java/.

Embeddable Servlet Engines
An embeddable engine is generally a lightweight servlet deployment platform that
can be embedded in another application. That application becomes the true
server.

Embeddable servlet engines include the following:
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

10 CHAPTER 1: INTRODUCTION
• Sun’s JavaServer Engine, a high-quality, high-end framework for designing
and building Java servers. Sun’s Java Web Server and IBM’s WebSphere Appli-
cation Server were built using the Java Server Engine. See http://java.sun.com/
products/javaserverengine/.

• Jef Poskanzer’s Acme.Serve, a freely available, simple web server that runs serv-
lets “more or less compatible” with the Servlet API. See http://www.acme.com/
java/software/Package-Acme.Serve.html.

• Paralogic’s WebCore, a freely available but unsupported embeddable web
server, written entirely in Java. It incorporates parts of Acme.Serve. See http://
www.paralogic.com/webcore/.

• Anders Kristensen’s Nexus Web Server, a freely available servlet runner that
implements most of the Servlet API and can be easily embedded in Java appli-
cations. See http://www-uk.hpl.hp.com/people/ak/java/nexus/.

Additional Thoughts
Before proceeding, we feel obliged to point out that not all servlet engines are
created equal. So, before you choose a servlet engine (and possibly a server) with
which to deploy your servlets, take it out for a test drive. Kick its tires a little. Check
the mailing lists. Always verify that your servlets behave as they do in the Java Web
Server implementation. With servlets, you don’t have to worry about the lowest-
common-denominator implementation, so you should pick a servlet engine that
has the functionality that you want.

For a complete, up-to-date list of available servlet engines, see the official list main-
tained by Sun at:

http://jserv.java.sun.com/products/java-server/servlets/environments.html

The Power of Servlets
So far, we have portrayed servlets as an alternative to other dynamic web content
technologies, but we haven’t really explained why we think you should use them.
What makes servlets a viable choice for web development? We believe that servlets
offer a number of advantages over other approaches, including: portability, power,
efficiency, endurance, safety, elegance, integration, extensibility, and flexibility.
Let’s examine each in turn.

Portability
Because servlets are written in Java and conform to a well-defined and widely
accepted API, they are highly portable across operating systems and across server
implementations. You can develop a servlet on a Windows NT machine running
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

THE POWER OF SERVLETS 11
the Java Web Server and later deploy it effortlessly on a high-end Unix server
running Apache. With servlets, you can truly “write once, serve everywhere.”

Servlet portability is not the stumbling block it so often is with applets, for two
reasons. First, servlet portability is not mandatory. Unlike applets, which have to be
tested on all possible client platforms, servlets have to work only on the server
machines that you are using for development and deployment. Unless you are in
the business of selling your servlets, you don’t have to worry about complete porta-
bility. Second, servlets avoid the most error-prone and inconsistently implemented
portion of the Java language: the Abstract Windowing Toolkit (AWT) that forms
the basis of Java graphical user interfaces.

Power
Servlets can harness the full power of the core Java APIs: networking and URL
access, multithreading, image manipulation, data compression, database connec-
tivity, internationalization, remote method invocation (RMI), CORBA
connectivity, and object serialization, among others. If you want to write a web
application that allows employees to query a corporate legacy database, you can
take advantage of all of the Java Enterprise APIs in doing so. Or, if you need to
create a web-based directory lookup application, you can make use of the JNDI
API.

As a servlet author, you can also pick and choose from a plethora of third-party
Java classes and JavaBeans components. In the future, you’ll even be able to use
newly introduced Enterprise JavaBeans components. Today, servlets can use third-
party code to handle tasks such as regular expression searching, data charting,
advanced database access, and advanced networking.

Servlets are also well suited for enabling client/server communication. With a Java-
based applet and a Java-based servlet, you can use RMI and object serialization to
handle client/server communication, which means that you can leverage the same
custom code on the client as on the server. Using CGI for the same purpose is
much more complicated, as you have to develop your own custom protocol to
handle the communication.

Efficiency and Endurance
Servlet invocation is highly efficient. Once a servlet is loaded, it generally remains
in the server’s memory as a single object instance. Thereafter, the server invokes
the servlet to handle a request using a simple, lightweight method invocation.
Unlike with CGI, there’s no process to spawn or interpreter to invoke, so the
servlet can begin handling the request almost immediately. Multiple, concurrent
requests are handled by separate threads, so servlets are highly scalable.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

12 CHAPTER 1: INTRODUCTION
Servlets, in general, are naturally enduring objects. Because a servlet stays in the
server’s memory as a single object instance, it automatically maintains its state and
can hold on to external resources, such as database connections, that may other-
wise take several seconds to establish.

Safety
Servlets support safe programming practices on a number of levels. Because they
are written in Java, servlets inherit the strong type safety of the Java language. In
addition, the Servlet API is implemented to be type-safe. While most values in a
CGI program, including a numeric item like a server port number, are treated as
strings, values are manipulated by the Servlet API using their native types, so a
server port number is represented as an integer. Java’s automatic garbage collec-
tion and lack of pointers mean that servlets are generally safe from memory
management problems like dangling pointers, invalid pointer references, and
memory leaks.

Servlets can handle errors safely, due to Java’s exception-handling mechanism. If a
servlet divides by zero or performs some other illegal operation, it throws an
exception that can be safely caught and handled by the server, which can politely
log the error and apologize to the user. If a C++-based server extension were to
make the same mistake, it could potentially crash the server.

A server can further protect itself from servlets through the use of a Java security
manager. A server can execute its servlets under the watch of a strict security
manager that, for example, enforces a security policy designed to prevent a mali-
cious or poorly written servlet from damaging the server file system.

Elegance
The elegance of servlet code is striking. Servlet code is clean, object oriented,
modular, and amazingly simple. One reason for this simplicity is the Servlet API
itself, which includes methods and classes to handle many of the routine chores of
servlet development. Even advanced operations, like cookie handling and session
tracking, are abstracted into convenient classes. A few more advanced but still
common tasks were left out of the API, and, in those places, we have tried to step
in and provide a set of helpful classes in the com.oreilly.servlet package.

Integration
Servlets are tightly integrated with the server. This integration allows a servlet to
cooperate with the server in ways that a CGI program cannot. For example, a
servlet can use the server to translate file paths, perform logging, check authoriza-
tion, perform MIME type mapping, and, in some cases, even add users to the
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

THE POWER OF SERVLETS 13
server’s user database. Server-specific extensions can do much of this, but the
process is usually much more complex and error-prone.

Extensibility and Flexibility
The Servlet API is designed to be easily extensible. As it stands today, the API
includes classes that are optimized for HTTP servlets. But at a later date, it could
be extended and optimized for another type of servlets, either by Sun or by a third
party. It is also possible that its support for HTTP servlets could be further
enhanced.

Servlets are also quite flexible. As you’ll see in the next chapter, an HTTP servlet
can be used to generate a complete web page; it can be added to a static page
using a <SERVLET> tag in what’s known as a server-side include; and it can be used
in cooperation with any number of other servlets to filter content in something
called a servlet chain. In addition, just before this book went to press, Sun intro-
duced JavaServer Pages, which offer a way to write snippets of servlet code directly
within a static HTML page, using a syntax that is curiously similar to Microsoft’s
Active Server Pages (ASP). Who knows what they (or you) will come up with next.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

14
Java™ Servlet Programming, eMatte

Copyright © 2000 O’Reilly & Associates, Inc. A
Chapter 2

In this chapter:
• HTTP Basics
• The Servlet API
• Page Generation
• Server-Side Includes
• Servlet Chaining and

Filters
• JavaServer Pages
• Moving On

2. 2:

f the things an HTTP servlet
n HTML page, either when

g a hypertext link, or as the
lso be embedded inside an
de. Servlets can be chained
use of this technique is for
n be embedded directly in
Pages.
2

HTTP Servlet Basics
This chapter provides a quick introduction to some o
can do. For example, an HTTP servlet can generate a
the servlet is accessed explicitly by name, by followin
result of a form submission. An HTTP servlet can a
HTML page, where it functions as a server-side inclu
together to produce complex effects—one common
filtering content. Finally, snippets of servlet code ca
HTML pages using a new technique called JavaServer

Although the code for each of the examples in this chapter is available for down-
load (as described in the Preface), we would suggest that for these first examples
you deny yourself the convenience of the Internet and type in the examples. It
should help the concepts seep into your brain.

Don’t be alarmed if we seem to skim lightly over some topics in this chapter. Serv-
lets are powerful and, at times, complicated. The point here is to give you a
general overview of how things work, before jumping in and overwhelming you
with all of the details. By the end of this book, we promise that you’ll be able to
write servlets that do everything but make tea.

HTTP Basics
Before we can even show you a simple HTTP servlet, we need to make sure that
you have a basic understanding of how the protocol behind the Web, HTTP,
works. If you’re an experienced CGI programmer (or if you’ve done any serious
server-side web programming), you can safely skip this section. Better yet, you
might skim it to refresh your memory about the finer points of the GET and POST
methods. If you are new to the world of server-side web programming, however,
r Edition
ll rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HTTP BASICS 15
you should read this material carefully, as the rest of the book is going to assume
that you understand HTTP. For a more thorough discussion of HTTP and its
methods, see Web Client Programming by Clinton Wong (O’Reilly).

Requests, Responses, and Headers
HTTP is a simple, stateless protocol. A client, such as a web browser, makes a
request, the web server responds, and the transaction is done. When the client
sends a request, the first thing it specifies is an HTTP command, called a method,
that tells the server the type of action it wants performed. This first line of the
request also specifies the address of a document (a URL) and the version of the
HTTP protocol it is using. For example:

GET /intro.html HTTP/1.0

This request uses the GET method to ask for the document named intro.html,
using HTTP Version 1.0. After sending the request, the client can send optional
header information to tell the server extra information about the request, such as
what software the client is running and what content types it understands. This
information doesn’t directly pertain to what was requested, but it could be used by
the server in generating its response. Here are some sample request headers:

User-Agent: Mozilla/4.0 (compatible; MSIE 4.0; Windows 95)

Accept: image/gif, image/jpeg, text/*, */*

The User-Agent header provides information about the client software, while the
Accept header specifies the media (MIME) types that the client prefers to accept.
(We’ll talk more about request headers in the context of servlets in Chapter 4,
Retrieving Information.) After the headers, the client sends a blank line, to indicate
the end of the header section. The client can also send additional data, if appro-
priate for the method being used, as it is with the POST method that we’ll discuss
shortly. If the request doesn’t send any data, it ends with an empty line.

After the client sends the request, the server processes it and sends back a
response. The first line of the response is a status line that specifies the version of
the HTTP protocol the server is using, a status code, and a description of the
status code. For example:

HTTP/1.0 200 OK

This status line includes a status code of 200, which indicates that the request was
successful, hence the description “OK”. Another common status code is 404, with
the description “Not Found”—as you can guess, this means that the requested
document was not found. Chapter 5, Sending HTML Information, discusses
common status codes and how you can use them in servlets, while Appendix C,
HTTP Status Codes, provides a complete list of HTTP status codes.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

16 CHAPTER 2: HTTP SERVLET BASICS
After the status line, the server sends response headers that tell the client things
like what software the server is running and the content type of the server’s
response. For example:

Date: Saturday, 23-May-98 03:25:12 GMT

Server: JavaWebServer/1.1.1

MIME-version: 1.0

Content-type: text/html

Content-length: 1029

Last-modified: Thursday, 7-May-98 12:15:35 GMT

The Server header provides information about the server software, while the
Content-type header specifies the MIME type of the data included with the
response. (We’ll also talk more about response headers in Chapter 5.) The server
sends a blank line after the headers, to conclude the header section. If the request
was successful, the requested data is then sent as part of the response. Otherwise,
the response may contain human-readable data that explains why the server
couldn’t fulfill the request.

GET and POST
When a client connects to a server and makes an HTTP request, the request can
be of several different types, called methods. The most frequently used methods
are GET and POST. Put simply, the GET method is designed for getting informa-
tion (a document, a chart, or the results from a database query), while the POST
method is designed for posting information (a credit card number, some new
chart data, or information that is to be stored in a database). To use a bulletin
board analogy, GET is for reading and POST is for tacking up new material.

The GET method, although it’s designed for reading information, can include as
part of the request some of its own information that better describes what to get—
such as an x, y scale for a dynamically created chart. This information is passed as a
sequence of characters appended to the request URL in what’s called a query string.
Placing the extra information in the URL in this way allows the page to be book-
marked or emailed like any other. Because GET requests theoretically shouldn’t
need to send large amounts of information, some servers limit the length of URLs
and query strings to about 240 characters.

The POST method uses a different technique to send information to the server
because in some cases it may need to send megabytes of information. A POST
request passes all its data, of unlimited length, directly over the socket connection
as part of its HTTP request body. The exchange is invisible to the client. The URL
doesn’t change at all. Consequently, POST requests cannot be bookmarked or
emailed or, in some cases, even reloaded. That’s by design—information sent to
the server, such as your credit card number, should be sent only once.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

THE SERVLET API 17
In practice, the use of GET and POST has strayed from the original intent. It’s
common for long parameterized requests for information to use POST instead of
GET to work around problems with overly-long URLs. It’s also common for simple
forms that upload information to use GET because, well—why not, it works!
Generally, this isn’t much of a problem. Just remember that GET requests,
because they can be bookmarked so easily, should not be allowed to cause damage
for which the client could be held responsible. In other words, GET requests
should not be used to place an order, update a database, or take an explicit client
action in any way.

Other Methods
In addition to GET and POST, there are several other lesser-used HTTP methods.
There’s the HEAD method, which is sent by a client when it wants to see only the
headers of the response, to determine the document’s size, modification time, or
general availability. There’s also PUT, to place documents directly on the server,
and DELETE, to do just the opposite. These last two aren’t widely supported due
to complicated policy issues. The TRACE method is used as a debugging aid—it
returns to the client the exact contents of its request. Finally, the OPTIONS
method can be used to ask the server which methods it supports or what options
are available for a particular resource on the server.

The Servlet API
Now that you have a basic understanding of HTTP, we can move on and talk about
the Servlet API that you’ll be using to create HTTP servlets, or any kind of serv-
lets, for that matter. Servlets use classes and interfaces from two packages: javax.
servlet and javax.servlet.http. The javax.servlet package contains
classes to support generic, protocol-independent servlets. These classes are
extended by the classes in the javax.servlet.http package to add HTTP-
specific functionality. The top-level package name is javax instead of the familiar
java, to indicate that the Servlet API is a standard extension.

Every servlet must implement the javax.servlet.Servlet interface. Most serv-
lets implement it by extending one of two special classes: javax. servlet.
GenericServlet or javax.servlet.http.HttpServlet. A protocol-indepen-
dent servlet should subclass GenericServlet, while an HTTP servlet should
subclass HttpServlet, which is itself a subclass of GenericServlet with added
HTTP-specific functionality.

Unlike a regular Java program, and just like an applet, a servlet does not have a
main() method. Instead, certain methods of a servlet are invoked by the server in
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

18 CHAPTER 2: HTTP SERVLET BASICS
the process of handling requests. Each time the server dispatches a request to a
servlet, it invokes the servlet’s service() method.

A generic servlet should override its service() method to handle requests as
appropriate for the servlet. The service() method accepts two parameters: a
request object and a response object. The request object tells the servlet about the
request, while the response object is used to return a response. Figure 2-1 shows
how a generic servlet handles requests.

In contrast, an HTTP servlet usually does not override the service() method.
Instead, it overrides doGet() to handle GET requests and doPost() to handle
POST requests. An HTTP servlet can override either or both of these methods,
depending on the type of requests it needs to handle. The service() method of
HttpServlet handles the setup and dispatching to all the doXXX() methods,
which is why it usually should not be overridden. Figure 2-2 shows how an HTTP
servlet handles GET and POST requests.

Figure 2-1. A generic servlet handling a request

Figure 2-2. An HTTP servlet handling GET and POST requests

Server

implemented by subclassKEY:

request

GenericServlet subclass

response

service()

Web Server

KEY: implemented by subclass

GET request

HttpServlet subclass

POST request
service()

response

response

doGet()

doPost()
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PAGE GENERATION 19
An HTTP servlet can override the doPut() and doDelete() methods to handle
PUT and DELETE requests, respectively. However, HTTP servlets generally don’t
touch doHead(), doTrace(), or doOptions(). For these, the default implemen-
tations are almost always sufficient.

The remainder in the javax.servlet and javax.servlet.http packages are
largely support classes. For example, the ServletRequest and ServletResponse
classes in javax.servlet provide access to generic server requests and
responses, while HttpServletRequest and HttpServletResponse in javax.
servlet.http provide access to HTTP requests and responses. The javax.
servlet.http package also contains an HttpSession class that provides built-in
session tracking functionality and a Cookie class that allows you to quickly set up
and process HTTP cookies.

Page Generation
The most basic type of HTTP servlet generates a full HTML page. Such a servlet
has access to the same information usually sent to a CGI script, plus a bit more. A
servlet that generates an HTML page can be used for all the tasks where CGI is
used currently, such as for processing HTML forms, producing reports from a
database, taking orders, checking identities, and so forth.

Writing Hello World
Example 2-1 shows an HTTP servlet that generates a complete HTML page. To
keep things as simple as possible, this servlet just says “Hello World” every time it is
accessed via a web browser.*

Example 2-1. A servlet that prints “Hello World”

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class HelloWorld extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

* Fun trivia: the first instance of a documented “Hello World” program appeared in A Tutorial Introduc-
tion to the Language B, written by Brian Kernighan in 1973. For those too young to remember, B was a
pre-cursor to C. You can find more information on the B programming language and a link to the tu-
torial at http://cm.bell-labs.com/who/dmr/bintro.html.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

20 CHAPTER 2: HTTP SERVLET BASICS
This servlet extends the HttpServlet class and overrides the doGet() method
inherited from it. Each time the web server receives a GET request for this servlet,
the server invokes this doGet() method, passing it an HttpServletRequest
object and an HttpServletResponse object.

The HttpServletRequest represents the client’s request. This object gives a
servlet access to information about the client, the parameters for this request, the
HTTP headers passed along with the request, and so forth. Chapter 4 explains the
full capabilities of the request object. For this example, we can completely ignore
it. After all, this servlet is going to say “Hello World” no matter what the request!

The HttpServletResponse represents the servlet’s response. A servlet can use
this object to return data to the client. This data can be of any content type,
though the type should be specified as part of the response. A servlet can also use
this object to set HTTP response headers. Chapter 5 and Chapter 6, Sending Multi-
media Content, explain everything a servlet can do as part of its response.

Our servlet first uses the setContentType() method of the response object to set
the content type of its response to “text/html”, the standard MIME content type
for HTML pages. Then, it uses the getWriter() method to retrieve a
PrintWriter, the international-friendly counterpart to a PrintStream.
PrintWriter converts Java’s Unicode characters to a locale-specific encoding. For
an English locale, it behaves same as a PrintStream. Finally, the servlet uses this
PrintWriter to send its “Hello World” HTML to the client.

That’s it! That’s all the code needed to say hello to everyone who “surfs” to our
servlet.

Running Hello World
When developing servlets you need two things: the Servlet API class files, which are
used for compiling, and a servlet engine such as a web server, which is used for
deployment. To obtain the Servlet API class files, you have several options:

• Install the Java Servlet Development Kit (JSDK), available for free at http://java.
sun.com/products/servlet/. JSDK Version 2.0 contains the class files for the Serv-
let API 2.0, along with their source code and a simple web server that acts as a

 out.println("<HTML>");

 out.println("<HEAD><TITLE>Hello World</TITLE></HEAD>");

 out.println("<BODY>");

 out.println("<BIG>Hello World</BIG>");

 out.println("</BODY></HTML>");

 }

}

Example 2-1. A servlet that prints “Hello World” (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PAGE GENERATION 21
servlet engine for HTTP servlets. It works with JDK 1.1 and later. (Note that
the JSDK is the Servlet API reference implementation, and as such its version
number determines the Servlet API version number.)

• Install one of the many full-featured servlet engines, each of which typically
bundles the Servlet API class files.

There are dozens of servlet engines available for servlet deployment, several of
which are listed in Chapter 1, Introduction. Why not use the servlet engine included
in JSDK 2.0? Because that servlet engine is bare-bones simple. It implements the
Servlet API 2.0 and nothing more. Features like robust session tracking, server-side
includes, servlet chaining, and JavaServer Pages have been left out because they
are technically not part of the Servlet API. For these features, you need to use a
full-fledged servlet engine like the Java Web Server or one of its competitors.

So, what do we do with our code to make it run in a web server? Well, it depends
on your web server. The examples in this book use Sun’s Java Web Server 1.1.1,
unofficially considered the reference implementation for how a web server should
support servlets. It’s free for educational use and has a 30-day trial period for all
other use. You can download a copy from http://java.sun.com/products or, for
educational use, http://www.sun.com/products-n-solutions/edu/java/. The Java Web
Server includes plenty of documentation explaining the use of the server, so while
we discuss the general concepts involved with managing the server, we’re leaving
the details to Sun’s documentation. If you choose to use another web server, these
examples should work for you, but we cannot make any guarantees.

If you are using the Java Web Server, you should put the source code for the
servlet in the server_root/servlets directory (where server_root is the directory
where you installed your server). This is the standard location for servlet class files.
Once you have the “Hello World” source code in the right location, you need to
compile it. The standard javac compiler (or your favorite graphical Java develop-
ment environment) can do the job. Just be sure you have the javax.servlet and
javax.servlet.http packages in your classpath. With the Java Web Server, all
you have to do is include server_root/lib/jws.jar (or a future equivalent) some-
where in your classpath.

Now that you have your first servlet compiled, there is nothing more to do but
start your server and access the servlet! Starting the server is easy. Look for the
httpd script (or httpd.exe program under Windows) in the server_root/bin direc-
tory. This should start your server if you’re running under Solaris or Windows. On
other operating systems, or if you want to use your own Java Runtime Environ-
ment (JRE), you’ll need to use httpd.nojre. In the default configuration, the server
listens on port 8080.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

22 CHAPTER 2: HTTP SERVLET BASICS
There are several ways to access a servlet. For this example, we’ll do it by explicitly
accessing a URL with /servlet/ prepended to the servlet’s class name.* You can
enter this URL in your favorite browser: http://server:8080/servlet/HelloWorld.
Replace server with the name of your server machine or with localhost if the server
is on your local machine. You should see a page similar to the one shown in
Figure 2-3.

If the servlet were part of a package, it would need to be placed in server_root/
servlets/package/name and referred to with the URL http://server:8080/ servlet/
package.name.HelloWorld.

An alternate way to refer to a servlet is by its registered name. This does not have to
be the same as its class name, although it can be. With the Java Web Server, you
register servlets via the JavaServer Administration Tool, an administration applet
that manages the server, usually available at http://server:9090/. Choose to
manage the Web Service, go to the Servlets section, and then Add a new servlet.
Here you can specify the name of the new servlet and the class associated with that
name (on some servers the class can be an HTTP URL from which the servlet class
file will be automatically loaded). If we choose the name “hi” for our HelloWorld
servlet, we can then access it at the URL http://server:8080/servlet/hi. You may
wonder why anyone would bother adding a servlet to her server. The short answer
appropriate for Chapter 2 is that it allows the server to remember things about the
servlet and give it special treatment.

A third way to access a servlet is through a servlet alias. The URL of a servlet alias
looks like any other URL. The only difference is that the server has been told that
the URL should be handled by a particular servlet. For example, we can choose to
have http://server:8080/hello.html invoke the HelloWorld servlet. Using aliases in
this way can help hide a site’s use of servlets; it lets a servlet seamlessly replace an

* Beware, servlets are placed in a servlets (plural) directory but are invoked with a servlet (singular) tag.
If you think about it, this makes a certain amount of sense, as servlets go in the servlets directory while
a single servlet is referenced with the servlet tag.

Figure 2-3. The Hello World servlet
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PAGE GENERATION 23
existing page at any given URL. To create a servlet alias, choose to manage the
Web Service, go to the Setup section, choose Servlet Aliases, and then Add the
alias.

Handling Form Data
The “Hello World” servlet is not very exciting, so let’s try something slightly more
ambitious. This time we’ll create a servlet that greets the user by name. It’s not
hard. First, we need an HTML form that asks the user for his or her name. The
following page should suffice:

<HTML>

<HEAD>

<TITLE>Introductions</TITLE>

</HEAD>

<BODY>

<FORM METHOD=GET ACTION="/servlet/Hello">

If you don't mind me asking, what is your name?

<INPUT TYPE=TEXT NAME="name"><P>

<INPUT TYPE=SUBMIT>

</FORM>

</BODY>

</HTML>

Figure 2-4 shows how this page appears to the user.

When the user submits this form, his name is sent to the Hello servlet because
we’ve set the ACTION attribute to point to the servlet. The form is using the GET
method, so any data is appended to the request URL as a query string. For
example, if the user enters the name “Inigo Montoya,” the request URL is http://
server:8080/servlet/Hello?name=Inigo+Montoya. The space in the name is specially
encoded as a plus sign by the browser because URLs cannot contain spaces.

Figure 2-4. An HTML form
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

24 CHAPTER 2: HTTP SERVLET BASICS
A servlet’s HttpServletRequest object gives it access to the form data in its query
string. Example 2-2 shows a modified version of our Hello servlet that uses its
request object to read the “name” parameter.

This servlet is nearly identical to the HelloWorld servlet. The most important
change is that it now calls req.getParameter("name") to find out the name of
the user and that it then prints this name instead of the harshly impersonal (not to
mention overly broad) “World”. The getParameter() method gives a servlet
access to the parameters in its query string. It returns the parameter’s decoded
value or null if the parameter was not specified. If the parameter was sent but
without a value, as in the case of an empty form field, getParameter() returns
the empty string.

This servlet also adds a getServletInfo() method. A servlet can override this
method to return descriptive information about itself, such as its purpose, author,
version, and/or copyright. It’s akin to an applet’s getAppletInfo(). The method
is used primarily for putting explanatory information into a web server administra-
tion tool. You’ll notice we won’t bother to include it in future examples because it
is clutter for learning.

Example 2-2. A servlet that knows to whom it’s saying hello

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class Hello extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 String name = req.getParameter("name");

 out.println("<HTML>");

 out.println("<HEAD><TITLE>Hello, " + name + "</TITLE></HEAD>");

 out.println("<BODY>");

 out.println("Hello, " + name);

 out.println("</BODY></HTML>");

 }

 public String getServletInfo() {

 return "A servlet that knows the name of the person to whom it's" +

 "saying hello";

 }

}

Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PAGE GENERATION 25
The servlet’s output looks something like what is shown in Figure 2-5.

Handling POST Requests
You’ve now seen two servlets that implement the doGet() method. Now let’s
change our Hello servlet so that it can handle POST requests as well. Because we
want the same behavior with POST as we had for GET, we can simply dispatch all
POST requests to the doGet() method with the following code:

public void doPost(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 doGet(req, res);

}

Now the Hello servlet can handle form submissions that use the POST method:

<FORM METHOD=POST ACTION="/servlet/Hello">

In general, it is best if a servlet implements either doGet() or doPost(). Deciding
which to implement depends on what sort of requests the servlet needs to be able
to handle, as discussed earlier. The code you write to implement the methods is
almost identical. The major difference is that doPost() has the added ability to
accept large amounts of input.

You may be wondering what would have happened had the Hello servlet been
accessed with a POST request before we implemented doPost(). The default
behavior inherited from HttpServlet for both doGet() and doPost() is to
return an error to the client saying the requested URL does not support that
method.

Handling HEAD Requests
A bit of under-the-covers magic makes it trivial to handle HEAD requests (sent by a
client when it wants to see only the headers of the response). There is no

Figure 2-5. The Hello servlet using form data
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

26 CHAPTER 2: HTTP SERVLET BASICS
doHead() method to write. Any servlet that subclasses HttpServlet and imple-
ments the doGet() method automatically supports HEAD requests.

Here’s how it works. The service() method of the HttpServlet identifies
HEAD requests and treats them specially. It constructs a modified
HttpServletResponse object and passes it, along with an unchanged request, to
the doGet() method. The doGet() method proceeds as normal, but only the
headers it sets are returned to the client. The special response object effectively
suppresses all body output.* Figure 2-6 shows how an HTTP servlet handles HEAD
requests.

Although this strategy is convenient, you can sometimes improve performance by
detecting HEAD requests in the doGet() method, so that it can return early,
before wasting cycles writing output that no one will see. Example 2-3 uses the
request’s getMethod() method to implement this strategy (more properly called
a hack) in our Hello servlet.

* Jason is proud to report that Sun added this feature in response to comments he made during beta
testing.

Figure 2-6. An HTTP servlet handling a HEAD request

Example 2-3. The Hello servlet modified to return quickly in response to HEAD requests

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class Hello extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 // Set the Content-Type header

 res.setContentType("text/html");

Web Server

KEY: implemented by subclass

Bo
dy

 su
pp

re
sse

d

GET request

HttpServlet subclass

POST request service()

response

response

doGet()

HEAD request
response

doPost()

doHead()
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SERVER-SIDE INCLUDES 27
Notice that we set the Content-Type header, even if we are dealing with a HEAD
request. Headers such as these are returned to the client. Some header values,
such as Content-Length, may not be available until the response has already
been calculated. If you want to be accurate in returning these header values, the
effectiveness of this shortcut is limited.

Make sure that you end the request handling with a return statement. Do not call
System.exit(). If you do, you risk exiting the web server.

Server-Side Includes
All the servlets you’ve seen so far generate full HTML pages. If this were all that
servlets could do, it would still be plenty. Servlets, however, can also be embedded
inside HTML pages with something called server-side include (SSI) functionality.

In many servers that support servlets, a page can be preprocessed by the server to
include output from servlets at certain points inside the page. The tags used for a
server-side include look similar to those used for applets:*

<SERVLET CODE=ServletName CODEBASE=http://server:port/dir

initParam1=initValue1 initParam2=initValue2>

<PARAM NAME=param1 VALUE=value1>

<PARAM NAME=param2 VALUE=value2>

 If you see this text, it means that the web server

 providing this page does not support the SERVLET tag.

</SERVLET>

 // Return early if this is a HEAD

 if (req.getMethod().equals("HEAD")) return;

 // Proceed otherwise

 PrintWriter out = res.getWriter();

 String name = req.getParameter("name");

 out.println("<HTML>");

 out.println("<HEAD><TITLE>Hello, " + name + "</TITLE></HEAD>");

 out.println("<BODY>");

 out.println("Hello, " + name);

 out.println("</BODY></HTML>");

 }

}

* Currently, the <SERVLET> tag syntax varies across server implementations. This section describes the
syntax appropriate for the Java Web Server.

Example 2-3. The Hello servlet modified to return quickly in response to HEAD requests (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

28 CHAPTER 2: HTTP SERVLET BASICS
The CODE attribute specifies the class name or registered name of the servlet to
invoke. The CODEBASE attribute is optional. It can refer to a remote location from
which the servlet should be loaded. Without a CODEBASE attribute, the servlet is
assumed to be local.

Any number of parameters may be passed to the servlet using the <PARAM> tag.
The servlet can retrieve the parameter values using the getParameter() method
of ServletRequest. Any number of initialization (init) parameters may also be
passed to the servlet appended to the end of the <SERVLET> tag. We’ll cover init
parameters in Chapter 3, The Servlet Life Cycle.

A server that supports SSI detects the <SERVLET> tag in the process of returning
the page and substitutes in its place the output from the servlet (as shown in
Figure 2-7). The server does not parse every page it returns, just those that are
specially tagged. The Java Web Server, by default, parses only pages with an .shtml
extension. Note that with the <SERVLET> tag, unlike the <APPLET> tag, the client
browser never sees anything between <SERVLET> and </SERVLET>—unless the
server does not support SSI, in which case the client receives the content, ignores
the unrecognized tags, and displays the descriptive text.

Writing a Server-Side Include
Server-side includes are useful when a page is primarily static but contains a few
distinct dynamic portions. For a simple example, let’s assume we have several
pages that need to display the current time. As an extra challenge, let’s assume
that sometimes we need the current time in time zones other than our own.

The problem is easy with server-side includes. Each page can be written as a static
HTML page with one or more SSI directives that call Java code to provide the

Figure 2-7. Server-side include expansion

Web Server
.shtml file

request

response

<HTML>
<HEAD>

</HEAD>
<BODY>

<SERVLET CODE=Servlet1>
</SERVLET>

</BODY>
</HTML>

Servlet1
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SERVER-SIDE INCLUDES 29
times. The HTML could look something like this, saved to a file with an .shtml
extension:

<HTML>

<HEAD><TITLE>Times!</TITLE></HEAD>

<BODY>

The current time here is:

<SERVLET CODE=CurrentTime>

</SERVLET>

<P>

The current time in London is:

<SERVLET CODE=CurrentTime>

<PARAM NAME=zone VALUE=GMT>

</SERVLET>

<P>

And the current time in New York is:

<SERVLET CODE=CurrentTime>

<PARAM NAME=zone VALUE=EST>

</SERVLET>

<P>

</BODY>

</HTML>

The servlet named CurrentTime can be plugged into any page that needs a time
display. The name can be either the servlet’s class name or its registered name.
The servlet code is shown in Example 2-4.

Example 2-4. A server-side include that prints the current time

import java.io.*;

import java.text.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class CurrentTime extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 PrintWriter out = res.getWriter();

 Date date = new Date();

 DateFormat df = DateFormat.getInstance();

 String zone = req.getParameter("zone");

 if (zone != null) {

 TimeZone tz = TimeZone.getTimeZone(zone);

 df.setTimeZone(tz);

 }
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

30 CHAPTER 2: HTTP SERVLET BASICS
The CurrentTime servlet looks strikingly similar to the Hello servlet. This is not a
coincidence. There is no real difference between a servlet that handles full-page
GET requests and one that is embedded in a page, except that embedded servlets
have limited response capabilities. For example, an embedded servlet cannot set
HTTP headers.

The only method CurrentTime implements is the doGet() method. All SSI serv-
lets use either doGet() or service() to handle requests. Inside the method, the
servlet first retrieves its PrintWriter.* This early retrieval is perhaps unnecessary;
it could be retrieved as late as the next to last line. Still, we recommend fetching it
first thing. It will save time later when you find you need to begin sending output
sooner than you expected.

Then the servlet gets the current Date and a DateFormat instance with which to
display the time. This servlet’s ability to hop time zones is based on functionality in
DateFormat. The servlet simply tells the DateFormat which time zone to use, and
the date is displayed appropriately.

The time zone is specified by the <PARAM> tag in the HTML file. The servlet gains
access to this parameter with the getParameter() method of
HttpServletRequest. This technique is identical to the one we used to retrieve
form data. The servlet uses the value of the “zone” parameter to create a
TimeZone object that can be passed to the DateFormat object. If the “zone”
parameter is not specified, as is the case with the first SSI example on our page,
getParameter() returns null and the DateFormat uses the default time zone.
Finally, the servlet outputs the String created when the DateFormat object
formats the current date. The output of the HTML page is shown in Figure 2-8.

Servlet Chaining and Filters
Now you’ve seen how an individual servlet can create content by generating a full
page or by being used in a server-side include. Servlets can also cooperate to create
content in a process called servlet chaining.

 out.println(df.format(date));

 }

}

* The Java Web Server 1.1.1 has a bug where the PrintWriter returned by the getWriter() method
of ServletRequest does not generate output for a servlet used as a server side include. This means
that to run the SSI examples shown in the book you need to use another servlet engine; or you can
change the examples to manually create a PrintWriter as follows: PrintWriter out = new Print
Writer(res.getOutputStream(), true);

Example 2-4. A server-side include that prints the current time (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SERVLET CHAINING AND FILTERS 31
In many servers that support servlets, a request can be handled by a sequence of
servlets. The request from the client browser is sent to the first servlet in the chain.
The response from the last servlet in the chain is returned to the browser. In
between, the output from each servlet is passed (piped) as input to the next
servlet, so each servlet in the chain has the option to change or extend the
content, as shown in Figure 2-9.*

There are two common ways to trigger a chain of servlets for an incoming request.
First, you can tell the server that certain URLs should be handled by an explicitly
specified chain. Or, you can tell the server to send all output of a particular
content type through a specified servlet before it is returned to the client, effec-
tively creating a chain on the fly. When a servlet converts one type of content into
another, the technique is called filtering.

Servlet chaining can change the way you think about web content creation. Here
are some of the things you can do with it:

Quickly change the appearance of a page, a group of pages, or a type of content.
For example, you can improve your site by suppressing all <BLINK> tags from
the pages of your server, as shown in the next example. You can speak to those
who don’t understand English by dynamically translating the text from your
pages to the language read by the client. You can suppress certain words that
you don’t want everyone to read, be they the seven dirty words or words not

Figure 2-8. At the beep the current time will be...

* A web server could implement servlet chaining differently than described here. There is no reason
the initial content must come from a servlet. It could come from a static file fetched with built-in server
code or even from a CGI script. The Java Web Server does not have to make this distinction because
all its requests are handled by servlets.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

32 CHAPTER 2: HTTP SERVLET BASICS
everyone knows already, like the unreleased name of your secret project. You
could also suppress entire pages in which these words appear. You can
enhance certain words on your site, so that an online news magazine could
have a servlet detect the name of any Fortune 1000 companies and automati-
cally make each company name a link to its home page.

Take a kernel of content and display it in special formats.
For example, you can embed custom tags in your page and have a servlet
replace them with HTML content. Imagine an <SQL> tag whose query
contents are executed against a database and whose results are placed in an
HTML table. This is, in fact, similar to how the Java Web Server supports the
<SERVLET> tag.

Support esoteric data types.
For example, you can serve unsupported image types with a filter that converts
nonstandard image types to GIF or JPEG.

You may be asking yourself, why you would want to use a servlet chain when you
could instead write a script that edits the files in place—especially when there is an
additional amount of overhead for each servlet involved in handling a request?
The answer is that servlet chains have a threefold advantage:

• They can easily be undone, so when users riot against your tyranny of remov-
ing their <BLINK> freedom, you can quickly reverse the change and appease
the masses.

• They handle dynamically created content, so you can trust that your restric-
tions are maintained, your special tags are replaced, and your dynamically
converted PostScript images are properly displayed, even in the output of a
servlet (or a CGI script).

• They handle the content of the future, so you don’t have to run your script
every time new content is added.

Figure 2-9. Servlet chaining

Web Server

request

response

Servlet1

Servlet2

Servlet3
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SERVLET CHAINING AND FILTERS 33
Creating a Servlet Chain
Our first servlet chain example removes <BLINK> tags from HTML pages. If you’re
not familiar with the <BLINK> tag, be thankful. It is a tag recognized by many
browsers in which any text between the <BLINK> and </BLINK> tags becomes a
flashing distraction. Sure, it’s a useful feature when used sparingly. The problem is
that many page authors use it far too often. It has become the joke of HTML.

Example 2-5 shows a servlet that can be used in a servlet chain to remove the
<BLINK> tag from all of our server’s static HTML pages, all its dynamically created
HTML pages, and all the pages added to it in the future. This servlet introduces
the getReader() and getContentType() methods.

Example 2-5. A servlet that removes the <BLINK> tag from HTML pages

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class Deblink extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 String contentType = req.getContentType(); // get the incoming type

 if (contentType == null) return; // nothing incoming, nothing to do

 res.setContentType(contentType); // set outgoing type to be incoming type

 PrintWriter out = res.getWriter();

 BufferedReader in = req.getReader();

 String line = null;

 while ((line = in.readLine()) != null) {

 line = replace(line, "<BLINK>", "");

 line = replace(line, "</BLINK>", "");

 out.println(line);

 }

 }

 public void doPost(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 doGet(req, res);

 }

 private String replace(String line, String oldString, String newString) {

 int index = 0;

 while ((index = line.indexOf(oldString, index)) >= 0) {

 // Replace the old string with the new string (inefficiently)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

34 CHAPTER 2: HTTP SERVLET BASICS
This servlet overrides both the doGet() and doPost() methods. This allows it to
work in chains that handle either type of request. The doGet() method contains
the core logic, while doPost() simply dispatches to doGet(), using the same tech-
nique as the Hello example.

Inside doGet(), the servlet first fetches its print writer. Next, the servlet calls req.
getContentType() to find out the content type of the data it is receiving. It sets
its output type to match, or if getContentType() returned null, it realizes there
is no incoming data to deblink and simply returns. To read the incoming data, the
servlet fetches a BufferedReader with a call to req.getReader(). The reader
contains the HTML output from the previous servlet in the chain. As the servlet
reads each line, it removes any instance of <BLINK> or </BLINK> with a call to
replace() and then returns the line to the client (or perhaps to another servlet
in the chain). Note that the replacement is case-sensitive and inefficient; a solu-
tion to this problem that uses regular expressions is included in Chapter 13, Odds
and Ends.

A more robust version of this servlet would retrieve the incoming HTTP headers
and pass on the appropriate headers to the client (or to the next servlet in the
chain). Chapter 4 and Chapter 5 explain the handling and use of HTTP headers.
There’s no need to worry about it now, as the headers aren’t useful for simple
tasks like the one we are doing here.

Running Deblink
If you’re using the Java Web Server, before running Deblink you have to first tell
the web server you want servlet chains enabled. Go to managing the Web Service,
go to the Setup section, select Site, and then select Options. Here you can turn
servlet chaining on. By default it’s turned off to improve performance.

As we said before, there are two ways to trigger a servlet chain. A chain can be
explicitly specified for certain requests, or it can be created on the fly when one
servlet returns a content type that another servlet is registered to handle. We’ll use
both techniques to run Deblink.

 line = line.substring(0, index) +

 newString +

 line.substring(index + oldString.length());

 index += newString.length();

 }

 return line;

 }

}

Example 2-5. A servlet that removes the <BLINK> tag from HTML pages (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SERVLET CHAINING AND FILTERS 35
First, we’ll explicitly specify that all files with a name matching the wildcard
pattern *.html should be handled by the file servlet followed by the Deblink
servlet. The file servlet is a core Java Web Server servlet used to retrieve files.
Normally it is the only servlet invoked to return an HTML file. But here, we’re
going to pass its output to Deblink before returning the HTML to the client. Go
back to managing the Web Service, go to the Setup section, and select Servlet
Aliases. Here you will see which servlets are invoked for different kinds of URLs, as
shown in Figure 2-10.

These mappings provide some insight into how the Java Web Server uses its core
servlets. You can see / invokes file, *.shtml invokes ssinclude, and /servlet
invokes invoker. The most specific wildcard pattern is used, which is why /servlet
uses the invoker servlet to launch a servlet instead of using the file servlet to
return a file. You can change the default aliases or add new aliases. For example,
changing the /servlet prefix would change the URL used to access servlets. Right
now, we’re interested in adding another alias. You should add an alias that speci-
fies that *.html invokes file,Deblink. After making this change, any file ending
in .html is retrieved by the file servlet and passed to Deblink.

Figure 2-10. Standard servlet aliases
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

36 CHAPTER 2: HTTP SERVLET BASICS
Try it yourself. Create a blinky.html file in server_root/public_html that is sprin-
kled with a few blink tags and try surfing to http://server:8080/blinky.html. If
everything’s set up right, all evidence of the blink tags is removed.

The Loophole
This technique has one large loophole: not all HTML comes from files with the .
html extension. For example, HTML can come from a file with the .htm extension
or from some dynamically created HTML. We can work around multiple file
extensions with more aliases. This, however, still doesn’t catch dynamic content.
We need our second technique for creating a servlet chain to plug that hole.

We really want to specify that all text/html content should pass through the
Deblink servlet. The JavaServer Administration Tool does not yet include a graph-
ical way to do this. Instead, we can make the change with a simple edit of a
properties file. The properties file can be found at server_root/properties/server/
javawebserver/webpageservice/mimeservlets.properties. It contains directives like this:

java-internal/parsed-html=ssinclude

This directive indicates that all responses with a Content-Type header of java-
internal/parsed-html should be passed to the ssinclude (server-side include)
servlet. Why is this necessary? Without it, the ssinclude servlet would handle only
static files with the .shtml extension. It would suffer from the same loophole:
dynamically created pages containing the <SERVLET> tag would be ignored. With
this directive, any servlet can set its content type to java-internal/parsed-
html, which causes the ssinclude servlet to handle its output.

To specify that all text/html content is passed through Deblink, we need to add
our own directive:

text/html=Deblink

You need to restart your server before this change can take effect.

After making this change, all HTML content served by the server has its <BLINK>
tags removed.* Try it yourself! Change your HelloWorld servlet to <BLINK> its
message and watch the Deblink servlet silently remove all evidence of the deed.

* Unfortunately, some servers (including the Java Web Server 1.1.1) have a bug where they are too smart
for their own good. They literally feed all text/html content to the Deblink servlet—even the text/
html content being output by the Deblink servlet itself! In other words, every HTML page is de-
blinked forever (or until the client stops the request, whichever comes first).
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

JAVASERVER PAGES 37
JavaServer Pages
Just as this book was going to press, Sun announced a new way to use servlets,
called JavaServer Pages (commonly, but not officially, referred to as JSP). JSP’s
functionality and syntax bear a remarkable resemblance to Active Server Pages
(ASP).

JSP operates in many ways like server-side includes. The main difference is that
instead of embedding a <SERVLET> tag in an HTML page, JSP embeds actual snip-
pets of servlet code. It’s an attempt by Sun to separate content from presentation,
more convenient than server-side includes for pages that have chunks of dynamic
content intermingled with static content in several different places.

Just like server-side includes and servlet chaining, JSP doesn’t require any changes
to the Servlet API. But it does require special support in your web server. This
support is not included in the Java Web Server 1.1.1 (the unofficially considered
reference servlet engine against which this book is written), but it’s expected to be
introduced in the next version of the Java Web Server, probably 1.2, and in other
servlet engines as they keep pace.

Note that the following tutorial is based on the JavaServer Pages draft specifica-
tion, version 0.91. You may notice small changes in the final specification.

Using JavaServer Pages
At its most basic, JSP allows for the direct insertion of servlet code into an other-
wise static HTML file. Each block of servlet code (called a scriptlet) is surrounded
by a leading <% tag and a closing %> tag.* For convenience, a scriptlet can use four
predefined variables:

request
The servlet request, an HttpServletRequest object

response
The servlet response, an HttpServletResponse object

out
The output writer, a PrintWriter object

in
The input reader, a BufferedReader object

Example 2-6 shows a simple JSP page that says “Hello” in a manner similar to
Example 2-2, though with a lot less code. It makes use of the predefined request
and out variables.

* An earlier technology, called Page Compilation, uses <JAVA> and </JAVA> tags and a different inter-
nal syntax. Page Compilation has been deprecated in favor of JavaServer Pages.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

38 CHAPTER 2: HTTP SERVLET BASICS
If you have a server that supports JavaServer Pages and want to test this page, you
should place the file under the server’s document root (probably server_root/
public_html) and save it with a special extension. By default, this extension for JSP
pages is .jsp. Assuming you have saved the page as hello1.jsp, you can then access it
at the URL http://server:port/hello1.jsp. A screen shot is shown in Figure 2-11.

Behind the Scenes
How does JSP work? Behind the scenes, the server automatically creates, compiles,
loads, and runs a special servlet to generate the page’s content, as shown in
Figure 2-12. You can think of this special servlet as a background, workhorse
servlet. The static portions of the HTML page are generated by the workhorse
servlet using the equivalent of out.println() calls, while the dynamic portions

Example 2-6. Saying Hello with JSP

<HTML>

<HEAD><TITLE>Hello</TITLE></HEAD>

<BODY>

<H1>

<%

if (request.getParameter("name") == null) {

 out.println("Hello World");

}

else {

 out.println("Hello, " + request.getParameter("name"));

}

%>

</H1>

</BODY></HTML>

Figure 2-11. Saying Hello using JavaServer Pages
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

JAVASERVER PAGES 39
are included directly. For example, the servlet shown in Example 2-7 might be the
background workhorse for hello1.jsp.*

The first time you access a JSP page, you may notice that it takes a short time to
respond. This is the time necessary for the server to create and compile the back-
ground servlet. Subsequent requests should be as fast as ever because the server
can reuse the servlet. The one exception is when the .jsp file changes, in which
case the server notices and recompiles a new background servlet. If there’s ever an
error in compiling, you can expect the server to somehow report the problem,
usually in the page returned to the client.

Example 2-7. The workhorse servlet for hello1.jsp

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class _hello1_xjsp extends HttpServlet {

 public void service(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 BufferedReader in = request.getReader();

 out.println("<HTML>");

 out.println("<HEAD><TITLE>Hello</TITLE></HEAD>");

 out.println("<BODY>");

 out.println("<H1>");

 if (request.getParameter("name") == null) {

 out.println("Hello World");

 }

 else {

 out.println("Hello, " + request.getParameter("name"));

 }

 out.println("</H1>");

 out.println("</BODY></HTML>");

 }

}

* If you’re interested in seeing the true servlet source code for a JSP page, poke around the directories
under your server root. After all, the server needs to save the Java source code somewhere before com-
piling it! If you find the true servlet source, you’re likely to see that it is far more complicated and
convoluted than what is shown here.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

40 CHAPTER 2: HTTP SERVLET BASICS
Expressions and Directives
In addition to scriptlets, JavaServer Pages allow the use of expressions and directives.
A JSP expression begins with <%= and ends with %>. Any Java expression between
the two tags is evaluated, the result is converted to a String, and the text is
included directly in the page. This technique eliminates the clutter of an out.
println() call. For example, <%= foo %> includes the value of the foo variable.

A JSP directive begins with <%@ and ends with %>. A directive allows a JSP page to
control certain aspects of its workhorse servlet. Directives can be used to have the
workhorse servlet set its content type, import a package, extend a different super-
class, implement an interface, and handle either GET or POST requests. A
directive can even specify the use of a non-Java scripting language.

In between the directive tags certain key variables can be assigned values using the
following syntax:

<%@ varname = "value" %>

Here are the six variables you can set:

content_type
Specifies the content type of the generated page. For example:

<%@ content_type = "text/plain" %>

The default content type is “text/html”.

Figure 2-12. Generating JavaServer Pages

Web Server

.jsp file

request

response

<HTML>
<HEAD>

<\HEAD>
<BODY>

<% . . . %>

<\BODY>
<\HTML>

Java
Compiler

Servlet
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

JAVASERVER PAGES 41
import
Specifies a list of classes the servlet should import. Multiple classes can be
given in a comma-separated list or given through multiple import directives.
For example:

<%@ import = "java.io.*,java.util.Hashtable" %>

extends
Specifies the superclass the servlet should extend. For example:

<%@ extends = "CustomHttpServletSuperclass" %>

The default superclass is HttpServlet.

implements
Specifies a list of interfaces the servlet should implement. Multiple interfaces
can be given in a comma-separated list or given through multiple import
directives. For example:

<%@ implements = "Serializable" %>

The default behavior is to not implement anything.

method
Specifies the servlet method that should contain the generated code and
handle client requests. The default is “service”, which handles all requests.
For example:

<%@ method = "doPost" %>

language
Specifies the scripting language used by the back-end. The default language is
“java”. Some servers can choose to allow other languages. For example:

<%@ language = "java" %>

Example 2-8 shows a revised version of the Hello page that uses JSP expressions
and directives. It uses a method directive to indicate it should handle POST
requests, and it uses an expression to simplify its display of the name parameter.

Example 2-8. Saying Hello using JSP expressions and directives

<%@ method = "doPost" %>

<HTML>

<HEAD><TITLE>Hello</TITLE></HEAD>

<BODY>

<H1>

<% if (request.getParameter("name") == null) { %>

Hello World

<% } else { %>

Hello, <%= request.getParameter("name") %>

<% } %>

</H1>

</BODY></HTML>
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

42 CHAPTER 2: HTTP SERVLET BASICS
The background workhorse servlet for this JSP page should look nearly identical
to Example 2-7, with the only difference that this servlet implements doPost()
instead of service().

Declarations
Sometimes it’s necessary for a JSP page to define methods and nonlocal variables
in its workhorse servlet. For this there is a construct called a JSP declaration.

A declaration begins with a <SCRIPT RUNAT="server"> tag and ends with a </
SCRIPT> tag. In between the tags, you can include any servlet code that should be
placed outside the servlet’s service method. Example 2-9 demonstrates this with a
JSP page that uses a declaration to define the getName() method.

The background servlet created to generate this page might look like the servlet
shown in Example 2-10.

Example 2-9. Saying Hello using a JSP declaration

<HTML>

<HEAD><TITLE>Hello</TITLE></HEAD>

<BODY>

<H1>

Hello, <%= getName(request) %>

</H1>

</BODY>

</HTML>

<SCRIPT RUNAT="server">

private static final String DEFAULT_NAME = "World";

private String getName(HttpServletRequest req) {

 String name = req.getParameter("name");

 if (name == null)

 return DEFAULT_NAME;

 else

 return name;

}

</SCRIPT>

Example 2-10. The workhorse servlet for a JSP page with a declaration

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class _hello3_xjsp extends HttpServlet {

 public void service(HttpServletRequest request, HttpServletResponse response)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

JAVASERVER PAGES 43
JavaServer Pages and JavaBeans
One of the most interesting and powerful ways to use JavaServer Pages is in coop-
eration with JavaBeans components. JavaBeans are reusable Java classes whose
methods and variables follow specific naming conventions to give them added abil-
ities. They can be embedded directly in a JSP page using <BEAN> tags. A JavaBean
component can perform a well-defined task (execute database queries, connect to
a mail server, maintain information about the client, etc.) and make its resulting
information available to the JSP page through simple accessor methods.*

The difference between a JavaBeans component embedded in a JSP page and a
normal third-party class used by the generated servlet is that the web server can
give JavaBeans special treatment. For example, a server can automatically set a
bean’s properties (instance variables) using the parameter values in the client’s
request. In other words, if the request includes a name parameter and the server
detects through introspection (a technique in which the methods and variables of
a Java class can be programatically determined at runtime) that the bean has a

 throws ServletException, IOException {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 BufferedReader in = request.getReader();

 out.println("<HTML>");

 out.println("<HEAD><TITLE>Hello</TITLE></HEAD>");

 out.println("<BODY>");

 out.println("<H1>");

 out.println("Hello, " + getName(request));

 out.println("</H1>");

 out.println("</BODY></HTML>");

 }

 private static final String DEFAULT_NAME = "World";

 private String getName(HttpServletRequest req) {

 String name = req.getParameter("name");

 if (name == null)

 return DEFAULT_NAME;

 else

 return name;

 }

}

* For more information on JavaBeans, see http://java.sun.com/bean/ and the book Developing Java Beans
by Robert Englander (O’Reilly).

Example 2-10. The workhorse servlet for a JSP page with a declaration (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

44 CHAPTER 2: HTTP SERVLET BASICS
name property and a setName(String name) method, the server can automati-
cally call setName() with the value of the name parameter. There’s no need for
getParameter().

A bean can also have its scope managed automatically by the server. A bean can be
assigned to a specific request (where it is used once and destroyed or recycled) or
to a client session (where it’s automatically made available every time the same
client reconnects). Sessions and session tracking are covered in depth in
Chapter 7, Session Tracking.

A bean can even be implemented as a servlet! If the server detects that a bean
implements the javax.servlet.Servlet interface (either directly or by
extending GenericServlet or HttpServlet), it will call the bean’s service()
method once for each request and the bean’s init() method when the bean is
first created. The utility of this functionality is debatable, but it can be used by
beans that need to prepare somehow before handling requests.

Beans are embedded in a JSP page using the <BEAN> tag. It has the following
syntax:

<BEAN NAME="lookup name" VARNAME="alternate variable name"

 TYPE="class or interface name" INTROSPECT="{yes|no}" BEANNAME="file name"

 CREATE="{yes|no}" SCOPE="{request|session}">

<PARAM property1=value1 property2=value2>

</BEAN>

You can set the following attributes of the <BEAN> tag:

NAME
Specifies the name of the bean. This is the key under which the bean is saved
if its scope extends across requests. If a bean instance saved under this name
already exists in the current scope, that instance is used with this page. For
example:

NAME="userPreferences"

VARNAME
Specifies the variable name of the bean. This is the name used by the page to
refer to the bean and invoke its methods. For example:

VARNAME="prefs"

If not given, the variable name of the bean is set to the value of its name
attribute.

TYPE
Specifies the name of the bean’s class or interface type. For example:

TYPE="UserPreferencesBean"

The type defaults to java.lang.Object.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

JAVASERVER PAGES 45
INTROSPECT
Specifies if the server should set the bean’s properties using the parameter
values in the client’s request. Its value must be “yes” or “no”. The default is
“yes”.

BEANNAME
Specifies the serialized file or class file that contains the bean, used when first
creating the bean. This is an optional attribute. For example:

BEANNAME="hellobean.ser"

CREATE
Specifies if the bean should be created if it doesn’t already exist. Its value must
be “yes” or “no”. The default is “yes”. If create is set to “no” and a preex-
isting instance isn’t found, an error is returned to the client.

SCOPE
Specifies if the bean should be assigned to a specific request (where it is used
once and destroyed or recycled) or to a client session (where it’s automati-
cally made available every time the same client reconnects, within a certain
time frame). Its value must be “request” or “session”. The default is
“request”.

Parameters can be passed to a bean as a list using a <PARAM> tags placed between
the opening <BEAN> tag and the closing </BEAN> tag. The parameter values are
used to set the bean’s properties using introspection.

Example 2-11 demonstrates the use of a JavaBeans component with a JSP page; it
says Hello with the help of a HelloBean.

As you can see, using a JavaBeans component with JavaServer Pages greatly
reduces the amount of code necessary in the page. This allows a clean separation

Example 2-11. Saying Hello using a JavaBean

<%@ import = "HelloBean" %>

<BEAN NAME="hello" TYPE="HelloBean"

 INTROSPECT="yes" CREATE="yes" SCOPE="request">

</BEAN>

<HTML>

<HEAD><TITLE>Hello</TITLE></HEAD>

<BODY>

<H1>

Hello, <%= hello.getName() %>

</H1>

</BODY>

</HTML>
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

46 CHAPTER 2: HTTP SERVLET BASICS
of content (the functionality the bean provides) from presentation (the HTML
structure of the page). By using a well-defined API to interact with the bean, even
nonprogrammers can write JSP pages.

The code for HelloBean is shown in Example 2-12. Its class file should be placed
in the server’s classpath (something like server_root/classes, although for the
Java Web Server you need to first create this directory).

This is about as simple a bean as you’ll ever see. It has a single name property that
is set using setName() and retrieved using getName(). The default value of name
is “World”, but when a request comes in that includes a NAME parameter, the prop-
erty is set automatically by the server with a call to setName(). To test the
mechanism, try browsing to http://server:port/hellobean.jsp. You should see
something similar to the screen shot in Figure 2-13.

Moving On
We realize this chapter has been a whirlwind introduction to HTTP servlets. By
now, we hope you have a sense of the different ways you can use servlets to handle

Example 2-12. The HelloBean class

public class HelloBean {

 private String name = "World";

 public void setName(String name) {

 this.name = name;

 }

 public String getName() {

 return name;

 }

}

Figure 2-13. Saying Hello using JavaServer pages in cooperation with a JavaBeans component
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MOVING ON 47
a variety of web development tasks. Of course, servlets can do far more than say
“Hello World,” tell the time, and remove <BLINK> tags. Now that you’ve got your
feet wet, we can dive into the details and move on to more interesting applications.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

48
Java™ Servlet Programming, eMatte

Copyright © 2000 O’Reilly & Associates, Inc. A
Chapter 3

In this chapter:
• The Servlet

Alternative
• Servlet Reloading
• Init and Destroy
• Single-Thread Model
• Background

Processing
• Last Modified Times

3. 3:

res of servlets. This life cycle
rogramming and lower-level
er 1, Introduction.

s both the performance and
rns of low-level server API
3

The Servlet Life Cycle
The servlet life cycle is one of the most exciting featu
is a powerful hybrid of the life cycles used in CGI p
NSAPI and ISAPI programming, as discussed in Chapt

The Servlet Alternative
The servlet life cycle allows servlet engines to addres
resource problems of CGI and the security conce
programming. A servlet engine may execute all its servlets in a single Java virtual
machine (JVM). Because they are in the same JVM, servlets can efficiently share
data with each other, yet they are prevented by the Java language from accessing
one another’s private data. Servlets may also be allowed to persist between requests
as object instances, taking up far less memory than full-fledged processes.

Before we proceed too far, you should know that the servlet life cycle is highly flex-
ible. Servers have significant leeway in how they choose to support servlets. The
only hard and fast rule is that a servlet engine must conform to the following life
cycle contract:

1. Create and initialize the servlet.

2. Handle zero or more service calls from clients.

3. Destroy the servlet and then garbage collect it.

It’s perfectly legal for a servlet to be loaded, created, and instantiated in its own
JVM, only to be destroyed and garbage collected without handling any client
requests or after handling just one request. Any servlet engine that makes this a
habit, however, probably won’t last long on the open market. In this chapter we
describe the most common and most sensible life cycle implementations for HTTP
servlets.
r Edition
ll rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

THE SERVLET ALTERNATIVE 49
A Single Java Virtual Machine
Most servlet engines want to execute all servlets in a single JVM. Where that JVM
itself executes can differ depending on the server, though. With a server written in
Java, such as the Java Web Server, the server itself can execute inside a JVM right
alongside its servlets.

With a single-process, multithreaded web server written in another language, the
JVM can often be embedded inside the server process. Having the JVM be part of
the server process maximizes performance because a servlet becomes, in a sense,
just another low-level server API extension. Such a server can invoke a servlet with
a lightweight context switch and can provide information about requests through
direct method invocations.

A multiprocess web server (which runs several processes to handle requests)
doesn’t really have the choice to embed a JVM directly in its process because there
is no one process. This kind of server usually runs an external JVM that its
processes can share. With this approach, each servlet access involves a heavy-
weight context switch reminiscent of FastCGI. All the servlets, however, still share
the same external process.

Fortunately, from the perspective of the servlet (and thus from your perspective, as
a servlet author), the server’s implementation doesn’t really matter because the
server always behaves the same way.

Instance Persistence
We said above that servlets persist between requests as object instances. In other
words, at the time the code for a servlet is loaded, the server creates a single class
instance. That single instance handles every request made of the servlet. This
improves performance in three ways:

• It keeps the memory footprint small.

• It eliminates the object creation overhead that would otherwise be necessary
to create a new servlet object. A servlet can be already loaded in a virtual
machine when a request comes in, letting it begin executing right away.

• It enables persistence. A servlet can have already loaded anything it’s likely to
need during the handling of a request. For example, a database connection
can be opened once and used repeatedly thereafter. It can even be used by a
group of servlets. Another example is a shopping cart servlet that loads in
memory the price list along with information about its recently connected cli-
ents. Yet another servlet may choose to cache entire pages of output to save
time if it receives the same request again.

Not only do servlets persist between requests, but so do any threads created by
servlets. This perhaps isn’t useful for the run-of-the-mill servlet, but it opens up
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

50 CHAPTER 3: THE SERVLET LIFE CYCLE
some interesting possibilities. Consider the situation where one background
thread performs some calculation while other threads display the latest results. It’s
quite similar to an animation applet where one thread changes the picture and
another one paints the display.

A Simple Counter
To demonstrate the servlet life cycle, we’ll begin with a simple example.
Example 3-1 shows a servlet that counts and displays the number of times it has
been accessed. For simplicity’s sake, it outputs plain text.

The code is simple—it just prints and increments the instance variable named
count—but it shows the power of persistence. When the server loads this servlet,
the server creates a single instance to handle every request made of the servlet.
That’s why this code can be so simple. The same instance variables exist between
invocations and for all invocations.

A Simple Synchronized Counter
From the servlet-developer’s perspective, each client is another thread that calls
the servlet via the service(), doGet(), or doPost() methods, as shown in
Figure 3-1.*

Example 3-1. A simple counter

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class SimpleCounter extends HttpServlet {

 int count = 0;

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/plain");

 PrintWriter out = res.getWriter();

 count++;

 out.println("Since loading, this servlet has been accessed " +

 count + " times.");

 }

}

* Does it seem confusing how one servlet instance can handle multiple requests at the same time? If so,
it’s probably because when we picture an executing program we often see object instances performing
the work, invoking each other’s methods and so on. But, although this model works for simple cases,
it’s not how things actually work. In reality, all real work is done by threads. The object instances are
nothing more than data structures manipulated by the threads. Therefore, if there are two threads
running, it’s entirely possible that both are using the same object at the same time.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

THE SERVLET ALTERNATIVE 51
If your servlets only read from the request, write to the response, and save informa-
tion in local variables (that is, variables declared within a method), you needn’t
worry about the interaction among these threads. Once any information is saved
in nonlocal variables (that is, variables declared within a class but outside any
specific method), however, you must be aware that each of these client threads has
the ability to manipulate a servlet’s nonlocal variables. Without precautions, this
may result in data corruption and inconsistencies. For example, the
SimpleCounter servlet makes a false assumption that the counter incrementation
and output occur atomically (immediately after one another, uninterrupted). It’s
possible that if two requests are made to SimpleCounter around the same time,
each will print the same value for count. How? Imagine that one thread incre-
ments the count and just afterward, before the first thread prints the count, the
second thread also increments the count. Each thread will print the same count
value, after effectively increasing its value by 2.* The order of execution goes some-
thing like this

count++ // Thread 1

count++ // Thread 2

out.println // Thread 1

out.println // Thread 2

Now, in this case, the inconsistency is obviously not a problem, but many other
servlets have more serious opportunities for errors. To prevent these types of prob-
lems and the inconsistencies that come with them, we can add one or more
synchronized blocks to the code. Anything inside a synchronized block or a

Figure 3-1. Many threads, one servlet instance

* Odd factoid: if count were a 64-bit long instead of a 32-bit int, it would be theoretically possible for
the increment to be only half performed at the time it is interrupted by another thread. This is because
Java uses a 32-bit wide stack.

Web Server

Threadrequest

Servlet

request

request

request

Thread

Thread

Thread
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

52 CHAPTER 3: THE SERVLET LIFE CYCLE
synchronized method is guaranteed not to be executed concurrently by another
thread. Before any thread begins to execute synchronized code, it must obtain a
monitor (lock) on a specified class. If another thread already has that monitor—
because it is already executing the same synchronized block or some other block
with the same monitor—the first thread must wait. All this is handled by the
language itself, so it’s very easy to use. Synchronization, however, should be used
only when necessary. On some platforms, it requires a fair amount of overhead to
obtain the monitor each time a synchronized block is entered. More importantly,
during the time one thread is executing synchronized code, the other threads may
be blocked waiting for the monitor to be released.

For SimpleCounter, we have four options to deal with this potential problem.
First, we could add the keyword synchronized to the doGet() signature:

public synchronized void doGet(HttpServletRequest req,

 HttpServletResponse res)

This guarantees consistency by synchronizing the entire method, using the servlet
class as the monitor. In general, though, this is not the right approach because it
means the servlet can handle only one GET request at a time.

Our second option is to synchronize just the two lines we want to execute
atomically:

PrintWriter out = res.getWriter();

synchronized(this) {

 count++;

 out.println("Since loading, this servlet has been accessed " +

 count + " times.");

}

This approach works better because it limits the amount of time this servlet spends
in its synchronized block, while accomplishing the same goal of a consistent count.
Of course, for this simple example, it isn’t much different than the first option.

Our third option is to create a synchronized block that performs all the work that
needs to be done serially, then use the results outside the synchronized block. For
our counter servlet, we can increment the count in a synchronized block, save the
incremented value to a local variable (a variable declared inside a method), then
print the value of the local variable outside the synchronized block:

PrintWriter out = res.getWriter();

int local_count;

synchronized(this) {

 local_count = ++count;

}

out.println("Since loading, this servlet has been accessed " +

 local_count + " times.");
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

THE SERVLET ALTERNATIVE 53
This change shrinks the synchronized block to be as small as possible, while still
maintaining a consistent count.

Our last option is to decide that we are willing to suffer the consequences of
ignoring synchronization issues. Sometimes the consequences are quite accept-
able. For this example, ignoring synchronization means that some clients may
receive a count that’s a bit off. Not a big deal, really. If this servlet were supposed
to return unique numbers, however, it would be a different story.

Although it’s not possible with this example, an option that exists for other serv-
lets is to change instance variables into local variables. Local variables are not
available to other threads and thus don’t need to be carefully protected from
corruption. At the same time, however, local variables are not persistent between
requests, so we can’t use them to store the persistent state of our counter.

A Holistic Counter
Now, the “one instance per servlet” model is a bit of a gloss-over. The truth is that
each registered name for a servlet (but not each alias) is associated with one
instance of the servlet. The name used to access the servlet determines which
instance handles the request. This makes sense because the impression to the
client should be that differently named servlets operate independently. The sepa-
rate instances are also a requirement for servlets that accept initialization
parameters, as discussed later in this chapter.

Our SimpleCounter example uses the count instance variable to track the
number of times it has been accessed. If, instead, it needed to track the count for
all instances (and thus all registered aliases), it can in some cases use a class, or
static, variable. These variables are shared across all instances of a class.
Example 3-2 demonstrates with a servlet that counts three things: the times it has
been accessed, the number of instances created by the server (one per name), and
the total times all of them have been accessed.

Example 3-2. A more holistic counter

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class HolisticCounter extends HttpServlet {

 static int classCount = 0; // shared by all instances

 int count = 0; // separate for each servlet

 static Hashtable instances = new Hashtable(); // also shared
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

54 CHAPTER 3: THE SERVLET LIFE CYCLE
This HolisticCounter tracks its own access count with the count instance vari-
able, the shared count with the classCount class variable, and the number of
instances with the instances hashtable (another shared resource that must be a
class variable). Sample output is shown in Figure 3-2.

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/plain");

 PrintWriter out = res.getWriter();

 count++;

 out.println("Since loading, this servlet instance has been accessed " +

 count + " times.");

 // Keep track of the instance count by putting a reference to this

 // instance in a Hashtable. Duplicate entries are ignored.

 // The size() method returns the number of unique instances stored.

 instances.put(this, this);

 out.println("There are currently " +

 instances.size() + " instances.");

 classCount++;

 out.println("Across all instances, this servlet class has been " +

 "accessed " + classCount + " times.");

 }

}

Figure 3-2. Output from HolisticCounter

Example 3-2. A more holistic counter (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SERVLET RELOADING 55
Servlet Reloading
If you tried using these counters for yourself, you may have noticed that any time
you recompiled one, its count automatically began again at 1. Trust us—it’s not a
bug, it’s a feature. Most servers automatically reload a servlet after its class file
(under the default servlet directory, such as server_root/servlets) changes. It’s an
on-the-fly upgrade procedure that greatly speeds up the development-test cycle—
and allows for long server uptimes.

Servlet reloading may appear to be a simple feature, but it’s actually quite a trick—
and requires quite a hack. ClassLoader objects are designed to load a class just
once. To get around this limitation and load servlets again and again, servers use
custom class loaders that load servlets from the default servlets directory. This
explains why the servlet classes are found in server_root/servlets, even though
that directory doesn’t appear in the server’s classpath.

When a server dispatches a request to a servlet, it first checks if the servlet’s class
file has changed on disk. If it has changed, the server abandons the class loader
used to load the old version and creates a new instance of the custom class loader
to load the new version. Old servlet versions can stay in memory indefinitely (and,
in fact, other classes can still hold references to the old servlet instances, causing
odd side effects, as explained in Chapter 11, Interservlet Communication), but the
old versions are not used to handle any more requests.

Servlet reloading is not performed for classes found in the server’s classpath (such
as server_root/classes) because those classes are loaded by the core, primordial
class loader. These classes are loaded once and retained in memory even when
their class files change.

It’s generally best to put servlet support classes (such as the utility classes in com.
oreilly.servlet) somewhere in the server’s classpath (such as server_root/
classes) where they don’t get reloaded. The reason is that support classes are not
nicely reloaded like servlets. A support class, placed in the default servlets direc-
tory and accessed by a servlet, is loaded by the same class loader instance that
loaded the servlet. It doesn’t get its own class loader instance. Consequently, if the
support class is recompiled but the servlet referring to it isn’t, nothing happens.
The server checks only the timestamp on servlet class files.*

A frequently used trick to improve performance is to place servlets in the default
servlet directory during development and move them to the server’s classpath for

* For the daredevils out there, here’s a stunt you can try to force a support class reload. Put the support
class in the servlet directory. Then convince the server it needs to reload the servlet that uses the sup-
port class (recompile it or use the Unix utility touch). The class loader that reloads the servlet should
also load the new version of the support class.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

56 CHAPTER 3: THE SERVLET LIFE CYCLE
deployment. Having them out of the default directory eliminates the needless
timestamp comparison for each request.

Init and Destroy
Just like applets, servlets can define init() and destroy() methods. A servlet’s
init(ServletConfig) method is called by the server immediately after the
server constructs the servlet’s instance. Depending on the server and its configura-
tion, this can be at any of these times:

• When the server starts

• When the servlet is first requested, just before the service() method is
invoked

• At the request of the server administrator

In any case, init() is guaranteed to be called before the servlet handles its first
request.

The init() method is typically used to perform servlet initialization—creating or
loading objects that are used by the servlet in the handling of its requests. Why not
use a constructor instead? Well, in JDK 1.0 (for which servlets were originally
written), constructors for dynamically loaded Java classes (such as servlets)
couldn’t accept arguments. So, in order to provide a new servlet any information
about itself and its environment, a server had to call a servlet’s init() method
and pass along an object that implements the ServletConfig interface. Also, Java
doesn’t allow interfaces to declare constructors. This means that the javax.
servlet.Servlet interface cannot declare a constructor that accepts a
ServletConfig parameter. It has to declare another method, like init(). It’s
still possible, of course, for you to define constructors for your servlets, but in the
constructor you don’t have access to the ServletConfig object or the ability to
throw a ServletException.

This ServletConfig object supplies a servlet with information about its initializa-
tion (init) parameters. These parameters are given to the servlet itself and are not
associated with any single request. They can specify initial values, such as where a
counter should begin counting, or default values, perhaps a template to use when
not specified by the request. In the Java Web Server, init parameters for a servlet
are usually set during the registration process. See Figure 3-3.

Other servers set init parameters in different ways. Sometimes it involves editing a
configuration file. One creative technique you can use with the Java Web Server,
but currently by no other servers, is to treat servlets as JavaBeans. Such servlets can
be loaded from serialized files or have their init properties set automatically by the
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

INIT AND DESTROY 57
server at load time using introspection. See the Java Web Server documentation
for more information.

The ServletConfig object also holds a reference to a ServletContext object
that a servlet may use to investigate its environment. See Chapter 4, Retrieving Infor-
mation, for a full discussion of this ability.

The server calls a servlet’s destroy() method when the servlet is about to be
unloaded. In the destroy() method, a servlet should free any resources it has
acquired that will not be garbage collected. The destroy() method also gives a
servlet a chance to write out its unsaved cached information or any persistent
information that should be read during the next call to init().

A Counter with Init
Init parameters can be used for anything. In general, they specify initial values or
default values for servlet variables, or they tell a servlet how to customize its
behavior in some way. Example 3-3 extends our SimpleCounter example to read
an init parameter (named initial) that stores the initial value for our counter.

Figure 3-3. Setting init parameters in the Java Web Server
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

58 CHAPTER 3: THE SERVLET LIFE CYCLE
The init() method accepts an object that implements the ServletConfig inter-
face. It uses the config object’s getInitParameter() method to get the value for
the init parameter named initial. This method takes the name of the param-
eter as a String and returns the value as a String. There is no way to get the
value as any other type. This servlet therefore converts the String value to an int
or, if there’s a problem, defaults to a value of 0.

Take special note that the first thing the init() method does is call super.
init(config). Every servlet’s init() method must do this!

Why must the init() method call super.init(config)? The reason is that a
servlet is passed its ServletConfig instance in its init() method, but not in any
other method. This could cause a problem for a servlet that needs to access its
config object outside of init(). Calling super.init(config) solves this
problem by invoking the init() method of GenericServlet, which saves a refer-
ence to the config object for future use.

Example 3-3. A counter that reads init parameters

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class InitCounter extends HttpServlet {

 int count;

 public void init(ServletConfig config) throws ServletException {

 super.init(config);

 String initial = config.getInitParameter("initial");

 try {

 count = Integer.parseInt(initial);

 }

 catch (NumberFormatException e) {

 count = 0;

 }

 }

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/plain");

 PrintWriter out = res.getWriter();

 count++;

 out.println("Since loading (and with a possible initialization");

 out.println("parameter figured in), this servlet has been accessed");

 out.println(count + " times.");

 }

}

Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

INIT AND DESTROY 59
So, how does a servlet make use of this saved reference? By invoking methods on
itself. The GenericServlet class itself implements the ServletConfig interface,
using the saved config object in the implementation. In other words, after the call
to super.init(config), a servlet can invoke its own getInitParameter()
method. That means we could replace the following call:

String initial = config.getInitParameter("initial");

with:

String initial = getInitParameter("initial");

This second style works even outside of the init() method. Just remember,
without the call to super.init(config) in the init() method, any call to the
GenericServlet’s implementation of getInitParameter() or any other
ServletConfig methods will throw a NullPointerException. So, let us say it
again: every servlet’s init() method should call super.init(config) as its first action. The only
reason not to is if the servlet directly implements the javax.servlet.Servlet
interface, where there is no super.init().

A Counter with Init and Destroy
Up until now, the counter examples have demonstrated how servlet state persists
between accesses. This solves only part of the problem. Every time the server is
shut down or the servlet is reloaded, the count begins again. What we really want is
persistence across loads—a counter that doesn’t have to start over.

The init() and destroy() pair can accomplish this. Example 3-4 further
extends the InitCounter example, giving the servlet the ability to save its state in
destroy() and load the state again in init(). To keep things simple, assume this
servlet is not registered and is accessed only as http://server:port/servlet/
InitDestroyCounter. If it were registered under different names, it would have to save
a separate state for each name.

Example 3-4. A fully persistent counter

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class InitDestroyCounter extends HttpServlet {

 int count;

 public void init(ServletConfig config) throws ServletException {

 // Always call super.init(config) first (servlet mantra #1)

 super.init(config);
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

60 CHAPTER 3: THE SERVLET LIFE CYCLE
 // Try to load the initial count from our saved persistent state

 try {

 FileReader fileReader = new FileReader("InitDestroyCounter.initial");

 BufferedReader bufferedReader = new BufferedReader(fileReader);

 String initial = bufferedReader.readLine();

 count = Integer.parseInt(initial);

 return;

 }

 catch (FileNotFoundException ignored) { } // no saved state

 catch (IOException ignored) { } // problem during read

 catch (NumberFormatException ignored) { } // corrupt saved state

 // No luck with the saved state, check for an init parameter

 String initial = getInitParameter("initial");

 try {

 count = Integer.parseInt(initial);

 return;

 }

 catch (NumberFormatException ignored) { } // null or non-integer value

 // Default to an initial count of "0"

 count = 0;

 }

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/plain");

 PrintWriter out = res.getWriter();

 count++;

 out.println("Since the beginning, this servlet has been accessed " +

 count + " times.");

 }

 public void destroy() {

 saveState();

 }

 public void saveState() {

 // Try to save the accumulated count

 try {

 FileWriter fileWriter = new FileWriter("InitDestroyCounter.initial");

 String initial = Integer.toString(count);

 fileWriter.write(initial, 0, initial.length());

 fileWriter.close();

 return;

 }

 catch (IOException e) { // problem during write

 // Log the exception. See Chapter 5.

Example 3-4. A fully persistent counter (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

INIT AND DESTROY 61
Each time this servlet is about to be unloaded, it saves its state in a file named Init-
DestroyCounter.initial. In the absence of a supplied path, the file is saved in the
server process’ current directory, usually the server_root.* This file contains a
single integer, saved as a string, that represents the latest count.

Each time the servlet is loaded, it tries to read the saved count from the file. If, for
some reason, the read fails (as it does the first time the servlet runs because the
file doesn’t yet exist), the servlet checks if an init parameter specifies the starting
count. If that too fails, it starts fresh with zero. You can never be too careful in
init() methods.

Servlets can save their state in many different ways. Some may use a custom file
format, as was done here. Others may save their state as serialized Java objects or
put it into a database. Some may even perform journaling, a technique common
to databases and tape backups, where the servlet’s full state is saved infrequently
while a journal file stores incremental updates as things change. Which method a
servlet should use depends on the situation. In any case, you should always be
watchful that the state being saved isn’t undergoing any change in the
background.

Right now you’re probably asking yourself “What happens if the server crashes?”
It’s a good question. The answer is that the destroy() method will not be called.†

This doesn’t cause a problem for destroy() methods that only have to free
resources; a rebooted server does that job just as well (if not better). But it does
cause a problem for a servlet that needs to save its state in its destroy() method.
For these servlets, the only guaranteed solution is to save state more often. A
servlet may choose to save its state after handling each request, such as a “chess
server” servlet should do, so that even if the server is restarted, the game can resume
with the latest board position. Other servlets may need to save state only after some
important value has changed—a “shopping cart” servlet needs to save its state only
when a customer adds or removes an item from her cart. Last, for some servlets, it’s
fine to lose a bit of the recent state changes. These servlets can save state after some
set number of requests. For example, in our InitDestroyCounter example, it

 }

 }

}

* The exact location of the current user directory can be found using System.getProperty("user.
dir").

† Unless you’re so unlucky that your server crashes while in the destroy() method. In that case, you
may be left with a partially-written state file—garbage written on top of your previous state. To be per-
fectly safe, a servlet should save its state to a temporary file and then copy that file on top of the official
state file in one command.

Example 3-4. A fully persistent counter (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

62 CHAPTER 3: THE SERVLET LIFE CYCLE
should be satisfactory to save state every 10 accesses. To implement this, we can
add the following line at the end of doGet():

if (count % 10 == 0) saveState();

Does this addition make you cringe? It should. Think about synchronization
issues. We’ve opened up the possibility for data loss if saveState() is executed by
two threads at the same time and the possibility for saveState() not to be called
at all if count is incremented by several threads in a row before the check. Note
that this possibility did not exist when saveState() was called only from the
destroy() method: the destroy() method is called just once per servlet
instance. Now that saveState() is called in the doGet() method, however, we
need to reconsider. If by some chance this servlet is accessed so frequently that it
has more than 10 concurrently executing threads, it’s likely that two servlets (10
requests apart) will be in saveState() at the same time. This may result in a
corrupted data file. It’s also possible the two threads will increment count before
either thread notices it was time to call saveState(). The fix is easy: move the
count check into the synchronized block where count is incremented:

 int local_count;

 synchronized(this) {

 local_count = ++count;

 if (count % 10 == 0) saveState();

 }

 out.println("Since loading, this servlet has been accessed " +

 local_count + " times.");

The moral of the story is harder: always be vigilant to protect servlet code from
multithreaded access problems.

Even though this series of counter examples demonstrates the servlet life cycle, the
counters themselves aren’t particularly useful because they count only the number
of times they themselves have been accessed. You can find two truly useful
counters—that count accesses to other pages—in the next chapter.

Single-Thread Model
Although it is standard to have one servlet instance per registered servlet name, it
is possible for a servlet to elect instead to have a pool of instances created for each
of its names, all sharing the duty of handling requests. Such servlets indicate this
desire by implementing the javax.servlet.SingleThreadModel interface. This
is an empty, tag interface that defines no methods or variables and serves only to
flag the servlet as wanting the alternate life cycle.

A server that loads a SingleThreadModel servlet must guarantee, according to
the Servlet API documentation, “that no two threads will execute concurrently the
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SINGLE-THREAD MODEL 63
service method of that servlet.” To accomplish this, each thread uses a free servlet
instance from the pool, as shown in Figure 3-4. Thus, any servlet implementing
SingleThreadModel can be considered thread safe and isn’t required to synchro-
nize access to its instance variables.

Such a life cycle is pointless for a counter or other servlet application that requires
central state maintenance. The life cycle can be useful, however, in avoiding
synchronization while still performing efficient request handling.

For example, a servlet that connects to a database sometimes needs to perform
several database commands atomically as part of a single transaction. Normally,
this would require the servlet to synchronize around the database commands
(letting it manage just one request at a time) or to manage a pool of database
connections where it can “check out” and “check in” connections (letting it
support multiple concurrent requests). By instead implementing
SingleThreadModel and having one “connection” instance variable per servlet, a
servlet can easily handle concurrent requests by letting its server manage the
servlet instance pool (which doubles as a connection pool). The skeleton code is
shown in Example 3-5.

Figure 3-4. The Single Thread Model

Example 3-5. Handling database connections using SingleThreadModel

import java.io.*;

import java.sql.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

Web Server

Servlet Pool
Servlet
Instance

Servlet
Instance

Servlet
Instance

Servlet
Instancerequest

request

request

request Thread

Thread

Thread

Thread
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

64 CHAPTER 3: THE SERVLET LIFE CYCLE
Background Processing
Servlets can do more than simply persist between accesses. They can also execute
between accesses. Any thread started by a servlet can continue executing even after
the response has been sent. This ability proves most useful for long-running tasks
whose incremental results should be made available to multiple clients. A back-
ground thread started in init() performs continuous work while request-
handling threads display the current status with doGet(). It’s a similar technique
to that used in animation applets, where one thread changes the picture and
another paints the display.

public class SingleThreadConnection extends HttpServlet

 implements SingleThreadModel {

 Connection con = null; // database connection, one per pooled servlet instance

 public void init(ServletConfig config) throws ServletException {

 super.init(config);

 // Establish the connection for this instance

 con = establishConnection();

 con.setAutoCommit(false);

 }

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/plain");

 PrintWriter out = res.getWriter();

 // Use the connection uniquely assigned to this instance

 Statement stmt = con.createStatement();

 // Update the database any number of ways

 // Commit the transaction

 con.commit();

 }

 public void destroy() {

 if (con != null) con.close();

 }

 private Connection establishConnection() {

 // Not implemented. See Chapter 9.

 }

}

Example 3-5. Handling database connections using SingleThreadModel (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

BACKGROUND PROCESSING 65
Example 3-6 shows a servlet that searches for prime numbers above one quadril-
lion. It starts with such a large number to make the calculation slow enough to
adequately demonstrate caching effects—something we need for the next section.
The algorithm it uses couldn’t be simpler: it selects odd-numbered candidates and
attempts to divide them by every odd integer between 3 and their square root. If
none of the integers evenly divides the candidate, it is declared prime.

Example 3-6. On the hunt for primes

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class PrimeSearcher extends HttpServlet implements Runnable {

 long lastprime = 0; // last prime found

 Date lastprimeModified = new Date(); // when it was found

 Thread searcher; // background search thread

 public void init(ServletConfig config) throws ServletException {

 super.init(config); // always!

 searcher = new Thread(this);

 searcher.setPriority(Thread.MIN_PRIORITY); // be a good citizen

 searcher.start();

 }

 public void run() {

 // QTTTBBBMMMTTTOOO

 long candidate = 1000000000000001L; // one quadrillion and one

 // Begin loop searching for primes

 while (true) { // search forever

 if (isPrime(candidate)) {

 lastprime = candidate; // new prime

 lastprimeModified = new Date(); // new "prime time"

 }

 candidate += 2; // evens aren't prime

 // Between candidates take a 0.2 second break.

 // Another way to be a good citizen with system resources.

 try {

 searcher.sleep(200);

 }

 catch (InterruptedException ignored) { }

 }

 }

 private static boolean isPrime(long candidate) {
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

66 CHAPTER 3: THE SERVLET LIFE CYCLE
The searcher thread begins its search in the init() method. Its latest find is saved
in lastprime, along with the time it was found in in lastprimeModified. Each
time a client accesses the servlet, the doGet() method reports the largest prime
found so far and the time it was found. The searcher runs independently of client
accesses; even if no one accesses the servlet it continues to find primes silently. If
several clients access the servlet at the same time, they all see the same current
status.

Notice that the destroy() method stops the searcher thread.* This is very impor-
tant! If a servlet does not stop its background threads, they continue to run until
the virtual machine exits. Even when a servlet is reloaded (either explicitly or
because its class file changed), its threads won’t be stopped. Instead, it’s likely that

 // Try dividing the number by all odd numbers between 3 and its sqrt

 double sqrt = Math.sqrt(candidate);

 for (long i = 3; i <= sqrt; i += 2) {

 if (candidate % i == 0) return false; // found a factor

 }

 // Wasn't evenly divisible, so it's prime

 return true;

 }

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/plain");

 PrintWriter out = res.getWriter();

 if (lastprime == 0) {

 out.println("Still searching for first prime...");

 }

 else {

 out.println("The last prime discovered was " + lastprime);

 out.println(" at " + lastprimeModified);

 }

 }

 public void destroy() {

 searcher.stop();

 }

}

* Stopping threads using the stop()method as shown here is deprecated in JDK 1.2 in favor of a safer
flag-based system, where a thread must periodically examine a “flag” variable to determine when it
should stop, at which point it can clean up and return from its run()method. See the JDK documen-
tation for details. Example source code can be found in an article titled “Scott’s Solutions: Program-
ming with threads in Java 1.2”, written by Scott Oaks for Java Report Online, found at http://www.sigs.
com/jro/features/9711/oaks.html.

Example 3-6. On the hunt for primes (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

LAST MODIFIED TIMES 67
the new servlet will create extra copies of the background threads. And, at least
with the Java Web Server, even explicitly restarting the web server service doesn’t
stop background threads because the Java Web Server virtual machine continues
its execution.

Last Modified Times
By now, we’re sure you’ve learned that servlets handle GET requests with the
doGet() method. And that’s almost true. The full truth is that not every request
really needs to invoke doGet(). For example, a web browser that repeatedly
accesses PrimeSearcher should need to call doGet() only after the searcher
thread has found a new prime. Until that time, any call to doGet() just generates
the same page the user has already seen, a page probably stored in the browser’s
cache. What’s really needed is a way for a servlet to report when its output has
changed. That’s where the getLastModified() method comes in.

Most web servers, when they return a document, include as part of their response
a Last-Modified header. An example Last-Modified header value might be:

Tue, 06-May-98 15:41:02 GMT

This header tells the client the time the page was last changed. That information
alone is only marginally interesting, but it proves useful when a browser reloads a
page.

Most web browsers, when they reload a page, include in their request an If-
Modified-Since header. Its structure is identical to the Last-Modified header:

Tue, 06-May-98 15:41:02 GMT

This header tells the server the Last-Modified time of the page when it was last
downloaded by the browser. The server can read this header and determine if the
file has changed since the given time. If the file has changed, the server must send
the newer content. If the file hasn’t changed, the server can reply with a simple,
short response that tells the browser the page has not changed and it is sufficient
to redisplay the cached version of the document. For those familiar with the
details of HTTP, this response is the 304 “Not Modified” status code.

This technique works great for static pages: the server can use the file system to
find out when any file was last modified. For dynamically generated content,
though, such as that returned by servlets, the server needs some extra help. By
itself, the best the server can do is play it safe and assume the content changes with
every access, effectively eliminating the usefulness of the Last-Modified and If-
Modified-Since headers.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

68 CHAPTER 3: THE SERVLET LIFE CYCLE
The extra help a servlet can provide is implementing the getLastModified()
method. A servlet should implement this method to return the time it last
changed its output. Servers call this method at two times. The first time the server
calls it is when it returns a response, so that it can set the response’s Last-
Modified header. The second time occurs in handling GET requests that include
the If-Modified-Since header (usually reloads), so it can intelligently deter-
mine how to respond. If the time returned by getLastModified() is equal to or
earlier than the time sent in the If-Modified-Since header, the server returns
the “Not Modified” status code. Otherwise, the server calls doGet() and returns
the servlet’s output.*

Some servlets may find it difficult to determine their last modified time. For these
situations, it’s often best to use the “play it safe” default behavior. Many servlets,
however, should have little or no problem. Consider a “bulletin board” servlet
where people post carpool openings or the need for racquetball partners. It can
record and return when the bulletin board’s contents were last changed. Even if
the same servlet manages several bulletin boards, it can return a different modi-
fied time depending on the board given in the parameters of the request. Here’s a
getLastModified() method for our PrimeSearcher example that returns when
the last prime was found.

public long getLastModified(HttpServletRequest req) {

 return lastprimeModified.getTime() / 1000 * 1000;

}

Notice that this method returns a long value that represents the time as a number
of milliseconds since midnight, January 1, 1970, GMT. This is the same representa-
tion used internally by Java to store time values. Thus, the servlet uses the
getTime() method to retrieve lastprimeModified as a long.

Before returning this time value, the servlet rounds it down to the nearest second
by dividing by 1000 and then multiplying by 1000. All times returned by
getLastModified() should be rounded down like this. The reason is that the
Last-Modified and If-Modified-Since headers are given to the nearest
second. If getLastModified() returns the same time but with a higher resolu-
tion, it may erroneously appear to be a few milliseconds later than the time given
by If-Modified-Since. For example, let’s assume PrimeSearcher found a
prime exactly 869127442359 milliseconds since the beginning of the Disco
Decade. This fact is told to the browser, but only to the nearest second:

Thu, 17-Jul-97 09:17:22 GMT

* A servlet can directly set its Last-Modified header inside doGet(), using techniques discussed in
Chapter 5, Sending HTML Information. However, by the time the header is set inside doGet(), it’s too
late to decide whether or not to call doGet().
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

LAST MODIFIED TIMES 69
Now let’s assume that the user reloads the page and the browser tells the server,
via the If-Modified-Since header, the time it believes its cached page was last
modified:

Thu, 17-Jul-97 09:17:22 GMT

Some servers have been known to receive this time, convert it to exactly
869127442000 milliseconds, find that this time is 359 milliseconds earlier than the
time returned by getLastModified(), and falsely assume that the servlet’s
content has changed. This is why, to play it safe, getLastModified() should
always round down to the nearest thousand milliseconds.

The HttpServletRequest object is passed to getLastModified() in case the
servlet needs to base its results on information specific to the particular request.
The generic bulletin board servlet can make use of this to determine which board
was being requested, for example.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

70
Java™ Servlet Programming, eMatte

Copyright © 2000 O’Reilly & Associates, Inc. A
Chapter 4

In this chapter:
• Initialization

Parameters
• The Server
• The Client
• The Request

4. 4:

to know a lot about the envi-
out about the server that is

hat is sending requests. And
n is running in, you most
 application is handling.

cess to this information. For
t. If you compare this to the
4

Retrieving Information
To build a successful web application, you often need
ronment in which it is running. You may need to find
executing your servlets or the specifics of the client t
no matter what kind of environment the applicatio
certainly need information about the requests that the

Servlets have a number of methods available to gain ac
the most part, each method returns one specific resul
way environment variables are used to pass a CGI program its information, the
servlet approach has several advantages:

• Stronger type checking. In other words, more help from the compiler in
catching errors. A CGI program uses one function to retrieve its environment
variables. Many errors cannot be found until they cause runtime problems.
Let’s look at how both a CGI program and a servlet find the port on which its
server is running.

A CGI script written in Perl calls:

$port = $ENV{'SERVER_PORT'};

where $port is an untyped variable. A CGI program written in C calls:

char *port = getenv("SERVER_PORT");

where port is a pointer to a character string. The chance for accidental errors
is high. The environment variable name could be misspelled (it happens often
enough) or the data type might not match what the environment variable
returns.

A servlet, on the other hand, calls:

int port = req.getServerPort()
r Edition
ll rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RETRIEVING INFORMATION 71
This eliminates a lot of accidental errors because the compiler can guarantee
there are no misspellings and each return type is as it should be.

• Delayed calculation. When a server launches a CGI program, the value for
each and every environment variable must be precalculated and passed,
whether the CGI program uses it or not. A server launching a servlet has the
option to improve performance by delaying these calculations and perform-
ing them on demand as needed.

• More interaction with the server. Once a CGI program begins execution, it is
untethered from its server. The only communication path available to the pro-
gram is its standard output. A servlet, however, can work with the server. As
discussed in the last chapter, a servlet operates either within the server (when
possible) or as a connected process outside the server (when necessary). Using
this connectivity, a servlet can make ad hoc requests for calculated informa-
tion that only the server can provide. For example, a servlet can have its server
do arbitrary path translations, taking into consideration the server’s aliases
and virtual paths.

If you’re coming to servlets from CGI, Table 4-1 is a “cheat sheet” you can use for
your migration. It lists each CGI environment variable and the corresponding
HTTP servlet method.

Table 4-1. CGI Environment Variables and the Corresponding Servlet Methods

CGI Environment Variable HTTP Servlet Method

SERVER_NAME req.getServerName()

SERVER_SOFTWARE getServletContext().getServerInfo()

SERVER_PROTOCOL req.getProtocol()

SERVER_PORT req.getServerPort()

REQUEST_METHOD req.getMethod()

PATH_INFO req.getPathInfo()

PATH_TRANSLATED req.getPathTranslated()

SCRIPT_NAME req.getServletPath()

DOCUMENT_ROOT req.getRealPath("/")

QUERY_STRING req.getQueryString()

REMOTE_HOST req.getRemoteHost()

REMOTE_ADDR req.getRemoteAddr()

AUTH_TYPE req.getAuthType()

REMOTE_USER req.getRemoteUser()

CONTENT_TYPE req.getContentType()

CONTENT_LENGTH req.getContentLength()

HTTP_ACCEPT req.getHeader("Accept")
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

72 CHAPTER 4: RETRIEVING INFORMATION
In the rest of this chapter, we’ll see how and when to use these methods—and
several other methods that have no CGI counterparts. Along the way, we’ll put the
methods to use in some real servlets.

Initialization Parameters
Each registered servlet name can have specific initialization (init) parameters asso-
ciated with it. Init parameters are available to the servlet at any time; they are often
used in init() to set initial or default values for a servlet or to customize the
servlet’s behavior in some way. Init parameters are more fully explained in
Chapter 3, The Servlet Life Cycle.

Getting an Init Parameter
A servlet uses the getInitParameter() method to get access to its init
parameters:

public String ServletConfig.getInitParameter(String name)

This method returns the value of the named init parameter or null if it does not
exist. The return value is always a single String. It is up to the servlet to interpret
the value.

The GenericServlet class implements the ServletConfig interface and thus
provides direct access to the getInitParameter() method.* The method is
usually called like this:

public void init(ServletConfig config) throws ServletException {

 super.init(config);

 String greeting = getInitParameter("greeting");

}

A servlet that needs to establish a connection to a database can use its init parame-
ters to define the details of the connection. We can assume a custom
establishConnection() method to abstract away the details of JDBC, as shown
in Example 4-1.

HTTP_USER_AGENT req.getHeader("User-Agent")

HTTP_REFERER req.getHeader("Referer")

* The servlet must call super.init(config) in its init() method to get this functionality.

Table 4-1. CGI Environment Variables and the Corresponding Servlet Methods (continued)

CGI Environment Variable HTTP Servlet Method
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

INITIALIZATION PARAMETERS 73
Getting Init Parameter Names
A servlet can examine all its init parameters using getInitParameterNames():

public Enumeration ServletConfig.getInitParameterNames()

This method returns the names of all the servlet’s init parameters as an
Enumeration of String objects or an empty Enumeration if no parameters exist.
It’s most often used for debugging.

The GenericServlet class also makes this method directly available to servlets.
Example 4-2 shows a servlet that prints the name and value for all of its init
parameters.

Example 4-1. Using init parameters to establish a database connection

java.sql.Connection con = null;

public void init(ServletConfig config) throws ServletException {

 super.init(config);

 String host = getInitParameter("host");

 int port = Integer.parseInt(getInitParameter("port"));

 String db = getInitParameter("db");

 String user = getInitParameter("user");

 String password = getInitParameter("password");

 String proxy = getInitParameter("proxy");

 con = establishConnection(host, port, db, user, password, proxy);

}

Example 4-2. Getting init parameter names

import java.io.*;

import java.util.*;

import javax.servlet.*;

public class InitSnoop extends GenericServlet {

 // No init() method needed

 public void service(ServletRequest req, ServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/plain");

 PrintWriter out = res.getWriter();

 out.println("Init Parameters:");

 Enumeration enum = getInitParameterNames();

 while (enum.hasMoreElements()) {

 String name = (String) enum.nextElement();
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

74 CHAPTER 4: RETRIEVING INFORMATION
Notice that this servlet directly subclasses GenericServlet, showing that init
parameters are available to servlets that aren’t HTTP servlets. A generic servlet can
be used in a web server even though it lacks any support for HTTP-specific
functionality.

Unfortunately, there’s no server-independent way for a servlet to ask for its regis-
tered name or its class file location. This information may be added in a future
version of the Servlet API. Until then, although it’s not pretty, this information can
be passed using init parameters where necessary. Also, some servers—including
the Java Web Server—provide a back door whereby a servlet can get its registered
name. If a servlet defines a method with the following signature, the server calls it
and passes it the servlet’s registered name at initialization:

public void setServletName(String name);

The servlet can save the passed-in name and use it later. You’ll notice this back
door was built without changing the Servlet API, a necessary requirement because,
by the time it was added, the Servlet API 2.0 had already been frozen.

The Server
A servlet can find out much about the server in which it is executing. It can learn
the hostname, listening port, and server software, among other things. A servlet
can display this information to a client, use it to customize its behavior based on a
particular server package, or even use it to explicitly restrict the machines on
which the servlet will run.

Getting Information About the Server
There are four methods that a servlet can use to learn about its server: two that are
called using the ServletRequest object passed to the servlet and two that are
called from the ServletContext object in which the servlet is executing. A servlet
can get the name of the server and the port number for a particular request with
getServerName() and getServerPort(), respectively:

public String ServletRequest.getServerName()

public int ServletRequest.getServerPort()

These methods are attributes of ServletRequest because the values can change
for different requests if the server has more than one name (a technique called

 out.println(name + ": " + getInitParameter(name));

 }

 }

}

Example 4-2. Getting init parameter names (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

THE SERVER 75
virtual hosting). The returned name might be something like "www.servlets.
com" while the returned port might be something like "8080".

The getServerInfo() and getAttribute() methods of ServletContext
provide information about the server software and its attributes:

public String ServletContext.getServerInfo()

public Object ServletContext.getAttribute(String name)

getServerInfo() returns the name and version of the server software, separated
by a slash. The string returned might be something like "JavaWebServer/1.1.
1". getAttribute() returns the value of the named server attribute as an Object
or null if the attribute does not exist. The attributes are server-dependent. You
can think of this method as a back door through which a servlet can get extra
information about its server. Attribute names should follow the same convention
as package names. The package names java.* and javax.* are reserved for use
by the Java Software division of Sun Microsystems (formerly known as JavaSoft),
and com.sun.* is reserved for use by Sun Microsystems. See your server’s docu-
mentation for a list of its attributes. Because these methods are attributes of
ServletContext in which the servlet is executing, you have to call them through
that object:

String serverInfo = getServletContext().getServerInfo();

The most straightforward use of information about the server is an “About This
Server” servlet, as shown in Example 4-3.

Example 4-3. Snooping the server

import java.io.*;

import java.util.*;

import javax.servlet.*;

public class ServerSnoop extends GenericServlet {

 public void service(ServletRequest req, ServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/plain");

 PrintWriter out = res.getWriter();

 out.println("req.getServerName(): " + req.getServerName());

 out.println("req.getServerPort(): " + req.getServerPort());

 out.println("getServletContext().getServerInfo(): " +

 getServletContext().getServerInfo());

 out.println("getServerInfo() name: " +

 getServerInfoName(getServletContext().getServerInfo()));

 out.println("getServerInfo() version: " +

 getServerInfoVersion(getServletContext().getServerInfo()));

 out.println("getServletContext().getAttribute(\"attribute\"): " +
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

76 CHAPTER 4: RETRIEVING INFORMATION
This servlet also directly subclasses GenericServlet, demonstrating that all the
information about a server is available to servlets of any type. The servlet outputs
simple raw text. When accessed, this servlet prints something like:

req.getServerName(): localhost

req.getServerPort(): 8080

getServletContext().getServerInfo(): JavaWebServer/1.1.1

getServerInfo() name: JavaWebServer

getServerInfo() version: 1.1.1

getServletContext().getAttribute("attribute"): null

Unfortunately, there is no server-independent way to determine the server’s root
directory, referred to in this book as server_root. However, some servers—
including the Java Web Server—save the server’s root directory name in the
server.root system property, where it can be retrieved using System.
getProperty("server.root").

Locking a Servlet to a Server
This server information can be put to more productive uses. Let’s assume you’ve
written a servlet and you don’t want it running just anywhere. Perhaps you want to
sell it and, to limit the chance of unauthorized copying, you want to lock the
servlet to your customer’s machine with a software license. Or, alternatively, you’ve
written a license generator as a servlet and want to make sure it works only behind
your firewall. This can be done relatively easily because a servlet has instant access
to the information about its server.

Example 4-4 shows a servlet that locks itself to a particular server IP address and
port number. It requires an init parameter key that is appropriate for its server IP
address and port before it unlocks itself and handles a request. If it does not

 getServletContext().getAttribute("attribute"));

 }

 private String getServerInfoName(String serverInfo) {

 int slash = serverInfo.indexOf('/');

 if (slash == -1) return serverInfo;

 else return serverInfo.substring(0, slash);

 }

 private String getServerInfoVersion(String serverInfo) {

 int slash = serverInfo.indexOf('/');

 if (slash == -1) return null;

 else return serverInfo.substring(slash + 1);

 }

}

Example 4-3. Snooping the server (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

THE SERVER 77
receive the appropriate key, it refuses to continue. The algorithm used to map the
key to the IP address and port (and vice-versa) must be secure.

Example 4-4. A servlet locked to a server

import java.io.*;

import java.net.*;

import java.util.*;

import javax.servlet.*;

public class KeyedServerLock extends GenericServlet {

 // This servlet has no class or instance variables

 // associated with the locking, so as to simplify

 // synchronization issues.

 public void service(ServletRequest req, ServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/plain");

 PrintWriter out = res.getWriter();

 // The piracy check shouldn't be done in init

 // because name/port are part of request.

 String key = getInitParameter("key");

 String host = req.getServerName();

 int port = req.getServerPort();

 // Check if the init parameter "key" unlocks this server.

 if (! keyFitsServer(key, host, port)) {

 // Explain, condemn, threaten, etc.

 out.println("Pirated!");

 }

 else {

 // Give 'em the goods

 out.println("valid");

 // etc...

 }

 }

 // This method contains the algorithm used to match a key with

 // a server host and port. This example implementation is extremely

 // weak and should not be used by commercial sites.

 //

 private boolean keyFitsServer(String key, String host, int port) {

 if (key == null) return false;

 long numericKey = 0;

 try {
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

78 CHAPTER 4: RETRIEVING INFORMATION
This servlet refuses to perform unless given the correct key. To really make it
secure, however, the simple keyFitsServer() logic should be replaced with a
strong algorithm and the whole servlet should be run through an obfuscator to
prevent decompiling. Example 4-8 later in this chapter provides the code used to
generate keys. If you try this servlet yourself, it’s best if you access the server with
its actual name, rather than localhost, so the servlet can determine the web server’s
true name and IP address.

 numericKey = Long.parseLong(key);

 }

 catch (NumberFormatException e) {

 return false;

 }

 // The key must be a 64-bit number equal to the logical not (~)

 // of the 32-bit IP address concatenated with the 32-bit port number.

 byte hostIP[];

 try {

 hostIP = InetAddress.getByName(host).getAddress();

 }

 catch (UnknownHostException e) {

 return false;

 }

 // Get the 32-bit IP address

 long servercode = 0;

 for (int i = 0; i < 4; i++) {

 servercode <<= 8;

 servercode |= (hostIP[i] & 255);

 }

 // Concatentate the 32-bit port number

 servercode <<= 32;

 servercode |= port;

 // Logical not

 long accesscode = ~numericKey;

 // The moment of truth: Does the key match?

 return (servercode == accesscode);

 }

}

Example 4-4. A servlet locked to a server (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

THE CLIENT 79
The Client
For each request, a servlet has the ability to find out about the client machine and,
for pages requiring authentication, about the actual user. This information can be
used for logging access data, associating information with individual users, or
restricting access to certain clients.

Getting Information About the Client Machine
A servlet can use getRemoteAddr() and getRemoteHost() to retrieve the IP
address and hostname of the client machine, respectively:

public String ServletRequest.getRemoteAddr()

public String ServletRequest.getRemoteHost()

Both values are returned as String objects. The information comes from the
socket that connects the server to the client, so the remote address and hostname
may be that of a proxy server. An example remote address might be "192.26.80.
118" while an example remote host might be "dist.engr. sgi.com".

The IP address or remote hostname can be converted to a java.net.
InetAddress object using InetAddress.getByName():

InetAddress remoteInetAddress = InetAddress.getByName(req.getRemoteAddr());

Restricting Access to the United States and Canada
Due to the United States government’s policy restricting the export of strong
encryption outside the United States and Canada, some web sites must be careful
about who they let download certain software. Servlets, with their ability to find
out about the client machine, are well suited to enforce this restriction. These serv-
lets can check the client machine and provide links for download only if the client
appears to be coming from inside the United States or Canada. Example 4-5 gives
an example.

Example 4-5. Can they be trusted?

import java.io.*;

import java.net.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class ExportRestriction extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

80 CHAPTER 4: RETRIEVING INFORMATION
This servlet gets the client hostname with a call to req.getRemoteHost() and,
based on its suffix, decides if the client came from inside or outside the United
States and Canada. Of course, be sure to get high-priced legal counsel before
making any cryptographic code available for download.

 throws ServletException, IOException {

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 // ...Some introductory HTML...

 // Get the client's hostname

 String remoteHost = req.getRemoteHost();

 // See if the client is allowed

 if (! isHostAllowed(remoteHost)) {

 out.println("Access <BLINK>denied</BLINK>"); // filter out the blink!

 }

 else {

 out.println("Access granted");

 // Display download links, etc...

 }

 }

 // We assume hosts ending with .com, .edu, .net, .org,

 // .gov, .mil, .us, and .ca are legal even though this is an

 // over-simplification now that .com, .net, and .org have

 // become global top-level domains. We also assume

 // clients without a domain name are local and that

 // local is allowed. (After all, if local isn't allowed

 // you would have to be outside the United States and Canada -- so

 // why would you be using this servlet?)

 private boolean isHostAllowed(String host) {

 return (host.endsWith(".com") ||

 host.endsWith(".edu") ||

 host.endsWith(".net") ||

 host.endsWith(".org") ||

 host.endsWith(".gov") ||

 host.endsWith(".mil") ||

 host.endsWith(".us") ||

 host.endsWith(".ca") ||

 (host.indexOf('.') == -1)); // no domain, assume OK

 }

}

Example 4-5. Can they be trusted? (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

THE CLIENT 81
Getting Information About the User
What do you do when you need to restrict access to some of your web pages but
want to have a bit more control over the restriction than this “continent by conti-
nent” approach? Say, for example, you publish an online magazine and want only
paid subscribers to read the articles. Well (prepare yourself), you don’t need serv-
lets to do this.

Nearly every HTTP server has a built-in capability to restrict access to some or all
of its pages to a given set of registered users. How you set up restricted access
depends on the server, but here’s how it works mechanically. The first time a
browser attempts to access one of these pages, the HTTP server replies that it
needs special user authentication. When the browser receives this response, it
usually pops open a window asking the user for a name and password appropriate
for the page, as shown in Figure 4-1.

Once the user enters his information, the browser again attempts to access the
page, this time attaching the user’s name and password along with the request. If
the server accepts the name/password pair, it happily handles the request. If, on
the other hand, the server doesn’t accept the name/password pair, the browser is
again denied and the user swears under his breath about forgetting yet another
password.

How does this involves servlets? When access to a servlet has been restricted by the
server, the servlet can get the name of the user that was accepted by the server,
using the getRemoteUser() method:

public String HttpServletRequest.getRemoteUser()

Figure 4-1. Please log in
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

82 CHAPTER 4: RETRIEVING INFORMATION
Note that this information is retrieved from the servlet’s HttpServletRequest
object, the HTTP-specific subclass of ServletRequest. This method returns the
name of the user making the request as a String or null if access to the servlet
was not restricted. There is no comparable method to get the remote user’s pass-
word (although it can be manually determined, as shown in Example 8-2). An
example remote user might be "jhunter".

A servlet can also use the getAuthType() method to find out what type of autho-
rization was used:

public String HttpServletRequest.getAuthType()

This method returns the type of authorization used or null if access to the servlet
was not restricted. The most common authorization types are "BASIC" and
"DIGEST".

By the time the servlet calls getRemoteUser(), the server has already determined
that the user is authorized to invoke the servlet, but that doesn’t mean the remote
user’s name is worthless. The servlet could perform a second authorization check,
more restrictive and dynamic than the server’s. For example, it could return sensi-
tive information about someone only if that person made the request, or it could
enforce a rule that each user can make only 10 accesses per day.*

Then again, the client’s name can simply tell the servlet who is accessing it. After
all, the remote host is not necessarily unique to one user. Unix servers often host
hundreds of users, and gateway proxies can act on behalf of thousands. But bear
in mind that access to the client’s name comes with a price. Every user must be
registered with your server and, before accessing your site, must enter his name
and password. Generally speaking, authentication should not be used just so a
servlet can know to whom it is talking. Chapter 7, Session Tracking, describes some
better, lower-maintenance techniques for knowing about users. However, if a
servlet is already protected and has the name easily available, the servlet might as
well use it.

With the remote user’s name, a servlet can save information about each client.
Over the long term, it can remember each individual’s preferences. For the short
term, it can remember the series of pages viewed by the client and use them to
add a sense of state to a stateless HTTP protocol. The session tracking tricks from
Chapter 7 may be unnecessary if the servlet already knows the name of the client
user.

* Want to know how to say “Access Denied” for the eleventh access? It’s in the next chapter.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

THE CLIENT 83
A Personalized Welcome
A simple servlet that uses getRemoteUser() can greet its clients by name and
remember when each last logged in, as shown in Example 4-6.

Example 4-6. Hey, I remember you!

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class PersonalizedWelcome extends HttpServlet {

 Hashtable accesses = new Hashtable();

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 // ...Some introductory HTML...

 String remoteUser = req.getRemoteUser();

 if (remoteUser == null) {

 out.println("Welcome!");

 }

 else {

 out.println("Welcome, " + remoteUser + "!");

 Date lastAccess = (Date) accesses.get(remoteUser);

 if (lastAccess == null) {

 out.println("This is your first visit!");

 }

 else {

 out.println("Your last visit was " + accesses.get(remoteUser));

 }

 if (remoteUser.equals("PROFESSOR FALKEN")) {

 out.println("Shall we play a game?");

 }

 accesses.put(remoteUser, new Date());

 }

 // ...Continue handling the request...

 }

}

Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

84 CHAPTER 4: RETRIEVING INFORMATION
This servlet uses a Hashtable to save the last access time for each remote user.
The first thing it does for each request is greet the person by name and tell him
the time of his last visit. Then it records the time of this visit, for use next time.
After that, it continues handling the request.

The Request
We’ve seen how the servlet finds out about the server and about the client. Now
it’s time to move on to the really important stuff: how a servlet finds out what the
client wants.

Request Parameters
Each access to a servlet can have any number of request parameters associated
with it. These parameters are typically name/value pairs that tell the servlet any
extra information it needs to handle the request. Please don’t confuse these
request parameters with init parameters, which are associated with the servlet
itself.

An HTTP servlet gets its request parameters as part of its query string (for GET
requests) or as encoded post data (for POST requests). A servlet used as a server-
side include has its parameters supplied by <PARAM> tags. Other types of servlets
can receive their parameters in other ways.

Fortunately, even though a servlet can receive parameters in a number of different
ways, every servlet retrieves its parameters the same way, using getParameter()
and getParameterValues():

public String ServletRequest.getParameter(String name)

public String[] ServletRequest.getParameterValues(String name)

getParameter() returns the value of the named parameter as a String or null
if the parameter was not specified.* The value is guaranteed to be in its normal,
decoded form. If the parameter has multiple values, the value returned is server-
dependent. If there’s any chance a parameter could have more than one value,
you should use the getParameterValues() method instead. This method returns
all the values of the named parameter as an array of String objects or null if the
parameter was not specified. A single value is returned in an array of length 1.

One word of warning: if the parameter information came in as encoded POST data,
it may not be available if the POST data has already been read manually using the

* The getParameter() method was deprecated in the Java Web Server 1.1 in favor of
getParameterValues(). However, after quite a lot of public protest, Sun took getParameter() off
the deprecation list in the final release of Servlet API 2.0. It was the first Java method to be undepre-
cated!
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

THE REQUEST 85
getReader() or getInputStream() method of ServletRequest (because
POST data can be read only once).

The possible uses for request parameters are unlimited. They are a general-
purpose way to tell a servlet what to do, how to do it, or both. For a simple
example, let’s look at how a dictionary servlet might use getParameter() to find
out the word it needs to look up.

An HTML file could contain this form asking the user for a word to look up:

<FORM METHOD=GET ACTION="/servlet/Dictionary">

Word to look up: <INPUT TYPE=TEXT NAME="word"><P>

Another word? <INPUT TYPE=TEXT NAME="word"><P>

<INPUT TYPE=SUBMIT><P>

</FORM>

Or the HTML file could contain this server-side include:

<SERVLET CODE=Dictionary>

<PARAM NAME=word VALUE=obfuscate>

<PARAM NAME=word VALUE=onomatopoeia>

</SERVLET>

No matter what the HTML looks like or whether the servlet handles GET requests,
POST requests, or server-side include requests or is part of a filter chain, you can
use code like the following to retrieve the servlet’s parameters:

String word = req.getParameter("word");

String definition = getDefinition(word);

out.println(word + ": " + definition);

While this code works fine, it can handle only one word per request. To handle
multiple values for word, the servlet can use the getParameterValues() method
instead:

String[] words = req.getParameterValues("word");

if (words != null) {

 for (int i = 0; i < words.length; i++) {

 String definition = getDefinition(words[i]);

 out.println(words[i] + ": " + definition);

 out.println("<HR>");

 }

}

In addition to getting parameter values, a servlet can access parameter names
using getParameterNames():

public Enumeration ServletRequest.getParameterNames()
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

86 CHAPTER 4: RETRIEVING INFORMATION
This method returns all the parameter names as an Enumeration of String
object or an empty Enumeration if the servlet has no parameters. The method is
most often used for debugging.

Finally, a servlet can retrieve the raw query string of the request with
getQueryString():

public String ServletRequest.getQueryString()

This method returns the raw query string (encoded GET parameter information)
of the request or null if there was no query string. This low-level information is
rarely useful for handling form data. It’s best for handling a single unnamed value,
as in "/servlet/Sqrt?576", where the returned query string is "576".

Example 4-7 shows the use of these methods with a servlet that prints its query
string, then prints the name and value for all its parameters.

This servlet’s output is shown in Figure 4-2.

Example 4-7. Snooping parameters

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class ParameterSnoop extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/plain");

 PrintWriter out = res.getWriter();

 out.println("Query String:");

 out.println(req.getQueryString());

 out.println();

 out.println("Request Parameters:");

 Enumeration enum = req.getParameterNames();

 while (enum.hasMoreElements()) {

 String name = (String) enum.nextElement();

 String values[] = req.getParameterValues(name);

 if (values != null) {

 for (int i = 0; i < values.length; i++) {

 out.println(name + " (" + i + "): " + values[i]);

 }

 }

 }

 }

}

Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

THE REQUEST 87
Generating a License Key
Now we’re ready to write a servlet that generates a KeyedServerLock license key
for any given host and port number. A key from this servlet can be used to unlock
the KeyedServerLock servlet. So, how will this servlet know the host and port
number of the servlet it needs to unlock? Why, with request parameters, of course.
Example 4-8 shows the code.

Figure 4-2. The snooped parameters

Example 4-8. Unlocking KeyedServerLock

import java.io.*;

import java.net.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class KeyedServerUnlock extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 PrintWriter out = res.getWriter();

 // Get the host and port

 String host = req.getParameter("host");

 String port = req.getParameter("port");

 // Convert the port to an integer

 int numericPort;

 try {

 numericPort = Integer.parseInt(port);
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

88 CHAPTER 4: RETRIEVING INFORMATION
 }

 catch (NumberFormatException e) {

 numericPort = 80; // default

 }

 // Generate and print the key

 // Any KeyGenerationException is caught and displayed

 try {

 long key = generateKey(host, numericPort);

 out.println(host + ":" + numericPort + " has the key " + key);

 }

 catch (KeyGenerationException e) {

 out.println("Could not generate key: " + e.getMessage());

 }

 }

 // This method contains the algorithm used to match a key with

 // a server host and port. This example implementation is extremely

 // weak and should not be used by commercial sites.

 //

 // Throws a KeyGenerationException because anything more specific

 // would be tied to the chosen algorithm.

 //

 private long generateKey(String host, int port) throws KeyGenerationException {

 // The key must be a 64-bit number equal to the logical not (~)

 // of the 32-bit IP address concatenated by the 32-bit port number.

 byte hostIP[];

 try {

 hostIP = InetAddress.getByName(host).getAddress();

 }

 catch (UnknownHostException e) {

 throw new KeyGenerationException(e.getMessage());

 }

 // Get the 32-bit IP address

 long servercode = 0;

 for (int i = 0; i < 4; i++) {

 servercode <<= 8;

 servercode |= (hostIP[i] & 255);

 }

 // Concatentate the 32-bit port number

 servercode <<= 32;

 servercode |= port;

 // The key is the logical not

Example 4-8. Unlocking KeyedServerLock (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

THE REQUEST 89
This servlet can either generate a full page (for handling GET requests) or act as a
server-side include.

Path Information
In addition to parameters, an HTTP request can include something called “extra
path information” or a “virtual path.” In general, this extra path information is
used to indicate a file on the server that the servlet should use for something. This
path information is encoded in the URL of an HTTP request. An example URL
looks like this:

http://server:port/servlet/ViewFile/index.html

This invokes the ViewFile servlet, passing "/index.html" as extra path informa-
tion. A servlet can access this path information, and it can also translate the "/
index.html" string into the real path of the index.html file. What is the real path
of "/index.html"? It’s the full file system path to the file—what the server would
return if the client asked for "/index.html" directly. This probably turns out to
be document_root/index.html, but, of course, the server could have special
aliasing that changes this.

Besides being specified explicitly in a URL, this extra path information can also be
encoded in the ACTION parameter of an HTML form:

<FORM METHOD=GET ACTION="/servlet/Dictionary/dict/definitions.txt">

Word to look up: <INPUT TYPE=TEXT NAME="word"><P>

<INPUT TYPE=SUBMIT><P>

</FORM>

This form invokes the Dictionary servlet to handle its submissions and passes the
Dictionary the extra path information "/dict/definitions.txt". The
Dictionary servlet can then know to look up word definitions using the definitions.txt

 return ~servercode;

 }

}

class KeyGenerationException extends Exception {

 public KeyGenerationException() {

 super();

 }

 public KeyGenerationException(String msg) {

 super(msg);

 }

}

Example 4-8. Unlocking KeyedServerLock (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

90 CHAPTER 4: RETRIEVING INFORMATION
file, the same file the client would see if it requested "/dict/definitions.txt",
probably server_root/public_html/dict/definitions.txt.

Getting path information

A servlet can use the getPathInfo() method to get extra path information:

public String HttpServletRequest.getPathInfo()

This method returns the extra path information associated with the request or
null if none was given. An example path is "/dict/definitions.txt". The
path information by itself, however, is only marginally useful. A servlet usually
needs to know the actual file system location of the file given in the path info,
which is where getPathTranslated() comes in:

public String HttpServletRequest.getPathTranslated()

This method returns the extra path information translated to a real file system
path or null if there is no extra path information. The returned path does not
necessarily point to an existing file or directory. An example translated path is
"C:\JavaWebServer1.1.1\public_html\dict\definitions.txt".

Why Extra Path Information?
Why does HTTP have special support for extra path information? Isn’t it
enough to pass the servlet a path parameter? The answer is yes. Servlets don’t
need the special support, but CGI programs do.

A CGI program cannot interact with its server during execution, so it has no
way to receive a path parameter, let alone ask the server to map it to a real file
system location. The server has to somehow translate the path before invoking
the CGI program. This is why there needs to be support for special “extra path
information.” Servers know to pretranslate this extra path and send the trans-
lation to the CGI program as an environment variable. It’s a fairly elegant
workaround to a shortcoming in CGI.

Of course, just because servlets don’t need the special handling of “extra path
information,” it doesn’t mean they shouldn’t use it. It provides a simple, con-
venient way to attach a path along with a request.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

THE REQUEST 91
Example 4-9 shows a servlet that uses these two methods to print the extra path
information it receives and the resulting translation to a real path.

Some example output of this servlet might be:

The file "/index.html"

Is stored at "/usr/JavaWebServer1.1.1/public_html/index.html"

Ad hoc path translations

Sometimes a servlet needs to translate a path that wasn’t passed in as extra path
information. You can use the getRealPath() method for this task:

public String ServletRequest.getRealPath(String path)

This method returns the real path of any given “virtual path” or null if the trans-
lation cannot be performed. If the given path is "/", the method returns the
document root (the place where documents are stored) for the server. If the given
path is getPathInfo(), the method returns the same real path as would be
returned by getPathTranslated(). This method can be used by generic servlets
as well as HTTP servlets. There is no CGI counterpart.

Getting MIME types

Once a servlet has the path to a file, it often needs to discover the type of the file.
Use getMimeType() to do this:

public String ServletContext.getMimeType(String file)

Example 4-9. Showing where the path leads

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class FileLocation extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/plain");

 PrintWriter out = res.getWriter();

 if (req.getPathInfo() != null) {

 out.println("The file \"" + req.getPathInfo() + "\"");

 out.println("Is stored at \"" + req.getPathTranslated() + "\"");

 }

 }

}

Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

92 CHAPTER 4: RETRIEVING INFORMATION
This method returns the MIME type of the given file or null if it isn’t known.
Some implementations return "text/plain" if the given file doesn’t exist.
Common MIME types are "text/html", "text/plain", "image/gif", and
"image/jpeg".

The following code fragment finds the MIME type of the extra path information:

String type = getServletContext().getMimeType(req.getPathTranslated())

Serving Files
The Java Web Server itself uses servlets to handle every request. Besides being a
showcase for the ability of servlets, this gives the server a modular design that
allows the wholesale replacement of certain aspects of its functionality. For
example, all files are served by the com.sun.server.http.FileServlet servlet,
registered under the name file and charged with the responsibility to handle the
"/" alias (meaning it’s the default handler for requests). But there’s nothing to
say that Sun’s FileServlet cannot be replaced. In fact, it can be, either by regis-
tering another servlet under the name file or by changing the "/" alias to use
another servlet. Furthermore, it’s not all that hard to write a replacement for
file, using the methods we’ve just seen.

Example 4-10 shows a ViewFile servlet that uses the getPathTranslated() and
getMimeType() methods to return whatever file is given by the extra path
information.

Example 4-10. Dynamically returning static files

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

import com.oreilly.servlet.ServletUtils;

public class ViewFile extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 // Use a ServletOutputStream because we may pass binary information

 ServletOutputStream out = res.getOutputStream();

 // Get the file to view

 String file = req.getPathTranslated();

 // No file, nothing to view

 if (file == null) {

 out.println("No file to view");
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

THE REQUEST 93
This servlet first uses getPathTranslated() to get the name of file it needs to
display. Then it uses getMimeType() to find the content type of this file and sets
the response content type to match. Last, it returns the file using the
returnFile() method found in the com.oreilly.servlet.ServletUtils
utility class:

// Send the contents of the file to the output stream

public static void returnFile(String filename, OutputStream out)

 throws FileNotFoundException, IOException {

 // A FileInputStream is for bytes

 FileInputStream fis = null;

 try {

 fis = new FileInputStream(filename);

 byte[] buf = new byte[4 * 1024]; // 4K buffer

 int bytesRead;

 while ((bytesRead = fis.read(buf)) != -1) {

 out.write(buf, 0, bytesRead);

 }

 }

 finally {

 if (fis != null) fis.close();

 }

}

The servlet’s error handling is basic—it returns a page that describes the error.
This is acceptable for our simple example (and really more than many programs
seem capable of), but we’ll learn a better way using status codes in the next
chapter.

 return;

 }

 // Get and set the type of the file

 String contentType = getServletContext().getMimeType(file);

 res.setContentType(contentType);

 // Return the file

 try {

 ServletUtils.returnFile(file, out);

 }

 catch (FileNotFoundException e) {

 out.println("File not found");

 }

 catch (IOException e) {

 out.println("Problem sending file: " + e.getMessage());

 }

 }

}

Example 4-10. Dynamically returning static files (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

94 CHAPTER 4: RETRIEVING INFORMATION
This servlet can be used directly with a URL like this.

http://server:port/servlet/ViewFile/index.html

Or, if you use it as a replacement for the "file" servlet, it is automatically invoked
even for a URL like this.

http://server:port/index.html

Just beware that this servlet is a “proof of concept” example and does not have the
full functionality of the com.sun.server.http.FileServlet servlet.

Determining What Was Requested
A servlet can use several methods to find out exactly what file or servlet the client
requested. After all, only the most conceited servlet would always assume itself to
be the direct target of a request. A servlet may be nothing more than a single link
in a long servlet chain.

No method directly returns the original Uniform Resource Locator (URL) used by
the client to make a request. The javax.servlet.http.HttpUtils class,
however, provides a getRequestURL() method that does about the same thing:*

public static StringBuffer HttpUtils.getRequestURL(HttpServletRequest req)

This method reconstructs the request URL based on information available in the
HttpServletRequest object. It returns a StringBuffer that includes the
scheme (such as HTTP), server name, server port, and extra path information.
The reconstructed URL should look almost identical to the URL used by the
client. Differences between the original and reconstructed URLs should be minor
(that is, a space encoded by the client as "%20" might be encoded by the server as
a "+"). Because this method returns a StringBuffer, the request URL can be
modified efficiently (for example, by appending query parameters). This method
is often used for creating redirect messages and reporting errors.

Most of the time, however, a servlet doesn’t really need the request URL. It just
needs the request URI, which is returned by getRequestURI():

public String HttpServletRequest.getRequestURI()

This method returns the Universal Resource Identifier (URI) of the request. For
normal HTTP servlets, a request URI can be thought of as a URL minus the

* Why isn’t there a method that directly returns the original URL shown in the browser? Because the
browser never sends the full URL. The port number, for example, is used by the client to make its
HTTP connection, but it isn’t included in the request made to the web server answering on that port.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

THE REQUEST 95
scheme, host, port, and query string, but including any extra path information.*

Table 4-2 shows the request URIs for several request URLs.

For servlets in a chain, the request URI is always that of the first servlet in the
chain.

In some situations it is enough for a servlet to know the servlet name under which
it was invoked. You can retrieve this information with getServletPath():

public String HttpServletRequest.getServletPath()

This method returns the part of the URI that refers to the servlet being invoked or
null if the URI does not directly point to a servlet. The servlet path does not
include extra path information. Table 4-3 shows the servlet names for several
request URLs.

* Technically, what is referred to here as a request URI could more formally be called a “request URL
path”. This is because a URI is, in the most precise sense, a general purpose identifier for a resource.
A URL is one type of URI; a URN (Uniform Resource Name) is another. For more information on
URIs, URLs, and URNs, see RFC 1630 at http://www.ietf.org/rfc/rfc1630.txt.

Table 4-2. URLs and Their URIs

Request URL Its URI Component

http://server:port/servlet/Classname /servlet/Classname

http://server:port/servlet/registeredName /servlet/registeredName

http://server:port/servlet/Classname?var=val /servlet/Classname a

a Several servlet engines (including the Java Web Server 1.1.1) have a bug where getRequestURI() er-
roneously includes the query string. The JSDK 2.0 servlet runner behaves correctly.

http://server:port/servlet/Classname/pathinfo /servlet/Classname/pathinfo

http://server:port/servlet/Classname/pathinfo?var=val /servlet/Classname/pathinfo

http://server:port/ssi.shtml (SSI) /ssi.shtml

http://server:port/alias.html (alias to a servlet) /alias.html

Table 4-3. URLs and Their Servlet Paths

Request URL Its Servlet Path

http://server:port/servlet/Classname /servlet/Classname

http://server:port/servlet/registeredName /servlet/registeredName

http://server:port/servlet/Classname?var=val /servlet/Classname

http://server:port/servlet/Classname/pathinfo /servlet/Classname

http://server:port/servlet/Classname/pathinfo?var=val /servlet/Classname

http://server:port/ssi.shtml (SSI) null

http://server:port/alias.html (alias to a servlet) /alias.html
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

96 CHAPTER 4: RETRIEVING INFORMATION
For servlets in a filter chain, the servlet path is always the same as the path of the first
servlet in the chain. If the request URI does not point at a servlet,
getServletPath() returns null. It does not matter that a servlet (such as the
file servlet) may have handled the request behind the scenes or that the request
eventually ended up in a servlet.

For example, if the client requests the page /index.html and the content goes
through the Deblink servlet from Chapter 2, HTTP Servlet Basics, the Deblink
servlet has a null servlet path—the original request was for a static file, not a servlet.
If, however, the client requests /alias.html—which is a direct alias to a servlet—both
that servlet and the Deblink servlet have a servlet path of /alias.html.

A servlet invoked as a server-side include behaves similarly. If it is embedded in a
static file, it too has a null servlet path. The only way for it to have a non-null
servlet path is if it is part of a servlet chain started by a servlet.

An Improved Counter
We can make use of the request URI information to improve our counter servlet.
The counter example from Chapter 3 could count only its own accesses. A real
counter has to be able to count accesses to pages other than itself. There are two
elegant ways to accomplish this: use the counter as an SSI servlet embedded in a
page or use the counter in a servlet chain where it can replace any instances of the
<COUNT> tag with the appropriate number. For each approach, a servlet can use
the getRequestURI() method to associate a separate count with each requested
URI.

Example 4-11 shows a GenericCounter servlet superclass that knows how to
manage a hashtable that stores counts for different URIs. Example 4-12 and
Example 4-13 show servlets that subclass GenericCounter to act as a server-side
include counter and a chain-based counter, respectively.*

Example 4-11. A generic counter superclass

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class GenericCounter extends HttpServlet {

 private Hashtable counts = new Hashtable();

 public void init(ServletConfig config) throws ServletException {

 // Always call super.init(config) first

 super.init(config);
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

THE REQUEST 97
* For Example 4-12, please note that the Java Web Server 1.1.1 has a bug where the PrintWriter re-
turned by getWriter() doesn’t generate output for servlets used as server side includes. See to
Chapter 2 for more information.

 // Try to load the initial page counts from the saved persistent state

 try {

 FileReader fileReader = new FileReader(getClass().getName() + ".counts");

 BufferedReader bufferedReader = new BufferedReader(fileReader);

 String line = null;

 String uri = null;

 String count = null;

 int[] holder = null; // holder for the count, to make it an object

 while ((line = bufferedReader.readLine()) != null) {

 StringTokenizer tokenizer = new StringTokenizer(line);

 if (tokenizer.countTokens() < 2) continue; // bogus line

 uri = tokenizer.nextToken();

 count = tokenizer.nextToken();

 // Store the uri/count pair in the counts hashtable

 // The count is saved as an int[1] to make it an "object"

 try {

 holder = new int[1];

 holder[0] = Integer.parseInt(count);

 counts.put(uri, holder);

 }

 catch (NumberFormatException e) { } // bogus line

 }

 }

 catch (FileNotFoundException e) { } // no saved state

 catch (IOException e) { } // problem during read

 }

 // Increment and return the count for the given URI

 public int incrementAndGetCount(String uri) {

 int[] holder = (int[])counts.get(uri);

 if (holder == null) {

 // Initialize the count to 0

 holder = new int[1];

 holder[0] = 0;

 counts.put(uri, holder); // save the holder

 }

 holder[0]++; // increment

 return holder[0];

 }

 public void destroy() {

 // Try to save the accumulated count

Example 4-11. A generic counter superclass (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

98 CHAPTER 4: RETRIEVING INFORMATION
 try {

 FileWriter fileWriter = new FileWriter(getClass().getName() + ".counts");

 BufferedWriter bufferedWriter = new BufferedWriter(fileWriter);

 Enumeration keys = counts.keys();

 Enumeration elements = counts.elements();

 String output = null;

 while (keys.hasMoreElements() && elements.hasMoreElements()) {

 bufferedWriter.write(keys.nextElement() + " " +

 elements.nextElement() + "\n");

 }

 bufferedWriter.close();

 fileWriter.close();

 return;

 }

 catch (IOException e) { } // problem during write

 }

}

Example 4-12. A server-side include counter

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class SSICounter extends GenericCounter {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 PrintWriter out = res.getWriter();

 // Fetch the page we're on.

 String uri = req.getRequestURI();

 // Get and increment the count for that page

 int count = incrementAndGetCount(uri);

 // Fulfull our purpose: print the count

 out.println(count);

 }

}

Example 4-13. A chain-based counter that replaces <COUNT> with the hit count

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class ChainCounter extends GenericCounter {

Example 4-11. A generic counter superclass (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

THE REQUEST 99
How It Was Requested
Besides knowing what was requested, a servlet has several ways of finding out
details about how it was requested. The getScheme() method returns the scheme
used to make this request:

public String ServletRequest.getScheme()

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 String contentType = req.getContentType();

 res.setContentType(contentType);

 PrintWriter out = res.getWriter();

 // Fetch the page we're on.

 String uri = req.getRequestURI();

 // Get and increment the count

 int count = incrementAndGetCount(uri);

 // Prepare to read the input

 BufferedReader reader = req.getReader();

 String line = null;

 while ((line = reader.readLine()) != null) {

 line = replace(line, "<COUNT>", "" + count); // case sensitive

 out.println(line);

 }

 }

 public void doPost(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 doGet(req, res);

 }

 private String replace(String line, String oldString, String newString) {

 int index = 0;

 while ((index = line.indexOf(oldString, index)) >= 0) {

 line = line.substring(0, index) +

 newString +

 line.substring(index + oldString.length());

 index += newString.length();

 }

 return line;

 }

}

Example 4-13. A chain-based counter that replaces <COUNT> with the hit count (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

100 CHAPTER 4: RETRIEVING INFORMATION
Examples include "http", "https", and "ftp", as well as the newer Java-specific
schemes "jdbc" and "rmi". There is no direct CGI counterpart (though some
CGI implementations have a SERVER_URL variable that includes the scheme). For
HTTP servlets, this method indicates whether the request was made over a secure
connection using the Secure Sockets Layer (SSL), as indicated by the scheme
"https", or if it was an insecure request, as indicated by the scheme "http".

The getProtocol() method returns the protocol and version number used to
make the request:

public String ServletRequest.getProtocol()

The protocol and version number are separated by a slash. The method returns
null if no protocol could be determined. For HTTP servlets, the protocol is
usually vHTTP/1.0v or vHTTP/1.1". HTTP servlets can use the protocol version to
determine if it’s okay with the client to use the new features in HTTP Version 1.1.

To find out what method was used for a request, a servlet uses getMethod():

public String HttpServletRequest.getMethod()

This method returns the HTTP method used to make the request. Examples
include "GET", "POST", and "HEAD". The service() method of the Http
Servlet implementation uses this method in its dispatching of requests.

Request Headers
HTTP requests and responses can have a number of associated HTTP “headers”.
These headers provide some extra information about the request (or response).
The HTTP Version 1.0 protocol defines literally dozens of possible headers; the
HTTP Version 1.1 protocol includes even more. A description of all the headers
extends beyond the scope of this book; we discuss only the headers most often
accessed by servlets. For a full list of HTTP headers and their uses, we recommend
Web Client Programming by Clinton Wong (O’Reilly) or Webmaster in a Nutshell by
Stephen Spainhour and Valerie Quercia (O’Reilly).

A servlet rarely needs to read the HTTP headers accompanying a request. Many of
the headers associated with a request are handled by the server itself. Take, for
example, how a server restricts access to its documents. The server uses HTTP
headers, and servlets need not know the details. When a server receives a request for
a restricted page, it checks that the request includes an appropriate
Authorization header that contains a valid username and a password. If it
doesn’t, the server itself issues a response containing a WWW-Authenticate header,
to tell the browser its access to a resource was denied. When the client sends a request
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

THE REQUEST 101
that includes the proper Authorization header, the server grants the access and
gives any servlet invoked access to the user’s name via the getRemoteUser() call.

Other headers are used by servlets, but indirectly. A good example is the Last-
Modified and If-Last-Modified pair discussed in Chapter 3. The server itself
sees the If-Last-Modified header and calls the servlet’s getLastModified()
method to determine how to proceed.

There are a few HTTP headers that a servlet may want to read on occasion. These
are listed in Table 4-4.

Table 4-4. Useful HTTP Request Headers

Header Usage

Accept Specifies the media (MIME) types the client prefers to accept, sepa-
rated by commas.a Each media type is divided into a type and subtype
given as type/subtype. An asterisk (*) wildcard is allowed for the
subtype (type/*) or for both the type and subtype (*/*). For
example:
Accept: image/gif, image/jpeg, text/*, */*

A servlet can use this header to help determine what type of content
to return. If this header is not passed as part of the request, the servlet
can assume the client accepts all media types.

a Some older browsers send a separate Accept header for each media type. This can confuse some serv-
let engines, including the Java Web Server.

User-Agent Gives information about the client software. The format of the
returned string is relatively free form, but it often includes the
browser name and version as well as information about the machine
on which it is running. Netscape 3.01 on an SGI Indy running IRIX 6.
2 reports:
User-Agent: Mozilla/3.01SC-SGI (X11; I; IRIX 6.2 IP22)

Microsoft Internet Explorer 4.0 running on a Windows 95 machine
reports:
User-Agent: Mozilla/4.0 (compatible; MSIE 4.0; Windows 95)

A servlet can use this header to keep statistics or to customize its
response based on browser type.

Referer Gives the URL of the document that refers to the requested URL
(that is, the document that contains the link the client followed to
access this document).b For example:
Referer: http://www.gamelan.com/pages/Gamelan.sites.home.html

A servlet can use this header to keep statistics or, if there’s some error
in the request, to keep track of the documents with errors.

b The properly-spelled Referrer header gives you nothing.

Authorization Provides the client’s authorization to access the requested URI,
including a username and password encoded in Base64. Servlets can
use this for custom authorization, as discussed in Chapter 8, Security.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

102 CHAPTER 4: RETRIEVING INFORMATION
Accessing header values

HTTP header values are accessed through the HttpServletRequest object. A
header value can be retrieved as a String, a long (representing a Date), or an
int, using getHeader(), getDateHeader(), and getIntHeader(), respectively:

public String HttpServletRequest.getHeader(String name)

public long HttpServletRequest.getDateHeader(String name)

public int HttpServletRequest.getIntHeader(String name)

getHeader() returns the value of the named header as a String or null if the
header was not sent as part of the request. The name is case insensitive, as it is for
all these methods. Headers of all types can be retrieved with this method.

getDateHeader() returns the value of the named header as a long (repre-
senting a Date) that specifies the number of milliseconds since the epoch) or -1 if
the header was not sent as part of the request. This method throws an
IllegalArgumentException when called on a header whose value cannot be
converted to a Date. The method is useful for handling headers like Last-
Modified and If-Modified-Since.

getIntHeader() returns the value of the named header as an int or -1 if the
header was not sent as part of the request. This method throws a NumberFormat
Exception when called on a header whose value cannot be converted to an int.

A servlet can also get the names of all the headers it can access using
getHeaderNames():

public Enumeration HttpServletRequest.getHeaderNames()

This method returns the names of all the headers as an Enumeration of String
objects. It returns an empty Enumeration if there were no headers. The Servlet
API gives servlet engine implementations the right to not allow headers to be
accessed in this way, in which case this method returns null.

Example 4-14 demonstrates the use of these methods in a servlet that prints infor-
mation about its HTTP request headers.

Example 4-14. Snooping headers

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class HeaderSnoop extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

THE REQUEST 103
Some example output from this servlet might look like this:

Request Headers:

Connection: Keep-Alive

If-Modified-Since: Saturday, 13-Jun-98 20:50:31 GMT; length=297

User-Agent: Mozilla/4.05 [en] (X11; I; IRIX 6.2 IP22)

Host: localhost:8080

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, image/png, */*

Accept-Language: en

Accept-Charset: iso-8859-1,*,utf-8

Cookie: jwssessionid=A3KBB1YAAAAABQDGPM5QAAA

Headers in servlet chains

Servlet chains add an interesting twist to how servlets handle headers. Unlike all
other servlets, a servlet in the middle or at the end of a servlet chain reads header
values not from the client’s request, but from the previous servlet’s response.

The power and flexibility of this approach comes from the fact that a servlet can
intelligently process a previous servlet’s output, not only in body content, but in
header values. For example, it can add extra headers to the response or change
the value of existing headers. It can even suppress the previous servlet’s headers.

But power comes with responsibilities: unless a chained servlet specifically reads
the previous servlet’s response headers and sends them as part of its own response,
the headers are not passed on and will not be seen by the client. A well-behaved
chained servlet always passes on the previous servlet’s headers, unless it has a
specific reason to do otherwise.

 res.setContentType("text/plain");

 PrintWriter out = res.getWriter();

 out.println("Request Headers:");

 out.println();

 Enumeration enum = req.getHeaderNames();

 while (enum.hasMoreElements()) {

 String name = (String) enum.nextElement();

 String value = req.getHeader(name);

 if (value != null) {

 out.println(name + ": " + value);

 }

 }

 }

}

Example 4-14. Snooping headers (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

104 CHAPTER 4: RETRIEVING INFORMATION
The code shown in Example 4-15 uses getHeaderNames() in combination with
getHeader() and setHeader() to pass on the headers from the previous servlet
to the client (or possibly to another servlet in the chain). The only header given
special treatment is the Content-Length header. This header’s value reports the
length of the response in bytes—a value that is likely to change during the
chaining process and so not appropriate to send on. Note that you haven’t seen
the setHeader() method before. It can be used to, well, set a header.

An HTTP servlet designed to function in a chain should include code similar to
this early on in its handling of a request, so as to pass on the appropriate headers.

Wading the Input Stream
Each request handled by a servlet has an input stream associated with it. Just as a
servlet can write to a PrintWriter or OutputStream associated with its response
object, it can read from a Reader or InputStream associated with its request
object. The data read from the input stream can be of any content type and of any
length. The input stream has three purposes:

• To pass a chained servlet the response body from the previous servlet

• To pass an HTTP servlet the content associated with a POST request

• To pass a non-HTTP servlet the raw data sent by the client

To read character data from the input stream, you should use getReader() to
retrieve the input stream as a BufferedReader object:

public BufferedReader ServletRequest.getReader() throws IOException

The advantage of using a BufferedReader for reading character-based data is
that it should translate charsets as appropriate. This method throws an
IllegalStateException if getInputStream() has been called before on this
same request. It throws an UnsupportedEncodingException if the character
encoding of the input is unsupported or unknown.

Example 4-15. Passing on the headers

Enumeration enum = req.getHeaderNames();

if (enum != null) { // to be safe across all implementations

 while (enum.hasMoreElements()) {

 String header = (String)enum.nextElement();

 if ("Content-Length").equalsIgnoreCase(header))

 continue;

 String value = req.getHeader(header);

 res.setHeader(header, value);

 }

}

Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

THE REQUEST 105
To read binary data from the input stream, use getInputStream() to retrieve the
input stream as a ServletInputStream object:

public ServletInputStream ServletRequest.getInputStream() throws IOException

A ServletInputStream is a direct subclass of InputStream and can be treated as
a normal InputStream, with the added ability to efficiently read input a line at a
time into an array of bytes. The method throws an IllegalStateException if
getReader() has been called before on this same request. Once you have the
ServletInputStream, you can read a line from it using readLine():

public int ServletInputStream.readLine(byte b[], int off, int len)

 throws IOException

This method reads bytes from the input stream into the byte array b, starting at
an offset in the array given by off. It stops reading when it encounters an '\n' or
when it has read len number of bytes. The ending '\n' character is read into the
buffer as well. The method returns the number of bytes read or -1 if the end of
the stream is reached.

A servlet can also check the content type and the length of the data being sent via the
input stream, using getContentType() and getContentLength(), respectively:

public String ServletRequest.getContentType()

public int ServletRequest.getContentLength()

getContentType() returns the media type of the content being sent via the input
stream or null if the type is not known (such as when there is no data).
getContentLength() returns the length, in bytes, of the content being sent via
the input stream or -1 if this not known.

Chaining servlets using the input stream

A servlet in a servlet chain receives its response body from the previous servlet in
the chain through its input stream. This use was first shown in the Deblink servlet
in Chapter 2, HTTP Servlet Basics. The pertinent section is shown again here:

String contentType = req.getContentType(); // get the incoming type

if (contentType == null) return; // nothing incoming, nothing to do

res.setContentType(contentType); // set outgoing type to be incoming type

BufferedReader br = req.getReader();

String line = null;

while ((line = br.readLine()) != null) {

 line = replace(line, "<BLINK>", "");

 line = replace(line, "</BLINK>", "");

 out.println(line);

}

Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

106 CHAPTER 4: RETRIEVING INFORMATION
Notice the use of getContentType() to retrieve the content type of the previous
servlet’s output. Also notice that getContentLength() is not used. We don’t
need to use it because all read() and readLine() methods indicate that they
have reached the end of the stream with special return values. In fact, it’s better
not to use getContentLength() in a servlet chain because it is unsupported in
many servlet engine implementations. Presumably the reason is that the server
may choose to tie the output stream of one servlet directly to the input stream of
the next servlet, giving no chance to determine a total content length.

Handling POST requests using the input stream

It is a rare occurrence when a servlet handling a POST request is forced to use its
input stream to access the POST data. Typically, the POST data is nothing more
than encoded parameter information, which a servlet can conveniently retrieve
with its getParameter() method.

A servlet can identify this type of POST request by checking the content type of
the input stream. If it is of type application/x-www-form-urlencoded, the data
can be retrieved with getParameter() and similar methods. Example 4-16
demonstrates a servlet that keys off the input stream’s content type to handle
POST requests.

Example 4-16. Reading parameters passed by POST

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class PostParams extends HttpServlet {

 public void doPost(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/plain");

 PrintWriter out = res.getWriter();

 if ("application/x-www-form-urlencoded".equals(req.getContentType())) {

 Enumeration enum = req.getParameterNames();

 while (enum.hasMoreElements()) {

 String name = (String) enum.nextElement();

 String values[] = req.getParameterValues(name);

 if (values != null) {

 for (int i = 0; i < values.length; i++) {

 out.println(name + " (" + i + "): " + values[i]);

 }
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

THE REQUEST 107
In case you were wondering, the odd arrangement of code that checks the
request’s content type is arranged to avoid a NullPointerException if the
getContentType() call returns null.

A servlet may wish to call the getContentLength() method before calling
getParameter() to prevent denial of service attacks. A rogue client may send an
absurdly large amount of data as part of a POST request, hoping to slow the server
to a crawl as the servlet’s getParameter() method churns over the data. A servlet
can use getContentLength() to verify that the length is reasonable, perhaps less
than 4K, as a preventive measure.

Receiving files using the input stream

A servlet can also receive a file upload using its input stream. Before we see how,
it’s important to note that file uploading is experimental and not supported in all
browsers. Netscape first supported file uploads with Netscape Navigator 3;
Microsoft first supported it with Internet Explorer 4.

The full file upload specification is contained in experimental RFC 1867, available
at http://www.ietf.org/rfc/rfc1867.txt. The short summary is that any number of files
and parameters can be sent as form data in a single POST request. The POST
request is formatted differently than standard application/x-www-form-
urlencoded form data and indicates this fact by setting its content type to
multipart/form-data.

It’s fairly simple to write the client half of a file upload. The following HTML
generates a form that asks for a user’s name and a file to upload. Note the addi-
tion of the ENCTYPE attribute and the use of a FILE input type:

<FORM ACTION="/servlet/UploadTest" ENCTYPE="multipart/form-data" METHOD=POST>

What is your name? <INPUT TYPE=TEXT NAME=submitter>

Which file do you want to upload? <INPUT TYPE=FILE NAME=file>

<INPUT TYPE=SUBMIT>

</FORM>

A user receiving this form sees a page that looks something like Figure 4-3. A file-
name can be entered in the text area, or it can be selected by browsing. After
selection, the user submits the form as usual.

 }

 }

 }

 }

}

Example 4-16. Reading parameters passed by POST (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

108 CHAPTER 4: RETRIEVING INFORMATION
The server’s responsibilities during a file upload are slightly more complicated.
From the receiving servlet’s perspective, the submission is nothing more than a
raw data stream in its input stream—a data stream formatted according to the
multipart/form-data content type given in RFC 1867. The Servlet API, lamen-
tably, provides no methods to aid in the parsing of the data. To simplify your life
(and ours since we don’t want to explain RFC 1867), Jason has written a utility
class that does the work for you. It’s named MultipartRequest and is shown in
Example 4-18 later in this section.

MultipartRequest wraps around a ServletRequest and presents a simple API
to the servlet programmer. The class has two constructors:

Figure 4-3. Choosing a file to upload
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

THE REQUEST 109
public MultipartRequest(ServletRequest request, String saveDirectory,

 int maxPostSize) throws IOException

public MultipartRequest(ServletRequest request,

 String saveDirectory) throws IOException

Each of these methods creates a new MultipartRequest object to handle the
specified request, saving any uploaded files to saveDirectory. Both constructors
actually parse the multipart/form-data content and throw an IOException if
there’s any problem. The constructor that takes a maxPostSize parameter also
throws an IOException if the uploaded content is larger than maxPostSize. The
second constructor assumes a default maxPostSize of 1 MB.

The MultipartRequest class has six public methods that let you get at informa-
tion about the request. You’ll notice that many of these methods are modeled
after ServletRequest methods. Use getParameterNames() to retrieve the
names of all the request parameters:

public Enumeration MultipartRequest.getParameterNames()

This method returns the names of all the parameters as an Enumeration of
String objects or an empty Enumeration if there are no parameters.

To get the value of a named parameter, use getParameter():

public String MultipartRequest.getParameter(String name)

This method returns the value of the named parameter as a String or null if the
parameter was not given. The value is guaranteed to be in its normal, decoded
form. If the parameter has multiple values, only the last one is returned.

Use getFileNames() to get a list of all the uploaded files:

public Enumeration MultipartRequest.getFileNames()

This method returns the names of all the uploaded files as an Enumeration of
String objects, or an empty Enumeration if there are no uploaded files. Note
that each filename is the name specified by the HTML form’s name attribute, not
by the user. Once you have the name of a file, you can get its file system name
using getFilesystemName():

public String MultipartRequest.getFilesystemName(String name)

This method returns the file system name of the specified file or null if the file
was not included in the upload. A file system name is the name specified by the
user. It is also the name under which the file is actually saved. You can get the
content type of the file with getContentType():

public String MultipartRequest.getContentType(String name)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

110 CHAPTER 4: RETRIEVING INFORMATION
This method returns the content type of the specified file (as supplied by the
client browser) or null if the file was not included in the upload. Finally, you can
get a java.io.File object for the file with getFile():

public File MultipartRequest.getFile(String name)

This method returns a File object for the specified file saved on the server’s file
system or null if the file was not included in the upload.

Example 4-17 shows how a servlet uses MultipartRequest. The servlet does
nothing but display the statistics for what was uploaded. Notice that it does not
delete the files it saves.

Example 4-17. Handling a file upload

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

import com.oreilly.servlet.MultipartRequest;

public class UploadTest extends HttpServlet {

 public void doPost(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 try {

 // Blindly take it on faith this is a multipart/form-data request

 // Construct a MultipartRequest to help read the information.

 // Pass in the request, a directory to save files to, and the

 // maximum POST size we should attempt to handle.

 // Here we (rudely) write to the server root and impose 5 Meg limit.

 MultipartRequest multi =

 new MultipartRequest(req, ".", 5 * 1024 * 1024);

 out.println("<HTML>");

 out.println("<HEAD><TITLE>UploadTest</TITLE></HEAD>");

 out.println("<BODY>");

 out.println("<H1>UploadTest</H1>");

 // Print the parameters we received

 out.println("<H3>Params:</H3>");

 out.println("<PRE>");

 Enumeration params = multi.getParameterNames();
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

THE REQUEST 111
The servlet passes its request object to the MultipartRequest constructor, along
with a directory relative to the server root where the uploaded files are to be saved
(because large files may not fit in memory) and a maximum POST size of 5 MB.
The servlet then uses MultipartRequest to iterate over the parameters that were
sent. Notice that the MultipartRequest API for handling parameters matches
that of ServletRequest. Finally, the servlet uses its MultipartRequest to iterate
over the files that were sent. For each file, it gets the file’s name (as specified on
the form), file system name (as specified by the user), and content type. It also
gets a File reference and uses it to display the length of the saved file. If there are
any problems, the servlet reports the exception to the user.

 while (params.hasMoreElements()) {

 String name = (String)params.nextElement();

 String value = multi.getParameter(name);

 out.println(name + " = " + value);

 }

 out.println("</PRE>");

 // Show which files we received

 out.println("<H3>Files:</H3>");

 out.println("<PRE>");

 Enumeration files = multi.getFileNames();

 while (files.hasMoreElements()) {

 String name = (String)files.nextElement();

 String filename = multi.getFilesystemName(name);

 String type = multi.getContentType(name);

 File f = multi.getFile(name);

 out.println("name: " + name);

 out.println("filename: " + filename);

 out.println("type: " + type);

 if (f != null) {

 out.println("length: " + f.length());

 out.println();

 }

 out.println("</PRE>");

 }

 }

 catch (Exception e) {

 out.println("<PRE>");

 e.printStackTrace(out);

 out.println("</PRE>");

 }

 out.println("</BODY></HTML>");

 }

}

Example 4-17. Handling a file upload (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

112 CHAPTER 4: RETRIEVING INFORMATION
Example 4-18 shows the code for MultipartRequest. This class could be written
more elegantly using a regular expression library, as discussed in Chapter 13, Odds
and Ends ; however, not doing so allows this class to be self-contained and works
just as well. We aren’t going to elaborate on the class here—you should read the
comments if you want to understand everything that is going on. This class uses
some of the techniques that we’ve covered in this chapter, so it is a good review of
the material. You should also feel free to skip this example for now and come back
to it later if you’d like.

Example 4-18. The MultipartRequest class

package com.oreilly.servlet;

import java.io.*;

import java.util.*;

import javax.servlet.*;

public class MultipartRequest {

 private static final int DEFAULT_MAX_POST_SIZE = 1024 * 1024; // 1 Meg

 private ServletRequest req;

 private File dir;

 private int maxSize;

 private Hashtable parameters = new Hashtable(); // name - value

 private Hashtable files = new Hashtable(); // name - UploadedFile

 public MultipartRequest(ServletRequest request,

 String saveDirectory) throws IOException {

 this(request, saveDirectory, DEFAULT_MAX_POST_SIZE);

 }

 public MultipartRequest(ServletRequest request,

 String saveDirectory,

 int maxPostSize) throws IOException {

 // Sanity check values

 if (request == null)

 throw new IllegalArgumentException("request cannot be null");

 if (saveDirectory == null)

 throw new IllegalArgumentException("saveDirectory cannot be null");

 if (maxPostSize <= 0) {

 throw new IllegalArgumentException("maxPostSize must be positive");

 }

 // Save the request, dir, and max size

 req = request;

 dir = new File(saveDirectory);
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

THE REQUEST 113
 maxSize = maxPostSize;

 // Check saveDirectory is truly a directory

 if (!dir.isDirectory())

 throw new IllegalArgumentException("Not a directory: " + saveDirectory);

 // Check saveDirectory is writable

 if (!dir.canWrite())

 throw new IllegalArgumentException("Not writable: " + saveDirectory);

 // Now parse the request saving data to "parameters" and "files";

 // write the file contents to the saveDirectory

 readRequest();

 }

 public Enumeration getParameterNames() {

 return parameters.keys();

 }

 public Enumeration getFileNames() {

 return files.keys();

 }

 public String getParameter(String name) {

 try {

 String param = (String)parameters.get(name);

 if (param.equals("")) return null;

 return param;

 }

 catch (Exception e) {

 return null;

 }

 }

 public String getFilesystemName(String name) {

 try {

 UploadedFile file = (UploadedFile)files.get(name);

 return file.getFilesystemName(); // may be null

 }

 catch (Exception e) {

 return null;

 }

 }

 public String getContentType(String name) {

 try {

 UploadedFile file = (UploadedFile)files.get(name);

 return file.getContentType(); // may be null

Example 4-18. The MultipartRequest class (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

114 CHAPTER 4: RETRIEVING INFORMATION
 }

 catch (Exception e) {

 return null;

 }

 }

 public File getFile(String name) {

 try {

 UploadedFile file = (UploadedFile)files.get(name);

 return file.getFile(); // may be null

 }

 catch (Exception e) {

 return null;

 }

 }

 protected void readRequest() throws IOException {

 // Check the content type to make sure it's "multipart/form-data"

 String type = req.getContentType();

 if (type == null ||

 !type.toLowerCase().startsWith("multipart/form-data")) {

 throw new IOException("Posted content type isn't multipart/form-data");

 }

 // Check the content length to prevent denial of service attacks

 int length = req.getContentLength();

 if (length > maxSize) {

 throw new IOException("Posted content length of " + length +

 " exceeds limit of " + maxSize);

 }

 // Get the boundary string; it's included in the content type.

 // Should look something like "------------------------12012133613061"

 String boundary = extractBoundary(type);

 if (boundary == null) {

 throw new IOException("Separation boundary was not specified");

 }

 // Construct the special input stream we'll read from

 MultipartInputStreamHandler in =

 new MultipartInputStreamHandler(req.getInputStream(), boundary, length);

 // Read the first line, should be the first boundary

 String line = in.readLine();

 if (line == null) {

 throw new IOException("Corrupt form data: premature ending");

 }

Example 4-18. The MultipartRequest class (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

THE REQUEST 115
 // Verify that the line is the boundary

 if (!line.startsWith(boundary)) {

 throw new IOException("Corrupt form data: no leading boundary");

 }

 // Now that we're just beyond the first boundary, loop over each part

 boolean done = false;

 while (!done) {

 done = readNextPart(in, boundary);

 }

 }

 protected boolean readNextPart(MultipartInputStreamHandler in,

 String boundary) throws IOException {

 // Read the first line, should look like this:

 // content-disposition: form-data; name="field1"; filename="file1.txt"

 String line = in.readLine();

 if (line == null) {

 // No parts left, we're done

 return true;

 }

 // Parse the content-disposition line

 String[] dispInfo = extractDispositionInfo(line);

 String disposition = dispInfo[0];

 String name = dispInfo[1];

 String filename = dispInfo[2];

 // Now onto the next line. This will either be empty

 // or contain a Content-Type and then an empty line.

 line = in.readLine();

 if (line == null) {

 // No parts left, we're done

 return true;

 }

 // Get the content type, or null if none specified

 String contentType = extractContentType(line);

 if (contentType != null) {

 // Eat the empty line

 line = in.readLine();

 if (line == null || line.length() > 0) { // line should be empty

 throw new

 IOException("Malformed line after content type: " + line);

 }

 }

 else {

 // Assume a default content type

Example 4-18. The MultipartRequest class (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

116 CHAPTER 4: RETRIEVING INFORMATION
 contentType = "application/octet-stream";

 }

 // Now, finally, we read the content (end after reading the boundary)

 if (filename == null) {

 // This is a parameter

 String value = readParameter(in, boundary);

 parameters.put(name, value);

 }

 else {

 // This is a file

 readAndSaveFile(in, boundary, filename);

 if (filename.equals("unknown")) {

 files.put(name, new UploadedFile(null, null, null));

 }

 else {

 files.put(name,

 new UploadedFile(dir.toString(), filename, contentType));

 }

 }

 return false; // there's more to read

 }

 protected String readParameter(MultipartInputStreamHandler in,

 String boundary) throws IOException {

 StringBuffer sbuf = new StringBuffer();

 String line;

 while ((line = in.readLine()) != null) {

 if (line.startsWith(boundary)) break;

 sbuf.append(line + "\r\n"); // add the \r\n in case there are many lines

 }

 if (sbuf.length() == 0) {

 return null; // nothing read

 }

 sbuf.setLength(sbuf.length() - 2); // cut off the last line's \r\n

 return sbuf.toString(); // no URL decoding needed

 }

 protected void readAndSaveFile(MultipartInputStreamHandler in,

 String boundary,

 String filename) throws IOException {

 File f = new File(dir + File.separator + filename);

 FileOutputStream fos = new FileOutputStream(f);

 BufferedOutputStream out = new BufferedOutputStream(fos, 8 * 1024); // 8K

Example 4-18. The MultipartRequest class (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

THE REQUEST 117
 byte[] bbuf = new byte[8 * 1024]; // 8K

 int result;

 String line;

 // ServletInputStream.readLine() has the annoying habit of

 // adding a \r\n to the end of the last line.

 // Since we want a byte-for-byte transfer, we have to cut those chars.

 boolean rnflag = false;

 while ((result = in.readLine(bbuf, 0, bbuf.length)) != -1) {

 // Check for boundary

 if (result > 2 && bbuf[0] == '-' && bbuf[1] == '-') { // quick pre-check

 line = new String(bbuf, 0, result, "ISO-8859-1");

 if (line.startsWith(boundary)) break;

 }

 // Are we supposed to write \r\n for the last iteration?

 if (rnflag) {

 out.write('\r'); out.write('\n');

 rnflag = false;

 }

 // Write the buffer, postpone any ending \r\n

 if (result >= 2 &&

 bbuf[result - 2] == '\r' &&

 bbuf[result - 1] == '\n') {

 out.write(bbuf, 0, result - 2); // skip the last 2 chars

 rnflag = true; // make a note to write them on the next iteration

 }

 else {

 out.write(bbuf, 0, result);

 }

 }

 out.flush();

 out.close();

 fos.close();

 }

 private String extractBoundary(String line) {

 int index = line.indexOf("boundary=");

 if (index == -1) {

 return null;

 }

 String boundary = line.substring(index + 9); // 9 for "boundary="

 // The real boundary is always preceded by an extra "--"

 boundary = "--" + boundary;

 return boundary;

 }

Example 4-18. The MultipartRequest class (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

118 CHAPTER 4: RETRIEVING INFORMATION
 private String[] extractDispositionInfo(String line) throws IOException {

 // Return the line's data as an array: disposition, name, filename

 String[] retval = new String[3];

 // Convert the line to a lowercase string without the ending \r\n

 // Keep the original line for error messages and for variable names.

 String origline = line;

 line = origline.toLowerCase();

 // Get the content disposition, should be "form-data"

 int start = line.indexOf("content-disposition: ");

 int end = line.indexOf(";");

 if (start == -1 || end == -1) {

 throw new IOException("Content disposition corrupt: " + origline);

 }

 String disposition = line.substring(start + 21, end);

 if (!disposition.equals("form-data")) {

 throw new IOException("Invalid content disposition: " + disposition);

 }

 // Get the field name

 start = line.indexOf("name=\"", end); // start at last semicolon

 end = line.indexOf("\"", start + 7); // skip name=\"

 if (start == -1 || end == -1) {

 throw new IOException("Content disposition corrupt: " + origline);

 }

 String name = origline.substring(start + 6, end);

 // Get the filename, if given

 String filename = null;

 start = line.indexOf("filename=\"", end + 2); // start after name

 end = line.indexOf("\"", start + 10); // skip filename=\"

 if (start != -1 && end != -1) { // note the !=

 filename = origline.substring(start + 10, end);

 // The filename may contain a full path. Cut to just the filename.

 int slash =

 Math.max(filename.lastIndexOf('/'), filename.lastIndexOf('\\'));

 if (slash > -1) {

 filename = filename.substring(slash + 1); // past last slash

 }

 if (filename.equals("")) filename = "unknown"; // sanity check

 }

 // Return a String array: disposition, name, filename

 retval[0] = disposition;

 retval[1] = name;

 retval[2] = filename;

 return retval;

Example 4-18. The MultipartRequest class (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

THE REQUEST 119
 }

 private String extractContentType(String line) throws IOException {

 String contentType = null;

 // Convert the line to a lowercase string

 String origline = line;

 line = origline.toLowerCase();

 // Get the content type, if any

 if (line.startsWith("content-type")) {

 int start = line.indexOf(" ");

 if (start == -1) {

 throw new IOException("Content type corrupt: " + origline);

 }

 contentType = line.substring(start + 1);

 }

 else if (line.length() != 0) { // no content type, so should be empty

 throw new IOException("Malformed line after disposition: " + origline);

 }

 return contentType;

 }

}

// A class to hold information about an uploaded file.

//

class UploadedFile {

 private String dir;

 private String filename;

 private String type;

 UploadedFile(String dir, String filename, String type) {

 this.dir = dir;

 this.filename = filename;

 this.type = type;

 }

 public String getContentType() {

 return type;

 }

 public String getFilesystemName() {

 return filename;

 }

Example 4-18. The MultipartRequest class (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

120 CHAPTER 4: RETRIEVING INFORMATION
 public File getFile() {

 if (dir == null || filename == null) {

 return null;

 }

 else {

 return new File(dir + File.separator + filename);

 }

 }

}

// A class to aid in reading multipart/form-data from a ServletInputStream.

// It keeps track of how many bytes have been read and detects when the

// Content-Length limit has been reached. This is necessary because some

// servlet engines are slow to notice the end of stream.

//

class MultipartInputStreamHandler {

 ServletInputStream in;

 String boundary;

 int totalExpected;

 int totalRead = 0;

 byte[] buf = new byte[8 * 1024];

 public MultipartInputStreamHandler(ServletInputStream in,

 String boundary,

 int totalExpected) {

 this.in = in;

 this.boundary = boundary;

 this.totalExpected = totalExpected;

 }

 public String readLine() throws IOException {

 StringBuffer sbuf = new StringBuffer();

 int result;

 String line;

 do {

 result = this.readLine(buf, 0, buf.length); // this.readLine() does +=

 if (result != -1) {

 sbuf.append(new String(buf, 0, result, "ISO-8859-1"));

 }

 } while (result == buf.length); // loop only if the buffer was filled

 if (sbuf.length() == 0) {

 return null; // nothing read, must be at the end of stream

 }

Example 4-18. The MultipartRequest class (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

THE REQUEST 121
Extra Attributes
Sometimes a servlet needs to know something about a request that’s not available
via any of the previously mentioned methods. In these cases, there is one last alter-
native, the getAttribute() method. Remember how ServletContext has a
getAttribute() method that returns server-specific attributes about the server
itself? ServletRequest also has a getAttribute() method:

public Object ServletRequest.getAttribute(String name)

This method returns the value of a server-specific attribute for the request or null
if the server does not support the named request attribute. This method allows a
server to provide a servlet with custom information about a request. For example,
the Java Web Server makes three attributes available: javax.net.ssl.cipher_
suite, javax.net.ssl.peer_certificates, and javax.net.ssl.session. A
servlet running in the Java Web Server can use these attributes to inspect the
details of an SSL connection with the client.

Example 4-19 shows a code snippet that uses getAttribute() to query the server
on the details of its SSL connection. Remember, these attributes are server-specific
and may not be available in servers other than the Java Web Server.

 sbuf.setLength(sbuf.length() - 2); // cut off the trailing \r\n

 return sbuf.toString();

 }

 public int readLine(byte b[], int off, int len) throws IOException {

 if (totalRead >= totalExpected) {

 return -1;

 }

 else {

 int result = in.readLine(b, off, len);

 if (result > 0) {

 totalRead += result;

 }

 return result;

 }

 }

}

Example 4-19. Getting the attributes available in the Java Web Server

import javax.security.cert.X509Certificate;

import javax.net.ssl.SSLSession;

out.println("<PRE>");

Example 4-18. The MultipartRequest class (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

122 CHAPTER 4: RETRIEVING INFORMATION
The servlet’s output on receiving a VeriSign certificate is shown below. What it
means is discussed in Chapter 8.

Cipher Suite: SSL_RSA_EXPORT_WITH_RC4_40_MD5

Client Certificate [0] = [

 X.509v3 certificate,

 Subject is OID.1.2.840.113549.1.9.1=#160F6A68756E746572407367692E636F6D,

CN=Jason Hunter, OU=Digital ID Class 1 - Netscape,

OU="www.verisign.com/repository/CPS Incorp. by Ref.,LIAB.LTD(c)96",

OU=VeriSign Class 1 CA - Individual Subscriber, O="VeriSign, Inc.",

L=Internet

 Key: algorithm = [RSA], exponent = 0x 010001, modulus =

 b35ed5e7 45fc5328 e3f5ce70 838cc25d 0a0efd41 df4d3e1b 64f70617 528546c8

 fae46995 9922a093 7a54584d d466bee7 e7b5c259 c7827489 6478e1a9 3a16d45f

 Validity until

 Issuer is OU=VeriSign Class 1 CA - Individual Subscriber, O="VeriSign, Inc.

",

 L=Internet

 Issuer signature used [MD5withRSA]

 Serial number = 20556dc0 9e31dfa4 ada6e10d 77954704

]

Client Certificate [1] = [

 X.509v3 certificate,

 Subject is OU=VeriSign Class 1 CA - Individual Subscriber, O="VeriSign,

Inc.", L=Internet

 Key: algorithm = [RSA], exponent = 0x 010001, modulus =

 b614a6cf 4dd0050d d8ca23d0 6faab429 92638e2c f86f96d7 2e9d764b 11b1368d

 57c9c3fd 1cc6bafe 1e08ba33 ca95eabe e35bcd06 a8b7791d 442aed73 f2b15283

 68107064 91d73e6b f9f75d9d 14439b6e 97459881 47d12dcb ddbb72d7 4c3f71aa

// Display the cipher suite in use

String cipherSuite =

 (String) req.getAttribute("javax.net.ssl.cipher_suite");

out.println("Cipher Suite: " + cipherSuite);

// Display the client's certificates, if there are any

if (cipherSuite != null) {

 X509Certificate[] certChain =

 (X509Certificate[]) req.getAttribute("javax.net.ssl.peer_certificates");

 if (certChain != null) {

 for (int i = 0; i < certChain.length; i++) {

 out.println ("Client Certificate [" + i + "] = "

 + certChain[i].toString());

 }

 }

}

out.println("</PRE>");

Example 4-19. Getting the attributes available in the Java Web Server (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

THE REQUEST 123
 e240f254 39bc16ee cf7cecba db3f6c2a b316b186 129dae93 34d5b8d5 d0f73ea9

 Validity until

 Issuer is OU=Class 1 Public Primary Certification Authority, O="VeriSign,

Inc.", C=US

 Issuer signature used [MD2withRSA]

 Serial number = 521f351d f2707e00 2bbeca59 8704d539

]

Servers are free to provide whatever attributes they choose, or even no attributes at
all. The only rules are that attribute names should follow the same convention as
package names, with the package names java.* and javax.* reserved for use by
the Java Software division of Sun Microsystems (formerly known as JavaSoft) and
com.sun.* reserved for use by Sun Microsystems. You should see your server’s
documentation for a list of its attributes. There is no getAttributeNames()
method to help.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

124
Java™ Servlet Programming, eMatte

Copyright © 2000 O’Reilly & Associates, Inc. A
Chapter 5]

In this chapter:
• The Structure of a

Response
• Sending a Normal

Response
• Using Persistent

Connections
• HTML Generation
• Status Codes
• HTTP Headers
• When Things Go

Wrong5. 5:

access to all sorts of informa-
about the request, and even
do with that information, by

t returns a normal HTML
over in previous examples.
in returning a response by
5

Sending HTML
Information
In the previous chapter, we learned that a servlet has
tion—information about the client, about the server,
about itself. Now it’s time to look at what a servlet can
learning how it sets and sends information.

The chapter begins with a review of how a servle
response, fully explaining some methods we glossed
Next we cover how to reduce the overhead involved
keeping alive a connection to the client. Then we explore the extra things you can
do with HTML and HTTP, including using support classes to objectify the HTML
output, returning errors and other status codes, sending custom header informa-
tion, redirecting the request, using client pull, detecting when the user
disconnects, and writing data to the server log.

The Structure of a Response
An HTTP servlet can return three kinds of things to the client: a single status
code, any number of HTTP headers, and a response body. A status code is an
integer value that describes, as you would expect, the status of the response. The
status code can indicate success or failure, or it can tell the client software to take
further action to finish the request. The numerical status code is often accompa-
nied by a “reason phrase” that describes the status in prose better understood by a
human. Usually, a status code works behind the scenes and is interpreted by the
browser software. Sometimes, especially when things go wrong, a browser may
show the status code to the user. The most famous status code is probably the “404
Not Found” code, sent by a web server when it cannot locate a requested URL.
r Edition
ll rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SENDING A NORMAL RESPONSE 125
We saw HTTP headers in the previous chapter when clients used them to send
extra information along with a request. In this chapter, we’ll see how a servlet can
send HTTP headers as part of its response.

The response body is the main content of the response. For an HTML page, the
response body is the HTML itself. For a graphic, the response body contains the
bytes that make up the image. A response body can be of any type and of any
length; the client knows what to expect by reading and interpreting the HTTP
headers in the response.

A generic servlet is much simpler than an HTTP servlet—it returns only a
response body to its client. It’s possible, however, for a subclass of
GenericServlet to present an API that divides this single response body into a
more elaborate structure, giving the appearance of returning multiple items. In
fact, this is exactly what HTTP servlets do. At the lowest level, a web server sends its
entire response as a stream of bytes to the client. Any methods that set status codes
or headers are abstractions above that.

It’s important to understand this because even though a servlet programmer
doesn’t have to know the details of the HTTP protocol, the protocol does affect
the order in which a servlet can call its methods. Specifically, the HTTP protocol
specifies that the status code and headers must be sent before the response body. A
servlet, therefore, should be careful to always set its status codes and headers
before returning any of its response body. Some servers, including the Java Web
Server, internally buffer some length of a servlet’s response body (usually about
4K)—this allows you some freedom to set the status codes and headers even after a
servlet has written a short amount of response body. However, this behavior is
server implementation dependent, and as a wise servlet programmer, you’ll forget
all about it!

Sending a Normal Response
Let’s begin our discussion of servlet responses with another look at the first servlet
in this book, the HelloWorld servlet, shown in Example 5-1. We hope it looks a lot
simpler to you now than it did back in Chapter 2, HTTP Servlet Basics.

Example 5-1. Hello again

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class HelloWorld extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

126 CHAPTER 5: SENDING HTML INFORMATION
This servlet uses two methods and a class that have been only briefly mentioned
before. The setContentType() method of ServletResponse sets the content
type of the response to be the specified type:

public void ServletResponse.setContentType(String type)

In an HTTP servlet, this method sets the Content-Type HTTP header.

The getWriter() method returns a PrintWriter for writing character-based
response data:

public PrintWriter ServletResponse.getWriter() throws IOException

The writer encodes the characters according to whatever charset is given in the
content type. If no charset is specified, as is generally the case, the writer uses the
ISO-8859-1 (Latin-1) encoding appropriate for Western European languages.
Charsets are covered in depth in Chapter 12, Internationalization, so for now just
remember that it’s good form to always set the content type before you get a
PrintWriter. This method throws an IllegalStateException if
getOutputStream() has already been called for this response; it throws an
UnsupportedEncodingException if the encoding of the output stream is unsup-
ported or unknown.

In addition to using a PrintWriter to return a response, a servlet can use a
special subclass of java.io.OutputStream to write binary data—the
ServletOutputStream, which is defined in javax.servlet. You can get a
ServletOutputStream with getOutputStream():

public ServletOutputStream ServletResponse.getOutputStream() throws

IOException

This method returns an ServletOutputStream for writing binary (byte-at-a-time)
response data. No encoding is performed. This method throws an
IllegalStateException if getWriter() has already been called for this
response.

 throws ServletException, IOException {

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 out.println("<HTML>");

 out.println("<HEAD><TITLE>Hello World</TITLE></HEAD>");

 out.println("<BODY>");

 out.println("<BIG>Hello World</BIG>");

 out.println("</BODY></HTML>");

 }

}

Example 5-1. Hello again (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

USING PERSISTENT CONNECTIONS 127
The ServletOutputStream class resembles the standard Java PrintStream class.
In the Servlet API Version 1.0, this class was used for all servlet output, both
textual and binary. In the Servlet API Version 2.0, however, it has been relegated
to handling binary output only. As a direct subclass of OutputStream, it makes
available the write(), flush(), and close() methods of the OutputStream
class. To these it adds its own print() and println() methods for writing most
of the primitive Java data types (see Appendix A, Servlet API Quick Reference, for a
complete list). The only difference between the ServletOutputStream interface
and that of a PrintStream is that the print() and println() methods of
ServletOutputStream inexplicably cannot directly print parameters of type
Object or char[].

Using Persistent Connections
Persistent connections (sometimes called “keep-alive” connections) can be used to
optimize the way servlets return content to the client. To understand how this opti-
mization works, you first need to understand how HTTP connections work. We’ll
keep this at a high level and only go as low as is necessary to explain the basic idea.
The details are well covered in Clinton Wong’s Web Client Programming (O’Reilly).

When a client, such as a browser, wants to request a web document from a server,
it begins by establishing a socket connection to the server. Over this connection,
the client makes its request and then receives the server’s response. The client
indicates it has finished its request by sending a blank line; the server, in turn,
indicates that the response is complete by closing the socket connection.

So far, so good. But what if the retrieved page contains tags or <APPLET>
tags that require the client to retrieve more content from the server? Well, another
socket connection is used. If a page contains 10 graphics along with an applet
made up of 25 classes, that’s 36 connections needed to transfer the page. No
wonder some people say WWW stands for the World Wide Wait! This approach is
like ordering a pizza, but making a separate phone call for each topping.

A better approach is to use the same socket connection to retrieve more than one
piece of a page, something called a persistent connection. The trick with a persistent
connection is that the client and server must somehow agree on where the server’s
response ends and where the client’s next request begins. They could try to use a
token like a blank line, but what if the response itself contains a blank line? The
way persistent connections work is that the server just tells the client how big the
response body will be by setting the Content-Length header as part of the
response. The client then knows that after that much response body, it has control
of the socket again.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

128 CHAPTER 5: SENDING HTML INFORMATION
Most servers internally manage the Content-Length header for the static files
they serve, but do not do the same for the servlets they serve. That’s left to the
servlets themselves. A servlet can gain the advantages of a persistent connection
for its dynamic content by using the setContentLength() method:

public void ServletResponse.setContentLength(int len)

This method sets the length (in bytes) of the content being returned by the server.
In an HTTP servlet, the method sets the HTTP Content-Length header. Note
that using this method is optional. If you use it, however, your servlets will be able
to take advantage of persistent connections when they are available. The client will
also be able to display an accurate progress monitor during the download.

If you do call setContentLength(), there are two caveats: a servlet must call this
method before sending the response body, and the given length must be exact. If
it’s off by even one byte, you will have problems.* This sounds more difficult than
it really is. The trick is for a servlet to use a ByteArrayOutputStream to buffer
the output, as shown in Example 5-2.

* For example, with the Java Web Server, if a servlet sets the length too short, the server throws an
IOException saying there was a “write past end of stream”. If a servlet sets the length too long, the
client stalls as it waits for the rest of the response.

Example 5-2. A servlet using persistent connections

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class KeepAlive extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/html");

 // Set up a PrintStream built around a special output stream

 ByteArrayOutputStream bytes = new ByteArrayOutputStream(1024);

 PrintWriter out = new PrintWriter(bytes, true); // true forces flushing

 out.println("<HTML>");

 out.println("<HEAD><TITLE>Hello World</TITLE></HEAD>");

 out.println("<BODY>");

 out.println("<BIG>Hello World</BIG>");

 out.println("</BODY></HTML>");

 // Set the content length to the size of the buffer

 res.setContentLength(bytes.size());
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HTML GENERATION 129
Instead of writing to the PrintWriter returned by getWriter(), this servlet
writes to a PrintWriter built around a ByteArrayOutputStream. This array
grows as necessary to accommodate whatever output the servlet sends. When the
servlet is ready to exit, it sets the content length to be the size of the buffer and
then sends the contents of the buffer to the client. Notice that the bytes are sent
using the byte-oriented ServletOutputStream. With this simple modification, a
servlet can take advantage of a persistent connection.

It is important to note that persistent connections come with a price. Buffering all
the output and sending it all in one batch requires extra memory, and it may delay
the time at which a client begins receiving data. For servlets with short responses,
persistent connections make sense, but for servlets with long responses, the
memory overhead and delay probably outweigh the benefit of opening fewer
connections.

It is also important to note that not all servers and not all clients support persis-
tent connections. That said, it’s still appropriate for a servlet to set its content
length. This information will be used by those servers that support persistent
connections and ignored by the others.

HTML Generation
No, “HTML Generation” is not another name for the children born in the 1980s,
many of whom grew up browsing the web—although Jason and Will, saddled with
the Generation X moniker, feel that would be only fair. HTML generation is an
alternate way for servlets to send HTML content to clients.

So far, every example in this book has generated its HTML by hand, as one long
String that is sent to the client. This strategy works fine for small web pages (like
book examples), but it quickly becomes unwieldy for larger, more complicated
pages. For that type of page, it’s sometimes helpful to use an HTML generation
package.

An HTML generation package provides a servlet with a set of classes that abstract
away the details of HTML, in particular, the HTML tags. The level of abstraction
depends on the package: some put only the thinnest veneer above the HTML tags,
leaving the nitty-gritty details (such as opening and closing each HTML tag) to the
programmer. Using packages such as these is similar to writing HTML by hand

 // Send the buffer

 bytes.writeTo(res.getOutputStream());

 }

}

Example 5-2. A servlet using persistent connections (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

130 CHAPTER 5: SENDING HTML INFORMATION
and is not discussed here. Other packages elegantly abstract away the HTML speci-
fication and treat HTML as just another set of Java objects. A web page is seen as
an object that can contain other HTML objects (such as lists and tables) that can
contain yet more HTML objects (such as list items and table cells). This object-
oriented approach can greatly simplify the task of generating HTML and make a
servlet easier to write, easier to maintain, and sometimes even more efficient.

Generating Hello World
Let’s look at an example to see how object-oriented HTML generation works.
Example 5-3 shows the ubiquitous HelloWorld servlet, rewritten to take advan-
tage of WebLogic’s htmlKona package (available for free evaluation and purchase
at http://www.weblogic.com—you may need to poke around a bit to find it).

Note how all the HTML tags have been replaced with objects. This servlet first
creates a new ServletPage object that represents the web page it will return.
Then, it adds a “Hello World” title to the page’s head section and a “Hello World!”
big string to its body section. Finally, the servlet outputs the page to its output
stream.* That’s how object-oriented HTML generation works: get a page object,
add component objects to it, and send it to the output stream.

Example 5-3. Hello, htmlKona

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import weblogic.html.*;

public class HtmlKonaHello extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/html");

 ServletPage page = new ServletPage();

 page.getHead().addElement(new TitleElement("Hello World"));

 page.getBody().addElement(new BigElement("Hello World!"));

 page.output(res.getOutputStream());

 }

}

* We must use the ServletOutputStream here since htmlKona was not written to output its page to a
PrintWriter.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HTML GENERATION 131
One advantage of HTML generation should already be apparent: it ensures valid
HTML. HTML generation eliminates the possibility for a misspelled <TITLE>
open tag or a forgotten </TITLE> close tag. We’ll admit it’s not an advantage
worth writing home about, but it is appealing to not have to remember to open
and close every tag or to clutter your code with HTML. Unfortunately, object-
oriented HTML has the fairly serious drawback that it can litter memory with a
multitude of small objects, requiring more frequent garbage collection.

Generating a Weather Forecast
That’s how HTML generation works for a simple web page. Now let’s create a
more complicated web page, so we can test how HTML generation scales to
handle the harder challenges. Figure 5-1 shows a hypothetical web page that
displays the current weather and an extended forecast, the kind you might find on
Yahoo! or CNN. We’ve kept it simple for the sake of space, but it still includes
enough components to make an interesting example.

Imagine a servlet creating this web page. Assuming the servlet already has access to
the current conditions and forecast information, how would the servlet do it? We
will examine and discuss three strategies:

• Constructing the HTML by hand

• Using an HTML generator

• Using an HTML generator creatively

Figure 5-1. Oh, the weather outside is delightful
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

132 CHAPTER 5: SENDING HTML INFORMATION
The first strategy, constructing the HTML by hand (Example 5-4), is the standard
approach demonstrated elsewhere in this book. A servlet implemented using this
strategy acts as a baseline against which we can compare the other two servlets.
The second approach, using an HTML generator (Example 5-5), constructs the
web page as a set of objects. This is like the HelloWorld example, just on a much
larger scale. The third strategy, using an HTML generator and some creativity
(Example 5-6), takes the second servlet and simplifies it by reusing objects and
subclassing.

Weather forecast constructed by hand

Example 5-4 shows a servlet that creates the weather forecast page without using
HTML generation, manually sending its content wrapped with almost a hundred
HTML tags.

Example 5-4. Weather forecast constructed by hand

import java.io.*;

import java.text.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class WeatherHtml extends HttpServlet {

 // Some static final variables to populate the page...

 // These would normally come from a database or

 // maybe another servlet that retrieved it as POST data.

 static final int currentTemp = 70;

 static final String currentImage = "/images/rainy.gif";

 static final String[] forecastDay = { "Thursday",

 "Friday",

 "Saturday" };

 static final String[] forecastImage = { "/images/sunny.gif",

 "/images/sunny.gif",

 "/images/rainy.gif" };

 static final int[] forecastHi = { 82, 82, 73 };

 static final int[] forecastLo = { 58, 65, 48 };

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 // Set its title

 String title = "Sebastopol Weather Forecast";

 out.println("<HTML>");
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HTML GENERATION 133
 out.println("<HEAD>");

 out.println("<TITLE>" + title + "</TITLE>");

 out.println("</HEAD>");

 // Start on the body

 out.println("<BODY>");

 // Make a centered table

 out.println("<CENTER>");

 out.println("<TABLE BORDER=1 CELLPADDING=0 CELLSPACING=0 WIDTH=70%>");

 // First row

 out.println("<TR>");

 out.println("<TD><CENTER>");

 out.println("Current Conditions");

 out.println("</CENTER></TD>");

 out.println("<TD><CENTEr>");

 out.println("");

 out.println("</CENTER></TD>");

 out.println("<TD COLSPAN=2><CENTER>");

 out.println(currentTemp + "°");

 out.println("</CENTER></TD>");

 out.println("</TR>");

 // Second row

 out.println("<TR>");

 out.println("<TD COLSPAN=2><CENTER>");

 out.println("Extended Forecast");

 out.println("</CENTER></TD>");

 out.println("<TD><CENTER>");

 out.println("Hi");

 out.println("</CENTER></TD>");

 out.println("<TD><CENTER>");

 out.println("Lo");

 out.println("</CENTER></TD>");

 out.println("</TR>");

 // Daily forecast rows

 for (int i = 0; i < forecastDay.length; i++) {

 out.println("<TR>");

 out.println("<TD> ");

 out.println(forecastDay[i]);

 out.println("</TD>");

 out.println("<TD><CENTER>");

Example 5-4. Weather forecast constructed by hand (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

134 CHAPTER 5: SENDING HTML INFORMATION
This code exactly generates the weather forecast page as shown in Figure 5-1. It
begins by defining static final variables to use as its content and proceeds to
nest that content among HTML tags. This approach presents a pretty page to the
end user, but it can leave the programmer counting tags and looking for the right
place to put the forgotten </TD>. The approach also has limited maintainability.
Pulling out one HTML tag can result in the same cascading disaster you get when
you pull on a knit sweater’s loose tail. And for the same reason—everything’s
connected. Even a change as simple as decentering the table requires a modifica-
tion in the beginning of doGet() and at the end. And a whimsical change, like
making the extended forecast font bold, requires more than a little concentration.

Weather forecast using HTML generation

The same servlet written using HTML generation is shown in Example 5-5.

 out.println("");

 out.println("</CENTER></TD>");

 out.println("<TD><CENTER>");

 out.println(forecastHi[i]);

 out.println("</CENTER></TD>");

 out.println("<TD><CENTER>");

 out.println(forecastLo[i]);

 out.println("</CENTER></TD>");

 out.println("</TR>");

 }

 // Close the still-open tags

 out.println("</TABLE>");

 out.println("</CENTER>");

 out.println("</BODY></HTML>");

 }

}

Example 5-5. Weather forecast using HTML generation

import java.io.*;

import java.text.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

import weblogic.html.*;

public class WeatherHtmlKona extends HttpServlet {

 // Some static final variables to populate the page...

 // These would normally come from a database or

Example 5-4. Weather forecast constructed by hand (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HTML GENERATION 135
 // maybe another servlet that retrieved it as POST data.

 static final int currentTemp = 70;

 static final String currentImage = "/images/rainy.gif";

 static final String[] forecastDay = { "Thursday",

 "Friday",

 "Saturday" };

 static final String[] forecastImage = { "/images/sunny.gif",

 "/images/sunny.gif",

 "/images/rainy.gif" };

 static final int[] forecastHi = { 82, 82, 73 };

 static final int[] forecastLo = { 58, 65, 48 };

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/html");

 // Get a new page

 ServletPage page = new ServletPage();

 // Set its title

 String title = "Sebastopol Weather Forecast";

 page.getHead().addElement(new TitleElement(title));

 // Get the body

 HtmlContainer body = page.getBody();

 // Make a table, and add it to the body (even before it's filled)

 TableElement tab = new TableElement()

 .setCellPadding(0)

 .setCellSpacing(0)

 .setBorder(1)

 .setWidth("60%");

 body.addElement(new CenteredElement(tab));

 // Create the first row

 HtmlElement conditions = new StringElement("Current Conditions")

 .asFontElement("+2")

 .asBoldElement()

 .asCenteredElement();

 HtmlElement image = new ImageElement(currentImage)

 .setWidth(48)

 .setHeight(35)

 .asCenteredElement();

 HtmlElement temp = new StringElement(currentTemp + "°")

 .asFontElement("+2")

 .asBoldElement()

Example 5-5. Weather forecast using HTML generation (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

136 CHAPTER 5: SENDING HTML INFORMATION
 .asCenteredElement();

 tab.addElement(new TableRowElement()

 .addElement(new TableDataElement(conditions))

 .addElement(new TableDataElement(image))

 .addElement(new TableDataElement(temp)

 .setColSpan(2)));

 // Create the second row

 HtmlElement extended = new StringElement("Extended Forecast")

 .asFontElement("+1")

 .asBoldElement()

 .asCenteredElement();

 HtmlElement hi = new StringElement("Hi")

 .asFontElement("+1")

 .asBoldElement()

 .asCenteredElement();

 HtmlElement lo = new StringElement("Lo")

 .asFontElement("+1")

 .asBoldElement()

 .asCenteredElement();

 tab.addElement(new TableRowElement()

 .addElement(new TableDataElement(extended)

 .setColSpan(2))

 .addElement(new TableDataElement(hi))

 .addElement(new TableDataElement(lo)));

 // Create the forecast rows

 for (int i = 0; i < forecastDay.length; i++) {

 HtmlElement day = new StringElement(" " + forecastDay[i])

 .asFontElement("+1");

 HtmlElement daypic = new ImageElement(forecastImage[i])

 .setWidth(48)

 .setHeight(35)

 .asCenteredElement();

 HtmlElement dayhi = new StringElement("" + forecastHi[i])

 .asFontElement("+1")

 .asCenteredElement();

 HtmlElement daylo = new StringElement("" + forecastLo[i])

 .asFontElement("+1")

 .asCenteredElement();

 tab.addElement(new TableRowElement()

 .addElement(new TableDataElement(day))

 .addElement(new TableDataElement(daypic))

 .addElement(new TableDataElement(dayhi))

 .addElement(new TableDataElement(daylo)));

 }

 // Send the page to the response’s output stream

Example 5-5. Weather forecast using HTML generation (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HTML GENERATION 137
The basic structure of this servlet is similar to that of the previous example. The
major difference is that this servlet uses an HTML generation package to create an
object-oriented representation of the web page.

A few things may look strange about this code. The most striking is its use of
method chaining, where several methods are invoked on the same object with
code like the following:

TableElement tab = new TableElement()

 .setCellPadding(0)

 .setCellSpacing(0);

The whitespace here is irrelevant. The previous code is equivalent to:

TableElement tab = new TableElement().setCellPadding(0).setCellSpacing(0);

This chaining is possible because each “set” method returns a reference to the
object on which it was invoked—that reference is used to invoke the next “set”
method. This trick comes in handy when using htmlKona.

You may also be wondering why so many objects are declared as HtmlElement
objects but created as StringElement objects or ImageElement objects, as with
the following code:

HtmlElement image = new ImageElement(currentImage)

 .setWidth(48)

 .setHeight(35)

 .asCenteredElement();

The answer is that each “as” method returns an object of a different type than the
object on which it was invoked. In the example above, the asCenteredElement()
method returns a CenteredElement wrapped around the original
ImageElement. For simplicity, each HTML component can be declared to be of
type HtmlElement, which is the superclass of all HTML objects—its actual subclass
type can be changed later with ease.

Now let’s look at how this servlet compares to the previous servlet. This servlet no
longer has code that writes the individual HTML tags, but it replaces that code
with almost as many method invocations. We don’t appear to be saving any
keystrokes. What using HTML generation does do is give you confidence that the
page you constructed is valid. Tags cannot be forgotten or misplaced. The larger
benefit comes from easier maintainability. What if your pointy-haired boss wants

 page.output(res.getOutputStream());

 }

}

Example 5-5. Weather forecast using HTML generation (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

138 CHAPTER 5: SENDING HTML INFORMATION
the table left-justified instead of centered? The change is simple. The following
line:

body.addElement(new CenteredElement(tab));

changes to:

body.addElement(tab);

And what if you decide you want the forecast font to be bold? Well, it’s still a lot of
work. For an elegant solution to this problem, we need to look at the next servlet.

Weather forecast using HTML generation creatively

Example 5-6 (the last full weather forecast example) shows another servlet that
generates the weather forecast web page. This servlet demonstrates some of HTML
generation’s potential by reusing objects and subclassing. This technique produces
results similar to what you can achieve with Cascading Style Sheets (CSS), a recent
enhancement to HTML for controlling document appearance.* The major advan-
tage of HTML generation is that, because it operates entirely on the server side, it
can work with all browsers. CSS only started being supported in Microsoft Internet
Explorer 3 and later and Netscape Navigator 4 and later.

* For more information on Cascading Style Sheets, see http://www.w3.org/Style/css.

Example 5-6. Weather forecast using HTML generation creatively

import java.io.*;

import java.text.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

import weblogic.html.*;

class CurrentStyle extends StringElement {

 CurrentStyle(String val) {

 super(new StringElement(val)

 .asFontElement("+2")

 .asBoldElement()

 .asCenteredElement());

 }

}

class ExtendedTitleStyle extends StringElement {

 ExtendedTitleStyle(String val) {

 super(new StringElement(val)

 .asFontElement("+1")

 .asBoldElement()
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HTML GENERATION 139
 .asCenteredElement());

 }

}

class ExtendedDayStyle extends StringElement {

 ExtendedDayStyle(String val) {

 super(new StringElement(val)

 .asFontElement("+1"));

 }

}

class ExtendedTempStyle extends StringElement {

 ExtendedTempStyle(String val) {

 super(new StringElement(val)

 .asFontElement("+1")

 .asCenteredElement());

 }

}

class ImageStyle extends CenteredElement {

 ImageStyle(String src) {

 super(new ImageElement(src).setWidth(48).setHeight(35));

 }

}

public class WeatherHtmlKonaRevised extends HttpServlet {

 static final ImageStyle sunny = new ImageStyle("/images/sunny.gif");

 static final ImageStyle rainy = new ImageStyle("/images/rainy.gif");

 // Some static final variables to populate the page...

 // These would normally come from a database or

 // maybe another servlet that retrieved it as POST data.

 static final int currentTemp = 70;

 static final ImageStyle currentImage = sunny;

 static final String[] forecastDay = { "Thursday", "Friday", "Saturday" };

 static final ImageStyle[] forecastImage = { sunny, sunny, rainy };

 static final int[] forecastHi = { 82, 82, 73 };

 static final int[] forecastLo = { 58, 65, 48 };

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/html");

 // Get a new page

 ServletPage page = new ServletPage();

Example 5-6. Weather forecast using HTML generation creatively (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

140 CHAPTER 5: SENDING HTML INFORMATION
 // Set its title

 String title = "Sebastopol Weather Forecast";

 page.getHead().addElement(new TitleElement(title));

 // Get the body

 HtmlContainer body = page.getBody();

 // Make a table, and add it to the body (even before it's filled)

 TableElement tab = new TableElement()

 .setCellPadding(0)

 .setCellSpacing(0)

 .setBorder(1)

 .setWidth("60%");

 body.addElement(new CenteredElement(tab));

 // Create the first row

 HtmlElement conditions = new CurrentStyle("Current Conditions");

 HtmlElement image = currentImage;

 HtmlElement temp = new CurrentStyle(currentTemp + "°"); // degree symbol

 tab.addElement(new TableRowElement()

 .addElement(new TableDataElement(conditions))

 .addElement(new TableDataElement(image))

 .addElement(new TableDataElement(temp)

 .setColSpan(2)));

 // Create the second row

 HtmlElement extended = new ExtendedTitleStyle("Extended Forecast");

 HtmlElement hi = new ExtendedTitleStyle("Hi");

 HtmlElement lo = new ExtendedTitleStyle("Lo");

 tab.addElement(new TableRowElement()

 .addElement(new TableDataElement(extended)

 .setColSpan(2))

 .addElement(new TableDataElement(hi))

 .addElement(new TableDataElement(lo)));

 // Create the forecast rows

 for (int i = 0; i < forecastDay.length; i++) {

 HtmlElement day = new ExtendedDayStyle(" " + forecastDay[i]);

 HtmlElement daypic = forecastImage[i];

 HtmlElement dayhi = new ExtendedTempStyle("" + forecastHi[i]);

 HtmlElement daylo = new ExtendedTempStyle("" + forecastLo[i]);

 tab.addElement(new TableRowElement()

 .addElement(new TableDataElement(day))

 .addElement(new TableDataElement(daypic))

 .addElement(new TableDataElement(dayhi))

 .addElement(new TableDataElement(daylo)));

 }

Example 5-6. Weather forecast using HTML generation creatively (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HTML GENERATION 141
This servlet uses five support classes to define custom styles for portions of the
generated web page. For example, CurrentStyle defines the font and posi-
tioning for the elements that display the current conditions, while ImageStyle
defines the size and positioning of the forecast icons. Each support class is a
subclass of HtmlElement (though not always directly) and can thus be treated like
a first-class component on the web page.

Custom styles further abstract the HTML components on the page. What was once
a String surrounded by HTML tags is now a high-level page component. A servlet
can fill these components with content and not worry about exactly how they will
be displayed. Their display is left to the style class. Should it happen that the
appearance needs to be changed, such as when you decide you want the extended
forecast font to be bold, the change can be done with a single modification to the
appropriate style.

Subclassing also proves useful for more mundane tasks. It can be used to define
basic HTML components that, for whatever reason, are not included in the HTML
generation package. For example, htmlKona has no ServletElement class to
represent an embedded <SERVLET> tag. This class could be written similarly to its
AppletElement class by subclassing htmlKona’s ElementWithAttributes class.

Notice how this servlet has changed its representation of the sunny and rainy
images. The previous servlets stored these images as String objects representing
image locations. This servlet, however, creates each one as an ImageStyle object
with an inherent size and width. This means they can be added directly to the
page, simplifying the code in which they are used. It also shows how a servlet can
reuse an HTML component.

For a better demonstration of reuse, imagine the TableElement created by this
servlet being cached and resent in response to every request. This is simple to
accomplish using the techniques demonstrated in Chapter 3, The Servlet Life Cycle.
The table could be on a page surrounded by rotating ad banners, but it can persist
as an object between requests.

But what happens when the current temperature changes? Does the table have to
be entirely regenerated? Not at all. Remember, the table is an object filled with
other objects. All we need to do is replace the object that represents the current

 // Send the page to the response's output stream

 page.output(res.getOutputStream());

 }

}

Example 5-6. Weather forecast using HTML generation creatively (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

142 CHAPTER 5: SENDING HTML INFORMATION
temperature. For our example this can be done with one line of code (note
"°" is the HTML representation of the degree symbol):

tab.setCellAt(0, 2, new CurrentStyle(newTemp + "°"));

The possible creative uses for object-oriented HTML generation go far beyond the
techniques shown in this example. One could imagine a custom-created
BannerElement displayed at the top of all the servlets on a site. It could be just a
predefined ImageElement or a conglomeration of elements. Let your imagina-
tion run wild!

HTML generation and databases

Before we conclude our discussion of HTML generation, there is one more
feature to discuss: its potential close integration with a database. It’s not by coinci-
dence that WebLogic packages htmlKona with its database-centric dbKona and
jdbcKona—the packages work well together. We’ll leave the details to WebLogic’s
web site, but the general idea is that when you execute a query against a database,
the returned result set can be thought of as a formatted table without a graphical
representation. This result set table can be passed to the TableElement
constructor to automatically display the query results in an HTML table on a web
page.

The TableElement constructor also accepts java.util.Dictionary objects (the
superclass of java.util.Hashtable and java.util.Properties). By sub-
classing TableElement, it is possible to have it accept even more types, thus
making it easy to create tables from all different kinds of data. A subclass can also
give special treatment to certain types of data, perhaps converting them into
hyperlinks to other queries.

Status Codes
Until now, our servlet examples have not set HTTP response status codes. We’ve
been taking advantage of the fact that if a servlet doesn’t specifically set the status
code, the server steps in and sets its value to the default 200 “OK” status code.
That’s a useful convenience when we are returning normal successful responses.
However, by using status codes, a servlet can do more with its response. For
example, it can redirect a request or report a problem.

The most common status code numbers are defined as mnemonic constants
(public final static int fields) in the HttpServletResponse class. A few of
these are listed in Table 5-1. The full list is available in Appendix C, HTTP Status
Codes.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

STATUS CODES 143
Table 5-1. HTTP Status Codes

Mnemonic Constant Code Default Message Meaning

SC_OK 200 OK The client’s request was
successful, and the server’s
response contains the requested
data. This is the default status
code.

SC_NO_CONTENT 204 No Content The request succeeded, but
there was no new response body
to return. Browsers receiving this
code should retain their current
document view. This is a useful
code for a servlet to use when it
accepts data from a form but
wants the browser view to stay at
the form, as it avoids the “Docu-
ment contains no data” error
message.

SC_MOVED_

PERMANENTLY
301 Moved Perma-

nently
The requested resource has
permanently moved to a new
location. Future references should
use the new URL in requests. The
new location is given by the
Location header. Most browsers
automatically access the new loca-
tion.

SC_MOVED_

TEMPORARILY
302 Moved Temporarily The requested resource has

temporarily moved to another
location, but future references
should still use the original URL
to access the resource. The new
location is given by the Location
header. Most browsers automati-
cally access the new location.

SC_UNAUTHORIZED 401 Unauthorized The request lacked proper autho-
rization. Used in conjunction with
the WWW-Authenticate and
Authorization headers.

SC_NOT_FOUND 404 Not Found The requested resource was not
found or is not available.

SC_INTERNAL_

SERVER_ERROR
500 Internal Server

Error
An unexpected error occurred
inside the server that prevented it
from fulfilling the request.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

144 CHAPTER 5: SENDING HTML INFORMATION
Setting a Status Code
A servlet can use setStatus() to set a response status code:

public void HttpServletResponse.setStatus(int sc)

public void HttpServletResponse.setStatus(int sc, String sm)

Both of these methods set the HTTP status code to the given value. The code can
be specified as a number or with one of the SC_XXX codes defined within Http-
ServletResponse. With the single-argument version of the method, the reason
phrase is set to the default message for the given status code. The two-argument
version allows you to specify an alternate message. Remember, the setStatus()
method should be called before your servlet returns any of its response body.

If a servlet sets a status code that indicates an error during the handling of the
request, it can call sendError() instead of setStatus():

public void HttpServletResponse.sendError(int sc)

public void HttpServletResponse.sendError(int sc, String sm)

A server may give the sendError()method different treatment than
setStatus(). When the two-argument version of the method is used, the status
message parameter may be used to set an alternate reason phrase or it may be
used directly in the body of the response, depending on the server’s
implementation.

Improving ViewFile Using Status Codes
So far, we haven’t bothered calling any of these methods to set a response’s status
code. We’ve simply relied on the fact that the status code defaults to SC_OK. But
there are times when a servlet needs to return a response that doesn’t have the
SC_OK status code—when the response does not contain the requested data. As an
example, think back to how the ViewFile servlet in Chapter 4, Retrieving Informa-
tion, handled the FileNotFoundException:

SC_NOT_

IMPLEMENTED
501 Not Implemented The server does not support the

functionality needed to fulfill the
request.

SC_SERVICE_

UNAVAILABLE
503 Service Unavailable The service (server) is temporarily

unavailable but should be restored
in the future. If the server knows
when it will be available again, a
Retry-After header may also be
supplied.

Table 5-1. HTTP Status Codes (continued)

Mnemonic Constant Code Default Message Meaning
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HTTP HEADERS 145
// Return the file

try {

 ServletUtils.returnFile(file, out);

}

catch (FileNotFoundException e) {

 out.println("File not found");

}

Without setting a status code, the best this servlet can do is write out an explana-
tion of the problem, ironically sending the explanation as part of a page that is
supposed to contain the file’s contents. With status codes, however, it can do
exactly what Sun’s FileServlet does: set the response code to SC_NOT_FOUND to
indicate that the requested file was not found and cannot be returned. Here’s the
improved version:

// Return the file

try {

 ServletUtils.returnFile(file, out);

}

catch (FileNotFoundException e) {

 res.sendError(res.SC_NOT_FOUND);

}

The full effect of a sendError() call is server dependent, but for the Java Web
Server this call generates the server’s own “404 Not Found” page, complete with
Duke’s picture (as shown in Figure 5-2). Note that this page is indistinguishable
from every other Java Web Server “404 Not Found” page. The call to sendError()
also results in a note in the server’s access log that the file could not be found.

HTTP Headers
A servlet can set HTTP headers to provide extra information about its response. As
we said in Chapter 4, a full discussion of all the possible HTTP 1.0 and HTTP 1.1
headers is beyond the scope of this book. Table 5-2 lists the HTTP headers that are
most often set by servlets as a part of a response.

Setting an HTTP Header
The HttpServletResponse class provides a number of methods to assist servlets
in setting HTTP response headers. Use setHeader() to set the value of a header:

public void HttpServletResponse.setHeader(String name, String value)

This method sets the value of the named header as a String. The name is case
insensitive, as it is for all these methods. If the header had already been set, the
new value overwrites the previous one. Headers of all types can be set with this
method.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

146 CHAPTER 5: SENDING HTML INFORMATION
Figure 5-2. The Java Web Server “404 Not Found” page

Table 5-2. HTTP Response Headers

Header Usage

Cache-Control Specifies any special treatment a caching system should give to
this document. The most common values are no-cache (to indi-
cate this document should not be cached), no-store (to indicate
this document should not be cached or even stored by a proxy
server, usually due to its sensitive contents), and max-
age=seconds (to indicate how long before the document should
be considered stale). This header was introduced in HTTP 1.1.

Pragma The HTTP 1.0 equivalent of Cache-control, with no-cache as
its only possible value.

Connection Used to indicate whether the server is willing to maintain an open
(persistent) connection to the client. If so, its value is set to keep-
alive. If not, its value is set to close. Most web servers handle
this header on behalf of their servlets, automatically setting its
value to keep-alive when a servlet sets its Content-Length
header.

Retry-After Specifies a time when the server can again handle requests, used
with the SC_SERVICE_UNAVAILABLE status code. Its value is
either an int that represents the number of seconds or a date
string that represents an actual time.

Expires Specifies a time when the document may change or when its
information will become invalid. It implies that it is unlikely the
document will change before that time.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HTTP HEADERS 147
If you need to specify a time stamp for a header, you can use setDateHeader():

public void HttpServletResponse.setDateHeader(String name, long date)

This method sets the value of the named header to a particular date and time. The
method accepts the date value as a long that represents the number of millisec-
onds since the epoch (midnight, January 1, 1970 GMT). If the header has already
been set, the new value overwrites the previous one.

Finally, you can use setIntHeader() to specify an integer value for a header:

public void HttpServletResponse.setIntHeader(String name, int value)

This method sets the value of the named header as an int. If the header had
already been set, the new value overwrites the previous one.

The containsHeader() method provides a way to check if a header already
exists:

public boolean HttpServletResponse.containsHeader(String name)

This method returns true if the named header has already been set, false if not.

In addition, the HTML 3.2 specification defines an alternate way to set header
values using the <META HTTP-EQUIV> tag inside the HTML page itself:

<META HTTP-EQUIV="name" CONTENT="value">

This tag must be sent as part of the <HEAD> section of the HTML page. This tech-
nique does not provide any special benefit to servlets; it was developed for use with
static documents, which do not have access to their own headers.

Location Specifies a new location of a document, usually used with the
status codes SC_CREATED, SC_MOVED_PERMANENTLY, and SC_
MOVED_TEMPORARILY. Its value must be a fully qualified URL
(including “http://”).

WWW-Authenticate Specifies the authorization scheme and the realm of authoriza-
tion required by the client to access the requested URL. Used
with the status code SC_UNAUTHORIZED.

Content-Encoding Specifies the scheme used to encode the response body. Possible
values are gzip (or x-gzip) and compress (or x-compress).
Multiple encodings should be represented as a comma-separated
list in the order in which the encodings were applied to the data.

Table 5-2. HTTP Response Headers (continued)

Header Usage
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

148 CHAPTER 5: SENDING HTML INFORMATION
Redirecting a Request
One of the useful things a servlet can do using status codes and headers is redirect
a request. This is done by sending instructions for the client to use another URL
in the response. Redirection is generally used when a document moves (to send
the client to the new location), for load balancing (so one URL can distribute the
load to several different machines), or for simple randomization (choosing a desti-
nation at random).

Example 5-7 shows a servlet that performs a random redirect, sending a client to a
random site selected from its site list. Depending on the site list, a servlet like this
could have many uses. As it stands now, it’s just a jump-off point to a selection of
cool servlet sites. With a site list containing advertising images, it can be used to
select the next ad banner.

Example 5-7. Random redirector

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class SiteSelector extends HttpServlet {

 Vector sites = new Vector();

 Random random = new Random();

 public void init(ServletConfig config) throws ServletException {

 super.init(config);

 sites.addElement("http://www.oreilly.com/catalog/jservlet");

 sites.addElement("http://www.servlets.com");

 sites.addElement("http://jserv.java.sun.com");

 sites.addElement("http://www.servletcentral.com");

 }

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 int siteIndex = Math.abs(random.nextInt()) % sites.size();

 String site = (String)sites.elementAt(siteIndex);

 res.setStatus(res.SC_MOVED_TEMPORARILY);

 res.setHeader("Location", site);

 }

}

Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HTTP HEADERS 149
The actual redirection happens in two lines:

res.setStatus(res.SC_MOVED_TEMPORARILY);

res.setHeader("Location", site);

The first line sets the status code to indicate a redirection is to take place, while
the second line gives the new location. To guarantee they will work, you must call
these methods before you send any output. Remember, the HTTP protocol sends
status codes and headers before the content body. Also, the new site must be given
as an absolute URL (for example, http://server:port/path/file.html). Anything less
than that may confuse the client.

These two lines can be simplified to one using the sendRedirect() convenience
method:

public void HttpServletResponse.sendRedirect(String location) throws

IOException

This method redirects the response to the specified location, automatically setting
the status code and Location header. For our example, the two lines become
simply:

res.sendRedirect(site);

Client Pull
Client pull is similar to redirection, with one major difference: the browser actu-
ally displays the content from the first page and waits some specified amount of
time before retrieving and displaying the content from the next page. It’s called
client pull because the client is responsible for pulling the content from the next
page.

Why is this useful? For two reasons. First, the content from the first page can
explain to the client that the requested page has moved before the next page is
automatically loaded. Second, pages can be retrieved in sequence, making it
possible to present a slow-motion page animation.

Client pull information is sent to the client using the Refresh HTTP header. This
header’s value specifies the number of seconds to display the page before pulling
the next one, and it optionally includes a URL string that specifies the URL from
which to pull. If no URL is given, the same URL is used. Here’s a call to
setHeader() that tells the client to reload this same servlet after showing its
current content for three seconds:

setHeader("Refresh", "3");

And here’s a call that tells the client to display Netscape’s home page after the
three seconds:
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

150 CHAPTER 5: SENDING HTML INFORMATION
setHeader("Refresh", "3; URL=http://home.netscape.com");

Example 5-8 shows a servlet that uses client pull to display the current time,
updated every 10 seconds.

This is an example of a text-based animation—we’ll look at graphical animations
in the next chapter. Note that the Refresh header is nonrepeating. It is not a
directive to load the document repeatedly. For this example, however, the
Refresh header is specified on each retrieval, creating a continuous display.

The use of client pull to retrieve a second document is shown in Example 5-9. This
servlet redirects requests for one host to another host, giving an explanation to the
client before the redirection.

Example 5-8. The current time, kept current

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class ClientPull extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/plain");

 PrintWriter out = res.getWriter();

 res.setHeader("Refresh", "10");

 out.println(new Date().toString());

 }

}

Example 5-9. An explained host change

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class ClientPullMove extends HttpServlet {

 static final String NEW_HOST = "http://www.oreilly.com";

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 String newLocation = NEW_HOST + req.getRequestURI();
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

WHEN THINGS GO WRONG 151
This servlet generates the new location from the requested URI, which allows it to
redirect any requests made to the old server. With the Java Web Server, this servlet
could be configured to handle every request, to gradually transition clients to the
new location.

When Things Go Wrong
All right, let’s face it. Sometimes things go wrong. Sometimes the dog bites, and
sometimes the bee stings. There are any number of possible causes: bad parame-
ters, missing resources, and (gasp!) actual bugs. The point here is that a servlet has
to be prepared for problems, both expected and unexpected. There are two
points of concern when things go wrong:

• Limiting damage to the server

• Properly informing the client

Because servlets are written in Java, the potential damage they can cause to their
server is greatly minimized. A server can safely embed servlets (even within its
process), just as a web browser can safely embed downloaded applets. This safety is
built on Java’s security features, including the use of protected memory, excep-
tion handling, and security managers. Java’s memory protection guarantees that
servlets cannot accidentally (or intentionally) access the server’s internals. Java’s
exception handling lets a server catch every exception raised by a servlet. Even if a
servlet accidentally divides by zero or calls a method on a null object, the server
can continue to function. Java’s security manager mechanism provides a way for
servers to place untrusted servlets in a sandbox, limiting their abilities and keeping
them from intentionally causing problems.

You should be aware that trusted servlets executing outside a security manager’s
sandbox are given abilities that could potentially cause damage to the server. For
example, a servlet can overwrite the server’s file space or even call System.
exit(). It is also true that a trusted servlet should never cause damage except by
accident, and it’s hard to accidentally call System.exit(). Still, if it’s a

 res.setHeader("Refresh", "10; URL=" + newLocation);

 out.println("The requested URI has been moved to a different host.
");

 out.println("Its new location is " + newLocation + "
");

 out.println("Your browser will take you there in 10 seconds.");

 }

}

Example 5-9. An explained host change (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

152 CHAPTER 5: SENDING HTML INFORMATION
concern, even trusted servlets can be (and often are) run inside a fairly lenient but
sanity-checking security manager.

Properly describing a problem to the client cannot be handled by Java language
technology alone. There are many things to consider:

How much to tell the client?
Should the servlet send a generic status code error page, a prose explanation
of the problem, or (in the case of a thrown exception) a detailed stack trace?
What if the servlet is supposed to return nontextual content, such as an
image?

How to record the problem?
Should it be saved to a file, written to the server log, sent to the client, or
ignored?

How to recover?
Can the same servlet instance handle subsequent requests? Or is the servlet
corrupted, meaning that it needs to be reloaded?

The answers to these questions depend on the servlet and its intended use, and
they should be addressed for each servlet you write on a case-by-case basis. How
you handle errors is up to you and should be based on the level of reliability and
robustness required for your servlet. What we’ll look at next is an overview of the
servlet error-handling mechanisms that you can use to implement whatever policy
you select.

Status Codes
The simplest (and arguably best) way for a servlet to report an error is to use the
sendError() method to set the appropriate 400 series or 500 series status code.
For example, when the servlet is asked to return a file that does not exist, it can
return SC_NOT_FOUND. When it is asked to do something beyond its capabilities, it
can return SC_NOT_IMPLEMENTED. And when the entirely unexpected happens, it
can return SC_INTERNAL_SERVER_ERROR.

By using sendError() to set the status code, a servlet provides the server an
opportunity to give the response special treatment. For example, some servers,
such as the Java Web Server, replace the servlet’s response body with a server-
specific page that explains the error. If the error is such that a servlet ought to
provide its own explanation to the client in the response body, it can set the status
code with setStatus() and send the appropriate body—which could be text
based, a generated image, or whatever is appropriate.

A servlet must be careful to catch and handle any errors before it sends any part of
its response body. As you probably recall (because we’ve mentioned it several
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

WHEN THINGS GO WRONG 153
times), HTTP specifies that the status code and HTTP headers must be sent
before the response body. Once you’ve sent even one character of a response
body, it may be too late to change your status code or your HTTP headers. The
easy way to guarantee you don’t find yourself in this “too late” situation is to send
your content all at once when the servlet is done processing, using an
ByteArrayOutputStream buffer or HTML generation package, as shown earlier
in this chapter.

Logging
Servlets have the ability to write their actions and their errors to a log file using the
log() method:

public void ServletContext.log(String msg)

public void ServletContext.log(Exception e, String msg)

The single-argument method writes the given message to a servlet log, which is
usually an event log file. The two-argument version writes the given message and
exception’s stack trace to a servlet log. Notice the nonstandard placement of the
optional Exception parameter as the first parameter instead of the last for this
method. For both methods, the output format and location of the log are server-
specific.

The GenericServlet class also provides a log() method:

public void GenericServlet.log(String msg)

This is another version of the ServletContext method, moved to
GenericServlet for convenience. This method allows a servlet to call simply:

log(msg);

to write to the servlet log. Note, however, that GenericServlet does not provide
the two-argument version of log(). The absence of this method is probably an
oversight, to be rectified in a future release. For now, a servlet can perform the
equivalent by calling:

getServletContext().log(e, msg);

The log() method aids debugging by providing a way to track a servlet’s actions.
It also offers a way to save a complete description of any errors encountered by the
servlet. The description can be the same as the one given to the client, or it can be
more exhaustive and detailed.

Now we can go back and improve ViewFile further, so that it uses log() to
record on the server when requested files do not exist, while returning a simple
“404 Not Found” page to the client:
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

154 CHAPTER 5: SENDING HTML INFORMATION
// Return the file

try {

 ServletUtils.returnFile(file, out);

}

catch (FileNotFoundException e) {

 log("Could not find file: " + e.getMessage());

 res.sendError(res.SC_NOT_FOUND);

}

For more complicated errors, a servlet can log the complete stack trace, as shown
here:

// Return the file

try {

 ServletUtils.returnFile(file, out);

}

catch (FileNotFoundException e) {

 log("Could not find file: " + e.getMessage());

 res.sendError(res.SC_NOT_FOUND);

}

catch (IOException e) {

 getServletContext().log(e, "Problem sending file");

 res.sendError(res.SC._INTERNAL_SERVER_ERROR);

}

Reporting
In addition to logging errors and exceptions for the server administrator, during
development it’s often convenient to print a full description of the problem along
with a stack trace. Unfortunately, an exception cannot return its stack trace as a
String—it can only print its stack trace to a PrintStream or PrintWriter. To
retrieve a stack trace as a String, we have to jump through a few hoops. We need
to let the Exception print to a special PrintWriter built around a
ByteArrayOutputStream. That ByteArrayOutputStream can catch the output
and convert it to a String. The com.oreilly.servlet.ServletUtils class has
a getStackTraceAsString() method that does just this:

public static String getStackTraceAsString(Exception e) {

 ByteArrayOutputStream bytes = new ByteArrayOutputStream();

 PrintWriter writer = new PrintWriter(bytes, true);

 e.printStackTrace(writer);

 return bytes.toString();

}

Here’s how ViewFile can provide information that includes an IOException
stack trace:

// Return the file

try {
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

WHEN THINGS GO WRONG 155
 ServletUtils.returnFile(file, out);

}

catch (FileNotFoundException e) {

 log("Could not find file: " + e.getMessage());

 res.sendError(res.SC_NOT_FOUND);

}

catch (IOException e) {

 getServletContext().log(e, "Problem sending file");

 res.sendError(res.SC_INTERNAL_SERVER_ERROR,

 ServletUtils.getStackTraceAsString(e));

}

The output for a sample exception is shown in Figure 5-3.

Exceptions
As we said before, any exception that is thrown but not caught by a servlet is
caught by its server. How the server handles the exception is server-dependent: it
may pass the client the message and the stack trace, or it may not. It may automati-
cally log the exception, or it may not. It may even call destroy() on the servlet
and reload it, or it may not.

Figure 5-3. Keeping the client well informed
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

156 CHAPTER 5: SENDING HTML INFORMATION
Servlets designed and developed to run with a particular server can optimize for
that server’s behavior. A servlet designed to interoperate across several servers
cannot expect any particular exception handling on the part of the server. If such
a servlet requires special exception handling, it must catch its own exceptions and
handle them accordingly.

There are some types of exceptions a servlet has no choice but to catch itself. A
servlet can propagate to its server only those exceptions that subclass
IOException, ServletException, or RuntimeException. The reason has to do
with method signatures. The service() method of Servlet declares in its
throws clause that it throws IOException and ServletException exceptions.
For it (or the doGet() and doPost() methods it calls) to throw and not catch
anything else causes a compile time error. The RuntimeException is a special
case exception that never needs to be declared in a throws clause. A common
example is a NullPointerException.

The init() and destroy() methods have their own signatures as well. The
init() method declares that it throws only ServletException exceptions, and
destroy() declares that it throws no exceptions.

ServletException is a subclass of java.lang.Exception that is specific to serv-
lets—the class is defined in the javax.servlet package. This exception is thrown
to indicate a general servlet problem. It has the same constructors as java.lang.
Exception: one that takes no arguments and one that takes a single message
string. Servers catching this exception may handle it any way they see fit.

The javax.servlet package defines one subclass of ServletException,
UnavailableException, although you can, of course, add your own. This excep-
tion indicates a servlet is unavailable, either temporarily or permanently. Servers
(services) that catch an UnavailableException are expected to behave as
described in the Servlet API documentation:

Servlets may report this exception at any time, and the network service running
the servlet should behave appropriately. There are two types of unavailability, and
sophisticated services will deal with these differently:

Permanent unavailability. The servlet will not be able to handle client requests until
some administrative action is taken to correct a servlet problem. For example, the
servlet might be misconfigured, or the state of the servlet may be corrupted. Well
written servlets will log both the error and the corrective action which an adminis-
trator must perform to let the servlet become available.

Temporary unavailability. The servlet cannot handle requests at this moment due to
a system-wide problem. For example, a third-tier server might not be accessible, or
there may be insufficient memory or disk storage to handle requests. The problem
may be self-correcting, such as those due to excessive load, or corrective action
may need to be taken by an administrator.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

WHEN THINGS GO WRONG 157
Network services may safely treat both types of exceptions as “permanent,” but
good treatment of temporary unavailability leads to more robust network services.
Specifically, requests to the servlet might be blocked (or otherwise deferred) for a
servlet-suggested amount of time, rather than being rejected until the service itself
restarts.

UnavailableException has two constructors:

javax.servlet.UnavailableException(Servlet servlet, String msg)

javax.servlet.UnavailableException(int seconds, Servlet servlet, String msg)

The two-argument constructor creates a new exception that indicates the given
servlet is permanently unavailable, with an explanation given by msg. The three-
argument version creates a new exception that indicates the given servlet is tempo-
rarily unavailable, with an explanation given by msg. The duration of its
unavailability is given by seconds. This time is only an estimate. If no estimate can
be made, a nonpositive value may be used. Notice the nonstandard placement of
the optional seconds parameter as the first parameter instead of the last. This
may be changed in an upcoming release. UnavailableException provides the
isPermanent(), getServlet(), and getUnavailableSeconds() methods to
retrieve information about an exception.

Knowing When No One’s Listening
Sometimes clients hang up on servlets. Sure, it’s rude, but it happens. Sometimes
the client makes a mistake and goes to the wrong page. Sometimes the servlet
takes too long to respond. Remember, all the while a servlet is preparing its
response, the user is being tempted by the browser’s big, glowing Stop button that
is just begging to be pushed. You may be wondering, just what happens to the
servlet once that button is pushed?

Unfortunately, a servlet is not given any immediate indication that the user has
pressed the Stop button—there is no interrupt that tells it to stop processing. The
servlet discovers the client has stopped the request only when it tries to send
output to the nonexistent client, at which point an error condition occurs.

A servlet that sends information using a ServletOutputStream sees an
IOException when it tries to write output. For servers that buffer their output, the
IOException is thrown when the buffer fills up and its contents are flushed.

Because an IOException may be thrown any time a servlet tries to output, a well-
written servlet frees its resources in a finally block. (The finally block is an
optional part of a try/catch/finally construct. It comes after zero or more
catch blocks, and its code is executed once regardless of how the code in the try
block executes.) Here’s a version of the returnFile() method from the View-
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

158 CHAPTER 5: SENDING HTML INFORMATION
File servlet that uses a finally block to guarantee the closure of its
FileInputStream:

void returnFile(String filename, OutputStream out)

 throws FileNotFoundException, IOException {

 FileInputStream fis = null;

 try {

 fis = new FileInputStream(filename);

 byte[] buf = new byte[4 * 1024]; // 4K buffer

 int bytesRead;

 while ((bytesRead = fis.read(buf)) != -1) {

 out.write(buf, 0, bytesRead);

 }

 }

 finally {

 if (fis != null) fis.close();

 }

}

The addition of a finally block does not change the fact that this method propa-
gates all exceptions to its caller, but it does guarantee that, before that
propagation, the method gets a chance to close the open FileInputStream.

A servlet sending character data using a PrintWriter doesn’t get an
IOException when it tries to write output, because the methods of PrintWriter
never throw exceptions. Instead, a servlet that sends character data has to call the
checkError() method of PrintWriter. This method flushes the output and
returns a boolean that indicates if there was a problem writing to the underlying
OutputStream. It returns true if the client has stopped the request.

A long-running servlet should call checkError() regularly to determine if it can
halt processing early. If there hasn’t been any output since the last check, a servlet
can send filler content. For example:

out.println("<H2>Here's the solution for your differential equation:</H2>");

if (out.checkError()) return;

// Preliminary calculation here

out.print(" "); // filler content, extra whitespace is ignored in HTML

if (out.checkError()) return;

// Additional calculation here

It’s important to note that a server is not required to throw an IOException or set
the error flag of the PrinWriter after the client disconnects. A server may elect to
let the response run to completion with its output ignored. Generally this does not
cause a problem, but it does mean that a servlet running inside such a server
should always have a set end point and should not be written to continuously loop
until the user hits Stop.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

:

Chapter 6

In this chapter:
• Images
• Compressed Content
• Server Push

Until now, every servlet we’v
web consists of more than HT
the more interesting things a
want to return different MIM
different MIME type is for re
even by an applet embedded
and how to send a compress
to implement server push.
Java™
Copyright © 2
6

6.Sending Multimedia
Content 6
e written has returned a standard HTML page. The
ML, though, so in this chapter we’ll look at some of

servlet can return. We begin with a look at why you’d
E types and how to do it. The most common use of a
turning an image graphic generated by a servlet (or
inside the servlet!). The chapter also explores when

ed response and examines using multipart responses

Images
People are visually oriented—they like to see, not just read, their information.
Consequently, it’s nearly impossible to find a web site that doesn’t use images in
some way, and those you do find tend to look unprofessional. To cite the well-
worn cliche (translated into programmer-speak), “An image is worth a thousand
words.”

Luckily, it’s relatively simple for a servlet to send an image as its response. In fact,
we’ve already seen a servlet that does just this: the ViewFile servlet from
Chapter 4, Retrieving Information. As you may recall, this servlet can return any file
under the server’s document root. When the file happens to be an image file, it
detects that fact with the getMimeType() method and sets its response’s content
type with setContentType() before sending the raw bytes to the client.

This technique requires that we already have the needed image files saved on disk,
which isn’t always the case. Often, a servlet must generate or manipulate an image
before sending it to the client. Imagine, for example, a web page that contains an
image of an analog clock that displays the current time. Sure, someone could save
159
 Servlet Programming, eMatter Edition

000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

160 CHAPTER 6: SENDING MULTIMEDIA CONTENT
720 images (60 minutes times 12 hours) to disk and use a servlet to dispatch the
appropriate one. But that someone isn’t me, and it shouldn’t be you. Instead, the
wise servlet programmer writes a servlet that dynamically generates the image of
the clock face and its hands—or as a variant, a servlet that loads an image of the
clock face and adds just the hands. And, of course, the frugal programmer also has
the servlet cache the image (for about a minute) to save server cycles.

There are many other reasons you might want a servlet to return an image. By
generating images, a servlet can display things such as an up-to-the-minute stock
chart, the current score for a baseball game (complete with icons representing the
runners on base), or a graphical representation of the Cokes left in the Coke
machine. By manipulating preexisting images, a servlet can do even more. It can
draw on top of them, change their color, size, or appearance, or combine several
images into one.

Image Generation
Suppose you have an image as raw pixel data that you want to send to someone.
How do you do it? Let’s assume it’s a true-color, 24-bit image (3 bytes per pixel)
and that it’s 100 pixels tall and 100 pixels wide. You could take the obvious
approach and send it one pixel at a time, in a stream of 30,000 bytes. But is that
enough? How does the receiver know what to do with the 30,000 bytes he
received? The answer is that he doesn’t. You also need to say that you are sending
raw, true-color pixel values, that you’re beginning in the upper left corner, that
you’re sending row by row, and that each row is 100 pixels wide. Yikes! And what if
you decide to send fewer bytes by using compression? You have to say what kind of
compression you are using, so the receiver can decompress the image. Suddenly
this has become a complicated problem.

Fortunately this is a problem that has been solved, and solved several different
ways. Each image format (GIF, JPEG, TIFF, etc.) represents one solution. Each
image format defines a standard way to encode an image so that it can later be
decoded for viewing or manipulation. Each encoding technique has certain advan-
tages and limitations. For example, the compression used for GIF encoding excels
at handling computer-generated images, but the GIF format is limited to just 256
colors. The compression used for JPEG encoding, on the other hand, works best
on photo-realistic images that contain millions of colors, but it works so well
because it uses “lossy” compression that can blur the photo’s details.

Understanding image encoding helps you understand how servlets handle images.
A servlet like ViewFile can return a preexisting image by sending its encoded
representation unmodified to the client—the browser decodes the image for
viewing. But a servlet that generates or modifies an image must construct an
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IMAGES 161
internal representation of that image, manipulate it, and then encode it, before
sending it to the client.

A “Hello World” image

Example 6-1 gives a simple example of a servlet that generates and returns a GIF
image. The graphic says “Hello World!”, as shown in Figure 6-1.

Example 6-1. Hello World graphics

import java.io.*;

import java.awt.*;

import javax.servlet.*;

import javax.servlet.http.*;

import Acme.JPM.Encoders.GifEncoder;

public class HelloWorldGraphics extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 ServletOutputStream out = res.getOutputStream(); // binary output!

 Frame frame = null;

 Graphics g = null;

 try {

 // Create an unshown frame

 frame = new Frame();

 frame.addNotify();

 // Get a graphics region, using the Frame

 Image image = frame.createImage(400, 60);

 g = image.getGraphics();

 // Draw "Hello World!" to the off-screen graphics context

 g.setFont(new Font("Serif", Font.ITALIC, 48));

 g.drawString("Hello World!", 10, 50);

 // Encode the off-screen image into a GIF and send it to the client

 res.setContentType("image/gif");

 GifEncoder encoder = new GifEncoder(image, out);

 encoder.encode();

 }

 finally {

 // Clean up resources

 if (g != null) g.dispose();

 if (frame != null) frame.removeNotify();

 }
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

162 CHAPTER 6: SENDING MULTIMEDIA CONTENT
Although this servlet uses the java.awt package, it never actually displays a
window on the server’s display. Nor does it display a window on the client’s display.
It performs all its work in an off-screen graphics context and lets the browser
display the image. The strategy is as follows: create an off-screen image, get its
graphics context, draw to the graphics context, and then encode the resulting
image for transmission to the client.

Obtaining an off-screen image involves jumping through several hoops. In Java, an
image is represented by the java.awt.Image class. Unfortunately, an Image
object cannot be instantiated directly through a constructor. It must be obtained
through a factory method like the createImage() method of Component or the
getImage() method of Toolkit. Because we’re creating a new image, we use
createImage(). Note that before a component can create an image, its native
peer must already exist. Thus, to create our Image we must create a Frame, create
the frame’s peer with a call to addNotify(), and then use the frame to create our
Image.* Once we have an image, we draw onto it using its graphics context, which
can be retrieved with a call to the getGraphics() method of Image. In this
example, we just draw a simple string.

After drawing into the graphics context, we call setContentType() to set the
MIME type to "image/gif" since we’re going to use the GIF encoding. For the
examples in this chapter, we use a GIF encoder written by Jef Poskanzer. It’s well

 }

}

Figure 6-1. Hello World graphics

* For web servers running on Unix systems, the frame’s native peer has to be created inside an X server.
Thus, for optimal performance, make sure the DISPLAY environment variable (which specifies the X
server to use) is unset or set to a local X server. Also make sure the web server has been granted access
to the X server, which may require the use of xhost or xauth.

Example 6-1. Hello World graphics (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IMAGES 163
written and freely available with source from http://www.acme.com.* To encode the
image, we create a GifEncoder object, passing it the image object and the
ServletOutputStream for the servlet. When we call encode() on the Gif
Encoder object, the image is encoded and sent to the client.

After sending the image, the servlet does what all well-behaved servlets should do:
it releases its graphical resources. These would be reclaimed automatically during
garbage collection, but releasing them immediately helps on systems with limited
resources. The code to release the resources is placed in a finally block to guar-
antee its execution, even when the servlet throws an exception.

A dynamically generated chart

Now let’s look at a servlet that generates a more interesting image. Example 6-2
creates a bar chart that compares apples to oranges, with regard to their annual
consumption. Figure 6-2 shows the results. There’s little need for this chart to be
dynamically generated, but it lets us get the point across without too much code.
Picture in your mind’s eye, if you will, that the servlet is charting up-to-the-minute
stock values or the server’s recent load.

* Note that the LZW compression algorithm used for GIF encoding is protected by Unisys and IBM pat-
ents which, according to the Free Software Foundation, make it impossible to have free software that
generates the GIF format. For more information, see http://www.fsf.org/philosophy/gif.html. Of course,
a servlet can encode its Image into any image format. For web content, JPEG exists as the most likely
alternative to GIF. There are JPEG encoders in JDK 1.2 and commercial products such as the JIMI
product (Java Image Management Interface), available from Activated Intelligence at http://www.
activated.com.

Example 6-2. A chart comparing apples and oranges

import java.awt.*;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import Acme.JPM.Encoders.GifEncoder;

import javachart.chart.*; // from Visual Engineering

public class SimpleChart extends HttpServlet {

 static final int WIDTH = 450;

 static final int HEIGHT = 320;

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException ,IOException {

 ServletOutputStream out = res.getOutputStream();

 Frame frame = null;
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

164 CHAPTER 6: SENDING MULTIMEDIA CONTENT
 Graphics g = null;

 try {

 // Create a simple chart

 BarChart chart = new BarChart("Apples and Oranges");

 // Give it a title

 chart.getBackground().setTitleFont(new Font("Serif", Font.PLAIN, 24));

 chart.getBackground().setTitleString("Comparing Apples and Oranges");

 // Show, place, and customize its legend

 chart.setLegendVisible(true);

 chart.getLegend().setLlX(0.4); // normalized from lower left

 chart.getLegend().setLlY(0.75); // normalized from lower left

 chart.getLegend().setIconHeight(0.04);

 chart.getLegend().setIconWidth(0.04);

 chart.getLegend().setIconGap(0.02);

 chart.getLegend().setVerticalLayout(false);

 // Give it its data and labels

 double[] appleData = {950, 1005, 1210, 1165, 1255};

 chart.addDataSet("Apples", appleData);

 double[] orangeData = {1435, 1650, 1555, 1440, 1595};

 chart.addDataSet("Oranges", orangeData);

 String[] labels = {"1993", "1994", "1995", "1996", "1997"};

 chart.getXAxis().addLabels(labels);

 // Color apples red and oranges orange

 chart.getDatasets()[0].getGc().setFillColor(Color.red);

 chart.getDatasets()[1].getGc().setFillColor(Color.orange);

 // Name the axes

 chart.getXAxis().setTitleString("Year");

 chart.getYAxis().setTitleString("Tons Consumed");

 // Size it appropriately

 chart.resize(WIDTH, HEIGHT);

 // Create an unshown frame

 frame = new Frame();

 frame.addNotify();

 // Get a graphics region of appropriate size, using the Frame

 Image image = frame.createImage(WIDTH, HEIGHT);

 g = image.getGraphics();

Example 6-2. A chart comparing apples and oranges (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IMAGES 165
The basics are the same: create an off-screen image and get its graphics context,
draw to the graphics context, and then encode the image for transmission to the

 // Ask the chart to draw itself to the off screen graphics context

 chart.drawGraph(g);

 // Encode and return what it painted

 res.setContentType("image/gif");

 GifEncoder encoder = new GifEncoder(image, out);

 encoder.encode();

 }

 finally {

 // Clean up resources

 if (g != null) g.dispose();

 if (frame != null) frame.removeNotify();

 }

 }

}

Figure 6-2. A chart comparing apples and oranges

Example 6-2. A chart comparing apples and oranges (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

166 CHAPTER 6: SENDING MULTIMEDIA CONTENT
client. The difference is that this servlet constructs a BarChart object to do the
drawing. There are more than a dozen charting packages available in Java. You
can find several showcased at http://www.gamelan.com. The BarChart class from
this example came from Visual Engineering’s JavaChart package, available at http:/
/www.ve.com/javachart. It’s a commercial product, but for readers of this book they
have granted free permission to use the portion of the API presented above. The
JavaChart package also includes a set of free chart-generating applets that we will
use later in this chapter.

Image Composition
So far, we’ve drawn our graphics onto empty images. In this section, we discuss
how to take preexisting images and either draw on top of them or combine them
to make conglomerate images. We also examine error handling in servlets that
return images.

Drawing over an image

Sometimes it’s useful for a servlet to draw on top of an existing image. A good
example is a building locator servlet that knows where every employee sits. When
queried for a specific employee, it can draw a big red dot over that employee’s
office.

One deceptively obvious technique for drawing over a preexisting image is to
retrieve the Image with Toolkit.getDefaultToolkit().
getImage(imagename), get its graphics context with a call to the getGraphics()
method of Image, and then use the returned graphics context to draw on top of
the image. Unfortunately, it isn’t quite that easy. The reason is that you cannot use
getGraphics() unless the image was created with the createImage() method
of Component. With the AWT, you always need to have a native peer in the back-
ground doing the actual graphics rendering.

Here’s what you have to do instead: retrieve the preexisting image via the
Toolkit.getDefaultToolkit().getImage(imagename) method and then tell
it to draw itself into another graphics context created with the createImage()
method of Component, as shown in the previous two examples. Now you can use
that graphics context to draw on top of the original image.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IMAGES 167
Example 6-3 clarifies this technique with an example. It’s a servlet that writes
“CONFIDENTIAL” over every image it returns. The image name is passed to the
servlet as extra path information. Some example output is shown in Figure 6-3.

Example 6-3. Drawing over an image to mark it confidential

import java.awt.*;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import Acme.JPM.Encoders.GifEncoder;

public class Confidentializer extends HttpServlet {

 Frame frame = null;

 Graphics g = null;

 public void init(ServletConfig config) throws ServletException {

 super.init(config);

 // Construct a reusable unshown frame

 frame = new Frame();

 frame.addNotify();

 }

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 ServletOutputStream out = res.getOutputStream();

 try {

 // Get the image location from the path info

 String source = req.getPathTranslated();

 if (source == null) {

 throw new ServletException("Extra path information " +

 "must point to an image");

 }

 // Load the image (from bytes to an Image object)

 MediaTracker mt = new MediaTracker(frame); // frame acts as ImageObserver

 Image image = Toolkit.getDefaultToolkit().getImage(source);

 mt.addImage(image, 0);

 try {

 mt.waitForAll();

 }

 catch (InterruptedException e) {

 getServletContext().log(e, "Interrupted while loading image");

 throw new ServletException(e.getMessage());

 }
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

168 CHAPTER 6: SENDING MULTIMEDIA CONTENT
You can see that this servlet performs each step exactly as described above, along
with some additional housekeeping. The servlet creates its unshown Frame in its
init() method. Creating the Frame once and reusing it is an optimization previ-
ously left out for the sake of clarity. For each request, the servlet begins by
retrieving the name of the preexisting image from the extra path information.
Then it retrieves a reference to the image with the getImage() method of
Toolkit and physically loads it into memory with the help of a MediaTracker.
Normally it’s fine for an image to load asynchronously with its partial results
painted as it loads, but in this case we paint the image just once and need to guar-
antee it’s fully loaded beforehand. Then the servlet gets the width and height of
the loaded image and creates an off-screen image to match. Finally, the big
moment: the loaded image is drawn on top of the newly constructed, empty
image. After that it’s old hat. The servlet writes its big “CONFIDENTIAL” and
encodes the image for transmission.

 // Construct a matching-size off screen graphics context

 int w = image.getWidth(frame);

 int h = image.getHeight(frame);

 Image offscreen = frame.createImage(w, h);

 g = offscreen.getGraphics();

 // Draw the image to the off-screen graphics context

 g.drawImage(image, 0, 0, frame);

 // Write CONFIDENTIAL over its top

 g.setFont(new Font("Monospaced", Font.BOLD | Font.ITALIC, 30));

 g.drawString("CONFIDENTIAL", 10, 30);

 // Encode the off-screen graphics into a GIF and send it to the client

 res.setContentType("image/gif");

 GifEncoder encoder = new GifEncoder(offscreen, out);

 encoder.encode();

 }

 finally {

 // Clean up resources

 if (g != null) g.dispose();

 }

 }

 public void destroy() {

 // Clean up resources

 if (frame != null) frame.removeNotify();

 }

}

Example 6-3. Drawing over an image to mark it confidential (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IMAGES 169
Notice how this servlet handles error conditions by throwing exceptions and
logging any errors that may interest the server administrator. When returning
images, it’s difficult to do much more. After all, a textual description doesn’t help
when a servlet is referenced in an tag. This approach allows the server to do
whatever it deems appropriate.

Combining images

A servlet can also combine images into one conglomerate image. Using this ability,
a building locator servlet could display an employee’s smiling face over her office,
instead of a red dot. The technique used for combining images is similar to the
one we used to draw over the top of an image: the appropriate images are loaded,
they’re drawn onto a properly created Image object, and that image is encoded for
transmission.

Example 6-4 shows how to do this for a servlet that displays a hit count as a
sequence of individual number images combined into one large image. Its output

Figure 6-3. Drawing over an image to mark it confidential
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

170 CHAPTER 6: SENDING MULTIMEDIA CONTENT
can be seen in Figure 6-4. The number images it uses are available at http://www.
geocities.com/SiliconValley/6742/, along with several other styles.

Example 6-4. Combining images to form a graphical counter

import java.awt.*;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import Acme.JPM.Encoders.GifEncoder;

public class GraphicalCounter extends HttpServlet {

 public static final String DIR = "/images/odometer";

 public static final String COUNT = "314159";

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 ServletOutputStream out = res.getOutputStream();

 Frame frame = null;

 Graphics g = null;

 try {

 // Get the count to display, must be sole value in the raw query string

 // Or use the default

 String count = (String)req.getQueryString();

 if (count == null) count = COUNT;

 int countlen = count.length();

 Image images[] = new Image[countlen];

 for (int i = 0; i < countlen; i++) {

 String imageSrc =

 req.getRealPath(DIR + "/" + count.charAt(i) + ".GIF");

 images[i] = Toolkit.getDefaultToolkit().getImage(imageSrc);

 }

 // Create an unshown Frame

 frame = new Frame();

 frame.addNotify();

 // Load the images

 MediaTracker mt = new MediaTracker(frame);

 for (int i = 0; i < countlen; i++) {

 mt.addImage(images[i], i);

 }

 try {
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IMAGES 171
 mt.waitForAll();

 }

 catch (InterruptedException e) {

 getServletContext().log(e, "Interrupted while loading image");

 throw new ServletException(e.getMessage());

 }

 // Check for problems loading the images

 if (mt.isErrorAny()) {

 // We had a problem, find which image(s)

 StringBuffer problemChars = new StringBuffer();

 for (int i = 0; i < countlen; i++) {

 if (mt.isErrorID(i)) {

 problemChars.append(count.charAt(i));

 }

 }

 throw new ServletException(

 "Coult not load an image for these characters: " +

 problemChars.toString());

 }

 // Get the cumulative size of the images

 int width = 0;

 int height = 0;

 for (int i = 0; i < countlen; i++) {

 width += images[i].getWidth(frame);

 height = Math.max(height, images[i].getHeight(frame));

 }

 // Get a graphics region to match, using the Frame

 Image image = frame.createImage(width, height);

 g = image.getGraphics();

 // Draw the images

 int xindex = 0;

 for (int i = 0; i < countlen; i++) {

 g.drawImage(images[i], xindex, 0, frame);

 xindex += images[i].getWidth(frame);

 }

 // Encode and return the composite

 res.setContentType("image/gif");

 GifEncoder encoder = new GifEncoder(image, out);

 encoder.encode();

 }

 finally {

 // Clean up resources

 if (g != null) g.dispose();

Example 6-4. Combining images to form a graphical counter (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

172 CHAPTER 6: SENDING MULTIMEDIA CONTENT
This servlet receives the number to display by reading its raw query string. For
each number in the count, it retrieves and loads the corresponding number image
from the directory given by DIR. (DIR is always under the server’s document root.
It’s given as a virtual path and translated dynamically to a real path.) Then it calcu-
lates the combined width and the maximum height of all these images and
constructs an off-screen image to match. The servlet draws each number image
into this off-screen image in turn from left to right. Finally, it encodes the image
for transmission.

To be of practical use, this servlet must be called by another servlet that knows the
hit count to be displayed. For example, it could be called by a server-side include
servlet embedded in a page, using syntax like the following:

This servlet handles error conditions in the same way as the previous servlet, by
throwing a ServletException and leaving it to the server to behave
appropriately.

Image Effects
We’ve seen how servlets can create and combine images. In this section, we look at
how servlets can also perform special effects on images. For example, a servlet can
reduce the transmission time for an image by scaling down its size before transmis-
sion. Or it can add some special shading to an image to make it resemble a
pressable button. As an example, let’s look at how a servlet can convert a color
image to grayscale.

 if (frame != null) frame.removeNotify();

 }

 }

}

Figure 6-4. Combining images to form a graphical counter

Example 6-4. Combining images to form a graphical counter (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IMAGES 173
Converting an image to grayscale

Example 6-5 shows a servlet that converts an image to grayscale before returning
it. The servlet performs this effect without ever actually creating an off-screen
graphics context. Instead, it creates the image using a special ImageFilter.
(We’d show you before and after images, but they wouldn’t look very convincing
in a black-and-white book.)

Example 6-5. An image effect converting an image to grayscale

import java.awt.*;

import java.awt.image.*;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import Acme.JPM.Encoders.*;

public class DeColorize extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("image/gif");

 ServletOutputStream out = res.getOutputStream();

 // Get the image location from the path info

 String source = req.getPathTranslated();

 if (source == null) {

 throw new ServletException("Extra path information " +

 "must point to an image");

 }

 // Construct an unshown frame

 // No addNotify() because its peer isn't needed

 Frame frame = new Frame();

 // Load the image

 Image image = Toolkit.getDefaultToolkit().getImage(source);

 MediaTracker mt = new MediaTracker(frame);

 mt.addImage(image, 0);

 try {

 mt.waitForAll();

 }

 catch (InterruptedException e) {

 getServletContext().log(e, "Interrupted while loading image");

 throw new ServletException(e.getMessage());

 }

 // Get the size of the image
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

174 CHAPTER 6: SENDING MULTIMEDIA CONTENT
Much of the code for this servlet matches that of the Confidentializer
example. The major difference is shown here:

// Create an image to match, run through a filter

Image filtered = frame.createImage(

 new FilteredImageSource(image.getSource(),

 new GrayscaleImageFilter()));

This servlet doesn’t use the createImage(int, int)method of Component we’ve
used up until now. It takes advantage of the createImage(ImageProducer)
method of Component instead. The servlet creates an image producer with a
FilteredImageSource that passes the image through an
GrayscaleImageFilter. This filter converts each color pixel to its grayscale
counterpart. Thus, the image is converted to grayscale as it is being created. The
code for the GrayscaleImageFilter is shown in Example 6-6.

 int width = image.getWidth(frame);

 int height = image.getHeight(frame);

 // Create an image to match, run through a filter

 Image filtered = frame.createImage(

 new FilteredImageSource(image.getSource(),

 new GrayscaleImageFilter()));

 // Encode and return the filtered image

 GifEncoder encoder = new GifEncoder(filtered, out);

 encoder.encode();

 }

}

Example 6-6. The GrayscaleImageFilter class

import java.awt.*;

import java.awt.image.*;

public class GrayscaleImageFilter extends RGBImageFilter {

 public GrayscaleImageFilter() {

 canFilterIndexColorModel = true;

 }

 // Convert color pixels to grayscale

 // The algorithm matches the NTSC specification

 public int filterRGB(int x, int y, int pixel) {

 // Get the average RGB intensity

 int red = (pixel & 0x00ff0000) >> 16;

 int green = (pixel & 0x0000ff00) >> 8;

Example 6-5. An image effect converting an image to grayscale (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IMAGES 175
For each value in the colormap, this filter receives a pixel value and returns a new
filtered pixel value. By setting the canFilterIndexColorModel variable to true,
we signify that this filter can operate on the colormap and not on individual pixel
values. The pixel value is given as a 32-bit int, where the first octet represents the
alpha (transparency) value, the second octet the intensity of red, the third octet
the intensity of green, and the fourth octet the intensity of blue. To convert a pixel
value to grayscale, the red, green, and blue intensities must be set to identical
values. We could average the red, green, and blue values and use that average
value for each color intensity. That would convert the image to grayscale. Taking
into account how people actually perceive color (and other factors), however,
demands a weighted average. The 0.299, 0.587, 0.114 weighting used here matches
that used by the National Television Systems Committee for black-and-white televi-
sion. For more information, see Charles A. Poynton’s book A Technical Introduction
to Digital Video (Wiley) and the web site http://www.color.org.

Caching a converted image

The process of creating and encoding an image can be expensive, taking both
time and server CPU cycles. Caching encoded images can often improve perfor-
mance dramatically. Instead of doing all the work for every request, the results can
be saved and resent for subsequent requests. The clock face idea that we
mentioned earlier is a perfect example. The clock image needs to be created at
most once per minute. Any other requests during that minute can be sent the
same image. A chart for vote tabulation is another example. It can be created once
and changed only as new votes come in.

For our example, let’s give the DeColorize servlet the ability to cache the gray-
scale images it returns. The servlet life cycle makes this extremely simple. Our new
DeColorize servlet saves each converted image as a byte array stored in a
Hashtable keyed by the image name. First, our servlet needs to create a
Hashtable instance variable. This must be declared outside doGet():

Hashtable gifs = new Hashtable();

 int blue = pixel & 0x000000ff;

 int luma = (int) (0.299 * red + 0.587 * green + 0.114 * blue);

 // Return the luma value as the value for each RGB component

 // Note: Alpha (transparency) is always set to max (not transparent)

 return (0xff << 24) | (luma << 16) | (luma << 8) | luma;

 }

}

Example 6-6. The GrayscaleImageFilter class (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

176 CHAPTER 6: SENDING MULTIMEDIA CONTENT
To fill this hashtable, we need to capture the encoded graphics. So, instead of
giving the GifEncoder the ServletOutputStream, we give it a
ByteArrayOutputStream. Then, when we encode the image with encode(), the
encoded image is stored in the ByteArrayOutputStream. Finally, we store the
captured bytes in the hashtable and then write them to the
ServletOutputStream to send the image to the client. Here’s the new code to
encode, store, and return the filtered image:

// Encode, store, and return the filtered image

ByteArrayOutputStream baos = new ByteArrayOutputStream();

GifEncoder encoder = new GifEncoder(filtered, baos);

encoder.encode();

gifs.put(source, baos);

baos.writeTo(out);

This fills the hashtable with encoded images keyed by image name. Now, earlier in
the servlet, we can go directly to the cache when asked to return a previously
encoded image. This code should go immediately after the code executed if
source==null:

// Short circuit if it's been done before

if (gifs.containsKey(source)) {

 ByteArrayOutputStream baos = (ByteArrayOutputStream) gifs.get(source);

 baos.writeTo(out);

 return;

}

With these modifications, any image found in the cache is returned quickly,
directly from memory.

Of course, caching multiple images tends to consume large amounts of memory.
To cache a single image is rarely a problem, but a servlet such as this should use
some method for cleaning house. For example, it could cache only the 10 most
recently requested images.

Image Effects in Filter Chains
We haven’t talked about filter chains yet in this chapter, but they are actually quite
useful for performing image effects. If you recall, a servlet in a filter chain receives
content on its input stream and sends a filtered version of that content out its
output stream. In previous examples, we have always filtered textual HTML. Now
we can see how to filter images in a servlet chain.

Performing special effects on an image works the same whether it happens in a
filter chain or in a standard servlet. The only difference is that instead of loading
the image from a file, a chained servlet receives its image as an encoded stream of
bytes. Example 6-7 shows how a servlet receives an encoded stream of bytes and
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IMAGES 177
creates an Image from them. In this case, the servlet shrinks the image to one-
quarter its original size.

Example 6-7. Shrinking an image using a filter chain

import java.awt.*;

import java.awt.image.*;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import Acme.JPM.Encoders.*;

public class ShrinkFilter extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 ServletOutputStream out = res.getOutputStream();

 String contentType = req.getContentType();

 if (contentType == null || !contentType.startsWith("image")) {

 throw new ServletException("Incoming content type must be \"image/*\"");

 }

 // Fetch the bytes of the incoming image

 DataInputStream in = new DataInputStream(

 new BufferedInputStream(

 req.getInputStream()));

 ByteArrayOutputStream baos = new ByteArrayOutputStream();

 byte[] buf = new byte[4 * 1024]; // 4K buffer

 int len;

 while ((len = in.read(buf, 0, buf.length)) != -1) {

 baos.write(buf, 0, len);

 }

 // Create an image out of them

 Image image = Toolkit.getDefaultToolkit()

 .createImage(baos.toByteArray());

 // Construct an unshown frame

 // No addNotify() since it's peer isn't needed

 Frame frame = new Frame();

 // Load the image, so we can get a true width and height

 MediaTracker mt = new MediaTracker(frame);

 mt.addImage(image, 0);

 try {

 mt.waitForAll();

 }
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

178 CHAPTER 6: SENDING MULTIMEDIA CONTENT
The createImage(byte[]) method of Toolkit creates an Image from an array
of bytes. The method determines the image format automatically, as long as the
image is in one of the formats understood and decodable by the AWT (typically
GIF, JPEG, and XBM, although it’s possible to add a custom content handler).

The servlet uses the createImage() method to create an Image out of the
incoming bytes. Because the createImage() method doesn’t accept an input
stream, the servlet first captures the bytes with a ByteArrayOutputStream. After
creating the Image, the servlet loads it in order to get its true width and height.
Then the servlet gets a scaled instance that is half as wide and half as tall, using the
getScaledInstance() method of Image. Last, it encodes the image and sends it
out its output stream.

Why use a filter chain to perform an image effect instead of a standard servlet?
The main reason is for increased flexibility. For example, a server can be told that
all the large classified images in one subdirectory should be run through a
“shrink” filter and a “confidential tag” filter. Closer to reality, the server can be
told that any image on the web site should be served in its “shrunken” form if the
request URI begins with "/lite". Another possibility is to tell the server that all
images of type image/xbm need to be run through a basic filter that converts the
XBM image into a GIF.

Are you wondering why we aren’t taking advantage of object serialization to pass
our image from servlet to servlet? The reason is simple: images are not Serializ-

 catch (InterruptedException e) {

 getServletContext().log(e, "Interrupted while loading image");

 throw new ServletException(e.getMessage());

 }

 // Shrink the image to half its width and half its height.

 // An improved version of this servlet would receive the desired

 // ratios in its init parameters.

 // We could also resize using ReplicateScaleFilter or

 // AreaAveragingScaleFilter.

 Image shrunk = image.getScaledInstance(image.getWidth(frame) / 2,

 image.getHeight(frame) / 2,

 image.SCALE_DEFAULT);

 // Encode and return the shrunken image

 res.setContentType("image/gif");

 GifEncoder encoder = new GifEncoder(shrunk, out);

 encoder.encode();

 }

}

Example 6-7. Shrinking an image using a filter chain (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IMAGES 179
able. If a servlet can guarantee that the next link in the chain is another servlet
and not the client, though, then it can pass the Image more efficiently using tech-
niques described in Chapter 11, Interservlet Communication.

An Image of an Embedded Applet
Now let’s take a look at one of the more creative ways a servlet can generate an
image: by taking a picture of an embedded applet. Applets are small Java programs
that can be sent to a client for execution inside a web page—they’ve been used to
create everything from animations to interactive programs to static charts. Here
we’re going to twist their use a bit. Instead of having the server send a program to
the client for execution, we have it send just a picture of the program executing
on the server. Now we’ll admit that replacing an executing applet with an image is
hardly a fair trade, but it does has its advantages. For a static, noninteractive
applet, it’s often more efficient to send its image than to send the code and data
needed to have the client create the image itself. Plus, the image displays even for
clients whose browsers don’t support Java or who may have Java support disabled.

An image of a simple applet

Example 6-8 shows an applet that may look familiar to you. It’s the SecondApplet
example taken from David Flanagan’s Java Examples in a Nutshell book (O’Reilly).
Figure 6-5 shows its “fancy graphics.”

Example 6-8. A simple applet

import java.applet.*;

import java.awt.*;

public class SecondApplet extends Applet {

 static final String message = "Hello World";

 private Font font;

 // One-time initialization for the applet

 // Note: no constructor defined.

 public void init() {

 font = new Font("Helvetica", Font.BOLD, 48);

 }

 // Draw the applet whenever necessary. Do some fancy graphics.

 public void paint(Graphics g) {

 // The pink oval

 g.setColor(Color.pink);

 g.fillOval(10, 10, 330, 100);

 // The red outline. Java doesn't support wide lines, so we

 // try to simulate a 4-pixel-wide line by drawing four ovals.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

180 CHAPTER 6: SENDING MULTIMEDIA CONTENT
This applet can be embedded the traditional way inside an HTML file with the
<APPLET> tag:

<APPLET CODE="SecondApplet.class" WIDTH=500 HEIGHT=200>

</APPLET>

An <APPLET> tag can include a CODEBASE parameter that tells the client where to
fetch the given class. Because the previous <APPLET> tag does not provide a
CODEBASE parameter, the SecondApplet.class file is assumed to be in the same direc-
tory as the HTML file.

This applet can also be embedded inside HTML content returned by a servlet:

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class SecondAppletHtml extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/html");

 g.setColor(Color.red);

 g.drawOval(10,10, 330, 100);

 g.drawOval(9, 9, 332, 102);

 g.drawOval(8, 8, 334, 104);

 g.drawOval(7, 7, 336, 106);

 // The text

 g.setColor(Color.black);

 g.setFont(font);

 g.drawString(message, 40, 75);

 }

}

Figure 6-5. The simple applet’s fancy graphics

Example 6-8. A simple applet (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IMAGES 181
 PrintWriter out = res.getWriter();

 // ...

 out.println("<APPLET CODE=SecondApplet.class CODEBASE=/ " +

 "WIDTH=500 HEIGHT=200>");

 out.println("</APPLET>");

 // ...

 }

}

Notice that here the CODEBASE parameter must be supplied. If it’s not given, the
code base is erroneously assumed to be /servlet or whatever other virtual path was
used to launch the servlet.

Now let’s look at a servlet that embeds SecondApplet inside itself and sends a
picture of the applet to the client. The code is shown in Example 6-9 and its
output in Figure 6-6. In order to embed an applet, a servlet needs a special Frame
subclass that implements AppletContext and AppletStub. For these examples,
we can use a modified version of Jef Poskanzer’s Acme.MainFrame class. In addi-
tion to some minor bug fixes, the class has been modified to not call its own
show() method (to keep it from actually displaying during execution) and to call
the applet’s init() and start() methods synchronously instead of in a separate
thread (to guarantee the applet is ready when we call its paint()method). A copy
of Acme.MainFrameModified is available with the book examples as described in
the Preface.

Example 6-9. Embedding SecondApplet

import java.applet.*;

import java.awt.*;

import java.awt.image.*;

import java.io.*;

import java.net.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

import Acme.JPM.Encoders.GifEncoder;

import Acme.MainFrameModified;

public class SecondAppletViewer extends HttpServlet {

 static final int WIDTH = 450;

 static final int HEIGHT = 320;

 static final String APPLETNAME = "SecondApplet";

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

182 CHAPTER 6: SENDING MULTIMEDIA CONTENT
 ServletOutputStream out = res.getOutputStream();

 MainFrameModified frame = null;

 Graphics g = null;

 Applet applet = null;

 try {

 // Load the SecondApplet

 // Must be in the standard CLASSPATH

 try {

 applet = (Applet) Class.forName(APPLETNAME).newInstance();

 }

 catch (Exception e) {

 throw new ServletException("Could not load applet:" + e);

 }

 // Prepare the applet arguments

 String args[] = new String[1];

 args[0] = "barebones=true"; // run without a menu bar

 // Put the applet in its frame

 // addNotify() is called by MainFrameModified

 frame = new MainFrameModified(applet, args, WIDTH, HEIGHT);

 // Get a graphics region to match the applet size, using the Frame

 Image image = frame.createImage(WIDTH, HEIGHT);

 g = image.getGraphics();

 // Ask the applet to paint itself

 applet.validate();

 applet.paint(g);

 // Encode and return what it painted

 res.setContentType("image/gif");

 GifEncoder encoder = new GifEncoder(image, out);

 encoder.encode();

 }

 finally {

 // Clean up resources

 if (applet != null) {

 applet.stop();

 applet.destroy();

 applet.removeAll();

 }

 if (g != null) {

 g.dispose();

 }

 if (frame != null) {

Example 6-9. Embedding SecondApplet (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IMAGES 183
This servlet begins by dynamically loading the SecondApplet class and creating a
single instance of it. For SecondApplet to be found, it must be somewhere in the
server’s standard CLASSPATH—which for the Java Web Server by default excludes
the server_root/servlets directory. Then the servlet prepares the applet’s argu-
ments. These are passed to the MainFrameModified constructor as an array of
"name=value" strings. SecondApplet takes no parameters, so this step would
seem to be unnecessary. However, MainFrameModified piggy-backs into the argu-
ment list its own "barebones" argument, which we set to true to indicate it
should display the applet without any special decoration. Finally, the servlet
creates an appropriately sized off-screen graphics context, has the applet paint
itself using that context, and encodes the image for transmission to the client.

 frame.removeAll();

 frame.removeNotify();

 frame.dispose();

 }

 }

 }

}

Figure 6-6. Another view of the simple applet’s fancy graphics

Example 6-9. Embedding SecondApplet (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

184 CHAPTER 6: SENDING MULTIMEDIA CONTENT
A generic applet viewer

We can build on this example to develop a generic servlet capable of embedding
and taking a picture of any applet. It can accept as request parameters the applet
name, its width and height, and its parameters. Example 6-10 contains the code.

Example 6-10. A generic applet viewer

import java.applet.*;

import java.awt.*;

import java.awt.image.*;

import java.io.*;

import java.net.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

import Acme.JPM.Encoders.GifEncoder;

import Acme.MainFrameModified;

public class AppletViewer extends HttpServlet {

 static final int WIDTH = 450;

 static final int HEIGHT = 320;

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 ServletOutputStream out = res.getOutputStream();

 MainFrameModified frame = null;

 Graphics g = null;

 Applet applet = null;

 try {

 String appletParam = req.getParameter("applet");

 String widthParam = req.getParameter("width");

 String heightParam = req.getParameter("height");

 // Load the given applet

 // Must be in the standard CLASSPATH

 try {

 applet = (Applet) Class.forName(appletParam).newInstance();

 }

 catch (Exception e) {

 throw new ServletException("Could not load applet:" + e);

 }

 // Convert width/height to integers

 // Use default values if they weren't given or there's a problem
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IMAGES 185
 int width = WIDTH;

 int height = HEIGHT;

 try { width = Integer.parseInt(widthParam); }

 catch (NumberFormatException e) { /* leave as default */ }

 try { height = Integer.parseInt(heightParam); }

 catch (NumberFormatException e) { /* leave as default */ }

 // Get a list of the other parameters in a format MainFrame understands

 // (Specifically, an array of "name=value" Strings)

 Vector temp = new Vector();

 Enumeration names = req.getParameterNames();

 while (names.hasMoreElements()) {

 String name = (String) names.nextElement();

 if (name != "applet" && name != "width" && name != "height")

 temp.addElement(name + "=" + req.getParameter(name));

 }

 temp.addElement("barebones=true"); // run without a menu bar

 // Now from Vector to array

 int size = temp.size();

 String args[] = new String[size];

 for (int i = 0; i < size; i++) {

 args[i] = (String) temp.elementAt(i);

 }

 // Put the applet in its frame

 // addNotify() is called by MainFrameModified

 frame = new MainFrameModified(applet, args, width, height);

 // Get a graphics region to match the applet size, using the Frame

 Image image = frame.createImage(width, height);

 g = image.getGraphics();

 // Ask the applet to paint its children and itself

 applet.validate();

 paintContainerChildren(g, applet);

 applet.paint(g);

 // Encode and return what it painted

 res.setContentType("image/gif");

 GifEncoder encoder = new GifEncoder(image, out);

 encoder.encode();

 }

 finally {

 // Clean up resources

 if (applet != null) {

 applet.stop();

 applet.destroy();

 applet.removeAll();

Example 6-10. A generic applet viewer (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

186 CHAPTER 6: SENDING MULTIMEDIA CONTENT
There are two major differences between this servlet and SecondAppletViewer:
how it handles parameters and how it paints the applet’s components. All the
details, from the applet’s name to its parameters, are passed to this servlet via
request parameters. It receives the name of the applet as the "applet" parameter
and its width and height as the "width" and "height" parameters; it passes all
the other parameters on to the applet itself.

The painting is more radically different. This servlet uses a custom-built
paintContainerChildren() utility method to paint all the components of the
applet. For the servlet to call applet.paintComponents(g) is not sufficient
because paintComponents(g) does not paint to the passed-in Graphics object!
Instead, it uses the Graphics parameter only to get a clipping region. This servlet
also uses paintAll() instead of paint(), so that it correctly paints lightweight
components. Note that for this technique to work well, the embedded applet has
to fully paint itself during its first paint() invocation. It can’t display a splash
screen or perform a lazy load of its images.

 }

 if (g != null) {

 g.dispose();

 }

 if (frame != null) {

 frame.removeAll();

 frame.removeNotify();

 frame.dispose();

 }

 }

 }

 // Recursively paints all the Components of a Container.

 // It's different from paintComponents(Graphics) because

 // paintComponents(Graphics) does not paint to the passed-in

 // Graphics! It uses it only to get the clipping region.

 void paintContainerChildren(Graphics g, Container c) {

 Component[] children = c.getComponents();

 for (int i = 0; i < children.length; i++) {

 if (children[i] != null) {

 children[i].paintAll(g); // get lightweights too

 if (children[i] instanceof Container) {

 paintContainerChildren(g, (Container)children[i]);

 }

 }

 }

 }

}

Example 6-10. A generic applet viewer (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

IMAGES 187
The AppletViewer servlet can replace SecondAppletViewer. Just invoke it with
the URL http://server:port/servlet/AppletViewer?applet=SecondApplet. It can also
replace our SimpleChart example. Remember when we said JavaChart includes a
set of free chart-generating applets? We can use AppletViewer to embed any of
these free applets and send the resulting chart as an image to the client. To dupli-
cate the SimpleChart example requires this lengthy URL (split into separate lines
for readability, probably so long that many servers won’t be able to handle it):

http://server:port/servlet/AppletViewer?

applet=javachart.applet.columnApp&

titleFont=TimesRoman%2c24%2c0&

titleString=Comparing+Apples+And+Oranges&

xAxisTitle=Year&

yAxisTitle=Tons+Consumed&

xAxisLabels=1993%2c1994%2c1995%2c1996%2c1997&

dataset0yValues=950%2c1005%2c1210%2c1165%2c1255&

dataset1yValues=1435%2c1650%2c1555%2c1440%2c1595&

dataset0Color=red&

dataset0Name=Apples&

dataset1Color=orange&

dataset1Name=Oranges&

legendOn=yes&

legendHorizontal=true&

legendllX=0.4&

legendllY=0.75&

iconHeight=0.04&

iconWidth=0.04&

iconGap=0.02&

xAxisOptions=gridOff&

yAxisOptions=gridOff

The graph generated by this URL looks identical to Figure 6-2 shown earlier (with
the one difference that the applet version contains a blue dot in the lower right
corner that can be removed with the purchase of a JavaChart license).

Advantages and disadvantages

We think you’ll agree that embedding an applet in a servlet has a certain coolness
factor. But is it ever practical? Let’s look over its advantages and disadvantages.
First, the advantages:

It can save money.
Hey, the JavaChart applets are free, and Visual Engineering assured us that
this use doesn’t violate their license!

It can save download time.
Why send all the code and data needed to make an image when you can send
the image itself, especially when the image can be pregenerated?
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

188 CHAPTER 6: SENDING MULTIMEDIA CONTENT
It works for every client.
It works even when the client browser doesn’t support Java or has Java
disabled.

However, on the downside:

It requires extra resources on the server.
Specifically it consumes CPU power and memory.

It works well for only a few applets.
Specifically it works best on static, noninteractive applets that fully paint them-
selves with their first paint() invocation.

Compressed Content
The java.util.zip package was introduced in JDK 1.1. This package contains
classes that support reading and writing the GZIP and ZIP compression formats.
Although these classes were added to support Java Archive (JAR) files, they also
provide a convenient, standard way for a servlet to send compressed content.

Compressed content doesn’t look any different to the end user because it’s
decompressed by the browser before it’s displayed. Yet, while it looks the same, it
can improve the end user’s experience by reducing the time required to down-
load the content from the server. For heavily compressable content such as
HTML, compression can reduce transmission times by an order of magnitude.
Quite a trick! Just bear in mind that to compress content dynamically forces the
server to perform extra work, so any speed-up in transmission time has to be
weighed against slower server performance.

By now you should be familiar with the idea that a servlet can send a Content-
Type header as part of its response to tell the client the type of information being
returned. To send compressed content, a servlet must also send a Content-
Encoding header to tell the client the scheme by which the content has been
encoded. Under the HTTP 1.0 specification, the possible encoding schemes are
gzip (or x-gzip) and compress (or x-compress) for GZIP and ZIP compres-
sion formats, respectively.

Not all clients understand the gzip and compress encodings. To tell the server
which encoding schemes it understands, a client may send an Accept-Encoding
header that specifies acceptable encoding schemes as a comma-separated list. Most
browsers do not yet provide this header—even those that do support compressed
encodings. For now, a servlet has to decide that without the header it won’t send
compressed content, or it has to examine the User-Agent header to see if the
browser is one that supports compression. Of the current popular browsers, only
Netscape Navigator 3 and 4 on Unix and Microsoft Internet Explorer 4 on
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

COMPRESSED CONTENT 189
Windows support GZIP encoding, and none support ZIP encoding. For more
information (and a regular expression to identify GZIP-enabled browsers), see
http://www.kulturbox.de/perl/test/content-encoding-gzip/3.

Although negotiating which compression format to use can involve a fair amount
of logic, actually sending the compressed content could hardly be simpler. The
servlet just wraps its standard ServletOutputStream with a GZIPOutputStream
or ZipOutputStream. Be sure to call out.close() when your servlet is done
writing output, so that the appropriate trailer for the compression format is
written. Ah, the wonders of Java!

Example 6-11 shows the ViewFile servlet from Chapter 4 rewritten to send
compressed content whenever possible. We’d show you a screen shot, but there’s
nothing new to see. As we said before, an end user cannot tell that the server sent
compressed content to the browser—except perhaps with reduced download
times.

Example 6-11. Sending compressed content

import java.io.*;

import java.util.*;

import java.util.zip.*;

import javax.servlet.*;

import javax.servlet.http.*;

import com.oreilly.servlet.ServletUtils;

public class ViewFileCompress extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 OutputStream out = null;

 // Select the appropriate content encoding based on the

 // client's Accept-Encoding header. Choose GZIP if the header

 // includes "gzip". Choose ZIP if the header includes "compress".

 // Choose no compression otherwise.

 String encodings = req.getHeader("Accept-Encoding");

 if (encodings != null && encodings.indexOf("gzip") != -1) {

 // Go with GZIP

 res.setHeader("Content-Encoding", "x-gzip");

 out = new GZIPOutputStream(res.getOutputStream());

 }

 else if (encodings != null && encodings.indexOf("compress") != -1) {

 // Go with ZIP

 res.setHeader("Content-Encoding", "x-compress");

 out = new ZipOutputStream(res.getOutputStream());
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

190 CHAPTER 6: SENDING MULTIMEDIA CONTENT
The servlet begins by declaring a null OutputStream and then setting this
OutputStream to a GZIPOutputStream, ZipOutputStream, or ServletOutput-
Stream, depending on the received Accept-Encoding header. As it selects which
output stream to use, the servlet sets the Content-Encoding header accordingly.
When sending compressed content, this header must be set for the client to run
the appropriate decompression algorithm. The servlet also sets the Vary header to
the value Accept-Encoding to be polite and indicate to the client that the servlet

 ((ZipOutputStream)out).putNextEntry(new ZipEntry("dummy name"));

 }

 else {

 // No compression

 out = res.getOutputStream();

 }

 res.setHeader("Vary", "Accept-Encoding");

 // Get the file to view

 String file = req.getPathTranslated();

 // No file, nothing to view

 if (file == null) {

 res.sendError(res.SC_FORBIDDEN);

 return;

 }

 // Get and set the type of the file

 String contentType = getServletContext().getMimeType(file);

 res.setContentType(contentType);

 // Return the file

 try {

 ServletUtils.returnFile(file, out);

 }

 catch (FileNotFoundException e) {

 res.sendError(res.SC_NOT_FOUND);

 return;

 }

 catch (IOException e) {

 getServletContext().log(e, "Problem sending file");

 res.sendError(res.SC_INTERNAL_SERVER_ERROR,

 ServletUtils.getStackTraceAsString(e));

 }

 // Write the compression trailer and close the output stream

 out.close();

 }

}

Example 6-11. Sending compressed content (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SERVER PUSH 191
varies its output depending on the Accept-Encoding header. Most clients ignore
this header.

After this early logic, the servlet can treat the output stream as just another
OutputStream. It could wrap the stream with a PrintStream or PrintWriter, or
it could pass it to a GifEncoder. But, no matter what it does, the servlet has to be
sure to call out.close() when it’s finished sending content. This call writes the
appropriate trailer to the compressed stream.

There is some content that should not be compressed. For example, GIF and
JPEG images are already compressed as part of their encoding, so there’s no
benefit in compressing them again. An improved version of the
FileViewCompressed servlet would detect when it’s returning an image and not
bother with an attempt at further compression. Another improvement would be to
rewrite this servlet as a filter—compressing whatever content is piped through it.

Server Push
Up until now, every page returned by a servlet has been just that: a page. Always
one page with one content type. But why think in such limited terms? Why not
have a servlet return several pages, each with a different content type, all in
response to the same request? It may be hard to imagine—and sound even harder
to implement—but it’s actually quite easy using a technique known as server push.

It’s called server push because the server sends, or pushes, a sequence of response
pages to the client. Compare this to the client pull technique discussed in the last
chapter, where it’s left to the client to get, or pull, each page from the server.
Although the results of each technique are similar to the end user—the appear-
ance of a sequence of pages—the implementation details and the appropriate uses
of the two techniques are quite different.

With server push, the socket connection between the client and the server remains
open until the last page has been sent. This gives the server the ability to send
page updates quickly and to control exactly when those updates are sent. As such,
server push is ideal for pages that need frequent updates (such as rudimentary
animations) or pages that need server-controlled but somewhat infrequent
updates (such as live status updates). Note, however, that server push is not yet
supported by Microsoft Internet Explorer, and extended use should be avoided, as
it has been found to be harmful to the server’s available socket count.

With client pull, the socket connection is broken after every page, so responsi-
bility for page updates falls to the client. The client uses the Refresh header value
sent by the server to determine when to perform its update, so client pull is the
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

192 CHAPTER 6: SENDING MULTIMEDIA CONTENT
best choice for pages that require infrequent updates or have updates at known
intervals.

Server push can come in handy for limited-length animations and for real-time
status updates. For example, consider a servlet that could push the four latest satel-
lite weather maps, creating a rudimentary animation. If you recall the
PrimeSearcher servlet from Chapter 3, The Servlet Life Cycle, think about how we
could use server push to notify a limited number of clients immediately as the
servlet finds each new prime.

Example 6-12 shows a servlet that uses server push to display a countdown to a
rocket launch. It begins by sending a series of pages that count down from 10 to 1.
Every page replaces the previous page. When the countdown reaches 0, the servlet
sends a picture of a launch. It uses the com.oreilly.servlet.MultipartRe-
sponse utility class (shown in Example 6-13) to manage the server push details.

Example 6-12. Countdown to a rocket launch

import java.awt.*;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import com.oreilly.servlet.MultipartResponse;

import com.oreilly.servlet.ServletUtils;

public class Countdown extends HttpServlet {

 static final String LAUNCH = "/images/launch.gif";

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 ServletOutputStream out = res.getOutputStream(); // some binary output

 // Prepare a multipart response

 MultipartResponse multi = new MultipartResponse(res);

 // First send a countdown

 for (int i = 10; i > 0; i--) {

 multi.startResponse("text/plain");

 out.println(i + "...");

 multi.endResponse();

 try { Thread.sleep(1000); } catch (InterruptedException e) { }

 }

 // Then send the launch image

 multi.startResponse("image/gif");

 try {
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SERVER PUSH 193
The MultipartResponse class hides most of the nasty, dirty details involved in
using server push. Feel free to use it in your own servlets. It is easy to use, as you
can see from the previous example.

First, create a new MultipartResponse object, passing it the servlet’s response
object. MultipartResponse uses the response object to fetch the servlet’s output
stream and to set the response’s content type. Then, for each page of content,
begin by calling startResponse() and passing in the content type for that page.
Send the content for the page by writing to the output stream as usual. A call to
endResponse() ends the page and flushes the content, so the client can see it. At
this point, you can add a call to sleep(), or some other kind of delay, until the
next page is ready for sending. The call to endResponse() is optional, as the
startResponse() method knows whether the previous response was ended and
ends it if necessary. You should still call endResponse() if there’s going to be a
delay between the time one response ends and the next begins. This lets the client
display the latest response while it is waiting for the next one. Finally, after all the
response pages have been sent, a call to the finish() method finishes the multi-
part response and sends a code telling the client there will be no more responses.

Example 6-13 contains the code for the MultipartResponse class.

 ServletUtils.returnFile(req.getRealPath(LAUNCH), out);

 }

 catch (FileNotFoundException e) {

 throw new ServletException("Could not find file: " + e.getMessage());

 }

 // Don't forget to end the multipart response

 multi.finish();

 }

}

Example 6-13. The MultipartResponse class

public class MultipartResponse {

 HttpServletResponse res;

 ServletOutputStream out;

 boolean endedLastResponse = true;

 public MultipartResponse(HttpServletResponse response) throws IOException {

 // Save the response object and output stream

 res = response;

 out = res.getOutputStream();

 // Set things up

Example 6-12. Countdown to a rocket launch (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

194 CHAPTER 6: SENDING MULTIMEDIA CONTENT
 res.setContentType("multipart/x-mixed-replace;boundary=End");

 out.println();

 out.println("--End");

 }

 public void startResponse(String contentType) throws IOException {

 // End the last response if necessary

 if (!endedLastResponse) {

 endResponse();

 }

 // Start the next one

 out.println("Content-Type: " + contentType);

 out.println();

 endedLastResponse = false;

 }

 public void endResponse() throws IOException {

 // End the last response, and flush so the client sees the content

 out.println();

 out.println("--End");

 out.flush();

 endedLastResponse = true;

 }

 public void finish() throws IOException {

 out.println("--End--");

 out.flush();

 }

}

Example 6-13. The MultipartResponse class (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

:

Chapter 7

In this chapter:
• User Authorization
• Hidden Form Fields
• URL Rewriting
• Persistent Cookies
• The Session Tracking

API

HTTP is a stateless protocol
sequence of requests are all f
this a feature, but it causes p
less. The shopping cart appli
his virtual cart, accumulating
Other examples include sites
mining.
Java™
Copyright © 2
7

7.Session Tracking 7
: it provides no way for a server to recognize that a
rom the same client. Privacy advocates may consider
roblems because many web applications aren’t state-
cation is a classic example—a client can put items in
them until he checks out several page requests later.
that offer stock brokerage services or interactive data

The HTTP state problem can best be understood if you imagine an online chat
forum where you are the guest of honor. Picture dozens of chat users, all
conversing with you at the same time. They are asking you questions, responding
to your questions, and generally making you wish you had taken that typing course
back in high school. Now imagine that when each participant writes to you, the
chat forum doesn’t tell you who’s speaking! All you see is a bunch of questions and
statements mixed in with each other. In this kind of forum, the best you can do is
hold simple conversations, perhaps answering direct questions. If you try to do
anything more, such as ask someone a question in return, you won’t necessarily
know when the answer comes back. This is exactly the HTTP state problem. The
HTTP server sees only a series of requests—it needs extra help to know exactly
who’s making a request.*

The solution, as you may have already guessed, is for a client to introduce itself as
it makes each request. Each client needs to provide a unique identifier that lets
the server identify it, or it needs to give some information that the server can use

* If you’re wondering why the HTTP server can’t identify the client by the connecting machine’s IP ad-
dress, the answer is that the reported IP address could possibly be the address of a proxy server or the
address of a server machine that hosts multiple users.
195
 Servlet Programming, eMatter Edition

000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

196 CHAPTER 7: SESSION TRACKING
to properly handle the request. To use the chat example, a participant has to
begin each of his sentences with something like “Hi, I’m Jason, and ...” or “Hi, I
just asked about your age, and ...”. As you’ll see in this chapter, there are several
ways for HTTP clients to send this introductory information with each request.

The first half of the chapter explores the traditional session-tracking techniques
used by CGI developers: user authorization, hidden form fields, URL rewriting,
and persistent cookies. The second half of the chapter demonstrates the built-in
support for session tracking in Version 2.0 of the Servlet API. This support is built
on top of the traditional techniques and it greatly simplifies the task of session
tracking in your servlets.

User Authorization
One way to perform session tracking is to leverage the information that comes
with user authorization. We discussed user authorization back in Chapter 4,
Retrieving Information, but, in case you’ve forgotten, it occurs when a web server
restricts access to some of its resources to only those clients that log in using a
recognized username and password. After the client logs in, the username is avail-
able to a servlet through getRemoteUser().

We can use the username to track a client session. Once a user has logged in, the
browser remembers her username and resends the name and password as the user
views new pages on the site. A servlet can identify the user through her username
and thereby track her session. For example, if the user adds an item to her virtual
shopping cart, that fact can be remembered (in a shared class or external data-
base, perhaps) and used later by another servlet when the user goes to the check-
out page.

For example, a servlet that utilizes user authorization might add an item to a user’s
shopping cart with code like the following:

String name = req.getRemoteUser();

if (name == null) {

 // Explain that the server administrator should protect this page

}

else {

 String[] items = req.getParameterValues("item");

 if (items != null) {

 for (int i = 0; i < items.length; i++) {

 addItemToCart(name, items[i]);

 }

 }

}

Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HIDDEN FORM FIELDS 197
Another servlet can then retrieve the items from a user’s cart with code like this:

String name = req.getRemoteUser();

if (name == null) {

 // Explain that the server administrator should protect this page

}

else {

 String[] items = getItemsFromCart(name);

}

The biggest advantage of using user authorization to perform session tracking is
that it’s easy to implement. Simply tell the server to protect a set of pages, and use
getRemoteUser() to identify each client. Another advantage is that the tech-
nique works even when the user accesses your site from different machines. It also
works even if the user strays from your site or exits her browser before coming
back.

The biggest disadvantage of user authorization is that it requires each user to
register for an account and then log in each time she starts visiting your site. Most
users will tolerate registering and logging in as a necessary evil when they are
accessing sensitive information, but it’s overkill for simple session tracking. We
clearly need a better approach to support anonymous session tracking. Another
small problem with user authorization is that a user cannot simultaneously main-
tain more than one session at the same site.

Hidden Form Fields
One way to support anonymous session tracking is to use hidden form fields. As
the name implies, these are fields added to an HTML form that are not displayed
in the client’s browser. They are sent back to the server when the form that
contains them is submitted. You include hidden form fields with HTML like this:

<FORM ACTION="/servlet/MovieFinder" METHOD="POST">

...

<INPUT TYPE=hidden NAME="zip" VALUE="94040">

<INPUT TYPE=hidden NAME="level" VALUE="expert">

...

</FORM>

In a sense, hidden form fields define constant variables for a form. To a servlet
receiving a submitted form, there is no difference between a hidden field and a
visible field.

With hidden form fields, we can rewrite our shopping cart servlets so that users
can shop anonymously until check-out time. Example 7-1 demonstrates the tech-
nique with a servlet that displays the user’s shopping cart contents and lets the
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

198 CHAPTER 7: SESSION TRACKING
user choose to add more items or check out. An example screen for a bookworm
is shown in Figure 7-1.

Example 7-1. Session tracking using hidden form fields

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class ShoppingCartViewerHidden extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 out.println("<HEAD><TITLE>Current Shopping Cart Items</TITLE></HEAD>");

 out.println("<BODY>");

 // Cart items are passed in as the item parameter.

 String[] items = req.getParameterValues("item");

 // Print the current cart items.

 out.println("You currently have the following items in your cart:
");

 if (items == null) {

 out.println("None");

 }

 else {

 out.println("");

 for (int i = 0; i < items.length; i++) {

 out.println("" + items[i]);

 }

 out.println("");

 }

 // Ask if the user wants to add more items or check out.

 // Include the current items as hidden fields so they'll be passed on.

 out.println("<FORM ACTION=\"/servlet/ShoppingCart\" METHOD=POST>");

 if (items != null) {

 for (int i = 0; i < items.length; i++) {

 out.println("<INPUT TYPE=hidden NAME=item VALUE=\"" +

 items[i] + "\">");

 }

 }

 out.println("Would you like to
");

 out.println("<INPUT TYPE=submit VALUE=\" Add More Items \">");

 out.println("<INPUT TYPE=submit VALUE=\" Check Out \">");

 out.println("</FORM>");
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HIDDEN FORM FIELDS 199
This servlet first reads the items already in the cart using
getParameterValues("item"). Presumably, the item parameter values were
sent to this servlet using hidden fields. The servlet then displays the current items
to the user and asks if he wants to add more items or check out. The servlet asks its
question with a form that includes hidden fields, so the form’s target (the
ShoppingCart servlet) receives the current items as part of the submission.

As more and more information is associated with a client’s session, it can become
burdensome to pass it all using hidden form fields. In these situations, it’s possible
to pass on just a unique session ID that identifies a particular client’s session. That
session ID can be associated with complete information about the session that is
stored on the server.

The advantages of hidden form fields are their ubiquity and support for
anonymity. Hidden fields are supported in all the popular browsers, they demand
no special server requirements, and they can be used with clients that haven’t
registered or logged in. The major disadvantage with this technique, however, is
that it works only for a sequence of dynamically generated forms. The technique
breaks down immediately with static documents, emailed documents, book-
marked documents, and browser shutdowns.

 out.println("</BODY></HTML>");

 }

}

Figure 7-1. Shopping cart contents

Example 7-1. Session tracking using hidden form fields (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

200 CHAPTER 7: SESSION TRACKING
URL Rewriting
URL rewriting is another way to support anonymous session tracking. With URL
rewriting, every local URL the user might click on is dynamically modified, or
rewritten, to include extra information. The extra information can be in the form
of extra path information, added parameters, or some custom, server-specific URL
change. Due to the limited space available in rewriting a URL, the extra informa-
tion is usually limited to a unique session ID. For example, the following URLs
have been rewritten to pass the session ID 123:

http://server:port/servlet/Rewritten original

http://server:port/servlet/Rewritten/123 extra path information

http://server:port/servlet/Rewritten?sessionid=123 added parameter

http://server:port/servlet/Rewritten;$sessionid$123 custom change

Each rewriting technique has its advantages and disadvantages. Using extra path
information works on all servers, and it works as a target for forms that use both
the GET and POST methods. It doesn’t work well if a servlet has to use the extra
path information as true path information, however. Using an added parameter
works on all servers too, but it fails as a target for forms that use the POST method,
and it can cause parameter naming collisions. Using a custom, server-specific
change works under all conditions for servers that support the change. Unfortu-
nately, it doesn’t work at all for servers that don’t support the change.

Example 7-2 shows a revised version of our shopping cart viewer that uses URL
rewriting in the form of extra path information to anonymously track a shopping
cart.

Example 7-2. Session tracking using URL rewriting

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class ShoppingCartViewerRewrite extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 out.println("<HEAD><TITLE>Current Shopping Cart Items</TITLE></HEAD>");

 out.println("<BODY>");

 // Get the current session ID, or generate one if necessary

 String sessionid = req.getPathInfo();

 if (sessionid == null) {

 sessionid = generateSessionId();
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

URL REWRITING 201
This servlet first tries to retrieve the current session ID using getPathInfo(). If a
session ID is not specified, it calls generateSessionId() to generate a new
unique session ID using an RMI class designed specifically for this. The session ID

 }

 // Cart items are associated with the session ID

 String[] items = getItemsFromCart(sessionid);

 // Print the current cart items.

 out.println("You currently have the following items in your cart:
");

 if (items == null) {

 out.println("None");

 }

 else {

 out.println("");

 for (int i = 0; i < items.length; i++) {

 out.println("" + items[i]);

 }

 out.println("");

 }

 // Ask if the user wants to add more items or check out.

 // Include the session ID in the action URL.

 out.println("<FORM ACTION=\"/servlet/ShoppingCart/" + sessionid +

 "\" METHOD=POST>");

 out.println("Would you like to
");

 out.println("<INPUT TYPE=submit VALUE=\" Add More Items \">");

 out.println("<INPUT TYPE=submit VALUE=\" Check Out \">");

 out.println("</FORM>");

 // Offer a help page. Include the session ID in the URL.

 out.println("For help, click <A HREF=\"/servlet/Help/" + sessionid +

 "?topic=ShoppingCartViewerRewrite\">here");

 out.println("</BODY></HTML>");

 }

 private static String generateSessionId() {

 String uid = new java.rmi.server.UID().toString(); // guaranteed unique

 return java.net.URLEncoder.encode(uid); // encode any special chars

 }

 private static String[] getItemsFromCart(String sessionid) {

 // Not implemented

 }

}

Example 7-2. Session tracking using URL rewriting (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

202 CHAPTER 7: SESSION TRACKING
is used to fetch and display the current items in the cart. The ID is then added to
the form’s ACTION attribute, so it can be retrieved by the ShoppingCart servlet.
The session ID is also added to a new help URL that invokes the Help servlet. This
wasn’t possible with hidden form fields because the Help servlet isn’t the target of
a form submission.

The advantages and disadvantages of URL rewriting closely match those of hidden
form fields. The major difference is that URL rewriting works for all dynamically
created documents, such as the Help servlet, not just forms. Plus, with the right
server support, custom URL rewriting can even work for static documents. Unfor-
tunately, actually performing the URL rewriting can be tedious.

Persistent Cookies
A fourth technique to perform session tracking involves persistent cookies. A cookie
is a bit of information sent by a web server to a browser that can later be read back
from that browser. When a browser receives a cookie, it saves the cookie and there-
after sends the cookie back to the server each time it accesses a page on that
server, subject to certain rules. Because a cookie’s value can uniquely identify a
client, cookies are often used for session tracking.

Cookies were first introduced in Netscape Navigator. Although they were not part
of the official HTTP specification, cookies quickly became a de facto standard
supported in all the popular browsers including Netscape 0.94 Beta and up and
Microsoft Internet Explorer 2 and up. Currently the HTTP Working Group of the
Internet Engineering Task Force (IETF) is in the process of making cookies an
official standard as written in RFC 2109. For more information on cookies see
Netscape’s Cookie Specification at http://home.netscape.com/newsref/std/cookie_spec.
html and RFC 2109 at http://www.ietf.org/rfc/rfc2109.txt. Another good site is http://
www.cookiecentral.com.

Working with Cookies
Version 2.0 of the Servlet API provides the javax.servlet.http.Cookie class
for working with cookies. The HTTP header details for the cookies are handled by
the Servlet API. You create a cookie with the Cookie() constructor:

public Cookie(String name, String value)

This creates a new cookie with an initial name and value. The rules for valid names
and values are given in Netscape’s Cookie Specification and RFC 2109.

A servlet can send a cookie to the client by passing a Cookie object to the
addCookie() method of HttpServletResponse:

public void HttpServletResponse.addCookie(Cookie cookie)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PERSISTENT COOKIES 203
This method adds the specified cookie to the response. Additional cookies can be
added with subsequent calls to addCookie(). Because cookies are sent using
HTTP headers, they should be added to the response before you send any
content. Browsers are only required to accept 20 cookies per site, 300 total per
user, and they can limit each cookie’s size to 4096 bytes.

The code to set a cookie looks like this:

Cookie cookie = new Cookie("ID", "123");

res.addCookie(cookie);

A servlet retrieves cookies by calling the getCookies() method of HttpServlet-
Request:

public Cookie[] HttpServletRequest.getCookies()

This method returns an array of Cookie objects that contains all the cookies sent
by the browser as part of the request or null if no cookies were sent. The code to
fetch cookies looks like this:

Cookie[] cookies = req.getCookies();

if (cookies != null) {

 for (int i = 0; i < cookies.length; i++) {

 String name = cookies[i].getName();

 String value = cookies[i].getValue();

 }

}

You can set a number of attributes for a cookie in addition to its name and value.
The following methods are used to set these attributes. As you can see in
Appendix B, HTTP Servlet API Quick Reference, there is a corresponding get method
for each set method. The get methods are rarely used, however, because when a
cookie is sent to the server, it contains only its name, value, and version.

public void Cookie.setVersion(int v)
Sets the version of a cookie. Servlets can send and receive cookies formatted to
match either Netscape persistent cookies (Version 0) or the newer, somewhat
experimental, RFC 2109 cookies (Version 1). Newly constructed cookies
default to Version 0 to maximize interoperability.

public void Cookie.setDomain(String pattern)
Specifies a domain restriction pattern. A domain pattern specifies the servers
that should see a cookie. By default, cookies are returned only to the host that
saved them. Specifying a domain name pattern overrides this. The pattern
must begin with a dot and must contain at least two dots. A pattern matches
only one entry beyond the initial dot. For example, ".foo.com" is valid and
matches www.foo.com and upload.foo.com but not www.upload.foo.com. For details
on domain patterns, see Netscape’s Cookie Specification and RFC 2109.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

204 CHAPTER 7: SESSION TRACKING
public void Cookie.setMaxAge(int expiry)
Specifies the maximum age of the cookie in seconds before it expires. A nega-
tive value indicates the default, that the cookie should expire when the
browser exits. A zero value tells the browser to delete the cookie immediately.

public void Cookie.setPath(String uri)
Specifies a path for the cookie, which is the subset of URIs to which a cookie
should be sent. By default, cookies are sent to the page that set the cookie and
to all the pages in that directory or under that directory. For example, if /
servlet/CookieMonster sets a cookie, the default path is "/servlet". That path
indicates the cookie should be sent to /servlet/Elmo and to /servlet/subdir/
BigBird—but not to the /Oscar.html servlet alias or to any CGI programs under
/cgi-bin. A path set to "/" causes a cookie to be sent to all the pages on a
server. A cookie’s path must be such that it includes the servlet that set the
cookie.

public void Cookie.setSecure(boolean flag)
Indicates whether the cookie should be sent only over a secure channel, such
as SSL. By default, its value is false.

public void Cookie.setComment(String comment)
Sets the comment field of the cookie. A comment describes the intended
purpose of a cookie. Web browsers may choose to display this text to the user.
Comments are not supported by Version 0 cookies.

public void Cookie.setValue(String newValue)
Assigns a new value to a cookie. With Version 0 cookies, values should not
contain the following: whitespace, brackets and parentheses, equals signs,
commas, double quotes, slashes, question marks, at signs, colons, and semico-
lons. Empty values may not behave the same way on all browsers.

Shopping Using Persistent Cookies
Example 7-3 shows a version of our shopping cart viewer that has been modified to
maintain the shopping cart using persistent cookies.

Example 7-3. Session tracking using persistent cookies

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class ShoppingCartViewerCookie extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/html");
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PERSISTENT COOKIES 205
 PrintWriter out = res.getWriter();

 // Get the current session ID by searching the received cookies.

 String sessionid = null;

 Cookie[] cookies = req.getCookies();

 if (cookies != null) {

 for (int i = 0; i < cookies.length; i++) {

 if (cookies[i].getName().equals("sessionid")) {

 sessionid = cookies[i].getValue();

 break;

 }

 }

 }

 // If the session ID wasn't sent, generate one.

 // Then be sure to send it to the client with the response.

 if (sessionid == null) {

 sessionid = generateSessionId();

 Cookie c = new Cookie("sessionid", sessionid);

 res.addCookie(c);

 }

 out.println("<HEAD><TITLE>Current Shopping Cart Items</TITLE></HEAD>");

 out.println("<BODY>");

 // Cart items are associated with the session ID

 String[] items = getItemsFromCart(sessionid);

 // Print the current cart items.

 out.println("You currently have the following items in your cart:
");

 if (items == null) {

 out.println("None");

 }

 else {

 out.println("");

 for (int i = 0; i < items.length; i++) {

 out.println("" + items[i]);

 }

 out.println("");

 }

 // Ask if they want to add more items or check out.

 out.println("<FORM ACTION=\"/servlet/ShoppingCart\" METHOD=POST>");

 out.println("Would you like to
");

 out.println("<INPUT TYPE=submit VALUE=\" Add More Items \">");

 out.println("<INPUT TYPE=submit VALUE=\" Check Out \">");

 out.println("</FORM>");

Example 7-3. Session tracking using persistent cookies (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

206 CHAPTER 7: SESSION TRACKING
This servlet first tries to fetch the client’s session ID by iterating through the
cookies it received as part of the request. If no cookie contains a session ID, the
servlet generates a new one using generateSessionId() and adds a cookie
containing the new session ID to the response. The rest of this servlet matches the
URL rewriting version, except that this version doesn’t perform any rewriting.

Persistent cookies offer an elegant, efficient, easy way to implement session
tracking. Cookies provide as automatic an introduction for each request as you
could hope for. For each request, a cookie can automatically provide a client’s
session ID or perhaps a list of the client’s preferences. In addition, the ability to
customize cookies gives them extra power and versatility.

The biggest problem with cookies is that browsers don’t always accept cookies.
Sometimes this is because the browser doesn’t support cookies. More often, it’s
because the user has specifically configured the browser to refuse cookies (out of
privacy concerns, perhaps). If any of your clients might not accept cookies, you
have to fall back to the solutions discussed earlier in this chapter.

The Session Tracking API
Fortunately for us servlet developers, it’s not always necessary for a servlet to
manage its own sessions using the techniques we have just discussed. The Servlet
API provides several methods and classes specifically designed to handle session
tracking on behalf of servlets. In other words, servlets have built in session
tracking.*

 // Offer a help page.

 out.println("For help, click <A HREF=\"/servlet/Help" +

 "?topic=ShoppingCartViewerCookie\">here");

 out.println("</BODY></HTML>");

 }

 private static String generateSessionId() {

 String uid = new java.rmi.server.UID().toString(); // guaranteed unique

 return java.net.URLEncoder.encode(uid); // encode any special chars

 }

 private static String[] getItemsFromCart(String sessionid) {

 // Not implemented

 }

}

* Yes, we do feel a little like the third grade teacher who taught you all the steps of long division, only
to reveal later how you could use a calculator to do the same thing. But we believe, as your teacher
probably did, that you better understand the concepts after first learning the traditional approach.

Example 7-3. Session tracking using persistent cookies (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

THE SESSION TRACKING API 207
The Session Tracking API, as we call the portion of the Servlet API devoted to
session tracking, should be supported in any web server that supports servlets. The
level of support, however, depends on the server. The minimal implementation
provided by the servlet classes in JSDK 2.0 manages sessions through the use of
persistent cookies. A server can build on this base to provide additional features
and capabilities. For example, the Java Web Server has the ability to revert to using
URL rewriting when cookies fail, and it allows session objects to be written to the
server’s disk as memory fills up or when the server shuts down. (The items you
place in the session need to implement the Serializable interface to take advan-
tage of this option.) See your server’s documentation for details pertaining to your
server. The rest of this section describe the lowest-common-denominator function-
ality provided by Version 2.0 of the Servlet API.

Session-Tracking Basics
Session tracking is wonderfully elegant. Every user of a site is associated with a
javax.servlet.http.HttpSession object that servlets can use to store or
retrieve information about that user. You can save any set of arbitrary Java objects
in a session object. For example, a user’s session object provides a convenient loca-
tion for a servlet to store the user’s shopping cart contents or, as you’ll see in
Chapter 9, Database Connectivity, the user’s database connection.

A servlet uses its request object’s getSession() method to retrieve the current
HttpSession object:

public HttpSession HttpServletRequest.getSession(boolean create)

This method returns the current session associated with the user making the
request. If the user has no current valid session, this method creates one if create
is true or returns null if create is false. To ensure the session is properly
maintained, this method must be called at least once before any output is written
to the response.

You can add data to an HttpSession object with the putValue() method:

public void HttpSession.putValue(String name, Object value)

This method binds the specified object value under the specified name. Any
existing binding with the same name is replaced. To retrieve an object from a
session, use getValue():

public Object HttpSession.getValue(String name)

This methods returns the object bound under the specified name or null if there
is no binding. You can also get the names of all of the objects bound to a session
with getValueNames():

public String[] HttpSession.getValueNames()
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

208 CHAPTER 7: SESSION TRACKING
This method returns an array that contains the names of all objects bound to this
session or an empty (zero length) array if there are no bindings. Finally, you can
remove an object from a session with removeValue():

public void HttpSession.removeValue(String name)

This method removes the object bound to the specified name or does nothing if
there is no binding. Each of these methods can throw a java.lang.
IllegalStateException if the session being accessed is invalid (we’ll discuss
invalid sessions in an upcoming section).

A Hit Count Using Session Tracking
Example 7-4 shows a simple servlet that uses session tracking to count the number
of times a client has accessed it, as shown in Figure 7-2. The servlet also displays all
the bindings for the current session, just because it can.

Example 7-4. Session tracking a hit count

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class SessionTracker extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 // Get the current session object, create one if necessary

 HttpSession session = req.getSession(true);

 // Increment the hit count for this page. The value is saved

 // in this client's session under the name "tracker.count".

 Integer count = (Integer)session.getValue("tracker.count");

 if (count == null)

 count = new Integer(1);

 else

 count = new Integer(count.intValue() + 1);

 session.putValue("tracker.count", count);

 out.println("<HTML><HEAD><TITLE>SessionTracker</TITLE></HEAD>");

 out.println("<BODY><H1>Session Tracking Demo</H1>");

 // Display the hit count for this page

 out.println("You've visited this page " + count +

 ((count.intValue() == 1) ? " time." : " times."));
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

THE SESSION TRACKING API 209
This servlet first gets the HttpSession object associated with the current client. By
passing true to getSession(), it asks for a session to be created if necessary. The
servlet then gets the Integer object bound to the name "tracker.count". If
there is no such object, the servlet starts a new count. Otherwise, it replaces the
Integer with a new Integer whose value has been incremented by one. Finally,
the servlet displays the current count and all the current name/value pairs in the
session.

The Session Life Cycle
Sessions do not last forever. A session either expires automatically, after a set time of
inactivity (for the Java Web Server the default is 30 minutes), or manually, when it is
explicitly invalidated by a servlet. When a session expires (or is invalidated), the
HttpSession object and the data values it contains are removed from the system.

 out.println("<P>");

 out.println("<H2>Here is your session data:</H2>");

 String[] names = session.getValueNames();

 for (int i = 0; i < names.length; i++) {

 out.println(names[i] + ": " + session.getValue(names[i]) + "
");

 }

 out.println("</BODY></HTML>");

 }

}

Figure 7-2. Counting client visits

Example 7-4. Session tracking a hit count (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

210 CHAPTER 7: SESSION TRACKING
Beware that any information saved in a user’s session object is lost when the
session is invalidated. If you need to retain information beyond that time, you
should keep it in an external location (such as a database) and store a handle to
the external data in the session object (or your own persistant cookie).

There are several methods involved in managing the session life cycle:

public boolean HttpSession.isNew()
This method returns whether the session is new. A session is considered new if
it has been created by the server but the client has not yet acknowledged
joining the session. For example, if a server supports only cookie-based
sessions and a client has completely disabled the use of cookies, calls to the
getSession() method of HttpServletRequest always return new sessions.

public void HttpSession.invalidate()
This method causes the session to be immediately invalidated. All objects
stored in the session are unbound.

public long HttpSession.getCreationTime()
This method returns the time at which the session was created, as a long value
that represents the number of milliseconds since the epoch (midnight,
January 1, 1970, GMT).

public long HttpSession.getLastAccessedTime()
This method returns the time at which the client last sent a request associated
with this session, as a long value that represents the number of milliseconds
since the epoch.

Each of these methods can throw a java.lang.IllegalStateException if the
session being accessed is invalid.

Manually Invalidating a Stale Session
To demonstrate these methods, Example 7-5 shows a servlet that manually invali-
dates a session if it is more than a day old or has been inactive for more than an
hour.

Example 7-5. Invalidating a stale session

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class ManualInvalidate extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

THE SESSION TRACKING API 211
Putting Sessions in Context
So, how does a web server implement session tracking? When a user first accesses
the site, that user is assigned a new HttpSession object and a unique session ID.
The session ID identifies the user and is used to match the user with the
HttpSession object in subsequent requests. Behind the scenes, the session ID is
usually saved on the client in a cookie or sent as part of a rewritten URL. Other
implementations, such as using SSL (Secure Sockets Layer) sessions, are also
possible.

A servlet can discover a session’s ID with the getId() method:

public String HttpSession.getId()

This method returns the unique String identifier assigned to this session. For
example, a Java Web Server ID might be something like
HT04D1QAAAAABQDGPM5QAAA. The method throws an IllegalState-
Exception if the session is invalid.

All valid sessions are grouped together in a HttpSessionContext object. Theo-
retically, a server may have multiple session contexts, although in practice most
have just one. A reference to the server’s HttpSessionContext is available via any
session object’s getSessionContext() method:

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 // Get the current session object, create one if necessary

 HttpSession session = req.getSession(true);

 // Invalidate the session if it's more than a day old or has been

 // inactive for more than an hour.

 if (!session.isNew()) { // skip new sessions

 Date dayAgo = new Date(System.currentTimeMillis() - 24*60*60*1000);

 Date hourAgo = new Date(System.currentTimeMillis() - 60*60*1000);

 Date created = new Date(session.getCreationTime());

 Date accessed = new Date(session.getLastAccessedTime());

 if (created.before(dayAgo) || accessed.before(hourAgo)) {

 session.invalidate();

 session = req.getSession(true); // get a new session

 }

 }

 // Continue processing...

 }

}

Example 7-5. Invalidating a stale session (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

212 CHAPTER 7: SESSION TRACKING
public HttpSessionContext HttpSession.getSessionContext()

This method returns the context in which the session is bound. It throws an
IllegalStateException if the session is invalid.

Once you have an HttpSessionContext, it’s possible to use it to examine all the
currently valid sessions with the following two methods:

public Enumeration HttpSessionContext.getIds()

public HttpSession HttpSessionContext.getSession(String sessionId)

The getIds() method returns an Enumeration that contains the session IDs for
all the currently valid sessions in this context or an empty Enumeration if there
are no valid sessions. getSession() returns the session associated with the given
session ID. The session IDs returned by getIds() should be held as a server secret
because any client with knowledge of another client’s session ID can, with a forged
cookie or URL, join the second client’s session.

Manually Invalidating All Stale Sessions
Example 7-6 demonstrates the use of these methods with a servlet that manually
invalidates all the sessions on the server that are more than a day old or have been
inactive more than an hour.

Example 7-6. Invalidating all stale sessions

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class ManualInvalidateScan extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/plain");

 PrintWriter out = res.getWriter();

 // Get the current session object, create one if necessary

 HttpSession dummySession = req.getSession(true);

 // Use the session to get the session context

 HttpSessionContext context = dummySession.getSessionContext();

 // Use the session context to get a list of session IDs

 Enumeration ids = context.getIds();

 // Iterate over the session IDs checking for stale sessions

 while (ids.hasMoreElements()) {
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

THE SESSION TRACKING API 213
A servlet that manually invalidates sessions according to arbitrary rules is useful on
servers with limited session expiration capabilities.

Storing Session IDs
Every server that supports servlets should implement at least cookie-based session
tracking, where the session ID is saved on the client in a persistent cookie. Many
web servers also support session tracking based on URL rewriting, as a fallback for
browsers that don’t accept cookies. This requires additional help from servlets.

For a servlet to support session tracking via URL rewriting, it has to rewrite every
local URL before sending it to the client. The Servlet API provides two methods to
perform this encoding:

public String HttpServletResponse.encodeUrl(String url)
This method encodes (rewrites) the specified URL to include the session ID
and returns the new URL, or, if encoding is not needed or not supported, it
leaves the URL unchanged. The rules used to decide when and how to encode

 String id = (String)ids.nextElement();

 out.println("Checking " + id + "...");

 HttpSession session = context.getSession(id);

 // Invalidate the session if it's more than a day old or has been

 // inactive for more than an hour.

 Date dayAgo = new Date(System.currentTimeMillis() - 24*60*60*1000);

 Date hourAgo = new Date(System.currentTimeMillis() - 60*60*1000);

 Date created = new Date(session.getCreationTime());

 Date accessed = new Date(session.getLastAccessedTime());

 if (created.before(dayAgo)) {

 out.println("More than a day old, invalidated!");

 session.invalidate();

 }

 else if (accessed.before(hourAgo)) {

 out.println("More than an hour inactive, invalidated!");

 session.invalidate();

 }

 else {

 out.println("Still valid.");

 }

 out.println();

 }

 }

}

Example 7-6. Invalidating all stale sessions (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

214 CHAPTER 7: SESSION TRACKING
a URL are server-specific. All URLs emitted by a servlet should be run through
this method.

public String HttpServletResponse.encodeRedirectUrl(String url)
This method encodes (rewrites) the specified URL to include the session ID
and returns the new URL, or, if encoding is not needed or not supported, it
leaves the URL unchanged. The rules used to decide when and how to encode a
URL are server-specific. This method may use different rules than
encodeUrl(). All URLs passed to the sendRedirect() method of
HttpServletResponse should be run through this method.

Note that encodeUrl() and encodeRedirectedUrl() employ a different capital-
ization scheme than getRequestURL() and getRequestURI(). The following
code snippet shows a servlet writing a link to itself that is encoded to contain the
current session ID:

out.println("Click <A HREF=\"" +

 res.encodeUrl(req.getRequestURI()) + "\">here");

out.println("to reload this page.");

On servers that don’t support URL rewriting or have URL rewriting turned off,
the resulting URL remains unchanged. Now here’s a code snippet that shows a
servlet redirecting the user to a URL encoded to contain the session ID:

res.sendRedirect(res.encodeRedirectUrl("/servlet/NewServlet"));

On servers that don’t support URL rewriting or have URL rewriting turned off,
the resulting URL remains unchanged.

A servlet can detect whether the session ID used to identify the current
HttpSession object came from a cookie or from an encoded URL using the
isRequestedSessionIdFromCookie() and isRequestedSessionIdFromUrl()
methods:

public boolean HttpServletRequest.isRequestedSessionIdFromCookie()

public boolean HttpServletRequest.isRequestedSessionIdFromUrl()

Determining if the session ID came from another source, such as an SSL session, is
not currently possible.

A requested session ID may not match the ID of the session returned by the
getSession() method, such as when the session ID is invalid. A servlet can deter-
mine whether a requested session ID is valid using isRequestedSession-
IdValid():

public boolean HttpServletRequest.isRequestedSessionIdValid()
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

THE SESSION TRACKING API 215
Session Snoop
The SessionSnoop servlet shown in Example 7-7 uses most of the methods
discussed thus far in the chapter to snoop information about the current session
and other sessions on the server. Figure 7-3 shows a sample of its output.

Example 7-7. Snooping session information

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class SessionSnoop extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 // Get the current session object, create one if necessary

 HttpSession session = req.getSession(true);

 // Increment the hit count for this page. The value is saved

 // in this client's session under the name "snoop.count".

 Integer count = (Integer)session.getValue("snoop.count");

 if (count == null)

 count = new Integer(1);

 else

 count = new Integer(count.intValue() + 1);

 session.putValue("snoop.count", count);

 out.println("<HTML><HEAD><TITLE>SessionSnoop</TITLE></HEAD>");

 out.println("<BODY><H1>Session Snoop</H1>");

 // Display the hit count for this page

 out.println("You've visited this page " + count +

 ((count.intValue() == 1) ? " time." : " times."));

 out.println("<P>");

 out.println("<H3>Here is your saved session data:</H3>");

 String[] names = session.getValueNames();

 for (int i = 0; i < names.length; i++) {

 out.println(names[i] + ": " + session.getValue(names[i]) + "
");

 }

 out.println("<H3>Here are some vital stats on your session:</H3>");

 out.println("Session id: " + session.getId() + "
");
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

216 CHAPTER 7: SESSION TRACKING
This servlet begins with the same code as the SessionTracker servlet shown in
Example 7-4. Then it continues on to display the current session’s ID, whether it is a
new session, the session’s creation time, and the session’s last access time. Next the
servlet displays whether the requested session ID (if there is one) came from a
cookie or a URL and whether the requested ID is valid. Then the servlet iterates over
all the currently valid session IDs, displaying the number of times they have visited

 out.println("New session: " + session.isNew() + "
");

 out.println("Creation time: " + session.getCreationTime());

 out.println("<I>(" + new Date(session.getCreationTime()) + ")</I>
");

 out.println("Last access time: " + session.getLastAccessedTime());

 out.println("<I>(" + new Date(session.getLastAccessedTime()) +

 ")</I>
");

 out.println("Requested session ID from cookie: " +

 req.isRequestedSessionIdFromCookie() + "
");

 out.println("Requested session ID from URL: " +

 req.isRequestedSessionIdFromUrl() + "
");

 out.println("Requested session ID valid: " +

 req.isRequestedSessionIdValid() + "
");

 out.println("<H3>Here are all the current session IDs");

 out.println("and the times they've hit this page:</H3>");

 HttpSessionContext context = session.getSessionContext();

 Enumeration ids = context.getIds();

 while (ids.hasMoreElements()) {

 String id = (String)ids.nextElement();

 out.println(id + ": ");

 HttpSession foreignSession = context.getSession(id);

 Integer foreignCount =

 (Integer)foreignSession.getValue("snoop.count");

 if (foreignCount == null)

 out.println(0);

 else

 out.println(foreignCount.toString());

 out.println("
");

 }

 out.println("<H3>Test URL Rewriting</H3>");

 out.println("Click <A HREF=\"" +

 res.encodeUrl(req.getRequestURI()) + "\">here");

 out.println("to test that session tracking works via URL");

 out.println("rewriting even when cookies aren't supported.");

 out.println("</BODY></HTML>");

 }

}

Example 7-7. Snooping session information (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

THE SESSION TRACKING API 217
this page. Finally, the servlet prints an encoded URL that can be used to reload this
page to test that URL rewriting works even when cookies aren’t supported.

Note that installing this servlet is a security risk, as it exposes the server’s session
IDs—these may be used by unscrupulous clients to join other clients’ sessions. The
SessionServlet that is installed by default with the Java Web Server 1.1.x has
similar behavior.

Session Binding Events
Some objects may wish to perform an action when they are bound or unbound
from a session. For example, a database connection may begin a transaction when
bound to a session and end the transaction when unbound. Any object that imple-
ments the javax.servlet.http.HttpSessionBindingListener interface is
notified when it is bound or unbound from a session. The interface declares two
methods, valueBound() and valueUnbound(), that must be implemented:

public void HttpSessionBindingListener.valueBound(

 HttpSessionBindingEvent event)

Figure 7-3. Example output from SessionSnoop
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

218 CHAPTER 7: SESSION TRACKING
public void HttpSessionBindingListener.valueUnbound(

 HttpSessionBindingEvent event)

The valueBound() method is called when the listener is bound into a session,
and valueUnbound() is called when the listener is unbound from a session.

The javax.servlet.http.HttpSessionBindingEvent argument provides
access to the name under which the object is being bound (or unbound) with the
getName() method:

public String HttpSessionBindingEvent.getName()

The HttpSessionBindingEvent object also provides access to the HttpSession
object to which the listener is being bound (or unbound) with getSession():

public HttpSession HttpSessionBindingEvent.getSession()

Example 7-8 demonstrates the use of HttpSessionBindingListener and
HttpSessionBindingEvent with a listener that logs when it is bound and
unbound from a session.

Example 7-8. Tracking session binding events

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class SessionBindings extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/plain");

 PrintWriter out = res.getWriter();

 // Get the current session object, create one if necessary

 HttpSession session = req.getSession(true);

 // Add a CustomBindingListener

 session.putValue("bindings.listener",

 new CustomBindingListener(getServletContext()));

 out.println("This page intentionally left blank");

 }

}

class CustomBindingListener implements HttpSessionBindingListener {

 // Save a ServletContext to be used for its log() method

 ServletContext context;

 public CustomBindingListener(ServletContext context) {
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

THE SESSION TRACKING API 219
Each time a CustomBindingListener object is bound to a session, its
valueBound() method is called and the event is logged. Each time it is unbound
from a session, its valueUnbound() method is called so that event too is logged.
We can observe the sequence of events by looking at the server’s event log.

Let’s assume that this servlet is called once, reloaded 30 seconds later, and not
called again for at least a half hour. The event log would look something like this:

[Tue Jan 27 01:46:48 PST 1998]

 BOUND as bindings.listener to INWBUJIAAAAAHQDGPM5QAAA

[Tue Jan 27 01:47:18 PST 1998]

 UNBOUND as bindings.listener from INWBUJIAAAAAHQDGPM5QAAA

[Tue Jan 27 01:47:18 PST 1998]

 BOUND as bindings.listener to INWBUJIAAAAAHQDGPM5QAAA

[Tue Jan 27 02:17:18 PST 1998]

 UNBOUND as bindings.listener from INWBUJIAAAAAHQDGPM5QAAA

The first entry occurs during the first page request, when the listener is bound to
the new session. The second and third entries occur during the reload, as the
listener is unbound and rebound during the same putValue() call. The fourth
entry occurs a half hour later, when the session expires and is invalidated.

Shopping Using Session Tracking
Let’s end this chapter with a look at how remarkably simple our shopping cart
viewer servlet becomes when we use session tracking. Example 7-9 shows the
viewer saving each of the cart’s items in the user’s session under the name "cart.
items".

 this.context = context;

 }

 public void valueBound(HttpSessionBindingEvent event) {

 context.log("BOUND as " + event.getName() +

 " to " + event.getSession().getId());

 }

 public void valueUnbound(HttpSessionBindingEvent event) {

 context.log("UNBOUND as " + event.getName() +

 " from " + event.getSession().getId());

 }

}

Example 7-9. Using the session tracking API

import java.io.*;

import javax.servlet.*;

Example 7-8. Tracking session binding events (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

220 CHAPTER 7: SESSION TRACKING
import javax.servlet.http.*;

public class ShoppingCartViewerSession extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 // Get the current session object, create one if necessary.

 HttpSession session = req.getSession(true);

 // Cart items are maintained in the session object.

 String[] items = (String[])session.getValue("cart.items");

 out.println("<HTML><HEAD><TITLE>SessionTracker</TITLE></HEAD>");

 out.println("<BODY><H1>Session Tracking Demo</H1>");

 // Print the current cart items.

 out.println("You currently have the following items in your cart:
");

 if (items == null) {

 out.println("None");

 }

 else {

 out.println("");

 for (int i = 0; i < items.length; i++) {

 out.println("" + items[i]);

 }

 out.println("");

 }

 // Ask if they want to add more items or check out.

 out.println("<FORM ACTION=\"/servlet/ShoppingCart\" METHOD=POST>");

 out.println("Would you like to
");

 out.println("<INPUT TYPE=submit VALUE=\" Add More Items \">");

 out.println("<INPUT TYPE=submit VALUE=\" Check Out \">");

 out.println("</FORM>");

 // Offer a help page. Encode it as necessary.

 out.println("For help, click <A HREF=\"" +

 res.encodeUrl("/servlet/Help?topic=ShoppingCartViewer") +

 "\">here");

 out.println("</BODY></HTML>");

 }

}

Example 7-9. Using the session tracking API (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

:

Chapter 8

In this chapter:
• HTTP Authentication
• Digital Certificates
• Secure Sockets Layer

(SSL)
• Running Servlets

Securely

So far we have imagined that
is trustworthy and nobody lo
world: the truth is that the In
place more and more empha
nets with sensitive informatio
topics in web programming.

Security is the science of keep
Java™
Copyright © 2
8

8.Security 8
our servlets exist in a perfect world, where everyone
cks their doors at night. Sadly, that’s a 1950s fantasy
ternet has its share of fiendish rogues. As companies
sis on online commerce and begin to load their Intra-
n, security has become one of the most important

ing sensitive information in the hands of authorized
users. On the web, this boils down to three important issues:

Authentication
Being able to verify the identities of the parties involved

Confidentiality
Ensuring that only the parties involved can understand the communication

Integrity
Being able to verify that the content of the communication is not changed
during transmission

A client wants to be sure that it is talking to a legitimate server (authentication),
and it also want to be sure that any information it transmits, such as credit card
numbers, is not subject to eavesdropping (confidentiality). The server is also con-
cerned with authentication and confidentiality. If a company is selling a service or
providing sensitive information to its own employees, it has a vested interest in
making sure that nobody but an authorized user can access it. And both sides need
integrity to make sure that whatever information they send gets to the other party
unaltered.

Authentication, confidentiality, and integrity are all linked by digital certificate
technology. Digital certificates allow web servers and clients to use advanced
221
 Servlet Programming, eMatter Edition

000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

222 CHAPTER 8: SECURITY
cryptographic techniques to handle identification and encryption in a secure man-
ner. Thanks to Java’s built-in support for digital certificates, servlets are an excel-
lent platform for deploying secure web applications that use digital certificate
technology. We’ll be taking a closer look at them later.

Security is also about making sure that crackers can’t gain access to the sensitive
data on your web server. Because Java was designed from the ground up as a
secure, network-oriented language, it is possible to leverage the built-in security
features and make sure that server add-ons from third parties are almost as safe as
the ones you write yourself.

This chapter introduces the basics of web security and digital certificate technol-
ogy in the context of using servlets. It also discusses how to maintain the security of
your web server when running servlets from untrusted third-parties. You’ll notice
that this chapter takes a higher-level approach and shows fewer examples than pre-
vious chapters. The reason is that many of the topics in this chapter require web
server-specific administration to implement. The servlets just tag along for the
ride.

Finally, a note of caution. We are just a couple of servlet programmers, and we dis-
claim all responsibility for any security-related incidents that might result from fol-
lowing our advice. For a much more complete overview of web security technol-
ogy and procedures, see Web Security & Commerce by Simson Garfinkel with Gene
Spafford (O’Reilly). Of course, they probably won’t accept responsibility either.

HTTP Authentication
As we discussed briefly in Chapter 4, Retrieving Information, the HTTP protocol pro-
vides built-in authentication support—called basic authentication—based on a
simple challenge/response, username/password model. With this technique, the
web server maintains a database of usernames and passwords and identifies cer-
tain resources (files, directories, servlets, etc.) as protected. When a user requests
access to a protected resource, the server responds with a request for the client’s
username and password. At this point, the browser usually pops up a dialog box
where the user enters the information, and that input is sent back to the server as
part of a second authorized request. If the submitted username and password
match the information in the server’s database, access is granted. The whole
authentication process is handled by the server itself.

Basic authentication is very weak. It provides no confidentiality, no integrity, and
only the most basic authentication. The problem is that passwords are transmitted
over the network, thinly disguised by a well-known and easily reversed Base64
encoding. Anyone monitoring the TCP/IP data stream has full and immediate
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HTTP AUTHENTICATION 223
access to all the information being exchanged, including the username and pass-
word. Plus, passwords are often stored on the server in clear text, making
them vulnerable to anyone cracking into the server’s file system. While it’s
certainly better than nothing, sites that rely exclusively on basic authentication
cannot be considered really secure.

Digest authentication is a variation on the basic authentication scheme. Instead of
transmitting a password over the network directly, a digest of the password is used
instead. The digest is produced by taking a hash (using the very secure MD5
encryption algorithm) of the username, password, URI, HTTP request
method, and a randomly generated “nonce” value provided by the server.
Both sides of the transaction know the password and use it to compute
digests. If the digests match, access is granted. Transactions are thus some-
what more secure than they would be otherwise because digests are valid for
only a single URI request and nonce value. The server, however, must still
maintain a database of the original passwords. And, as of this writing, digest
authentication is not supported by very many browsers.

The moral of the story is that HTTP authentication can be useful in low-security
environments. For example, a site that charges for access to content—say, an
online newspaper—is more concerned with ease of use and administration
than lock-tight security, so HTTP authentication is often sufficient.

Retrieving Authentication Information
A servlet can retrieve information about the server’s authentication using two meth-
ods introduced in Chapter 4: getRemoteUser() and getAuthType() .
Example 8-1 shows a simple servlet that tells the client its name and what kind of
authentication has been performed (basic, digest, or some alternative). To see this
servlet in action, you should install it in your web server and protect it with a basic or
digest security scheme. Because web server implementations vary, you’ll need
to check your server documentation for the specifics on how to set this up.

Example 8-1. Snooping the authorization information

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class AuthorizationSnoop extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

out.println("<HTML><HEAD><TITLE>Authorization Snoop</TITLE></HEAD><BODY>");
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

224 CHAPTER 8: SECURITY
Custom Authorization
Normally, client authentication is handled by the web server. The server adminis-
trator tells the server which resources are to be restricted to which users, and infor-
mation about those users (such as their passwords) is somehow made available to
the server.

This is often good enough, but sometimes the desired security policy cannot be
implemented by the server. Maybe the user list needs to be stored in a format that
is not readable by the server. Or maybe you want any username to be allowed, as
long as it is given with the appropriate “skeleton key” password. To handle these
situations, we can use servlets. A servlet can be implemented so that it learns about
users from a specially formatted file or a relational database; it can also be written
to enforce any security policy you like. Such a servlet can even add, remove, or
manipulate user entries—something that isn’t supported directly in the Servlet
API, except through proprietary server extensions.*

A servlet uses status codes and HTTP headers to manage its own security policy.
The servlet receives encoded authorization credentials in the Authorization
header. If it chooses to deny those credentials, it does so by sending the SC_
UNAUTHORIZED status code and a WWW-Authenticate header that describes the
desired credentials. A web server normally handles these details without involving
its servlets, but for a servlet to do its own authorization, it must handle these
details itself, while the server is told not to restrict access to the servlet.

The Authorization header, if sent by the client, contains the client’s username
and password. With the basic authorization scheme, the Authorization header
contains the string of " username: password" encoded in Base64. For example,

 out.println("<H1>This is a password protected resource</H1>");

 out.println("<PRE>");

 out.println("User Name: " + req.getRemoteUser());

 out.println("Authorization Type: " + req.getAuthType());

 out.println("</PRE>");

 out.println("</BODY></HTML>");

 }

}

* Sadly, getAuthType() and getRemoteUser() are the only security-related methods supported in
the core Servlet API. This is because different web servers implement different types of security, mak-
ing a server-independent API difficult to develop. Individual servers and servlet implementations are
free to provide their own customized user management routines. The Java Web Server, for example,
provides servlets with programmatic access to its security and authentication systems using classes in
the com.sun.server.* packages. Servlets written to these APIs are, of course, non-portable.

Example 8-1. Snooping the authorization information (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HTTP AUTHENTICATION 225
the username of "webmaster" with the password "try2gueSS" is sent in an
Authorization header with the value:

BASIC d2VibWFzdGVyOnRyeTJndWVTUw

If a servlet needs to, it can send an WWW-Authenticate header to tell the client
the authorization scheme and the realm against which users will be verified. A
realm is simply a collection of user accounts and protected resources. For exam-
ple, to tell the client to use basic authorization for the realm "Admin" , the WWW-
Authenticate header is:

BASIC realm="Admin"

Example 8-2 shows a servlet that performs custom authorization, receiving an
Authorization header and sending the SC_UNAUTHORIZEDstatus code and
WWW-Authenticate header when necessary. The servlet restricts access to its
“top-secret stuff” to those users (and passwords) it recognizes in its user list. For
this example, the list is kept in a simple Hashtable and its contents are hard-
coded; this would, of course, be replaced with some other mechanism, such as an
external relational database, for a production servlet.

To retrieve the Base64-encoded username and password, the servlet needs to use a
Base64 decoder. Fortunately, there are several freely available decoders. For this
servlet, we have chosen to use the sun.misc.BASE64Decoder class that accom-
panies the JDK. Being in the sun.* hierarchy means it’s unsupported and subject
to change, but it also means it’s probably already on your system. You can find the
details of Base64 encoding in RFC 1521 at http://www.ietf.org/rfc/rfc1521.txt.

Example 8-2. Security in a servlet

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class CustomAuth extends HttpServlet {

 Hashtable users = new Hashtable();

 public void init(ServletConfig config) throws ServletException {

 super.init(config);

 users.put("Wallace:cheese", "allowed");

 users.put("Gromit:sheepnapper", "allowed");

 users.put("Penguin:evil", "allowed");

 }

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

226 CHAPTER 8: SECURITY
Although the web server is told to grant any client access to this servlet, the servlet
sends its top-secret output only to those users it recognizes. With a few modifica-
tions, it could allow any user with a trusted skeleton password. Or, like anonymous
FTP, it could allow the "anonymous" username with any email address given as
the password.

 res.setContentType("text/plain");

 PrintWriter out = res.getWriter();

 // Get Authorization header

 String auth = req.getHeader("Authorization");

 // Do we allow that user?

 if (!allowUser(auth)) {

 // Not allowed, so report he's unauthorized

 res.setHeader("WWW-Authenticate", "BASIC realm=\"users\"");

 res.sendError(res.SC_UNAUTHORIZED);

 // Could offer to add him to the allowed user list

 }

 else {

 // Allowed, so show him the secret stuff

 out.println("Top-secret stuff");

 }

 }

 // This method checks the user information sent in the Authorization

 // header against the database of users maintained in the users Hashtable.

 protected boolean allowUser(String auth) throws IOException {

 if (auth == null) return false; // no auth

 if (!auth.toUpperCase().startsWith("BASIC "))

 return false; // we only do BASIC

 // Get encoded user and password, comes after "BASIC "

 String userpassEncoded = auth.substring(6);

 // Decode it, using any base 64 decoder

 sun.misc.BASE64Decoder dec = new sun.misc.BASE64Decoder();

 String userpassDecoded = new String(dec.decodeBuffer(userpassEncoded));

 // Check our user list to see if that user and password are "allowed"

 if ("allowed".equals(users.get(userpassDecoded)))

 return true;

 else

 return false;

 }

}

Example 8-2. Security in a servlet (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HTTP AUTHENTICATION 227
Custom authorization can be used for more than restricting access to a single serv-
let. Were we to add this logic to our ViewFile servlet, we could implement a cus-
tom access policy for an entire set of files. Were we to create a special subclass of
HttpServlet and add this logic to that, we could easily restrict access to every
servlet derived from that subclass. Our point is this: with custom authorization, the
security policy limitations of the server do not limit the possible security policy
implementations of its servlets.

Form-based Custom Authorization
Servlets can also perform custom authorization without relying on HTTP authori-
zation, by using HTML forms and session tracking instead. It’s a bit more effort to
give users a well-designed, descriptive, and friendly login page. For example, imag-
ine you’re developing an online banking site. Would you rather let the browser
present a generic prompt for username and password or provide your customers
with a custom login form that politely asks for specific banking credentials, as
shown in Figure 8-1?

Figure 8-1. An online banking login screen
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

228 CHAPTER 8: SECURITY
Many banks and other online services have chosen to use form-based custom
authorization. Implementing such a system is relatively straightforward with serv-
lets. First, we need the login page. It can be written like any other HTML form.
Example 8-3 shows a sample login.html file that generates the form shown in
Figure 8-2.

This form asks the client for her name and password, then submits the informa-
tion to the LoginHandler servlet that validates the login. We’ll see the code for
LoginHandler soon, but first we should ask ourselves, “When is the client going
to see this login page?” It’s clear she can browse to this login page directly, perhaps
following a link on the site’s front page. But what if she tries to access a protected
resource directly without first logging in? In that case, she should be redirected to

Example 8-3. The login.html file

<HTML>

<TITLE>Login</TITLE>

<BODY>

<FORM ACTION=/servlet/LoginHandler METHOD=POST>

<CENTER>

<TABLE BORDER=0>

<TR><TD COLSPAN=2>

<P ALIGN=center>

Welcome! Please enter your Name

 and Password to log in.

</TD></TR>

<TR><TD>

<P ALIGN=right>Name:

</TD>

<TD>

<P><INPUT TYPE=text NAME="name" VALUE="" SIZE=15>

</TD></TR>

<TR><TD>

<P ALIGN=right>Password:

</TD>

<TD>

<P><INPUT TYPE=password NAME="passwd" VALUE="" SIZE=15>

</TD></TR>

<TR><TD COLSPAN=2>

<CENTER>

<INPUT TYPE=submit VALUE=" OK ">

</CENTER>

</TD></TR>

</TABLE>

</BODY></HTML>
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HTTP AUTHENTICATION 229
this login page and, after a successful login, be redirected back to the original tar-
get. The process should work as seamlessly as having the browser pop open a win-
dow—except in this case the site pops open an intermediary page.

Example 8-4 shows a servlet that implements this redirection behavior. It outputs
its secret data only if the client’s session object indicates she has already logged in.
If she hasn’t logged in, the servlet saves the request URL in her session for later
use, and then redirects her to the login page for validation.

Figure 8-2. A friendly login form

Example 8-4. A protected resource

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class ProtectedResource extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/plain");

 PrintWriter out = res.getWriter();

 // Get the session

 HttpSession session = req.getSession(true);
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

230 CHAPTER 8: SECURITY
This servlet sees if the client has already logged in by checking her session for an
object with the name "logon.isDone" . If such an object exists, the servlet
knows that the client has already logged in and therefore allows her to see the
secret goods. If it doesn’t exist, the client must not have logged in, so the servlet
saves the request URL under the name "login.target" , and then redirects the
client to the login page. Under form-based custom authorization, all protected
resources (or the servlets that serve them) have to implement this behavior. Sub-
classing, or the use of a utility class, can simplify this task.

Now for the login handler. After the client enters her information on the login
form, the data is posted to the LoginHandler servlet shown in Example 8-5. This
servlet checks the username and password for validity. If the client fails the check,
she is told that access is denied. If the client passes, that fact is recorded in her ses-
sion object and she is immediately redirected to the original target.

 // Does the session indicate this user already logged in?

 Object done = session.getValue("logon.isDone"); // marker object

 if (done == null) {

 // No logon.isDone means he hasn't logged in.

 // Save the request URL as the true target and redirect to the login page.

 session.putValue("login.target",

 HttpUtils.getRequestURL(req).toString());

 res.sendRedirect(req.getScheme() + "://" +

 req.getServerName() + ":" + req.getServerPort() +

 "/login.html");

 return;

 }

 // If we get here, the user has logged in and can see the goods

 out.println("Unpublished O'Reilly book manuscripts await you!");

 }

}

Example 8-5. Handling a login

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class LoginHandler extends HttpServlet {

 public void doPost(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

Example 8-4. A protected resource (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HTTP AUTHENTICATION 231
The actual validity check in this servlet is quite simple: it assumes any username
and password are valid. That keeps things simple, so we can concentrate on how
the servlet behaves when the login is successful. The servlet saves the user’s name
(any old object will do) in the client’s session under the name "logon.isDone" ,
as a marker that tells all protected resources this client is okay. It then redirects
the client to the original target saved as "login.target" , seamlessly sending
her where she wanted to go in the first place. If that fails for some reason, the serv-
let redirects the user to the site’s home page.

 // Get the user's name and password

 String name = req.getParameter("name");

 String passwd = req.getParameter("passwd");

 // Check the name and password for validity

 if (!allowUser(name, passwd)) {

 out.println("<HTML><HEAD><TITLE>Access Denied</TITLE></HEAD>");

 out.println("<BODY>Your login and password are invalid.
");

 out.println("You may want to try again");

 out.println("</BODY></HTML>");

 }

 else {

 // Valid login. Make a note in the session object.

 HttpSession session = req.getSession(true);

 session.putValue("logon.isDone", name); // just a marker object

 // Try redirecting the client to the page he first tried to access

 try {

 String target = (String) session.getValue("login.target");

 if (target != null)

 res.sendRedirect(target);

 return;

 }

 catch (Exception ignored) { }

 // Couldn't redirect to the target. Redirect to the site's home page.

 res.sendRedirect(req.getScheme() + "://" +

 req.getServerName() + ":" + req.getServerPort());

 }

 }

 protected boolean allowUser(String user, String passwd) {

 return true; // trust everyone

 }

}

Example 8-5. Handling a login (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

232 CHAPTER 8: SECURITY
Digital Certificates
Real applications require a higher level of security than basic and digest authenti-
cation provide. They also need guaranteed confidentiality and integrity, as well as
more reliable authentication. Digital certificate technology provides this.

The key concept is public key cryptography. In a public key cryptographic system,
each participant has two keys that are used to encrypt or decrypt information. One
is the public key, which is distributed freely. The other is a private key, which is
kept secret. The keys are related, but one can not be derived from the other. To
demonstrate, assume Jason wants to send a secret message to Will. He finds Will’s
public key and uses it to encrypt the message. When Will gets the message, he uses
his private key to decrypt it. Anyone intercepting the message in transit is con-
fronted with indecipherable gibberish.

Public key encryption schemes have been around for several years and are quite
well developed. Most are based on the patented RSA algorithm developed by Ron
Rivest, Adi Shamir, and Leonard Adelman. RSA uses very large prime numbers to
generate a pair of asymmetric keys (i.e., each key can decode messages encoded
with the other). Individual keys come in varying lengths, usually expressed in
terms of the number of bits that make up the key. 1024- or 2048-bit keys are ade-
quate for secure RSA communications.

Because keys are so large, it is not practical for a user to type one into her web
brower for each request. Instead, keys are stored on disk in the form of digital cer-
tificates. Digital certificates can be generated by software like Phil Zimmerman’s
PGP package, or they can be issued by a third party. The certificate files them-
selves can be loaded by most security-aware applications, such as servers, browsers,
and email software.

Public key cryptography solves the confidentiality problem because the communi-
cation is encrypted. It also solves the integrity problem: Will knows that the mes-
sage he received was not tampered with since it decodes properly. So far, though, it
does not provide any authentication. Will has no idea whether Jason actually sent
the message. This is where digital signatures come into play. Because public and
private keys are asymmetric, Jason can first use his private key to encode a message
and then use Will’s public key to encode it again. When Will gets the message, he
decodes it first with his private key, and then with Jason’s public key. Because only
Jason can encode messages with his private key—messages that can be decoded
only with his public key—Will knows that the message was truly sent by Jason.

This is different from simpler symmetric key systems, where a single key is used
for encoding and decoding. While asymmetric keys have the significant advan-
tage of allowing secure communication without ever requiring a secure channel,
they have the disadvantage of requiring much more computational muscle. As a
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DIGITAL CERTIFICATES 233
compromise, many encryption systems use asymmetric public and private keys to
identify each other and then confidentially exchange a separate symmetric key for
encrypting the actual exchange. The symmetric key is usually based on DES (Data
Encryption Standard).

U.S. government restrictions currently limit symmetric key size to 56 bits (about 72
quadrillion possible keys). Messages encrypted with a 56-bit key are difficult to
decode, but by no means impossible—large networks have been used to decode
such messages within a matter of days. With the United States, however, many sys-
tems use 128-bit DES keys (about 3.40282 x 10^38 possible keys). Because there is
no know way to decode a DES-encrypted message short of brute-force trial and
error, messages sent using large keys are very, very secure.

This leaves one final problem—how does one user know that another user is who
she says she is? Jason and Will know each other, so Will trusts that the public key
Jason gave him in person is the real one.* On the other hand, if Lisa wants to give
Jason her public key, but Jason and Lisa have never met, there is no reason for
Jason to believe that Lisa is not actually Mark. But, if we assume that Will knows
Lisa, we can have Will use his private key to sign Lisa’s public key. Then, when
Jason gets the key, he can detect that Will, whom he trusts, is willing to vouch for
Lisa’s identity. These introductions are sometimes called a “web of trust.”

In the real world, this third-party vouching is usually handled by a specially estab-
lished certificate authority, such as VeriSign Corporation. Because VeriSign is a
well-known organization with a well-known public key, keys verified and signed by
VeriSign can be assumed to be trusted, at least to the extent that VeriSign received
proper proof of the receiver’s identity. VeriSign offers a number of classes of digi-
tal IDs, each with an increasing level of trust. You can get a Class 1 ID by simply fill-
ing out a form on the VeriSign web site and receiving an email. Higher classes are
individually verified by VeriSign employees, using background checks and investi-
gative services to verify identities.

When selecting a certificate authority, it is important to choose a firm with strong
market presence. VeriSign certificates, for instance, are included in Netscape Navi-
gator and Microsoft Internet Explorer, so virtually every user on the Internet will
trust and accept them. The following firms provide certificate authority services:

• VeriSign (http://www.verisign.com/)

• Thawte Consulting (http://www.thawte.com/)

• Entrust Technologies (http://www.entrust.com/)

• Keywitness (http://www.keywitness.ca/)

* To be truthful, people almost never meet in dark alleys to exchange their full public keys. Instead,
they exchange keys digitally (via email, perhaps) and in person simply compare a small fingerprint
hash of the key.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

234 CHAPTER 8: SECURITY
For more abstract information about digital certificates, we recommend Under-
standing Digital Signatures by Gail L. Grant (Mc-Graw Hill), which provides an
excellent introduction to the subject suitable for programmers and nonprogram-
mers alike. For more on cryptography as it is related to Java, we recommend Java
Cryptography by Jonathan Knudsen (O’Reilly).

Secure Sockets Layer (SSL)
The Secure Sockets Layer protocol, or SSL, sits between the application-level proto-
col (in this case HTTP) and the low-level transport protocol (for the Internet,
almost exclusively TCP/IP). It handles the details of security management using
public key cryptography to encrypt all client/server communication. SSL was intro-
duced by Netscape with Netscape Navigator 1. It has since become the de facto
standard for secure online communications and forms the basis of the Transport
Layer Security (TLS) protocol currently under development by the Internet Engi-
neering Task Force. For more information on TLS, see http://www.ietf.org/ietf-tls.

SSL Version 2.0, the version first to gain widespread acceptance, includes support
for server certificates only. It provides authentication of the server, confidentiality,
and integrity. Here’s how it works:

1. A user connects to a secure site using the HTTPS (HTTP plus SSL) protocol.
(You can detect sites using the HTTPS protocol because their URLs begin
with https: instead of http:.)

2. The server signs its public key with its private key and sends it back to the
browser.

3. The browser uses the server’s public key to verify that the same person who
signed the key actually owns it.

4. The browser checks to see whether a trusted certificate authority signed the
key. If one didn’t, the browser asks the user if the key can be trusted and
proceeds as directed.

5. The client generates a symmetric (DES) key for the session, which is encrypted
with the server’s public key and sent back to the server. This new key is used to
encrypt all subsequent transactions. The symmetric key is used because of the
high computational cost of public key cryptosystems.

All this is completely transparent to servlets and servlet developers. You just need
to obtain an appropriate server certificate, install it, and configure your server
appropriately. Information transferred between servlets and clients is now
encrypted. Voila, security!
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SECURE SOCKETS LAYER (SSL) 235
SSL Client Authentication
Our security toolbox now includes strong encryption and strong server authentica-
tion, but only weak client authentication. Of course, using SSL 2.0 puts us in bet-
ter shape because SSL-equipped servers can use the basic authentication methods
discussed at the beginning of this chapter without concern for eavesdropping. We
still don’t have proof of client identity, however—after all, anybody could have
guessed or gotten a hold of a client username and password.

SSL 3.0 fixes this problem by providing support for client certificates. These are
the same type of certificates that servers use, but they are registered to clients
instead. As of this writing, VeriSign claims to have distributed more than 750,000
client certificates. SSL 3.0 with client authentication works the same way as SSL 2.
0, except that after the client has authenticated the server, the server requests the
client’s certificate. The client then sends its signed certificate, and the server per-
forms the same authentication process as the client did, comparing the client cer-
tificate to a library of existing certificates (or simply storing the certificate to iden-
tify the user on a return visit). As a security precaution, many browsers require the
client user to enter a password before they will send the certificate.

Once a client has been authenticated, the server can allow access to protected
resources such as servlets or files just as with HTTP authentication. The whole pro-
cess occurs transparently, without inconveniencing the user. It also provides an
extra level of authentication because the server knows the client with a John Smith
certificate really is John Smith (and it can know which John Smith it is by reading
his unique certificate). The disadvantages of client certificates are that users must
obtain and install signed certificates, servers must maintain a database of all
accepted public keys, and servers must support SSL 3.0 in the first place. As of this
writing, most do, including the Java Web Server.

Retrieving SSL Authentication Information
As with basic and digest authentication, all of this communication is transparent to
servlets. It is sometimes possible, though, for a servlet to retrieve the relevant SSL
authentication information. The java.security package has some basic support
for manipulating digital certificates and signatures. To retrieve a client’s digital infor-
mation, however, a servlet has to rely on a server-specific implementation of the
request’s getAttribute() method. Example 8-6 (reprinted from Chapter 4) shows
how to use getAttribute() to fetch the details of a client’s certificates. Remember
that this works only for the Java Web Server. Other servlet implementations, if they
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

236 CHAPTER 8: SECURITY
include this functionality at all, are likely to do it in a slightly different way, although
we hope that they build on Java’s standard signature support.

Here’s the output we first saw in Chapter 4:

Cipher Suite: SSL_RSA_EXPORT_WITH_RC4_40_MD5

Client Certificate [0] = [

 X.509v3 certificate,

 Subject is OID.1.2.840.113549.1.9.1=#160F6A68756E746572407367692E636F6D,

CN=Jason Hunter, OU=Digital ID Class 1 - Netscape,

OU="www.verisign.com/repository/CPS Incorp. by Ref.,LIAB.LTD(c)96",

OU=VeriSign Class 1 CA - Individual Subscriber, O="VeriSign, Inc.", L=Internet

 Key: algorithm = [RSA], exponent = 0x 010001, modulus =

 b35ed5e7 45fc5328 e3f5ce70 838cc25d 0a0efd41 df4d3e1b 64f70617 528546c8

 fae46995 9922a093 7a54584d d466bee7 e7b5c259 c7827489 6478e1a9 3a16d45f

 Validity until

 Issuer is OU=VeriSign Class 1 CA - Individual Subscriber, O="VeriSign, Inc.",

L=Internet

 Issuer signature used [MD5withRSA]

 Serial number = 20556dc0 9e31dfa4 ada6e10d 77954704

]

Client Certificate [1] = [

 X.509v3 certificate,

 Subject is OU=VeriSign Class 1 CA - Individual Subscriber, O="VeriSign,

Example 8-6. Examining client certificates

import javax.security.cert.X509Certificate;

out.println("<PRE>");

// Display the cipher suite in use

String cipherSuite =

 (String) req.getAttribute("javax.net.ssl.cipher_suite");

out.println("Cipher Suite: " + cipherSuite);

// Display the client's certificates, if there are any

if (cipherSuite != null) {

 X509Certificate certChain[] =

 (X509Certificate[]) req.getAttribute("javax.net.ssl.peer_certificates");

 if (certChain != null) {

 for (int i = 0; i < certChain.length; i++) {

 out.println ("Client Certificate [" + i + "] = "

 + certChain[i].toString());

 }

 }

}

out.println("</PRE>");
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RUNNING SERVLETS SECURELY 237
Inc.", L=Internet

 Key: algorithm = [RSA], exponent = 0x 010001, modulus =

 b614a6cf 4dd0050d d8ca23d0 6faab429 92638e2c f86f96d7 2e9d764b 11b1368d

 57c9c3fd 1cc6bafe 1e08ba33 ca95eabe e35bcd06 a8b7791d 442aed73 f2b15283

 68107064 91d73e6b f9f75d9d 14439b6e 97459881 47d12dcb ddbb72d7 4c3f71aa

 e240f254 39bc16ee cf7cecba db3f6c2a b316b186 129dae93 34d5b8d5 d0f73ea9

 Validity until

 Issuer is OU=Class 1 Public Primary Certification Authority, O="VeriSign,

Inc.", C=US

 Issuer signature used [MD2withRSA]

 Serial number = 521f351d f2707e00 2bbeca59 8704d539

]

The first certificate is the user’s public key. The second is VeriSign’s signature that
vouches for the authenticity of the first signature. Of course, the information from
these certificate chains isn’t particularly useful to the application programmer. In
some applications, it is safe to simply assume that a user is authorized if she got
past the SSL authentication phase. For others, the certificates can be picked apart
using the javax.security.cert.X509Certificate class. More commonly,
a web server allows you to assign a username to each certificate you tell it to
accept. Servlets can then call getRemoteUser() to get a unique username. The
latter solution works with almost all web servers.

Running Servlets Securely
CGI programs and C++-based plug-ins operate with relatively unfettered access to
the server machine on which they execute (limited on Unix machines by the user
account permissions of the web server process). This isn’t so bad for an isolated
programmer developing for a single web server, but it’s a security nightmare for
internet service providers (ISPs), corporations, schools, and everyone else run-
ning shared web servers.

For these sites, the problem isn’t just protecting the server from malicious CGI
programmers. The more troublesome problem is protecting from careless CGI pro-
grammers. There are dozens of well-known CGI programming mistakes that could
let a malicious client gain unauthorized access to the server machine. One innocu-
ous-looking but poorly written Perl eval function is all it takes. For an extensive
list of CGI security gotchas, see Chapter 6 of The WWW Security FAQ at http://
www.w3.org/Security/Faq/www-security-faq.html.

To better understand the situation, imagine you’re an ISP and want to give your
customers the ability to generate dynamic content using CGI programs. What can
you do to protect yourself? Historically, ISPs have chosen one of three options:
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

238 CHAPTER 8: SECURITY
Have blind faith in the customer.
He’s a good guy and a smart programmer, and besides, we have his credit card
number.

Educate the customer.
If he reads the WWW Security FAQ and passes a written test, we’ll let him write
CGI programs for our server.

Review all code.
Before we install any CGI program on the server, we’ll have our expert review
it and scan for security problems.

None of these approaches work very well. Having blind faith is just asking for trou-
ble. Programmer education helps, but programmers are human and bound to
make mistakes. As for code review, there’s still no guarantees, plus it takes time
and costs money to do the extra work.

Fortunately, with servlets there’s another, better solution. Because servlets are writ-
ten in Java, they can be forced to follow the rules of a security manager (or access
controller with JDK 1.2) to greatly limit the server’s exposure to risk, all with a
minimal amount of human effort.

The Servlet Sandbox
Servlets built using JDK 1.1 generally operate with a security model called the
“servlet sandbox.” Under this model, servlets are either trusted and given open
access to the server machine, or they’re untrusted and have their access limited by
a restrictive security manager. The model is very similar to the “applet sandbox,”
where untrusted applet code has limited access to the client machine.

What’s a security manager? It’s a class subclassed from java.lang.Security-
Manager that is loaded by the Java environment to monitor all security-related
operations: opening network connections, reading and writing files, exiting the
program, and so on. Whenever an application, applet, or servlet performs an
action that could cause a potential security breach, the environment queries the
security manager to check its permissions. For a normal Java application, there is
no security manager. When a web browser loads an untrusted applet over the net-
work, however, it loads a very restrictive security manager before allowing the
applet to execute.

Servlets can use the same technology, if the web server implements it. Local serv-
lets can be trusted to run without a security manager, or with a fairly lenient one.
For the Java Web Server 1.1, this is what happens when servlets are placed in the
default servlet directory or another local source. Servlets loaded from a remote
source, on the other hand, are by nature suspect and untrusted, so the Java Web
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RUNNING SERVLETS SECURELY 239
Server forces them to run in a very restrictive environment where they can’t access
the local file system, establish network connections, and so on.* All this logic is
contained within the server and is invisible to the servlet, except that the servlet
may see a SecurityException thrown when it tries to access a restricted
resource. The servlet sandbox is a simple model, but it is already more potent than
any other server extension technology to date.

Using digital signatures, it is possible for remotely loaded servlets to be trusted just
like local servlets. Third-party servlets are often packaged using the Java Archive
(JAR) file format. A JAR file collects a group of class files and other resources into
a single archive for easy maintenance and fast download. Another nice feature of
JAR files that is useful to servlets is that they can be digitally signed. This means
that anyone with the public key for “Crazy Al’s Servlet Shack” can verify that her
copy of Al’s Guestbook Servlet actually came from Al. On some servers, including
the Java Web Server, these authenticated servlets can then be trusted and given
extended access to the system.†

Fine-grained Control
This all-or-nothing approach to servlet permissions is useful, but it can be overly
limiting. Consequently, some servlet engines have begun to explore a more fine-
grained protection of server resources—for example, allowing a specific servlet to
establish a network connection but not write to the server’s file system. This fine-
grained control is fairly awkward using the JDK 1.1 notion of a SecurityMan-
ager class and, therefore, isn’t widely implemented, although it can be done, as
the Java Web Server 1.1 proves.

The Java Web Server 1.1 includes eight permissions that can be granted to servlets:

Load servlet
Let the servlet load a named servlet.

Write files
Let the servlet write any file on the local file system.

Listen to socket
Allow the servlet to accept incoming socket (network) connections.

Link libraries
Allow the loading of native libraries, such as the JDBC-ODBC bridge.

* If you want a local servlet run in the restrictive environment, a workaround is to place them in your
server's document root (such as server _root /public_html) and configure the server load them re-
motely from the same server.

† You can create your owned signed servlets using a certificate generated by the JDK’s key management
tools (javakey in JDK 1.1 or keytool and jarsigner in JDK 1.2). Alternately, you can obtain signed certifi-
cates from VeriSign or another certificate authority.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

240 CHAPTER 8: SECURITY
Read files
Let the servlet read any file on the local file system.

Open remote socket
Allow the servlet to connect to an external host.

Execute programs
Permit the servlet to execute external programs on the server. This is useful
for servlets that absolutely require access to some system utilities, but it is very
dangerous: rm and del qualify as an external programs!

Access system properties
Grant access to java.lang.System properties.

A screen shot of the Administration Tool configuration page that assigns these
permissions is shown in Figure 8-3.

Theoretically, any criterion can be used to determine what a servlet can or cannot
do. It’s possible for the security manager to base its permission-granting decision
on any factor, including these:

The servlet itself
For example, this servlet can read files and load native libraries but cannot
write files.

Figure 8-3. Eight permissions
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RUNNING SERVLETS SECURELY 241
The client user
For instance, any servlet responding to a request from this client user can
write files.

The client host
For example, any servlet responding to a request from this machine can estab-
lish network connections.

Digital signatures
For instance, any servlet in a JAR file signed by this entity has full reign on the
server system.

Access Controllers
JDK 1.2 introduces a new extension to the security manager system: the access con-
troller. The new architecture is quite similar to the “give particular servlets particu-
lar privileges” approach implemented by the Java Web Server 1.1, except that it
applies to all JDK 1.2 programs and therefore makes fine-grained permission
implementations much easier.

An access controller allows what might be called super-fine-grained permission
control. Instead of granting a servlet the general ability to write files, with an
access controller a servlet can be given the right to write to a single file—perfect
for a counter servlet, for example. Or it can be given the right to read and write
files only in the client user’s home directory on the server—appropriate for a cli-
ent/server application. With access controllers, servlets can be given the rights to
do exactly what they need to do and nothing more.

Access controllers work by placing individual pieces of code, often identified by
digital signatures, into particular virtual domains. Classes in these domains can be
granted fine-grained permissions, such as the ability to read from the server’s doc-
ument root, write to a temporary directory, and accept socket connections. All per-
mission policy decisions are managed by a single instance of the java.secu-
rity.AccessController class. This class bases its policy decisions on a simple
configuration file, easily managed using a graphical user interface.

Now, instead of relying on complicated custom security managers as the Java Web
Server team had to do, a servlet engine need only add a few lines of code to use an
access controller. So, while the Java Web Server is the only servlet implementation
supporting fine-grained security as of early 1998, once JDK 1.2 becomes popular, it
should be easy for other servlet engine implementers to add the same level of fine-
grained access control. These implementations may already be available by the
time you read this.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

242
Java™ Servlet Programming, eMatte

Copyright © 2000 O’Reilly & Associates, Inc. A
Chapter 9

In this chapter:
• Relational Databases
• The JDBC API
• Reusing Database

Objects
• Transactions
• Advanced JDBC

Techniques

9. 9:

esn’t have some sort of data-
ront ends to all manner of
ry databases, as well as many
d search engines. But web-
ed web sites can be difficult
enalties. Still, for many web
tivity is just too useful to let
9

Database Connectivity
It’s hard to find a professional web site today that do
base connectivity. Webmasters have hooked online f
legacy systems, including package tracking and directo
newer systems like online messaging, storefronts, an
database interaction comes with a price: database-back
to develop and can often exact heavy performance p
sites, especially intranet applications, database connec
go. More and more, databases are driving the Web.

This chapter introduces relational databases, the Structured Query Language
(SQL) used to manipulate those databases, and the Java database connectivity
(JDBC) API itself. Servlets, with their enduring life cycle, and JDBC, a well-defined
database-independent database connectivity API, are an elegant and efficient solu-
tion for webmasters who need to hook their web sites to back-end databases. In
fact, both of your authors started working with servlets specifically because of this
efficiency and elegance. Although elsewhere in the book we have assumed that
you are familiar with Java, this chapter breaks that assumption and begins with a
quick course in JDBC.

The biggest advantage for servlets with regard to database connectivity is that the
servlet life cycle (explained in depth in Chapter 3, The Servlet Life Cycle) allows serv-
lets to maintain open database connections. An existing connection can trim
several seconds from a response time, compared to a CGI script that has to rees-
tablish its connection for every invocation. Exactly how to maintain the database
connection depends on the task at hand, and this chapter demonstrates several
techniques appropriate for different tasks.

Another advantage of servlets over CGI and many other technologies is that JDBC
is database-independent. A servlet written to access a Sybase database can, with a
r Edition
ll rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RELATIONAL DATABASES 243
two-line modification or a change in a properties file, begin accessing an Oracle
database (assuming none of the database calls it makes are vendor-specific). In
fact, you should notice that the examples in this chapter are written to access a
variety of different databases, including ODBC data sources (such as Microsoft
Access), Oracle, and Sybase.

Relational Databases
In some earlier examples, we’ve seen servlets that used file storage on the local
disk to store their persistent data. The use of a flat file is fine for a small amount of
data, but it can quickly get out of control. As the amount of data grows, access
times slow to a crawl. And just finding data can become quite a challenge: imagine
storing the names, cities, and email addresses of all your customers in a text file. It
works great for a company that is just starting out, but what happens when you
have hundreds of thousands of customers and want to display a list of all your
customers in Boston with email addresses ending in “aol.com”?

One of the best solutions to this problem is a Relational Database Management
System (RDBMS). At the most basic level, an RDBMS organizes data into tables.
These tables are organized into rows and columns, much like a spreadsheet.
Particular rows and columns in a table can be related (hence the term “rela-
tional”) to one or more rows and columns in another table.

One table in a relational database might contain information about customers,
another might contain orders, and a third might contain information about indi-
vidual items within an order. By including unique identifiers (say, customer
numbers and order numbers), orders from the orders table can be linked to
customer records and individual order components. Figure 9-1 shows how this
might look if we drew it out on paper.

Data in the tables can be read, updated, appended, and deleted using the Struc-
tured Query Language, or SQL, sometimes also referred to as the Standard Query
Language. Java’s JDBC API introduced in JDK 1.1 uses a specific subset of SQL
known as ANSI SQL-2 Entry Level. Unlike most programming languages, SQL is
declarative: you say what you want, and the SQL interpreter gives it to you. Other
languages, like C, C++, and Java, by contrast, are essentially procedural, in that you
specify the steps required to perform a certain task. SQL, while not prohibitively
complex, is also rather too broad a subject to cover in great (or, indeed, merely
adequate) detail here. In order to make the rest of the examples in this chapter
comprehensible, though, here’s a brief tutorial.

The simplest and most common SQL expression is the SELECT statement, which
queries the database and returns a set of rows that matches a set of search criteria.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

244 CHAPTER 9: DATABASE CONNECTIVITY
Servlets in the Middle Tier
One common place for servlets, especially servlets that access a database, is in
what’s called the middle tier. A middle tier is something that helps connect
one endpoint to another (an applet to a database, for example) and along the
way adds a little something of its own.

The most compelling reason for putting a middle tier between a client and our
ultimate date source is that software in the middle tier (commonly referred to
as middleware) can include business logic. Business logic abstracts complicat-
ed low-level tasks (such as updating database tables) into high-level tasks (plac-
ing and order), making the whole operation simpler and safer.

Imagine a client application that places an order. Without middleware, the ap-
plication has to connect directly to the database server that stores the order
records and then change the database fields to reflect the order. If the data-
base server changes in any way (by moving to a different machine, altering its
internal table structure, or changing database vendors), the client may break.
Even worse, if someone makes a minor change to the client (either intention-
ally or accidentally), it’s possible for the database to record orders without first
receiving payment or to reject perfectly valid entries.

Middleware uses business logic to abstract the ordering process. Middleware
accepts information about the order (for example, name, address, item, quan-
tity, credit card number), sanity-checks the information, verifies that the credit
card is valid, and enters the information into the database. Should the data-
base change, the middleware can be updated without any changes in the cli-
ent. Even if the orders database is temporarily replaced with a simple flat file
order log, the middleware can present the same appearance to the client.

Middleware can improve efficiency by spreading the processing load across
several back-end servers (CPU servers, database servers, file servers, directory
servers, etc.). Middleware can also make more efficient use of bandwidth: in-
stead of having a client perform the back-and-forth communication with the
server over what might be a slow network connection, the client can tell the
middleware what it needs and the middleware can do the work using a fast net-
work connection and probably pooled database connections.

On the Web, middle tiers are often implemented using servlets. Servlets pro-
vide a convenient way to connect clients built using HTML forms or applets to
back-end servers. A client communicates its requirements to the servlet using
HTTP, and the business logic in the servlet handles the request by connecting
to the back-end server. (More information on applet-servlet communication is
coming up in Chapter 10, Applet-Servlet Communication.)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RELATIONAL DATABASES 245
For example, the following SELECT statement selects everything from the
CUSTOMERS table:

SELECT * FROM CUSTOMERS

SQL keywords like SELECT and FROM and objects like CUSTOMERS are case insensi-
tive but frequently written in uppercase. When run in Oracle’s SQL*PLUS SQL
interpreter, this query would produce something like the following output:

CUSTOMER_ID NAME PHONE

------------- ----------------------------- ---------------

1 Bob Copier 617 555-1212

2 Janet Stapler 617 555-1213

3 Joel Laptop 508 555-7171

4 Larry Coffee 212 555-6525

More advanced statements might restrict the query to particular columns or
include some specific limiting criteria:

SELECT ORDER_ID, CUSTOMER_ID, TOTAL FROM ORDERS
WHERE ORDER_ID = 4

Servlets sometimes use another middle tier to connect to a database. If a web
browser sends an HTML form with order information to a servlet, that servlet
may parse the information and make an RMI call to middleware on another
machine that has the responsibility for handling all orders—from servlets as
well as standalone programs. In these cases, what was once three tiers is now
four tiers.

Figure 9-1. Related tables

CUSTOMER_ID NAME PHONE
1 Bob Copier 617 555-1212
2 Jane Stapler 617 555-1213

ORDER_ID CUSTOMER_ID TOTAL
1 4 48.03
2 6 16.27
3 7 5.31
4 1 72.19
5 3 53.17
6 1 21.07
7 5 37.62

ORDER_ID ITEM_NO COST

2 4012 12.05
2 6719 4.22
3 603 5.31
4 1280 16.72
4 4129 41.10
4 3017 14.37
5 1280 16.72
5 9246 17.21

CUSTOMERS Table ORDERS Table ITEMS Table
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

246 CHAPTER 9: DATABASE CONNECTIVITY
This statement selects the ORDER_ID, CUSTOMER_ID, and TOTAL columns from all
records where the ORDER_ID field is equal to 4. Here’s a possible result:

 ORDER_ID CUSTOMER_ID TOTAL

--------- ----------- ---------

 4 1 72.19

A SELECT statement can also link two or more tables based on the values of partic-
ular fields. This can be either a one-to-one relationship or, more typically, a one-
to-many relation, such as one customer to several orders:

SELECT CUSTOMERS.NAME, ORDERS.TOTAL FROM CUSTOMERS, ORDERS
WHERE ORDERS.CUSTOMER_ID = CUSTOMERS.CUSTOMER_ID AND ORDERS.
ORDER_ID = 4

This statement connects (or, in database parlance, joins) the CUSTOMERS table
with the ORDERS table via the CUSTOMER_ID field. Note that both tables have this
field. The query returns information from both tables: the name of the customer
who made order 4 and the total cost of that order. Here’s some possible output:

NAME TOTAL

-------------------------------- ---------

Bob Copier 72.19

SQL is also used to update the database. For example:

INSERT INTO CUSTOMERS (CUSTOMER_ID, NAME, PHONE)

 VALUES (5, "Bob Smith", "555 123-3456")

UPDATE CUSTOMERS SET NAME = "Robert Copier" WHERE CUSTOMER_ID = 1

DELETE FROM CUSTOMERS WHERE CUSTOMER_ID = 2

The first statement creates a new record in the CUSTOMERS table, filling in the
CUSTOMER_ID, NAME, and PHONE fields with certain values. The second updates an
existing record, changing the value of the NAME field for a specific customer. The
last deletes any records with a CUSTOMER_ID of 2. Be very careful with all of these
statements, especially DELETE. A DELETE statement without a WHERE clause will
remove all the records in the table!

For a good primer on relational databases and SQL, we recommend SQL for
Dummies, by Allen G. Taylor (IDG Books Worldwide).

The JDBC API
Previously, we’ve assumed that you have a general working knowledge of the
various Java APIs. Because even experienced Java programmers may have had rela-
tively little experience with databases, this section provides a general introduction
to JDBC. If this is your first foray into the world of databases, we strongly recom-
mend that you take a breather and find a book on general database and JDBC
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

THE JDBC API 247
concepts. You may want to read Database Programming with JDBC and Java, by
George Reese (O’Reilly), or JDBC Database Access with Java, by Graham Hamilton,
Rick Cattell, and Maydene Fisher (Addison-Wesley). The official JDBC specifica-
tion is also available online at http://java.sun.com/products/jdbc.

JDBC is a SQL-level API—one that allows you to execute SQL statements and
retrieve the results, if any. The API itself is a set of interfaces and classes designed
to perform actions against any database. Figure 9-2 shows how JDBC programs
interact with databases.

JDBC Drivers
The JDBC API, found in the java.sql package, contains only a few concrete
classes. Much of the API is distributed as database-neutral interface classes that
specify behavior without providing any implementation. The actual implementa-
tions are provided by third-party vendors.

An individual database system is accessed via a specific JDBC driver that imple-
ments the java.sql.Driver interface. Drivers exist for nearly all popular
RDBMS systems, though few are available for free. Sun bundles a free JDBC-ODBC
bridge driver with the JDK to allow access to standard ODBC data sources, such as
a Microsoft Access database. However, Sun advises against using the bridge driver

Figure 9-2. Java and the database

ResultSet ResultSet ResultSet

Statement PreparedStatement CallableStatement

Connection

Driver Manager

Oracle Driver
JDBC-ODBC

Bridge Sybase Driver

Oracle
Database

ODBC Driver
Sybase

Database

ODBC
Database

Application
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

248 CHAPTER 9: DATABASE CONNECTIVITY
for anything other than development and very limited deployment. Servlet devel-
opers in particular should heed this warning because any problem in the JDBC-
ODBC bridge driver’s native code section can crash the entire server, not just your
servlets.

JDBC drivers are available for most database platforms, from a number of vendors
and in a number of different flavors. There are four driver categories:

Type 1-JDBC-ODBC Bridge Driver
Type 1 drivers use a bridge technology to connect a Java client to an ODBC
database service. Sun’s JDBC-ODBC bridge is the most common Type 1 driver.
These drivers are implemented using native code.

Type 2-Native-API Partly-Java Driver
Type 2 drivers wrap a thin layer of Java around database-specific native code
libraries. For Oracle databases, the native code libraries might be based on the
OCI (Oracle Call Interface) libraries, which were originally designed for C/
C++ programmers. Because Type 2 drivers are implemented using native code,
in some cases they have better performance than their all-Java counterparts.
They add an element of risk, however, because a defect in a driver’s native
code section can crash the entire server.

Type 3-Net-Protocol All-Java Driver
Type 3 drivers communicate via a generic network protocol to a piece of
custom middleware. The middleware component might use any type of driver
to provide the actual database access. WebLogic’s Tengah product line is an
example. These drivers are all Java, which makes them useful for applet
deployment and safe for servlet deployment.

Type 4-Native-Protocol All-Java Driver
Type 4 drivers are the most direct of the lot. Written entirely in Java, Type 4
drivers understand database-specific networking protocols and can access the
database directly without any additional software.

A list of currently available JDBC drivers can be found at http://java.sun.com/
products/jdbc/jdbc.drivers.html.

Getting a Connection
The first step in using a JDBC driver to get a database connection involves loading
the specific driver class into the application’s JVM. This makes the driver available
later, when we need it for opening the connection. An easy way to load the driver
class is to use the Class.forName() method:

Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

THE JDBC API 249
When the driver is loaded into memory, it registers itself with the java.sql.
DriverManager class as an available database driver.

The next step is to ask the DriverManager class to open a connection to a given
database, where the database is specified by a specially formatted URL. The
method used to open the connection is DriverManager.getConnection(). It
returns a class that implements the java.sql.Connection interface:

Connection con =

 DriverManager.getConnection("jdbc:odbc:somedb", "user", "passwd");

A JDBC URL identifies an individual database in a driver-specific manner.
Different drivers may need different information in the URL to specify the host
database. JDBC URLs usually begin with jdbc:subprotocol:subname. For example,
the Oracle JDBC-Thin driver uses a URL of the form of
jdbc:oracle:thin:@dbhost:port:sid; the JDBC-ODBC bridge uses jdbc:odbc:data-
sourcename;odbcoptions.

During the call to getConnection(), the DriverManager object asks each regis-
tered driver if it recognizes the URL. If a driver says yes, the driver manager uses
that driver to create the Connection object. Here is a snippet of code a servlet
might use to load its database driver with the JDBC-ODBC bridge and create an
initial connection:

Connection con = null;

try {

 // Load (and therefore register) the JDBC-ODBC Bridge

 // Might throw a ClassNotFoundException

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 // Get a connection to the database

 // Might throw an SQLException

 con = DriverManager.getConnection("jdbc:odbc:somedb", "user", "passwd");

 // The rest of the code goes here.

}

catch (ClassNotFoundException e) {

 // Handle an error loading the driver

}

catch (SQLException e) {

 // Handle an error getting the connection

}

finally {

 // Close the Connection to release the database resources immediately.

 try {

 if (con != null) con.close();

 }

 catch (SQLException ignored) { }

}

Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

250 CHAPTER 9: DATABASE CONNECTIVITY
Executing SQL Queries
To really use a database, we need to have some way to execute queries. The
simplest way to execute a query is to use the java.sql.Statement class.
Statement objects are never instantiated directly; instead, a program calls the
createStatement() method of Connection to obtain a new Statement object:

Statement stmt = con.createStatement();

A query that returns data can be executed using the executeQuery() method of
Statement. This method executes the statement and returns a java.sql.
ResultSet that encapsulates the retrieved data:

ResultSet rs = stmt.executeQuery("SELECT * FROM CUSTOMERS");

You can think of a ResultSet object as a representation of the query result
returned one row at a time. You use the next() method of ResultSet to move
from row to row. The ResultSet interface also boasts a multitude of methods
designed for retrieving data from the current row. The getString() and
getObject() methods are among the most frequently used for retrieving column
values:

while(rs.next()) {

 String event = rs.getString("event");

 Object count = (Integer) rs.getObject("count");

}

You should know that the ResultSet is linked to its parent Statement. There-
fore, if a Statement is closed or used to execute another query, any related
ResultSet objects are closed automatically.

Example 9-1 shows a very simple servlet that uses the Oracle JDBC driver to
perform a simple query, printing names and phone numbers for all employees
listed in a database table. We assume that the database contains a table named
EMPLOYEES, with at least two fields, NAME and PHONE.

Example 9-1. A JDBC-enabled servlet

import java.io.*;

import java.sql.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class DBPhoneLookup extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 Connection con = null;

 Statement stmt = null;
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

THE JDBC API 251
This is about as simple a database servlet as you are likely to see. All
DBPhoneLookup does is connect to the database, run a query that retrieves the

 ResultSet rs = null;

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 try {

 // Load (and therefore register) the Oracle Driver

 Class.forName("oracle.jdbc.driver.OracleDriver");

 // Get a Connection to the database

 con = DriverManager.getConnection(

 "jdbc:oracle:thin:dbhost:1528:ORCL", "user", "passwd");

 // Create a Statement object

 stmt = con.createStatement();

 // Execute an SQL query, get a ResultSet

 rs = stmt.executeQuery("SELECT NAME, PHONE FROM EMPLOYEES");

 // Display the result set as a list

 out.println("<HTML><HEAD><TITLE>Phonebook</TITLE></HEAD>");

 out.println("<BODY>");

 out.println("");

 while(rs.next()) {

out.println("" + rs.getString("name") + " " + rs.getString("phone"));

 }

 out.println("");

 out.println("</BODY></HTML>");

 }

 catch(ClassNotFoundException e) {

 out.println("Couldn't load database driver: " + e.getMessage());

 }

 catch(SQLException e) {

 out.println("SQLException caught: " + e.getMessage());

 }

 finally {

 // Always close the database connection.

 try {

 if (con != null) con.close();

 }

 catch (SQLException ignored) { }

 }

 }

}

Example 9-1. A JDBC-enabled servlet (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

252 CHAPTER 9: DATABASE CONNECTIVITY
names and phone numbers of everyone in the employees table, and display the list
to the user.

Handling SQL Exceptions
DBPhoneLookup encloses most of its code in a try/catch block. This block
catches two exceptions: ClassNotFoundException and SQLException. The
former is thrown by the Class.forName() method when the JDBC driver class
can not be loaded. The latter is thrown by any JDBC method that has a problem.
SQLException objects are just like any other exception type, with the additional
feature that they can chain. The SQLException class defines an extra method,
getNextException(), that allows the exception to encapsulate additional
Exception objects. We didn’t bother with this feature in the previous example,
but here’s how to use it:

catch (SQLException e) {

 out.println(e.getMessage());

 while((e = e.getNextException()) != null) {

 out.println(e.getMessage());

 }

}

This code displays the message from the first exception and then loops through all
the remaining exceptions, outputting the error message associated with each one.
In practice, the first exception will generally include the most relevant
information.

Result Sets in Detail
Before we continue, we should take a closer look at the ResultSet interface and
the related ResultSetMetaData interface. In Example 9-1, we knew what our
query looked like, and we knew what we expected to get back, so we formatted the
output appropriately. But, if we want to display the results of a query in an HTML
table, it would nice to have some Java code that builds the table automatically from
the ResultSet rather than having to write the same loop-and-display code over
and over. As an added bonus, this kind of code makes it possible to change the
contents of the table simply by changing the query.

The ResultSetMetaData interface provides a way for a program to learn about
the underlying structure of a query result on the fly. We can use it to build an
object that dynamically generates an HTML table from a ResultSet, as shown in
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

THE JDBC API 253
Example 9-2. Many Java HTML generation tools (such as WebLogic’s htmlKona
toolkit discussed in Chapter 5, Sending HTML Information) have a similar capability.

Example 9-2. A class to generate an HTML table from a ResultSet using ResultSetMetaData

import java.sql.*;

public class HtmlResultSet {

 private ResultSet rs;

 public HtmlResultSet(ResultSet rs) {

 this.rs = rs;

 }

 public String toString() { // can be called at most once

 StringBuffer out = new StringBuffer();

 // Start a table to display the result set

 out.append("<TABLE>\n");

 try {

 ResultSetMetaData rsmd = rs.getMetaData();

 int numcols = rsmd.getColumnCount();

 // Title the table with the result set's column labels

 out.append("<TR>");

 for (int i = 1; i <= numcols; i++) {

 out.append("<TH>" + rsmd.getColumnLabel(i));

 }

 out.append("</TR>\n");

 while(rs.next()) {

 out.append("<TR>"); // start a new row

 for (int i = 1; i <= numcols; i++) {

 out.append("<TD>"); // start a new data element

 Object obj = rs.getObject(i);

 if (obj != null)

 out.append(obj.toString());

 else

 out.append(" ");

 }

 out.append("</TR>\n");

 }

 // End the table

 out.append("</TABLE>\n");

 }

 catch (SQLException e) {
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

254 CHAPTER 9: DATABASE CONNECTIVITY
This example shows how to use two basic methods of ResultSetMetaData:
getColumnCount() and getColumnLabel(). The first returns the number of
columns in the ResultSet, while the second retrieves the name of a particular
column in a result set based on its numerical index. Indexes in ResultSet objects
follow the RDBMS standard rather than the C++/Java standard, which means they
are numbered from 1 to n rather than from 0 to n-1.

This example also uses the getObject() method of ResultSet to retrieve the
value of each column. All of the getXXX() methods work with column indexes as
well as with column names. Accessing data this way is more efficient, and, with
well-written SQL, is more portable. Here we use getObject().toString()
instead of getString() to simplify the handling of null values, as discussed in
the next section.

Table 9-1 shows the Java methods you can use to retrieve some common SQL data
types from a database. No matter what the type, you can always use the
getObject() method of ResultSet, in which case the type of the object
returned is shown in the second column. You can also use a specific getXXX()
method. These methods are shown in the third column, along with the Java data
types they return. Remember that supported SQL data types vary from database to
database.

 out.append("</TABLE><H1>ERROR:</H1> " + e.getMessage() + "\n");

 }

 return out.toString();

 }

}

Table 9-1. Methods to Retrieve Data from a ResultSet

SQL Data Type
Java Type Returned by
getObject()

Recommended Alternative
to getObject()

CHAR String String getString()

VARCHAR String String getString()

LONGVARCHAR String InputStream
getAsciiStream()
InputStream
getUnicodeStream()

NUMERIC java.math.BigDecimal java.math.BigDecimal
getBigDecimal()

DECIMAL java.math.BigDecimal java.math.BigDecimal
getBigDecimal()

BIT Boolean boolean getBoolean()

TINYINT Integer byte getByte()

Example 9-2. A class to generate an HTML table from a ResultSet using ResultSetMetaData (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

THE JDBC API 255
Handling Null Fields
Handling null database values with JDBC can be a little tricky. (A database field
can be set to null to indicate that no value is present, in much the same way that a
Java object can be set to null.) A method that doesn’t return an object, like
getInt(), has no way of indicating whether a column is null or whether it
contains actual information. (Some drivers return a string that contains the text
"null" when getString() is called on a null column!) Any special value like -1,
might be a legitimate value. Therefore, JDBC includes the wasNull() method in
ResultSet, which returns true or false depending on whether the last column
read was a true database null. This means that you must read data from the
ResultSet into a variable, call wasNull(), and proceed accordingly. It’s not
pretty, but it works. Here’s an example:

int age = rs.getInt("age");

if (!rs.wasNull())

 out.println("Age: " + age);

Another way to check for null values is to use the getObject() method. If a
column is null, getObject() always returns null. Compare this to the
getString() method that has been known, in some implementations, to return

SMALLINT Integer short getShort()

INTEGER Integer int getInt()

BIGINT Long long getLong()

REAL Float float getFloat()

FLOAT Double double getDouble()

DOUBLE Double double getDouble()

BINARY byte[] byte[] getBytes()

VARBINARY byte[] byte[] getBytes()

LONGVARBINARY byte[] InputStream
getBinaryStream()

DATE java.sql.Date java.sql.Date
getDate()

TIME Java.sql.Time java.sql.Time
getTime()

TIMESTAMP Java.sql.Timestamp java.sql.Timestamp
getTimestamp()

Table 9-1. Methods to Retrieve Data from a ResultSet (continued)

SQL Data Type
Java Type Returned by
getObject()

Recommended Alternative
to getObject()
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

256 CHAPTER 9: DATABASE CONNECTIVITY
the empty string if a column is null. Using getObject() eliminates the need to
call wasNull() and leads to simpler code.

Updating the Database
Most database-enabled web sites need to do more than just perform queries. When
a client submits an order or provides some kind of information, the data needs to
be entered into the database. When you know you’re executing a SQL UPDATE,
INSERT, or DELETE statement and you know you don’t expect a ResultSet, you
can use the executeUpdate() method of Statement. It returns a count that indi-
cates the number of rows modified by the statement. It’s used like this:

int count =

 stmt.executeUpdate("DELETE FROM CUSTOMERS WHERE CUSTOMER_ID = 5");

If you are executing SQL that may return either a ResultSet or a count (say, if
you’re handling user-submitted SQL or building generic data-handling classes),
use the generic execute() method of Statement. It returns a boolean whose
value is true if the SQL statement produced one or more ResultSet objects or
false if it resulted in an update count:

boolean b = stmt.execute(sql);

The getResultSet() and getUpdateCount() methods of Statement provide
access to the results of the execute() method. Example 9-3 demonstrates the use
of these methods with a new version of HtmlResultSet, named HtmlSQLResult,
that creates an HTML table from any kind of SQL statement.

Example 9-3. A class to generate an HTML table from a ResultSet using the ResultSetMetaData

import java.sql.*;

public class HtmlSQLResult {

 private String sql;

 private Connection con;

 public HtmlSQLResult(String sql, Connection con) {

 this.sql = sql;

 this.con = con;

 }

 public String toString() { // can be called at most once

 StringBuffer out = new StringBuffer();

 // Uncomment the following line to display the SQL command at start of table

 // out.append("Results of SQL Statement: " + sql + "<P>\n");
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

THE JDBC API 257
 try {

 Statement stmt = con.createStatement();

 if (stmt.execute(sql)) {

 // There's a ResultSet to be had

 ResultSet rs = stmt.getResultSet();

 out.append("<TABLE>\n");

 ResultSetMetaData rsmd = rs.getMetaData();

 int numcols = rsmd.getColumnCount();

 // Title the table with the result set's column labels

 out.append("<TR>");

 for (int i = 1; i <= numcols; i++)

 out.append("<TH>" + rsmd.getColumnLabel(i));

 out.append("</TR>\n");

 while(rs.next()) {

 out.append("<TR>"); // start a new row

 for(int i = 1; i <= numcols; i++) {

 out.append("<TD>"); // start a new data element

 Object obj = rs.getObject(i);

 if (obj != null)

 out.append(obj.toString());

 else

 out.append(" ");

 }

 out.append("</TR>\n");

 }

 // End the table

 out.append("</TABLE>\n");

 }

 else {

 // There's a count to be had

 out.append("Records Affected: " + stmt.getUpdateCount());

 }

 }

 catch (SQLException e) {

 out.append("</TABLE><H1>ERROR:</H1> " + e.getMessage());

 }

 return out.toString();

 }

}

Example 9-3. A class to generate an HTML table from a ResultSet using the ResultSetMetaData
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

258 CHAPTER 9: DATABASE CONNECTIVITY
This example uses execute() to execute whatever SQL statement is passed to the
HtmlSQLResult constructor. Then, depending on the return value, it either calls
getResultSet() or getUpdateCount(). Note that neither getResultSet() nor
getUpdateCount() should be called more than once per query.

Using Prepared Statements
A PreparedStatement object is like a regular Statement object, in that it can
be used to execute SQL statements. The important difference is that the SQL in a
PreparedStatement is precompiled by the database for faster execution. Once a
PreparedStatement has been compiled, it can still be customized by adjusting
predefined parameters. Prepared statements are useful in applications that have to
run the same general SQL command over and over.

Use the prepareStatement(String) method of Connection to create
PreparedStatement objects. Use the ? character as a placeholder for values to be
substituted later. For example:

PreparedStatement pstmt = con.prepareStatement(

 "INSERT INTO ORDERS (ORDER_ID, CUSTOMER_ID, TOTAL) VALUES (?,?,?)");

// Other code

pstmt.clearParameters(); // clear any previous parameter values

pstmt.setInt(1, 2); // set ORDER_ID

pstmt.setInt(2, 4); // set CUSTOMER_ID

pstmt.setDouble(3, 53.43); // set TOTAL

pstmt.executeUpdate(); // execute the stored SQL

The clearParameters() method removes any previously defined parameter
values, while the setXXX() methods are used to assign actual values to each of the
placeholder question marks. Once you have assigned values for all the parame-
ters, call executeUpdate() to execute the PreparedStatement.

The PreparedStatement class has an important application in conjunction with
servlets. When loading user-submitted text into the database using Statement
objects and dynamic SQL, you must be careful not to accidentally introduce any
SQL control characters (such as " or ') without escaping them in the manner
required by your database. With a database like Oracle that surrounds strings with
single quotes, an attempt to insert "John d'Artagan" into the database results in
this corrupted SQL:

INSERT INTO MUSKETEERS (NAME) VALUES ('John d'Artagan')

As you can see, the string terminates twice. One solution is to manually replace the
single quote ' with two single quotes '', the Oracle escape sequence for one
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

REUSING DATABASE OBJECTS 259
single quote. This solution, requires you to escape every character that your data-
base treats as special—not an easy task and not consistent with writing platform-
independent code. A far better solution is to use a PreparedStatement and pass
the string using its setString() method, as shown below. The
PreparedStatement automatically escapes the string as necessary for your
database:

PreparedStatement pstmt = con.prepareStatement(

 "INSERT INTO MUSKETEERS (NAME) VALUES (?)");

pstmt.setString(1, "John d'Artagan");

pstmt.executeUpdate();

Reusing Database Objects
In the introduction, we mentioned that the servlet life cycle allows for extremely
fast database access. After you’ve used JDBC for a short time, it will become
evident that the major performance bottleneck often comes right at the begin-
ning, when you are opening a database connection. This is rarely a problem for
most applications and applets because they can afford a few seconds to create a
Connection that is used for the life of the program. With servlets this bottle-
neck is more serious because we are creating and tearing down a new Connection
for every page request. Luckily, the servlet life cycle allows us to reuse the same
connection for multiple requests, even concurrent requests, as Connection
objects are required to be thread safe.

Reusing Database Connections
A servlet can create one or more Connection objects in its init() method and
reuse them in its service(), doGet(), and doPost() methods. To demonstrate,
Example 9-4 shows the phone lookup servlet rewritten to create its Connection
object in advance. It also uses the HtmlSQLResult class from Example 9-3 to
display the results. Note that this servlet uses the Sybase JDBC driver.

Example 9-4. An improved directory servlet

import java.io.*;

import java.sql.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class DBPhoneLookupReuse extends HttpServlet {

 private Connection con = null;

 public void init(ServletConfig config) throws ServletException {

 super.init(config);

 try {
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

260 CHAPTER 9: DATABASE CONNECTIVITY
Reusing Prepared Statements
With a little care, you can speed servlet performance even more by creating other
database-related objects ahead of time. The PreparedStatement object is an
ideal candidate because it can precompile a SQL statement. This usually saves only
a few milliseconds, but if your site gets a few hundred thousand hits a day, that can
add up pretty quickly.

 // Load (and therefore register) the Sybase driver

 Class.forName("com.sybase.jdbc.SybDriver");

 con = DriverManager.getConnection(

 "jdbc:sybase:Tds:dbhost:7678", "user", "passwd");

 }

 catch (ClassNotFoundException e) {

 throw new UnavailableException(this, "Couldn't load database driver");

 }

 catch (SQLException e) {

 throw new UnavailableException(this, "Couldn't get db connection");

 }

 }

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 out.println("<HTML><HEAD><TITLE>Phonebook</TITLE></HEAD>");

 out.println("<BODY>");

 HtmlSQLResult result =

 new HtmlSQLResult("SELECT NAME, PHONE FROM EMPLOYEES", con);

 // Display the resulting output

 out.println("<H2>Employees:</H2>");

 out.println(result);

 out.println("</BODY></HTML>");

 }

 public void destroy() {

 // Clean up.

 try {

 if (con != null) con.close();

 }

 catch (SQLException ignored) { }

 }

}

Example 9-4. An improved directory servlet (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TRANSACTIONS 261
Note, however, that sharing objects other than connections poses a problem. Serv-
lets must be thread safe, and accessing a PreparedStatement might require three
or four method calls. If one thread calls the clearParameters() method of
PreparedStatement right before another thread calls execute(), the results of
execute() will be disastrous. Also, there’s the limitation that a Statement can
support only one query (and any associated result sets) at a time. The solution is to
synchronize the sections of your code that use shared objects, as discussed in
Chapter 3 and shown here:

synchronized (pstmt) {

 pstmt.clearParameters();

 pstmt.setInt(1, 2);

 pstmt.setInt(2, 4);

 pstmt.setDouble(3, 53.43);

 pstmt.executeUpdate();

}

Unfortunately, this solution is not without drawbacks. Entering a synchronization
block on some platforms takes extra time, and synchronized objects can be used
by only one thread at a time. However, some servlets already require a synchroni-
zation block, and in these cases the drawback is less of an issue. A good rule of
thumb, then, is to create your connections ahead of time, along with any
frequently used objects (such as PreparedStatement objects) that can be quickly
used inside preexisting synchronization blocks.

For servlets written using the SingleThreadModel interface, these issues do not
apply. On the other hand, you will have a number of copies of your servlet loaded
at once, which could be just as detrimental to performance.

Transactions
So far, we have failed to mention one important feature of modern relational data-
base systems: transactions. Most service-oriented web sites need to do more than
run SELECT statements and insert single pieces of data. Let’s look at an online
banking application. To perform a transfer of $50,000 between accounts, your
program needs to perform an operation that consists of two separate but related
actions: credit one account and debit another. Now, imagine that for some reason
or another, the SQL statement for the credit succeeds but the one for the debit
fails. One account holder is $50,000 richer, but the other account has not been
debited to match.

SQL failure is not the only potential problem. If another user checks the account
balance in between the credit and the debit, he will see the original balance. The
database is shown in an invalid state (more money is represented than actually
exists). Granted, this kind of thing is unlikely to occur often, but in a universe of
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

262 CHAPTER 9: DATABASE CONNECTIVITY
infinite possibilities, it will almost certainly happen sometime. This kind of
problem is similar to the synchronization issues we discussed back in Chapter 3.
This time, instead of concerning ourselves with the validity of data stored in a
servlet, we are concerned with the validity of an underlying database. Simple
synchronization is not enough to solve this problem: multiple servlets may be
accessing the same database. For systems like banking software, chances are good
that the database is being used by a number of entirely non-Java applications as
well.

Sounds like a fairly tricky problem, right? Fortunately, it was a problem long
before Java came along, so it has already been solved. Most major RDMBS systems
support the concept of transactions. A transaction allows you to group multiple
SQL statements together. Using a transaction-aware RDBMS, you can begin a
transaction, perform any number of actions, and either commit the results to the
database or roll back all of your SQL statements. If we build our online banking
application with a transaction-based system, the credit will automatically be
canceled if the debit fails.

A transaction is isolated from the rest of the database until finished. As far as the
rest of the database is concerned, everything takes place at once (in other words,
transactions are atomic). This means that other users accessing the database will
always see a valid view of the data, although not necessarily an up-to-date view. If a
user requests a report on widgets sold before your widget sales transaction is
completed, the report will not include the most recent sale.

Using Transactions with JDBC
Transaction management with JDBC takes place via the Connection object. By
default, new connections start out in auto-commit mode. This means that every
SQL statement is executed as an individual transaction that is immediately
committed to the database. To control commitment yourself, thereby allowing you
to group SQL statements into transactions, you call setAutoCommit(false) on
the Connection object. You can check the status of auto-commit with the get
AutoCommit()method. Once you have completed all of your SQL statements, you
call commit() to permanently record the transaction in the database. Or, if you
encountered an error, you call rollback() to undo it.

Example 9-5 shows a servlet that uses transactions to do basic order processing. It
assumes two tables in an ODBC database—INVENTORY (containing the product ID
and amount in stock) and SHIPPING (containing a product ID, an order number,
and the amount shipped). The servlet uses an unshown chargeCard() method
that handles billing and throws an exception if the customer’s credit card is
invalid.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TRANSACTIONS 263
Example 9-5. Transaction-based order management

import java.io.*;

import java.sql.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class OrderHandler extends HttpServlet {

 public void doPost(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/plain");

 PrintWriter out = res.getWriter();

 Connection con = null;

 try {

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 con = DriverManager.getConnection("jdbc:odbc:ordersdb", "user", "passwd");

 // Turn on transactions

 con.setAutoCommit(false);

 Statement stmt = con.createStatement();

 stmt.executeUpdate(

 "UPDATE INVENTORY SET STOCK = (STOCK – 10) WHERE PRODUCTID = 7");

 stmt.executeUpdate(

 "UPDATE SHIPPING SET SHIPPED = (SHIPPED + 10) WHERE PRODUCTID = 7");

 chargeCard(); // method doesn't actually exist...

 con.commit();

 out.println("Order successful! Thanks for your business!");

 }

 catch (Exception e) {

 // Any error is grounds for rollback

 try {

 con.rollback();

 }

 catch (SQLException ignored) { }

 out.println("Order failed. Please contact technical support.");

 }

 finally {

 // Clean up.

 try {

 if (con != null) con.close();

 }

 catch (SQLException ignored) { }

 }

 }

}

Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

264 CHAPTER 9: DATABASE CONNECTIVITY
Here are a few notes on this example. First, the order transaction logic is in
doPost() since the client’s action is definitely not safely repeatable. Second,
because the example demonstrates transaction logic more than servlet logic, the
servlet simply assumes the user is buying 10 units of item 7, rather than bothering
to actually parse a form for credit card and order information. Finally, as the
servlet runs, any exception thrown during driver initialization, connecting to the
database, executing SQL, or charging the credit card causes execution to jump to
the catch() block, where the rollback() method is called, undoing all our
work.

Optimized Transaction Processing
Note that in the previous example the Connection object was created inside the
doPost() method, giving up the performance improvements we gained earlier in
the chapter by moving the creation up to init(). This is done because transac-
tions are linked to connections and, therefore, connections using transactions
cannot be shared. Imagine what would happen if another invocation of this servlet
invoked the commit() method when our order had reached only the second SQL
statement. Our INVENTORY table would be short 10 units!

So, how do we use transactions without having to connect to the database every
time a page is requested? There are several possibilities:

• Synchronize the doPost() method. This means that each instance of the serv-
let deals with only one request at a time. This works well for very low traffic
sites, but it does slow things down for your users because every transaction has
to finish before the next can start. If you need to perform database-intensive
updates and inserts, the delay will probably be unacceptable.

• Leave things as they are, but create a new Connection object for each transac-
tion. If you need to update data only once in every few thousand page
requests, this might be the simplest route.

• Create a pool of Connection objects in the init() method and hand them
out as needed, as shown in Figure 9-3. This is probably the most efficient way
to handle the problem, if done right. It can, however, become very compli-
cated very quickly without third-party support classes.

• Create a single Connection object in the init() method and have the serv-
let implement SingleThreadModel, so the web server creates a pool of serv-
let instances with a Connection for each, as shown in Figure 9-4. This has the
same effect as synchronizing doPost(), but because the web server has a num-
ber of servlet instances to choose from, the performance hit for the user is not
as great. This approach is easy to implement, but is less robust than using a sepa-
rate connection pool because the servlet has no control over how many servlet
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TRANSACTIONS 265
instances are created and how many connections are used. When creating sin-
gle-threaded database servlets, be especially sure to have the destroy()
method close any open database connections.

• Implement session tracking in the servlet and use the HttpSession object to
hold onto a Connection for each user. This allows you to go one step beyond
the other solutions and extend a transaction across multiple page requests or
even multiple servlets.

Figure 9-3. Servlets using a database connection pool

Figure 9-4. Servlets using SingleThreadModel for a server-managed connection pool

Web Server

Connection Pool

request

request

request Thread

Servlet Instance

local variable

local variable

local variable
Database

Connection

Connection

Connection

Connection

Thread

Thread

Web Server

Servlet Pool

request

request

request Thread

Database
Thread

Thread

Servlet Instance
instance variable

Servlet Instance
instance variable

Servlet Instance
instance variable
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

266 CHAPTER 9: DATABASE CONNECTIVITY
Connection Pooling
For a complicated servlet, creating a connection pool is the ideal approach. With a
connection pool, we can duplicate only the resources we need to duplicate (that
is, Connection objects), rather than the entire servlet. A connection pool can
also intelligently manage the size of the pool and make sure each connection
remains valid. A number of connection pool packages are currently available.
Some, such as the DbConnectionBroker that is freely available from Java Exchange
at http://javaexchange.com, work by creating an object that dispenses connections
and connection IDs on request. Others, such as the pool drivers package available
from WebLogic at http://www.weblogic.com, implement a new JDBC driver that
handles a pool of connections to another JDBC driver. Using a pooling driver like
this is the easiest way to implement connection pooling in your servlets. Pooling
drivers, however, have a little more operational overhead than standard drivers
because every JDBC class needs to be wrapped by another class. This is trans-
parent to the programmer and won’t make much of a difference with most Java
applications—but with a high-performance, high-volume servlet application, every
little performance gain helps.

Example 9-6 demonstrates a simple connection pooling system. A number of
connections are created at startup and are handed out to methods as needed. If all
the connections are in use, the servlet creates a new one. While our
ConnectionPool class is fully functional, mission-critical deployments might
benefit from one of the more complete third party packages.

Example 9-6. The ConnectionPool class

import java.sql.*;

import java.util.*;

public class ConnectionPool {

 private Hashtable connections;

 private int increment;

 private String dbURL, user, password;

 public ConnectionPool(String dbURL,

 String user,

 String password,

 String driverClassName,

 int initialConnections,

 int increment)

 throws SQLException, ClassNotFoundException {

 // Load the specified driver class

 Class.forName(driverClassName);
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TRANSACTIONS 267
 this.dbURL = dbURL;

 this.user = user;

 this.password = password;

 this.increment = increment;

 connections = new Hashtable();

 // Put our pool of Connections in the Hashtable

 // The FALSE value indicates they're unused

 for(int i = 0; i < initialConnections; i++) {

 connections.put(DriverManager.getConnection(dbURL, user, password),

 Boolean.FALSE);

 }

 }

 public Connection getConnection() throws SQLException {

 Connection con = null;

 Enumeration cons = connections.keys();

 synchronized (connnections) {

 while(cons.hasMoreElements()) {

 con = (Connection)cons.nextElement();

 Boolean b = (Boolean)connections.get(con);

 if (b == Boolean.FALSE) {

 // So we found an unused connection.

 // Test its integrity with a quick setAutoCommit(true) call.

 // For production use, more testing should be performed,

 // such as executing a simple query.

 try {

 con.setAutoCommit(true);

 }

 catch(SQLException e) {

 // Problem with the connection, replace it.

 con = DriverManager.getConnection(dbURL, user, password);

 }

 // Update the Hashtable to show this one's taken

 connections.put(con, Boolean.TRUE);

 // Return the connection

 return con;

 }

 }

 }

 // If we get here, there were no free connections.

 // We've got to make more.

 for(int i = 0; i < increment; i++) {

Example 9-6. The ConnectionPool class (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

268 CHAPTER 9: DATABASE CONNECTIVITY
The ConnectionPool class maintains a Hashtable, using Connection objects as
keys and Boolean objects as stored values. The Boolean value indicates whether a
connection is in use. A program calls the getConnection() method of
ConnectionPool to be assigned a Connection object it can use; it calls
returnConnection() to give the connection back to the pool. This is a fairly
simple model of a connection pool. For deployment, you probably want some-
thing that does a better job of maintaining the quality of the pool and does more
verification of integrity than a simple call to setAutoCommit().

Example 9-7 shows a revised version of the order processing servlet that uses the
pooling class.

 connections.put(DriverManager.getConnection(dbURL, user, password),

 Boolean.FALSE);

 }

 // Recurse to get one of the new connections.

 return getConnection();

 }

 public void returnConnection(Connection returned) {

 Connection con;

 Enumeration cons = connections.keys();

 while (cons.hasMoreElements()) {

 con = (Connection)cons.nextElement();

 if (con == returned) {

 connections.put(con, Boolean.FALSE);

 break;

 }

 }

 }

}

Example 9-7. Connection pooling transaction servlet

import java.io.*;

import java.sql.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class OrderHandlerPool extends HttpServlet {

 private ConnectionPool pool;

 public void init(ServletConfig config) throws ServletException {

 super.init(config);

 try {

 pool = new ConnectionPool("jdbc:oracle:oci7:orders", "user", "passwd",

Example 9-6. The ConnectionPool class (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TRANSACTIONS 269
 "oracle.jdbc.driver.OracleDriver", 10, 5);

 }

 catch (Exception e) {

 throw new UnavailableException(this, "Couldn't create connection pool");

 }

 }

 public void doPost(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 Connection con = null;

 res.setContentType("text/plain");

 PrintWriter out = res.getWriter();

 try {

 con = pool.getConnection();

 // Turn on transactions

 con.setAutoCommit(false);

 Statement stmt = con.createStatement();

 stmt.executeUpdate(

 "UPDATE INVENTORY SET STOCK = (STOCK – 10) WHERE PRODUCTID = 7");

 stmt.executeUpdate(

 "UPDATE SHIPPING SET SHIPPED = (SHIPPED + 10) WHERE PRODUCTID = 7");

 chargeCard(); // method doesn’t actually exist...

 con.commit();

 out.println("Order successful! Thanks for your business!");

 }

 catch (Exception e) {

 // Any error is grounds for rollback

 try {

 con.rollback();

 }

 catch (Exception ignored) { }

 out.println("Order failed. Please contact technical support.");

 }

 finally {

 if (con != null) pool.returnConnection(con);

 }

 }

}

Example 9-7. Connection pooling transaction servlet (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

270 CHAPTER 9: DATABASE CONNECTIVITY
Connections as Part of a Session
Session tracking, which we examined in detail back in Chapter 7, Session Tracking,
gives us another way of handling transactions. Using sessions, we can create or
allocate a dedicated database connection for individual users of a web site or
intranet application. Example 9-8 demonstrates by showing a ConnectionPer-
Client servlet that associates a unique Connection with each client
HttpSession. It wraps the Connection with a ConnectionHolder that is respon-
sible for managing the connection’s life cycle.

Example 9-8. Associating a connection with a session

import java.io.*;

import java.sql.*;

import javax.servlet.*;

import javax.servlet.http.*;

class ConnectionHolder implements HttpSessionBindingListener {

 private Connection con = null;

 public ConnectionHolder(Connection con) {

 // Save the Connection

 this.con = con;

 try {

 con.setAutoCommit(false); // transactions can extend between web pages!

 }

 catch(SQLException e) {

 // Perform error handling

 }

 }

 public Connection getConnection() {

 return con; // return the cargo

 }

 public void valueBound(HttpSessionBindingEvent event) {

 // Do nothing when added to a Session

 }

 public void valueUnbound(HttpSessionBindingEvent event) {

 // Roll back changes when removed from a Session

 // (or when the Session expires)

 try {

 if (con != null) {

 con.rollback(); // abandon any uncomitted data

 con.close();

 }

 }

 catch (SQLException e) {
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

TRANSACTIONS 271
 // Report it

 }

 }

}

/* Actual Servlet */

public class ConnectionPerClient extends HttpServlet {

 public void init(ServletConfig config) throws ServletException {

 super.init(config);

 try {

 Class.forName("oracle.jdbc.driver.OracleDriver");

 }

 catch (ClassNotFoundException e) {

 throw new UnavailableException(this, "Couldn't load OracleDriver");

 }

 }

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/plain");

 PrintWriter out = res.getWriter();

 HttpSession session = req.getSession(true);

 // Try getting the connection holder for this client

 ConnectionHolder holder =

 (ConnectionHolder) session.getValue("servletapp.connection");

 // Create (and store) a new connection and holder if necessary

 if (holder == null) {

 try {

 holder = new ConnectionHolder(DriverManager.getConnection(

 "jdbc:oracle:oci7:ordersdb", "user", "passwd"));

 session.putValue("servletapp.connection", holder);

 }

 catch (SQLException e) {

 getServletContext().log(e, "Couldn't get db connection");

 }

 }

 // Get the actual connection from the holder

 Connection con = holder.getConnection();

 // Now use the connection

 try {

 Statement stmt = con.createStatement();

Example 9-8. Associating a connection with a session (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

272 CHAPTER 9: DATABASE CONNECTIVITY
Rather than directly binding a connection to the session, we’ve created a simple
holder class that implements the HttpSessionBindingListner interface. We do
this because database connections are the most limited resource in a JDBC appli-
cation and we want to make sure that they will be released properly when no
longer needed. The wrapper class also allows us to rollback any uncommitted
changes. If a user leaves our hypothetical online shopping system before checking
out, her transaction is rolled back when the session expires.

Storing connections in sessions requires careful analysis of your application’s
needs. Most low-end and mid-range database servers can max out at about 100
connections; desktop databases like Microsoft Access saturate even more quickly.

Advanced JDBC Techniques
Now that we’ve covered the basics, let’s talk about a few advanced techniques that
use servlets and JDBC. First, we’ll examine how servlets can access stored database
procedures. Then we’ll look at how servlets can fetch complicated data types, such
as binary data (images, applications, etc.), large quantities of text, or even execut-
able database-manipulation code, from a database.

Stored Procedures
Most RDBMS systems include some sort of internal programming language. One
example is Oracle’s PL/SQL. These languages allow database developers to
embed procedural application code directly within a database and then call that

 stmt.executeUpdate(

 "UPDATE INVENTORY SET STOCK = (STOCK - 10) WHERE PRODUCTID = 7");

 stmt.executeUpdate(

 "UPDATE SHIPPING SET SHIPPED = (SHIPPED + 10) WHERE PRODUCTID = 7");

 // Charge the credit card and commit the transaction in another servlet

 res.sendRedirect(res.encodeRedirectUrl("/servlet/CreditCardHandler"));

 }

 catch (Exception e) {

 // Any error is grounds for rollback

 try {

 con.rollback();

 session.removeValue("servletapp.connection");

 }

 catch (Exception ignored) { }

 out.println("Order failed. Please contact technical support.");

 }

 }

}

Example 9-8. Associating a connection with a session (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ADVANCED JDBC TECHNIQUES 273
code from other applications. RDMBS programming languages are often well
suited to performing certain database actions; many existing database installations
have a number of useful stored procedures already written and ready to go. Most
introductions to JDBC tend to skip over this topic, so we’ll cover it here briefly.

The following code is an Oracle PL/SQL stored procedure. If it looks familiar,
that’s because it’s from George Reese’s Database Programming with JDBC (O’Reilly):

CREATE OR REPLACE PROCEDURE sp_interest

(id IN INTEGER

bal IN OUT FLOAT) IS

BEGIN

SELECT balance

INTO bal

FROM accounts

WHERE account_id = id;

bal := bal + bal * 0.03;

UPDATE accounts

SET balance = bal

WHERE account_id = id;

END;

This procedure executes a SQL statement, performs a calculation, and executes
another SQL statement. It would be fairly simple to write the SQL to handle this
(in fact, the transaction example earlier in this chapter does something similar),
so why bother with this at all? There are several reasons:

• Stored procedures are precompiled in the RDBMS, so they run faster than
dynamic SQL.

• Stored procedures execute entirely within the RDBMS, so they can perform
multiple queries and updates without network traffic.

• Stored procedures allow you to write database manipulation code once and
use it across multiple applications in multiple languages.

• Changes in the underlying table structures require changes only in the stored
procedures that access them; applications using the database are unaffected.

• Many older databases already have a lot of code written as stored procedures,
and it would be nice to be able to leverage that effort.

The Oracle PL/SQL procedure in our example takes an input value, in this case
an account ID, and returns an updated balance. While each database has its own
syntax for accessing stored procedures, JDBC creates a standardized escape
sequence for accessing stored procedures using the java.sql.CallableState-
ment class. The syntax for a procedure that doesn’t return a result is "{call
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

274 CHAPTER 9: DATABASE CONNECTIVITY
procedure_name(?,?)}". The syntax for a stored procedure that returns a result
value is "{? = call procedure_name(?,?)}". The parameters inside the
parentheses are optional.

Using the CallableStatement class is similar to using the PreparedStatement
class:

CallableStatment cstmt = con.prepareCall("{call sp_interest(?,?)}");

cstmt.registerOutParameter(2, java.sql.Types.FLOAT);

cstmt.setInt(1, accountID);

cstmt.execute();

out.println("New Balance: " + cstmt.getFloat(2));

This code first creates a CallableStatement using the prepareCall() method
of Connection. Because this stored procedure has an output parameter, it uses
the registerOutParameter() method of CallableStatement to identify that
parameter as an output parameter of type FLOAT. Finally, the code executes the
stored procedure and uses the getFloat() method of CallableStatement to
display the new balance. The getXXX() methods in CallableStatement inter-
face are similar to those in the ResultSet interface.

Binaries and Books
Most databases support data types to handle text strings up to several gigabytes in
size, as well as binary information like multimedia files. Different databases handle
this kind of data in different ways, but the JDBC methods for retrieving it are stan-
dard. The getAsciiStream() method of ResultSet handles large text strings;
getBinaryStream() works for large binary objects. Each of these methods
returns an InputStream.

Support for large data types is one of the most common sources of JDBC prob-
lems. Make sure you test your drivers thoroughly, using the largest pieces of data
your application will encounter. Oracle’s JDBC driver is particularly prone to
errors in this area.

Here’s some code from a message board servlet that demonstrates reading a long
ASCII string. We can assume that connections, statements, and so on have already
been created:

try {

 ResultSet rs = stmt.executeQuery(

 "SELECT TITLE, SENDER, MESSAGE FROM MESSAGES WHERE MESSAGE_ID = 9");

 if (rs.next()) {

 out.println("<H1>" + rs.getString("title") + "</H1>");

 out.println("From: " + rs.getString("sender") + "
");

 BufferedReader msgText = new BufferedReader(

 new InputStreamReader(rs.getAsciiStream("message")));
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ADVANCED JDBC TECHNIQUES 275
 while (msgText.ready()) {

 out.println(msgText.readLine());

 }

 }

}

catch (SQLException e) {

 // Report it

}

While it is reading from the InputStream, this servlet doesn’t get the value of any
other columns in the result set. This is important because calling any other
getXXX() method of ResultSet closes the InputStream.

Binary data can be retrieved in the same manner using the ResultSet.
getBinaryStream(). In this case, we need to set the content type as appropriate
and write the output as bytes. Example 9-9 shows a servlet that returns a GIF file
loaded from a database.

Example 9-9. Reading a binary GIF image from a database

import java.io.*;

import java.sql.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class DBGifReader extends HttpServlet {

 Connection con;

 public void init(ServletConfig config) throws ServletException {

 super.init(config);

 try {

 Class.forName("sun.jdbc.odbc.JdbcOdbcDriver");

 con = DriverManager.getConnection("jdbc:odbc:imagedb", "user", "passwd");

 }

 catch (ClassNotFoundException e) {

 throw new UnavailableException(this, "Couldn't load JdbcOdbcDriver");

 }

 catch (SQLException e) {

 throw new UnavailableException(this, "Couldn't get db connection");

 }

 }

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 try {

 res.setContentType("image/gif");

 ServletOutputStream out = res.getOutputStream();
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

276 CHAPTER 9: DATABASE CONNECTIVITY
 Statement stmt = con.createStatement();

 ResultSet rs = stmt.executeQuery(

 "SELECT IMAGE FROM PICTURES WHERE PID = " + req.getParameter("PID"));

 if (rs.next()) {

 BufferedInputStream gifData =

 new BufferedInputStream(rs.getBinaryStream("image"));

 byte[] buf = new byte[4 * 1024]; // 4K buffer

 int len;

 while ((len = gifData.read(buf, 0, buf.length)) != -1) {

 out.write(buf, 0, len);

 }

 }

 else {

 res.sendError(res.SC_NOT_FOUND);

 }

 }

 catch(SQLException e) {

 // Report it

 }

 }

}

Example 9-9. Reading a binary GIF image from a database (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

:

Chapter 10

In this chapter:
• Communication

Options
• Daytime Server
• Chat Server

This chapter demonstrates se
with servlets. We’re going to
you might expect. Instead of
to communicate, we’re going
entity on the server and explo

To get the ball rolling, let’s
the server. There are a numb
Java™
Copyright © 2
10

10.Applet-Servlet
Communication 10
veral techniques by which applets can communicate
come at the topic from a slightly different angle than
assuming you have an applet and a servlet that need
assume you have an applet that needs to talk to some
re why sometimes that entity should be a servlet.

think about applets that need to communicate with
er of good examples. Take a look at the administra-

tion applet that manages the Java Web Server. Think about how it works—it
executes on the client, but it configures the server. To do this, the applet and the
server need to be in near constant communication. As another example, take a
look at one of the popular chat applets. One client says something, and all the rest
see it. How does that work? They certainly don’t communicate applet to applet.
Instead, each applet posts its messages to a central server, and the server takes care
of updating the other clients. Finally, imagine an applet that tracks the price of a
set of stocks and offers continuous updates. How does the applet know the current
stock prices, and, more importantly, how does it know when they change? The
answer is that it talks with its server.

Communication Options
Our interest in stock trading has risen along with the Dow, so let’s continue with
this hypothetical stock tracking applet. We should warn you right now that this
example will remain hypothetical. We’ll use it solely as a reference point for
discussing the issues involved in applet-server communication. But don’t worry,
there’s plenty of code later in the chapter that demonstrates the techniques
discussed here, just in somewhat simpler examples.
277
 Servlet Programming, eMatter Edition

000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

278 CHAPTER 10: APPLET-SERVLET COMMUNICATION
This stock tracking applet of ours needs to get a stock feed from some server
machine. Assuming it’s a normal, untrusted applet, there’s just one choice: the
machine from which it was downloaded. Any attempt to connect to another
machine results in a SecurityException, so let’s assume the applet gets a stock
feed from the server machine from which it was downloaded.* The question
remains: how can the applet and the server communicate?

HTTP and Raw Socket Connections
Before JDK 1.1 and servlets, there were two options for applet-server
communication:

• Have the applet establish an HTTP connection to a CGI program on the
server machine. The applet acts like a browser and requests a page, parsing

* You may be wondering how the server machine itself got the stock feed. For the purposes of this ex-
ample, it’s magic.

Trusted and Untrusted Applets
When a Java applet is embedded in a web page, a browser can download it and
execute it automatically. If you think about it, that’s a very dangerous thing to
do. So, to protect the client, JDK 1.0 assumed all applets were untrusted and ran
them under the watch of a SecurityManager that severely limited what they
could do. For example, the security manager made sure applets couldn’t write
to the user’s file system, read certain system properties, accept incoming sock-
et connections, or establish outgoing socket connections to any host but the
origin server. This protected the client, but it limited the usefulness of applets.

Consequently, JDK 1.1 introduced the concept of trusted applets—applets
that can operate like normal applications with full access to the client ma-
chine. For an applet to be trusted, it has to be digitally signed by a person or
company the client trusts (as marked in the client’s browser). The signature
authenticates the applet’s origin and guarantees integrity during the transfer,
so the client knows the applet code hasn’t been surreptitiously changed. This
allowed for more productive applets, but it was an all-or-nothing approach.

To give the client more control, JDK 1.2 is introducing a fine-grained access
control system. Under this new system, a digitally signed applet can be partially
trusted, given certain abilities without being given free reign on the system.
This promises to allow applets from unknown sources to be granted small priv-
ileges (such as writing to a single directory), without granting them the ability
to wipe the client’s hard drive. See Chapter 8, Security, for more information.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

COMMUNICATION OPTIONS 279
the response for its own use. The applet can provide information using a
query string or POST data and can receive information from the returned
page.

• Have the applet establish a raw socket connection to a non-HTTP server run-
ning on the server machine. The non-HTTP server can listen to a particular
port and communicate with the applet using whatever custom protocol they
agree upon.

Each of these approaches has advantages and disadvantages. Having an applet
make an HTTP connection to a CGI program works well for these reasons:

• It’s easy to write. The applet can take advantage of the java.net.URL and
java.net.URLConnection classes to manage the communication channel,
and the CGI program can be written like any other.

• It works even for applets running behind a firewall. Most firewalls allow HTTP
connections but disallow raw socket connections.

• It allows a Java applet to communicate with a program written in any lan-
guage. The CGI program doesn’t have to be written in Java. It can be in Perl,
C, C++, or any other language.

• It works with applets written using JDK 1.0, so it works with all Java-enabled
browsers.

• It allows secure communication. An applet can communicate with a secure
server using the encrypted HTTPS (HTTP + SSL) protocol.

• The CGI program can be used by browsers as well as applets. In the case of
our stock tracker example, the CGI program can do double duty, also acting
as the back-end for an HTML form-based stock quote service. This makes it
especially convenient for an applet to leverage existing CGI programs.

But the HTTP connection to a CGI program also has some problems:

• It’s slow. Because of the HTTP request/response paradigm, the applet and the
CGI program cannot communicate interactively. They have to reestablish a
new communication channel for each request and response. Plus, there is the
standard delay while the CGI program launches and initializes itself to handle
a request.

• It usually requires requests to be formed as an awkward array of name/value
pairs. For example, when our stock tracker applet asks for the daily high for
Sun Microsystems’ stock, it has to ask with an awkward query string like
"stock=sunw&query=dailyhi".

• It forces all responses to be formatted using some arbitrary, previously agreed-
upon standard. For example, when our stock tracker applet receives the
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

280 CHAPTER 10: APPLET-SERVLET COMMUNICATION
response that contains a stock’s daily high price, it needs to know exactly how
to parse the data. Does the returned price begin with a dollar sign? Does the
response include the time when the high occurred? And if so, where is the
time specified and in what format?

• Only the applet can initiate communication. The CGI program has to wait pas-
sively for the applet to request something before it can respond. If a stock
price changes, the applet can find out only when it asks the right question.

An applet and server can also communicate by having the applet establish a socket
connection to a non-HTTP server process. This provides the following advantages
over the HTTP-based approach:

• It allows bidirectional, sustained communication. The applet and servlet can
use the same socket (or even several sockets) to communicate interactively,
sending messages back and forth. For security reasons, the applet must always
initiate the connection by connecting to a server socket on the server
machine, but after a socket connection has been established, either party can
write to the socket at any time. This allows our stock tracker to receive stock
price updates as soon as they are available.

• It allows a more efficient program to run on the server side. The non-HTTP
server can be written to handle a request immediately without launching an
external CGI program to do the work.

But a socket connection also has disadvantages versus the HTTP-based approach:

• It fails for applets running behind firewalls. Most firewalls don’t allow raw
socket connections, and thus they disallow this sort of applet-server communi-
cation. Therefore, this mechanism should be used only when an applet is
guaranteed to never run on the far side of a firewall, such as for an intranet
application.

• It can be fairly complicated to write the code that runs on the server. There
must always be some process (such as a stock quote server) listening on a well-
known port on the server machine. Developing such an application in Java is
easier than in C++, but it is still nontrivial.

• It may require the development of a custom protocol. The applet and server
need to define the protocol they use for the communication. While this proto-
col may be simpler and more efficient than HTTP, it often has to be specially
developed.

• The non-HTTP server cannot be conveniently connected to by a web browser.
Browsers speak HTTP; they cannot communicate with a non-HTTP server.

The standard historical approach has been for applets to use HTTP to connect to
CGI programs on the server. It’s easy, and it works for all types of browsers, even
browsers running behind firewalls. The use of raw socket connections has generally
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

COMMUNICATION OPTIONS 281
been reserved for those situations where it’s absolutely necessary, such as when the
applet and server require bidirectional communication. And, even in those cases,
it’s often possible to use HTTP connections to simulate bidirectional communica-
tion in order to pass through firewalls, as we’ll see in a later example.

Servlets and Object Serialization
The recent introduction of Java servlets and object serialization has given new life
to these traditional applet-server communication techniques. Servlets are starting
to replace slow-starting CGI programs, improving the performance of HTTP-based
applet-server communication and making frequent applet-server communication
feasible. While it’s true in the general case that the applet and the servlet still have
to take time to reestablish their connection for each request and response, the
applet no longer has to wait as the server launches a CGI program to handle each
of its repeated requests.

Java object serialization has simplified the issues involved with formatting
responses. With both applets and servlets written in Java, it’s only natural that they
should communicate by exchanging Java objects. For example, when our hypo-
thetical stock tracking applet asks our stock feed servlet the daily high value for
Sun stock, it can receive the response as a serialized StockPrice object. From
this, it can get the daily high value as a float and the time of the high value as a
Date. It’s convenient, and it provides easy type safety. But beware, object serializa-
tion works only with applets running inside browsers that support JDK 1.1 or later.

JDBC, RMI, and a Little CORBA
JDK 1.1 includes two additional features that have an impact on applet-server
communication: JDBC and RMI. The JDBC (Java database connectivity) API,
discussed in Chapter 9, Database Connectivity, allows a Java program to connect to a
relational database on the same machine or on another machine. Java applets
written to JDK 1.1 can use JDBC to communicate with a database on the server.
This special-purpose communication doesn’t generally require applet-servlet
communication. However, it is often helpful for an applet (especially one written
to JDK 1.0) to forgo connecting straight to the database (or to a pass-through
proxy on the web server) and instead connect to a servlet that handles the data-
base communication on the applet’s behalf (as explained in the “Servlets in the
Middle Tier” sidebar in Chapter 9). For example, an applet that wants to look up a
person’s address can connect to a servlet using HTTP, pass the name of the person
using HTTP parameters, and then receive the address as either a specially
formatted string or a serialized object. This use of applet-servlet communication
tends to piggy-back on existing protocols like HTTP, so we aren’t going to cover it
in any more detail here.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

282 CHAPTER 10: APPLET-SERVLET COMMUNICATION
The RMI (Remote Method Invocation) API allows an applet to invoke the
methods of a Java object executing on the server machine, and, in some cases, it
also allows the object on the server machine to invoke the methods of the applet.
The advantages of RMI for applet-server communication are compelling:

• It allows applets and server objects to communicate using an elegant high-
level, object-oriented paradigm. Requests can be made as method invoca-
tions, passing serialized object parameters if necessary. Responses can be
received as serialized objects or even references to other remote objects. But
to even use the words request and response shows we’ve been using HTTP too
much! With RMI, there are no requests or responses, just method invocations.
To go back to our stock tracker example, the applet can get the daily high for
Sun stock by calling sunw.getDailyHigh(), where sunw is a Java object that
exists on the server.

• It allows server objects to make callbacks to the methods of the applet. For
example, with our stock tracking example, the server can notify interested
applets that a stock price has changed by calling applet.update(stock).

• It can be made to work through firewalls (though it doesn’t like it, and cur-
rent browsers don’t support it very well). The RMI transport layer normally
relies on direct socket connections to perform its work. When an applet exe-
cutes behind a firewall, however, its socket connections fail. In this case, the
RMI transport layer can automatically begin operating entirely within the
HTTP protocol.* This is not without cost, though. The HTTP overhead affects
performance, and the HTTP request/response paradigm cannot support call-
backs.

The disadvantages of RMI are equally concerning:

• It’s complicated. RMI communication uses special stub and skeleton classes
for each remote object, and it requires a naming registry from which clients
can obtain references to these remote objects.

• It’s supported in few browsers. Of all the popular browsers available as of this
writing, only Netscape Navigator 4 includes RMI support. Previous Netscape
browser versions and all versions of Microsoft’s Internet Explorer do not sup-
port RMI without installing a special plug-in.

• It can be used only by Java clients. The server object can’t be shared by a web
browser or even a C++ client.

* For a description of the system properties necessary for an RMI client application to poke through a
firewall see John D. Mitchell’s JavaWorld Java Tip 42 at http://www.javaworld.com/javaworld/javatips/jw-
javatip42.html. (Unmentioned in the article but also important are the socksProxySet,
socksProxyHost, and socksProxyPort properties necessary for SOCKS-based proxies.) All these
system properties should be set automatically by web browsers, but unfortunately few web browsers cur-
rently do this, leaving their applets with no way to determine the proper settings and no way to use RMI
through a firewall.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

COMMUNICATION OPTIONS 283
For a more information on RMI programming, see Java Network Programming, by
Elliotte Rusty Harold (O’Reilly) and Java Distributed Computing, by Jim Farley
(O’Reilly).

CORBA (Common Object Request Broker Architecture) is a technology similar to
RMI that enables communication between distributed objects written in various
languages. With CORBA and its IIOP (Internet Inter-ORB Protocol) communica-
tion protocol, a C++ client can communicate with a Java servlet. Demonstrating
this ability extends beyond the scope of this book. For more information, see http:/
/www.acl.lanl.gov/CORBA and http://java.sun.com/products/jdk/idl.

The Hybrid Approach
Now that we’ve examined all the options, the question remains: how should our
stock tracking applet communicate with its stock feed server? The answer is: it
depends.

If we can guarantee that all our potential clients support it, RMI’s elegance and
power make it an ideal choice. But currently that’s like assuming all your friends
enjoy your Star Trek jokes. It can be true if you carefully choose your friends (or
your clients), but it’s generally not the case in the real world.

When RMI isn’t available, the bidirectional capabilities of the non-HTTP socket
connection make it look fairly attractive. Unfortunately, that bidirectional commu-
nication becomes nonexistent communication when the applet ends up on the far
side of a firewall.

There’s always the old workhorse, HTTP communication. It’s straightforward to
implement and works on every Java-enabled client. And if you can guarantee that
the client supports JDK 1.1 (and this is easier to guarantee than that the client
support RMI), you can use object serialization.

Perhaps the best solution is to use every solution, with servlets. Servlets make it
possible to combine the HTTP, non-HTTP, and RMI applet-server communica-
tion techniques, supporting them all with a single servlet. That’s right: one servlet,
multiple access protocols. Why would anyone want to do this? Well, it’s a handy
technique when an applet wants to communicate using RMI or a non-HTTP
protocol but needs to fallback to HTTP when necessary (such as when it finds
itself behind a firewall). By using the same servlet to handle every client, the core
server logic and the server state can be collected in one place. When you control
your environment, of course, you can drop one or more of these protocols. But
isn’t it nice to know you don’t have to?
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

284 CHAPTER 10: APPLET-SERVLET COMMUNICATION
Daytime Server
For a simple demonstration of each communication technique, we’re going to
write an applet that asks its server for the current time of day. The applet first uses
an HTTP connection, then a non-HTTP socket connection, and finally an RMI
connection. Of course, an applet can normally get the current time from the
system on which it’s running. To give this example an air of practicality, let’s
assume the applet needs an approximate time stamp for some event and cannot
rely on the client machine to have a correctly set clock.

The Applet
We’re going to be using the same example applet throughout this section. The skel-
eton code for this applet, DaytimeApplet, is shown in Example 10-1. Right now,
the applet just creates a user interface where the times it retrieves can be displayed,
as shown in Figure 10-1. As we proceed with this example, we’ll implement its
getDateUsingHttpText(), getDateUsingHttpObject(), getDateUsingSock-
etText(), getDateUsingSocketObject(), and getDateUsingRMIObject()
methods. Note that the examples in this chapter use several JDK 1.0 methods that
are deprecated in JDK 1.1. This is to maximize portability.

Example 10-1. DaytimeApplet, without all the good stuff

import java.applet.*;

import java.awt.*;

import java.io.*;

import java.util.*;

public class DaytimeApplet extends Applet {

 TextField httpText, httpObject, socketText, socketObject, RMIObject;

 Button refresh;

 public void init() {

 // Construct the user interface

 setLayout(new BorderLayout());

 // On the left create labels for the various communication

 // mechanisms

 Panel west = new Panel();

 west.setLayout(new GridLayout(5, 1));

 west.add(new Label("HTTP text: ", Label.RIGHT));

 west.add(new Label("HTTP object: ", Label.RIGHT));

 west.add(new Label("Socket text: ", Label.RIGHT));

 west.add(new Label("Socket object: ", Label.RIGHT));

 west.add(new Label("RMI object: ", Label.RIGHT));
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DAYTIME SERVER 285
 add("West", west);

 // On the right create text fields to display the retrieved time values

 Panel center = new Panel();

 center.setLayout(new GridLayout(5, 1));

 httpText = new TextField();

 httpText.setEditable(false);

 center.add(httpText);

 httpObject = new TextField();

 httpObject.setEditable(false);

 center.add(httpObject);

 socketText = new TextField();

 socketText.setEditable(false);

 center.add(socketText);

 socketObject = new TextField();

 socketObject.setEditable(false);

 center.add(socketObject);

 RMIObject = new TextField();

 RMIObject.setEditable(false);

 center.add(RMIObject);

 add("Center", center);

 // On the bottom create a button to update the times

 Panel south = new Panel();

 refresh = new Button("Refresh");

 south.add(refresh);

 add("South", south);

 }

 public void start() {

 refresh();

 }

 private void refresh() {

 // Fetch and display the time values

 httpText.setText(getDateUsingHttpText());

 httpObject.setText(getDateUsingHttpObject());

 socketText.setText(getDateUsingSocketText());

 socketObject.setText(getDateUsingSocketObject());

 RMIObject.setText(getDateUsingRMIObject());

 }

Example 10-1. DaytimeApplet, without all the good stuff (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

286 CHAPTER 10: APPLET-SERVLET COMMUNICATION
For this applet to be available for downloading to the client browser, it has to be
placed under the server’s document root, along with an HTML file referring to it.
The HTML might look like this:

<HTML>

<HEAD><TITLE>Daytime Applet</TITLE></HEAD>

<BODY>

 private String getDateUsingHttpText() {

 // Retrieve the current time using an HTTP text-based connection

 return "unavailable";

 }

 private String getDateUsingHttpObject() {

 // Retrieve the current time using an HTTP object-based connection

 return "unavailable";

 }

 private String getDateUsingSocketText() {

 // Retrieve the current time using a non-HTTP text-based socket

 // connection

 return "unavailable";

 }

 private String getDateUsingSocketObject() {

 // Retrieve the current time using a non-HTTP object-based socket

 // connection

 return "unavailable";

 }

 private String getDateUsingRMIObject() {

 // Retrieve the current time using RMI communication

 return "unavailable";

 }

 public boolean handleEvent(Event event) {

 // When the refresh button is pushed, refresh the display

 // Use JDK 1.0 events for maximum portability

 switch (event.id) {

 case Event.ACTION_EVENT:

 if (event.target == refresh) {

 refresh();

 return true;

 }

 }

 return false;

 }

}

Example 10-1. DaytimeApplet, without all the good stuff (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DAYTIME SERVER 287
<CENTER><H1>Daytime Applet</H1></CENTER>

<CENTER><APPLET CODE=DaytimeApplet CODEBASE=/ WIDTH=300 HEIGHT=180>

</APPLET></CENTER>

</BODY></HTML>

The CODEBASE parameter indicates the directory where the applet’s class file has
been placed. The parameter is relative to the document root, which for the Java
Web Server is generally server_root/public_html. Assuming the HTML file was
named daytime.html, this applet can be viewed at the URL http://server:port/
daytime.html.

Text-based HTTP Communication
Let’s start by implementing the lowest-common-denominator approach—text-
based HTTP communication.

The servlet

For the DaytimeApplet to retrieve the current time from the server, it has to
communicate with a servlet that returns the current time. Example 10-2 shows

Figure 10-1. The DaytimeApplet user interface
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

288 CHAPTER 10: APPLET-SERVLET COMMUNICATION
such a servlet. It responds to all GET and POST requests with a textual representa-
tion of the current time.

This servlet’s class files should be placed in the standard location for servlets, typi-
cally server_root/servlets. Once you place them there, they can be accessed by
any web browser using the URL http://server:port/servlet/DaytimeServlet.

Back to the applet

Now, for our DaytimeApplet to access this servlet, it must behave just like a
browser and make an HTTP connection to the servlet URL, as the implementa-
tion of getDateUsingHttpText() in Example 10-3 shows.

Example 10-2. The DaytimeServlet supporting basic HTTP access

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class DaytimeServlet extends HttpServlet {

 public Date getDate() {

 return new Date();

 }

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/plain");

 PrintWriter out = res.getWriter();

 out.println(getDate().toString());

 }

 public void doPost(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 doGet(req, res);

 }

}

Example 10-3. DaytimeApplet getting the time using HTTP

import java.net.URL; // New addition

import com.oreilly.servlet.HttpMessage; // A support class, shown later

 private String getDateUsingHttpText() {

 try {

 // Construct a URL referring to the servlet

 URL url = new URL(getCodeBase(), "/servlet/DaytimeServlet");
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DAYTIME SERVER 289
This method retrieves the current time on the server using a text-based HTTP
connection. First, it creates a URL object that refers to the DaytimeServlet
running on the server. The server host and port for this URL come from the
applet’s own getCodeBase() method. This guarantees that it matches the host
and port from which the applet was downloaded. Then, the method creates an
HttpMessage object to communicate with that URL. This object does all the dirty
work involved in making the connection. The applet asks it to make a GET request
of the DaytimeServlet and then reads the response from the returned
InputStream.

The code for HttpMessage is shown in Example 10-4. It is loosely modeled after
the ServletMessage class written by Rod McChesney of Sun Microsystems.

 // Create a com.oreilly.servlet.HttpMessage to communicate with that URL

 HttpMessage msg = new HttpMessage(url);

 // Send a GET message to the servlet, with no query string

 // Get the response as an InputStream

 InputStream in = msg.sendGetMessage();

 // Wrap the InputStream with a DataInputStream

 DataInputStream result =

 new DataInputStream(new BufferedInputStream(in));

 // Read the first line of the response, which should be

 // a string representation of the current time

 String date = result.readLine();

 // Close the InputStream

 in.close();

 // Return the retrieved time

 return date;

 }

 catch (Exception e) {

 // If there was a problem, print to System.out

 // (typically the Java console) and return null

 e.printStackTrace();

 return null;

 }

 }

Example 10-4. The HttpMessage support class

package com.oreilly.servlet;

import java.io.*;

Example 10-3. DaytimeApplet getting the time using HTTP (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

290 CHAPTER 10: APPLET-SERVLET COMMUNICATION
import java.net.*;

import java.util.*;

public class HttpMessage {

 URL servlet = null;

 String args = null;

 public HttpMessage(URL servlet) {

 this.servlet = servlet;

 }

 // Performs a GET request to the previously given servlet

 // with no query string.

 public InputStream sendGetMessage() throws IOException {

 return sendGetMessage(null);

 }

 // Performs a GET request to the previously given servlet.

 // Builds a query string from the supplied Properties list.

 public InputStream sendGetMessage(Properties args) throws IOException {

 String argString = ""; // default

 if (args != null) {

 argString = "?" + toEncodedString(args);

 }

 URL url = new URL(servlet.toExternalForm() + argString);

 // Turn off caching

 URLConnection con = url.openConnection();

 con.setUseCaches(false);

 return con.getInputStream();

 }

 // Performs a POST request to the previously given servlet

 // with no query string.

 public InputStream sendPostMessage() throws IOException {

 return sendPostMessage(null);

 }

 // Performs a POST request to the previously given servlet.

 // Builds post data from the supplied Properties list.

 public InputStream sendPostMessage(Properties args) throws IOException {

 String argString = ""; // default

 if (args != null) {

 argString = toEncodedString(args); // notice no "?"

 }

Example 10-4. The HttpMessage support class (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DAYTIME SERVER 291
Some of you may have been expecting the HttpMessage class to establish a raw
socket connection to the server and proceed to speak HTTP. This approach would
certainly work, but it isn’t necessary. The higher-level java.net.URL and java.
net.URLConnection classes already provide this functionality in a conven- ient
abstraction.

Let’s do a quick walk-through of HttpMessage. HttpMessage is designed to
communicate with just one URL, the URL given in its constructor. It can send
multiple GET and/or POST requests to that URL, but it always communicates with
just the one URL.

 URLConnection con = servlet.openConnection();

 // Prepare for both input and output

 con.setDoInput(true);

 con.setDoOutput(true);

 // Turn off caching

 con.setUseCaches(false);

 // Work around a Netscape bug

 con.setRequestProperty("Content-Type",

 "application/x-www-form-urlencoded");

 // Write the arguments as post data

 DataOutputStream out = new DataOutputStream(con.getOutputStream());

 out.writeBytes(argString);

 out.flush();

 out.close();

 return con.getInputStream();

 }

 // Converts a Properties list to a URL-encoded query string

 private String toEncodedString(Properties args) {

 StringBuffer buf = new StringBuffer();

 Enumeration names = args.propertyNames();

 while (names.hasMoreElements()) {

 String name = (String) names.nextElement();

 String value = args.getProperty(name);

 buf.append(URLEncoder.encode(name) + "=" + URLEncoder.encode(value));

 if (names.hasMoreElements()) buf.append("&");

 }

 return buf.toString();

 }

}

Example 10-4. The HttpMessage support class (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

292 CHAPTER 10: APPLET-SERVLET COMMUNICATION
The code HttpMessage uses to send a GET message is fairly simple. First,
sendGetMessage() creates a URL-encoded query string from the passed-in java.
util.Properties list. Then, it appends this query string to the saved URL,
creating a new URL object. At this point, it could elect to use this new URL (named
url) to communicate with the servlet. A call to url.openStream() would return
an InputStream that contains the response. But, unfortunately for our purposes,
by default all connections made using a URL object are cached. We don’t want
this—we want the current time, not the time of the last request. So HttpMessage
has to turn caching off.* The URL class doesn’t directly support this low-level
control, so HttpMessage gets the URL object’s URLConnection and instructs it not
to use caching. Finally, HttpMessage returns the URLConnection object’s
InputStream, which contains the servlet’s response.

The code HttpMessage uses to send a POST request (sendPostMessage()) is
similar. The major difference is that it directly writes the URL-encoded parameter
information in the body of the request. This follows the protocol for how POST
requests submit their information. The other difference is that HttpMessage manu-
ally sets the request’s content type to "application/x-www-form-urlencoded".
This should be set automatically by Java, but setting it manually works around a
bug in some versions of Netscape’s browser.

We should mention that HttpMessage is a general-purpose class for HTTP
communication. It doesn’t have to be used by applets, and it doesn’t have to
connect to servlets. It’s usable by any Java client that needs to connect to an HTTP
resource. It’s included in the com.oreilly.servlet package, though, because
it’s often useful for applet-servlet communication.

For the HttpMessage class to be usable by applets, it has to be made available for
downloading along with the applet classes. This means it must be placed in the
proper location under the web server’s document root. For the Java Web Server,
this location is server_root/public_html/com/oreilly/servlet. We recommend you
copy the class there from wherever you originally installed the com.oreilly.
servlet package (probably server_root/classes/com/oreilly/servlet).

Note that HttpMessage as currently written does not provide a mechanism for an
applet to either set or get the HTTP headers associated with its request and
response. The URLConnection class, however, supports HTTP header access with
its setRequestProperty() and getHeaderField() methods. You can add this
functionality if you need it.

* Actually, we could leave it up to the servlet to turn caching off, by having it set its Pragma header to
"no-cache". But it can’t hurt to have it in the applet as well.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DAYTIME SERVER 293
Now, with all this code working together, we have an applet that retrieves the
current time from its server using text-based HTTP applet-servlet communication.
If you try it yourself, you should see the “HTTP text” date filled in, while the rest of
the dates are still marked “unavailable.”

Object-based HTTP Communication
With a few modifications, we can have the DaytimeApplet receive the current
time as a serialized Date object.

The servlet

For backward compatibility, let’s change our DaytimeServlet to return a serial-
ized Date only if the request asks for it by passing a "format" parameter with the
value "object". The code is given in Example 10-5.

Example 10-5. The DaytimeServlet using HTTP to serve an object

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class DaytimeServlet extends HttpServlet {

 public Date getDate() {

 return new Date();

 }

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 // If the client says "format=object" then

 // return the Date as a serialized object

 if ("object".equals(req.getParameter("format"))) {

 ObjectOutputStream out = new ObjectOutputStream(res.getOutputStream());

 out.writeObject(getDate());

 }

 // Otherwise send the Date as a normal string

 else {

 PrintWriter out = res.getWriter();

 out.println(getDate().toString());

 }

 }

 public void doPost(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 doGet(req, res);
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

294 CHAPTER 10: APPLET-SERVLET COMMUNICATION
As the code shows, sending a serialized Java object is quite simple. This technique
can be used to send any primitive types and/or any Java objects that implement
the Serializable interface, including a Vector that contains Serializable
objects. Multiple objects can also be written to the same ObjectOutputStream, as
long as the class receiving the objects reads them in the same order and casts them
to the same types.

You may notice that the servlet didn’t set the content type of the response to indi-
cate it contained a serialized Java object. The reason is that currently there are no
standard MIME types to represent serialized objects. This doesn’t really matter,
though. A content type acts solely as an indication to the client of how to handle
or display the response. If an applet already assumes it’s receiving a specific serial-
ized Java object, everything works fine. Sometimes, though, it’s useful to use a
custom MIME type (specific to your application), so that a servlet can indicate to
an applet the contents of its response.

The applet

The applet code to retrieve the serialized Date object is very similar to the code to
retrieve plain text. The getDateUsingHttpObject() method is shown in
Example 10-6.

 }

}

Example 10-6. The DaytimeApplet using HTTP to retrieve an object

private String getDateUsingHttpObject() {

 try {

 // Construct a URL referring to the servlet

 URL url = new URL(getCodeBase(), "/servlet/DaytimeServlet");

 // Create a com.oreilly.servlet.HttpMessage to communicate with that URL

 HttpMessage msg = new HttpMessage(url);

 // Construct a Properties list to say format=object

 Properties props = new Properties();

 props.put("format", "object");

 // Send a GET message to the servlet, passing "props" as a query string

 // Get the response as an ObjectInputStream

 InputStream in = msg.sendGetMessage(props);

 ObjectInputStream result = new ObjectInputStream(in);

 // Read the Date object from the stream

 Object obj = result.readObject();

Example 10-5. The DaytimeServlet using HTTP to serve an object (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DAYTIME SERVER 295
There are two differences between this method and the
getDateUsingHttpText() method. First, this method creates a Properties list
to set the "format" parameter to the value "object". This tells DaytimeServlet
to return a serialized object. Second, the new method reads the returned content
as an Object, using an ObjectInputStream and its readObject() method.

If the class being serialized is not part of the Java Core API (and therefore isn’t
already available to the applet), it too has to be made available in the proper loca-
tion under the web server’s document root. An applet can always receive an
object’s serialized contents, but it needs to download its class file to fully recon-
struct the object.

Now the applet can retrieve the current time using both text-based and object-
based HTTP communication. If you try it yourself now (with a web browser or
applet viewer that supports JDK 1.1), you should see both the “HTTP text” and
“HTTP object” fields filled in.

Posting a serialized object

Before we go on, we should look at one more (hitherto unmentioned) method
from the HttpMessage class: sendPostMessage(Serializable). This method
helps an applet upload a serialized object to a servlet using the POST method.
This object transfer isn’t particularly useful to our daytime server example (and is
kind of out of place here), but we mention it because it can come in handy when
an applet needs to upload complicated data structures to its server. Example 10-7
contains the code for this method.

 Date date = (Date)obj;

 // Return the string representation of the Date

 return date.toString();

 }

 catch (Exception e) {

 // If there was a problem, print to System.out

 // (typically the Java console) and return null

 e.printStackTrace();

 return null;

 }

}

Example 10-7. Posting a serialized object

// Uploads a serialized object with a POST request.

// Sets the content type to java-internal/classname.

public InputStream sendPostMessage(Serializable obj) throws IOException {

Example 10-6. The DaytimeApplet using HTTP to retrieve an object (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

296 CHAPTER 10: APPLET-SERVLET COMMUNICATION
An applet uses sendPostMessage(Serializable) just as it uses
sendPostMessage(Properties). Here is the code for an applet that uploads any
exceptions it encounters to a servlet:

catch (Exception e) {

 URL url = new URL(getCodeBase(), "/servlet/ExceptionLogger");

 HttpMessage msg = new HttpMessage(url);

 InputStream in = msg.sendPostMessage(e);

}

The servlet, meanwhile, receives the Exception in its doPost() method like this:

ObjectInputStream objin = new ObjectInputStream(req.getInputStream());

Object obj = objin.readObject();

Exception e = (Exception) obj;

The servlet can receive the type of the uploaded object as the subtype (second
half) of the content type. Note that this sendPostMessage(Serializable)
method uploads just one object at a time and uploads only serializable objects
(that is, no primitive types).

Socket Communication
Now let’s take a look at how an applet and servlet can communicate using non-
HTTP socket communication.

 URLConnection con = servlet.openConnection();

 // Prepare for both input and output

 con.setDoInput(true);

 con.setDoOutput(true);

 // Turn off caching

 con.setUseCaches(false);

 // Set the content type to be java-internal/classname

 con.setRequestProperty("Content-Type",

 "java-internal/" + obj.getClass().getName());

 // Write the serialized object as post data

 ObjectOutputStream out = new ObjectOutputStream(con.getOutputStream());

 out.writeObject(obj);

 out.flush();

 out.close();

 return con.getInputStream();

}

Example 10-7. Posting a serialized object (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DAYTIME SERVER 297
The servlet

The servlet’s role in this communication technique is that of a passive listener.
Due to security restrictions, only the applet can initiate a socket connection. A
servlet must be content to listen on a socket port and wait for an applet to
connect. Generally speaking, a servlet should begin listening for applet connec-
tions in its init() method and stop listening in its destroy() method. In
between, for every connection it receives, it should spawn a handler thread to
communicate with the client.

With HTTP socket connections, these nitty-gritty details are managed by the web
server. The server listens for incoming HTTP requests and dispatches them as
appropriate, calling a servlet’s service(), doGet(), or doPost() methods as
necessary. But when a servlet opts not to use HTTP communication, the web
server can’t provide any help. The servlet acts, in essence, like its own server and
thus has to manage the socket connections itself.

Okay, maybe we scared you a bit more than we had to there. The truth is that we
can write a servlet superclass that abstracts away the details involved in managing
socket connections. This class, which we call DaemonHttpServlet, can be
extended by any servlet wanting to make itself available via non-HTTP socket
communication.*

DaemonHttpServlet starts listening for client requests in its init() method and
stops listening in its destroy() method. In between, for every connection it
receives, it calls the abstract handleClient(Socket) method. This method
should be implemented by any servlet that subclasses DaemonHttpServlet.

Example 10-8 shows how DaytimeServlet extends DaemonHttpServlet and
implements handleClient() to make itself available via non-HTTP socket
communication.

* The name “daemon” was chosen to refer to Unix daemons, programs that run in the background qui-
etly handling certain events. And where did those programs get the “daemon” moniker? According to
the New Hacker’s Dictionary, it originally came “from the mythological meaning, (but was) later rational-
ized as the acronym ‘Disk And Execution MONitor’”.

Example 10-8. The DaytimeServlet acting as a non-HTTP server

import java.io.*;

import java.net.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

import com.oreilly.servlet.DaemonHttpServlet;
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

298 CHAPTER 10: APPLET-SERVLET COMMUNICATION
public class DaytimeServlet extends DaemonHttpServlet {

 public Date getDate() {

 return new Date();

 }

 public void init(ServletConfig config) throws ServletException {

 // As before, if you override init() you have to call super.init()

 super.init(config);

 }

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 // If the client says "format=object" then

 // send the Date as a serialized object

 if ("object".equals(req.getParameter("format"))) {

 ObjectOutputStream out = new ObjectOutputStream(res.getOutputStream());

 out.writeObject(getDate());

 }

 // Otherwise send the Date as a normal ASCII string

 else {

 PrintWriter out = res.getWriter();

 out.println(getDate().toString());

 }

 }

 public void doPost(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 doGet(req, res);

 }

 public void destroy() {

 // Now, unlike before, if you override destroy() you also have to call

 // super.destroy()

 super.destroy();

 }

 // Handle a client's socket connection by spawning a DaytimeConnection

 // thread.

 public void handleClient(Socket client) {

 new DaytimeConnection(this, client).start();

 }

}

class DaytimeConnection extends Thread {

 DaytimeServlet servlet;

 Socket client;

Example 10-8. The DaytimeServlet acting as a non-HTTP server (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DAYTIME SERVER 299
The DaytimeServlet class remains largely unchanged from its previous form.
The major difference is that it extends DaemonHttpServlet and implements a
handleClient(Socket) method that spawns a new DaytimeConnection thread.

 DaytimeConnection(DaytimeServlet servlet, Socket client) {

 this.servlet = servlet;

 this.client = client;

 setPriority(NORM_PRIORITY - 1);

 }

 public void run() {

 try {

 // Read the first line sent by the client

 DataInputStream in = new DataInputStream(

 new BufferedInputStream(

 client.getInputStream()));

 String line = in.readLine();

 // If it was "object" then return the Date as a serialized object

 if ("object".equals(line)) {

 ObjectOutputStream out =

 new ObjectOutputStream(client.getOutputStream());

 out.writeObject(servlet.getDate());

 out.close();

 }

 // Otherwise, send the Date as a normal string

 else {

 // Wrap a PrintStream around the Socket's OutputStream

 PrintStream out = new PrintStream(client.getOutputStream());

 out.println(servlet.getDate().toString());

 out.close();

 }

 // Be sure to close the connection

 client.close();

 }

 catch (IOException e) {

 servlet.getServletContext()

 .log(e, "IOException while handling client request");

 }

 catch (Exception e) {

 servlet.getServletContext()

 .log("Exception while handling client request");

 }

 }

}

Example 10-8. The DaytimeServlet acting as a non-HTTP server (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

300 CHAPTER 10: APPLET-SERVLET COMMUNICATION
This DaytimeConnection instance bears the responsibility for handling a specific
socket connection.

DaytimeConnection works as follows. When it is created, it saves a reference to
the DaytimeServlet, so that it can call the servlet’s getDate() method, and a
reference to the Socket, so that it can communicate with the client. Daytime
Connection also sets its running priority to one less than normal, to indicate that
this communication can wait if necessary while other threads perform more time-
critical work.

Immediately after it creates the DaytimeConnection thread, DaytimeServlet
starts the thread, causing its run() method to be called. In this method, the
DaytimeConnection communicates with the client using some unnamed (but
definitely not HTTP) protocol. It begins by reading the first line sent by the client.
If the line is "object", it returns the current time as a serialized Date object. If
the line is anything else, it returns the current time as a normal string. When it is
done, it closes the connection.

The superclass

The low-level socket management is done in the DaemonHttpServlet class.
Generally, this class can be used without modification, but it is useful to under-
stand the internals. The code is shown in Example 10-9.

Example 10-9. The DaemonHttpServlet superclass

package com.oreilly.servlet;

import java.io.*;

import java.net.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public abstract class DaemonHttpServlet extends HttpServlet {

 protected int DEFAULT_PORT = 1313; // not static or final

 private Thread daemonThread;

 public void init(ServletConfig config) throws ServletException {

 super.init(config);

 // Start a daemon thread

 try {

 daemonThread = new Daemon(this);

 daemonThread.start();

 }

 catch (Exception e) {
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DAYTIME SERVER 301
 getServletContext().log(e, "Problem starting socket server daemon thread");

 }

 }

 // Returns the socket port on which this servlet will listen.

 // A servlet can specify the port in three ways: by using the socketPort

 // init parameter, by setting the DEFAULT_PORT variable before calling

 // super.init(), or by overriding this method's implementation

 protected int getSocketPort() {

 try { return Integer.parseInt(getInitParameter("socketPort")); }

 catch (NumberFormatException e) { return DEFAULT_PORT; }

 }

 abstract public void handleClient(Socket client);

 public void destroy() {

 // Stop the daemon thread

 try {

 daemonThread.stop();

 daemonThread = null;

 }

 catch (Exception e) {

 getServletContext().log(e, "Problem stopping server socket daemon thread");

 }

 }

}

// This work is broken into a helper class so that subclasses of

// DaemonHttpServlet can define their own run() method without problems.

class Daemon extends Thread {

 private ServerSocket serverSocket;

 private DaemonHttpServlet servlet;

 public Daemon(DaemonHttpServlet servlet) {

 this.servlet = servlet;

 }

 public void run() {

 try {

 // Create a server socket to accept connections

 serverSocket = new ServerSocket(servlet.getSocketPort());

 }

 catch (Exception e) {

 servlet.getServletContext().log(e, "Problem establishing server socket");

 return;

 }

Example 10-9. The DaemonHttpServlet superclass (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

302 CHAPTER 10: APPLET-SERVLET COMMUNICATION
The init() method of DaemonHttpServlet creates and starts a new Daemon
thread that is in charge of listening for incoming connections. The destroy()
method stops the thread. This makes it imperative that any servlet subclassing
DaemonHttpServlet call super.init(config) and super.destroy() if the
servlet implements its own init() and destroy() methods.

The Daemon thread begins by establishing a ServerSocket to listen on some
specific socket port. Which socket port is determined with a call to the servlet’s
getSocketPort() method. The value returned is either the value of the init
parameter "socketPort", or, if that init parameter doesn’t exist, the current
value of the variable DEFAULT_PORT. A servlet may choose to override the
getSocketPort() implementation if it so desires.

After establishing the ServerSocket, the Daemon thread waits for incoming
requests with a call to serverSocket.accept(). This method is blocking—it
stops this thread’s execution until a client attaches to the server socket. When this
happens, the accept() method returns a Socket object that the Daemon thread
passes immediately to the servlet’s handleClient() method. This handle-
Client() method usually spawns a handler thread and returns immediately,
leaving the Daemon thread ready to accept another connection.

 try {

 while (true) {

 // As each connection comes in, call the servlet's handleClient().

 // Note this method is blocking. It's the servlet's responsibility

 // to spawn a handler thread for long-running connections.

 try {

 servlet.handleClient(serverSocket.accept());

 }

 catch (IOException ioe) {

 servlet.getServletContext()

 .log(ioe, "Problem accepting client's socket connection");

 }

 }

 }

 catch (ThreadDeath e) {

 // When the thread is killed, close the server socket

 try {

 serverSocket.close();

 }

 catch (IOException ioe) {

 servlet.getServletContext().log(ioe, "Problem closing server socket");

 }

 }

 }

}

Example 10-9. The DaemonHttpServlet superclass (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DAYTIME SERVER 303
The server socket clean-up is equally as important as its set-up. We have to be sure
the server socket lives as long as the servlet, but no longer. To this end, the
destroy() method of DaemonHttpServlet calls the Daemon thread’s stop()
method. This call doesn’t immediately stop the Daemon thread, however. It just
causes a ThreadDeath exception to be thrown in the Daemon thread at its current
point of execution. The Daemon thread catches this exception and closes the server
socket.

There are two caveats in writing a servlet that acts like a non-HTTP server. First,
only one servlet at a time can listen to any particular socket port. This makes it
vital that each daemon servlet choose its own socket port—by setting its
socketPort init parameter, setting the DEFAULT_PORT variable before calling
super.init(config), or overriding getSocketPort() directly. Second, a
daemon servlet must be loaded into its server and have its init() method called
before it can accept incoming non-HTTP connections. Thus, you should either
tell your server to load it at start-up or be sure it is always accessed via HTTP before
it is accessed directly.

The applet

The applet code to connect to the servlet using non-HTTP communication, prima-
rily the getDateUsingSocketText() and getDateUsingSocketObject()
methods, is shown in Example 10-10.

Example 10-10. The DaytimeApplet getting the time using a socket connection

import java.net.Socket; // New addition

static final int DEFAULT_PORT = 1313; // New addition

private int getSocketPort() {

 try { return Integer.parseInt(getParameter("socketPort")); }

 catch (NumberFormatException e) { return DEFAULT_PORT; }

}

private String getDateUsingSocketText() {

 InputStream in = null;

 try {

 // Establish a socket connection with the servlet

 Socket socket = new Socket(getCodeBase().getHost(), getSocketPort());

 // Print an empty line, indicating we want the time as plain text

 PrintStream out = new PrintStream(socket.getOutputStream());

 out.println();

 out.flush();

 // Read the first line of the response
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

304 CHAPTER 10: APPLET-SERVLET COMMUNICATION
 // It should contain the current time

 in = socket.getInputStream();

 DataInputStream result =

 new DataInputStream(new BufferedInputStream(in));

 String date = result.readLine();

 // Return the retrieved string

 return date;

 }

 catch (Exception e) {

 // If there was a problem, print to System.out

 // (typically the Java console) and return null

 e.printStackTrace();

 return null;

 }

 finally {

 // Always close the connection

 // This code executes no matter how the try block completes

 if (in != null) {

 try { in.close(); }

 catch (IOException ignored) { }

 }

 }

}

private String getDateUsingSocketObject() {

 InputStream in = null;

 try {

 // Establish a socket connection with the servlet

 Socket socket = new Socket(getCodeBase().getHost(), getSocketPort());

 // Print a line saying "object", indicating we want the time as

 // a serialized Date object

 PrintStream out = new PrintStream(socket.getOutputStream());

 out.println("object");

 out.flush();

 // Create an ObjectInputStream to read the response

 in = socket.getInputStream();

 ObjectInputStream result =

 new ObjectInputStream(new BufferedInputStream(in));

 // Read an object, and cast it to be a Date

 Object obj = result.readObject();

 Date date = (Date)obj;

 // Return a string representation of the retrieved Date

 return date.toString();

Example 10-10. The DaytimeApplet getting the time using a socket connection (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DAYTIME SERVER 305
For both these methods, the applet begins by creating a Socket that is used to
communicate with the servlet. To do this, it needs to know both the host name
and the port number on which the servlet is listening. Determining the host is
easy—it has to be the same host from which it was downloaded, accessible with a
call to getCodeBase().getHost(). The port is harder, as it depends entirely on
the servlet to which this applet is connecting. This applet uses the
getSocketPort() method to make this determination. The implementation of
getSocketPort() shown here returns the value of the applet’s socketPort
parameter, or (if that parameter isn’t given) returns the value of the DEFAULT_
PORT variable.

Once it has established a socket connection, the applet follows an unnamed
protocol to communicate with the servlet. This protocol requires that the applet
send one line to indicate whether it wants the current time as text or as an object.
If the line says "object", it receives an object. If it says anything else, it receives
plain text. After sending this line, the applet can read the response as appropriate.

The applet and servlet could continue to communicate using this socket. That’s
one of the major advantages of not using HTTP communication. But, in this case,
the applet got what it wanted and just needs to close the connection. It performs
this close in a finally block. Putting the close here guarantees that the connec-
tion is closed whether the try throws an exception or not.

With the addition of these two methods our applet is nearly complete. If you run it
now, you should see that all of the fields except “RMI object” contain dates.

 }

 catch (Exception e) {

 // If there was a problem, print to System.out

 // (typically the Java console) and return null

 e.printStackTrace();

 return null;

 }

 finally {

 // Always close the connection

 // This code executes no matter how the try block completes

 if (in != null) {

 try { in.close(); }

 catch (IOException ignored) { }

 }

 }

}

Example 10-10. The DaytimeApplet getting the time using a socket connection (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

306 CHAPTER 10: APPLET-SERVLET COMMUNICATION
RMI Communication
Earlier in this chapter, we pointed out that one of the reasons not to use RMI
communication is that it’s complicated. Although that’s true, it’s also true that
with the help of another servlet superclass, the code required for a servlet to make
itself available via RMI communication can be ridiculously simple. First, we’ll lead
you through the step-by-step instructions on how to make a servlet a remote
object. Then, after you’ve seen how simple and easy that is, we’ll explain all the
work going on behind the scenes.

The servlet

To begin with, all RMI remote objects must implement a specific interface. This
interface does two things: it declares which methods of the remote object are to be
made available to remote clients, and it extends the Remote interface to indicate
it’s an interface for a remote object. For our DaytimeServlet, we can write the
DaytimeServer interface shown in Example 10-11.

This interface declares that our DaytimeServlet makes its getDate() method
available to remote clients. Notice that the getDate() signature has been altered
slightly—it now throws a RemoteException. Every method made available via RMI
must declare that it throws this exception. Although the method itself may not
throw the exception, it can be thrown by the system to indicate a network service
failure.

The code for DaytimeServlet remains mostly unchanged from its original
version. In fact, the only changes are that it now implements DaytimeServer and
extends com.oreilly.servlet.RemoteHttpServlet, the superclass that allows
this servlet to remain so unchanged. The servlet also implements a destroy()
method that calls super.destroy(). It’s true that this method is perfectly useless
in this example, but it points out that any destroy() method implemented in a
remote servlet must call super.destroy() to give the RemoteHttpServlet
object’s destroy() method a chance to terminate RMI communication.
Example 10-12 shows the new DaytimeServlet code.

Example 10-11. The DaytimeServer interface

import java.util.Date;

import java.rmi.Remote;

import java.rmi.RemoteException;

public interface DaytimeServer extends Remote {

 public Date getDate() throws RemoteException;

}

Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DAYTIME SERVER 307
Example 10-12. The DaytimeServlet now supporting RMI access

import java.io.*;

import java.net.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

import com.oreilly.servlet.RemoteHttpServlet; // New addition

public class DaytimeServlet extends RemoteHttpServlet // New addition

 implements DaytimeServer { // New addition

 // The single method from DaytimeServer

 // Note: the throws clause isn't necessary here

 public Date getDate() {

 return new Date();

 }

 public void init(ServletConfig config) throws ServletException {

 super.init(config);

 // Additional code could go here

 }

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 // If the client says "format=object" then

 // send the Date as a serialized object

 if ("object".equals(req.getParameter("format"))) {

 ObjectOutputStream out = new ObjectOutputStream(res.getOutputStream());

 out.writeObject(getDate());

 }

 // Otherwise send the Date as a normal ASCII string

 else {

 PrintWriter out = res.getWriter();

 out.println(getDate().toString());

 }

 }

 public void doPost(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 doGet(req, res);

 }

 public void destroy() {

 // If you override destroy() you have to call super.destroy()

 super.destroy();

 }

}

Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

308 CHAPTER 10: APPLET-SERVLET COMMUNICATION
So that’s how to write a remote object servlet. We suggest you place such servlets
directly in the server’s classpath (server_root/classes) so they aren’t reloaded,
since reloading a remote object tends to cause unexpected results. Compiling a
remote object servlet is the same as for every other servlet, with one additional
step. After compiling the servlet source code, you now have to compile the servlet
class with the RMI compiler rmic. The RMI compiler takes a remote object’s class
file and generates stub and skeleton versions of the class. These classes work behind
the scenes to enable RMI communication. You don’t need to worry about the
details, but you should know that the stub helps the client invoke methods on the
remote object and the skeleton helps the server handle those invocations.

Using rmic is similar to using javac. For this example you can compile
DaytimeServlet with the following command:

% rmic DaytimeServlet

Notice that you provide rmic with a Java class name to compile, not a file. Thus, if
the servlet to compile is part of a package it should be given to rmic as package.
name.ServletName. The rmic program can take a classpath to search with the -
classpath parameter, as well as a destination directory for the stub and skeleton
files with the -d parameter.

After executing the above rmic command, you should see two new class files:
DaytimeServlet_Stub.class and DaytimeServlet_Skel.class. We’ll tell you what to do with
these in just a minute. First, you should know that you don’t have to rerun the
RMI compiler every time you modify the remote servlet’s code. This is because the
stub and skeleton classes are built in terms of the servlet’s interface, not its imple-
mentation of that interface. Accordingly, you need to regenerate them only when
you modify the DaytimeServer interface (or your equivalent interface).

Now, for the final step in writing a remote servlet: copying a few class files to the
server’s document root, where they can be downloaded by an applet. There are
two class files that need to be downloaded: the stub class DaytimeServlet_Stub.class
and the remote interface class DaytimeServer.class. The client (in this case the
applet) needs the stub class to perform its half of the RMI communication, and
the stub class itself uses the remote interface class. Be aware that the servlet needs
to use these classes, too, so copy them to the server’s document root and leave
them in the server’s classpath.* Figure 10-2 shows where all the server files go.

* Managing multiple class files can become a serious headache during development. On a Unix system,
you can use soft links to simplify the task. Or, on any system, you can implement a more general-pur-
pose solution: change the server’s classpath to include server_root/public_html/classes. Put the inter-
face class and stub class in there. Then the server can find them in its new classpath and the applet’s
codebase can be set to /classes to find them as well.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DAYTIME SERVER 309
That’s it! If you follow these instructions you should be able to get a remote servlet
operating in short order. Now let’s look at the RemoteHttpServlet class and see
what’s going on behind the scenes.

The superclass

A remote object needs to do two things to prepare itself for RMI communication:
it needs to export itself and register itself. When a remote object exports itself, it
begins listening on a port for incoming method invocation requests. When a
remote object registers itself, it tells a registry server its name and port number, so
that clients can locate it (essentially, find out its port number) and communicate
with it. These two tasks are handled by the RemoteHttpServlet class, shown in
Example 10-13.

Figure 10-2. File locations for RMI communication

Example 10-13. The RemoteHttpServlet superclass

package com.oreilly.servlet;

import java.io.*;

import java.net.*;

import java.rmi.*;

import java.rmi.server.*;

import java.rmi.registry.*;

server_root

classes

DaytimeServlet.class

DaytimeConnection.class

DaytimeServer.class

DaytimeServlet_Stub.class

DaytimeServlet_Skel.class

com oreilly servlet RemoteHttpServlet.class

daytime.html

DaytimeApplet.class

DaytimeServer.class

DaytimeServlet_Stub.class

public_html
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

310 CHAPTER 10: APPLET-SERVLET COMMUNICATION
import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public abstract class RemoteHttpServlet extends HttpServlet

 implements Remote {

 protected Registry registry;

 public void init(ServletConfig config) throws ServletException {

 super.init(config);

 try {

 // Export ourself

 UnicastRemoteObject.exportObject(this);

 // Register ourself

 bind();

 }

 catch (RemoteException e) {

 getServletContext().log(e, "Problem binding to RMI registry");

 }

 }

 public void destroy() {

 // Unregister ourself

 unbind();

 }

 // Returns the name under which we are to be registered

 protected String getRegistryName() {

 // First name choice is the "registryName" init parameter

 String name = getInitParameter("registryName");

 if (name != null) return name;

 // Fallback choice is the name of this class

 return this.getClass().getName();

 }

 // Returns the port on which the registry server is listening

 // (or should be listening)

 protected int getRegistryPort() {

 // First port choice is the "registryPort" init parameter

 try { return Integer.parseInt(getInitParameter("registryPort")); }

 // Fallback choice is the default registry port (1099)

 catch (NumberFormatException e) { return Registry.REGISTRY_PORT; }

 }

 protected void bind() {

Example 10-13. The RemoteHttpServlet superclass (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DAYTIME SERVER 311
If you’ve ever used or read about RMI before, you’ve probably seen remote objects
that extend the java.rmi.server.UnicastRemoteObject class. This is the stan-
dard—and, in fact, recommended—way to write a remote object. The

 // Try to find the appropriate registry already running

 try {

 registry = LocateRegistry.getRegistry(getRegistryPort());

 registry.list(); // Verify it's alive and well

 }

 catch (Exception e) {

 // Couldn't get a valid registry

 registry = null;

 }

 // If we couldn't find it, we need to create it.

 // (Equivalent to running "rmiregistry")

 if (registry == null) {

 try {

 registry = LocateRegistry.createRegistry(getRegistryPort());

 }

 catch (Exception e) {

 log("Could not get or create RMI registry on port " +

 getRegistryPort() + ": " + e.getMessage());

 return;

 }

 }

 // If we get here, we must have a valid registry.

 // Now register this servlet instance with that registry.

 // "Rebind" to replace any other objects using our name.

 try {

 registry.rebind(getRegistryName(), this);

 }

 catch (Exception e) {

 log("Could not bind to RMI registry: " + e.getMessage());

 return;

 }

 }

 protected void unbind() {

 try {

 if (registry != null) registry.unbind(getRegistryName());

 }

 catch (Exception e) {

 getServletContext().log(e, "Problem unbinding from RMI registry");

 }

 }

}

Example 10-13. The RemoteHttpServlet superclass (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

312 CHAPTER 10: APPLET-SERVLET COMMUNICATION
RemoteHttpServlet class, however, doesn’t extend UnicastRemoteObject; it
extends HttpServlet. As you may know, Java doesn’t support multiple inherit-
ance. This means that RemoteHttpServlet has to choose to extend either
UnicastRemoteObject or HttpServlet—even though it needs functionality from
both classes. It’s a difficult choice. Whichever class RemoteHttpServlet doesn’t
extend it has to basically reimplement on its own. In the end, we’ve extended
HttpServlet because it’s easier to rewrite the functionality of UnicastRemote
Object than that of HttpServlet.

This rewrite requires RemoteHttpServlet to do two things it wouldn’t have to do
if it extended UnicastRemoteObject. First, it must declare that it implements the
Remote interface. All remote objects must implement this interface, but normally,
by extending UnicastRemoteObject, a class gets this for free. Still, the price for
going it alone isn’t too bad, as the Remote interface doesn’t actually define any
methods. An object declares that it implements Remote solely to express its desire
to be treated as a remote object.

The second thing RemoteHttpServlet has to do is manually export itself.
Normally, this is performed automatically in the UnicastRemoteObject()
constructor. But again, doing this without that constructor is not a problem. The
UnicastRemoteObject class has a static exportObject(Remote) method that
any Remote object can use to export itself. RemoteHttpServlet uses this method
and exports itself with this single line:

UnicastRemoteObject.exportObject(this);

Those two steps, implementing Remote and exporting itself, are done by
RemoteHttpServlet in lieu of extending UnicastRemoteObject.*

The rest of the RemoteHttpServlet code involves registering and unregistering
itself with an RMI registry. As we said before, an RMI registry server acts as a loca-
tion where clients can locate server objects. A remote object (server object)
registers itself with the registry under a certain name. Clients can then go to the
registry to look up the object by that name. To make itself available to clients then,
our servlet has to find (or create) a registry server and register itself with that
server under a specific name. In registry parlance, this is called binding to the

* To be absolutely correct, there is more we need to do. According to the java.rmi.remote.Unicast
RemoteObjectdocumentation, “If UnicastRemoteObject is not extended, the implementation class
must then assume the responsibility for the correct semantics of the hashCode, equals, and toString
methods inherited from the Object class, so that they behave appropriately for remote objects.” Ac-
cording to the java.rmi.remote.RemoteRef documentation, “These methods should guarantee
that two remote object stubs that refer to the same remote object will have the same hash code (in or-
der to support remote objects as keys in hash tables).” Implementing the mechanism to support this
guarantee is fairly difficult and, we believe, not commonly necessary for applet-servlet communication;
thus we’ve taken the liberty of shirking this responsibility with RemoteHttpServlet.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DAYTIME SERVER 313
registry. RemoteHttpServlet performs this binding with its bind() method,
called from within its init() method.

The bind() method uses two support methods, getRegistryPort() and
getRegistryName(), to determine the port on which the servlet should be
running and the name under which the servlet should be registered. With the
current implementations, the port is fetched from the registryPort init param-
eter, or it defaults to 1099. The name is taken from the registryName init
parameter or defaults to the servlet’s class name—in this case, DaytimeServlet.

Let’s step through the bind() method. It begins by using the following code to try
to find an appropriate registry that is already running:

registry = LocateRegistry.getRegistry(getRegistryPort());

registry.list();

The first line attempts to get the registry running on the given port. The second
asks the registry to list its currently registered objects. If both calls succeed, we
have a valid registry. If either call throws an Exception, the bind()method deter-
mines there is no valid registry and creates one itself. It does this with the
following line of code:

registry = LocateRegistry.createRegistry(getRegistryPort());

After this, the bind() method should have either found or created a registry
server. If it failed in getting the registry and failed again in creating it, it returns
and the servlet remains unregistered. RemoteHttpServlet next binds itself to the
registry using this line of code:

registry.rebind(getRegistryName(), this);

It uses the Registry.rebind() method instead of the Registry.bind()
method to indicate that this binding should replace any previous binding using
our name. This binding persists until the servlet is destroyed, at which time the
destroy() method of RemoteHttpServlet calls its unbind() method. The code
unbind() uses to unbind from the registry is remarkably simple:

if (registry != null) registry.unbind(getRegistryName());

It simply asks the registry to unbind its name.

Please note that a remote servlet must be loaded into its server and have its
init() method called before it is ready for RMI communication. Thus, just as
with a daemon servlet, you should either tell your server to load it at start-up or be
sure it is always accessed via HTTP before it is accessed directly.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

314 CHAPTER 10: APPLET-SERVLET COMMUNICATION
The applet

Now let’s turn our attention from the server and focus it on the client. The code
our DaytimeApplet uses to invoke the getDate() method of our new
DaytimeServlet is shown in Example 10-14.

Where to run the registry?
The commonly accepted way to run an RMI registry server is with the standal-
one Java program rmiregistry. We recommend, however, that you don’t run
rmiregistry and instead let the RemoteHttpServlet create the registry itself.
It’s easier and it’s more efficient. The first servlet that needs the registry can
create the registry. And, by starting the registry within a servlet, the registry
runs using the same JVM as the servlet. That makes it possible to use just one
JVM for the Java Web Server, all of its servlets (the remote objects), and the
registry.

Example 10-14. The DaytimeApplet getting the time using RMI

import java.rmi.*; // New addition

import java.rmi.registry.*; // New addition

private String getRegistryHost() {

 return getCodeBase().getHost();

}

private int getRegistryPort() {

 try { return Integer.parseInt(getParameter("registryPort")); }

 catch (NumberFormatException e) { return Registry.REGISTRY_PORT; }

}

private String getRegistryName() {

 String name = getParameter("registryName");

 if (name == null) {

 name = "DaytimeServlet"; // default

 }

 return name;

}

private String getDateUsingRMIObject() {

 try {

 Registry registry =

 LocateRegistry.getRegistry(getRegistryHost(), getRegistryPort());

 DaytimeServer daytime =

 (DaytimeServer)registry.lookup(getRegistryName());

 return daytime.getDate().toString();
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DAYTIME SERVER 315
The first three methods are support methods. getRegistryHost() returns the
host on which the registry server should be running. This must always be the host
from which the applet was downloaded. getRegistryPort() returns the port on
which the registry server should be listening. It’s normally the default registry port
1099, though it can be overridden with the registryPort parameter.
getRegistryName() returns the name under which the servlet should have been
registered. It defaults to "DaytimeServlet", but it can be overridden with the
registryName parameter.

The actual lookup of the remote servlet object and invocation of its getDate()
method occur in these three lines of the getDateUsingRMIObject() method:

Registry registry =

 LocateRegistry.getRegistry(getRegistryHost(), getRegistryPort());

DaytimeServer daytime =

 (DaytimeServer)registry.lookup(getRegistryName());

return daytime.getDate().toString();

The first line locates the registry for the given host and the given port. The second
line uses this registry to look up the remote object registered under the given
name, in the process casting the object to a DaytimeServer object. The third line
invokes this object’s getDate() method and receives a serialized Date object in
return. Then, in the same line, it returns the String representation of that Date.

The rest of the getDateUsingRMIObject() method handles the exceptions that
could occur during these three lines. It catches a ClassCastException if the
retrieved object is not a DaytimeServer, a NotBoundException if the registry has
no object registered under the given name, and a RemoteException if there is a

 }

 catch (ClassCastException e) {

 System.out.println("Retrieved object was not a DaytimeServer: " +

 e.getMessage());

 }

 catch (NotBoundException e) {

 System.out.println(getRegistryName() + " not bound: " + e.getMessage());

 }

 catch (RemoteException e) {

 System.out.println("Hit remote exception: " + e.getMessage());

 }

 catch (Exception e) {

 System.out.println("Problem getting DaytimeServer reference: " +

 e.getClass().getName() + ": " + e.getMessage());

 }

 return null;

}

Example 10-14. The DaytimeApplet getting the time using RMI (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

316 CHAPTER 10: APPLET-SERVLET COMMUNICATION
network service failure. It also catches a general Exception, in case there’s some
other problem.

You may be wondering why DaytimeApplet uses Registry.lookup(String)
instead of java.rmi.Naming.lookup(String) to retrieve its reference to the
remote servlet. There’s really no reason—it’s simply a matter of personal taste. It
would work just as well to replace the first two lines in getDateUsingRMIOb-
ject() with the following code:

DaytimeServer daytime =

 (DaytimeServer)Naming.lookup("rmi://" + getRegistryHost() +

 ":" + getRegistryPort() +

 "/" + getRegistryName());

That’s it for the fifth and final method of DaytimeApplet. Go ahead and run the
applet now. Do you see every date field nicely filled in? You shouldn’t. You should
instead see empty values for the socket communication options. If you remember,
we removed support for socket communication when we made DaytimeServlet a
remote object. Now let’s put socket communication back in.

A full-service servlet

What we need now is a single servlet that can make itself available via HTTP
communication, non-HTTP socket communication, and RMI communication. A
servlet of this sort can extend a new superclass, com.oreilly.servlet.
RemoteDaemonHttpServlet, implementing the capabilities discussed so far for
both an RemoteHttpServlet and a DaemonHttpServlet.

Here’s the code that declares this full-service servlet:

import java.io.*;

import java.net.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

import com.oreilly.servlet.RemoteDaemonHttpServlet;

public class DaytimeServlet extends RemoteDaemonHttpServlet

 implements DaytimeServer {

 public Date getDate() {

 return new Date();

 }

 // The rest is unchanged
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CHAT SERVER 317
This code is almost the same as Example 10-8. It’s basically that example rewritten
to declare that it extends RemoteDaemonHttpServlet and that it implements
DaytimeServer.

The code for the RemoteDaemonHttpServlet superclass also nearly matches the
code for RemoteHttpServlet. There are just two changes: it extends Daemon
HttpServlet instead of HttpServlet, and its destroy() method first calls
super.destroy():

package com.oreilly.servlet;

import java.io.*;

import java.net.*;

import java.rmi.*;

import java.rmi.server.*;

import java.rmi.registry.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public abstract class RemoteDaemonHttpServlet extends DaemonHttpServlet

 implements Remote {

 public void destroy() {

 super.destroy();

 unbind();

 }

 // The rest is unchanged

Now our DaytimeApplet can connect to this revised remote daemon servlet and
produce the full and complete output shown earlier in Figure 10-1.

Chat Server
The daytime server example from the last section demonstrated the nuts and bolts
of using each of the three communication techniques for applet-servlet communi-
cation. It didn’t take advantage, though, of the persistence gains when using
socket communication. Nor did it show off the simplicity of RMI communication
or the elegance of RMI callbacks (where the servlet can invoke methods of the
applet). It also didn’t provide a compelling reason for why one servlet should
support all the communication techniques—there was no state to maintain or
complicated code base to collect in one location. So, before we end our discus-
sion of applet-servlet communication, let’s look at a more sophisticated example: a
chat server, implemented as a servlet, that supports clients connecting via HTTP,
non-HTTP sockets, and RMI.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

318 CHAPTER 10: APPLET-SERVLET COMMUNICATION
We’ll build this chat server using all three communication techniques so that it
can take advantage of the best, most efficient solution for each client. For
example, when the client supports RMI, the servlet can be treated as a remote
object, and (where possible) it can treat the applet as a remote object, too. When
the client doesn’t support RMI but can support direct socket communication, the
chat server can utilize socket persistence and communicate with the client using a
non-HTTP socket protocol. And, of course, when all else fails, the chat server can
fall back to using HTTP. It would rather not fall back because HTTP, being state-
less, requires that the client poll for updates. But for many clients, HTTP is the
only choice.

The chat server is implemented as a single class with a single instantiation because
it has a large amount of associated state and a fair amount of code that would
otherwise have to be repeated. To separate it into three classes, one for each
protocol, would demand excessive interserver communication and replicate the
core chat server code three times. Implementing the chat server as a servlet
provides a simple way for one object to make itself available via all three communi-
cation techniques. By being an HTTP servlet, it has built-in HTTP support. And by
extending the RemoteDaemonHttpServlet class, it can also easily gain support for
non-HTTP socket and RMI communication.

Note that although you’ll see the code in its entirety, we won’t be fully explaining
each and every line. To do so would extend this chapter beyond a reasonable
length, assuming we aren’t there already. Therefore, we’ll explain the issues as
they concern applet-servlet communication and rely on you to examine the code
to understand all the details.

The Design
Figure 10-3 shows the chat applet in action. Notice that it uses a large TextArea
component to display the running conversation, with a small TextInput compo-
nent underneath where the user can post a new single-line message. As each
contributor composes a message, it’s sent to the chat server and distributed to the
other chat clients in various ways.

HTTP chat clients post their messages to the server using the HTTP POST
method. The applet takes the new message from the TextInput component when
the user hits Enter, URL-encodes the message, and posts it to the servlet as a
message parameter. It’s all very straightforward. What is a bit more complicated is
how an HTTP chat client manages to get the other clients’ messages. It uses the
HTTP GET method to receive each message, but it has a problem: it doesn’t know
when exactly there’s a new message to get. This is the problem with a unidirec-
tional request/response communication paradigm. The client has to either
periodically poll for updates or simulate bidirectional communication by making a
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CHAT SERVER 319
series of blocking GET requests. By that we mean the chat client initiates a GET
request that blocks until the server decides it’s time to return something. For our
example, we implement this simulated bidirectional communication.

Socket chat clients, for the sake of convenience, post their messages to the server
the same way HTTP chat clients do, with the HTTP POST method. They could
post their messages using raw socket connections, but only with a marginal gain in
efficiency that, at least in this case, doesn’t outweigh the increased complexity.
These socket clients, however, do use raw sockets to get messages from the other
clients, replacing the simulated bidirectional communication with actual bidirec-
tional communication. As each new message comes in to the servlet, it’s sent right
away from the servlet to the socket chat clients across plain-text socket
connections.

RMI chat clients perform their POSTs and their GETs using method invocations.
To post each new message, the applet simply calls the remote servlet’s
broadcastMessage(String) method. To get new messages, it has two options. It
can call the servlet’s blocking getNextMessage() method or, through the use of
callbacks, it can ask the servlet to call its own setNextMessage(String) method
every time there’s a new message broadcast. We’ve chosen to use the callback
option in our example.

Figure 10-3. The chat applet in action
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

320 CHAPTER 10: APPLET-SERVLET COMMUNICATION
In front of all these applets is a dispatch servlet. It lets the user choose the applet-
servlet communication technique (HTTP, socket, or RMI) he wants to use and,
based on his choice, generates a page that contains the appropriate applet. It’s
true that a single applet could be written to support all three techniques and auto-
select between them based on its runtime environment, but to do that here would
unnecessarily complicate our example. The dispatch servlet also tells the applet
the name of its user, but more on that later.

The Servlet
The full listings for the ChatServer interface and the ChatServlet class that
implements it are given in Example 10-15 and Example 10-16.

Example 10-15. The ChatServer interface, implemented by ChatServlet

import java.rmi.Remote;

import java.rmi.RemoteException;

public interface ChatServer extends Remote {

 public String getNextMessage() throws RemoteException;

 public void broadcastMessage(String message) throws RemoteException;

 public void addClient(ChatClient client) throws RemoteException;

 public void deleteClient(ChatClient client) throws RemoteException;

}

Example 10-16. A full-service chat server/servlet

import java.io.*;

import java.net.*;

import java.rmi.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

import com.oreilly.servlet.RemoteDaemonHttpServlet;

public class ChatServlet extends RemoteDaemonHttpServlet

 implements ChatServer {

 // source acts as the distributor of new messages

 MessageSource source = new MessageSource();

 // socketClients holds references to all the socket-connected clients

 Vector socketClients = new Vector();

 // rmiClients holds references to all the RMI clients

 Vector rmiClients = new Vector();
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CHAT SERVER 321
 // doGet() returns the next message. It blocks until there is one.

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/plain");

 PrintWriter out = res.getWriter();

 // Return the next message (blocking)

 out.println(getNextMessage());

 }

 // doPost() accepts a new message and broadcasts it to all

 // the currently listening HTTP and socket clients.

 public void doPost(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 // Accept the new message as the "message" parameter

 String message = req.getParameter("message");

 // Broadcast it to all listening clients

 if (message != null) broadcastMessage(message);

 // Set the status code to indicate there will be no response

 res.setStatus(res.SC_NO_CONTENT);

 }

 // getNextMessage() returns the next new message.

 // It blocks until there is one.

 public String getNextMessage() {

 // Create a message sink to wait for a new message from the

 // message source.

 return new MessageSink().getNextMessage(source);

 }

 // broadcastMessage() informs all currently listening clients that there

 // is a new message. Causes all calls to getNextMessage() to unblock.

 public void broadcastMessage(String message) {

 // Send the message to all the HTTP-connected clients by giving the

 // message to the message source

 source.sendMessage(message);

 // Directly send the message to all the socket-connected clients

 Enumeration enum = socketClients.elements();

 while (enum.hasMoreElements()) {

 Socket client = null;

 try {

 client = (Socket)enum.nextElement();

 PrintStream out = new PrintStream(client.getOutputStream());

 out.println(message);

 }

Example 10-16. A full-service chat server/servlet (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

322 CHAPTER 10: APPLET-SERVLET COMMUNICATION
 catch (IOException e) {

 // Problem with a client, close and remote it

 try {

 if (client != null) client.close();

 }

 catch (IOException ignored) { }

 socketClients.removeElement(client);

 }

 }

 // Directly send the message to all RMI clients

 enum = rmiClients.elements();

 while (enum.hasMoreElements()) {

 ChatClient chatClient = null;

 try {

 chatClient = (ChatClient)enum.nextElement();

 chatClient.setNextMessage(message);

 }

 catch (RemoteException e) {

 // Problem communicating with a client, remove it

 deleteClient(chatClient);

 }

 }

 }

 protected int getSocketPort() {

 // We listen on port 2428 (look at a phone to see why)

 return 2428;

 }

 public void handleClient(Socket client) {

 // We have a new socket client. Add it to our list.

 socketClients.addElement(client);

 }

 public void addClient(ChatClient client) {

 // We have a new RMI client. Add it to our list.

 rmiClients.addElement(client);

 }

 public void deleteClient(ChatClient client) {

 // Remote the specified client from our list.

 rmiClients.removeElement(client);

 }

}

// MessageSource acts as the source for new messages.

// Clients interested in receiving new messages can

Example 10-16. A full-service chat server/servlet (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CHAT SERVER 323
// observe this object.

class MessageSource extends Observable {

 public void sendMessage(String message) {

 setChanged();

 notifyObservers(message);

 }

}

// MessageSink acts as the receiver of new messages.

// It listens to the source.

class MessageSink implements Observer {

 String message = null; // set by update() and read by getNextMessage()

 // Called by the message source when it gets a new message

 synchronized public void update(Observable o, Object arg) {

 // Get the new message

 message = (String)arg;

 // Wake up our waiting thread

 notify();

 }

 // Gets the next message sent out from the message source

 synchronized public String getNextMessage(MessageSource source) {

 // Tell source we want to be told about new messages

 source.addObserver(this);

 // Wait until our update() method receives a message

 while (message == null) {

 try { wait(); } catch (Exception ignored) { }

 }

 // Tell source to stop telling us about new messages

 source.deleteObserver(this);

 // Now return the message we received

 // But first set the message instance variable to null

 // so update() and getNextMessage() can be called again.

 String messageCopy = message;

 message = null;

 return messageCopy;

 }

}

Example 10-16. A full-service chat server/servlet (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

324 CHAPTER 10: APPLET-SERVLET COMMUNICATION
The getNextMessage() and broadcastMessage(String message) methods
are most interesting portions of ChatServlet. The getNextMessage() method
returns the next new message as it comes in, blocking until there is one. To enable
this blocking, it uses the MessageSource and MessageSink classes. Without
getting too deep into the details of these two classes, we’ll just say this: the servlet
constructs a new MessageSink and asks this sink to get the next message from the
source. To accomplish this, the sink registers itself as an observer of source and
calls wait() to block. When the source receives a new message, the sink (being an
observer) is notified of the change with a call to its update() method. The sink’s
update() method saves the source’s latest message in its message variable and
then calls notify(). This causes its getNextMessage() method to unblock and
return the message.

The broadcastMessage() method tells all listening clients when there’s a new
message. It notifies HTTP clients by sending the message to the MessageSource;
other clients it notifies directly by looping through its client list. For each of its
socket-connected clients, it prints the message to the client’s socket. For each of its
RMI clients, it calls the client’s setNextMessage(String) method. This is the
callback we’ve been talking about. If, at any point, there’s a problem with a socket
or RMI client, it removes that client from its list.

The two lists, socketClients and rmiClients, are populated as the servlet hears
from clients. When a socket client connects, the servlet’s handleClient(Socket)
method is called and the new client is added to the socketClients Vector. RMI
clients have to add themselves to the list by invoking the servlet’s
addClient(ChatClient) method.

The doGet() and doPost() methods of ChatServlet are essentially thin wrap-
pers around the getNextMessage() and broadcastMessage() methods. The
doGet() wrapper is so thin you can almost see through it: doGet() sends as its
response whatever String is returned by getNextMessage(). The doPost()
wrapper is a bit less transparent. It extracts the posted message from the POST
form data’s "message" parameter, broadcasts the message by passing it to the
broadcastMessage() method, and sets its response’s status code to SC_NO_
CONTENT to indicate there is no content in the response. In a sense, making a GET
request is equivalent to calling getNextMessage(), and making a POST request is
equivalent to calling broadcastMessage().

Did you notice which socket port ChatServlet listens on? It’s 2428. Overriding
the getSocketPort() method as ChatServlet does is an easy way to set the
socket port when you don’t want to use an init parameter.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CHAT SERVER 325
The HTTP Applet
The code for our first applet, the HTTP chat applet, is shown in Example 10-17.

Example 10-17. A chat client using HTTP communication

import java.applet.*;

import java.awt.*;

import java.io.*;

import java.net.*;

import java.util.*;

import com.oreilly.servlet.HttpMessage;

public class HttpChatApplet extends Applet implements Runnable {

 TextArea text;

 Label label;

 TextField input;

 Thread thread;

 String user;

 public void init() {

 // Check if this applet was loaded directly from the filesystem.

 // If so, explain to the user that this applet needs to be loaded

 // from a server in order to communicate with that server's servlets.

 URL codebase = getCodeBase();

 if (!"http".equals(codebase.getProtocol())) {

 System.out.println();

 System.out.println("*** Whoops! ***");

 System.out.println("This applet must be loaded from a web server.");

 System.out.println("Please try again, this time fetching the HTML");

 System.out.println("file containing this servlet as");

 System.out.println("\"http://server:port/file.html\".");

 System.out.println();

 System.exit(1); // Works only from appletviewer

 // Browsers throw an exception and muddle on

 }

 // Get this user's name from an applet parameter set by the servlet

 // We could just ask the user, but this demonstrates a

 // form of servlet->applet communication.

 user = getParameter("user");

 if (user == null) user = "anonymous";

 // Set up the user interface...

 // On top, a large TextArea showing what everyone's saying.

 // Underneath, a labeled TextField to accept this user's input.

 text = new TextArea();

 text.setEditable(false);
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

326 CHAPTER 10: APPLET-SERVLET COMMUNICATION
 label = new Label("Say something: ");

 input = new TextField();

 input.setEditable(true);

 setLayout(new BorderLayout());

 Panel panel = new Panel();

 panel.setLayout(new BorderLayout());

 add("Center", text);

 add("South", panel);

 panel.add("West", label);

 panel.add("Center", input);

 }

 public void start() {

 thread = new Thread(this);

 thread.start();

 }

 String getNextMessage() {

 String nextMessage = null;

 while (nextMessage == null) {

 try {

 URL url = new URL(getCodeBase(), "/servlet/ChatServlet");

 HttpMessage msg = new HttpMessage(url);

 InputStream in = msg.sendGetMessage();

 DataInputStream data = new DataInputStream(

 new BufferedInputStream(in));

 nextMessage = data.readLine();

 }

 catch (SocketException e) {

 // Can't connect to host, report it and wait before trying again

 System.out.println("Can't connect to host: " + e.getMessage());

 try { Thread.sleep(5000); } catch (InterruptedException ignored) { }

 }

 catch (FileNotFoundException e) {

 // Servlet doesn't exist, report it and wait before trying again

 System.out.println("Resource not found: " + e.getMessage());

 try { Thread.sleep(5000); } catch (InterruptedException ignored) { }

 }

 catch (Exception e) {

 // Some other problem, report it and wait before trying again

 System.out.println("General exception: " +

 e.getClass().getName() + ": " + e.getMessage());

 try { Thread.sleep(1000); } catch (InterruptedException ignored) { }

 }

 }

Example 10-17. A chat client using HTTP communication (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CHAT SERVER 327
 return nextMessage + "\n";

 }

 public void run() {

 while (true) {

 text.appendText(getNextMessage());

 }

 }

 public void stop() {

 thread.stop();

 thread = null;

 }

 void broadcastMessage(String message) {

 message = user + ": " + message; // Pre-pend the speaker's name

 try {

 URL url = new URL(getCodeBase(), "/servlet/ChatServlet");

 HttpMessage msg = new HttpMessage(url);

 Properties props = new Properties();

 props.put("message", message);

 msg.sendPostMessage(props);

 }

 catch (SocketException e) {

 // Can't connect to host, report it and abandon the broadcast

 System.out.println("Can't connect to host: " + e.getMessage());

 }

 catch (FileNotFoundException e) {

 // Servlet doesn't exist, report it and abandon the broadcast

 System.out.println("Resource not found: " + e.getMessage());

 }

 catch (Exception e) {

 // Some other problem, report it and abandon the broadcast

 System.out.println("General exception: " +

 e.getClass().getName() + ": " + e.getMessage());

 }

 }

 public boolean handleEvent(Event event) {

 switch (event.id) {

 case Event.ACTION_EVENT:

 if (event.target == input) {

 broadcastMessage(input.getText());

 input.setText("");

 return true;

 }

 }

 return false;

Example 10-17. A chat client using HTTP communication (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

328 CHAPTER 10: APPLET-SERVLET COMMUNICATION
This applet has the same two workhorse methods as ChatServlet:
getNextMessage() and broadcastMessage(). Its getNextMessage() method
gets the next message from the servlet. It’s called repeatedly to update the
TextArea. It operates using an HttpMessage to make a GET request to the
servlet, then interprets the first line of the response as the next new message. Its
broadcastMessage() method sends a message to the servlet for distribution to
the other clients. This method is called in the applet’s handleEvent() method
every time the user hits Enter in the TextInput component. It works similarly to
getNextMessage(). It uses an HttpMessage to perform a POST request, passing
the TextInput’s text as the "message" parameter, and it doesn’t bother to read
the response.

The Socket-Connecting Applet
The only difference between the socket-based SocketChatApplet and the HTTP-
based HttpChatApplet is a redesigned getNextMessage() method. This
method is shown in Example 10-18.

 }

}

Example 10-18. A chat client using a raw socket connection

static final int PORT = 2428;

DataInputStream serverStream;

String getNextMessage() {

 String nextMessage = null;

 while (nextMessage == null) {

 try {

 // Connect to the server if we haven't before

 if (serverStream == null) {

 Socket s = new Socket(getCodeBase().getHost(), PORT);

 serverStream = new DataInputStream(

 new BufferedInputStream(

 s.getInputStream()));

 }

 // Read a line

 nextMessage = serverStream.readLine();

 }

 catch (SocketException e) {

 // Can't connect to host, report it and wait before trying again

 System.out.println("Can't connect to host: " + e.getMessage());

 serverStream = null;

 try { Thread.sleep(5000); } catch (InterruptedException ignored) { }

 }

Example 10-17. A chat client using HTTP communication (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CHAT SERVER 329
This method reads broadcast messages from a socket that’s connected to the chat
servlet. It uses a simple socket protocol: all content is plain text, one message per
line. The first time this method is called, it establishes the socket connection and
then uses the connection to get a DataInputStream, where it can read from the
socket one line at a time. It reads the first line from this stream and returns the
text as the next message. For each subsequent invocation, it reuses the same
stream and simply returns the next line it reads. If there’s ever a
SocketException, it reestablishes the connection.

The RMI Applet
The code for the ChatClient interface is shown in Example 10-19; the RMI-based
chat applet that implements it is shown in Example 10-20.

 catch (Exception e) {

 // Some other problem, report it and wait before trying again

 System.out.println("General exception: " +

 e.getClass().getName() + ": " + e.getMessage());

 try { Thread.sleep(1000); } catch (InterruptedException ignored) { }

 }

 }

 return nextMessage + "\n";

}

Example 10-19. The ChatClient interface, implemented by RMIChatApplet

import java.rmi.Remote;

import java.rmi.RemoteException;

public interface ChatClient extends Remote {

 public void setNextMessage(String message) throws RemoteException;

}

Example 10-20. A chat client using RMI communication

import java.applet.*;

import java.awt.*;

import java.io.*;

import java.net.*;

import java.rmi.*;

import java.rmi.registry.*;

import java.rmi.server.*;

import java.util.*;

public class RMIChatApplet extends Applet implements ChatClient {

 TextArea text;

Example 10-18. A chat client using a raw socket connection (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

330 CHAPTER 10: APPLET-SERVLET COMMUNICATION
 Label label;

 TextField input;

 Thread thread;

 String user;

 ChatServer chatServer;

 private int getRegistryPort() {

 try { return Integer.parseInt(getParameter("port")); }

 catch (NumberFormatException ignored) { return Registry.REGISTRY_PORT; }

 }

 private String getRegistryName() {

 String name = getParameter("name");

 return (name == null ? "ChatServlet" : name);

 }

 // Returns a reference to the remote chat server/servlet

 // Tries to exit if there's a problem.

 private ChatServer getChatServer() {

 try {

 Registry registry =

 LocateRegistry.getRegistry(getCodeBase().getHost(), getRegistryPort());

 Object obj = registry.lookup(getRegistryName());

 return (ChatServer)obj;

 }

 catch (java.rmi.UnknownHostException e) {

 // Don't know the registry host, try to exit

 System.out.println("Host unknown in url: " + e.getMessage());

 System.exit(1);

 }

 catch (NotBoundException e) {

 // Can't find our object, try to exit

 System.out.println("Name not bound: " + e.getMessage());

 System.exit(1);

 }

 catch (ClassCastException e) {

 // The object wasn't a ChatServer, try to exit

 System.out.println(getRegistryName() + " was not a ChatServer:" +

 e.getMessage());

 System.exit(1);

 }

 catch (RemoteException e) {

 // General RMI problem, try to exit

 System.out.println("Remote exception: " + e.getMessage());

 System.exit(1);

 }

 catch (Exception e) {

Example 10-20. A chat client using RMI communication (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CHAT SERVER 331
 // Some other problem, try to exit

 System.out.println("General exception: " +

 e.getClass().getName() + ": " + e.getMessage());

 System.exit(1);

 }

 return null; // return null if the exit() doesn't work

 }

 // Add ourselves as a client of the chat server

 // Notice there's no need for an RMI registry

 private void registerWithChatServer(ChatServer server) {

 try {

 UnicastRemoteObject.exportObject(this);

 server.addClient(this);

 }

 catch (RemoteException e) {

 // General RMI problem, try to exit

 System.out.println("Remote exception: " + e.getMessage());

 System.exit(1);

 }

 catch (Exception e) {

 // Some other problem, try to exit

 System.out.println("General exception: " +

 e.getClass().getName() + ": " + e.getMessage());

 System.exit(1);

 }

 }

 public void init() {

 // Check if this applet was loaded directly from the filesystem.

 // If so, explain to the user that this applet needs to be loaded

 // from a server in order to communicate with that server's servlets.

 URL codebase = getCodeBase();

 if (!"http".equals(codebase.getProtocol())) {

 System.out.println();

 System.out.println("*** Whoops! ***");

 System.out.println("This applet must be loaded from a web server.");

 System.out.println("Please try again, this time fetching the HTML");

 System.out.println("file containing this servlet as");

 System.out.println("\"http://server:port/file.html\".");

 System.out.println();

 System.exit(1); // Works only from appletviewer

 // Browsers throw an exception and muddle on

 }

 // Get the remote chat server

 chatServer = getChatServer();

Example 10-20. A chat client using RMI communication (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

332 CHAPTER 10: APPLET-SERVLET COMMUNICATION
 // Register ourselves as one of its clients

 registerWithChatServer(chatServer);

 // Get this user's name from an applet parameter set by the dispatch servlet

 // We could just ask the user, but this demonstrates a

 // form of servlet->applet communication.

 user = getParameter("user");

 if (user == null) user = "anonymous";

 // Set up the user interface...

 // On top, a large TextArea showing what everyone's saying.

 // Underneath, a labeled TextField to accept this user's input.

 text = new TextArea();

 text.setEditable(false);

 label = new Label("Say something: ");

 input = new TextField();

 input.setEditable(true);

 setLayout(new BorderLayout());

 Panel panel = new Panel();

 panel.setLayout(new BorderLayout());

 add("Center", text);

 add("South", panel);

 panel.add("West", label);

 panel.add("Center", input);

 }

 String getNextMessage() {

 String nextMessage = null;

 while (nextMessage == null) {

 try {

 nextMessage = chatServer.getNextMessage();

 }

 catch (RemoteException e) {

 // Remote exception, report and wait before trying again

 System.out.println("Remote Exception:" + e.getMessage());

 try { Thread.sleep(1000); } catch (InterruptedException ignored) { }

 }

 }

 return nextMessage + "\n";

 }

 public void setNextMessage(String message) {

 text.appendText(message + "\n");

 }

Example 10-20. A chat client using RMI communication (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CHAT SERVER 333
This applet’s getNextMessage() and broadcastMessage() implementations are
as simple as any we’ve seen. They need only call the remote servlet’s methods of
the same name. But their simplicity comes with a cost: more complicated set-up
code. Specifically, the init() method now has to call the lengthy (but by now
understandable) getChatServer() method to obtain a reference to the remote
chat servlet.

If you look closely at RMIChatApplet, you’ll notice that it doesn’t actually use its
getNextMessage() method. Instead, it asks the servlet to call its
setNextMessage() method each time there’s a new message being broadcast. It
makes this request in its init() method when it calls registerWithChatSer-
ver(ChatServer). This method exports the applet as a remote object, then
invokes the servlet’s addClient() method passing a reference to itself. After this,
the servlet’s broadcastMessage() method sends a callback to the applet each
time there’s a new message.

 void broadcastMessage(String message) {

 message = user + ": " + message; // Pre-pend the speaker's name

 try {

 chatServer.broadcastMessage(message);

 }

 catch (RemoteException e) {

 // Remote exception, report it and abandon the broadcast

 System.out.println("Remote exception: " + e.getMessage());

 }

 catch (Exception e) {

 // Some other exception, report it and abandon the broadcast

 System.out.println("General exception: " +

 e.getClass().getName() + ": " + e.getMessage());

 }

 }

 public boolean handleEvent(Event event) {

 switch (event.id) {

 case Event.ACTION_EVENT:

 if (event.target == input) {

 broadcastMessage(input.getText());

 input.setText("");

 return true;

 }

 }

 return false;

 }

}

Example 10-20. A chat client using RMI communication (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

334 CHAPTER 10: APPLET-SERVLET COMMUNICATION
If you try using callbacks on your own, don’t forget the basics we covered earlier.
You need to run the rmic RMI compiler on your remote applet to generate its stub
and skeleton classes. And you need to be sure your server has the RMIChatApplet_
Stub.class and ChatClient.class files somewhere in its classpath.

The Dispatcher
Now, for this chapter’s last code example, the ChatDispatch servlet is shown in
Example 10-21. This servlet performs two duties. First, when this servlet is accessed
without any request parameters, it prints a friendly welcome page asking the user
which applet version he is interested in using, as shown in Figure 10-4. Second,
when it’s accessed with a request parameter, it prints a page that contains the
appropriate applet, as you saw in Figure 10-3. Be aware that the URL used to
access this dispatch servlet should contain the server’s true name, not localhost, so
as to avoid RMI security problems.

Example 10-21. The front door dispatch servlet

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class ChatDispatch extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws IOException, ServletException {

 res.setContentType("text/html");

 if (!req.getParameterNames().hasMoreElements()) {

 // There were no request parameters. Print a welcome page.

 printWelcomePage(req, res);

 }

 else {

 // There was at least one request parameter.

 // Print a page containing the applet.

 printAppletPage(req, res);

 }

 }

 // The welcome page greets the reader and has a form where the user

 // can choose an applet-servlet communication method.

 private void printWelcomePage(HttpServletRequest req,

 HttpServletResponse res)

 throws IOException {

 PrintWriter out = res.getWriter();

 String me = req.getServletPath();

 out.println("<HTML>");
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CHAT SERVER 335
 out.println("<HEAD><TITLE>");

 out.println("Welcome to an Absurdly Simple Chat");

 out.println("</TITLE></HEAD>");

 out.println();

 out.println("<BODY>");

 out.println("<H1>Welcome to an Absurdly Simple Chat</H1>");

 out.println();

 out.println("Would you like to communicate via:");

 out.println("");

 out.println(" http");

 out.println(" socket");

 out.println(" rmi");

 out.println("");

 out.println("</BODY></HTML>");

 }

 // The applet page displays the chat applet.

 private void printAppletPage(HttpServletRequest req,

 HttpServletResponse res)

 throws IOException {

 PrintWriter out = res.getWriter();

 out.println("<HTML>");

 out.println("<HEAD><TITLE>An Absurdly Simple Chat</TITLE></HEAD>");

 out.println("<BODY>");

 out.println("<H1>An Absurdly Simple Chat</H1>");

 String method = req.getParameter("method");

 String user = req.getRemoteUser();

 String applet = null;

 if ("http".equals(method)) {

 applet = "HttpChatApplet";

 }

 else if ("socket".equals(method)) {

 applet = "SocketChatApplet";

 }

 else if ("rmi".equals(method)) {

 applet = "RMIChatApplet";

 }

 else {

 // No method given, or an invalid method given.

 // Explain to the user what we expect.

 out.println("Sorry, this servlet requires a <TT>method</TT> " +

 "parameter with one of these values: " +

 "http, socket, rmi");

 return;

 }

Example 10-21. The front door dispatch servlet (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

336 CHAPTER 10: APPLET-SERVLET COMMUNICATION
Nothing here should surprise you. In fact, we expect this code to appear refresh-
ingly simple after the ChatServlet example. Still, this example does demonstrate
one last form of applet-servlet communication: servlet-generated applet parame-
ters. Using this technique, a servlet generates a page that contains an applet and
passes information to the applet by manipulating the applet’s <PARAM> tags. Any
information the servlet wants to send to a new applet can be sent this way. In this
example, the servlet sends the name returned by req.getRemoteUser(). In
another example, a servlet could tell the applet its browser type by sending it the
string returned by req.getHeader("User-Agent"). Or, to be more helpful, the
servlet could use a database to determine the capabilities of the browser and tell
the applet exactly what it needs to know. It could even tell the applet whether the
browser supports RMI communication.

 // Print the HTML code to generate the applet.

 // Choose the applet code based on the method parameter.

 // Provide a user parameter if we know the remote user.

 out.println("<APPLET CODE=" + applet + " CODEBASE=/ " +

 "WIDTH=500 HEIGHT=170>");

 if (user != null)

 out.println("<PARAM NAME=user VALUE=\"" + user + "\">");

 out.println("</APPLET>");

 out.println("</BODY></HTML>");

 }

}

Figure 10-4. The chat dispatch welcome page

Example 10-21. The front door dispatch servlet (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

:

Chapter 11

In this chapter:
• Servlet Manipulation
• Servlet Reuse
• Servlet Collaboration
• Recap

Servlets running together in
with each other. There are th

Direct servlet manipulation
A servlet can gain access
some task on each. The
servlet to write its state to

Servlet reuse
Java™
Copyright © 2
11

11.Interservlet
Communication 11
the same server have several ways to communicate
ree major reasons to use interservlet communication:

to the other currently loaded servlets and perform
servlet could, for example, periodically ask every

 disk to protect against server crashes.

One servlet can use another’s abilities to perform a task. Think back to the
ChatServlet from the previous chapter. It was written as a server for chat
applets, but it could be reused (unchanged) by another servlet that needed to
support an HTML-based chat interface.

Servlet collaboration
The most common, situation involves two or more servlets sharing state infor-
mation. For example, a set of servlets managing an online store could share
the store’s product inventory count. Session tracking (see Chapter 7, Session
Tracking) is a special case of servlet collaboration.

This chapter discusses why interservlet communication is useful and how it can be
accomplished.

Servlet Manipulation
Direct servlet manipulation involves one servlet accessing the loaded servlets on its
server and optionally performing some task on one or more of them. A servlet
obtains information about other servlets through the ServletContext object.
Use getServlet() to get a particular servlet:

public Servlet ServletContext.getServlet(String name) throws ServletException
337
 Servlet Programming, eMatter Edition

000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

338 CHAPTER 11: INTERSERVLET COMMUNICATION
This method returns the servlet of the given name, or null if the servlet is not
found. The specified name can be the servlet’s registered name (such as "file")
or its class name (such as "com.sun.server.webserver.FileServlet"). The
server maintains one servlet instance per name, so getServlet("file") returns
a different servlet instance than getServlet("com.sun.server.webserver .
FileServlet").* If the servlet implements SingleThreadModel, the server may
return any instance of the servlet from the current pool. The server may—but isn’t
required to—load the named servlet and execute its init() method if it isn’t
already loaded. The Java Web Server does not perform this load. A Servlet
Exception is thrown if there is a problem during the load.

You can also get all of the servlets using getServlets():

public Enumeration ServletContext.getServlets()

This method returns an Enumeration of the Servlet objects loaded in the
current ServletContext. Generally there’s one servlet context per server, but for
security or convenience, a server may decide to partition its servlets into separate
contexts. The enumeration always includes the calling servlet itself. This method is
deprecated in the Servlet API 2.0 in favor of getServletNames():

public Enumeration ServletContext.getServletNames()

This method returns an Enumeration of the names of the servlet objects loaded
in the current ServletContext. The enumeration always includes the calling
servlet itself. When used with getServlet(), this method can perform the same
function as the deprecated getServlets(). The name returned can be a regis-
tered name (such as "file") or a class name (such as "com.sun.server .
webserver.FileServlet"). This method was introduced in Version 2.0 of the
Servlet API.

Casting the Servlet object returned by getServlet() or getServlets() to its
specific subclass can, in some situations, throw a ClassCastException. For
example, the following code sometimes works as expected and sometimes throws
an exception:

MyServlet servlet = (MyServlet)getServletContext().getServlet("MyServlet");

The reason has to do with how a servlet can be automatically reloaded when its
class file changes. As we explained in Chapter 3, The Servlet Life Cycle, a server uses
a new ClassLoader each time it reloads a servlet. This has the interesting side
effect that, when the MyServlet class is reloaded, it is actually a different version
of MyServlet than the version used by other classes. Thus, although the returned

* getServlet("file") returns the instance that handles /servlet/file, while getServlet("com.sun.
server.webserver.FileServlet") returns the instance that handles /servlet/com.sun.server.webserv-
er. FileServlet.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SERVLET MANIPULATION 339
class type is MyServlet and it’s being cast to the type MyServlet, the cast is
between different types (from two different class loaders) and the cast has to throw
a ClassCastException. The same type mismatch can occur if the class
performing the cast (that is, the servlet containing the above code) is reloaded.
Why? Because its new ClassLoader won’t find MyServlet using the primordial
class loader and will load its own copy of MyServlet.

There are three possible workarounds. First, avoid casting the returned Servlet
object and invoke its methods using reflection (a technique whereby a Java class
can inspect and manipulate itself at runtime). Second, make sure that the servlet
being cast is never reloaded. You can do this by moving the servlet out of the
default servlet directory (usually server_root/servlets) and into the server’s stan-
dard classpath (usually server_root/classes). The servlet performing the cast can
remain in the servlets directory because its ClassLoader can find MyServlet using
the primordial class loader. Third, cast the returned servlet to an interface that
declares the pertinent methods and place the interface in the server’s standard
classpath where it won’t be reloaded. Every class but the interface can remain in
the servlets directory. Of course, in this case, the servlet must be changed to declare
that it implements the interface.

Viewing the Currently Loaded Servlets
Example 11-1 uses these methods to display information about the currently
loaded servlets, as shown in Figure 11-1.

Example 11-1. Checking out the currently loaded servlets

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class Loaded extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/plain");

 PrintWriter out = res.getWriter();

 ServletContext context = getServletContext();

 Enumeration names = context.getServletNames();

 while (names.hasMoreElements()) {

 String name = (String)names.nextElement();

 Servlet servlet = context.getServlet(name);

 out.println("Servlet name: " + name);

 out.println("Servlet class: " + servlet.getClass().getName());
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

340 CHAPTER 11: INTERSERVLET COMMUNICATION
There’s nothing too surprising in this servlet. It retrieves its ServletContext to
access the other servlets loaded in the server. Then it calls the context’s
getServletNames() method. This returns an Enumeration of String objects
that the servlet iterates over in a while loop. For each name, it retrieves the corre-
sponding Servlet object with a call to the context’s getServlet() method.
Then it prints three items of information about the servlet: its name, its class
name, and its getServletInfo() text. Notice that if the Loaded servlet used the
deprecated getServlets() method instead of getServletNames(), it would not
have had access to the servlets’ names.

Saving the State of the Currently Loaded Servlets
The next example demonstrates another use for these methods. It works like
Loaded, except that it attempts to call each servlets’ saveState() method, if it
exists. This servlet could be run periodically (or be modified to spawn a thread

 out.println("Servlet info: " + servlet.getServletInfo());

 out.println();

 }

 }

}

Figure 11-1. Output from the loaded servlet

Example 11-1. Checking out the currently loaded servlets (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SERVLET MANIPULATION 341
that runs periodically) to guard against data loss in the event of a server crash. The
code is in Example 11-2; the output is in Figure 11-2.

Example 11-2. Saving the state of all the currently loaded servlets

import java.io.*;

import java.lang.reflect.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class SaveState extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/plain");

 PrintWriter out = res.getWriter();

 ServletContext context = getServletContext();

 Enumeration names = context.getServletNames();

 while (names.hasMoreElements()) {

 String name = (String)names.nextElement();

 Servlet servlet = context.getServlet(name);

 out.println("Trying to save the state of " + name + "...");

 out.flush();

 try {

 Method save = servlet.getClass().getMethod("saveState", null);

 save.invoke(servlet, null);

 out.println("Saved!");

 }

 catch (NoSuchMethodException e) {

 out.println("Not saved. This servlet has no saveState() method.");

 }

 catch (SecurityException e) {

 out.println("Not saved. SecurityException: " + e.getMessage());

 }

 catch (InvocationTargetException e) {

 out.print("Not saved. The saveState() method threw an exception: ");

 Throwable t = e.getTargetException();

 out.println(t.getClass().getName() + ": " + t.getMessage());

 }

 catch (Exception e) {

 out.println("Not saved. " + e.getClass().getName() + ": " +

 e.getMessage());

 }

 out.println();

 }
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

342 CHAPTER 11: INTERSERVLET COMMUNICATION
SaveState uses reflection to determine if a servlet has a public saveState()
method and to invoke the method when it exists. If the invocation goes without a
hitch, it prints “Saved!”. If there’s a problem, it reports the problem. Why does
SaveState use reflection? Because otherwise it would have to cast each Servlet
object to some class or interface that includes a saveState() method, and the
code for each servlet would have to be modified to extend or implement that class
or interface. Using reflection is an easier approach that doesn’t require code
modification. Reflection also avoids the ClassCastException problem noted
earlier.

Servlet Reuse
Another use for interservlet communication is to allow one servlet to reuse the
abilities (the public methods) of another servlet. The major challenge with servlet
reuse is for the “user” servlet to obtain the proper instance of “usee” servlet when
the usee servlet has not yet been loaded into the server.

The obvious solutions don’t always work. getServlet() isn’t guaranteed to load
the named servlet on all servers; it may just return null. Directly creating a new

 }

 public String getServletInfo() {

 return "Calls the saveState() method (if it exists) for all the " +

 "currently loaded servlets";

 }

}

Figure 11-2. Output from the SaveState servlet

Example 11-2. Saving the state of all the currently loaded servlets (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SERVLET REUSE 343
instance of the usee servlet doesn’t work either, as the newly created servlet
doesn’t have access to its own ServletConfig and ServletContext objects. Plus,
the server would be using a different instance to handle client requests, leaving
the new instance of the servlet without the right state information.

The solution is for the user servlet to ask the server to load the usee servlet, then
call getServlet() to get a reference to it. Unfortunately, the Servlet API
distinctly lacks any methods whereby a servlet can control the servlet life cycle, for
itself or for other servlets. This is considered a security risk and is officially “left for
future consideration.”

Fortunately, there’s a back door we can use today. A servlet can open an HTTP
connection to the server in which it’s running, ask for the unloaded servlet, and
effectively force the server to load the servlet to handle the request. Then a call to
getServlet() gets the proper instance.*

An Improved getServlet()
The com.oreilly.servlet.ServletUtils class has an improved
getServlet() method that does just this. It returns the named servlet, loading it
first via an HTTP request if necessary. The code is shown in Example 11-3.

* Unfortunately, this technique does not work directly for servlets running within a secure web server
because a secure server accepts only encrypted HTTPS connections.

Example 11-3. The code for an improved getServlet()

// Get the named servlet. Try loading it through an HTTP request if

// necessary. Returns null if there's a problem. Only loads HTTP

// servlets, of course.

public static Servlet getServlet(String name,

 ServletRequest req,

 ServletContext context) {

 try {

 // Try getting the servlet the old-fashioned way

 Servlet servlet = context.getServlet(name);

 if (servlet != null) return servlet;

 // If getServlet() returned null, we have to load it ourselves.

 // Do this by making an HTTP GET request to the servlet.

 // Use a raw socket connection so we can set a timeout.

 Socket socket = new Socket(req.getServerName(), req.getServerPort());

 socket.setSoTimeout(4000); // wait up to 4 secs for a response

 PrintWriter out = new PrintWriter(socket.getOutputStream(), true);

 out.println("GET /servlet/" + name + " HTTP/1.0"); // the request

 out.println();

 try {
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

344 CHAPTER 11: INTERSERVLET COMMUNICATION
This getServlet() method uses a raw socket connection to perform the HTTP
GET request. This is so that it can set a time-out for how long it’s willing to wait for
a response. The URL and URLConnection classes don’t provide this ability. In this
case, the time-out is set to four seconds. If, after four seconds, the servlet hasn’t
written any response, the read() method throws an InterruptedIOException
and the method continues. This time-out is necessary only for the special case
where a servlet spends a long time preparing its response and we don’t want to
wait. It would appear this time-out could leave the loading servlet in an uninitial-
ized state, if its init() method were to take five seconds, for example. A well-
written server, however, should block in the getServlet() call until the servlet
has been fully initialized. Note that because this ServletUtils.getServlet()
method requires a ServletRequest parameter, it can be called only by methods
with access to a ServletRequest, such as doGet() and doPost().

Reusing ChatServlet
An HTML-based chat servlet built around the abilities of last chapter’s
ChatServlet is an excellent example of servlet reuse. This new servlet, called
ChatPage, wraps an HTML interface around the getNextMessage() and
broadcastMessage() methods of ChatServlet. The code is shown in
Example 11-4, while the output is shown in Figure 11-3.

 socket.getInputStream().read(); // Even one byte means its loaded

 }

 catch (InterruptedIOException e) { /* timeout: ignore, hope for the best */ }

 out.close();

 // Try getting the servlet again.

 return context.getServlet(name);

 }

 catch (Exception e) {

 // If there's any problem, return null.

 return null;

 }

}

Example 11-4. One servlet, ChatPage, reusing another servlet, ChatServlet

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

import com.oreilly.servlet.ServletUtils;

Example 11-3. The code for an improved getServlet() (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SERVLET REUSE 345
public class ChatPage extends HttpServlet implements Runnable {

 static final int MESSAGE_ARCHIVE_SIZE = 10; // save the last 10 messages

 ChatServlet chat = null; // the servlet to reuse

 String[] messages = new String[MESSAGE_ARCHIVE_SIZE]; // circular array

 int messageIndex = 0; // index into the messages array

 Thread update = null; // thread to update new messages

 // Gets new messages from the chat servlet and inserts them in

 // the messages' circular array.

 public void run() {

 while (true) {

 String message = chat.getNextMessage();

 synchronized (this) {

 messages[messageIndex] = message;

 messageIndex = (messageIndex + 1) % MESSAGE_ARCHIVE_SIZE;

 }

 }

 }

 // Prints the message archive (the 10 latest messages) and a text

 // field where the reader can input a new message.

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 // Turn off caching, so the latest messages are always displayed.

 // (Works around a Netscape problem.)

 res.setHeader("Pragma", "no-cache");

 // For our first request, "chat" is null and we need to use

 // ServletUtils.getServlet() to get the ChatServlet instance.

 // Then we need to start another thread to listen for chat's

 // new messages.

 if (chat == null) {

 chat = (ChatServlet)ServletUtils.getServlet(

 "ChatServlet", req, getServletContext());

 if (chat != null) {

 update = new Thread(this);

 update.start();

 }

 }

 // Print a pretty header.

 out.println("<HTML><HEAD>");

 out.println("<TITLE>ChatPage</TITLE>");

Example 11-4. One servlet, ChatPage, reusing another servlet, ChatServlet (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

346 CHAPTER 11: INTERSERVLET COMMUNICATION
 out.println("</HEAD><BODY>");

 out.println("<CENTER><H1>Welcome to ChatPage!</H1></CENTER>");

 // Print the message archive, oldest first.

 // Synchronized so it doesn't change while we're printing it.

 synchronized (this) {

 out.println("Recent messages:<P>");

 int i = messageIndex;

 do {

 String message = messages[i];

 if (message != null) out.println(message + "<P>");

 i = (i + 1) % MESSAGE_ARCHIVE_SIZE;

 } while (i != messageIndex);

 }

 // Print a button that gets new messages.

 out.println("<FORM METHOD=GET>");

 out.println("<INPUT TYPE=submit VALUE=\"Get New Messages\">");

 out.println("</FORM>");

 // Print a form where the reader can submit a new message.

 out.println("<HR>");

 out.println("<FORM METHOD=POST>");

 out.println("Submit a message:");

 out.println("<INPUT TYPE=text NAME=message>");

 out.println("</FORM>");

 // Print a pretty footer.

 out.println("<HR>");

 out.println("<CENTER>");

 out.println("Special thanks to ChatServlet for acting as our back-end");

 out.println("</CENTER>");

 out.println("</BODY></HTML>");

 }

 // Accepts messages for broadcast.

 public void doPost(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 // If our first request happens to be a POST, we need to set "chat"

 // and start our update thread just as we do for a GET request.

 if (chat == null) {

 chat = (ChatServlet)ServletUtils.getServlet(

 "ChatServlet", req, getServletContext());

 if (chat != null) {

 update = new Thread(this);

 update.start();

 Thread.currentThread().yield(); // let the run() method start

 }

Example 11-4. One servlet, ChatPage, reusing another servlet, ChatServlet (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SERVLET REUSE 347
The core logic for running the chat service remains in ChatServlet. ChatPage
just uses the public methods of ChatServlet to present an alternative front end
to the user. ChatPage gains access to the server’s ChatServlet instance with the
following line of code:

chat = (ChatServlet)ServletUtils.getServlet(

 "ChatServlet", req, getServletContext());

Remember that this cast can throw a ClassCastException if either
ChatServlet or ChatPage was ever reloaded. To avoid this, put the class file for
ChatServlet in the server’s classpath. This ensures that ChatServlet isn’t
reloaded. (And what if ChatPage is reloaded? That won’t be a problem as long as
ChatServlet was loaded by the primordial class loader.) Not allowing
ChatServlet to reload also guarantees that the background update thread of
ChatPage won’t find itself calling an old version of ChatServlet.

 }

 // Get the client's username. It's non-null only if ChatPage is

 // protected by client authentication.

 String user = req.getRemoteUser();

 if (user == null) user = "anonymous";

 // Get and broadcast the message.

 String message = req.getParameter("message");

 if (message != null && chat != null) {

 chat.broadcastMessage(user + ": " + message);

 Thread.currentThread().yield(); // let the message be broadcast

 }

 // Have doGet() print the updated message archive and the form.

 doGet(req, res);

 }

 // Stops the background thread.

 public void destroy() {

 if (update != null)

 update.stop();

 }

 public String getServletInfo() {

 return "An HTML chat server front end, reusing ChatServlet";

 }

}

Example 11-4. One servlet, ChatPage, reusing another servlet, ChatServlet (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

348 CHAPTER 11: INTERSERVLET COMMUNICATION
ChatPage uses the returned ChatServlet instance for its back end. It calls chat.
getNextMessage() to fill its array of recent messages and chat.
broadcastMessage() to broadcast each new message as it’s entered by the user.

As often happens with servlet reuse, not everything fits together elegantly in this
example. ChatServlet wasn’t intended to be used by another servlet,* so
ChatPage requires some extra code to work around some issues that could have
been solved with a better back-end design. Specifically, the doPost() method has
two points where the current thread yields to allow the update thread to proceed
with its work. First, doPost() calls yield() after starting the update thread. This

Figure 11-3. Another interface to ChatServlet

* Honest! The examples from this chapter were dreamed up only after Chapter 10 had been written.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SERVLET COLLABORATION 349
gives the new thread a chance to start listening for chat messages. Second,
doPost() calls yield() after broadcasting its message. This gives the update
thread a chance to receive the broadcasted message. Without these yields, the
thread calling doPost() may broadcast the message before the update thread is
able to receive the message, resulting in a response that doesn’t include the latest
message. (And even with the yields, it’s possible this could happen anyway due to
unfortunate thread scheduling.)

Servlet Collaboration
Sometimes servlets have to cooperate, usually by sharing some information. We
call communication of this sort servlet collaboration. Collaborating servlets can
pass the shared information directly from one servlet to another through method
invocations, as shown earlier. This approach requires each servlet to know the
other servlets with which it is collaborating—an unnecessary burden. There are
several better techniques.

Collaboration Through the System Properties List
One simple way for servlets to share information is by using Java’s system-wide
Properties list, found in the java.lang.System class. This Properties list
holds the standard system properties, such as java.version and path.
separator, but it can also hold application-specific properties. Servlets can use
the properties list to hold the information they need to share. A servlet can add
(or change) a property by calling:

System.getProperties().put("key", "value");

That servlet, or another servlet running in the same JVM, can later get the value of
the property by calling:

String value = System.getProperty("key");

The property can be removed by calling:

System.getProperties().remove("key");

It’s best if the key for a property includes a prefix that contains the name of the
servlet’s package and the name of the collaboration group. For example, "com.
oreilly.servlet.ShoppingCart".

The Properties class is intended to be String based, meaning that each key and
value is supposed to be a String. This limitation, though, isn’t commonly
enforced and can (although it’s quite a hack) be ignored by servlets that want to
store and retrieve non-String objects. Such servlets can take advantage of the fact
that the Properties class extends the Hashtable class, so the Properties list
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

350 CHAPTER 11: INTERSERVLET COMMUNICATION
can (quite rudely) be treated as a Hashtable when storing keys and values. For
example, a servlet can add or change a property object by calling:

System.getProperties().put(keyObject, valueObject); // hack

It can retrieve the property object by calling:

SomeObject valueObject = (SomeObject)System.getProperties().get(keyObject);

It can remove the property object by calling:

System.getProperties().remove(keyObject);

This misuse of the Properties list causes the getProperty(), list() and
save() methods of the Properties class to throw ClassCastException objects
when they naturally—but erroneously—assume each key and value to be a
String. For this reason, if there’s any chance these methods might be called, you
should instead use one of the techniques for servlet collaboration we describe later
in the chapter. Also, remember the class files for keyObject and valueObject
should be found in the server’s classpath, not in the default servlet directory where
they would be loaded, and perhaps reloaded, by the special servlet class loaders.

There are three more caveats to using the system Properties list for servlet
collaboration: the information isn’t naturally persistent between server restarts,
the information can be viewed (and modified or deleted) by other classes
executing in the servlet’s JVM, and some servlet security managers may not grant
servlets access to the system property list.

Using properties to sell burritos

Despite the stern warnings, servlet collaboration through the system-wide
Properties list works well for servlets that are sharing insensitive, noncritical,
easily replaceable information. As a fun example, imagine a set of servlets that sell
burritos and share a “special of the day.” An administrative servlet could set the
special of the day using the following code:

System.getProperties().put("com.LaCostena.special.burrito", "Pollo Adobado");

System.getProperties().put("com.LaCostena.special.day", new Date());

Thereafter, every other servlet on the server can access the special and display it
with code like this:

String burrito = System.getProperty("com.LaCostena.special.burrito");

Date day = (Date)System.getProperties().get("com.LaCostena.special.day");

DateFormat df = DateFormat.getDateInstance(DateFormat.SHORT);

String today = df.format(day);

out.println("Our burrito special today (" + today + ") is: " + burrito);
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SERVLET COLLABORATION 351
Faster image chaining

Servlets performing image effects in a servlet chain can boost their speed dramati-
cally by using the system Properties list to pass their images. In Chapter 6,
Sending Multimedia Content, we saw the standard method by which the servlets in a
chain pass images from link to link. The first servlet takes an Image object,
encodes it to a stream of bytes, and passes the bytes to the next servlet. The
receiving servlet decodes the bytes back into the original Image object. The tech-
nique works fine, but it can be prohibitively slow for large images. An alternative
solution is for the first servlet to save the Image object itself in the system-wide
Properties list, then pass on a small unique key by which the next servlet in the
chain can locate the Image. In a sense, the old approach works by shoving an
entire elephant through the small portal between servlets. The new approach
works by passing just the elephant’s leash.

Example 11-5 demonstrates exactly how a servlet passes on a key to an Image
object saved in the system Properties list.

Example 11-5. Passing an Image through the Properties list

import java.awt.*;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class ChainImageSource extends HttpServlet {

 int keynum = 0; // used to create a unique key

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 // Get an Image

 String imageFile = req.getRealPath("/system/images/serverduke.gif");

 Image image = Toolkit.getDefaultToolkit().getImage(imageFile);

 // Create a unique key under which to store the image

 String key = "com.oreilly.servlet.ChainImageSource." + keynum++;

 // Store the image in the system Properties list using that key

 System.getProperties().put(key, image);

 // Tell the next servlet to expect an image key

 res.setContentType("java-internal/image-key");

 PrintWriter out = res.getWriter();

 // Send the key

 out.println(key);
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

352 CHAPTER 11: INTERSERVLET COMMUNICATION
Notice how the servlet generates its unique key. It prefixes the key with the string
"com.oreilly.servlet.ChainImageSource", something no other servlet is
likely to use. Then it appends a different integer value for each image. Also notice
how this servlet uses the custom content type "java-internal/image-key" to
indicate that it’s passing on an image key.

Example 11-6 shows the other half of this servlet chain—a servlet that uses the key
to fetch the original Image object.

 }

}

Example 11-6. Fetching an image passed through the Properties list

import java.awt.*;

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class ChainImageSink extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 // See what content type we're receiving

 String contentType = req.getContentType();

 Image image = null;

 // An "image/*" content type means to expect the image as an encoded

 // byte stream

 if (contentType != null && contentType.startsWith("image")) {

 // Receive the image bytes as shown in Chapter 6

 }

 // A "java-internal/image-key" content type means to expect a key

 else if ("java-internal/image-key".equals(contentType)) {

 // Read the first line of content to get the key

 String key = req.getReader().readLine();

 // Retrieve the Image stored under that key

 image = (Image)System.getProperties().get(key);

 // Always remove the Image, to avoid a memory leak

 System.getProperties().remove(key);

 }

 // Other content types cannot be handled

Example 11-5. Passing an Image through the Properties list (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SERVLET COLLABORATION 353
The most important thing to notice with this example is that the receiving servlet
bears the responsibility of removing the Image from the system Properties list to
avoid a potentially large memory leak.

This leash-passing technique works only when the source servlet can be absolutely
sure its key is being sent to another servlet, not to a dumbfounded user who
expected an image. This can be ensured if every chain has as its final servlet a
special servlet whose sole purpose is to accept an image key and emit that Image’s
encoded byte stream.

Collaboration Through a Shared Object
Another way for servlets to share information is through a shared object. A shared
object can hold the pool of shared information and make it available to each
servlet as needed. In a sense, the system Properties list is a special case example
of a shared object. By generalizing the technique into sharing any sort of object,
however, a servlet is able to use whatever shared object best solves its particular
problem.

Often the shared object incorporates a fair amount of business logic or rules for
manipulating the object’s data. This business logic protects the shared object’s
actual data by making it available only through well-defined methods. It can
enforce data integrity, trigger events to handle certain conditions, and basically
abstract lots of little data manipulations into a single method invocation. This
capability isn’t available with the Properties list.

There’s one thing to watch out for when collaborating through a shared object:
the garbage collector. It can reclaim the shared object if at any time the object
isn’t referenced by a loaded servlet. To keep the garbage collector at bay, it’s wise
for every servlet using a shared object to save a reference to the object.

 else {

 throw new ServletException("Incoming content type must be " +

 "\"image/*\" or \"java-internal/image-key\"");

 }

 // Proceed to use the image as appropriate...

 res.setContentType("text/plain");

 PrintWriter out = res.getWriter();

 out.println("Received the image: " + image);

 }

}

Example 11-6. Fetching an image passed through the Properties list (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

354 CHAPTER 11: INTERSERVLET COMMUNICATION
Using a shared class to sell burritos

For an example of servlet collaboration through a shared object, let’s look at how
several servlets selling burritos can maintain a shared inventory of burrito ingredi-
ents. First, we need a shared burrito inventory class. This class is responsible for
maintaining the ingredient count and making the count available through its
public methods. An example burrito inventory class is shown in Example 11-7.
You’ll notice that this class is a singleton (a class that has just one instance). This
makes it easy for every servlet sharing the class to maintain a reference to the same
instance.

Example 11-7. A shared burrito inventory class

public class BurritoInventory {

 // Protect the constructor, so no other class can call it

 private BurritoInventory() { }

 // Create the only instance, save it to a private static variable

 private static BurritoInventory instance = new BurritoInventory();

 // Make the static instance publicly available

 public static BurritoInventory getInstance() { return instance; }

 // How many "servings" of each item do we have?

 private int cheese = 0;

 private int rice = 0;

 private int beans = 0;

 private int chicken = 0;

 // Add to the inventory

 public void addCheese(int added) { cheese += added; }

 public void addRice(int added) { rice += added; }

 public void addBeans(int added) { beans += added; }

 public void addChicken(int added) { chicken += added; }

 // Called when it's time to make a burrito.

 // Returns true if there are enough ingredients to make the burrito,

 // false if not. Decrements the ingredient count when there are enough.

 synchronized public boolean makeBurrito() {

 // Burritos require one serving of each item

 if (cheese > 0 && rice > 0 && beans > 0 && chicken > 0) {

 cheese--; rice--; beans--; chicken--;

 return true; // can make the burrito

 }

 else {

 // Could order more ingredients

 return false; // cannot make the burrito

 }
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SERVLET COLLABORATION 355
BurritoInventory maintains an inventory count for four burrito ingredients:
cheese, rice, beans, and chicken. It holds the counts with private instance vari-
ables. For serious production use, information like these counts should probably
be kept in an external database. Each ingredient’s inventory count can be
increased through the addCheese(), addRice(), addBeans(), and
addChicken() methods. These methods might be called from a servlet accessed
by the ingredient preparers throughout the day. All the counts are decreased
together in the makeBurrito() method. This method checks that there are
enough ingredients to make a full burrito. If there are, it decrements the ingre-
dient count and returns true. If there aren’t, it returns false (and, in an
improved version, may choose to order more ingredients). The makeBurrito()
method might be called by a servlet selling burritos over the Web, and perhaps
also by a servlet communicating with the check-out cash register. Remember, the
class file for BurritoInventory should be placed somewhere in the server’s class-
path (such as in server_root/classes), just like all the other non-servlet class files.

Example 11-8 shows how a servlet adds ingredients to the inventory.

 }

}

Example 11-8. Adding ingredients to the shared inventory

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class BurritoInventoryProducer extends HttpServlet {

 // Get (and keep!) a reference to the shared BurritoInventory instance

 BurritoInventory inventory = BurritoInventory.getInstance();

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 out.println("<HTML>");

 out.println("<HEAD><TITLE>Burrito Inventory Producer</TITLE></HEAD>");

 // Produce random amounts of each item

 Random random = new Random();

 int cheese = Math.abs(random.nextInt() % 10);

 int rice = Math.abs(random.nextInt() % 10);

Example 11-7. A shared burrito inventory class (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

356 CHAPTER 11: INTERSERVLET COMMUNICATION
Every time this servlet is accessed, it produces a random amount of each ingre-
dient (somewhere from zero to nine servings) and adds it to the inventory. Then
this servlet prints the results of its work, as you can see in Figure 11-4.

The most important thing to note about this servlet is that it always keeps its refer-
ence to the shared BurritoInventory instance, preventing the garbage collector
from reclaiming the instance as long as this servlet is loaded.

 int beans = Math.abs(random.nextInt() % 10);

 int chicken = Math.abs(random.nextInt() % 10);

 // Add the items to the inventory

 inventory.addCheese(cheese);

 inventory.addRice(rice);

 inventory.addBeans(beans);

 inventory.addChicken(chicken);

 // Print the production results

 out.println("<BODY>");

 out.println("<H1>Added ingredients:</H1>");

 out.println("<PRE>");

 out.println("cheese: " + cheese);

 out.println("rice: " + rice);

 out.println("beans: " + beans);

 out.println("chicken: " + chicken);

 out.println("</PRE>");

 out.println("</BODY></HTML>");

 }

}

Figure 11-4. The output from BurritoInventoryProducer

Example 11-8. Adding ingredients to the shared inventory (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SERVLET COLLABORATION 357
Example 11-9 shows how a servlet can consume the ingredients from the
inventory.

This servlet calls the makeBurrito() method, telling the inventory it wants to
make a burrito. This servlet doesn’t have to (and, in fact, isn’t allowed to) decre-
ment the counts itself. This servlet saves its own reference to the
BurritoInventory instance, making sure that even if BurritoInventory-
Producer is unloaded, the BurritoInventory instance is still referenced and
therefore protected from the garbage collector.

Using a servlet as the shared object

We should mention that it’s possible for a servlet to act as the shared object. Using
a shared servlet has the added advantage that the servlet can maintain its state
using its init() and destroy() methods to load and save its state. Plus, a shared

Example 11-9. Consuming ingredients from the shared inventory

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class BurritoInventoryConsumer extends HttpServlet {

 // Get (and keep!) a reference to the shared BurritoInventory instance

 private BurritoInventory inventory = BurritoInventory.getInstance();

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 out.println("<HTML>");

 out.println("<HEAD><TITLE>Burrito Inventory Consumer</TITLE></HEAD>");

 out.println("<BODY><BIG>");

 if (inventory.makeBurrito()) {

 out.println("Your burrito will be ready in a few minutes.");

 }

 else {

 out.println("We're low on ingredients.
");

 out.println("Looks like you're gonna starve.");

 }

 out.println("</BIG></BODY></HTML>");

 }

}

Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

358 CHAPTER 11: INTERSERVLET COMMUNICATION
servlet can print its current state each time it’s accessed. Example 11-10 shows the
BurritoInventory class rewritten to be a servlet.

Example 11-10. The shared burrito inventory class, rewriten as a servlet

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class BurritoInventoryServlet extends HttpServlet {

 // How many "servings" of each item do we have?

 private int cheese = 0;

 private int rice = 0;

 private int beans = 0;

 private int chicken = 0;

 // Add to the inventory as more servings are prepared.

 public void addCheese(int added) { cheese += added; }

 public void addRice(int added) { rice += added; }

 public void addBeans(int added) { beans += added; }

 public void addChicken(int added) { chicken += added; }

 // Called when it's time to make a burrito.

 // Returns true if there are enough ingredients to make the burrito,

 // false if not. Decrements the ingredient count when there are enough.

 synchronized public boolean makeBurrito() {

 // Burritos require one serving of each item

 if (cheese > 0 && rice > 0 && beans > 0 && chicken > 0) {

 cheese--; rice--; beans--; chicken--;

 return true; // can make the burrito

 }

 else {

 // Could order more ingredients

 return false; // cannot make the burrito

 }

 }

 // Display the current inventory count.

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 out.println("<HTML><HEAD><TITLE>Current Ingredients</TITLE></HEAD>");

 out.println("<BODY>");

 out.println("<TABLE BORDER=1>");

 out.println("<TR><TH COLSPAN=2>Current ingredients:</TH></TR>");

 out.println("<TR><TD>Cheese:</TD><TD>" + cheese + "</TD></TR>");
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SERVLET COLLABORATION 359
 out.println("<TR><TD>Rice:</TD><TD>" + rice + "</TD></TR>");

 out.println("<TR><TD>Beans:</TD><TD>" + beans + "</TD></TR>");

 out.println("<TR><TD>Chicken:</TD><TD>" + chicken + "</TD></TR>");

 out.println("</TABLE>");

 out.println("</BODY></HTML>");

 }

 // Load the stored inventory count

 public void init(ServletConfig config) throws ServletException {

 super.init(config);

 loadState();

 }

 public void loadState() {

 // Try to load the counts

 FileInputStream file = null;

 try {

 file = new FileInputStream("BurritoInventoryServlet.state");

 DataInputStream in = new DataInputStream(file);

 cheese = in.readInt();

 rice = in.readInt();

 beans = in.readInt();

 chicken = in.readInt();

 file.close();

 return;

 }

 catch (IOException ignored) {

 // Problem during read

 }

 finally {

 try { if (file != null) file.close(); }

 catch (IOException ignored) { }

 }

 }

 public void destroy() {

 saveState();

 }

 public void saveState() {

 // Try to save the counts

 FileOutputStream file = null;

 try {

 file = new FileOutputStream("BurritoInventoryServlet.state");

 DataOutputStream out = new DataOutputStream(file);

 out.writeInt(cheese);

 out.writeInt(rice);

 out.writeInt(beans);

Example 11-10. The shared burrito inventory class, rewriten as a servlet (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

360 CHAPTER 11: INTERSERVLET COMMUNICATION
BurritoInventoryServlet is no longer a singleton: it’s now a normal HTTP
servlet. It defines an init() method that loads its state and a destroy() method
that saves its state. It also defines a doGet() method that displays its state, as
shown in Figure 11-5.

Remember that, even as a servlet, the BurritoInventoryServlet.class file should remain
in the server’s standard classpath to keep it from being reloaded.

The BurritoInventoryProducer and BurritoInventoryConsumer classes can
get a reference to the BurritoInventoryServlet using the technique discussed
earlier in this chapter for servlet reuse:

// Get the inventory servlet instance if we haven't before

if (inventory == null) {

 inventory = (BurritoInventoryServlet)ServletUtils.getServlet(

 "BurritoInventoryServlet", req, getServletContext());

 out.writeInt(chicken);

 return;

 }

 catch (IOException ignored) {

 // Problem during write

 }

 finally {

 try { if (file != null) file.close(); }

 catch (IOException ignored) { }

 }

 }

}

Figure 11-5. The output from BurritoInventoryServlet, showing its state

Example 11-10. The shared burrito inventory class, rewriten as a servlet (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SERVLET COLLABORATION 361
 // If the load was unsuccessful, throw an exception

 if (inventory == null) {

 throw new ServletException(

 "Could not locate BurritoInventoryServlet");

 }

}

Instead of calling BurritoInventory.getInstance(), the producer and
consumer classes can ask the server for the BurritoInventoryServlet instance.

Collaboration Through Inheritance
Perhaps the easiest technique for servlet collaboration is through inheritance.
Each servlet interested in collaborating can extend the same class and inherit the
same shared information. This simplifies the code for the collaborating servlets
and limits access to the shared information to the proper subclasses. The common
superclass can hold a reference to the shared information, or it can hold the
shared information itself.

Inheriting a shared reference

A common superclass can hold any number of references to shared business
objects that are easily made available to its subclasses. Example 11-11 shows such a
superclass, usable for our burrito inventory example.

This BurritoInventorySuperclass creates a new BurritoInventory instance.
BurritoInventoryProducer and BurritoInventoryConsumer can then
subclass BurritoInventorySuperclass and inherit a reference to this instance.
The code for the revised BurritoInventoryConsumer is shown in Example 11-12
to clarify.

Example 11-11. A superclass holding a reference to shared information

import javax.servlet.*;

import javax.servlet.http.*;

public class BurritoInventorySuperclass extends HttpServlet {

 protected static BurritoInventory inventory = new BurritoInventory();

}

Example 11-12. Using an inherited business object

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class BurritoInventoryConsumer extends BurritoInventorySuperclass {
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

362 CHAPTER 11: INTERSERVLET COMMUNICATION
The BurritoInventory class doesn’t have to be a singleton anymore. The
subclasses naturally inherit the same instance. Again, the class file for
BurritoInventorySuperclass should be put in the server’s classpath to keep it
from being reloaded.

Inheriting the shared information

In addition to holding shared references, a common superclass can hold shared
information itself and optionally make it available through inherited business logic
methods. Example 11-13 shows BurritoInventorySuperclass rewritten using
this technique. It’s essentially an alternate form of BurritoInventoryServlet.

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 out.println("<HTML>");

 out.println("<HEAD><TITLE>Burrito Inventory Consumer</TITLE></HEAD>");

 out.println("<BODY><BIG>");

 if (inventory.makeBurrito()) {

 out.println("Your burrito will be ready in 3 minutes.");

 }

 else {

 out.println("We're low on ingredients.
");

 out.println("Looks like you're gonna starve.");

 }

 out.println("</BIG></BODY></HTML>");

 }

}

Example 11-13. A superclass holding its own shared information

public class BurritoInventorySuperclass extends HttpServlet {

 // How many "servings" of each item do we have?

 private static int cheese = 0;

 private static int rice = 0;

 private static int beans = 0;

 private static int chicken = 0;

 // Add to the inventory as more servings are prepared.

Example 11-12. Using an inherited business object (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RECAP 363
There are only two differences between this servlet superclass and
BurritoInventoryServlet. First, all the variables and methods are now static.
This guarantees that there’s just one inventory kept for all the subclasses. Second,
all the methods are now protected. This makes them available only to subclasses.
By inheriting from a superclass that contains the shared information,
BurritoInventoryProducer and BurritoInventoryConsumer can call the
inventory methods directly. For example, BurritoInventoryProducer can add
items to the inventory with this code:

// Add the items to the inventory

addCheese(cheese);

addRice(rice);

addBeans(beans);

addChicken(chicken);

BurritoInventoryConsumer can consume the ingredients with this code:

if (makeBurrito())

Recap
To summarize, there are three sorts of interservlet communication:

• Servlet manipulation, where one servlet directly invokes the methods of
another. These servlets can get references to other servlets using
getServletNames() and getServlet(String name), but they must be
careful not to use stale references to servlets that have been reloaded.

• Servlet reuse, where one servlet uses another’s abilities for its own purposes. In
some cases, this requires forcing a servlet load using a manual HTTP request.
These servlets also have to be careful not to use stale references.

 protected static void addCheese(int added) { cheese += added; }

 protected static void addRice(int added) { rice += added; }

 protected static void addBeans(int added) { beans += added; }

 protected static void addChicken(int added) { chicken += added; }

 // Called when it's time to make a burrito.

 // Returns true if there are enough ingredients to make the burrito,

 // false if not. Decrements the ingredient count when there are enough.

 synchronized static protected boolean makeBurrito() {

 // ...etc...

 }

 // ...The rest matches BurritoInventoryServlet...

Example 11-13. A superclass holding its own shared information (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

364 CHAPTER 11: INTERSERVLET COMMUNICATION
• Servlet collaboration, where cooperating servlets share information. Servlets
can share information using the system properties list (saving strings or
objects), using a shared object (a singleton found in the server’s classpath), or
using inheritance.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

:

Chapter 12

In this chapter:
• Western European

Languages
• Conforming to Local

Customs
• Non-Western

European Languages
• Multiple Languages
• Dynamic Language

Negotiation
• HTML Forms
• Receiving

Multilingual Input

Despite its name, the World
considered to truly extend w
nearly every country across
resource, that web content h
thing that often doesn’t occ
pages.

The situation is starting to c
Java™
Copyright © 2
12

12.Internationalization 12
Wide Web has a long way to go before it can be
orldwide. Sure, physical wires carry web content to
the globe. But to be considered a true worldwide
as to be readable to the person receiving it—some-
ur with today’s large number of English-only web

hange, however. Many of the largest web sites have
established areas designed for non-English languages. For example, the Netscape
home page is available to English speakers at http://home.netscape.com/index.html, to
French speakers at http://home.netscape.com/fr/index.html, and to speakers of a
dozen other languages at a dozen other URLs.

Many web servers also support a transparent solution, where a single URL can be
used to view the same content in several languages, with the language chosen
based on the preferences of the client. For example, the Internet Movie Database
home page at http://us.imdb.com/index.html can be read in English, German, or
French. Which language you see depends on how you’ve configured your browser.
* Although this technique creates the impression that a dynamic translation is
occurring, in reality the server just has several specially named versions of the
static document at its disposal.

While these techniques work well for static documents, they don’t address the
problem of how to internationalize and localize dynamic content. That’s the topic
of this chapter. Here we explore how servlets can use the internationalization
capabilities added to JDK 1.1 to truly extend the Web worldwide.

* Many older browsers do not support language customization, however. For example, the feature is
new in Netscape Navigator 4 and Microsoft Internet Explorer 4.
365
 Servlet Programming, eMatter Edition

000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

366 CHAPTER 12: INTERNATIONALIZATION
First, let’s discuss terminology. Internationalization (a word that’s often mercifully
shortened to “i18n” because it begins with an “I”, ends with an “n”, and has 18
letters in between) is the task of making a program flexible enough to run in any
locale. Localization (often shortened to “l10n”) is the process of arranging for a
program to run in a specific locale. This chapter, for the most part, covers servlet
internationalization. We’ll cover localization only in the case of dates, times,
numbers, and other objects for which Java has built-in localization support.

Western European Languages
Let’s begin with a look at how a servlet outputs a page written in a Western Euro-
pean language such as English, Spanish, German, French, Italian, Dutch,
Norwegian, Finnish, or Swedish. As our example, we’ll say “Hello World!” in
Spanish, generating a page similar to the one shown in Figure 12-1.

Notice the use of the special characters “ñ” and “¡”. Characters such as these, while
scarce in English, are prevalent in Western European languages. Servlets have two
ways to generate these characters: with HTML character entities or Unicode
escape sequences.

HTML Character Entities
HTML 2.0 introduced the ability for specific sequences of characters in an HTML
page to be displayed as a single character. The sequences, called character entities,
begin with an ampersand (&) and end with a semi-colon (;). Character entities
can either be named or numbered. For example, the named character entity
"ñ" represents "ñ", while "¡" represents "¡". A complete listing

Figure 12-1. En Español: ¡Hola Mundo!
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

WESTERN EUROPEAN LANGUAGES 367
of special characters and their names is given in Appendix D, Character Entities.
Example 12-1 shows a servlet that uses named entities to say hello in Spanish.

You may have noticed that, in addition to using character entities, this servlet sets
its Content-Language header to the value "es". The Content-Language header
is used to specify the language of the following entity body. In this case, the servlet
uses the header to indicate to the client that the page is written in Spanish
(Español). Most clients ignore this information, but it’s polite to send it anyway.
Languages are always represented using two-character lowercase abbreviations. For
a complete listing, see the ISO-639 standard at http://www.ics.uci.edu/pub/ietf/http/
related/iso639.txt.

Character entities can also be referenced by number. For example, "ñ"
represents "ñ", and "¡" represents "¡". The number corresponds to the
character’s ISO-8859-1 (Latin-1) decimal value, which you will hear more about
later in this chapter. A complete listing of the numeric values for character enti-
ties can also be found in Appendix D. Example 12-2 shows HelloSpain rewritten
using numeric entities.

Example 12-1. Hello to Spanish speakers, using named character entities

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class HelloSpain extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 res.setHeader("Content-Language", "es");

 out.println("<HTML><HEAD><TITLE>En Español</TITLE></HEAD>");

 out.println("<BODY>");

 out.println("<H3>En Español:</H3>");

 out.println("¡Hola Mundo!");

 out.println("</BODY></HTML>");

 }

}

Example 12-2. Hello to Spanish speakers, using numbered character entities

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class HelloSpain extends HttpServlet {
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

368 CHAPTER 12: INTERNATIONALIZATION
Unfortunately, there’s one major problem with the use of character entities: they
work only for HTML pages. If the servlet’s output isn’t HTML, the page looks
something like Figure 12-2. To handle non-HTML output, we need to use
Unicode escapes.

Unicode Escapes
In Java, all characters, strings, and identifiers are internally composed of 16-bit (2-
byte) Unicode characters. Unicode was established by the Unicode Consortium,
which describes the standard as follows (see http://www.unicode. org/unicode/
standard/standard.html):

The Unicode Worldwide Character Standard is a character coding system
designed to support the interchange, processing, and display of the written texts
of the diverse languages of the modern world. In addition, it supports classical and
historical texts of many written languages.

In its current version (2.0), the Unicode standard contains 38,885 distinct coded
characters derived from the Supported Scripts. These characters cover the prin-

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/html");

 PrintWriter out = res.getWriter();

 res.setHeader("Content-Language", "es");

 out.println("<HTML><HEAD><TITLE>En Español</TITLE></HEAD>");

 out.println("<BODY>");

 out.println("<H3>En Espa&241;ol:</H3>");

 out.println("¡Hola Mundo!");

 out.println("</BODY></HTML>");

 }

}

Figure 12-2. Not quite Spanish

Example 12-2. Hello to Spanish speakers, using numbered character entities (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CONFORMING TO LOCAL CUSTOMS 369
cipal written languages of the Americas, Europe, the Middle East, Africa, India,
Asia, and Pacifica.

For more information on Unicode see http://www.unicode.org. Also see The Unicode
Standard, Version 2.0 (Addison-Wesley).

Java’s use of Unicode is very important to this chapter because it means a servlet
can internally represent essentially any character in any commonly used written
language. We can represent 16-bit Unicode characters in 7-bit US-ASCII source
code using Unicode escapes of the form \uxxxx, where xxxx is a sequence of
four hexadecimal digits. The Java compiler interprets each Unicode escape
sequence as a single character.

Conveniently, and not coincidentally, the first 256 characters of Unicode (\u0000
to \u00ff) correspond to the 256 characters of ISO-8859-1 (Latin-1). Thus, the
“ñ” character can be written as \u00f1 and the “¡” character can be written as \
u00a1. A complete listing of the Unicode escape sequences for ISO-8859-1 charac-
ters is also included in Appendix D. Example 12-3 shows HelloSpain rewritten
using Unicode escapes.

The output from this servlet displays correctly when used as part of an HTML page
or when used for plain-text output.

Conforming to Local Customs
Now we know how to use HTML character entities and Unicode escapes to display
the characters in Western European languages. The question remains, what do we

Example 12-3. Hello to Spanish speakers, using Unicode escapes

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class HelloSpain extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/plain");

 PrintWriter out = res.getWriter();

 res.setHeader("Content-Language", "es");

 out.println("En Espa\u00f1ol:");

 out.println("\u00a1Hola Mundo!");

 }

}

Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

370 CHAPTER 12: INTERNATIONALIZATION
say with these languages? In general, this is a translation problem best left to a
dedicated localization team. In some instances, however, Java provides some help.

For example, let’s assume that in addition to saying “Hello World,” we need our
example servlet to tell the current time in a format naturally understood by the
recipient. What could be a difficult formatting problem is actually quite easy
because JDK 1.1 provides built-in support for localizing dynamic objects such as
dates and times.

The trick is to use a java.text.DateFormat instance appropriate for the target
audience. A DateFormat object can convert a Date to a correctly localized
String. For example, a time stamp written in English as “February 16, 1998
12:36:18 PM PST” would be written in Spanish as “16 de febrero de 1998 12:36:18
GMT-08:00.”

A DateFormat object is created using a factory method that accepts a formatting
style (short, medium, long, full) and a java.util.Locale object that identifies
the target audience (U.S. English, Mainland Chinese, etc.). The most common
Locale constructor accepts two parameters: a two-character lowercase language
abbreviation (as we saw earlier) and a two-character uppercase country code as
defined by ISO-3166 (available at http://www.chemie.fu-berlin.de/diverse/doc/ISO_
3166.html). An empty string for the country code indicates the default country for
the language.

Example 12-4 shows the HelloSpain servlet using a DateFormat object to print
the current time in a format naturally understood by a Spanish-speaking recipient.

Example 12-4. Hello to Spanish speakers, with the localized time

import java.io.*;

import java.text.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class HelloSpain extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/plain");

 PrintWriter out = res.getWriter();

 res.setHeader("Content-Language", "es");

 Locale locale = new Locale("es", "");

 DateFormat fmt = DateFormat.getDateTimeInstance(DateFormat.LONG,

 DateFormat.LONG,

 locale);

 fmt.setTimeZone(TimeZone.getDefault());
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

NON-WESTERN EUROPEAN LANGUAGES 371
This servlet first creates a Locale that represents a generic Spanish environment.
Then it uses that Locale to create a DateFormat instance that formats dates in
Spanish. Next, it sets the time zone to the default time zone (the time zone of the
server). The reason is that, by default, a DateFormat object formats its times to
match the time zone in which it assumes the intended recipient is located, in this
case Spain. Because this servlet can’t be sure that’s a correct assumption, it over-
rides the default and sets the time zone to match the server’s. It would be better,
of course, to set the time zone to accurately match the client’s location, but that’s
not currently possible without additional user-provided information. Finally, after
saying its “Hello World,” this servlet prints the correctly formatted date and time.
The output is shown in Figure 12-3.

This example provides just a glimpse of the dynamic formatting capabilities of
Java. If you’re interested in more complicated formatting, there are several other
classes in the java.text package you may find useful. Look especially at those
that extend java.text.Format.

Non-Western European Languages
Let’s continue now with a look at how a servlet outputs a page written in a non-
Western European language, such as Russian, Japanese, Chinese, Korean, or
Hebrew. To understand how to work with these languages, we must first under-
stand how things work behind the scenes of our previous examples.

 out.println("En Espa\u00f1ol:");

 out.println("\u00a1Hola Mundo!");

 out.println(fmt.format(new Date()));

 }

}

Figure 12-3. Hola Tiempo

Example 12-4. Hello to Spanish speakers, with the localized time (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

372 CHAPTER 12: INTERNATIONALIZATION
Charsets
Let’s begin looking at the situation from the perspective of the browser. Imagine
having the browser’s job. You make an HTTP request to some URL and receive a
response. That response, in the basest terms, is nothing more than a long
sequence of bytes. How do you know how to display that response?

A common way, and in fact the default way, is to assume that every byte represents
one of 256 possible characters and to further assume that the character a byte
represents can be determined by looking up the byte value in some table. The
default table is specified by the ISO-8859-1 standard, also called Latin-1. It contains
byte-to-character mappings for the characters most commonly used in Western
European languages. So, by default, you (acting as the browser) can receive a
sequence of bytes and convert them to a sequence of Western European
characters.

Now what do you do if you want to receive text that isn’t written in a Western
European language? You have to take the long sequence of bytes in the response
and interpret it differently, using some other byte-sequence to character mapping.
Technically put, you need to use a different charset.* There are an infinite number
of potential charsets. Fortunately, there are only a few dozen that are commonly
used.

Some charsets use single-byte characters in a fashion similar to ISO-8859-1, though
with a different byte-to-character mapping. For example, ISO-8859-5 defines a
byte-to-character mapping for the characters of the Cyrillic (Russian) alphabet,
while ISO-8859-8 defines a mapping for the Hebrew alphabet.†

Other charsets use multibyte characters, where it may take more than one byte to
represent a single character. This is most common with languages that contain
thousands of characters, such as Chinese, Japanese, and Korean—often referred to
collectively as CJK. Charsets used to display these languages include Big5
(Chinese), Shift_JIS (Japanese), and EUC-KR (Korean). A table listing languages
and their corresponding charsets can be found in Appendix E, Charsets.

What this boils down to is that if you (as the browser again) know the charset in
which the response was encoded, you can determine how to interpret the bytes
you receive. Just one question remains: how can you determine the charset? You
can do it in one of two ways. First, you can require your user to tell you the charset.
With Netscape Navigator 3, this is done through Options | Document Encoding;

* A charset (a byte-sequence to character mapping) is not the same as a character set (a set of charac-
ters). See RFC 2278 at http://www.ietf.org/rfc/rfc2278.txt for a full explanation.

† It’s useful to note that, for nearly all charsets, the byte values between 0 and 127 decimal represent the
standard US-ASCII characters, allowing English text to be added to a page written in nearly any lan-
guage.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

NON-WESTERN EUROPEAN LANGUAGES 373
with Netscape Navigator 4, it is done through View | Encoding. With Microsoft
Internet Explorer 4, it’s done through View | Fonts. This approach often requires
the user to try a few charsets until the display makes sense. The second possibility
is that the server (or servlet) specifies the charset in the Content-Type header
you receive. For example, the following Content-Type value:

text/html; charset=Shift_JIS

indicates that the charset is Shift_JIS. Unfortunately, a few older browsers can be
confused by the inclusion of a charset in the Content-Type header.

Writing Encoded Output
Now that we understand charsets from the perspective of the browser, it’s time to
return to the perspective of the servlet. A servlet’s role is to do the following:

1. Choose a charset and set it for the servlet

2. Get a PrintWriter for that charset

3. Output characters that can be displayed using that charset

Example 12-5 demonstrates with a servlet that says “Hello World” and displays the
current date and time in Japanese. A screen shot is shown in Figure 12-4.

Example 12-5. Hello to Japanese speakers

import java.io.*;

import java.text.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class HelloJapan extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/plain; charset=Shift_JIS");

 PrintWriter out = res.getWriter();

 res.setHeader("Content-Language", "ja");

 Locale locale = new Locale("ja", "");

 DateFormat full = DateFormat.getDateTimeInstance(DateFormat.LONG,

 DateFormat.LONG,

 locale);

 out.println("In Japanese:");

 out.println("\u4eca\u65e5\u306f\u4e16\u754c"); // Hello World

 out.println(full.format(new Date()));

 }

}

Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

374 CHAPTER 12: INTERNATIONALIZATION
This servlet starts by setting the content type to "text/plain" and the charset to
"Shift_JIS". Then it calls res.getWriter() just like always—except in this case
the PrintWriter it receives is special. This PrintWriter encodes all the servlet’s
output in the Shift_JIS charset because that charset is specified in the Content-
Type header. This second line is therefore equivalent to the following:

PrintWriter out = new PrintWriter(

 new OutputStreamWriter(res.getOutputStream(), "Shift_JIS"), true);

Note that the call to res.getWriter() may throw an
UnsupportedEncodingException if the charset is not recognized by Java* or an
IllegalStateException if getOutputStream() has been called already on this
request.

The servlet next creates a Locale with the language "ja" to represent a generic
Japanese environment and then creates a DateFormat to match. Finally, it prints
the equivalent of “Hello World” in Japanese, using Unicode escapes for the char-
acters, and outputs the current date and time.

For this servlet to work, your server’s classpath must include the sun.io.
CharToByte* converter classes or their equivalent. On some platforms, these are
not always included by default. Also, for the Japanese glyphs (or glyphs from other
languages) to display correctly in the browser, the browser has to support the
charset and have access to the necessary fonts to display the charset.

For more information on the internationalization capabilities of Netscape Navi-
gator, see http://home.netscape.com/eng/intl/index.html. For more information on the
capabilities of Microsoft Internet Explorer, see http://www.microsoft. com/ie/intlhome.
htm.

Figure 12-4. A Japanese Hello

* With some early versions of Java, it may in some situations erroneously throw an
IllegalArgumentException if the charset is not recognized.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

NON-WESTERN EUROPEAN LANGUAGES 375
Reading and Writing Encoded Output
It can often be prohibitively slow to enter hundreds or thousands of Unicode
escapes manually in Java source files. An easier option is to read localized text
from an encoded file. For example, let’s assume the “Hello World” Japanese text
we want to output is saved by someone on the localization team in a file named
HelloWorld.ISO-2022-JP, using the ISO-2022-JP encoding to make things more inter-
esting. A servlet can read this file and send the content to the browser using the
Shift_JIS encoding, as shown in Example 12-6.

Example 12-6. Sending localized output read from a file

import java.io.*;

import java.text.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class HelloJapanReader extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/plain; charset=Shift_JIS");

 PrintWriter out = res.getWriter();

 res.setHeader("Content-Language", "ja");

 Locale locale = new Locale("ja", "");

 DateFormat full = DateFormat.getDateTimeInstance(DateFormat.LONG,

 DateFormat.LONG,

 locale);

 out.println("In Japanese:");

 try {

 FileInputStream fis =

 new FileInputStream(req.getRealPath("/HelloWorld.ISO-2022-JP"));

 InputStreamReader isr = new InputStreamReader(fis, "ISO-2022-JP");

 BufferedReader reader = new BufferedReader(isr);

 String line = null;

 while ((line = reader.readLine()) != null) {

 out.println(line);

 }

 }

 catch (FileNotFoundException e) {

 // No Hello for you

 }

 out.println(full.format(new Date()));

 }

}

Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

376 CHAPTER 12: INTERNATIONALIZATION
This servlet is essentially a character encoding converter. It reads the HelloWorld.
ISO-2022-JP text encoded with ISO-2022-JP and internally converts it to Unicode.
Then, it outputs the same text by converting from Unicode to Shift_JIS.

Multiple Languages
Now it’s time to push the envelope a little and attempt something that has only
recently become possible. Let’s write a servlet that includes several languages on
the same page. In a sense, we have already written such a servlet. Our last example,
HelloJapan, included both English and Japanese text. It should be observed,
however, that this is a special case. Adding English text to a page is almost always
possible, due to the convenient fact that nearly all charsets include the 128 U.S.-
ASCII characters. In the more general case, when the text on a page contains a
mix of languages and none of the previously mentioned charsets contains all the
necessary characters, we require an alternate technique.

UCS-2 and UTF-8
The best way to generate a page containing multiple languages is to output 16-bit
Unicode characters to the client. There are two common ways to do this: UCS-2
and UTF-8. UCS-2 (Universal Character Set, 2-byte form) sends Unicode charac-
ters in what could be called their natural format, two bytes per character. All
characters, including US-ASCII characters, require two bytes. UTF-8 (UCS Trans-
formation Format, 8-bit form) is a variable-length encoding. With UTF-8, a
Unicode character is transformed into a 1-, 2-, or 3-byte representation. In general,
UTF-8 tends to be more efficient than UCS-2 because it can encode a character
from the US-ASCII charset using just 1 byte. For this reason, the use of UTF-8 on
the Web far exceeds UCS-2. For more information on UTF-8, see RFC 2279 at
http://www.ietf.org/rfc/rfc2279.txt.

Before we proceed, you should know that support for UTF-8 is just beginning to
appear on the Web. Netscape first added support for the UTF-8 encoding in
Netscape Navigator 4, and Microsoft first added support in Internet Explorer 4.

Writing UTF-8
Example 12-7 shows a servlet that uses the UTF-8 encoding to say “Hello World!”
and tell the current time (in the local time zone) in English, Spanish, Japanese,
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

MULTIPLE LANGUAGES 377
Chinese, Korean, and Russian. A screen shot of the servlet’s output is shown in
Figure 12-5.

Example 12-7. A servlet version of the Rosetta Stone

import java.io.*;

import java.text.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

import com.oreilly.servlet.ServletUtils;

public class HelloRosetta extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 Locale locale;

 DateFormat full;

 try {

 res.setContentType("text/plain; charset=UTF-8");

 PrintWriter out = res.getWriter();

 locale = new Locale("en", "US");

 full = DateFormat.getDateTimeInstance(DateFormat.LONG,

 DateFormat.LONG,

 locale);

 out.println("In English appropriate for the US:");

 out.println("Hello World!");

 out.println(full.format(new Date()));

 out.println();

 locale = new Locale("es", "");

 full = DateFormat.getDateTimeInstance(DateFormat.LONG,

 DateFormat.LONG,

 locale);

 out.println("En Espa\u00f1ol:");

 out.println("\u00a1Hola Mundo!");

 out.println(full.format(new Date()));

 out.println();

 locale = new Locale("ja", "");

 full = DateFormat.getDateTimeInstance(DateFormat.LONG,

 DateFormat.LONG,

 locale);

 out.println("In Japanese:");

 out.println("\u4eca\u65e5\u306f\u4e16\u754c");

 out.println(full.format(new Date()));
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

378 CHAPTER 12: INTERNATIONALIZATION
For this servlet to work as written, your server must support JDK 1.1.6 or later.
Earlier versions of Java throw an UnsupportedEncodingException when trying
to get the PrintWriter, and the page is left blank. The problem is a missing
charset alias. Java has had support for the UTF-8 encoding since JDK 1.1 was first
introduced. Unfortunately, the JDK used the name “UTF8” for the encoding,
while browsers expect the name “UTF-8.” So, who’s right? It wasn’t clear until early
1998, when the IANA (Internet Assigned Numbers Authority) declared “UTF-8” to
be the preferred name. (See http://www.isi.edu/in-notes/iana/assignments/char-
actersets.) Shortly thereafter, JDK 1.1.6 added “UTF-8” as an alternate alias for the

 out.println();

 locale = new Locale("zh", "");

 full = DateFormat.getDateTimeInstance(DateFormat.LONG,

 DateFormat.LONG,

 locale);

 out.println("In Chinese:");

 out.println("\u4f60\u597d\u4e16\u754c");

 out.println(full.format(new Date()));

 out.println();

 locale = new Locale("ko", "");

 full = DateFormat.getDateTimeInstance(DateFormat.LONG,

 DateFormat.LONG,

 locale);

 out.println("In Korean:");

 out.println("\uc548\ub155\ud558\uc138\uc694\uc138\uacc4");

 out.println(full.format(new Date()));

 out.println();

 locale = new Locale("ru", "");

 full = DateFormat.getDateTimeInstance(DateFormat.LONG,

 DateFormat.LONG,

 locale);

 out.println("In Russian (Cyrillic):");

 out.print("\u0417\u0434\u0440\u0430\u0432\u0441\u0442");

 out.println("\u0432\u0443\u0439, \u041c\u0438\u0440");

 out.println(full.format(new Date()));

 out.println();

 }

 catch (Exception e) {

 log(ServletUtils.getStackTraceAsString(e));

 }

 }

}

Example 12-7. A servlet version of the Rosetta Stone (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DYNAMIC LANGUAGE NEGOTIATION 379
“UTF8” encoding. For maximum portability across Java versions, you can use the
“UTF8” name directly with the following code:

res.setContentType("text/html; charset=UTF-8");

PrintWriter out = new PrintWriter(

 new OutputStreamWriter(res.getOutputStream(), "UTF8"), true);

Also, your client must support the UTF-8 encoding and have access to all the
necessary fonts. Otherwise, some of your output is likely to appear garbled.

Dynamic Language Negotiation
Now let’s push the envelope yet a little farther (perhaps off the edge of the table)
with a servlet that tailors its output to match the language preferences of the

Figure 12-5. A true hello world
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

380 CHAPTER 12: INTERNATIONALIZATION
client. This allows the same URL to serve its content to readers across the globe in
their native tongues.

Language Preferences
There are two ways a servlet can know the language preferences of the client. First,
the browser can send the information as part of its request. Newer browsers, such
as Netscape Navigator 4 and Microsoft Internet Explorer 4, allow users to specify
their preferred languages. With Netscape Navigator 4, this is done under Edit |
Preferences | Navigator | Languages. With Microsoft Internet Explorer 4, it’s done
under View | Internet Options | General | Languages.

A browser sends the user’s language preferences to the server using the Accept-
Language HTTP header. The value of this header specifies the language or
languages that the client prefers to receive. Note that the HTTP specification
allows this preference to be ignored. An Accept-Language header value looks
something like the following:

en, es, de, ja, zh-TW

This indicates the client user reads English, Spanish, German, Japanese, and
Chinese appropriate for Taiwan. By convention, languages are listed in order of
preference. Each language may also include a q-value that indicates, on a scale
from 0.0 to 1.0, an estimate of the user’s preference for that language. The default
q-value is 1.0 (maximum preference). An Accept-Language header value
including q-values looks like this:

en, es;q=0.8, de;q=0.7, ja;q=0.3, zh-TW;q=0.1

This header value means essentially the same thing as the previous example.

The second way a servlet can know the language preferences of the client is by
asking. For example, a servlet might generate a form that asks which language the
client prefers. Thereafter, it can remember and use the answer, perhaps using the
session tracking techniques discussed in Chapter 7, Session Tracking.

Charset Preferences
In addition to an Accept-Language HTTP header, a browser may send an
Accept-Charset header that tells the server which charsets it understands. An
Accept-Charset header value may look something like this:

iso-8859-1, utf-8

This indicates the browser understands ISO-8859-1 and UTF-8. If the Accept-
Charset isn’t sent or if its value contains an asterisk (*), it can be assumed the
client accepts all charsets. Note that the current usefulness of this header is
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DYNAMIC LANGUAGE NEGOTIATION 381
limited: few browsers yet send the header, and those browsers that do tend to send
a value that contains an asterisk.

Resource Bundles
Using Accept-Language (and, in some cases, Accept-Charset), a servlet can
determine the language in which it will speak to each client. But how can a servlet
efficiently manage several localized versions of a page? One answer is to use Java’s
built-in support for resource bundles.

A resource bundle holds a set of localized resources appropriate for a given locale.
For example, a resource bundle for the French locale might contain a French
translation of all the phrases output by a servlet. Then, when the servlet deter-
mines it wants to speak French, it can load that resource bundle and use the
stored phrases. All resource bundles extend java.util.ResourceBundle. A
servlet can load a resource bundle using the static method ResourceBundle.
getBundle():

public static final

 ResourceBundle ResourceBundle.getBundle(String bundleName, Locale locale)

A servlet can pull phrases from a resource bundle using the getString() method
of ResourceBundle:

public final String ResourceBundle.getString(String key)

A resource bundle can be created in several ways. For servlets, the most useful
technique is to put a special properties file in the server’s classpath that contains
the translated phrases. The file should be specially named according to the
pattern bundlename_language.properties or bundlename_language_country.
properties. For example, use Messages_fr.properties for a French bundle or Messages_
zh_TW.properties for a Chinese/Taiwan bundle. The file should contain US-ASCII
characters in the following format:

name1=value1

name2=value2

...

Each line may also contain whitespace and Unicode escapes. The information in
this file can be loaded automatically by the getBundle() method.

Writing To Each His Own
Example 12-8 demonstrates the use of Accept-Language, Accept-Charset, and
resource bundles with a servlet that says “Hello World” to each client in that
client’s own preferred language. Here’s a sample resource bundle properties file
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

382 CHAPTER 12: INTERNATIONALIZATION
for English, which you would store in HelloBabel_en.properties somewhere in the
server’s classpath (such as server_root/classes):

greeting=Hello world

And here’s a resource bundle for Japanese, to be stored in HelloBabel_ja.properties:

greeting=\u4eca\u65e5\u306f\u4e16\u754c

This HelloBabel servlet uses the com.oreilly.servlet.LocaleNegotiator
class that contains the black box logic to determine which Locale, charset, and
ResourceBundle should be used. Its code is shown in the next section.

Example 12-8. A servlet version of the Tower of Babel

import java.io.*;

import java.util.*;

import java.text.*;

import javax.servlet.*;

import javax.servlet.http.*;

import com.oreilly.servlet.LocaleNegotiator;

import com.oreilly.servlet.ServletUtils;

public class HelloBabel extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 try {

 String bundleName = "HelloBabel";

 String acceptLanguage = req.getHeader("Accept-Language");

 String acceptCharset = req.getHeader("Accept-Charset");

 LocaleNegotiator negotiator =

 new LocaleNegotiator(bundleName, acceptLanguage, acceptCharset);

 Locale locale = negotiator.getLocale();

 String charset = negotiator.getCharset();

 ResourceBundle bundle = negotiator.getBundle(); // may be null

 res.setContentType("text/plain; charset=" + charset);

 res.setHeader("Content-Language", locale.getLanguage());

 res.setHeader("Vary", "Accept-Language");

 PrintWriter out = res.getWriter();

 DateFormat fmt = DateFormat.getDateTimeInstance(DateFormat.LONG,

 DateFormat.LONG,

 locale);

 if (bundle != null) {

 out.println("In " + locale.getDisplayLanguage() + ":");
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DYNAMIC LANGUAGE NEGOTIATION 383
This servlet begins by setting the name of the bundle it wants to use, and then it
retrieves its Accept-Language and Accept-Charset headers. It creates a
LocaleNegotiator, passing in this information, and quickly asks the negotiator
which Locale, charset, and ResourceBundle it is to use. Note that a servlet may
ignore the returned charset in favor of the UTF-8 encoding. Just remember, UTF-
8 is not as widely supported as the charsets normally returned by
LocaleNegotiator. Next, the servlet sets its headers: its Content-Type header
specifies the charset, Content-Language specifies the locale’s language, and the
Vary header indicates to the client (if by some chance it should care) that this
servlet can vary its output based on the client’s Accept-Language header.

Once the headers are set, the servlet generates its output. It first gets a
PrintWriter to match the charset. Then it says—in the default language, usually
English—which language the greeting is to be in. Next, it retrieves and outputs the
appropriate greeting from the resource bundle. And lastly, it prints the date and
time appropriate to the client’s locale. If the resource bundle is null, as happens
when there are no resource bundles to match the client’s preferences, the servlet
simply reports that no bundle could be found.

The LocaleNegotiator Class
The code for LocaleNegotiator is shown in Example 12-9. Its helper class,
LocaleToCharsetMap, is shown in Example 12-10. If you are happy to treat the
locale negotiator as a black box, feel free to skip this section.

LocaleNegotiator works by scanning through the client’s language preferences
looking for any language for which there is a corresponding resource bundle.
Once it finds a correspondence, it uses LocaleToCharsetMap to determine the
charset. If there’s any problem, it tries to fall back to U.S. English. The logic
ignores the client’s charset preferences.

 out.println(bundle.getString("greeting"));

 out.println(fmt.format(new Date()));

 }

 else {

 out.println("Bundle could not be found.");

 }

 }

 catch (Exception e) {

 log(ServletUtils.getStackTraceAsString(e));

 }

 }

}

Example 12-8. A servlet version of the Tower of Babel (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

384 CHAPTER 12: INTERNATIONALIZATION
The most complicated aspect of the LocaleNegotiator code is having to deal
with the unfortunate behavior of ResourceBundle.getBundle(). The
getBundle() method attempts to act intelligently. If it can’t find a resource
bundle that is an exact match to the specified locale, it tries to find a close match.
The problem, for our purposes, is that getBundle() considers the resource
bundle for the default locale to be a close match. Thus, as we loop through client
languages, it’s difficult to determine when we have an exact resource bundle
match and when we don’t. The workaround is to first fetch the ultimate fallback
resource bundle, then use that reference later to determine when there is an exact
match. This logic is encapsulated in the getBundleNoFallback() method.

Example 12-9. The LocaleNegotiator class

package com.oreilly.servlet;

import java.io.*;

import java.util.*;

import com.oreilly.servlet.LocaleToCharsetMap;

public class LocaleNegotiator {

 private ResourceBundle chosenBundle;

 private Locale chosenLocale;

 private String chosenCharset;

 public LocaleNegotiator(String bundleName,

 String languages,

 String charsets) {

 // Specify default values:

 // English language, ISO-8859-1 (Latin-1) charset, English bundle

 Locale defaultLocale = new Locale("en", "US");

 String defaultCharset = "ISO-8859-1";

 ResourceBundle defaultBundle = null;

 try {

 defaultBundle = ResourceBundle.getBundle(bundleName, defaultLocale);

 }

 catch (MissingResourceException e) {

 // No default bundle was found. Flying without a net.

 }

 // If the client didn't specify acceptable languages, we can keep

 // the defaults.

 if (languages == null) {

 chosenLocale = defaultLocale;

 chosenCharset = defaultCharset;

 chosenBundle = defaultBundle;
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DYNAMIC LANGUAGE NEGOTIATION 385
 return; // quick exit

 }

 // Use a tokenizer to separate acceptable languages

 StringTokenizer tokenizer = new StringTokenizer(languages, ",");

 while (tokenizer.hasMoreTokens()) {

 // Get the next acceptable language.

 // (The language can look something like "en; qvalue=0.91")

 String lang = tokenizer.nextToken();

 // Get the locale for that language

 Locale loc = getLocaleForLanguage(lang);

 // Get the bundle for this locale. Don't let the search fallback

 // to match other languages!

 ResourceBundle bundle = getBundleNoFallback(bundleName, loc);

 // The returned bundle is null if there's no match. In that case

 // we can't use this language since the servlet can't speak it.

 if (bundle == null) continue; // on to the next language

 // Find a charset we can use to display that locale's language.

 String charset = getCharsetForLocale(loc, charsets);

 // The returned charset is null if there's no match. In that case

 // we can't use this language since the servlet can't encode it.

 if (charset == null) continue; // on to the next language

 // If we get here, there are no problems with this language.

 chosenLocale = loc;

 chosenBundle = bundle;

 chosenCharset = charset;

 return; // we're done

 }

 // No matches, so we let the defaults stand

 chosenLocale = defaultLocale;

 chosenCharset = defaultCharset;

 chosenBundle = defaultBundle;

 }

 public ResourceBundle getBundle() {

 return chosenBundle;

 }

 public Locale getLocale() {

 return chosenLocale;

Example 12-9. The LocaleNegotiator class (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

386 CHAPTER 12: INTERNATIONALIZATION
 }

 public String getCharset() {

 return chosenCharset;

 }

 private Locale getLocaleForLanguage(String lang) {

 Locale loc;

 int semi, dash;

 // Cut off any q-value that might come after a semi-colon

 if ((semi = lang.indexOf(';')) != -1) {

 lang = lang.substring(0, semi);

 }

 // Trim any whitespace

 lang = lang.trim();

 // Create a Locale from the language. A dash may separate the

 // language from the country.

 if ((dash = lang.indexOf('-')) == -1) {

 loc = new Locale(lang, ""); // No dash, no country

 }

 else {

 loc = new Locale(lang.substring(0, dash), lang.substring(dash+1));

 }

 return loc;

 }

 private ResourceBundle getBundleNoFallback(String bundleName, Locale loc) {

 // First get the fallback bundle -- the bundle that will be selected

 // if getBundle() can't find a direct match. This bundle can be

 // compared to the bundles returned by later calls to getBundle() in

 // order to detect when getBundle() finds a direct match.

 ResourceBundle fallback = null;

 try {

 fallback =

 ResourceBundle.getBundle(bundleName, new Locale("bogus", ""));

 }

 catch (MissingResourceException e) {

 // No fallback bundle was found.

 }

 try {

 // Get the bundle for the specified locale

 ResourceBundle bundle = ResourceBundle.getBundle(bundleName, loc);

Example 12-9. The LocaleNegotiator class (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DYNAMIC LANGUAGE NEGOTIATION 387
 // Is the bundle different than our fallback bundle?

 if (bundle != fallback) {

 // We have a real match!

 return bundle;

 }

 // So the bundle is the same as our fallback bundle.

 // We can still have a match, but only if our locale's language

 // matches the default locale's language.

 else if (bundle == fallback &&

 loc.getLanguage().equals(Locale.getDefault().getLanguage())) {

 // Another way to match

 return bundle;

 }

 else {

 // No match, keep looking

 }

 }

 catch (MissingResourceException e) {

 // No bundle available for this locale

 }

 return null; // no match

 }

 protected String getCharsetForLocale(Locale loc, String charsets) {

 // Note: This method ignores the client-specified charsets

 return LocaleToCharsetMap.getCharset(loc);

 }

}

Example 12-10. The LocaleToCharsetMap class

package com.oreilly.servlet;

import java.util.*;

public class LocaleToCharsetMap {

 private static Hashtable map;

 static {

 map = new Hashtable();

 map.put("ar", "ISO-8859-6");

 map.put("be", "ISO-8859-5");

 map.put("bg", "ISO-8859-5");

 map.put("ca", "ISO-8859-1");

Example 12-9. The LocaleNegotiator class (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

388 CHAPTER 12: INTERNATIONALIZATION
 map.put("cs", "ISO-8859-2");

 map.put("da", "ISO-8859-1");

 map.put("de", "ISO-8859-1");

 map.put("el", "ISO-8859-7");

 map.put("en", "ISO-8859-1");

 map.put("es", "ISO-8859-1");

 map.put("et", "ISO-8859-1");

 map.put("fi", "ISO-8859-1");

 map.put("fr", "ISO-8859-1");

 map.put("he", "ISO-8859-8");

 map.put("hr", "ISO-8859-2");

 map.put("hu", "ISO-8859-2");

 map.put("is", "ISO-8859-1");

 map.put("it", "ISO-8859-1");

 map.put("iw", "ISO-8859-8");

 map.put("ja", "Shift_JIS");

 map.put("ko", "EUC-KR"); // Requires JDK 1.1.6

 map.put("lt", "ISO-8859-2");

 map.put("lv", "ISO-8859-2");

 map.put("mk", "ISO-8859-5");

 map.put("nl", "ISO-8859-1");

 map.put("no", "ISO-8859-1");

 map.put("pl", "ISO-8859-2");

 map.put("pt", "ISO-8859-1");

 map.put("ro", "ISO-8859-2");

 map.put("ru", "ISO-8859-5");

 map.put("sh", "ISO-8859-5");

 map.put("sk", "ISO-8859-2");

 map.put("sl", "ISO-8859-2");

 map.put("sq", "ISO-8859-2");

 map.put("sr", "ISO-8859-5");

 map.put("sv", "ISO-8859-1");

 map.put("tr", "ISO-8859-9");

 map.put("uk", "ISO-8859-5");

 map.put("zh", "GB2312");

 map.put("zh_TW", "Big5");

 }

 public static String getCharset(Locale loc) {

 String charset;

 // Try for a full name match (may include country)

 charset = (String) map.get(loc.toString());

 if (charset != null) return charset;

 // If a full name didn't match, try just the language

 charset = (String) map.get(loc.getLanguage());

 return charset; // may be null

Example 12-10. The LocaleToCharsetMap class (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HTML FORMS 389
Future Directions
In the future, you can expect to see improved internationalization support in the
Servlet API and in Java itself. Some likely areas for improvement are these:

• Support for additional charsets, especially those charsets that are commonly
used on the Web.

• New classes that help an application support multiple languages at the same
time. These classes will make it easier for servlets to present information to the
user using one language, while using another language for administrative tasks
such as logging.

• New classes that support language negotiation using a list of multiple locales.
These classes will act in a similar fashion to LocaleNegotiator.

HTML Forms
Managing HTML forms requires a little extra work and a few special tricks when
you’re dealing with localized content. To understand the problem, imagine this
situation. An HTML form is sent as part of a Japanese page. It asks the user for his
name, which he enters as a string of Japanese characters. How is that name
submitted to the servlet? And, more importantly, how can the servlet read it?

The answer to the first question is that all HTML form data is sent as a sequence of
bytes. Those bytes are an encoded representation of the original characters. With
Western European languages, the encoding is the default, ISO-8859-1, with one
byte per character. For other languages, there can be other encodings. Browsers
tend to encode form data using the same encoding that was applied to the page
containing the form. Thus, if the Japanese page mentioned was encoded using
Shift_JIS, the submitted form data would also be encoded using Shift_JIS. Note,
however, that if the page did not specify a charset and the user had to manually
choose Shift_JIS encoding for viewing, many browsers stubbornly submit the form
data using ISO-8859-1.* Generally, the encoded byte string contains a large
number of special bytes that have to be URL-encoded. For example, if we assume
the Japanese form sends the user’s name using a GET request, the resulting URL
might look like this:

 }

}

* For more information on the internationalization of HTML and HTML forms, see RFC 2070 at http:
//www.ietf.org/rfc/rfc2070.txt.

Example 12-10. The LocaleToCharsetMap class (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

390 CHAPTER 12: INTERNATIONALIZATION
http://server:port/servlet/NameHandler?name=%8CK%8C%B4%90%B3%8E%9F

The answer to the second question, how can a servlet read the submitted informa-
tion, is a bit more complicated. A servlet has two choices. First, a servlet can leave
the form data in its raw encoded format, treating it essentially like a sequence of
bytes—with each byte awkwardly stored as a character in the parameter string. This
tactic is useful only if the servlet does not need to manipulate the data and can be
sure that the data is output only to the same user using the same charset. Alterna-
tively, a servlet can convert the form data from its native encoded format to a Java-
friendly Unicode string. This allows the servlet to freely manipulate the text and
output the text using alternate charsets. There is one problem with this plan,
however. Browsers currently provide no information to indicate which encoding
was used on the form data. Browsers may provide that information in the future
(using the Content-Type header in a POST, most likely), but for now, the servlet
is left responsible for tracking that information.

The Hidden Charset
The commonly accepted technique for tracking the charset of submitted form
data is to use a hidden charset form field.* Its value should be set to the charset of
the page in which it is contained. Then, any servlet receiving the form can read
the value of the charset field and know how to decode the submitted form data.

Example 12-11 demonstrates this technique with a form generator that sets the
charset to match the charset of the page. Here’s an English resource bundle that
might accompanying the servlet, stored as CharsetForm_en.properties:

title=CharsetForm

header=<H1>Charset Form</H1>

prompt=Enter text:

And here’s a Japanese resource, to be stored as CharsetForm_ja.properties:

title=CharsetForm

header=<H1>\u6587\u5b57\u30bb\u30c3\u30c8\u30fb\u30d5\u30a9\u30fc\u30e0</H1>

prompt=\u30c6\u30ad\u30b9\u30c8\u3092\u5165\u529b\u3057\u3066\u304f\u3060\

\u3055\u3044

A screen shot of the Japanese version is shown in Figure 12-6.

* Hidden form fields, if you remember, were first discussed in Chapter 7, where they were used for ses-
sion tracking.

Example 12-11. Saving the charset in a hidden form field

import java.io.*;

import java.util.*;

import javax.servlet.*;
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HTML FORMS 391
import javax.servlet.http.*;

import com.oreilly.servlet.LocaleNegotiator;

import com.oreilly.servlet.ServletUtils;

public class CharsetForm extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 try {

 String bundleName = "CharsetForm";

 String acceptLanguage = req.getHeader("Accept-Language");

 String acceptCharset = req.getHeader("Accept-Charset");

 LocaleNegotiator negotiator =

 new LocaleNegotiator(bundleName, acceptLanguage, acceptCharset);

 Locale locale = negotiator.getLocale();

 String charset = negotiator.getCharset();

 ResourceBundle bundle = negotiator.getBundle(); // may be null

 res.setContentType("text/html; charset=" + charset);

 res.setHeader("Content-Language", locale.getLanguage());

 res.setHeader("Vary", "Accept-Language");

 PrintWriter out = res.getWriter();

 if (bundle != null) {

 out.println("<HTML><HEAD><TITLE>");

 out.println(bundle.getString("title"));

 out.println("</TITLE></HEAD>");

 out.println("<BODY>");

 out.println(bundle.getString("header"));

 out.println("<FORM ACTION=/servlet/CharsetAction METHOD=get>");

 out.println("<INPUT TYPE=hidden NAME=charset value=" + charset + ">");

 out.println(bundle.getString("prompt"));

 out.println("<INPUT TYPE=text NAME=text>");

 out.println("</FORM>");

 out.println("</BODY></HTML>");

 }

 else {

 out.println("Bundle could not be found.");

 }

 }

 catch (Exception e) {

 log(ServletUtils.getStackTraceAsString(e));

 }

Example 12-11. Saving the charset in a hidden form field (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

392 CHAPTER 12: INTERNATIONALIZATION
The servlet responsible for handling the submitted form is shown in
Example 12-12. This servlet reads the submitted text and converts it to Unicode,
then outputs the characters using the UTF-8 encoding. As a bonus, it also displays
the received string as a Unicode escape string, showing what you would have to
enter in a Java source file or resource bundle to create the same output. This lets
the servlet act as a web-based native charset to Unicode string translator. Sample
output is shown in Figure 12-7.

 }

}

Figure 12-6. A Japanese form, with the user entering text

Example 12-12. Receiving the charset in a hidden form field

import java.io.*;

import java.text.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class CharsetAction extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 try {

 res.setContentType("text/plain; charset=UTF-8");

 PrintWriter out = res.getWriter();

 String charset = req.getParameter("charset");

Example 12-11. Saving the charset in a hidden form field (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HTML FORMS 393
 // Get the text parameter

 String text = req.getParameter("text");

 // Now convert it from an array of bytes to an array of characters.

 // Do this using the charset that was sent as a hidden field.

 // Here we bother to read only the first line.

 BufferedReader reader = new BufferedReader(

 new InputStreamReader(new StringBufferInputStream(text), charset));

 text = reader.readLine();

 out.println("Received charset: " + charset);

 out.println("Received text: " + text);

 out.println("Received text (escaped): " + toUnicodeEscapeString(text));

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 }

 public void doPost(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 doGet(req, res);

 }

 private static String toUnicodeEscapeString(String str) {

 // Modeled after the code in java.util.Properties.save()

 StringBuffer buf = new StringBuffer();

 int len = str.length();

 char ch;

 for (int i = 0; i < len; i++) {

 ch = str.charAt(i);

 switch (ch) {

 case '\\': buf.append("\\\\"); break;

 case '\t': buf.append("\\t"); break;

 case '\n': buf.append("\\n"); break;

 case '\r': buf.append("\\r"); break;

 default:

 if (ch >= ' ' && ch <= 127) {

 buf.append(ch);

 }

 else {

 buf.append('\\');

 buf.append('u');

 buf.append(toHex((ch >> 12) & 0xF));

 buf.append(toHex((ch >> 8) & 0xF));

 buf.append(toHex((ch >> 4) & 0xF));

Example 12-12. Receiving the charset in a hidden form field (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

394 CHAPTER 12: INTERNATIONALIZATION
The most interesting part of this servlet is the bit that receives and converts the
submitted text.

String text = req.getParameter("text");

BufferedReader reader = new BufferedReader(

 new InputStreamReader(new StringBufferInputStream(text), charset));

text = reader.readLine();

The first line receives the text in its raw format. Although it’s stored as a String,
it’s not a true String. Each character in the String stores one byte of the
encoded text. The second and third lines wrap the text with a
StringBufferInputStream, an InputStreamReader, and a BufferedReader.
The decoding happens with the InputStreamReader, whose constructor accepts
the encoding specified by the charset field. Finally, the BufferedReader wraps
around the InputStreamReader for convenience. This lets us receive the text one
line at a time, as shown in the fourth line.

 buf.append(toHex((ch >> 0) & 0xF));

 }

 }

 }

 return buf.toString();

 }

 private static char toHex(int nibble) {

 return hexDigit[(nibble & 0xF)];

 }

 private static char[] hexDigit = {

 '0','1','2','3','4','5','6','7','8','9','a','b','c','d','e','f'

 };

}

Figure 12-7. Handling a Japanese form

Example 12-12. Receiving the charset in a hidden form field (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

RECEIVING MULTILINGUAL INPUT 395
Receiving Multilingual Input
We need to discuss one more aspect of internationalization: receiving multilin-
gual input. It’s actually quite simple for a servlet to receive multilingual character
data. The ServletRequest.getReader() method handles the task automati-
cally. It returns a BufferedReader specially built to read the character encoding
of the input data. For example, if the Content-Type of the servlet’s input is
"text/html; charset=Shift_JIS", the BufferedReader is one that reads
Shift_JIS characters.

Because getReader() works automatically, it means our Deblink servlet and
other chained servlets found throughout the book are already multilingual
friendly. No matter what charset is used for the content they receive, they always
read the input characters correctly using getReader().

Example 12-13 shows another servlet that uses getReader(). This servlet is
designed to be the last servlet in a chain. It uses getReader() to read its input as
character data, then outputs the characters using the UTF-8 encoding.

Example 12-13. UTF-8 encoder

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class UTF8 extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 try {

 // Get a reader to read the incoming data

 BufferedReader reader = req.getReader();

 // Get a writer to write the data in UTF-8

 res.setContentType("text/html; charset=UTF-8");

 PrintWriter out = res.getWriter();

 // Read and write 4K chars at a time

 // (Far more efficient than reading and writing a line at a time)

 char[] buf = new char[4 * 1024]; // 4Kchar buffer

 int len;

 while ((len = reader.read(buf, 0, buf.length)) != -1) {

 out.write(buf, 0, len);

 }

 }

 catch (Exception e) {

 getServletContext().log(e, "Problem filtering page to UTF-8");

 }
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

396 CHAPTER 12: INTERNATIONALIZATION
Sometimes it’s useful for a servlet to determine the charset of its input. For this
you can use the getCharacterEncoding() method of ServletRequest, intro-
duced in the Servlet API 2.0. Note that this method does not exist in the Java Web
Server 1.1.x implementation of ServletRequest, as the method was added
between the release of the Java Web Server 1.1 and the official Servlet API 2.0
release with JSDK 2.0. For maximum portability you can do what getReader()
does and fetch the request’s content type using getContentType(). Any charset
information can be found in the content type following the "charset=" tag.

 }

 public void doPost(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 doGet(req, res);

 }

}

Example 12-13. UTF-8 encoder (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

:

Chapter 13

In this chapter:
• Parsing Parameters
• Sending Email
• Using Regular

Expressions
• Executing Programs
• Using Native Methods
• Acting as an RMI

Client
• Debugging
• Performance Tuning

Every house has a junk draw
that don't exactly fit into an
because when they’re neede
drawer. It holds a whole slew
anywhere else. Included are
programs, use regular expre
clients. There’s also a demo
some suggestions for servlet p
Java™
Copyright © 2
13

13.Odds and Ends 13
er—a drawer loaded to the brim with odds and ends
y organized drawer and yet can’t be thrown away
d they’re really needed. This chapter is like that

of useful servlet examples and tips that don’t really fit
servlets that parse parameters, send email, execute
ssion engines, use native methods, and act as RMI
nstration of basic debugging techniques, along with
erformance tuning.

Parsing Parameters
If you’ve tried your hand at writing your own servlets as you’ve read through this
book, you’ve probably noticed how awkward it can be to get and parse request
parameters, especially when the parameters have to be converted to some non-
String format. For example, let’s assume you want to fetch the count parameter
and get its value as an int. Furthermore, let’s assume you want to handle error
conditions by calling handleNoCount() if count isn’t given and
handleMalformedCount() if count cannot be parsed as an integer. To do this
using the standard Servlet API requires the following code:

int count;

String param = req.getParameter("count");

if (param == null || param.length() == 0) {

 handleNoCount();

}

else {

 try {

 count = Integer.parseInt(param);
397
 Servlet Programming, eMatter Edition

000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

398 CHAPTER 13: ODDS AND ENDS
 }

 catch (NumberFormatException e) {

 handleMalformedCount();

 }

}

Does this look like any code you’ve written? It’s not very pretty, is it? A better solu-
tion is to hand off the responsibility for getting and parsing parameters to a utility
class. The com.oreilly.servlet.ParameterParser class is just such a class. By
using ParameterParser, we can rewrite the previous code to be more elegant:

int count;

ParameterParser parser = new ParameterParser(req);

try {

 count = parser.getIntParameter("count");

}

catch (NumberFormatException e) {

 handleMalformedCount();

}

catch (ParameterNotFoundException e) {

 handleNoCount();

}

The parameter parser’s getIntParameter()method returns the specified param-
eter’s value as an int. It throws a NumberFormatException if the parameter
cannot be converted to an int and a ParameterNotFoundException if the
parameter isn’t part of the request. It also throws ParameterNotFoundException
if the parameter had a value of the empty string. This often happens with form
submissions for text fields when nothing is entered, something that for all intents
and purposes should be treated the same as a missing parameter.

If it’s enough that a servlet use a default value if there’s a problem with a param-
eter, as is often the case, the code can be simplified even further:

ParameterParser parser = new ParameterParser(req);

int count = parser.getIntParameter("count", 0);

This second version of getIntParameter() takes a default value of 0 that is
returned in lieu of throwing an exception.

ParameterParser Code
The ParameterParser class contains more than a dozen methods that return
request parameters—two for each of Java’s native types. It also has two
getStringParameter() methods in case you want to get the parameter in its raw
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PARSING PARAMETERS 399
String format. The code for ParameterParser is provided in Example 13-1;
ParameterNotFoundException is in Example 13-2.

Example 13-1. The ParameterParser class

package com.oreilly.servlet;

import java.io.*;

import javax.servlet.*;

public class ParameterParser {

 private ServletRequest req;

 public ParameterParser(ServletRequest req) {

 this.req = req;

 }

 public String getStringParameter(String name)

 throws ParameterNotFoundException {

 // Use getParameterValues() to avoid the once-deprecated getParameter()

 String[] values = req.getParameterValues(name);

 if (values == null)

 throw new ParameterNotFoundException(name + " not found");

 else if (values[0].length() == 0)

 throw new ParameterNotFoundException(name + " was empty");

 else

 return values[0]; // ignore multiple field values

 }

 public String getStringParameter(String name, String def) {

 try { return getStringParameter(name); }

 catch (Exception e) { return def; }

 }

 public boolean getBooleanParameter(String name)

 throws ParameterNotFoundException {

 return new Boolean(getStringParameter(name)).booleanValue();

 }

 public boolean getBooleanParameter(String name, boolean def) {

 try { return getBooleanParameter(name); }

 catch (Exception e) { return def; }

 }

 public byte getByteParameter(String name)

 throws ParameterNotFoundException, NumberFormatException {

 return Byte.parseByte(getStringParameter(name));

 }
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

400 CHAPTER 13: ODDS AND ENDS
 public byte getByteParameter(String name, byte def) {

 try { return getByteParameter(name); }

 catch (Exception e) { return def; }

 }

 public char getCharParameter(String name)

 throws ParameterNotFoundException {

 String param = getStringParameter(name);

 if (param.length() == 0) // shouldn't be possible

 throw new ParameterNotFoundException(name + " is empty string");

 else

 return (param.charAt(0));

 }

 public char getCharParameter(String name, char def) {

 try { return getCharParameter(name); }

 catch (Exception e) { return def; }

 }

 public double getDoubleParameter(String name)

 throws ParameterNotFoundException, NumberFormatException {

 return new Double(getStringParameter(name)).doubleValue();

 }

 public double getDoubleParameter(String name, double def) {

 try { return getDoubleParameter(name); }

 catch (Exception e) { return def; }

 }

 public float getFloatParameter(String name)

 throws ParameterNotFoundException, NumberFormatException {

 return new Float(getStringParameter(name)).floatValue();

 }

 public float getFloatParameter(String name, float def) {

 try { return getFloatParameter(name); }

 catch (Exception e) { return def; }

 }

 public int getIntParameter(String name)

 throws ParameterNotFoundException, NumberFormatException {

 return Integer.parseInt(getStringParameter(name));

 }

 public int getIntParameter(String name, int def) {

 try { return getIntParameter(name); }

 catch (Exception e) { return def; }

Example 13-1. The ParameterParser class (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SENDING EMAIL 401
Sending Email
Sometimes it’s necessary, or just convenient, for a servlet to fire off an email
message. For example, imagine a servlet that receives data from a user feedback
form. The servlet might want to send the feedback data to a mailing list of inter-
ested parties. Or imagine a servlet that encounters an unexpected problem and
knows to send an email page to its administrator asking for help.

A servlet has four choices for sending email:

 }

 public long getLongParameter(String name)

 throws ParameterNotFoundException, NumberFormatException {

 return Long.parseLong(getStringParameter(name));

 }

 public long getLongParameter(String name, long def) {

 try { return getLongParameter(name); }

 catch (Exception e) { return def; }

 }

 public short getShortParameter(String name)

 throws ParameterNotFoundException, NumberFormatException {

 return Short.parseShort(getStringParameter(name));

 }

 public short getShortParameter(String name, short def) {

 try { return getShortParameter(name); }

 catch (Exception e) { return def; }

 }

}

Example 13-2. The ParameterNotFoundException class

package com.oreilly.servlet;

public class ParameterNotFoundException extends Exception {

 public ParameterNotFoundException() {

 super();

 }

 public ParameterNotFoundException(String s) {

 super(s);

 }

}

Example 13-1. The ParameterParser class (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

402 CHAPTER 13: ODDS AND ENDS
• It can manage the details itself—establishing a raw socket connection to a mail
server and speaking a low-level mail transport protocol, usually the so-called
Simple Mail Transfer Protocol (SMTP).

• It can run on external command-line email program, if the server system has
such a program.

• It can use the new JavaMail API, designed to support complicated mail han-
dling, filing, and processing (see http://java.sun.com/products/javamail).

• It can use one of the many freely available mail classes that abstracts the details
of sending email into simple, convenient method calls.

For most servlets, we recommend the final approach for its simplicity.

Using sun.net.smtp.SmtpClient
For the purposes of this example, we’ll demonstrate a servlet that uses the sun.
net.smtp.SmtpClient class. It’s conveniently provided with Sun’s JDK and most
JVMs descended from it, but we should warn you that it’s unsupported and subject
to change (though it hasn’t changed since JDK 1.0). Using it is simple:

1. Call SmtpClient smtp = new SmtpClient(). Optionally, pass the constructor
the name of a host to use as the mail server, which replaces the default of local-
host. Most Unix machines can act as SMTP mail servers.

2. Call smtp.from(fromAddress), specifying the address of the sender. The
address doesn’t have to be valid.

3. Call smtp.to(toAddress), specifying the address of the receiver.

4. Call PrintStream msg = smtp.startMessage() to get an output stream for
the message.

5. Write any mail headers to the PrintStream. For example, "Subject:
Customer feedback". The headers should conform to the format given in
RFC 822 at http://www.ietf.org/rfc/rfc822.txt. The basic syntax is "name: value".

6. Write the body of the mail message to the PrintStream.

7. Call smtp.closeServer() to close the connection to the server and send the
message.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SENDING EMAIL 403
Emailing Form Data
Example 13-3 shows a servlet that emails the form data it receives to a mailing list.
Notice the extensive use of the ParameterParser class.

Example 13-3. Sending mail from a servlet

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

import com.oreilly.servlet.ParameterParser;

import com.oreilly.servlet.ServletUtils;

import sun.net.smtp.SmtpClient;

public class MailServlet extends HttpServlet {

 static final String FROM = "MailServlet";

 static final String TO = "feedback-folks@attentive-company.com";

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/plain");

 PrintWriter out = res.getWriter();

 ParameterParser parser = new ParameterParser(req);

 String from = parser.getStringParameter("from", FROM);

 String to = parser.getStringParameter("to", TO);

 try {

 SmtpClient smtp = new SmtpClient(); // assume localhost

 smtp.from(from);

 smtp.to(to);

 PrintStream msg = smtp.startMessage();

 msg.println("To: " + to); // so mailers will display the To: address

 msg.println("Subject: Customer feedback");

 msg.println();

 Enumeration enum = req.getParameterNames();

 while (enum.hasMoreElements()) {

 String name = (String)enum.nextElement();

 if (name.equals("to") || name.equals("from")) continue; // Skip to/from

 String value = parser.getStringParameter(name, null);

 msg.println(name + " = " + value);

 }
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

404 CHAPTER 13: ODDS AND ENDS
This servlet first determines the “from” and “to” addresses for the message. The
default values are set in the FROM and TO variables, although a submitted form can
include (probably hidden) fields that specify alternate from and to addresses. The
servlet then begins an SMTP email message. It connects to the local host and
addresses the message. Next, it sets its headers and fills the body with the form
data, ignoring the to and from variables. Finally, it sends the message and thanks
the user for the submission. If there’s a problem, it informs the user and logs the
exception.

Using Regular Expressions
If you’re a servlet programmer with a background in Perl-based CGI scripting and
you’re still smitten with Perl’s regular expression capabilities, this section is for
you. Here we show how to use Perl 5 regular expressions from within Java. For
those of you who are unfamiliar with regular expressions, they are a mechanism
for allowing extremely advanced string manipulation with minimal code. Regular
expressions are wonderfully explained in all their glory in the book Mastering
Regular Expressions by Jeffrey E. F. Friedl (O’Reilly).

With all the classes and capabilities Sun has added in JDK 1.1 and JDK 1.2, one
feature still absent is a regular expression engine. Ah, well, not to worry. As with
most Java features, if you can’t get it from Sun, a third-party vendor is probably
offering what you need at a reasonable price.

Several companies offer full-featured regular expression engines. One of the first
was Thought, Inc., which developed VanillaSearch. It’s available for trial down-
load and purchase at http://www.thoughtinc.com. More recently, Original Reusable
Objects, Inc. has come out with a product called OROMatcher (along with a utility
package built using OROMatcher called PerlTools). These products are available

 msg.println();

 msg.println("---");

 msg.println("Sent by " + HttpUtils.getRequestURL(req));

 smtp.closeServer();

 out.println("Thanks for the submission...");

 }

 catch (IOException e) {

 out.println("There was a problem handling the submission...");

 getServletContext().log(e, "There was a problem sending email");

 }

 }

}

Example 13-3. Sending mail from a servlet (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

USING REGULAR EXPRESSIONS 405
for download at http://www.oroinc.com. A binary license to use OROMatcher and
PerlTools is being offered absolutely free. Support, source, and “mere” redistribu-
tion (that is, as added value to an IDE) cost extra.

Improving Deblink with Regular Expressions
To demonstrate the use of regular expressions, let’s use OROMatcher and Perl-
Tools to rewrite the Deblink servlet originally shown in Chapter 2, HTTP Servlet
Basics. As you may recall, Deblink acted as a filter to remove the <BLINK> and </
BLINK> tags from HTML pages. The original Deblink code is shown in
Example 13-4 to help refresh your memory.

Example 13-4. The original Deblink

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class Deblink extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 String contentType = req.getContentType(); // get the incoming type

 if (contentType == null) return; // nothing incoming, nothing to do

 res.setContentType(contentType); // set outgoing type to be incoming type

 PrintWriter out = res.getWriter();

 BufferedReader in = req.getReader();

 String line = null;

 while ((line = in.readLine()) != null) {

 line = replace(line, "<BLINK>", "");

 line = replace(line, "</BLINK>", "");

 out.println(line);

 }

 }

 public void doPost(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 doGet(req, res);

 }

 private String replace(String line, String oldString, String newString) {

 int index = 0;

 while ((index = line.indexOf(oldString, index)) >= 0) {

 // Replace the old string with the new string (inefficiently)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

406 CHAPTER 13: ODDS AND ENDS
As we pointed out in Chapter 2, this version of Deblink has one serious limita-
tion: it’s case sensitive. It won’t remove <blink>, </blink>, <Blink>, or </
Blink>. Sure, we could enumerate inside Deblink all the case combinations that
should be removed, but regular expressions provide a much simpler alternative.

With a single regular expression, we can rewrite Deblink to remove the opening
and closing blink tags, no matter how they are capitalized. The regular expression
we’ll use is "</?blink>". This matches both <blink> and </blink>. (The ?
character means the previous character is optional.) With a case-insensitive mask
set, this expression also matches <BLINK>, </Blink>, and even <bLINK>. Any
occurrence of this regular expression can be replaced with the empty string, to
completely deblink an HTML page. The rewritten Deblink code appears in
Example 13-5.

 line = line.substring(0, index) +

 newString +

 line.substring(index + oldString.length());

 index += newString.length();

 }

 return line;

 }

}

Example 13-5. Deblink rewritten using regular expressions

import java.io.*;

import javax.servlet.*;

import javax.servlet.http.*;

import com.oroinc.text.perl.*; // PerlTools package

public class Deblink extends HttpServlet {

 Perl5Util perl = new Perl5Util();

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 String contentType = req.getContentType(); // get the incoming type

 if (contentType == null) return; // nothing incoming, nothing to do

 res.setContentType(contentType); // set outgoing type to be incoming type

 PrintWriter out = res.getWriter();

 BufferedReader in = req.getReader();

Example 13-4. The original Deblink (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

EXECUTING PROGRAMS 407
The most important lines of this servlet are the lines that replace our "</?blink>
" expression with the empty string:

if (perl.match("#</?blink>#i", line))

 line = perl.substitute("s#</?blink>##ig", line);

The first line does a case-insensitive search for the regular expression </?blink>.
The syntax is exactly like Perl. It may look slightly unfamiliar, though, because we
chose to use hash marks instead of slashes to avoid having to escape the slash
that’s part of the expression (which would result in "/<\\/?blink>/i"). The
trailing "i" indicates the regular expression is case insensitive.

The second line substitutes all occurrences of the regular expression with the
empty string. This line alone would accomplish the same as both lines together,
but it’s more efficient to do the check first. The syntax is also identical to Perl. The
text between the first pair of hashes is the regular expression to search for. The
text between the second pair is the replacement text. The trailing "g" indicates
that all occurrences should be replaced (the default is one replacement per line).

For more information on what can be done with regular expressions in Java, see
the documentation that comes with each of the third-party products.

Executing Programs
Sometimes a servlet needs to execute an external program. This is generally
important in situations where an external program offers functionality that isn’t
easily available from within Java. For example, a servlet could call an external

 try {

 String line = null;

 while ((line = in.readLine()) != null) {

 if (perl.match("#</?blink>#i", line))

 line = perl.substitute("s#</?blink>##ig", line);

 out.println(line);

 }

 }

 catch(MalformedPerl5PatternException e) { // only thrown during development

 log("Problem compiling a regular expression: " + e.getMessage());

 }

 }

 public void doPost(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 doGet(req, res);

 }

}

Example 13-5. Deblink rewritten using regular expressions (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

408 CHAPTER 13: ODDS AND ENDS
program to perform an image manipulation or to check the status of the server.
Launching an external program raises a number of security concerns. For this
reason, it’s an action that can be taken only by servlets running with a fairly lenient
security manager—specifically, a security manager that grants permission for the
servlet to call the exec() method of java.lang.Runtime.

Finger
The finger program queries a (possibly remote) computer for a list of currently
logged in users. It’s available on virtually all Unix systems and some Windows NT
machines with networking capabilities. The finger program works by connecting to
a finger daemon (usually named fingerd) that listens on port 79. finger makes its
request of fingerd using a custom “finger” protocol, and fingerd replies with the
appropriate information. Most Unix systems run fingerd, though many security-
conscious administrators turn it off to limit information that could be used for
break-in attempts. It’s still fairly rare to find fingerd on Windows systems. Run
without any arguments, finger reports all users of the local machine. The local
machine must be running fingerd. Here’s an example:

% finger

Login Name TTY Idle When Office

jhunter Jason Hunter q0 3:13 Thu 12:13

ktaylor Kristi Taylor q1 Thu 12:18

Run with a username as an argument, finger reports on just that user:

% finger jhunter

Login name: jhunter In real life: Jason Hunter

Directory: /usr/people/jhunter Shell: /bin/tcsh

On since Jan 1 12:13:28 on ttyq0 from :0.0

3 hours 13 minutes Idle Time

On since Jan 1 12:13:30 on ttyq2 from :0.0

Run with a hostname as an argument, finger reports all the users of the specified
host. The remote host must be running fingerd:

% finger @deimos

Login Name TTY Idle When Office

bday Bill Day q0 17d Mon 10:45

And, of course, run with a username and hostname, finger reports on the specified
user on the specified host:

% finger bday@deimos

[deimos.engr.sgi.com]

Login name: bday In real life: Bill Day

Directory: /usr/people/bday Shell: /bin/tcsh

On since Dec 15 10:45:22 on ttyq0 from :0.0

17 days Idle Time
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

EXECUTING PROGRAMS 409
Executing the Finger Command
Let’s assume that a servlet wants access to the information retrieved by finger. It has
two options: it can establish a socket connection to fingerd and make a request for
information just like any other finger client, or it can execute the command-line
finger program to make the connection on its behalf and read the information
from finger’s output. We’ll show the second technique here.*

Example 13-6 shows how a servlet can execute the finger command to see who’s
logged into the local machine. It reads the command’s output and prints it to its
output stream.

* If you’re interested in the code necessary to connect to fingerd, see the FingerServlet example pro-
vided with the Java Web Server.

Example 13-6. Executing the finger command from a servlet

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

import com.oreilly.servlet.ServletUtils;

public class Finger extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/plain");

 PrintWriter out = res.getWriter();

 String command = "finger";

 Runtime runtime = Runtime.getRuntime();

 Process process = null;

 try {

 process = runtime.exec(command);

 DataInputStream in = new DataInputStream(process.getInputStream());

 // Read and print the output

 String line = null;

 while ((line = in.readLine()) != null) {

 out.println(line);

 }

 }

 catch (Exception e) {

 out.println("Problem with finger: " +

 ServletUtils.getStackTraceAsString(e));
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

410 CHAPTER 13: ODDS AND ENDS
This servlet uses the exec() command just like any other Java class would. It
executes the finger command, then reads and prints the output. If there’s a
problem, the servlet catches an exception and prints the stack trace to the user.
This servlet assumes the finger command exists in the default search path. If that
isn’t the case, change the command string to specify the path where finger can be
found.

We should point out that, although Java is executing native code when it executes
the finger program, it doesn’t open itself up to the risks that normally exist when
executing native code. The reason is that the finger program executes as a sepa-
rate process. It can crash or be killed without impacting the server executing the
servlet.

Executing Finger with Arguments
Now let’s assume we want to pass an argument to the finger command. The usage is
slightly different. exec() takes either a single string that specifies a command or
an array of strings that specifies a command and the arguments to pass to that
command. To run finger jhunter the code looks like Example 13-7.

 }

 }

}

Example 13-7. Adding a parameter to the executed command

import java.io.*;

import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

import com.oreilly.servlet.ServletUtils;

public class Finger extends HttpServlet {

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/plain");

 PrintWriter out = res.getWriter();

 String[] command = { "finger", "jhunter" }; // Only change!

 Runtime runtime = Runtime.getRuntime();

 Process process = null;

 try {

 process = runtime.exec(command);

Example 13-6. Executing the finger command from a servlet (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

EXECUTING PROGRAMS 411
The command variable is now the string array {"finger", "jhunter"}. The
command would not work as the single string "finger jhunter".

Executing Finger with Redirected Output
Finally, let’s assume we want to redirect the output from our finger command. We
may want to redirect the output to a file for later use, as in finger jhunter > /tmp/
jhunter. Or we may want to redirect the output to the grep program to remove any
references to some user, as in finger | grep -v jhunter.

This task is harder than it may appear. If the command variable is set to the string
"finger | grep -v jhunter", Java treats this string as the name of as a single
program—one that it most assuredly won’t find. If the command variable is set to
the string array "{"finger", "|", "grep", "-v", "jhunter"}", Java executes
the finger command and pass it the next four strings as parameters, no doubt thor-
oughly confusing finger.

The solution requires an understanding that redirection is a feature of the shell.
The shell is the program into which you normally type commands. On Unix the
most common shells are csh, tcsh, bash, and sh. On Windows 95, the shell is usually
command.com. On Windows NT, the shell is either command.com or cmd.exe.

Instead of executing finger directly, we can execute a shell and tell it the command
string we want run. That string can contain the finger command and any sort of
redirection. The shell can parse the command and correctly recognize and
perform the redirection. The exact command needed to execute a shell and
program depends on the shell and thus on the operating system. This technique
therefore necessarily limits the platform independence of the servlets that use it.

 BufferedReader in =

 new BufferedReader(new InputStreamReader(process.getInputStream()));

 // Read and print the output

 String line = null;

 while ((line = in.readLine()) != null) {

 out.println(line);

 }

 }

 catch (Exception e) {

 out.println("Problem with finger: " +

 ServletUtils.getStackTraceAsString(e));

 }

 }

}

Example 13-7. Adding a parameter to the executed command (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

412 CHAPTER 13: ODDS AND ENDS
On a Unix system, the following command variable asks csh to execute the
command finger | grep -v jhunter:

String[] command = { "/bin/csh", "-c", "finger | grep -v jhunter" };

The program Java executes is /bin/csh. csh is passed two arguments: -c, which asks
the shell to execute the next parameter, and finger | grep -v jhunter, which is
executed by the shell.

On a Windows system, the command variable looks like this:

String[] command = { "command.com", "/c", "finger | grep -v jhunter" };

The /c argument for command.com works the same way -c did for csh and, yes, the .
com suffix is necessary. Windows NT users should note that using cmd.exe is prob-
lematic because it redirects its output to a new window instead of to the Java
runtime that spawned it. In fact, even launching the Java Web Server from a cmd.
exe shell can cause the command.com command to fail.

Using Native Methods
Despite Sun’s push for 100% Pure Java, native code still has its place. You need
native code to do things that Java (and external programs launched by Java)
cannot do: locking files, accessing user IDs, accessing shared memory, sending
faxes, and so on. Native code is also useful when accessing legacy data through
non-Java gateways. Last, in situations where every last bit of performance is vital,
native code libraries can give a servlet a big boost.

Native code, however, should not be used except when absolutely necessary, since
if the native code run by a servlet goes south, the entire server goes down with it!
The security protections in Java can’t protect the server from native code crashes.
For this reason, it’s wise not to use the native JDBC-ODBC bridge from a servlet
because many ODBC drivers seem to have problems with multithreaded access.
Native code also limits the platform independence of a servlet. While this may not
matter for custom-built servlets tied to a particular server, it’s something to
remember.

How a servlet accesses native methods depends on the web server and JVM in
which it’s running. To take a risk and speak in broad generalities, let us say that
you can pretty much expect your web server and JVM to support the standard Java
Native Interface (JNI). Using JNI is fairly involved, and even a basic introduction
extends beyond the scope of this chapter. For a tutorial on JNI, see the upcoming
Java Native Methods, by Alligator Descartes (O’Reilly).

When using JNI with servlets, remember these things:
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ACTING AS AN RMI CLIENT 413
• Only the most liberal server security managers allow a servlet to execute native
code.

• There is a common JVM bug that doesn’t allow native code to be loaded by a
class that was loaded with a custom class loader (such as the class loader that
loads servlets from the default servlet directory). Servlets using native code
may therefore need to reside in the server’s classpath (server_root/classes).

• The directory where the shared library (or dynamic load library or DLL) that
contains the native code is placed depends on the web server and JVM. Some
servers have specific locations where they look for shared libraries. For exam-
ple, the Java Web Server looks in server_root\lib on Windows and server_
root/lib/sparc/solaris on Solaris. If the server doesn’t provide a specific shared
library directory, try placing the library in a JVM-specific location such as jdk_
root\bin or under jdk_root/lib, or try an operating system-specific location
such as windows_root\system32 or /usr/lib.

Acting as an RMI Client
In Chapter 10, Applet-Servlet Communication, we saw how a servlet can act as an RMI
server. Here we turn the tables and see a servlet acting as an RMI client. By taking
the role of an RMI client, a servlet can leverage the services of other servers to
accomplish its task, coordinate its efforts with other servers or servlets on those
servers, and/or act as an proxy on behalf of applets that can’t communicate with
RMI servers themselves.

Example 13-8 shows DaytimeClientServlet, a servlet that gets the current time
of day from the DaytimeServlet RMI server shown in Chapter 10.

Example 13-8. A servlet as an RMI client

import java.io.*;

import java.rmi.*;

import java.rmi.registry.*;

import javax.servlet.*;

import javax.servlet.http.*;

public class DaytimeClientServlet extends HttpServlet {

 DaytimeServer daytime;

 // Returns a reference to a DaytimeServer or null if there was a problem.

 protected DaytimeServer getDaytimeServer() {

 // Set the security manager if it hasn't been done already.

 // Provides protection from a malicious DaytimeServer stub.

 if (System.getSecurityManager() == null) {

 System.setSecurityManager(new RMISecurityManager());
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

414 CHAPTER 13: ODDS AND ENDS
 }

 try {

 Registry registry =

 LocateRegistry.getRegistry(getRegistryHost(), getRegistryPort());

 return (DaytimeServer)registry.lookup(getRegistryName());

 }

 catch (Exception e) {

 getServletContext().log(e, "Problem getting DaytimeServer reference");

 return null;

 }

 }

 private String getRegistryName() {

 String name = getInitParameter("registryName");

 return (name == null ? "DaytimeServlet" : name);

 }

 private String getRegistryHost() {

 // Return either the hostname given by "registryHost" or

 // if no name was given return null to imply localhost

 return getInitParameter("registryHost");

 }

 private int getRegistryPort() {

 try { return Integer.parseInt(getInitParameter("registryPort")); }

 catch (NumberFormatException e) { return Registry.REGISTRY_PORT; }

 }

 public void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException {

 res.setContentType("text/plain");

 PrintWriter out = res.getWriter();

 // Get a daytime object if we haven't before

 if (daytime == null) {

 daytime = getDaytimeServer();

 if (daytime == null) {

 // Couldn't get it, so report we're unavailable.

 throw new UnavailableException(this, "Could not locate daytime");

 }

 }

 // Get and print the current time on the (possibly remote) daytime host

 out.println(daytime.getDate().toString());

 }

}

Example 13-8. A servlet as an RMI client (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DEBUGGING 415
This servlet should remind you of the applet you saw in Chapter 10. Both servlets
and applets perform the same basic steps to access an RMI server. They both
locate a registry using a hostname and port number, then use that registry to look
up a reference to the remote object. The only significant difference is that a
servlet must first ensure it’s running under the protection of a default security
manager. Every RMI client has to have a security manager in place to protect itself
from hostile remotely loaded stubs. An applet is guaranteed to run under an
applet security manager, so this step isn’t necessary. A servlet, however, can
operate without a default security manager, so before acting as an RMI client it
may need to assign one.

Debugging
The testing/debugging phase is one of the hardest aspects of developing servlets.
Servlets tend to involve a large amount of client/server interaction, making errors
likely—but hard to reproduce. It can also be hard to track down the cause of
nonobvious errors because servlets don’t work well with standard debuggers, since
they run inside a heavily multithreaded and generally complex web server. Here
are a few hints and suggestions that may aid you in your debugging.

Check the Logs
When you first think there might be a problem, check the logs. Most servers
output an error log where you can find a list of all the errors observed by the
server and an event log where you can find a list of interesting servlet events. The
event log may also hold the messages logged by servlets through the log()
method, but not always.

Note that many servers buffer their output to these logs to improve performance.
When hunting down a problem, you may want to stop this buffering (usually by
reducing the server’s buffer size to 0 bytes), so you can see problems as they occur.
Be sure to reset the buffer size to a reasonable value afterward.

Output Extra Information
If you don’t see an indication of the problem in the server’s logs, try having your
servlet log extra information with the log() method. As you’ve seen in examples
elsewhere in this book, we habitually log stack traces and other error situations.
During debugging, you can add a few temporary log() commands as a poor
man’s debugger, to get a general idea of the code execution path and the values
of the servlet’s variables. Sometimes it’s convenient to leave the log() commands
in a servlet surrounded by if clauses so they trigger only when a specific debug
init parameter is set to true.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

416 CHAPTER 13: ODDS AND ENDS
Extracting the extra information from the server’s logs can at times be unwieldy.
To make the temporary debugging information easier to find, you can have a
servlet output its debug information to the client (through the PrintWriter) or
to a console on the server (through System.out). Not all servers have a console
associated with a servlet’s System.out; some redirect the output to a file instead.

Use a Standard Debugger
It’s also possible to use a standard debugger to track down servlet problems,
although exactly how might not be intuitively obvious. After all, you can’t debug a
servlet directly because servlets aren’t standalone programs. Servlets are server
extensions, and, as such, they need to run inside a server.

Fortunately, Sun provides a simple “servlet runner” server perfect for debugging
servlets. This servlet runner acts as a small all-Java web server that is simpler and
more lightweight than the Java Web Server—it handles only HTTP requests for
servlets, and it doesn’t even serve files. You’ll find the servlet runner packaged as
part of the Java Servlet Development Kit (JSDK), available from http://jserv.java.
sun.com.

The servlet runner can be executed from the command line as the servletrunner
shell script on a Unix system or the servletrunner.exe program on Windows. What
servletrunner does is set the classpath to include the appropriate classes and then
execute java sun.servlet.http.HttpServer. The HttpServer class contains the main()
method that listens for incoming requests for servlets. By default, it listens on port
8080.

To debug a servlet, we can debug sun.servlet.http.HttpServer, then watch as
HttpServer executes servlets in response to HTTP requests we make from a
browser. This is very similar to how applets are debugged. The difference is that
with applets, the actual program being debugged is sun.applet.AppletViewer.
Most debuggers hide this detail by automatically knowing how to debug applets.
Until they do the same for servlets, you have to help your debugger by doing the
following:

1. Set your debugger’s classpath so that it can find sun.servlet.http.Http-
Server and associated classes.

2. Set your debugger’s classpath so that it can also find your servlets and support
classes, typically server_root/servlets and server_root/classes. You normally
wouldn’t want server_root/servlets in your classpath because it disables
servlet reloading. This inclusion, however, is useful for debugging. It allows
your debugger to set breakpoints in a servlet before the custom servlet loader
in HttpServer loads the servlet.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DEBUGGING 417
Once you have set the proper classpath, start debugging sun.servlet.http.
HttpServer. You can set breakpoints in whatever servlet you’re interested in
debugging, then use a web browser to make a request to the HttpServer for the
given servlet (http://localhost:8080/servlet/ServletToDebug). You should see execu-
tion stop at your breakpoints.

Use a Third-Party Tool
Third-party tools promise to bring new capabilities and ease of use to the task of
servlet debugging. LiveSoftware, maker of the popular JRun servlet plug-in, was
the first company to market a tool for servlet debugging. The product, named
ServletDebugger, is designed to help programmatically test and debug a servlet.
ServletDebugger doesn’t require using HttpServer or a browser to make a
request. Instead, you use a set of classes to write a small stub class that prepares
and executes a servlet request. The stub specifies everything: the servlet’s init
parameters, the request’s HTTP headers, and the request’s parameters. Servlet
Debugger is fairly straightforward and is well suited to automated testing. The
largest drawback is that it takes extra effort to properly prepare a realistic request.
ServletDebugger is available from http://www.livesoftware.com.

You can expect additional third-party debugging tools to become available as serv-
lets become more popular.

Examine the Client Request
Sometimes when a servlet doesn’t behave as expected, it’s useful to look at the raw
HTTP request to which it’s responding. If you’re familiar with the structure of
HTTP, you can read the request and see exactly where a servlet might get
confused.* One way to see the raw request is to replace the web server process with
a custom server application that prints out everything it receives. Example 13-9
shows such a server.

* Of course, if you’re not familiar with the structure of HTTP, it may be you who are getting confused.
In that case, we recommend reading the HTTP primer in Chapter 2 and the book Web Client Program-
ming by Clinton Wong (O’Reilly).

Example 13-9. Catching a client request

import java.io.*;

import java.net.*;

import java.util.*;

public class SocketWatch {

 private static void printUsage() {
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

418 CHAPTER 13: ODDS AND ENDS
 System.out.println("usage: java SocketWatch port");

 }

 public static void main(String[] args) {

 if (args.length < 1) {

 printUsage();

 return;

 }

 // The first argument is the port to listen on

 int port;

 try {

 port = Integer.parseInt(args[0]);

 }

 catch (NumberFormatException e) {

 printUsage();

 return;

 }

 try {

 // Establish a server socket to accept client connections

 // As each connection comes in, pass it to a handler thread

 ServerSocket ss = new ServerSocket(port);

 while (true) {

 Socket request = ss.accept();

 new HandlerThread(request).start();

 }

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 }

}

class HandlerThread extends Thread {

 Socket s;

 public HandlerThread(Socket s) {

 this.s = s;

 }

 public void run() {

 try {

 // Print each byte as it comes in from the socket

 InputStream in = s.getInputStream();

 byte[] bytes = new byte[1];

 while ((in.read(bytes)) != -1) {

Example 13-9. Catching a client request (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DEBUGGING 419
You can start this server listening on port 8080 by typing java SocketWatch 8080 in a
shell. Note that two applications can’t listen to the same socket at the same time,
so you should first make sure there’s no other server listening on your chosen
port. Once you have the server running, you can make HTTP requests to it as if it
were a normal web server. For example, you can use a web browser to surf to http:/
/localhost:8080. When SocketWatch receives the browser’s HTTP request, it sends
the request to its standard out for your examination. The browser, meanwhile, is
likely to be busy waiting for a response that will never come. You can end its wait
by hitting the Stop button.

Here is some sample output from SocketWatch that shows the details of a GET
request made to http://localhost:8080:

GET / HTTP/1.0

Connection: Keep-Alive

User-Agent: Mozilla/3.03C-SGI (X11; I; IRIX 6.2 IP22)

Pragma: no-cache

Host: localhost:8080

Accept: image/gif, image/x-xbitmap, image/jpeg, image/pjpeg, */*

Cookie: jwssessionid=USN1RLIAAAAABQDGPM5QAAA

Create a Custom Client Request
In addition to catching and examining a client’s HTTP request, you may find it
useful to create your own HTTP request. You can do this by connecting to the
server socket on which the web server is listening, then manually entering a prop-
erly structured HTTP request. To establish the connection, you can use the telnet
program, available on all Unix machines and most Windows machines with
networking. The telnet program accepts as arguments the host and port number to
which it should connect. Once you’re connected, you can make a request that
looks like what you saw in the last section. Fortunately, your request can be far
simpler—all you need to specify is the first line, saying what to get, and the last
line, which must be an empty line that indicates the end of the request. For
example:

% telnet localhost 8080

 System.out.print((char)bytes[0]);

 }

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 }

}

Example 13-9. Catching a client request (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

420 CHAPTER 13: ODDS AND ENDS
Trying 127.0.0.1...

Connected to localhost.

Escape character is '^]'.

GET /servlet/ParameterSnoop?name=value HTTP/1.0

HTTP/1.1 200 OK

Server: JavaWebServer/1.1.1

Content-Type: text/plain

Connection: close

Date: Sun, 12 Apr 1998 20:29:06 GMT

Query String:

name=value

Request Parameters:

name (0): value

Connection closed by foreign host.

As is too often the case, Windows behaves a little differently than you’d like. The
default Windows telnet.exe program misformats many web server responses because
it doesn’t understand that on the Web, a line feed should be treated the same as a
line feed and carriage return. In lieu of telnet.exe, Windows programmers can use
the better-behaved Java program shown in Example 13-10.

Example 13-10. Another way to connect to a web server

import java.io.*;

import java.net.*;

import java.util.*;

public class HttpClient {

 private static void printUsage() {

 System.out.println("usage: java HttpClient host port");

 }

 public static void main(String[] args) {

 if (args.length < 2) {

 printUsage();

 return;

 }

 // Host is the first parameter, port is the second

 String host = args[0];

 int port;

 try {

 port = Integer.parseInt(args[1]);

 }

 catch (NumberFormatException e) {
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

DEBUGGING 421
 printUsage();

 return;

 }

 try {

 // Open a socket to the server

 Socket s = new Socket(host, port);

 // Start a thread to send keyboard input to the server

 new KeyboardInputManager(System.in, s).start();

 // Now print everything we receive from the socket

 BufferedReader in =

 new BufferedReader(new InputStreamReader(s.getInputStream()));

 String line;

 while ((line = in.readLine()) != null) {

 System.out.println(line);

 }

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 }

}

class KeyboardInputManager extends Thread {

 InputStream in;

 Socket s;

 public KeyboardInputManager(InputStream in, Socket s) {

 this.in = in;

 this.s = s;

 setPriority(MIN_PRIORITY); // socket reads should have a higher priority

 // Wish I could use a select() !

 setDaemon(true); // let the app die even when this thread is running

 }

 public void run() {

 try {

 BufferedReader keyb = new BufferedReader(new InputStreamReader(in));

 PrintWriter server = new PrintWriter(s.getOutputStream());

 String line;

 System.out.println("Connected... Type your manual HTTP request");

 System.out.println("--");

 while ((line = keyb.readLine()) != null) {

 server.print(line);

Example 13-10. Another way to connect to a web server (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

422 CHAPTER 13: ODDS AND ENDS
This HttpClient program operates similarly to telnet:

% java HttpClient localhost 8080

Connected... Type your manual HTTP request

--

GET / HTTP/1.0

HTTP/1.1 200 OK

Server: JavaWebServer/1.1.1

Content-Length: 1999

Content-Type: text/html

Last-Modified: Mon, 12 Jan 1998 08:26:20 GMT

Date: Wed, 08 Apr 1998 23:41:50 GMT

<html>

 <head>

 <title>Java(TM) Web Server Default Page</title>

 </head>

 ...

Some Final Tips
If all the advice so far hasn’t helped track down your bug, here are some final tips
on servlet debugging:

• Use System.getProperty("java.class.path") from your servlet to help
debug classpath problems. Because servlets are often run from web servers
with embedded JVMs, it can be hard at times to identify exactly what classpath
the JVM is searching. The property "java.class.path" will tell you.

• Be aware that server_root/classes doesn’t reload and that server_
root/servlets probably does.

• Ask a browser to show the raw content of the page it is displaying. This can
help identify formatting problems. It’s usually an option under the View
menu.

 server.print("\r\n"); // HTTP lines end with \r\n

 server.flush();

 }

 }

 catch (Exception e) {

 e.printStackTrace();

 }

 }

}

Example 13-10. Another way to connect to a web server (continued)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

PERFORMANCE TUNING 423
• Make sure the browser isn’t caching a previous request’s output by forcing a
full reload of the page. With Netscape Navigator, use Shift-Reload; with Inter-
net Explorer use Shift-Refresh.

• Verify that your servlet’s init() method takes a ServletConfig parameter
and calls super.init(config) right away.

Performance Tuning
Performance tuning servlets requires a slightly different mindset than perfor-
mance tuning normal Java applications or applets. The reason is that the JVM
running the servlets is expected to simultaneously handle dozens, if not hundreds,
of threads, each executing a servlet. These coexisting servlets have to share the
resources of the JVM in a way that normal applications do not. The traditional
performance-tuning tricks still apply, of course, but they have a different impact
when used in a heavily multithreaded system. What follows are some of the tricks
that have the largest special impact on servlet developers.

Go Forth, but Don’t Prosper
Avoid the unnecessary creation of objects. This has always been good advice—
creating unnecessary objects wastes memory and wastes a fair amount of time as
the objects are created. With servlets, it’s even better advice. All but the most
recent JVMs have a global object heap that must be locked for each new memory
allocation. While any servlet is creating a new object or allocating additional
memory, no other servlet can do so.

Don’t Append by Concatenation
Avoid concatenating several strings together. Use the append() method of
StringBuffer instead. This too has always been good advice, but with servlets it’s
particularly tempting to write code like this to prepare a string for later output:

String output;

output += "<TITLE>";

output += "Hello, " + user;

output += "</TITLE>";

Although this code looks nice and neat, when it runs it executes as if written
roughly as follows, with a new StringBuffer and new String created on each
line:

String output;

output = new StringBuffer().append("<TITLE>").toString();

output = new StringBuffer(output).append("Hello, ").toString();
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

424 CHAPTER 13: ODDS AND ENDS
output = new StringBuffer(output).append(user).toString();

output = new StringBuffer(output).append("</TITLE>").toString();

When efficiency counts, rewrite the original code to look like the following, so just
one StringBuffer and one String are created:

StringBuffer buf = new StringBuffer();

buf.append("<TITLE>");

buf.append("Hello, ").append(user);

buf.append("</TITLE);

output = buf.toString();

Note that using an array of bytes is even more efficient.

Limit Synchronization
Synchronize whenever necessary, but no more. Every synchronized block in a
servlet slows the servlet’s response time. Because the same servlet instance may
handle multiple concurrent requests, it must, of course, take care to protect its
class and instance variables with synchronized blocks. All the time one request
thread is in a servlet’s synchronized block, however, no other thread can enter the
block. Therefore, it’s generally best to keep these blocks as small as possible.

You should also take a look at the worst-case result of thread contention. If the
worst case is bearable (as with the counter example from Chapter 3, The Servlet Life
Cycle), you can consider removing synchronization blocks entirely. Also consider
using the SingleThreadModel tag interface, where the server manages a pool of
servlet instances to guarantee each instance is used at most by one thread at a
time. Servlets that implement SingleThreadModel don’t need to synchronize
access to their instance variables.

Buffer Your Input and Output
Buffer your input and your output, all your storage files, any streams loaded from
a database, and so on. This almost always improves performance, but the improve-
ment can be especially profound with servlets. The reason is that reading and
writing one unit at a time can slow down the entire server due to the frequent
context switches that have to be made. Fortunately, you generally don’t need to
buffer when writing to a servlet’s PrintWriter or ServletOutputStream or
when reading from a servlet’s BufferedReader or ServletInputStream. Most
server implementations already buffer these streams.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

:

Appendix A

The javax.servlet packag
Servlet interface, which all
an abstract GenericServlet
includes classes for commu
Request and ServletRe
(ServletInputStream and
javax.servlet package is
selves to the classes in this pa
Java™
Copyright © 2
A

1.Servlet API Quick
Reference 1
e is the core of the Servlet API. It includes the basic
servlets must implement in one form or another, and
class for developing basic servlets. This package also

nication with the host server and client (Servlet
sponse) and communicating with the client
ServletOutputStream). The class hierarchy of the
shown in Figure A-1. Servlets should confine them-
ckage in situations where the underlying protocol is

unknown.

Figure A-1. The javax.servlet package

ABSTRACT CLASSCLASS INTERFACEKEY

java.io

ServletException

ServletContext

ServletRequest

ServletResponse

SingleThreadModel

javax.servlet Servlet

ServletConfig

GenericServlet

Serializable

java.lang

Object

InputStream

OutputStream

ServletInputStream

ServletOutputStream

Exception UnavailbleException

implementsextends
425
 Servlet Programming, eMatter Edition

000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

426 APPENDIX A: SERVLET API QUICK REFERENCE
GenericServlet

Synopsis
Class Name: javax.servlet.GenericServlet
Superclass: java.lang.Object
Immediate Subclasses: javax.servlet.http.HttpServlet
Interfaces Implemented: javax.servlet.Servlet,

javax.servlet.ServletConfig,
java.io.Serializable

Availability: Servlet API 1.0 and later

Description

GenericServlet provides a basic implementation of the Servlet interface for
protocol-independent servlets. As a convenience, it also implements the
ServletConfig interface. Most servlet developers subclass this class or
HttpServlet, rather than implement the Servlet interface directly.

GenericServlet includes basic versions of the init() and destroy() methods,
which perform basic setup and cleanup tasks, such as managing the server’s
ServletConfig object. It’s good form for a servlet that overrides one of these
methods to call the superclass version of the method. GenericServlet also
includes a log() method that provides easy access to the logging functions from
ServletContext.

The service() method is declared as abstract and must be overridden. Well
written servlets also override getServletInfo().

Class Summary
public abstract class GenericServlet

 implements Servlet, ServletConfig, java.io.Serializable {

 // Constructors

 public GenericServlet();

 // Instance Methods

 public void destroy();

 public String getInitParameter(String name);

 public Enumeration getInitParameterNames();

 public ServletConfig getServletConfig();

 public ServletContext getServletContext();

 public String getServletInfo();

 public void init(ServletConfig config) throws ServletException;

 public void log(String msg);
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SERVLET API QUICK REFERENCE 427
 public abstract void service(ServletRequest req, ServletResponse res)

 throws ServletException, IOException;

}

Constructors

GenericServlet()

public GenericServlet()

Description
The default GenericServlet constructor does no work. Any servlet
initialization tasks should be performed in init(), rather than in the
constructor.

Instance Methods

destroy()

public void destroy()

Description
Called by the server before unloading the servlet. The default implemen-
tation logs the servlet’s destruction in the server log file using the log()
method. A servlet can override this method to save its state, free its
resources, etc.

getInitParameter()

public String getInitParameter(String name)

Description
Returns the value of the named servlet initialization parameter or null if
no matching parameter is found. From the ServletConfig interface.

getInitParameterNames()

public Enumeration getInitParameterNames()

Description
Returns all the servlet’s init parameter names as an Enumeration of
String objects or an empty Enumeration if no parameters exist. From
the ServletConfig interface.

getServletConfig()

public ServletConfig getServletConfig()

Description
Returns the servlet’s ServletConfig object. In practice, this method is
rarely called by a GenericServlet because all of the ServletConfig
methods are duplicated internally.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

428 APPENDIX A: SERVLET API QUICK REFERENCE
getServletContext()

public ServletContext getServletContext()

Description
Returns the servlet’s ServletContext object. From the ServletConfig
interface.

getServletInfo()

public String getServletInfo()

Description
Returns a programmer-defined String that describes the servlet. A servlet
should override this method and provide a customized identity string (e.g.
, “Al’s Message Board Servlet v1.21”), but it is not required.

init()

public void init(ServletConfig config) throws ServletException

Description
Called by the server after the servlet is first loaded and before the servlet’s
service() method is called. The default implementation of init() logs
the servlet’s initialization and stores the ServletConfig object for use by
the methods in the ServletConfig interface. A servlet can override this
method to perform additional one-time setup, creation of resources, etc.
A servlet should always call the superclass implementation of init()
using super.init(config) before executing any custom initialization
code.

log()

public void log(String msg)

Description
Writes the given message to a servlet log, usually an event log file. Both
the output format and location are server-specific.

service()

public abstract void service(ServletRequest req, ServletResponse res)

 throws ServletException, IOException

Description
Called to handle a single client request. A servlet receives request informa-
tion via a ServletRequest object and sends data back to the client via a
ServletResponse object. This is the only method that must be over-
ridden when extending GenericServlet. Because multiple service
requests may execute concurrently, the service() method must be
thread safe, unless the servlet also implements the SingleThreadModel
interface.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SERVLET API QUICK REFERENCE 429
Servlet

Synopsis
Interface Name: javax.servlet.Servlet
Super-interface: None
Immediate Subinterfaces: None
Implemented By: javax.servlet.GenericServlet
Availability: Servlet API 1.0 and later

Description

All servlets implement the Servlet interface, either directly or by subclassing the
GenericServlet or HttpServlet class. Most servlet developers find it easier to
subclass one of the two existing servlet classes than to implement this interface
directly. The interface declares the basic servlet functionality—initializing a servlet,
handling a client request, and destroying a servlet.

Interface Declaration
public interface Servlet {

 // Methods

 public abstract void destroy();

 public abstract ServletConfig getServletConfig();

 public abstract String getServletInfo();

 public abstract void init(ServletConfig config) throws ServletException;

 public abstract void service(ServletRequest req, ServletResponse res)

 throws ServletException, IOException;

}

Methods

destroy()

public abstract void destroy()

Description
Called when the server is preparing to unload a servlet. Used to clean up
any outstanding resources (database connections, threads, file handles
and so forth). The servlet programmer is responsible for making sure that
any requests currently executing are allowed to finish.

getServletConfig()

public abstract ServletConfig getServletConfig()

Description
Returns the ServletConfig object passed to the init() method.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

430 APPENDIX A: SERVLET API QUICK REFERENCE
getServletInfo()

public abstract String getServletInfo()

Description
Returns a programmer-defined String that describes the servlet.

init()

public abstract void init(ServletConfig config) throws ServletException

Description
Called by the server when the servlet is first loaded. The init() method
should store the ServletConfig object for retrieval by
getServletConfig(). When using either GenericServlet or
HttpServlet, the default init() implementation handles this task. This
method can also be used to perform any one-time actions required by the
servlet, such as creating database connections. It is guaranteed to finish
before any client requests are accepted.

service()

public abstract void service(ServletRequest req, ServletResponse res)

 throws ServletException, IOException

Description
Called to handle a single client request. A servlet receives request informa-
tion via the ServletRequest object and sends data back to the client via
the ServletResponse object.

ServletConfig

Synopsis
Interface Name: javax.servlet.ServletConfig
Superinterface: None
Immediate Subinterfaces: None
Implemented By: javax.servlet.GenericServlet
Availability: Servlet API 1.0 and later

Description

Servers use ServletConfig objects to pass initialization and context information
to servlets. The initialization information generally consists of a series of initializa-
tion parameters (init parameters) and a ServletContext object, which provides
information about the server environment. A servlet can implement Servlet-
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SERVLET API QUICK REFERENCE 431
Config to allow easy access to init parameters and context information, as
GenericServlet does.

Interface Declaration
public interface ServletConfig {

 // Methods

 public abstract String getInitParameter(String name);

 public abstract Enumeration getInitParameterNames();

 public abstract ServletContext getServletContext();

}

Methods

getInitParameter()

public abstract String getInitParameter(String name)

Description
Returns the value of the named servlet initialization parameter or null if
no matching parameter is found.

getInitParameterNames()

public abstract Enumeration getInitParameterNames()

Description
Returns the names of all the servlet’s initialization parameters as an
Enumeration of String objects or an empty Enumeration if no parame-
ters exist.

getServletContext()

public abstract ServletContext getServletContext()

Description
Returns the ServletContext object for this servlet, allowing interaction
with the server.

ServletContext

Synopsis
Interface Name: javax.servlet.ServletContext
Superinterface: None
Immediate Subinterfaces: None
Implemented By: None
Availability: Servlet API 1.0 and later
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

432 APPENDIX A: SERVLET API QUICK REFERENCE
Description

The ServletContext interface defines a set of methods that can be used to
communicate with the server in a non-request-specific manner. This includes
finding path information, accessing other servlets running on the server, and
writing to the server log file. Different virtual servers may return different servlet
contexts.

Interface Declaration
public interface ServletContext {

 // Methods

 public abstract Object getAttribute(String name);

 public abstract String getMimeType(String file);

 public abstract String getRealPath(String path);

 public abstract String getServerInfo();

 public abstract Servlet getServlet(String name) throws ServletException;

 public abstract Enumeration getServletNames(); // New in 2.0

 public abstract Enumeration getServlets(); // Deprecated

 public abstract void log(Exception exception, String msg); // New in 2.0

 public abstract void log(String msg);

}

Methods

getAttribute()

public abstract Object getAttribute(String name)

Description
Returns the value of the named server attribute as an Object or null if
the attribute does not exist. The attributes are server-dependent and allow
web servers to provide servlets with information above and beyond that
provided for by the base Servlet API. Attribute names should follow the
same convention as package names. The package names java.* and
javax.* are reserved for use by the Java Software division of Sun Micro-
systems (formerly known as JavaSoft), and com.sun.* is reserved for use
by Sun Microsystems. See your server’s documentation for a list of its
attributes. Remember that servlets relying on server-specific attributes are
not portable.

getMimeType()

public abstract String getMimeType(String file)

Description
Returns the MIME type of the given file or null if it is not known. Some
implementations return "text/plain" if the specified file does not exist.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SERVLET API QUICK REFERENCE 433
Common MIME types are "text/html", "text/plain", "image/gif",
and "image/jpeg".

getRealPath()

public abstract String getRealPath(String path)

Description
Returns the real file system path of any given “virtual path” or null if the
translation cannot be performed. If the given path is "/", the method
returns the document root for the servlet. If the given path is the same as
the one returned by getPathInfo(), the method returns the same real
path as would be returned by getPathTranslated(). There is no CGI
counterpart.

getServerInfo()

public abstract String getServerInfo()

Description
Returns the name and version of the server software, separated by a
forward slash (/). The value is the same as the CGI variable SERVER_
SOFTWARE.

getServlet()

public abstract Servlet getServlet(String name) throws ServletException

Description
Returns the loaded servlet matching the given name or null if the servlet
is not found. The specified name can be the servlet’s registered name (e.
g., "file") or class name (e.g., "com.sun.server.webserver .
FileServlet"). The server maintains one servlet instance per name, so
getServlet("file") returns a different servlet instance than get-
Servlet("com.sun.server.webserver.FileServlet"). If the servlet
implements SingleThreadModel, the server may return any instance of
the servlet from the current pool. The server may—but is not required
to—load the named servlet and execute its init() method if it was not
already loaded. A ServletException is thrown if there is a problem
during the load.

getServletNames()

public abstract Enumeration getServletNames()

Description
Returns an Enumeration of the names of the servlet objects loaded in this
context. When used with getServlet(String name), it can replace the
deprecated getServlets(). This method was introduced in the Servlet
API 2.0.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

434 APPENDIX A: SERVLET API QUICK REFERENCE
getServlets()

public abstract Enumeration getServlets() throws ServletException

Description
Returns an Enumeration of the Servlet objects loaded in this context.
This method was deprecated in the Servlet API 2.0 in favor of
getServletNames().

log()

public abstract void log(Exception exception, String msg)

Description
Writes an exception’s stack trace and a given message to a servlet log,
usually an event log file. Both output format and location are server-
specific. Notice the non-standard placement of the optional Exception
parameter as the first parameter instead of the last. This method was
introduced in the Servlet API 2.0.

public abstract void log(String msg)

Description
Writes the given message to a servlet log, usually an event log file. Both
the output format and location are server-specific.

ServletException

Synopsis
Class Name: javax.servlet.ServletException
Superclass: java.lang.Exception
Immediate Subclasses: javax.servlet.UnavailableException
Interfaces Implemented: None
Availability: Servlet API 1.0 and later

Description

A generic exception thrown by servlets encountering difficulties.

Class Summary
public class ServletException extends java.lang.Exception {

 // Constructors

 public ServletException(); // New in 2.0

 public ServletException(String msg);

}

Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SERVLET API QUICK REFERENCE 435
Constructors

ServletException()

public ServletException()

public ServletException(String msg)

Description
Constructs a new ServletException, with an optional descriptive message.
If a message is specified, it can be retrieved by calling getMessage() and is
usually included in server logs and user error messages.

ServletInputStream

Synopsis
Class Name: javax.servlet.ServletInputStream
Superclass: java.io.InputStream
Immediate Subclasses: None
Interfaces Implemented: None
Availability: Servlet API 1.0 and later

Description

Provides an input stream for reading binary data from a client request, including
an efficient readLine() method for reading data one line at a time. A
ServletInputStream is returned by the getInputStream() method of Servlet
Request. A servlet that filters binary output from other sources generally gets its
input via this stream.

Class Summary
public abstract class ServletInputStream extends java.io.InputStream {

 // Constructors

 protected ServletInputStream();

 // Instance Methods

 public int readLine(byte b[], int off, int len) throws IOException;

}

Constructors

ServletInputStream()

protected ServletInputStream()
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

436 APPENDIX A: SERVLET API QUICK REFERENCE
Description
The default constructor does nothing. Because servlets rarely, if ever,
create their own input streams, it can be safely ignored.

Instance Methods

readLine()

public int readLine(byte b[], int off, int len) throws IOException

Description
Reads bytes from the input stream into the byte array b, starting at an
offset in the array given by off. It stops reading when it encounters an '\
n' or it has read len number of bytes. The ending '\n' character is read
into the buffer as well. Returns the number of bytes read, or -1 if the end
of the stream is reached.

ServletOutputStream

Synopsis
Class Name: javax.servlet.ServletOutputStream
Superclass: java.io.OutputStream
Immediate Subclasses: None
Interfaces Implemented: None
Availability: Servlet API 1.0 and later

Description

Provides an output stream for sending binary data back to a client. A servlet
obtains a ServletOutputStream object from the getOutputStream() method
of ServletResponse. Although it includes a range of print() and println()
methods for sending text or HTML, the ServletOutputStream has been super-
seded by PrintWriter. It should be used only for sending binary data or with
early servlet implementations built on the Servlet API 1.0.

If you subclass ServletOutputStream, you must provide an implementation of
the write(int) method.

Class Summary
public abstract class ServletOutputStream extends java.io.OutputStream {

 // Constructors

 protected ServletOutputStream();

 // Instance Methods
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SERVLET API QUICK REFERENCE 437
 public void print(boolean b) throws IOException;

 public void print(char c) throws IOException;

 public void print(double d) throws IOException;

 public void print(float f) throws IOException;

 public void print(int i) throws IOException;

 public void print(long l) throws IOException;

 public void print(String s) throws IOException;

 public void println() throws IOException;

 public void println(boolean b) throws IOException;

 public void println(char c) throws IOException;

 public void println(double d) throws IOException;

 public void println(float f) throws IOException;

 public void println(int i) throws IOException;

 public void println(long l) throws IOException;

 public void println(String s) throws IOException;

}

Constructors

ServletOutputStream()

protected ServletOutputStream()

Description
The default constructor does nothing.

Instance Methods

print()

public void print(boolean b) throws IOException

public void print(char c) throws IOException

public void print(double d) throws IOException

public void print(float f) throws IOException

public void print(int i) throws IOException

public void print(long l) throws IOException

public void print(String s) throws IOException

Description
Writes the given data to the client, without a trailing carriage return/line
feed (CRLF).

println()

public void println() throws IOException

public void println(boolean b) throws IOException

public void println(char c) throws IOException

public void println(double d) throws IOException

public void println(float f) throws IOException

public void println(int i) throws IOException

public void println(long l) throws IOException

public void println(String s) throws IOException
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

438 APPENDIX A: SERVLET API QUICK REFERENCE
Description
Writes the given data to the client, with a trailing CRLF. The method with
no parameters simply writes a CRLF.

ServletRequest

Synopsis
Interface Name: javax.servlet.ServletRequest
Superinterface: None
Immediate Subinterfaces: javax.servlet.http.HttpServletRequest
Implemented By: None
Availability: Servlet API 1.0 and later

Description

A ServletRequest object encapsulates information about a single client request,
including request parameters, implementation-specific attributes, and an input
stream for reading binary data from the request body. ServletRequest can be
subclassed to provide additional protocol-specific information. HttpServlet
Request, for instance, includes methods to manipulate HTTP headers.

Interface Declaration
public interface ServletRequest {

 // Methods

 public abstract Object getAttribute(String name);

 public abstract String getCharacterEncoding(); // New in 2.0

 public abstract int getContentLength();

 public abstract String getContentType();

 public abstract ServletInputStream getInputStream() throws IOException;

 public abstract String getParameter(String name);

 public abstract Enumeration getParameterNames();

 public abstract String[] getParameterValues(String name);

 public abstract String getProtocol();

 public abstract BufferedReader getReader() throws IOException;// New in 2.0

 public abstract String getRealPath(String path);

 public abstract String getRemoteAddr();

 public abstract String getRemoteHost();

 public abstract String getScheme();

 public abstract String getServerName();

 public abstract int getServerPort();

}

Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SERVLET API QUICK REFERENCE 439
Methods

getAttribute()

public abstract Object getAttribute(String name)

Description
Returns the value of the named server-specific attribute as an Object, or
null if the server does not support the named request attribute. Servers
may use this method to provide servlets with custom information about a
request. Attributes should follow the same conventions as package names,
with the package names java.* and javax.* reserved for use by the Java
Software division of Sun Microsystems (formerly known as JavaSoft), and
com.sun.* reserved for use by Sun Microsystems. Remember that servlets
that rely on server-specific request attributes are non-portable.

getCharacterEncoding()

public abstract String getCharacterEncoding()

Description
Returns the charset encoding for the servlet’s input stream, or null if not
known. This method was introduced in the Servlet API 2.0. It does not
exist in the Java Web Server 1.1.x.

getContentLength()

public abstract int getContentLength()

Description
Returns the length, in bytes, of the content being sent via the input
stream, or -1 if the length is not known (such as when there is no data).
Equivalent to the CGI variable CONTENT_LENGTH.

getContentType()

public abstract String getContentType()

Description
Returns the media type of the content being sent via the input stream or
null if the type is not known or there is no data. The same as the CGI
variable CONTENT_TYPE.

getInputStream()

public abstract ServletInputStream getInputStream() throws IOException

Description
Retrieves the input stream as a ServletInputStream object. Servlet-
InputStream is a direct subclass of InputStream and can be treated
identically to a normal InputStream, with the added ability to efficiently
read input a line at a time into an array of bytes. This method should be
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

440 APPENDIX A: SERVLET API QUICK REFERENCE
used for reading binary input. It throws an IllegalStateException if
getReader() has been called before on the request. The IllegalState-
Exception does not need to be explicitly caught.

getParameter()

public abstract String getParameter(String name)

Description
Returns the value of the named parameter as a String. Returns null if
the parameter does not exist, or an empty string if the parameter exists
but without a value. The value is guaranteed to be in its normal, decoded
form. If the parameter has multiple values, the value returned is server
dependent. If there is any chance that a parameter has more than one
value, you should use the getParameterValues() method instead. If the
parameter information came in as encoded POST data, it may not be
available if the POST data has already been manually read using the
getReader() or getInputStream() methods. This method was depre-
cated momentarily in favor of getParameterValues(), but thanks to an
overwhelming flood of support from the developer community, it has been
restored in the Servlet API 2.0.

getParameterNames()

public abstract Enumeration getParameterNames()

Description
Returns all the parameter names as an Enumeration of String objects. It
returns an empty Enumeration if the servlet has no parameters.

getParameterValues()

public abstract String[] getParameterValues(String name)

Description
Returns all the values of the named parameter as an array of String
objects, or null if the parameter does not exist. A single value is returned
in an array of length 1.

getProtocol()

public abstract String getProtocol()

Description
Returns the name and version of the protocol used by the request as a
string of the form protocol/major-version.minor-version. Equiva-
lent to the CGI variable SERVER_PROTOCOL.

getReader()

public abstract BufferedReader getReader() throws IOException
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SERVLET API QUICK REFERENCE 441
Description
This method retrieves the input stream as a BufferedReader object,
which should be used for reading character-based input, since the reader
translates charsets as appropriate. This method throws an
IllegalStateException if getInputStream() has been called before
on this same request. It throws an UnsupportedEncodingException if
the character encoding of the input is unsupported or unknown. This
method was introduced in the Servlet API 2.0.

getRealPath()

public abstract String getRealPath(String path)

Description
Returns the real file system path of any given “virtual path” or null if the
translation cannot be performed. If the given path is "/" it returns the
document root for the server. If the given path is the same as the one
returned by getPathInfo(), it returns the same real path as would be
returned by getPathTranslated(). There is no CGI counterpart.

getRemoteAddr()

public abstract String getRemoteAddr()

Description
Returns the IP address of the client machine as a String. This informa-
tion comes from the socket connecting the server to the client, so the
remote address may be that of a proxy server. It is the same as the CGI
variable REMOTE_ADDR.

getRemoteHost()

public abstract String getRemoteHost()

Description
Returns the name of the client host. This comes from the socket
connecting the server to the client and may be the name of a proxy server.
It is the same as the CGI variable REMOTE_HOST.

getScheme()

public abstract String getScheme()

Description
This method returns the scheme used to make this request. Examples
include "http", "https", and "ftp", as well as the newer Java-specific
schemes "jdbc" and "rmi".

getServerName()

public abstract String getServerName()
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

442 APPENDIX A: SERVLET API QUICK REFERENCE
Description
Returns the name of the server that received the request. It is an attribute
of the ServletRequest because it can change for different requests if the
server has more than one name (a situation that might arise if one server
is hosting more than one web site). Equivalent to the CGI variable
SERVER_NAME.

getServerPort()

public abstract int getServerPort()

Description
Returns the port number on which this request was received. The same as
the CGI variable SERVER_PORT.

ServletResponse

Synopsis
Interface Name: javax.servlet.ServletResponse
Superinterface: None
Immediate Subinterfaces: javax.servlet.http.HttpServletResponse
Interfaces Implemented: None
Availability: Servlet API 1.0 and later

Description

Servlets use ServletResponse objects to send MIME encoded data back to the
client. The servlet engine creates this object and passes it to the servlet’s
service() method. To send binary data, use the ServletOutputStream
returned by getOutputStream(). To send character data, use the PrintWriter
returned by getWriter(). You can explicitly set the output’s MIME type using the
setContentType() method. If you elect to set this manually, do so before calling
getWriter(), as getWriter() consults the content type to determine which
charset to use. Consult RFC 2045 at http:/www.ietf.org/rfc/rfc2045.txt for more infor-
mation on MIME.

Interface Declaration
public interface ServletResponse {

 // Methods

 public abstract String getCharacterEncoding(); // New in 2.0

 public abstract ServletOutputStream getOutputStream() throws IOException;

 public abstract PrintWriter getWriter() throws IOException; // New in 2.0

 public abstract void setContentLength(int len);
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SERVLET API QUICK REFERENCE 443
 public abstract void setContentType(String type);

}

Methods

getCharacterEncoding()

public abstract String getCharacterEncoding()

Description
Returns the charset encoding used for this MIME body. This is the charset
specified by the assigned content type or "ISO-8859-1" if no charset has
been specified. This method was introduced in the Servlet API 2.0.

getOutputStream()

public abstract ServletOutputStream getOutputStream() throws IOException

Description
Returns a ServletOutputStream for writing binary (byte-at-a-time)
response data. No encoding is performed. Throws an IllegalState
Exception if getWriter() has already been called on this response.

getWriter()

public abstract PrintWriter getWriter() throws IOException

Description
Returns a PrintWriter for writing character-based response data. The
writer encodes the characters according to whatever charset is given in the
content type. If no charset is specified in the content type, as is generally
the case, the writer uses the ISO-8859-1 (Latin-1) encoding appropriate
for Western European languages. Throws an IllegalStateException if
getOutputStream() has already been called on this response, and an
UnsupportedEncodingException if the encoding of the output stream is
unsupported or unknown. This method was introduced in the Servlet API 2.
0.

setContentLength()

public abstract void setContentLength(int len)

Description
Sets the length of the content being returned by the server. In HTTP serv-
lets, it sets the HTTP Content-Length header. HTTP servlets use this
method to enable persistent connections and help client progress moni-
tors, so its use is optional.

setContentType()

public abstract void setContentType(String type)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

444 APPENDIX A: SERVLET API QUICK REFERENCE
Description
This method sets the content type of the response to be the specified type.
In HTTP servlets, it sets the Content-Type HTTP header.

SingleThreadModel

Synopsis
Interface Name: javax.servlet.SingleThreadModel
Superinterface: None
Immediate Subinterfaces None
Implemented By: None
Availability: New as of Servlet API 2.0; found in JSDK 2.0, JWS

1.1

Description

SingleThreadModel is a tag interface with no methods. If a servlet implements
this interface, the server ensures that each instance of the servlet handles only one
service request at a time. Servers implement this functionality by maintaining a
pool of servlet instances and dispatching incoming requests to free servlets within
the pool. SingleThreadModel provides easy thread safety, but at the cost of
increased resource requirements as more servlet instances are loaded at any given
time.

Interface Declaration
public interface SingleThreadModel {

}

UnavailableException

Synopsis
Class Name: javax.servlet.UnavailableException
Superclass: javax.servlet.ServletException
Immediate Subclasses: None
Interfaces Implemented: None
Availability: Servlet API 1.0 and later
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

SERVLET API QUICK REFERENCE 445
Description

A servlet can throw an UnavailableException at any time to indicate that it is
not available to service client requests. There are two types of unavailability:
permanent (where some corrective action must be taken on the server) and
temporary. A servlet is temporarily unavailable if some system-wide problem
momentarily prevents it from servicing requests. This may include network trou-
bles or a crashed or overloaded database server. To mark a servlet as temporarily
unavailable, specify a duration (in seconds) when constructing the exception.
Well-written servers check back after this time. Servlet implementations are not
required to treat temporary and permanent unavailability differently.

Servers generally provide clients with polite error messages when handling
requests for unavailable servlets. For example, the Java Web Server returns a 404
(Unavailable) message.

Class Summary
public class UnavailableException extends ServletException {

 // Constructors

 public UnavailableException(int seconds, Servlet servlet, String msg);

 public UnavailableException(Servlet servlet, String msg);

 // Instance Methods

 public Servlet getServlet();

 public int getUnavailableSeconds();

 public boolean isPermanent();

}

Constructors

UnavailableException()

public UnavailableException(int seconds, Servlet servlet, String msg)

public UnavailableException(Servlet servlet, String msg)

Description
Constructs an UnavailableException with a given explanatory message.
You can optionally specify a period of unavailability, given in seconds. If
no time estimate can be made, a nonpositive value can be passed to the
constructor, indicating permanent unavailability. Notice the nonstandard
placement of the optional seconds parameter as the first parameter
instead of the last. This may be changed in an upcoming release.

Instance Methods

getServlet()

public Servlet getServlet()
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

446 APPENDIX A: SERVLET API QUICK REFERENCE
Description
Returns the servlet that threw this exception.

getUnavailableSeconds()

public int getUnavailableSeconds()

Description
Returns the number of seconds for which this servlet will be unavailable. A
negative number indicates permanent unavailability. No attempt is made
to compensate for the time elapsed since the exception was thrown.

isPermanent()

public boolean isPermanent()

Description
Returns true if the servlet is unavailable indefinitely, false otherwise.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

:

Appendix B

The javax.servlet.http p
the HTTP protocol. While th
provides everything necessary
package automate many ot
HttpServlet class includes
headers. The HttpServletR
additional direct interaction
built-in session tracking func
Java™
Copyright © 2
B

2.HTTP Servlet API
Quick Reference 2
ackage allows development of servlets that support
e core functionality in the javax.servlet package
for web development, the specialized classes in this

herwise tedious tasks. For example, the abstract
support for different HTTP request methods and
equest and HttpServletResponse interfaces allow
with the web server, while HttpSession provides

tionality. The Cookie class allows you to quickly set
up and process HTTP cookies, and the HttpUtils class does the same for query
strings. Figure B-1 shows the class hierarchy of the javax.servlet.http package.

Cookie

Synopsis
Class Name: javax.servlet.http.Cookie
Superclass: java.lang.Object
Immediate Subclasses: None
Interfaces Implemented: java.lang.Cloneable
Availability: New as of Servlet API 2.0; found in JSDK 2.0, JWS

1.1; an earlier version previously in sun.*
hierarchy

Description

The Cookie class provides an easy way for servlets to read, create, and manipulate
HTTP-style cookies, which allow servlets to store small amounts of data on the
447
 Servlet Programming, eMatter Edition

000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

448 APPENDIX B: HTTP SERVLET API QUICK REFERENCE
client. Cookies are generally used for session tracking or storing small amounts of
user-specific configuration information. For more information, consult Chapter 7,
Session Tracking.

A servlet uses the getCookies() method of HttpServletRequest to retrieve
cookies submitted as part of a client request. The addCookie() method of
HttpServletResponse sends a new cookie to the browser. Because cookies are
set using HTTP headers, addCookie() must be called before any output is sent to
the client.

The original Servlet API 1.0 lacked this Cookie class, although the Java Web
Server included a Sun-specific sun.servlet.util.Cookie class that worked in
roughly the same manner. The only significant difference is that the retrieval and
creation methods were static components of the Cookie class itself, rather than
being part of the HttpServletRequest and HttpServletResponse interfaces.

Class Summary
public class Cookie implements java.lang.Cloneable {

 // Constructors

Figure B-1. The javax.servlet.http package

ABSTRACT CLASSCLASS INTERFACEKEY

java.util javax.http.servlet

EventListener

java.lang

Object

implementsextends

EventObject HttpSessionBindingEvent

HttpSessionBindingListener

java.io
Serializable

Cookie

HttpUtils

HttpSession

HttpSessionContext

Cloneable

javax.servlet
GenericServlet

Servlet

ServletRequest

ServletResponse

HttpServlet

HttpServletRequest

HttpServletResponse
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HTTP SERVLET API QUICK REFERENCE 449
 public Cookie(String name, String value);

 // Instance Methods

 public Object clone();

 public String getComment();

 public String getDomain();

 public int getMaxAge();

 public String getName();

 public String getPath();

 public boolean getSecure();

 public String getValue();

 public int getVersion();

 public void setComment(String purpose);

 public void setDomain(String pattern);

 public void setMaxAge(int expiry);

 public void setPath(String uri);

 public void setSecure(boolean flag);

 public void setValue(String newValue);

 public void setVersion(int v);

}

Constructors

Cookie()

public Cookie(String name, String value)

Description
Constructs a new cookie with an initial name and value. The rules for valid
names and values are given in Netscape’s Cookie Specification and RFC
2109.

Instance Methods

clone()

public Object clone()

Description
Overrides the standard clone() method to return a copy of this object (a
duplicate cookie).

getComment()

public String getComment()

Description
Returns the comment associated with the cookie.

getDomain()

public String getDomain()

Description
Returns the domain limitation associated with this cookie.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

450 APPENDIX B: HTTP SERVLET API QUICK REFERENCE
getMaxAge()

public int getMaxAge()

Description
Returns the maximum age allowed for this cookie.

getPath()

public String getPath()

Description
Returns the path limitation for this servlet.

getSecure()

public boolean getSecure()

Description
Returns true if this cookie requires a secure connection, false
otherwise.

getName()

public String getName()

Description
Returns the name of this cookie.

getValue()

public String getValue()

Description
Returns the value of this cookie, in string format.

getVersion()

public int getVersion()

Description
Returns the version of this cookie.

setComment()

public void setComment(String purpose)

Description
Sets the comment field of the cookie. A comment describes the intended
purpose of a cookie. A web browser may choose to display this text to the
user. Comments are not supported by Version 0 cookies.

setDomain()

public void setDomain(String pattern)

Description
Specifies a domain restriction pattern. A domain pattern specifies the
servers that should see a cookie. By default, cookies are returned only to
the host that saved them. Specifying a domain name pattern overrides
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HTTP SERVLET API QUICK REFERENCE 451
this. The pattern must begin with a dot and must contain at least two dots.
A pattern matches only one entry beyond the initial dot. For example, ".
foo.com" is valid and matches www.foo.com and upload.foo.com but not
www.upload.foo.com. For details on domain patterns, see Netscape’s Cookie
Specification and RFC 2109.

setMaxAge()

public void setMaxAge(int expiry)

Description
Specifies the maximum age of the cookie in seconds before it expires. A
negative value indicates the default, that the cookie should expire when
the browser exits. A zero value tells the browser to delete the cookie
immediately.

setPath()

public void setPath(String uri)

Description
Specifies a path for the cookie, which is the subset of URIs to which a
cookie should be sent. By default, cookies are sent to the page that set the
cookie and to all the pages in that directory or under that directory. For
example, if /servlet/CookieMonster sets a cookie, the default path is "/
servlet". That path indicates the cookie should be sent to /servlet/Elmo
and to /servlet/subdir/BigBird—but not to the /Oscar.html servlet alias or to
any CGI programs under /cgi-bin. A path set to "/" causes a cookie to be
sent to all the pages on a server. A cookie’s path must be such that it
includes the servlet that set the cookie.

setSecure()

public void setSecure(boolean flag)

Description
The secure flag indicates whether the cookie should be sent only over a
secure channel, such as SSL. This value defaults to false.

setValue()

public void setValue(String newValue)

Description
Assigns a new value to a cookie. With Version 0 cookies, values should not
contain the following: whitespace, brackets and parentheses, equals signs,
commas, double quotes, slashes, question marks, at signs, colons, and
semicolons. Empty values may not behave the same way on all browsers.

setVersion()

public void setVersion(int v)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

452 APPENDIX B: HTTP SERVLET API QUICK REFERENCE
Description
Servlets can send and receive cookies formatted to match either Netscape
persistent cookies (Version 0) or the newer, somewhat experimental, RFC
2109 cookies (Version 1). Newly constructed cookies default to Version 0
to maximize interoperability.

HttpServlet

Synopsis
Class Name: javax.servlet.http.HttpServlet
Superclass: javax.servlet.GenericServlet
Immediate Subclasses: None
Interfaces Implemented: javax.servlet.Servlet, java.io.

Serializable
Availability: Servlet API 1.0 and later

Description

HttpServlet is an abstract class that serves as a framework for developing HTTP
(World Wide Web) servlets. The public service() method dispatches requests to
an HTTP-specific, protected service() method. You may either extend the
HTTP-specific service() method (which is then used to handle all types of
HTTP requests) or leave the default service method alone and allow it to dispatch
requests to particular handler functions for each HTTP submission type: doGet(),
doPost(), and so on. Because the default HTTP servlet implementation handles
dispatching to these methods, if you override the protected service() method,
you must either handle the dispatching manually or not use the handler functions
for HTTP request methods.

Class Summary
public abstract class HttpServlet extends javax.servlet.GenericServlet

 implements javax.servlet.Servlet, java.io.Serializable {

 // Constructors

 public HttpServlet();

 // Public Instance Methods

 public void service(ServletRequest req, ServletResponse res)

 throws ServletException, IOException;

 // Protected Instance Methods

 protected void doDelete(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException; // New in 2.0
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HTTP SERVLET API QUICK REFERENCE 453
 protected void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException;

 protected void doOptions(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException; // New in 2.0

 protected void doPost(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException;

 protected void doPut(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException; // New in 2.0

 protected void doTrace(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException; // New in 2.0

 protected long getLastModified(HttpServletRequest req);

 protected void service(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException;

}

Constructors

HttpServlet()

public HttpServlet()

Description
The default constructor does nothing. Because you cannot be sure of how
and when classes will be loaded, it is not advisable to override this
constructor to perform startup tasks. Use init() instead.

Public Instance Methods

service()

public void service(ServletRequest req, ServletResponse res)

 throws ServletException, IOException

Description
This service() method handles dispatching requests to the protected,
HTTP-specific service() method and cannot be overridden without
disabling dispatching to the doXXX() methods.

Protected Instance Methods

doDelete()

protected void doDelete(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException

Description
The default service() implementation in HttpServlet dispatches all
HTTP DELETE requests to this method. Servlets implement this method to
handle DELETE requests. The default implementation returns an HTTP
BAD_REQUEST error. This method was introduced in the Servlet API 2.0.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

454 APPENDIX B: HTTP SERVLET API QUICK REFERENCE
doGet()

protected void doGet(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException

Description
The default service() implementation in HttpServlet dispatches all
HTTP GET requests to this method. Servlets implement this method to
handle GET requests. The default implementation returns an HTTP BAD_
REQUEST error.

doPost()

protected void doPost(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException

Description
The default service() implementation in HttpServlet dispatches all
HTTP POST requests to this method. Servlets implement this method to
handle POST requests. The default implementation returns an HTTP
BAD_REQUEST error.

doPut()

protected void doPut(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException

Description
The default service() implementation in HttpServlet dispatches all
HTTP PUT requests to this method. Servlets implement this method to
handle PUT requests. The default implementation returns an HTTP BAD_
REQUEST error. See RFC 2068 at http://www.ietf.org/rfc/rfc2068.txt for more
on HTTP PUT requests. This method was introduced in the Servlet API 2.
0.

doOptions()

protected void doOptions(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException

Description
The default service() implementation in HttpServlet dispatches all
HTTP OPTIONS requests to this method. The default implementation
determines which options are supported and returns an appropriate
header. For example, if a servlet overrides doGet() and doPost(), the
browser is informed that GET, POST, HEAD, TRACE, and OPTIONS are
supported. There is almost never any reason to override this method. This
method was introduced in the Servlet API 2.0.

doTrace()

protected void doTrace(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HTTP SERVLET API QUICK REFERENCE 455
Description
The default service() implementation in HttpServlet dispatches all
HTTP TRACE requests to this method. The default implementation
returns a message listing all of the headers sent in the TRACE request.
There is almost never any reason to override this method. This method
was introduced in the Servlet API 2.0.

getLastModified()

protected long getLastModified(HttpServletRequest req)

Description
Returns the date and time (expressed as milliseconds since midnight,
January 1, 1970 GMT) that the content produced by the servlet was last
modified. Negative values indicate that the time is not known. The default
implementation returns -1. Called by servers in support of conditional
HTTP GET requests. See Chapter 4, Retrieving Information, for more
information.

service()

protected void service(HttpServletRequest req, HttpServletResponse res)

 throws ServletException, IOException

Description
The public service() method dispatches requests to this service()
method. This method handles dispatching requests to doGet(),
doPost(), and the other handler functions based on the type of request.
If this method is overridden, no handlers are called.

HttpServletRequest

Synopsis
Interface Name: javax.servlet.http.HttpServletRequest
Superinterface: javax.servlet.ServletRequest
Immediate Subinterfaces: None
Implemented By: None
Availability: Servlet API 1.0 and later

Description

HttpServletRequest extends the basic ServletRequest class, providing addi-
tional functionality for HTTP (World Wide Web) servlets. It includes support for
cookies and session tracking and access to HTTP header information.
HttpServletRequest also parses incoming HTTP form data and stores it as
servlet parameters.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

456 APPENDIX B: HTTP SERVLET API QUICK REFERENCE
The server passes an HttpServletRequest object to the service method of an
HttpServlet.

Certain methods in this interface have suffered from documentation and imple-
mentation inconsistencies. Discrepancies have been noted where possible.

Interface Declaration
public interface HttpServletRequest extends javax.servlet.ServletRequest {

 // Methods

 public abstract String getAuthType();

 public abstract Cookie[] getCookies(); // New in 2.0

 public abstract long getDateHeader(String name);

 public abstract String getHeader(String name);

 public abstract Enumeration getHeaderNames();

 public abstract int getIntHeader(String name);

 public abstract String getMethod();

 public abstract String getPathInfo();

 public abstract String getPathTranslated();

 public abstract String getQueryString();

 public abstract String getRemoteUser();

 public abstract String getRequestedSessionId(); // New in 2.0

 public abstract String getRequestURI();

 public abstract String getServletPath();

 public abstract HttpSession getSession(boolean create); // New in 2.0

 public abstract boolean isRequestedSessionIdFromCookie(); // New in 2.0

 public abstract boolean isRequestedSessionIdFromUrl(); // New in 2.0

 public abstract boolean isRequestedSessionIdValid(); // New in 2.0

}

Methods

getAuthType()

public abstract String getAuthType()

Description
Returns the servlet’s authentication scheme or null if the servlet was not
protected by an access control mechanism. Possible schemes are "BASIC",
"DIGEST", and "SSL". Same as the CGI variable AUTH_TYPE.

getCookies()

public abstract Cookie[] getCookies()

Description
Returns an array of Cookie objects that contains all the cookies sent by
the browser as part of the request or null if no cookies were sent. This
method was introduced in the Servlet API 2.0.

getDateHeader()

public abstract long getDateHeader(String name)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HTTP SERVLET API QUICK REFERENCE 457
Description
Returns the value of the named header as a long value that represents a
Date (the number of milliseconds since midnight, January 1, 1970, GMT)
or -1 if the header was not sent as part of the request. The name is case
insensitive. Throws an IllegalArgumentException when called on a
header whose value cannot be converted to a Date. This method is useful
for handling headers like Last-Modified and If-Modified-Since.

getHeader()

public abstract String getHeader(String name)

Description
Returns the value of the named header as a String or null if the header
was not sent as part of the request. The name is case insensitive. This
method can retrieve all header types.

getHeaderNames()

public abstract Enumeration getHeaderNames()

Description
Returns the names of all the headers a servlet can access as an
Enumeration of Strings or an empty Enumeration if there were no
headers. Some servlet implementations may not allow headers to be
accessed in this way, in which case this method returns null.

getIntHeader()

public abstract int getIntHeader(String name)

Description
Returns the value of the named header as an int or -1 if the header was
not sent as part of the request. The name is case insensitive. Throws a
NumberFormatException when called on a header with a value that
cannot be converted to an int.

getMethod()

public abstract String getMethod()

Description
Returns the HTTP method used to make the request. Example methods
include "GET", "POST", and "HEAD". The same as the CGI variable
REQUEST_METHOD. The HttpServlet implementation of service() uses
this method when dispatching requests.

getPathInfo()

public abstract String getPathInfo()

Description
Returns the extra path information associated with the request or null if
none was provided. The same as the CGI variable PATH_INFO.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

458 APPENDIX B: HTTP SERVLET API QUICK REFERENCE
getPathTranslated()

public abstract String getPathTranslated()

Description
Returns the extra path information translated to a file system path or
null if there was no extra path information. The path returned does not
necessarily point to an existing file or directory. The same as the CGI vari-
able PATH_TRANSLATED. This method has been known to not function
properly in some servlet runners.

getQueryString()

public abstract String getQueryString()

Description
Returns the query string from the request’s URL. This value is the same as
the CGI variable QUERY_STRING. Because HttpServletRequest parses
this string into a set of servlet parameters available through
getParameter(), most servlets can ignore this method.

getRemoteUser()

public abstract String getRemoteUser()

Description
Returns the name of the user making the request as a String or null if
access to the servlet was not restricted. The same as the CGI variable
REMOTE_USER. This generally requires that the user has logged in using
HTTP authentication. There is no comparable method to directly retrieve
the remote user’s password.

getRequestedSessionId()

public abstract String getRequestedSessionId()

Description
This method returns the session ID specified by the client. This may not
be the actual session identifier currently in use—for example, if the
session expired before the request occurred, the server creates a new
session ID and uses that one instead. This method was introduced in the
Servlet API 2.0.

getRequestURI()

public abstract String getRequestURI()

Description
Returns the Universal Resource Identifier (URI) of the request. This is the
resource requested by the client in the first line of its HTTP request, with
the query string removed. For normal HTTP servlets, the request URI is
the request URL minus the scheme, host, port, and query string but
including extra path information. Early versions of the Servlet API defined
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HTTP SERVLET API QUICK REFERENCE 459
and implemented this method in different ways. When writing code that
depends on this method, make sure you know what you’re actually
getting.

getServletPath()

public abstract String getServletPath()

Description
Returns the part of the URI that refers to the servlet. It does not include
any extra path information or the query string. This is the same as the CGI
variable SCRIPT_NAME.

getSession()

public abstract HttpSession getSession(boolean create)

Description
Returns the current session associated with the user making the request. If
the user has no current valid session, this method creates one if create is
true or returns null if create is false. To ensure the session is prop-
erly maintained, this method should be called at least once before any
output is written to the response. Servlets not using session tracking may
ignore this method. This method was introduced in the Servlet API 2.0.

isRequestedSessionIdFromCookie()

public abstract boolean isRequestedSessionIdFromCookie()

Description
Returns true if the client submitted a session identifier via a cookie,
false otherwise. This method was introduced in the Servlet API 2.0.

isRequestedSessionIdFromUrl()

public abstract boolean isRequestedSessionIdFromUrl()

Description
Returns true if the requested session ID was submitted via a rewritten
URL, false otherwise. This method was introduced in the Servlet API 2.
0.

isRequestedSessionIdValid()

public abstract boolean isRequestedSessionIdValid()

Description
Returns true if the session requested by the client is a valid session and is
therefore the session currently in use. For new sessions and expired sessions,
it returns false. This method was introduced in the Servlet API 2.0.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

460 APPENDIX B: HTTP SERVLET API QUICK REFERENCE
HttpServletResponse

Synopsis
Interface Name: javax.servlet.http.HttpServletResponse
Superinterface: javax.servlet.ServletResponse
Immediate Subinterfaces: None
Implemented By: None
Availability: Servlet API 1.0 and later

Description

HttpServletResponse extends the ServletResponse class to allow manipula-
tion of HTTP protocol-specific data, including response headers and status codes.
It also defines a series of constants that represent various HTTP status codes and
includes helper functions for session tracking operations.

Interface Declaration
public interface HttpServletResponse extends javax.servlet.ServletResponse {

 // Constants

 public static final int SC_ACCEPTED;

 public static final int SC_BAD_GATEWAY;

 public static final int SC_BAD_REQUEST;

 public static final int SC_CONFLICT;

 public static final int SC_CREATED;

 public static final int SC_CONTINUE; // New in 2.0

 public static final int SC_FORBIDDEN;

 public static final int SC_GATEWAY_TIMEOUT; // New in 2.0

 public static final int SC_GONE; // New in 2.0

 public static final int SC_HTTP_VERSION_NOT_SUPPORTED; // New in 2.0

 public static final int SC_INTERNAL_SERVER_ERROR;

 public static final int SC_LENGTH_REQUIRED; // New in 2.0

 public static final int SC_METHOD_NOT_ALLOWED; // New in 2.0

 public static final int SC_MOVED_PERMANENTLY;

 public static final int SC_MOVED_TEMPORARILY;

 public static final int SC_MULTIPLE_CHOICES; // New in 2.0

 public static final int SC_NO_CONTENT;

 public static final int SC_NON_AUTHORITATIVE_INFORMATION; // New in 2.0

 public static final int SC_NOT_ACCEPTABLE; // New in 2.0

 public static final int SC_NOT_FOUND;

 public static final int SC_NOT_IMPLEMENTED;

 public static final int SC_NOT_MODIFIED;

 public static final int SC_OK;

 public static final int SC_PARTIAL_CONTENT; // New in 2.0

 public static final int SC_PAYMENT_REQUIRED; // New in 2.0

 public static final int SC_PRECONDITION_FAILED; // New in 2.0

 public static final int SC_PROXY_AUTHENTICATION_REQUIRED; // New in 2.0
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HTTP SERVLET API QUICK REFERENCE 461
 public static final int SC_REQUEST_ENTITY_TOO_LARGE; // New in 2.0

 public static final int SC_REQUEST_TIMEOUT; // New in 2.0

 public static final int SC_REQUEST_URI_TOO_LONG; // New in 2.0

 public static final int SC_RESET_CONTENT; // New in 2.0

 public static final int SC_SEE_OTHER; // New in 2.0

 public static final int SC_SERVICE_UNAVAILABLE;

 public static final int SC_SWITCHING_PROTOCOLS; // New in 2.0

 public static final int SC_UNAUTHORIZED;

 public static final int SC_UNSUPPORTED_MEDIA_TYPE; // New in 2.0

 public static final int SC_USE_PROXY; // New in 2.0

 // Methods

 public abstract void addCookie(Cookie cookie); // New in 2.0

 public abstract boolean containsHeader(String name);

 public abstract String encodeRedirectUrl(String url); // New in 2.0

 public abstract String encodeUrl(String url); // New in 2.0

 public abstract void sendError(int sc) throws IOException;

 public abstract void sendError(int sc, String msg) throws IOException;

 public abstract void sendRedirect(String location) throws IOException;

 public abstract void setDateHeader(String name, long date);

 public abstract void setHeader(String name, String value);

 public abstract void setIntHeader(String name, int value);

 public abstract void setStatus(int sc);

 public abstract void setStatus(int sc, String sm);

}

Constants

Appendix C, HTTP Status Codes, contains complete descriptions of all the SC_XXX
status codes.

Methods

addCookie()

public abstract void addCookie(Cookie cookie)

Description
Adds the specified cookie to the response. Additional cookies can be
added with repeated calls to addCookie(). Because cookies are sent using
HTTP headers, they should be added to the response before sending any
content. Browsers are required to accept only 20 cookies per site, 300 total
per user, and they can limit each cookie’s size to 4096 bytes.

containsHeader()

public abstract boolean containsHeader(String name)

Description
Returns true if the named header has already been set, false if not.

encodeRedirectUrl()
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

462 APPENDIX B: HTTP SERVLET API QUICK REFERENCE
public abstract String encodeRedirectUrl(String url)

Description
Returns the specified URL encoded (rewritten) to include the session ID.
If encoding is not needed or not supported, the method leaves the URL
unchanged. The rules used to decide when and how to encode a URL are
server-specific. This method may use different rules than encodeUrl().
To enable session tracking, all URLs passed to the sendRedirect()
method should be run through this method. Note that this method
employs a different capitalization scheme than getRequestURL() and
getRequestURI().

encodeUrl()

public abstract String encodeUrl(String url)

Description
Returns the specified URL encoded (rewritten) to include the session ID.
If encoding is not needed or not supported, the method leaves the URL
unchanged. The rules used to decide when and how to encode a URL are
server-specific. To enable session tracking, all URLs emitted by a servlet
should be run through this method. Note that this method employs a
different capitalization scheme than getRequestURL() and
getRequestURI().

sendError()

public abstract void sendError(int sc) throws IOException

public abstract void sendError(int sc, String msg) throws IOException

Description
These methods are similar to setStatus(), except that they are used
when the status code indicates an error during the handling of the
request. A server may give these methods different treatment than
setStatus(). This method should be called before sending any content.

sendRedirect()

public abstract void sendRedirect(String location) throws IOException

Description
Redirects the response to the specified location, automatically setting the
status code and Location header. The location must be an absolute URL,
(including "http://"). The default implementaion also writes a short
response body that contains a hyperlink to the location, to support
browers without redirect capabilities. Consequently, do not write your own
response body when using this method.

setDateHeader()

public abstract void setDateHeader(String name, long date)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HTTP SERVLET API QUICK REFERENCE 463
Description
Sets the value of the named header as a String specifying a particular date
and time. The method accepts the date value as a long that represents the
number of milliseconds since midnight, January 1, 1970, GMT. If the
header has already been set, the new value overwrites the previous one.

setHeader()

public abstract void setHeader(String name, String value)

Description
Sets the value of the named header as a String. The name is case insensi-
tive (as with all header-related methods). If the header has already been
set, the new value overwrites the previous one. This method can set any
header type. Headers should always be set before sending any content.

setIntHeader()

public abstract void setIntHeader(String name, int value)

Description
Sets the value of the named header as an int. If the header has already
been set, the new value overwrites the previous one.

setStatus()

public abstract void setStatus(int sc)

public abstract void setStatus(int sc, String sm)

Description
Sets the HTTP status code. The code can be specified using a numeric
value or by using the SC_XXX codes defined within
HttpServletResponse. You can optionally specify a custom error
message; otherwise, the server uses the default message for that code, if
any. The status should be set before sending any content.

HttpSession

Synopsis
Interface Name: javax.servlet.http.HttpSession
Superinterface: None
Immediate Subinterfaces: None
Implemented By: None
Availability: New as of the Servlet API 2.0; found in JSDK 2.0,

JWS 1.1
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

464 APPENDIX B: HTTP SERVLET API QUICK REFERENCE
Description

The HttpSession interface provides a mechanism for identifying return visitors
to a web site. For a detailed introduction to session tracking, see Chapter 7. The
HttpSession interface itself allows servlets to view and manipulate session-specific
information, such as creation time and the unique session identifier. It also
includes methods to bind objects to the session for later retrieval, allowing “shop-
ping cart” and other applications to hold onto data between connections without
resorting to databases or other extra-servlet resources.

A servlet obtains an HttpSession object from the getSession() method of
HttpServletRequest. Specific session behavior, such as the amount of idle time
before a session is destroyed, depends on the server.

While any object can be bound to a session, lots of high-traffic servlets binding
large objects to their sessions will impose a heavy resource burden on the server.
With most implementations, this can be alleviated by binding only objects that
implement the java.io.Serializable interface (this includes all of the data
type objects in the core Java API). Some servers have the ability to write
Serializable objects to disk to save memory. Unserializable objects, such as
java.sql.Connection, must be retained in memory.

Interface Declaration
public interface HttpSession {

 // Methods

 public abstract long getCreationTime();

 public abstract String getId();

 public abstract long getLastAccessedTime();

 public abstract HttpSessionContext getSessionContext();

 public abstract Object getValue(String name);

 public abstract String[] getValueNames();

 public abstract void invalidate();

 public abstract boolean isNew();

 public abstract void putValue(String name, Object value);

 public abstract void removeValue(String name);

}

Methods

getCreationTime()

public abstract long getCreationTime()

Description
Returns the time at which the session was created, as a long representing
the number of milliseconds since midnight, January 1, 1970, GMT.
Throws an IllegalStateException if the session is invalid.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HTTP SERVLET API QUICK REFERENCE 465
getId()

public abstract String getId()

Description
Returns the unique String identifier assigned to this session. The struc-
ture of the ID is implementation dependent. For example, a Java Web
Server ID might be something like HT04D1QAAAAABQDGPM5QAAA.
Throws an IllegalStateException if the session is invalid.

getLastAccessTime()

public abstract long getLastAccessedTime()

Description
Returns the time at which the client last sent a request associated with this
session, as a long representing the number of milliseconds since
midnight, January 1, 1970, GMT. Throws an IllegalStateException if
the session is invalid.

getSessionContext()

public abstract HttpSessionContext getSessionContext()

Description
Returns the context in which the session is bound. See
HttpSessionContext for more information. Throws an
IllegalStateException if the session is invalid.

getValue()

public abstract Object getValue(String name)

Description
Returns the object bound in the session under the specified name or null
if there is no matching binding. Throws an IllegalStateException if
the session is invalid.

getValueNames()

public abstract String[] getValueNames()

Description
Returns an array containing the names of all objects bound to this session
or an empty (zero length) array if there are no bindings. Throws an
IllegalStateException if the session is invalid. Note that unlike most
similar methods (getParameterNames(), getInitParameterNames(),
getServletNames(), etc.), this method does not return an
Enumeration. (No, we don’t know why either.)

invalidate()

public abstract void invalidate()
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

466 APPENDIX B: HTTP SERVLET API QUICK REFERENCE
Description
Causes the session to be immediately invalidated. All objects stored in the
session are unbound. Throws an IllegalStateException if the session
is already invalid.

isNew()

public abstract boolean isNew()

Description
Returns whether the session is new. A session is considered new if it has
been created by the server but the client has not yet acknowledged joining
the session. For example, if a server supports only cookie-based sessions
and a client has completely disabled the use of cookies, calls to get
Session() always return new sessions. Throws an IllegalState
Exception if the session is invalid.

putValue()

public abstract void putValue(String name, Object value)

Description
Binds the specified object value under the specified name in the session.
Any existing binding with the same name is replaced. Throws an
IllegalStateException if the session is invalid.

removeValue()

public abstract void removeValue(String name)

Description
Removes the object bound to the specified name or does nothing if there
is no binding. Throws an IllegalStateException if the session is
invalid.

HttpSessionBindingEvent

Synopsis
Class Name: javax.servlet.http.HttpSession-

BindingEvent
Superclass: java.util.EventObject
Immediate Subclasses: None
Interfaces Implemented: None
Availability: New as of the Servlet API 2.0; found in JSDK 2.0,

JWS 1.1
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HTTP SERVLET API QUICK REFERENCE 467
Description

An HttpSessionBindingEvent is passed to an HttpSessionBindingListener
when the listener object is bound to or unbound from a session.

Class Summary
public class HttpSessionBindingEvent extends java.util.EventObject {

 // Constructors

 public HttpSessionBindingEvent(HttpSession session, String name);

 // Instance Methods

 public String getName();

 public HttpSession getSession();

}

Constructors

HttpSessionBindingEvent()

public HttpSessionBindingEvent(HttpSession session, String name)

Description
Constructs a new HttpSessionBindingEvent using the session being
bound and the name that this object is being assigned (this is the same
name passed to the putValue() method of HttpSession). Servlet
programmers should never need to use this constructor.

Instance Methods

getName()

public String getName()

Description
Returns the name this object has been assigned within the session.

getSession()

public HttpSession getSession()

Description
Returns the session this object is being bound to or unbound from.

HttpSessionBindingListener

Synopsis
Interface Name: javax.servlet.http.HttpSession-

BindingListener
Superinterface: java.util.EventListener
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

468 APPENDIX B: HTTP SERVLET API QUICK REFERENCE
Immediate Subinterfaces: None
Implemented By: None
Availability: New as of the Servlet API 2.0; found in JSDK 2.0,

JWS 1.1

Description

An object that implements HttpSessionBindingListener is notified via calls to
valueBound() and valueUnbound() when it is bound to or unbound from an
HttpSession. Among other things, this interface allows orderly cleanup session-
specific resources, such as database connections.

Interface Declaration
public interface HttpSessionBindingListener extends java.util.EventListener {

 // Methods

 public abstract void valueBound(HttpSessionBindingEvent event);

 public abstract void valueUnbound(HttpSessionBindingEvent event);

}

Methods

valueBound()

public abstract void valueBound(HttpSessionBindingEvent event)

Description
Called when the listener is bound to a session.

valueUnbound()

public abstract void valueUnbound(HttpSessionBindingEvent event)

Description
Called when the listener is unbound from a session (including at session
destruction).

HttpSessionContext

Synopsis
Interface Name: javax.servlet.http.HttpSessionContext
Superinterface: None
Immediate Subinterfaces: None
Implemented By: None
Availability: New as of the Servlet API 2.0; found in JSDK 2.0,

JWS 1.1
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HTTP SERVLET API QUICK REFERENCE 469
Description

HttpSessionContext provides access to all of the currently active sessions on the
server. This can be useful for servlets that weed out inactive sessions, display statis-
tics, or otherwise share information. A servlet obtains an HttpSessionContext
object from the getSessionContext() method of HttpSession.

Interface Declaration
public interface HttpSessionContext {

 // Methods

 public abstract Enumeration getIds();

 public abstract HttpSession getSession(String sessionId);

}

Methods

getIds()

public abstract Enumeration getIds()

Description
Returns an Enumeration that contains the session IDs for all the currently
valid sessions in this context. It returns an empty Enumeration if there are
no valid sessions. The session IDs returned by getIds() should be held as
a server secret because any client with knowledge of another client’s session
ID can, with a forged cookie or URL, join the second client’s session.

getSession()

public abstract HttpSession getSession(String sessionId)

Description
Returns the session associated with the given session identifier. A list of
valid session IDs can be obtained from the getIds() method.

HttpUtils

Synopsis
Class Name: javax.servlet.http.HttpUtils
Superclass: java.lang.Object
Immediate Subclasses: None
Interfaces Implemented: None
Availability: Servlet API 1.0 and later
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

470 APPENDIX B: HTTP SERVLET API QUICK REFERENCE
Description

A container object for a handful of potentially useful HTTP-oriented methods.

Class Summary
public class HttpUtils {

 // Constructors

 public HttpUtils();

 // Class Methods

 public static StringBuffer getRequestURL(HttpServletRequest req);

 public static Hashtable parsePostData(int len, ServletInputStream in);

 public static Hashtable parseQueryString(String s);

}

Constructors

HttpUtils()

public HttpUtils()

Description
The default constructor does nothing.

Class Methods

getRequestURL()

public static StringBuffer getRequestURL(HttpServletRequest req)

Description
Reconstitutes the request URL based on information available in the
HttpServletRequest object. Returns a StringBuffer that includes the
scheme, server name, server port, and extra path information. The recon-
stituted URL should look almost identical to the URL used by the client.
This method can be used for error reporting, redirecting, and URL
creation. For applications that need to uniquely identify particular serv-
lets, the getRequestURI() method of HttpServletRequest is generally
a better choice.

parsePostData()

public static Hashtable parsePostData(int len, ServletInputStream in)

Description
Parses len characters of parameter data from a ServletInputStream
(usually sent as part of a POST operation). Throws an Illegal-
ArgumentException if the parameter data is invalid. Most servlets use
getParameterNames(), getParameter(), and getParameterValues()
instead of this method.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HTTP SERVLET API QUICK REFERENCE 471
parseQueryString()

public static Hashtable parseQueryString(String s)

Description

Returns a Hashtable where the hashtable keys are the parameter names taken
from the query string and each hashtable value is a String array that contains the
parameter’s decoded value(s). Throws an IllegalArgumentException if the
query string is invalid. Most servlets use getParameterNames(), get-
Parameter(), and getParameterValues() instead. It is not safe to use both.
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

472
Java™ Servlet Programming, eMatte

Copyright © 2000 O’Reilly & Associates, Inc. A
Appendix C

3. 3:

.

cessary
C

HTTP Status Codes
HTTP status codes are grouped as shown in Table C-1

Table C-2 lists the HTTP status code constants defined by the HttpServlet
Request interface and used as parameters to its setStatus() and sendError()
methods. The version number in the last column refers to the HTTP protocol
version that first defined the status code. The Servlet API 2.0 added constants for
HTTP Version 1.1 status codes. Note that HTTP 1.1 status codes require an
HTTP 1.1-compliant browser.

For more information on HTTP, see Web Client Programming by Clinton Wong
(O’Reilly). The proposed HTTP/1.1 specification is available in RFC 2068 at http:/
/www.ietf.org/rfc/rfc2068.txt.

Table C-1. HTTP Status Code Groupings

Code Range Response Meaning

100-199 Informational

200-299 Client request successful

300-399 Client request redirected, further action ne

400-499 Client request incomplete

500-599 Server error
r Edition
ll rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HTTP STATUS CODES 473
Table C-2. HTTP Status Code Constants

Constant Code
Default
Message Meaning

HTTP
Version

SC_CONTINUE 100 Continue The server has received the initial
part of the request, and the client
can continue with the remainder
of its request.

1.1

SC_SWITCHING_
PROTOCOLS

101 Switching
Protocols

The server is willing to comply
with the client’s request to switch
protocols to the one specified in
the request’s Upgrade header.
This might include switching to a
newer HTTP version.

1.1

SC_OK 200 OK The client’s request was
successful and the server’s
response contains the requested
data. This is the default status
code.

1.0

SC_CREATED 201 Created A resource has been created on
the server, presumably in
response to a client request. The
response body should include the
URL(s) where the new resource
can be found, with the most
specific URL set in the Location
header. If the resource cannot be
created immediately, an SC_
ACCEPTED status code should be
returned instead.

1.0

SC_ACCEPTED 202 Accepted The request has been accepted
for processing but has not yet
completed. The server should
describe the current status of the
request in the response body.
The server is under no obligation
to act on or complete the
request.

1.0

SC_NON_
AUTHORITATIVE_
INFORMATION

203 Non-
Authorita-
tive Infor-
mation

The HTTP response headers
came from a local or third-party
source, rather than the original
server. Normal servlets have no
reason to use this status code.

1.1

SC_NO_CONTENT 204 No
Content

The request succeeded but there
was no new response body to
return. Browsers receiving this
code should retain their current
document view. This is a useful
code for a servlet to use when it
accepts data from a form but
wants the browser view to stay at
the form, as it avoids the “Docu-
ment contains no data” error
message.

1.0
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

474 APPENDIX C: HTTP STATUS CODES
SC_RESET_
CONTENT

205 Reset
Content

The request succeeded and the
browser should reset (reload) the
current document view. This is a
useful code for a servlet to use
when it accepts data from a form
and wants the form redisplayed
in a fresh state.

1.1

SC_PARTIAL_
CONTENT

206 Partial
Content

The server has completed a
partial GET request and returned
the portion of the document
specified in the client’s Range
header.

1.1

SC_MULTIPLE_
CHOICES

300 Multiple
Choices

The requested URL refers to
more than one resource. For
example, the URL may refer to a
document translated into many
languages. The response body
should explain the client’s
options in a format appropriate
for the response content type.
The server can suggest a choice
with the Location header.

1.1

SC_MOVED_
PERMANENTLY

301 Moved
Perma-
nently

The requested resource has
permanently moved to a new
location and future references
should use the new URL in their
requests. The new location is
given by the Location header.
Most browsers automatically
access the new location.

1.0

SC_MOVED_
TEMPORARILY

302 Moved
Tempo-
rarily

The requested resource has
temporarily moved to another
location, but future references
should still use the original URL
to access the resource. The new
location is given by the Location
header. Most browsers automati-
cally access the new location.

1.0

SC_SEE_OTHER 303 See Other The requested resource
processed the request but the
client should get its response by
performing a GET on the URL
specified in the Location
header. This code is useful for a
servlet that wants to receive POST
data then redirect the client to
another resource for the
response.

1.1

Table C-2. HTTP Status Code Constants (continued)

Constant Code
Default
Message Meaning

HTTP
Version
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HTTP STATUS CODES 475
SC_NOT_
MODIFIED

304 Not Modi-
fied

The requested document has not
changed since the date specified
in the request’s If-Modified-
Since header. Normal servlets
should not need to use this status
code. They implement
getLastModified() instead.

1.0

SC_USE_PROXY 305 Use Proxy The requested resource must be
accessed via the proxy given in
the Location header.

1.1

SC_BAD_REQUEST 400 Bad
Request

The server could not understand
the request, probably due to a
syntax error.

1.0

SC_
UNAUTHORIZED

401 Unautho-
rized

The request lacked proper autho-
rization. Used in conjunction
with the WWW-Authenticate
and Authorization headers.

1.0

SC_PAYMENT_
REQUIRED

402 Payment
Required

Reserved for future use.
Proposals exist to use this code in
conjunction with a Charge-To
header, but this has not been
standardized as of press time.

1.1

SC_FORBIDDEN 403 Forbidden The request was understood, but
the server is not willing to fulfill
it. The server can explain the
reason for its unwillingness in the
response body.

1.0

SC_NOT_FOUND 404 Not Found The requested resource was not
found or is not available.

1.0

SC_METHOD_NOT_
ALLOWED

405 Method
Not
Allowed

The method used by the client is
not supported by this URL. The
methods that are supported must
be listed in the response’s Allow
header.

1.1

SC_NOT_
ACCEPTABLE

406 Not
Acceptable

The requested resource exists,
but not in a format acceptable to
the client (as indicated by the
Accept header(s) in the
request).

1.1

SC_PROXY_
AUTHENTICATION
_REQUIRED

407 Proxy
Authenti-
cation
Required

The proxy server needs authoriza-
tion before it can proceed. Used
with the Proxy-Authenticate
header. Normal servlets should
not need to use this status code.

1.1

Table C-2. HTTP Status Code Constants (continued)

Constant Code
Default
Message Meaning

HTTP
Version
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

476 APPENDIX C: HTTP STATUS CODES
SC_REQUEST_
TIMEOUT

408 Request
Timeout

The client did not completely
finish its request within the time
that the server was willing to
listen.

1.1

SC_CONFLICT 409 Conflict The request could not be
completed because it conflicted
with another request or the
server’s configuration. This code
is most likely to occur with HTTP
PUT requests, where the file
being put is under revision
control and the new version
conflicts with some previous
changes. The server can send a
description of the conflict in the
response body.

1.0

SC_GONE 410 Gone The resource is no longer avail-
able at this server, and no alter-
nate address is known. This code
should be used only when the
resource has been permanently
removed. Normal servlets have
no reason to use this status code.

1.1

SC_LENGTH_
REQUIRED

411 Length
Required

The server will not accept the
request without a Content-
Length header.

1.1

SC_
PRECONDITION_
FAILED

412 Precondi-
tion Failed

A precondition specified by one
or more If... headers in the
request evaluated to false.

1.1

SC_REQUEST_
ENTITY_TOO_
LARGE

413 Request
Entity Too
Large

The server will not process the
request because the request
content is too large. If this limita-
tion is temporary, the server can
include a Retry-After header.

1.1

SC_REQUEST_
URI_TOO_LONG

414 Request-
URI Too
Long

The server will not process the
request because the request URI
is longer than the server is willing
to interpret. This can occur when
a client has accidentally converted
a POST request into a GET
request. Normal servlets have no
reason to use this status code.

1.1

SC_
UNSUPPORTED_
MEDIA_TYPE

415 Unsup-
ported
Media
Type

The server will not process the
request because the request body
is in a format unsupported by the
requested resource.

1.1

Table C-2. HTTP Status Code Constants (continued)

Constant Code
Default
Message Meaning

HTTP
Version
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

HTTP STATUS CODES 477
SC_INTERNAL_
SERVER_ERROR

500 Internal
Server
Error

An unexpected error occurred
inside the server that prevented it
from fulfilling the request.

1.0

SC_NOT_
IMPLEMENTED

501 Not Imple-
mented

The server does not support the
functionality needed to fulfill the
request.

1.0

SC_BAD_GATEWAY 502 Bad
Gateway

A server acting as a gateway or
proxy did not receive a valid
response from an upstream
server.

1.0

SC_SERVICE_
UNAVAILABLE

503 Service
Unavail-
able

The service (server) is temporarily
unavailable but should be
restored in the future. If the server
knows when it will be available
again, a Retry-After header
may also be supplied.

1.0

SC_GATEWAY_
TIMEOUT

504 Gateway
Timeout

A server acting as a gateway or
proxy did not receive a valid
response from an upstream
server during the time it was
prepared to wait.

1.1

SC_HTTP_
VERSION_NOT_
SUPPORTED

505 HTTP
Version
Not
Supported

The server does not support the
version of the HTTP protocol
used in the request. The response
body should specify the protocols
supported by the server. Normal
servlets should not need to use
this status code.

1.1

Table C-2. HTTP Status Code Constants (continued)

Constant Code
Default
Message Meaning

HTTP
Version
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

478
Java™ Servlet Programming, eMatte

Copyright © 2000 O’Reilly & Associates, Inc. A
Appendix D

4. 4:

umeric entities, and HTML
haracters.

hin HTML pages; they are
es may be used within servlet
example, a pound sign (£)
or "£". It can be
D

Character Entities
Table D-1 lists the various Unicode escapes, HTML n
named entities for all printable ISO-8859-1 (Latin-1) c

The numeric and named entities may be used wit
converted to symbols by web browsers. Unicode escap
code; they are interpreted by the Java compiler. For
can be embedded in an HTML page as "£"
embedded directly in Java code as "\u00A3".

Not every HTML character entity is universally supported. The Support column
indicates its level of support. An “S” value means the numeric and named entity
values for the symbol are part of the HTML standard. A “P” indicates the entity
values are proposed standards—not part of the HTML standard but in most cases
widely supported. An “N” in the column indicates the entity values are
nonstandard and poorly supported. For these symbols, it’s often best to use
Unicode escapes.

Table D-1. Character Entities

Unicode
Escape

Numeric
Entity

Named
Entity Symbol Description Support

\u0009 	 \t Horizontal tab S

\u000A
 \n Line feed S

\u000D  \r Carriage return S

\u0020 Space S

\u0021 ! ! Exclamation point S

\u0022 " " " Quotation mark S

\u0023 # # Hash mark S

\u0024 $ $ Dollar sign S
r Edition
ll rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CHARACTER ENTITIES 479
\u0025 % % Percent sign S

\u0026 & & & Ampersand S

\u0027 ' ' Apostrophe S

\u0028 ((Left parenthesis S

\u0029)) Right parenthesis S

\u002A * * Asterisk S

\u002B + + Plus sign S

\u002C , , Comma S

\u002D - - Hyphen S

\u002E . . Period S

\u002F / / Slash S

\u0030-
\u0039

0-
9

0-9 Digits 0-9 S

\u003A : : Colon S

\u003B ; ; Semicolon S

\u003C < < < Less than S

\u003D = = Equal sign S

\u003E > > > Greater than S

\u003F ? ? Question mark S

\u0040 @ @ Commercial "at" sign S

\u0041-
\u005A

A-
Z

A-Z Letters A-Z S

\u005B [[Left square bracket S

\u005C \ \ Backslash S

\u005D]] Right square bracket S

\u005E ^ ^ Caret S

\u005F _ _ Underscore S

\u0060 ` ` Grave accent S

\u0061-
\u007A

a-
z

a-z Letters a-z S

\u007B { { Left curly brace S

\u007C | | Vertical bar S

\u007D } } Right curly brace S

\u007E ~ ~ Tilde S

\u0082 ‚ , N

\u0083 ƒ ¶ Florin N

Table D-1. Character Entities (continued)

Unicode
Escape

Numeric
Entity

Named
Entity Symbol Description Support
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

480 APPENDIX D: CHARACTER ENTITIES
\u0084 „ Right double quote N

\u0085 … … Ellipsis N

\u0086 † † Dagger N

\u0087 ‡ ‡ Double dagger N

\u0088 ˆ ˆ Circumflex N

\u0089 ‰ Permil N

\u008A Š Capital S, caron N

\u008B ‹ < Less than sign N

\u008C Œ Œ Capital OE ligature N

\u0091 ‘ ¡ Left single quote N

\u0092 ’ ’ Right single quote N

\u0093 “ ™ Left double quote N

\u0094 ” Right double quote N

\u0095 • • Bullet N

\u0096 – – En dash N

\u0097 — — Em dash N

\u0098 ˜ ∼ Tilde N

\u0099 ™ Trademark N

\u009A š Small s, caron N

\u009B › Greater than sign N

\u009C œ œ Small oe ligature N

\u009F Ÿ Capital Y, umlaut N

\u00A0 Nonbreaking space P

\u00A1 ¡ ¡ ¡ Inverted exclamation point P

\u00A2 ¢ ¢ ¢ Cent sign P

\u00A3 £ £ £ Pound sign P

\u00A4 ¤ ¤ ¤ General currency sign P

\u00A5 ¥ ¥ ¥ Yen sign P

\u00A6 ¦ ¦ | Broken vertical bar P

\u00A7 § § § Section sign P

\u00A8 ¨ ¨ ¨ Umlaut P

\u00A9 © © © Copyright P

\u00AA ª ª ª Feminine ordinal P

\u00AB « « « Left angle quote P

Table D-1. Character Entities (continued)

Unicode
Escape

Numeric
Entity

Named
Entity Symbol Description Support

‰~

Š

ß
>

ÿ

Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CHARACTER ENTITIES 481
\u00AC ¬ ¬ ¬ Not sign P

\u00AD ­ ­ - Soft hyphen P

\u00AE ® ® ® Registered trademark P

\u00AF ¯ ¯ ¯ Macron accent P

\u00B0 ° ° ˚ Degree sign P

\u00B1 ± ± Plus or minus P

\u00B2 ² ² 2 Superscript 2 P

\u00B3 ³ ³ 3 Superscript 3 P

\u00B4 ´ ´ ´ Acute accent P

\u00B5 µ µ Micro sign (Greek mu) P

\u00B6 ¶ ¶ ¶ Paragraph sign P

\u00B7 · · · Middle dot P

\u00B8 ¸ ¸ ¸ Cedilla P

\u00B9 ¹ ¹ 1 Superscript 1 P

\u00BA º º º Masculine ordinal P

\u00BB » » » Right angle quote P

\u00BC ¼ ¼ Fraction one-fourth P

\u00BD ½ ½ Fraction one-half P

\u00BE ¾ ¾ Fraction three-fourths P

\u00BF ¿ ¿ ¿ Inverted question mark P

\u00C0 À À À Capital A, grave accent S

\u00C1 Á Á Á Capital A, acute accent S

\u00C2 Â Â Â Capital A, circumflex accent S

\u00C3 Ã Ã Ã Capital A, tilde S

\u00C4 Ä Ä Ä Capital A, umlaut S

\u00C5 Å Å Å Capital A, ring S

\u00C6 Æ Æ Æ Capital AE ligature S

\u00C7 Ç Ç Ç Capital C, cedilla S

\u00C8 È È È Capital E, grave accent S

\u00C9 É É É Capital E, acute accent S

\u00CA Ê Ê Ê Capital E, circumflex accent S

\u00CB Ë Ë Ë Capital E, umlaut S

\u00CC Ì Ì Ì Capital I, grave accent S

Table D-1. Character Entities (continued)

Unicode
Escape

Numeric
Entity

Named
Entity Symbol Description Support

G
H
I

Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

482 APPENDIX D: CHARACTER ENTITIES
\u00CD Í Í Í Capital I, acute accent S

\u00CE Î Î Î Capital I, circumflex accent S

\u00CF Ï Ï Ï Capital I, umlaut S

\u00D0 Ð Ð Capital eth, Icelandic S

\u00D1 Ñ Ñ Ñ Capital N, tilde S

\u00D2 Ò Ò Ò Capital O, grave accent S

\u00D3 Ó Ó Ó Capital O, acute accent S

\u00D4 Ô Ô Ô Capital O, circumflex accent S

\u00D5 Õ Õ Õ Capital O, tilde S

\u00D6 Ö Ö Ö Capital O, umlaut S

\u00D7 × × ¥ Multiply sign P

\u00D8 Ø Ø Ø Capital O, slash S

\u00D9 Ù Ù Ù Capital U, grave accent S

\u00DA Ú Ú Ú Capital U, acute accent S

\u00DB Û Û Û Capital U, circumflex accent S

\u00DC Ü Ü Ü Capital U, umlaut S

\u00DD Ý Ý Capital Y, acute accent S

\u00DE Þ Þ Capital thorn, Icelandic S

\u00DF ß ß ß Small sz ligature, German S

\u00E0 à à à Small a, grave accent S

\u00E1 á á á Small a, acute accent S

\u00E2 â â â Small a, circumflex accent S

\u00E3 ã ã ã Small a, tilde S

\u00E4 ä ä ä Small a, umlaut S

\u00E5 å å å Small a, ring S

\u00E6 æ æ æ Small ae ligature S

\u00E7 ç ç ç Small c, cedilla S

\u00E8 è è è Small e, grave accent S

\u00E9 é é é Small e, acute accent S

\u00EA ê ê ê Small e, circumflex accent S

\u00EB ë ë ë Small e, umlaut S

\u00EC ì ì ì Small i, grave accent S

\u00ED í í í Small i, acute accent S

Table D-1. Character Entities (continued)

Unicode
Escape

Numeric
Entity

Named
Entity Symbol Description Support

D–

¥

Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CHARACTER ENTITIES 483
\u00EE î î î Small i, circumflex accent S

\u00EF ï ï ï Small i, umlaut S

\u00F0 ð ð Small eth, Icelandic S

\u00F1 ñ ñ ñ Small n, tilde S

\u00F2 ò ò ò Small o, grave accent S

\u00F3 ó ó ó Small o, acute accent S

\u00F4 ô ô ô Small o, circumflex accent S

\u00F5 õ õ õ Small o, tilde S

\u00F6 ö ö ö Small o, umlaut S

\u00F7 ÷ ÷ Division sign P

\u00F8 ø ø ø Small o, slash S

\u00F9 ù ù ù Small u, grave accent S

\u00FA ú ú ú Small u, acute accent S

\u00FB û û û Small u, circumflex accent S

\u00FC ü ü ü Small u, umlaut S

\u00FD ý ý Small y, acute accent S

\u00FE þ þ Small thorn, Icelandic S

\u00FF ÿ ÿ ÿ Small y, umlaut S

Table D-1. Character Entities (continued)

Unicode
Escape

Numeric
Entity

Named
Entity Symbol Description Support

–∂

ý

Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

484
Java™ Servlet Programming, eMatte

Copyright © 2000 O’Reilly & Associates, Inc. A
Appendix E

5. 5:

r of languages. Charsets are
they determine which char-
y default, the PrintWriter
or most Western European
value must be passed to the

ieves its PrintWriter. For
E

Charsets
Table E-1 lists the suggested charset(s) for a numbe
used by servlets that generate multilingual output;
acter encoding a servlet’s PrintWriter is to use. B
uses the ISO-8859-1 (Latin-1) charset, appropriate f
languages. To specify an alternate charset, the charset
setContentType() method before the servlet retr
example:

res.setContentType("text/html; charset=Shift_JIS"); // A Japanese charset

PrintWriter out = res.getWriter(); // Writes Shift_JIS Japanese

Note that not all web browsers support all charsets or have the fonts available to
represent all characters, although at minimum all clients support ISO-8859-1. Also,
the UTF-8 charset can represent all Unicode characters and may be assumed a
viable alternative for all languages.

Table E-1. Suggested Charsets

Language Language Code Suggested Charsets

Albanian sq ISO-8859-2

Arabic ar ISO-8859-6

Bulgarian bg ISO-8859-5

Byelorussian be ISO-8859-5

Catalan (Spanish) ca ISO-8859-1

Chinese (Simplified/Mainland) zh GB2312

Chinese (Traditional/Taiwan) zh (country TW) Big5

Croatian hr ISO-8859-2

Czech cs ISO-8859-2

Danish da ISO-8859-1
r Edition
ll rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

CHARSETS 485
Dutch nl ISO-8859-1

English en ISO-8859-1

Estonian et ISO-8859-1

Finnish fi ISO-8859-1

French fr ISO-8859-1

German de ISO-8859-1

Greek el ISO-8859-7

Hebrew he (formerly iw) ISO-8859-8

Hungarian hu ISO-8859-2

Icelandic is ISO-8859-1

Italian it ISO-8859-1

Japanese ja Shift_JIS, ISO-2022-JP, EUC-JPa

Korean ko EUC-KRb

Latvian, Lettish lv ISO-8859-2

Lithuanian lt ISO-8859-2

Macedonian mk ISO-8859-5

Norwegian no ISO-8859-1

Polish pl ISO-8859-2

Portuguese pt ISO-8859-1

Romanian ro ISO-8859-2

Russian ru ISO-8859-5, KOI8-R

Serbian sr ISO-8859-5, KOI8-R

Serbo-Croatian sh ISO-8859-5, ISO-8859-2, KOI8-R

Slovak sk ISO-8859-2

Slovenian sl ISO-8859-2

Spanish es ISO-8859-1

Swedish sv ISO-8859-1

Turkish tr ISO-8859-9

Ukranian uk ISO-8859-5, KOI8-R

a First supported in JDK 1.1.6. Earlier versions of the JDK know the EUC-JP character set by the name
EUCJIS, so for portability you can set the character set to EUC-JP and manually construct an EUCJIS
PrintWriter.

b First supported in JDK 1.1.6. Earlier versions of the JDK know the EUC-KR character set by the name
KSC_5601, so for portability you can set the character set to EUC-KR and manually construct a KSC_
5601 PrintWriter.

Table E-1. Suggested Charsets (continued)

Language Language Code Suggested Charsets
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

:
Index

A
abbreviations of language names,

367, 370, 380
Abstract Windowing Toolkit (AWT), 11
Accept header, 15, 101
accept() method, 302
Accept-Charset header, 380
Accept-Encoding header, 188, 190

Servlet
description, 17–19
reference appendix, 425–446

SQL, 247, 281
<APPLET> tag, 28, 180
applets

callbacks to methods, 282, 317, 319, 334
communication with servers, 277
Java™
Copyright © 2
5

Accept-Language header, 380
access control, fine-grained, 239–241, 278
access controller, 241
Acme.Serve, web site for information, 10
ACTION attribute, 89, 202
Activated Intelligence’s Java Image

Management Interface (JIMI),
web site for downloading, 163

Active Server Pages, see ASP
addCookie() method, 203
addNotify() method, 162
age of cookie, 204
animation, text-based, 150
Apache web server and the mod_perl

module, 4
APIs

HTTP Servlet, reference
appendix, 447–471

JavaMail, 402
JDBC, 247, 281

communication with servlets,
281, 317–336

definition, 179
invoking Java methods on the

server, 282
parameters generated by servlets, 336
server-side, ix
trusted and untrusted, 278

application/x-www-form-urlencoded MIME
type, 292

ASCII character set, 372, 376
ASP support

web site for Java Extension
Framework, 7

web site for Microsoft Internet
Information Server, 5

web site for programming ASP, 5
web site for programming server-side

JavaScript, 6
web site for web servers, 5
487
 Servlet Programming, eMatter Edition

000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

488 INDEX
ATG’s Dynamo Application Server, web site
for information, 8

attributes, names of, 75
authentication

basic, 222
client, 235
digest, 223
passwords, 222
retrieving information, 223
servlets, 224

authorization
advantages, 197
custom, 227
example, 196
in request header, 100
type of, 82

Authorization header, 100, 101, 224
automatic reloading of servlets, 338
available-socket count, 191

B
background processing, 64–67
Base64

decoder, 225
encoding, 222
RFC 1521, 225
user name and password in header, 224

basic authentication, 222
<BEAN> tag, 43, 44–46
BEANNAME attribute, 45
Big5 (Chinese) charset, 372
binary objects, large, 274
<BLINK> tag, 31, 33–36, 405–407
blocks, synchronized, 51
books

CGI Programming on the World Wide
Web, 3

Database Programming with JDBC, 273
Database Programming with JDBC and

Java, 247
Developing Java Beans, 43
Exploring Java, xi
Java Cryptography, 234
Java Distributed Computing, 283
Java Examples in a Nutshell, 179

Java in a Nutshell, xi
Java Native Methods, 412
Java Network Programming, 283
JDBC Database Access with Java, 247
Mastering Regular Expressions, 404
New Hacker's Dictionary, 297
SQL for Dummies, 246
Technical Introduction to Digital Video, 175
The Unicode Standard, Version 2.0, 369
Understanding Digital Signatures, 234
Web Client Programming, 15, 100,

127, 417
Web Security & Commerce, 222
Webmaster in a Nutshell, 100

bridge drivers, 248
buffering input and output, 424
bug reports and typos, web site for

reporting, xiv
bugs, preparing servlet for, 151–158
burritos, selling, 350, 354
ByteArrayOutputStream class, 153

C
Cache-Control header, 146
caching images, 175
CallableStatement class, 273
callbacks to applet methods, 282, 317,

319, 334
cascading style sheetsets (CSS), 138
case-insensitive search, 407
certificate authorities

Entrust Technologies, 233
Keywitness, 233
Thawte Consulting, 233
VeriSign, 122, 233, 235

certificates
client, 235
digital, 232–234
server, 234

CGI
connection to HTTP, 278
definition, 2
environment variables, 70–72
FastCGI, web site for information, 4
hidden form fields, 196
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

INDEX 489
life cycle, 2
no counterpart to getPathInfo(), 91
no counterpart to getScheme(), 100
reference book, 3
security concerns, 237
session-tracking techniques, 196–206

CGI Programming on the World Wide Web
book, 3

chaining
images, 351
methods, 137
servlets, 30–36, 103–105

character entities (&...;)
reference appendix, 478–483
use of, 366–369

character sets
difference from charsets, 372
UCS-2, 376
US-ASCII, 372, 376
UTF-8, 376–379

characters, special, 366
charsets

hidden form field, 390
ISO-8859-1 (Latin-1), 126, 367, 369,

372, 389
ISO-8859-5 (Cyrillic), 372
ISO-8859-8 (Hebrew), 372
Microsoft Internet Explorer option, 373
most include US-ASCII characters, 376
Netscape Navigator option, 372
preferences, 380
reference appendix, 484–485

charting packages, web site for
downloading, 166

chat server, 317–336
Chinese charset, 372
class variable, 53
classes

ByteArrayOutputStream, 153
CallableStatement, 273
com.oreilly.servlet

MultipartResponse, 192
ParameterParser, 398
ServletUtils, 154

Cookie, 19, 202, 447–452

GenericServlet, 17, 426–428
HttpServlet, 17, 452–455
HttpServletRequest, 455–459

identifying users, 82
in javax.servlet.http, 19

HttpServletResponse, 460–463
in javax.servlet.http, 19
setting HTTP response headers, 145
uses, 20

HttpSession, 19, 207, 463–466
HttpSessionBindingEvent, 466–467
HttpSessionBindingListener, 467–468
HttpSessionContext, 211, 468–469
HttpUtils, 469–471
Locale, 370, 371, 374, 381
LocaleNegotiator, 383–389
LocaleToCharsetMap, 383
MultipartRequest, 108–121
MultipartResponse, 192
ParameterParser, 398, 403
PrintStream, 127
PrintWriter, 20
RemoteDaemonHttpServlet, 318
RemoteHttpServlet, 312
SecurityManager, 238
Servlet, 429–430
ServletConfig, 56, 58, 59, 430–431
ServletContext, 431–434
ServletException, 156, 434–435
ServletInputStream, 435–436
ServletOutputStream, 126, 436–438
ServletRequest, 19, 438–442
ServletResponse, 19, 442–444
ServletUtils, 154
SingleThreadModel, 444
singleton, 354, 360, 362
SmtpClient, 402
Statement, 250
stub and skeleton versions, 308
subclassing, 141
superclass for socket connection

details, 297
support classes, 55
UnavailableException, 444–446
UnicastRemoteObject, 311
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

490 INDEX
classes (continued)
URLConnection, 292
ZipOutputStream, 189

clearParameters() method, 258
client authentication, see authentication
client certificates, 235
client machines, identifying, 79–80, 101
client pull, 149–151, 191
client servlets, 413–415
cmd.exe problem in Windows NT, 412
CODEBASE attribute, 28, 180, 287
collaboration, 349–364
color conversion, web site for

information, 175
color image, converting to grayscale, 172
com.oreilly.servlet package

MultipartResponse utility class, 192
ParameterParser class, 398
ServletUtils class, 154
web site for source code, xii

com.sun package, 75, 123
Common Gateway Interface, see CGI
communication

applet-server, 277
applet-servlet, 281, 317–336
hybrid approach, 283
RMI, 306–313
servlet-servlet, 337
socket connections initiated by applet

only, 297
text-based, 287

compiler, rmic, 308, 334
compression formats

GZIP and ZIP
supported in JDK, 188
web site for information, 189

negotiating which to use, 189
x-gzip and x-compress, 188

concatenation, to be avoided, 423
configuration class, 56, 58, 59
configuration file, 56
conglomerate image, 169
Connection class

getAutoCommit() method, 262
prepareStatement() method, 258

rollback() method, 262
setAutoCommit() method, 262

ConnectionPool class
getConnection() method, 268
returnConnection() method, 268

connections
Connection header, 146
Connection objects, reusing, 259–260
connection pool, 266–269
HTTP-CGI, 278
maximum of 100, 272
most limited JDBC resource, 272
raw socket connections and

HTTP, 278–281, 319, 344
secure connections, 100
see also databases and transactions

connectivity
advantage of servlets, 242
servlets’ power, 11

constructors, 56
containsHeader() method, 147
Content-Encoding header, 147, 188, 190
Content-Language header, 367
Content-Type header, 16, 126, 127, 373
conventions, typographical, xiv
Cookie class

constructor, 202
in javax.servlet.http package, 19
reference, 447–452
setComment() method, 204
setDomain() method, 203
setMaxAge() method, 204
setPath() method, 204
setSecure() method, 204
setValue() method, 204
setVersion() method, 203

cookies
comment field, 204
cookie central web site, 202
Cookie class, 19, 202, 447–452
domain restriction pattern, 203
example, 204
maximum age, 204
persistence, 202–206
secure channel, 204
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

INDEX 491
setting values of, 204
size and quantity limits, 203
specification, 202
version of, 203
where to send, 204

copying, unauthorized, 76
CORBA (Common Object Request Broker

Architecture) connectivity, 11, 283
counters, as examples, 50–62, 96–99
country-code abbreviations, 370
crashing servers, 61
CREATE attribute, 45
createImage() method, 162, 166, 178
creation overhead, 49
credit-card checking, 262
cryptography, public-key, 232–234
custom authorization, 227
custom class loaders, 55
customs, local, 369

D
daemons

servlets, 303
word origin, 297

dangling pointers, 12
data charting, 11
data compression, 11
Data Encryption Standard, see DES
Database Management System, see RDBMS
Database Programming with JDBC and Java

book, 247
Database Programming with JDBC book, 273
databases

connections, 63, 72, 248
connectivity

advantage of servlets, 242
servlets’ power, 11

HTML integration with, 142
updating, 256
see also RDBMS

dates and times, localizing, 370
DbConnectionBroker package, web site

for, 266
debugging, 415–423
degree symbol, 142

DELETE method, 17
DELETE statement, 246
DES and asymmetric keys, 233, 234
destroy() method, 56, 57, 59
Developing Java Beans book, 43
dictionary servlet, 85
digest authentication, 223
digital certificates, 232–234
digital signatures, 239, 278
directives, 40
dispatch servlet, 320
dividing by zero, 151
document location, 147
doDelete() method, 19
doGet() method, 20, 25, 26, 30, 67, 324
doHead() method, 19
domain restriction pattern, 203
Domino Go Webserver, web site for

information, 8
doOptions() method, 19
doPost() method, 296, 324
doPut() method, 19
doTrace() method, 19
dynamic formatting, 371
Dynamo Application Server, web site for

information, 8

E
efficiency of servlets, 11
elegance of servlet code, 12
email servlets, 401–404
embedded applets, 179–188
embedded servlets

limited response capability, 30
SSI functionality, 27

encodeRedirectUrl() method, 214
encodeUrl() method, 213
encryption restrictions, 79
Enterprise JavaBeans components, 11
Enterprise Server

supports SSJS, 5
web site for information, 8

Entrust Technologies certificate
authority, 233

environment variables, 70–72
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

492 INDEX
error logs, 415
error-handling mechanisms, 152–158

see also status codes
EUC-KR (Korean) charset, 372
event log, 219
event logs, 415
examples

access counters, 50–62, 96–99
bar chart, 163
Base64 encoding, 225
chat server, 317–336
client certificates, examining, 122, 235
color image, converting to

grayscale, 172
compressed content, 189
connection pool, 268
cookies, 204
credit-card checking, 262
current time of day, 284–317
database connections, 63, 72, 248
dictionary servlet, 85
email, 401–404
embedding applet in servlet, 184–187
encryption restrictions, 79
GIF image generation, 161–163
greeting user by name, 23–24
“Hello World”, 19–23, 125–126,

130–131, 161–163, 366–371
“Hello World” in client’s

language, 381–383
“Hello World” in Japanese, 373–379
“¡Hola Mundo!”, 366–371
HTML generation, 134
HTTP chat applet, 325
identifying client machines, 79
initialization (init) parameters, 73
input stream’s content type, 106
invalidating a session, 210, 212
license key, 87
login page, 228–231
Oracle JDBC, 250
overwriting “CONFIDENTIAL”, 167
persistence, 128
personalized welcome, 83
random redirection, 148

removing <BLINK>, 33–36, 405–407
request headers, 102
response headers, 16
reusing abilities of another servlet, 344
selling burritos, 350, 354
server information, 75
servlet parameter values, 86
session tracking, 208
session, reporting on, 215
shopping cart, 197
shopping cart with session tracking, 219
SSL connection, 121
time in local zone, 28–30
unique Connection per client, 270
uploading files, 107
verifying servlets, 339
weather forecasting, 131–142
web site demonstrating servlets, xi
web site for downloadable code, xi

exception handling, 151
exec() method, 408, 410
executeQuery() method, 250
executeUpdate() method, 258
executing queries, 250
exit() method, 27
Expires header, 147
Exploring Java book, xi
expressions

regular, 404–407
searching for, 11

extensibility of servlets, 13
extension APIs, 4
extensions, file

.htm, 36

.html, 36

.jsp, 38

.shtml, 29, 35
external programs

executing from servlets, 407–412
finger, 408–412

extra path information, 89–93

F
FastCGI, web site for information, 4
FastTrack Server, 5
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

INDEX 493
fiendish rogues, 221
file extensions

.htm, 36

.html, 36

.jsp, 38

.shtml, 29, 35
file uploading, 107
filter chains, 176–179
filtering, 31
finally block, 157, 305
fine-grained access control, 239–241, 278
finger program, 408–412
form fields, hidden, 197–199
formats of images, 160
formatting query results, 252
forms, HTML, 389
forName() method, 248

G
Gefion Software’s WAICoolRunner, web

site for information, 9
generateSessionId() method, 201
generating images, 160–166
GenericServlet class, 17, 426–428
GET method

in chat server, 318–319
use of, 16

getAppletInfo() method, 24
getAsciiStream() method, 274
getAttribute() method, 75, 121
getAuthType() method, 82, 223, 224
getAutoCommit() method, 262
getBinaryStream() method, 274
getBundle() method, 381, 384
getByName() method, 79
getColumnCount() method, 254
getColumnLabel() method, 254
getConnection() method, 249, 268
getContentLength() method, 105
getContentType() method, 33, 105, 109
getCookies() method, 203
getCreationTime() method, 210
getDateHeader() method, 102
getDateUsingHttpObject() method, 294
getDateUsingHttpText() method, 295

getDateUsingSocketObject() method, 303
getDateUsingSocketText() method, 303
getDefaultToolkit().getImage()

method, 166
getFile() method, 110
getFileNames() method, 109
getFilesystemName() method, 109
getGraphics() method, 166
getHeader() method, 102
getHeaderField() method, 292
getHeaderNames() method, 102
getIds() method, 212
getImage() method, 162
getInitParameter() method, 58
getInitParameterNames() method, 73
getInputStream() method, 105
getIntHeader() method, 102
getLastAccessedTime() method, 210
getLastModified() method, 67, 68
getMethod() method, 100
getMimeType() method, 91, 159
getName() method, 218
getObject() method, 250
getOutputStream() method, 126
getParameter() method, 30, 44,

84–85, 106–107
getParameterNames() method, 85, 109
getParameterValues() method, 84–86
getPathInfo() method, 91, 201
getPathTranslated() method, 90, 91
getProperties().get() method, 350
getProperties().put() method, 349, 350
getProperties().remove() method, 349, 350
getProperty() method, 76, 422
getReader() method, 33, 104
getRealPath() method, 91
getRemoteAddr() method, 79
getRemoteHost() method, 79
getRemoteUser() method, 81, 82, 101,

223, 224, 237
getRequestURL() method, 94
getResultSet() method, 256–258
getScheme() method, 99
getServerInfo() method, 75
getServlet() method, 337
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

494 INDEX
getServletInfo() method, 24
getServletNames() method, 338
getServletPath() method, 95
getServlets() method, 338
getSession() method, 207, 212, 218
getSessionContext() method, 211
getStackTraceAsString() method, 154
getString() method, 250
getUpdateCount() method, 256–258
getValue() method, 207
getValueNames() method, 207
getWriter() method, 126
GIF encoder, web site for

downloading, 163
GIF format

good and bad points, 160
LZW compression, 163

glyphs, displaying correctly, 374
grayscale conversion, 172
greeting user by name, 23–24
GWAPI, 8
GZIP compression format

supported in JDK, 188
web site for information, 189

GZIPOutputStream, 189

H
handleClient() method, 297
handleMalformedCount() method, 397
handleNoCount() method, 397
hash table, 84, 175
HEAD method

handling of, 25–27
purpose, 17

<HEAD> tag, 147
headers

Accept, 15, 101
Accept-Charset, 380
Accept-Encoding, 188, 190
Accept-Language, 380
Authorization, 100, 101, 224
Cache-Control, 146
Connection, 146
Content-Encoding, 147, 188, 190
Content-Language, 367

Content-Type, 16, 126, 127, 373
Expires, 147
Location, 147
partial table of, 146
Pragma, 146, 292
Referer, 101
Refresh, 191
request, 102
response, 16
Retry-After, 146
Server, 16
User-Agent, 15, 101, 188
Vary, 190
WWW-Authenticate, 100, 147, 224

“Hello World” example, 19–23, 125–126,
130–131, 161–163, 366–371

“Hello World” example in client’s
language, 381–383

“Hello World” example in
Japanese, 373–379

hidden form fields
CGI, 196
charset, 390
in session-tracking, 197–199

“¡Hola Mundo!” example, 366–371
.htm extension, 36
HTML

ACTION attribute, 89, 202
<APPLET> tag, 28, 180
<BEAN> tag, 43, 44–46
<BLINK> tag, 31, 33–36, 405–407
character entities (&...;)

reference appendix, 478–483
use of, 366–369

constructed by hand, 132
degree symbol, 142
forms, 389
generation example, 134
generation of, 129–142
<HEAD> tag, 147
hidden form fields, 197–199
 tag, 169
integration with databases, 142
<META HTTP-EQUIV> tag, 147
object-oriented, 130, 131, 137, 142
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

INDEX 495
page generated by HTTP servlet, 19–27
<PARAM> tag, 28, 45, 84, 336
removing <BLINK>, 33–36, 405–407
RFC 2070 (HTML

internationalization), 389
<SERVLET> tag

how Java Web Server supports it, 32
parameters, 28
syntax varies, 27

servlets embedded in pages
limited response capability, 30
SSI functionality, 27

<SQL> tag, 32
<TITLE> tag, 131

.html extension, 36
htmlKona package

HTML table generation, 253
web site for downloading, 130

HTTP
access counters, as examples,

50–62, 96–99
basic authentication, 222
basic description, 14
connection to a CGI program, 278
cookies, 19
databases

connections, 63, 72, 248
connectivity

advantage of servlets, 242
servlets’ power, 11

deleting session objects, 208
digest authentication, 223
environment variables, 71
extra path information, 89–93
GET method, 16, 318–319
giving values to session objects, 207
greeting user by name, 23–24
headers

before response body, 125
request, 102
response, 16
see also headers

“Hello World” example, 19–23,
125–126, 130–131, 161–163,
366–371

“Hello World” example in client’s
language, 381–383

“Hello World” example in
Japanese, 373–379

“¡Hola Mundo!” example, 366–371
logging errors, 153
methods

see also methods
non-HTTP applet, 303
non-HTTP protocol, 300
non-HTTP server, 297, 303
passwords, 222
POST method, 16, 25, 106, 279,

318–319, 324
problem reports, 154
query string, 16, 172, 279
raw socket connections, 278–281,

319, 344
reference book, 15, 100
response headers

partial table of, 146
retrieving names of session objects, 207
retrieving session objects, 207
retrieving values from session

objects, 207
stateless protocol, 195
status codes

definition, 124
partial table of, 142
reference appendix, 472–477
reporting, 152
server-specific pages, 152
setting, 144

text-based communication, 287
time in local zone, 28–30
version response, 15
virtual path, 89–93

http scheme, 100
HTTP Servlet API, reference

appendix, 447–471
httpd script, 21
httpd.exe program, 21
httpd.nojre, 21
HTTPS (HTTP plus SSL) protocol, 234
https scheme, 100
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

496 INDEX
HttpServlet class, 17, 452–455
HttpServletRequest class

getAuthType() method, 223
getCookies() method, 203
getRemoteUser() method, 81, 223
identifying users, 82
in javax.servlet.http, 19
reference, 455–459

HttpServletResponse class
encodeRedirectUrl() method, 214
encodeUrl() method, 213
in javax.servlet.http, 19
reference, 460–463
setting HTTP response headers, 145
uses, 20

HttpSession class
getCreationTime() method, 210
getLastAccessedTime() method, 210
invalidate() method, 210
isNew() method, 210
reference, 463–466
session-tracking, 207
session-tracking functionality, 19

HttpSessionBindingEvent class, 466–467
HttpSessionBindingListener class, 467–468
HttpSessionContext class, 211, 468–469
HttpUtils class, 469–471

I
i18n, see internationalization
IANA (Internet Assigned Numbers

Authority), 378
IBM

ServletExpress, web site for
information, 9

WebSphere Application Server, web site
for information, 9

If-Modified-Since header, 67
IIOP (Internet Inter-ORB Protocol), web

sites for information, 283
image/gif MIME type, 162
images

as responses, 159
caching, 175
chaining, 351

conglomerate, 169
converting to grayscale, 172
drawing on top of, 166
filter chains, 176–179
formats, 160
generating, 160–166
manipulating, 11, 159
scaling down in size, 172, 176
special effects, 172, 176

 tag, 169
indexes in ResultSet objects, numbered 1

to n, 254
inheritance, 361, 362
init() method, 56, 58, 59
initialization (init) parameters

example, 73
key for locking servlet to server, 76
registered servlet names, 72–74
uses of, 56–61

initializing servlets, 56
input streams, 104–121
integration of servlets, 12
interfaces

Servlet, 17
SingleThreadModel, 62

internationalization
see also localization
future directions, 389
Microsoft Internet Explorer, 374
Netscape Navigator, 374
servlet feature, 11
Western European languages, 366

Internet Information Server, no FastCGI
support, 4

Internet Information Server, web site for
downloading, 5

interservlet communication, 337
INTROSPECT attribute, 45
invalid pointer reference, 12
invalidate() method, 210
invoker, 35
IP address, 195
ISAPI, Microsoft API, 4
isNew() method, 210
ISO-3166 (country codes), 370
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

INDEX 497
ISO-639 (language abbreviations), 367
ISO-8859-1 (Latin-1) charset, 126, 367,

369, 372, 389
ISO-8859-5 (Cyrillic) charset, 372
ISO-8859-8 (Hebrew) charset, 372
isRequestedSessionIdFromCookie()

method, 214
isRequestedSessionIdFromUrl()

method, 214
isRequestedSessionIdValue() method, 214

J
Japanese charset, 372
Java

100% Pure Java, 412
constructors, 56
dynamic formatting, 371
exception handling, 151
memory protection, 151
methods to retrieve SQL data types, 254
reference books, xi
resource bundles, 381
security features, 151
security manager, 238–241
system-wide Properties list, 349–353
Unicode, 369

Java Archive (JAR) files, 188, 239
Java Cryptography book, 234
Java database connectivity, see JDBC
Java Development Kit, see JDK
Java Distributed Computing book, 283
Java Examples in a Nutshell book, 179
Java Exchange’s DbConnectionBroker

package, web site for, 266
Java Image Management Interface (JIMI),

web site for downloading, 163
Java in a Nutshell book, xi
Java Native Interface (JNI), 412
Java Native Methods book, 412
Java Network Programming book, 283
Java Runtime Environment (JRE), 21
Java Servlet Development Kit, see JSDK
Java Software division, see JavaSoft
Java Web Server (“Jeeves”)

back door for servlet’s registered
name, 74

bug with chained servlet, 36
bug with getRequestURI(), 95
bug with PrintWriter, 30
modular design, 92
permission types, 239
programmatic access to security, 224
security manager, 238
session-tracking, 207
supports SSL 3.0, 235
used in this book, 21
web site for information, xii, 8

java.* packages, 75, 123
java.security package, 235
java.util.zip package, 188
Java-Apache project’s JServ module, web

site for information, 9
JavaBeans

servlets handled as, 56
web site for information, 43

javac compiler, 21
JavaChart package

free applets in, 187
web site for downloading, 166

JavaMail API, 402
JavaScript, server-side, 5
JavaServer Administration Tool

configuration page, 240
for MIME-based filtering, 36
URL for access, 22

JavaServer Engine, web site for
information, 10

JavaServer Pages, see JSPs
JavaServer Toolkit, web site for

information, 10
JavaSoft servlets, ix
javax.* packages, 75, 123
javax.servlet package, 17, 425–446
javax.servlet.http package, 17, 447–471
JDBC (Java database connectivity)

advanced techniques, 272–276
connecting, 248
connections

most limited JDBC resource, 272
see also databases and transactions

details extracted out, 72
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

498 INDEX
JDBC (continued)
drivers

capabilities, 249
loading, 248
pooling, 266
types of, 248

null database values, 255
SQL-level API, 247
web sites

drivers information, 248
JDBC specification, 247

JDBC Database Access with Java book, 247
JDK (Java Development Kit)

localizing dates and times, 370
web site for downloading, xii

Jigsaw Server, web site for information, 8
JPEG format, 160
JRun, web site for information, 9
JScript, 5
JSDK (Java Servlet Development Kit)

bare-bones simplicity, 21
description, 20
minimal session-tracking, 207
web site for downloading, xii, 7, 416

JServ module, web site for information, 9
jserv-interest mailing list, xvi
.jsp extension, 38
JSPs (JavaServer Pages), 13, 37–43

K
“keep-alive” connections, see persistence
key

asymmetric, 233, 234
DES, 233, 234

key for locking servlet to server, 76
Keywitness certificate authority, 233
Korean charset, 372
Kristensen’s Nexus Web Server, web site for

information, 10

L
l10n, see localization
language

Microsoft Internet Explorer option, 380
name abbreviations, 367, 370, 380

negotiation, 389
Netscape Navigator option, 380
non-Western European, 371–376
several on one page, 376, 395
specifying, 367

large binary objects, 274
large text strings, 274
Last-Modified header, 67
legal counsel, 80
lib/jws.jar in classpath, 21
license key example, 87
license, software, 76
life cycle

CGI, 2
servlet, 48–69, 209–210

list, jserv-interest, xvi
listing users, 408–412
Live Software

JRun, web site for information, 9
ServletDebugger, web site for

information, 417
local customs, 369
Locale class, 370, 371, 374, 381
LocaleNegotiator class, 383–389
LocaleToCharsetMap class, 383
localization

future directions, 389
Microsoft Internet Explorer, 374
Netscape Navigator, 374
servlet feature, 11
Western European languages, 366

localizing dates and times, 370
Location header, 147
lock (monitor) on a class, 52
log files, 415
log() method for debugging, 153, 415
logging errors, 153
Lotus

Domino Go Webserver, web site for
information, 8

GWAPI, 8
low-level socket management, 300–303
LZW compression algorithm, 163
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

INDEX 499
M
mailing list, jserv-interest, xvi
main() method, not used in servlets, 17
manipulating images, 11, 159
Mastering Regular Expressions book, 404
memory footprint, 49
memory leaks, 12
memory protection, 151
<META HTTP-EQUIV> tag, 147
methods

accept(), 302
addCookie(), 203
addNotify(), 162
callbacks to, 282, 317, 319, 334
chaining, 137
clearParameters(), 258
containsHeader(), 147
createImage(), 162, 166, 178
definition, 15
DELETE, 17
destroy(), 56, 57, 59
doDelete(), 19
doGet(), 20, 25, 26, 30, 67, 324
doHead(), 19
doOptions(), 19
doPost(), 296, 324
doPut(), 19
doTrace(), 19
encodeRedirectUrl(), 214
encodeUrl(), 213
exec(), 408, 410
executeQuery(), 250
executeUpdate(), 258
exit(), 27
forName(), 248
generateSessionId(), 201
GET

in chat server, 318–319
use of, 16

getAppletInfo(), 24
getAsciiStream(), 274
getAttribute(), 75, 121
getAuthType(), 82, 223, 224
getAutoCommit(), 262
getBinaryStream(), 274, 275

getBundle(), 381, 384
getByName(), 79
getColumnCount(), 254
getColumnLabel(), 254
getConnection(), 249, 268
getContentLength(), 105
getContentType(), 33, 105, 109
getCookies(), 203
getCreationTime(), 210
getDateHeader(), 102
getDateUsingHttpObject(), 294
getDateUsingHttpText(), 295
getDateUsingSocketObject(), 303
getDateUsingSocketText(), 303
getDefaultToolkit().getImage(), 166
getFile(), 110
getFileNames(), 109
getFilesystemName(), 109
getGraphics(), 166
getHeader(), 102
getHeaderField(), 292
getHeaderNames(), 102
getIds(), 212
getImage(), 162
getInitParameter(), 58
getInitParameterNames(), 73
getInputStream(), 105
getIntHeader(), 102
getLastAccessedTime(), 210
getLastModified(), 67, 68
getMethod(), 100
getMimeType(), 91, 159
getName(), 218
getObject(), 250
getOutputStream(), 126
getParameter(), 30, 44, 84–85, 106–107
getParameterNames(), 85, 109
getParameterValues(), 84–86
getPathInfo(), 91, 201
getPathTranslated(), 90, 91
getProperties().get(), 350
getProperties().put(), 349, 350
getProperties().remove(), 349, 350
getProperty(), 76, 422
getReader(), 33, 104
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

500 INDEX
methods (continued)
getRealPath(), 91
getRemoteAddr(), 79
getRemoteHost(), 79
getRemoteUser(), 81, 82, 101, 223,

224, 237
getRequestURL(), 94
getResultSet(), 256–258
getScheme(), 99
getServerInfo(), 75
getServlet(), 337
getServletInfo(), 24
getServletNames(), 338
getServletPath(), 95
getServlets(), 338
getSession(), 207, 212, 218
getSessionContext(), 211
getStackTraceAsString(), 154
getString(), 250
getUpdateCount(), 256–258
getValue(), 207
getValueNames(), 207
getWriter(), 126
handleClient(), 297
handleMalformedCount(), 397
handleNoCount(), 397
HEAD

handling of, 25–27
purpose, 17

init(), 56, 58, 59
invalidate(), 210
invoking using reflection, 339–342
isNew(), 210
isRequestedSessionIdFrom-

Cookie (), 214
isRequestedSessionIdFromUrl(), 214
isRequestedSessionIdValue(), 214
log() for debugging, 153, 415
main() not used in servlets, 17
next(), 250
OPTIONS, 17
POST

description, 16
handling of, 25
in chat server, 279, 318–319, 324

input stream, 106
use of, 16

prepareStatement(), 258
protected, 363
PUT, 17
putValue(), 207
readLine(), 105
removeValue(), 208
retrieving SQL data types, 254
returnConnection(), 268
rollback(), 262
sendError(), 144, 152
sendPostMessage(), 295
sendRedirect(), 149
service(), 18, 30, 100, 156
setAutoCommit(), 262, 268
setComment(), 204
setContentLength(), 128
setContentType(), 126, 159, 162
setDateHeader(), 147
setDomain(), 203
setHeader(), 145, 149
setIntHeader(), 147
setMaxAge(), 204
setName(), 44
setPath(), 204
setRequestProperty(), 292
setSecure(), 204
setStatus(), 144, 152
setValue(), 204
setVersion(), 203
static, 363
stop(), 66
synchronized, 52
TRACE, 17
valueBound(), 218
valueUnbound(), 218

Microsoft
Internet Explorer

cascading style sheets, 138
charsets option, 373
internationalization, 374
language option, 380
no RMI support, 107
User-Agent header, 101
UTF-8, 376
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

INDEX 501
Internet Information Server
ASP support, 5
no FastCGI support, 4

ISAPI, 4
Windows NT, problem with

cmd.exe, 412
Windows, problem with telnet.exe, 420

MIME types
application/x-www-form-

urlencoded, 292
custom, 294
how to return, 159
identified by servlet, 91
image/gif, 162
in Accept header, 101
in Content-Type headers, 16
none to represent serialized

objects, 294
text/html, 20

mod_perl, web site for information, 4
monitor (lock) on a class, 52
multilingual input, 395
MultipartRequest class, 108–121
multithreading, 11

N
NAME attribute, 44
name, registered, 22, 29, 53, 74
National Television Systems Committee

(NTSC), 175
native code, 412
native-API, partly-Java drivers, 248
native-protocol all-Java drivers, 248
net-protocol all-Java drivers, 248
Netscape

cookie specification, 202
Enterprise Server

supports SSJS, 5
WAICoolRunner support, 9
web site for information, 8

FastTrack Server, 5, 9
home page in various languages, 365
introduced server-side applets, ix
introduced SSL, 234
Navigator

bug with request’s content type, 292

cascading style sheets, 138
charsets option, 372
file uploading, 107
internationalization, 374
introduced cookies, 202
language option, 380
RMI support, 282
User-Agent header, 101
UTF-8, 376

server-side applets, ix
server-side JavaScript (SSJS), 5
server-side scripting, 5
WAI interface, 9

New Atlanta’s ServletExec, web site for
information, 9

New Hacker's Dictionary book, 297
next() method, 250
Nexus Web Server, web site for

information, 10
non-HTTP applet, 303
non-HTTP protocol, 300
non-HTTP server, 297, 303
NSAPI (WAI), a Netscape API, 4
NTSC, 175
null database values, 255

O
O’Reilly’s WebSite Professional, web site

for information, 8
obfuscator, 78
object serialization, 11, 281, 295, 296
object-oriented HTML, 130, 131, 137, 142
OCI libraries, 248
operating systems’ requirements for

starting a server, 21
OPTIONS method, 17
Oracle Call Interface, see OCI
Oracle’s PL/SQL language, 272
Original Reusable Objects’ PerlTools and

OROMatcher, web site for
downloading, 404

OROMatcher
web site for downloading, 405

output, redirected, 411
overhead of object creation, 49
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

502 INDEX
P
packages

com.sun, 75, 123
java.*, 75, 123
java.security, 235
java.util.zip, 188
javax.*, 75, 123
javax.servlet, 17, 425–446
javax.servlet.http, 17, 447–471
reserved names, 75

page generation, 19–27
Paralogic’s WebCore, web site for

information, 10
<PARAM> tag, 28, 45, 84, 336
ParameterParser class, 403
parameters

getInitParameter(), 58
getParameter(), 30, 44
initialization (init)

registered servlet names, 72–74
uses of, 56–61

<PARAM> tag, 28, 45, 84, 336
parsing, 397–401
request, 84–86
<SERVLET> tag, 28
servlet-generated for applets, 336

parsing request parameters, 397–401
passwords, 222
path information, 89–93
path translations, 91
performance, maximizing, 49, 55, 423–424
Perl

advantage of, 4
predominance, 3
regular expressions, 404–407

PerlEx, web site for information, 4
PerlTools, web site for downloading, 404
permission types, 239
persistence

cookies, 202–206
servlets, 11, 48, 49, 127–129
threads, 49

personalized welcome example, 83
pixel values, 160
PL/SQL language, 272

pointer reference, invalid, 12
pointers, dangling, 12
pool drivers, web site for, 266
port number, 74
portability of servlets, 10
Poskanzer, Jef

Acme.Serve, web site for
information, 10

GIF encoder, web site for
downloading, 163

POST method
description, 16
handling of, 25
in chat server, 279, 318–319, 324
input stream, 106
use of, 16

power of servlets, 11
Pragma header, 146, 292
PreparedStatement class, 258–259,

260–261
prepareStatement() method, 258
PrintStream class, 20, 127
PrintWriter class, 20
problem reports, 154
Properties list, 349–353
protected methods, 363
proxies, SOCKS-based, 282
public-key cryptography, 232–234
pull, client, 149–151, 191
push, server, 191–194
PUT method, 17
putValue() method, 207

Q
queries

executing, 250
formatting results, 252
query string, 16, 172, 279

R
raw socket connections and

HTTP, 278–281, 319, 344
RDBMS

definition, 243
internal programming language, 272
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

INDEX 503
readLine() method, 105
redirected output, 411
redirecting a request, 148–149
reference books

CGI, 3
digital certificates, 234
HTTP, 15, 100
Java, xi
SQL, 246
see also books

reference, invalid, 12
Referer header, 101
referrals, identifying, 101
reflection to invoke methods, 339–342
Refresh header, 191
registered name, 22, 29, 53, 74
registry server, 282, 309, 312–316
regular expression searching, 11
regular expressions, 404–407
Relational Database Management System,

see RDBMS
reloading servlets, 55–56
Remote Method Invocation, see RMI
remote object servlet, 308, 309, 311
RemoteDaemonHttpServlet class, 318
RemoteHttpServlet class, 312
removeValue() method, 208
removing <BLINK>, 33–36, 405–407
request

header, 102
parameters, 84–86
redirecting, 148–149

request parameters, parsing, 397–401
resource bundles, 381
response

body, 125
headers

example, 16
partial table of, 146

image, 159
structure, 124–125

ResultSet class
getAsciiStream() method, 274
getBinaryStream() method, 274, 275
getObject() method, 250

getString() method, 250
indexes, numbered 1 to n, 254
next() method, 250

ResultSetMetaData class
getColumnCount() method, 254
getColumnLabel() method, 254

Retry-After header, 146
returnConnection() method, 268
reusing abilities of another servlet, 342, 344
rewriting URLs, 200–202
RFC 1521 (Base64 encoding), 225
RFC 1630 (about URIs, URLs, and

URNs), 95
RFC 1867 (file-uploading

specification), 107
RFC 2070 (HTML

internationalization), 389
RFC 2109 (cookie specification), 202
RFC 2278 (charsets), 372
RFC 2279 (UTF-8 character set), 376
RMI (Remote Method Invocation)

advantages, 282
API, 282
client servlets, 413–415
communication, 306–313
disadvantages, 282
firewall limitations, 282
no requests or responses, 282
registry server, 282, 309, 312–316
rmic compiler, 308, 334
servlet feature, 11
supported by Netscape Navigator

only, 282
transport layer, 282

rmic (RMI compiler), 308, 334
rogues, fiendish, 221
rollback() method, 262
root directory of server, 76

S
safety of servlets, 12
sandbox, 151
sandbox for servlets, 238
saving state of servlets, 340
SCOPE attribute, 45
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

504 INDEX
search, case-insensitive, 407
secure connections, 100
Secure Sockets Layer, see SSL
security

access controller, 241
Base64

decoder, 225
encoding, 222
RFC 1521, 225
user name and password in

header, 224
certificate authorities

Entrust Technologies, 233
Keywitness, 233
Thawte Consulting, 233
VeriSign, 122, 233, 235

CGI concerns, 237
digital certificates, 232–234
Java features, 151
permission types, 239
public-key cryptography, 232–234
requirements, 221
WWW Security FAQ, web site for

information, 237
see also authorization and authentication

security manager, 238–241
SecurityManager class, 238
SELECT statement, 243–246
sendError() method, 144, 152
sendPostMessage() method, 295
sendRedirect() method, 149
serialized objects

in Java API, 11
in servlets, 281
no MIME types, 294
no primitive types, 296
uploaded by applet, 295

server certificates, 234
server extensible modules, ix
server extension APIs, 4
Server header, 16
server push, 191–194
server-specific pages for errors, 152
server, chat, 317–336
SERVER_URL variable, 100

servers
ASP support, 5
ATG’s Dynamo Application Server, 8
available-socket count, 191
communication with applets, 277
crashing, 61
custom class loaders, 55
identifying, 74
Java Web Server (“Jeeves”), xii, 8

see also Java Web Server
Kristensen’s Nexus Web Server, 10
Lotus’s Domino Go Webserver, 8
Netscape’s Enterprise Server, 8
non-HTTP, 297, 303
O’Reilly’s WebSite Professional, 8
port number, 74
registry, 282, 309, 312–316
root directory, 76
servlets locking to, 76
starting, 21
WebLogic’s Tengah Application

Server, 8, 248
World Wide Web Consortium’s Jigsaw

Server, 8
server-side applets, ix
server-side include, see SSIs
server-side JavaScript (SSJS), 5
service() method, 18, 30, 100, 156
servlet (singular tag), 22
servlet alias, 22
Servlet API

description, 17–19
reference appendix, 425–446

Servlet CGI Development Kit, web site for
information, 9

Servlet class, 429–430
servlet engines

add-on, 9
embeddable, 9
required life-cycle contract, 48
single Java virtual machine (JVM),

48, 49
standalone, 8
web site for list of, 10

Servlet interface, 17
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

INDEX 505
<SERVLET> tag
how Java Web Server supports it, 32
parameters, 28
syntax varies, 27

ServletConfig class, 56, 58, 59, 430–431
ServletContext class, 431–434
ServletDebugger, web site for

information, 417
ServletException class, 156, 434–435
ServletExec, web site for information, 9
ServletExpress, web site for information, 9
servlet-generated applet parameters, 336
ServletInputStream class, 435–436
ServletOutputStream class, 126, 436–438
ServletRequest class, 19, 438–442
ServletResponse class, 19, 442–444
servletrunner shell script (Unix), 416
servletrunner.exe program

(Windows), 416
servlets

accepting MIME types, 101
accessing

by alias, 22
by registered name, 22
by URL with /servlet/, 22

accessing stored procedures, 272
authentication, 224
automatic reloading, 338
chaining, 30–36, 103–105
collaboration, 349–364
combining HTTP, non-HTTP, and

RMI, 283, 316
communication with applets, 281,

317–336
communication with other servlets, 337
daemon servlets, 303
debugging, 415–423
definition, 1
direct manipulation, 337
directory, 21
dispatch servlet, 320
efficiency, 11
elegance, 12
email, 401–404
embedded in HTML pages

limited response capability, 30
SSI functionality, 27

embedding applets, 179–188
environment variables, 71
error-handling mechanisms, 152–158

see also status codes
events listed, 415
executing external programs, 407–412
extensibility, 13
handled as JavaBeans, 56
hung up on, 157
identifying client machines, 79–80, 101
identifying MIME types, 91
identifying referrals, 101
identifying servers, 74
identifying users, 81–84
image chaining, 351
initialization, 56
input streams, 104–121
integration, 12
JavaSoft, ix
life cycle, 48–69, 209–210
locking to specific server, 76
logging errors, 153
main() method not used, 17
non-Western European

languages, 371–376
object serialization, 11, 281, 295, 296
persistence, 11, 48, 49, 127–129
portability, 10
power, 11
problem reports, 154
purpose, ix
registered name, 22, 29, 53, 74
reloading, 55–56
remote object servlet, 308, 309, 311
response

body, 125
structure, 124–125

returning MIME types, 159
reusing abilities of another servlet,

342, 344
RMI clients, 413–415
runner for debugging, 416
sandbox for safety, 238
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

506 INDEX
servlets (continued)
saving state of, 59, 61, 340
session-tracking built-in, 206
sharing data with each other, 48
sharing information, 353
special treatment by server, 22
ssinclude, 35, 36
stack traces, 154, 155
status codes

reference appendix, 472–477
reporting, 152

superclass for socket connection
details, 297

support classes, 55
testing, 415–423
trouble with, 151–158
type safety, 12
unloading, 61
verifying, 339

ServletUtils class, 154
session

creation time, 210
invalidation, 210
last-request time, 210
newness, 210

session IDs, 212–214
session objects, 207

deleting, 208
giving values to, 207
retrieving, 207
retrieving names of, 207
retrieving values from, 207

session-tracking
API, 206–220
built into servlets, 206
how to implement, 211
techniques, 196–206

setAutoCommit() method, 262, 268
setComment() method, 204
setContentLength() method, 128
setContentType() method, 126, 159, 162
setDateHeader() method, 147
setDomain() method, 203
setHeader() method, 145, 149
setIntHeader() method, 147

setMaxAge() method, 204
setName() method, 44
setPath() method, 204
setRequestProperty() method, 292
setSecure() method, 204
setStatus() method, 144, 152
setValue() method, 204
setVersion() method, 203
shared objects, 353
shared references, 361
sharing information, 353
Shift_JIS (Japanese) charset, 372
shopping-cart example, 197
.shtml extension, 29, 35
Simple Mail Transfer Protocol

(SMTP), 402
single-thread model, 62–63
SingleThreadModel class, 444
SingleThreadModel interface, 62
singleton, 354, 360, 362
skeleton classes, 308
SmtpClient class, 402
socket connections

low-level management, 300–303
raw socket connections, 278–281,

319, 344
socket connections, initiated by applet

only, 297
SOCKS-based proxies, 282
software license, 76
special characters, 366
special effects in images, 172, 176
SQL

API, 247, 281
control characters, 258
data types, list of, 254
definition, 243
DELETE statement, 246
exceptions, 252
PL/SQL language, 272
PreparedStatement class, 258–259,

260–261
queries, executing, 250
reference book, 246
SELECT statement, 243–246
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

INDEX 507
stored procedures
accessing, 272
precompiled and faster, 273

transactions
auto-commit status, 262
Connection objects, 262–268
connection pool, 266–269
definition, 261
JDBC, 262

updating databases, 256
SQL for Dummies book, 246
<SQL> tag, 32
ssinclude servlet, 35, 36
SSIs (server-side includes), 27–30, 84
SSJS, 5
SSL

connection examples, 121
getScheme() method, 100
introduced by Netscape, 234
Java Web Server supports SSL 3.0, 235

stack traces, 154, 155
Standard Query Language, see SQL
Statement class

executeQuery() method, 250
executing SQL queries, 250
getResultSet() method, 256–258
getUpdateCount() method, 256–258

static variable, 53
static variables and methods, 363
status codes

definition, 124
partial table of, 142
reference appendix, 472–477
reporting, 152
server-specific pages, 152
setting, 144

Stop button, in browser, 157
stop() method, 66
stopping threads, 66
stored procedures

accessing, 272
precompiled and faster, 273

stub classes, 308
subclassing, 141

Sun
100% Pure Java, 412
Java Software division, see JavaSoft
Java Web Server (“Jeeves”)

back door for servlet’s registered
name, 74

bug with chained servlet, 36
bug with getRequestURI(), 95
bug with PrintWriter, 30
modular design, 92
permission types, 239
programmatic access to security, 224
security manager, 238
session-tracking, 207
supports SSL 3.0, 235
used in this book, 21
web site for information, xii, 8

JavaMail API, 402
JavaServer Administration Tool

configuration page, 240
for MIME-based filtering, 36
URL for access, 22

JavaServer Engine, web site for
information, 10

JavaServer Toolkit, web site for
information, 10

JSDK (Java Servlet Development Kit)
bare-bones simplicity, 21
description, 20
minimal session-tracking, 207
web site for downloading, xii, 7, 416

JSPs (JavaServer Pages), 13, 37–43
super.init(config) must be called, 58, 72
superclass for socket connection

details, 297
support classes, 55
synchronization

avoiding, 63
ignoring, 53
of blocks, 51
of methods, 52
using judiciously, 424

System class
exit() method, 27
getProperties().get() method, 350
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

508 INDEX
System class (continued)
getProperties().put() method, 349, 350
getProperties().remove() method,

349, 350
getProperty() method, 76

T
Technical Introduction to Digital Video

book, 175
telnet program, 419
telnet.exe problem in Windows, 420
Tengah Application Server

JDBC driver, 248
web site for information, 8

testing, 415–423
text strings, large, 274
text/html MIME type, 20
text-based animation, 150
text-based HTTP communication, 287
Thawte Consulting certificate

authority, 233
The Unicode Standard, Version 2.0 book, 369
Thought Inc.’s VanillaSearch, web site for

downloading, 404
threads

concurrency, 50
each client, 50
each manipulating servlet’s nonlocal

variables, 51
persistence, 49
single-thread model, 62–63
stopping, 66

throws clause, 156
tiers, 244
TIFF format, 160
time in local zone, 28–30
time zone, not automatically available, 371
time-of-day example, 284–317
times, localizing, 370
timestamp

representation of, 68, 147, 210
resolution of, 68

<TITLE> tag, 131
TLS (Transport Layer Security), web site

for information, 234

Toolkit class
getDefaultToolkit().getImage()

method, 166
getImage() method, 162

TRACE method, 17
transactions

auto-commit status, 262
Connection objects, 262–268
connection pool, 266–269
definition, 261
JDBC, 262

troubleshooting, 151–158
true-color pixel values, 160
trusted and untrusted applets, 278
try block, 157
tuning, 49, 55, 423–424
TYPE attribute, 44
type safety of servlets, 12
typographical conventions, xiv
typographical errors, web site for

reporting, xiv

U
UCS-2 (Universal Character Set,

2-byte), 376
unauthorized copying, 76
UnavailableException class, 444–446
Understanding Digital Signatures book, 234
UnicastRemoteObject class, 311
Unicode

alternative to escapes, 375
detailed description, 368–369
for non-HTML output, 368
for special characters, 366
PrintWriter conversion from, 20
web site for information, 369
web site for standard, 368

Unicom’s Servlet CGI Development Kit,
web site for information, 9

Uniform Resource Locators, see URLs and
web sites

Uniform Resource Name (URN), 95
Universal Resource Identifier (URI), 94
unloading servlets, 61
untrusted applets, 278
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

INDEX 509
updating SQL databases, 256
uploading files, 107
URLConnection class, 292
URLs

access to, 11
for access to servlet, 22
https:, 234
identifying, 94
length limit, 16
rewriting, 200–202
see also web sites

US-ASCII character set, 372, 376
user authorization

advantages, 197
example, 196
in request header, 100
type of, 82

User-Agent header, 15, 101, 188
users

identifying, 81–84
listing, 408–412

UTF-8 (UCS Transformation Format,
8-bit), 376–379

V
valueBound() method, 218
valueUnbound() method, 218
VanillaSearch, web site for

downloading, 404
variables

class or static, 53
environment, 70–72
local, 53
nonlocal, manipulated by threads, 51
SERVER_URL, 100
static, 363

VARNAME attribute, 44
Vary header, 190
VBScript, 5
verifying servlets, 339
VeriSign certificate authority, 122, 233,

235
versions, x, 15, 21, 203
virtual hosting, 75
virtual path, 89–93

Visual Engineering’s JavaChart package
free applets in, 187
web site for downloading, 166

W
WAI (NSAPI), a Netscape API, 4
WAI interface, 9
WAICoolRunner, web site for

information, 9
weather forecasting example, 131–142
web application, definition, 2
Web Client Programming book, 15, 100,

127, 417
Web Security & Commerce book, 222
web sites

Activated Intelligence’s Java Image
Management Interface
(JIMI), 163

ASP programming, 5
ASP support for web servers, 5
bug reports and typos, xiv
certificate authorities, 233
character set, difference from

charset, 372
charting packages, 166
code for stopping threads, 66
color conversion, 175
com.oreilly.servlet source code, xii
demonstrating servlets, xi
downloadable code, xi
FastCGI, 4
GZIP compression format, 189
IANA, 378
IBM’s ServletExpress, 9
Internet Inter-ORB Protocol, 283
ISO-3166 for country codes, 370
ISO-639 for language abbreviations, 367
Java Exchange’s DbConnectionBroker

package, 266
Java Extension Framework, 7
Java Report Online, 66
JavaBeans, 43
JavaMail, 402
JavaScript programming, 6
JDBC (Java database connectivity)
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

510 INDEX
web sites (continued)
drivers information, 248
specification, 247

JDK (Java Development Kit), xii
JSDK (Java Servlet Development

Kit), xii, 7, 20, 416
Live Software

JRun, 9
ServletDebugger, 417

Microsoft
Internet Explorer

internationalization, 374
Internet Information Server, 5

mod_perl, 4
Netscape Navigator

cookie specification, 202
internationalization, 374

Original Reusable Objects’
OROMatcher and PerlTools, 405

PerlEx, 4
Poskanzer’s GIF encoder, 163
RFC 1521 for Base64 encoding, 225
RFC 1630 about URIs, URLs, and

URNs, 95
RFC 1867 about uploading files, 107
RFC 2070 for HTML

internationalization, 389
RFC 2109 for cookie specification, 202
RFC 2278 for charsets, 372
RFC 2279 for UTF-8 character set, 376
servers including servlet engines, 8
server-side JavaScript programming, 6
servlet engines

add-on, 9
embeddable, 10
list of, 10
standalone, 8

Thought Inc.’s VanillaSearch, 404
TLS (Transport Layer Security), 234

Unicode, 368, 369
UTF-8, name of, 378
Visual Engineering’s JavaChart

package, 166, 187
WebLogic’s htmlKona package, 130
WebLogic’s pool drivers, 266
WWW Security FAQ, 237

WebCore, web site for information, 10
WebLogic

htmlKona package
HTML table generation, 253
web site for downloading, 130

pool drivers, web site for, 266
Tengah Application Server

JDBC driver, 248
web site for information, 8

Webmaster in a Nutshell book, 100
WebSite Professional, web site for

information, 8
WebSphere Application Server, web site for

information, 9
welcoming example, 83
Windows NT, problem with cmd.exe, 412
Windows, problem with telnet.exe, 420
World Wide Web Consortium’s Jigsaw

Server, web site for
information, 8

WWW Security FAQ, web site for
information, 237

WWW-Authenticate header, 100, 147, 224

X
x-compress compression format, 188
x-gzip compression format, 188

Z
zero, dividing by, 151
ZIP compression format, 188
ZipOutputStream class, 189
Java™ Servlet Programming, eMatter Edition
Copyright © 2000 O’Reilly & Associates, Inc. All rights reserved.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

About the Authors

Jason Hunter is a Java consultant, speaker, instructor, and author. Jason graduated
summa cum laude from Willamette University (Salem, Oregon) in 1995 with a
degree in Computer Science. After graduation, he worked at Silicon Graphics in
Mountain View, California, for several years, where he was responsible for devel-
oping (and breaking) all sorts of web technologies. He currently works as the Chief
Technology Officer of a Silicon Valley startup, K&A Software, where he specializes
in Java training and consulting, with an emphasis on servlets. Jason also writes
columns for JavaWorld.

Jason began programming in Java in the summer of 1995 and has concentrated on
servlets and related server-extension technologies since December 1996. If by some
miracle you don’t find him at work, he’s probably out hiking in the mountains.

William “Will” Crawford got involved with web development back in 1995. He has
worked at the Children’s Hospital Informatics Program in Boston, where he helped
develop the first web-based electronic medical record system and was involved in
some of the first uses of Java at the enterprise level. He has consulted on Intranet
development projects for, among others, Children’s Hospital, Massachusetts
General Hospital, Brigham and Women’s Hospital, the Boston Anesthesia Educa-
tion Foundation, and Harvard Medical Center.

Will currently heads the product development team at Invantage, Inc., a
Cambridge, Massachusetts, startup developing Java-based Intranet tools for the
pharmaceutical industry. In his spare time, he is an avid amateur photographer,
writer, and pursuer of a Bachelor’s of Economics at Yale University.

Colophon

Our look is the result of reader comments, our own experimentation, and feedback
from distribution channels. Distinctive covers complement our distinctive approach
to technical topics, breathing personality and life into potentially dry subjects.

The image on the cover of Java Servlet Programming is a copper teakettle.

The cover was designed by Hanna Dyer using a series design by Edie Freedman. The
image was photographed by Kevin Thomas and manipulated in Adobe Photoshop
by Michael Snow. The cover layout was produced with QuarkXPress 3.3 using the

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Bodoni Black font from URW Software and Bodoni BT Bold Italic from Bitstream.
The inside layout was designed by Nancy Priest.

Text was produced in FrameMaker 5.5 using a template implemented by Mike
Sierra. The heading font is Bodoni BT; the text font is New Baskerville. The illustra-
tions that appear in the book were created in Macromedia Freehand 8 and Adobe
Photoshop 5 by Robert Romano.

Paula Carroll was the production editor for Java Servlet Programming; Benchmark
Productions provided editorial and production services.

The production editors for Java™ Servlet Programming, eMatter Edition were Ellie
Cutler and Jeff Liggett. Linda Walsh was the product manager. Kathleen Wilson
provided design support. Lenny Muellner, Mike Sierra, Erik Ray, and Benn Salter
provided technical support. This eMatter Edition was produced with FrameMaker
5.5.6.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	Copyright
	Table of Contents
	Preface
	Audience
	About the Examples
	Organization
	Conventions Used in This Book
	Request for Comments
	Acknowledgments

	Chapter 1 - Introduction
	History of Web Applications
	Support for Servlets
	The Power of Servlets

	Chapter 2 - HTTP Servlet Basics
	HTTP Basics
	The Servlet API
	Page Generation
	Server-Side Includes
	Servlet Chaining and Filters
	JavaServer Pages
	Moving On

	Chapter 3 - The Servlet Life Cycle
	The Servlet Alternative
	Servlet Reloading
	Init and Destroy
	Single-Thread Model
	Background Processing
	Last Modified Times

	Chapter 4 - Retrieving Information
	Initialization Parameters
	The Server
	The Client
	The Request

	Chapter 5 - Sending HTML Information
	The Structure of a Response
	Sending a Normal Response
	Using Persistent Connections
	HTML Generation
	Status Codes
	HTTP Headers
	When Things Go Wrong

	Chapter 6 - Sending Multimedia Content
	Images
	Compressed Content
	Server Push

	Chapter 7 - Session Tracking
	User Authorization
	Hidden Form Fields
	URL Rewriting
	Persistent Cookies
	The Session Tracking API

	Chapter 8 - Security
	HTTP Authentication
	Digital Certificates
	Secure Sockets Layer (SSL)
	Running Servlets Securely

	Chapter 9 - Database Connectivity
	Relational Databases
	The JDBC API
	Reusing Database Objects
	Transactions
	Advanced JDBC Techniques

	Chapter 10 - Applet-Servlet Communication
	Communication Options
	Daytime Server
	Chat Server

	Chapter 11 - Interservlet Communication
	Servlet Manipulation
	Servlet Reuse
	Servlet Collaboration
	Recap

	Chapter 12 - Internationalization
	Western European Languages
	Conforming to Local Customs
	Non-Western European Languages
	Multiple Languages
	Dynamic Language Negotiation
	HTML Forms
	Receiving Multilingual Input

	Chapter 13 - Odds and Ends
	Parsing Parameters
	Sending Email
	Using Regular Expressions
	Executing Programs
	Using Native Methods
	Acting as an RMI Client
	Debugging
	Performance Tuning

	Appendix A - Servlet API Quick Reference
	GenericServlet
	Servlet
	ServletConfig
	ServletContext
	ServletException
	ServletInputStream
	ServletOutputStream
	ServletRequest
	ServletResponse
	SingleThreadModel
	UnavailableException

	Appendix B - HTTP Servlet API Quick Reference
	Cookie
	HttpServlet
	HttpServletRequest
	HttpServletResponse
	HttpSession
	HttpSessionBindingEvent
	HttpSessionBindingListener
	HttpSessionContext
	HttpUtils

	Appendix C - HTTP Status Codes
	Appendix D - Character Entities
	Appendix E - Charsets
	Index
	About the Authors/Colophon

