
CSS Cookbook

By Christopher Schmitt

...

Publisher: O'Reilly

Pub Date: October 01, 2006

ISBN-10: 0-596-52741-1

ISBN-13: 978-0-596-52741-9

Pages: 528

Table of Contents | Index

As the industry standard method for enriching the presentation of HTML-based web pages,
Cascading Style Sheets (CSS) allow you to give web pages more structure and a more sophisticated
look. But first, you have to get past CSS theory and resolve real-world problems.

For those all-too-common dilemmas that crop up with each project, CSS Cookbook provides
hundreds of practical examples with CSS code recipes that you can use immediately to format your
web pages. Arranged in a quick-lookup format for easy reference, the second edition has been
updated to explain the unique behavior of the latest browsers: Microsoft's IE 7 and Mozilla's Firefox
1.5. Also, the book has been expanded to cover the interaction of CSS and images and now includes
more recipes for beginning CSS users. The explanation that accompanies each recipe enables you to
customize the formatting for your specific needs. With topics that range from basic web typography
and page layout to techniques for formatting lists, forms, and tables, this book is a must-have
companion, regardless of your experience with Cascading Style Sheets.

CSS Cookbook

By Christopher Schmitt

...

Publisher: O'Reilly

Pub Date: October 01, 2006

ISBN-10: 0-596-52741-1

ISBN-13: 978-0-596-52741-9

Pages: 528

Table of Contents | Index

 Copyright

 Preface

 Chapter 1. General

 Section 1.0. Introduction

 Recipe 1.1. Using CSS with HTML

 Recipe 1.2. Using Different Selectors to Apply Styles

 Recipe 1.3. Determining When to Use Class and ID Selectors

 Recipe 1.4. Understanding CSS Properties

 Recipe 1.5. Understanding the Box Model

 Recipe 1.6. Understanding DOCTYPES and Effects on Browser Layout

 Recipe 1.7. Associating Styles to a Web Page

 Recipe 1.8. How to Use Different Types of Style Sheets

 Recipe 1.9. Adding Comments Within CSS

 Recipe 1.10. Organizing the Contents of a Style Sheet

 Recipe 1.11. Organizing Style Sheet Files

 Recipe 1.12. Working with Shorthand Properties

 Recipe 1.13. Setting up an Alternate Style Sheet

 Recipe 1.14. Using Floats with Images

 Recipe 1.15. Using Absolute Positioning

 Recipe 1.16. Using Relative Positioning

 Recipe 1.17. Using CSS in Adobe Dreamweaver

 Recipe 1.18. Using CSS in Microsoft Expression Web Designer

 Chapter 2. Web Typography

 Section 2.0. Introduction

 Recipe 2.1. Specifying Fonts

 Recipe 2.2. Specifying Font Measurements and Sizes

 Recipe 2.3. Gaining More Control over Font Sizes

 Recipe 2.4. Enforcing Font Sizes

 Recipe 2.5. Centering Text

 Recipe 2.6. Setting Text to Be Justified

 Recipe 2.7. Removing Space Between Headings and Paragraphs

 Recipe 2.8. Setting a Simple Initial Cap

 Recipe 2.9. Setting a Larger, Centered Initial Cap

 Recipe 2.10. Setting an Initial Cap with Decoration (Imagery)

 Recipe 2.11. Creating a Heading with Stylized Text

 Recipe 2.12. Creating a Heading with Stylized Text and Borders

 Recipe 2.13. Stylizing a Heading with Text and an Image

 Recipe 2.14. Creating a Pull Quote with HTML Text

 Recipe 2.15. Creating a Pull Quote with Borders

 Recipe 2.16. Creating a Pull Quote with Images

 Recipe 2.17. Setting the Indent in the First Line of a Paragraph

 Recipe 2.18. Setting the Indent of Entire Paragraphs

 Recipe 2.19. Creating a Hanging Indent

 Recipe 2.20. Styling the First Line of a Paragraph

 Recipe 2.21. Styling the First Line of a Paragraph with an Image

 Recipe 2.22. Creating a Highlighted Text Effect

 Recipe 2.23. Changing Line Spacing

 Recipe 2.24. Adding a Graphic Treatment to HTML Text

 Recipe 2.25. Placing Shadow Behind Text

 Recipe 2.26. Adjusting the Spacing Between Letters and Words

 Chapter 3. Images

 Section 3.0. Introduction

 Recipe 3.1. Placing a Border Around an Image

 Recipe 3.2. Removing Borders Set on Images by Default in Some Browsers

 Recipe 3.3. Setting a Background Image

 Recipe 3.4. Creating a Line of Background Images

 Recipe 3.5. Placing a Background Image on a Web Page

 Recipe 3.6. Using Multiple Background Images on One Selector

 Recipe 3.7. Creating a Stationary Background Image

 Recipe 3.8. Overlaying HTML Text on an Image

 Recipe 3.9. Replacing HTML Text with an Image

 Recipe 3.10. Replacing HTML Text with Flash Text

 Recipe 3.11. Using Multiple PNGs with Transparency

 Recipe 3.12. Building a Panoramic Image Presentation

 Recipe 3.13. Combining Different Image Formats

 Recipe 3.14. Rounding Corners with Fixed-Width Columns

 Recipe 3.15. Rounding Corners (Sliding Doors Technique)

 Recipe 3.16. Rounding Corners (Mountaintop Technique)

 Recipe 3.17. Rounding Corners with JavaScript

 Recipe 3.18. Placing a Drop Shadow Behind an Image

 Recipe 3.19. Placing a Smooth Drop Shadow Behind an Image

 Recipe 3.20. Making Images Scalable

 Recipe 3.21. Making Word Balloons

 Recipe 3.22. Hindering People from Stealing Your Images

 Recipe 3.23. Inserting Reflections on Images Automatically

 Recipe 3.24. Using Image Sprites

 Chapter 4. Page Elements

 Section 4.0. Introduction

 Recipe 4.1. Eliminating Page Margins

 Recipe 4.2. Coloring the Scrollbar

 Recipe 4.3. Techniques for Centering Elements on a Web Page

 Recipe 4.4. Placing a Page Border

 Recipe 4.5. Customizing a Horizontal Rule

 Recipe 4.6. Adding a Lightbox

 Chapter 5. Lists

 Section 5.0. Introduction

 Recipe 5.1. Changing the Format of a List

 Recipe 5.2. Writing Cross-Browser Indentation in Lists

 Recipe 5.3. Place Dividers Between List Items

 Recipe 5.4. Creating Custom Text Markers for Lists

 Recipe 5.5. Creating Custom Image Markers for Lists

 Recipe 5.6. Inserting Large Custom Image Markers for Lists

 Recipe 5.7. Making a List Presentation Rich with Imagery

 Recipe 5.8. Creating Inline Lists

 Recipe 5.9. Making Hanging Indents in a List

 Recipe 5.10. Moving the Marker Inside the List

 Chapter 6. Links and Navigation

 Section 6.0. Introduction

 Recipe 6.1. Removing Underlines from Links (and Adding Other Decorations)

 Recipe 6.2. Changing Link Colors

 Recipe 6.3. Changing Link Colors in Different Sections of a Page

 Recipe 6.4. Placing an Icon at the End of the Link

 Recipe 6.5. Changing Cursors

 Recipe 6.6. Creating Rollovers Without JavaScript

 Recipe 6.7. Creating Text Navigation Menus and Rollovers

 Recipe 6.8. Building Horizontal Navigation Menus

 Recipe 6.9. Building a Navigation Menu with Access Keys

 Recipe 6.10. Creating Breadcrumb Navigation

 Recipe 6.11. Creating Image-Based Rollovers

 Recipe 6.12. Creating Collapsible Menus

 Recipe 6.13. Creating Contextual Menus

 Recipe 6.14. Making Tool Tips with the Title Attribute

 Recipe 6.15. Designing a Dynamic Visual Menu

 Recipe 6.16. Apply Styles Dynamically to a Web Page

 Chapter 7. Forms

 Section 7.0. Introduction

 Recipe 7.1. Modifying the Spacing Around a Form

 Recipe 7.2. Setting Styles for Input Elements

 Recipe 7.3. Applying Different Styles to Different Input Elements in the Same Form

 Recipe 7.4. Setting Styles for textarea Elements

 Recipe 7.5. Setting Styles for Select and Option Elements

 Recipe 7.6. Creating a Macintosh-Styled Search Field

 Recipe 7.7. Styling Form Buttons

 Recipe 7.8. Creating an Image Submit Button

 Recipe 7.9. Setting Up a Submit-Once-Only Button

 Recipe 7.10. Creating a Submit Button That Looks Like HTML Text

 Recipe 7.11. Making an HTML Text Link Operate Like a Submit Button

 Recipe 7.12. Designing a Web Form Without Tables

 Recipe 7.13. Designing a Two Column Form Without Tables

 Recipe 7.14. Highlighting Form Fields

 Recipe 7.15. Integrating Form Feedback with a Form

 Recipe 7.16. Styling Access Keys in Web Forms

 Recipe 7.17. Grouping Common Form Elements

 Recipe 7.18. Entering Data into a Form Like a Spreadsheet

 Recipe 7.19. Sample Design: A Login Form

 Recipe 7.20. Sample Design: A Registration Form

 Chapter 8. Tables

 Section 8.0. Introduction

 Recipe 8.1. Setting the Cell Spacing

 Recipe 8.2. Setting the Borders and Cell Padding

 Recipe 8.3. Setting the Style for Caption

 Recipe 8.4. Setting the Styles Within Table Cells

 Recipe 8.5. Setting Styles for Table Header Elements

 Recipe 8.6. Removing Gaps from Images Placed in Table Cells

 Recipe 8.7. Eliminating Gaps Between Table Cells

 Recipe 8.8. Creating Alternating Background Colors in Table Rows

 Recipe 8.9. Adding a Highlighting Effect on a Table Row

 Recipe 8.10. Sample Design: An Elegant Calendar

 Chapter 9. Page Layouts

 Section 9.0. Introduction

 Recipe 9.1. Building a One-Column Layout

 Recipe 9.2. Building a Two-Column Layout

 Recipe 9.3. Building a Two-Column Layout with Fixed-Width Columns

 Recipe 9.4. Creating a Flexible Multicolumn Layout with Floats

 Recipe 9.5. Creating a Fixed-Width Multicolumn Layout with Floats

 Recipe 9.6. Creating a Flexible Multicolumn Layout with Positioning

 Recipe 9.7. Creating a Fixed-Width Multicolumn Layout with Positioning

 Recipe 9.8. Using Floats to Display Columns in Any Order

 Recipe 9.9. Designing an Asymmetric Layout

 Chapter 10. Print

 Section 10.0. Introduction

 Recipe 10.1. Creating a Printer-Friendly Page

 Recipe 10.2. Making a Web Form Print-Ready

 Recipe 10.3. Displaying URIs After Links

 Recipe 10.4. Inserting Special Characters Before Links

 Recipe 10.5. Sample Design: A Printer-Friendly Page with CSS

 Chapter 11. Hacks, Workarounds, and Troubleshooting

 Section 11.0. Introduction

 Recipe 11.1. Isolating Styles for Netscape Navigator 4.x

 Recipe 11.2. Delivering Specific Styles to Internet Explorer 5.x for Windows

 Recipe 11.3. Removing Web Page Flicker in Internet Explorer 5.x for Windows

 Recipe 11.4. Keeping Background Images Stationary in Internet Explorer 6 for Windows

 Recipe 11.5. Using Internet Explorer for Windows' Conditional Comments to Deliver Styles

 Recipe 11.6. Keeping CSS Rules from Internet Explorer 5 for Macintosh

 Recipe 11.7. Setting Up an Intelligent Hack Management System

 Recipe 11.8. Diagnosing CSS Bugs and Browser Issues

 Recipe 11.9. Testing a Site Design on More Than One Platform with Only One Computer

 Recipe 11.10. Installing More Than One Version of Internet Explorer for Windows on a Computer

 Recipe 11.11. Testing a Web Site with a Text Browser

 Chapter 12. Designing with CSS

 Section 12.0. Introduction

 Recipe 12.1. Enlarging Text Excessively

 Recipe 12.2. Creating Unexpected Incongruity

 Recipe 12.3. Combining Unlike Elements to Create Contrast

 Recipe 12.4. Leading the Eye with Contrast

 Recipe 12.5. Checking for Enough Color Contrast

 Recipe 12.6. Emphasizing a Quotation

 Appendix A. Resources

 General HTML and CSS Instruction

 Design Resources

 Discussion Groups

 References

 Tools

 Appendix B. CSS 2.1 Properties and Proprietary Extensions

 Appendix C. CSS 2.1 Selectors, Pseudo-Classes, and Pseudo-Elements

 Appendix D. Styling of Form Elements

 Checkboxes

 File Input

 Radio Buttons

 Text Fields

 Multiple Options

 Select Element

 Submit Button

 Textarea Element

 Colophon

 Index

Copyright © 2007, 2004 O'Reilly Media, Inc. All rights reserved.Printed in the United States of
America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor:

Tatiana Apandi

Production Editor:

Philip Dangler

Copyeditor:

Nancy Reinhardt

Indexer:

Reg Aubry

Cover Designer:

Karen Montgomery

Interior Designer:

David Futato

Illustrators:

Robert Romano and Jessamyn Read

Printing History:

August 2004: First Edition.

October 2006: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. The Cookbook series designations, CSS Cookbook, the image of a grizzly bear,
and related trade dress are trademarks of O'Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and author
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN-10: 0-596-52741-1

ISBN-13: 978-0-596-52741-9

[C]

Preface
Every book tells a storyeven books on web design. Yet, the story of this book doesn't contain any
hidden meanings or staggering cliffhangers. You won't read about people waiting for someone named
Godot or a rugged archaeologist saving religious artifacts from a German army. While those books
have their place, this book is for web designers and developers and for them it tells a different tale.

This book is about Cascading Style Sheets, or CSS as it's commonly abbreviated. CSS is a simple
standardized syntax that gives designers extensive control over the presentation of their web pages
and it is an essential component of Web design today. Compared to 1990s-era development
techniques, web designers have greater control over a web site's design and can spend less time
editing and maintaining web sites. CSS also extends beyond the traditional web design as well to
design and control the look of a web page when it is printed.

The simplicity of Cascading Style Sheets is that you don't need any special hardware or software to
use CSS. The basic requirements are a computer, a modern browser like Firefox, Safari, or Internet
Explorer for Windows (to name a few), and your favorite web page editor. A web page editor can be
anything from a simple text editor like Window's Notepad or Macintosh's TextEdit to a full-fledged
WYSIWYG tool like Adobe Dreamweaver set in code view.

Now you know what the book is about, let me tell you the story of this book.

It's about history.

Some would say web design officially began when Tim Berners-Lee, inventor of the World Wide Web,
put together the first set of web pages. Others would say it began when the center tag came about
due to Netscape's own extension of HTML.

It's with a generous amount of humility and irony, I happen to believe that the web design really
started with books. The books that helped lead the way to the dot-com boom in the 1990s started
with Lynda Weinman's first full-color book about web graphics, Designing Web Graphics, which was
published in January of 1996, and then David Siegel's Creating Killer Web Sites was published several
months later that same year. These two books helped kick off the web revolution as much as those
who invented the technologies that made them possible. However, the methods written in those
books, while cutting edge for their time, are out-of-date in today's context.

As I write these pages, it's been 10 years since those initial books came out and a lot has changed.
Another tidbit loaded with irony is that CSS was first introduced in 1996the same year Wienman and
Siegel's first books about web design came out.

While neither robust nor implemented in modern browsers at the time, CSS has come a long way.
Over 10 years of development have been put into CSS and it's only now, with the advent of the
Internet Explorer 7 for Windows in 2006 that web designers, developers, and everyday users of
browsers will be able to utilize CSS to its intended potential.

The CSS Cookbook, a collection of CSS-based solutions to common web design problems, helps web
designers and developers accomplish the many designs and techniques possible with CSS.

If you are serious about building today's usable and cutting-edge web sites, use CSS and the CSS
Cookbook. This is the book is one to use when you are creating your own bit of web design history.

Audience

This book is for web designers and developers struggling with the problems of designing with CSS.
With this book, web builders can solve common problems associated with CSS-enabled web page
designs.

CSS Cookbook is ideal for people who have wanted to use CSS for web projects, but have shied away
from learning a new technology. If you are this type of reader, use the solutions in the book one or a
few at a time. Use it as a guidebook, and then come back to it when you are ready or need to learn
another technique or trick.

Even if you consider yourself an expert with CSS, but not an expert in basic design knowledge, this
book is useful to have by the side of your computer. It covers elements of design from web
typography to page layouts and a motivational chapter called "Designing with CSS" is included.

Assumptions This Book Makes

This book makes several assumptions about you, the reader. One assumption is that you possess
some web design or development experience either as a hobbyist, student, or professional.

CSS Cookbook is neither an introduction to CSS nor is it a book that goes into great detail on how
CSS should work in browsers, so people at the start of their web design or development education
may find this book a bit more challenging than a general or complete book on the theory of CSS. If
you are looking for a book that delves into such topics about the CSS specification, you should look
into Cascading Style Sheets: The Definitive Guide, also from O'Reilly Media, which serves as a solid
complement to this book.

If you makes use of programs like Adobe Dreamweaver only in its WYSIWG or "design" mode and
rarely if ever touch the markup in "code" view, you may have trouble getting the most out of this
book right away. To get an introduction to handcoding HTML, look into Learning Web Design by
Jennifer Niederst Robbins (O'Reilly Media).

While WYSWIYG tools allow for CSS-enabled designs, some of the tools have not caught up with
some of the unorthodox approaches recommended in this book and may cause some trouble if you
attempt to implement them by editing solely in WYSIWG mode. To benefit from this book, you must
be able to edit HTML and CSS by hand. Some of the code in this book can be recreated by using
dialog-box driven web page building applications, but you may run into some problems along the
way.

Another assumption is that web designers and developers practicing their craft with HTML table-
based layouts, font tags, and single pixel GIFs will find this book both helpful and frustrating. Web
designers practicing or more familiar with these old production methods are going to find CSS
challenging. The "browser hell" often associated with cross-browser development where browser
vendors tended to interpret the CSS specification differently or didn't implement the CSS specification
completely still exists. This frustration is a natural part of the learning process. Learning how to

design with CSS should be approached with patience and a good sense of humor.

The good news is that the major browser vendors seem to have solved the problems. The recent
version releases of browsers appear to have implemented CSS correctly, however, attempting cross-
browser support for the older or less-popular browsers may still be a challenging exercise. Yet the
benefits of CSS, including greater control over the look and feel of web pages and easier maintenance
over multipage web sites, outweigh the hardships associated with "browser hell."

To use the handful of solutions that make use of JavaScript, this book assumes that your have a
general knowledge of the scripting language as well as the ability to successfully include JavaScript
code into a web document. If this is a hurdle, we recommend that you download the code from the
publisher's web site to get a first-hand look at a working example. On the other hand, if you were
looking for a solution-focused book that deals with recipes where CSS plays a minor role compared to
JavaScript, that book would be JavaScript & DHTML Cookbook by Danny Goodman (O'Reilly Media).

The final assumption is that you desire a resource that provides fast answers to common CSS-based
web design problems. The solutions in this book, covering everything from web-based typography to
multi-column layouts, are geared for the modern browsers with version numbers greater or equal to
5 with the exception of Safari, which doesn't have a version greater than 2 as of the writing of this
book.

Whenever possible, I mention when a technique may cause problems in version 5 or higher
browsers. While there is a chapter on hacks and workarounds to hide style sheets from browsers
with poor implementations of the complete CSS specification, this book makes no assurances that
you are going create pixel-perfect designs in every browser. Even with traditional web design
methods from the 1990s, this has never been the case.

Contents of This Book

For me, the best use for a book like this would be to crack it open from time to time when trying to
solve a particular problem, which I have done with the first edition when refreshing my memory. To
that end, this book will serve well on or nearby a web builder's deskalways within reach to resolve a
problem about CSS or web design. However, feel free to read the book from its first page to its last.

The following paragraphs review the contents of each chapter:

Chapter 1, General

Discusses the basics of CSS as well some techniques associated with best practices in
development.

Chapter 2, Web Typography

Discusses how to use CSS to specify fonts in a web page, headings, pull quotes, and indents
within paragraphs as well as other solutions.

Chapter 3, Images

Discusses CSS techniques directly related to manipulating styles and properties related to web
graphics.

Chapter 4, Page Elements

Covers a loose collection of items that don't necessarily fit in every chapter, but that all carry a
theme of affecting the design of the overall page. Solutions in this chapter include centering
elements, setting a background image, placing a border on a page, and other techniques.

Chapter 5, Lists

Describes how to style the basic list items in various ways. Solutions include cross-browser
indentation, making hanging indents, inserting custom images for list markers, and more.

Chapter 6, Links and Navigation

Shows how to use CSS to control the presentation of a link and sets of links. Solutions range
from the basic like removing an underline from links, to the more complex such as dynamic
visual menu.

Chapter 7, Forms

Discusses ways to work around the basic ways browsers render forms. Solutions reviewed in
this chapter include setting styles to specific form elements, setting a Submit once-only button,
and styling a login form.

Chapter 8, Tables

Shows how to style HTML tables. Although CSS can help eliminate HTML table-based designs,
sometimes you need to style tabular data like calendars and statistical data. This chapter
includes solutions for things such as: setting cellpadding, removing gaps in table cells with
images, and styling a calendar.

Chapter 9, Page Layouts

Talks about how CSS can be used to engineer layouts. The solutions in this chapter include
methods for one-column layouts to multicolumn layouts.

Chapter 10, Print

Provides information on how to set styles that are used when printing web pages. Solutions
discussed in this chapter include adding a separate print style sheet to a web page, setting
styles for web forms, and inserting URLs after links.

Chapter 11, Hacks, Workarounds, and Troubleshooting

Covers solutions on how to hide style sheets that cannot be handled by certain browsers.
Recipes include hiding style sheets for browsers like Netscape Navigator 4, Internet Explorer 5
for Windows, and other browsers.

Chapter 12, Designing with CSS

Is an inspirational chapter. Focusing on the notion that CSS is merely a tool that implements
design, this chapter covers things like playing with enlarging type sizes, working with contrast,
and building a panoramic presentation.

Appendix A, Resources

Is a collection of links and web sites related to learning more about CSS.

Appendix B, CSS 2.1 Properties and Proprietary Extensions

Is a listing of CSS properties that help define the look and feel or, in some cases, the sound of
HTML elements on a web page.

Appendix C, CSS 2.1 Selectors, Pseudo-Classes, and Pseudo-Elements

Is a listing of selectors available within CSS.

Appendix D, Styling of Form Elements

Is a look at how various modern browsers handle the display of form elements.

Conventions Used in This Book

The following typographical conventions are used in this book:

Plain text

Indicates menu titles, menu options, menu buttons, and keyboard accelerators (such as Alt and
Ctrl).

Italic

Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames, directories,
and Unix utilities.

Constant width

Indicates commands, options, switches, variables, attributes, keys, functions, types, classes,
namespaces, methods, modules, properties, parameters, values, objects, events, event
handlers, XML tags, HTML tags, macros, the contents of files, or the output from commands.

Constant width bold

Shows commands or other text that should literally be typed by the user.

Constant width italic

Shows text that should be replaced with user-supplied values.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in
your web pages and design. You do not need to contact us for permission unless you're reproducing a
significant portion of the code. For example, writing a program that uses several chunks of code from
this book does not require permission. Selling or distributing a CD-ROM of examples from O'Reilly
books does require permission. Answering a question by citing this book and quoting example code
does not require permission. Incorporating a significant amount of example code from this book into
your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: "CSS Cookbook, Second Edition, by Christopher Schmitt.
Copyright 2007 O'Reilly Media, Inc., 978-0-596-52741-9."

If you feel your use of code examples falls outside fair use or the permission given above, feel free to
contact us at permissions@oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information.
You can access this page at:

http://www.oreilly.com/catalog/cssckbk2

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see
our web site at:

http://www.oreilly.com

Safari Enabled

When you see a Safari® Enabled icon on the cover of your favorite technology book, it means the
book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search
thousands of top technology books, cut and paste code samples, download chapters, and find quick
answers when you need the most accurate, current information. Try it for free at
http://safari.oreilly.com.

Acknowledgments

First, thanks to David Siegel and Lynda Weinman for their inspiration and support from the beginning
of web design.

I wouldn't be writing any books for an industry I love so very much without the support and
friendship of Molly Holzschlag.

http://www.oreilly.com/catalog/cssckbk2
http://www.oreilly.com
http://safari.oreilly.com

A lot of appreciation and respect to fellow web builders for pushing CSS-enabled web designs
forward: Douglas Bowman, Tantek Çelik, Dan Cenderhlem, Mike Davidson, Ethan Marcotte, Eric A.
Meyer, Mark Newhouse, Dave Shea, and Jeffrey Zeldman.

Special thanks go to the technical editors, Erik J. Barzeski, Liza Daly, and John Allsopp, and as well as
the copy editor, Nancy Reinhardt, for their time, expertise and patience.

To my friend, Porter Glendinning, who seems to have a knack for not only being able to read W3C
specifications and see their implications two or three steps ahead of most web developers, but also
articulates those thoughts in such a way as to make me believe that even my grandmother could
understand what he's talking about. Your translation services and thoughts are truly appreciated.

Special thanks to Tatiana Apandi. Tatiana did a great job of making sure my questions were
answered and guiding me throughout the life of the project. This writing process has been my most
challenging, but most rewarding experience to date. And, frankly, I wouldn't have wanted it any
other way with any other publisher.

Thanks to my friends who know me as the web geek I truly am: Katrina Ferguson, Kelly and Nathan
Hensley, Trueman Muhrer, Eric Ellis, Jessica Lorenzi, Ansley Simmons, Mark Trammell, and Ryan
Yordon.

Thanks to my family for the love and appreciation. Your support through good times and bad has
been a rock. As always, I'm looking forward to our next reunion.

Chapter 1. General

Section 1.0. Introduction

Recipe 1.1. Using CSS with HTML

Recipe 1.2. Using Different Selectors to Apply Styles

Recipe 1.3. Determining When to Use Class and ID Selectors

Recipe 1.4. Understanding CSS Properties

Recipe 1.5. Understanding the Box Model

Recipe 1.6. Understanding DOCTYPES and Effects on Browser Layout

Recipe 1.7. Associating Styles to a Web Page

Recipe 1.8. How to Use Different Types of Style Sheets

Recipe 1.9. Adding Comments Within CSS

Recipe 1.10. Organizing the Contents of a Style Sheet

Recipe 1.11. Organizing Style Sheet Files

Recipe 1.12. Working with Shorthand Properties

Recipe 1.13. Setting up an Alternate Style Sheet

Recipe 1.14. Using Floats with Images

Recipe 1.15. Using Absolute Positioning

Recipe 1.16. Using Relative Positioning

Recipe 1.17. Using CSS in Adobe Dreamweaver

Recipe 1.18. Using CSS in Microsoft Expression Web Designer

1.0. Introduction

Cascading style sheets (CSS) provides a simple way to style the content on your web pages. CSS
may look complicated to the first-time CSS user, but this chapter shows how easy it is to use CSS.
The recipes provide the basics to get you started with CSS. After you write a few lines of HTML page,
add a little CSS and you immediately see the results.

Here's an exercise with the traditional "Hello, world!" example. First, open a text editor or a favorite
web page editing tool and enter the following:

<html>
 <head>
 <title>CSS Cookbook</title>
 <head>
 <body>
 <p>Hello, world!</p>
 </body>
</html>

Save the file and view it in your web browser. This line is nothing special as you can see in Figure 1-
1.

Figure 1-1. Default rendering of HTML text without CSS

To change the style of the HTML text from to sans serif, add a bit of the following CSS (see Figure 1-
2):

<p style="font-family: sans-serif;">Hello, world!</p>

Or, keeping the default font, change the font size to 150% font-size, using the following example
that you see in Figure 1-3:

<p style="font-size: 150%">Hello, world!</p>

Figure 1-2. The font is changed to sans-serif through CSS

Figure 1-3. The size of the text gets larger

In this chapter, you'll learn about selectors and properties, organizing style sheets, and positioning.
These general recipes prepare you for fancier recipes in upcoming chapters.

Recipe 1.1. Using CSS with HTML

Problem

You want to use CSS in your web pages.

Solution

Start with a blank page in Notepad, your favorite text processor, or web development software like
Macromedia Dreamweaver or Microsoft Expression.

Add the following HTML between the body tags and save the file as cookbook.html (see Figure 1-4):

<html>
 <head>
 <title>CSS Cookbook</title>
 </head>
 <body>
 <h1>Title of Page</h1>
 <p>This is a sample paragraph with a
 link.</p>
 </body>
</html>

Figure 1-4. Default rendering of HTML in the browser

Then add the following code changes in order to redefine the style for links, bulleted lists, and
headers, and then check out Figure 1-5:

<html>
 <head>
 <title>CSS Cookbook</title>
 <style type="text/css">
 <!--
 body {
 font-family: verdana, arial, sans-serif;
 }
 h1 {
 font-size: 120%;
 }
 a {
 text-decoration: none;
 }
 p {
 font-size: 90%;
 }
 -->
 </style>
 </head>
 <body>
 <h1>Title of Page</h1>
 <p>This is a sample paragraph with a
link.</p>
 </body>
</html>

Figure 1-5. Page is rendered differently after adding CSS

Discussion

CSS contain rules with two parts: selectors and properties. A selector identifies what portion of your
web page gets styled. Within a selector are one or more properties and their values. The property
tells the browser what to change and the value lets the browser know what that change should be.

For example, in the following declaration block example, the selector tells the browser to style the
content marked up with the h1 element in the web page to 120% of the default size:

h1 {
 font-size: 120%;
}

Table 1-1 breaks out the CSS by selector, property, and value used in the solution. The result column
explains what happens when you apply the property and value to the selector.

Table 1-1. Breakdown of selectors, properties, and values from the
solution

Selector Property Value Result

 h1
font-size 120% Text size larger than

default size.

 a
text-decoration none

Links don't have any
decorations, including
underlining

Selector Property Value Result

 p
font-color blue

Text appears in blue

 p
font-size 90% Text size smaller than

default size.

The standard for writing CSS syntax includes the selector, which is normally the tag you want to style
followed by properties and values enclosed within curly braces:

selector { property: value; }

However, most designers use the following format to improve readability:

selector {
 property: value;
}

Both are valid approaches to writing CSS. Use whatever method is more comfortable for you.

Also, CSS allows selectors to take on more than one property at a time to create more complex visual
presentations. In order to assign multiple properties within a selector, use a semicolon to separate
the properties as shown below:

selector {
 property: value;
 property: value, value, value;
 property: value value value value;
}
selector, selector {
 property: value;
}

See Also

Recipe 1.2 for more information about CSS selectors; and Appendix C, "CSS 2.1 Selectors, Pseudo-
classes, and Pseudo-elements," for a listing of selectors.

 p
font-color blue

Text appears in blue

 p
font-size 90% Text size smaller than

default size.

The standard for writing CSS syntax includes the selector, which is normally the tag you want to style
followed by properties and values enclosed within curly braces:

selector { property: value; }

However, most designers use the following format to improve readability:

selector {
 property: value;
}

Both are valid approaches to writing CSS. Use whatever method is more comfortable for you.

Also, CSS allows selectors to take on more than one property at a time to create more complex visual
presentations. In order to assign multiple properties within a selector, use a semicolon to separate
the properties as shown below:

selector {
 property: value;
 property: value, value, value;
 property: value value value value;
}
selector, selector {
 property: value;
}

See Also

Recipe 1.2 for more information about CSS selectors; and Appendix C, "CSS 2.1 Selectors, Pseudo-
classes, and Pseudo-elements," for a listing of selectors.

Recipe 1.2. Using Different Selectors to Apply Styles

Problem

You want to use selectors to apply unique styles to different parts of a web page.

Solution

Use different kinds of selectors to target different portions of web pages that you want to style (see
Figure 1-6):

<html>
 <head>
 <title>CSS Cookbook</title>
 <style type="text/css">
 <!--
 * {
 font-family: verdana, arial, sans-serif;
 }
 h1 {
 font-size: 120%;
 }
 #navigation {
 border: 1px solid black;
 padding: 40px;
 }
 li a {
 text-decoration: none;
 }
 p {
 font-size: 90%;
 }
 -->
 </style>
 </head>
 <body>
 <h1>Title of Page</h1>
 <p>This is a sample paragraph with a
link. Lorem ipsum dolor sit amet,
consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt ut
laoreet dolore magna <em class="warning">aliquam erat volutpat. Ut
wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit
lobortis nisl ut aliquip ex ea commodo consequat.<p>
 <ul id="navigation">
 Apples

 Bananas
 Cherries

 </body>
</html>

Figure 1-6. Web page with CSS styles

Discussion

CSS allows for many, and sometimes ingenious, ways to pinpoint which elements of a web page
should be styled.

To better understand how to select portions of a web page to use selectors, a developer needs to
recognize that content marked up with HTML creates a structure. Although the elements used in an
HTML may look like the jumbled order shown in Figure 1-7 , there is a structure.

Figure 1-7. Elements used in the solution

This structure may be invisible to the visitor visiting the web page, but it's a crucial part of the
rendering process that a browser goes through.

When a browser pulls a web page from the server and begins to display the page, the elements of
the page are placed in a structure that is assembled by the browser software. Although this process
of placing the elements in an organizational structure is more programming oriented, a good visual
representation would be to view the structure much like an organizational chart at a company.

Using the HTML in the solution, Figure 1-8 shows what the organizational chart would look like.

Figure 1-8. Elements used in the web page arranged in a top-down
structure

Type selectors

Type selectors are selectors that name the element or HTML tag to style. The following rules would
apply font styles to the h1 and p elements within a web page (see Figure 1-9):

h1 {
 font-size: 120%;
}
p {
 color: blue;
}

Figure 1-9. The elements selected from the CSS rules

Note that some elements inherit their parent's property values. For example,
the text in the paragraph is set to blue, as is the em element.

Class selectors

When you want to apply the same CSS rule many times to different elements, use the class selector.

For example, class selectors can be used to identify warnings with red color in a paragraph, as well as
in a list item.

First, create a warning class selector preceded with a period, ".", which is also known as full stop:

<html>
 <head>
 <title>CSS Cookbook</title>
 <style type="text/css">
 <!--
 * {
 font-family: verdana, arial, sans-serif;
 }
 body {
 }
 h1 {

 font-size: 120%;
 }
 #navigation {
 border: 1px solid black;
 padding: 40px;
 }
 li a {
 text-decoration: none;
 }
 p {
 font-size: 90%;
 }
 .warning {
 font-weight: bold;
 }
 -->
 </style>
 </head>
 <body>
 <h1>Title of Page</h1>
 <p>This is a sample paragraph with a
link. Lorem ipsum dolor sit amet,
consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt
ut laoreet dolore magna <em class="warning">aliquam erat volutpat.
Ut wisi enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit
lobortis nisl ut aliquip ex ea commodo consequat.<p>
 <ul id="navigation">
 Apples
 Bananas
 Cherries

 </body>
</html>

Then add the class attribute to a link and a list item to style those elements, as you see in Figure 1-
10 :

<html>
 <head>
 <title>CSS Cookbook</title>
 <style type="text/css">
 <!--
 * {
 font-family: verdana, arial, sans-serif;
 }
h1 {
 font-size: 120%;
 }
 #navigation {
 border: 1px solid black;
 padding: 40px;

 }
 li a {
 text-decoration: none;
 }
 p {
 font-size: 90%;
 }
 .warning {
 font-weight: bold;
 }
 -->
 </style>
 </head>
 <body>
 <h1>Title of Page</h1>
 <p>This is a sample paragraph with a
link. Lorem ipsum dolor
sit amet, consectetuer adipiscing elit, sed diam nonummy nibh euismod tincidunt
ut laoreet dolore magna <em class="warning">aliquam erat volutpat. Ut wisi
enim ad minim veniam, quis nostrud exerci tation ullamcorper suscipit lobortis
nisl ut aliquip ex ea commodo consequat.<p>
 <ul id="navigation">
 <li class="warning">Apples
 Bananas
 Cherries

 </body>
</html>

Figure 1-10. The modified CSS rules on the web page

Look at these selectors in the structure of the web page; it would look like Figure 1-11 .

Figure 1-11. The styled elements within the page structure

ID selectors

ID selectors resemble class selectors except that according to the specification they appear only once
in the document. Often they appear in a div , but they can be used elsewhere. To create an ID
selector, use the hash, "#", and then immediately place a label or name:

#navigation {
 border: 1px solid black;
 padding: 40px;
 }

Then add an id attribute with the value of navigation (see Figure 1-12):

<ul id="navigation">
 <li class="warning">Apples
 Bananas
 Cherries

Figure 1-12. The unordered list element is styled

Descendant selectors

Descendant selectors come next in line and override the type and class selector styles. They typically
have two elements with the second element being a descendant of the first:

 li a {
 text-decoration: none;
}

Add the HTML in which a appears within li as you see in Figure 1-13 :

<ul id="navigation">
 <li class="warning">Apples
 Bananas
 Cherries

Figure 1-13. The links within the list items are selected

Child selectors

A child selector means that an element is styled if it is the direct descendant of its parent element. A
child selector is signified by right-angled bracket often set between two type selectors as shown here:

p > strong {
 text-decoration: underline;
}

Only the strong element that isn't contained within another element, the p element in this case, is
underlined (see Figure 1-14):

<div>
 <p>Nothing happens to this part of the sentence because this
strong isn't the direct child of div.</p>
 However, this strong is the child of div.
Therefore, it receives the style dictated in the CSS rule.
</div>

Figure 1-14. The affect of the child selector rule

To see which elements are affected by this CSS rule in an organizational chart, take a look at Figure
1-15 .

Figure 1-15. The child selector highlighted in the markup structure

In Figures 1-14 and 1-15 , the reason the first strong element is not underlined is because it was
placed within the p element. If the direct parent-to-child relationship is not present, then the style
won't hold. This is an easy, but powerful, difference between a child selector and descendent selector.

Universal selectors

Universal selectors are represented with an asterisk (*) and apply to all elements (see Figure 1-16).
In the following code, every element containing HTML text would be styled with a Verdana, Arial, or
some other sans-serif font:

* {
 font-family: Verdana, Arial, sans-serif;
}

Figure 1-16. Every element gets styled with the universal selector

Adjacent sibling selectors

Adjacent siblings describe the relationship between two elements that are placed side-by-side within
the flow of a web page's markup.

An adjacent sibling can be seen by the plus sign as shown here:

li + li {
 font-size: 200%;
}

The effect of this adjacent sibling rule is seen in Figure 1-17 . Notice that only the second and third list
item are styled since the second and third list item are placed side-by-side with another list item.

Figure 1-17. Adjacent sibling selectors only affect the ordered list because
it appears after the unordered list

To see which elements are affected by this CSS rule showcasing adjacent sibling selectors in an
organizational chart, take a look at Figure 1-18 .

Figure 1-18. Showing which elements are being styled

Note that adjacent sibling selectors are not widely supported in modern
browsers, most notably Internet Explorer 6 for Windows. Adjacent sibling
selectors are supported in Mozilla, Firefox, Opera 5+, and Safari.

Attribute selectors

Attribute selectors have four ways to find an element that has a matching attribute. Take a look at
examples of each option:

[attribute] - Search for matches based on the attribute.

a[href] {
 text-decoration: none;
}

Whenever href attribute appears within an a element in the HTML, the link won't have an underline.

[attribute=val] - Search for matches based on the value.

a[href="csscookbook.com"] {

 text-decoration: none;
}

Whenever a link that points to csscookbook.com appears in the HTML, the link won't have an
underline.

[attribute~=val] - Search for matches that contain the space-separated attribute somewhere in the
value.

a[title~="digital"] {
 text-decoration: none;
}

Whenever "digital" appears in the title attribute of an anchor element, the link won't have an
underline.

[attribute|=val] - Search for matches that contain the attribute with a hyphen.

a[href|="digital"] {
 text-decoration: none;
}

Also, whenever "digital-" appears in the href attribute of an anchor element, the link won't have an
underline.

Note that attribute selectors are not widely supported in modern browsers,
most notably Internet Explorer 6 for Windows. Attribute selectors are
supported in Mozilla, Firefox Opera 5+, and Safari.

Pseudo-classes

You may want to add style to items that aren't based on elements' name, attributes, or content. This
example of pseudo-classes creates rollover effects:

a:link {
 color: blue;
}
a:visited {
 color: purple;
}
a:hover {
 color: red;
}

a:active {
 color: gray;
}

In this setup, a basic link appears in blue. As soon as the mouse pointer hovers over the link, it
changes to red. During the clicking of the link, the link appears gray. When returning to the page with
the link after visiting, the link appears purple.

Three other pseudo-classes include :first-child , :focus , and :lang(n) .

Pseudo-elements

With most selectors, a developer makes use of elements and their arrangement within a web
document to style a document. However, sometimes a developer can style an item within a web
document that's not marked up by elements through the use of pseudo-elements. Pseudo-elements
consist of :first-letter , :first-line , :before , and :after .

You can see an example of the following pseudo-element in:first-letter in Figure 1-19 :

p:first-letter {
 font-size: 200%;
 font-weight: bold;
}

Figure 1-19. The first letter is styled

Or you can use :first-line (see Figure 1-20) to style the entire first line. If the first line isn't a
complete sentence or includes the start of a second sentence, :first-line still only impacts the first
line.

Figure 1-20. The first line is styled

p:first-line {
 font-size: 200%;
 font-weight: bold;
}

See Also

The CSS 2.1 specification for selectors at http://www.w3.org/TR/CSS21/selector.html ; Selectutorial,
a tutorial of CSS selectors (http://css.maxdesign.com.au/selectutorial/); westciv browser selector
support (http://westciv.com/style_master/academy/browser_support/selectors.html) shows the
browsers that do and do not support specific selectors; and Appendix C for a listing of selectors.

Recipe 1.3. Determining When to Use Class and ID
Selectors

Problem

You want to determine the best use for class and ID selectors.

Solution

Use class selectors when you need to apply a style multiple times within a document and ID selectors
for one-time only appearances of a style within a document.

In the following style sheet, #banner, #sub_banner, #nav1, #nav2, #footer, and #content are ID
selectors and .title and .content are class selectors.

body {
 margin: 0;
 font-family: Verdana, Arial, Helvetica, sans-serif;
 font-size: .75em;
 padding: 0;
}
#banner {
 margin-top: 0;
 margin-bottom: 0;
 background-color: #900;
 border-bottom: solid 1px #000;
 padding: 5px 5px 5px 10px;
 line-height: 75%;
 color: #fff;
}
#sub_banner {
 background-color: #ccc;
 border-bottom: solid 1px #999;
 font-size: .8em;
 font-style: italic;
 padding: 3px 0 3px 10px;
}
#content {
 position: absolute;
 margin-left: 18%;
 width: 40%;
 top: 100px;

 padding: 5px;
}
#nav1 {
 position: absolute;
 width: 30%;
 left: 60%;
 top: 100px;
 padding: 5px;
}
#nav2 {
 position: absolute;
 padding: 5px 5px 5px 10px;
 top: 100px;
 width: 15%;
}
#footer {
 text-align: center;
 padding-top: 7em;
}
.warning {
 font-weight: bold;
 color: red;
}
.title {
 font-size: 120%;
}
.content {
 font-family: Verdana, Arial, sans-serif;
 margin-left: 20px;
 margin-right: 20px;
}
.footer {
 font-size: 75%;
}

Apply the ID and class selectors into the HTML code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html>
 <head>
 <title>CSS Cookbook</title>
 <link href="1-2.css" rel="stylesheet" type="text/css" />
 </head>
 <body>
 <div id="header">
 <h1>CSS Collection</h1>
 <h2>Showcase of CSS Web Sites</h2>
 </div>
 <div id="content">
 <h3>Content Page Title</h3>

 <p class="title">Content Item Title</p>
 <p class="content">Content goes here.</p>
 </div>
 <div id="navigation">
 <h3>List Stuff</h3>
 Submit a site

 CSS resources

 RSS

 <h3>CSS Cookbook Stuff</h3>
 Home

 About

 Blog

 Services

 </div>
 <div id="blipverts">
 <h3>Ads go here.</h3>
 </div>
 <div id="siteinfo">
 <p class="footer">Copyright 2006</p>
 </div>
</body>
</html>

Discussion

The ID selectors identify unique attributes that have one instance in the document tree, whereas
class selectors can be used frequently throughout the web page. Remember that ID selectors use a
hash, "#", while class selectors begin with a period, ".".

Typically, web developers will use ID selectors to mark off unique sections of a web page. In the
previously shown solution, notice that the page is divided into the following sections:

header

content

navigation

blipverts

siteinfo

By assigning these sections their own ID selector, designers are able to apply customized styles to
those areas of the page, while keeping those same styles away from the other sections. This is
accomplished through the combination of descendent selectors with ID selectors.

In the following example, the different H3 elements get different CSS rules:

#content h3 {
 font-size: 2em;

 font-weight: bold;
}
#navigation h3 {
 font-size: 0.8em;
 font-wieght: normal;
 text-decoration: underline;
}

See Also

The CSS 2.1 specification for ID selectors at http://www.w3.org/TR/CSS21/selector.html#id-
selectors; the CSS 2.1 specification for class selector at
http://www.w3.org/TR/CSS21/selector.html#class-html.

http://www.w3.org/TR/CSS21/selector.html#id-
http://www.w3.org/TR/CSS21/selector.html#class-html.

Recipe 1.4. Understanding CSS Properties

Problem

You want to learn more about CSS properties.

Solution

Recipes in this chapter cooked up popular properties such as color, font-family, font-size, and
text-decoration. Properties fall between the brackets and their values immediately follow as shown
here in a generic example:

selector {
 property: value;
}

A real-world example might look like the following:

li {
 list-style-type: square;
}

Any time li appears in the document, the bullet appears as a square rather than a traditional bullet.

Discussion

Selectors identify what should be styled within a web document, while properties and selectors
identify the what and how that portion of the web document should be modified.

For example, the color property means the element's color will change, but not what color. That's
the job for value. Table 1-2 showcases a few more properties, values, and what they do.

Table 1-2. A short listing of CSS properties

Property Value Result

 font-weight
bold

Adds bold to text

 border-color

Color name or
color hexadecimal
HTML value (e.g.,
#000000 for
black and #ffffff
for white)

Adds color to
border

 border-style

solid
dotted
dashed
double

Adds solid lineAdds
dotted lineAdds
dashed lineAdds
two lines

 text-align

left
center
right
justify

Aligns text to the
leftAligns text in
the centerAligns
text to the
rightFully expands
text from left to
right

For a more complete rundown of available CSS properties, see Appendix B.

See Also

W3C full property table at http://www.w3.org/TR/CSS21/propidx.html; HTML Dog CSS Properties at
http://www.htmldog.com/reference/cssproperties/; a detailed look at the border property in Recipe
4.4; a complete listing of CSS properties in Appendix B.

http://www.w3.org/TR/CSS21/propidx.html
http://www.htmldog.com/reference/cssproperties/

Recipe 1.5. Understanding the Box Model

Problem

You want to better understand the box model and how margins, borders, and padding work around
content.

Solution

Every block level element, like a p or div element, contains a top, right, bottom, and left edge. These
sides of block elements are composed of three layers surrounding the content. So, therefore each
block element contains four sections:

content

Actual content such as text, images, Java applets, and other objects. The content area is in the
middle of the box.

padding

Surrounds the content area.

border

Next outer layer that surrounds padding and makes up the box border.

margin

Transparent box that begins at the edge of the border and expands beyond.

The default margin value is 0 , which lines up with the edge of the border . A border with a value of 0
lines up with the padding edge.

Obviously, a padding value of 0 lines flush against the content. Values above 0 expand the boxes.
Take a look at Figure 1-21 to see views of a box model.

Figure 1-21. Box model viewed straight on and off to the side

Discussion

For a mental image of the box model, picture a cardboard box on the floor. Looking down at the box
and you see its four sides: top, right, bottom, and left. The box can be big or small as you can modify
the height and width properties.

div {
 height: 150px;
 width: 150px;
}

Add as many books as you want into the box until you fill the space with the contents that you see in
Figure 1-22 :

Figure 1-22. Content placed within a block level element

<div>
 Moby Dick
 The Red Badge of Courage
 The Catcher in the Rye
</div>

To help see the edges of the box, I'll place a thin border around the box (see Figure 1-23):

div {
 border: thin solid #000000;
 height: 150px;
 width: 150px;
}

Figure 1-23. A border is placed around the content

The books overlap or sit next to each other and that's not good for the books especially since, in this
example, they're collector's items. So, I'll add padding between the books and the box with the
padding property for a little breathing room and protection. As you use more padding, you also
reduce the number of books you can place into the box. Some padding has been added to the
example in Figure 1-24 :

div {
 border: thin solid #000000;
 height: 150px;
 width: 150px;
 padding: 10px;
}

Figure 1-24. Padding is added

Adding padding changes the overall box size, despite being set to width and
height of 150 pixels. With the addition of the padding on all sides of the box, the
new width is 170 pixels (padding of 10 pixels is placed on both the right and left
sides). Also the height is now 170 pixels, too.

You need another box to fit the contents that didn't fit in the first box. So create another box, and
enter the rest of the books or contents. Put the new box next to the original (see Figure 1-25):

<div>
 Moby Dick
 The Red Badge of Courage
 The Catcher in the Rye
</div>
<div>
 The Red Queen
 The Awakening
 The Scarlet Letter
</div>

Figure 1-25. An additional listing of books is added

However, you want to space out the boxes so that they aren't on top of each other. So, modify the
space between the boxes by using the margin property (see Figure 1-26):

div {
 border: thin solid #000000;
 height: 150px;
 width: 150px;
 padding: 10px;
 margin: 25px;
}

Figure 1-26. Adding margins to the block level elements

To help you distinguish the two boxes, modify the border property. Like the margin and padding, the
border can be as thick or thin as you want (see Figure 1-27):

div {
 border: 5px double #000000;
 height: 150px;
 width: 150px;
 padding: 10px;
 margin: 25px;
}

Figure 1-27. Border increased to five pixels

At this point, you've modified the box model fairly consistently across two elements. You've adjusted
the margin, padding, and borders around each side. However, you can also modify specific edges of
the box model.

For example, if you want to adjust the right side of the div element (see Figure 1-28), but keep the
same values for the other sides, the code could look something like the following:

div {
 border: 5px solid #000000;
 height: 150px;
 width: 150px;
 padding: 10px;
 margin: 0px;
 border-right: 1px solid #000000;
 padding-right: 1px;
 margin-right: 1px;
}

Figure 1-28. Adjustments to the right side of the box

You could also modify the other sides of the edges specifically as well. For example, using the margin
property, the code might look like the following:

div {
 margin-top: 1px;
 margin-right: 1px;
 margin-bottom: 1px;
 margin-left: 1px;
}

By adjusting the sides and different properties of the box model, developers are able to better format
the presentation of their web pages.

Microsoft instituted its own box model in their browser, Internet Explorer for
Windows. For more information about that box model and how to work around
it, see Recipe 11.2 .

See Also

The CSS 2.1 box model http://www.w3.org/TR/CSS21/box.html ; the Brain Jar box model at
http://www.brainjar.com/css/positioning/default.asp ; and the interactive CSS Box Model at
http://www.redmelon.net/tstme/box_model/ .

http://www.brainjar.com/css/positioning/default.asp
http://www.redmelon.net/tstme/box_model/

Recipe 1.6. Understanding DOCTYPES and Effects on Browser Layout

Problem

You want to make your web page standard-compliant and valid.

Solution

HTML 4.01 has three document types: strict, transitional, and frameset. XHTML 1.1 has one document type, but XHTML 1.0 has
three document types, like HTML 4.01. Only one document type definition (DTD) appears in the HTML document, using any one
of the following:

HTML 4.01 Strict DTD:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN"
"http://www.w3.org/TR/html4/strict.dtd">

HTML 4.01 Transitional DTD:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN"
"http://www.w3.org/TR/1999/REC-html401-19991224/loose.dtd">

HTML 4.01 Frameset DTD:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Frameset//EN"
" http://www.w3.org/TR/1999/REC-html401-19991224/frameset.dtd">

XHTML 1.0 Strict DTD:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

XHTML 1.0 Transitional DTD:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

XHTML 1.0 Frameset DTD:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Frameset//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-frameset.dtd">

XHTML 1.1 DTD:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

Here's a basic page with the XHTML 1.1 DTD and the required head, body, and html tags.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
<html>
 <head>
 <title>XHTML DTD</title>
 </head>
 <body>
 <p>XHTML requires having a DTD in every document otherwise it won't pass muster with the validators.</p>
 </body>
</html>

Discussion

DOCTYPE, short for DTD, defines an HTML or XHTML document's building blocks and tells the browsers and validators which
version of HTML or XHTML your document is using.

The DOCTYPE declaration must appear at the beginning of every web page document before the html element to ensure your
markup and CSS are standards compliant, and that browsers handle the pages based on the appropriate DTDs.

XHTML requires DOCTYPE, otherwise the pages won't validate and the browsers fall back on quirks mode, treating the pages as
if they were written in invalid markup and therefore need to be improperly rendered in modern browsers even if the code may
be perfect XHTML and CSS.

The W3C provides an HTML validator and a CSS validator so you can verify document validity. If there's no DOCTYPE, the
validator chokes, as you see in Figure 1-29 .

Figure 1-29. Screenshot of W3C's validator

A page without DOCTYPE, an older DOCTYPE, or an incorrectly coded DOCTYPE renders in quirks mode, in which a browser
treats the page as buggy. In some cases, depending on the browser, some content will render according to W3C guidelines.

Figures 1-30 and 1-31 show how a web document with the same markup, a table contained within a div with a width of 100%
goes into quirks mode in Internet Explorer 6.0 and how the page should look in standards mode.

Figure 1-30. Table width in Internet Explorer 6.0 in quirks mode with no DOCTYPE included

Figure 1-31. Table width in Firefox 1.5 in standard mode with HTML 4.01 Strict DOCTYPE

See Also

The HTML 4.01 specification for DTD at http://www.w3.org/TR/html401/intro/sgmltut.html#h-3.3 ; W3C validators at
http://www.w3.org/QA/Tools/#validators ; "A List Apart" article on DOCYTPES at http://www.alistapart.com/stories/doctype/
; "QuirksMode" article at http://www.quirksmode.org/index.html?/css/quirksmode.html ; Mozilla's quirks Mode information
explains the differences between the modes and how it handles quirks mode at
http://developer.mozilla.org/en/docs/Mozilla%27s_Quirks_Mode ; Opera's DOCTYPE page at
http://www.opera.com/docs/specs/doctype/ .

http://www.w3.org/QA/Tools/#validators
http://developer.mozilla.org/en/docs/Mozilla%27s_Quirks_Mode
http://www.opera.com/docs/specs/doctype/

Recipe 1.7. Associating Styles to a Web Page

Problem

You want to know about the different ways of adding styles to a web page.

Solution

You can apply styles in three ways: external, internal, and inline. An internal style sheet appears
near the top of the HTML document within the head.

<style>
<!--
#header {
 width: 100%;
 height: 100px;
 font-size: 150%
}
#content {
 font-family: verdana, arial, sans-serif;
 margin-left: 20px;
 margin-right: 20px
}
.title {
 font-size: 120%
}
-->
</style>

Note the use of HTML comments immediately after the style element.
Comments are placed there to hide the CSS content and keep it from showing
up in the web page layout or from being rendered by the browser in some
unwanted fashion.

External style sheets are stored in a separate file, which become associated with the HTML file
through linking. The following code is saved in its own file:

/* CSS Document */
h1 {
 font-size: 150%;

}
h2 {
 font-size: 120%;
}
p {
 font-family: Verdana, Arial, Helvetica, sans-serif;
}

Notice that the style element is not present in the external style sheet. Also,
HTML comments are not used in external style sheets.

In the web page, add the following line between the head tags to link to the external style sheet that
contains the above styles:

<link href="screen.css" rel="stylesheet" type="text/css" media="screen" />

Inline styles work similarly to font in that they appear with the markup they affect.

<h1 style="font-family: verdana, arial, sans-serif;
font-size: 150%; color: blue; ">Page Title</h1>

<p style="font-family: sans-serif; font-size: 90%; ">Hello, world!</p>

Discussion

The three different types of style sheets are:

External

All web pages link to the external style sheet that contains nothing but CSS styles. If you want
to change the font color on all pages linked to this style sheet, just update the external style
sheet. Link to the style sheet with the link tag.

Internal

A unique web page may have its own style sheet so styles only affect the page and not all web
pages. Define internal styles within the style tags.

Inline

Inline styles work similarly to font with the style information applied to a specific tag within a
web page. Designers rarely apply inline styles.

External and inline style sheets save time spent over inline styles on maintaining web sites.

For example, you inherit a web page where all the text is blue and use font to control the size. You
receive orders to make change the text to black, so you search for every instance of <p> to change it
from blue to black like the following:

<p>Text goes here</p>

To change all p from blue to black in an external style sheet takes two steps. Open the CSS file and
change the color.

p {
 color: blue;
}

In an internal style sheet, changing the text from blue to black takes one step. Search for the style at
the top of the page and replace blue with black.

<style>
<!--
p {
 color: blue
}
-->
</style>

When to use inline styles

However, with inline styles, changing the color takes as much time as fixing the original file with font
tag:

<p style="font-color: blue">Test goes here.</p>

Why would anyone want to use inline styles considering it's time-consuming to make changes? It's
rare, but you may have content that appears once in the whole web site that is in need of a special
style. Rather than cluttering the external style sheet with the style for one item, you use inline styles
instead.

When to use internal style sheets

As for internal and external style sheets, most sites use external style sheets. However, when
starting to write CSS code for a web page design, it's best to start out with an inline style sheet.
When you reach the point where the design is complete or starts to get a little unwieldy, move the
style sheet to a separate file. Then make edits to the external style sheet as needed.

Also, you may have a special page that's not related to the web site or uses a special style. In this

case, an internal style sheet could be easier to use as opposed to adding more clutter to the external
style sheet.

See Also

The Style Sheets section in HTML 4.01 specification at
http://www.w3.org/TR/html401/present/styles.html; W3Schools' "CSS How to Insert a Style Sheet"
at http://www.w3schools.com/css/css_howto.asp.

http://www.w3.org/TR/html401/present/styles.html
http://www.w3schools.com/css/css_howto.asp

Recipe 1.8. How to Use Different Types of Style Sheets

Problem

You want to provide style sheets for different media types such as aural, print, and handheld.

Solution

Create separate external style sheets for the different media and name them by their media such as
print.css , screen.css , and handheld.css . Then use the link element with the media type in the web
page to link to these styles. Another option is to use the @media rule.

Here's print.css :

body {
 font: 10pt times, georgia, serif;
 line-height: 120%
}

A new file called screen.css :

body {
 font: 12pt verdana, arial, sans-serif;
 line-height: 120%
}

Then finally another file called projection.css :

body {
 font: 14pt;
 line-height: 120%
}

Then link to the three files from the web page with the following lines within the head section. Each link
has a different media type:

<link rel="stylesheet" type="text/css" href="/css/print.css" media="print" />
<link rel="stylesheet" type="text/css" href="/css/screen.css" media="screen" />
<link rel="stylesheet" type="text/css" href="/css/projection.css" media="projection" />

You could use the @media rule instead to specific the different media rules within the same style sheet:

<style type="text/css">
<!--
@media print {
 body { font: 10pt times, georgia, serif }
}

@media screen {
 body { font: 12pt verdana, arial, sans-serif}
}

@media projection {
 body { font-size: 14pt }
}

@media screen, print, projection {
 body { line-height: 120% }
}
-->
</style>

Discussion

When creating the styles for printing, add them to print.css and then only these styles are applied
during printing. This ensures the page prints without wasting space or ink from printing the images.

Only devices supporting the specific media type will see its related media CSS styles. The media style
sheets don't affect the appearance of other media or the web page itself.

The @media rule allows you to put all the media in one style sheet.

Figure 1-32 shows how the web page looks in its original screen format. Users don't need to print the
side items, so copy the screen.css style sheet and save it as a new one called print.css . Rather than
starting from scratch, modify screen.css to optimize the web page for printing. The following items in
screen.css have been changed in print.css .

#sub_banner {
 background-color: #ccc;
 border-bottom: solid 1px #999;
 font-size:.8em;
 font-style: italic;
 padding: 3px 0 3px 5px;
}
#nav1 {
 position: absolute;
 width: 30%;
 left: 60%;
 top: 100px;
 padding: 5px 5px px 5px 0;
}
#nav2 {

 position: absolute;
 width: 15%;
 left: 1%;
 top: 100px;
 padding: 5px 5px px 5px 0;
}
h1 {
 text-align: left;
 color: #fff;
 font-size: 1.2em;
 text-align: left;
 margin-bottom: 5px;
 margin-top: 5px;
}
.entry {
 padding-bottom: 20px;
 padding: 5px;
 border: solid 1px #999;
 background-color: #fcfcfc;
 margin-bottom: 25px;
}

Figure 1-32. This is how the page would look if printed without print.css

Figure 1-33 shows how they now appear with print.css :

#sub_banner {
 display: none
}
#nav1 {
 display: none
}
#nav2 {
 display: none
}
h1 {
 display: none
}
.entry {
 padding: 5px;
}

Figure 1-33. After creating print.css and adding a link to the style sheet, the
web page is printer-friendly

This takes out the sub-banner with the tagline and hides the two navigation columns. The h1 element
wasn't necessary to have and removing it saved space at the top. The entries have a light gray box, a
big waste of ink, so they've been simplified to show only the padding between entries.

Remember to add the link element in the HTML page:

<link rel="stylesheet" type="text/css" href="/css/print.css" media="print" />
<link rel="stylesheet" type="text/css" href="/css/screen.css" media="screen" />

That's all there is to it. CSS simplifies many things including design for different media. Table 1-3 lists the
current media types that appear in the CSS 2.1 specification.

Table 1-3. Listing of media types

Media Type Devices

 all Users for all devices

 aural Used for speech and sound synthesizers

 braille Used for Braille tactile feedback devices

 embossed Used for Braille printers

 handheld

Used for handheld or small devices like
PDAs and smartphones

 print Used for printers and print preview

 projection Used for projected presentations

 screen Used for color monitors

 tty

Used for fixed-pitch character grid such as
teletypes, terminals, and portable devices
with limited characters

 tv Used for television and WebTV

See Also

Chapter 10 for setting up styles for printing; media types section in CSS 2.1 specification at
http://www.w3.org/TR/CSS21/media.html ; "ALA's New Print Styles" at
http://www.alistapart.com/articles/alaprintstyles ; and "Pocket-Sized Design: Taking Your Website to
the Small Screen" at http://www.alistapart.com/articles/pocket .

http://www.w3.org/TR/CSS21/media.html
http://www.alistapart.com/articles/alaprintstyles

Recipe 1.9. Adding Comments Within CSS

Problem

You want to organize and keep track of the CSS with comments.

Solution

Add /* and */ anywhere in the styles to show the start and end of a comment.

/* This is a comment */
a {
 text-decoration: none;
}
/* This is also a comment */
h1, h2 {
 font-size: 100%;
 color: #666666;
}

Discussion

You may look at old code and not remember why you took certain steps with that code. Comments
can explain and organize code to help with reviewing at a later time. Comments also help those who
don't create the original code understand its purpose. Browsers ignore content that appears between
the /* and */.

As you break up your code by section, comments come in handy in identifying each section such as
header, footer, primary navigation, subnavigation, and so on. Comments provide a great way to test
your web pages. If you're not sure about a style rule or how it affects the page, add a comment
around the style to turn it off.

/*
a {
 text-decoration: none;
}
*/

The style rule for text-decoration won't take affect with the comments taking it out of circulation.
Unless there are other styles for a, the underline appears under links until the comment is removed.

See Also

The CSS 2.1 specification on comments, online at
http://www.w3.org/TR/CSS21/syndata.html#comments.

http://www.w3.org/TR/CSS21/syndata.html#comments

Recipe 1.10. Organizing the Contents of a Style Sheet

Problem

You want to know how effectively to organize contents within a style sheet for easier management.

Solution

Managing CSS can be accomplished by grouping common visual elements of a web page together.
The following list shows a suggestion of the order of items grouped in a style sheet:

Elements (h1h6, p, a, list, links, images)

Typography

Page layout (header, content, navigation, global navigation, subnavigation, sidebar, footer)

Form tags (form, fieldset, label, legend)

Content (post, events, news)

Here are the comments from three style sheets with each organizing the CSS differently:

/* Typography & Colors
------------------------------------ */
[css code]

/* Structure
------------------------------------ */
[css code]

/* Headers
------------------------------------ */
[css code]

/* Images
------------------------------------ */
[css code]

/* Lists
------------------------------------ */
[css code]

/* Form Elements
------------------------------------ */
[css code]

/* Comments
------------------------------------ */
[css code]

/* Sidebar
------------------------------------ */
[css code]

/* Common Elements
------------------------------------ */
[css code]

Discussion

What works for one person may not work for another. This setup from the solution is a
recommendation based on a combination of experience and best practices that should work best for
small- to medium-size web sites.

For different projects and your own personal preference, you may find a way that works better for
you. Visit your favorite web sites and review their style sheets to study how they're organized.

See Also

Doug Bowman's "CSS Organization Tip 1: Flags," a method for finding rules in your CSS files, at
http://www.stopdesign.com/log/2005/05/03/css-tip-flags.html; Recipe 1.11 on how to organize style
sheet files; and Recipe 11.7 on how to set up an intelligent hacking system.

http://www.stopdesign.com/log/2005/05/03/css-tip-flags.html

Recipe 1.11. Organizing Style Sheet Files

Problem

You want to effectively manage and organize your CSS files.

Solution

Manage CSS files by placing them in their own directory. The following CSS files live in their own css
directory.

/_assets/css/print.css
/_assets/css/screen.css

For a large or complex sites, rather than having one CSS file for each type (print, screen, and so on),
break out CSS by function. These are in the same directory as the simple version.

/_assets/css/layout.css
/_assets/css/color-imagery.css
/_assets/css/type.css

Then, in the HTML file, link to these files by placing the following in the head element:

<link rel="stylesheet" type="text/css" media="print"
 href="/_assets/css/print.css" />
<link rel="stylesheet" type="text/css" media="screen"
 href="/_assets/css/screen.css" />

For the large sites, the screen.css would include methods for importing the separate CSS files that
dictate the design for screen delivery. Here's what the screen.css would look like in this solution:

/* import style sheets */
@import url("/_assets/css/layout.css");
@import url("color-imagery.css");
@import url("type.css");

Discussion

If you are using external style sheets (Recipe 1.6) for smaller or easily managed sites, breaking out
style sheets by media type (print, screen, and so on) does the job nicely.

Taking this approach with larger or more complex site can make it difficult to search the files to see
how the CSS is set up.

Currently, there isn't a standard or recommended approach for managing CSS-related files. Like the
previous recipe, you may discover another approach that works better for you. Experiment with file
and content organization until you find one that works well.

See Also

See Recipe 1.7 for more information on external style sheets.

Recipe 1.12. Working with Shorthand Properties

Problem

You want to use shorthand properties in style sheets.

Solution

Begin with a properly marked up section.

<h3>Shorthand Property</h3>
<p>Combine properties with shorthand and save time, typing, and a
few bytes. Your style sheets will also be easier to read.</p>

Then use just one instance of font property instead of three: font-style , font-size , and font-family :

h3 {
 font: italic 18pt verdana, arial, sans-serif;
}
p {
 border: 2pt solid black;
}

Discussion

Several CSS properties can be tossed in favor of shorthand properties.

The border property is a shorthand property, which combines three properties into one. The border property can cover the values from
the following properties:

border-color

border-width

border-style

The font property is a shorthand property, which combines three properties into one. The font property can cover the values from the
following properties:

font-style

font-size/line-height

font-family

font-weight

font-variant

Enter the values just as you would with any other property except for font-family and font-size/line height . With font-family ,
enter the fonts in the order you wish for them to have priority and use a comma between each.

If you use both font-size and line height , then separate their values with a forward slash:

h3 {
 font: italic 18pt/20pt verdana, arial, sans-serif
}

For a rundown on the shorthand properties available to web developers, see Table 1-4 .

Table 1-4. Shorthand properties

Property Values Example

 background

background-color
background-image
background-repeat
background-attachment
background-position

background: url(book.gif) #999 no-repeat top;

 border

 border-left

 border-right

 border-top

 border-bottom

border-width
border-style
border-color

border: thin solid #000;

 font

font-style
font-variant
font-weight
font-size/line-height
font-family
caption
icon

font: 14px italic Verdana, Arial, sans-serif;

Property Values Example
 font icon

menu
message-box
small-caption
status-bar

 list-style

list-style-type
list-style-position
list-style-image

list-style: circle inside;

 margin

margin-top
margin-right
margin-bottom
margin-left

margin: 5px 0px 5px 10px;
margin: 5px;

 padding

padding-top
padding-right
padding-bottom
padding-left

padding: 5px 10%;

See Also

The CSS 2.1 specification for border shorthand properties at http://www.w3.org/TR/CSS21/box.html#border-shorthand-properties and
font shorthand properties at http://www.w3.org/TR/CSS21/about.html#shorthand ; and see Appendix B for a full listing of CSS
properties.

 font icon
menu
message-box
small-caption
status-bar

 list-style

list-style-type
list-style-position
list-style-image

list-style: circle inside;

 margin

margin-top
margin-right
margin-bottom
margin-left

margin: 5px 0px 5px 10px;
margin: 5px;

 padding

padding-top
padding-right
padding-bottom
padding-left

padding: 5px 10%;

See Also

The CSS 2.1 specification for border shorthand properties at http://www.w3.org/TR/CSS21/box.html#border-shorthand-properties and
font shorthand properties at http://www.w3.org/TR/CSS21/about.html#shorthand ; and see Appendix B for a full listing of CSS
properties.

Recipe 1.13. Setting up an Alternate Style Sheet

Problem

You want to provide other style options for users who may want larger text or a different color
scheme.

Solution

Use the link element with a title and link it to the alternate style sheets. The title lets the user
see what options are available when viewing the list of available styles. In Firefox, click View Page
Styles to see the list.

<link href="default.css" rel="stylesheet" title="default styles"
type="text/css" media="screen" />
<link href="green.css" rel="stylesheet" title="green style"
type="text/css" media="screen" />
<link href="blue.css" rel="stylesheet" title="blue style"
type="text/css" media="screen" />

Unfortunately, this solution doesn't work in Internet Explorer 6.0 or Safari.

Discussion

Alternate style sheets work similarly to the media type style sheets in Recipe 1.7. Instead of creating
styles for media, you're providing users with multiple choices of styles for the screen. Furthermore,
this technique doesn't require using JavaScript. Some users have disabled JavaScript, which would
affect a style sheet switcher.

All you have to do is make a copy of your default style sheet and rename it. Make the changes to the
style sheet and add the link element with a title (see Figure 1-34).

Figure 1-34. Switching style sheets within the browser options

See Also

The article "Invasion of the Body Switchers" by Andy Clarke and James Edwards shows how to create
a JavaScript style switcher at http://www.alistapart.com/articles/bodyswitchers; and Amit Ghaste's
CSS Style Switcher tutorial at http://ghaste.com/pubs/styleswitcher.html.

http://www.alistapart.com/articles/bodyswitchers
http://ghaste.com/pubs/styleswitcher.html

Recipe 1.14. Using Floats with Images

Problem

You want to place an image on the left or the right side with text wrapping around the image instead
of appearing above or below the image (see Figure 1-35).

Figure 1-35. Images do not wrap around the text by default

Solution

First create class selectors for the images:

.leftFloat {
 float: left
}
.rightFloat {
 float: right
}

Then add the class selector to the markup and see how it works in Figure 1-36:

<p>This is the book cover for the CSS Cookbook.</p>

<p>This is the book cover for the CSS Cookbook.</p>

Discussion

In the times before there were any compliant standards, designers used the align attribute with the
img element to move images to the side with text wrapping. W3C deprecated align and now
recommends using float instead.

Floats can be used with elements other than images to shift an item left or right within its current
place. In Figure 1-36, the second image overlaps with the paragraph referencing the first image. This
looks confusing and needs to be fixed. To work around that, use clear:

p {
 clear: left;
}

Figure 1-36. With float, the text wraps around the images

The clear property tells the paragraph to appear after the end of the image flow. At the second img,
the clear properties push the image down to the first line after the previous ends. Instead of lining
up with the second p element, the image waits for a new line before showing up.

See Also

W3C 2.1 specification on floats at http://www.w3.org/TR/CSS21/visuren.html#floats; Chapter 9
provides three recipes on using float with page columns; and Eric Meyer's CSS/edge covers floats at
http://meyerweb.com/eric/css/edge/.

http://www.w3.org/TR/CSS21/visuren.html#floats
http://meyerweb.com/eric/css/edge/

Recipe 1.15. Using Absolute Positioning

Problem

You want to position an element based on the window rather than on the element's default position.

Solution

Use the position property with the absolute value in the style sheet. Also use bottom, left, or both
properties to indicate where to position an element:

.absolute {
 position: absolute;
 bottom: 50px;
 left: 100px;
}

Discussion

Designing with absolute places the content out of the natural flow of the page layout and puts it
exactly where the CSS properties tell it to go within the current box or window. The sample code
used in the solution tells the browser to position the element with the absolute class exactly 40 pixels
down from the top and 20 pixels over from the left edge of the window.

Look at the natural flow of an image and a paragraph in Figure 1-37.

Figure 1-37. Default rendering of the content

Next, apply the absolute positioning to the div that encompasses the content by adding the class
attribute and the absolute value and take a look at Figure 1-38:

Figure 1-38. Absolute positioning places an element based on its location
within a window

<div class="absolute">

<p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit,
sed diam nonummy nibh euismod tincidunt ut laoreet dolore
magna aliquam erat volutpat...
 </p>
</div>

You can also use right and bottom properties for changing the absolute position. Bottom represents
the bottom of the window not matter how big or small you make the window. Beware that right and
bottom aren't supported in Internet Explorer 5 and Netscape 6.0.

Absolute positioning of elements was used to shift a block of content around to
demonstrate how it works. However, the practice needs to be used with care
because absolutely positioned elements will remain in place even as flexible
web page layouts change due to flexible browsers and/or text resizing.

See Also

Recipe 9.8 for a discussion about using absolute positioning for creating a layout; W3C 2.1
specification on absolute positioning at http://www.w3.org/TR/CSS21/visuren.html#absolute-
positioning; and W3Schools tutorial on positioning at
http://www.w3schools.com/css/css_positioning.asp.

http://www.w3.org/TR/CSS21/visuren.html#absolute-
http://www.w3schools.com/css/css_positioning.asp

Recipe 1.16. Using Relative Positioning

Problem

You want to place content based on its position in the document. In other words, the element's
position is modified relative to its natural position as rendered by the browser.

Solution

Use the position property with the relative value in the style sheet. Also add top, left or both
properties to indicate where to position an element.

Using the following CSS rule on the image, the image was able to move over the paragraph content
in Figure 1-39:

.relative {
 position: relative;
 top: 100px;
 left: 20px;
}

Figure 1-39. Relative positioning places an element based on its location
within the document's natural flow

Discussion

Unlike absolute positioning, the sample code doesn't start at the top and left edges of the window.
Instead, it begins where p elements would be if left alone. The code tells the browser to position the
paragraph 100 pixels down from the top and 20 pixels over from the left edge of the original
paragraph's position instead of from the edge of the window. With absolute, the content is placed
exactly where the properties tell it to go from the edges in the current box.

See Also

W3C 2.1 specification on relative positioning at http://www.w3.org/TR/CSS21/visuren.html#relative-
positioning and W3Schools tutorial on positioning at
http://www.w3schools.com/css/css_positioning.asp.

http://www.w3.org/TR/CSS21/visuren.html#relative-
http://www.w3schools.com/css/css_positioning.asp

Recipe 1.17. Using CSS in Adobe Dreamweaver

Problem

You use Dreamweaver for creating and editing web pages and want to use its CSS features.

Solution

Use the CSS Styles Panel to create, edit, delete, and view CSS styles (see Figures 1-40 and 1-41).
You have several ways to work with styles sheets. While editing an HTML page, you can attach an
external style sheet through the CSS Styles panel or start a new CSS document (click File New
and then choose Basic page and CSS).

Figure 1-40. Start a new CSS file in Dreamweaver

Figure 1-41. Enter and edit styles in Dreamweaver's CSS document

Another option is to use the Code or Split view and enter the CSS directly into the code for inline and
internal style sheets.

To attach an external style sheet to any web page in Dreamweaver, click the Attach icon on the
CSS Styles Panel (see Figure 1-42).

1.

Click File New and choose Basic page and CSS to start a blank CSS document.2.

Edit the web page like a word document, Dreamweaver automatically adds internal styles.3.

Enter styles in Code view.4.

You can view CSS properties by categories, such as font, background, and border. You can switch to
List view, an alphabetical list of properties.

Figure 1-42. Use Dreamweaver's CSS Panel to attach an external style
sheet

Discussion

If you add styles to content within an HTML page in Dreamweaver, using Properties, the application
automatically adds inline CSS (see Figure 1-43). As you select fonts and color to selected text,
Dreamweaver creates an internal style sheet rather than use font element. In older versions of
Dreamweaver, the code would look like the following:

Figure 1-43. Dreamweaver automatically creates new styles when
assigning font and colors to text

<font face="georgia, times new roman, serif" color="#ff0000"
size="2">This is text.

You can review the style sheet generated by Dreamweaver (see Figure 1-44).

Figure 1-44. Review the current document's styles in the CSS panel

See Also

Adobe's Best Practices of CSS selectors
http://www.adobe.com/products/dreamweaver/bestpractices/css/ and Dreamweaver home at
http://www.adobe.com/products/dreamweaver/ .

http://www.adobe.com/products/dreamweaver/bestpractices/css/
http://www.adobe.com/products/dreamweaver/

Recipe 1.18. Using CSS in Microsoft Expression Web
Designer

Problem

You use Microsoft Expression Web Designer to design web pages and want to take advantage of its
CSS features.

Solution

Like Dreamweaver, Microsoft Expression Web Designer allows you to attach an external style sheet,
create a new one from scratch, and add styles within the HTML page as you can see in Figures 1-45
through 1-47. Here are a few ways to add CSS:

To attach an external style sheet to any web page in Microsoft Web Expression, click Attach
Style Sheet in the Apply Styles task pane.

Click the New Document icon, and then click CSS to start a new CSS document with a blank
page.

Edit the web page like a Word document; Expression Web Designer automatically adds internal
styles.

Enter styles in the Code view.

Figure 1-45. Use Microsoft Expression Web Designer Apply Styles task
pane to attach an external style sheet

Figure 1-46. Start a new CSS file in Microsoft Expression Web Designer

Figure 1-47. Manage styles in Microsoft Expression Web Designer in its
Manage Styles task pane

Discussion

Microsoft Expression Web Designer has made strides in CSS support over FrontPage, its predecessor.
After adding styles to a web page, refer to the Manage Styles task pane to list current styles and to
switch styles from external CSS to internal CSS and vice versa.

If you add styles to content within an HTML page in using the Formatting toolbar, the application
automatically adds inline CSS. As you select fonts and color to selected text, Expression Web
Designer creates an internal style sheet rather than use . In FrontPage, the code would look
like the following:

<font face="georgia, times new roman, serif" color="#ff0000"
size="2">This is text.

If you made changes to the code in FrontPage, the application often doubled-up on the code, such as
the following:

<font face="georgia, times new roman, serif" color="#ff0000"
size="2">This is text.

This led to bloated pages that rarely rendered correctly in browsers other the Internet Explorer.
Expression Web Designer doesn't have double code trouble as you can see in Figure 1-48 .
Furthermore, styles can be categorized by order or type for easier reviewing.

Figure 1-48. When adding style to text, Expression Web Designer creates
internal styles

See Also

The Microsoft Expression Web Designer CSS Tours at
http://www.microsoft.com/products/expression/en/web_designer/demos.mspx .

http://www.microsoft.com/products/expression/en/web_designer/demos.mspx

Chapter 2. Web Typography
Section 2.0. Introduction

Recipe 2.1. Specifying Fonts

Recipe 2.2. Specifying Font Measurements and Sizes

Recipe 2.3. Gaining More Control over Font Sizes

Recipe 2.4. Enforcing Font Sizes

Recipe 2.5. Centering Text

Recipe 2.6. Setting Text to Be Justified

Recipe 2.7. Removing Space Between Headings and Paragraphs

Recipe 2.8. Setting a Simple Initial Cap

Recipe 2.9. Setting a Larger, Centered Initial Cap

Recipe 2.10. Setting an Initial Cap with Decoration (Imagery)

Recipe 2.11. Creating a Heading with Stylized Text

Recipe 2.12. Creating a Heading with Stylized Text and Borders

Recipe 2.13. Stylizing a Heading with Text and an Image

Recipe 2.14. Creating a Pull Quote with HTML Text

Recipe 2.15. Creating a Pull Quote with Borders

Recipe 2.16. Creating a Pull Quote with Images

Recipe 2.17. Setting the Indent in the First Line of a Paragraph

Recipe 2.18. Setting the Indent of Entire Paragraphs

Recipe 2.19. Creating a Hanging Indent

Recipe 2.20. Styling the First Line of a Paragraph

Recipe 2.21. Styling the First Line of a Paragraph with an Image

Recipe 2.22. Creating a Highlighted Text Effect

Recipe 2.23. Changing Line Spacing

Recipe 2.24. Adding a Graphic Treatment to HTML Text

Recipe 2.25. Placing Shadow Behind Text

Recipe 2.26. Adjusting the Spacing Between Letters and Words

2.0. Introduction

Before CSS, web developers used font tags to set the color, size, and style of text on different parts
of a web page:

 Hello, World!

Although this method was effective for changing the appearance of type, the technique was limiting.
Using multiple font tags across many, many pages resulted in time-consuming updates, inflated the
overall file size of the web document, and increased the likelihood that errors would occur in the
markup. CSS helps to eliminate these design and maintenance problems.

As a quick demonstration, first set content within a p element:

<p>Hello, World!</p>

Then set styles in the head of the document to dictate the look of the paragraph:

<style type="text/css" media="all">
 p {
 color: blue;
 font-size: small;
 font-family: Verdana, Arial, sans-serif;
 }
</style>

Now through this technique, the paragraph's structure and its visual presentation are separated.
Because of this separation, the process of editing and maintaining a web site's design, including
typography, is simplified immensely. Modifications to the style can be done in a style sheet without
having to make changes at the content level.

Web developers not only get greater editing ease over previous techniques, but also typography
control. In addition to discussing setting the color, style, and size of fonts, this chapter also covers
techniques for setting initial caps, creating visually compelling pull quotes, modifying leading, and
more.

Recipe 2.1. Specifying Fonts

Problem

You want to set the typeface of text on a web page.

Solution

Use the font-family property:

body {
 font-family: Georgia, Times, "Times New Roman", serif;
}

Discussion

You can specify the fonts you want the browser to render on a web page by writing a comma-
delimited list for the value of the font-family property. If the browser can't find the first font on the
list, it tries to find the next font, and so on, until it finds a font.

If the font name contains spaces, like Times New Roman, enclose the name with single or double
quotation marks.

At the end of the list of font choices, you should insert a generic font family. CSS offers five font
family values to choose from, listed in Table 2-1.

Table 2-1. CSS font families

Generic font family values Font examples

 serif

Georgia, Times, Times New Roman,
Garamond, and Century Schoolbook

Generic font family values Font examples

 sans-serif

Verdana, Arial, Helvetica, Trebuchet,
and Tahoma

 monospace Courier, MS Courier New, and Prestige

 cursive Lucida Handwriting and Zapf-Chancery

 fantasy

Comic Sans, Whimsey, Critter, and
Cottonwood

All web browsers contain a list of fonts that fall into the five families shown in Table 2-1. If a font is
neither chosen via a CSS rule nor available on the user's computer, the browser uses a font from one
of these font families.

The most problematic generic font value is fantasy because this value is a catchall for any font that
doesn't fall into the other four categories. Designers rarely use this font because they can't know
what symbols will be displayed! Another problematic generic value is cursive because some systems
can't display a cursive font. If a browser can't use a cursive font, it uses another default font in its
place. Because text marked as cursive may not actually be displayed in a cursive font, designers
often avoid this generic font value as well.

If you want to use an unusual font that may not be installed on most peoples' machines, the rule of
thumb is to set the last value for the font-family property to serif, sans-serif, or monospace. This
will maintain at least some legibility for the user viewing the web document.

You don't have to set the same properties for every tag you use. A child element inherits, or has the
same property values of, its parent element if the CSS specification that defines a given property can
be inherited. For example, if you set the font-family property to show a serif font in a paragraph
that contains an em element as a child, that text in the em element is also set in a serif font:

<p style="font-family: serif;">The water fountain
with the broken sign on it is indeed broken.</p>

Inheritance doesn't occur under two circumstances. One is built into the CSS specification and
concerns elements that can generate a box. Elements such as h2 and p are referred to as block-level
elements and can have other properties such as margins, borders, padding, and backgrounds, as you
see in Figure 2-1.

 sans-serif

Verdana, Arial, Helvetica, Trebuchet,
and Tahoma

 monospace Courier, MS Courier New, and Prestige

 cursive Lucida Handwriting and Zapf-Chancery

 fantasy

Comic Sans, Whimsey, Critter, and
Cottonwood

All web browsers contain a list of fonts that fall into the five families shown in Table 2-1. If a font is
neither chosen via a CSS rule nor available on the user's computer, the browser uses a font from one
of these font families.

The most problematic generic font value is fantasy because this value is a catchall for any font that
doesn't fall into the other four categories. Designers rarely use this font because they can't know
what symbols will be displayed! Another problematic generic value is cursive because some systems
can't display a cursive font. If a browser can't use a cursive font, it uses another default font in its
place. Because text marked as cursive may not actually be displayed in a cursive font, designers
often avoid this generic font value as well.

If you want to use an unusual font that may not be installed on most peoples' machines, the rule of
thumb is to set the last value for the font-family property to serif, sans-serif, or monospace. This
will maintain at least some legibility for the user viewing the web document.

You don't have to set the same properties for every tag you use. A child element inherits, or has the
same property values of, its parent element if the CSS specification that defines a given property can
be inherited. For example, if you set the font-family property to show a serif font in a paragraph
that contains an em element as a child, that text in the em element is also set in a serif font:

<p style="font-family: serif;">The water fountain
with the broken sign on it is indeed broken.</p>

Inheritance doesn't occur under two circumstances. One is built into the CSS specification and
concerns elements that can generate a box. Elements such as h2 and p are referred to as block-level
elements and can have other properties such as margins, borders, padding, and backgrounds, as you
see in Figure 2-1.

Figure 2-1. The box model for a block-level element

Because these properties aren't passed to child block-level elements, you don't have to write
additional rules to counter the visual effects that would occur if they were passed. For example, if you
applied a margin of 15% to a body element, that rule would be applied to every h2 and p element that
is a child of that body element. If these properties were inherited, the page would look like Figure 2-2.

Figure 2-2. Hypothetical mock-up of margins and border properties being
inherited

Because certain properties are defined to be inheritable and others aren't, the page actually looks like
the one shown in Figure 2-3 in a modern CSS-compliant browser.

Figure 2-3. How the page looks when block-level elements don't inherit
certain properties

The other circumstance under which inheritance doesn't work is, of course, if your browser doesn't
follow the CSS specification. For example, in Netscape Navigator 4, child elements may not inherit the
font-family and color values set in a body type selector. To work around this problem, explicitly set
the font-family and color values for block-level elements:

body {
 font-family: Georgia, Times, "Times New Roman", serif;
 color: #030;
}
h1, h2, h3, h4, h5, h6, p, td, ul, ol, li, dl, dt, dd, {
 font-family: Georgia, Times, "Times New Roman", serif;
 color: #030;
}

See Also

The CSS 2.1 specification for inheritance, online at
http://www.w3.org/TR/CSS21/cascade.html#inheritance; the CSS 2.1 specification for font-family
values at http://www.w3.org/TR/CSS21/fonts.html#propdef-font-family; more about CSS and
Netscape 4 issues at http://www.mako4css.com/cssfont.htm.

http://www.w3.org/TR/CSS21/cascade.html#inheritance
http://www.w3.org/TR/CSS21/fonts.html#propdef-font-family
http://www.mako4css.com/cssfont.htm

Recipe 2.2. Specifying Font Measurements and Sizes

Problem

You want to set the size of type used on a web page.

Solution

Set the values of fonts by using the font-size property:

p {
 font-size: 0.9em;
}

Discussion

The font-size property can take on different values and use several units. In the solution, em units
were used. There are other units like percentages.

Setting the size of the font with percentages causes the browser to calculate the size of the font based
on the size of the parent element. For example, if the font size for the body is set to 12 pixels and the
font size for p element is set to 125%, the font size for the text in paragraphs is 15 pixels.

You can use percentages, length units, and font-size keywords to set type size.

Length units

Length units fall into two categories: absolute and relative. Absolute length units include the
following:

Inches (in)

Centimeters (cm)

Millimeters (mm)

Points (pt)

Picas (pc)

A point, in terms of the CSS specification, is equal to 1/72nd of an inch and a pica is equal to 12 points.

Relative units

Relative units set the length of a property based on the value of another length property. Relative
length units include the following:

Em

X-height (ex)

Pixels (px)

Em units refer to the default font size set in the preference of the user's browser, while x-height (ex)
refers to the height of the lowercase letter x in the font.

Pixels are the smallest dot that can be made on a computer screen.

Setting the size of fonts to zero or a negative value

The CSS specification doesn't dictate how browser vendors should treat text when the font-size
property is set to a value of zero. Therefore different browsers interpret the value unpredictably.

For example, such text isn't visible in the Firefox or Mozilla browser. In Internet Explorer for
Macintosh and Safari, the text isn't hidden, but, rather, is displayed at the default value of the font
size. The Opera browser displays the text at a smaller, but still legible, size. And Internet Explorer for
Windows sets the type size to a small, illegible, but still visible line of text that appears to be equal to
the size of 0.1em, as you can see in Figure 2-4.

Figure 2-4. Internet Explorer for Windows showing illegible type when the
font size is set to zero

If you want to make text invisible, use the CSS properties visibility or display instead of setting
the size of fonts to zero.

p {
 display: none;
}

A negative value for length, such as -25cm, for the font-size property isn't allowed.

See Also

The CSS 2.1 specification on font-size property at http://www.w3.org/TR/CSS21/fonts.html#font-
size-props.

http://www.w3.org/TR/CSS21/fonts.html#font-

Recipe 2.3. Gaining More Control over Font Sizes

Problem

You want the size of type to be consistent across different browsers and operating systems.

Solution

Set the font-size in the body element to 62.5%:

body {
 font-size: 62.5%;
}

Then set the font-size in the inherited form and table elements to 1em For Internet Explorer for
Windows:

input, select, th, td {
 font-size: 1em;
}

Now your font sizes in your document will be equivalent to 10 pixels for each 1 em unit. For example,
if you add the body declaration in the first part of the solution, then the following rule sets the font size
for a paragraph to 19 pixels:

p {
 font-size: 1.9em // displays text as 19 pixels
}

Discussion

Because browser displays vary due to different operating systems and video settings, setting type in
a fixed (or absolute) value doesn't make much sense. In fact, it's best to avoid absolute
measurements for web documents, unless you're styling documents for fixed output. For example,
when you create a style sheet to print a web document, absolute length units are preferred. For more
on creating style sheets for printing, see Chapter 10.

Using pixels

Although pixels appear to consistently control the size of typography in a web document across most
platforms and browsers, it's not a good idea to use pixels when designing for the following browsers:

Netscape Navigator 4.x, which doesn't display pixel size values correctly

Opera 5 for the Macintosh, which displays pixel lengths smaller than the size set in the style
sheet

If most visitors to your site use browsers other than Netscape Navigator 4.7x and Opera 5 for the
Mac, you can safely use pixels to set the size of your type.

Accessibility and web typography

The main issue in regard to setting type size in pixels isn't one of accurate sizing, but of accessibility.
People with poor vision may want to resize the type to better read the document. However, if you
use pixels to set the type on your web page, people who are using Internet Explorer for Windows will
be unable to resize the type. Because Internet Explorer for Windows is the most commonly used
browser on the planet, the use of pixels to set type size becomes a problem for most users who need
to resize the type in their browsers.

If you do require an absolute size measurement, pixels should be used rather than points, even
though print designers are more accustomed to point measurements. The reason is that Macintosh
and Windows operating systems render point sizes differently, but pixel size typically stays the same.

Even though pixels are technically a relative, unit, designers refer to pixels as
absolute units. A pixel is relative in terms of its actual physical size but it is
absolute in terms of its size ratio on a web page, which is what is important to
a designer.

If accessibility is a concern, switch to em units. In the solution, we set the text in a paragraph to
1.9em units. This value is equivalent to setting the font size to 90% of the default font size set in the
browser's preference.

However, the use of em units raises another concern. This time the problem pertains to usability.
Although you may be able to resize the type in a web page, if you set a font to a size that is smaller
than the default text size of the browser (for example, to 0.7em), Internet Explorer for Windows will
display small, almost illegible lines of text, (see Figure 2-5). So, the lesson here is: be careful with
relative sizes, as it is easy to make text illegible.

Figure 2-5. Almost illegible type set with em units

Using font keywords

This brings up the possibility of another solution: the use of font-size keywords. The CSS 2.1
specification has seven font keywords for absolute sizes that you can use to set type size (see Figure
2-6): xx-small, x-small, small, medium, large, x-large, xx-large.

Figure 2-6. The font-size keywords on display

There are two other font-size keywords for relative measurements: larger and smaller. If a child
element is set to larger, the browser can interpret the value of the parent's font-size value of small
and increase the text inside the child element to medium.

Font-size keywords provide two benefits: they make it easy to enlarge or reduce the size of the text
in most browsers, and the font sizes in browsers never go smaller than 9 pixels, ensuring that the
text is legible. If you do set text to a small size, use a sans-serif font such as Verdana to increase the
chances for legibility.

The main drawback with font-size keywords is that Internet Explorer 45.5 sets the small value as the
default setting instead of the recommended medium setting. Because of this decision, Internet
Explorer actually maps all the font-size keywords to one level lower than other browsers. In other
words, the value for xx-large in IE 45.5 is every other browser's x-large, x-large in IE is large in
another browser, and so on. Another drawback is that in Netscape 4, the smaller sizes are
sometimes illegible because they aren't rendered well by the browser.

The workaround for these drawbacks is to first create a separate style sheet that contains the font-
size keywords for the web document. Then use the @import method for associating a style sheet, as
explained in Recipe 10.1 and as you see here (this step keeps Navigator 4 from rendering illegible
type):

<link href="/_assets/basic.css" media="all"
rel="stylesheet" />
<style type="text/css" media="screen">

 @import url(/_assets/fontsize.css);
</style>

To keep Internet Explorer 5 and 5.5 for Windows from displaying the wrong sizes for the font-size
keywords, use the voice-family workaround for delivering alternative values in Internet Explorer, as
explained in Recipe 11.2 and as you see here:

#content {
 /*
 font-size workaround for WinIE 5:
 1) WinIE 5/5.5 value first:
 */
 font-size: x-small;
 voice-family: "\"}\"";
 voice-family: inherit;
 /*
 2) Then the correct value next 2 times:
 */
font-size: small;
}
html>#content
 font-size: small;
}

Using em units to control type

Although using font keywords allows general control over the size of the typography, designers
typically want more choices than the several that keywords provide. The solution offered in this
recipe, developed by Richard Rutter (http://www.clagnut.com/), delivers this kind of control.

Browsers set the default value of 16 pixels for web typography, which is equal to the medium keyword.
By setting the font-size in the body element to 62.5%, the default value of 16 pixels reduces to 10
pixels:

(16 pixels)62.5% = 10 pixels

As discussed earlier, an em unit is the default font size of the user's browser. With the manipulation
of the default font size on the body element, one em unit is now set to 10 pixels.

1em = 10px

This solution then allows the web developer that desires pixel-sized control over their fonts to have
that control, without the browser limitations manifested in the use of pixels as a value.

For example, if a web developer wants to set the size of heading to 24 pixels while the text in a
paragraph is 15 pixels, the rule sets based on this solution would look like the following:

body {

http://www.clagnut.com/

 font-size: 62.5%;
}
input, select, th, td {
 font-size: 1em;
}
h2 {
 font-size: 2.4em;
}
p {
 font-size: 1.5em;
}

Another of benefit of this solution is the inherit nature of the solution. The use of relative units does
not hinder the usability and accessibility issues that other solutions do.

See Also

The original article by Richard Butter detailing the solution, which is online at
http://www.clagnut.com/about/; the article "CSS Design: Size Matters," written by Todd Fahrner (an
invited member to the W3C CSS Working Group) available at
http://www.alistapart.com/articles/sizematters/; Recipe 12.1 for enlarging text to gain attention; the
CSS 2.1 specification at http://www.w3.org/TR/CSS21/cascade.html#q1 for more on how a browser
determines values; the CSS 2 specification for length units at http://www.w3.org/TR/REC-
CSS2/syndata.html#length-units; the section "Font Size" in Chapter 5 of Cascading Style Sheets:
The Definitive Guide, Second Edition by Eric A. Meyer (O'Reilly Media).

http://www.clagnut.com/about/
http://www.alistapart.com/articles/sizematters/
http://www.w3.org/TR/CSS21/cascade.html#q1
http://www.w3.org/TR/REC-

Recipe 2.4. Enforcing Font Sizes

Problem

You want to override control over font sizes.

Solution

Use the !important rule to override a user's style sheet rules:

p {
 font-size: 12px !important;
}

Discussion

The !important rule consists of an exclamation mark (!) followed immediately by the word important.

In some browsers, a user can have a style sheet set up for browsing the Web that enables him to set
font sizes (and other CSS properties) to his liking. However, as a designer of a web document, you
may want to make sure your designs render in the manner you planned. The !important rule gives
you a little insurance that your designs remain intact. (However, the nature of the medium means
that designs are never precise or "pixel-perfect" from one display to another.)

Although you, as the designer, write the !important CSS rules, the user can also write these rules in
his own style sheet. And in the CSS 2 specification, !important rules that the user writes override any
!important rules the designer writes.

See Also

The CSS 2.1 specification on !important rules at
http://www.w3.org/TR/CSS21/cascade.html#important-rules.

http://www.w3.org/TR/CSS21/cascade.html#important-rules

Recipe 2.5. Centering Text

Problem

You want to center text within a paragraph or a heading.

Solution

Use the text-align property with the value set to center:

h3 {
 text-align: center;
}
p {
 text-align: center;
}

Discussion

The center value for the text-align property is designed to control the alignment of inline content
within a block element.

See Also

The CSS 2.1 specification for text-align property at
http://www.w3.org/TR/CSS21/text.html#alignment-prop; for information about centering various
items in a web page, see Recipe 4.3.

http://www.w3.org/TR/CSS21/text.html#alignment-prop

Recipe 2.6. Setting Text to Be Justified

Problem

You want to align text to be justified on both the left and right sides, as in Figure 2-7.

Figure 2-7. The paragraph justified on both sides

Solution

Use the text-align property:

P {
 width: 600px;
 text-align: justify;
}

Discussion

How well does web-based text justification work? According to the CSS 2.1 specification, it depends
on the algorithms developed by the engineers who made the browser being used to view the web
page. Because there isn't an agreed-upon algorithm for justifying text, the look of the text varies
from browser to browser, even though the browser vendor technically supports justification.

Browser support for the property is good in Internet Explorer 4+ for Windows, Internet Explorer 5 for
Macintosh, Safari, and Opera 3+. In those browsers, justified text looks pleasing to the eye. In other
browsers, justified text may look bad; for example, it may have a lot of whitespace between words.

See Also

The CSS 2.1 specification about the text-align property at http://www.w3.org/TR/REC-
CSS2/text.html#alignment-prop.

http://www.w3.org/TR/REC-

Recipe 2.7. Removing Space Between Headings and
Paragraphs

Problem

You want to reduce the space between a heading and a paragraph.

Solution

Set the margin and padding for both the heading and paragraph to zero:

h2 {
 margin: 0;
 padding: 0;
}
p {
 margin: 0;
 padding: 0;
}

Discussion

Browsers have their own internal style sheet that dictate the default values for HTML elements. These
styles include predetermined values for margin and padding of elements for headings and
paragraphs.

These default values makes it easy for people to read non-styled documents, but are often not
desired by web developers.

To remove the default spacing between the viewport (sometimes referred as the browser window)
and the elements within a web page, set the margin and padding of the body element to a value of
zero.

See Also

Review CSS 2.1 specification's default style sheet for HTML 4 at
http://www.w3.org/TR/CSS21/sample.html.

http://www.w3.org/TR/CSS21/sample.html

Recipe 2.8. Setting a Simple Initial Cap

Problem

You want a paragraph to begin with an initial cap.

Solution

Mark up the paragraph of content with a p element:

<p>Online, activity of exchanging ideas is sped up. The
distribution of messages from the sellin of propaganda to the
giving away of disinformation takes place at a blindingly fast
pace thanks to the state of technology …</p>

Use the pseudo-element :first-letter to stylize the first letter of the paragraph (see Figure 2-8):

p:first-letter {
 font-size: 1.2em;
 background-color: black;
 color: white;
}

Figure 2-8. A simple initial cap

Discussion

The CSS specification offers an easy way to stylize the first letter in a paragraph as a traditional initial
or drop cap: use the :first-letter pseudo-element.

:first-letter is supported in common modern browsers such as Internet Explorer 6 for Windows,
Firefox, Safari, and Opera. For other browsers, a different approach may be needed.

Wrap a span element with a class attribute around the first letter of the first sentence of the first
paragraph:

<p>Online, activity of exchanging ideas is sped
up. The distribution of messages from the selling of propaganda
to the giving away of disinformation takes place at a blindingly
fast pace thanks to the state of technology …</p>

Then set the style for the initial cap:

p .initcap {
 font-size: 1.2em;
 background-color: black;
 color: white;
}

Initial caps, also known as versals, traditionally are enlarged in print to anything from a few points to
three lines of text.

See Also

The CSS 2.1 specification for the :first-letter pseudo-element at
http://www.w3.org/TR/CSS21/selector.html#x52; for more information on initial caps in general,
see http://fonts.lordkyl.net/fonts.php?category=vers.

http://www.w3.org/TR/CSS21/selector.html#x52
http://fonts.lordkyl.net/fonts.php?category=vers

Recipe 2.9. Setting a Larger, Centered Initial Cap

Problem

You want to place a large initial cap in the center of a paragraph.

Solution

Wrap a span element with a class attribute around the first letter of the first sentence of the first
paragraph:

<p>Online, activity of exchanging ideas is sped
up. The distribution of messages from the selling of propaganda
to the giving away of disinformation takes place at a blindingly
fast pace thanks to the state of technology…</p>

In conjunction with styling the initial letter through the span tag with a class selector, create the
decoration that sets the text indent for the paragraph (see Figure 2-9):

p {
 text-indent: 37%;
 line-height: 1em;
}
p span.initcap {
 font-size: 6em;
 line-height: 0.6em;
 font-weight: bold;
}

Figure 2-9. A larger, centered initial cap

Discussion

This solution works due to the interaction of three CSS properties. The first is the text-indent
property, which moves the first line toward the middle of the paragraph. The value is set to 37%,
which is a little bit more than one-third the distance from the left side of the paragraph, (see Figure
2-10), but not enough to "center" the initial cap.

Figure 2-10. The indented text

The next property that helps is the font-size property. Setting the size to 6em makes the font six
times (or 600%) larger than the default size set for fonts in the browser (see Figure 2-11).

Figure 2-11. The initial cap enlarged six times its normal height

Because the font size is six times as large as the rest of the type, the leading on the first line is now
deeper than it is on the remaining lines. To help adjust that, set the line height for the span element
to 0.6em.

Note that this recipe centering the initial cap works, technically, when the character's width is equal to
26% of the paragraph's width. In other words, if the letter for the initial cap or the width of the
paragraph is different for your own work, adjustments to the values in the CSS rules are necessary to
move the initial cap to the center.

See Also

Recipe 2.23 for adjusting leading with line height; the CSS 2.1 specification for text-indent at
http://www.w3.org/TR/CSS21/text.html#propdef-text-indent.

http://www.w3.org/TR/CSS21/text.html#propdef-text-indent

Recipe 2.10. Setting an Initial Cap with Decoration
(Imagery)

Problem

You want to use an image for an initial cap.

Solution

Wrap a span element around the first letter of the first sentence of the first paragraph:

<p>Online, activity of exchanging
ideas is sped up. The distribution of messages from the selling of
propaganda to the giving away of disinformation takes place at a
blindingly fast pace thanks to the state of technology…</p>

Set the contents inside the span to be hidden:

span.initcap {
 display: none;
}

Then set an image to be used as the initial cap in the background of the paragraph (see Figure 2-12):

p {
 line-height: 1em;
 background-image: url(initcap-o.gif);
 background-repeat: no-repeat;
 text-indent: 35px;
 padding-top: 45px;
}

Figure 2-12. An image used as an initial cap

Discussion

The first step of this solution is to create an image for use as the initial cap. Once you have created
the image, make a note of its width and height. In this example, the image of the letter measures
55x58 pixels (see Figure 2-13).

Figure 2-13. The image of the initial cap

Next, hide the first letter of the HTML text by setting the display property to none. Then put the
image in the background of the paragraph, making sure that the image doesn't repeat by setting the
value of background-repeat to no-repeat:

background-image: url(initcap-o.gif);
background-repeat: no-repeat;

With the measurements already known, set the width of the image as the value for text-indent and
the height of the image as the padding for the top of the paragraph (see Figure 2-14):

text-indent: 55px;
padding-top: 58px;

Figure 2-14. Adjusting the space for the initial cap

Then change the text-indent and padding-top values so that the initial cap appears to rest on the
baseline (refer to Figure 2-12).

Note that users with images turned off aren't able to see the initial cap, especially since the solution
doesn't allow for an alt attribute for the image. If you want to use an image but still have an alt
attribute show when a user turns off images, use an image to replace the HTML character:

<p>nline, activity of exchanging
ideas is sped up. The distribution of messages from the selling
of propaganda to the giving away of disinformation takes place at
a blindingly fast pace thanks to the state of technology…</p>

Note also that while the alt attribute is displayed in this solution, the ability to kern the space
between the initial cap and the HTML text is lost. The HTML text begins exactly at the right side of the
image and can't be moved closer to the letter being displayed in the graphic itself.

See Also

Recipe 2.8 for setting a simple initial cap.

Recipe 2.11. Creating a Heading with Stylized Text

Problem

You want to use CSS properties to design a heading that is different from the default. For example,
you want to put the heading in Figure 2-15 into italics, as you see in Figure 2-16.

Figure 2-15. The default rendering of a heading

Figure 2-16. The stylized text of a heading

Solution

First, properly mark up the heading:

<h2>Designing Instant Gratification</h2>
<p>Online, activity of exchanging ideas is sped up. The
distribution of messages from the selling of propaganda to the
giving away of disinformation takes place at a blindingly fast
pace thanks to the state of technology…</p>

Then, use the font shorthand property to easily change the style of the heading:

h2 {
 font: bold italic 2em Georgia, Times, "Times New Roman", serif;
 margin: 0;
 padding: 0;
}
p {
 margin: 0;
 padding: 0;
}

Discussion

As described in Recipe 1.12, shorthand property combines several properties into one. The font
property is just one of these timesavers. One font property can represent the following values:

font-style

font-variant

font-weight

font-size/line-height

font-family

The first three values can be placed in any order, while the others need to be in the order shown.

When you want to include the line-height value, put a forward slash between the font-size value
and the line-height value:

p {
 font: 1em/1.5em Verdana, Arial, sans-serif;
}

When setting the style headings, remember that browsers have their own default values for padding
and margins of paragraphs and heading tags. These default values are generally based on
mathematics, not aesthetics, so don't hesitate to adjust them to further enhance the look of your
web document.

See Also

The CSS 2.1 specification for the font shorthand property at
http://www.w3.org/TR/CSS21/fonts.html#propdef-font.

http://www.w3.org/TR/CSS21/fonts.html#propdef-font

Recipe 2.12. Creating a Heading with Stylized Text and
Borders

Problem

You want to stylize the borders on the top and bottom of a heading (see Figure 2-17).

Figure 2-17. A heading stylized with borders

Solution

Use the border-top and border-bottom properties when setting the style for the heading:

h2 {
 font: bold italic 2em Georgia, Times, "Times New Roman", serif;
 border-bottom: 2px dashed black;
 border-top: 10px solid black;
 margin: 0;
 padding: 0.5em 0 0.5em 0;
 font-size: 1em;
}
p {
 margin: 0;
 padding: 10px 0 0 0;

}

Discussion

In addition to top and bottom borders, a block-level element also can have a border on the left and
right sides via the border-left and border-right properties, respectively. The border-top, border-
bottom, border-left, and border-right properties are shorthand properties that enable developers to
set the width, style, and color of each side of a border.

Without the two shorthand border declarations in the solution, the CSS rule for the heading would be
expanded by four extra declarations:

h2 {
 font: bold italic 2em Georgia, Times, "Times New Roman", serif;
 border-bottom-width: 2px;
 border-bottom-style: dashed;
 border-bottom-color: black;
 border-top-width: 10px;
 border-top-style: solid;
 border-top-color: black;
 margin: 0;
 padding: 0.5em 0 0.5em 0;
 font-size: 1em;
}

Also available is a shorthand property for the top, bottom, left, and right shorthand properties all
together: border. The border property sets the same style for the width, style, and color of the
border on each side of an element:

h2 {
 border: 3px dotted #33333;
}

When setting the borders, make sure to adjust the padding to put enough whitespace between the
borders and the text of the heading. This aids in readability. Without enough whitespace on a heading
element, the text of the heading can appear cramped.

See Also

Recipe 4.4 for more information on styles of borders and the shorthand border property.

Recipe 2.13. Stylizing a Heading with Text and an Image

Problem

You want to place a repeating image at the bottom of a heading, like the grass in Figure 2-18.

Solution

Use the background-image, background-repeat, and background-position properties:

h2 {
 font: bold italic 2em Georgia, Times, "Times New Roman", serif;
 background-image: url(tall_grass.jpg);
 background-repeat: repeat-x;
 background-position: bottom;
 border-bottom: 10px solid #666;
 margin: 10px 0 0 0;
 padding: 0.5em 0 60px 0;
}

Figure 2-18. A background image used with a heading

Discussion

Make a note of the height of the image used for the background. In this example, the height of the
image is 100 pixels (see Figure 2-19).

Figure 2-19. An image of tall grass

Set the background-repeat property to a value of repeat-x, which will cause the image to repeat
horizontally:

background-image: url(tall_grass.jpg);
background-repeat: repeat-x;

Next, set the background-position property to bottom:

background-position: bottom;

The background-position can take up to two values corresponding to the horizontal and vertical
axes. Values for background-position can be a length unit (such as pixels), a percentage, or a
keyword. To position an element on the x-axis, use the keyword values left, center, or right. For
the y-axis, use the keyword values top, center, or bottom.

When the location of the other axis isn't present, the image is placed in the center of that axis, like in
Figure 2-20.

background-position: bottom;

Figure 2-20. The image aligned on the bottom of the y-axis and in the
middle of the x-axis

So, in this solution, the image is placed at the bottom of the y-axis but is repeats along the x-axis.

See Also

Recipe 3.3 for setting a background image in an entire web page.

Recipe 2.14. Creating a Pull Quote with HTML Text

Problem

You want to stylize the text for a pull quote so that it is different from the default. Undifferentiated
quotes aren't obviously from another writer (see Figure 2-21), whereas stylized quotes are (see
Figure 2-22).

Figure 2-21. The default rendering of the text for a pull quote

Figure 2-22. The stylized pull quote

Solution

Use the blockquote element to indicate the pull quote semantically in the markup:

<blockquote>
 <p>Ma quande lingues coalesce, li grammatica del resultant
 lingue es plu simplic e regulari quam ti del coalescent
lingues.</p>
 <div class="source">John Smith at the movies</div>
</blockquote>

With CSS, apply the margin, padding, and color values to the blockquote element:

blockquote {
 margin: 0;
 padding: 0;
 color: #555;
}

Next, set the style for the p and div elements nested in the blockquote element:

blockquote p {
 font: italic 1em Georgia, Times, "Times New Roman", serif;
 font-size: 1em;

 margin: 1.5em 2em 0 1.5em;
 padding: 0;
}
blockquote .source {
 text-align: right;
 font-style: normal;
 margin-right: 2em;
}

Discussion

A pull quote is used in design to grab a reader's attention so that he will stick around and read more.
One easy way to create a pull quote is to change the color of a portion of the main text. Improve on
this by adding contrast: change the generic font family of the pull quote so that it is different from
that of the main text. For example, if the main text of a web document is set in sans-serif, set the
pull quote text to a serif font.

See Also

Recipe 2.15 and Recipe 2.16 for more information on designing pull quotes with CSS.

Recipe 2.15. Creating a Pull Quote with Borders

Problem

You want to stylize a pull quote with borders on the top and bottom, as in Figure 2-23.

Figure 2-23. A stylized pull quote using borders

To put borders on the left and right, instead of the top and bottom, use the border-left and border-
right properties:

border-left: 1em solid #999;
border-right: 1em solid #999;

Solution

Use the blockquote element to mark up the pull quote content:

<blockquote>
 <p>«Ma quande lingues coalesce, li
grammatica del.»</p>
</blockquote>

Next, set the CSS rules for the border and text within the pull quote:

blockquote {
 float: left;
 width: 200px;
 margin: 0 0.7em 0 0;
 padding: 0.7em;
 color: #666;
 background-color: black;
 font-family: Georgia, Times, "Times New Roman", serif;
 font-size: 1.5em;
 font-style: italic;
 border-top: 1em solid #999;
 border-bottom: 1em solid #999;
}
blockquote p {
 margin: 0;
 padding: 0;
 text-align: left;
 line-height: 1.3em;
}

Discussion

Set the float property as well as the width property for the blockquote element. These two CSS
properties allow the main content to wrap around the pull quote:

float: left;
width: 200px;

Contrast the pull quote with the surrounding text by changing the quote's foreground and
background colors:

color: #666;
background-color: black;

Use the border-top and border-bottom properties to match the color of the text in the pull quote:

border-top: 1em solid #999;
border-bottom: 1em solid #999;

See Also

Chapter 9 for several page-layout techniques that take advantage of the float property; Recipe 2.12
for styling headings with borders; Recipes 12.3 and 12.4 for more on designing with contrast.

Recipe 2.16. Creating a Pull Quote with Images

Problem

You want to stylize a pull quote with images on either side, such as the curly braces in Figure 2-24.

Figure 2-24. A pull quote with images

Solution

Use the blockquote element to mark up the pull quote content:

<blockquote>
 <p>Ma quande lingues coalesce, li grammatica del resultant
lingue es plu simplic e regulari quam ti.</p>
</blockquote>

Then set the style for the pull quote, placing one image in the background of the blockquote element
and another in the background of the p:

blockquote {
 background-image: url(bracket_left.gif);
 background-repeat: no-repeat;
 float: left;
 width: 175px;
 margin: 0 0.7em 0 0;
 padding: 10px 0 0 27px;
 font-family: Georgia, Times, "Times New Roman", serif;
 font-size: 1.2em;
 font-style: italic;
 color: black;
}
blockquote p {
 margin: 0;
 padding: 0 22px 10px 0;
 width:150px;
 text-align: justify;
 line-height: 1.3em;
 background-image: url(bracket_right.gif);
 background-repeat: no-repeat;
 background-position: bottom right;
}

Discussion

For this solution, the bracket images for the pull quote come in a pair, with one at the upper-left
corner and the other at the bottom-right corner. Through CSS, you can assign only one background
image per block-level element.

The workaround is to give these images the proper placement; put one image in the background of
the blockquote element and the other in the p element that is a child of the blockquote element:

blockquote {
 background-image: url(bracket_left.gif);
 background-repeat: no-repeat;
 float: left;
 width: 175px;
}
blockquote p {
 background-image: url(bracket_right.gif);
 background-repeat: no-repeat;
 background-position: bottom right;
}

Then adjust the padding, margin, and width of the blockquote and p elements so that you have an
unobstructed view of the images:

blockquote {
 background-image: url(bracket_left.gif);
 background-repeat: no-repeat;
 float: left;
 width: 175px;
 margin: 0 0.7em 0 0;
 padding: 10px 0 0 27px;
}
blockquote p {
 margin: 0;
 padding: 0 22px 10px 0;
 width: 150px;
 background-image: url(bracket_right.gif);
 background-repeat: no-repeat;
 background-position: bottom right;
}

A benefit of this solution is that if the text is resized (see Figure 2-25), the images (brackets)
reposition themselves.

Figure 2-25. The background images stay in the corners as the text is
resized

See Also

Recipe 6.15 for another example of the rubber-band technique. If you stretch a rubber band on both
ends, the rubber band stays intact, just like the presentation of the images stay intact even if you
resize the text.

Recipe 2.17. Setting the Indent in the First Line of a
Paragraph

Problem

You want to place an indent in the first line of each paragraph, turning the paragraphs in Figure 2-26
into the paragraphs in Figure 2-27.

Figure 2-26. The default rendering of the paragraphs

Figure 2-27. The paragraphs with first lines indented

Solution

Use the text-indent property to create the indent:

p {
 text-indent: 2.5em;
 margin: 0 0 0.5em 0;
 padding: 0;
}

Discussion

The text-indent property can take absolute and relative length units as well as percentages. If you
use percentages, the percentage refers to the element's width and not the total width of the page. In
other words, if the indent is set to 35% of a paragraph that is set to a width of 200 pixels, the width of
the indent is 70 pixels.

See Also

The CSS 2.1 specification for more on the text-indent property at
http://www.w3.org/TR/CSS21/text.html#propdef-text-indent.

http://www.w3.org/TR/CSS21/text.html#propdef-text-indent

Recipe 2.18. Setting the Indent of Entire Paragraphs

Problem

You want to indent entire paragraphs, turning Figure 2-28 into Figure 2-29.

Solution

To achieve the desired effect, use class selectors:

p.normal {
 padding: 0;
 margin-left: 0;
 margin-right: 0;
}
p.large {
 margin-left: 33%;
 margin-right: 5%;
}
p.medium {
 margin-left: 15%;
 margin-right: 33%;

}

Figure 2-28. The paragraphs as the browser usually renders them

Figure 2-29. Indented paragraphs

Then place the appropriate attribute in the markup:

<p class="normal">Lorem ipsum dolor sit amet, consectetuer
adipiscing elit, sed diam nonummy nibh euismod tincidunt ut
laoreet dolore magna al iquam erat volutpat.</p>
<p class="large">Epsum factorial non deposit quid pro quo hic
escorol. Olypian quarrels et gorilla congolium sic ad nauseum.
Souvlaki ignitus carborundum e pluribus unum.</p>
<p class="medium ">Li Europan lingues es membres del sam
familie. Lor separat existentie es un myth. Por scientie, musica,
sport etc., li tot Europa usa li sam vocabularium</p>

Discussion

Class selectors pick any HTML element that uses the class attribute. The difference between class
and type selectors is that type selectors pick out every instance of the HTML element. In the following
two CSS rules, the first selector is a type selector that signifies all content marked as h2 be displayed
as red while the following CSS rule, a class selector, sets the padding of an element to 33%:

h2 {
 color: red;
}
.largeIndent {

 padding-left: 33%;
}

Combining both type and class selectors on one element gains greater specificity over the styling of
elements. In the following markup, the third element is set to red and also has padding on the left
set to 33%:

<h2>This is red.</h2>
<h3 class="largeIndent">This has a rather large indent.</h3>
<h2 class="largeIndent">This is both red and indented.</h2>

Another solution that can be used instead of class selectors is to apply the indent, using margins, and
then use adjacent sibling selectors to apply the style to the paragraphs:

p, p+p+p+p {
 padding: 0;
 margin-left: 0;
 margin-right: 0;
}
p+p, p+p+p+p+p {
 margin-left: 33%;
 margin-right: 5%;
}
p+p+p, p+p+p+p+p+p {
 margin-left: 15%;
 margin-right: 33%;
}

This method takes advantage of the adjacent sibling selectors, which are represented by two or more
regular selectors separated by plus sign(s). For example, the H2+p selector stylizes the paragraph
immediately following an H2 element.

For this recipe we want to stylize certain paragraphs in the order in which they appear on-screen. For
example, p+p selects the paragraph element that follows another paragraph. However, when there
are more than two paragraphs, the third paragraph (as well as others after the third paragraph) is
rendered in the same style as the second paragraph. This occurs because the third paragraph is
immediately followed by a paragraph.

To separate the styles from the second and third paragraphs, set up another CSS rule for the third
paragraph that selects three paragraphs that follow each other:

p+p+p {
 margin-left: 15%;
 margin-right: 33%;
}

Then, build off of these CSS rules by grouping the selectors. Instead of writing two CSS rules to
stylize the third and sixth paragraphs, separate the selectors by a comma and a space:

p+p+p, p+p+p+p+p+p {
 margin-left: 15%;
 margin-right: 33%;
}

The main problem with adjacent sibling selectors is that they aren't supported by all versions of
Internet Explorer for Windows. Therefore, these users will not see the paragraphs indented. Adjacent
sibling selectors are supported in Safari, Firefox, Netscape Navigator 6+, and Opera 5+.

See Also

The CSS 2.1 specification about class selectors at
http://www.w3.org/TR/CSS21/selector.html#class-html; the CSS 2.1 specification about adjacent
sibling selectors at http://www.w3.org/TR/CSS21/selector.html#adjacent-selectors.

http://www.w3.org/TR/CSS21/selector.html#class-html
http://www.w3.org/TR/CSS21/selector.html#adjacent-selectors

Recipe 2.19. Creating a Hanging Indent

Problem

You want to create a hanging indent.

Solution

Use a negative value for the text-indent property:

p.hanging {
 text-indent: -5em;
}

Discussion

The typographic treatment of a hanging indent is already commonplace in most browsers in definition
lists. With this simple code, a series of hanging indents (see Figure 2-30) is created without breaking
a proverbial sweat.

Figure 2-30. Definition lists render hanging indents by default

<dl>
 <dt>Hanging Indent</dt>
 <dd>A common typographic effect where the first line of a paragraph is aligned
with the left margin while the proceeding lines are indented. The technique
creates the visual effect where the first line is left hanging over other lines of
text.</dd>
</dl>

When you want a hanging indent on just a paragraph (not a list), the use of definition list markup will
not suffice. The straightforward approach shown in the solution involves the use of the text-indent
property in CSS.

Hanging indents safely

Before putting the text-indent property into a style sheet, make sure the code is implemented the
right way. For example, by putting just the text-indent property into a CSS rule along with some
basic font styling properties, that hanging indent could cause a legibility issue.

In Figure 2-31, note that the hanging indent extends to the left of the viewport. A reader may be able
to determine the words being cropped off through the context of the rest of the paragraph, but that's
simply an unneeded burden to place on them.

In order to work around this situation, check out Figure 2-31; apply a value equal to the indent to the
left margin of the paragraph. The hanging indent then extends over the area already made clear by
the margin ensuring that that text in the hanging indent remains visible.

p.hanging {
 text-indent: -5em;
 margin-left: 5em;
}

Figure 2-31. The hanging indent exits stage left

The paired hanging indent

In addition to having just the first line indent, moving a heading to the left as well results in a paired
hanging indent (see Figure 2-32):

#content p.hanging {
 text-indent: -60px;
 margin: 0 0 0 60px;
 padding: 0;
}
#content h3 {
 text-indent: -60px;
 margin: 0 0 0 60px;
 padding: 0;
}

The HTML markup for this effect is:

<div id="content">
 <h3>Once more time with feeling</h3>
 <p class="hanging">
Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy
nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat…</p>
</div>

Figure 2-32. Double stacking the hanging indent

Or with some slight adjustment, have only the heading become the hanging indent like in Figure 2-
33:

#content p {
 margin: 0;
 padding: 0 0 0 60px;
}
#content h3 {
 text-indent: -60px;
 margin: 0 0 0 60px;
 padding: 0;
}

The refined HTML markup follows:

<div id="content">
 <h3>Once more time with feeling</h3>
 <p>

Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam nonummy
nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat…</p>
</div>

Figure 2-33. Hanging indent headline

See Also

See the CSS 2.1 specification regarding the text-indent property at
http://www.w3.org/TR/CSS21/text.html#propdef-text-indent.

http://www.w3.org/TR/CSS21/text.html#propdef-text-indent

Recipe 2.20. Styling the First Line of a Paragraph

Problem

You want to set the first line of a paragraph in boldface, as in Figure 2-34.

Figure 2-34. The first line set to bold

Solution

Use the :first-line pseudo-element to set the style of the first line:

p:first-line {
 font-weight: bold;
}

Discussion

Just like a class selector, a pseudo-element enables you to manipulate the style of parts of a web
document. Unlike a class selector, however, resizing a browser window or changing the size of the
font can change the area marked by a pseudo-element. In this solution, the amount of text in the
first line can change if the browser is resized (see Figure 2-35).

Figure 2-35. The amount of text changes when the browser is resized

See Also

The CSS 2.1 specification for the :first-line pseudo-element at
http://www.w3.org/TR/CSS21/selector.html#first-line-pseudo.

http://www.w3.org/TR/CSS21/selector.html#first-line-pseudo

Recipe 2.21. Styling the First Line of a Paragraph with an
Image

Problem

You want to stylize the first line of a paragraph and include an image; for example, see Figure 2-36.

Figure 2-36. The first line with a background image

Solution

Use the background-image property within the :first-line pseudo-element:

p:first-line {
 font-size: 2em;
 background-image: url(background.gif);
}

Discussion

Through the :first-line pseudo-elements, styles can only be applied to the first line of text of an
element and not the width of the element itself.

In addition to the background-image property, the :first-line pseudo-element also supports the
following properties allowing for greater design control:

font

color

background

word-spacing

letter-spacing

text-decoration

vertical-align

text-transform

text-shadow

line-height

clear

See Also

The CSS 2.1 specification for the :first-line pseudo-element at
http://www.w3.org/TR/CSS21/selector.html#first-line-pseudo.

http://www.w3.org/TR/CSS21/selector.html#first-line-pseudo

Recipe 2.22. Creating a Highlighted Text Effect

Problem

You want to highlight a portion of the text in a paragraph, as in Figure 2-37.

Figure 2-37. Highlighted text

Solution

Use the strong element to mark up the portions of text you want to highlight:

<p>The distribution of messages from the selling of propaganda
to the giving away of disinformation takes place at a blindingly
fast pace thanks to the state of technology… This
change in how fast information flows revolutionizes the
culture.</p>

Then set the CSS rule to set the highlighted:

strong {
 font-weight: normal;
 background-color: yellow;
}

Discussion

Although the strong element is used in this solution, you also can use the em element instead of the
strong element to mark highlighted text. The HTML 4.01 specification states that em should be used
for marking emphasized text, while strong "indicates stronger emphasis."

Once the text has been marked, set the highlighter color with the background-color property.
Because some browsers apply a bold weight to text marked as strong, set the font-weight to normal.
When using the em element, be sure to set the font-style to normal as this keeps browsers from
setting the type in italic, as shown in the next code listing.

em {
 font-style: normal;
 background-color: #ff00ff;
}

See Also

The HTML specification for strong and em at http://www.w3.org/TR/html401/struct/text.html#edef-
STRONG.

http://www.w3.org/TR/html401/struct/text.html#edef-

Recipe 2.23. Changing Line Spacing

Problem

You want to leave more or less space between lines. Figure 2-38 shows the browser default, and
Figure 2-39 shows paragraphs with half again as much space.

Figure 2-38. The default leading of a paragraph

Figure 2-39. Increased leading between the lines of text

Solution

Use a line-height value:

p {
 line-height: 1.5em;
}

Discussion

As the line-height value increases, the distance between the lines of text grows. As the value
decreases, the distance between the lines of text shrinks and eventually the lines overlap each other.
Designers notice a similarity to line height and leading.

A line-height value can be a number and a unit such as points, just a number, or a number and a
percentage symbol. If the line-height value is just a number, that value is used as percentage or a
scale unit for the element itself as well as for child elements.

Negative values aren't allowed for line-height.

The following example effectively sets the font-size to 12px and the line-height to 14.4px (10px *
1.2) * 1.2px = 14.4px):

body {
 font-size: 10px;

}
p {
 font-size: 1.2em;
 line-height: 1.2;
}

You also can set the line-height property with the shorthand font property when paired with a font-
size value. The following line transforms any text in a p element to have a font size of 1em, to have a
line-height of 1.5em, and to display in a sans-serif typeface:

p {
 font: 1em/1.5em sans-serif;
}

See Also

The CSS 2.1 specification on the line-height property at
http://www.w3.org/TR/CSS21/visudet.html#propdef-line-height; Recipe 2.10 for more information
on the font property.

http://www.w3.org/TR/CSS21/visudet.html#propdef-line-height

Recipe 2.24. Adding a Graphic Treatment to HTML Text

Problem

You want to apply a repeating graphic treatment on top of HTML text, such as worn edges or the
stripes in Figure 2-40 .

Figure 2-40. A striped image repeats over HTML text

Solution

Place a span element between after the opening tag of a heading element, but before the HTML text:

<h2>Designing Instant Gratification</h2>

Next, use a version of the Gilder/Levin image replacement technique (see Recipe 3.9) to place a GIF
file with seamless pattern over the HTML text:

h2 {
 font:3em/1em Times, serif;
 font-weight: bold;
 margin:0;

 position: relative;
 overflow: hidden;
 float: left;
}
h2 span {
 position: absolute;
 width: 100%;
 height: 5em;
 background: url(striped.gif);
}
p {
 clear: left;
}

Discussion

The text within the heading element is set to float to the left. This technique is to allow the
background image, placed in the span element, to be placed over the HTML text through absolute
positioning.

Normally, when floating an element the heading would move to the left and have the content wrap
on the right side. However, the clear property placed on the paragraph stops this from happening.

The height property is set to 5em and overflow property is set to a value of hidden to keep the
background image from spilling out of the heading element and onto the other portions of the web
document.

See Also

The Gilder/Levin image replacement technique page at http://www.mezzoblue.com/tests/revised-
image-replacement/#gilderlevin ; read more about the technique at
http://www.khmerang.com/index.php?p=95 .

http://www.khmerang.com/index.php?p=95

Recipe 2.25. Placing Shadow Behind Text

Problem

You want to place a shadow behind the text in a heading, as shown in Figure 2-41.

Figure 2-41. Instant drop shadows on HTML text

Solution

Use the text-shadow property to set the color and placement of the shadow:

h1 {
 font-size: 2.5em;
 font-family: Myriad, Helvetica, Arial, sans-serif;
 width: 66.6%;
 text-shadow: yellow .15em .15em .15em;
 margin: 0 0 0.1em 0;
}

Discussion

The first value of the text-shadow property sets the color. The first length unit value, .15em, moves
the shadow on the x-axis relative to the position of the HTML text. The next value moves the shadow
on the y-axis. The last value is the blur radius of the shadow. The larger the value the more disperse
the shadow.

The only known browser that supports the text-shadow property is Safari.

Imagery used for this effect should be able to tile seamlessly, but also provide
enough contrast so that the text is still legible.

See Also

Read more about the CSS 2.1 specification for text-shadow at http://www.w3.org/TR/REC-
CSS2/text.html#text-shadow-props.

http://www.w3.org/TR/REC-

Recipe 2.26. Adjusting the Spacing Between Letters and
Words

Problem

You want to adjust the space between letters and words within HTML text as in Figure 2-42 .

Figure 2-42. Default spacing between letters and words in HTML text

Solution

To adjust the space between the letters use the letter-spacing property (see Figure 2-43):

h2 {
 font: bold italic 2em "Helvetica Nue", serif;
 margin: 0;

 padding: 0;
 letter-spacing: -0.1em;
}

Figure 2-43. The adjusted letter spacing of the text in the heading

To adjust the space between words, use the word-spacing property (see Figure 2-44):

h2 {
 font: bold italic 2em "Helvetica Nue", serif;
 margin: 0;
 padding: 0;
 word-spacing: 0.33em;
}

Figure 2-44. Words in the heading are spaced farther apart

Discussion

One of the main strengths of CSS is how the technology handles web typography. Web designers and
developers had to use a puzzling array of nested font, b elements, and SPGs to create compelling
text treatments. An effect like adjusting the space between two letters or separating whole words
within a paragraph is something that CSS can render with ease.

The adjustment of the space between letters to create a better aesthetic is an old tradition in graphic
design. There are two terms that describe how the change in the space is adjusted onto text: kerning
and tracking.

Kerning is a design term used to describe the changing of the space between a pair of letters to
create a better visual effect. An example of kerning is adjusting just the space between an uppercase
letter T and a lowercase letter i . Tracking is defined as adjusting the space between letters in a large
amount of text, not just between a pair of letters.

The word-spacing property is supported in Firefox, Internet Explorer for Windows 6+, Internet
Explorer for the Macintosh 4+, Netscape Navigator 6+, Opera 3.5+, and Safari.

For best practices, the unit values of letter-spacing and word-spacing should be set in relative unit
sizes instead of absolute length units. Since users can redefine the font sizes of their browsers, a fixed
width value of 5 points originally intended for font size at 12 pixels will still be 5 points even if the user
resizes the text to a larger value. In other words, the 5 point spacing between letters is barely going
to be noticeable when the font size is set to 72 pixels or larger. With relative units like em, however, a

value of 1.5em for the letter-spacing property scales along with the resizing of the text.

Also, it's best to employ the text effects so that the text being styled is still legible. If communication
is important to you or your client, a subtle effect is better than creating esoteric text elements. If the
text becomes illegible, you may annoy the very people you are trying to reach.

See Also

Read the CSS 2.1 specification for letter-spacing at
http://www.w3.org/TR/CSS2/text.html#propdef-letter-spacing and word-spacing at
http://www.w3.org/TR/CSS2/text.html#propdef-word-spacing ; learn more about kerning and
tracking at http://desktoppub.about.com/cs/typespacing/a/kerningtracking.htm .

http://www.w3.org/TR/CSS2/text.html#propdef-letter-spacing
http://www.w3.org/TR/CSS2/text.html#propdef-word-spacing

Chapter 3. Images

Section 3.0. Introduction

Recipe 3.1. Placing a Border Around an Image

Recipe 3.2. Removing Borders Set on Images by Default in Some Browsers

Recipe 3.3. Setting a Background Image

Recipe 3.4. Creating a Line of Background Images

Recipe 3.5. Placing a Background Image on a Web Page

Recipe 3.6. Using Multiple Background Images on One Selector

Recipe 3.7. Creating a Stationary Background Image

Recipe 3.8. Overlaying HTML Text on an Image

Recipe 3.9. Replacing HTML Text with an Image

Recipe 3.10. Replacing HTML Text with Flash Text

Recipe 3.11. Using Multiple PNGs with Transparency

Recipe 3.12. Building a Panoramic Image Presentation

Recipe 3.13. Combining Different Image Formats

Recipe 3.14. Rounding Corners with Fixed-Width Columns

Recipe 3.15. Rounding Corners (Sliding Doors Technique)

Recipe 3.16. Rounding Corners (Mountaintop Technique)

Recipe 3.17. Rounding Corners with JavaScript

Recipe 3.18. Placing a Drop Shadow Behind an Image

Recipe 3.19. Placing a Smooth Drop Shadow Behind an Image

Recipe 3.20. Making Images Scalable

Recipe 3.21. Making Word Balloons

Recipe 3.22. Hindering People from Stealing Your Images

Recipe 3.23. Inserting Reflections on Images Automatically

Recipe 3.24. Using Image Sprites

3.0. Introduction

When Marc Andreessen, founder of Netscape, allowed for the inline display of images back in the
early 1990s, it helped kick start not only a global discussion, but added enticing visuals. Shared
documents no longer were doomed to be text-laden academic papers allowing designers the initial
foothold to begin the field of web design.

In this chapter, many recipes regarding CSS interactions with images are discussed. Recipes include
dealing with borders, manipulating background images, rounding corners on boxes, replacing HTML
text with images and much more.

Recipe 3.1. Placing a Border Around an Image

Problem

You want to place a border around an image.

Solution

Use the border property on the img element (see Figure 3-1):

img {
 width: 300px;
 border: 6px double #666;
 background: #fff;
 padding: 6px;
}

Figure 3-1. A border is placed around an image

Discussion

If you make an image a link, there's a possibility of creating a more complex presentation with the
border property. Using the :hover pseudo-class, the style of the border can be changed when a user
rolls over the image (see Figure 3-2):

img {
 width: 30px;
 border: 4px double #666;
 background: #fff;
 padding: 4px;
}
a:hover img {
 border-style: solid;
 background: #999;
}

Figure 3-2. Combining background color with border styles creates an
interesting rollover effect

While the border acts like a frame around the image, the border style and color can be changed when
a user rolls over the image. The padding of 4 pixels set in the img declaration block allows for color
change inside this frame as well. So, a simple move of rolling over an image creates a rich visual with
only two declaration blocks.

See Also

Recipe 3.2 for removing borders from images.

Recipe 3.2. Removing Borders Set on Images by Default
in Some Browsers

Problem

You want to remove borders on images that are clickable like the one in Figure 3-3.

Figure 3-3. An image with a border

Solution

Set the border for images to zero (see Figure 3-4):

a img {
 border: 0;
}

Figure 3-4. Now all images that are links will no longer have a border

Discussion

Before CSS, web developers would set the border of images through the border attribute of the img
element:

With the advent of CSS, developers separate the presentation from the content and that includes the
border property. While including the border attribute in the HTML element is no longer required, this
method can lead to a complication.

See Also

Recipe 3.1 for applying a border on an image.

Recipe 3.3. Setting a Background Image

Problem

You want a background image that doesn't repeat.

Solution

Use the background-image and background-repeat properties to control the display of an image (see
Figure 3-5):

body {
 background-image: url(bkgd.jpg);
 background-repeat: no-repeat;
}

Figure 3-5. The background image displayed once in the upper-left corner

Discussion

You can place text and other inline images over a background image to create a sense of depth on a
web page. Also, you can provide a framing device for the web page by tiling a background image
along the sides of a web browser.

See Also

Recipe 3.4 for repeating background images in a line either horizontally or vertically.

Recipe 3.4. Creating a Line of Background Images

Problem

You want a series of background images to repeat vertically or horizontally.

Solution

To tile the background image horizontally, or along the x -axis, use the following CSS rule (see Figure
3-6):

body {
 background-image: url(bkgd.jpg);
 background-repeat: repeat-x;
}

Figure 3-6. The background image tiled horizontally

To have the background image repeat along the vertical axis, use the repeat-y value for background-
repeat .

See Also

Recipe 3.5 for placing a background image at a specific location in a web page.

Recipe 3.5. Placing a Background Image on a Web Page

You want to position a background image in a web page.

Solution

Use the background-position property to set the location of the background image. To place an
image that starts 75 pixels to the right of and 150 pixels below the upper-left corner of the viewport
(see Figure 3-7), use the following CSS rule:

body {
 background-image: url(bkgd.jpg);
 background-repeat: no-repeat;
 background-position: 75px 150px;
}

Figure 3-7. The background placed precisely 75 pixels from the right and
150 pixels from the upper-left corner of browser's viewport

Discussion

The background-position property contains two values separated by a space. The first value of the
pair sets the origin point along the x -axis, while the second value sets the point on the y -axis. If

only one value is given, that value is used for the horizontal position and the vertical position is set to
50% .

The solution used pixel units to determine the placement of the background image; however, you
also can use percentages. A value of 50% for background-position means that the browser places the
image in the dead center of the viewport, like the one in Figure 3-8 , while the values 0% and 100%
place the image in the upper-left and lower-right corners, respectively.

Figure 3-8. The background image centered in the browser window

Along with percentages, you can use the values top , center , and bottom for the y -axis and left ,
center , and right for the x -axis. Using combinations of these values, you can place the background
image at the eight points around the edges of the viewport (in the corners and in between), as well
as in the middle of the viewport. For example, to recreate the value of 50% in Figure 3-8 , you can use
this CSS rule instead:

body {
 background-image: url(bkgd.jpg);
 background-repeat: no-repeat;
 background-position: center;
}

To place a background image in the lower-right corner (see Figure 3-9), you can use the following
CSS rule:

body {
 background-image: url(bkgd.jpg);
 background-repeat: no-repeat;
 background-position: bottom right;
}

Figure 3-9. The background image placed in the lower-right corner

You also can use the background-position and background-repeat properties for background images
that tile but aren't chained to the sides of the viewport. For example, the following CSS snippet
creates a web page design such as the one in Figure 3-10 :

body {
 background-image: url(montage.jpg);
 background-repeat: repeat-x;
 background-position: 55px 100px;
}
h1 {
 font-size: 75px;
 font-family: Verdana, Helvetica, Arial, sans-serif;
 text-align: center;
 margin: 0;
 padding: 0 0 125px 0;
}
p {
 line-height: 1.5em;
 font-family: Verdana, Helvetica, Arial, sans-serif;
 margin: 0 15%;
}

Figure 3-10. A repeating montage created using the CSS properties
background-repeat and background-position

Netscape Navigator 4 doesn't support background-position , and it's impossible
to work around this limitation through CSS.

See Also

Recipe 3.7 for setting a non-scrolling image; CSS 2.1 specification for background-position at
http://www.w3.org/TR/CSS21/colors.html#propdef-background-position .

http://www.w3.org/TR/CSS21/colors.html#propdef-background-position

Recipe 3.6. Using Multiple Background Images on One
Selector

Problem

You want to place more than one background image within one CSS selector.

Solution

As of this writing, Safari for Macintosh has implemented the CSS 3 specification for layering multiple
background images in one selector.

In CSS 3, the shorthand background property can accept multiple sets of background image
information as long as commas separate them (see Figure 3-11):

h2 {
 padding-top: 72px; /* enough padding for the images */
 text-align: center;
 background: url(plane.gif) center no-repeat,
 url(mail.gif) top center no-repeat,
 url(printer.gif) 40% 24px no-repeat,
 url(gift.gif) 60% 24px no-repeat;
}

Figure 3-11. Individual icons are placed as background images in the
heading

Discussion

Like most shorthand properties, the shorthand code for multiple backgrounds can be split out into
separate CSS declaration blocks.

h2 {
 padding-top: 72px; /* enough padding for the images */
 text-align: center;
 background: url(plane.gif), url(mail.gif), url(printer.gif), url(gift.gif);
 background-position: center, top center, 40% 24px, 60% 24px;
 background-repeat: no-repeat, no-repeat, no-repeat, no-repeat;
}

Since all the backgrounds in the CSS rule do not repeat, one no-repeat value can be placed in the
code and applied to all background images:

h2 {
 padding-top: 72px; /* enough padding for the images */
 text-align: center;
 background: url(plane.gif), url(mail.gif), url(printer.gif), url(gift.gif);
 background-position: center, top center, 40% 24px, 60% 24px;
 background-repeat: no-repeat;
}

This reduction of similar values can be applied to all CSS background-related properties making sure
that it's desired that the background images share the same value.

For the time being, introducing new elements and applying background images to these new
elements is the only way to achieve the technique of multiple images across all modern browsers. For
more information and examples on these techniques, see Recipes 3.15 and 3.16 that produce
rounded corners with additional markup.

See Also

For more information on the CSS 3 specification for layering multiple images, see
http://www.w3.org/TR/2005/WD-css3-background-20050216/#layering .

http://www.w3.org/TR/2005/WD-css3-background-20050216/#layering

Recipe 3.7. Creating a Stationary Background Image

Problem

You want a background image to remain in the browser window, even as the user scrolls down a web
page.

Solution

Use the background-attachment property set with a fixed value, like so:

body {
 background-image: url(bkgd.jpg);
 background-repeat: no-repeat;
 background-attachment: fixed;
}

Discussion

By using this technique, you are locking down the background image. So, even if a visitor scrolls, the
image remains where you placed it originally. Another acceptable value for background-attachment is
scroll , which is the default value. So, even if you don't specify scroll , the background image
moves up with the rest of the document as the visitor scrolls down.

For example, imagine that you want to post a photo of a recent trip on your web page, and you want
the photo positioned on the left side of the page and your text on the right. As the reader scrolls down
to read more about the trip, the photo from the trip stays in place (see Figure 3-12). Here's the
code:

body {
 background-image: url(bkgd2.jpg);
 background-repeat: no-repeat;
 background-attachment: fixed;
 background-position: -125px 75px;
 margin: 75px 75px 0 375px;
}
h1, h2, h3 {
 padding-top: 0;
 margin-top: 0;
 text-transform: uppercase;
}
p {
 text-align: justify;
}

Figure 3-12. The photo staying in place as the visitor scrolls

To take this further, you can lock down the image on block-level elements other than body . For
example, try the heading elements when designing a review for a movie or concert. The following
CSS rule can create the interesting surfing experience:

h1, h2, h3 {
 font-size: 200%;
 background-image: url(bkgd2.jpg);
 background-repeat: no-repeat;
 background-attachment: fixed;
 background-position: center;
 padding: 1.5em;
 text-align: center;
 color: white;

}

Because of the padding and light color on the headings, there is enough room to see the background
image "through" the elements as well as to read the headlines. As the visitor scrolls the web page
reading the review, she will see the rest of the image (see Figure 3-13).

Figure 3-13. The photo coming through the headings instead of the body
element

At press time, only Mozilla, Firefox, Safari, and Netscape 6+ supported the application of background
images as fixed attachments to block-level elements like the header elements used in this solution.
Internet Explorer 5.x and 6 for Windows repeat the background image in each header element.

See Also

Recipe 3.5 to position a background image; Recipe 11.4 for a hack to fix Internet Explorer for
Windows' lack of support for background-fixed ; the CSS 2.1 specification for background-attachment
at http://www.w3.org/TR/CSS21/colors.html#propdef-background-attachment .

Recipe 3.8. Overlaying HTML Text on an Image

Problem

You want to position HTML text over an image.

Solution

Set the image within the background, and then position and style the HTML text accordingly.

First, wrap the text around a div element with an id attribute (see Figure 3-14):

<div id="frame">
 <div id="banner">
 <h1>White House Confidential

Classified Lawn Care Secrets</h1>
 </div><!-- end #banner -->
 <p>...</p>
</div><!-- end #frame -->

Figure 3-14. The photo coming through the headings instead of the body
element

Insert the image through the background-image property making sure to set the width and height:

#banner {
 width: 550px;
 height: 561px;
 overflow: hidden;
 background-image: url(whitehouse.jpg);
 background-position: 0;
 background-repeat: no-repeat;
}

Then adjust the type to the desired style (see Figure 3-15):

h1 {
 margin: 0;
 padding: 0;
 font-family: Verdana, Arial, sans-serif;
 margin-top: 325px;

 margin-left: 25px;

 /* room around text */
 padding-left: 25px;
 padding-bottom: 25px;

 /* bring in the translucent background image */
 background-image: url(white-banner.png);
 background-position: bottom;
 background-repeat: no-repeat;
}
h1 span {
 font-size: .8em;
}

Figure 3-15. The photo coming through the headings instead of the body
element

Discussion

Instead of bringing in an image and having it be inline or be part of the content of a web page when
its purpose is strictly decorative, use the background-image property to display the image. This
method allows the content of the page to have more integrity, but still maintain the intended visual.

See Also

Recipe 3.9 for replacing HTML text with an image.

Recipe 3.9. Replacing HTML Text with an Image

Problem

You want to replace HTML text like a heading as shown in Figure 3-16 with an image that contains
visually rich imagery or typography.

Figure 3-16. The default rendering of the heading text

Solution

Use the Gilder/Levin image replacement technique.

First, introduce a span element before the HTML text:

<h1>

 Replacement Text Is Here
</h1>

Then set the width and height for the replacement image on the H1 selector as well as setting the
positioning of the element to relative :

h1 {
 width: 216px;
 height: 72px;
 position: relative:
}

Next, by setting the positioning of the span element to absolute and adjusting the width and height
of the span inside the h1 element, the span element now overlaps the HTML text. The last step is to
bring in the replacement image through the background property (see Figure 3-17):

h1 span {
 background: url(replacementimage.jpg) no-repeat;
 position: absolute;
 width: 100%;
 height: 100%;
}

Figure 3-17. The HTML text is now replaced by a graphic

Discussion

There are several image replacement techniques in web development and all seem to have their own
benefits and drawbacks.

Origin of the image replacement method

Todd Fahrner is one of the persons credited with the original concept of image replacement
technique.

The markup for the Farhner Image Replacement (FIR) technique also introduces a nonsemantic span
element, except that the span element is wrapped around the content:

<h1>

 Replacement Text Is Here

</h1>

Then the CSS rules bring in the replacement image through the selector for the H1 element while
hiding the text:

h1 {
 background: url(replacementimage.jpg) no-repeat;
 width: 216px;
 height: 72px;
}
h1 span {
 display: none;
}

Problem with the FIR method

The easy implementation of the FIR technique made it quite popular in web development. However,
screen readers used by people with disabilities would often skip over the reading of the HTML text
because the span element set the text to be hidden from view. Thus important text would be lost to
those members of a site's audience.

Phark image replacement method

Both the FIR and the Gilder/Levin image replacement methods use an unsemantic span tag to
achieve their results. Another image replacement technique created by Mike Rundle from phark.net
removes the need for the span tag.

First, adjust the HTML by removing the span tag:

<h1>
 Replacement Text Is Here
</h1>

For the CSS rules, use a negative value for the text-indent property instead of using the display
property to hide the text:

h1 {
 text-indent: -9000em;
 background: url(replacementimage.jpg) no-repeat;
 width: 216px;
 height: 72px;
}

Like the other methods, the Phark image replacement method works very well. Its main drawback is
that the HTML text does not appear if a site visitor has turned off images from being viewed in their
browser.

CSS 3 approach to image replacement

The CSS 3 specification has an easy method for image replacement, if browsers were to implement it.
For example, to replace text within an H1 element all the CSS that would be required would be one
declaration block:

h1 {
 content: url(logo.gif);
}

The specification also makes no limits on what kind of multimedia can be supported with the content
property. In theory, a web developer could place a QuickTime movie instead of an animated GIF:

h1 {
 content: url(logo.mov);
}

However, at the time of this writing, support for the CSS 3 specification is not in modern browsers.
Also, the CSS 3 specification is still under development.

See Also

Levin Alexander's web page about the Gilder/Levin image replacement technique at
http://levin.grundeis.net/files/20030809/alternatefir.html ; information on the inserting content with
CSS 3 at http://www.w3.org/TR/css3-content/#inserting3 .

http://levin.grundeis.net/files/20030809/alternatefir.html

Recipe 3.10. Replacing HTML Text with Flash Text

Problem

You want to replace HTML text with more typography choices, but without the hassle of having to
manually update static images (as discussed in Recipe 3.9).

Solution

Use the Scalable Inman Flash Replacement (sIFR) technique.

Download the JavaScript and other components used for the technique at
http://www.mikeindustries.com/sifr/ .

Using Flash, open the sifr.fla file. Click on the white canvas area (it will appear as though there isn't
anything present) to bring up the Properties palette (shown in Figure 3-18).

Figure 3-18. Bring up the Flash Properties palette

Select the font you wish to use on your web site design (see Figure 3-19).

Figure 3-19. Pick the typeface from the Flash Properties palette

http://www.mikeindustries.com/sifr/

Next, export the file and name the exported file with the name of the typeface. For example, the Bell
Gothic typeface would be named bellgothic.swf .

The sFIR files include a set of CSS rules that need to be copied and pasted onto the site's CSS files.
Be sure to include these files. To bring up the typeface, adjust the CSS rules to include, for example:

h1 {
 font-family: "Bell Gothic", Arial, Verdana, sans-serif;
 margin: 0 0 .3em 0;
 padding: 0 0 .3em 0;
 border-bottom: 2px solid #666;
 text-align: left;
 font-size: 2em;
}

Finally, upload the files to view results like the headline in Figure 3-20 .

Figure 3-20. The headline appears in Bell Gothic

Discussion

In 2004, web developer Shaun Inman created the Inman Flash Replacement method. While
lightweight and direct in scope, it accomplished the job of replacing typical HTML text with Flash-
based text.

Another web developer Mike Davidson used Inman's technique as the basis for a more robust system
that allowed for text resizing and multiline text.

The sFIR method is used primarily for replacing heading text and not text-based links. Although it's
possible to replace the text-based links, it's not recommended as users won't be able to right- or
middle-click the links to open the pages in a new browser.

Since the technique makes heavy use of JavaScript and Flash, visitors to your site may notice that
the browser is taking longer than usual to render the sFIR text.

Another issue is that although most modern browsers like Internet Explorer for Windows, Opera 8+,
Safari, and Firefox support Flash transparency, the ability for the browsers to render background
images through the transparency is a CPU intensive. Users on slower machines may notice a sluggish
surfing experience.

See Also

More information Shaun Inman's sFIR at http://www.shauninman.com/plete/2004/04/ifr-revisited-
and-revised .

Recipe 3.11. Using Multiple PNGs with Transparency

Problem

You want to use multiple PNGs with alpha transparency.

Solution

Use Drew McLellan's updated Sleight script for triggering alpha transparency in Internet Explorer
5.56.

You can write the code into a separate JavaScript file or download the code from McLellan's site at
http://allinthehead.com/code/samples/bgsleight.js:

if (navigator.platform == "Win32" &&
 navigator.appName == "Microsoft Internet Explorer" &&
 window.attachEvent) {
 window.attachEvent("onload", fnLoadPngs);
}

function fnLoadPngs() {
 var rslt = navigator.appVersion.match(/MSIE (\d+\.\d+)/, '');
 var itsAllGood = (rslt != null && Number(rslt[1]) >= 5.5);
 for (var i = document.all.length - 1, obj = null;
 (obj = document.all[i]); i--) {
 if (itsAllGood &&
 obj.currentStyle.backgroundImage.match(/\.png/i) != null) {
 this.fnFixPng(obj);
 obj.attachEvent("onpropertychange",
 this.fnPropertyChanged);
 }
 }
}

function fnPropertyChanged() {
 if (window.event.propertyName == "style.backgroundImage") {
 var el = window.event.srcElement;
 if (!el.currentStyle.backgroundImage.match(/x\.gif/i)) {
 var bg = el.currentStyle.backgroundImage;
 var src = bg.substring(5,bg.length-2);
 el.filters.item(0).src = src;
 el.style.backgroundImage = "url(x.gif)";
 }

http://allinthehead.com/code/samples/bgsleight.js

 }
}

function fnFixPng(obj) {
 var bg = obj.currentStyle.backgroundImage;
 var src = bg.substring(5,bg.length-2);
 obj.style.filter =
"progid:DXImageTransform.Microsoft.AlphaImageLoader(src='"
 + src + "', sizingMethod='scale')";
 obj.style.backgroundImage = "url(x.gif)";
}

Attach the JavaScript file to the web page by placing the following code in between the head
elements:

<script src="/_assets/js/bgsleight.js" type="text/javascript"></script>

Make sure to reference the JavaScript correctly. In this example, the JavaScript
is located in the js folder that is placed in the _assets folder.

Be sure to upload single pixel transparent GIF (listed as x.gif in the script) to the web server and
update the location reference the file location in the script for your needs.

Discussion

Support for alpha transparency in modern browsers is almost commonplace. Browsers that include
native support for PNGs include Netscape Navigator 6+, Opera, Safari, and Internet Explorer for
Windows 7. However, this list does not include the currently popular Internet Explorer for Windows 6.

To work around this, Aaron Boodman created a piece of JavaScript that used Microsoft's proprietary
filter property to activate Internet Explorer for Windows 5.56 support for inline PNGs with alpha
transparency, without interfering with the other browsers that support PNGs natively.

Drew McLellan built off of Boodman's work and modified the JavaScript used in the solution to make
the script work not only for inline images, but also for background images (see
http://allinthehead.com/retro/69/sleight-of-hand).

As a page is loaded, McLellan's JavaScript is executed. The script goes through the HTML markup
looking for img elements that point to images with the png extension.

Once it finds such an img code, the script dynamically rewrites the HTML on the fly. The first part of
the revision is to replace the PNG image with a single pixel GIF that is transparent.

Next, the PNG file is set in Internet Explorer's filter property in order to trigger the alpha
transparency in that browser. Since the only way this can be done, the PNG gets set in the

http://allinthehead.com/retro/69/sleight-of-hand

background.

Thus, the PNG is shown in the background behind the transparent GIF.

When you code the page, be sure to set the width and height of the PNG image
in the CSS with the width and height properties. Otherwise, the script will not
execute properly.

See Also

The original posting of the Sleight script at http://www.youngpup.net/2001/sleight; more information
about Microsoft's filter property at
http://msdn.microsoft.com/workshop/author/filter/reference/filters/alpha.asp.

http://www.youngpup.net/2001/sleight
http://msdn.microsoft.com/workshop/author/filter/reference/filters/alpha.asp

Recipe 3.12. Building a Panoramic Image Presentation

Problem

You want to create the appearance that the width of an image to increases or decreases as a user
resizes his browser window, like the one in Figure 3-21.

Figure 3-21. Browser window increased in size to show more of the
panoramic image

Solution

Place an image element that refers to a panoramic image into the background of a block-level
element (see Figure 3-22).

<h1>Visit France City!</h1>
 <div></div>
<h2>The quaint and charming little destination in France</h2>

Figure 3-22. Panoramic photo placed on a web page

Position the image element in the upper-right corner of the block-level element, and then hide the
image by setting the display to none:

div {

 background-image: url(frenchtown.jpg);
 background-repeat: no-repeat;
 background-position: top right;
 height: 300px;
 border: 1px solid black;
 max-width: 714px;
}
div img {
 display: none;
}

When the image is placed as a background image, it will be resized based on the size of the browser
window.

Discussion

To create a panoramic presentation, you need a wide photograph. You then need to position the
image element in the upper-right corner of the block-level element so that the image will grow or
shrink depending on the size of the browser window. The use of max-width property constrains the
width of the div element from expanding beyond the width of the image itself.

In this solution, the same image is used in both the HTML and CSS. The rationale behind this
approach is to make sure the image (or content) displays, even if the user agent rendering the page
doesn't understand CSS.

See Also

http://www.creighton.edu/~jaypl/oldpage/panhow.html for more information on how to create
panoramic pictures; the CSS 2.1 specification for max-width property at
http://www.w3.org/TR/CSS21/visudet.html#propdef-max-width.

http://www.creighton.edu/~jaypl/oldpage/panhow.html
http://www.w3.org/TR/CSS21/visudet.html#propdef-max-width

Recipe 3.13. Combining Different Image Formats

Problem

You want to combine two different image formats into one presentation. For example, you want to
combine GIF and JPEG images into one graphical presentation (see Figure 3-23).

Figure 3-23. Two different image formats combined into one

Solution

Place an image inside a block-level element such as a div or H2 :

<h2><img src="headline_text.gif" alt="Headline image set in
GIF format" /></h2>

Use an image-editing program, to separate the elements of the image into separate file formats (see
Figure 3-24).

Figure 3-24. Two images that will be used to create one image

Name one of the images the same as the image referred to in the src attribute for the img element.
Place the other image in the background of the block-level element to merge both images into one
presentation:

h2 {
 background-image: url(headline_bkgd.jpg);
 background-repeat: none;
 width: 587px;
 height: 113px;
}

Discussion

The two prevailing image formats on the Web are GIF and JPEG. Both compress images in different
ways. Typically, images with flat areas of color compress better in the GIF format, while JPEG images
are better for photos or images that contain fine color gradations.

In the example shown in Figures 3-23 and 3-24 , the file size of the two separate images added
together is actually less than the file size of the final, combined image. This occurs because part of
the image would work against the compression scheme of one file format. If you saved the
presentation as one GIF, the photographic portions of the image would create an inflated file size.
And if you saved the image as a JPEG, the areas of flat color would inflate the size. By splitting up the
images into different formats that leverage their respective compression schemes, you reduce file
sizes overall.

Although the method in this solution uses background properties in CSS, you can accomplish the
same effect by positioning block elements that contain inline images. For example, in Figure 3-25 ,
you can see that the line art of the boat was overlaid on the photograph of the two children.

To make this method work, wrap the image elements in block-level div elements, as shown in the
following HTML code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>CSS Cookbook</title>
 </head>
 <body>
 <img src="kids.jpg" width="360" height="304" alt="kids
playing" />
 <div id="boat"><img src="boat.gif" width="207" height="123"
 alt="boat" /></div>
 <div id="water"><img src="landscape.gif" width="315"
height="323"
 alt="landscape" /></div>
 </body>
</html>

Figure 3-25. Intricate combination of different image formats

Then, through CSS, set the position of the elements to absolute . By setting the position to
absolute , you take the elements out of the normal flow of the web page, and instead assign values
to the left , top , and z-index properties to determine their new placements:

#boat {

 position: absolute;
 width: 207px;
 height: 123px;
 z-index: 2;
 left: 264px;
 top: 0;
}
#water {
 position: absolute;
 width: 315px;
 height: 323px;
 z-index: 1;
 left: 359px;
 top: -20px;
}

The left and top properties indicate the placement of the images within their nearest positioned
ancestor element or the initial containing block. In this case, it's the initial containing block to the div
elements.

Furthermore, the body element's margin has a value of 0 , meaning that the origin point is in the
upper-left corner of the browser's viewport:

body {
 margin: 0;
}

Even though this method works, if the web document is later modified, exact positioning becomes a
design liability. For example, adding a simple headline above the images in the HTML results in the
anomaly you see in Figure 3-26 :

<h2>Kids Welcome New Boat!</h2>
 <img src="kids.jpg" width="360" height="304" alt="kids
playing" />
 <div id="boat"><img src="boat.gif" width="207" height="123"
 alt="boat" /></div>
 <div id="water"><img src="landscape.gif" width="315" height="323"
alt="landscape" /></div>

Figure 3-26. Presentation breaks with the addition of a heading

Because the image of the children has not been positioned with absolute , it moves down the flow of
the document. The other image stays in place because it has been positioned within the initial
containing block and is still in the same place it was before the headline was added.

By using the background-positioning method within block-level elements, you can create a self-
containing module. Then, when content is added to and removed from the web page, the
presentation remains whole, as seen in Figure 3-27 and shown in the following code:

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <title>CSS Cookbook</title>
<style type="text/css">
body {
 margin: 5% 10% 0 10%;
}
#content {
 background-image: url(landscape.gif);
 background-repeat: no-repeat;
 background-position: bottom right;
 height: 400px;
 width: 674px;
}
h2 {

 margin: 0;
 padding: 0;
 background-image: url(kids.jpg);
 background-repeat: no-repeat;
 background-position: bottom left;
 height: 400px;
 width: 600px;
}
#boat {
 background-image: url(boat.gif);
 background-repeat: no-repeat;
 display: block;
 width: 207px;
 height: 123px;
 margin-left: 250px;
 margin-top: 75px;
}
</style>
 </head>
 <body>
 <div id="content">
 <h2>Kids Welcome New Boat!

 </h2>
 </div>
 </body>
</html>

Figure 3-27. A different approach to combining images

See Also

Recipe 12.2 on creating unexpected incongruity between two elements; Recipe 12.3 on combining
unlike elements.

Recipe 3.14. Rounding Corners with Fixed-Width
Columns

Problem

You want to create rounded corners on columns that set with fixed-width columns.

Solution

Create two background images with one image containing the top corners and the other image
containing the bottom corners (Figure 3-28).

Wrap a div element around the content that's within the column:

<div id="box">
 <h2>
 I Met a Girl I’d Like to Know Better
 </h2>
 <p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam
nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat volutpat.
Ut wisi enim ad minim veniam.</p>
</div>

Figure 3-28. One image for the top corners and another for the bottom
corners

Place the bottom background image in the div element (see Figure 3-29):

#box {
 width: 214px;
 background-image: url(bkgd_bottom.gif);
 background-position: bottom;
 background-repeat: no-repeat;
}

Figure 3-29. A background image is placed at the bottom of the column

Then place the top background image in the h2 element (see Figure 3-30):

h2 {
 background-image: url(bkgd_top.gif);
 backgroung-position: left top;
 background-repeat: no-repeat;
 padding: 7px 7px 3px 7px;
 margin: 0;
 border-bottom: 1px solid #999;
 font-size: 1.3em;
 font-weight: normal;
 color: #eee;
}

Figure 3-30. A background image is placed at the top of the column

Discussion

To compensate for different text sizes like the ones in Figure 3-31, make the background images
extend for longer than just the space specified in the design. For example, the images used in this
solution are 600 pixels tall, however it's not unheard of to have the lengths of the graphics to be more
than 1,000 pixels to insure a page's design maintains its integrity with extreme font sizing.

Figure 3-31. As the text enlarges, the design keeps its integrity

By fixing the width of the column to a length unit like pixels, it's possible to place an image containing
two corners in one image. With column widths that change when the user resizes the browser,
however, the fixed-width solution falls apart.

See Also

Recipes 3.15, 3.16, and 3.17 for rounding corners with flexible widths.

Recipe 3.15. Rounding Corners (Sliding Doors
Technique)

Problem

You want to round corners in columns that have flexible widths.

Solution

Use the Sliding Doors technique that was made popular by web designer Douglas Bowman.

Create the design of the rounded corners (see Figure 3-32).

Figure 3-32. The basic design for the column

Then create separate graphics for the four corners like the ones in Figure 3-33 .

Wrap the content that is in the column with additional div elements:

<div id="box">
 <div id="innerhead">
 <h2>
 I Met a Girl I’d Like to Know Better
 </h2>
 </div>
 <div id="content">
 <div id="innercontent">
 <p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed
diam nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam
erat volutpat. Ut wisi enim ad minim veniam.</p>
 </div>
 </div>
</div>

Figure 3-33. The column design split up into four graphics

Then place the background images through CSS (see Figure 3-34). The top-left corner goes in the
"inner-head" id selector, the top-right corner slides into the preexisting h2 element, the "content" id
selector gets the bottom-left selector, and the "inner-content" id selector houses the bottom-right
graphic.

#innerhead {
 background-image: url(corner_tl.gif);
 background-position: top left;
background-repeat: no-repeat;
}
h2 {
 background-image: url(corner_tr.gif);
 background-position: top right;
 background-repeat: no-repeat;
 margin: 0;
 padding: 7px;
 border-bottom: 1px solid #999;
 font-size: 1.3em;
 font-weight: normal;
 color: #eee;
}
#content {
 background-image: url(corner_bl.gif);
 background-position: bottom left;
 background-repeat: no-repeat;
}
#innercontent {
 background-image: url(corner_br.gif);
 background-position: bottom right;
 background-repeat: no-repeat;
}

Figure 3-34. Rounded corners appear on the column

Discussion

The div and h2 elements act as hooks to add background images into all four corners of the column.
As the browser resizes, the background images stay in their respective corners (see Figure 3-35).

Figure 3-35. Rounded corners are maintained even though the column
expands

To make sure that the design integrity is maintained as the column expands, further digital image
editing is required. Manipulate one side, either left or right, and expand the two graphics both
vertically and horizontally. For example, the top-left and bottom-left graphics (see Figures 3-36 and
3-37) were expanded for this solution.

Figure 3-36. The bottom-right graphic is 600 pixels wide and over 250
pixels tall

Figure 3-37. The bottom-left graphic is 600 pixels wide and 600 pixels tall

See Also

Recipe 3.16 for a simple solution to rounding corners of a column.

Recipe 3.16. Rounding Corners (Mountaintop Technique)

Problem

You want to create one set of graphics for rounded graphics while being able to display many
background colors within the column.

Solution

Use the Mountaintop technique that was popularized by web designer Dan Cederholm.

Create a small graphic that will act as basis for the rounded corners (see Figure 3-38).

Figure 3-38. The top-left corner graphic

Note that the black color in Figure 3-38 will be set to transparent when the
image is exported as a GIF.

Export the image as a GIF with the filename of corner_tl.gif.

Then rotate the image 90 degrees (see Figure 3-39) and export as a GIF image, naming it
corner_tr.gif. Repeat the last two steps to create the bottom corners, corner_br.gif and corner_bl.gif.

Figure 3-39. Rotating the image 90 degrees

Add additional div elements around the column content:

<div id="box">
 <div id="head_outer">
 <div id="head_inner">
 <h2>
 I Met a Girl I’d Like to Know Better

 </h2>
 </div>
 </div>
 <p>Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam
nonummy nibh euismod tincidunt ut laoreet dolore magna aliquam erat
volutpat. Ut wisi enim ad minim veniam.</p>
</div>

Then place the four corner graphics within the id and p selectors (see Figure 3-40):

div#box {
 width: 55%;
 background-color: #999999;
 background-image: url(corner_bl.gif);
 background-repeat: no-repeat;
 background-position: bottom left;
}
#head_outer {
 background-image: url(corner_tl.gif);
 background-repeat: no-repeat;
}
#head_inner {
 background-image: url(corner_tr.gif);
 background-repeat: no-repeat;
 background-position: top right;
}
div p {
 margin: 0;
 padding: 7px;
 font-family: Verdana, Arial, Helvetica, sans-serif;
 font-size: 1.1em;
 background-image: url(corner_br.gif);
 background-position: bottom right;
 background-repeat: no-repeat;
 color: #333333;
 font-size: .8em;
 line-height: 1.5;
}

Figure 3-40. Mountaintop corner example

Discussion

The beauty of the mountaintop technique rests in its simplicity. Four small graphics are made with
low file-sizes thanks to the GIF compression algorithms that are placed in the background of four
block-level elements.

Also, there isn't the need to expand a couple of images to make sure the design integrity is
maintained because the column resizes such as in the Solution for Recipe 3.15.

Plus, the Mountaintop technique allows for quickly changing the column's background color without
revising the corner graphics as you see in Figure 3-41. However, the corner graphics will need to be
changed if the background color of the web page or column's parent element changes.

Figure 3-41. The column maintains integrity even with the color change
and resizing

See Also

Recipe 3.17 for automatically adding corners on columns without custom-made images.

Recipe 3.17. Rounding Corners with JavaScript

Problem

You want to include rounded corners on elements without the hassle of introducing new markup or
images manually.

Solution

Use Nifty Corners Cube code by Alessandro Fulciniti.

First down the components of the Nifty Corners Cube solution, which include one CSS and one
JavaScript file, at http://www.html.it/articoli/niftycube/NiftyCube.zip.

Upload both the JavaScript and CSS files associated with the Nifty Corners Cube solution. Then link
the JavaScript to the web page by using the src attribute in the script element:

<script type="text/javascript" src="/_assets/js/niftycube.js"></script>

You won't link directly to the CSS file because the JavaScript file does that.
Also, make sure to reference the JavaScript correctly. In this example, the
JavaScript is located in the js folder that is placed in the _assets folder.

Next modify the markup that will have rounded corners (see Figure 3-42) by giving it a unique value
in the id attribute:

<div id="box">
<h2>Marquee selectus</h2>
<p>...<p>
</div>

Figure 3-42. Default rendering of the column

http://www.html.it/articoli/niftycube/NiftyCube.zip

Next, make a separate JavaScript call to tell the browser which element gets the rounded corners
and then define the size of the rounded corners (see Figure 3-43):

<script type="text/javascript" src="niftycube.js"></script>
<script type="text/javascript">
 window.onload=function() {
 Nifty("div#box","big");
}
</script>

Figure 3-43. The rounded corners appear

Discussion

Since it's almost a completely worry-free method for creating rounded corners, the Nifty Corners
Cube solution has been called more of a tool than a technique.

Different colors

Colors are detected automatically. The JavaScript automatically changes the colors to match the
background color within the element as well as its parent element (usually the body of the web
page). This means a developer only has to be worried with setting which element gets the curves and
the size.

Different sizes

There are four keywords sizes written in to the Nifty Corners Cube JavaScript: none, small, normal

(default), and big. Small is equal to the value of 2 pixels, normal is 5 pixels and big is 10 pixels.

For example, to adjust the corners so that they are small, the JavaScript call would look like:

<script type="text/javascript">
 window.onload=function() {
 Nifty("div#box","small");
}
</script>

Different elements

Nifty Corners Cube accepts numerous selectors making it easier to dictate which elements should
receive rounded corners; the selectors are listed in Table 3-1.

Table 3-1. Selectors understood by Nifty Corners Cube JavaScript

Selector Example

Type
"div"
"h3"

id
"div#box"
"h3#main"

class
"div.box"
"h3.box"

Descendent with id
"div#box h3"
"h3#main div"

Descendent with class
"div.box h3"
"h3.main div"

Grouping
"div, h3"
"div, h3.main div, p"

For example, to apply rounded corners to multiple elements, the JavaScript function may look like
this:

<script type="text/javascript">
 window.onload=function() {

 Nifty("div, h3.main div, p","small");
}
</script>

Specific corners

The Nifty Corners Cube also makes allowances for developers who may not want to apply rounded
edges to all the corners. Table 3-2 lists the keywords that allow developers to single out which corner
or corners to round.

Table 3-2. Keywords understood by Nifty Corners Cube JavaScript

Keyword Meaning

 tl Top-left corner

 tr Top-right corner

 bl Bottom-left corner

 br Bottom-right corner

 top Upper corners

 bottom Lower corners

 left Left corners

 right Right corners

 all (default) All the corners

For example, to apply rounded corners to just the top corners of multiple elements within a web
page, the JavaScript function may look like the following:

<script type="text/javascript">
 window.onload=function() {
 Nifty("div, h3.main div, p","small top");
}
</script>

See Also

For more information about Nifty Corners Cube at http://www.html.it/articoli/niftycube/index.html.

http://www.html.it/articoli/niftycube/index.html

Recipe 3.18. Placing a Drop Shadow Behind an Image

Problem

You want to place a drop shadow behind an image like the one in Figure 3-44.

Figure 3-44. A drop shadow is placed behind the image

Solution

Place the image element (see Figure 3-45) inside a div element with the class attribute set to
imgholder:

Figure 3-45. The image placed above the content

<div class="imgholder">

 </div>

To the div element, set the image alignment to the left so that text wraps around the image. Next
set the background image of the drop shadow in two background properties. In the first background
property use an image with an alpha transparency like PNG:

div.imgholder {

 float:left;
 background: url(dropshadow.png) no-repeat bottom
 right !important;
 background: url(dropshadow.gif) no-repeat bottom right;
 margin: 10px 7px 0 10px !important;
 margin: 10px 0 0 5px;
}

As for the image itself, set the margin-right and margin-bottom properties to define how much of the
drop shadow image shows through. Also set a border property as well as padding to create a more
dramatic effect:

div.imgholder img {
 display: block;
 position: relative;
 background-color: #fff;
 border: 1px solid #666;
 margin: -3px 5px 5px -3px;
 padding: 2px;
}

Discussion

The first step is to create a drop shadow image in your image-editing program like Adobe Photoshop.
It's best to create a background image sized 600x600 pixels or larger (see Figure 3-46). With the
image that large, this technique can accommodate almost any image used in a web page.

Figure 3-46. The drop shadow can be seen on the right and bottom sides

The first image background property uses the !important rule to display the PNG file as a drop
shadow. By using the PNG, the background color or image of the web document can be changed
without affecting the drop shadow. For the other browsers that don't support this rule, like Internet
Explorer for Windows, go to the next background property and use the GIF image as the drop
shadow instead.

The margin-left and margin-bottom properties in the image element control the distance the drop
shadow image appears out from the image. If your drop shadow distance on the right or left side is
larger than five pixels (like the one used in this solution), change the value accordingly.

See Also

A List Apart article on creating CSS Drop Shadows,
http://www.alistapart.com/articles/cssdropshadows/; Recipe 3.19 for creating smooth drop shadows
behind an image.

http://www.alistapart.com/articles/cssdropshadows/

Recipe 3.19. Placing a Smooth Drop Shadow Behind an
Image

Problem

You want to have soft edges for an image's drop shadow.

Solution

Adding another unsemantic div wrapper around another background image allows for the creation of
soft edges on the drop shadows.

First, create a new image in Adobe Photoshop that will act as a mask to soften the drop shadow
image used in Recipe 3.18. Using the same dimensions as the drop shadow, delete the entire image
content in the file leaving only a transparent background. Then using the gradient tool, pick the
gradient option that will create a fade from Background Color to Transparent (see Figure 3-47).

Figure 3-47. Selecting the right gradient fade

Making sure that the background color in the toolbar will match the background color used in the web
site, create a six pixel fade from the left edge of the canvas towards the right side of the image.

Then repeat the creation of the fade, but this time create the fade from the top of the canvas to the
bottom.

Next, save the image as a PNG-24 image with transparency (see Figure 3-48):

Figure 3-48. Saving the image as a PNG with alpha transparency

With the images set up, adjust the HTML to include a new div wrapper:

<div class="imgholder">
 <div>

 </div>
</div>

Adjusting the CSS first image wrapper, float the image to the left, apply the drop shadow, and set
some spacing between the image and the HTML content:

div.imgholder {
 float: left;
 background: url(dropshadow.gif) no-repeat bottom right;
 margin: 0 7px 7px 0;
}

Next, bring in the mask that will soften the drop shadow background as well as make room to display
both the drop shadow and the mask (see Figure 3-49):

Figure 3-49. The smooth edges are now on the drop shadows

div.imgholder div {
 background: url(shadowmask.png) no-repeat;
 padding: 0 6px 6px 0;
}

Finally, add some padding and a border to the image (see Figure 3-50):

Figure 3-50. The image with drop shadow is styled a bit more

div.imgholder img {
 display: block;
 position: relative;
 background-color: #fff;
 border: 1px solid #666;
 padding: 2px;
}

Discussion

The hard part of this solution is creating a PNG with alpha transparency that works with the drop
shadow and matches the background of the web site.

Since Internet Explorer for Windows 5.56 does not natively support PNGs with alpha transparency,
use the Solution from Recipe 3.11.

See Also

Recipe 3.18 for creating a simple drop shadow on an image.

Recipe 3.20. Making Images Scalable

Problem

You want images to resize as the browser window resizes.

Solution

Define the width of images to percentages (see Figures 3-51 and 3-52):

img {
 border: 1px solid #cecece;
 width: 60%;
 float: left;
 margin-right: .7em;
 margin-bottom: .5em;
}

Modern browsers will scale the height of the images in the relative proportion to the width, so
defining both the width and height is not necessary.

Figure 3-51. The image scaled down

Figure 3-52. The image at a larger size since the browser window is larger

Discussion

When building fluid or flexible layouts, the HTML text set in columns is set to expand and retract as
the browser resizes. However, images with dimensions that are commonly set in pixels retain their
size.

To make sure all the page elements are resized in proportion to each other in flexible layouts,
developers may set the width and height to percentages.

When images are set to percentage-based dimensions, browsers may stretch images beyond the
point where they retain image integrity. For example, artifacts that are nearly invisible in a JPEG start
to show or the pixilation of a GIF image becomes apparent when they are expanded.

To keep the images from expanding beyond a defined width, use the max-width property with length
units (see Figure 3-53):

img {
 border: 1px solid #cecece;
 width: 60%;
 max-width: 300px;
 float: left;
 margin-right: .7em;
 margin-bottom: .5em;
}

Figure 3-53. The image expands only to the value of the max-width
property

See Also

Recipe 9.4 and Recipe 9.6 .

Recipe 3.21. Making Word Balloons

Problem

You want to create a word-balloon effect like the one in Figure 3-54.

Figure 3-54. The word balloon

Solution

Mark up the content for a word balloon, and include both the text to appear in the word balloon as
well as the name of the person cited as the source (see Figure 3-55):

<blockquote>
 <p>

 Be bold, baby!

 </p>
 <cite>
 Christopher Schmitt

 </cite>
</blockquote>

Figure 3-55. Structured content for a word balloon

Form the word balloon using the CSS border and background properties. Then align the cited text so
that it falls underneath the balloon tail image:

blockquote {
 width: 250px;
}
blockquote p {
 background: url(balloontip.gif);
 background-repeat: no-repeat;
 background-position: bottom;
 padding-bottom: 28px;
}
blockquote p span {
 display: block;
 padding: 0.25em 0.25em 0.5em 0.5em;
 border: 1pt solid black;
 border-bottom-width: 0;
 font-size: 3em;
 font-family: "Comic Sans MS", Verdana, Helvetica, sans-serif;
 line-height: 0.9em;
}
cite {
 text-align: right;
 display: block;
 width: 250px;
}

Discussion

To create a word balloon you need at least one image, which includes a balloon tail and one border of
the balloon (see Figure 3-56). The image is available for download at this book's web site, mentioned
in the Preface. Create the other three sides of the word balloon by setting the border in the span tag.

Figure 3-56. The word balloon tail

For a comic book look and feel, be sure to set the font family to Comic Sans MS, a free font from
Microsoft:

font-family: "Comic Sans MS", Verdana, Helvetica, sans-serif;

If you have a computer running the Windows OS, the font may be installed on your computer
already. Although this is a common font, some users may not have it installed on their systems. If
that is the case, the browser will look for the next font, in the order listed in the value, until it finds a
font available to render the page.

You can create a more whimsical presentation using the word-balloon technique by adjusting the
markup and CSS slightly. First, place a span element with a class attribute set to no around the name
in the cite element:

<blockquote>
 <p>

 Be bold, baby!

 </p>
 <cite>

 Christopher Schmitt

 </cite>
</blockquote>

Next, in CSS, add the following rule, which keeps the text from being displayed in the browser:

.no {
 display: none;
}

Place a photograph in the cite element through the background-position property to finish the effect
(see Figure 3-57):

cite {
 margin: 0;
 padding: 0;
 background-image: url(baby.jpg);
 background-position: 0 0;
 height: 386px;
 text-align: right;
 display: block;
 width: 250px;
}

Figure 3-57. Word balloon coming from an image

See Also

Background information about Comic Sans MS at
http://www.microsoft.com/typography/web/fonts/comicsns/default.htm; propaganda on why not to
use Comic Sans MS at http://www.bancomicsans.com.

http://www.microsoft.com/typography/web/fonts/comicsns/default.htm;
http://www.bancomicsans.com

Recipe 3.22. Hindering People from Stealing Your Images

Problem

You want to make it difficult for people to copy your images from your web page.

Solution

Using a single pixel transparent GIF as a place marker, wrap a div element around the img tag:

<div class="slide">

</div>

Then bring in the image into the web page by using the background-property and making sure to set
the width and height of the image in both the div and img elements:

div.slide {
 width: 500px;
 height: 468px;
 background-image: url(face.jpg);
 background-repeat: no-repeat;
}
.slide img {
 width: 500px;
 height: 468px;
}

Discussion

Having the single-pixel GIF as a placeholder is not necessary for the intended image to be displayed;
in fact, you can do away with the img element altogether and still have the source image be
displayed:

<div class="slide">
</div>

The purpose of the transparent image is to be used as a feint. The users will think they are
downloading the image they desire, when in fact they are downloading an innocuous image.

Microsoft's Image toolbar

In Internet Explorer 6 for Windows, Microsoft includes a feature called the Image toolbar.

With this feature, a visitor to your site can easily email, download, or print your image with merely a
click of the mouse. To keep the image toolbar from appearing on your web pages, add the following
meta tags between the head elements:

<meta http-equiv="imagetoolbar" content="no" />
<meta http-equiv="imagetoolbar" content="false" / >

It's a slight a pain for developers to add code to their web page to keep someone else's product from
stealing your images, but there is not much a developer can do since Microsoft produces the most
popular browser.

No images are safe

Even with the solution and Image toolbar workaround implemented in your web page, no image is
safe from being copied from your web site to a user's computer.

First, images are automatically stored by the visitor's browser and kept in temporary folder for quick
reloading of web pages. These cached images are routinely deleted after a fixed amount of time or
whenever a user clears their browser's cache.

However, the browser often renames these images automatically and most visitors don't even know
where the cached files are located on their computer.

The most direct route a user can take is to simply take a screen capture of their desktop with your
image displayed on a browser. With the screen capture taken, they can take the screenshot to their
favorite digital imaging software application and crop the image.

Although these hindering methods may block out some visitors, they are not solutions that will work
all the time.

See Also

More information on the Image toolbar at
http://www.microsoft.com/windows/ie/ie6/using/howto/customizing/imgtoolbar.mspx#EXE; a
JavaScript-powered technique to make it harder for people to steal images at
http://javascript.internet.com/page-details/no-right-click.html.

http://www.microsoft.com/windows/ie/ie6/using/howto/customizing/imgtoolbar.mspx#EXE
http://javascript.internet.com/page-details/no-right-click.html

Recipe 3.23. Inserting Reflections on Images
Automatically

Problem

You want to place a reflection of a header graphic automatically.

Solution

Download the JavaScript that powers the effect at http://cow.neondragon.net/stuff/reflection/ .

After uploading it to the web server, link the JavaScript file into the web page between the head
element:

<script type="text/javascript" src="scripts/reflection.js">
</script>

Insert the image you want to apply the reflection to into the web page (see Figure 3-58):

Figure 3-58. The header graphic is displayed

To activate the reflection (see Figure 3-59), insert a class attribute with the value of reflect :

Figure 3-59. A reflection of the header graphic appears

Discussion

As a page is rendered in the site visitor's browser, the JavaScript reflection goes through the image
elements of your web page looking for class attributes with the reflect value. Then the script uses
the source of the image you want to reflect and creates a new image.

If the script finds any image elements that meet those criteria, the script copies the image, flips it and
then applies the default values of 50% for both the opacity and height to this new reflected image.

Customization features

The reflection script allows two kinds of customizations: the height of the reflection and the opacity of
the reflection.

To adjust the height of the reflection, add a new value, rheightXX , to the image's class attribute
where XX is the percentage of the image's height should be duplicated in the reflection (see Figure 3-
60):

<img src="christinaleaf.png" alt="christina m. huggins"
class="reflect rheight99" />

Figure 3-60. The reflection almost equals the height of the source image

As the percentage value increase the size of the reflection increases. For example, the value of
rheight99 means that 99% of the original image's height will be used in the reflection.

To adjust the opacity of the reflection, include a new value, ropacityXX , to the image's class
attribute where XX is the percentage of the transparency of the reflected image (see Figure 3-61):

<img src="christinaleaf.png" alt="christina m. huggins"
class="reflect ropacity33" />

Figure 3-61. The reflection becomes more obscure

As the opacity value decreases the less visible the reflection becomes. For example, the value of
ropacity33 means that 33% of the original image's opacity will be used in the reflection.

Both the height and opacity features can be used at the same time to create more subtle effects like
the ones in Figure 3-62 :

 <img src="christinaleaf.png" alt="christina m. huggins"
class="reflect rheight99 ropacity33" />

Figure 3-62. Both custom values for opacity and height are set

Known browser issues

Internet Explorer for Windows 5.5+, Firefox 1.5+, Opera 9+, and Safari support the reflection script.
Animated images do not work with the reflection script except for Internet Explorer for Windows.
Also, scaled images appear distorted in Internet Explorer for Windows.

See Also

The blog post announcing the reflection effect at http://cow.neondragon.net/index.php/1025-
Reflectionjs-Version-15 .

Recipe 3.24. Using Image Sprites

Problem

You want to save on bandwidth by placing all or most icons onto one image.

Solution

Place the most-often-used images into one master image, making sure that there is plenty of space
around each image (see Figure 3-63).

Figure 3-63. Icons are placed into one image

Create enough space for each icon's own space. For this example, one icon will be placed next to a
heading (see Figure 3-64):

h2 {
 margin: 0;
 font-family: Verdana, Arial, Helvetica, sans-serif;
 padding: 0 0 0 24px;
 font-weight: normal;
}

Using id selectors, bring in each icon to the appropriate heading by using background-position
property (see Figure 3-65):

h2#warning {
 background-image: url(sprite-source.gif);
 background-repeat: no-repeat;
 background-position: -16px 24px;
}
h2#questions {
 background-image: url(sprite-source.gif);
 background-repeat: no-repeat;
 background-position: -16px 60px;
}
h2#comment {
 background-image: url(sprite-source.gif);
 background-repeat: no-repeat;
 background-position: -16px 96px;
}
h2#document {
 background-image: url(sprite-source.gif);
 background-repeat: no-repeat;
 background-position: -16px 132px;
}
h2#print {
 background-image: url(sprite-source.gif);
 background-repeat: no-repeat;
 background-position: -16px 168px;
}
h2#search {
 background-image: url(sprite-source.gif);
 background-repeat: no-repeat;
 background-position: -16px 204px;
}

Figure 3-64. Making space in the design for the icons

Figure 3-65. The icons are displayed from one single image

Discussion

In much the same way developers use the same image over and over again to make use of a
browser's ability to cache an image, using sprites helps push that idea a bit further. By placing the
separate graphic elements onto one image, web developers can reduce the amount of server calls to
their machines from a browser. This solution would be more apt for sites receiving medium-to-large
amounts of traffic.

See Also

The CSS Sprites article at http://www.alistapart.com/articles/sprites.

http://www.alistapart.com/articles/sprites

Chapter 4. Page Elements
Section 4.0. Introduction

Recipe 4.1. Eliminating Page Margins

Recipe 4.2. Coloring the Scrollbar

Recipe 4.3. Techniques for Centering Elements on a Web Page

Recipe 4.4. Placing a Page Border

Recipe 4.5. Customizing a Horizontal Rule

Recipe 4.6. Adding a Lightbox

4.0. Introduction

From the most obvious design choices, such as selecting the appropriate typography and imagery, to
those that are often overlooked, such as adjusting leading and color schemes, every decision affects
the how the message in a web site is conveyed to the visitor.

This chapter covers page elements that help to Frame a web page like a frame for a painting. Page
elements are items that affect the appearance of a web page, but aren't necessarily thought of as
comprising a web page's design. For example, the appearance of the scrollbar is a page element.

By manipulating elements such as the margins and borders surrounding the contents of a web page,
developers can effectively frame the content of the page without actually styling the content. Such
simple changes can affect the page's overall design in a profound way, or they can add a subtle detail
that completes the design.

Recipe 4.1. Eliminating Page Margins

Problem

You want to get rid of the whitespace around the edges of a web page and between the browser
chrome and the contents of the page (see Figure 4-1).

Solution

Set the value of the margin and padding properties for the html and body elements to zero:

html, body {
 margin: 0;
 padding: 0;
 position: absolute;
 top: 0;
 left: 0;
}

Figure 4-1. Page margins visible as the whitespace around the edges of a
web page

Discussion

Setting the margin and padding properties of the body element to 0 helps create a full-bleed effectin
other words, it eliminates the whitespace around a web page (the units are unnecessary when
specifying zero). Setting the position to absolute and the values for top and left to 0 helps remove
the body margins in Netscape Navigator 4.

However, depending on the content of the web page, the margin and padding properties may not be
all you need to change to get a full-bleed effect. Default properties on other elements can have
unexpected side effects when you attempt to change the page margin For example, if h1 is the body
element 's first child element, some unintended whitespace will appear above the headline and below
the top of the browser's viewport. Figure 4-2 shows this undesired effect; the background color of
the headings and paragraphs is gray so that you can more clearly see the effect.

To ensure the full-bleed effect in this situation set the margin and padding of the offending element
(in this case, h1 , h2 , h3) to 0 as well as the body 's. This sets all the sides of the element's padding
to 0 . If that setup isn't possible (for example, if you need to have a value at the bottom padding or
margin), set the margin-top and padding-top values to 0 to maintain the full-bleed effect:

html, body {
 margin: 0;
 padding: 0;
 position: absolute;
 top: 0;
 left: 0;
}

h1, h2, h3 {
 margin-top: 0;
 padding-top: 0;
 background-color: #666;
}
p {
 background-color: #999;
}

Figure 4-2. Whitespace above the heading and below the top of the
browser's viewport

As you can see in Figure 4-3 , this accomplishes the full-bleed effect. Notice how the gray background
color of the first heading now touches the top of the browser's viewport.

Figure 4-3. Whitespace removed above the heading

See Also

Recipe 9.1 for writing one-column layouts by setting the margin and padding properties to a value
other than 0 .

Recipe 4.2. Coloring the Scrollbar

Problem

You want to adjust the color of the scroll bar on a browser's viewport, or the window on the browser.

Solution

Use the properties that manipulate scroll bar colors in browsers that support it:

body,html {
 scrollbar-face-color: #99ccff;
 scrollbar-shadow-color: #ccccff;
 scrollbar-highlight-color: #ccccff;
 scrollbar-3dlight-color: #99ccff;
 scrollbar-darkshadow-color: #ccccff;
 scrollbar-track-color: #ccccff;
 scrollbar-arrow-color: #000033;
}

Because these properties aren't part of the W3C recommendations for CSS,
browser vendors don't have to put in support for these properties. This solution
works only on the KDE Konqueror browser and on Internet Explorer 5.5+ for
Windows. Other browsers will simply skip over the rules. However these rules
won't be validated by services such as http://jigsaw.w3.org/css-
validator/validator-uri.html.

Discussion

Although you may think of a scroll bar as a simple tool, it's actually composed of several widgets that
create a controllable 3D object. Figure 4-4 spotlights the different properties of a scroll bar. As you
can see, to create a truly different color scheme for the scroll bar, you must alter the value of seven
properties.

Figure 4-4. The parts of a scroll bar that can be affected by proprietary
CSS for Internet Explorer for Windows

http://jigsaw.w3.org/css-

In addition to adjusting the scrollbar of the browser viewport, you also can adjust the colors of the
scroll bar in the textarea for a web form, framesets, iframes, and generally anything with a scroll
bar:

.highlight {
 scrollbar-face-color: #99ccff;
 scrollbar-shadow-color: #ccccff;
 scrollbar-highlight-color: #ccccff;
 scrollbar-3dlight-color: #99ccff;
 scrollbar-darkshadow-color: #ccccff;
 scrollbar-track-color: #ccccff;
 scrollbar-arrow-color: #000033;
}

<form>
 <textarea class="highlight"></textarea>
</form>

When rendering a page that doesn't contain a valid DOCTYPE, Internet Explorer for Windows
experiences what is known as quirks (nonstandard behavior) mode and looks for the scrollbar
properties in the body selector. When the page contains a valid DOCTYPE, Internet Explorer for
Windows is in standards mode and it obeys the html selector. So, just in case the web document's
DOCTYPE may change, it's best to ensure that the body and html selectors are grouped and applied in
one CSS rule:

html .highlight, body .highlight {
 scrollbar-face-color: #99ccff;
 scrollbar-shadow-color: #ccccff;
 scrollbar-highlight-color: #ccccff;
 scrollbar-3dlight-color: #99ccff;
 scrollbar-darkshadow-color: #ccccff;
 scrollbar-track-color: #ccccff;
 scrollbar-arrow-color: #000033;
}

See Also

The MSDN Scrollbar Color Workshop at
http://msdn.microsoft.com/workshop/samples/author/dhtml/refs/scrollbarColor.htm to pick colors
for a custom scroll bar.

http://msdn.microsoft.com/workshop/samples/author/dhtml/refs/scrollbarColor.htm

Recipe 4.3. Techniques for Centering Elements on a Web
Page

Problem

You want to center parts of a web page, as in Figure 4-5 .

Figure 4-5. The headline text centered

Solution

To center text in a block-level element, use the text-align property:

h1, h2, h3 {
 text-align: center;
}

Discussion

By using text-align , you can center text inside block-level elements. However, in this example, the
heading takes up the entire width of the body element, and if you don't apply a background color to
the element, you probably won't even notice that this is happening. The gray background color in
Figure 4-6 shows the actual width of the centered elements.

Figure 4-6. The actual width of the elements shown by the gray
background color

An alternative approach is to use margins to center text within its container:

h1, h2, h3 {
 margin-left: auto;
 margin-right: auto;
}

When you set the margin-left and margin-right properties to auto , you center the element inside
its parent element. However, older but still popular browsers won't render the presentation correctly.
So, workarounds are needed for individual situations.

Tables

To center a table, place the table as the child of a div element:

<div class="center">
 <table width="50%" border="1" cellpadding="30">
 <tr>
 <td>This is the first cell</td>
 <td>This is the second cell</td>
 </tr>
 <tr>
 <td>This is the third cell, it's under the first cell</td>
 <td>This is the fourth cell, it's under the second cell.</td>
 </tr>
 </table>
</div>

Then write the following CSS rule:

.center {
 text-align: center;
}
.center table {
 width: 50%;
 margin-left: auto;
 margin-right: auto;
 text-align: left;
}

Although setting both sides of the margin to auto works in newer generations of browsers, it doesn't
work in Internet Explorer 5 for Windows or Netscape Navigator 4. To catch those two browsers and
tell them to "do the right thing," the center class selector uses the text-align technique. However, if
that were all you did, the contents of the table cells would be centered as well. To counteract that
effect, use a descendent selector, .center table , to align the contents in the table cell elements.

Note that if you use th elements in an HTML table, the content inside those cells is centered by
default. Setting the text-align property to a value of left in the descendent selector .center table
doesn't counter that effect. To left-align the content inside th , use this CSS rule:

th {
 text-align: left;
}

To save a line or two of CSS code, you may want to incorporate the shorthand version of the margin

property, as shown here (although this works in most browsers, it fails in Internet Explorer 5 for
Macintosh):

.center table {
 margin: 0 auto;
 text-align: left;
}

Images

If you want to center an image, wrap a div element around the img element first. This technique is
required because an img element, like em and strong , is inline. It rests in the flow of the web page
instead of marking off space like the p or blockquote block-level elements do. The markup looks like
this:

<div class="flagicon"><img src="flag.gif" alt="Flag" width="160"
height="60" /></div>

And the CSS rule looks like this:

.flagicon {
 text-align: center;
}

To center elements with fixed widths, such as images, first set the value of the parent's padding-left
property to 50% . Then determine half of the width of the element you are centering and set it as a
negative value in the margin-left property. That prevents the element's left side from resting on the
50% line caused by its padding and makes it slide into the middle of the page. The markup for an
image in a web page using this technique looks something like this:

The CSS rule to produce the result you see in Figure 4-7 looks like this:

body {
 padding-left: 50%;
}
img {
 /* equal to the negative of half its width */
 margin-left: -138px;
}

Figure 4-7. The image centered without the deprecated center element

Another way to center an image, but not as backwards compatible for Internet Explorer 5 for
Windows, is to change the display and margin properties of the image.

First, apply a class attribute to the image that is going to be centered:

<img src="flag.gif" alt="Flag" width="160" height="60"
class="blockimg" />

Then create a CSS rule that positions the image in the center:

.blockimg {
 display: block;
 margin: 0 auto;
}

Vertical centering

With the element centered horizontally, you can take this technique one step further and center the
image (or any other element) vertically as well. The difference with this method is that it uses the
position property to make this work. The markup is the same as that used for the image element in
the previous example, but this time the CSS rule is for just one selector (see Figure 4-8):

Figure 4-8. The image centered horizontally and vertically on the web
page

img {
 position: absolute;
 top: 50%;
 left: 50%;
 margin-top: -96px;
 margin-left: -138px;
 height: 192px;
 width: 256px;
}

With absolute positioning, you take the element out of the normal flow of the document and place it
wherever you want.

If you want to center both text and an image (or other images) instead of just one image, enclose all
the content with a div element:

<div id="centerFrame">
 <p>Epsum factorial non deposit quid pro quo hic escorol. Olypian
quarrels et gorilla congolium sic ad nauseum. Souvlaki ignitus
carborundum e pluribus unum. Defacto lingo est igpay atinlay.</p>
 <img src="wolf.jpg" width="256" height="192" alt="Photo of
wolf." />
</div>

Then in the CSS rule, remove the height property and adjust the negative value of the top margin to
compensate for the additional elements on the page:

#centerFrame {
 position: absolute;
 top: 50%;

 left: 50%;
 /* adjust negative value until content is centered */
 margin-top: -150px;
 margin-left: -138px;
 width: 256px;
}

Keep the amount of content that you want centered short. This solution is only going to roughly
center the text and the images because the text will render at different heights on different
computers. If you have numerous images and long amounts of HTML text, users with small
resolutions will have to scroll the page to see your centered content.

See Also

Chapter 9 for information on multicolumn layouts, which deal with the position of elements in a web
page; the CSS 2.1 specification for text-align , online at
http://www.w3.org/TR/CSS21/text.html#propdef-text-align .

http://www.w3.org/TR/CSS21/text.html#propdef-text-align

Recipe 4.4. Placing a Page Border

Problem

You want to place a visual frame or border around a web page, as in Figure 4-9 .

Figure 4-9. A framed web page

Solution

Use the border property on the body element:

body {
 margin: 0;
 padding: 1.5em;
 border: 50px #666 ridge;
}

Discussion

The border property is a shorthand property, in that it enables you to set the width, color, and style of the border
around an element in one step instead of three. If you didn't use this shorthand property in the preceding solution, you
would have to replace the line that reads border : 50px #666 ridge; with the following three lines:

border-width: 50px;
border-color: #666;
border-style: ridge;

You can create a framing effect with other styles as well, such as dotted, dashed, solid, double, groove, inset, and
outset (see Figure 4-10).

Figure 4-10. The available border styles in CSS

Note that groove style is the inverse of the shades of shadow as seen in the solution, which uses the ridge value.

The only browser incompatibilities to worry about are in Internet Explorer 5 for Macintosh and
Internet Explorer for Windows, where the dotted style appears as aliased circles, whereas in
Netscape 6+, Firefox, Mozilla, and Safari, the dotted style appears as blocks.

You also can place a stylized border on images as well. Instead of having a default solid line, try experimenting in your
designs with groove or double borders like the one in Figure 4-11 :

img.left {
 float: left;
 margin-right: 7px;
 margin-bottom: 3px;
 border: 4px double #666;
}

Figure 4-11. A double border around an image

See Also

Recipe 2.15 for creating pull quotes with different border styles.

Recipe 4.5. Customizing a Horizontal Rule

Problem

You want to change the look of a horizontal rule from the solid line in Figure 4-12 to something more
interesting, for example the small centered rectangle in Figure 4-13 .

Solution

Use a mixture of CSS properties on the HR element to obtain a desired effect:

hr {
 margin-left: auto;
 margin-right: auto;
 margin-top: 1.25em;
 margin-bottom: 1.25em;
 width: 10px;
 height: 10px;
 background-color: #777;
}

Figure 4-12. The default rendering of a horizontal rule

Figure 4-13. A stylized horizontal rule

Discussion

Before HTML 4.0, the presentation of horizontal rules could be manipulated through a set of four
attributes: align , width , size , and noshade . Since HTML is intended to mark up content and not
the look of the content, those values are no longer a part of the HTML specification. (Browser vendors
may support the values, but your mileage will vary.) With CSS rules controlling the presentation, you
have far greater control over the appearance of horizontal rules.

For example, you can set the height as well as the width properties for horizontal rules through CSS:

hr {
 width: 80%;
 height: 3px;
 margin-left: auto;
 margin-right: auto;
}

Setting the margin-left and margin-right to auto centers the horizontal rule in the web page for
Safari, although it's not required for Mozilla, Firefox, Navigator, and Internet Explorer for Windows.

If you want to style an hr element with color (see Figure 4-14), use the following code:

hr {

 color: green;
 background-color: green;
 width: 80%;
 height: 3px;
 margin-left: auto;
 margin-right: auto;
}

Figure 4-14. A centered, green horizontal rule

The first property, color , is understood by Internet Explorer for Windows while Safari, Mozilla,
Firefox, and Netscape Navigator 6+ pick up the second property, background-color .

To place an image instead of a horizontal bar, use the background-image property:

hr {
 background-image: url(hr-decoration.gif);
 background-repeat: no-repeat;
 border: none;

 width: 76px;
 height: 25px;
 margin-left: auto;
 margin-right: auto;
}

However, Internet Explorer for Windows renders a border around the hr element in Figure 4-15 that
can't be removed through CSS properties.

Figure 4-15. A border around a horizontal rule in Internet Explorer for
Windows

See Also

The HTML 4.01 specification for hr elements at
http://www.w3.org/TR/html401/present/graphics.html#edef-HR ; an overview of styling an HR
element, online at http://www.sovavsiti.cz/css/hr.html ; another example of refining the presentation
of horizontal rules at
http://www.sidesh0w.com/weblog/2004/03/17/sexily_styling_horizontal_rules.html .

http://www.w3.org/TR/html401/present/graphics.html#edef-HR
http://www.sidesh0w.com/weblog/2004/03/17/sexily_styling_horizontal_rules.html

Recipe 4.6. Adding a Lightbox

Problem

You want to overlay images on top of a current web page (see Figure 4-16) without popping a new
browser window.

Figure 4-16. The default page

Solution

Download the source code the lightbox effect from
http://www.huddletogether.com/projects/lightbox2/#download .

Along with the Prototype Framework and Scriptaculous Effects JavaScript libraries, include a specialized
JavaScript for overlaying images:

<title>Mr. McCool's Homepage</title>
<!-- Structure for Lightbox effect -->

http://www.huddletogether.com/projects/lightbox2/#download

<script type="text/javascript" src="prototype.js"></script>
<script type="text/javascript" src="scriptaculous.js?load=effects"></script>
<!-- Script for Lightbox -->
<script type="text/javascript" src="lightbox.js"></script>

Next, link to style sheet that renders the look-and-feel of the overlay effect:

<title>Mr. McCool's Homepage</title>
<script type="text/javascript" src="prototype.js"></script>
<script type="text/javascript" src="scriptaculous.js?load=effects"></script>
<script type="text/javascript" src="lightbox.js"></script>
<link rel="stylesheet" href="lightbox.css" type="text/css" media="screen" />

Within the web page content, include a link to an image making sure to include a rel attribute with a value
of lightbox . A common link example would be to wrap a link around a thumbnail image:

<a href="trammell_shoes.jpg" rel="lightbox" title="Trammell shows off
his happy shoes."><img src="trammell_shoes_tn.jpg" alt="Mark Trammel
is happy with his shoes." />

Clicking on the link activates the lightbox effect, as shown in Figure 4-17 .

Figure 4-17. The lightbox appears on top of the page

Discussion

The lightbox effect is built on two core pieces: the Prototype JavaScript Framework and Scriptaculous.

Prototype creates a more object-oriented framework that allows developers to quickly build web-based
applications based on JavaScript. For more information about Prototype, see the official site
http://prototype.conio.net/ .

Scriptaculous is a collection of JavaScript libraries. When used in conjunction of Prototype, Scriptaculous
allows developers to build dynamic, Asynchronous JavaScript + XML (Ajax) interactions. For further
information on Scriptaculous, see http://script.aculo.us/ .

With the JavaScript foundations in place, web developer Lokesh Dhakar (see
http://www.huddletogether.com/) developed a clever image viewer that displays a full-size image without
having to leave the web page that displays the thumbnails.

Setting up the files

When you download and link the JavaScript files and a style sheet to a web page, make sure the files are
properly linked. For example, if you place JavaScript and a style sheet in a separate folder locations, make
sure the code reflect their locations:

<script type="text/javascript" src="/_assets/js/prototype.js"></script>
<script type="text/javascript" src="/_assets/js/scriptaculous.js?load=effects">
</script>
<script type="text/javascript" src="/_assets/js/lightbox.js"></script>
<link rel="stylesheet" href="/_assets/css/lightbox.css" type="text/css" media="screen" />

In the lightbox JavaScript file, also make sure the locations of the images are correct. If you need to edit
the location of the images, look towards the top of the JavaScript file for the following lines to modify:

var fileLoadingImage = "/_assets/img/loading.gif";
var fileBottomNavCloseImage = "/_assets/img/closelabel.gif";

The style sheet for the lightbox utilizes the background image property three times. Make sure those
images referenced in the properties are also set to the correct locations:

#prevLink, #nextLink {
 width: 49%;
 height: 100%;
/* Trick IE into showing hover */
 background: transparent url(/_assets/img/blank.gif) no-repeat;
 display: block;
}
#prevLink:hover, #prevLink:visited:hover {
 background: url(/_assets/img/prevlabel.gif) left 15% no-repeat;
}
#nextLink:hover, #nextLink:visited:hover {

http://prototype.conio.net/
http://www.huddletogether.com/

 background: url(/_assets/img/nextlabel.gif) right 15% no-repeat;
}

Making a slideshow

In addition to showcasing one image at a time, the lightbox can be set up to display a slideshow like the
one in Figure 4-18 .

Figure 4-18. The lightbox can display a slideshow of images

In order to achieve this affect, modify the value of the rel element by using right-angle brackets after
lightbox and inserting a gallery name. In the code example, I used the gallery name austin as I took the
pictures in Austin, TX:

 <a href="trammell_shoes.jpg" rel="lightbox[austin]"
title="Trammell shows off his happy shoes."><img src="trammell_shoes_tn.jpg"
alt="Mark Trammel is happy with his shoes." />
 <a href="molly_andy.jpg" rel="lightbox[austin]" title="Molly and
Andy pose for a shot."><img src="molly_andy_tn.jpg" alt="Molly and Andy
pose for a shot." />
 <a href="msjen.jpg" rel="lightbox[austin]" title="Ms. Jen at
breakfast.">

The gallery name needs to be the same in order for related images to be put into the same slideshow
presentation.

Known browser issues

Since the lightbox effect is built on Prototype framework, the lightbox effect's support in browser is based
on how many browsers Prototype supports. As of this writing the following browsers support Prototype:

Microsoft Internet Explorer for Windows 6+

Mozilla Firefox 1.0+

Mozilla 1.7+

Apple Safari 1.2+

The lightbox effect degrades gracefully. If a visitor's browser does not support the lightbox effect, the
browser will follow the value of the HRef attribute.

<a href="trammell_shoes.jpg" rel="lightbox" title="Trammell shows off
his happy shoes."><img src="trammell_shoes_tn.jpg" alt="Mark Trammel
is happy with his shoes." />

In this example, the browser pulls up the file trammel_shoes.jpg .

See Also

An overview of the Prototype JavaScript Library at http://blogs.ebusiness-
apps.com/jordan/pages/Prototype%20Library%20Info.htm ; an overview of Ajax at
http://adaptivepath.com/publications/essays/archives/000385.php .

http://adaptivepath.com/publications/essays/archives/000385.php

Chapter 5. Lists

Section 5.0. Introduction

Recipe 5.1. Changing the Format of a List

Recipe 5.2. Writing Cross-Browser Indentation in Lists

Recipe 5.3. Place Dividers Between List Items

Recipe 5.4. Creating Custom Text Markers for Lists

Recipe 5.5. Creating Custom Image Markers for Lists

Recipe 5.6. Inserting Large Custom Image Markers for Lists

Recipe 5.7. Making a List Presentation Rich with Imagery

Recipe 5.8. Creating Inline Lists

Recipe 5.9. Making Hanging Indents in a List

Recipe 5.10. Moving the Marker Inside the List

5.0. Introduction

From a wife handing a husband a grocery list as he steps out the door to a music channel presenting
their top 100 worst songs of all time, lists help people stay focused and organized. In web design, it's
the same case: HTML lists facilitate the presentation of organized content to our site's visitors by
grouping key elements together.

HTML lists are appealing in part because of the way they appear on the page. List items typically are
indented and keyed off by a marker, usually by a filled circle for an unordered list or numbers for an
ordered list (see Figure 5-1). With a few lines of HTML, a web coder can create a bulleted list on a
web page without opening an image editor. With CSS, you can create even more visually compelling
lists.

Figure 5-1. The default rendering of a list

Web developers can tailor the presentation of the list to complement the design of a web page
instead of relying on the browsers' default styling. This chapter illustrates how to change the
numbering of list items, use your own image for a list marker, create a hanging indent that doesn't
use a list marker, and more.

Recipe 5.1. Changing the Format of a List

Problem

You want to change the default list style; for example, to change the bullet or numbering, as in
Figure 5-2.

Figure 5-2. The list markers changed to lowercase Roman numerals

Solution

Use the list-style-type property to change the bullet or type of counter:

li {
 list-style-type: lower-roman;
}

Discussion

The CSS 2.1 specification offers several styles for numbering a list, as shown in Table 5-1. Browsers
typically vary the bullet style from one level of nesting to the next. To stop lists from presenting this
traditional system of setting the list marker, change the value of list-style-type for each child list.

Table 5-1. Bullet styles

Style/value Description
Browser

support

 square

Usually a filled-in
square, although
the exact
representation isn't
defined.

All major
browsers

 disc

Usually a filled-in
circle, although the
exact
representation isn't
defined.

All major
browsers

 circle

Usually an unfilled
circle, although the
exact
representation isn't
defined.

All major
browsers

 decimal

Starts with 1 and
continues with 2, 3,
4, etc.

All major
browsers

 decimal-leading-zero

Starts with 01 and
continues with 02,
03, 04, etc. The
number of leading
zeros may equal
the number of
digits used in a list.
For example, 0001
may be used for a
5,876-item list.

All major
browsers

 lower-roman

Starts with
lowercase roman
numerals.

All major
browsers

Style/value Description
Browser

support

 upper-roman

Starts with
uppercase roman
numerals.

All major
browsers

 lower-alpha

Starts with
lowercase ASCII
letters.

All major
browsers

 upper-alpha

Starts with
uppercase ASCII
letters.

All major
browsers

 lower-latin

Starts with
lowercase ASCII
letters.

All major
browsers

 upper-latin

Starts with
uppercase ASCII
letters.

All major
browsers

 lower-greek

Starts with classical
Greek letters,
starting with alpha
and then beta,
gamma, etc.

Safari,
Mozilla,
Netscape
6+

 hebrew

Starts counting
with traditional
Hebrew.

Safari,
Mozilla,
Netscape
6+

 hiragana

Starts counting
with the Japanese
hiragana system.

Mozilla,
Netscape
6+

 katakana

Starts counting
with the Japanese
traditional katakana
system.

Mozilla,
Netscape
6+

 upper-roman

Starts with
uppercase roman
numerals.

All major
browsers

 lower-alpha

Starts with
lowercase ASCII
letters.

All major
browsers

 upper-alpha

Starts with
uppercase ASCII
letters.

All major
browsers

 lower-latin

Starts with
lowercase ASCII
letters.

All major
browsers

 upper-latin

Starts with
uppercase ASCII
letters.

All major
browsers

 lower-greek

Starts with classical
Greek letters,
starting with alpha
and then beta,
gamma, etc.

Safari,
Mozilla,
Netscape
6+

 hebrew

Starts counting
with traditional
Hebrew.

Safari,
Mozilla,
Netscape
6+

 hiragana

Starts counting
with the Japanese
hiragana system.

Mozilla,
Netscape
6+

 katakana

Starts counting
with the Japanese
traditional katakana
system.

Mozilla,
Netscape
6+

Style/value Description
Browser

support

 hiragana-iroha

Starts counting
with the Japanese
hiragana-iroha
system.

Mozilla,
Netscape
6+

 katakana-iroha

Starts counting
with the Japanese
katakana-iroha
system.

Mozilla,
Netscape
6+

 none

No marker is
displayed.

All major
browsers

See Also

Recipe 5.6 for using custom images for list markers; Chapter 12 in Cascading Style Sheets: The
Definitive Guide, Second Edition by Eric A. Meyer (O'Reilly Media).

 hiragana-iroha

Starts counting
with the Japanese
hiragana-iroha
system.

Mozilla,
Netscape
6+

 katakana-iroha

Starts counting
with the Japanese
katakana-iroha
system.

Mozilla,
Netscape
6+

 none

No marker is
displayed.

All major
browsers

See Also

Recipe 5.6 for using custom images for list markers; Chapter 12 in Cascading Style Sheets: The
Definitive Guide, Second Edition by Eric A. Meyer (O'Reilly Media).

Recipe 5.2. Writing Cross-Browser Indentation in Lists

Problem

Different browsers use different methods to indent lists. You want to specify left margins for your list
that will render on all browsers.

Solution

Set the margin-left and padding-left properties for the ul element:

ul {
 margin-left: 40px;
 padding-left: 0px;
}

Discussion

Different browsers use different methods to pad or indent a list. Mozilla and Netscape 6+ browsers
indent a list on the padding, while Internet Explorer and Opera pad a list through the margin of a list.

To gain cross-browser effectiveness, you need to set the values for both the left margins and the
padding for the list. Keep the amount of the indentation in one of the properties. Splitting the amount
into two different properties results in inconsistent presentation across the browsers.

If you set the margin and padding to zero while the list is contained by only the body element, the
browser renders the markers outside the viewport, making them invisible to the user. To make sure
the markers are visible, set the left margin or left padding of the ul to at least 1em.

See Also

Recipe 5.9 on creating hanging indents; CSS 2.1 specification for padding at
http://www.w3.org/TR/CSS21/box.html#propdef-padding; CSS 2.1 specification for margin at
http://www.w3.org/TR/CSS21/box.html#propdef-margin.

http://www.w3.org/TR/CSS21/box.html#propdef-padding
http://www.w3.org/TR/CSS21/box.html#propdef-margin

Recipe 5.3. Place Dividers Between List Items

Problem

You want to create list dividers between list items.

Solution

Use the border property to create a visual divider.

li {
 border-top: 1px solid black;
 padding: .3em 0;
}

Then apply a border to the bottom of the ul element to create the bottom border (see Figure 5-3):

ul {
 margin-left: 40px;
 padding-left: 0px;
 border-bottom: 1px solid black;
 list-style: none;
 width: 36%;
}

Figure 5-3. Dividers placed between list items

Discussion

To ensure consistency for the length of the dividers, apply only a value to the margin-left or
padding-left property of the unordered list. Otherwise the length of the border on both the list items
and the unordered list will be inconsistent. For example, if the list items are indented through the
padding-left property, the bottom border is longer than the border for the individual list items (see
Figure 5-4):

li {
 border-top: 1px solid black;
 padding: .3em 0;
}
ul {
 margin-left: 0px;
 padding-left: 40px;
 border-bottom: 1px solid black;
 list-style: none;
 width: 36%;
}

Figure 5-4. The bottom divider is longer than the other dividers

See Also

Recipe 5.2 for creating cross-browser indents for lists.

Recipe 5.4. Creating Custom Text Markers for Lists

Problem

You want to use a custom text marker in a list.

Solution

Indent the first line of text and insert the custom text, along with the right-angle quotes acting as
pointers, through autogenerated content (see Figure 5-5):

ul {
 list-style: none;
 margin: 0;
 padding: 0 0 0 1em;
 text-indent: -1em;
}
li {
 width: 33%;
 padding: 0;
 margin: 0 0 0.25em 0;
}
li:before {
 content: "\00BB \0020";
}

Figure 5-5. Text marker for a list

Discussion

Setting the list-style property to a value of none turns off the list marker usually associated with a
list. Typically, a marker is appended to the left of each list item.

Instead of appending the marker to the list item, the custom text marker will be placed inline with
the content of the item. Because the text marker is inside the list item, you need to push the marker
out of the list item box. Indenting the first line of the marker with a negative value creates this push.
The negative value for the text-indent property moves the first line to the left, whereas a positive
value moves the indent to the right:

ul {
 list-style: none;
 margin: 0;
 padding: 0 0 0 1em;
 text-indent: -1em;
}

The :before pseudo-element generates the text marker. The content of simple keyboard characters
can be easily inserted like so:

li:before {
 content: ">> ";
}

However, for embedding special characters, the CSS 2.1 specification calls for special characters to
be Unicode (ISO 10646) values. So you need to write out the character in its escaped Unicode
hexadecimal equivalent and not the usual HTML 4 entities like ».

You escape values in CSS by inserting a backslash before each Unicode hexadecimal value:

li:before {
 content: "\00BB \0020";
}

At press time, this solution worked in Mozilla, Firefox, Netscape 6+, Safari, and Opera browsers
because they can handle the creation of autogenerated content. Unfortunately, this list omits
Netscape 4 and Internet Explorer for Windows and Macintosh as they cannot do autogenerated
content.

To create a cross-browser effect, don't use autogenerated content. Instead, insert the text marker
manually before the list item:

 » I'm not the Same Person I was in the Database
 » Past Breaches of Our Privacy
 » The Best of Intentions
 » Whatever Happened to Automation?
 » The Smart Choice is Not Needing to Make One

The main drawback with this approach is that you have two markers for every list item (the browser
generated list marker and the manually inserted text marker) if CSS is turned off in the browser and
the user see only the content. Although this isn't a mission-critical problem, it adds an unneeded
design element to the web page.

See Also

The CSS 2.1 specification about escaping characters at http://www.w3.org/TR/REC-
CSS2/syndata.html#escaped-characters; and hexadecimal values for ASCII and Unicode characters
at http://www.alanwood.net/demos/ansi.html.

http://www.w3.org/TR/REC-
http://www.alanwood.net/demos/ansi.html

Recipe 5.5. Creating Custom Image Markers for Lists

Problem

You want to use your own graphic for a list marker. For example, Figure 5-6 uses a diamond image.

Figure 5-6. Custom-made image markers for a list

Solution

Use the list-style-image property to use a graphic for a bullet marker:

ul {
 list-style-type: disc;
 list-style-image: url(bullet.eps);
}

Discussion

Set the location of the image you want to use as a marker as the value of the list-style-image
property. You can't control the size of the image used as a list marker through CSS, so the image you
specify should already be at the correct size. Images that are too large may interfere with the
legibility of the list item or the marker may not be displayed entirely in the viewport (see Figure 5-7).
When creating custom bullets, make sure they are of the appropriate size to complement the design
of your web page.

Figure 5-7. A large image used for a marker isn't fully displayed

The value for the image marker is inherited , meaning that nested lists pick up the image as the
marker as does the parent. To stop this inheritance, the value of none needs to be set for the child
lists.

ul {
 list-style-type: disc;
 list-style-image: url(bullet.eps);
}
ul ul {list-style-image: none;}

Always include the list-style-type property to provide a fallback should the image not be usable. In
the solution, the list marker disc is used if the image, bullet.eps , can't be displayed.

See Also

Recipe 5.4 on creating custom text markers; the CSS 2.1 specification for list-image-type at
http://www.w3.org/TR/CSS21/generate.html#propdef-list-style-image .

http://www.w3.org/TR/CSS21/generate.html#propdef-list-style-image

Recipe 5.6. Inserting Large Custom Image Markers for
Lists

Problem

You want to use a large custom graphic for a list marker without running into constraints by using
list-style-image property .

Solution

First, remove default list marker through the list-style property (see Figure 5-8):

ul {
 margin-left: 40px;
 padding-left: 0px;
 list-style: none;
}

Figure 5-8. Default list markers are removed

Apply enough padding on the right side of the list item to allow the new image marker to be placed
(see Figure 5-9):

ul {
 margin-left: 40px;
 padding-left: 0px;
 list-style: none;
}
li {
 padding: .3em 0 1em 40px;
 font: 1.1em/1.2 Verdana, Arial, Verdana, sans-serif;
}

Figure 5-9. Extra padding is placed on the left side of the list

Then insert the new custom marker through the background property (see Figure 5-10):

ul {
 margin-left: 40px;
 padding-left: 0px;
 list-style: none;
}
li {
 padding: .3em 0 1em 40px;
 font: 1.1em/1.2 Verdana, Arial, Verdana, sans-serif;
 background: url(search_32.eps) no-repeat;

Figure 5-10. A large image used for a marker isn't fully displayed

}

Discussion

Using the background property to create enhanced list presentation allows for greater flexibility than
using the list-style-image property. With this technique, any size custom list marker can be used as
long as there is enough padding set to the left of the list item.

See Also

Recipe 5.7 for a more complex version of this Solution.

Recipe 5.7. Making a List Presentation Rich with Imagery

Problem

You want to create added attention to a list with rich imagery.

Solution

Integrate the background images for both the ul and li element.

First, create a background image for the unordered list set and an image for the list marker (see
Figure 5-11):

Figure 5-11. The two images used for our custom list presentation

Next, set up the unordered list element to bring in the background image. Also, include the width
property set to the same width as the background image (see Figure 5-12):

ul {
 background: url(list-bkgd.gif) bottom;
 width: 298px;
 list-style: none;
 padding: 0 0 12px;
 margin: 0;
}

Figure 5-12. Background image for the entire list is set

Next, include the list marker through the list item. Also, place borders at the bottom to act as dividers
between the list items (see Figure 5-13):

ul {
 background: url(list-bkgd.gif) bottom;
 width: 298px;
 list-style: none;
 padding: 0 0 12px;
 margin: 0;
}
li {
 color: #eee;
 font-family: Verdana, Arial, Verdana, sans-serif;
 padding: 7px 7px 7px 20px;
 border-bottom: 1px solid #888;
 background: url(list-marker.gif) no-repeat 5px .8em;
}

Figure 5-13. The styled list items complete the presentation

Discussion

A number of different techniques come together to achieve this solution. The first part of the solution
deals with placing a background image into the ul element. Since the image has a set width and
height, make sure to set the width through CSS.

For the height, there are many issues that keep web developers from setting that property. A user
might increase the size of the default text making the text larger or smaller. Also, the style for the list
may be used for lists with a high or a low number of items.

In order to compensate for almost any situation, the background image needs to have a large height.
In this solution, the background image is set to 465 pixels, which is more than enough space for
normal view of a handful of items. However, in case someone's browser has set the fonts to a large
size, the design solution is still intact, as shown in Figure 5-14 .

Figure 5-14. The design holds together as text size increases

Since the background image has curved edges on the bottom, padding of 12 pixels was applied to the
bottom so that the list items would not cover it up. Also, the positioning of the background image was
set to bottom. This allowed the background image to always display the curves even if the text size
expands or the number of list items increases.

Next, the list items involve a couple of techniques. First, dividers are placed between the list items.
Unlike in Recipe 5.3 , a divider isn't needed on the bottom of the ul element. Second, the list markers
are inserted by using the technique from Recipe 5.6 .

See Also

Chapter 6 for ways to translate this text into a working navigation menu.

Recipe 5.8. Creating Inline Lists

Problem

You want to list items to be displayed within a paragraph, as in Figure 5-15, in which the bold,
comma-separated list was generated from an HTML ul list.

Figure 5-15. The list formatted to appear inside a paragraph

Solution

Set the paragraphs before (and, if needed, after) the list:

<h3>
 Table of Contents
</h3>
<p>
 As proposed, the contents of the paper will contain the
following sections:
</p>

 I'm not the Same Person I was in the Database

 Past Breaches of Our Privacy
 The Best of Intentions
 Whatever Happened to Automation?
 <li class="last">The Smart Choice is Not Needing to Make One

<p>
 If there are any objections to how these sections are divided,
please let Nicholas know about
it.
</p>

Through CSS, set the paragraph to display as inline elements, and then use autogenerated content to
show the commas between items and the period at the end of the list:

ul, li {
 display: inline;
 margin: 0;
 padding: 0;
 font-weight: bold;
 font-style: italic;
}
li:after {
 content: ", ";
}
li.last:after {
 content: ".";
}
p {
 display: inline;
}

Discussion

Through this method you retain the structure of lists and paragraphs, but you stretch CSS' capability
to present the list inside a paragraph. However, you hide the obvious visual appearance of a list in
favor of having the contents placed inside a paragraph.

The critical part of this solution is setting the display property to inline on the list items and
paragraphs. By using the inline value, the elements are placed on the same line instead of being
separated by whitespace above and below each element.

Note that Internet Explorer for Windows does not support autogenerated
content.

See Also

The CSS 2.1 specification about the display property at
http://www.w3.org/TR/CSS21/visuren.html#propdef-display.

http://www.w3.org/TR/CSS21/visuren.html#propdef-display

Recipe 5.9. Making Hanging Indents in a List

Problem

You want the first line of a list item to begin further to the left than the rest of the list, thereby
creating a hanging indent as in Figure 5-16.

Figure 5-16. Hanging indents on a list

Solution

Use a negative value for the text-indent property:

ul {
 width: 30%;

 padding: 0 0 0.75em 0;
 margin: 0;
 list-style: none;
}
li {
 text-indent: -0.75em;
 margin: 0.33em 0.5em 0.5em 1.5em;
}

Discussion

Although list markers (numeric, image, or text) help to call attention to the actual list, sometimes
you may not want to add those kinds of design elements to a list. Instead of relying on markers to
carry off the list design, use a hanging indent.

In this solution, you indent the list by three-quarters of an em unit, creating a visible but almost
subtle hanging indent effect. You can push this design technique from subtle to the foreground by
reducing the text-indent value further, or by increasing the font size of the text in the list item.

See Also

Recipe 2.18 on setting indents in paragraphs; the CSS 2.1 specification for text-indent at
http://www.w3.org/TR/CSS21/text.html#propdef-text-indent.

http://www.w3.org/TR/CSS21/text.html#propdef-text-indent

Recipe 5.10. Moving the Marker Inside the List

Problem

You want the list marker to be pulled inside the border of the list items, as in Figure 5-17. This
creates an effect in which the text wraps around the marker.

Figure 5-17. Moving the marker inside the list item

Solution

Use the list-style-position property and set the value to inside:

li {
 list-style-position: inside;

 width: 33%;
 padding: 0;
 margin: 0;
}
ul {
 margin: 0;
 padding: 0 0 0 1em;
}

Discussion

Normally the list marker stands outside the text and the result is a very distinctive list. Some
designs, however, may require the marker to appear as part of the text. A designer may choose to
keep the marker inside, for example, to eliminate the need to have enough whitespace on the left
side. Also, replacing the list marker with your own custom marker can visually enhance this recipe.
For example, Figure 5-18 shows arrows rather than the default bullet.

Figure 5-18. Custom marker inside the list item

See Also

The CSS 2.1 specification for list-style-position at
http://www.w3.org/TR/CSS21/generate.html#propdef-list-style-position.

http://www.w3.org/TR/CSS21/generate.html#propdef-list-style-position

Chapter 6. Links and Navigation
Section 6.0. Introduction

Recipe 6.1. Removing Underlines from Links (and Adding Other Decorations)

Recipe 6.2. Changing Link Colors

Recipe 6.3. Changing Link Colors in Different Sections of a Page

Recipe 6.4. Placing an Icon at the End of the Link

Recipe 6.5. Changing Cursors

Recipe 6.6. Creating Rollovers Without JavaScript

Recipe 6.7. Creating Text Navigation Menus and Rollovers

Recipe 6.8. Building Horizontal Navigation Menus

Recipe 6.9. Building a Navigation Menu with Access Keys

Recipe 6.10. Creating Breadcrumb Navigation

Recipe 6.11. Creating Image-Based Rollovers

Recipe 6.12. Creating Collapsible Menus

Recipe 6.13. Creating Contextual Menus

Recipe 6.14. Making Tool Tips with the Title Attribute

Recipe 6.15. Designing a Dynamic Visual Menu

Recipe 6.16. Apply Styles Dynamically to a Web Page

6.0. Introduction

Without links, the point of the Web would be lost.

Links let you to follow a trail of information from one web page to another, from one idea to another,
regardless of where in the world the site's server is located.

In 1996, web usability expert Jakob Nielsen listed the use of nonstandard link colors as one of the top
ten mistakes in web design (see http://www.useit.com/alertbox/9605.html). However, his advice to
use blue for the link color for pages that the user hasn't visited and to use purple or red links to
represent previously visited pages, came from consistency concerns, not aesthetics.

With CSS, the Web isn't an either-or proposition. Links being an essential part of the World Wide Web
can be both consistent and visually pleasing.

This chapter shows you how to improve aesthetics by changing the link styles. You'll learn everything
from how to remove the underline from links to how to change cursors, create rollovers without the
need for JavaScript, create a horizontal tab menu, and much more.

http://www.useit.com/alertbox/9605.html

Recipe 6.1. Removing Underlines from Links (and Adding
Other Decorations)

Problem

Links in a web document are underlined. You want to remove the underlining (see Figure 6-1).

Figure 6-1. Links without underlines

Solution

Use the text-decoration property with the pseudo-class selector for unvisited and visited links:

a:link, a:visited {
 text-decoration: none;
}

Discussion

Use the:link and:visited pseudo-classes to apply styles to links within a web document. The :link
pseudo-class applies to links that the user has not visited. The :visited pseudo-class corresponds to
links that the user has visited.

The text-decoration property can take up to five settings; they are listed in Table 6-1.

Table 6-1. Text-decoration settings

Text-decoration values Result

 underline A line is placed beneath the text.

 overline A line is placed above the text.

 blink The text flashes.

 line-through

A line is placed through the middle of
the text.

 none No effect is associated with the text.

These text-decoration properties are often used to enhance the presentation of a web page. Instead
of having all the links in a document underlined, designers set text-decoration to none along with
changing the link's background color, text color, or both:

a:link, a:visited {
 text-decoration: none;
 background-color: red;
 color: white;
}

In order to complement the design for those site visitors who may be color-blind and therefore may
not be able to determine a link color from the default color of regular HTML text, designers also set
the weight of the font to bold:

a:link, a:visited {
 font-weight: bold;
 text-decoration: none;
 color: red;
}

The value of line-through may be an interesting element to add to a page design and use to indicate
that a link has already been visited by a user, like an item scratched off a to-do list (see Figure 6-2):

 a:link {
 font-weight: bold;
 text-decoration: none;
 color: red;
}
a:visited {
 font-weight: bold;
 text-decoration: line-through;
 color: black;
}

Figure 6-2. Visited link is crossed out

See Also

The CSS 2.1 specification for the text-decoration property at
http://www.w3.org/TR/CSS21/text.html#propdef-text-decoration, Jakob Neilson's updated "Design
Guidelines for Visualizing Links" at http://www.useit.com/alertbox/20040510.html.

http://www.w3.org/TR/CSS21/text.html#propdef-text-decoration
http://www.useit.com/alertbox/20040510.html

Recipe 6.2. Changing Link Colors

Problem

You want to change the colors of the links.

Solution

Use these pseudo-classes in this order: :link, :visited, :hover, and :active:

body {
 color: #99ffff;
}
a:link {
 color: #33ccff;
}
a:visited {
 color: #cecece;
}
a:hover {
 color: #336666;
}
a:active {
 color: #339999;
}

Discussion

The hyperlink pseudo-classes are equal in terms of priority within the cascade, so avoid the conflict
by listing the selectors in the order: link, visited, hover, and active. The mnemonic device
commonly used to remember the order is "LoVe/HAte."

A visited or an unvisited link can enter hover and active state at the same time. Since hyperlink
pseudo-classes have the same ranking, the one listed last is what the user sees and that's why in
some cases :hover won't work. When :hover appears before :active or :visited, then these hide the
hover state based on the cascading rules.

See Also

The CSS 2.1 specification for the dynamic pseudo-classes: :hover, :active, and :focus at

http://emphasis.w3.org/TR/CSS21/selector.html#dynamic-pseudo-classes; Eric Meyer on link
specificity at http://www.meyerweb.com/eric/css/link-specificity.html 7.

http://emphasis.w3.org/TR/CSS21/selector.html#dynamic-pseudo-classes
http://www.meyerweb.com/eric/css/link-specificity.html 7

Recipe 6.3. Changing Link Colors in Different Sections of
a Page

Problem

You want to apply different links to the main text and the navigation.

Solution

First, wrap sections of the page with div elements and different attribute values:

<div id="nav">
 [...]
</div><!-- end -->
<div id="content">
 [...]
</div><!-- end -->

Then use descendant selectors with ID selectors along and the LV/HA method discussed in Recipe 6.2
to isolate different link styles to different areas of a web page:

/* navigation link design */
#nav a:link {
 color: blue;
}
#nav a:visited {
 color: purple;
}
/* content link design */
#content a:link {
 color: white;
}
#content a:visited {
 color: yellow;
}

Discussion

The use of the ID selector to identify sections of the web page opens the door for applying different

styles to the same elements or selectors. Rely on the same selectors to create links with different
styles by section. For more on ID selector, see Recipe 1.2. Applying LV/HA mnemonic order to the
links also ensures your links operate as expected.

See Also

The W3Schools Tutorial on CSS Pseudo-classes at
http://www.w3schools.com/css/css_pseudo_classes.asp, or the Backstage tutorial on multiple link
colors at http://www.metalusions.com/backstage/articles/2/.

http://www.w3schools.com/css/css_pseudo_classes.asp
http://www.metalusions.com/backstage/articles/2/

Recipe 6.4. Placing an Icon at the End of the Link

Problem

You to display icons at the end of an inline link like the ones in Figure 6-3 .

Figure 6-3. Icons are placed at the end of the links

Solution

Adding a class attribute to the links, place two values for the attributes. One value is icon while the
other value describes the nature of the link. In this case, the links are for an email address and a
search engine:

Quote me on an estimate
feline nolo

Provide room for the icons at the end of the links by using a class selector and the :after pseudo-

class with the width , margin and height properties:

a {
 text-decoration: none;
 font-weight: bold;
}
#content a.icon:after {
 display: block;
 width: 17px;
 height: 15px;
 margin: 2px;
}

To place images at the end of links, use a different CSS rule for each icon.

Using the class selector and :after pseudo-class, the icons of an envelope and a magnifying glass are
placed at the end of the links in two CSS rules:

#content a.email:after {
 content: url(email.gif);
}
#content a.search:after {
 content: url(search.gif);
}

Discussion

The setup for this solution allows for the easy editing of the design. If an icon (for email, it's a Word
document icon) needs to be added at the end of a link, first add the value document within the class
attribute:

feline nolo

Then add a new CSS rule to place the icon:

#content a.document:after {
 content: url(doc.gif);
}

There is another method that wouldn't require the additional markup of a class attribute and value. For
example, use attribute selectors as discussed in Recipe 1.2 to place icons for email addresses at the
end of links:

 #content a[href|="mailto"]:after {
 content: url(email.gif);
}

However, support for attributes selectors is limited. Also, since the solution uses content generation,
it's not suitable for Internet Explorer for Windows.

See Also

Dave Shea's presentation on adding an icon with a background image in an inline link at
http://www.mezzoblue.com/presentations/2006/sxsw/css/q1.html ; and an explanation about why
this fails in IE at http://www.brunildo.org/test/InlineBlockLayout.html .

http://www.mezzoblue.com/presentations/2006/sxsw/css/q1.html

Recipe 6.5. Changing Cursors

Problem

You want to change the cursor to an icon representation of a timepiece when the mouse pointer rolls over a link, as in Figure 6-4 .

Figure 6-4. The cursor changes to a timepiece

Solution

Use the cursor property to change the cursor:

a:link, a:visited {
 cursor: move;
}

Discussion

The cursor property can take multiple values, as listed in Table 6-2 . However, support for these values varies from browser to browser. Opera 7 and Internet
Explorer for Windows 5.5+ support the cursor property. Although Netscape Navigator 6+ supports most values, the browser doesn't support the uri . Also, in
Navigator, the cursor property isn't inherited to child elements from the parent.

Table 6-2. Cursor property values

Value Description Sample

 auto

The cursor
changes to
an image
that is
determined
by the
browser.

 crosshair

Two
perpendicular
lines
intersecting
in the
middle; this
is similar to
an enlarged
plus sign.

 default

Platform-
dependent
cursor that in
most
browsers is
rendered as
an arrow.
Browser
vendors or
computer
operating
systems may
dictate a
different
cursor style.

 pointer

Used to
illustrate that
the mouse
pointer is
over a link;
sometimes
rendered as
a hand with
an extended
index finger.
Browser

Value Description Sample Browser
vendors or
computer
operating
systems may
dictate a
different
cursor style.

 move

Illustrates
that an
element can
be moved;
sometimes
rendered as
a crosshair
with
arrowheads
on the tips or
a five-
fingered
hand.

 e-resize, ne-resize, nw-resize, n-resize, se-resize, sw-resize, s-resize, w-resize

An arrow
illustrating
the direction
in which a
side can be
moved; for
example, se-
resize

indicates a
southeast
direction.

 text

Illustrates
that text can
be selected;
sometimes
rendered like
an I-beam
commonly
used in word
processing
programs.

Illustrates

Browser
vendors or
computer
operating
systems may
dictate a
different
cursor style.

 move

Illustrates
that an
element can
be moved;
sometimes
rendered as
a crosshair
with
arrowheads
on the tips or
a five-
fingered
hand.

 e-resize, ne-resize, nw-resize, n-resize, se-resize, sw-resize, s-resize, w-resize

An arrow
illustrating
the direction
in which a
side can be
moved; for
example, se-
resize

indicates a
southeast
direction.

 text

Illustrates
that text can
be selected;
sometimes
rendered like
an I-beam
commonly
used in word
processing
programs.

Illustrates

Value Description Sample

 wait

Illustrates
that the
computer is
busy;
sometimes
rendered as
an hourglass.

 progress

Illustrates
that the
computer is
busy, but the
user still can
interact with
the browser.

 help

Illustrates
that
information
or help is
available,
often at the
destination of
the link;
sometimes
rendered as
a question
mark or an
arrow with a
question
mark.

 <uri>

The cursor
can be
swapped
with an
externally
defined
cursor like an
image,
Windows
cursor file,
SVG cursor,
etc.

N/A

The code to include a custom cursor is similar to that used to set a background image on an element:

 wait

Illustrates
that the
computer is
busy;
sometimes
rendered as
an hourglass.

 progress

Illustrates
that the
computer is
busy, but the
user still can
interact with
the browser.

 help

Illustrates
that
information
or help is
available,
often at the
destination of
the link;
sometimes
rendered as
a question
mark or an
arrow with a
question
mark.

 <uri>

The cursor
can be
swapped
with an
externally
defined
cursor like an
image,
Windows
cursor file,
SVG cursor,
etc.

N/A

The code to include a custom cursor is similar to that used to set a background image on an element:

a.help:link, a.help:visited{
 cursor: url(bewildered.gif);
}

While employing different cursors, most users will find changes to their routine surfing habits somewhere between a whimsical annoyance and an extreme
aggravation, depending on how excessive your implementation is. Therefore, change the cursor a user is accustomed to seeing at your own risk.

See Also

The CSS 2.1 specification for the cursor property at http://www.w3.org/TR/CSS21/ui.html#propdef-cursor ; and examples of the various cursors in action at
http://www.zimmertech.com/tutorials/css/20/changing-cursors-tutorial.php .

http://www.zimmertech.com/tutorials/css/20/changing-cursors-tutorial.php

Recipe 6.6. Creating Rollovers Without JavaScript

Problem

You want to create a simple rollover effect without using JavaScript to swap images.

Solution

Use the :hover and :active pseudo-classes to create the rollover:

a:link {
 color: #777;
 text-decoration: none;
}
a:visited {
 color: #333;
 text-decoration: none;
}
a:link:hover, a:visited:hover {
 color: #777;
 background-color: #ccc;
}
a:link:active, a:visited:active {
 color: #ccc;
 background-color: #ccc;
}

Discussion

The :hover pseudo-class mimics the common JavaScript event onmouseover. Instead of executing a
function in JavaScript, when a user rolls over a link with :hover, a different set of styles is applied to
the link.

With the selectors having the same specificity, selectors written out of order may stop one of the
other styles from appearing. Avoid this common problem with LV/HA.

Although :hover and :active can be applied to any element, they are commonly used on links. Note
that browser support for :hover and :active is nonexistent in Netscape Navigator 4.

In the solution, the two pseudo-classes make sure that the rollover effects occur only on anchor links.
Without :hover and :active, modern browsers could legally apply the rollover effects on any anchor
elements, as you see in this code and in Figure 6-5:

Figure 6-5. An unwanted rollover effect on a heading

<h2>Li Europan lingues</h2>

See Also

The CSS 2.1 specification for : active and :hover at
http://www.w3.org/TR/CSS21/selector.html#x36; an explanation about links and specificity at
http://www.meyerweb.com/eric/css/link-specificity.html.

http://www.w3.org/TR/CSS21/selector.html#x36;
http://www.meyerweb.com/eric/css/link-specificity.html

Recipe 6.7. Creating Text Navigation Menus and Rollovers

Problem

You have a list of links, but want to build an elegant menu like the one in Figure 6-6.

Figure 6-6. Set of stylized links

Solution

First, mark up the list of links in an unordered list so that they wrap around a div element with an id
attribute:

<div id="navsite">
 <p>Site navigation:</p>

 Home
 About
 Archives
 Writing
 Speaking
 Contact

</div>

Next, use the border property on the anchor elements to create the bulk of the design:

#navsite p {
 display: none;
}
#navsite {
 font-family: Verdana, Helvetica, Arial, sans-serif;
 font-size: 0.7em;
 font-weight: bold;
 width: 12em;
 border-right: 1px solid #666;
 padding: 0;
 margin-bottom: 1em;
 background-color: #9cc;
 color: #333;
}
#navsite ul {
 list-style: none;
 margin: 0;
 padding: 0;
}
#navsite ul li {
 margin: 0;
 border-top: 1px solid #003;
}
#navsite ul li a {
 display: block;
 padding: 2px 2px 2px 0.5em;
 border-left: 10px solid #369;
 border-right: 1px solid #69c;
 border-bottom: 1px solid #369;
 background-color: #036;
 color: #fff;
 text-decoration: none;
 width: 100%;
}
html>body #navsite ul li a {
 width: auto;
}
#navsite ul li a:hover {
 border-left: 10px solid #036;
 border-right: 1px solid #69c;
 border-bottom: 1px solid #369;
 background-color: #69f;
 color: #fff;
}

Discussion

A menu makes it easier for visitors to navigate your site. To help the user find the navigation menu,
stylize the links so they stand out from the regular text. Do this by using the id selector when writing
the CSS rules. As the solution shows, successfully creating the menu requires some browser bug
workarounds as well as straightforward CSS design implementation.

In the division marked with the div, one line of text labels the set of links as navigational links:

<p>Site navigation:</p>

If the user's browser doesn't have CSS support, the line of text is visible. To hide the text from CSS-
enabled browsers, set the display to none:

#navsite p {
 display: none;
}

The next step is to stylize the div element that encapsulates the set of menu links. In this CSS rule,
styles are set for the links to inherit properties set on the div element. Also, set the values of the
width, border-right, padding, and margin-bottom properties to keep the menu from bunching up:

#navsite {
 font-family: Verdana, Helvetica, Arial, sans-serif;
 font-size: 0.7em;
 font-weight: bold;
 width: 12em;
 border-right: 1px solid #666;
 padding: 0;
 margin-bottom: 1em;
}

The next CSS rule eliminates any potential problems with the indentation of lists (see Recipe 5.2) by
setting the margin and padding to 0 as well as by eliminating any list markers:

#navsite ul {
 list-style: none;
 margin: 0;
 padding: 0;
}

In the following rule you're making sure margins aren't applied to each list item. This CSS rule also
places a one-pixel border at the top of the list item. This design element helps reinforce the
separation of the list items:

#navsite ul li {
 margin: 0;
 border-top: 1px solid #003;
}

The next rule sets the styles for the links. By default, links are inline elements. The links need to be
rendered as block-level elements so that the entire part of the "link design" becomes clickable, and
not just the text. Setting the display property to block accomplishes this transformation.

Use the following declarations to stylize the appearance of the borders, text color, text decoration,
and width:

#navsite ul li a {
 display: block;
 padding: 2px 2px 2px 0.5em;
 border-left: 10px solid #369;
 border-right: 1px solid #69c;
 border-bottom: 1px solid #369;
 background-color: #036;
 color: #fff;
 text-decoration: none;
 width: 100%;
}

The final declaration for the links sets the width at 100%. This rule was set to make sure Internet
Explorer for Windows makes the entire area clickable. The drawback with this rule is that it causes
problems in Internet Explorer 5 for Macintosh and in Netscape Navigator 6+. To work around this
problem, use the child selector, which Internet Explorer for Windows can't process (see Recipe 11.2),
to reset the width of the link:

html>body #navsite ul li a {
 width: auto;
}

The last CSS rule states the styles for the rollover effect of the links:

#navsite ul li a:hover {
 border-left: 10px solid #036;
 border-right: 1px solid #69c;
 border-bottom: 1px solid #369;
 background-color: #69f;
 color: #fff;
}

An unordered list is a perfect way to structure a menu of links in both theory and practical
application. On the one hand, a set of links is a set of unordered items. And using unordered lists for
navigation creates a solid structure for your web document based on both logic and semantically
correct markup.

On the other hand, with the links set in an unordered list, it's easier to style the links into a menu
presentation than it is to style a series of div elements:

<div id="navsite">
 <p>Site navigation:</p>

 <div>Home</div>
 <div>About</div>
 <div>Archives</div>
 <div>Writing</div>
 <div>Speaking</div>
 <div>Contact</div>
</div>

See Also

"CSS Design: Taming Lists" by Mark Newhouse at http://www.alistapart.com/articles/taminglists/;
the article/tutorial "Semantics, HTML, XHTML, and Structure" by Shirley E. Kaiser at
http://brainstormsandraves.com/articles/semantics/structure/.

http://www.alistapart.com/articles/taminglists/
http://brainstormsandraves.com/articles/semantics/structure/

Recipe 6.8. Building Horizontal Navigation Menus

Problem

You want to create a horizontal navigation menu out of an unordered set of links; Figure 6-7 shows
the default, and Figure 6-8 shows what you want.

Figure 6-7. The default appearance of the links

Solution

First create a properly constructed set of unordered links:

 <div id="navsite">
 <h5>Site navigation:</h5>

 Home
 About
 Archives
 Writing
 Speaking
 Contact

</div>

Figure 6-8. The tab-based navigation

Then set the CSS rules for the navigation structure, making sure to set the display property of the
list item to inline:

#navsite h5 {
 display: none;
}
#navsite ul {
 padding: 3px 0;
 margin-left: 0;
 border-bottom: 1px solid #778;
 font: bold 12px Verdana, sans-serif;
}
#navsite ul li {
 list-style: none;
 margin: 0;

 display: inline;
}
#navsite ul li a {
 padding: 3px 0.5em;
 margin-left: 3px;
 border: 1px solid #778;
 border-bottom: none;
 background: #dde;
 text-decoration: none;
}
#navsite ul li a:link {
 color: #448;
}
#navsite ul li a:visited {
 color: #667;
}
#navsite ul li a:link:hover, #navsite ul li a:visited:hover {
 color: #000;
 background: #aae;
 border-color: #227;
}
#navsite ul li a#current {
 background: white;
 border-bottom: 1px solid white;
}

Discussion

The first part of the solution hides the heading. This is done because the visual representation of the
tab navigation design is enough to inform users that these are navigation links:

#navsite h5 {
 display: none;
}

The next rule defines the padding and margin for the box that is created by the unordered list
element, ul. The line that stretches across the bottom of the folder tabs is drawn by the border-
bottom property (see Figure 6-9):

#navsite ul {
 padding: 3px 0;
 margin-left: 0;
 border-bottom: 1px solid #669;
 font: bold 12px Verdana, Helvetica, Arial, sans-serif;
}

Figure 6-9. The line the navigation tabs rest upon

The declaration that makes this horizontal navigation work with the unordered list is display: inline
for the list item:

#navsite ul li {
 list-style: none;
 margin: 0;
 display: inline;
}

Instead of stacking the list items on top of each other by default, the browser now lays out the list
items as it would text, images, and other inline elements (see Figure 6-10).

Figure 6-10. The list spread out horizontally

To create the look of the folder tab, use the border property in the following CSS rule:

#navsite ul li a {
 padding: 3px 0.5em;
 margin-left: 3px;
 border: 1px solid #669;
 border-bottom: none;
 background: #ccf;
 text-decoration: none;
}

The first border property is a shorthand property that dictates a solid, one-pixel border around the
link. However, immediately following the border property is the border-bottom property, which tells
the browser not to display a border beneath the link.

The value of the border-bottom property is displayed over the border shorthand property (see Figure
6-11). This overwriting occurs because the border-bottom declaration overrides the values in the
border declaration because of the order in which they are declared.

After creating the look of the border tab, set the color of the text links and rollover states:

#navsite ul li a:link {
 color: #339;
}
#navsite ul li a:visited {
 color: #666;
}
#navsite ul li a:link:hover, #navsite ul li a:visited:hover {
 color: #000;

 background: #aae;
 border-color: #336;
}

Figure 6-11. The tabs appear

The final CSS rule defines how the "current" link appears. This style is applied to the link that
represents the page being viewed by the user (see Figure 6-12):

#navsite ul li a#current {
 background: white;
 border-bottom: 1px solid white;
}

Figure 6-12. The look of the current link

See Also

The original tab menu bar (as well as other navigation styles) at
http://css.maxdesign.com.au/listamatic/horizontal05.htm.

http://css.maxdesign.com.au/listamatic/horizontal05.htm

Recipe 6.9. Building a Navigation Menu with Access Keys

Problem

You want to create a navigation menu with access keys.

Solution

Create a set of unordered links with an accesskey within the anchor elements:

<div id="navsite">

 Home
 About
 Archives
 Writing
 Speaking
 Contact

</div>

Next, add a span element around the letters you want to identify as access keys:

<div id="navsite">

 Home
 About
 Archives
 Writing
 Speaking
 Contact

</div>

Then style the access keys through a class selector (see Figure 6-13):

.akey {
 text-decoration: underline;
}

Figure 6-13. The look of the current link

Discussion

Access keys allow site visitors to navigate a web site easily without the use of a mouse. In the
Solution, access keys were assigned to the navigation elements. Once pressed, the user will navigate
to the page specified in the link.

If used consistently, a site visitor may use the same set of access keys to navigate in order to create
a cohesive user experience.

Access keys are supposed to work in Internet Explorer 4+ for Windows, Mozilla, Firefox, Netscape
Navigator 6+, Safari, and Opera 7+.

One of the obstacles for access keys is that there isn't a standard set of keys associated with each
link. For example, would using the letter h be better for "Home Page" (as done in this example) or
would the letter m be better to represent "Main Page"?

See Also

The HTML 4 specification for access keys at http://www.w3.org/TR/html4/interact/forms.html#h-
17.11.2 ; "Accesskeys: Unlocking Hidden Navigation" by Stuart Robertson at
http://alistapart.com/articles/accesskeys/ .

http://alistapart.com/articles/accesskeys/

Recipe 6.10. Creating Breadcrumb Navigation

Problem

You want to use a nesting listing like the one in Figure 6-14 to create a line of breadcrumb navigation
links, which is a set of links that lead back to the home page (see Figure 6-15).

Figure 6-14. The default rendering of the nested listing

Figure 6-15. The breadcrumb trail

Solution

The first step is to create a properly constructed set of nested, unordered links that represent the
page's location in the site:

<div id="crumbs">
 <h3>Location:</h3>

 Home

 Writing

 Books

 CSS Cookbook

</div>

Now set the display property of both the ul and the li of the lists:

#crumbs {
 background-color: #eee;
 padding: 4px;
}
#crumbs h3 {
 display: none;
}
#crumbs ul {
 display: inline;
 padding-left: 0;
 margin-left: 0;
}
#crumbs ul li {
 display: inline;
}
#crumbs ul li a:link {
 padding: .2em;
}

Within each nested list, place a small background image of an arrow to the left of the link:

crumbs ul ul li{
 background-image: url(arrow.gif);
 background-repeat: no-repeat;
 background-position: left;
 padding-left: 12px;
}

Discussion

Based on the fairy tale, "Hansel and Gretel," a breadcrumb trail is used to help people find their way
home. On the Web, the breadcrumb trail illustrates a path to the page the user is viewing (see Figure
6-16).

Figure 6-16. An example of a breadcrumb trail

The solution could drop the background-image property if more browsers supported the :before
pseudo-element. The solution would then incorporate another CSS rule (see Recipe 8.9), like so:

#crumbs ul ul li:before {
 content: url(arrow.gif);
}

As of this writing, only Firefox, Safari, Netscape Navigator 6+, and Opera 5+ support the :before
pseudo-element.

See Also

http://www.surlalunefairytales.com/hanselgretel/index.html to read an annotated version of Hansel
and Gretel; a research paper into the effectiveness of breadcrumb navigation at
http://psychology.wichita.edu/surl/usabilitynews/52/breadcrumb.htm.

http://www.surlalunefairytales.com/hanselgretel/index.html
http://psychology.wichita.edu/surl/usabilitynews/52/breadcrumb.htm

Recipe 6.11. Creating Image-Based Rollovers

Problem

You want image-based rollovers to replace text links.

Solution

First, wrap the text inside the anchor element in a span:

 Homepage

Next, instead of JavaScript, use the background-image property within the pseudo-class selectors
:hover and :active to swap the images (see Figure 6-17):

Figure 6-17. The link with default, rollover, and active states

a span {
 display: none;
}
a:link {
 display: block;
 width: 125px;
 height: 30px;
 background-image: url(btn.gif);
 background-repeat: no-repeat;
 background-position: top left;
}
a:link:hover {
 display: block;
 width: 125px;
 height: 30px;
 background-image: url(btn_roll.gif);
 background-repeat: no-repeat;
 background-position: top left;
}

a:link:active {
 display: block;
 width: 125px;
 height: 30px;
 background-image: url(btn_on.gif);
 background-repeat: no-repeat;
 background-position: top left;
}

Discussion

Replacing text with an image has five benefits:

It separates the text from the presentation. The image that contains more elaborately
formatted type is part of the presentation and therefore controlled by a style, while the content
in the markup remains pure text.

1.

An image heading can be modified across a whole site by one change of the style sheet.2.

This method works for alternative styles and style sheet switching. With a span element inside
an element, it is possible to hide HTML text and let a design element, such as a rollover image,
show as a background image.

3.

If a user doesn't have CSS enabled in his browser, the default HTML text will display instead,
sparing the user from having to download unneeded images.

4.

The solution is cleaner and simpler than one that involves JavaScript.5.

You also can use this technique for page elements that don't require a rolloverfor example, inserting
an image to replace heading text to ensure that a specific font that isn't commonly found on people's
computers is displayed as an image. To do so, first set up the markup (see Figure 6-18):

<h2 id="headworld">Hello, World!</h2>

Figure 6-18. Default rendering of heading

Then set the following CSS rules to insert the image (see Figure 6-19):

h2#headworld span {
 display: none;
}
h2#headworld {
 width: 395px;
 height: 95px;
 background-image: url(heading.gif);
 background-repeat: no-repeat;
 background-position: top left;
}

Figure 6-19. Default rendering of heading

Many people refer to this method as the Fahrner Image Replacement (FIR) method, named after
Todd Fahrner.

A drawback to this solution concerns screen readers, which are programs that make computers
accessible to blind or severely visually impaired people. Certain screen readers won't read elements
set to display: none. For more information, read "Facts and Opinion About Fahrner Image
Replacement" at http://www.alistapart.com/articles/fir /.

An alternative to this solution is the Leahy-Langridge Image Replacement (LIR) method. Developed
independently by Seamus Leahy and Stuart Langridge, the LIR method pushes the text out of view. A
benefit for using this technique is that an extra span element isn't required in order to hide the text.
For example, the HTML for a heading is basic:

 <h2 id="headworld">Hello, World!</h2>

The image for the heading comes through the background because the CSS rule sets the padding to
the exact height of the image header. So, the height property is set to 0:

h2#headworld {
 /* The width of the image */
 width: 395px;
 /* The height of the image is the first padding value */
 padding: 95px 0 0 0;
 overflow: hidden;
 background-image: url(heading.gif);
 background-repeat: no-repeat;
 voice-family: "\"}\"";
 voice-family: inherit;
 height /**/: 95px;
 height: 0px !important;
}

The last four lines of the CSS rule are needed to work around Internet Explorer for Windows' poor
box-model support. Therefore, Internet Explorer for Windows gets a height value of 95px, while the
other browsers receive zero pixels.

Another method for creating an image-based rollover is performed by the background-position
property. Known as the Pixy method, the technique involves attaching all three rollover states into
one image and then moving the position of the image with the background-position property (see
Figure 6-20):

a span {
 display: none;
}
a:link, a:visited {
 display: block;
 width: 125px;
 height: 30px;
 background-image: url(btn_omni.gif);
 background-repeat: no-repeat;

http://www.alistapart.com/articles/fir

 background-position: 0 0;
}
a:link:hover, a:visited:hover {
 display: block;
 width: 125px;
 height: 30px;
 background-image: url(btn_omni.gif);
 background-repeat: no-repeat;
 /* move the image 30 pixels up */
 background-position: 0 -30px;
}
a:link:active, a:visited:active {
 display: block;
 width: 125px;
 height: 30px;
 background-image: url(btn_omni.gif);
 background-repeat: no-repeat;
 /* move the image 60 pixels up */
 background-position: 0 -60px;
}

Figure 6-20. Showing a portion of the rollover image

The drawback of almost all current image replacement techniques is that users
see nothing if images are turned off, disabled, or simply don't load while the
CSS is still supported. It is important to research and use the method that's
best for your situation. Avoid replacing images in important titles.

See Also

Recipe 3.9 for replacing HTML text with an image; another demonstration of the LIR technique by
Seamus P. H. Leahy at http://www.moronicbajebus.com/playground/cssplay/image-replacement/;
an explanation on how to create faster CSS-enabled rollovers without having to preload images at
http://wellstyled.com/css-nopreload-rollovers.html; a rundown of the FIR technique at
http://www.stopdesign.com/also/articles/replace_text/.

http://www.moronicbajebus.com/playground/cssplay/image-replacement/
http://wellstyled.com/css-nopreload-rollovers.html
http://www.stopdesign.com/also/articles/replace_text/

Recipe 6.12. Creating Collapsible Menus

Problem

You want to hide a set of links and give the user a way to reveal those links when needed. For
example, rather than two bullet lists of links, hide one (like in Figure 6-21) and let the user reveal it
by clicking on a plus sign, "+", as in Figure 6-22.

Figure 6-21. Preventing the second set of links from displaying

Figure 6-22. The links displayed when the link on the heading is clicked

Solution

First, set up the HTML links to be collapsible with an id attribute in the ul element:

<h5>Interesting Links (+/-)</h5>
<ul id="menulink">
 O'Reilly
 Slashdot
 Apple
 Microsoft
 Mozilla

Then create a CSS rule to prevent the second set of links from displaying when the page is first
loaded:

#menulink {
 display: none;
}

Now add the following JavaScript function that toggles the list of links by swapping the value of
display from block to none, or vice versa:

function kadabra(zap) {
 if (document.getElementById) {
 var abra = document.getElementById(zap).style;
 if (abra.display == "block") {
 abra.display = "none";
 } else {
 abra.display = "block";
 }
 return false;
 } else {
 return true;
 }
}

Insert an anchor element with a JavaScript onclick event around the heading. When a user clicks the
link, the click triggers the JavaScript function:

<h5>
Interesting Links (+/-)</h5>

Discussion

The JavaScript in this function uses getElementbyId to toggle the display of the list of menu links.
This technique can be scaled to show multiple menus or portions of a web document without adding
additional lines of JavaScript:

<p>Are you sure you want to know the truth? If so,
follow this
link.</p>
<p id="spoiler">Darth Vadar was Luke's father!</p>

Note that this technique works in Netscape Navigator 6+, Opera 7.5+, Internet Explorer for Windows
5+, and Safari.

See Also

http://www.mozilla.org/docs/dom/domref/dom_doc_ref48.html for more information on
getElementbyId.

http://www.mozilla.org/docs/dom/domref/dom_doc_ref48.html

Recipe 6.13. Creating Contextual Menus

Problem

You have a navigation menu, created with Recipe 6.7 and you want to highlight the current page's
location on the menu, as in Figure 6-23.

Figure 6-23. The navigation set of links

Solution

Place an id attribute in the body element of the web document:

<body id="pagespk">

Also, place id attributes in the anchor elements for each link in the menu:

<div id="navsite">
 <h5>Site navigation:</h5>

 Home
 About
 Archives
 Writing
 Speaking
 Contact

</div>

With CSS, place two id selectors into one descendant selector to finish the menu (see Figure 6-24):

#pagespk a#linkspk {
 border-left: 10px solid #f33;
 border-right: 1px solid #f66;
 border-bottom: 1px solid #f33;
 background-color: #fcc;
 color: #333;
}

Figure 6-24. The current link is different from the rest of the links

Discussion

If you have a small site, you can show a link in a set of navigation links representing the current page
by stripping out the anchor link for that page:

<div id="navsite">
 <h5>Site navigation:</h5>

 <a href="/"Home
 About
 Archives
 Writing
 Speaking
 Contact

</div>

For larger sites that may contain secondary menus, stripping out the link tags on each page increases
production and maintenance time. By marking up the links appropriately, the links can be called from
a server-side include, and then you can edit the CSS rules that control the style of the navigation
links as needed.

To expand the one CSS to include all the links in the navigation menu, group the descendant
selectors by using a comma and at least one space:

#pagehom a#linkhom:link,
#pageabt a#linkabt:link,
#pagearh a#linkarh:link,
#pagewri a#linkwri:link,
#pagespk a#linkspk:link,
#pagecnt a#linkcnt:link {
 border-left: 10px solid #f33;
 border-right: 1px solid #f66;
 border-bottom: 1px solid #f33;
 background-color: #fcc;
 color: #333;
}

In each web document, make sure to put the appropriate id attribute in the body element. For
example, for the home or main page of the site, the body element is <body id="pagehom">.

See Also

The CSS 2.1 specification on descendant selectors at
http://www.w3.org/TR/CSS21/selector.html#descendant-selectors.

http://www.w3.org/TR/CSS21/selector.html#descendant-selectors

Recipe 6.14. Making Tool Tips with the Title Attribute

Problem

You want tool tips to appear on a hovered a link.

Solution

Use the title attribute within the link tag to create a tool tip like the one in Figure 6-25 :

Figure 6-25. The value of the title attribute is displayed as a tool tip

...

Discussion

The tool tip can be applied to almost any element within a web page to add enhanced accessibility.
Try using the tool tip technique on table cells and form input elements as well as links.

See Also

The HTML 4.1 specification for the title attribute at
http://www.w3.org/TR/html4/struct/global.html#h-7.4.3 .

http://www.w3.org/TR/html4/struct/global.html#h-7.4.3

Recipe 6.15. Designing a Dynamic Visual Menu

Problem

You want to build a curved tab navigation menu that works even when text is resized; Figure 6-26
shows the default.

Figure 6-26. The dynamic folder tab navigation

Solution

First write the markup for the navigation menu:

<div id="header">
 <h2>Personal Site dot-com</h2>
 <h5>Site navigation:</h5>

 Home
 About
 Archives

 Writing
 <li id="current">Speaking
 Contact

</div>

Then create two folder tab images: one tab for anchor links and another tab to represent the current
page viewed by the user. Split the folder tab image into two images (see Figure 6-27).

Figure 6-27. The folder tab image split in two; note the curves in the upper
corners of the images

Then place the right side of the folder tab in the background of the list item:

#header li {
 float: left;
 background-image: url(tab_right.gif);
 background-repeat: no-repeat;
 background-position: right top;
 margin:0;
 padding: 0;
}

Place the left side of the folder tab in the background of the anchor element:

#header a {
 display: block;
 background-image: url(tab_left.gif);
 background-repeat: no-repeat;
 background-position: left top;
 padding: 5px 15px;
 color: #ccc;
 text-decoration: none;
 font-family: Georgia, Times, "Times New Roman", serif;

}

Assign a custom folder tab to represent the current web document being viewed:

#header #current {
 background-image:url(tab_right_current.gif);
}
#header #current a {
 background-image:url(tab_left_current.gif);
 color: black;
}

Place the image with a line measuring one-pixel high at the bottom of the grouping.

Discussion

Keeping the text in the navigation links aids in three areas of web development:

Accessibility

Design

Maintenance

For example, users with poor eyesight can adjust the size of the text and that tabs without breaking
the design (see Figure 6-28).

Figure 6-28. The text resized

Because users can resize the text to very large settings, the background images that comprise the
folder tabs need to be large as well; otherwise, the folder tabs will break (check out Figure 6-29). In
this solution, the folder tab images have a width of 450 pixels.

Figure 6-29. Note the breaking of the tab in the Archives link

Web developers prefer this method because it lets them easily maintain the list of links. To change a
navigation label or correct a typo, developers can simply edit the HTML text without having to return
to a digital imaging program to create folder tab images.

Another benefit of this method is that the folder tabs can be designed in a more aesthetically pleasing
way. Recipe 6.8 demonstrates how to create a navigation setup with folder tabs using the border
property. This look creates a boxy or squared edge to the folder tabs. With this current recipe,
however, web developers can curve the tabs and introduce color blending for improved aesthetics.

See Also

Recipe 2.16 that uses a similar rubber-band technique to create pull quotes with images; "Sliding
Doors of CSS, Part II" at http://www.alistapart.com/articles/slidingdoors2/ , which expands on this
folder tab navigation concept.

Recipe 6.16. Apply Styles Dynamically to a Web Page

Problem

You want to change the style of elements within a web page when a user clicks on a link.

Solution

First, set up the markup with normal anchored links within the document. For this solution, the
anchored links (technically referred to as fragment identifiers) are placed within an image map:

<map name="Map" id="Map">
 <area shape="circle" coords="115,136,72" href="#mark" />
 <area shape="circle" coords="244,145,55" href="#jessica" />
 <area shape="circle" coords="340,88,58" href="#trueman" />
 <area shape="circle" coords="480,287,79" href="#katrina" />
</map>
<div class="bios">
 <dl id="katrina">
 <dt>Katrina</dt>
 <dd>...</dd>
 </dl>
 <dl id="jessica">
 <dt>Jessica</dt>
 <dd>...</dd>
 </dl>
 <dl id="trueman">
 <dt>Trueman</dt>
 <dd>...</dd>

 <dl id="mark">
 <dt>Mark</dt>
 <dd>...</dd>

</div>

Then set up CSS rules for the default styles for the web page (see Figure 6-30):

.bios dt {
 font-weight: bold;
}

.bios dd {
 margin: 0;
 padding: 0;
}

Figure 6-30. The default rendering of the web page

Then use the target pseudo-class to define the look of the elements when the user clicks on the
anchored link (see Figure 6-31):

.bios dl:target {
 background-color: #999999;
 border: 1px solid black;
 padding: 1em;
 font-weight: bold;
 line-height: 1.5;

}
.bios dl:target dt {
 font-style: italic;
 color: white;
 font-size: 1.5em;
 background-color: #cccccc;
 margin-right: 20px;
}
.bios dl:target dd {
 margin-right: 20px;
 background-color: #cccccc;
 padding: 0 1em 1em 1em;
}

Figure 6-31. The Katrina portion of the page changed style

To return the targeted element(s) back to their default style when the user clicks on another
anchored link, use the negation pseudo-class (see Figure 6-32):

.bios dl:not(:target) {
 border: none;
 padding: 0;
 font-size: .8em;
}

Figure 6-32. The Katrina portion reverted back to its default value when
another link was activated

Discussion

The : target and :not pseudo-classes are a part of the CSS 3 specification and thus aren't well-

known to most web designers. However, the selectors can perform a great deal of heavy lifting.

Pure CSS collapsible menus

By working with these selectors, the JavaScript-based solution in Recipe 6.12 can be replaced with a
few extra CSS rules. First, update the markup to add the anchor link:

<h5>
 Interesting Links
</h5>
<ul id="menulink">
 O'Reilly
 Slashdot
 Apple
 Microsoft
 Mozilla

Then set up the following CSS rules:

/* default rendering */
ul#menulink {
 display: none;
}

/* when 'targeted' */
ul:target {
 display: block;
}

/* revert back to default rendering */
ul:not(:target) {
 display: none;
}

Currently collapsible menus and :target pseudo-classes are supported in Firefox, Mozilla, Safari, and
Internet Explorer 7 for Windows.

See Also

The CSS 3 specification for the :target pseudoclass at http://www.w3.org/TR/css3-
selectors/#target-pseudo.

http://www.w3.org/TR/css3-

Chapter 7. Forms
Section 7.0. Introduction

Recipe 7.1. Modifying the Spacing Around a Form

Recipe 7.2. Setting Styles for Input Elements

Recipe 7.3. Applying Different Styles to Different Input Elements in the Same Form

Recipe 7.4. Setting Styles for textarea Elements

Recipe 7.5. Setting Styles for Select and Option Elements

Recipe 7.6. Creating a Macintosh-Styled Search Field

Recipe 7.7. Styling Form Buttons

Recipe 7.8. Creating an Image Submit Button

Recipe 7.9. Setting Up a Submit-Once-Only Button

Recipe 7.10. Creating a Submit Button That Looks Like HTML Text

Recipe 7.11. Making an HTML Text Link Operate Like a Submit Button

Recipe 7.12. Designing a Web Form Without Tables

Recipe 7.13. Designing a Two Column Form Without Tables

Recipe 7.14. Highlighting Form Fields

Recipe 7.15. Integrating Form Feedback with a Form

Recipe 7.16. Styling Access Keys in Web Forms

Recipe 7.17. Grouping Common Form Elements

Recipe 7.18. Entering Data into a Form Like a Spreadsheet

Recipe 7.19. Sample Design: A Login Form

Recipe 7.20. Sample Design: A Registration Form

7.0. Introduction

Without HTML forms we wouldn't be able to log in to web-based email accounts, order books with one
click, or trade stocks online. Although forms make the Web go around, they are ugly due the generic
way in which browsers display them.

The default rendering of online forms usually includes beveled input and textarea fields, as well as
boring-looking buttons. Such a look and feel may be acceptable if you are making a form for use on a
small intranet or on a small web site, but it is unacceptable if you want to project a professional
image.

Fortunately, with a few CSS rules, you can create forms that stand out from the pack. This chapter
helps you get straight into the techniques to create a higher quality form.

You will learn the settings for HTML user input elements such as buttons, text areas, and fields.
Another technique covered is how to set up a submit-once-only button to keep site visitors from
mistakenly sending several processes to the server. At the end of the chapter are two sample
designs: a simple login form without tables and a long registration form with tables.

Note that Appendix D serves as an excellent resource that complements this
chapter. In the appendix is a visual compendium detailing the effect of a
majority of the visual CSS properties on form elements in 10 of today's modern
browsers.

Recipe 7.1. Modifying the Spacing Around a Form

Problem

You want to modify the space around a form.

Solution

Set the margin to zero while adjusting the padding values of the form element (see Figure 7-1):

form {
 margin: 0;
 padding: 1em 0;
 border: 1px dotted red; /* set in order to see padding effect */
}

Figure 7-1. Padding is applied under the form's border

Discussion

When positioning forms into a web page design, developers find that they will need to modify the
space between the form and other page elements in the design. Typically, the most common
modification is to adjust the padding at the top and bottom of the form.

See Also

Recipe 7.2 for styling input elements.

Recipe 7.2. Setting Styles for Input Elements

Problem

You want to change the appearance of input elements' background colors. Such effects can take you
from Figure 7-2 to Figure 7-3 .

Figure 7-2. The form without styles

Figure 7-3. Styles applied to the input fields

Solution

Use a class selector to design the input elements of the form:

<h2>Simple Quiz</h2>
 <form action="simplequiz.php" method="post">
 <p>
 Are you
 <input type="radio" value="male" name="sex"
class="radioinput">
 Male or
 <input type="radio" value="female" name="sex"
class="radioinput">
 Female?
 </p>
<p>
 What pizza toppings do you like? <input type="checkbox" name=""
value="l" class="checkbxinput"> Pepperoni <input type="checkbox"

name="" value="mushrooms" class="checkbxinput"> Mushrooms <input
type="checkbox" name="" value="pineapple" class="checkbxinput">
 Pineapple
 </p>
 <label for="question1">Who is buried in Grant's tomb?</label>
 <input type="text" name="question1" id="question1"
class="textinput"
value="Type answer here" />

 <label for="question2">In what country is the Great Wall of
China Located?</label>
 <input type="text" name="question2" id="question2"
class="textinput"
value="Type answer here" />

 <label for="password">What is your password?</label>
 <input type="password" name="password" id="password"
class="pwordinput"
value="" />

 <input name="reset" type="reset" id="reset" value="Reset" />
 <input type="submit" name="Submit" value="Submit"
class="buttonSubmit" />
</form>

Then apply CSS rules to change the presentation of the input elements:

.textinput {
 margin-bottom: 1.5em;
 width: 50%;
 color: #666;
 background-color: #ccc;
}
.pwordinput {
 color: white;
 background-color: white;
}
.radioinput {
 color: green;
 background-color: #ccc;
}
.checkbxinput {
 color: green;
 background-color: green;
}

Discussion

Opera is currently the only browser that allows radio buttons and checkboxes to be colored. Mozilla
doesn't color them at all, while Internet Explorer for Windows ignores foreground color and colors the
area around the widgets with the background color (see Figure 7-4).

Figure 7-4. Using :focus to light up an input field

Rather than using class selectors as illustrated in the solution, another way to stylize different kinds
of input fields is through attribute selectors.

With attribute selectors, you remove class attributes from the HTML and use only the following CSS
rules:

input[type="text"] {
 margin-bottom: 1.5em;
 width: 50%;
 color: #666;
 background-color: #ccc;
}
input[type="password"] {
 color: white;
 background-color: white;
}

Although this works in most browsers, it doesn't work in Internet Explorer for Windows because this
browser doesn't support attribute selectors at all. Attribute selectors currently work in Netscape
Navigator 6+, Firefox, Safari, and Opera 5+. If you want to ensure cross-browser support, you need
to use class selectors to determine styles for different form controls.

See Also

Appendix D; The CSS 2.1 specification for dynamic pseudo-classes at
http://www.w3.org/TR/CSS21/selector.html#x33 ; the CSS 2.1 specification for attribute selectors at
http://www.w3.org/TR/CSS21/selector.html#attribute-selectors .

http://www.w3.org/TR/CSS21/selector.html#x33
http://www.w3.org/TR/CSS21/selector.html#attribute-selectors

Recipe 7.3. Applying Different Styles to Different Input
Elements in the Same Form

Problem

You want to style multiple input elements differently in the same form.

Solution

Use two or more different class selectors to apply different styles.

First, apply class attributes with different values to the input elements:

<label for="fmname">Name</label>
<input type="text" name="fmname" class="fmname" />
<label for="fmemail">Email</label>
<input type="text" name="fmemail" class="fmemail" />

Then set up the styles for each class attribute in the input elements:

 .fmname {
 text-align: left;
}
.fmemail {
 text-align: center;
}

Discussion

The technique of using class selectors to apply multiple styles to common elements within one page
works in most browsers.

Another method of assigning different styles to common elements is available through browsers that
understand the CSS 3 specification for attribute selectors as discussed in Recipe 6.2.

See Also

Recipe 6.7 for styling different form buttons in the same form.

Recipe 7.4. Setting Styles for textarea Elements

Problem

You want to set styles for textarea elements in a web form to change the text's color, size, weight,
and other properties of the element, as shown in Figure 7-5 .

Figure 7-5. A textarea element with styles applied

Solution

Use a type selector to associate styles with textarea elements:

textarea {
 width: 300px;
 height: 100px;

 background-color: yellow;
 font-size: 1em;
 font-weight: bold;
 font-family: Verdana, Arial, Helvetica, sans-serif;
 border: 1px solid black;
}

Discussion

Associating styles to textarea elements is fairly straightforward through the use of a type selector:

textarea {
 background-color: blue;
}

By adding the :focus pseudo-class, you can change the style of the active textarea field:

textarea:focus {
 background-color: green;
}

So, as a user fills out a form, the textarea field he is currently filling out will change color.

The browsers that currently support :focus are Safari, Netscape Navigator 6+, Firefox, and Opera
7+.

See Also

The CSS 2.1 specification for dynamic pseudo-classes at
http://www.w3.org/TR/CSS21/selector.html#x33 ; the CSS 2.1 specification for attribute selectors at
http://www.w3.org/TR/CSS21/selector.html#attribute-selectors.

http://www.w3.org/TR/CSS21/selector.html#x33
http://www.w3.org/TR/CSS21/selector.html#attribute-selectors.

Recipe 7.5. Setting Styles for Select and Option Elements

Problem

You want to alter the look of list menus in a form by changing the color and font, as in Figure 7-6.

Figure 7-6. The select and option elements with styles applied

Solution

Use a type selector to associate styles with select elements:

select {
 color: white;
 background-color: blue;
 font-size: 0.9em;
}
option {
 padding: 4px;
}

Discussion

Unlike input form elements, there is only one type of select element, so associating styles to that
element is straightforward and can be done through a type selector. Styling the option element is
just as easy.

To stylize alternating options in a select list, first include the class attribute in the option element:

<select name="Topping_ID" size="6" multiple>
 <option value="1">Pepperoni</option>
 <option value="2" class="even">Sausage</option>
 <option value="3">Green Peppers</option>
 <option value="4" class="even">Pineapple</option>
 <option value="5">Chicken</option>
 <option value="6" class="even">Ham</option>
 <option value="7">Olives</option>
 <option value="8" class="even">Onions</option>
 <option value="9">Red Peppers</option>
</select>

Then set up the CSS rules for the two sets of option elements, making sure that the option elements
with an even value (as noted by the class selector even) look different from the others. For example,
option elements with an even selector have a background color of red, while the "regular" option
elements have a background color of blue (see Figure 7-7):

select {
 font-size: 0.9em;
}
option {
 color: white;
 background-color: blue;
}
option.even {
color: blue;
 background-color: red;
}

Figure 7-7. Alternating styles applied to select and option elements

See Also

Recipe 7.2 for information on how to change the color and size of input element text.

Recipe 7.6. Creating a Macintosh-Styled Search Field

Problem

You want to style a search field for the Safari browser.

Solution

Use proprietary HTML extensions that are only available to the Safari browser.

Place one input element in between form element. Then set the value for the type attribute to search
, as shown in Figure 7-8 :

<form method="get" action="/search.php">
<div>
<label for="q">Search</label>
<input type="search" placeholder="keywords"
autosave="com.domain.search" results="7" name="q" />
</div>
</form>

Figure 7-8. The Safari search field

Discussion

The Safari browser developers from Apple created an extension to HTML forms to allow for a more
robust user interface. A browser other than Safari will render the input field like a regular text input
form field that is still usable as a typical search bar.

Search field attributes

The placeholder attribute allows web developers to set the text residing in the search field. This text
appears in the same way that text set for the value attribute in a text input field appears, as you see
in Figure 7-9 :

<label for="fmwebsite">Web Site:</label>
<input type="text" name="fmwebsite" value="http://" />

Figure 7-9. The input field in the Safari browser

The difference between the placeholder attribute and the standard value attribute is that users have
to manually delete the text placed in form field through the value attribute.

It is not recommended to place both a value and placeholder attribute in the
same search field. This technique results in the text for the value overriding the
placeholder value for Safari users. Safari users will have to manually delete the
text supplied through the value attribute and thus not get the intended
functionality allowed in the placeholder attribute.

The autosave attribute is a marker that allows past searches to be stored on the user's local machine.
The user will be able to click on the magnifying glass icon and see past searches.

The results attribute accepts a numerical value. This numerical value represents the number of
searches that will be stored on the user's local computer (see Figure 7-10).

Figure 7-10. Saved searches appear below the search field

The saved searches can appear to be placed from one site to another. For example, if one site uses
the same value for autosave as another site, the same saved searches will appear on both site's
search fields. This technique can be used on a set of different domains that are in a common
network. The user has access to their search history and thus autosave provides a better user
experience.

Best practices

The search field does not require an input button, so only use the search field in a form that has just
one input field. Forms with only one input form element will accept the pressing of an enter or return
key as form submission. The adding of input elements means that the browser may need the
addition of a Submit button that must be activated in order to process the form.

See Also

The Surfin' Safari blog on the search field extension at
http://weblogs.mozillazine.org/hyatt/archives/2004_07.html#005890 .

http://weblogs.mozillazine.org/hyatt/archives/2004_07.html#005890

Recipe 7.7. Styling Form Buttons

Problem

You want to stylize the color, padding, borders, and rollover effects for Submit and Reset buttons on
a form. Figure 7-11 shows a form without styles applied to the buttons, and Figure 7-12 shows the
form with stylized buttons.

Solution

First use a class selector to design the buttons:

<form action="simplequiz.php" method="post">
 <label for="question">Who is president of the U.S.?
</label>
 <input type="text" name="question" id="textfield"
 value="Type answer here" />

 <input name="reset" type="reset" value="Reset"
 class="buttonReset" />
 <input type="submit" name="Submit" value="Submit"
class="buttonSubmit" />
</form>

Figure 7-11. The form buttons without styles applied

Figure 7-12. The form buttons with styles applied

Then use CSS to stylize the buttons:

 .buttonReset {
 color: #fcc;
 background-color: #900;
 font-size: 1.5em;
 border: 1px solid #660;

 padding: 4px;
}
.buttonSubmit {
 color: white;
 background-color: #660;
 font-size: 1.5em;
 border: 1px solid #660;
 padding: 4px;
}

Discussion

You also can stylize buttons by using the rollover state. To create rollovers for buttons, use a
JavaScript function:

<script language="JavaScript" type="text/javascript">
function classChange(styleChange,item) {
 item.className = styleChange;
}
</script>

Next, add two additional CSS rules, one for the rollover state for the Reset button and another for the
Submit button:

.buttonResetRoll {
 color: white;
 background-color: #c00;
 font-size: 1.5em;
 border: 1px solid #660;
 padding: 4px;
}
.buttonSubmitRoll {
 color: white;
 background-color: #cc0;
 font-size: 1.5em;
 border: 1px solid #660;
 padding: 4px;
}

After the function is in place and the extra CSS rules are set up, place the events in the button
markup so that you can toggle between the off and on states of the form buttons (see Figure 7-13):

<form action="simplequiz.php" method="post">
 <label for="question">Who is president of the U.S.?</label>
 <input type="text" name="question" id="textfield"
value="Type answer here" />

 <input name="reset" type="reset" id="reset" value="Reset"
class="buttonReset"

onMouseOver="classChange('buttonResetRoll',this)"
onMouseOut="classChange('buttonReset',this)" />
 <input type="submit" name="Submit" value="Submit"
class="buttonSubmit"
onMouseOver="classChange('buttonSubmitRoll',this)"
onMouseOut="classChange('buttonSubmit',this)" />
</form>

Figure 7-13. A rollover state created through CSS and JavaScript

As noted earlier, until Internet Explorer for Windows supports attribute selectors, you'll need to use
class selectors to set button styles that can be seen in all browsers. Using attribute selectors to
write CSS rules for the form buttons doesn't require the extra markup in the HTML element that
comes from using class selectors. For example, the attribute selector syntax for the buttons using
only CSS would look something like this:

input[type="reset"] {
 color: #fcc;
 background-color: #900;
 font-size: 1.5em;
 border: 1px solid #660;
 padding: 4px;
}
input[type="submit"] {
 color: white;
 background-color: #660;
 font-size: 1.5em;
 border: 1px solid #660;

 padding: 4px;
}

You also can use the width property to determine the horizontal size of the button; however, Internet
Explorer 4.x for Windows doesn't recognize the CSS width property on the form property.

See Also

Recipe 6.9 for tips on mimicking an image button with CSS; the CSS 2.1 specification for attribute
selectors at http://www.w3.org/TR/CSS21/selector.html#attribute-selectors.

http://www.w3.org/TR/CSS21/selector.html#attribute-selectors

Recipe 7.8. Creating an Image Submit Button

Problem

You want to create a custom Submit button with an image file, such as the one in Figure 7-14 .

Solution

Use the input element with the type attribute set to image :

<input type="image" name="submit" src="submit.gif" />

Figure 7-14. The magnifying glass icon acts a Submit button

Discussion

Although inserting an image as a Submit button utilizes HTML, once it's placed in a web page, the

Submit button image can be modified through CSS properties like border and margin .

See Also

The HTML specification for the input element at http://www.w3.org/TR/html4/interact/forms.html#h-
17.4 .

Recipe 7.9. Setting Up a Submit-Once-Only Button

Problem

You want to keep people from clicking the Submit button more than once.

Solution

First create a class for keeping the button from being displayed:

.buttonSubmitHide {
 display: none;
}

Then use the following JavaScript programmed to switch styles by class selectors:

<script language="JavaScript" type="text/javascript">
function classChange(styleChange,item) {
 item.className = styleChange;
}
</script>

Now trigger the function by using an onsubmit event to remove the Submit button from the web
document:

<h2>Order Confirmation</h2>
<form action="login.php" method="post"
 onsubmit="classChange('buttonSubmitHide',submit);
return true;">
 <div align="center">
 <p>Are you sure you want to purchase 12 cans of soda over the
Web?</p>
 <label for="uname">Final Price:</label>
 <input type="text" name="uname" id="uname" value="$7.95" />

 (includes tax, s+h extra)

 <input type="submit" name="submit" value="submit"
class="buttonSubmit" />
 </div>
</form>

Discussion

The JavaScript function in the solution triggers a change in which a style is applied to the element.
You must use the form's onsubmit event to execute the function so that the form's action will still be
executed. If the function were triggered with an onclick event on the Submit button, some browsers
would execute only the class-changing function. Then, because the button is no longer visible, the
user would not be able to trigger the form.

See Also

JavaScript & DHTML Cookbook by Danny Goodman (O'Reilly) for more recipes that combine
JavaScript and CSS.

Recipe 7.10. Creating a Submit Button That Looks Like
HTML Text

Problem

You want to make a Submit button look like plain HTML text.

Solution

Use several CSS formatting properties to make a form's Submit button look like HTML text.

First, inset a class attribute and value:

<input type="submit" name="submit" value="send »" class="submit" />

Then apply CSS properties to strip away the Submit button's borders and background color (see
Figure 7-15):

.submit {
 border: none;
 background-color: #fff;
 padding: 0;
 margin: 0;
 width: 5em;
}

Figure 7-15. A Submit button that looks like HTML text

Then add the :hover pseudo-class to create the standard rollover effect you see in Figure 7-16 :

.submit:hover {
 text-decoration: underline;
}

Figure 7-16. Text has an underline when cursor moves over Submit button

Discussion

An HTML text-looking Submit button is perfect for designers that feel that the generic-looking submit
button may not fit in their designs but do not want to use an image for a button.

There also may be times when bringing in the design element of a Submit button would be
counterproductive for the user experience. Stripping down a Submit button so that it appears as text
may put users' fears to rest about submitting information across the Internet.

This recipe works in browsers that allow modifications to the Submit buttons. Modern browsers that
do support this recipe include Mozilla, Firefox, Navigator 7+, and Opera.

See Also

Recipe 7.11 to make actual HTML text operate like a Submit button.

Recipe 7.11. Making an HTML Text Link Operate Like a
Submit Button

Problem

You want to make an HTML text link execute a form.

Solution

Use JavaScript to trigger the form:

<form name="msgform" method="get" action="results.php">
<label for="fmmsg">Message</label>
<textarea name="fmmsg" accesskey="m" id="fmmsg" rows="5" cols="14"></textarea>
Submit
</form>

Discussion

While Recipe 6.10 showed how to disguise a Submit button to look like HTML text, this recipe
showcases how to make a text link work as a Submit button. The main negative to this approach is
that the user needs to have JavaScript in order for it to work. Browsers without JavaScript or ones
that have JavaScript turned off will not be able to use the form.

See Also

Recipe 7.10 for creating a Submit button that looks like an HTML text link.

Recipe 7.12. Designing a Web Form Without Tables

Problem

You want to include form fields and labels on rows without using an HTML table, thereby ensuring a
pure CSS-enabled layout without using any markup for presentation.

Solution

First use labels in conjunction with the form fields in the markup (see Figure 7-17):

<form action="login.php" method="post">
 <label for="uname">Username</label>
 <input type="text" name="uname" id="uname" value="" />

 <label for="pname">Password</label>
 <input type="text" name="pname" id="pname" value="" />

 <label for="recall">Remember you?</label>
 <input type="checkbox" name="recall" id="recall"
class="checkbox" />

 <input type="submit" name="Submit" value="Submit"
class="buttonSubmit" />
</form>

Figure 7-17. The form without styles applied

Then set the display and label properties for the label elements to block , float the label elements
to the left, and justify the text on the right (see Figure 7-18):

input {
 display: block;
 width: 175px;
 float: left;
 margin-bottom: 10px;
}
label {
 display: block;
 text-align: right;
 float: left;
 width: 75px;
 padding-right: 20px;
}
.checkbox {
 width: 1em;
}
br {
 clear: left;
}
.buttonSubmit {
 width: 75px;
 margin-left: 95px;
}

Figure 7-18. The design of the form laid out with styles

Discussion

The input and label elements are set to display: block , which displays them as block-level
elements. This makes it possible to set the widths for the text in the label. Instead of resting on top
of the input element, the labels are floated to the left. And because all labels have the same width,
the look is uniform throughout the form.

The br tag creates a break between the label and form element sets, and clears the float from
previous elements. This prevents the other elements (those that appear after the input field matched
to the label) from floating as well.

See Also

The HTML 4.1 specification for the label element at
http://www.w3.org/TR/html401/interact/forms.html#edef-LABEL ; the CSS 2.1 specification for the
float property at http://www.w3.org/TR/CSS21/visuren.html#propdef-float ; the CSS 2.1
specification for the clear property at http://www.w3.org/TR/CSS21/visuren.html#propdef-clear .

http://www.w3.org/TR/html401/interact/forms.html#edef-LABEL

Recipe 7.13. Designing a Two Column Form Without
Tables

Problem

You want to transform a one-column form (see Figure 7-19) to two columns.

Figure 7-19. The form in one column

Solution

First, mark out the areas of the form into two different sections by using div elements:

<form id="regform" name="regform" method="post" action="/regform.php">
 <div id="register">
 <h4>Register</h4>
 <label for="fmlogin">Login</label>
 <input type="text" name="fmlogin" id="fmlogin" />
 <label for="fmemail">Email Address</label>
 <input type="text" name="fmemail" id="fmemail" />
 <label for="fmemail2">Confirm Address</label>
 <input type="text" name="fmemail2" id="fmemail2" />
 <label for="fmpswd">Password</label>
 <input type="password" name="fmpswd" id="fmpswd" />
 <label for="fmpswd2">Confirm Password</label>
 <input type="password" name="fmpswd2" id="fmpswd2" />
 </div>
 <div id="contactinfo">
 <h4>Contact Information</h4>
 <label for="fmfname">First Name</label>
 <input type="text" name="fmfname" id="fmfname" />
 <label for="fmlname">Last Name</label>
 <input type="text" name="fmlname" id="fmlname" />
 <label for="fmaddy1">Address 1</label>
 <input type="text" name="fmaddy1" id="fmaddy1" />
 <label for="fmaddy2">Address 2</label>
 <input type="text" name="fmaddy2" id="fmaddy2" />
 <label for="fmcity">City</label>
 <input type="text" name="fmcity" id="fmcity" />
 <label for="fmstate">State or Province</label>
 <input type="text" name="fmstate" id="fmstate" />
 <label for="fmzip">Zip</label>
 <input type="text" name="fmzip" id="fmzip" size="5" />
 <label for="fmcountry">Country</label>
 <input type="text" name="fmcountry" id="fmcountry" />
 <input type="submit" name="submit" value="send" class="submit" />
 </div>
</form>

Then set the display of the input and label elements to be block :

label {
 margin-top: .33em;
 display: block;
}
input {
 display: block;
 width: 250px;
}

Create the second form column by setting the first div element, register , to float left as you see in
Figure 7-20 :

#register {
 float: left;
}

Next apply enough padding on the left side of the second column in case the second column is shorter
than the first column (see Figure 7-21):

#register {
 float: left;
}
#contactinfo {
 padding-left: 275px;
}

Figure 7-20. Form elements start to form two columns

Figure 7-21. The form is laid out in two columns

Discussion

Using the float property allows designers to quickly build a two-column form. The main problem with
this approach is in case where the right column is longer than the first. The wrapping of the form
elements can be confusing to users. By setting the padding to accommodate the width of the first
column, designers create seamless looking columns.

See Also

Chapter 9 for more techniques on laying out the elements of a web page.

Recipe 7.14. Highlighting Form Fields

Problem

You want to highlight the form field that a visitor is currently using.

Solution

Use the :focus pseudo-class selector.

With a preexisting form, create a new CSS rule that changes the background color when an input
element is being used (see Figure 7-22).

Figure 7-22. Background color of input field changes as text is entered

This rule makes changes the background color of the field:

input:focus {
 background-color: yellow;
}

Discussion

The browsers that support :focus are Netscape Navigator 6+, Firefox, Safari, and Opera 7. Browsers
that don't support the declaration block will simply ignore it, making it degrade gracefully.

See Also

Recipe 7.4, concerning styling for textarea elements; Table D-9 in Appendix D.

Recipe 7.15. Integrating Form Feedback with a Form

Problem

You want to show users which parts of a form are required.

Solution

First, place an icon and text warning next to form labels of fields that are required (see Figure 7-23).

Apply a class attribute with a value of required to the label and form elements that are required in
order to successfully process a form.

<form id="msgform" name="msgform" method="post" action="/process.php">
 <fieldset>
 <legend>Contact Information</legend>
 <label for="fmtitle" accesskey="i">Title</label>
 <select name="fmtitle" id="fmtitle">
 <option value="ms">Ms.</option>
 <option value="mrs">Mrs.</option>
 <option value="miss">Miss</option>
 <option value="mr">Mr.</option>
 </select>
 <label for="fmname" accesskey="n">Name</label>
 <input type="text" name="fmname" id="fmname" />
 <label for="fmemail" accesskey="e" class="required">
Email Required</label>
 <input type="text" name="fmemail" id="fmemail" class="required" />
 </fieldset>
 <fieldset>
 <legend>Your Message</legend>
 <label for="fmstate" accesskey="y">Subject</label>
 <input type="text" name="fmcountry" id="fmcountry" />
 <label for="fmmsg" class="required">Message
 Required</label>
 <textarea name="fmmsg" accesskey="m" id="fmmsg" rows="5" cols="14"
class="required"></textarea>
 </fieldset>
 <input type="submit" name="submit" value="send" class="submit" />
</form>

Figure 7-23. Required icon and warning text

Apply rules to change the text and border color of the forms (see Figure 7-24):

label {
 margin-top: .33em;
 display: block;
}
input {
 display: block;
 width: 250px;
}
textarea {
 width: 250px;
 height: 75px;
}
label.required {
 color: #c00;
 font-weight: bold;
}
textarea.required, input.required {
 border: 1px solid red;
 background-color: #eee;
}

Figure 7-24. Modified required form fields

Discussion

Modifying form and label elements with color and bold text lets users readily know what the problem
areas of their form are.

Adding the word "required" and a warning icon also help to clue users to problems with their form
submission. In case a user's browser doesn't support CSS, the text and image will then be the only
clues for users as to what needs to be corrected in order for the form to be submitted correctly.

See Also

A tutorial on integrating form feedback with PHP at http://www.maketemplate.com/feedback/ .

Recipe 7.16. Styling Access Keys in Web Forms

Problem

You want to create a visual indicator to show which characters are access keys in a form.

Solution

Use the descendant selector to isolate characters within the label tag that represent access keys.

First, create a CSS rule with a selector that states the text within an em tag that are within a form are
underlined:

form em {
 text-decoration: underline;
 font-style: normal;
}

Wrap an em element around a letter in the label element that represents the access key:

<form id="msgform" name="msgform" method="post" action="/">
 <label for="fmtitle" accesskey="i">Title</label>
 <select name="fmtitle" id="fmtitle">
 <option value="ms">Ms.</option>
 <option value="mrs">Mrs.</option>
 <option value="miss">Miss</option>
 <option value="mr">Mr.</option>
 </select>
 <label for="fmname" accesskey="n">Name</label>
 <input type="text" name="fmname" id="fmname" />
 <label for="fmemail" accesskey="e">Email</label>
 <input type="text" name="fmemail" id="fmemail" />
 <label for="fmstate" accesskey="a">State/Province</label>
 <input type="text" name="fmstate" id="fmstate" />
 <label for="fmcountry" accesskey="y">Country</label>
 <input type="text" name="fmcountry" id="fmcountry" />
 <label for="fmmsg" accesskey="m">Message</label>
 <textarea name="fmmsg" id="fmmsg" rows="5" cols="14"></textarea>
 <input type="submit" name="submit" value="send" class="submit" />
</form>

Discussion

An access key allows users with disabilities to navigate quickly through sections of a web page.
However, access keys also allow users without limited surfing ability to make use of access key
navigation. By underlining characters that represent access keys, users can quickly navigate a form
without switching to a mouse or other pointing device.

Access keys are supported in Safari, Internet Explorer for Windows 4+, Mozilla, Firefox, Netscape
Navigator 6+, and Opera 7+.

See Also

For more information about styling access keys see http://www.alistapart.com/articles/accesskeys/.

http://www.alistapart.com/articles/accesskeys/

Recipe 7.17. Grouping Common Form Elements

Problem

You want to break up a large form into smaller groupings of elements.

Solution

Use the HTML fieldset property to separate the different sections of a form (see Figure 7-25):

<form id="msgform" name="msgform" method="post" action="/">
 <fieldset>
 <legend>Contact Information</legend>
 <label for="fmtitle">Title</label>
 <select name="fmtitle" id="fmtitle">
 <option value="ms">Ms.</option>
 <option value="mrs">Mrs.</option>
 <option value="miss">Miss</option>
 <option value="mr">Mr.</option>
 </select>
 <label for="fmname">Name</label>
 <input type="text" name="fmname" id="fmname" />
 <label for="fmemail">Email</label>
 <input type="text" name="fmemail" id="fmemail" />
 </fieldset>
 <fieldset>
 <legend>Your Message</legend>
 <label for="fmstate">Subject</label>
 <input type="text" name="fmcountry" id="fmcountry" />
 <label for="fmmsg">Message</label>
 <textarea name="fmmsg" accesskey="m" id="fmmsg" rows="5"
cols="14"></textarea>
 </fieldset>
 <input type="submit" name="submit" value="send" class="submit" />
</form>

Figure 7-25. A field separated by fieldsets

Discussion

The HTML element fieldset and the legend properties allow an easy way to group common
elements.

You can also apply CSS rules to the fieldset and legend properties to modify the look as you see in
Figure 7-26 :

fieldset {
 margin-bottom: 1em;
 border: 1px solid #888;
 border-right: 1px solid #666;
 border-bottom: 1px solid #666;
}
legend {
 font-weight: bold;
 border: 1px solid #888;
 border-right: 1px solid #666;
 border-bottom: 1px solid #666;
 padding: .5em;
 background-color: #ccc;
}

Figure 7-26. Modified fieldset and legends

See Also

The HTML 4.01 specification for fieldset elements and legend properties at
http://www.w3.org/TR/html4/interact/forms.html#h-17.10 .

http://www.w3.org/TR/html4/interact/forms.html#h-17.10

Recipe 7.18. Entering Data into a Form Like a
Spreadsheet

Problem

You want to modify a form in an environment such as a spreadsheet application.

Solution

First, place input elements into an HTML table, as shown in Figure 7-27 :

<form action="/process.php" method="get" name="copresentations">
 <table cellspacing="0">
 <caption>
 Summary of Financial Data
 </caption>
 <tr>
 <th scope="col">Fiscal Year </th>
 <th scope="col">Worksite

 Presentations </th>
 <th scope="col">Passing Grades </th>
 <th scope="col">Number of Presentators </th>
 </tr>
 <tr>
 <th scope="row">1999</th>
 <td><input type="text" name="wkpst1999" /></td>
 <td><input type="text" name="pass1999" /></td>
 <td><input type="text" name="numpst1999" /></td>
 </tr>
 <tr>
 <th scope="row">2000</th>
 <td><input type="text" name="wkpst2000" /></td>
 <td><input type="text" name="pass2000" /></td>
 <td><input type="text" name="numpst2000" /></td>
 </tr>
 <tr>
 <th scope="row">2001</th>
 <td><input type="text" name="wkpst2001" /></td>
 <td><input type="text" name="pass2001" /></td>
 <td><input type="text" name="numpst2001" /></td>
 </tr>
 <tr>
 <th scope="row">2002</th>
 <td><input type="text" name="wkpst2002" /></td>

 <td><input type="text" name="pass2002" /></td>
 <td><input type="text" name="numpst2002" /></td>
 </tr>
 <tr>
 <th scope="row">2003</th>
 <td><input type="text" name="wkpst2003" /></td>
 <td><input type="text" name="pass2003" /></td>
 <td><input type="text" name="numpst2003" /></td>
 </tr>
 <tr>
 <th scope="row">2004</th>
 <td><input type="text" name="wkpst2004" /></td>
 <td><input type="text" name="pass2004" /></td>
 <td><input type="text" name="numpst2004" /></td>
 </tr>
 </table>
 <input type="submit" class="save" value="Save" />
</form>

Figure 7-27. A table without styles

Apply a thin border around the table and set the table border display to collapse :

table {
 border-collapse: collapse;

 border: 1px solid black;
}

Set the table cells to a set width and to display a thin border:

th {
 border: 1px solid black;
 width: 6em;
}
td {
 width:6em;
 border: 1px solid black;
}

Remove padding and margins for the table cells:

th {
 border: 1px solid black;
 width: 6em;
}
td {
 width:6em;
 border: 1px solid black;
 padding: 0;
 margin: 0;
}

Set the width of the input elements to equal the width of the table cells while removing any borders
that browsers automatically apply to form elements:

input {
 width: 100%;
 border: none;
 margin: 0;
}

By setting the width, the input elements will also stretch the submit button to the maximum width of
its parent element, so the Submit will render quite large. To rein in the size of the Submit button,
write a separate CSS rule:

.save {
 margin-top: 1em;
 width: 5em;
}

To complete the spreadsheet look as shown in Figure 7-28 , set the input text to be aligned to the
right:

input {
 width: 100%;
 border: none;
 margin: 0;
 text-align: right;
}

Figure 7-28. A table that looks like a spreadsheet

Discussion

Spreadsheets help users keep tabs on lots of numerical and financial information. The typical
ecommerce or a contact form layout would be a hindrance if a user needs to enter a multitude of
numbers. By mimicking a spreadsheet layout, a user can quickly enter data.

When coupled with the :hover pseudo-selector, the table row and cell a user is working in can be
highlighted as data is entered (see Figure 7-29):

tr:hover {
 background-color: #ffc;
}
tr:hover input {
 background-color: #ffc;

}
input:focus {
 background-color: #ffc;
}

Figure 7-29. A table row is highlighted

See Also

Styling input elements in Recipe 7.2 .

Recipe 7.19. Sample Design: A Login Form

Login forms are all over the Web. For instance, you need a login and a password to check your email
on the Web, order books from Amazon.com, and even pay that parking ticket online.

Only a few components of a login form are visible to the user: the input field's Submit button and
labels as well as the username and password fields themselves. Here is the markup of the form to be
stylized (Figure 7-30 shows the input field without styles applied):

<form action="login.php" method="post">
 <label for="uname">Username</label>
 <input type="text" name="uname" id="uname" value="" />

 <label for="pword">Password</label>
 <input type="text" name="pword" id="pword" value="" />

 <input type="submit" name="Submit" value="Submit" />
</form>

Figure 7-30. The login form without styles

First, add a character after the text in the label element. Use the :after pseud-oelement property to
autogenerate the character:

label:after {
 content: ": ";
}

Next, to make the labels stick out from the form fields, change the background color of the labels and
the weight of the font. Through CSS, change the labels so that they have a gray background and
black text set in bold type (see Figure 7-31):

label {
 background-color: gray;
 color: black;
 font-weight: bold;
}

Figure 7-31. Styles for colors applied to the label elements

Now, place some padding around the text and change the text to uppercase (see Figure 7-32):

label {
 background-color: gray;
 color: black;
 font-weight: bold;
 padding: 4px;
 text-transform: uppercase;
}

Figure 7-32. Text transformed to uppercase letters

As you can see, the labels need to be toned down because they compete for attention with the input
fields. To reduce their visual impact, shrink the size of the text while keeping the weight of the font
set to bold. Also, set the typeface of the labels to Verdana, which renders legibly even in small sizes
(see Figure 7-33):

label {
 background-color: gray;
 color: black;
 font-weight: bold;
 padding: 4px;
 text-transform: uppercase;
 font-family: Verdana, Arial, Helvetica, sans-serif;
 font-size: xx-small;
}

Figure 7-33. The text refined in the label element

Now it's time to style the input fields. Because the form has two types of input fields, differentiate
them by placing a class attribute in the Submit button. This technique enables you to style the input
fields and the Submit button differently. If you didn't do this, styles that are intended just for the
form fields would also be applied to the Submit button. Using the class selector, you can override or
change the properties intended for one element so that they aren't applied to all elements:

<input type="submit" name="Submit" value="Submit"
class="buttonSubmit" />

To bring in some whitespace around the form elements, set the input fields to display as block-level
elements and apply a margin to the bottom (see Figure 7-34):

input {
 display: block;
 margin-bottom: 1.25em;
}

Figure 7-34. The input elements sliding under the labels

Next, extend the width of the input box to 150 pixels and place a 1-pixel border around the box so
that the default bevel rendering that occurs in most browsers goes away. Indicate a slight depth to
the page by adding a 2-pixel border on the right and bottom of the input box (see Figure 7-35):

input {
 display: block;

 margin-bottom: 1.25em;
 width: 150px;
 border: solid black;
 border-width: 1px 2px 2px 1px;
}

Figure 7-35. The modified input fields

With the main input fields in place, now it's time to apply styles to the Submit button. Because you
don't want the Submit button to look like the regular input text fields, use a class selector.

Start by changing the size and position of the Submit button. First, shrink the width of the button by
75 pixels (which is one-half the size of the input fields). Then slide the button to the right by setting
the left side margin to 75 pixels (see Figure 7-36):

.buttonSubmit {
 width: 75px;
 margin-left: 75px;
}

Figure 7-36. The refined Submit button

Next, change the Submit button's color to green with a green border, and convert the text to
uppercase by using the text-transform property (see Figure 7-37):

.buttonSubmit {
 width: 75px;
 margin-left: 75px;
 color: green;
 text-transform: uppercase;
 border: 1px solid green;
}

Figure 7-37. The green Submit button in uppercase letters

To add the final touch, hide the br element from the display because the br introduces extra
whitespace to the form. Figure 7-38 shows the result.

br {
 display: none;
}

Figure 7-38. The login form styles finalized

Recipe 7.20. Sample Design: A Registration Form

For some forms you may want to place the form elements into a two-column table, with the labels in
one column and the fields in the other. Example 7-1 provides the code. Figure 7-39 shows the form
and tables without styles applied.

Example 7-1. Stylized long form

<form action="registration.cfm" method="post">
 <table cellspacing="0">
 <tr class="header">
 <th colspan="2">Account Information</th>
 </tr>
 <tr class="required">
 <th scope="row">Login Name*</th>
 <td><input name="uname" type="text" size="12"
maxlength="12" /></td>
 </tr>
 <tr class="required">
 <th scope="row">Password*</th>
 <td><input name="pword" type="text" size="12"
maxlength="12" /></td>
 </tr>
 <tr class="required">
 <th scope="row">Confirm Password* </th>
 <td><input name="pword2" type="text" size="12"
maxlength="12" /></td>
 </tr>
 <tr class="required">
 <th scope="row">Email Address*</th>
 <td><input name="email" type="text" /></td>
 </tr>
 <tr class="required">
 <th scope="row">Confirm Email*</th>
 <td><input type="text" name="email2" /></td>
 </tr>
 <tr class="header">
 <th colspan="2">Contact Information</th>
 </tr>
 <tr class="required">
 <th scope="row">First Name* </th>
 <td><input name="fname" type="text" size="11" /></td>
 </tr>
 <tr class="required">
 <th scope="row">Last Name* </th>

 <td><input name="lname" type="text" size="11" /></td>
 </tr>
 <tr class="required">
 <th scope="row">Address 1*</th>
 <td><input name="address1" type="text" size="11" /></td>
 </tr>
 <tr>
 <th scope="row">Address 2 </th>
 <td><input type="text" name="address2" /></td>
 </tr>
 <tr class="required">
 <th scope="row">City* </th>
 <td><input type="text" name="city" /></td>
 </tr>
 <tr class="required">
 <th scope="row">State or Province*</th>
 <td><select name="state">
 <option selected="selected"
disabled="disabled">Select...</option>
 <option value="alabama">Alabama</option>
 </select></td>
 </tr>
 <tr class="required">
 <th scope="row">Zip*</th>
 <td><input name="zipcode" type="text" id="zipcode"
size="5" maxlength="5" /></td>
 </tr>
 <tr class="required">
 <th scope="row">Country*</th>
 <td><input type="text" name="country" /></td>
 </tr>
 <tr class="required">
 <th scope="row">Gender*</th>
 <td> <input type="radio" name="sex" value="female" />
 Female
 <input type="radio" name="sex" value="male" />
 Male </td>
 </tr>
 <tr class="header">
 <th colspan="2">Misc. Information</th>
 </tr>
 <tr>
 <th scope="row"> Annual Household Income </th>
 <td>
 <select name="income" size="1" >
 <option selected="selected" disabled="disabled">
Select...</option>
 <option value="notsay">I'd rather not say</option>
 </select> </td>
 </tr>
 <tr>
 <th scope="row">Interests</th>

 <td><input name="interests" type="checkbox"
value="shopping-fashion" />
 Shopping/fashion
 <input name="interests" type="checkbox"
value="sports" />
 Sports
 <input name="interests" type="checkbox"
value="travel" />
 Travel</td>
 </tr>
 <tr>
 <th scope="row">Eye Color</th>
 <td><input name="eye" type="checkbox" value="red" />
 Red
 <input name="eye" type="checkbox" value="green" />
 Green
 <input name="eye" type="checkbox" value="brown" />
 Brown
 <input name="eye" type="checkbox" value="blue" />
 Blue Gold</td>
 </tr>
 </table>
 <input type="submit" name="Submit" value="Submit"
id="buttonSubmit" />
 <input type="reset" name="Submit2" value="Reset"
id="buttonReset" />
</form>

Figure 7-39. The form and table without styles applied

The first element to style is the table element. Set the border model as well as the text color and
border around the table itself (see Figure 7-40):

table {
 border-collapse: collapse;
 color: black;
 border: 1px solid black;
}

Figure 7-40. A border placed around the table

Next, tackle the table header cells, which are located in the left column (see Figure 7-41). The table
header cells is set to a width of 200 pixels, while the content inside the cell is aligned to the right, set
to Verdana and sized to 0.7 em units:

th {
 width: 200px;
 text-align: right;
 vertical-align: top;
 border-top: 1px solid black;
 font-family: Verdana;
 font-size: 0.7em;
}

Figure 7-41. Refined table header cells

Adjust the padding of the header cells (see Figure 7-42):

th {
 width: 200px;
 text-align: right;
 vertical-align: top;
 border-top: 1px solid black;
 font-family: Verdana;
 font-size: 0.7em;
 padding-right: 12px;
 padding-top: 0.75em;
 padding-bottom: 0.75em;
}

Figure 7-42. Padding applied to the table header cells

Next, apply styles to the right table cells. To underscore the difference between the left and right
columns, convert the right table cell background to black. Also, set a gray border to the left to soften
the transition when reading the rows left to right (see Figure 7-43):

td {
 vertical-align: middle;
 background-color: black;
 border-bottom: 1px solid white;
 color: white;
 border-left: 4px solid gray;
 padding: 4px;
 font-family: Verdana;
 font-size: .7em;
}

Figure 7-43. The stylized right column table cells

Certain fields are required to execute the registration, so change the color of the text labels for those
fields. This change in color will indicate at a glance which fields are required (see Figure 7-44):

.required {
 color: red;
}

Figure 7-44. The required fields marked with red text

Note that the CSS rule states that the color is red, but for printing purposes the color will come out a
shade of gray.

Adjust the form headers that indicate the different sections of the form by making the text uppercase
and slightly larger than the other text in the form (see Figure 7-45):

.header th {
 text-align: left;
 text-transform: uppercase;
 font-size: .9em;
}

Figure 7-45. The refined form section headers

Slide the form headers so that they rest on top of the second column. To determine where to place
the headers, add the size of the left column (200 pixels), the padding of the right column (4 pixels),
the width of the border on the left of the right column (4 pixels), and the padding of the right column
(12 pixels):

.header th {
 text-align: left;
 text-transform: uppercase;
 font-size: .9em;
 padding-left: 220px;
}

Then add a touch of visual appeal by applying thicker borders to the top and bottom of the header
(see Figure 7-46):

.header th {
 text-align: left;
 text-transform: uppercase;

 font-size: .9em;
 padding-left: 220px;
 border-bottom: 2px solid gray;
 border-top: 2px solid black;
}

Figure 7-46. Padding added to the section headers

For the finishing touch, move the Submit and Reset buttons so that they fall under the form fields,
just like the section headings, by assigning the left side of the margin to be 220 pixels (see Figure 7-
47):

#buttonSubmit {
 margin-left: 220px;
 margin-top: 4px;
}

Figure 7-47. The Submit and Reset buttons moved into place

Chapter 8. Tables
Section 8.0. Introduction

Recipe 8.1. Setting the Cell Spacing

Recipe 8.2. Setting the Borders and Cell Padding

Recipe 8.3. Setting the Style for Caption

Recipe 8.4. Setting the Styles Within Table Cells

Recipe 8.5. Setting Styles for Table Header Elements

Recipe 8.6. Removing Gaps from Images Placed in Table Cells

Recipe 8.7. Eliminating Gaps Between Table Cells

Recipe 8.8. Creating Alternating Background Colors in Table Rows

Recipe 8.9. Adding a Highlighting Effect on a Table Row

Recipe 8.10. Sample Design: An Elegant Calendar

8.0. Introduction

With CSS, web designers learned that they could forego the practice of manipulating HTML tables to
hold designs together. Practices like cutting up an image to place the image "pieces" into separate
table cells or nesting tables for web page layouts have now become outmoded. However, the use of
tables still has its place.

Web developers use HTML tables to present tabular data, such as a calendar or scientific data, and
therefore can use CSS to stylize those tables.

This chapter shows you how to make your tables look better by stylizing table headers, setting
borders for a table and for its cells, and reducing gaps between images in table cells. The sample
design at the end of this chapter takes you through the steps required to stylize a calendar.

Recipe 8.1. Setting the Cell Spacing

Problem

You want to adjust the space between the table border and the cell borders.

Solution

Use the cellspacing table attribute:

<table cellspacing="15">
 <tr>
 <th colspan="2">
 General Demographic Characteristics of Tallahassee, FL
 </th>
 </tr>
 <tr>
 <th>
 </th>
 <th>
 Estimate
 </th>
 </tr>
 <tr>
 <td>
 Total population
 </td>
 <td>
 272,091
 </td>
 </tr>
</table>

Discussion

The CSS 2.1 specification describes a standard mechanism to manipulate the cellspacing table
attribute through the use of the border-spacing property, when the border-collapse value is set to
separate:

border-collapse: separate;
border-spacing: 15px;

However, implementation of this part of the specification isn't visible in Internet Explorer 6 for
Windows. It does work in Firefox and Netscape Navigator 7+. Using the cellspacing attribute is
currently the best solution that works in Internet Explorer for Windows, Netscape Navigator, Safari,
and Opera browsers.

See Also

Recipes 8.2 and 8.7 on setting table borders and cell padding; the CSS 2.1 specification for border-
collapse at http://www.w3.org/TR/CSS21/tables.html#propdef-border-collapse; the CSS 2.1
specification for border-spacing at http://www.w3.org/TR/CSS21/tables.html#propdef-border-
spacing.

http://www.w3.org/TR/CSS21/tables.html#propdef-border-collapse
http://www.w3.org/TR/CSS21/tables.html#propdef-border-

Recipe 8.2. Setting the Borders and Cell Padding

Problem

You want to set the borders and the amount of space within table cells to create a stronger visual
display than the default rendering of a table, as in Figure 8-1 , for example.

Solution

Use the padding property to address the amount of space between the content in the cell and the
edges of the cell. Use the border property to set the borders on both the table and its cells:

table {
 border-collapse: collapse;
 border: 5px solid #444;
}
td {
 padding: 4px;
}
th {
 color: white;
 background-color: black;
}
td, th+th {
 border: 5px solid #666;
}
td+td {
 border: 5px solid #ccc;
 text-align: center;
}
td#winner {
 border: 7px dotted #999;
}

Figure 8-1. Borders and padding applied to the table and table cells

Discussion

There are two border models for HTML tables: collapse and separate . With the collapse model,
table cells share borders. In the separate model, the table cells have their own borders.

At the time of writing, the collapse model is more widely implemented by browsers and thus used
more by designers.

All browsers today default to the collapse model, except for Firefox, which defaults to separate .
Because the CSS standard doesn't specify that behavior, you should explicitly set the collapse model
in your style sheets lest a future browser not have the same defaults. Set the border model by using
the border-collapse property set to collapse :

table {
 border-collapse: collapse;
}

The table element's border attribute determines borders for the table and its enclosing cells. You can
set CSS's border property through a separate border thickness value for the table and individual
cells.

When you apply a border to a cell that runs counter to a previous CSS rule, the following four CSS
specification rules are followed for conflict resolution:

If border-style is set to hidden , all other border styles are concealed.

If border-style is set to none , any other border style wins.

Unless a cell has border-style set to hidden or has border-style set to none , a thicker border

overrides the narrower borders. If adjoining cells have the same width, the style of the border
will be determined in the following order: double , solid , dashed , dotted , ridge , outset ,
groove , inset .

If adjoining cells have a different color while possessing the same style and width, the border
color will be determined in the following order: cell, row, row group, column, column group, and
then table.

The other border model is separate, in which every cell contains its own borders and can be styled
independently of other cell borders. Within the separate model, the border-spacing property is used
to set the horizontal and vertical space respectively between cells:

table#runoffdata {
 border-collapse: separate;
 border-spacing: 4px 4px;
}

If the border-collapse property is set to separate , then any styles set for rows, columns, or groups
of table cells aren't applied. Also, styles for table cells that don't contain content can be displayed or
hidden, using the empty-cells property with the value of show or hide , respectively.

While the separate border model gives more control to web developers, as of this writing separate is
supported only in Firefox, Mozilla and Netscape 6+, not in Internet Explorer for Windows. Therefore
most web designers stick to the collapse model.

See Also

The CSS 2.1 specification about border models at
http://www.w3.org/TR/CSS21/tables.html#propdef-border-collapse ; for more discussion on tables,
see Chapter 11 in Cascading Style Sheets: The Definitive Guide, Second Edition by Eric A. Meyer
(O'Reilly Media).

http://www.w3.org/TR/CSS21/tables.html#propdef-border-collapse

Recipe 8.3. Setting the Style for Caption

Problem

You want to set the style for the description of a table.

Solution

Use the caption element selector to stylize the caption:

table caption {
 font: 1.5em Georgia, "Times New Roman", Times, serif;
 padding: 1em;
}

Discussion

Captions are used to describe the contents within a table and should be placed after the opening
table element and before another table element like thead or TR:

<table id="shoppingcartTable" summary="List of products in your shopping cart.">
 <caption>Shopping Cart Listing - Subtotal: $45.16;
changed quantities? <input type="submit" value="Update price(s)" /></caption>
 ...
</table>

Browsers may vary in how to render the caption element. However, caption will always be displayed
by any browser, can be styled via CSS, and is the most accessible method of displaying a table
caption.

See Also

The HTML 4.01 specification for caption at http://www.w3.org/TR/html4/struct/tables.html#h-
11.2.2.

http://www.w3.org/TR/html4/struct/tables.html#h-

Recipe 8.4. Setting the Styles Within Table Cells

Problem

You want to stylize links within a table cell to make them appear visually different from the rest of the
page.

Solution

Use a descendant selector (sometimes referred to as a contextual selector) to manipulate the styles
for content in a table cell:

td a {
 display: block;
 background-color: #333;
 color: white;
 text-decoration: none;
 padding: 4px;
}

Discussion

By using the type and descendent selectorsthe TD a in the CSS ruleto apply the styles, you reduce the
amount of markup needed to perfect your designs and you reduce the document's file sizes. The style
affects only the a elements within the table cells, TD.

If you need more control over the design of the content within a table cell, use a class selector:

<td class="navText">
 Home
</td>

You then can apply the CSS rules to the cell's content through a combination of class and
descendant selectors:

td.navText a {
 font-size: x-small;
}

If you want to stylize content within a table cell that contains more content or markup than a link,
wrap a div element around the content in order to use a class selector.

In the following example, an unordered list is enclosed within a div element set with a class
attribute:

<td>
 <div class="tblcontent">
 <p>To-do list on your day off.</p>

 Watch <cite>Fellowship of
the Rings</cite>, Extended Version
 Watch
<cite>Two Towers</cite>, Extended Version
 Watch <cite>Return of the
King</cite>, Extended Version
 Start or join local Elvish society.

</div>
</td>

The CSS rules to stylize the content within the table cell could look like this:

.tblcontent p {
 margin: 0;
 padding: 0;
 font-weight: bold;
}
.tblcontent ul {
 margin: 0;
 padding: 0;
}
.tblcontent li {
 margin: 0;
 padding: 0;
 line-height: 1.5;
}
.tblcontent li a {
 padding-left: 15px;
 background-image: url(bullet.gif);
 background-repeat: no-repeat;
}

See Also

The CSS 2.1 specification regarding type selectors at
http://www.w3.org/TR/CSS21/selector.html#type-selectors;
http://www.w3.org/TR/CSS21/selector.html#descendant-selectors for information about
descendant selectors. For a more thorough example of styling content within table cells, see Recipe

http://www.w3.org/TR/CSS21/selector.html#type-selectors
http://www.w3.org/TR/CSS21/selector.html#descendant-selectors

8.10.

Recipe 8.5. Setting Styles for Table Header Elements

Problem

You want to differentiate the style of the table headers from the content in regular table cells; Figure
8-2 shows a table with traditional table headers, and Figure 8-3 shows a stylized version of the same
table.

Figure 8-2. The table as it appears before styles are applied to the table
headers

Figure 8-3. Styles applied to the table headers

Solution

Use the th element selector to stylize the table header:

th {
 text-align: left;
 padding: 1em 1.5em 0.1em 0.5em;
 font-family: Arial, Helvetica, Verdana, sans-serif;
 font-size: .9em;
 color: white;
 background-color: blue;
 border-right: 2px solid blue;
}

For tables with multiple rows of th elements that require different styles, use a class selector to
differentiate the rows:

.secondrow th {
/* Use a lighter shade of blue in the background */
 background-color: #009;
}

Put the appropriate rows into that class:

<tr>
 <th colspan="4">
 Table 1. General Demographic Characteristics
 </th>
</tr>
<tr class="secondrow">
 <th>

 </th>
 <th>
 Estimate
 </th>
 <th>
 Lower Bound
 </th>
 <th>
 Upper Bound
 </th>
</tr>

Discussion

The th element characterizes the contents of the cell as header information. When setting the styles
for the element, use styles that make the cell stand out from content in the table cell, td . You can
generate contrasting styles by simply adjusting any of the following properties: font-family ,
background-color , font-size , font-weight , and text alignment. (See Recipe 2.1 for specifying fonts
and Recipe 2.2 for setting font measurements and sizes.) Regardless of what you adjust, chances are
you will be improving the look of the table headers.

Note that the nonbreaking space characters placed in the table headers are
used so that the heading is treated by the browser as one word and therefore
isn't a forced break into two lines stacked on top of each other in the heading.

See Also

Type selectors at http://www.w3.org/TR/CSS21/selector.html#type-selectors .

Recipe 8.6. Removing Gaps from Images Placed in Table
Cells

Problem

You want to get rid of space in a table cell that contains only an image. You want to go from Figure 8-
4 to Figure 8-5 .

Figure 8-4. A gap appearing below an image in a table cell

Figure 8-5. Displaying an image in a table cell as a block-level element

Solution

Set the image to be displayed as a block-level element:

td img {
 display: block;
}

Discussion

The browser puts the image on the baseline used for text content since it's being placed as an inline
element. Therefore set the element as a block-level element to force the browser to render the
image differently. This baseline isn't at the bottom of the cell because some letters (for example, g, p,
q, and y) have descenders that hang below that baseline (see Figure 8-6).

Figure 8-6. The descenders of the lowercase letters g, p, q, and y highlight
the whitespace below the image

Because the baseline is a percentage of the total font size, you can't simply remove the descender
space. By instructing the browser to handle the image differently, the automatic creation of the
descender whitespace can be avoided altogether. Thus set the display property for the image to
block as shown in the Solution.

Using Document Type Definitions

Another method involves manipulating DTDs. A Document Type Definition (DTD) is a formal
statement that lists the elements used in a document. For example, there are differences in the
HTML2 DTD compared to the HTML 4.1 DTD. Those differences are spelled out in their own DTD. A
browser can determine which DTD to use when rendering a page by a small statement that precedes
any markup in a web page.

There are certain DOCTYPEs that will put the browser into standards mode instead of quirks mode,
an umbrella term used to describe the irregular behavior of browsers. Having the browser in
standards mode ensures the gap between images and table cell borders. Use alternative DOCTYPES
that trigger quirks mode but that still validate to avoid this gap, or if you simply want to avoid
standards mode. For more information, see a chart comparing DOCTYPEs and browsers at
http://www.webstandards.org/learn/reference/doctype_switch.html .

There may be times when setting the image's display to block isn't the best solution to removing
whitespace around an image in a table cell. If that turns out to be the case, another method to
remove the space is to set the image's vertical-align property to bottom as long as the image is
taller than the line box.

See Also

The CSS 2.1 specification for the display property at
http://www.w3.org/TR/CSS21/visuren.html#propdef-display ; "quirks" mode and "almost standards
mode" at http://developer.mozilla.org/en/docs/Mozilla's_DOCTYPE_sniffing .

http://www.webstandards.org/learn/reference/doctype_switch.html
http://www.w3.org/TR/CSS21/visuren.html#propdef-display

Recipe 8.7. Eliminating Gaps Between Table Cells

Problem

You want to remove gaps from one table cell to another.

Solution

Set the table to use collapse border model:

#shoppingcartTable {
 border-collapse: collapse;
 width: 100%;
 border: 1px solid #666;
}
#shoppingcartTable th {
 background: #888 url(th_bkgd.jpg) repeat-x;
 font: italic 1.5em Georgia, "Times New Roman", Times, serif;
 padding: .5em 0 .5em 7px;
 text-align: left;
 border-top: 1px solid #666;
 border-bottom: 1px solid #666;
 text-shadow: #ccc -2px 2px -2px;
}

Discussion

By setting the border-collapse property to collapse, the browser removes the spacing between the
table cells. Therefore when you apply a border to table cells, the result is a clean, uninterrupted line
across the table row or column.

See Also

See Recipe 8.2 for more discussion about the border-collapse model.

Recipe 8.8. Creating Alternating Background Colors in
Table Rows

Problem

You want to have table rows with alternating background colors, so that the table in Figure 8-7 looks
more like the table in Figure 8-8 .

Figure 8-7. A table without any color in the background cells

Solution

Create a class selector specifically designed for odd-numbered table rows:

tr {
 background-color: #eee;

}
tr.odd {
 background-color: #ccc;
}

Then append every other table row with a class attribute with odd set as its value:

<tr>
 <td class="dltprod">
 <p>Item added on March 22, 2006.</p>
 <img src="x.gif" alt="delete"
class="dltitem" />
 </td>
 <td class="prodcell">

 <div class="prodtitle">How
to Dismantle an Atomic Bomb</div>
 ~ U2
 </td>
 <td><input type="text" value="1" name="qty" size="2" /></td>
 <td>$9.66</td>
</tr>
<tr class="odd">
 <td class="dltprod">
 <p>Item added on March 22, 2006.</p>
 <img src="x.gif" alt="delete"
class="dltitem" />
 </td>
 <td class="prodcell">

 <div class="prodtitle">When The Pawn
Hits...</div>
 ~ Fiona Apple
 </td>
 <td><input type="text" value="1" name="qty" size="2" /></td>
 <td>$7.97</td>
</tr>

Figure 8-8. Alternating colors in the table rows

Discussion

This solution of marking up every other tr element, while laborious for long tables if handcoded,
ensures cross-browser compatibility.

A second solution helps eliminate the need for extra markup within an HTML table. Using a selector,
nth-child , noted in the CSS 3 specification, the solution is straightforward:

tr {
 background-color: #eee;
}
tr:nth-child(odd) {
 background-color: #ccc;
}

However, support for CSS 3 is limited. Internet Explorer 6 for Windows and previous versions do not
support this selector so cross-browser compatibility is an issue.

Using JavaScript

Other solutions go beyond just CSS. One solution is the use of JavaScript that interacts with the
Document Object Model (DOM) and automatically applies the styles to every other table row. You can

find one such solution at http://www.alistapart.com/articles/zebratables . The downside to this
solution is that it will fail if the user has disabled JavaScript in their browser.

Using server-side solutions

Another programming solution would be to use a server-side programming language like PHP or
ColdFusion to write a simple script that automates the generation of the table. (This technique is also
beneficial if a backend database is being used to create and maintain the tabular data.) For a PHP
solution to this exercise see http://www.phpfreaks.com/tutorials/5/0.php .

See Also

The CSS 3 specification for the nth-child pseudo-class selector at http://www.w3.org/TR/css3-
selectors/#nth-child-pseudo .

Recipe 8.9. Adding a Highlighting Effect on a Table Row

Problem

You want to highlight a whole row in a table when the cursor moves over a table cell within that table
row (see Figure 8-9).

Solution

Use the : hover pseudo-class on the TR element:

tr:hover {
 background: yellow;
}

Figure 8-9. A table row is highlighted as the cursor moves across the table

Discussion

The pseudo-class :hover is commonly seen on links to create rollover effects. However, the CSS
specification doesn't limit its use to just links. It can also be applied to other elements like p or div .

Support for this technique can be limiting because Internet Explorer 6 for Windows and previous
versions will not create a hover effect on an element other than a link.

See Also

The CSS 2.1 specification for dynamic pseudo-classes at
http://www.w3.org/TR/CSS21/selector.html#dynamic-pseudo-classes .

http://www.w3.org/TR/CSS21/selector.html#dynamic-pseudo-classes

Recipe 8.10. Sample Design: An Elegant Calendar

Great for organization, calendars enable us to schedule lunches, remember birthdays, and plan
honeymoons. As designers, we can think of all those months, dates, and appointments as tabular
data.

If you display your calendar as a generic HTML table, chances are the table looks rather plain, and if
it contains numerous events then it probably looks somewhat convoluted as well. In this design, we
use CSS to create a calendar that is more legible than what you can create by using plain vanilla
HTML.

First, take a look at Figure 8-10 , which shows the markup for the calendar without styles.

Figure 8-10. The calendar without styles

Next, look at the markup itself to see how it's set up. As you saw in Recipe 8.1 , the cellspacing
attribute needs to be set in the table element:

<table cellspacing="0">

Now, set the first three rows of table headers, th , containing the year, month, and days, in their own
rows within their own table headers:

 <tr>
 <th colspan="7" id="year">
 < 2000 >
 </th>
 </tr>
 <tr>
 <th colspan="7" id="month">
 < October >
 </th>
 </tr>
 <tr id="days">
 <th>Sunday</th>
 <th>Monday</th>
 <th>Tuesday</th>
 <th>Wednesday</th>
 <th>Thursday</th>
 <th>Friday </th>
 <th>Saturday</th>
 </tr>

The first date is October 1, which in this calendar falls on a Sunday. To signify that Sundays and
Saturdays are days of the weekend, use a class selector in the TD element.

In each date of the month there is a link on the date itself (which would, in theory, take the user to a
detailed listing of the day) as well as a link to add more events to the day. Wrap these two links in a
div element so that when new events are added there is a clear division between the two sections in
the table cell:

<tr>
 <td class="weekend">
 <div>
 1
 +
 </div>
 </td>

The next date, October 2, has an event listed. The event is marked up as a link and placed below the
div containing the date and the addevent links (because October 2 is a weekday, the weekend class
isn't applied to the td element):

 <td>
 <div>
 2
 +
 </div>

 Regular City
 Commission meeting agenda
 </td>

The rest of the markup follows a similar structure:

 <td>
 <div>
 3
 +
 </div>
 </td>
 <td>
 <div>
 4
 +
 </div>
 </td>
 <td>
 <div>
 5
 +
 </div>
 Dad's birthday
 </td>
 <td>
 <div>
 6
 +
 </div>
 </td>
 <td class="weekend">
 <div>
 7
 +
 </div>
 FSU at UM
 </td>
 </tr>

 [...]

 <tr>
 <td class="weekend">
 <div>
 29
 +
 </div>
 <div class="event">Buy candy</div>
 </td>
 <td>

 <div>
 30
 +
 </div>
 Regular City
Commission meeting agenda
 </td>
 <td>
 <div>
 31
 +
 </div>
 Halloween
 Flu shot
 </td>
 <td>
 <div class="emptydate"> </div>
 </td>
 <td>
 <div class="emptydate"> </div>
 </td>
 <td>
 <div class="emptydate"> </div>
 </td>
 <td class="weekend">
 <div class="emptydate"> </div>
 </td>
 </tr>
</table>

With the calendar marked up, you can begin setting up the styles. First, apply the styles to the table
and links. The width of the table is set to 100% and the border model (see Recipe 8.2) is set to
collapse , the common model web designers are used to and that most browsers get right in their
CSS implementations; the underline decoration is turned off (see Figure 8-11):

table {
 width: 100%;
 border-collapse: collapse;
}
td a:link, td a:visited {
 text-decoration: none;
}

Figure 8-11. Underline decoration of the links removed

Next, set up the styles for the first three rows of the table. The rows are marked with ID selectors
because you want the styles to show up only once in the document. Stylize these rows in a
straightforward manner, using the monospace font for the heading font and then decreasing the font
sizes, with the month sized the largest (see Figure 8-12):

#year {
 font-family: monospace;
 font-size: 1.5em;
 padding: 0;
 margin: 0;
}
#month {
 font-family: monospace;
 font-size: 2em;
 padding: 0;
 margin: 0;
}
#days {
 background-color: black;
 color: white;
 font-family: monospace;
 width: 75px;
}

Figure 8-12. Styling the first three rows

Now it's time to stylize the dates and add event links in each cell. To reproduce the box date effect
seen in most calendars, place a border to the right and bottom of the text and float the content to
the left.

You want the add event links to be close to the dates. Floating the link to the right means the link will
be positioned next to the date of the following day. By floating the add event link to the left, you are
telling the user that the plus sign means add an event for that particular day (see Figure 8-13):

.date {
 border-right: 1px solid black;
 border-bottom: 1px solid black;
 font-family: monospace;
 text-decoration: none;
 float: left;
 width: 1.5em;
 height: 1.5em;
 background-color: white;
 text-align: center;
}
.addevent {
 display: block;
 float: left;
 width: 1em;
 height: 1em;
 text-align: center;
 background-color: #666;
 color: white;
 font-weight: bold;

 text-decoration: none;
}

Figure 8-13. Styles introduced to the date and add event links

Now it's time to look at how the event listings can be stylized. Because the previous links are floated,
you need to create a visible break and move the events below the date.

Setting the clear property to both achieves this visual break. The clear property is used to indicate
which sides of an element should not be positioned next to a floated element. In this case, you don't
want the left side to run next to the date and add event links. However, just in case the design
changes in the future and the dates are positioned on the opposite side, use a value of both instead
of left .

Next, change the display of the link to block and place padding on the bottom (see Figure 8-14).
You're making these changes to prevent multiple events in a table cell from running into each other.
Also, the padding acts as a nice visual buffer, allowing the eye to easily discern between two events:

.event {
 clear: both;
 padding-left: 1em;
 padding-bottom: .75em;
 display: block;
}

Figure 8-14. Event links treated like block-level elements

To each table cell, apply a width of 14% . You're using 14% because 7 (representing the 7 sections of
the calendar, or days of the week) goes into 100 (representing 100% of the viewport) approximately
14 times. Also, place a white border on all sides of the cell and position all the content to the top with
the vertical-align property (see Figure 8-15):

td {
 width: 14%;
 background-color: #ccc;
 border: 1px solid white;
 vertical-align: top;
}

Figure 8-15. The content in each of the cells moved to the top

Make the background color of the weekend dates darker than that used for the weekday dates (see
Figure 8-16):

.weekend {
 background-color: #999;
}

Figure 8-16. The weekend days marked with a darker gray background
color

Slightly gray out the look of the remaining days in the calendar (see Figure 8-17):

.emptydate {
 border-right: 1px solid #666;
 border-bottom: 1px solid #666;
 font-family: monospace;
 text-decoration: none;
 float: left;
 width: 1.5em;
 height: 1.5em;
 background-color: #ccc;
 text-align: center;
}

Figure 8-17. Empty dates for the next month stylized

For the current day (in this example the current day is the 27th), place a 2-pixel black border around
the box:

#today {
 border: 2px solid black;
}

And with that, the calendar is complete; check out Figure 8-18 .

Figure 8-18. The current date in the calendar with a darker border

Chapter 9. Page Layouts
Section 9.0. Introduction

Recipe 9.1. Building a One-Column Layout

Recipe 9.2. Building a Two-Column Layout

Recipe 9.3. Building a Two-Column Layout with Fixed-Width Columns

Recipe 9.4. Creating a Flexible Multicolumn Layout with Floats

Recipe 9.5. Creating a Fixed-Width Multicolumn Layout with Floats

Recipe 9.6. Creating a Flexible Multicolumn Layout with Positioning

Recipe 9.7. Creating a Fixed-Width Multicolumn Layout with Positioning

Recipe 9.8. Using Floats to Display Columns in Any Order

Recipe 9.9. Designing an Asymmetric Layout

9.0. Introduction

One of the last frontiers in CSS-enabled design was creating the page layout.

For a long time, web developers have been using HTML tables to create their layouts, often nesting
tables to create multicolumn, multilevel layouts. Nested HTML tables render well in older browsers
like Netscape Navigator 4 where CSS support, if present, is barely noticeable.

HTML tables and other HTML elements, however, should be tools used to mark up content and not
used to construct unwieldy page layouts. The ideal solution is to have HTML represent the structure
of the content at an intellectual abstract level and let CSS determine how to present the content.

This approach of letting CSS do the heavy lifting brings many advantages. Meaningful content that
was once trapped under so many nested tables and images is now placed within meaningful heading
and paragraph tags, so search engine rankings improve.

Also file sizes diminish noticeably as do maintenance headaches. Launching a complete redesign of a
web site becomes a snap with CSS, when it used to take hours and sometimes days with HTML
tables.

This chapter discusses the many ways in which you can create column layoutsincluding simple one-
column layouts, four-column layouts, and everything in between.

Recipe 9.1. Building a One-Column Layout

Problem

You want to build a layout that consists of one main column, as in Figure 9-1.

Figure 9-1. One-column page reinforced by increased margin

Solution

Apply a percentage value to the left and right margins of the web document's body element:

body {
 margin-left: 15%;
 margin-right: 15%;
}

Discussion

When you apply a percentage value to the left and right margins of the body, the column width
becomes flexible. This allows the content to stretch to the width of the user's browser.

To create a fixed-width column, use the width property for the body element:

body {
 width: 600px;
}

This technique aligns the column to the left side of the user's browser. If you want to center a column
with a fixed width, wrap a div element around the entire contents of the web document with a
specific, unique id attribute such as a frame:

<div id="frame">
 [...]
</div>

Then, in the CSS rules, apply a 50% value to the left padding of the body:

body {
 width: 600px;
 padding-left: 50%;
}

Through an id selector, set the width of the column, and then set a negative left margin equal to half
the column width:

#frame {
 /* set the width of the column */
 width: 600px;
 margin-left: -300px;
}

You may think the answer is to just set the left and right margins to auto:

#frame {
 width: 600px;
 margin-left: auto;
 margin-right: auto;
}

This straightforward approach doesn't work in Internet Explorer for Windows, however. The solution
uses a workaround that works in all major browsers.

See Also

Recipe 4.3 on centering elements in a web document; Recipe 6.8 on horizontal tab navigation.

Recipe 9.2. Building a Two-Column Layout

Problem

You want to create a two-column layout with columns that resize to the width of the browser, as in
Figure 9-2.

Figure 9-2. Two-column layout achieved through CSS

Solution

First, mark up the content with div elements by using the id attributes that contain appropriate
values (see Figure 9-3).

Figure 9-3. The default rendering of the page

For demonstration purposes, the values of the id attributes are used to show where the content is
displayed when CSS is used. Semantic values would be preferred, like mainContent or sidebar,
instead of using values that represent their placement on the page:

<div id="columnLeft">
 [...]
</div>
<div id="columnRight">
 [...]

</div>
<div id="footer">
 [...]
</div>

Then, in CSS, use the float property to move the contents of the left column to the left, and set a
width that is two-thirds the web document's width:

#columnLeft {
 float: left;
 width: 67%;
 background: #fff;
 margin-top: 0;
 margin-right: 1.67em;
 border-right: 1px solid black;
 padding-top: 0;
 padding-right: 1em;
 padding-bottom: 20px;
}

The right column wraps around the contents of the left column. On the right column, set the top of
the margin and padding to 0, allowing the column and the first element in it to become level with the
left column:

#columnRight {
 padding-left: 2em;
 margin-top: 0;
 padding-top: 0;
}
h1 {
 margin-top: 0;
 padding-top: 0;
}

To display the footer at the bottom of the web document, set the clear property to both:

#footer {
 clear: both;
 padding-bottom: 1em;
 border-top: 1px solid #333;
 text-align: center;
}

Discussion

The float property is similar to the align attribute that is used in HTML to allow text and other
elements to flow around an image:

<img src="this.jpg" width="250" height="150" hspace="7" vspace="7"
alt="example" align="right" />

Once the image has been set to align to either the right or left, the content around the image flows to
the opposite side of the image's alignment. For example, an image aligned to the right forces content
to flow around the image on the left side (see Figure 9-4). With CSS, floats provide a similar function,
except they offer more exacting control over the presentation by using borders, margins, padding,
and other properties.

Figure 9-4. Text wrapping around an image set to right alignment

To make sure the content that comprises the footer is placed at the bottom of the columns, set the
clear property to a value of both. When you set the value to both, the browser understands that the
content of the footer isn't flowing around the floated left column and positions it below (or past) any
floated elements.

The only caveat to this technique for creating a two-column layout is that the content in the left
column needs to be longer than the content in the right column. Because the content in the left
column appears first in the document, the content in the right column wraps around the left column.
Too much content in the column that doesn't float results in the anomaly that you see in Figure 9-5.

Figure 9-5. Unwanted wrapping of text under the left column

A method for fixing this problem is to set off the left margin or padding on the right column element
so that the column width is at least maintained after the content flows below the float:

#mainColumn {
 width: 400px;
 /* Enough padding to compensate for the left column */
 padding-left: 200px;
}
#navigation {
 float: left;
 width: 175px;
}

If you want to have the columns reversed (see Figure 9-6), switch the order of the columns by using

the following markup:

<div id="columnRight">
 [...]
</div>
<div id="columnLeft">
 [...]
</div>
<div id="footer">
 [...]
</div>

Figure 9-6. The columns are reversed

Then apply the following CSS to the columns:

#columnRight {
 float: right;
 width: 67%;
 padding-bottom: 20px;
 padding-top: 0;
}
#columnLeft {
 width: 29%;
 padding-right: 1em;
 border-right: 1px solid black;
 padding-top: 0;
}

Note that using id values like columnRight and columnLeft are used in this
solution to help the reader understand readily which column is being styled.
However, this is a bad technique for best practices. Instead, id values should
be semantically describing the content. In other words, the values represent
the content that is contained within the div element, like navigation or
advertisement.

See Also

Recipe 9.3 for a two-column layout with fixed widths; Jeffrey Zeldman's "From Table Hacks to CSS
Layout: A Web Designer's Journal" for a background on this Solution at
http://www.alistapart.com/articles/journey/.

http://www.alistapart.com/articles/journey/

Recipe 9.3. Building a Two-Column Layout with Fixed-
Width Columns

Problem

You want to create a two-column layout with fixed-width columns.

Solution

First, mark up the content with div elements by using the id attributes that contain appropriate
values representing their placement on the page (see Figure 9-7):

<div id="header">
 [...]
</div>
<div id="columnLeft">
 [...]
</div>
<div id="columnRight">
 [...]
</div>
<div id="footer">
 [...]
</div>

Figure 9-7. The default rendering of the page

Using the float property, set the width of the left column to a length unit rather than to percentages.
Also, set the width of the entire document to a length unit (see Figure 9-8):

body {
 margin: 0;
 padding: 0;
 font-family: Georgia, Times, "Times New Roman", serif;
 color: black;
 width: 600px;
 border-right: 1px solid black;
}
#header {
 background-color: #666;
 border-bottom: 1px solid #333;
}
#columnLeft {
 float: left;
 width: 160px;
 margin-left: 10px;

 padding-top: 1em;
}
#columnRight {
 padding-top: 1em;
 margin: 0 2em 0 200px;
}
#footer {
 clear: both;
 background-color: #ccc;
 padding-bottom: 1em;
 border-top: 1px solid #333;
 padding-left: 200px;
}

Figure 9-8. The two-column layout enabled by CSS

Discussion

By default, block-level elements stretch to the width of their containers. If the browser window is
small, the block-level elements shrinkin other words, text inside the content wraps into narrow
columns.

However, when you use length units rather than percentages, the width of the columns becomes
fixed. Even as a browser window shrinks or expands, the column widths remain fixed.

To keep the width of the left column fixed while enabling the main column to stretch, simply remove
the width property assigned to the body element.

If you want to have the columns reversed as like the ones in Figure 9-9, reorder the content with the
following markup:

<div id="header">
 [...]
</div>
<div id="columnRight">
 [...]
</div>
<div id="columnLeft">
 [...]
</div>
<div id="footer">
 [...]
</div>

Note that using id values like columnRight and columnLeft are used in this
solution to help the reader understand readily which column is being styled.
However, this is a bad technique for best practices. Instead, id values should
be semantically describing the content. In other words, the values represent
the content that is contained within the div element, like navigation or
advertisement.

Then use the following updated CSS rules:

#columnLeft {
 width: 340px;
 margin-left: 10px;
 margin-top: 1em;
}
#columnRight {
 float: right;
 width: 200px;
}
#footer {
 clear: both;
 background-color: #ccc;

 padding-bottom: 1em;
 border-top: 1px solid #333;
 padding-left: 10px;
}

Figure 9-9. The columns are reversed

See Also

Recipe 9.2 on creating a two-column layout with flexible-width columns.

Recipe 9.4. Creating a Flexible Multicolumn Layout with
Floats

Problem

You want to create a three-column layout with columns that resize to the width of the browser, like
the one in Figure 9-10 .

Figure 9-10. Three-column layout achieved through CSS

Solution

First, mark up the content with div elements by using the id attributes that contain appropriate
values representing their placement on the page (see Figure 9-11):

<div id="header">

 [...]
</div>
<div id="columnLeft">
 [...]
</div>
<div id="columnMain">
 [...]
</div>
<div id="columnRight">
 [...]
</div>
<div id="footer">
 [...]
</div>

Figure 9-11. The default rendering of the page

Next, set each column to float to the left, making sure that the width is a percentage. All three values
of the columns should equal 100% when added together (see Figure 9-12):

#columnRight {
 width: 33%;
 float: left;
 background: white;
 padding-bottom: 1em;
}
#columnLeft {
 width: 20%;
 float:left;
 background: white;
 padding-bottom: 1em;
 text-align: justify;
}
#columnMain {
 width:47%;
 float:left;
 background: white;
 padding-bottom: 1em;
}
#footer {
 clear: both;
 padding-bottom: 1em;
 border-top: 1px solid #333;
 text-align: center;
}

Figure 9-12. An increased width for the main column forcing the right
column to wrap underneath

Discussion

This technique works because all columns are set to float to the left and their widths aren't larger than
100%. Setting the floats to the right can flip the columns, but the result is the same.

Be sure to apply margins and padding to the elements within the columns (unless you account for
their widths when sizing the columns). If you don't, the columns will expand beyond 100%, forcing
one or more columns to wrap underneath each other (refer to Figure 9-12).

See Also

Recipe 9.5 on creating a three-column layout with fixed-width columns;
http://www.realworldstyle.com/nn4_3col_header.html for information on creating a three-column
layout with one flexible-width column and two fixed-width columns.

http://www.realworldstyle.com/nn4_3col_header.html

Recipe 9.5. Creating a Fixed-Width Multicolumn Layout
with Floats

Problem

You want to create a three-column layout with fixed-width columns.

Solution

First, mark up the content with div elements by using the id attributes that contain appropriate
values representing their placement on the page (see Figure 9-13):

<div id="header">
 [...]
</div>
<div id="columnMain">
 [...]
</div>
<div id="columnLeft">
 [...]
</div>
<div id="columnRight">
 [...]
</div>
<div id="footer">
 [...]
</div>

Next, wrap the div elements that compose the main and left columns in another div element and set
the value of the id attribute to enclose . Also, wrap another div element around the entire set of div
elements, setting the value to frame :

<div id="frame">
 <div id="header">
 [...]
 </div>
 <div id="enclose">
 <div id="columnMain">
 [...]
 </div>
 <div id="columnLeft">
 [...]
 </div>

 </div>
 <div id="columnRight">
 [...]
 </div>
 <div id="footer">
 [...]
 </div>
<div>

Figure 9-13. The default rendering of the page

Set the width of the page, using an id selector for the frame div element:

#frame {
 margin-left: 20px;
 width: 710px;
}

Next, set the column div elements as well as the div element with the id value of enclose to float
(see Figure 9-14):

#columnMain {
 float: right;
 width: 380px;
}
#columnLeft {
 float: left;
 width: 150px;
}
#columnRight {
 float: right;
 width: 120px;
}
#enclose {
 float:left;
 width:560px;
}
#footer {
 clear: both;
 padding-top: 1em;
 text-align: center;
}

Figure 9-14. Three-column layout with fixed column widths

Discussion

Because the width of the columns is set in pixels, the columns are fixed. To display the columns, you
need an extra div element wrapped around the main and left columns. With this extra div element,
which contains an id attribute value of enclose , the main and left columns as a whole are set to float
to the left. And inside the enclose div , the main column is aligned to the right while the left column
is aligned to the left.

See Also

Recipe 9.4 on creating a three-column layout with flexible columns.

Recipe 9.6. Creating a Flexible Multicolumn Layout with
Positioning

Problem

You want to create a four-column layout with columns that resize to the width of the browser (see
Figure 9-15).

Figure 9-15. Four-column layout with percentage-based widths

Solution

First, mark up the content with div elements by using the id attributes that contain appropriate
values representing their placement on the page (see Figure 9-16):

<div id="header">

 [...]
</div>
<div id="columnLeft">
 [...]
</div>
<div id="columnInnerLeft">
 [...]
</div>
 [...]
<div id="columnInnerRight">
 [...]
</div>
 [...]
<div id="columnRight">
 [...]
</div>

Figure 9-16. The default rendering of the content

Next, use the position property in each column, setting the value to absolute while setting the
placement of the columns with the left and top properties:

#columnLeft {
 position: absolute;
 left:1%;
 width:20%;
 top: 4em;
 background:#fff;
}
#columnInnerLeft {
 position: absolute;
 left: 22%;
 width: 28%;
 top: 4em;
 background: #fff;
 text-align: justify;
 border-width: 0;
}
#columnInnerRight {
 position: absolute;
 left: 51%;
 width: 28%;
 top: 4em;
 background: #fff;
}
#columnRight {
 position: absolute;
 left: 80%;
 width: 19%;
 top: 4em;
 background: #fff;
}

Discussion

By setting the position property to absolute , you take the element completely out of the flow of the
document. When an element is set to float , other elements in a page can flow around the "floated"
element. When an element is set to absolute , that element is treated like a ghost.

The default rendering of an element when positioned absolutely is to the upper-left corner of its
closest positioned ancestor or the initial containing block. In other words, to position a child element
set to absolute within the parent element, first apply a position property of absolute or relative (that
is, not static). If other elements are on the page, this creates an overlap of the content, as you see in
Figure 9-17 .

Figure 9-17. Text overlapping an image and other text in a web document

To avoid this problem, use four additional CSS properties that allow the element to be moved into
any location: top , left , bottom , and right . Be sure to set the values of the columns to
percentages to maintain flexible widths as a user's browser resizes.

Also use percentages as the values for the left property to mark the distance away from the left side
of a browser's viewport. However, use em units as the values for the top property to compensate for
the height of the heading. If you want to use an image for the heading, change the values for top to
pixels, making sure there is enough room for the graphic header.

While this technique grants freedom in the placement of elements, there are drawbacks to using
absolute to position elements. In some circumstances, Netscape Navigator 4 loses the location of
positioned elements when you resize the window.

Although the placement of columns next to each other can be carried out easily with this technique,
the placement of a footer at the bottom of the columns is hard to do unless you know where the
columns exactly end at the bottom of the page.

See Also

The CSS 2.1 specification on the position property at
http://www.w3.org/TR/CSS21/visuren.html#propdef-position ; the CSS 2.1 specification on
positioning elements set to absolute at http://www.w3.org/TR/CSS21/visuren.html#position-props ;
read more about containing blocks at http://www.w3.org/TR/2003/WD-CSS21-
20030915/visudet.html#containing-block-details .

http://www.w3.org/TR/CSS21/visuren.html#propdef-position

Recipe 9.7. Creating a Fixed-Width Multicolumn Layout
with Positioning

Problem

You want to create a four-column layout with fixed-width columns.

Solution

First, mark up the content with div elements by using the id attributes that contain appropriate
values representing their placement on the page:

<div id="header">
 [...]
</div>
<div id="columnLeft">
 [...]
</div>
<div id="columnInnerLeft">
 [...]
</div>
 [...]
<div id="columnInnerRight">
 [...]
</div>
 [...]
<div id="columnRight">
 [...]
</div>

Next, use the position property in each column, setting the value to absolute while setting the
placement of the columns with the left and top properties, making sure to use pixels for the units:

#columnLeft {
 position: absolute;
 left:5px;
 width:190px;
 top: 44px;
 background:#fff;
}
#columnInnerLeft {

 position: absolute;
 left: 205px;
 width: 190px;
 top: 44px;
 background: #fff;
 text-align: justify;
 border-width: 0;
}
#columnInnerRight {
 position: absolute;
 left: 405px;
 width: 190px;
 top: 44px;
 background: #fff;
}
#columnRight {
 position: absolute;
 left: 605px;
 width: 190px;
 top: 44px;
 background: #fff;
}

Discussion

Setting the width of the columns as well as the left and top properties to length units creates the
fixed-width columns. This solution is just as easy with two to three or more columns. Remember that
anything more than four or five columns may be impractical.

With the solution, the layout is ideal for an image that is equal or less than 44 pixels tall. If you place
text within the header, there's the possibility that the text could ruin the layout by making the header
appear to go under the columns. This phenomenon occurs because the header is within the flow of
the document, while the absolute position takes the column out of the flow.

If this is an issue for a design, first wrap a div element around the columns and set the id value to
content:

<div id="header">
 [...]
</div>
<div id="content">
 <div id="columnLeft">
 [...]
 </div>
 <div id="columnInnerLeft">
 [...]
 </div>
 [...]
 <div id="columnInnerRight">
 [...]

 </div>
 [...]
 <div id="columnRight">
 [...]
 </div>
</div> <!-- end CONTENT -->

Then set the CSS rule for the content wrapper to be positioned relatively:

#content {
 position: relative;
}

That extra step shores up the header as well as removes the top of the columns.

See Also

Recipe 9.3 on creating a fixed-width two-column layout; Recipe 9.5 on creating a fixed-width
multicolumn layout with floats.

Recipe 9.8. Using Floats to Display Columns in Any Order

Problem

You want to develop a system to display content in columns in any order.

Solution

Given the following markup:

<div id="container-outer">
 <div id="container">
 <div id="content" class="column">
 <div class="wrap">
 [...]
 </div>
 </div><!-- /END #content -->

 <div id="navigation" class="column">
 <div class="wrap">
 [...]
 </div>
 </div><!-- /END #navigation -->

 <div id="related-info" class="column">
 <div class="wrap">
 [...]
 </div>
 </div><!-- /END #related-info -->
 </div><!-- /END #container -->
</div><!-- /END #container-outer -->

Apply the following CSS rules:

.column {
 float: left;
}

#content {
 margin-left: 20%;
 width: 60%;
}

#navigation {
 margin-left: -80%;
 width: 20%;
}

#related-info {
 width: 19%;
}

/* IEx patches */
* html .column {
 display: inline;
}

* html #navigation li {
 height: 1%;
}
/**/

This will yield the basic page layout that you see in Figure 9-18, with two narrow, flexible-width
sidebars bounding an equally flexible center column.

Figure 9-18. Basic formatting of page layout

From this rather bland foundation, you can layer additional CSS on top of it. Adding the following
code to your CSS will yield a design like Figure 9-19:

body {
 font: normal 62.5%/1.7 Verdana, Geneva, Helvetica, Arial, sans-serif;
 margin: 0;
 padding: 0;
}
#container:after {
 clear: both;
 content: ".";
 display: block;
 height: 0;
 visibility: hidden;
}
#container {
 display: inline-block;
}
/* Hide from MacIE5 */

#container {
 display: block;
}
/**/
#container-outer {
 background: url("bg-left.gif") repeat-y 20% 0;
}
#container {
 background: url("bg-right.gif") repeat-y 80% 0;
}
.column .wrap {
 padding: 20px;
}
#content .wrap {
 padding: 20px 30px;
}
#content p {
 margin-top: 0;
}
#content p:first-child {
 font: normal 1.4em/1.6 Georgia, Times, "Times New Roman", serif;
}
#content p:first-child:first-line {
 text-transform: uppercase;
}
#navigation ul, #navigation ul li {
 list-style: none;
 margin: 0;
 padding: 0;
}
#navigation ul li {
 margin-bottom: .4em;
}
#navigation li a {
 background: #36C;
 color: #FFF;
 border-left: 7px solid #09F;
 display: block;
 padding: .4em .4em .4em 20px;
 text-decoration: none;
}
#navigation li a:hover {
 border-left: none;
 border-right: 7px solid #09F;
 padding-left: 27px;
}
#related-info {
 color: #555;
 font-style: italic;
}
#copyright {
 border: 1px solid #B2B2B2;

 border-width: 1px 0;
 clear: both;
 padding: 10px 20px;
 text-align: center;
}
#copyright p {
 margin: 0;
}

Figure 9-19. Fleshed out design of multicolumn layout

Discussion

The float model has a storied history. The authors of the CSS specification never intended floats to be
used for page-level layout control: rather, they were a means to control the flow of content around

an object, much as align="left" or align="right" would cause text to wrap around an img element.
But despite the specification's original spirit, floats do offer us a powerful and flexible alternative to
traditional, table-based layout techniques.

Alex Robinson, a designer, published an influential article on creating the "Any Order Columns" in
CSS (http://www.positioniseverything.net/articles/onetruelayout/). Robinson's technique allows
developers to create multicolumn layouts easily by using floats to display each column in any order,
regardless of the order in which those blocks appear in the markup.

The markup

To work with this technique, first you need to establish columns in your markup, like so:

<div id="container">
 <div id="content" class="column">
 [...]
 </div><!-- /END #content -->

 <div id="navigation" class="column">
 [...]
 </div><!-- /END #navigation -->

 <div id="related-info" class="column">
 [...]
 </div><!-- /END #related-info -->
</div><!-- /END #container -->

<div id="copyright">
 <p>Copyright notice goes here.</p>
</div>

Inside each div, place any markup you would like. Figure 9-20 shows what the unstyled document
looks like, with a few paragraphs and an unordered list thrown in for good measure.

Figure 9-20. Unstyled page layout

http://www.positioniseverything.net/articles/onetruelayout/

From this demonstration so far, a div element is set up for each of your three columns, and each is
assigned an id that describes the kind of content that will be placed inside. In this solution, the values
for id are content, navigation, and related-info. It would have been just as easy to use center,
left, and right, but that wouldn't have been especially forward-thinking: what happens when you
change your site's CSS file, and the new design requires the "left" div to appear on the righthand
side of the page?

Defining the columns

With this simple markup structure in place, you can apply a generic float rule to all three column
divs:

.column {
 float: left;
}

As you see in Figure 9-21, the layout does not look drastically different. The copyright text is a bit out
of alignment, but the bulk of your page appears as it did before with each column div stacking
horizontally. Once dimensions are assigned to these blocks, however, things rapidly change.

Figure 9-21. The copyright notice has moved

First, start with the content block. To set the block to be 60% of the window width, and the width of
the lefthand sidebar to be 20% of the screen, create the following rule:

#content {
 margin-left: 20%;
 width: 60%;
}

Figure 9-22 shows that the layout is looking a bit odd, but starting to take shape.

Figure 9-22. Applying styles to the content portion of the layout

By setting a lefthand margin equal to the width of your lefthand sidebar, you've essentially "reserved"
some space for it. The next step is to use negative margins to "pull" the navigation div across the
content div to the lefthand side of the page:

#navigation {
 margin-left: -80%;
 width: 20%;
}

The margin-left value applied is a sum of the width of the center column (60%) and its lefthand
margin (20%). This pulls the navigation column over to its proper place (see Figure 9-23).

Figure 9-23. The navigation moves to the left column

Now, simply by setting a width on the related-info block, the three-column layout is complete, as
shown in Figure 9-24:

#related-info {
 width: 20%;
}

Figure 9-24. Moving the right column content into place

Looks excellent, although the copyright div is still a bit off. But with the clear property, that's easily
fixed (see Figure 9-25):

#copyright {
 clear: both;
}

Figure 9-25. Placing the copyright notice at the bottom of the page

Although the layout may look as though your columns are nearly complete, Figure 9-26 shows you
that Internet Explorer on Windows needs a little extra attention.

Figure 9-26. Problems with the layout are viewed in Internet Explorer for
Windows

Thankfully, this is a documented IE bug known as the "Doubled Float-Margin Bug"
(http://positioniseverything.net/explorer/doubled-margin.html): essentially, when a margin is applied
to a floated box in the same direction as the float, that margin is doubled in size.

Since a lefthand margin is applied to a left-floated element, IE on Windows takes that 20% margin and
doubles it to 40%.

Thankfully, the fix is a simple one. By applying display:inline to the problematic element, Internet
Explorer behaves again. To do this, add the following lines to your CSS:

/* IEx patches */
* html .column {
 display: inline;
}
/**/

The oddly formatted comments and * html prefix ensure that this code is seen by IE on Windows,
and IE on Windows alone. And as Figure 9-27 shows, IE is behaving properly.

http://positioniseverything.net/explorer/doubled-margin.html

Figure 9-27. The fix is applied so that the layout works in Internet
Explorer for Windows

So you've arrived at last: a flexible, three-column layout template. But where else can you take this?

Creating whitespace

The space between the columns is called a gutter. To customize this layout by increasing the size of
the gutters, an approach would be to apply some margins around the columns. There are a number
of ways to achieve this effect, but first start by adding an additional div to each of your columns, like
so:

<div id="container">
 <div id="content" class="column">

 <div class="wrap">
 [...]
 </div>
 </div><!-- /end #content -->

 <div id="navigation" class="column">
 <div class="wrap">
 [...]
 </div>
 </div><!-- /end #navigation -->

 <div id="related-info" class="column">
 <div class="wrap">
 [...]
 </div>
 </div><!-- /end #related-info -->
</div><!-- /end #container -->

With your "wrap" divs in place, apply padding to them with CSS to create more breathing room (see
Figure 9-28):

.column .wrap {
 padding: 20px;
}

#content .wrap {
 padding: 20px 30px;
}

Figure 9-28. Increasing the size of the gutters

Adjusting the order of columns

As you may have noticed by now, the "Any Order Columns" method is grounded in the intelligent use
of margins: positive margins are used to reserve space, while negative margins are used to "pull"
columns out of their natural position.

Now simplify the CSS for a moment, and remove all the column margins:

#content {
 width: 60%;
}
#navigation {
 width: 20%;
}
#related-info {
 width: 19%;
}

As a result, your layout now looks like Figure 9-29, with each column appearing in its natural position
in the float order.

Figure 9-29. Moving the navigation between the columns

By adding a lefthand margin to your navigation div, and then by using a negative lefthand margin
to move your related-info div, you can essentially reverse the order of the second two columns. With
the following CSS, you're left with a layout like Figure 9-30:

#content {
 width: 60%;
}
#navigation {
 margin-left: 20%;
 width: 20%;
}

#related-info {
 margin-left: -39%;
 width: 19%;
}

Figure 9-30. Reversing the order to the columns

And to complete the demonstration, place the content column on the righthand side of the page, as
shown in Figure 9-31.

To do so, apply the following code:

#content {
 margin-left: 40%;
 width: 60%;
}

#navigation {
 margin-left: -100%;
 width: 20%;
}
#related-info {
 margin-left: -80%;
 width: 19%;
}

Figure 9-31. Content column moved to the righthand side of the page

As with the first layout, you've applied a margin to the content column in order to "reserve" some
whitespace on the lefthand side of our page. Then, you've used negative lefthand margins to pull the
navigation and "related information" divs into the proper location.

Page layout algorithm

A simple way to calculate rearranging columns is to follow a somewhat simple algorithm used to
calculate the negative margins for a column:

For the column you want to determine its negative margin, first calculate the rightmost point for
all columns that precedes it in the source code.

1.

Then specify the leftmost point for the column.2.

Finally, subtract the rightmost value from the leftmost to give the left margin for the element.3.

If this technique doesn't work, there's always good ol' trial and error.

Faking columns

Now return to your first layout (see Figure 9-32), and see how you can make your columns feel, well,
a bit more polished. The first step? Background images.

Figure 9-32. Initial layout awaiting column graphics

" Faux columns" is a technique developed by web designer Dan Cederholm
(http://alistapart.com/articles/fauxcolumns/) that utilizes a horizontally repeating background image.

By using one tiled image, Cederholm's method works incredibly well in a fixed-width design:
however, the technique's versatility means that it needs only slight modification to work in our fully
flexible layout.

First, you need two images, one for each side of the content column. Figure 9-33 shows the lefthand
graphic, while Figure 9-34 shows the right.

Figure 9-33. Graphic for lefthand column

http://alistapart.com/articles/fauxcolumns/

Figure 9-34. Graphic for righthand column

Next, you'll need to wrap your container block in an extra div, like so:

<div id="container-outer">
 <div id="container">
 [Rest of template goes here]
 </div>
</div>

And finally, you'll need to add the following rules to your style sheet:

#container:after {
 clear: both;
 content: ".";
 display: block;
 height: 0;
 visibility: hidden;
}
#container {
 display: inline-block;
}
/**/
#container {
 display: block;
}
/**/
/**//*/
#container {
 display: inline-block;
}
/**/
#container-outer {
 background: url("bg-left.gif") repeat-y 20% 0;
}
#container {
 background: url("bg-right.gif") repeat-y 80% 0;
}

With this code in place, the columns appear as full-length columns, like the ones in Figure 9-35.

Figure 9-35. Column graphics are applied to layout

From here, feel free to add any typographic styles you'd like; the ones supplied in the Solution
section of this recipe will do nicely, and will yield the finished design shown in Figure 9-36.

Figure 9-36. Finalized page layout

An alternative solution

The float model for laying out pages is powerful, but floats can have a rather steep learning curve. As
a result, many designers find absolute positioning to be an attractive alternative, enabling them to
precisely position the different components of their design with x- and y-coordinates.

Unfortunately, positioned elements are taken "out of the document flow," which effectively collapses
their containing element. As a result, "positioned" designs lack the powerful float concept of clearing,
which enables the different parts of your designs to be "context-aware": that is, a footer div (such as
the copyright block in the solution, earlier) can be cleared of the floated blocks above it, but not of
any positioned elements on the page.

Shaun Inman, a talented web designer/developer, has written a lean JavaScript function to fix this
problem (http://shauninman.com/plete/2006/05/clearance-position-inline-absolute.php). When
inserted into your web pages, Inman's script will automatically "clear" elements of any other
positioned elements on the page (see Figure 9-37).

http://shauninman.com/plete/2006/05/clearance-position-inline-absolute.php

Figure 9-37. Using absolute positioning for a layout

The only potential drawback to this method is that it does rely on JavaScript being active in the user's
browser. But if your content is accessible if you disable JavaScript in your target browsers during
testing, then all should be well.

See Also

Recipe 9.9 for designing an asymmetric layout with absolute positioning.

Recipe 9.9. Designing an Asymmetric Layout

Problem

You want to create a flexible, asymmetric or organic layout, like the one in Figure 9-38.

Solution

First, mark up the content with div elements by using the id attributes that contain appropriate
values representing their placement on the page:

<div id="header">
 [...]
</div>
<div id="columnSmall">
 [...]
</div>
<div id="columnMain">
 [...]
</div>
<div id="columnMedium">
 [...]
</div>

Figure 9-38. The asymmetric placement of the content

Next, use the position property in each column, setting the value to absolute while setting the
placement of the columns with the left and top properties, using percentages. Also, use percentage
values for positioning a background image (see Figure 9-39):

body {
 margin:5px 0 0 5px;
 background-image: url(flower5.jpg);
 background-position: 50% 35%;
 background-repeat: no-repeat;
 }
#header {
 position: absolute;
 left: 65%;
 top: 50%;
 width: 125px;
 font-size: small;
}
#columnSmall {
 position: absolute;

 left: 35%;
 width: 15%;
 top: 1%;
 background: #fff;
font-size: small;
}
#columnMain {
 position: absolute;
 left: 5%;
 width: 45%;
 top: 40%;
 background: #fff;
 text-align: justify;
 border-width: 0;
 font-size: large;
}
#columnMedium {
 position: absolute;
 left: 80%;
 width: 20%;
 top: 10%;
 background: #fff;
}

Figure 9-39. The default rendering of the page

Discussion

Although web sites seem to use traditional column layouts, CSS enables web developers to come up
with new ways to present their documents. Through the position, top, and left properties, you can
break up the content into chunks, stylize them separately, and place them in unique arrangements.

The background image moves with the content if the browser window is resized because you used a
percentage value to set the position of the background image.

Instead of changing the values for the position, top, and left properties by hand, you can more
easily place div elements with a WYSIWYG application such as Macromedia Dreamweaver.

If you want to create an asymmetric or organic layout with fixed-width columns instead of making
this layout resizable, use length units to dictate the exact position of both the content and the
background image:

body {
 margin:5px 0 0 5px;
 background-image: url(flower5.jpg);
 background-position: -400px -200px;
 background-repeat: no-repeat;
}

#header {
 position: absolute;
 left: 500px;
 top: 200px;
 width: 125px;
 font-size: small;
}
#columnLeft {
 position: absolute;
 left: 200px;
 width: 125px;
 top: 10px;
 background:#fff;
 font-size: small;
}
#columnInnerLeft {
 position: absolute;
 left: 50px;
 width: 375px;
 top: 175px;
 background: #fff;
 text-align: justify;
 border-width: 0;
 font-size: large;
}
#columnInnerRight {
 position: absolute;
 left: 600px;
 width: 150px;
 top: 50px;
 background: #fff;
}

See Also

Recipes 3.3 and 3.4 for setting background images on a web page; for working with CSS and Adobe
Dreamweaver, see Recipe 1.17. For more information about Adobe Dreamweaver, see
http://www.dreamweaver.com.

http://www.dreamweaver.com

Chapter 10. Print
Section 10.0. Introduction

Recipe 10.1. Creating a Printer-Friendly Page

Recipe 10.2. Making a Web Form Print-Ready

Recipe 10.3. Displaying URIs After Links

Recipe 10.4. Inserting Special Characters Before Links

Recipe 10.5. Sample Design: A Printer-Friendly Page with CSS

10.0. Introduction

To create a printer-friendly version of a web page, traditionally web developers would either have to
manually convert the web page content to a separate stripped-down page design or use a script to
dynamically generate a separate page design.

With CSS, however, you can automatically apply a new style sheet to documents when they are
printed, thereby eliminating the time and server resources needed to create a printer-friendly page.

Support for print-media CSS is fairly commonplace these days. Currently, the browsers that support
this aspect of the technology include Firefox, Internet Explorer 4+ for Windows, Internet Explorer
4.5+ for Macintosh, Navigator 6+, Safari, and Opera.

Print-only properties are associated with CSS. However, these properties have limited support
among the browsers on the market; Opera 5 and 7 are the only browsers that support more than
two of these kinds of properties (15 printing properties out of the 16 in the specification).

Because of this reality and because the purpose of this book is to focus on the practical, cross-
browser nature of CSS, the recipes in this chapter are geared to styling the contents of the page
rather than dealing with the theory of CSS printing properties. For more information on CSS printing
properties, see Cascading Style Sheets: The Definitive Guide, by Eric A. Meyer (O'Reilly Media).

This chapter teaches the basics of how to tell the browser which style sheet to use when sending a
document to print. It also discusses how to switch graphics from web to print CSS, as well as how to
develop a document for printing.

Recipe 10.1. Creating a Printer-Friendly Page

Problem

You want to create a printer-friendly page without having to generate another web page manually or
dynamically.

Solution

First, create a separate style sheet containing CSS rules that dictate the desired look when a page is
printed. For this example, the style sheet with print-only CSS rules is named print.css.

Then associate the style sheet and set the media property to print:

<link rel="stylesheet" type="text/css" href="adv.css"
media="screen" />
<link rel="stylesheet" type="text/css" href="print.css"
media="print" />

Discussion

You can use style sheets to dictate the presentation of documents in a wide range of media. By
default, the value for the media attribute is all. Without the attribute, the user agent will apply the
CSS rules in the style sheet to all media.

Although the most common attribute you probably have encountered is screen, which is used mainly
for displaying documents on color monitors, the CSS 2.1 specification actually defines a total of ten
media types, as shown in Table 10-1.

Table 10-1. Media types

Media
type

Description

all
Suitable for all devices

Media

type
Description

braille
Intended for Braille tactile feedback devices

embossed
Intended for paged Braille printers

handheld Intended for handheld devices (typically small-screen, limited-
bandwidth devices)

print Intended for paged material and for documents viewed on-screen in
print preview mode

projection
Intended for projected presentationsfor example, projectors

screen
Intended primarily for color computer screens

speech
Intended for speech synthesizers

tty
Intended for media using a fixed-pitch character grid (such as
teletypes, terminals, or portable devices with limited display
capabilities)

tv Intended for television-type devices (with low-resolution, limited-
scrollable color screens, and available sound)

When defining the styles for your web page, one style sheet can be used for all media:

<link rel="stylesheet" type="text/css" href="uber.css"
media="all" />

Or you can use one style sheet for several, but not all, media.

For instance, to use one style sheet for both projection and print media, separate the media values
with a comma:

<link rel="stylesheet" type="text/css" href="print.css"
media="print,projection" />

In the preceding code, the print.css style sheet is used for projection and print media when
rendering the web document.

Using @import when assigning media types

braille
Intended for Braille tactile feedback devices

embossed
Intended for paged Braille printers

handheld Intended for handheld devices (typically small-screen, limited-
bandwidth devices)

print Intended for paged material and for documents viewed on-screen in
print preview mode

projection
Intended for projected presentationsfor example, projectors

screen
Intended primarily for color computer screens

speech
Intended for speech synthesizers

tty
Intended for media using a fixed-pitch character grid (such as
teletypes, terminals, or portable devices with limited display
capabilities)

tv Intended for television-type devices (with low-resolution, limited-
scrollable color screens, and available sound)

When defining the styles for your web page, one style sheet can be used for all media:

<link rel="stylesheet" type="text/css" href="uber.css"
media="all" />

Or you can use one style sheet for several, but not all, media.

For instance, to use one style sheet for both projection and print media, separate the media values
with a comma:

<link rel="stylesheet" type="text/css" href="print.css"
media="print,projection" />

In the preceding code, the print.css style sheet is used for projection and print media when
rendering the web document.

Using @import when assigning media types

You can use other methods besides link to assign media types. One method is @import, as shown in
the following line, which specifies the style sheet for both print and projection media:

@import URI(print.css) print,projection;

The @import rule needs to be placed within a style element or within an external style sheet.

Using @media when assigning media types

Another method you can use to associate and dictate style sheets and media types is @media, which
enables you to write blocks of CSS rules that can be set for different media, all in one style sheet:

<style type="text/css">
@media print {
 body {
 font-size: 10pt;
 background-color: white;
 color: black;
 }
}
@media screen {
 body {
 font-size: medium;
 background-color: black;
 color: white;
 }
}
</style>

See Also

"Media Types" in Section 7 of the CSS 2.1 Working Draft, http://www.w3.org/TR/CSS21/media.html.

http://www.w3.org/TR/CSS21/media.html

Recipe 10.2. Making a Web Form Print-Ready

Problem

You need to have a form that users can fill out online, or that they can print and then fill out offline,
like the one in Figure 10-1 .

Figure 10-1. An online form

Solution

First, create a print media style sheet and a class selector that transforms the form elements so that
they display black text and feature a one-pixel border on the bottom. For example, the following
HTML code for an input text element:

<label for="fname">First Name</label>

<input class="fillout" name="fname" type="text" id="fname" />

requires the following CSS rule:

<style type="text/css" media="print ">
.fillout {
 color: black;
 border-width: 0;
 border: 1px solid #000;
 width: 300pt;
}
</style>

For drop-down menus, hide the select element altogether and add some additional markup to help
produce the bottom border:

<label for="bitem">Breakfast Item</label>
<select name="bitem" size="1">
 <option selected="selected">Select</option>
 <option>Milk</option>
 <option>Eggs</option>
 <option>Orange Juice</option>
 <option>Newspaper</option>
 </select>

Then, in the CSS rules, convert the inline span element to a block element. This enables you to set
the width of the span element and places the border at the bottom to equal that of the input
elements in the preceding CSS rule:

<style type="text/css" media="print">
select {
 display: none;
}
.postselect {
 display: block;
 width: 300pt;
 height: 1em;
 border: none;
 border-bottom: 1px solid #000;
}
</style>

For elements such as a Submit button, which can't be used on the printed page, set the display
property to none . You can see the finished product in Figure 10-2 .

Figure 10-2. The same form primed for printing

Discussion

Lines on an order form tell users they can fill out the form. By using the border property, you can
easily create these lines in a browser, making web forms useful both online and offline.

For select elements, the workaround is somewhat of a hack that involves interfering with the ideal
semantic markup; it still works and is valid HTML. Place a span element after the select element:

<select name="bitem" size="1">
 <option selected="selected">Select</option>
 <option>Milk</option>
 <option>Eggs</option>
 <option>Orange Juice</option>
 <option>Newspaper</option>
</select>

Then set the select element to disappear:

select {
 display: none;
}

Next, set the span element to display as a block to enable the width and height properties. With those
width and height properties set, the bottom border can be placed to match the rest of the form
elements:

.postselect {
 display: block;
 width: 300pt;
 height: 1em;
 border: none;
 border-bottom: 1px solid #000;
}

Using attribute selectors to differentiate form elements

As browsers implement attribute selectors from the CSS specification, styling forms for print
becomes easier. Currently, the only browsers that support attribute selectors are Firefox, Netscape
Navigator 6+, and Opera 5+. When you use attribute selectors, it's easier to distinguish which form
elements should be stylized than it is when you insert class attributes and their respective values in
the markup.

In the following code, the first CSS rule applies only to input elements for text, while the second rule
hides the Submit button and the Select drop box:

input[type="text"] {
 color: black;
 border-width: 0;
 border: 1px solid #000;
}
input[type="submit"], select {
 display: none;
}

Adding user friendliness

Since the form is now being printed, site visitors cannot use the Submit button to transmit their
information. Be sure to provide the next steps users should follow after they have printed and
completed the form. For example, if you want users to mail the form, add a mailing address to the
page on which the form is printed, as shown below:

<div id="print">
 <p>Please mail the form to the following address:</p>
 <address class="adr">

 The White House

 1600 Pennsylvania Avenue NW

 Washington, DC
 20500

 USA
 </address>
</div>

Notice that the instructions are wrapped with a div element where the class attribute's value is set
to print . In the style sheet for screen delivery, set the display property for this specific class to none
:

<style type="text/css" media="screen">
 .print {
 display: none;
 }
</style>

With a separate style sheet for print delivery, allow the instructions to be printed by setting the
display property to block :

<style type="text/css" media="print">
 .print {
 display: block;
 }
</style>

See Also

Attribute selector documentation in the W3C specification at
http://www.w3.org/TR/CSS21/selector.html#attribute-selectors ; HTML 4.01 specification about the
label tag at http://www.w3.org/TR/html401/interact/forms.html#edef-LABEL .

http://www.w3.org/TR/CSS21/selector.html#attribute-selectors

Recipe 10.3. Displaying URIs After Links

Problem

You need to display URIs (Uniform Resource Identifiers) of links in an article when a web page is
printed.

Solution

Instruct the browser to print the URIs of links in a paragraph by using the :after pseudo-element:

p a:after {
 content: " <" attr(href) "> " ;
}

Discussion

Selector constructs such as:after are known as pseudo-elements. The browser interprets the
selector as though additional elements were used to mark up the web document.

For example, by using the following CSS, you can make the first letter of a paragraph 2 em units in
size:

p:first-letter {
 font-size: 2em;
}

You use the :after selector (or the:before selector) to insert generated content after (or before) an
element. In this Recipe, the value of the HRef attribute, which contains the URI information, is placed
after every anchor element in a p element.

To have brackets appear around the URI, place the quotes around the brackets. To add a buffer of
space between the anchor element and the next inline content, put one space in front of the left
bracket and one after the right bracket, and then insert the URI using the attr(x) function. Whatever
attribute is replaced for x, CSS finds the attribute in the element, returning its value as a string.

Another example of the power of this pseudo-element involves returning the value of abbreviations
and acronyms in a buzzword-laden document. To accomplish this, first put the expanded form of the
word or phrase in the title attribute for abbr or acronym:

<p>The <acronym title="World Wide Web Consortium">W3C

makes wonderful things like <abbr title="Cascading Style
Sheets">CSS</abbr>!</p>

Then, in the CSS rules, tell the browser to return the value for the title attribute:

abbr:after, acronym:after {
 content: " (" attr(title) ") ";
}

Placing the domain name before absolute links

With absolute links, only the forward slash and any other folder and filename data will appear once
page is printed. To work around this dilemma, the CSS 3 specification offers a solution through a
substring selector:

p a:after {
 content: " <" attr(href) "> " ;
}
p a[href^="/"]:after {
 content: " <http://www.csscookbook.com" attr(href) "> " ;
}

This carat, ^, signifies that the selector picks every link that starts with the forward slash, which
signifies an absolute link.

Currently, generating content through pseudo-elements works only in Firefox, Netscape 6+, Mozilla,
and Safari browsers. Generated content does not work in Internet Explorer for Windows.

Also, the CSS 3 specification is not widely supported. However, since only browsers don't support
substring selectors and/or styles sheets for print media, you can add the rule without fear of ruining a
visitor's printout.

See Also

Recipe 2.2 for more on setting type in a web document; the CSS 2.1 specification about generated
content at http://www.w3.org/TR/REC-CSS2/generate.html#content.

http://www.w3.org/TR/REC-CSS2/generate.html#content

Recipe 10.4. Inserting Special Characters Before Links

Problem

You want to insert special characters, for example, », before a link in a print style sheet.

Solution

Making sure your style sheet is set to print media, use the :after or :before pseudo-elements to
include the URI after a link in the web document:

p a:after {
 content: attr(href) ;
}

Next, place the hexadecimal equivalent of the special character before the link:

p a:after {
 text-decoration: underline;
 content: " \00BB " attr(href);
}

When the page is printed, the text after a link may look like this:

» http://www.csscookbook.com/

Discussion

Make sure to use the backward slash to escape the hexadecimal value so the browser does not
display the hexadecimal value as generic text. In this case, if the hexadecimal value for right double
angle quote were not escaped, the text "00BB" would be displayed instead:

00BB http://www.csscookbook.com/

Due to the nature of CSS syntax, it is not possible to use HTML numbers or names to identify special
characters with the content property. The characters need to be escaped by a backward slash and
their hexadecimal value.

Special characters through CSS's content property can also be used outside the printed page. Try it

within your screen media presentation of your web design. Make sure you include the CSS
declaration in a style sheet with the media set to all or screen in order to view output.

Currently, generating content through pseudo-elements works only in Firefox, Netscape 6+, Mozilla,
and Safari browsers. Generated content does not work in Internet Explorer for Windows.

See Also

For a listing of special characters and their hexadecimal equivalents, see
http://www.ascii.cl/htmlcodes.htm. Review the CSS 2.1 specification on escaped characters at
http://www.w3.org/TR/CSS21/syndata.html#escaped-characters.

http://www.ascii.cl/htmlcodes.htm
http://www.w3.org/TR/CSS21/syndata.html#escaped-characters

Recipe 10.5. Sample Design: A Printer-Friendly Page with
CSS

In this sample design, you will transform an existing web document (like the one in Figure 10-3) to
make it more suitable for print.

Figure 10-3. Web page stylized for screen delivery

Although CSS has changed the way we design for the Web, it also has allowed developers to change
the way they provide printer-friendly versions of their documents. Instead of having to create

separate pages or write scripts, you can use CSS to create a printer-friendly document as soon as the
user hits the Print button. The HTML for the page isn't in this book because the miracle of CSS lets us
change the presentation without having to change the HTML.

When you create a style sheet for print, you actually use a web browser. This enables you to see
quickly how the CSS rules affect the display of the document (just like for media delivery), but it's
also easier on the environment and you save money by not wasting ink in the printer. So, comment
out the style sheet used for the screen in order to create new CSS rules:

<!-- Hide screen media CSS while working on print CSS -->
<!-- link href="adv.css" type="text/css" rel="stylesheet"
media="screen" -->
<style type="text/css">
/* Print CSS rules go here */
</style>

Setting the Page for Black-and-White Printing

Apply the first CSS rule to the body element. In this rule, set the background color to white and set
the type to black:

body {
 background-color: white;
 color: black;
}

Next, set the typeface for the page to a serif font. Reading text online in sans-serif is easier on the
eyes, but in print media the serif font is still the choice for reading passages of text. For a later
fallback choice, you may want to go with the Times typeface for print documents since it's installed
on most (if not all) computers, and it's a workhorse of a font. In case your users don't have Times
installed, supply alternatives as well:

body {
 background-color: white;
 color: black;
 font-family: Times, "Times New Roman", Garamond, serif;
}

Now you want to get rid of navigation-related links and other page elements you don't want to see in
the final printout. This includes the main navigation bar below the main header, as well as internal
anchors in the page itself. If you have a page with ad banners, it might be a good idea to hide those
as well (see Figure 10-4):

#navigation, hr, body>div>a, #blipvert {
 display: none;
}

Figure 10-4. Hiding the navigation bar and other elements

Designing the Main Heading

Because you are dealing with black and gray type on a white page, you have few options when it
comes to designing how the main heading for the page should look. However, using what you have at
your disposal, it's nonetheless easy to create a masthead that calls attention to itself.

First, set the background to black and the text to white:

#header h1 {
 color: white;
 background-color: black;
}

Because you want people to actually read the header, you want the text to be white to create enough

contrast. In this instance, the main header also acts as a homing deviceit is a link to the home page.
Therefore, the color of the heading is dictated by the style rules set for the links. To remedy this
situation, add a separate rule:

#header h1 {
 background-color: black;
}
#header h1 a {
 color: white;
}

Now that the text is visible, stylize it a bit so that it stands out. Your goal is to center the text,
increase the size of the text, and make all the letters uppercase:

#header h1 {
 background-color: black;
 font-size: 24pt;
 text-align: center;
 text-transform: uppercase;
}

Although this looks good, you can improve it by changing the typeface to sans-serif (so that it sticks
out from the rest of the text in the document) and by adding some padding around the top and
bottom of the heading (see Figure 10-5):

#header h1 {
 background-color: black;
 font-size: 24pt;
 text-align: center;
 font-family: Helvetica, Verdana, Arial, sans-serif;
 padding: 7pt;
 text-transform: uppercase;
}

Figure 10-5. Stylizing the main header

Styling the Article Header and Byline

For the article title and byline, create a more dramatic approach by zeroing out the margins and
padding of both the h2 and h3 elements:

#content h2 {
 padding: 0;
 margin: 0;
}
#content h3 {
 padding: 0;
 margin: 0 ;
}

Then increase the font size for the article title and create a thin hairline rule below it. Next, align the
byline to the right and set the type style to italic (see Figure 10-6):

#content h2 {
 padding: 0;
 margin: 0;
 font-size: 20pt;
 border-bottom: 1px solid black;
}
#content h3 {
 padding: 0;
 margin: 0;
 text-align: right;
 font-style: italic;
}

Figure 10-6. Designing the article header and byline

Gaining Attention Through the Teaser

Next up is the content in the H4 element. Because this content serves as a teaser for the article, it
should be visually distinctive from the article text. To accomplish that, set the background to about
30% black, change the typeface to sans-serif, and put in some padding (see Figure 10-7):

#content h4 {
 font-family: Helvetica, Verdana, Arial, sans-serif;
 border-top: 3pt solid black;
 background-color: #BEBEBE; /* ~30% black */
 padding: 12pt;
 margin: 0;
}

Figure 10-7. Setting up the article teaser

As for the content of the article, leave the text pretty much as it is except for two points of interest:
leading, covered here, and links, covered in the next section.

Remember that in the body element, the font for the entire page is set with the serif typeface, and
through inheritance that typeface style is picked up in the paragraph elements as well. However, you
may want to space out the lines, or increase the leading, of the text in the paragraph. To do this,
change the line-height property:

#content p {
 line-height: 18pt;
}

Displaying URIs After Links

Any links in the article become useless when printed. To make them beneficial to the reader when the
page is printed, make sure all URIs from the links are displayed. To do that, set up a CSS rule to
display the URIs after every link in the content division of the document. Also, for visual effect,
remove the default underline of the links, make sure the font-weight is bold, and set the color to
gray (see Figure 10-8):

#content a:after {
 content: " <" attr(href) "> ";
 font-family: courier, monospace;
 font-weight: normal;
}
a {
 text-decoration: none;
 font-weight: bold;
 color: #626466;
}

Figure 10-8. Adjusting the links and leading in the content

Finishing with the Footer

At this point you're ready to work your way down the page to the footer that contains the copyright
notice. Because the main header is in a sans-serif typeface, balance the page by centering the
copyright notice, creating a line rule through the border-top property, and setting the typeface to
sans-serif as well (see Figure 10-9):

#footer {
 border-top: 1px solid #000;
 text-align: center;
 font-family: Helvetica, Verdana, Arial, sans-serif;
}

Figure 10-9. The styled footer

With the print CSS finished, copy the CSS rules and put them into an external style sheet called
print.css. Then, uncomment out the CSS for screen media and associate the print CSS through the
link element:

<link href="adv.css" type="text/css" rel="stylesheet"
media="screen" />
<link href="print.css" type="text/css" rel="stylesheet"
media="print" />

Now you can create a printer-friendly style sheet. Assuming your site visitors have a browser that
can render print media style sheets, when your visitors print out the page they will automatically get
the proper layout sent to their printers.

Chapter 11. Hacks, Workarounds, and
Troubleshooting

Section 11.0. Introduction

Recipe 11.1. Isolating Styles for Netscape Navigator 4.x

Recipe 11.2. Delivering Specific Styles to Internet Explorer 5.x for Windows

Recipe 11.3. Removing Web Page Flicker in Internet Explorer 5.x for Windows

Recipe 11.4. Keeping Background Images Stationary in Internet Explorer 6 for Windows

Recipe 11.5. Using Internet Explorer for Windows' Conditional Comments to Deliver Styles

Recipe 11.6. Keeping CSS Rules from Internet Explorer 5 for Macintosh

Recipe 11.7. Setting Up an Intelligent Hack Management System

Recipe 11.8. Diagnosing CSS Bugs and Browser Issues

Recipe 11.9. Testing a Site Design on More Than One Platform with Only One Computer

Recipe 11.10. Installing More Than One Version of Internet Explorer for Windows on a Computer

Recipe 11.11. Testing a Web Site with a Text Browser

11.0. Introduction

When designing for the Web, developers historically have used hacks and workarounds due to
browser limitations.

The mid-1990s saw a proliferation of such workarounds, among them single-pixel GIFs, font tags,
and nested tables, just to name just a few. Although the CSS 2 specification became a
recommendation back in May 1998, browser vendors have only recently fully implemented the
standard in their products. This gap in time of browsers without CSS supports to browsers with full or
near-perfect CSS implementation means a handful of browsers that most people use have poor CSS
support.

To overcome the bugs in popular browsers that have this poor CSS support, web developers have
once again resorted to using hacks and workarounds to successfully achieve web page designs.

Even though problems may be solved by using newer versions of browsers, web developers may
need to use hacks or workarounds to deliver the appropriate presentation to their audience for many
reasons.

Unlike web developers, most people don't automatically upgrade their browsers each time a new one
is available. They tend to stick with the browser that's on their computer because it works fine and
will get a new browser only when they purchase a new computer. Also, IT departments in many
companies lock down the systems to prevent individuals from upgrading software applications on
their own.

For web developers struggling to polish their designs, this chapter covers techniques on how to deal
with browsers that have spotty CSS support. Included in this chapter are methods to hide advanced
style sheets from Netscape Navigator 4, deal with Internet Explorer 5.x for Window's unique
interpretation of the box model, and more.

Recipe 11.1. Isolating Styles for Netscape Navigator 4.x

Problem

You want to keep Netscape Navigator 4.x from using certain CSS rules. For example, Navigator 4.x doesn't correctly inherit
styles, such as font-family and color , set for body elements, such as table , div , and p .

Solution

In a separate style sheet, place the CSS rules that you don't want the Netscape Navigator 4.x browser to use. Then use the
@import method to associate the "advanced" CSS rules (making sure that the advanced style sheet comes after the basic to
override styles from the basic style sheet):

<link rel="stylesheet" type="text/css" media="all" title="Basic CSS" href="/basic.
css" />
<style type="text/css" media="all">
 @import "/css/advanced.css";
</style>

Discussion

Netscape Navigator 4 was the first Netscape browser to contain support for CSS. Unfortunately, Netscape was developing
the browser while CSS was being finalized. Also, Netscape was supporting its own proposal, JavaScript Style Sheets, known
as JSSS, and was basing Navigator 4 on that technology. So, when the W3C went with CSS instead, the Netscape engineers
had to do some quick jury-rigging to fix their implementation. This is why you can turn off CSS support in Navigator 4 just by
turning off JavaScript in the program's preferences.

Because Navigator's CSS implementation was essentially a remapping to its JSSS engine, actual CSS support for the
implementation of such things as the @import method of associated styles to a web page was woefully incomplete. And
whatever CSS styles Navigator did include were implemented improperly. As newer browsers offered stronger and more
robust support for CSS, a method for hiding certain CSS rules from Navigator 4 became a necessity if web developers were
to embrace CSS-enabled designs.

Caio hack

Although the @import method works, you need to write the CSS rules in two separate files: one for Navigator 4 and another
one for other browsers capable of handling the @import method. Another way of hiding styles from Navigator 4 and keeping
the styles in a single style sheet is through a CSS comment workaround known as the " Caio hack," named after the person
who developed it, Caio Chassot.

In the following code example, styles are hidden from Navigator 4 through the hack:

.item1 {

 font-size: 200%;
 text-decoration: underline;
}
/*/*/
.item2 {
 font-size: 200%;
 text-decoration: underline;
}
/* */
.item3 {
 font-size: 200%;
 text-decoration: underline;
}

Here is the HTML code that is used in Figure 11-1 :

<h2>Netscape Navigator 4 Test:</h2>

 <li class="item1">This text is large and underlined.
 <li class="item2">This text is neither large nor underlined in Netscape Navigator 4.x.
 <li class="item3">This text is large and underlined.

Figure 11-1. Netscape Navigator's comment-parser problem used to hide certain styles

Navigator 4 interprets the comment snippet /*/*/ as an open comment, meaning that anything after it is hidden from the
browser. Other browsers see the snippet as open and close comment tags. To close the hack to let Navigator 4 see the rest
of the styles, add another pair of open and close comment tags, this time with a space between the asterisks:

/* */

You also can include the hack with inline styles:

<p style="/*/*/ color: font-size: 200%; text-decoration:
underline;">This inline-styled p is neither large nor underlined
in Navigator 4.</p>

@media workaround

Along with the comment-parsing problem, Navigator 4 won't pull in style sheets when the media attribute equals all :

<link rel="stylesheet" type="text/css" href="/css/advanced.css"
media="all">

Also, Navigator 4 won't interpret style sheets when there is more than one value for the media attribute. So, if you use a
combination of values for the media attributes, Navigator 4 ignores the style sheet:

<link rel="stylesheet" type="text/css" href="/css/advanced.css"
media="screen, print" >

Descendant selectors

You also can hide styles from Navigator 4 by using descendant selectorsfor instance, by placing the html element as a
selector before the next selector (since Navigator 4 doesn't include the html element in the parsed document).

In the following example, the text size and decoration won't appear in Navigator 4:

html .item2 {
 font-size: 200%;
 text-decoration: underline;
}

See Also

http://www.v2studio.com/k/css/n4hide/ , Caio Chassot's web page about the workaround; Netscape's original proposal for
JSSS at http://www.w3.org/Submission/1996/1/WD-jsss-960822 ; more issues regarding Navigator 4.x at
http://www.mako4css.com/Issues.htm .

http://www.v2studio.com/k/css/n4hide/
http://www.mako4css.com/Issues.htm

Recipe 11.2. Delivering Specific Styles to Internet
Explorer 5.x for Windows

Problem

You want to apply different CSS property values to the Internet Explorer 5.x for Windows browser,
such as the value of the width property in order to work around implementation of the Microsoft box
model.

Solution

Put in the declaration you want Internet Explorer 5.x for Windows to handle, and then use what's
called the "star HTML" hack to put in the corrected values you want the other browsers to interpret:

div#content {
 /* value for all browsers */
 width: 500px;
}
* html div#content {
 /* value only for IE browsers */
 width: 566px;
 /* value only for MacIE browsers */
 w\idth: 500px;
}

Discussion

CSS specifies that the width property defines the width of the content area of a box, and that any
margin, border, or padding space should draw outside of that space. For example, in the following bit
of code, the width of the element (as it is stated) is 500px :

div#content {
 width: 500px;
 padding: 33px;
 margin: 50px;
 background-color: #666;
}

In Figure 11-2 , the box appears to be 566 pixels wide. The 66 "extra" pixels are from the padding
being added outside the 500 pixels.

Figure 11-2. The box model correctly implemented in Mozilla

In Internet Explorer 5.x for Windows, the width isn't the stated value in the CSS. Instead, Microsoft's
box model draws the box with the border and padding inside the specified width. To calculate the
width of the content area for Internet Explorer 5.x for Windows, subtract the padding and borders
from the stated width:

width property
left border left padding
right padding right border
= Microsoft's box model

In the previous CSS example, the width determined by Internet Explorer 5.x for Windows is 434
pixels (see Figure 11-3):

500px 33px 33px = 434px

Figure 11-3. Internet Explorer 5.x for Windows' implementation of the
box model

That's a difference of 66 pixels from the originally stated content area's width of 500 pixels for the
block element.

This different block level, called "Microsoft's box model," is triggered in Internet Explorer for Windows
5.x (and Internet Explorer for Windows 6 in quirks mode) when a block level element has both a
declared width and a padding or borders.

Star HTML hack

In the " star HTML" hack, the first rule delivers the correct value to all browsers.

div#content {
 /* value for all browsers */
 width: 500px;
}

The second rule delivers the alternative value for Internet Explorer. The selector states any div
element with an id attribute that equals content that is a descendant of an html element is a
descendant of any element.

div#content {
 /* value for all browsers */
 width: 500px;

}
* html div#content {
 /* value only for IE browsers */
 width: 566px;
}

Because html is the root element, it cannot be a descendent of another element. So, browsers that
realize the false premise ignore this entire CSS rule. However, the Internet Explorer browser doesn't
and accepts the rule. Because there are two rules, the cascade effect comes into action and Internet
Explorer rewrites the element's width value from 500px to 566px .

The last step is to make a correction for Internet Explorer for Macintosh. Even though the browser
shares the name with Internet Explorer for Windows, the Macintosh version correctly renders the box
model making our solution a problem for that browser.

The solution then is to deliver a declaration specifically for Internet Explorer for Macintosh:

div#content {
 /* value for all browsers */
 width: 500px;
}
* html div#content {
 /* value only for IE browsers */
 width: 566px;
 /* value only for MacIE browsers */
 w\idth: 500px;
}

The backward slash escapes the letter "i". This hack is keeps the second and proper value from
Internet Explorer for Windows, but Internet Explorer for Macintosh interprets as a valid declaration.

Another approach: Tantek's box model hack

Tantek Çelik, Microsoft's former diplomat to the World Wide Web Consortium (W3C) CSS and HTML
working groups, originally demonstrated how his box model hack could be used to fix Internet
Explorer 5.x for Windows' approach to the box model:

div#content {
 /* WinIE value first, then the desired value the next 2 times */
 background-color: red;
 voice-family: "\"}\"";
 voice-family: inherit;
 background-color: green;
}
html>div#content
 background-color: green;
}

Because the box model is a fundamental aspect of design, it becomes paramount to fix any

inconsistencies that can arise from this problem.

The box model hack uses a parsing bug to close the rule set prematurely, so anything after the two
voice-family properties is ignored by Internet Explorer 5.x for Windows. However, because other
browsers, such as Opera 5, can be vulnerable to this workaround, add this CSS rule:

html>div#content
 background-color: green;
}

This rule, affectionately referred to as the "Be Kind to Opera" rule, uses the child selector to reinforce
the property for browsers like Opera that may get confused with the box model hack, but correctly
implement child selectors.

See Also

http://www.w3.org/TR/CSS21/visudet.html#the-width-property for information on the width
property as a part of the box model; http://www.tantek.com/CSS/Examples/boxmodelhack.html for
Tantek Çelik's explanation of the box model hack; http://www.w3.org/TR/CSS21/aural.html#voice-
char-props for information about the voice-family property; updated box model hacks and more
background information at http://css-discuss.incutio.com/?page=BoxModelHack .

http://www.w3.org/TR/CSS21/visudet.html#the-width-property

Recipe 11.3. Removing Web Page Flicker in Internet
Explorer 5.x for Windows

Problem

You want to remove the initial flicker, or flash, of unstyled content before Internet Explorer 5.x for
Windows applies your CSS style sheet.

Solution

Add a link or script element as the child of the head element in your web document:

<head>
 <title>christopher.org</title>
 <link rel="stylesheet" type="text/css" media="print" href="print.css" />
 <style type="text/css" media="screen">@import "advanced.css";</style>
</head>

Discussion

If a web page contains a style sheet associated by only the @import method, Internet Explorer 5.x for
Windows' browsers first show the contents of the web page without any of the styles applied to the
markup. After a split second, the browser redraws the web page with styles applied.

Adding a link or script element in the head before the @import rule forces the browser to load the
styles when it initially renders the web page, thus keeping it from showing a bland-looking web page.

This rendering phenomenon isn't a problem with the browser itself. The CSS specification doesn't
specify whether this behavior is acceptable, so the browser is compliant with the specification. You or
your audience may perceive this flicker as a bug or annoyance, though, so you should take steps to
prevent it from occurring.

See Also

http://www.bluerobot.com/web/css/fouc.asp for an overview of the effect.

http://www.bluerobot.com/web/css/fouc.asp

Recipe 11.4. Keeping Background Images Stationary in
Internet Explorer 6 for Windows

Problem

You want to have a fixed background image in Internet Explorer 6 for Windows.

Solution

Use the following JavaScript hack to force the effect. First copy the following code to call up the
JavaScript code in your web page:

<head>
 <title>CSS Cookbook</title>
 <script type="text/javascript" src="fixed.js"></script>
</head>

Then in the fixed.js file place the JavaScript code for the workaround, which can be found at this
book's online sample archive http://www.oreilly.com/catalog/cssckbk/ or from Andrew Clover's site
at http://doxdesk.com/software/js/fixed.html.

Due to the length of the code, it's impractical to publish the code or expect you,
dear reader, to type the code straight from the book.

Discussion

According to the CSS 2 specification, when a background image is fixed using the background-
attachment property, it shouldn't move when the user scrolls the web page. In all versions of Internet
Explorer for Windows, this property doesn't work at all.

However, this stunning JavaScript workaround developed by Andrew Clover fixes this problem by
simply adding the JavaScript link to the web page. The JavaScript works by dynamically recalculating
the position of the viewport as a user scrolls, and then it adjusts the background image accordingly.

See Also

http://www.oreilly.com/catalog/cssckbk/
http://doxdesk.com/software/js/fixed.html

Recipe 3.7 for information about setting a fixed background image; the CSS specification for the
background-attachment propery at http://www.w3.org/TR/CSS21/colors.html#propdef-background-
attachment.

http://www.w3.org/TR/CSS21/colors.html#propdef-background-

Recipe 11.5. Using Internet Explorer for Windows' Conditional
Comments to Deliver Styles

Problem

You want to deliver specific code to different versions of Internet Explorer for Windows.

Solution

Use Microsoft's Internet Explorer conditional comments:

<!--[if IE]>
<p>You are seeing this sentence because you are using an Internet Explorer
browser.</p>
<![endif]-->

To deliver code to different versions of Internet Explorer for Windows, use the browser version number deliver code:

<!--[if IE 5]>
<p>You are seeing this sentence because you are using Internet Explorer 5</p>
<![endif]-->
<!--[if IE 5.0]>
<p>You are seeing this sentence because you are using Internet Explorer 5.0</p>
<![endif]-->
<!--[if IE 5.5]>
<p>You are seeing this sentence because you are using Internet Explorer 5.5</p>
<![endif]-->
<!--[if IE 6]>
<p>You are seeing this sentence because you are using Internet Explorer 6</p>
<![endif]-->

To deliver code to version of Internet Explorer 5 for Windows and higher, use this code:

<!--[if gte IE 5]>
<p>You are seeing this sentence because you are using Internet Explorer 5 and
up</p>
<![endif]-->

To deliver code to version of Internet Explorer 5.5 for Windows and lower, use this code:

<!--[if lte IE 5.5]>
<p>You are seeing this sentence because you are using Internet Explorer lower or

equal to 5.5</p>
<![endif]-->

To deliver code to version of Internet Explorer for Windows below Internet Explorer 6, use this code:

<!--[if lt IE 6]>
<p>You are seeing this sentence because you are using Internet Explorer lower
than 6</p>
<![endif]-->

Discussion

Microsoft developed its own propriety comment system to deliver specific HTML code to different versions of its browser,
Internet Explorer for Windows.

This code can only be used in placing HTML between the conditional statements. However, this still means that CSS rules can
be specifically targeted through conditional comments. For example, to deliver a style sheet targeted for Internet Explorer
5.x, place a link tag to a style sheet between two conditional comments:

<link rel="stylesheet" type="text/css" media="screen, presentation"
href="/_assets/css/screen/screen.css" />
<link rel="stylesheet" type="text/css" media="aural"
href="/_assets/css/aural.css" />
<!--[if lt IE 6]>
<link rel="stylesheet" type="text/css" media="screen, presentation" href="/_assets/css/screen/ie.css" />
<![endif]-->

Also, embedded styles can also be placed in between conditional comments:

<!--[if lt IE 6]>
<style type="text/css">
 h1 {
 font-family: Verdana, Arial, Helvetica, sans-serif;
 font-size: 36px;
}
</style>
<![endif]-->

Conditional Comments may be used in conjunction with an intelligent hacking system. See Recipe 11.7 for more information
about setting up a hacking system.

Note that there is a difference between IE 5 and IE 5.0 when using conditional comments.

To isolate code for just Internet Explorer 5.0, use IE 5.0 . To deliver code to all Internet Explorer versions within the major
release of 5, use IE 5 .

The markers lt and gt mean "less than" and "greater than," respectively. While lte and gte mean "less than or equals" and
"greater than or equals."

See Also

The MSDN's article on conditional comments at
http://msdn.microsoft.com/workshop/author/dhtml/overview/ccomment_ovw.asp .

http://msdn.microsoft.com/workshop/author/dhtml/overview/ccomment_ovw.asp

Recipe 11.6. Keeping CSS Rules from Internet Explorer 5
for Macintosh

Problem

You want to hide certain rules from Internet Explorer 5 for Macintosh.

Solution

To hide CSS rules from Internet Explorer 5 for Macintosh, insert a backslash in front of the closing
comment with the characters */:

/* */
h1 {
 font-size: 200%;
 text-transform: uppercase;
 background-color: #666;
 }

After the rules pertaining to Internet Explorer 5 for Macintosh, insert another comment line:

/* */
p {
 text-transform: uppercase;
}

Discussion

This method exploits a simple comment-parsing problem found in Internet Explorer 5 for Macintosh.
The backslash before the closing comment causes the browser to think the comment actually has not
closed; any valid CSS rules are hidden, allowing entire rule sets to be hidden from the browser until
the next closing comment marker is hidden.

See Also

The specification about adding comments in CSS at http://www.w3.org/TR/2004/CR-CSS21-
20040225/syndata.html#comments.

http://www.w3.org/TR/2004/CR-CSS21-

Recipe 11.7. Setting Up an Intelligent Hack Management
System

Problem

You want to develop a system to separate correct CSS rules from those used for hacks or
workarounds.

Solution

Link a style sheet to a web page:

<link rel="stylesheet" type="text/css" media="screen, presentation"
href="/_assets/css/screen/screen.css" />

Within the screen.css style sheet import the base style sheet that contains correct values:

@import url(csscookbook.css);

Then use a set of filters to import CSS rules needed to correct a browser's problems (see Figure 11-
4). One such browser that would need its own style sheet could be Internet Explorer 5.x for Windows.
Use the Mid Pass Filter to serve the style sheet to just that browser:

@import url(csscookbook.css);
/* Styles for Internet Explorer 5 for Windows */
@media tty {
 i{content:"\";/*" "*/}} @import 'winie5.css'; /*";}
}/* */

Another browser that may need its own style sheet could be Internet Explorer for Macintosh. Use the
Mac Band Pass Filter to serve a style sheet to just that browser:

@import url(/_assets/css/csscookbook.css);
/* Styles for Internet Explorer 5 for Windows */
@media tty {
 i{content:"\";/*" "*/}} @import '/_assets/css/winie5.css'; /*";}
}/* */
/* Styles for Internet Explorer for Macintosh */
/**//*/ 
@import "ie5mac.css"; 

/**/

Figure 11-4. A diagram of the intelligent hacking system

Discussion

Keeping style sheets separated based on their browser support has a couple of benefits. First, it
keeps the base style sheet clean of any hacks and workarounds.

Second, keeping hacks and workarounds specific to each browser in their own file means that you
can easily delete the CSS rules if the time comes to stop supporting that particular browser.

For a listing of CSS filters that target specific browsers, see http://www.centricle.com/ref/css/filters/.

The technique discussed in the solution uses CSS-based hacks to deliver style sheets. Another
approach is to user a server-side solution. Mark Pilgrim, a web developer, devised a solution based on
mod_rewrite in the Apache server.

By detecting the browser's HTTP user agent, each browser gets its own style sheet in addition to the
base style sheet. For more information about this technique, see
http://diveintomark.org/archives/2003/01/16/the_one_ive_never_tried.

See Also

http://www.centricle.com/ref/css/filters/
http://diveintomark.org/archives/2003/01/16/the_one_ive_never_tried.

Molly Holzschlag's article on hack management at
http://www.informit.com/articles/printerfriendly.asp?p=170511.

http://www.informit.com/articles/printerfriendly.asp?p=170511.

Recipe 11.8. Diagnosing CSS Bugs and Browser Issues

Problem

You want to troubleshoot an issue with either your code or a browser's rendering of CSS.

Solution

Follow the follow the steps in an effort to isolate issues with CSS-enabled designs:

Validate the HTML. Go to http://validator.w3.org/ and check the markup.1.

Validate the CSS. Go to http://jigsaw.w3.org/css-validator/ and check the CSS.2.

Streamline the values of properties. Add a new CSS rule at the end of the style sheet(s), using
the universal selector and set properties for all elements:

3.

* {
margin: 0;
padding: 0;
}

4.

Border every block-level element:5.
* {
margin: 0;
padding: 0;
border: 1px solid red;
}

6.

Try different values for properties.7.

Comment out CSS rules and/or properties that are causing the problem. Uncomment CSS
properties one by one until the problem recurs. For information on how to add comments within
CSS, see Recipe 1.9.

8.

Research similar problems through Google and http://www.positioniseverything.net, a well-
documented collection of CSS bugs.

9.

Discussion

http://validator.w3.org/
http://jigsaw.w3.org/css-validator/
http://www.positioniseverything.net

Based on personal experience, 90% of the time issues with a CSS-enabled design come from typos in
the CSS syntax or malformed markup.

After going through this list, you are still having troubles, do a search through Google or a site
devoted to CSS bugs to determine if anyone else has written and/or discovered a similar problem.

See Also

Read Cascading Style Sheets: The Definitive Guide, by Eric A. Meyer (O'Reilly Media) to learn more
about the CSS specification.

Recipe 11.9. Testing a Site Design on More Than One
Platform with Only One Computer

Problem

You want to test your web site on more than one browser, but you have access to only one
computer.

Solution

Running emulators on a computer can help reduce costs because you don't have to own multiple
workstations.

If you own a PC

Macintosh browsers

There currently is not a method to emulate a Macintosh system (and therefore a Macintosh
browser) on a Windows operating system. However, the online service iCapture (see
http://www.danvine.com/icapture/) lets developers see how a web page renders within Safari.

Linux browsers

Knoppix

Knoppix is a Linux operating system that resides on a bootable CD-ROM, meaning no
installation is required. For further information, see http://www.knoppix.org/.

VMWare Workstation

VMWare Workstation allows the setting of several virtual operating systems to run on top
of the Microsoft Operating System. Although software needs to be installed, it doesn't
require a restart of the computer every time you want to test a web site. For more
information, see http://www.vmware.com/products/ws/.

Dual Booting Linux and Windows Operating Systems

http://www.danvine.com/icapture/
http://www.knoppix.org/
http://www.vmware.com/products/ws/

Debian Linux can be installed on a separate partition on computer allowing the user to
boot into either Linux or Windows Operating System. For more information, see
http://www.aboutdebian.com/dualboot.htm.

If you own a Macintosh

Virtual PC for Mac

Virtual PC for Mac, a Microsoft application, allows for setting up virtual operating systems
including Windows XP Professional, Windows XP Home, and Windows 2000 Professionaland
thus, different versions of Internet Explorer. For further information, see
http://www.microsoft.com/mac/products/virtualpc/virtualpc.aspx.

Boot Camp

Boot Camp, an Apple application, allows users to install a Windows operating system on Intel
Macs. For more information, see http://www.apple.com/macosx/bootcamp/.

If you own a Linux Workstation

Wine

Wine, open source software, is an implementation of the Windows API that runs on top of X
and Linux. For more information, see http://www.winehq.com/.

Discussion

To achieve cross-platform, cross-browser designs with CSS, checking and testing web sites in as
many sites as possible becomes necessary. In order to do that on a budget, it's necessary to install
more than one operating system on a computer.

Once you've installed more than one operating system, install a browser on the new system. You can
do quickly by visiting the browser archive at http://browsers.evolt.org/.

BrowserCam is a web-based, screen capture service. Fill out a form supplying a link to a web page
and which several browsers and operating system configurations you want to see. Then the service
will take screen captures of those systems for you to check. For more information, see
http://www.browsercam.com/.

See Also

http://www.aboutdebian.com/dualboot.htm
http://www.microsoft.com/mac/products/virtualpc/virtualpc.aspx
http://www.apple.com/macosx/bootcamp/
http://www.winehq.com/
http://browsers.evolt.org/
http://www.browsercam.com/

For more information on setting up more than one browser on one computer, see
http://www.thesitewizard.com/webdesign/multiplebrowsers.shtml.

http://www.thesitewizard.com/webdesign/multiplebrowsers.shtml

Recipe 11.10. Installing More Than One Version of
Internet Explorer for Windows on a Computer

Problem

You want to run more than one version of Internet Explorer for Windows on your Windows XP
operating system.

Solution

Start with a machine that runs Windows XP operating system and already has Internet Explorer 6 for
Windows installed.

Download previous versions of Internet Explorer at evolt.org browser archive
(http://browsers.evolt.org/?ie/32bit/standalone):

Internet Explorer for Windows 5.5 Service Pack 2 http://browsers.evolt.org/download.php?
/ie/32bit/standalone/ie55sp2_nt.zip

Internet Explorer for Windows 5.01 Service Pack 2 http://browsers.evolt.org/download.php?
/ie/32bit/standalone/ie501sp2_nt.zip

Internet Explorer for Windows 4 http://browsers.evolt.org/download.php?
/ie/32bit/standalone/ie401_nt.zip

Internet Explorer for Windows 3 http://browsers.evolt.org/download.php?
/ie/32bit/standalone/ie3_nt.zip

Once downloaded, install the browsers in their own directory.

Then execute each browser by clicking on IEXPLORE.EXE within each browser's folder.

Discussion

Since Internet Explorer for Windows is the most popular browser, testing web page designs in this
browser is crucial for almost all projects. However, up until this technique was discovered by Insert
Title Web Design (see http://labs.insert-title.com/labs/Multiple-IEs-in-Windows_article795.aspx) web
developers had to use operating system emulators or several physical workstations for testing.

By modifying some files for each browser version, multiple versions are now able to run on one
Windows operating system.

http://browsers.evolt.org/?ie/32bit/standalone
http://browsers.evolt.org/download.php?
http://browsers.evolt.org/download.php?
http://browsers.evolt.org/download.php?
http://browsers.evolt.org/download.php?
http://labs.insert-title.com/labs/Multiple-IEs-in-Windows_article795.aspx

Note that the files mentioned in the solution have been pretreated and no
longer need modification. However, as a precaution, with any software install,
make sure to back up your work before installing and running the files.

If you run numerous Internet Explorers for Windows on one machine, some problems arise:

The version of Internet Explorer 4 does not accept any URI entered in the location bar. To enter
a URI, go through the menu system. The shortcut is to press control+0 to bring up the dialog
box.

Conditional comments (see Recipe 11.5) do not work across these browsers. Browsers like
Internet Explorer 4 register as Internet Explorer 6 for Windows.

Versions 5 and 5.5 have been known to crash if an attempt is made to view Favorites.

Multiple installations of Internet Explorer may not support cookies.

Conditional comments can be repaired, however, one must edit the computer's
registry, which can be tricky. For more information, see
http://www.positioniseverything.net/articles/multiIE.html.

See Also

For more information on this technique, see http://www.quirksmode.org/browsers/multipleie.html.

http://www.positioniseverything.net/articles/multiIE.html
http://www.quirksmode.org/browsers/multipleie.html

Recipe 11.11. Testing a Web Site with a Text Browser

Problem

You want to test a web site with a text browser.

Solution

Use an online web tool such as Lynx Viewer (see http://www.delorie.com/web/lynxview.html) that
emulates a text browser.

Place a file named delorie.htm, which can be blank, that tells the web application that it is acceptable
for the browser to view and render the site through the online service.

Afterward, enter your site's URL and check the results online (see Figure 11-5).

Figure 11-5. A view of a web site through the Lynx Viewer

http://www.delorie.com/web/lynxview.html

Discussion

Lynx is the archetypal text browser. Instead of running a web-based emulator, Lynx can be
downloaded and installed on PC computers. For more information, see
http://www.subir.com/lynx/build.html.

See Also

A brief history of Lynx at http://people.cc.ku.edu/~grobe/early-lynx.html.

http://www.subir.com/lynx/build.html
http://people.cc.ku.edu/~grobe/early-lynx.html

Chapter 12. Designing with CSS
Section 12.0. Introduction

Recipe 12.1. Enlarging Text Excessively

Recipe 12.2. Creating Unexpected Incongruity

Recipe 12.3. Combining Unlike Elements to Create Contrast

Recipe 12.4. Leading the Eye with Contrast

Recipe 12.5. Checking for Enough Color Contrast

Recipe 12.6. Emphasizing a Quotation

12.0. Introduction

Although web builders often spend a lot of time working around browser bugs and reading about the
latest tricks from the gurus, it's worth remembering that first and foremost, we're designers and CSS
is simply a way to turn design ideas into reality.

CSS is the perfect technology for grabbing the attention of visitors to a web site. With CSS, instead of
hacking HTML tables and slicing images to create eye-catching designs, you can go further with valid
markup and still save on file sizes by ditching excess HTML and images. In short, you can do what
any professional web designer should: create maximum impact with minimal resources.

At a basic level, a developer can learn all there is to know about CSS syntax and the technical
limitations of the technology. But let's never forget that code merely implements the design. At its
heart, CSS is a visual language, and with that comes the need to understand, at least in some small
way, how to use design principles with CSS.

With that in mind, this chapter explains how to design with CSS. Specifically, this chapter describes
several methods for capturing attention through CSS-enabled techniques, including how to lead the
eye with contrast, use excessively large text, create word balloons out of quotations, and use
different image formats to create cohesive presentations.

Recipe 12.1. Enlarging Text Excessively

Problem

You want to draw attention to a web page by enlarging some of the text (see Figure 12-1).

Figure 12-1. An example of excess type size

Solution

Increase the size of the heading so that it is out of proportion with the rest of the text. First use this
HTML:

<h1>Hi.</h1>

Then use this CSS code:

h1 {
 font-size: 17em;
 margin: 0;
 padding: 0;
 text-align: center;
 font-family: Arial, Verdana, Helvetica, sans-serif;
}

Discussion

Obviously, any element that's larger than the other elements in the same environment stands out.
This approach makes a page look more dynamic in its presentation unlike a page layout where all the
elements are the same size.

So, when you want to call attention to an area of a web page, one way would be to try using an
excessive type size.

In this example, the size of the font in the word "Hi." has been set to 17em. In the font-size
property, an em unit is equal to whatever the font-size of the container is. So, 17em units is equal to 17
times the default font size. There is no theoretical limit to how large you can size text, but in practice
different browsers do max out at some point. Not everyone will have a monitor that's large enough to
see type that is 1 mile (or 63,360 inches) tall:

h3 {
 font-size: 63360in;
}

See Also

Recipe 2.2 for specifying font measurements and sizes; "The Elements of Text and Message Design
and Their Impact on Message Legibility: A Literature Review," from the Journal of Design
Communication at http://scholar.lib.vt.edu/ejournals/JDC/Spring-2002/bix.html; the CSS 2
specification for lengths (including em units) at http://www.w3.org/TR/REC-
CSS2/syndata.html#length-units.

http://scholar.lib.vt.edu/ejournals/JDC/Spring-2002/bix.html
http://www.w3.org/TR/REC-

Recipe 12.2. Creating Unexpected Incongruity

Problem

You need to grab the reader's attention by using two elements that don't seem to fit together.

Solution

Place one element visually inside the other. In the web page in Figure 12-2, which shows Earth's
close call with an asteroid, an image of Earth from space was placed over an image of a game of
pool.

Figure 12-2. An image of Earth placed over an image depicting a game of
pool

The HTML for this page is simple:

<h2>Earth News</h2>
<p>Earth escapes potential impact with killer asteroid;
will we escape the next one in 2014? Read
more</p>

For the CSS, place the photo depicting the game of pool into the body element and position it in the
upper-left corner. Then use the image replacement technique discussed in Recipe 3.9 to place the
photo of Earth for H2:

<style type="text/css">
body {
 background-color: #009E69;
 margin: 0;
 background-image: url(billiard.jpg);
 background-repeat: no-repeat;
}

h2 {
 background-image: url(earth.gif);
 position:absolute;
 width:126px;
 height:126px;
 z-index:1;
 left: 166px;
 top: 69px;
}
.no {
 display: none;
}
p {
 width: 120px;
 margin: 260px 100px 0 170px;
 font-family: Verdana, sans-serif;
 font-size: small;
 font-weight: bold;
}
</style>

Discussion

A great way to grab attention is to show something that is unexpected. Cleverly combining two
different elements into one image can force viewers to pay attention to the image (see Figure 12-3),
or it can simply underscore the purpose of the content.

Figure 12-3. Photos of a child and man are combined

This example used two imagesone of a pool cue and cue ball, and the other of Earth. The former
image was placed as the background image for the body element. The image of Earth was placed in
the background of h2 and was moved by setting the position to absolute. Then it was composited
over the pool image.

See Also

Recipe 12.3 on combining unlike elements; Recipe 3.13 on combining different image formats.

Recipe 12.3. Combining Unlike Elements to Create
Contrast

Problem

You want to create contrast on a web page by integrating two different elements, like serif and sans-
serif typefaces (see Figure 12-4).

Figure 12-4. Type elements juxtaposed in the same headline

Solution

Use different typefaces in the same headline. First adjust the markup to allow for changes in the font
properties:

<h2>Crossing Over</h2>
<h4>Sen. Jane Gordon (I-Utah) bolts GOP;
changes parti</
span>es to be Independent</h4>

Then manipulate the CSS for the span element to create a mixture of typefaces:

body {
 margin: 25% 10% 0 10%;

}
h2 {
 font-size: 2em;
 font-weight: bold;
 font-family: Arial, Verdana, Helvetica, sans-serif;
 text-transform: uppercase;
 text-align: center;
 padding: 0;
 margin: 0;
}
h2 span {
 font-family: Times, "Times New Roman", Georgia, serif;
 font-size: 1.1em;
 font-weight: normal;
 }
h4 {
 margin: 0;
 padding: 0;
 font-size: 1.25em;
 font-weight: bold;
 font-family: Arial, Verdana, Helvetica, sans-serif;
 text-transform: uppercase;
 text-align: center;
}
h4 span {
 font-family: Times, "Times New Roman", Georgia, serif;
 font-size: 1.1em;
 font-weight: normal;
}

Discussion

Combining unlike elements creates a visual contrast. In this example, different characteristics of the
serif and sans-serif typefaces in the headline create the contrast. However, you can create contrast
through imagery as well. For instance, in this example, you could have integrated Democratic and
Republican political party symbols and placed them side by side. Or you could have gone for a more
symbolic contrast by placing photos of two different types of parties side by side: one depicting a
large social gathering at a club, and the other showing a girl blowing a noisemaker over a cupcake
with a lit candle on top.

See Also

Recipe 3.13 on combining different image formats.

Recipe 12.4. Leading the Eye with Contrast

Problem

You want to create a sense of depth or motion through text. On a page containing four paragraphs
that are almost identical, it's hard to know which paragraph to look at first (see Figure 12-5). If you
change the font size across columns in a particular direction (e.g., decrease the size left-to-right) you
lead the reader's eye (see Figure 12-6).

Figure 12-5. Four paragraphs that are almost identical

Figure 12-6. Changing the type size so that the reader's eye will scan from
left to right

Solution

To lead the reader's eye, change the type size by adding a CSS rule like this:

/* Text size */
#layer4 {
 font-size: .7em;
 line-height: 20px;
}
#layer3 {
 font-size: 1em;
 line-height: 20px;
}
#layer2 {
 font-size: 2em;
 line-height: 10px;
}
#layer1 {
 font-size: 3em;
 line-height: 10px;
}

Discussion

Contrast occurs when there is an obvious difference between two elements. If there isn't any contrast
on a page, the reader doesn't know what is important on the page. By manipulating an element's
visual value, you can create contrast between two like elements. Some of those visual values include
the following:

Size

Color

Shape

Position on a page

Direction

Density

Properly marked content has an inherent style because the browser uses its own style sheet to
render the content when another style sheet isn't present. Headings, such as the h1 element, are
stylized in a large, bold font and are separated from the paragraphs (see Figure 12-7). This different
font provides the contrast to help readers make sense of the document.

Figure 12-7. Drawing the eye toward the headings by setting them in a
larger, bold font

Without the cues that can be provided through a style sheet, the reader's eye wanders throughout a
document. The layout shown in Figure 12-8 creates a sense of confusion because it doesn't provide
the reader with a clear sense of direction as to what to read first. The headings and copy all share the

same values for font, type size, and type color.

Figure 12-8. The page shown in , but without contrast

See Also

http://www.lighthouse.org/color_contrast.htm for creating more effective contrast;
http://graphicdesign.about.com/library/weekly/aa012700a.htm for more on the basics of designing
with contrast.

http://www.lighthouse.org/color_contrast.htm
http://graphicdesign.about.com/library/weekly/aa012700a.htm

Recipe 12.5. Checking for Enough Color Contrast

Problem

You want to make sure there is enough contrast between two colors.

Solution

Use the Luminosity Contrast Ratio Analyser from JuicyStudio.com at
http://juicystudio.com/services/luminositycontrastratio.php.

Enter two color values into the validator and press Calculate Luminosity Contrast Ratio button, as
shown in Figure 12-9.

Figure 12-9. Entering values to check luminosity contrast

http://juicystudio.com/services/luminositycontrastratio.php

Along with a color sample of the two colors, a summary is presenting noting whether you pass the
luminosity contrasts level 2, level 3, or not at all. In Figure 12-10, the example notes that the color
combination has passed both levels 2 and 3.

Figure 12-10. The results of the luminosity test

Discussion

The W3C's Web Content Accessibility Guidelines state that in order to make text legible, designers
need to make the content in the foreground be able to be perceived against the background.

When the color for text is close to the same shade of hue as the background color, the text becomes
illegible. To create legible text, the colors need to have greater contrast by being further apart from
each other in the spectrum or be significantly darker or lighter shade of the same color.

An example of great contrast is the yellow text against a black background much like the stylized
Batman logo (from the Tim Burton Batman movies of the 1990s).

For colors to pass the second level of the luminosity, the ratio of luminosity contrast needs to be at
least 5:1. That means one color needs to be at least 5 times as darker or lighter as the other color.

For colors to pass the third level, the luminosity contrast ratio must be at least 10:1.

See Also

JuicyStudio.com's explanation of the Suggested Luminosity Contrast Ratio Algorithm at
http://juicystudio.com/article/luminositycontrastratioalgorithm.php.

http://juicystudio.com/article/luminositycontrastratioalgorithm.php

Recipe 12.6. Emphasizing a Quotation

Problem

You want to add emphasis to a quotation by using large and bold quotation marks (see Figure 12-
11).

Figure 12-11. The stylized quotation

Solution

First code the markup for the quotation (see Figure 12-12):

<blockquote>
 <p>There is a tendency for things to right themselves.</p>
 <cite>Ralph Waldo Emerson</cite>
</blockquote>

Figure 12-12. Quotation as it would normally appear

Then apply CSS rules to stylize the quote:

blockquote {
 padding: 0;
 margin: 0;
 text-align: center;
}
p {
 font-size: 1em;
 padding-bottom: 3em;
 text-transform: lowercase;
 font-family: Georgia, Times, "Times New Roman", serif;
 margin: 0;
 padding: 0;
}
cite {
 display: block;
 text-align: center;
}

Finally, use pseudo-elements :before and :after to stylize the punctuation in the quotation as well as
to place an em dasha horizontal dash equal to the default size of the fontbefore the name of the cited
source:

blockquote p:before {
 content: "\201C";
 font-size: 1.2em;
 font-weight: bold;
 font-family: Georgia, Times, "Times New Roman", serif;
}
blockquote p:after {
 content: "\201D";
 font-size: 1.2em;
 font-weight: bold;
 font-family: Georgia, Times, "Times New Roman", serif;
}
cite:before {

 content: "\2014 ";
}
cite {
 display: block;
 text-align: center;
}

Discussion

Pseudo-elements are selector constructs that browsers use first to select portions, and then to stylize
a web page that can't be marked up through standard HTML. For instance, you can use pseudo-
elements to stylize the first line of a paragraph or, in the case of this recipe, to place generated
content before and after an actual element.

In this solution you insert smart quotes around the actual quotation. For the left double quotes, we
use this declaration:

content: "\201C ";

Any text that you want displayed after an element needs to be marked off with double quotes.
Because you are using double quotes to mark what should be displayed, you can't put another set of
double quotes inside the first set. To put quotes around the quotation, you need to use the
hexadecimal value for a quotation mark, which is 201C.

Because anything between the quotation marks automatically is generated as is, you need to escape
the hexadecimal number that tells the browser to render the quotation marks by placing a forward
slash in front of the double quotes.

The content property in the CSS 2.1 specification contains values for easily inserting quotation marks.
For example, to re-create the left double quotes, use the following declaration:

content: open-quote;

However, note that open-quote keyword value specification is implemented only in Mozilla and Opera.
Also, note that the :before and :after pseudo-elements don't work in Internet Explorer 5+ for
Windows and Internet Explorer for Macintosh.

See Also

Recipe 10.3 on how to include links in printouts of web pages using pseudo-elements;
http://homepages.luc.edu/~vbonill/Entities923-8472.html for a list of HTML character entities; the
CSS 2 specification for quotations for generated content at http://www.w3.org/TR/REC-
CSS2/generate.html#quotes.

http://homepages.luc.edu/~vbonill/Entities923-8472.html
http://www.w3.org/TR/REC-

Appendix A. Resources
When working with Cascading Style Sheets, keep these two tips in mind: simplify and verify. Simplify
by using only the selectors and properties you believe you need; any extras could cause some
confusion down the road. Then verify the HTML, XHTML, and CSS with the help of validators.

Those two steps solve most problems developers encounter when working with CSS. However, if you
still run into trouble, this appendix contains some of the top references, discussion groups, and tools
on the Internet to help in your CSS development.

General HTML and CSS Instruction

Dave Shea's Roadmap to Standards Essay

http://www.mezzoblue.com/archives/2004/04/30/a_roadmap_to/index.php

A good introduction and pep talk for web designers wanting to learn about web standardsbased
development.

Web Page for Designers' CSS Tutorial

http://www.wpdfd.com/editorial/basics/index.html

Web developers new to CSS will find benefit from this well-paced tutorial.

Community MX's Basics of CSS Positioning

http://www.communitymx.com/content/article.cfm?cid=3B56F&print=true

For more information about positioning with CSS, try Community MX's tutorial.

CSS Float Property Tutorial

http://css.maxdesign.com.au/floatutorial/index.htm

Learn about floating elements with CSS in various practice coding examples.

CSS Selectors Tutorial

http://www.mezzoblue.com/archives/2004/04/30/a_roadmap_to/index.php
http://www.wpdfd.com/editorial/basics/index.html
http://www.communitymx.com/content/article.cfm?cid=3B56F&print=true
http://css.maxdesign.com.au/floatutorial/index.htm

http://css.maxdesign.com.au/selectutorial/index.htm

Gain a better understanding of CSS selectors with this tutorial. Included is a demonstration of
how selectors can be used in the construction of a three-column layout.

http://css.maxdesign.com.au/selectutorial/index.htm

Design Resources

A List Apart: CSS Topics

http://www.alistapart.com/topics/code/css/

At A List Apart most of the articles published on the topic of CSS come in from web designers
sharing their thoughts and breakthroughs with CSS-enabled design.

BlueRobot.com Layout Reservoir

http://www.bluerobot.com/web/layouts/

This small but valuable resource covers two- and three-column layouts.

CSS-Edge

http://www.meyerweb.com/eric/css/edge/

Eric A. Meyer's workshop displays some of his more advanced CSS experiments.

CSS Zen Garden

http://www.csszengarden.com/

The CSS Zen Garden showcases web developers from all over the world restyling the same
content. Surfing through several designs is not only great inspiration, but also a fantastic way
to better understand the concept of separating presentation from content.

Glish.com CSS Layout Techniques

http://www.alistapart.com/topics/code/css/
http://www.bluerobot.com/web/layouts/
http://www.meyerweb.com/eric/css/edge/
http://www.csszengarden.com/

http://www.glish.com/css/

One of the first collections of multicolumn layouts created in CSS without the use of HTML
tables.

Microformats

http://www.microformats.org/

Defines and promotes standards for coding unique pieces of content. Check the Microformats
listing for methods to code common data like calendar events, contact information, or even the
abbr element.

Real World Style

http://www.realworldstyle.com/

A design resource managed by Mark Newhouse, the goal of this site is to promote CSS-enabled
designs, not only for modern, popular browsers that run on Macintosh and Windows OS, but
also for browsers that run on Unix machines.

SimpleQuizes

http://www.simplebits.com/bits/simplequiz/

Web designer and author, Dan Cederholm, conducted a series of quizzes trying to determine
the best methods for marking and styling common web development scenarios. In addition to
reading the conclusion to each quiz, read each quiz's comments by web designers to get a
more informed opinion on coding practices.

Typetester

http://typetester.maratz.com/

A flexible tool that allows web developers to customize three sets of type and then generates
the basic CSS for easy copying and pasting. Available features include setting the values for

http://www.glish.com/css/
http://www.microformats.org/
http://www.realworldstyle.com/
http://www.simplebits.com/bits/simplequiz/
http://typetester.maratz.com/

fonts, size, tracking, leading, letter spacing, alignments, and more.

Discussion Groups

Babble List

http://www.babblelist.com/

Moderated by Christopher Schmitt, this web design and development mailing list targets
advanced web design issues. The site offers a lively exchange of information, resources,
theories, and practices of designers and developers.

css-discuss

http://www.css-discuss.org/

This mailing list, chaperoned by CSS expert Eric A. Meyer, who is the author of O'Reilly's
Cascading Style Sheets: The Definitive Guide, Second Edition, aims to provide practical
discussion about the application of CSS.

Usenet Stylesheets Newsgroup

news:comp.infosystems.www.authoring.stylesheets

Founded in 1997, this unmoderated newsgroup covers the theory and application of CSS.
Topics for the group can include practical applications, questions about the specification, the
benefits of CSS, implementation bugs in browsers, and more. You can find the FAQ document
for the group at http://css.nu/faq/ciwas-mFAQ.html.

www-style (W3C Style Mailing List)

http://lists.w3.org/Archives/Public/www-style/

Maintained by the World Wide Web Consortium (W3C), this mailing list provides a venue for
discussing the theories and future of CSS. Questions about the specification or about CSS

http://www.babblelist.com/
http://www.css-discuss.org/
http://css.nu/faq/ciwas-mFAQ.html
http://lists.w3.org/Archives/Public/www-style/

proposals are welcomed; however, discussions revolving around practical applications of the
technology are discouraged.

References

CSS Browser Support Charts

http://www.westciv.com/style_master/academy/browser_support/

If you run into problems developing with CSS, check the CSS Support Charts here to determine
if there is a problem with the browser(s) you are using.

W3C's Recommended DTDs

http://www.w3.org/QA/2002/04/valid-dtd-list.html

Assigning the right DOCTYPE to a web page helps in establishing the correct manner in which
browsers will render your web page and validators will check your code. All that's on this web
page is a listing of the most commonly used DOCTYPEs.

W3C's CSS Page

http://www.w3.org/Style/CSS/

This is the official site for CSS. At this site you can learn about the history of CSS, investigate
learning resources and authoring tools, and read current CSS news.

CSS 2.1 Specification

http://www.w3.org/TR/CSS21/

Browser implementations of the CSS specification are sometimes a confusing mess. When
you're tracking down how to achieve a certain look or an implementation bug, go here to check
the specification (as well as the CSS Support Charts).

http://www.westciv.com/style_master/academy/browser_support/
http://www.w3.org/QA/2002/04/valid-dtd-list.html
http://www.w3.org/Style/CSS/
http://www.w3.org/TR/CSS21/

HTML 4.01 Specification

http://www.w3.org/TR/html4/

To make the most out of using CSS for web design, you need to create your web documents
with structured markup instead of using workarounds and hacks. Furthermore, you need to
mark up your documents with elements to imply an inherent presentational meaning. For
example, you need to highlight important words by using the em element and not the b
element. If you need to change your production methods, dig into the HTML specification at
this site and get to know the elements all over again.

XHTML 1.0 Specification

http://www.w3.org/TR/xhtml1/

Extensible HyperText Markup Language (XHTML) is a restructuring of HTML 4 in XML 1.0.
Although XHTML markup is stricter than that of HTML 4, the benefits are simple: more logical
markup, increased interoperability, and enhanced accessibility.

http://www.w3.org/TR/html4/
http://www.w3.org/TR/xhtml1/

Tools

BrowserCam

http://www.browsercam.com/

BrowserCam is an affordable, web-based service that tests a web design in multiple browsers
on numerous operating systems. At the time of this writing, a free 24-hour evaluation period is
available for web developers that register onto the site.

iCapture

http://www.danvine.com/icapture/

A free tool for web developers to preview web pages as viewed in Safari. A great site for
Windows users when the only Macintosh product they want to buy is an iPod.

SelectORacle

http://gallery.theopalgroup.com/selectoracle/

A free service designed to help people learn more about complex CSS selectors by translating
their meaning into plain English. CSS selectors can be submitted in one of two ways. The first
method is to copy and paste a CSS selector into a form on the web site. The other method is to
enter either a URL of a web page with an embedded style sheet or a URL to an external style
sheet. The service then renders the CSS selector into easy-to-understand language.

W3C CSS Validator

http://jigsaw.w3.org/css-validator/

This free service, provided on the W3C server, checks CSS for proper structure. You can test
your markup by uploading files, entering a web address in the form, and then copying and

http://www.browsercam.com/
http://www.danvine.com/icapture/
http://gallery.theopalgroup.com/selectoracle/
http://jigsaw.w3.org/css-validator/

pasting the CSS into a form field. And if you are so inclined, you can download and install the
validator on your own server.

W3C HTML Validator

http://validator.w3.org/

The W3C HTML validator is another free service from the W3C. Similar to the CSS validator, the
HTML validator checks to see if your markup conforms to web standards.

Web Developer Browser Extension

https://addons.mozilla.org/extensions/moreinfo.php?id=60

Chris Pedrick has created an indispensable extension for the popular Firefox and Mozilla
browsers. A few features involve editing a web page's CSS through the browser, sending a web
page's code directly to a W3C's validator, placing an outline on block level elements, as well as
many, many other functions with a simple click of the mouse.

Xyle Scope

http://www.culturedcode.com/xyle/

Xyle scope is an indispensable tool that helps people of all skill levels. Accepting either a link to
a web site or pulling up a web page from your computer, Xyle scope allows developers to see
how the markup and CSS work together to build a web page design. Since the software is tied
to the Web Kit, Safari's rendering engine, it is only available for Macintosh operating system.

http://validator.w3.org/
https://addons.mozilla.org/extensions/moreinfo.php?id=60
http://www.culturedcode.com/xyle/

Appendix B. CSS 2.1 Properties and Proprietary
Extensions
This appendix contains a table of CSS properties from W3C's CSS 2.1 specification (see http://www.w3.org/TR/CSS21), a
table of Microsoft proprietary extensions to CSS and a table of some of Mozilla's proprietary extensions. Table B-1 provides
a listing of the property's values, initial value, what the property applies to, if the values in the property are inherited, if
the property accepts percentages, and the property's media group.

Table B-2 presents a listing of Microsoft's proprietary extensions to the specifications. These properties will not validate if
you run them through a validator and they will only appear successfully in a browser built by Microsoft. Your mileage may
vary with the use of these extensions.

As of this writing, Mozilla's proprietary extensions that are available in Mozilla, Firefox, and Netscape Navigator 6+
browsers, are not fully documented. Table B-3 lists a portion of extensions that are documented from Mozilla's developer's
web site. Check their site for a complete listing of the extensions, at
http://developer.mozilla.org/en/docs/CSS_Reference:Mozilla_Extensions .

Table B-1. CSS 2.1 properties

Name Values Initial value

Applies

to(Default:

all)

Inherited?
Percentages(Default:

N/A)
Media

groups

'background-
attachment'

scroll | fixed |
inherit

scroll no visual

'background-
color'

<color> |
transparent |
inherit

transparent no visual

'background-
image'

<uri> | none
| inherit

none no visual

'background-
position'

[[
<percentage>
| <length> |
left | center |
right] [
<percentage>
| <length> |
top | center |
bottom]?] |

0% 0% no
refer to the size of
the box itself

visual

http://developer.mozilla.org/en/docs/CSS_Reference:Mozilla_Extensions

Name Values Initial value

Applies

to(Default:

all)

Inherited?
Percentages(Default:

N/A)
Media

groups
bottom]?] |
[[left |
center | right
] || [top |
center |
bottom]] |
inherit

'background-
repeat'

repeat |
repeat-x |
repeat-y | no-
repeat |
inherit

repeat no visual

'background'

[
'background-
color' ||
'background-
image' ||
'background-
repeat' ||
'background-
attachment' ||
'background-
position'] |
inherit

see
individual
properties

 no
allowed on
'background-
position'

visual

'border-
collapse'

collapse |
separate |
inherit

separate

'table'
and
'inline-
table'
elements

yes visual

'border-
color'

[<color> |
transparent
]{1,4} |
inherit

see
individual
properties

 no visual

'border-
spacing'

<length>
<length>? |
inherit

0

'table'
and
'inline-
table'
elements

yes visual

bottom]?] |
[[left |
center | right
] || [top |
center |
bottom]] |
inherit

'background-
repeat'

repeat |
repeat-x |
repeat-y | no-
repeat |
inherit

repeat no visual

'background'

[
'background-
color' ||
'background-
image' ||
'background-
repeat' ||
'background-
attachment' ||
'background-
position'] |
inherit

see
individual
properties

 no
allowed on
'background-
position'

visual

'border-
collapse'

collapse |
separate |
inherit

separate

'table'
and
'inline-
table'
elements

yes visual

'border-
color'

[<color> |
transparent
]{1,4} |
inherit

see
individual
properties

 no visual

'border-
spacing'

<length>
<length>? |
inherit

0

'table'
and
'inline-
table'
elements

yes visual

Name Values Initial value

Applies

to(Default:

all)

Inherited?
Percentages(Default:

N/A)
Media

groups

'border-
style'

<border-
style>{1,4} |
inherit

see
individual
properties

 no visual

'border-top'
'border-
right'
'border-
bottom'
'border-left'

[<border-
width> ||
<border-
style> ||
>'border-top-
color'] |
inherit

see
individual
properties

 no visual

'border-top-
color'
'border-
right-color'
'border-
bottom-
color'
'border-left-
color'

<color> |
transparent |
inherit

the value
of the
'color'
property

 no visual

'border-top-
style'
'border-
right-style'
'border-
bottom-
style'
'border-left-
style'

<border-
style> |
inherit

none no visual

'border-top-
width'
'border-
right-width'
'border-
bottom-
width'
'border-left-
width'

<border-
width> |
inherit

medium no visual

'border-
style'

<border-
style>{1,4} |
inherit

see
individual
properties

 no visual

'border-top'
'border-
right'
'border-
bottom'
'border-left'

[<border-
width> ||
<border-
style> ||
>'border-top-
color'] |
inherit

see
individual
properties

 no visual

'border-top-
color'
'border-
right-color'
'border-
bottom-
color'
'border-left-
color'

<color> |
transparent |
inherit

the value
of the
'color'
property

 no visual

'border-top-
style'
'border-
right-style'
'border-
bottom-
style'
'border-left-
style'

<border-
style> |
inherit

none no visual

'border-top-
width'
'border-
right-width'
'border-
bottom-
width'
'border-left-
width'

<border-
width> |
inherit

medium no visual

Name Values Initial value

Applies

to(Default:

all)

Inherited?
Percentages(Default:

N/A)
Media

groups

'border-
width'

<border-
width>{1,4} |
inherit

see
individual
properties

 no visual

'border'

[<border-
width> ||
<border-
style> ||
>'border-top-
color'] |
inherit

see
individual
properties

 no visual

'bottom'

<length> |
<percentage>
| auto |
inherit

auto
positioned
elements

no
refer to height of
containing block

visual

'caption-
side'

top | bottom |
inherit

top
'table-
caption'
elements

yes visual

'clear'
none | left |
right | both |
inherit

none
block-
level
elements

no visual

'clip'
<shape> |
auto | inherit

auto
absolutely
positioned
elements

no visual

'color'
<color> |
inherit

depends on
user agent

 yes visual

'content'

normal | none
| [<string> |
<uri> |
<counter> |
attr(
<identifier>)
| open-quote
| close-quote
| no-open-
quote | no-
close-quote
]+ | inherit

normal

:before
and :after
pseudo-
elements

no all

'border-
width'

<border-
width>{1,4} |
inherit

see
individual
properties

 no visual

'border'

[<border-
width> ||
<border-
style> ||
>'border-top-
color'] |
inherit

see
individual
properties

 no visual

'bottom'

<length> |
<percentage>
| auto |
inherit

auto
positioned
elements

no
refer to height of
containing block

visual

'caption-
side'

top | bottom |
inherit

top
'table-
caption'
elements

yes visual

'clear'
none | left |
right | both |
inherit

none
block-
level
elements

no visual

'clip'
<shape> |
auto | inherit

auto
absolutely
positioned
elements

no visual

'color'
<color> |
inherit

depends on
user agent

 yes visual

'content'

normal | none
| [<string> |
<uri> |
<counter> |
attr(
<identifier>)
| open-quote
| close-quote
| no-open-
quote | no-
close-quote
]+ | inherit

normal

:before
and :after
pseudo-
elements

no all

Name Values Initial value

Applies

to(Default:

all)

Inherited?
Percentages(Default:

N/A)
Media

groups

'counter-
increment'

[<identifier>
<integer>?
]+ | none |
inherit

none no all

'counter-
reset'

[<identifier>
<integer>?
]+ | none |
inherit

none no all

'cursor'

[[<uri> ,]* [
auto |
crosshair |
default |
pointer |
move | e-
resize | ne-
resize | nw-
resize | n-
resize | se-
resize | sw-
resize | s-
resize | w-
resize | text |
wait | help |
progress]] |
inherit

auto yes
visual,
interactive

'direction'
ltr | rtl |
inherit

ltr

all
elements,
but see
prose

yes visual

'display'

inline | block |
list-item |
run-in |
inline-block |
table | inline-
table | table-
row-group |
table-header-
group | table-
footer-group |
table-row |

inline no all

'counter-
increment'

[<identifier>
<integer>?
]+ | none |
inherit

none no all

'counter-
reset'

[<identifier>
<integer>?
]+ | none |
inherit

none no all

'cursor'

[[<uri> ,]* [
auto |
crosshair |
default |
pointer |
move | e-
resize | ne-
resize | nw-
resize | n-
resize | se-
resize | sw-
resize | s-
resize | w-
resize | text |
wait | help |
progress]] |
inherit

auto yes
visual,
interactive

'direction'
ltr | rtl |
inherit

ltr

all
elements,
but see
prose

yes visual

'display'

inline | block |
list-item |
run-in |
inline-block |
table | inline-
table | table-
row-group |
table-header-
group | table-
footer-group |
table-row |

inline no all

Name Values Initial value

Applies

to(Default:

all)

Inherited?
Percentages(Default:

N/A)
Media

groups
table-row |
table-column-
group | table-
column |
table-cell |
table-caption
| none |
inherit

'empty-cells'
show | hide |
inherit

show
'table-cell'
elements

yes visual

'float'
left | right |
none | inherit

none
all, but
see 9.7

no visual

'font-family'

[[<family-
name> |
<generic-
family>] [,
<family-
name>|
<generic-
family>]*] |
inherit

depends on
user agent

 yes visual

'font-size'

<absolute-
size> |
<relative-
size> |
<length> |
<percentage>
| inherit

medium yes
refer to parent
element's font size

visual

'font-style'
normal | italic
| oblique |
inherit

normal yes visual

'font-variant'
normal |
small-caps |
inherit

normal yes visual

'font-weight'

normal | bold
| bolder |
lighter | 100 |
200 | 300 |
400 | 500 |

normal yes visual

table-row |
table-column-
group | table-
column |
table-cell |
table-caption
| none |
inherit

'empty-cells'
show | hide |
inherit

show
'table-cell'
elements

yes visual

'float'
left | right |
none | inherit

none
all, but
see 9.7

no visual

'font-family'

[[<family-
name> |
<generic-
family>] [,
<family-
name>|
<generic-
family>]*] |
inherit

depends on
user agent

 yes visual

'font-size'

<absolute-
size> |
<relative-
size> |
<length> |
<percentage>
| inherit

medium yes
refer to parent
element's font size

visual

'font-style'
normal | italic
| oblique |
inherit

normal yes visual

'font-variant'
normal |
small-caps |
inherit

normal yes visual

'font-weight'

normal | bold
| bolder |
lighter | 100 |
200 | 300 |
400 | 500 |

normal yes visual

Name Values Initial value

Applies

to(Default:

all)

Inherited?
Percentages(Default:

N/A)
Media

groups
400 | 500 |
600 | 700 |
800 | 900 |
inherit

'font'

[['font-style'
|| 'font-
variant' ||
'font-weight'
]? 'font-size' [
/ 'line-height'
]? 'font-
family'] |
caption | icon
| menu |
message-box
| small-
caption |
status-bar |
inherit

see
individual
properties

 yes
see individual
properties

visual

'height'

<length> |
<percentage>
| auto |
inherit

auto

all
elements
but non-
replaced
inline
elements,
table
columns,
and
column
groups

no

Allowed;
percentage is
calculated with
respect to the
height of the
generated box's
containing block. If
the height of the
containing block is
not specified
explicitly (i.e., it
depends on the
content height),
the value is
interpreted like
"auto."

visual

'left'

<length> |
<percentage>
| auto |
inherit

auto
positioned
elements

no
refer to width of
containing block

visual

400 | 500 |
600 | 700 |
800 | 900 |
inherit

'font'

[['font-style'
|| 'font-
variant' ||
'font-weight'
]? 'font-size' [
/ 'line-height'
]? 'font-
family'] |
caption | icon
| menu |
message-box
| small-
caption |
status-bar |
inherit

see
individual
properties

 yes
see individual
properties

visual

'height'

<length> |
<percentage>
| auto |
inherit

auto

all
elements
but non-
replaced
inline
elements,
table
columns,
and
column
groups

no

Allowed;
percentage is
calculated with
respect to the
height of the
generated box's
containing block. If
the height of the
containing block is
not specified
explicitly (i.e., it
depends on the
content height),
the value is
interpreted like
"auto."

visual

'left'

<length> |
<percentage>
| auto |
inherit

auto
positioned
elements

no
refer to width of
containing block

visual

Name Values Initial value

Applies

to(Default:

all)

Inherited?
Percentages(Default:

N/A)
Media

groups

'letter-
spacing'

normal |
<length> |
inherit

normal yes visual

'line-height'

normal |
<number> |
<length> |
<percentage>
| inherit

normal yes
refer to the font
size of the element
itself

visual

'list-style-
image'

<uri> | none
| inherit

none

elements
with
'display:
list-item'

yes visual

'list-style-
position'

inside |
outside |
inherit

outside

elements
with
'display:
list-item'

yes visual

'list-style-
type'

disc | circle |
square |
decimal |
decimal-
leading-zero |
lower-roman |
upper-roman
| lower-greek
| lower-latin |
upper-latin |
armenian |
georgian |
lower-alpha |
upper-alpha |
none | inherit

disc

elements
with
'display:
list-item'

yes visual

'list-style'

['list-style-
type' || 'list-
style-position'
|| 'list-style-
image'] |
inherit

see
individual
properties

elements
with
'display:
list-item'

yes visual

all

'letter-
spacing'

normal |
<length> |
inherit

normal yes visual

'line-height'

normal |
<number> |
<length> |
<percentage>
| inherit

normal yes
refer to the font
size of the element
itself

visual

'list-style-
image'

<uri> | none
| inherit

none

elements
with
'display:
list-item'

yes visual

'list-style-
position'

inside |
outside |
inherit

outside

elements
with
'display:
list-item'

yes visual

'list-style-
type'

disc | circle |
square |
decimal |
decimal-
leading-zero |
lower-roman |
upper-roman
| lower-greek
| lower-latin |
upper-latin |
armenian |
georgian |
lower-alpha |
upper-alpha |
none | inherit

disc

elements
with
'display:
list-item'

yes visual

'list-style'

['list-style-
type' || 'list-
style-position'
|| 'list-style-
image'] |
inherit

see
individual
properties

elements
with
'display:
list-item'

yes visual

all

Name Values Initial value

Applies

to(Default:

all)

Inherited?
Percentages(Default:

N/A)
Media

groups

'margin-
right'
'margin-left'

<margin-
width> |
inherit

0

all
elements
except
elements
with table
display
types
other
than table
and
inline-
table

no
refer to width of
containing block

visual

'margin-top'
'margin-
bottom'

<margin-
width> |
inherit

0

all
elements
except
elements
with table
display
types
other
than table
and
inline-
table

no
refer to width of
containing block

visual

'margin'
<margin-
width>{1,4} |
inherit

see
individual
properties

all
elements
except
elements
with table
display
types
other
than table
and
inline-
table

no
refer to width of
containing block

visual

all
elements
but non-

Allowed;
percentage is
calculated with
respect to the
height of the

'margin-
right'
'margin-left'

<margin-
width> |
inherit

0

all
elements
except
elements
with table
display
types
other
than table
and
inline-
table

no
refer to width of
containing block

visual

'margin-top'
'margin-
bottom'

<margin-
width> |
inherit

0

all
elements
except
elements
with table
display
types
other
than table
and
inline-
table

no
refer to width of
containing block

visual

'margin'
<margin-
width>{1,4} |
inherit

see
individual
properties

all
elements
except
elements
with table
display
types
other
than table
and
inline-
table

no
refer to width of
containing block

visual

all
elements

Allowed;
percentage is
calculated with
respect to the

Name Values Initial value

Applies

to(Default:

all)

Inherited?
Percentages(Default:

N/A)
Media

groups

'max-height'

<length> |
<percentage>
| none |
inherit

none

elements
but non-
replaced
inline
elements,
table
columns,
and
column
groups

no

respect to the
height of the
generated box's
containing block. If
the height of the
containing block is
not specified
explicitly (i.e., it
depends on the
content height),
the value is
interpreted like
"auto."

visual

'max-width'

<length> |
<percentage>
| none |
inherit

none

all
elements
but non-
replaced
inline
elements,
table
rows, and
row
groups

no
refer to width of
containing block

visual

'min-height'
<length> |
<percentage>
| inherit

0

all
elements
but non-
replaced
inline
elements,
table
columns,
and

no

Allowed;
percentage is
calculated with
respect to the
height of the
generated box's
containing block. If
the height of the
containing block is
not specified
explicitly (i.e., it
depends on the
content height),
the value is
interpreted like
"auto." Allowed;
percentage is
calculated with
respect to the

visual

'max-height'

<length> |
<percentage>
| none |
inherit

none

elements
but non-
replaced
inline
elements,
table
columns,
and
column
groups

no

respect to the
height of the
generated box's
containing block. If
the height of the
containing block is
not specified
explicitly (i.e., it
depends on the
content height),
the value is
interpreted like
"auto."

visual

'max-width'

<length> |
<percentage>
| none |
inherit

none

all
elements
but non-
replaced
inline
elements,
table
rows, and
row
groups

no
refer to width of
containing block

visual

'min-height'
<length> |
<percentage>
| inherit

0

all
elements
but non-
replaced
inline
elements,
table
columns,
and

no

Allowed;
percentage is
calculated with
respect to the
height of the
generated box's
containing block. If
the height of the
containing block is
not specified
explicitly (i.e., it
depends on the
content height),
the value is
interpreted like
"auto." Allowed;
percentage is
calculated with
respect to the

visual

Name Values Initial value

Applies

to(Default:

all)

Inherited?
Percentages(Default:

N/A)
Media

groups
and
column
groups

respect to the
height of the
generated box's
containing block. If
the height of the
containing block is
not specified
explicitly (i.e., it
depends on the
content height),
the value is
interpreted like
"auto."

'min-width'
<length> |
<percentage>
| inherit

0

all
elements
but non-
replaced
inline
elements,
table
rows, and
row
groups

no
refer to width of
containing block

visual

'orphans'
<integer> |
inherit

2
block-
level
elements

yes
visual,
paged

'outline-
color'

<color> |
invert | inherit

invert no
visual,
interactive

'outline-
style'

<border-
style> |
inherit

none no
visual,
interactive

'outline-
width'

<border-
width> |
inherit

medium no
visual,
interactive

'outline'

['outline-
color' ||
'outline-style'
|| 'outline-
width'] |
inherit

see
individual
properties

 no
visual,
interactive

and
column
groups

respect to the
height of the
generated box's
containing block. If
the height of the
containing block is
not specified
explicitly (i.e., it
depends on the
content height),
the value is
interpreted like
"auto."

'min-width'
<length> |
<percentage>
| inherit

0

all
elements
but non-
replaced
inline
elements,
table
rows, and
row
groups

no
refer to width of
containing block

visual

'orphans'
<integer> |
inherit

2
block-
level
elements

yes
visual,
paged

'outline-
color'

<color> |
invert | inherit

invert no
visual,
interactive

'outline-
style'

<border-
style> |
inherit

none no
visual,
interactive

'outline-
width'

<border-
width> |
inherit

medium no
visual,
interactive

'outline'

['outline-
color' ||
'outline-style'
|| 'outline-
width'] |
inherit

see
individual
properties

 no
visual,
interactive

Name Values Initial value

Applies

to(Default:

all)

Inherited?
Percentages(Default:

N/A)
Media

groups

'overflow'

visible |
hidden | scroll
| auto |
inherit

visible

non-
replaced
block-
level
elements,
table
cells, and
inline-
block
elements

no visual

'padding-top'
'padding-
right'
'padding-
bottom'
'padding-left'

<padding-
width> |
inherit

0

all
elements
except
elements
with table
display
types
other
than
table,
inline-
table, and
table-cell

no
refer to width of
containing block

visual

'padding'
<padding-
width>{1,4} |
inherit

see
individual
properties

all
elements
except
elements
with table
display
types
other
than
table,
inline-
table, and
table-cell

no
refer to width of
containing block

visual

'page-break-
after'

auto | always
| avoid | left |
right | inherit

auto
block-
level
elements

no
visual,
paged

'overflow'

visible |
hidden | scroll
| auto |
inherit

visible

non-
replaced
block-
level
elements,
table
cells, and
inline-
block
elements

no visual

'padding-top'
'padding-
right'
'padding-
bottom'
'padding-left'

<padding-
width> |
inherit

0

all
elements
except
elements
with table
display
types
other
than
table,
inline-
table, and
table-cell

no
refer to width of
containing block

visual

'padding'
<padding-
width>{1,4} |
inherit

see
individual
properties

all
elements
except
elements
with table
display
types
other
than
table,
inline-
table, and
table-cell

no
refer to width of
containing block

visual

'page-break-
after'

auto | always
| avoid | left |
right | inherit

auto
block-
level
elements

no
visual,
paged

Name Values Initial value

Applies

to(Default:

all)

Inherited?
Percentages(Default:

N/A)
Media

groups

'page-break-
before'

auto | always
| avoid | left |
right | inherit

auto
block-
level
elements

no
visual,
paged

'page-break-
inside'

avoid | auto |
inherit

auto
block-
level
elements

yes
visual,
paged

'position'

static |
relative |
absolute |
fixed | inherit

static no visual

'quotes'
[<string>
<string>]+ |
none | inherit

depends on
user agent

 yes visual

'right'

<length> |
<percentage>
| auto |
inherit

auto
positioned
elements

no
refer to width of
containing block

visual

'table-layout'
auto | fixed |
inherit

auto

'table'
and
'inline-
table'
elements

no visual

'text-align'

left | right |
center |
justify |
inherit

'left' if
'direction'
is 'ltr';
'right' if
'direction'
is 'rtl'

block-
level
elements,
table cells
and inline
blocks

yes visual

Allowed;
percentage
is
calculated
with
respect to
the height
of the
generated
box's

'page-break-
before'

auto | always
| avoid | left |
right | inherit

auto
block-
level
elements

no
visual,
paged

'page-break-
inside'

avoid | auto |
inherit

auto
block-
level
elements

yes
visual,
paged

'position'

static |
relative |
absolute |
fixed | inherit

static no visual

'quotes'
[<string>
<string>]+ |
none | inherit

depends on
user agent

 yes visual

'right'

<length> |
<percentage>
| auto |
inherit

auto
positioned
elements

no
refer to width of
containing block

visual

'table-layout'
auto | fixed |
inherit

auto

'table'
and
'inline-
table'
elements

no visual

'text-align'

left | right |
center |
justify |
inherit

'left' if
'direction'
is 'ltr';
'right' if
'direction'
is 'rtl'

block-
level
elements,
table cells
and inline
blocks

yes visual

Allowed;
percentage
is
calculated
with
respect to
the height
of the
generated
box's

Name Values Initial value

Applies

to(Default:

all)

Inherited?
Percentages(Default:

N/A)
Media

groups

'text-
decoration'

none | [
underline ||
overline ||
line-through
|| blink] |
inherit

none

box's
containing
block. If
the height
of the
containing
block is
not
specified
explicitly
(i.e., it
depends
on the
content
height),
the value
is
interpreted
like "auto."

 visual

'text-indent'
<length> |
<percentage>
| inherit

0

block-
level
elements,
table cells
and inline
blocks

yes
refer to width of
containing block

visual

'text-
transform'

capitalize |
uppercase |
lowercase |
none | inherit

none yes visual

'top'

<length> |
<percentage>
| auto |
inherit

auto
positioned
elements

no
refer to height of
containing block

visual

'unicode-
bidi'

normal |
embed | bidi-
override |
inherit

normal

all
elements,
but see
prose

no visual

baseline | sub
| super | top |
text-top |

'text-
decoration'

none | [
underline ||
overline ||
line-through
|| blink] |
inherit

none

box's
containing
block. If
the height
of the
containing
block is
not
specified
explicitly
(i.e., it
depends
on the
content
height),
the value
is
interpreted
like "auto."

 visual

'text-indent'
<length> |
<percentage>
| inherit

0

block-
level
elements,
table cells
and inline
blocks

yes
refer to width of
containing block

visual

'text-
transform'

capitalize |
uppercase |
lowercase |
none | inherit

none yes visual

'top'

<length> |
<percentage>
| auto |
inherit

auto
positioned
elements

no
refer to height of
containing block

visual

'unicode-
bidi'

normal |
embed | bidi-
override |
inherit

normal

all
elements,
but see
prose

no visual

baseline | sub
| super | top |

Name Values Initial value

Applies

to(Default:

all)

Inherited?
Percentages(Default:

N/A)
Media

groups

'vertical-
align'

| super | top |
text-top |
middle |
bottom | text-
bottom |
<percentage>
| <length> |
inherit

baseline

inline-
level and
'table-cell'
elements

no
refer to the 'line-
height' of the
element itself

visual

'visibility'

visible |
hidden |
collapse |
inherit

visible yes visual

'white-space'

normal | pre |
nowrap | pre-
wrap | pre-
line | inherit

normal yes visual

'widows'
<integer> |
inherit

2
block-
level
elements

yes
visual,
paged

'width'

<length> |
<percentage>
| auto |
inherit

auto

all
elements
but non-
replaced
inline
elements,
table
rows, and
row
groups

no
refer to width of
containing block

visual

'word-
spacing'

normal |
<length> |
inherit

normal yes visual

'z-index'
auto |
<integer> |
inherit

auto
positioned
elements

no Visual

The CSS 2.1 Property Table is © 2005, World Wide Web Consortium (Massachusetts Institute of Technology , European
Research Consortium for Informatics and Mathematics, Keio University). All Rights Reserved.
http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231.

'vertical-
align'

| super | top |
text-top |
middle |
bottom | text-
bottom |
<percentage>
| <length> |
inherit

baseline

inline-
level and
'table-cell'
elements

no
refer to the 'line-
height' of the
element itself

visual

'visibility'

visible |
hidden |
collapse |
inherit

visible yes visual

'white-space'

normal | pre |
nowrap | pre-
wrap | pre-
line | inherit

normal yes visual

'widows'
<integer> |
inherit

2
block-
level
elements

yes
visual,
paged

'width'

<length> |
<percentage>
| auto |
inherit

auto

all
elements
but non-
replaced
inline
elements,
table
rows, and
row
groups

no
refer to width of
containing block

visual

'word-
spacing'

normal |
<length> |
inherit

normal yes visual

'z-index'
auto |
<integer> |
inherit

auto
positioned
elements

no Visual

The CSS 2.1 Property Table is © 2005, World Wide Web Consortium (Massachusetts Institute of Technology , European
Research Consortium for Informatics and Mathematics, Keio University). All Rights Reserved.
http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231.

http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231.
http://www.w3.org/Consortium/Legal/2002/copyright-documents-20021231.

Table B-2. Microsoft proprietary extensions to CSS

Name Values
Initial

value

Applies
to

(Default:

all)

Inherited?

Percentages

(Default:
N/A)

Media

groups

'background-
position-x'

<length> | <percentage>
| left | center | right

0% no yes visual

'background-
position-y'

<length> | <percentage>
| top | center | bottom

0% no yes visual

'filter'
See
http://tinyurl.com/c8vpf

n/a no
filter
properties

'ime-mode'
auto | active | inactive |
disabled

auto yes visual

'layout-grid' mode | type | line | char
both loose
none
none

 yes visual

'layout-grid-
char'

<length> | <percentage>
| none | auto

none no yes visual

'layout-grid-
line'

<length> | <percentage>
| none | auto

none no yes visual

'layout-grid-
mode'

both | none | line | char both yes visual

'layout-grid-
type'

loose | strict | fixed loose yes visual

'line-break' normal | strict normal yes visual

'overflow-x'
visible | scroll | hidden |
auto

visible
(except
for
textarea,
then
initial
value is
hidden)

 no visual

visible
(except
for

http://tinyurl.com/c8vpf

Name Values
Initial

value

Applies

to

(Default:

all)

Inherited?
Percentages

(Default:

N/A)

Media

groups

'overflow-y'
visible | scroll | hidden |
auto

for
textarea,
then
initial
value is
auto)

 visual

'scrollbar-
3dlight-color'

<color>
default
color

element
with
scroll
bar

yes visual

'scrollbar-
arrow-color'

<color>
default
color

element
with
scroll
bar

yes visual

'scrollbar-
base-color'

<color>
default
color

element
with
scroll
bar

yes visual

'scrollbar-
darkshadow-
color'

<color>
default
color

element
with
scroll
bar

yes visual

'scrollbar-
face-color'

<color>
default
color

element
with
scroll
bar

yes visual

'scrollbar-
highlight-
color'

<color>
default
color

element
with
scroll
bar

yes visual

'scrollbar-
shadow-
color'

<color>
default
color

element
with
scroll
bar

yes visual

'overflow-y'
visible | scroll | hidden |
auto

for
textarea,
then
initial
value is
auto)

 visual

'scrollbar-
3dlight-color'

<color>
default
color

element
with
scroll
bar

yes visual

'scrollbar-
arrow-color'

<color>
default
color

element
with
scroll
bar

yes visual

'scrollbar-
base-color'

<color>
default
color

element
with
scroll
bar

yes visual

'scrollbar-
darkshadow-
color'

<color>
default
color

element
with
scroll
bar

yes visual

'scrollbar-
face-color'

<color>
default
color

element
with
scroll
bar

yes visual

'scrollbar-
highlight-
color'

<color>
default
color

element
with
scroll
bar

yes visual

'scrollbar-
shadow-
color'

<color>
default
color

element
with
scroll
bar

yes visual

Name Values
Initial

value

Applies

to

(Default:

all)

Inherited?
Percentages

(Default:

N/A)

Media

groups

'text-
autospace'

none | ideograph-alpha |
ideograph-numeric |
ideograph-parenthesis |
ideograph-space

none no visual

'text-justify'

auto | distribute |
distribute-all-lines |
distribute-center-last |
inter-cluster | inter-
ideograph | inter-word |
kashida | newspaper

auto yes visual

'text-
kashida-
space'

<percentage> | inherit 0% yes visual

'text-
underline-
position'

above | below | auto |
auto-pos

auto yes visual

'word-break'
normal | break-all | keep-
all

normal yes visual

'word-wrap' normal | break-word normal yes visual

'writing-
mode'

lr-tb | tb-rl lr-tb no visual

'zoom'
normal | <number> |
<percentage>

normal no yes visual

Table B-3. Mozilla CSS property extensions

Name Values Initial value
Applies to

(Default: all)
Inherited?

none | button | button-small | checkbox |
checkbox-container | checkbox-small |
dialog | listbox | menu | menuitem |
menulist | menulist-button | menulist-
textfield| progressbar | radio | radio-

'text-
autospace'

none | ideograph-alpha |
ideograph-numeric |
ideograph-parenthesis |
ideograph-space

none no visual

'text-justify'

auto | distribute |
distribute-all-lines |
distribute-center-last |
inter-cluster | inter-
ideograph | inter-word |
kashida | newspaper

auto yes visual

'text-
kashida-
space'

<percentage> | inherit 0% yes visual

'text-
underline-
position'

above | below | auto |
auto-pos

auto yes visual

'word-break'
normal | break-all | keep-
all

normal yes visual

'word-wrap' normal | break-word normal yes visual

'writing-
mode'

lr-tb | tb-rl lr-tb no visual

'zoom'
normal | <number> |
<percentage>

normal no yes visual

Table B-3. Mozilla CSS property extensions

Name Values Initial value
Applies to

(Default: all)
Inherited?

'-moz-
appearance'

none | button | button-small | checkbox |
checkbox-container | checkbox-small |
dialog | listbox | menu | menuitem |
menulist | menulist-button | menulist-
textfield| progressbar | radio | radio-
container | radio-small | resizer| scrollbar
| scrollbarbutton-down | scrollbarbutton-
left | scrollbarbutton-right |
scrollbarbutton-up | scrollbartrack-
horizontal | scrollbartrack-vertical |
separator | statusbar | tab | tab-left-edge
| tabpanels | textfield | toolbar |
toolbarbutton | toolbox | tooltip |
treeheadercell | treeheadersortarrow |
treeitem | treetwisty | treetwistyopen |
treeview | window

none no

'-moz-binding' uri | none none no

'-moz-
background-clip'

border | padding border no

'-moz-
background-
inline-policy'

bounding-box | continuous | each-box continuous
inline
elements

no

'-moz-
background-
origin'

border | padding | content padding no

'-moz-border-
bottom-colors' '-
moz-border-left-
colors' '-moz-
border-right-
colors' '-moz-
border-top-
colors'

<color> | transparent n/a no

'-moz-border-
radius'

<length> | <percentage> 0 no

'-moz-border-
radius-
bottomleft' '-
moz-border-

Name Values Initial value
Applies to

(Default: all)
Inherited?

moz-border-
radius-
bottomright' '-
moz-border-
radius-topleft' '-
moz-border-
radius-topright'

<length> | <percentage> 0 no

'-moz-box-align' start | center | end | baseline | stretch stretch

elements
with a CSS
display value
of -moz-box
or -moz-
inline-box

no

'-moz-box-
direction'

normal | reverse normal

elements
with a CSS
display value
of -moz-box
or -moz-
inline-box

no

'-moz-box-flex' 0 | >0 0

elements
with a CSS
display value
of -moz-box
or -moz-
inline-box

no

'-moz-box-
orient'

horizontal | vertical horizontal

elements
with a CSS
display value
of -moz-box
or -moz-
inline-box

no

'-moz-box-pack' start | center | end | justify start

elements
with a CSS
display value
of -moz-box
or -moz-
inline-box

no

'-moz-box-
sizing'

content-box | border-box | padding box
content-
box

 no

XUL image

moz-border-
radius-
bottomright' '-
moz-border-
radius-topleft' '-
moz-border-
radius-topright'

<length> | <percentage> 0 no

'-moz-box-align' start | center | end | baseline | stretch stretch

elements
with a CSS
display value
of -moz-box
or -moz-
inline-box

no

'-moz-box-
direction'

normal | reverse normal

elements
with a CSS
display value
of -moz-box
or -moz-
inline-box

no

'-moz-box-flex' 0 | >0 0

elements
with a CSS
display value
of -moz-box
or -moz-
inline-box

no

'-moz-box-
orient'

horizontal | vertical horizontal

elements
with a CSS
display value
of -moz-box
or -moz-
inline-box

no

'-moz-box-pack' start | center | end | justify start

elements
with a CSS
display value
of -moz-box
or -moz-
inline-box

no

'-moz-box-
sizing'

content-box | border-box | padding box
content-
box

 no

XUL image

Name Values Initial value
Applies to

(Default: all)
Inherited?

'-moz-image-
region'

for rect() values, a rect consisting of four
computed lengths

auto

XUL image
elements
and :-moz-
tree-image,
:-moz-tree-
twisty, and
:-moz-tree-
checkbox
pseudo-
elements

yes

'-moz-opacity'
0 (or less) | 0 < number < 1 | 1 (or
more)

1 no

'-moz-outline'
-moz-outline-color | -moz-outline-style | -
moz-outline-width

see
individual
properties

 no

'-moz-outline-
color'

<color> | invert invert no

'-moz-outline-
offset'

<number> 0 no

'-moz-outline-
radius'

<length> | <percentage> 0 no

'-moz-outline-
radius-
bottomleft' '-
moz-outline-
radius-
bottomright' '-
moz-outline-
radius-topleft' '-
moz-outline-
radius-topright'

<length> | <percentage> 0 no

'-moz-outline-
style'

none | dotted | dashed | solid | double |
groove | ridge | inset | outset

none no

'-moz-outline-
style'

<width> medium no

'-moz-image-
region'

for rect() values, a rect consisting of four
computed lengths

auto

XUL image
elements
and :-moz-
tree-image,
:-moz-tree-
twisty, and
:-moz-tree-
checkbox
pseudo-
elements

yes

'-moz-opacity'
0 (or less) | 0 < number < 1 | 1 (or
more)

1 no

'-moz-outline'
-moz-outline-color | -moz-outline-style | -
moz-outline-width

see
individual
properties

 no

'-moz-outline-
color'

<color> | invert invert no

'-moz-outline-
offset'

<number> 0 no

'-moz-outline-
radius'

<length> | <percentage> 0 no

'-moz-outline-
radius-
bottomleft' '-
moz-outline-
radius-
bottomright' '-
moz-outline-
radius-topleft' '-
moz-outline-
radius-topright'

<length> | <percentage> 0 no

'-moz-outline-
style'

none | dotted | dashed | solid | double |
groove | ridge | inset | outset

none no

'-moz-outline-
style'

<width> medium no

Appendix C. CSS 2.1 Selectors, Pseudo-Classes, and Pseudo-
Elements
Making sure style reaches the appropriate element is just as important as knowing the CSS properties. This appendix contains three reference tables that
show you how to apply styles to the correct elements.

Table C-1 contains the CSS 2.1 selectors. Selectors help tell the browser where to apply the CSS declarations.

Note that in the Generic Pattern column, the values C, R, and S take the place of type selectors.

Table C-2 contains a list of pseudo-classes. A pseudo-class is a device by which a browser applies an invisible class on its own. For example, through the
pseudo-class we are able to define properties for various visited, active, and hover states of the ubiquitous link.

Table C-3 contains a list of pseudo-elements. Similar in nature to pseudo-class, a pseudo-element places invisible tags around content in a web page and
then applies styles to that element. Since the structure is more like a typical element than a class, these elements are called pseudo-elements.

Table C-1. CSS 2.1 selectors

Selector Generic Pattern Description Sample

Universal
* Matches with

any element.
* { text-decoration: none; }

Type
C

Matches any
element; in this
example, all h2
elements.

h2 { font-weight: normal; }

Descendant
C R S

Matches any S
element that is
a descendant of
elements R ,
which is a
descendant of
elements C .

div#content p em { background-color: yellow; }

Selector Generic Pattern Description Sample

Child
C > S

Selects any S
element that is
a child of C
element.

li > ul { list-style-type: circle;}

Adjacent
Sibling

C + S

Selects any S
element that
immediately
follows element
C .

div#content+p { text-indent: 0;}

Grouping
C, R, S

Several
selectors utilize
the same
declaration(s).

h1, h2, h3, h4 { color: #0cf;}

Class
C.classR

Selects any C
element that
contains a class
attribute with
the value of
classR.

img.content { padding: 4px; border: 1px solid black; }

ID
C#idR

Selects any C
element that
contains an id
attribute with
the value of idR.

div#content { color: #333;}

Attribute
Selector

C[attribute]

Selects any C
element that
contains the
attribute.

a[link] {text-decoration: none;}

Attribute
Selector

C[attribute="valueR"]

Selects any C
element that
contains the
attribute with
the value of
valueR.

input[type="text"] { width: 33%; }

Attribute
Selector

C[attribute~="valueR"]

Selects any C
element that
contains the
attribute whose
value is a
space-separated

div.advertisement form[class~="login"] { float: left; margin-left: 7px; }

Child
C > S

Selects any S
element that is
a child of C
element.

li > ul { list-style-type: circle;}

Adjacent
Sibling

C + S

Selects any S
element that
immediately
follows element
C .

div#content+p { text-indent: 0;}

Grouping
C, R, S

Several
selectors utilize
the same
declaration(s).

h1, h2, h3, h4 { color: #0cf;}

Class
C.classR

Selects any C
element that
contains a class
attribute with
the value of
classR.

img.content { padding: 4px; border: 1px solid black; }

ID
C#idR

Selects any C
element that
contains an id
attribute with
the value of idR.

div#content { color: #333;}

Attribute
Selector

C[attribute]

Selects any C
element that
contains the
attribute.

a[link] {text-decoration: none;}

Attribute
Selector

C[attribute="valueR"]

Selects any C
element that
contains the
attribute with
the value of
valueR.

input[type="text"] { width: 33%; }

Attribute C[attribute~="valueR"]

Selects any C
element that
contains the
attribute whose
value is a

Selector Generic Pattern Description Sample

Attribute
Selector

C[attribute~="valueR"]
value is a
space-separated
list of words and
one of the
words in that
list matches
valueR.

div.advertisement form[class~="login"] { float: left; margin-left: 7px; }

Attribute
Selector

C[attribute|="valueR"]

Selects any C
element that
contains the
attribute whose
value is a
hyphen-
separated list of
words and the
first word
matches valueR.

warning[lang="uk"]:after { content: " Blimey!"}

Table C-2. CSS 2.1 pseudo-classes

Pseudo-class
Generic
Pattern

Description Sample

 :first-child

C:first-child
Matches element
C that is the first
child in another
element.

divs p:first-child {color: white; background-color: red; }

 :link

C:link
Matches any
unvisited link of
element C .

a:link {text-decoration: none; }

 :visited

C:visited
Matches any
visited link of
element C .

a:visited {font-weight: normal; }

 :hover

C:hover

Matches the C
element a user
has selected
(typically by
moving the
cursor icon over

a:hover { background-color: orange; }

Attribute
Selector

C[attribute~="valueR"]
value is a
space-separated
list of words and
one of the
words in that
list matches
valueR.

div.advertisement form[class~="login"] { float: left; margin-left: 7px; }

Attribute
Selector

C[attribute|="valueR"]

Selects any C
element that
contains the
attribute whose
value is a
hyphen-
separated list of
words and the
first word
matches valueR.

warning[lang="uk"]:after { content: " Blimey!"}

Table C-2. CSS 2.1 pseudo-classes

Pseudo-class
Generic
Pattern

Description Sample

 :first-child

C:first-child
Matches element
C that is the first
child in another
element.

divs p:first-child {color: white; background-color: red; }

 :link

C:link
Matches any
unvisited link of
element C .

a:link {text-decoration: none; }

 :visited

C:visited
Matches any
visited link of
element C .

a:visited {font-weight: normal; }

 :hover

C:hover

Matches the C
element a user
has selected

Pseudo-class
Generic

Pattern
Description Sample

 :hover

C:hover
has selected
(typically by
moving the
cursor icon over
a link), but not
activated.

a:hover { background-color: orange; }

 :active

C:active
Matches the C
element a user
has activated.

a:active { color: green; }

 :focus

C:focus

Matches the C
element that
contains the
focus (typically
an input field of
a form).

input:focus { background-color: #F7F7D5;}

 :lang

C:lang(R)

Matches the C
element that
uses the
language R.

p:lang(en) {font-weight: bold;}

Table C-3. CSS 2.1 pseudo-elements

Pseudo-element
Generic
pattern

Description Sample

 :first-line

C:first-line

Selects
the first
line of text
in the C
element.

h2+p:first-line {color: #727977;}

 :first-letter

C:first-letter

Selects
the first
letter in
the C
element.

h1:first-letter { font-size: 66%; text-transform: lowercase; }

Places
generated
content

 :hover

C:hover
has selected
(typically by
moving the
cursor icon over
a link), but not
activated.

a:hover { background-color: orange; }

 :active

C:active
Matches the C
element a user
has activated.

a:active { color: green; }

 :focus

C:focus

Matches the C
element that
contains the
focus (typically
an input field of
a form).

input:focus { background-color: #F7F7D5;}

 :lang

C:lang(R)

Matches the C
element that
uses the
language R.

p:lang(en) {font-weight: bold;}

Table C-3. CSS 2.1 pseudo-elements

Pseudo-element
Generic
pattern

Description Sample

 :first-line

C:first-line

Selects
the first
line of text
in the C
element.

h2+p:first-line {color: #727977;}

 :first-letter

C:first-letter

Selects
the first
letter in
the C
element.

h1:first-letter { font-size: 66%; text-transform: lowercase; }

Places
generated

Pseudo-element
Generic

pattern
Description Sample

 :before

C:before

generated
content
before an
element;
used with
the
content
property.

ul.tracklisting li:before { content: "Song title: ";}

 :after

C:after

Places
generated
content
after an
element;
used with
the
content
property.

div#footer p.copyright:after {content: "Double true!";}

 :before

C:before

generated
content
before an
element;
used with
the
content
property.

ul.tracklisting li:before { content: "Song title: ";}

 :after

C:after

Places
generated
content
after an
element;
used with
the
content
property.

div#footer p.copyright:after {content: "Double true!";}

Appendix D. Styling of Form Elements
Forms have a big impact on our day-to-day Internet lifestyle, so designers want to control the look-
and-feel of form elements in their web page designs. The problem is that browsers manipulate the
visual display of form elements from one browser to the next. Even the same browser version can
display a form element differently on separate operating systems.

To help web developers determine the best way to design web forms, this appendix documents a
majority of the visual CSS properties and their effect on form elements in today's modern browsers.

The first part of this appendix lists the properties that were tested and their respective values in Table
D-1.

The second part examines eight form elements and how they can be modified using 20 of the CSS
properties listed in Table D-1 in 10 different browsers:

Checkboxes, are shown in Table D-2 and Figures D-1 to D-20.

File Upload, is shown in Table D-3 and Figures D-21 to D-40.

Radio Buttons, are shown in Table D-4 and Figures D-41 to D-60.

Input Text, is shown in Table D-5 and Figures D-61 to D-80.

Select with Multiple Items, is shown in Table D-6 and Figures D-81 to D-100.

Select with Individual Item, is shown in Table D-7 and Figures D-101 to D-120.

Submit Button, is shown in Table D-8 and Figures D-121 to D-140.

Textarea, is shown in Table D-9 and Figures D-141 to D-160.

The values used from Table D-2 to Table D-9 include NA, Y, N, and S.

NA stands for Not Available meaning that the CSS property does not apply to the form element, Y for
Yes meaning that the CSS property's value is properly applied, N for No a meaning that the CSS
property's value was not applied and S for Somewhat meaning that there is some part of the CSS
property's value being applied.

The Somewhat value marks unusual situations. There are points within the
HTML and CSS specifications that do not define a certain behavior and therefore
determination of a CSS rule's successful application becomes difficult.

For example, Firefox expands the width of the input field as well as the space
between letters when using the letter-spacing property.

In this instance, the discrepancy could be due to Firefox calculating the default
width of the input field on a certain number of characters whereas the other
browsers could be basing the width on a predetermined value or an unadjusted
number of characters at the font size of the input field.

Table D-1. The properties and their values used in testing form elements

Property Value

background-color #ccff00;

background-image url(checkerboard_bkgd.gif);

border 0;

border-color 1px solid red;

border-style groove;

border-width 24px;

color #00ccff;

font-family Georgia, Times, 'Times New Roman', serif;

font-size 24px;

font-weight bold;

height 100px;

Property Value

letter-spacing 24px;

line-height 1.5;

margin 24px;

padding 24px;

text-align right;

text-decoration underline;

text-indent 24px;

width 100px;

word-spacing 24px;

letter-spacing 24px;

line-height 1.5;

margin 24px;

padding 24px;

text-align right;

text-decoration underline;

text-indent 24px;

width 100px;

word-spacing 24px;

Checkboxes

background-color

Figure D-1. Testing the background color of checkboxes can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad001.gif

background-image

Figure D-2. Testing background images in checkboxes can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad002.gif

border: 0;

Figure D-3. Testing the removal of borders on checkboxes can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad003.gif

border-color

Figure D-4. Testing of colors on the checkbox borders can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad004.gif

border-style

Figure D-5. Testing the styles of borders on checkboxes can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad005.gif

border-width

Figure D-6. Testing the widths of borders on checkboxes can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad006.gif

color

Figure D-7. Testing the color on checkboxes can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad007.gif

font-family

Figure D-8. Testing to set a different font on checkboxes can be found at

http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad001.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad002.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad003.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad004.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad005.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad006.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad007.gif

http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad008.gif

font-size

Figure D-9. Testing a different size of font on checkboxes can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad009.gif

font-weight

Figure D-10. Testing a bold font on checkboxes can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad010.gif

height

Figure D-11. Testing to set a height for checkboxes can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad011.gif

letter-spacing

Figure D-12. Testing the letter spacing of checkboxes can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad012.gif

line-height

Figure D-13. Testing setting the spacing between lines of text on checkboxes can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad013.gif

margin

Figure D-14. Testing margins on checkboxes can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad014.gif

padding

Figure D-15. Testing padding on checkboxes can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad015.gif

text-align

Figure D-16. Testing the alignment of text can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad016.gif

text-decoration

Figure D-17. Testing to set a different font on checkboxes can be found at

http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad008.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad009.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad010.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad011.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad012.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad013.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad014.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad015.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad016.gif

http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad017.gif

text-indent

Figure D-18. Testing indenting the text on checkboxes can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad018.gif

width

Figure D-19. Testing the width of checkboxes can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad019.gif

word-spacing

Figure D-20. Testing the spacing between words on checkboxes can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad020.gif

Table D-2. A review of the CSS properties on checkboxes

 WinIE5 WinIE5.5 WinIE6 WinIE7 Safari2 WinFF1.5 MacFF1.5 WinNN7.2 MacNN7.2 Op8.5

background-color
S S S S N N N N N Y

background-image
S S S S N N N N N Y

border
N N N N N N N N N N

border-color
S S S S N N N N N Y

border-style
S S S S N N N N N Y

border-width
N N N N N N N N N N

color
N N N N N N N N N N

font-family
NA NA NA NA NA NA NA NA NA NA

font-size
N N N N N N N N N N

http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad017.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad018.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad019.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad020.gif

 WinIE5 WinIE5.5 WinIE6 WinIE7 Safari2 WinFF1.5 MacFF1.5 WinNN7.2 MacNN7.2 Op8.5

font-weight
N N N N N N N N N N

height
S S S N N S Y S Y N

letter-spacing
NA NA NA NA NA NA NA NA NA NA

line-height
N N N N N N N N N N

margin
Y Y Y Y Y Y Y Y Y Y

padding
N N N N N N N N N Y

text-align
NA NA NA NA NA NA NA NA NA NA

text-decoration
NA NA NA NA NA NA NA NA NA NA

text-indent
Y Y Y S N N N N N N

width
S S S S S S Y S Y S

word-spacing
NA NA NA NA NA NA NA NA NA NA

font-weight
N N N N N N N N N N

height
S S S N N S Y S Y N

letter-spacing
NA NA NA NA NA NA NA NA NA NA

line-height
N N N N N N N N N N

margin
Y Y Y Y Y Y Y Y Y Y

padding
N N N N N N N N N Y

text-align
NA NA NA NA NA NA NA NA NA NA

text-decoration
NA NA NA NA NA NA NA NA NA NA

text-indent
Y Y Y S N N N N N N

width
S S S S S S Y S Y S

word-spacing
NA NA NA NA NA NA NA NA NA NA

File Input

background-color

Figure D-21. Testing the background color of file input can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad021.gif

background-image

Figure D-22. Testing background images in file input can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad022.gif

border: 0;

Figure D-23. Testing the removal of borders on file input can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad023.gif

border-color

Figure D-24. Testing of colors on the file input borders can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad024.gif

border-style

Figure D-25. Testing the styles of borders on file input can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad025.gif

border-widht

Figure D-26. Testing the widths of borders on file input can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad026.gif

color

Figure D-27. Testing the color on file input can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad027.gif

font-family

Figure D-28. Testing to set a different font on file input can be found at

http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad021.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad022.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad023.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad024.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad025.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad026.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad027.gif

http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad028.gif

font-size

Figure D-29. Testing a different size of font on file input can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad029.gif

font-weight

Figure D-30. Testing a bold font on file input can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad030.gif

height

Figure D-31. Testing to set a height for file inputlet can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad031.gif

letter-spacing

Figure D-32. Testing the letter spacing of file input can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad032.gif

line-height

Figure D-33. Testing setting the spacing between lines of text on file input can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad033.gif

margin

Figure D-34. Testing margins on file input can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad034.gif

padding

Figure D-35. Testing padding on file input can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad035.gif

text-align

Figure D-36. Testing the alignment of text on file input can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad036.gif

text-decoration

Figure D-37. Testing to set a different font on file input can be found at

http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad028.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad029.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad030.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad031.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad032.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad033.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad034.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad035.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad036.gif

http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad037.gif

text-indent

Figure D-38. Testing indenting the text on file input can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad038.gif

width

Figure D-39. Testing the width of file input can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad039.gif

word-spacing

Figure D-40. Testing the spacing between words on file input can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad040.gif

Table D-3. A review of the CSS properties on file upload

 WinIE5 WinIE5.5 WinIE6 WinIE7 Safari2 WinFF1.5 MacFF1.5 WinNN7.2 MacNN7.2 Op8.5

background-color
Y Y Y Y N Y Y Y Y N

background-image
Y Y Y Y N N N N N N

border
Y S Y Y N N N N N N

border-color
Y Y Y Y N Y Y Y Y Y

border-style
Y Y Y Y N N N N N Y

border-width
Y Y Y Y N N N N N S

color
N N N N N N N N N N

font-family
N N N N N N N N N Y

font-size
Y Y Y Y N Y Y Y Y Y

http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad037.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad038.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad039.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad040.gif

 WinIE5 WinIE5.5 WinIE6 WinIE7 Safari2 WinFF1.5 MacFF1.5 WinNN7.2 MacNN7.2 Op8.5

font-weight
N N N N N N N N N Y

height
Y Y Y Y N Y Y Y Y Y

letter-spacing
N N N N N N S N N N

line-height
N N N N N N N N N N

margin
Y Y Y Y Y Y Y Y Y Y

padding
Y Y Y Y N N N N N Y

text-align
N N N N N S S S S N

text-decoration
N N N N N N N N N N

text-indent
Y Y Y Y N Y Y Y Y N

width
Y Y Y Y Y S S S S Y

word-spacing
N N N N N N S N S N

font-weight
N N N N N N N N N Y

height
Y Y Y Y N Y Y Y Y Y

letter-spacing
N N N N N N S N N N

line-height
N N N N N N N N N N

margin
Y Y Y Y Y Y Y Y Y Y

padding
Y Y Y Y N N N N N Y

text-align
N N N N N S S S S N

text-decoration
N N N N N N N N N N

text-indent
Y Y Y Y N Y Y Y Y N

width
Y Y Y Y Y S S S S Y

word-spacing
N N N N N N S N S N

Radio Buttons

background-color

Figure D-41. Testing the background color of radio buttons can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad041.gif

background-image

Figure D-42. Testing background images in radio buttons can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad042.gif

border: 0;

Figure D-43. Testing the removal of borders on radio buttons can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad043.gif

border-color

Figure D-44. Testing of colors on the radio button borders can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad044.gif

border-style

Figure D-45. Testing the styles of borders on radio buttons can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad045.gif

border-width

Figure D-46. Testing the widths of borders on radio buttons can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad046.gif

color

Figure D-47. Testing the color on radio buttons can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad047.gif

font-family

Figure D-48. Testing to set a different font on radio buttons can be found at

http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad041.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad042.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad043.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad044.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad045.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad046.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad047.gif

http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad048.gif

font-size

Figure D-49. Testing a different size of font on radio buttons can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad049.gif

font-weight

Figure D-50. Testing a bold font on radio buttons can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad050.gif

height

Figure D-51. Testing to set a height for radio buttons can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad051.gif

letter-spacing

Figure D-52. Testing the letter spacing of radio buttons can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad052.gif

line-height

Figure D-53. Testing setting the spacing between lines of text on radio buttons can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad053.gif

margin

Figure D-54. Testing margins on radio buttons can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad054.gif

padding

Figure D-55. Testing padding on radio buttons can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad055.gif

text-align

Figure D-56. Testing the alignment of text on radio buttons can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad056.gif

text-decoration

Figure D-57. Testing to set a different font on radio buttons can be found at

http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad048.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad049.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad050.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad051.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad052.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad053.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad054.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad055.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad056.gif

http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad057.gif

text-indent

Figure D-58. Testing indenting the text on radio buttons can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad058.gif

width

Figure D-59. Testing the width of radio buttons can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad059.gif

word-spacing

Figure D-60. Testing the spacing between words on radio buttons can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad060.gif

Table D-4. A review of the CSS properties on radio buttons

 WinIE5 WinIE5.5 WinIE6 WinIE7 Safari2 WinFF1.5 MacFF1.5 WinNN7.2 MacNN7.2 Op8.5

background-
color

S S S S N N N N N Y

background-
image

S S S S N N S N S S

border N N N N N N N N N N

border-color S S S S N N N N N S

border-style S S S S N N N N N S

border-
width

N N N N N N N N N N

color N N N N N N N N N N

font-family NA NA NA NA NA NA NA NA NA NA

font-size N N N N N N N N N N

font-weight NA NA NA NA NA NA NA NA NA NA

height S S S S N N Y S Y S

letter-
spacing

NA NA NA NA NA NA NA NA NA NA

line-height N N N N N N N N N N

http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad057.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad058.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad059.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad060.gif

 WinIE5 WinIE5.5 WinIE6 WinIE7 Safari2 WinFF1.5 MacFF1.5 WinNN7.2 MacNN7.2 Op8.5

margin Y Y Y Y Y Y Y Y Y Y

padding N N N N N N N N N S

text-align NA NA NA NA NA NA NA NA NA NA

text-
decoration

NA NA NA NA NA NA NA NA NA NA

text-indent Y Y Y S N N N N N N

width S S S S S N Y S Y S

word-
spacing

NA NA NA NA NA NA NA NA NA NA

margin Y Y Y Y Y Y Y Y Y Y

padding N N N N N N N N N S

text-align NA NA NA NA NA NA NA NA NA NA

text-
decoration

NA NA NA NA NA NA NA NA NA NA

text-indent Y Y Y S N N N N N N

width S S S S S N Y S Y S

word-
spacing

NA NA NA NA NA NA NA NA NA NA

Text Fields

background-color

Figure D-61. Testing the background color of text fields can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad061.gif

background-image

Figure D-62. Testing background images in text fields can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad062.gif

border: 0;

Figure D-63. Testing the removal of borders on text fields can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad063.gif

border-color

Figure D-64. Testing of colors on the text field borders can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad064.gif

border-style

Figure D-65. Testing the styles of borders on text fields can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad065.gif

border-width

Figure D-66. Testing the widths of borders on text fields can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad066.gif

color

Figure D-67. Testing the color on text fields can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad067.gif

font-family

Figure D-68. Testing to set a different font on text fields can be found at

http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad061.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad062.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad063.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad064.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad065.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad066.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad067.gif

http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad068.gif

font-size

Figure D-69. Testing a different size of font on text fields can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad069.gif

font-weight

Figure D-70. Testing a bold font on text fields can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad070.gif

height

Figure D-71. Testing to set a height for text fields can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad071.gif

letter-spacing

Figure D-72. Testing the letter spacing of text fields can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad072.gif

line-height

Figure D-73. Testing setting the spacing between lines of text on text fields can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad073.gif

margin

Figure D-74. Testing margins on text fields can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad074.gif

padding

Figure D-75. Testing padding on text fields can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad075.gif

text-align

Figure D-76. Testing the alignment of text on text fields can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad076.gif

text-decoration

Figure D-77. Testing to set a different font on text fields can be found at

http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad068.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad069.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad070.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad071.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad072.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad073.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad074.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad075.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad076.gif

http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad077.gif

text-indent

Figure D-78. Testing indenting the text on text fields can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad078.gif

width

Figure D-79. Testing the width of text fields can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad079.gif

word-spacing

Figure D-80. Testing the spacing between words on text fields can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad080.gif

Table D-5. A review of the CSS properties on text fields

 WinIE5 WinIE5.5 WinIE6 WinIE7 Safari2 WinFF1.5 MacFF1.5 WinNN7.2 MacNN7.2 Op8.5

background-color
Y Y Y Y Y Y Y Y Y Y

background-image
Y Y Y Y N Y Y Y Y Y

border
Y Y Y Y N Y Y Y Y Y

border-color
Y Y Y Y N Y Y Y Y Y

border-style
Y Y Y Y N Y Y Y Y Y

border-width
Y Y Y Y N Y Y Y Y N

color
Y Y Y Y Y Y Y Y Y Y

font-family
Y Y Y Y Y Y Y Y Y Y

font-size
Y Y Y Y Y Y Y Y Y Y

http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad077.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad078.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad079.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad080.gif

 WinIE5 WinIE5.5 WinIE6 WinIE7 Safari2 WinFF1.5 MacFF1.5 WinNN7.2 MacNN7.2 Op8.5

font-weight
Y Y Y Y Y Y Y Y Y Y

height
Y Y Y Y N Y Y Y Y S

letter-spacing
Y Y Y Y N S S Y Y Y

line-height
N N N N N N N N N N

margin
Y Y Y Y Y Y Y Y Y Y

padding
Y S Y Y N Y Y Y Y S

text-align
N N N N N N N N N N

text-decoration
Y Y Y Y N Y Y Y Y N

text-indent
S S S S N Y Y Y Y N

width
Y Y Y Y Y Y Y Y Y Y

word-spacing
N N Y Y N Y Y Y Y N

font-weight
Y Y Y Y Y Y Y Y Y Y

height
Y Y Y Y N Y Y Y Y S

letter-spacing
Y Y Y Y N S S Y Y Y

line-height
N N N N N N N N N N

margin
Y Y Y Y Y Y Y Y Y Y

padding
Y S Y Y N Y Y Y Y S

text-align
N N N N N N N N N N

text-decoration
Y Y Y Y N Y Y Y Y N

text-indent
S S S S N Y Y Y Y N

width
Y Y Y Y Y Y Y Y Y Y

word-spacing
N N Y Y N Y Y Y Y N

Multiple Options

background-color

Figure D-81. Testing the background color of select element with multiple options can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad081.gif

background-image

Figure D-82. Testing background images in select element with multiple options can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad082.gif

border: 0;

Figure D-83. Testing the removal of borders on select element with multiple options can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad083.gif

border-color

Figure D-84. Testing of border colors on select element with multiple options can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad084.gif

border-style

Figure D-85. Testing the styles of borders on select element with multiple options can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad085.gif

border-width

Figure D-86. Testing the widths of borders on select element with multiple options can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad086.gif

color

Figure D-87. Testing the color on select element with multiple options can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad087.gif

font-family

Figure D-88. Testing to set a different font on select element with multiple options can be found at

http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad081.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad082.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad083.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad084.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad085.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad086.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad087.gif

http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad088.gif

font-size

Figure D-89. Testing a different size of font on select element with multiple options can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad089.gif

font-weight

Figure D-90. Testing a bold font on select element with multiple options can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad090.gif

height

Figure D-91. Testing to set a height for select element with multiple options can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad091.gif

letter-spacing

Figure D-92. Testing the letter spacing of select element with multiple options can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad092.gif

line-height

Figure D-93. Testing setting the spacing between lines of text on select element with multiple options can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad093.gif

margin

Figure D-94. Testing margins on select element with multiple options can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad094.gif

padding

Figure D-95. Testing padding on select element with multiple options can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad095.gif

text-align

Figure D-96. Testing the alignment of text on select element with multiple options can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad096.gif

text-decoration

Figure D-97. Testing to set a different font on select element with multiple options can be found at

http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad088.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad089.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad090.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad091.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad092.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad093.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad094.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad095.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad096.gif

http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad097.gif

text-indent

Figure D-98. Testing indenting the text on select element with multiple options can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad098.gif

width

Figure D-99. Testing the width of select element with multiple options can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad099.gif

word-spacing

Figure D-100. Testing the spacing between words on select element with multiple options can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad100.gif

Table D-6. A review of the CSS properties on select element with multiple options showing

 WinIE5 WinIE5.5 WinIE6 WinIE7 Safari2 WinFF1.5 MacFF1.5 WinNN7.2 MacNN7.2 Op8.5

background-color
Y Y Y Y N Y Y Y Y Y

background-image
N N N N N Y Y Y Y N

border
N N N N N Y Y N N Y

border-color
N N N N N Y Y N S Y

border-style
N N N N N Y Y N N Y

border-width
N N N N N Y Y N N N

color
Y Y Y Y N Y Y Y Y Y

font-family
Y Y Y Y Y Y Y Y Y Y

font-size
Y Y Y Y Y Y Y Y Y Y

http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad097.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad098.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad099.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad100.gif

 WinIE5 WinIE5.5 WinIE6 WinIE7 Safari2 WinFF1.5 MacFF1.5 WinNN7.2 MacNN7.2 Op8.5

font-weight
Y Y Y Y Y Y Y Y Y Y

height
S S S S Y Y Y Y Y Y

letter-spacing
N N N N N S S S S S

line-height
N N N N N N N N N N

margin
Y Y Y Y Y Y Y Y Y Y

padding
N N N N N Y Y Y Y N

text-align
N N N N N Y Y Y Y Y

text-decoration
Y Y Y N N N N N N

text-indent
S S S S N N N N N N

width
Y Y Y Y Y Y Y Y Y Y

word-spacing
N N N N N S S S S N

font-weight
Y Y Y Y Y Y Y Y Y Y

height
S S S S Y Y Y Y Y Y

letter-spacing
N N N N N S S S S S

line-height
N N N N N N N N N N

margin
Y Y Y Y Y Y Y Y Y Y

padding
N N N N N Y Y Y Y N

text-align
N N N N N Y Y Y Y Y

text-decoration
Y Y Y N N N N N N

text-indent
S S S S N N N N N N

width
Y Y Y Y Y Y Y Y Y Y

word-spacing
N N N N N S S S S N

Select Element

background-color

Figure D-101. Testing the background color of select element can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad101.gif

background-image

Figure D-102. Testing background images in select element can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad102.gif

border: 0;

Figure D-103. Testing the removal of borders on select element can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad103.gif

border-color

Figure D-104. Testing of colors on the select element borders can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad104.gif

border-style

Figure D-105. Testing the styles of borders on select element can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad105.gif

border-width

Figure D-106. Testing the widths of borders on select element can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad106.gif

color

Figure D-107. Testing the color on select element can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad107.gif

font-family

Figure D-108. Testing to set a different font on select element can be found at

http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad101.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad102.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad103.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad104.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad105.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad106.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad107.gif

http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad108.gif

font-size

Figure D-109. Testing a different size of font on select element can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad109.gif

font-weight

Figure D-110. Testing a bold font on select element can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad110.gif

height

Figure D-111. Testing to set a height for select element can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad111.gif

letter-spacing

Figure D-112. Testing the letter spacing of select element can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad112.gif

line-height

Figure D-113. Testing setting the spacing between lines of text on select element can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad113.gif

margin

Figure D-114. Testing margins on select element can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad114.gif

padding

Figure D-115. Testing padding on select element can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad115.gif

text-align

Figure D-116. Testing the alignment of text on select element can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad116.gif

text-decoration

Figure D-117. Testing to set a different font on select element can be found at

http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad108.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad109.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad110.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad111.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad112.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad113.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad114.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad115.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad116.gif

http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad117.gif

text-indent

Figure D-118. Testing indenting the text on select element can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad118.gif

width

Figure D-119. Testing the width of select element can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad119.gif

word-spacing

Figure D-120. Testing the spacing between words on select element can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad120.gif

Table D-7. A review of the CSS properties on select element with one option showing

 WinIE5 WinIE5.5 WinIE6 WinIE7 Safari2 WinFF1.5 MacFF1.5 WinNN7.2 MacNN7.2 Op8.5

background-color
Y Y Y Y N Y Y Y Y Y

background-image
N N N N N N N N N N

border
N N N N N Y Y N N Y

border-color
N N N N N Y Y N S Y

border-style
N N N N N Y Y N N Y

border-width
N N N N N Y Y N N N

color
Y Y Y Y N Y Y Y Y Y

font-family
Y Y Y Y N Y Y Y Y Y

font-size
Y Y Y Y N Y Y Y Y Y

http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad117.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad118.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad119.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad120.gif

 WinIE5 WinIE5.5 WinIE6 WinIE7 Safari2 WinFF1.5 MacFF1.5 WinNN7.2 MacNN7.2 Op8.5

font-weight
Y Y Y Y N Y Y Y Y Y

height
N N N N N S S S S Y

letter-spacing
N N N N N Y Y Y Y Y

line-height
N N N N N N N N N N

margin
Y Y Y Y Y Y Y Y Y Y

padding
N N N N N Y Y Y Y N

text-align
N N N N N Y Y Y Y N

text-decoration
Y Y Y Y N N N N N N

text-indent
S S S S N Y Y Y Y N

width
Y Y Y Y Y Y Y Y Y Y

word-spacing
N N N N N Y Y Y Y Y

font-weight
Y Y Y Y N Y Y Y Y Y

height
N N N N N S S S S Y

letter-spacing
N N N N N Y Y Y Y Y

line-height
N N N N N N N N N N

margin
Y Y Y Y Y Y Y Y Y Y

padding
N N N N N Y Y Y Y N

text-align
N N N N N Y Y Y Y N

text-decoration
Y Y Y Y N N N N N N

text-indent
S S S S N Y Y Y Y N

width
Y Y Y Y Y Y Y Y Y Y

word-spacing
N N N N N Y Y Y Y Y

Submit Button

background-color

Figure D-121. Testing the background color of select element can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad121.gif

background-image

Figure D-122. Testing background images in the submit button can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad122.gif

border: 0;

Figure D-123. Testing the removal of borders on the submit button can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad123.gif

border-color

Figure D-124. Testing of colors on the submit button borders can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad124.gif

border-style

Figure D-125. Testing the styles of borders on the submit button can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad125.gif

border-width

Figure D-126. Testing the widths of borders on the submit button can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad126.gif

color

Figure D-127. Testing the color on the submit button can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad127.gif

font-family

Figure D-128. Testing to set a different font on the submit button can be found at

http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad121.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad122.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad123.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad124.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad125.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad126.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad127.gif

http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad128.gif

font-size

Figure D-129. Testing a different size of font on the submit button can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad129.gif

font-weight

Figure D-130. Testing a bold font on the submit button can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad130.gif

height

Figure D-131. Testing to set a height for the submit button can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad131.gif

letter-spacing

Figure D-132. Testing the letter spacing of the submit button can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad132.gif

line-height

Figure D-133. Testing setting the spacing between lines of text on the submit button can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad133.gif

margin

Figure D-134. Testing margins on the submit button can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad134.gif

padding

Figure D-135. Testing padding on the submit button can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad135.gif

text-align

Figure D-136. Testing the alignment of text on the submit button can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad136.gif

text-decoration

Figure D-137. Testing to set a different font on the submit button can be found at

http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad128.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad129.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad130.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad131.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad132.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad133.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad134.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad135.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad136.gif

http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad137.gif

text-indent

Figure D-138. Testing indenting the text on the submit button can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad138.gif

width

Figure D-139. Testing the width of the submit button can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad139.gif

word-spacing

Figure D-140. Testing the spacing between words on the submit button can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad140.gif

Table D-8. A review of the CSS properties on the submit button

 WinIE5 WinIE5.5 WinIE6 WinIE7 Safari2 WinFF1.5 MacFF1.5 WinNN7.2 MacNN7.2 Op8.5

background-color
Y Y Y Y N Y Y Y Y Y

background-image
Y Y N N N Y Y Y Y Y

border
Y Y Y Y N Y Y Y Y Y

border-color
Y Y Y Y N Y Y Y Y Y

border-style
Y Y Y Y N Y Y Y Y Y

border-width
Y Y Y Y N Y Y Y Y N

color
Y Y Y Y N Y Y Y Y Y

font-family
Y Y Y Y N Y Y Y Y Y

font-size
Y Y Y Y N Y Y Y Y Y

http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad137.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad138.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad139.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad140.gif

 WinIE5 WinIE5.5 WinIE6 WinIE7 Safari2 WinFF1.5 MacFF1.5 WinNN7.2 MacNN7.2 Op8.5

font-weight
Y Y Y Y N Y Y Y Y Y

height
Y Y Y Y N Y Y Y Y Y

letter-spacing
Y Y Y Y N Y Y Y Y Y

line-height
N N N N N N N N N N

margin
Y Y Y Y Y Y Y Y Y Y

padding
Y Y Y Y N Y Y Y Y Y

text-align
N N Y Y N N N N N Y

text-decoration
Y Y Y Y N N N N N N

text-indent
S S S S N Y Y Y Y N

width
Y Y Y Y Y Y Y Y Y Y

word-spacing
N N Y Y N Y Y Y Y N

font-weight
Y Y Y Y N Y Y Y Y Y

height
Y Y Y Y N Y Y Y Y Y

letter-spacing
Y Y Y Y N Y Y Y Y Y

line-height
N N N N N N N N N N

margin
Y Y Y Y Y Y Y Y Y Y

padding
Y Y Y Y N Y Y Y Y Y

text-align
N N Y Y N N N N N Y

text-decoration
Y Y Y Y N N N N N N

text-indent
S S S S N Y Y Y Y N

width
Y Y Y Y Y Y Y Y Y Y

word-spacing
N N Y Y N Y Y Y Y N

Textarea Element

background-color

Figure D-141. Testing the background color of the textarea element can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad141.gif

background-image

Figure D-142. Testing background images in the textarea element can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad142.gif

border: 0;

Figure D-143. Testing the removal of borders on the textarea element can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad143.gif

border-color

Figure D-144. Testing of colors on the textarea element borders can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad144.gif

border-style

Figure D-145. Testing the styles of borders on the textarea elementborde can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad145.gif

border-width

Figure D-146. Testing the widths of borders on the textarea element can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad146.gif

color

Figure D-147. Testing the color on the textarea element can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad147.gif

font-family

Figure D-148. Testing to set a different font on the textarea element can be found at

http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad141.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad142.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad143.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad144.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad145.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad146.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad147.gif

http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad148.gif

font-size

Figure D-149. Testing a different size of font on the textarea element can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad149.gif

font-weight

Figure D-150. Testing a bold font on the textarea element can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad150.gif

height

Figure D-151. Testing to set a height for the textarea element can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad151.gif

letter-spacing

Figure D-152. Testing the letter spacing of the textarea element can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad152.gif

line-height

Figure D-153. Testing setting the spacing between lines of text on the textarea element can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad153.gif

margin

Figure D-154. Testing margins on the textarea element can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad154.gif

padding

Figure D-155. Testing padding on the textarea element can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad155.gif

text-alignt

Figure D-156. Testing the alignment of text on the textarea element can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad156.gif

text-decoration

Figure D-157. Testing to set a different font on the textarea element can be found at

http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad148.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad149.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad150.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad151.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad152.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad153.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad154.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad155.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad156.gif

http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad157.gif

text-indent

Figure D-158. Testing indenting the text on the textarea element can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad158.gif

width

Figure D-159. Testing the width of the textarea element can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad159.gif

word-spacing

Figure D-160. Testing the spacing between words on the textarea element can be found at
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad160.gif

Table D-9. A review of the CSS properties on textarea

 WinIE5 WinIE5.5 WinIE6 WinIE7 Safari2 WinFF1.5 MacFF1.5 WinNN7.2 MacNN7.2 Op8.5

background-color
Y Y Y Y Y Y Y Y Y Y

background-image
Y Y Y Y N Y Y Y Y Y

border
Y Y Y Y N Y Y Y Y Y

border-color
Y Y Y Y N Y Y Y Y Y

border-style
Y Y Y Y N Y Y Y Y Y

border-width
Y Y Y Y N Y Y Y Y N

color
Y Y Y Y Y Y Y Y Y Y

font-family
Y Y Y Y Y Y Y Y Y Y

font-size
Y Y Y Y Y Y Y Y Y Y

http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad157.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad158.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad159.gif
http://www.oreilly.com/catalog/cssckbk2/appendixd/figs/css2_ad160.gif

 WinIE5 WinIE5.5 WinIE6 WinIE7 Safari2 WinFF1.5 MacFF1.5 WinNN7.2 MacNN7.2 Op8.5

font-weight
Y Y Y N Y Y Y Y Y Y

height
Y Y Y Y Y Y Y Y Y Y

letter-spacing
Y Y Y Y N S S Y Y Y

line-height
Y Y Y Y N Y Y N N N

margin
Y Y Y Y Y Y Y Y Y Y

padding
Y Y Y S N S S S S S

text-align
Y Y Y Y Y Y Y Y Y Y

text-decoration
Y Y Y Y N Y Y Y Y N

text-indent
S S S S N Y Y Y Y N

width
Y Y Y Y Y Y Y Y Y Y

word-spacing
N N Y Y N Y Y Y Y N

font-weight
Y Y Y N Y Y Y Y Y Y

height
Y Y Y Y Y Y Y Y Y Y

letter-spacing
Y Y Y Y N S S Y Y Y

line-height
Y Y Y Y N Y Y N N N

margin
Y Y Y Y Y Y Y Y Y Y

padding
Y Y Y S N S S S S S

text-align
Y Y Y Y Y Y Y Y Y Y

text-decoration
Y Y Y Y N Y Y Y Y N

text-indent
S S S S N Y Y Y Y N

width
Y Y Y Y Y Y Y Y Y Y

word-spacing
N N Y Y N Y Y Y Y N

Colophon

The animal on the cover of CSS Cookbook is a grizzly bear (Ursus arctos horribilis). The grizzly's
distinctive features include humped shoulders, a long snout, and long curved claws. The coat color
ranges from shades of blond, brown, black, or a combination of these; the long outer guard hairs are
often tipped with white or silver, giving the bear a "grizzled" appearance. The grizzly can weigh
anywhere from 350 to 800 pounds and reach a shoulder height of 4.5 feet when on all fours. Standing
on its hind legs, a grizzly can reach up to eight feet. Despite its large size, the grizzly can reach
speeds of 35 to 40 miles per hour.

Some of the grizzly's favorite foods include nuts, berries, insects, salmon, carrion, and small
mammals. The diet of a grizzly varies depending on the season and habitat. Grizzlies in parts of
Alaska eat primarily salmon, while grizzlies in high mountain areas eat mostly berries and insects.

Grizzlies are solitary, and prefer rugged mountains and forests. They can be found in the Canadian
provinces of British Columbia, Alberta, Yukon, and the Northwest Territories; and the U.S. states of
Alaska, Idaho, Wyoming, Washington, and Montana.

The grizzly is considered a threatened species: only about 850 bears exist in the lower 48 states.
Before the West was settled, the grizzly bear population was estimated to be between 50,000 and
100,000. Threats to the survival of the grizzly bear include habitat destruction caused by logging,
mining, and human development, as well as illegal poaching.

The cover image is a 19th-century engraving from the Dover Pictorial Archive. The cover font is
Adobe ITC Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed;
and the code font is LucasFont's TheSans Mono Condensed.

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

!important rules

 specification

-moz-appearance (Mozilla proprietary extension, CSS 2.1)

-moz-background-clip (Mozilla proprietary extension, CSS 2.1)

-moz-background-inline-policy (Mozilla proprietary extension, CSS 2.1)

-moz-background-origin (Mozilla proprietary extension, CSS 2.1)

-moz-binding (Mozilla proprietary extension, CSS 2.1)

-moz-border-bottom-colors (Mozilla proprietary extension, CSS 2.1)

-moz-border-left-colors (Mozilla proprietary extension, CSS 2.1)

-moz-border-radius (Mozilla proprietary extension, CSS 2.1)

-moz-border-radius-bottomleft (Mozilla proprietary extension, CSS 2.1)

-moz-border-radius-bottomright (Mozilla proprietary extension, CSS 2.1)

-moz-border-radius-topleft (Mozilla proprietary extension, CSS 2.1)

-moz-border-radius-topright (Mozilla proprietary extension, CSS 2.1)

-moz-border-right-colors (Mozilla proprietary extension, CSS 2.1)

-moz-border-top-colors (Mozilla proprietary extension, CSS 2.1)

-moz-box-align (Mozilla proprietary extension, CSS 2.1)

-moz-box-direction (Mozilla proprietary extension, CSS 2.1)

-moz-box-flex (Mozilla proprietary extension, CSS 2.1)

-moz-box-orient (Mozilla proprietary extension, CSS 2.1)

-moz-box-pack (Mozilla proprietary extension, CSS 2.1)

-moz-box-sizing (Mozilla proprietary extension, CSS 2.1)

-moz-image-region (Mozilla proprietary extension, CSS 2.1)

-moz-opacity (Mozilla proprietary extension, CSS 2.1)

-moz-outline (Mozilla proprietary extension, CSS 2.1)

-moz-outline-color (Mozilla proprietary extension, CSS 2.1)

-moz-outline-offset (Mozilla proprietary extension, CSS 2.1)

-moz-outline-radius (Mozilla proprietary extension, CSS 2.1)

-moz-outline-radius-bottomleft (Mozilla proprietary extension, CSS 2.1)

-moz-outline-radius-bottomright (Mozilla proprietary extension, CSS 2.1)

-moz-outline-radius-topleft (Mozilla proprietary extension, CSS 2.1)

-moz-outline-radius-topright (Mozilla proprietary extension, CSS 2.1)

-moz-outline-style (Mozilla proprietary extension, CSS 2.1) 2nd

:\not pseudo-class

:active (pseudo-class)

:after (pseudo-element)

:before (pseudo-element)

:first-child (pseudo-class)

:first-letter (pseudo-element)

:first-line (pseudo-element)

:focus (pseudo-class)

:hover (pseudo-class)

:lang (pseudo-class)

:link (pseudo-class)

:visited (pseudo-class)

<uri> cursor property

@import method

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

a selector

absolute length units

absolute positioning

 specification

access keys 2nd

 specification

accessibility issues

active pseudo-class

 specification

Adjacent Sibling (selector)

adjacent sibling selectors

Adobe Dreamweaver

Adobe Dreamweaver web site

after pseudo-element

Ajax overview

Alexander, Levin

align text

all media type

alpha transparency

alternate style sheets

alternating background colors

asymmetric layouts

Attribute Selector (selector)

attribute selectors

aural media type

auto cursor property

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

background image

 multiple

 positioning on a web page

 repeating

 setting

 stationary

background property

background property (CSS 2.1)

background shorthand property

background-attachment property 2nd 3rd

 specification

background-color property

background-image property 2nd 3rd 4th 5th

background-position property 2nd 3rd 4th

 specification

background-position-x (Microsoft proprietary extension, CSS 2.1)

background-position-y (Microsoft proprietary extension, CSS 2.1)

background-repeat property 2nd 3rd

Backstage tutorial on multiple link colors web site

blink text-decoration property

block level elements

 box model and

block-level elements

blockquote element 2nd 3rd

Boodman, Aaron

Boot Camp Apple application

border models specification

border property 2nd 3rd 4th 5th

border shorthand property

border-bottom property 2nd

border-bottom shorthand property

border-bottom-color property

border-bottom-style property

border-bottom-width property

border-collapse property 2nd

 specification

border-color property 2nd

border-left property 2nd

border-left shorthand property

border-left-color property

border-left-style property

border-left-width property

border-right property 2nd

border-right shorthand property

border-right-color property

border-right-style property

border-right-width property

border-spacing property

border-style property 2nd

border-top property 2nd

border-top shorthand property

border-top-color property

border-top-style property

border-top-width property

border-width property

borders

 box model and

 models (collapse and separate)

 page

 setting

bottom property

Bowman, Doug

Bowman, Douglas

box model 2nd

 Brain Jar

 hack

 interactive CSS Box Model web site

bracket images

braille media type

Brain Jar box model

breadcrumb navigation links

browser archive web site

BrowserCam screen capture service

browsers

 cursive font handling and

bugs and browser issues

bullet styles

 circle

 decimal

 decimal-leading-zero

 disc

 hebrew

 hiragana

 hiragana-iroha

 katakana

 katakana-iroha

 lower-alpha

 lower-greek

 lower-latin

 lower-roman

 none

 square

 upper-alpha

 upper-latin

 upper-roman

Butter, Richard

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Caio hack

calendar example

caption element selector

caption specification

caption style

caption-side propert

cascading style sheets [See CSS]

Cederholm, Dan 2nd 3rd

cell padding

cell spacing

 specification

centering

 elements on a web page

 vertically

centering text

Chassot, Caio

Child (selector)

child elements and parent elements

child selectors

circle bullet style

Clarke, Andy

Class (selector)

class attribute

class selectors 2nd 3rd

 specification 2nd

 versus type selectors

clear property

clip property

Clover, Andrew

collapse model for borders

collapsible menus 2nd

color property

columns

 faux

columns displayed in any order

comic book look and feel

Comic Sans MS

comments

 specification 2nd

conditional comments

content property

contextual menus

contextual selector for styles

contrast, checking for sufficient ratio of

contrast, combining unlike elements to create

contrast, leading the eye with

counter-increment property

counter-reset property

crosshair cursor property

CSS

 official site

 properties

CSS 2.1

 properties

 background

 background-attachment

 background-color

 background-image

 background-position

 background-repeat

 border

 border-bottom

 border-bottom-color

 border-bottom-style

 border-bottom-width

 border-collapse

 border-color

 border-left

 border-left-color

 border-left-style

 border-left-width

 border-right

 border-right-color

 border-right-style

 border-right-width

 border-spacing

 border-style

 border-top

 border-top-color

 border-top-style

 border-top-width

 border-width

 bottom

 caption-side

 clear

 clip

 color

 content

 counter-increment

 counter-reset

 cursor

 direction

 display

 empty-cells

 float

 font

 font-family

 font-size

 font-style

 font-variant

 font-weight

 height

 left

 letter-spacing

 line-height

 list-style

 list-style-image

 list-style-position

 list-style-type

 margin

 margin-bottom

 margin-left

 margin-right

 margin-top

 max-height

 max-width

 min-height

 min-width

 orphans

 outline

 outline-color

 outline-style

 outline-width

 overflow

 padding

 padding-bottom

 padding-left

 padding-right

 padding-top

 page-break-after

 page-break-before

 page-break-inside

 position

 quotes

 right

 table-layout

 text-align

 text-decoration

 text-indent

 text-transform

 top

 unicode-bidi

 vertical-align

 visibility

 white-space

 widows

 width

 word-spacing

 z-index

 proprietary extensions

 Microsoft

 Mozilla

CSS instruction

CSS Style Switcher tutorial

CSS, designing with

 contrast, creating with unlike elements

 contrast, leading the eye with

 quotation, adding emphasis to

 text, enlarging

 unexpected incongruity, creating

cursive font

cursive font family

cursor property

 <uri>

 auto

 crosshair

 default

 e-resize, ne-resize, nw-resize, n-resize, se-resize, sw-resize, s-resize, w-resize

 help

 move

 pointer

 progress

 specification

 text

 wait

cursor property (CSS 2.1)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Davidson, Mike

Debian Linux and dual boot setup

decimal bullet style

decimal-leading-zero bullet style

default cursor property

Descendant (selector)

descendant selector for styles

descendant selectors 2nd

descendent selectors specification

design resources

designing with CSS

Dhakar, Lokesh

direction property

disc bullet style

discussion groups

display property 2nd

 specification 2nd

DOCTYPEs 2nd

 assigning

 declaration

Document Type Definition (DTD)

document type definition (DTD)

document types (DOCTYPES)

Doubled Float-Margin Bug

drop shadows behind an image

 smooth

dynamic pseudo-classes specification

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

e-resize, ne-resize, nw-resize, n-resize, se-resize, sw-resize, s-resize, w-resize cursor property

Edwards, James

elements

 positioning 2nd

em units 2nd 3rd

embossed media type

empty-cells property (CSS 2.1)

emulators for multiple platform site design testing

escaping characters specification

extensions

 CSS 2.1 proprietary

external style sheets

external styles

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Fahrner Image Replacement (FIR) method

Fahrner, Todd 2nd 3rd

fantasy font family

Farhner Image Replacement (FIR) method

faux columns

filter (Microsoft proprietary extension, CSS 2.1)

filter property, Microsoft

first-letter pseudo-element

 specification

first-line pseudo-element

 specification

fixed (or absolute) type measurements

fixed-width columns

flags and finding rules in CSS files

Flash

 using to replace HTML text

float model 2nd

float property 2nd 3rd 4th 5th

float rule

floats

 specification

 with images

font families

 cursive

 fantasy

 monospace

 sans-serif

 serif

font family property

font measurements and size

 specifying

font property

font shorthand property 2nd

 specification

font size

 controlling across browsers and operating systems

 overriding control

 setting to zero or a negative value

font sizes

 specifying

font-family property (CSS 2.1)

font-size keywords

font-size property 2nd

 specification

font-size property (CSS 2.1)

font-style property (CSS 2.1)

font-variant property (CSS 2.1)

font-weight property

font-weight property (CSS 2.1)

fonts

 specifying

forms

 access keys, creating visual indicators for

 buttons, styling

 designing a form without tables

 entering data into a spreadsheet application

 grouping common elements

 highlighting fields

 HTML text link that operates like a Submit button

 input elements, applying different styles to

 integrating form feedback

 tutorial

 login sample

 Macintosh-styled search field

 modifying the space around

 registration form, sample

 select and option elements, setting styles

 setting styles for input elements

 Submit button that looks like HTML text

 Submit-Only-Once button, setting up

 textarea elements, setting styles

 transforming one-column to two-column

four-column layout with fixed-width columns

four-column layout with flexible columns

fragment identifiers

Fulciniti, Alessandro

full-bleed effect

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Ghaste, Amit

GIF and JPEG images, combining

Gilder/Levin image replacement technique 2nd

Goodman, Danny

graphic treatment to HTML text

Grouping (selector)

gutter

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

h1 selector

hack management system

hacks

handheld media type

handheld.css

hanging indents 2nd

 paired

headings

 repeating image and

 stylized borders on

 stylized text, with

hebrew bullet style

height property

Hello, world! example

help cursor property

hiding CSS rules from IE 5 for Macintosh

highlighted text effect

highlighting effect on a table row

highlighting form fields

hiragana bullet style

hiragana-iroha bullet style

Holzschlag, Molly

horizontal rule

 customizing

hover pseudo-class 2nd 3rd

 specification

hr elements, specification

HTML 4.01

 document types

 specification for DTD

HTML Dog CSS Properties web site

html resources

HTML text

 replacing with Flash text

HTML text link that operates like a Submit button

HTML text over an image

HTML text, replacing with an image

HTML, using CSS with

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

ID (selector)

ID selectors 2nd

 specification

image replacement specification

images

 alpha transparency

 background image

 positioning on a web page

 stationary

 background image, setting

 background images, multiple

 background images, repeating

 combining different formats into one presentation

 drop shadows behind an image

 smooth

 floats and

 HTML text

 replacing with Flash text

 HTML text over an image

 inserting reflections automatically

 panoramic image presentation

 placing a border around an image

 protecting

 removing borders set on images by default

 replacing HTML text with

 rounded corners (mountaintop technique)

 rounded corners, with JavaScript

 rounding corners in columns with flexible widths

 rounding corners with fixed-width columns

 scalable

 sprites

 word-balloon effects

ime-mode (Microsoft proprietary extension, CSS 2.1)

indent property

 specification

indenting paragraphs

 first line of

indents, hanging

inheritance

 specification

initial cap

 image decoration and

 large, centered in paragraph

inline styles 2nd 3rd

Inman, Shaun 2nd

input elements

 setting styles

Insert Title Web Design

internal styles

Internet Explorer 5 for Macintosh, hiding CSS rules from

Internet Explorer 5.x for Windows, removing web page flicker from

Internet Explorer 5.x, style workarounds

Internet Explorer 6 for Windows, keeping background images stationary in

Internet Explorer for Windows

 running multiple versions

Internet Explorer for Windows, using conditional comments to deliver styles

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

JavaScript background image workaround

JPEG and GIF images, combining

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Kaiser, Shirley E.

katakana bullet style

katakana-iroha bullet style

kerning

Knoppix browser

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

label element

 specification

Langridge, Stuart

layering multiple images, specification

layout-grid (Microsoft proprietary extension, CSS 2.1)

layout-grid-char (Microsoft proprietary extension, CSS 2.1)

layout-grid-line (Microsoft proprietary extension, CSS 2.1)

layout-grid-mode (Microsoft proprietary extension, CSS 2.1)

layout-grid-type (Microsoft proprietary extension, CSS 2.1)

Leahy, Seamus

Leahy-Langridge Image Replacement (LIR) method

left property

length units

 absolute

 relative

letter spacing

 specification

letter-spacing property 2nd 3rd

 specification

lightbox effect

 adding

 Prototype JavaScript Framework and Scriptaculous

 slideshow

line spacing

 changing

line-break (Microsoft proprietary extension, CSS 2.1)

line-height property

 specification

line-height property (CSS 2.1)

line-through text-decoration property

links

 colors, changing

 colors, changing in different sections of a page

 cursors, changing

 fragment identifiers

 icon at end of inline

 rollover effect without using JavaScript

 tool tips

 underlining, removing

links and navigation

Linux

 browser testing

list-image-type property

 specification

list-style property 2nd 3rd

list-style shorthand property

list-style-image property 2nd

list-style-position property 2nd

 specification

list-style-type property 2nd

lists

 custom image markers

 custom text markers

 default style, changing

 dividers between list items

 hanging indents

 indentation

 cross-browser

 inline

 large custom image markers

 margin property specification

 moving markers inside

 numbering

 specification

 padding specification

 rich imagery in presentations

login form, sample

lower-alpha bullet style

lower-greek bullet style

lower-latin bullet style

lower-roman bullet style

Luminosity Contrast Ratio Analyser

Lynx browser

Lynx Viewer online emulator

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Macintosh browser testing

managing CSS

margin property 2nd

margin shorthand property

margin-bottom property

margin-left property 2nd 3rd

margin-right property

margin-top property

margins

 box model and

 eliminating page margins

max-height property

max-width property

 specification

McLellan, Drew

media rules within the same style sheets

media type

 all

 aural

 braille

 embossed

 handheld

 print

 projection

 screen

 tty

 tv

media types

 using @import when assigning

 using @media when assigning

menus

 collapsible 2nd

 contextual

menus, building

Meyer, Eric A. 2nd 3rd 4th

Microsoft

 CSS 2.1 proprietary extensions

 proprietary extensions

 background-position-x

 background-position-y

 filter

 ime-mode

 layout-grid

 layout-grid-char

 layout-grid-line

 layout-grid-mode

 layout-grid-type

 line-break

 overflow-x

 overflow-y

 scrollbar-3dlight-color

 scrollbar-arrow-color

 scrollbar-base-color

 scrollbar-darkshadow-color

 scrollbar-face-color

 scrollbar-highlight-color

 scrollbar-shadow-color

 text-autospace

 text-justify

 text-kashida-space

 text-underline-position

 word-break

 word-wrap

 writing-mode

 zoom

Microsoft Expression Web Designer

Microsoft Image toolbar

min-height property (CSS 2.1)

min-width property (CSS 2.1)

monospace font family

mountaintop technique

move cursor property

Mozilla

 CSS 2.1 proprietary extensions

 proprietary extensions

 -moz-appearance

 -moz-background-clip

 -moz-background-inline-policy

 -moz-background-origin

 -moz-binding

 -moz-border-bottom-colors

 -moz-border-left-colors

 -moz-border-radius

 -moz-border-radius-bottomleft

 -moz-border-radius-bottomright

 -moz-border-radius-topleft

 -moz-border-radius-topright

 -moz-border-right-colors

 -moz-border-top-colors

 -moz-box-align

 -moz-box-direction

 -moz-box-flex

 -moz-box-orient

 -moz-box-pack

 -moz-box-sizing

 -moz-image-region

 -moz-opacity

 -moz-outline

 -moz-outline-color

 -moz-outline-offset

 -moz-outline-radius

 -moz-outline-radius-bottomleft

 -moz-outline-radius-bottomright

 -moz-outline-radius-topleft

 -moz-outline-radius-topright

 -moz-outline-style 2nd

MSDN Scrollbar Color Workshop

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

navigation

 breadcrumb links

 collapsible menus 2nd

 contextual menus

 curved tab menu

 horizontal menus, building

 menu with access keys

 rollovers, image-based

 screen readers and

 text menus and rollovers

navigation and links

Netscape Navigator 4.x, isolating styles for

Newhouse, Mark 2nd

Nielsen, Jakob

Nifty Corners Cube solution

 keywords

 all (default)

 bl

 bottom

 br

 left

 right

 tl

 top

 tr

none bullet style

none text-decoration property

nth-child pseudo-class selector specification

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

one column page layout

one-column form, transforming to two-column

orphans property

outline property

outline-color property

outline-style property

outline-width property

overflow property

overflow-x (Microsoft proprietary extension, CSS 2.1)

overflow-y (Microsoft proprietary extension, CSS 2.1)

overline text-decoration property

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

p selector 2nd

padding concept

padding property 2nd 3rd

padding shorthand property

padding specification

padding-bottom property

padding-left property 2nd 3rd

padding-right property

padding-top property

page borders

page elements

page layouts

 algorithm

 asymmetric

 columns displayed in any order (floats)

 float model 2nd

 four-column layout with fixed-width columns

 four-column layout with flexible columns

 gutter

 one column

 three-column layout with fixed-width columns

 three-column layout with flexible columns

 two-column layout with columns

 two-column layout with fixed-width columns

page-break-after property

page-break-before property

page-break-inside property

panoramic images presentation, building

paragraphs

 indenting

 styling the first line

 with an image

parent elements and child elements

Pedrick, Chris

Phark image replacement method

pixels

 controlling typography across platforms and browsers

Pixy method

placeholder attribute

placing a border around an image

PNG files, alpha transparency and

pointer cursor property

position property 2nd 3rd 4th

 specification

positioning elements 2nd

print media type

print-ready web forms, creating

print.css

printer-friendly document example

printer-friendly pages, creating

printing

printing URIs

printing, setting page for black-and-white

progress cursor property

projection media type

projection.css

properties

 CSS 2.1 [See CSS 2.1, properties]

protecting images from theft

Prototype Framework

Prototype JavaScript Library overview

pseudo-classes

 :active

 :first-child

 :focus

 :hover

 :lang

 :link

 :visited

pseudo-element

 :after

 :before

 :first-letter

 :first-line

pseudo-elements 2nd 3rd

pull quote

 with borders

 with images

pull quotes

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

quirks mode, browser quirks mode

quotation, adding emphasis to

quotations

 specification

quotes property

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

references

reflections automatically inserted on images

registration form sample

relative length units

relative positioning

 specification

removing borders set on images by default

removing space

repeating images

resources

 design

 discussion groups

 general html and css instruction

 references

 tools

right property

Robinson, Alex

rollover effect without using JavaScript

rollovers

 image-based

rounded corners

 with JavaScript

rounded corners (mountaintop technique)

rounding corners in columns with flexible widths

rounding corners with fixed-width columns

rubber-band technique

Rundle, Mike

Rutter, Richard

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

Safari browser search field

sans-serif font family

scalable images

Scalable Inman Flash Replacement (sIFR) technique

Schmitt, Christopher

screen media type

screen readers

screen.css

Scriptaculous Effects JavaScript libraries

scroll bars

 colors, adjusting

 MSDN Scrollbar Color Workshop

scrollbar-3dlight-color (Microsoft proprietary extension, CSS 2.1)

scrollbar-arrow-color (Microsoft proprietary extension, CSS 2.1)

scrollbar-base-color (Microsoft proprietary extension, CSS 2.1)

scrollbar-darkshadow-color (Microsoft proprietary extension, CSS 2.1)

scrollbar-face-color (Microsoft proprietary extension, CSS 2.1)

scrollbar-highlight-color (Microsoft proprietary extension, CSS 2.1)

scrollbar-shadow-color (Microsoft proprietary extension, CSS 2.1)

selectors

 Adjacent Sibling

 adjacent sibling

 attribute

 Attribute Selector

 Child

 child

 Class

 class 2nd

 Descendant

 descendant

 Grouping

 grouping

 ID 2nd 3rd

 Selectutorial

 specification

 Type

 type

 Universal

 universal

 westciv browser support

selectors, using to apply styles

Selectutorial

separate model for borders

serif font family

shadow behind text, placing

Shea, Dave

shorthand properties

 background

 border

 border-bottom

 border-left

 border-right

 border-top

 font

 list-style

 margin

 padding

 specification

shorthand property 2nd

single-pixel transparent GIFs

Sleight script, alpha transparency and

slideshow

Sliding Doors technique

space

 removing between a heading and a paragraph

spacing between letters and words within HTML text, adjusting

span element 2nd 3rd

span tag

 unsemantic

special characters

 hexadecimal equivalents

 inserting before links in a print style sheet

spreadsheet application, entering data into a form

sprites, using to save bandwidth

square bullet style

star HTML hack

strong element

 specification

structure versus visual presentation

style sheet files

 organizing

style sheets

 alternates and options

 for printing

 media rules

 organizing contents for easier management

 shorthand properties

 specification

styles

 associating to a web page

 dynamically change

 external

 inline

 internal

 specification

Submit and Reset buttons

Submit button, resembling HTML test

Submit-Once-Only button

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

tab menu bar

table headers, style setting

table-layout property

tables

 alternating background colors in table rows

 borders, setting

 calendar example

 caption style

 cell padding

 cell spacing between the table border and cell borders

 gaps between table cells, removing

 gaps from images in table cells, removing

 highlighting effect on a table row

 styles for table headers, setting

 styles within cells, setting

tables, designing web form without

Tantek box model hack

target pseudo-class

 specification

testing site design with only one computer

text

 centering

 enlarging excessively

 justified alignment

text cursor property

text-align property 2nd 3rd 4th 5th

 specification 2nd

text-autospace (Microsoft proprietary extension, CSS 2.1)

text-decoration property 2nd

 blink

 line-through

 none

 overline

 specification

 underline

text-indent property 2nd 3rd 4th 5th

 specification 2nd 3rd

text-justify (Microsoft proprietary extension, CSS 2.1)

text-kashida-space (Microsoft proprietary extension, CSS 2.1)

text-shadow property

 specification

text-transform property

text-underline-position (Microsoft proprietary extension, CSS 2.1)

textarea elements, setting styles

th element selector

three-column layout with fixed-width columns

three-column layout with flexible columns

tiling a background image

title attribute specification

tool tips

tools

top property (CSS 2.1)

tracking

troubleshooting

tty media type

tv media type

two-column layout with columns

two-column layout with fixed-width columns

Type (selector)

type selectors 2nd

type selectors specification

type size

 specifying

typeface

 specifying

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

underline text-decoration property

underlining

unicode-bidi property

Universal (selector)

universal selectors

upper-alpha bullet style

upper-latin bullet style

upper-roman bullet style

URIs (Uniform Resource Identifiers), displaying for print

usability

usability issues

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

vertical centering

vertical-align property

Virtual PC for Mac

visibility property

visual presentation versus structure

VMWare Workstation

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

W3C full property table

W3C validators

W3Schools Tutorial on CSS pseudo-classes web site

wait cursor property

web forms

 print-ready

web typography

white-space property

whitespace

widows property

width property 2nd

Wine, open source implementation of Windows API

word-balloon effects

word-break (Microsoft proprietary extension, CSS 2.1)

word-spacing property 2nd

 specification

word-wrap (Microsoft proprietary extension, CSS 2.1)

workarounds

writing-mode (Microsoft proprietary extension, CSS 2.1)

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

x-height (ex) units

XHTML

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Z]

z-index property

zoom (Microsoft proprietary extension, CSS 2.1)

	CSS Cookbook
	Table of Contents
	Copyright
	Preface

	Chapter 1. General
	Section 1.0. Introduction
	Recipe 1.1. Using CSS with HTML
	Recipe 1.2. Using Different Selectors to Apply Styles
	Recipe 1.3. Determining When to Use Class and ID Selectors
	Recipe 1.4. Understanding CSS Properties
	Recipe 1.5. Understanding the Box Model
	Recipe 1.6. Understanding DOCTYPES and Effects on Browser Layout
	Recipe 1.7. Associating Styles to a Web Page
	Recipe 1.8. How to Use Different Types of Style Sheets
	Recipe 1.9. Adding Comments Within CSS
	Recipe 1.10. Organizing the Contents of a Style Sheet
	Recipe 1.11. Organizing Style Sheet Files
	Recipe 1.12. Working with Shorthand Properties
	Recipe 1.13. Setting up an Alternate Style Sheet
	Recipe 1.14. Using Floats with Images
	Recipe 1.15. Using Absolute Positioning
	Recipe 1.16. Using Relative Positioning
	Recipe 1.17. Using CSS in Adobe Dreamweaver
	Recipe 1.18. Using CSS in Microsoft Expression Web Designer

	Chapter 2. Web Typography
	Section 2.0. Introduction
	Recipe 2.1. Specifying Fonts
	Recipe 2.2. Specifying Font Measurements and Sizes
	Recipe 2.3. Gaining More Control over Font Sizes
	Recipe 2.4. Enforcing Font Sizes
	Recipe 2.5. Centering Text
	Recipe 2.6. Setting Text to Be Justified
	Recipe 2.7. Removing Space Between Headings and Paragraphs
	Recipe 2.8. Setting a Simple Initial Cap
	Recipe 2.9. Setting a Larger, Centered Initial Cap
	Recipe 2.10. Setting an Initial Cap with Decoration (Imagery)
	Recipe 2.11. Creating a Heading with Stylized Text
	Recipe 2.12. Creating a Heading with Stylized Text and Borders
	Recipe 2.13. Stylizing a Heading with Text and an Image
	Recipe 2.14. Creating a Pull Quote with HTML Text
	Recipe 2.15. Creating a Pull Quote with Borders
	Recipe 2.16. Creating a Pull Quote with Images
	Recipe 2.17. Setting the Indent in the First Line of a Paragraph
	Recipe 2.18. Setting the Indent of Entire Paragraphs
	Recipe 2.19. Creating a Hanging Indent
	Recipe 2.20. Styling the First Line of a Paragraph
	Recipe 2.21. Styling the First Line of a Paragraph with an Image
	Recipe 2.22. Creating a Highlighted Text Effect
	Recipe 2.23. Changing Line Spacing
	Recipe 2.24. Adding a Graphic Treatment to HTML Text
	Recipe 2.25. Placing Shadow Behind Text
	Recipe 2.26. Adjusting the Spacing Between Letters and Words

	Chapter 3. Images
	Section 3.0. Introduction
	Recipe 3.1. Placing a Border Around an Image
	Recipe 3.2. Removing Borders Set on Images by Default in Some Browsers
	Recipe 3.3. Setting a Background Image
	Recipe 3.4. Creating a Line of Background Images
	Recipe 3.5. Placing a Background Image on a Web Page
	Recipe 3.6. Using Multiple Background Images on One Selector
	Recipe 3.7. Creating a Stationary Background Image
	Recipe 3.8. Overlaying HTML Text on an Image
	Recipe 3.9. Replacing HTML Text with an Image
	Recipe 3.10. Replacing HTML Text with Flash Text
	Recipe 3.11. Using Multiple PNGs with Transparency
	Recipe 3.12. Building a Panoramic Image Presentation
	Recipe 3.13. Combining Different Image Formats
	Recipe 3.14. Rounding Corners with Fixed-Width Columns
	Recipe 3.15. Rounding Corners (Sliding Doors Technique)
	Recipe 3.16. Rounding Corners (Mountaintop Technique)
	Recipe 3.17. Rounding Corners with JavaScript
	Recipe 3.18. Placing a Drop Shadow Behind an Image
	Recipe 3.19. Placing a Smooth Drop Shadow Behind an Image
	Recipe 3.20. Making Images Scalable
	Recipe 3.21. Making Word Balloons
	Recipe 3.22. Hindering People from Stealing Your Images
	Recipe 3.23. Inserting Reflections on Images Automatically
	Recipe 3.24. Using Image Sprites

	Chapter 4. Page Elements
	Section 4.0. Introduction
	Recipe 4.1. Eliminating Page Margins
	Recipe 4.2. Coloring the Scrollbar
	Recipe 4.3. Techniques for Centering Elements on a Web Page
	Recipe 4.4. Placing a Page Border
	Recipe 4.5. Customizing a Horizontal Rule
	Recipe 4.6. Adding a Lightbox

	Chapter 5. Lists
	Section 5.0. Introduction
	Recipe 5.1. Changing the Format of a List
	Recipe 5.2. Writing Cross-Browser Indentation in Lists
	Recipe 5.3. Place Dividers Between List Items
	Recipe 5.4. Creating Custom Text Markers for Lists
	Recipe 5.5. Creating Custom Image Markers for Lists
	Recipe 5.6. Inserting Large Custom Image Markers for Lists
	Recipe 5.7. Making a List Presentation Rich with Imagery
	Recipe 5.8. Creating Inline Lists
	Recipe 5.9. Making Hanging Indents in a List
	Recipe 5.10. Moving the Marker Inside the List

	Chapter 6. Links and Navigation
	Section 6.0. Introduction
	Recipe 6.1. Removing Underlines from Links (and Adding Other Decorations)
	Recipe 6.2. Changing Link Colors
	Recipe 6.3. Changing Link Colors in Different Sections of a Page
	Recipe 6.4. Placing an Icon at the End of the Link
	Recipe 6.5. Changing Cursors
	Recipe 6.6. Creating Rollovers Without JavaScript
	Recipe 6.7. Creating Text Navigation Menus and Rollovers
	Recipe 6.8. Building Horizontal Navigation Menus
	Recipe 6.9. Building a Navigation Menu with Access Keys
	Recipe 6.10. Creating Breadcrumb Navigation
	Recipe 6.11. Creating Image-Based Rollovers
	Recipe 6.12. Creating Collapsible Menus
	Recipe 6.13. Creating Contextual Menus
	Recipe 6.14. Making Tool Tips with the Title Attribute
	Recipe 6.15. Designing a Dynamic Visual Menu
	Recipe 6.16. Apply Styles Dynamically to a Web Page

	Chapter 7. Forms
	Section 7.0. Introduction
	Recipe 7.1. Modifying the Spacing Around a Form
	Recipe 7.2. Setting Styles for Input Elements
	Recipe 7.3. Applying Different Styles to Different Input Elements in the Same Form
	Recipe 7.4. Setting Styles for textarea Elements
	Recipe 7.5. Setting Styles for Select and Option Elements
	Recipe 7.6. Creating a Macintosh-Styled Search Field
	Recipe 7.7. Styling Form Buttons
	Recipe 7.8. Creating an Image Submit Button
	Recipe 7.9. Setting Up a Submit-Once-Only Button
	Recipe 7.10. Creating a Submit Button That Looks Like HTML Text
	Recipe 7.11. Making an HTML Text Link Operate Like a Submit Button
	Recipe 7.12. Designing a Web Form Without Tables
	Recipe 7.13. Designing a Two Column Form Without Tables
	Recipe 7.14. Highlighting Form Fields
	Recipe 7.15. Integrating Form Feedback with a Form
	Recipe 7.16. Styling Access Keys in Web Forms
	Recipe 7.17. Grouping Common Form Elements
	Recipe 7.18. Entering Data into a Form Like a Spreadsheet
	Recipe 7.19. Sample Design: A Login Form
	Recipe 7.20. Sample Design: A Registration Form

	Chapter 8. Tables
	Section 8.0. Introduction
	Recipe 8.1. Setting the Cell Spacing
	Recipe 8.2. Setting the Borders and Cell Padding
	Recipe 8.3. Setting the Style for Caption
	Recipe 8.4. Setting the Styles Within Table Cells
	Recipe 8.5. Setting Styles for Table Header Elements
	Recipe 8.6. Removing Gaps from Images Placed in Table Cells
	Recipe 8.7. Eliminating Gaps Between Table Cells
	Recipe 8.8. Creating Alternating Background Colors in Table Rows
	Recipe 8.9. Adding a Highlighting Effect on a Table Row
	Recipe 8.10. Sample Design: An Elegant Calendar

	Chapter 9. Page Layouts
	Section 9.0. Introduction
	Recipe 9.1. Building a One-Column Layout
	Recipe 9.2. Building a Two-Column Layout
	Recipe 9.3. Building a Two-Column Layout with Fixed-Width Columns
	Recipe 9.4. Creating a Flexible Multicolumn Layout with Floats
	Recipe 9.5. Creating a Fixed-Width Multicolumn Layout with Floats
	Recipe 9.6. Creating a Flexible Multicolumn Layout with Positioning
	Recipe 9.7. Creating a Fixed-Width Multicolumn Layout with Positioning
	Recipe 9.8. Using Floats to Display Columns in Any Order
	Recipe 9.9. Designing an Asymmetric Layout

	Chapter 10. Print
	Section 10.0. Introduction
	Recipe 10.1. Creating a Printer-Friendly Page
	Recipe 10.2. Making a Web Form Print-Ready
	Recipe 10.3. Displaying URIs After Links
	Recipe 10.4. Inserting Special Characters Before Links
	Recipe 10.5. Sample Design: A Printer-Friendly Page with CSS

	Chapter 11. Hacks, Workarounds, and Troubleshooting
	Section 11.0. Introduction
	Recipe 11.1. Isolating Styles for Netscape Navigator 4.x
	Recipe 11.2. Delivering Specific Styles to Internet Explorer 5.x for Windows
	Recipe 11.3. Removing Web Page Flicker in Internet Explorer 5.x for Windows
	Recipe 11.4. Keeping Background Images Stationary in Internet Explorer 6 for Windows
	Recipe 11.5. Using Internet Explorer for Windows' Conditional Comments to Deliver Styles
	Recipe 11.6. Keeping CSS Rules from Internet Explorer 5 for Macintosh
	Recipe 11.7. Setting Up an Intelligent Hack Management System
	Recipe 11.8. Diagnosing CSS Bugs and Browser Issues
	Recipe 11.9. Testing a Site Design on More Than One Platform with Only One Computer
	Recipe 11.10. Installing More Than One Version of Internet Explorer for Windows on a Computer
	Recipe 11.11. Testing a Web Site with a Text Browser

	Chapter 12. Designing with CSS
	Section 12.0. Introduction
	Recipe 12.1. Enlarging Text Excessively
	Recipe 12.2. Creating Unexpected Incongruity
	Recipe 12.3. Combining Unlike Elements to Create Contrast
	Recipe 12.4. Leading the Eye with Contrast
	Recipe 12.5. Checking for Enough Color Contrast
	Recipe 12.6. Emphasizing a Quotation

	Appendix A. Resources
	General HTML and CSS Instruction
	Design Resources
	Discussion Groups
	References
	Tools

	Appendix B. CSS 2.1 Properties and Proprietary Extensions
	Appendix C. CSS 2.1 Selectors, Pseudo-Classes, and Pseudo-Elements
	Appendix D. Styling of Form Elements
	Checkboxes
	File Input
	Radio Buttons
	Text Fields
	Multiple Options
	Select Element
	Submit Button
	Textarea Element

	Colophon
	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z

