
Learning SQL on SQL Server 2005

By Sikha Saha Bagui, Richard Walsh Earp

...

Publisher: O'Reilly

Pub Date: April 2006

Print ISBN-10: 0-596-10215-1

Print ISBN-13: 978-0-59-610215-9

Pages: 342

Table of Contents | Index

Anyone who interacts with today's modern databases needs to know SQL (Structured Query
Language), the standard language for generating, manipulating, and retrieving database
information. In recent years, the dramatic rise in the popularity of relational databases and multi-
user databases has fueled a healthy demand for application developers and others who can write
SQL code efficiently and correctly.

If you're new to databases, or need a SQL refresher, Learning SQL on SQL Server 2005 is an ideal
step-by-step introduction to this database query tool, with everything you need for programming
SQL using Microsoft's SQL Server 2005-one of the most powerful and popular database engines
used today. Plenty of books explain database theory. This guide lets you apply the theory as you
learn SQL. You don't need prior database knowledge, or even prior computer knowledge.

Based on a popular university-level course designed by authors Sikha Saha Bagui and Richard
Walsh Earp, Learning SQL on SQL Server 2005 starts with very simple SQL concepts, and slowly
builds into more complex query development. Every topic, concept, and idea comes with examples
of code and output, along with exercises to help you gain proficiency in SQL and SQL Server 2005.
With this book, you'll learn:

Beginning SQL commands, such as how and where to type an SQL query, and how to create,
populate, alter and delete tables

How to customize SQL Server 2005's settings and about SQL Server 2005's functions

About joins, a common database mechanism for combining tables

Query development, the use of views and other derived structures, and simple set operations

Subqueries, aggregate functions and correlated subqueries, as well as indexes and constraints
that can be added to tables in SQL Server 2005

http://lib.ommolketab.ir

Whether you're an undergraduate computer science or MIS student, a self-learner who has access
to the new Microsoft database, or work for your company's IT department, Learning SQL on SQL
Server 2005 will get you up to speed on SQL in no time.

http://lib.ommolketab.ir

Learning SQL on SQL Server 2005

By Sikha Saha Bagui, Richard Walsh Earp

...

Publisher: O'Reilly

Pub Date: April 2006

Print ISBN-10: 0-596-10215-1

Print ISBN-13: 978-0-59-610215-9

Pages: 342

Table of Contents | Index

 Learning SQL on SQL Server 2005

 Dedication

 Preface

 Why This Book?

 SQL and SQL Server

 Audience and Coverage

 A Few Notes About SQL Server 2005 Installation

 Conventions Used in This Book

 Using Code Examples

 How to Contact Us

 Acknowledgments

 Chapter 1. Starting Microsoft SQL Server 2005

 Section 1.1. Starting Microsoft SQL Server 2005 and SQL Server 2005's Management Studio

 Section 1.2. Creating a Database in Microsoft SQL Server 2005

 Section 1.3. The Query Editor

 Section 1.4. Creating Tables Using the Load Script

 Section 1.5. Viewing Table Definitions

 Section 1.6. Modifying Table Definitions

 Section 1.7. Viewing Table Data

 Section 1.8. Deleting a Table

 Section 1.9. Deleting a Database

 Section 1.10. Entering a SQL Query or Statement

 Section 1.11. Parsing a Query

 Section 1.12. Executing a Query

 Section 1.13. Saving a Query

 Section 1.14. Displaying the Results

 Section 1.15. Stopping Execution of a Long Query

 Section 1.16. Printing the Query and Results

 Section 1.17. Customizing SQL Server 2005

 Section 1.18. Summary

 Section 1.19. Review Questions

 Section 1.20. Exercises

http://lib.ommolketab.ir

 Chapter 2. Beginning SQL Commands in SQL Server

 Section 2.1. Displaying Data with the SELECT Statement

 Section 2.2. Displaying or SELECTing Rows or Tuples from a Table

 Section 2.3. The COUNT Function

 Section 2.4. The ROWCOUNT Function

 Section 2.5. Using Aliases

 Section 2.6. Synonyms

 Section 2.7. Adding Comments to SQL Statements

 Section 2.8. Some Conventions for Writing SQL Statements

 Section 2.9. A Few Notes About SQL Server 2005 Syntax

 Section 2.10. Summary

 Section 2.11. Review Questions

 Section 2.12. Exercises

 Chapter 3. Creating, Populating, Altering, and Deleting Tables

 Section 3.1. Data Types in SQL Server 2005

 Section 3.2. Creating a Table

 Section 3.3. Inserting Values into a Table

 Section 3.4. The UPDATE Command

 Section 3.5. The ALTER TABLE Command

 Section 3.6. The DELETE Command

 Section 3.7. Deleting a Table

 Section 3.8. Summary

 Section 3.9. Review Questions

 Section 3.10. Exercises

 Section 3.11. References

 Chapter 4. Joins

 Section 4.1. The JOIN

 Section 4.2. The Cartesian Product

 Section 4.3. Equi-Joins and Non-Equi-Joins

 Section 4.4. Self Joins

 Section 4.5. Using ORDER BY with a Join

 Section 4.6. Joining More Than Two Tables

 Section 4.7. The OUTER JOIN

 Section 4.8. Summary

 Section 4.9. Review Questions

 Section 4.10. Exercises

 Chapter 5. Functions

 Section 5.1. Aggregate Functions

 Section 5.2. Row-Level Functions

 Section 5.3. Other Functions

 Section 5.4. String Functions

 Section 5.5. CONVERSION Functions

 Section 5.6. DATE Functions

 Section 5.7. Summary

 Section 5.8. Review Questions

 Section 5.9. Exercises

http://lib.ommolketab.ir

 Chapter 6. Query Development and Derived Structures

 Section 6.1. Query Development

 Section 6.2. Parentheses in SQL Expressions

 Section 6.3. Derived Structures

 Section 6.4. Query Development with Derived Structures

 Section 6.5. Summary

 Section 6.6. Review Questions

 Section 6.7. Exercises

 Chapter 7. Set Operations

 Section 7.1. Introducing Set Operations

 Section 7.2. The UNION Operation

 Section 7.3. The UNION ALL Operation

 Section 7.4. Handling UNION and UNION ALL Situations with an Unequal Number of Columns

 Section 7.5. The IN and NOT..IN Predicates

 Section 7.6. The Difference Operation

 Section 7.7. The Union and the Join

 Section 7.8. A UNION Used to Implement a Full Outer Join

 Section 7.9. Summary

 Section 7.10. Review Questions

 Section 7.11. Exercises

 Section 7.12. Optional Exercise

 Chapter 8. Joins Versus Subqueries

 Section 8.1. Subquery with an IN Predicate

 Section 8.2. The Subquery as a Join

 Section 8.3. When the Join Cannot Be Turned into a Subquery

 Section 8.4. More Examples Involving Joins and IN

 Section 8.5. Using Subqueries with Operators

 Section 8.6. Summary

 Section 8.7. Review Questions

 Section 8.8. Exercises

 Chapter 9. Aggregation and GROUP BY

 Section 9.1. A SELECT in Modified BNF

 Section 9.2. The GROUP BY Clause

 Section 9.3. The HAVING Clause

 Section 9.4. GROUP BY and HAVING: Aggregates of Aggregates

 Section 9.5. Auditing in Subqueries

 Section 9.6. Nulls Revisited

 Section 9.7. Summary

 Section 9.8. Review Questions

 Section 9.9. Exercises

 Chapter 10. Correlated Subqueries

 Section 10.1. Noncorrelated Subqueries

 Section 10.2. Correlated Subqueries

 Section 10.3. Existence Queries and Correlation

 Section 10.4. SQL Universal and Existential Qualifiers

 Section 10.5. Summary

http://lib.ommolketab.ir

 Section 10.6. Review Questions

 Section 10.7. Exercises

 Chapter 11. Indexes and Constraints on Tables

 Section 11.1. The "Simple" CREATE TABLE

 Section 11.2. Indexes

 Section 11.3. Constraints

 Section 11.4. Summary

 Section 11.5. Review Questions

 Section 11.6. Exercises

 Appendix A. The Student Database and Other Tables Used in This Book

 Section A.1.

 Appendix B. Script Used to Create the Student_course Database

 Glossary of Terms

 Important Commands and Functions

 About the Author

 Colophon

 Index

http://lib.ommolketab.ir

Learning SQL on SQL Server 2005
Learning SQL on SQL Server 2005

by Sikha Saha Bagui and Richard Walsh Earp

Copyright © 2006 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Jeff Pepper

Production Editor: Philip Dangler

Copyeditor: Nancy Wolfe Kotary

Indexer: Johnna VanHoose Dinse

Cover Designer: Karen Montgomery

Interior Designer: David Futato

Cover Illustration: Dover Pictoral Archive

Illustrators: Robert Romano and Jessamyn Read

Printing History:

April 2006: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. Learning SQL on SQL Server 2005, the image of a ribbed newt, and related trade
dress are trademarks of O'Reilly Media, Inc.

Adapted with permission from Learning SQL: Step-by-Step GD Using Oracle by Bagui and Earp, pp.
48-61, 69-70, 85, 89-93, 105-108, 109-110, 114-120, 122-129, 131-133, 135-152,153-166, 167-
183, 185-213, Appendix 3, and Glossary of Terms, © 2003 Pearson Education, Inc. Reprinted by
permission of Pearson Education, Inc., Publishing as Pearson Addison-Wesley. All rights reserved.

Adaptated with permission from, Learning SQL: Step-by-Step GD Using Access by Bagui and Earp,

http://lib.ommolketab.ir

pp. 64-77, © 2003 Pearson Education, Inc. Reproduced by permission of Pearson Education, Inc.
Publishing as Pearson Addison Wesley. All rights reserved.

Oracle® and all Oracle-based trademarks and logos are trademarks or registered trademarks of
Oracle Corporation, Inc. in the United States and other countries. O'Reilly Media, Inc. is independent
of Oracle Corporation.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 0-596-10215-1

[M]

http://lib.ommolketab.ir

Dedication

Dedicated to my father, Santosh Saha, and mother, Ranu Saha

and

my husband, Subhash Bagui

and

my sons, Sumon and Sudip

and

Pradeep, Priyashi, and Piyali Saha

S.B.

To my wife, Brenda,

and

my children: Beryl, Rich, Gen, and Mary Jo

R.E.

http://lib.ommolketab.ir

Preface
SQL Server is one of the most powerful database engines used today. Microsoft's latest release of
SQL Server, SQL Server 2005, is a comprehensive database platform that provides secure and
reliable storage for both relational and structured data, enabling one to build and manage high-
performance data applications. SQL Server 2005's close integration with Microsoft Visual Studio, the
Microsoft Office System, and a suite of new development tools set SQL Server 2005 apart from
previous versions and from other database engines. This system allows developers to build, debug,
and operate applications faster then ever before.

SQL Server 2005 can be installed on small machines using Microsoft Windows as well as on large
servers. In recent years, the computer industry has seen a dramatic increase in the popularity of
relational databases and multiuser databases, and the computer industry needs application
developers and people who can write SQL code efficiently and correctly for relational and multiuser
databases.

http://lib.ommolketab.ir

Why This Book?

This book is mainly intended to be a systematic guide to learning SQL using SQL Server 2005--a
relational and multiuser database. The book is aimed at students who wish to learn SQL using
Microsoft's SQL Server 2005. The book is expected to be used by schools and SQL training
organizations as well as by database and IT professionals who are actively working with SQL Server
2005.

The book starts with very simple SQL concepts, and slowly builds into more complex query
development. The purpose of this book is to present every topic, concept, and idea with examples of
code and output. Exercises have also been included to gain SQL proficiency using SQL Server. The
best approach to using this book efficiently is to read through the book with SQL Server open and
active. As the book is read, it will be advantageous for you to work with and understand the
examples.

If the book is used for a beginning database course, the exercises are presented to be done by the
students over the course of one semester at a pace of one chapter per week. The exercises are found
at the end of each chapter.

Due to the dramatic increase in the popularity of relational and multiuser databases, many schools
and training organizations are using SQL Server in their database courses to teach database
principles and concepts. This development has generated a need for a concise book on SQL Server
programming, tied in with database principles and conceptshence this book.

http://lib.ommolketab.ir

SQL and SQL Server

SQL (Structured Query Language) is a standard language used for querying, updating, and managing
relational databases, and lately SQL has become the de facto standard "language" for accessing
relational databases. SQL is not really as much of a language as it is a database query tool. In this
book, we concentrate on learning SQL using SQL Server 2005.

SQL allows us to define a relational databasecreate and modify tables (in this sense, SQL is a data
definition language, or DDL). SQL also allows us to tell SQL Server which information we want to
select (retrieve), insert, update, or delete. That is, SQL also allows us to query the relational
database in a most flexible way, as well as to change the stored data (and in this sense, SQL is a
data manipulation language, or DML).

The book is targeted at SQL Server users on the Windows operating system, but is easily adaptable
to other platforms.

http://lib.ommolketab.ir

Audience and Coverage

A book like this can be used in an "Introduction to Databases" course or a second database course
along with textbooks like Fundamentals of Database Systems, 4th Edition, Addison Wesley, 2003
(Elmasri and Navathe), and Database Processing, Fundamentals, Design & Implementation, 9th
Edition, Prentice Hall, 2003 (David Kroenke). Students could learn the database theory from the
texts, and apply the theory using this book (using SQL Server) as they learn SQL.

This book can also be used as a standalone text in a course on learning SQL using SQL Server 2005.
This book does not assume any prior computer knowledge.

This book consists of 11 chapters. Chapter 1 introduces the user to SQL Server 2005. In Chapter 1,
you will learn how to open SQL Server 2005 using SQL Server Management Studio, load the
database, and view and perform simple table manipulations. Chapter 1 also introduces the user to
the query editor; shows you how to view, save, and print queries and output; and how to customize
SQL Server 2005's settings. Chapter 2 introduces the user/learner to some basic SQL commands in
SQL Server. Chapter 3 discusses creating, populating, altering, and deleting tables; an example
relational database is built on the idea of tabular data. Chapter 4 introduces and covers different
types of joinsa common database mechanism for combining tables. Chapter 5 covers SQL Server
2005's functions. Chapter 6 discusses query development as well as the use of views and other
derived structures. Chapter 7 covers simple set operations. Chapters 8, 9, and 10 cover subqueries,
aggregate functions, and correlated subqueries; and Chapter 11 presents indexes and constraints
that can be added to tables in SQL Server 2005.

Appendix A describes the Student_course database and other databases that have been used
throughout the book. Appendix B provides the actual script used to create the Student_course
database. Glossaries defining terms and important functions are provided, as well as indexes of terms
and functions in the book.

The book is sufficient for beginning SQL users to get an overview of what SQL Server entails and how
to use SQL. Many SQL programmers have based their employment on this material. The book gives a
very good feel for what SQL is, and how SQL is used in SQL Server.

http://lib.ommolketab.ir

A Few Notes About SQL Server 2005 Installation

For best results, one should install SQL Server 2005 on a computer that does not have a prerelease
version of SQL Server 2005, Visual Studio 2005, or the .NET Framework 2.0 installed on it. If your
computer has any of the prerelease versions on it, they must be removed in the correct order before
you can successfully manually install the actual version of SQL Server 2005 software. For the correct
order of these required uninstallations before you can install SQL Server 2005, visit:

http://msdn.microsoft.com/vstudio/express/support/uninstall/#Uninstall

We strongly recommend that you instead run the autoinstall tool (found at the same site), rather
than attempting a manual install.

Once the uninstall has been correctly done, you may successfully load SQL Server 2005 and begin
learning SQL.

http://msdn.microsoft.com/vstudio/express/support/uninstall/#Uninstall
http://lib.ommolketab.ir

Conventions Used in This Book

The following conventions are used in this book:

Italic

Used for URLs and for emphasis when introducing a new term.

Constant width

Used for MySQL and SQL keywords and for code examples.

Constant width bold

In some code examples, highlights the statements being discussed.

Constant width italic

In some code examples, indicates an element (e.g., a filename) that you supply.

UPPERCASE

In code examples, generally indicates MySQL keywords.

lowercase

In code examples, generally indicates user-defined items such as variables, parameters, etc.

punctuation

In code examples, enter exactly as shown.

indentation

In code examples, helps to show structure but is not required.

--

In code examples, begins a single-line comment that extends to the end of a line.

http://lib.ommolketab.ir

/* and */

In code examples, delimit a multiline comment that can extend from one line to another.

.

In code examples and related discussions, qualifies a reference by separating an object name
from a component name.

[]

In syntax descriptions, enclose optional items.

{ }

In syntax descriptions, enclose a set of items from which you must choose only one.

|

In syntax descriptions, separates the items enclosed in curly brackets, as in {TRUE | FALSE}.

...

In syntax descriptions, indicates repeating elements. An ellipsis also shows that statements or
clauses irrelevant to the discussion were left out.

Indicates a tip, suggestion, or general note. For example, we'll tell you if a
certain setting is version-specific.

Indicates a warning or caution. For example, we'll tell you if a certain setting
has some kind of negative impact on the system.

http://lib.ommolketab.ir

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in
your programs and documentation. You do not need to contact us for permission unless you're
reproducing a significant portion of the code. For example, writing a program that uses several
chunks of code from this book does not require permission. Selling or distributing a CD-ROM of
examples from O'Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: "Learning SQL on SQL Server 2005 by Sikha Saha Bagui and
Richard Walsh Earp. Copyright 2006 O'Reilly Media, Inc., 0-596-10215-1."

If you feel that your use of code examples falls outside fair use or the permission given here, feel free
to contact us at permissions@oreilly.com.

http://lib.ommolketab.ir

How to Contact Us

We have tested and verified the information in this book and in the source code to the best of our
ability, but given the amount of text and the rapid evolution of technology, you may find that
features have changed or that we have made mistakes. If so, please notify us by writing to:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

You can also send messages electronically. To be put on the mailing list or request a catalog, send
email to:

info@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

As mentioned in the earlier section, we have a web site for this book where you can find code, errata
(previously reported errors and corrections available for public view), and other book information.
You can access this web site at:

http://www.oreilly.com/catalog/learnsqlsvr05

For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com

http://www.oreilly.com/catalog/learnsqlsvr05
http://www.oreilly.com
http://lib.ommolketab.ir

Acknowledgments

Our special thanks are due to our editor, Jeff Pepper, and the production crew at O'Reilly for putting
up with all the changes.

We would also like to thank President John Cavanaugh, Dean Jane Halonen, and Provost Sandra
Flake of the University of West Florida for their inspiration, encouragement, support, and true
leadership quality. We would also like to express our gratitude to Dr. Wes Little on the same
endeavor.

Our sincere thanks also go to Dr. Ed Rodgers for his continuing support and encouragement
throughout past years. We also appreciate Dr. Leo Terhaar, chair, Computer Science Department, for
his advice, guidance, and support, and encouraging us to complete this book. Last, but not least, we
would like to thank our fellow faculty members, Dr. Jim Bezdek and Dr. Norman Wilde for their
continuous support and encouragement.

http://lib.ommolketab.ir

Chapter 1. Starting Microsoft SQL Server
2005
This chapter introduces SQL Server 2005 and SQL Server 2005's Management Studio and its basic
workings. You will learn how to create a database, view the objects and default tables in a database,
use a query editor, activate the database in different ways, and create tables in the database using a
load script. The load script is available at http://www.cs.uwf.edu/~sbagui. The load script will create
the Student_course database for you. This database will be used throughout the rest of the book to
learn SQL. At this point, you may want to copy the load script, SQLServer2005_load.sql, to your
working directory on your computer, before you start working on the next section. Right-click on the
script on the web site, select Save Target As, and save it to your working directory.

In this chapter, you will also learn how to view and modify table definitions; delete a table and a
database; type, parse, execute and save a query; display the results in different forms; stop
execution of a query; and print the query and results. The final section of this chapter discusses
customizing SQL Server 2005's settings.

http://www.cs.uwf.edu/~sbagui
http://lib.ommolketab.ir

1.1. Starting Microsoft SQL Server 2005 and SQL Server
2005's Management Studio

To start Microsoft SQL Server 2005 and open up SQL Server 2005's Management Studio, follow these
steps:

From the Start menu, go to All Programs, select Microsoft SQL Server 2005, and then SQL Server
Management Studio (as shown in the Figure 1-1).

You will get the screen shown in Figure 1-2. This screen allows you to connect to Microsoft SQL
Server 2005. If the server type and server name are different from the defaults that came up, enter
the appropriate server type and server name, and select Windows Authentication. Then, click
Connect.

Figure 1-1. Opening Microsoft SQL Server 2005 and SQL Server
Management Studio

http://lib.ommolketab.ir

Your system may require a username and password for each SQL Server
instance.

Once connected to the server that you typed in, you will get the Microsoft SQL Server Management
Studio screen (Figure 1-3) that we will be using throughout the rest of the book.

http://lib.ommolketab.ir

Figure 1-2. Connecting to Microsoft SQL Server 2005

Figure 1-3. Connected to Microsoft SQL Server 2005's Server

The Microsoft SQL Server Management Studio screen contains the Object Explorer on the left portion
of the screen and, to start with, a Summary tab on the right portion of the screen. The Object
Explorer provides a hierarchical view of objects. For example, you can navigate through a database,
table, column, or other types of objects, as we will soon show you.

http://lib.ommolketab.ir

1.2. Creating a Database in Microsoft SQL Server 2005

Before we begin to work with Microsoft SQL Server 2005, we will create a database. To create a
database, as shown in Figure 1-4, right click on Databases in the Object Explorer and select New
Database... from the context menu.

Figure 1-4. Creating a New Database

You will get the New Database dialog box, as shown in Figure 1-5. We will create a database called
Student_course.

Figure 1-5. Typing in the database name

http://lib.ommolketab.ir

Type in your database name as Student_course. You may leave the Owner as <default > for now, as
shown in Figure 1-5. Click OK. You will get the screen shown in Figure 1-6.

Figure 1-6. The Student_course database

http://lib.ommolketab.ir

The Student_course database has now been created. Note the newly created Student_course
database icon under the Summary tab on the righthand side of the screen below Databases (see
Figure 1-6).

In order to view the Student_course database under the Object Explorer (on the left side of your
screen) right away, you may have to first right-click on the Databases node and then select Refresh.

Then, as shown in Figure 1-6, you may now expand the Databases node by clicking on the + sign
beside Databases under the Object Explorer, and you also will see the Student_course database node
under and Databases (under the Object Explorer on the left portion of your screen), as shown in
Figure 1-7.

1.2.1. Objects in the Student_course Database

A SQL Server database is a collection of many objects, such as tables, views, and synonyms, defined
to support activities performed with data.

From Figure 1-7, expand the Student_course database node by clicking on the + sign beside the
Student_course node, and you will get the screen shown in Figure 1-8, which shows the default
objects that are in the Student_course database.

1.2.2. Default Tables in the Student_course Database

A database is a collection of related tables. So far we have created the Student_course database, but
we have not created any tables.

Figure 1-7. The Student_course database under the Object Explorer

http://lib.ommolketab.ir

Figure 1-8. Viewing the Objects in the Student_course database

http://lib.ommolketab.ir

To view the default tables in the Student_course database, expand the Tables node (as shown in
Figure 1-9), and the only default table in the Student_course database, System Tables, will be
displayed.

Figure 1-9. System tables in the Student_coursedatabase

At this point you may click on the - sign beside the Tables node, and then on the - sign beside the
Student_course node to close those up, and you will get back to Figure 1-7.

1.2.3. Default System Databases

SQL Server 2005 comes with some default System databases--master, model, msdb, and tempdb. To
view these default database nodes, expand the Database node and then System Databases node, as
shown in Figure 1-10, and you will be able to see the default System databases.

Figure 1-10. Default System Databases

http://lib.ommolketab.ir

master is a database composed of system tables that keeps track of server installation as a whole
and all other databases that are subsequently created. The SQL Server Management Studio query
window defaults to the master database context. Any queries executed from the query window will
execute in the master database unless you change the context.

model is a template database. Every time a new database is created, SQL Server makes a copy of the
model database (and all of the objects in it) to form the basis of the new database. If you want all
your new databases to inherit certain properties, you could include these properties and objects in
your model database.

msdb is a database that contains the metadata and database objects used by the SQL Server agent
that performs scheduled activities such as backups and replication tasks.

tempdb is a temporary database or workspace recreated every time SQL Server is restarted. tempdb is
used for temporary tables created by users and to hold intermediate results created internally by SQL
Server during query processing and sorting.

http://lib.ommolketab.ir

1.3. The Query Editor

The most important thing you do in SQL Server 2005, or in any other database for that matter, is
query the database. Queries in SQL Server 2005 are typed in the query editor. The query editor can
be opened in two ways, as discussed in the following subsections: (a) by right-clicking, and (b) by
using the New Query button.

1.3.1. Opening the Query Editor by Right-Clicking

Select the Student_course database and right-click, as shown in Figure 1-11. Select New Query.

Figure 1-12 shows the query editor, which can be used to create queries and other SQL scripts and
execute them against SQL Server databases.

The first query will be called SQLQuery1.sql by default. Later we will show you how to change the
name of the query when saving it.

If the query editor is opened in this way, the Student_course database automatically becomes the
database against which the queries are executed, because you initially selected Student_course and
then right-clicked. If we want to work in our Student_course database, we have to make sure that
the Student_course database is active. If the Student_course database is not active, we have to
activate itwe show you how to do this in different ways in the following sections.

Figure 1-11. Opening the query editor

http://lib.ommolketab.ir

Figure 1-12. The query editor

http://lib.ommolketab.ir

1.3.2. Opening the Query Editor Using the New Query Button

You can also open the query editor by selecting the New Query button from the top menu (leftmost
icon), as shown in Figure 1-13.

Figure 1-13. Using the New Query icon

If you used the New Query icon from Figure 1-13 (without selecting the Student_course database),
you will get Figure 1-14. Here, note that the Student_course database is not the active database;
master is the active database, because SQL Server 2005 defaults to master.

Figure 1-14. The query screen

http://lib.ommolketab.ir

But we want to use the Student_course database that we just created, so we have to activate the
Student_course database. Click on the drop-down icon of the Combo box beside master and select
Student_course, as shown in Figure 1-15. This step activates or opens the Student_course database.

Figure 1-15. Selecting the Student_course database

1.3.3. Opening or Activating the Database Using USE

You can also activate or open the Student_course database by typing in the following in the query
editor (as shown in Figure 1-16):

 USE Student_course

Figure 1-16. Using USE

http://lib.ommolketab.ir

Then, click the Execute button (it is on the menu bar above the query editor screen). You will get the
following message in the results pane (as shown in Figure 1-16):

 Command(s) completed successfully

http://lib.ommolketab.ir

1.4. Creating Tables Using the Load Script

A table is used to store data in a database, and, a database is typically composed of many tables.

After the Student_course database is opened or activated, you need to create tables in the
Student_course database and insert data into the tables. To do this, run (execute) the load script,
SQLServer2005_load.sql, that you downloaded and saved to your working directory.

Go to the directory where you saved the load script, SQLServer2005_load.sql. Double-click
SQLServer2005_load.sql. Then, select the whole script and copy it. This script will be pasted into SQL
Server 2005's query editor. Open SQL Server 2005's query editor as shown in Figure 1-12. Make
sure that the Student_course database is active. Paste the load script into the query editor, as shown
in the Figure 1-17.

Figure 1-17. Pasting the load script into the query editor

Once the script has been pasted into the query editor, execute this script by clicking the Execute
button or the F5 shortcut key. This script takes only a few seconds to execute. You will get the results

http://lib.ommolketab.ir

shown in Figure 1-18--on the bottom part of the screen under the Messages tab.

Figure 1-18. Executed load script

This script creates the tables Cap, Course, Department_to_major, Dependent, Grade_report, Plants,
Prereq, Room, Section, Student, and teststu, in the Student_course database and inserts data into
them. The tables in the Student_course database are laid out in Appendix A. We also present the T-
SQL for the load script in Appendix B.

To view the tables that were created by the load script, expand the Student_course node and then
expand the Tables node. You will get the screen shown in Figure 1-19. Every table shows up as a
node under Student_course.

http://lib.ommolketab.ir

1.5. Viewing Table Definitions

Every table in SQL Server 2005 has a table definition. The table definition gives us information about
a table such as the column names in the table, the data types of the columns in the table and
whether the columns allow null (missing) values.

To view the definition of the Student table for example, expand the Student node by clicking on the +
sign beside it, and then expand the Columns node, by clicking on the + sign beside it, as shown in
Figure 1-20. You will be able to view the columns in the Student table. The columns in the Student
table are stno, sname, major, class, and bdate.

Figure 1-19. Viewing the tables in the Student_coursedatabase

http://lib.ommolketab.ir

http://lib.ommolketab.ir

1.6. Modifying Table Definitions

If you wish to modify any of the column specificationsfor example, if you want to insert or delete
columns, rename a column, change the data type of a column, or allow or disallow null fieldsyou need
to modify the table definition. The table definition can be modified by modifying the column definition
or by modifying the table definition.

1.6.1. Modifying Column Definitions

To modify the column definition, right-click the column that you wish to modify. For example, if you
wish to modify the column definition of the SNAME field of the Student table, as seen in Figure 1-20,
right-click the SNAME field of the Student table (as shown in Figure 1-21), and select one of the
following optionsNew Column, Modify, Rename, Delete, Refresh or Properties.

Figure 1-20. Viewing the table definition of the Student table

http://lib.ommolketab.ir

1.6.2. Modifying the Table Definition Directly

Another way to view or modify the table definition is to right-click the tablefor example, Student--and
then select Modify, as shown in Figure 1-22.

The table definition of the Student table is now displayed, as shown in Figure 1-23.

You can delete or insert columns from here, change the data types, allow or disallow null values, and
more. Once you have finished making your changes (or just viewing the table definition, if that is
what you intended to do), you can close this window. You will be asked if you wish to save the
changes and you may select Yes or No, depending on whether you made changes to the table
definition and you want to save the changes.

Figure 1-21. Modifying the column definition

http://lib.ommolketab.ir

http://lib.ommolketab.ir

1.7. Viewing Table Data

To view the data in a table, right click on the table, as shown in Figure 1-22, and select Open Table.
For example, to view the data of the Student table, right-click on the Student table, and select Open
Table. This will show all 48 rows of the Student table, of which we show the first 14 rows here:

 STNO SNAME MAJOR CLASS BDATE
 ----- ------- ------ ----- ----------------------
 2 Lineas ENGL 1 4/15/1980 12:00:00 AM
 3 Mary COSC 4 7/16/1978 12:00:00 AM
 8 Brenda COSC 2 8/13/1977 12:00:00 AM
 10 Richard ENGL 1 5/13/1980 12:00:00 AM
 13 Kelly MATH 4 8/12/1980 12:00:00 AM
 14 Lujack COSC 1 2/12/1977 12:00:00 AM
 15 Reva MATH 2 6/10/1980 12:00:00 AM
 17 Elainie COSC 1 8/12/1976 12:00:00 AM
 19 Harley POLY 2 4/16/1981 12:00:00 AM
 20 Donald ACCT 4 10/15/1977 12:00:00 AM
 24 Chris ACCT 4 2/12/1978 12:00:00 AM
 34 Lynette POLY 1 7/16/1981 12:00:00 AM
 49 Susan ENGL 3 3/11/1980 12:00:00 AM
 62 Monica MATH 3 10/14/1980 12:00:00 AM

 .
 .
 .

This screen also allows you to insert data, make changes to the data, and save this changed data.

Figure 1-22. Modifying/viewing the table definition

http://lib.ommolketab.ir

Figure 1-23. Viewing the table definition of the Student table using the
Modify option

http://lib.ommolketab.ir

http://lib.ommolketab.ir

1.8. Deleting a Table

To delete a table, right-click on the table that you wish to delete (as shown in Figure 1-22), and then
select Delete. Deleting a table will delete the table, table definition, and all of the data in the table.

Once you delete a table, there will be no way to get the table or its data back
except by restoring from a backup. Be very careful that you indeed intend to
permanently dispose of data before selecting Delete.

Do not delete any tables right now. We provide this information for later reference, should you have
to delete tables.

http://lib.ommolketab.ir

1.9. Deleting a Database

To delete a database, right-click on the database that you would like to delete, and select Delete, as
shown in Figure 1-24.

But please do not delete the database right now.

Figure 1-24. Deleting a database

http://lib.ommolketab.ir

1.10. Entering a SQL Query or Statement

Like every computer language, a SQL query or statement is used to give instructions to the
computer. A query is a request for data stored in SQL Server. The computer analyzes each
instruction and interprets it. If the instruction is "understandable" to the computer, the computer
produces a result. If the computer cannot figure out what the instruction means, it displays an error
message.

In this book, we focus on Transact-SQL (T-SQL), SQL Server's variant of SQL. In SQL Server 2005,
the SQL query is typed in the query editor screen, as shown in Figure 1-12. But, before you type in
your query, make sure the database that you wish to work with is active or open. To type in or work
on the queries in this book, the Student_course database should be active or open.

Right click on Student_course and then select New Query. Type the following SQL query in the
resulting screen:

 USE Student
 SELECT *
 FROM Student

USE Student opens the Student_course database, as shown in Figure 1-12. SELECT is the SQL
keyword that means "select data" or "retrieve the following data from the database." The * is
interpreted to mean "show all columns in the result." FROM is the keyword that names the source of
the data, and Student is the name of a table. So this is a simple SQL query that tells SQL Server to
display all the rows and columns (all the data) in the Student table.

http://lib.ommolketab.ir

1.11. Parsing a Query

Before you execute your query, you may parse your query. The Parse Query button is shown in
Figure 1-25. By parsing the query you can make sure that your query is correctly written, before you
execute your query.

http://lib.ommolketab.ir

1.12. Executing a Query

To execute a query, click the Execute button, shown in Figure 1-25. If there are no errors in the
query, the Execute button will execute (run) the query and the results will show on the results pane
(bottom partition) of the screen.

Figure 1-25. Displaying output

1.12.1. Color Coding

The automatic color coding of SQL code in the query editor will help you type in your SQL query
correctly. It will help you prevent and resolve errors. If you are using the default color codes, for
example, and you type in a keyword that is not displayed in blue, the keyword is probably misspelled.

http://lib.ommolketab.ir

If your code is displayed in red, you might have omitted a closing quotation mark for a character
string.

http://lib.ommolketab.ir

1.13. Saving a Query

To save a query, while the query is on the query editor screen, from the top menu, select File and
Save SQLQuery1.sql As.... A dialog box will open up and you will be able to type the name under
which you want to save your query, and you will also be able to navigate to the directory to which
you want to save your query.

http://lib.ommolketab.ir

1.14. Displaying the Results

Results in SQL Server 2005 are displayed in the Results pane. The Results pane is shown in Figure 1-
25. SQL queries can be executed to view results in grid form or text form, or the results can be saved
to a file, as discussed in the following subsections.

1.14.1. Viewing Results in Grid Form

The grid form displays the results in spreadsheet-like grids. To execute a query and view query
results in grid form, first click the "Results to grid" icon (this icon is shown in Figure 1-26) and then
click the Execute button.

Figure 1-26. Displaying the results icons

You may also click <F5> on the keyboard to execute queries.

You will now get the results in grid form, as shown in Figure 1-27.

On Figure 1-27, on the bottom panel of the screen, the name of the database and the number of
rows in the result set are displayed.

http://lib.ommolketab.ir

Figure 1-27. Viewing results in grid form

1.14.2. Viewing Results in Text Form

To execute a query and view query results in text form, click on the "Results to text" icon (shown in
Figure 1-26) and then click the Execute button. You will now get the results in text form, as shown in
Figure 1-25. Viewing the output in text form may make it easier for you to copy and paste the output
into a word processor, from where you can print the output easily. Figure 1-25 also displays, on the
bottom panel of the screen, the name of the database and the number of rows in the result set.

1.14.3. Saving Results to File

To save your query results to a file, from Figure 1-26, select Results to File icon (this icon is shown in
Figure 1-26), and then click the Execute button. The Save Results window will come up and you will
be able to select the appropriate directory and enter the appropriate filename and save the results to
file for later use. The Results to File option produces output formatted for Crystal Reports. Crystal
Reports is the best-selling database reporting tool and is included with SQL Server. It is beyond our
scope to discuss Crystal Reports here.

http://lib.ommolketab.ir

To open this Crystal Report (the saved file), select File from the top menu, Open, and then File (as
shown in Figure 1-28). Then, navigate to the directory where you saved your file, select your file, and
your results will be displayed on the screen.

Figure 1-28. Opening Crystal Reports

http://lib.ommolketab.ir

1.15. Stopping Execution of a Long Query

If you want to stop the execution of a long-running query, you may click on the Cancel Query
Execution button (shown in Figure 1-26), or you may press Alt-Break.

1.15.1. Viewing Error Messages

To view error messages, click on the Message tab (shown in Figure 1-27). This displays the messages
(as well as error messages) of the SQL query output.

http://lib.ommolketab.ir

1.16. Printing the Query and Results

Once the SQL query is on the query editor screen, you can print the query by selecting File->Print
from the top menu.

To print the results, the query should be executed in the Results in Text mode. Then, when the
results are displayed in the bottom window partition (the results pane), place your cursor in the
results pane by clicking anywhere in the results pane (see Figure 1-25 for the results pane), and then
select File Print from the top menu.

When the results are saved to file, they can, of course, be retrieved and printed from the file.

http://lib.ommolketab.ir

1.17. Customizing SQL Server 2005

You can customize some options in SQL Server 2005 by selecting Tools Options from the top
menu. You will get the following tabs: Environment, Source Control, Text Editor, Query Execution,
Query Results, Designers.

1.17.1. The Environment tab

The Environment tab has the General, Fonts and Colors, Keyboards and Help options. Among other
options, the General tab allows you to change the default start-up window options of SQL Server
2005. The Fonts and Colors option allows you to change, among other things, an items foreground
and background color. The Keyboard option allows you to change keyboarding options like Shortcuts.

1.17.2. The Source Control Tab

The Source Control tab specifies the source control plug-in to use with Microsoft SQL Server
Management Studio and allows changes to plug-in specific options.

1.17.3. The Text Editor Tab

The Text Editor tab allows you to change the default editor and change other language and text
options.

1.17.4. The Query Execution Tab

The Query Execution tab allows you to change the default ROWCOUNT options, TEXTSIZE options,
execution time-out length, and other settings.

1.17.5. The Query Results Tab

The Query Results tab allows you to change the default type for results, the default location for
results to be saved, and other settings.

1.17.6. The Designer Tab

http://lib.ommolketab.ir

The Designer tab allows you to change the default table and database designer settings.

http://lib.ommolketab.ir

1.18. Summary

In this chapter, we have shown you how to start Microsoft SQL Server 2005 and SQL Server 2005's
Management Studio. We have also shown you how to create the Student_course database that we
will be using throughout the rest of this book. In addition, we have demonstrated how to work with
tables. We have shown you how to type, parse, execute and save a simple query. In the process, we
have also familiarized you with the main screens and workings of SQL Server 2005's Management
Studio. Towards the end of the chapter, we showed you how to change (or customize) some of SQL
Server 2005's default settings to suit your needs.

http://lib.ommolketab.ir

1.19. Review Questions

If I want to see what fields a table is made of, and what the sizes of the fields are, what option
do I have to look for?

1.

What is a query?2.

A SQL query is typed in the _________ .3.

What is the purpose of the model database?4.

What is the purpose of the master database?5.

What is the purpose of the tempdb database?6.

What is the purpose of the USE command?7.

If you delete a table in the database, will the data in the table be deleted too?8.

What is the Parse Query button used for? How does this help you?9.

Tables are created in a ____________________ in SQL Server 2005.10.

http://lib.ommolketab.ir

1.20. Exercises

The tables available in the Student_course database are shown in Appendix A.

The Student_course database contains the following tables: Student, Dependent, Grade_report,
Section, Department, Course, Prereq, Room, Cap, Plants.

View the table definition of each of these tables.a.

View the data of each of these tables. Save your results to a file and print them out.b.

1.

Write a SQL query to view all the columns and rows in the Student table. (Hint: To retrieve all
columns, use SELECT * in your query; the * means "all columns"). Save and execute the query.
Save the results to a file and print out the results.

2.

http://lib.ommolketab.ir

Chapter 2. Beginning SQL Commands in
SQL Server
In this chapter, we discuss how to write (build) simple SQL query statements in SQL Server 2005
using the SELECT statement. We examine how to retrieve data from a table by the use of SELECT
statements, how to SELECT fields (columns) and rows from tables, how to use the ORDER BY and WHERE
clauses, and how to use the AND, OR, and BETWEEN operators. The concept of COUNT and null values is
also to be established. Then, to make writing queries simpler, we discuss how to use table and
column aliases, table qualifiers, synonyms, and finally we present a convention for writing SQL
statements.

http://lib.ommolketab.ir

2.1. Displaying Data with the SELECT Statement

One of the very first things that you would usually want to do with a set of tables (or a database) is
to see what information the tables contain. To display the information in a table using a query, you
use a SELECT command on the table. SELECT is usually the first word in a SQL statement or query.
The SELECT statement returns information from a table (or a set of tables, the database) as a set of
records, or a result set. The result set is a tabular arrangement of data, composed of rows and
columns. The SELECT statement shows the output on the computer screen (as shown in Figures 1-26
and 1-28 of Chapter 1). It does not save the results. The simplest and most commonly used form of
the SELECT syntax is:

SELECT fields (a.k.a. columns or attributes)
FROM Table

Here, Table is the name of the table from which the data will be displayed, and fields are the
columns (attributes) that you chose to display from the named table. If you did not know the name
of the columns in the table, or you wanted to display all the columns in the table, you would use an
asterisk (*) in place of fields; substituting an asterisk (*) in place of fields would list all the columns
in the table.

So, the SELECT statement gives us a result set that is composed of the data from columns of a table.

SQL commands in SQL Server 2005 do not have to be terminated by a
semicolon, as is true in several other SQL languages.

But, before we use the SELECT statement, we have to make sure that the right database is open. To
open a database that you want to use, type the following in the query editor screen (the query editor
screen is shown in Figure 1-12 of Chapter 1):

USE Student_course

and then click the Execute button.

Student_course is the name of the database that we would like to open. The Student_course
database should now be active.

Once the Student_course database is active, to display all the data from a table called Dependent

http://lib.ommolketab.ir

from our database (Student_course database), type the following in the query editor screen:

SELECT *
FROM Dependent

The * means all columns of the Dependent table. Now click the Execute button to execute this query.
Your results will display in the result pane.

2.1.1. SELECT without the FROM

Most SQL languages require a FROM in a query. But, SELECT statements in SQL Server do not need to
be from a table. SQL Server allows us to write some special queries without FROM. For example, using
a special function, GEtdATE, we may type this:

SELECT GETDATE()

and the query will return the date and time as defined by the host computer:

2006-01-12 21:55:30.107

(1 row(s) affected)

Note that these columns do not have any headings.

In SQL Server 2005, a SELECT statement can also be used to make an assignment. For example, the
following example assigns 100 to col1, and 200 to col2:

SELECT col1=100, col2=200

with the results:

col1 col2
----------- -----------
100 200

(1 row(s) affected)

http://lib.ommolketab.ir

"col1" and "col2" are column aliases. Column aliases are discussed in detail
later in this chapter.

SELECT 'A', 'B'

produces:

---- ----
A B

(1 row(s) affected)

Note that this output has no headings either.

SELECT 4+3, 4-3, 4*3, 4/3

produces:

----------- ----------- ----------- -----------
7 1 12 1

(1 row(s) affected)

To include meaningful column headings here, we can type:

SELECT Additions=4+3, Subtractions=4-3, Multiplications=4*3, Divisions=4/3

which results in:

Additions Subtractions Multiplications Divisions
----------- ------------ --------------- -----------

http://lib.ommolketab.ir

7 1 12 1

(1 row(s) affected)

"/" gives the whole-number quotient of a division.

2.1.2. Displaying or Selecting Columns from a Table

Using a SELECT statement, you do not have to display or return all the columns from a table. You may
choose to display only certain relevant columns from a table, provided you know the names of the
columns in the table. In this section, we show you how to display or return one column from a table,
more than one column from a table, and then how to display or return all columns from a table. Then
we introduce the ORDER BY clause and also show you how to order the output in ascending or
descending order by adding the ASC or DESC commands, respectively, to the ORDER BY clause.

2.1.3. Displaying or SELECTing One Column from a Table

To be able to display or return particular fields or columns from a table, you need to know the column
names in the table. To view the column names that a table contains, you will have to go to the Table
Definition of a table. Chapter 1 (Figure 1-20) shows you how to view the table definitions of tables.

You may find it odd that a someone working with a database might not know the column names.
However, when creating a table, one has great latitude with naming columns. If you knew, for
example, that a table called Customer contained a name and address, you'd have to know the exact
name of the column. If the table creator called the customer's name CustName, then to retrieve the
data from that column, you'd have to use CustName and not any variation of it (like CustomerName
or Name or anything else).

Select the table for which you want to see the definition by right clickingon the table from the Object
Explorer, and then clicking on Columns. Now, right-click on the Dependent table and click Columns,
and you will see the table definition of the Dependent table.

Figure 2-1 shows the definition of the Dependent table. The table definition provides the exact column
names, the data types of the columns, the field sizes and information on whether the fields can hold
nulls. The data type allows you to enter only a particular kind of data in the columns. The field sizes
allow you to enter only up to a certain number of characters in a field. null or not null tells you
whether the field will allow for nulls.

The Dependent table in Figure 2-1 has columns PNO (short for parent_number) of data type
SMALLINT (small integers), DNAME (short for dependent name) of data type NVARCHAR (a varying
number of characters), RELATIONSHIP (for relationship to parent or Student) of data type
NVARCHAR, SEX of data type CHAR (one character), and AGE of data type SMALLINT. The only field
in the Dependent table that cannot be null is STNO.

http://lib.ommolketab.ir

Figure 2-1. Definition of the Dependent table

Data types are discussed in detail in the next chapter

Once you know what columns a table contains, you may choose to view or display particular columns
of the table. Following is the general syntax to display or SELECT the data from one field or column of
a table:

SELECT field_name
FROM table

Refer to Appendix A for a complete list of tables and columns in the
Student_course database.

For example, to display or SELECT data for a column called dname from the Dependent table, you type
the following query in the query editor:

SELECT dname
FROM Dependent

This query returns a result set containing 39 records or rows (of which the first 10 rows are shown):

dname

Matt
Mary

http://lib.ommolketab.ir

Beena
Amit
Shantu
Raju
Rani
Susan
Sam
Donald II
.
.
.
(39 row(s) affected)

2.1.4. Displaying or SELECTing More than One Column from a Table

To display or SELECT (or return) data for more than one column of the table, the column names have
to be separated by commas. For example, to display the data from the dname and relationship
columns in the Dependent table, type the following query:

SELECT dname, relationship
FROM Dependent

This query also produces 39 rows of output (we show the first 12 rows here):

dname relationship
-------------------- ------------
Matt Son
Mary Daughter
Beena Spouse
Amit Son
Shantu Daughter
Raju Son
Rani
Susan Daughter
Sam Son
Donald II Son
Chris Son
Susan Daughter
.
.
.

(39 row(s) affected)

http://lib.ommolketab.ir

In this example, we see a row where dname (dependent name) is Rani, but no relationship has been
assigned or entered. This is a very typical problem in any databasedata is missing or unknown, also
known as NULL. Therefore, preferably, when data is entered into a table, all columns should be
valued. In this case probably an empty string was entered, otherwise SQL Server 2005 assigns a
NULL value.

The concept of NULLs is introduced later in this chapter.

2.1.5. Displaying or SELECTing All Columns of a Table

There are times when you will want to display or select all the columns of a table. To do so, as
illustrated previously, you use a * in place of the column names. For example, the following produces
an output of 39 rows and all the columns in the Dependent table:

SELECT *
FROM Dependent

This query also produces 39 rows of output (of which we show the first 15 rows here):

PNO DNAME RELATIONSHIP SEX AGE
------ -------------------- ------------ ---- ------
2 Matt Son M 8
2 Mary Daughter F 9
2 Beena Spouse F 31
10 Amit Son M 3
10 Shantu Daughter F 5
14 Raju Son M 1
14 Rani F 3
17 Susan Daughter F 4
17 Sam Son M 1
20 Donald II Son M NULL
20 Chris Son M 6
34 Susan Daughter F 5
34 Monica Daughter F 1
62 Tom Husband M 45
62 James Son M 14
.
.
.

(39 row(s) affected)

http://lib.ommolketab.ir

2.1.6. ORDER BY

A table maintains the data in the order that the system stores it in, which is unpredictable.
Remember that a relational database contains sets of rows of data and sets are not ordered. If you
wish to display the contents of a table in a predictable manner, you may use the ORDER BY clause in
the SELECT statement. For example, to order the Dependent table by field age, you would type the
following:

SELECT dname, age
FROM Dependent
ORDER BY age

This produces the following 39 rows of output, ordered by age (of which the first 20 rows are shown
below):

dname age
-------------------- ------
Donald II NULL
Mita NULL
Losmith NULL
Prakash 1
Mithu 1
Raju 1
Sam 1
Monica 1
Jon 2
Rakhi 2
Jake 2
Nita 2
Mahesh 2
Rani 3
Amit 3
Susan 4
Sebastian 4
Mamta 4
Madhu 5
Shantu 5
.
.
.

(39 row(s) affected)

http://lib.ommolketab.ir

The ORDER BY does not actually change the order of the data in the table. It only displays or returns
the data (output) in a particular order.

When using an ORDER BY in a SELECT statement, you do not have to have the column that you are
ordering by in the SELECT statement. For example, you may display only the dependent name and
age while ordering by sex, as follows:

SELECT dname, age
FROM Dependent
ORDER BY sex

This would produce 39 rows of output, of which we are showing the first 5 rows (the females are
shown first, because it is ordered alphabetically):

dname age
-------------------- ------
Mary 9
Beena 31
Shantu 5
Rani 3
Susan 4
.
.
.

(39 row(s) affected)

Although the previous output is not wrong, it is may appear to be randomly ordered by someone who
does not know what was used in the ORDER BY statement. Therefore, it is generally better to display
the column that you are ordering by also, as follows:

SELECT dname, age, sex
FROM Dependent
ORDER BY sex

This query would once again produce 39 rows, of which we are showing the first 5 rows:

dname age sex
-------------------- ------ ----
Mary 9 F
Beena 31 F
Shantu 5 F

http://lib.ommolketab.ir

Rani 3 F
Susan 4 F
.
.
.

(39 row(s) affected)

2.1.6.1. ORDER BY and NULLs

When data has not been entered for a particular column of a particular row, this cell gets a NULL
value. Null means that data is missing or unavailable, so the cell has no value.

If the field that you choose to ORDER BY contains nulls, the fields that have null values assigned to
them are placed at the top of the displayed list of output. This is because of the way SQL Server
stores null values internally. Look at the output of the following query:

SELECT dname, age
FROM Dependent
ORDER BY age

which produces 39 rows of output, of which we are showing the first 16 rows:

dname age
-------------------- ------
Donald II NULL
Mita NULL
Losmith NULL
Prakash 1
Mithu 1
Raju 1
Sam 1
Monica 1
Jon 2
Rakhi 2
Jake 2
Nita 2
Mahesh 2
Rani 3
Amit 3
Susan 4
.
.
.

http://lib.ommolketab.ir

(39 row(s) affected)

If nothing was entered in a column (an empty string was entered), the column behaves just like a
NULL field when using the ORDER BY clause. For example, if we type in the following query:

SELECT dname, relationship
FROM Dependent
ORDER BY relationship

we get 39 rows of output, of which we are showing the first 8 rows:

dname relationship
-------------------- ------------
Rani
Susan Daughter
Mary Daughter
Susan Daughter
Monica Daughter
Hillary Daughter
Phoebe Daughter
Shantu Daughter
.
.
.

(39 row(s) affected)

In this table, nothing (an empty string) was entered in the relationship column for the dependent
Rani.

2.1.7. Ascending and Descending Order

In SQL Server, the default order of an ORDER BY is ascending. To display or order output in
descending order, the keyword DESC has to be appended to the ORDER BY clause. And, in order to
display or order output in ascending order, the keyword ASC can be appended to the ORDER BY clause.

So, unless you specify otherwise, the following two queries will give you the same output:

SELECT dname, age
FROM Dependent

http://lib.ommolketab.ir

ORDER BY age

and:

SELECT dname, age
FROM Dependent
ORDER BY age ASC

The top query returns a result set ordered in ascending order by age by default. The second query
has the keyword ASC appended to the ORDER BY clause, so it also orders in ascending order by age
(the output for these queries has been shown previously).

In order to display or order output in descending order, the keyword DESC can be appended to the
ORDER BY clause, as follows:

SELECT dname, age
FROM Dependent
ORDER BY age DESC

This produces 39 rows of output in descending order of age (of which the first 10 rows are shown
here):

dname age
-------------------- ------
Tom 45
Beena 31
Barbara 26
Barbara 23
Susan 22
Susie 22
Xi du 22
Sally 22
Hillary 16
James 14
.
.
.

(39 row(s) affected)

http://lib.ommolketab.ir

2.1.8. Ordering Within an Order

There will be times when you will want to sort groups within an order by another order. SQL Server
syntax allows you to do this. For example, using the Dependent table, if you want to order all the
dependents by sex, and within sex you want to order by age in descending order, would you type the
following query:

SELECT dname, sex, age
FROM Dependent
ORDER BY sex, age DESC

This query would produce the following 39 rows of output:

dname sex age
-------------------- ---- ------
Beena F 31
Barbara F 26
Barbara F 23
Susan F 22
Susie F 22
Xi du F 22
Sally F 22
Hillary F 16
Phoebe F 12
Mary F 9
Mona F 7
Rekha F 6
Madhu F 5
Shantu F 5
Susan F 5
Susan F 4
Mamta F 4
Rani F 3
Rakhi F 2
Nita F 2
Monica F 1
Mita F NULL
Tom M 45
James M 14
Matt M 8
Chris M 6
Om M 6
James M 5
Sebastian M 4
Amit M 3
Jon M 2
Jake M 2

http://lib.ommolketab.ir

Mahesh M 2
Prakash M 1
Mithu M 1
Sam M 1
Raju M 1
Donald II M NULL
Losmith M NULL

(39 row(s) affected)

You could also order by descending order of sex, and descending order of age, as follows:

SELECT dname, sex, age
FROM Dependent
ORDER BY sex DESC, age DESC

This query would give the following 39 rows of output:

dname sex age
-------------------- ---- ------
Tom M 45
James M 14
Matt M 8
Chris M 6
Om M 6
James M 5
Sebastian M 4
Amit M 3
Jake M 2
Jon M 2
Mahesh M 2
Prakash M 1
Mithu M 1
Raju M 1
Sam M 1
Donald II M NULL
Losmith M NULL
Beena F 31
Barbara F 26
Barbara F 23
Sally F 22
Susan F 22
Susie F 22
Xi du F 22
Hillary F 16
Phoebe F 12

http://lib.ommolketab.ir

Mary F 9
Mona F 7
Rekha F 6
Madhu F 5
Shantu F 5
Susan F 5
Susan F 4
Mamta F 4
Rani F 3
Nita F 2
Rakhi F 2
Monica F 1
Mita F NULL

(39 row(s) affected)

http://lib.ommolketab.ir

2.2. Displaying or SELECTing Rows or Tuples from a
Table

In relational database terminology, a table is called a relation, and is denoted by the name of the
relation followed by the columns (or attributes), as shown here:

Dependent(pno, dname, relationship, sex, age)

An instance of a relation is a row of a relation (table) with values. We will use the term "row" to refer
to a line of output. Although database literature also uses the term "tuple" or "record" in place of
row, we will most often use the word "row," because "row" is more commonly used in relational
databases (and SQL Server 2005 is a relational database).

In the previous section, we showed you how to select or display particular columns from a table, but
we did not explain how to select or display specific rows. Usually you would want to select or display
only particular rows from a table. For example, you may want to list all the dependents who are older
than five, or list all the dependents who are female. In such a case, you want only the rows WHERE the
dependents are older than five, or, only the rows WHERE the dependents are female. That is, you want
to display only the rows that meet a certain condition or criteria.

By using a WHERE clause in a SELECT statement, you can selectively choose rows that you wish to
display based on a criterion. For additional filtering, the WHERE clause can be used with logical
operators like AND and OR, and the BETWEEN operator and its negation, NOT BETWEEN.

2.2.1. Filtering with WHERE

The WHERE clause is a row filter that is used to restrict the output of rows (or tuples) in a result set.
When the WHERE clause is used, the SQL Server database engine selects the rows from the table for
the result set that meet the conditions listed in the WHERE clause. So, as we have previously
illustrated, if no WHERE clause is used in a query, the query will return all rows from the table.

Following is the general syntax of a SELECT statement with a WHERE clause:

SELECT column-names
FROM Table
WHERE criteria

For example, consider the following query:

http://lib.ommolketab.ir

SELECT *
FROM Dependent
WHERE sex = 'F'

This query produces 22 rows of output (of which we show the first 10 rows):

PNO DNAME RELATIONSHIP SEX AGE
------ -------------------- ------------ ---- ------
2 Mary Daughter F 9
2 Beena Spouse F 31
10 Shantu Daughter F 5
14 Rani F 3
17 Susan Daughter F 4
34 Susan Daughter F 5
34 Monica Daughter F 1
62 Hillary Daughter F 16
62 Phoebe Daughter F 12
128 Mita Daughter F NULL
.
.
.

(22 row(s) affected)

The output for this query lists all the columns of the Dependent table, but only the rows WHERE the sex
attribute has been assigned a value of F.

The WHERE clause can be used with several comparison operators:

> (greater than)

<> not equal

= equal

>= greater than or equal to

<= less than or equal to

WHERE may be used in a query in addition to ORDER BY. Following is an example of a query that
displays the dname and age from the Dependent table where the age of the dependent is less than or
equal to 5, ordered by age:

SELECT dname, age

http://lib.ommolketab.ir

FROM Dependent
WHERE age <= 5
ORDER BY age

This query produces 19 rows of output (of which we show the first 11 rows):

dname age
-------------------- ------
Raju 1
Sam 1
Monica 1
Prakash 1
Mithu 1
Nita 2
Rakhi 2
Jake 2
Jon 2
Mahesh 2
Rani 3
.
.
.

(19 row(s) affected)

So far we have shown you how to include only one condition in your WHERE clause. If you want to
include multiple conditions in your WHERE clause, you can use logical operators like AND and OR, and
other operators like BETWEEN and its negation, NOT BETWEEN. The following sections discuss and
illustrate the use of the AND, OR, and BETWEEN operators, and also the NOT BETWEEN in the WHERE clause.

2.2.2. The AND Operator

The AND is a way of combining conditions in a WHERE clause. An AND operator is used in a WHERE clause
if more that one condition is required. Using the AND further restricts the output of rows (tuples) in
the result set. For example, consider the following query:

SELECT *
FROM Dependent
WHERE age <= 5
AND sex = 'F'

http://lib.ommolketab.ir

which produces the following nine rows of output:

PNO DNAME RELATIONSHIP SEX AGE
------ -------------------- ------------ ---- ------
10 Shantu Daughter F 5
14 Rani F 3
17 Susan Daughter F 4
34 Susan Daughter F 5
34 Monica Daughter F 1
128 Nita Daughter F 2
142 Rakhi Daughter F 2
153 Madhu Daughter F 5
153 Mamta Daughter F 4

(9 row(s) affected)

The output for this query lists all the columns of the Dependent table, but only the rows WHERE the
value of the age attribute is less than or equal to 5 and the sex is female. The AND means that both
the criteria, age <= 5 and sex = 'F', have to be met for the row to be included in the result set. 'F' is
in single quotes in this query because sex was defined as character data (CHAR) when the table was
created. Text or character data has to be in single quotes in SQL Server 2005. Double quotes would
not be acceptable in SQL Server 2005. Numeric data (e.g., age <= 5) should not be in quotes.

An extensive discussion of data types is presented in the next chapter.

2.2.3. The OR Operator

The OR operator is another way of combining conditions in a WHERE clause. Unlike the AND operator,
the OR operator allows the database engine to select the row to be included in the result set if either
of the conditions in the WHERE clause are met. So, although you could also use the OR operator with
your WHERE clause if you wanted to include more that one condition in your WHERE clause, either of the
conditions in the WHERE clause can be met for a row to be included in the result set.

Consider the following query:

SELECT *
FROM Dependent
WHERE age >20
OR sex = 'F'

http://lib.ommolketab.ir

which produces 23 rows of output (of which we are showing the first 10):

PNO DNAME RELATIONSHIP SEX AGE
------ -------------------- ------------ ---- ------
2 Mary Daughter F 9
2 Beena Spouse F 31
10 Shantu Daughter F 5
14 Rani F 3
17 Susan Daughter F 4
34 Susan Daughter F 5
34 Monica Daughter F 1
62 Tom Husband M 45
62 Hillary Daughter F 16
62 Phoebe Daughter F 12
.
.
.

(23 row(s) affected)

This output lists of all dependents who are either greater than 20 years of age or are female. The OR
means that either of the criteria, age > 20 or sex = 'F', has to be met for the row to be included in
the output.

2.2.4. The BETWEEN Operator

The BETWEEN operator is yet another way of combining filtering conditions in a WHERE clause. In SQL
Server 2005, the BETWEEN operator allows you to determine whether a value falls within a given range
of values (inclusive). The general syntax of the BETWEEN operator is:

SELECT...
FROM
WHERE
BETWEEN value1 AND value2

For example, if we want to find all the dependents between the ages of 3 and 5, we would type the
following:

SELECT dname, age
FROM Dependent
WHERE age
BETWEEN 3 AND 5

http://lib.ommolketab.ir

This query produces the following nine rows of output:

dname age
-------------------- ------
Amit 3
Shantu 5
Rani 3
Susan 4
Susan 5
James 5
Sebastian 4
Madhu 5
Mamta 4

(9 row(s) affected)

In SQL Server 2005, value1 in the BETWEEN clause has to be less than value2. In
some SQL languages (for example, in Access SQL), value1 does not have to be
less than value2.

Because the operator is inclusive, the end points of the comparison have been included in the output;
that is, the BETWEEN clause takes the values from value1 and value2.

As we will often point out, SQL statements may be written in several ways. For example, the BETWEEN
that we illustrated earlier may also be written as follows:

SELECT dname, age
FROM Dependent
WHERE age >=3
AND age <=5

This query produces the same output as the previous query. So, BETWEEN can be considered
shorthand for "greater-than-or-equal-to AND less-than-or-equal-to some value."

2.2.5. Negating the BETWEEN Operator

The BETWEEN operator can be negated by using the keyword NOT before the BETWEEN operator. NOT
BETWEEN allows you to determine whether a value does not occur within a given range of values. The
general syntax of the NOT BETWEEN is:

http://lib.ommolketab.ir

SELECT...
FROM
WHERE
NOT BETWEEN value1 AND value2

For example, if we want to find all the dependents who are not between the ages of 3 and 15, we
would type the following:

SELECT dname, age
FROM Dependent
WHERE age
NOT BETWEEN 3 AND 15

which would give us the following 19 rows:

dname age
-------------------- ------
Beena 31
Raju 1
Sam 1
Monica 1
Tom 45
Hillary 16
Jon 2
Prakash 1
Mithu 1
Nita 2
Barbara 26
Rakhi 2
Susan 22
Susie 22
Xi du 22
Barbara 23
Jake 2
Mahesh 2
Sally 22

(19 row(s) affected)

Here the end points of the comparison are not included in the result set. The previous NOT BETWEEN
query could also be written as follows:

http://lib.ommolketab.ir

SELECT sname, class
FROM Student
WHERE class <1
OR class >3

NOT BETWEEN could be considered shorthand for "less-than OR greater-than some value."

http://lib.ommolketab.ir

2.3. The COUNT Function

The COUNT function is used to return a count of the number of rows that the output will produce,
without actually displaying all of the output (rows) themselves. This function often comes in handy
when you have large tables, or you expect a large output. In such situations, it is desirable to
determine the number of rows of output that you will be getting before actually displaying the output.
In this section, we introduce the COUNT function and we also take another look at the concept of null
values.

If you type the following command:

SELECT *
FROM Dependent

you will get an output that includes all the rows of the Dependent table plus all the values for all
columns in those rows. If you want to know only the number of rows in the output (rather than view
the actual rows themselves), type the following:

SELECT COUNT(*)
FROM Dependent

This query produces the following output:

39

(1 row(s) affected)

This output says that there are 39 rows in the Dependent table. Note that the actual rows themselves
are not displayed.

It is often useful to count the occurrence of column values that have a value. For example, suppose
we want to find how many nonnull rows are in a particular column. With this query:

SELECT COUNT(age)
FROM Dependent

http://lib.ommolketab.ir

we get:

36

Warning: Null value is eliminated by an aggregate or other SET operation.

(1 row(s) affected)

COUNT(age) counts only the rows in which age is not null, meaning that it counts only the rows that
have a defined value. Therefore, the preceding output is 36 rows rather than 39 rows because the
age column in the Dependent table includes 3 null values. If you want COUNT to count rows and include
rows that have fields with null values, you would use COUNT(*). In the next section, we discuss null
values in more detail.

2.3.1. IS NULL

Null values are used to designate missing data in columns. The IS NULL condition is the only condition
that directly tests for nulls. Null values are unmatched by all other conditions in WHERE clauses. Rows
with null values cannot be retrieved by using = NULL in a WHERE clause, because NULL signifies a
missing value. No value is considered to be equal to, greater than, or less than NULL. Even a space is
not considered to be a NULL, and a null is not considered to be a space. Nulls are not considered like
any other value in a table either, since nulls do not have data types. Also, because nulls do not have
data types, there is no distinction between nulls in numeric columns and nulls in text columns or date
columns.

The following query provides dependent names and the ages of dependents (from the Dependent
table) that have null values for their age columns:

SELECT dname, age
FROM Dependent
WHERE age IS NULL

This produces the following three rows of output:

dname age
-------------------- ------
Donald II NULL
Mita NULL
Losmith NULL

http://lib.ommolketab.ir

(3 row(s) affected)

2.3.2. IS NOT NULL

To retrieve all rows that are not nulls, IS NOT NULL can be used. The following query will give all the
rows that are not nullsthe remaining 36 rows of the table (of which we show the first 10 rows):

SELECT dname, age
FROM Dependent
WHERE age IS NOT NULL

which produces 36 rows of output (of which the first 10 rows are shown):

dname age
-------------------- ------
Matt 8
Mary 9
Beena 31
Amit 3
Shantu 5
Raju 1
Rani 3
Susan 4
Sam 1
Chris 6
.
.
.

(36 row(s) affected)

http://lib.ommolketab.ir

2.4. The ROWCOUNT Function

In an earlier section, we discussed how to limit the number of rows that are returned by a SELECT
statement with the use of a WHERE clause and logical operators. In this section, we introduce the
ROWCOUNT function, another way of limiting the number of rows that can be the returned by a SELECT
statement.

The WHERE clause assumes that you have knowledge of the actual data values present in a data set.
But what if you want to see only a sample of a result set, and you have no idea which range of values
are present in the table? In this case, the ROWCOUNT function can come in handy.

For example, to see the first 10 rows of the Dependent table, you can type:

SET ROWCOUNT 10
SELECT *
FROM Dependent

This query returns the following 10 rows of output:

PNO DNAME RELATIONSHIP SEX AGE
------ -------------------- ------------ ---- ------
2 Matt Son M 8
2 Mary Daughter F 9
2 Beena Spouse F 31
10 Amit Son M 3
10 Shantu Daughter F 5
14 Raju Son M 1
14 Rani F 3
17 Susan Daughter F 4
17 Sam Son M 1
20 Donald II Son M NULL

(10 row(s) affected)

After using ROWCOUNT, you should reset the ROWCOUNT property by:

SET ROWCOUNT 0

http://lib.ommolketab.ir

If you do not reset the ROWCOUNT property, you will keep getting whatever you
set your ROWCOUNT to for the remainder of this session (that is, until you log off).

If you set ROWCOUNT and issue multiple queries in the same batch, the rows are limited for all queries
within the batch.

Other important functions are discussed in Chapter 5.

http://lib.ommolketab.ir

2.5. Using Aliases

Column aliases and table aliases are temporary names assigned within a query to columns and tables
respectively. They are created on the fly in a query, and do not exist after the query is run. In this
section, we discuss column aliases and table aliases.

2.5.1. Column Aliases

Column aliases are used to improve the readability of a query and its output. In SQL Server 2005, a
column alias can be declared either before or after the column designation in the SELECT statement.

We will first display a query without a column alias:

SELECT dname, age, sex
FROM Dependent
WHERE age > 5

This query produces 17 rows of output (of which we show the first 10 rows):

dname age sex
-------------------- ------ ----
Matt 8 M
Mary 9 F
Beena 31 F
Chris 6 M
Tom 45 M
James 14 M
Hillary 16 F
Phoebe 12 F
Om 6 M
Barbara 26 F
.
.
.

(17 row(s) affected)

Notice that SQL Server 2005 (by default) uses the column names from the Dependent table for the
column headings. These column names may not be so explicit or descriptive. For example, what is

http://lib.ommolketab.ir

dname? We would probably assume it's a name of something, but what does the "d" in front of name
stand for? Using more descriptive headings in the output would considerably increase readability. To
use more descriptive column headings, you can include column aliases just before or after the column
name by using AS in the SELECT statement, as shown next (in the first few examples, we place the
descriptive column headings after the column names):

SELECT dname AS Dependent_name, age AS Dependent_age, sex AS Dependent_sex
FROM Dependent
WHERE age > 5

This query produces 17 rows of output (of which we show the first 10 rows):

Dependent_name Dependent_age Dependent_sex
-------------------- ------------- -------------
Matt 8 M
Mary 9 F
Beena 31 F
Chris 6 M
Tom 45 M
James 14 M
Hillary 16 F
Phoebe 12 F
Om 6 M
Barbara 26 F
.
.
.

(17 row(s) affected)

That output has more descriptive headings.

To embed a blank in the column alias, you have to put the column alias in single or double quotes, as
shown in the following example:

SELECT dname AS "Dependent Name", age AS "Dependent Age", sex AS "Dependent Sex"
FROM Dependent
WHERE age > 5

This query produces 17 rows of output (of which we show the first 10 rows):

Dependent Name Dependent Age Dependent Sex

http://lib.ommolketab.ir

-------------------- ------------- -------------
Matt 8 M
Mary 9 F
Beena 31 F
Chris 6 M
Tom 45 M
James 14 M
Hillary 16 F
Phoebe 12 F
Om 6 M
Barbara 26 F
.
.
.

(17 row(s) affected)

In fact, if you use single quotes in the previous query, you can also omit the AS. That is, typing in the
following query gives you the same output as does the previous query:

SELECT dname 'Dependent Name', age 'Dependent Age', sex 'Dependent Sex'
FROM Dependent
WHERE age > 5

Column aliases can also be placed in square brackets, as shown in the following query:

SELECT dname AS [Dependent Name], age AS [Dependent Age], sex AS [Dependent Sex]
FROM Dependent
WHERE age > 5

Finally, column aliases can be placed in square brackets before = column name, as shown here:

SELECT [Dependent Name] = dname, [Dependent Age] = age, [Dependent Sex] = sex
FROM Dependent
WHERE age > 5

These previous two queries produce the same output (and headings) as the query before them.

If we wish to eliminate the brackets in the previous query, we can use only a one-word alias before
the = column name, as shown:

http://lib.ommolketab.ir

SELECT Name = dname, Age = age, Sex = sex
FROM Dependent
WHERE age > 5

This query produces 17 rows of output (of which we show the first 10 rows):

Name Age Sex
-------------------- ------ ----
Matt 8 M
Mary 9 F
Beena 31 F
Chris 6 M
Tom 45 M
James 14 M
Hillary 16 F
Phoebe 12 F
Om 6 M
Barbara 26 F
.
.
.

(17 row(s) affected)

2.5.2. Table Aliases

A table alias, usually used in multi-table queries (we discuss multi-table queries in Chapter 4
onwards), allows us to use a shorter name for a table when we reference the table in the query. A
table alias is temporary, and does not exist after the query is run. We will explore multi-table queries
in future chapters. Following is an example of the previous query written with a one-letter table alias:

SELECT d.dname
FROM Dependent d
WHERE d.age > 5

This query produces 17 rows of output (of which we show the first 10 rows):

dname

Matt
Mary
Beena

http://lib.ommolketab.ir

Chris
Tom
James
Hillary
Phoebe
Om
Barbara
.
.
.

(17 row(s) affected)

In this query, the table alias is the letter d after the table name, Dependent. A table alias can also be
defined by a short, meaningful word or expression after the table name, rather than a one-letter
table alias, but the one-letter table alias is commonly used by SQL programmers. Once a table alias
has been defined in a query, it can be used in place of the table name. So, d could be used in place of
Dependent if the table name needed to be used again in this particular query, but it is not reusable in
multiple queries within the same batch. Again note that the table alias is not valid outside this query
(or, after this query is executed). That is, if you type SELECT * from d, you will get an error message.
There is no such table as d (d was locally defined as the table alias for that particular query, and is
valid only in that particular query).

2.5.3. Table Aliases Used as Table Qualifiers

In the previous example, the construction d.dname contains a table qualifier (the d. part). Table
qualifiers are needed when the same column name has been used in more than one table. Table
qualifiers before the column names determine which table the column is from. For example, if TableA
has a column called Field1 and TableB also has a column Field1, if we do not use a table qualifier in a
multi-table query, there is no way that the query engine can know which Field1 the query is referring
to. To correctly handle this situation, we would have to use a table qualifier in the form
Table1.FieldA, where Table1 is the table qualifier (this is also an alias, in a way).

Once again, multi-table queries will be discussed from Chapter 4 onward.

Following is an example of a query with a table qualifier used for the age column:

SELECT *
FROM Dependent
WHERE Dependent.age > 5

http://lib.ommolketab.ir

This query produces 17 rows of output (of which we show the first 10 rows):

PNO DNAME RELATIONSHIP SEX AGE
------ -------------------- ------------ ---- ------
2 Matt Son M 8
2 Mary Daughter F 9
2 Beena Spouse F 31
20 Chris Son M 6
62 Tom Husband M 45
62 James Son M 14
62 Hillary Daughter F 16
62 Phoebe Daughter F 12
126 Om Son M 6
128 Barbara Wife F 26
.
.
.

(17 row(s) affected)

It is also very common in SQL to alias a table and then also use the table alias as a table qualifier, as
illustrated here:

SELECT *
FROM Dependent d
WHERE d.age > 5

The output of this query will be the same as the output of the previous query.

In this query, d (the table alias) is also the table qualifier. Not only is a construction like this very
common, but it also helps to circumvent typing errors when writing commands.

The advantages of using table qualifiers and table aliases may not be so apparent in the examples
presented in this chapter, because we are working only with single tables here. As we start working
with multiple tables (from Chapter 4 onwards), their advantages will become more obvious.

http://lib.ommolketab.ir

2.6. Synonyms

In the last section, we discussed one way of referring to a tablethrough the use of table aliases. Table
aliases are not permanent, in the sense that they do not exist after the query has been executed. In
this section, we show you another way of referring to a table--synonyms . Synonyms are more
permanent; they are available for use until they are deleted. In this section, we show you how to
create, use, and delete synonyms.

SQL Server 2005 allows you to create synonyms for your tables. Synonyms are usually shorter
names that can be used in place of the table name. If a change is made in the original table or its
data, this change will be reflected when the synonym is used. And, if a change is made in the data of
the table using a synonym, this change will be reflected in the original table. But, you cannot alter
the table's definition using the synonym. Alter table commands (covered in Chapter 3) can be used
only on the actual tables.

The general syntax to create a synonym is:

CREATE SYNONYM synonym_name

FOR Table_name

For example, to create a synonym for the Student table called s1, type:

CREATE SYNONYM s1
FOR Student

To view the synonym that you just created, from the Object Explorer, expand Student_course
database and then Synonyms (as shown in Figure 2-2), and you will see the synonym, s1.

Figure 2-2. The synonym

http://lib.ommolketab.ir

You can now type:

SELECT *
FROM s1

And you will get the same output as if you typed:

SELECT *
FROM Student

A synonym will exist until you delete it. The general syntax to delete a synonym is:

DROP SYNONYM synonym_name

So, if you want to delete the synonym s1, type:

DROP SYNONYM s1

You can also delete the synonym by right-clickingon the synonym and selecting Delete.

http://lib.ommolketab.ir

If you forget which synonym has been created for which table, right-clickon the synonym and select
Properties.

http://lib.ommolketab.ir

2.7. Adding Comments to SQL Statements

Comments are nonexecutable words or phrases included in SQL queries to make the queries easier to
understand (particularly by other people). Comments are ignored by the SQL engine, but they are
very useful to programmers in determining what the statement does, when it was written, who wrote
it, and so on. There are two ways of including comments in SQL Server 2005. The first way is by the
use of dashes, as shown here:

SELECT * -- displays "all" attributes
FROM Dependent d -- of the Dependent table
WHERE d.age > 5 -- where the age of the dependent is greater than 5.

The second way of including comments in Server SQL 2005 is by the use of /*...*/ construction.
Following is an example of a commented statement that uses this format:

SELECT dname, age /* displays the dependent name and age */
FROM Dependent d /* from the Dependent table */
WHERE d.age > 5 /* where the age of the dependent is greater than 5 */

SQL Server 2005 allows you to include comments even before the first line in a
query and after the last line in a query.

We wish to encourage the use of comments in writing SQL queries, particularly for complex queries,
and when queries will be debugged or enhanced by others.

SQL Server 2005 also has icons to turn lines into comment lines. For example, if you type in the
query as shown in Figure 2-3, and then you wish to make the last line a comment line, highlight the
last line and clickthe Make Comment button and the last line will become a comment line. If you wish
to remove the comment, clickthe button beside it, the Remove Comment button, and the comment
will be removed, turning the line into a regular line.

Figure 2-3. Icons for adding/removing comments

http://lib.ommolketab.ir

http://lib.ommolketab.ir

2.8. Some Conventions for Writing SQL Statements

Although SQL statements often contain multiple commands and multiple lines, there are no fixed
rules for writing SQL statements; SQL is a "free-form" language. We suggest that you use the
following conventions to increase the readability of your queries, especially as your statements or
queries become more complex:

Use uppercase letters for the keywords, which inclues SELECT, FROM, and WHERE. Use lowercase
letters for the user-supplied words (SQL Server 2005 is not case-sensitive for commands).

Align the keywords SELECT, FROM, and WHERE on separate lines, like this:

SELECT *
FROM Dependent
WHERE age > 5

http://lib.ommolketab.ir

2.9. A Few Notes About SQL Server 2005 Syntax

A few things that you need to know about syntax in SQL Server 2005:

SQL Server 2005 allows blank lines in the SQL window.

Queries in SQL Server 2005 do not have to end in a semicolon.

SQL Server 2005 allows you to include comments anywhere in a SQL script or query. Many
other SQL languages will not let you include a comment as the first line of a script or query
(other SQL languages will look for a SQL statement beginning with a command like SELECT on
the first line of a script or query), but SQL Server 2005 will allow you to include a comment on
the first line of a script or query. SQL Server 2005 also allows comments after the semi-colon
(which may have been used to end a query). Many SQL languages will not accept anything
typed after the semi-colon.

SQL Server 2005 will allow you to type in multiple queries on the query editor screen at one
time, and you may only execute the ones that you wish to execute. For example, if you type in
the following three queries on the query editor screen:

SELECT *
FROM Dependent

SELECT *
FROM Student

SELECT *
FROM Course

To first execute the middle query, SELECT * FROM Student, you may highlight this query and clickthe
Execute button. If you then wish to execute the first query, SELECT * FROM Dependent, you may
highlightthis query and clickon the Execute button. You can, of course, do this as many times as you
wish, and in any combination that you wish.

http://lib.ommolketab.ir

2.10. Summary

In this chapter, we have shown you how to use the basic SELECT statement and how to extract
columns and rows using SELECT. We introduced the COUNT and ROWCOUNT functions, the AND, OR, and
BETWEEN operators, table and column aliases, and synonyms. We also touched on the concept of nulls
and have shown you how to include comments. Towards the end of the chapter, we presented some
conventions for writing SQL statements and a few notes about SQL Server syntax. You will need this
basic knowledge and understanding to work the forthcoming chapters.

http://lib.ommolketab.ir

2.11. Review Questions

What is usually the first word in a SQL query?1.

Does a SQL Server 2005 SELECT statement require a FROM?2.

Can a SELECT statement in SQL Server 2005 be used to make an assignment? Explain with
examples.

3.

What is the ORDER BY used for?4.

Does ORDER BY actually change the order of the data in the tables or does it just change the
output?

5.

What is the default order of an ORDER BY clause?6.

What kind of comparison operators can be used in a WHERE clause?7.

What are four major operators that can be used to combine conditions on a WHERE clause?
Explain the operators with examples.

8.

What are the logical operators?9.

In a WHERE clause, do you need to enclose a text column in quotes? Do you need to enclose a
numeric column in quotes?

10.

Is a null value equal to anything? Can a space in a column be considered a null value? Why or
why not?

11.

Will COUNT(column) include columns with null values in its count?12.

What are column aliases? Why would you want to use column aliases? How can you embed
blanks in column aliases?

13.

What are table aliases?14.

What are table qualifiers? When should table qualifiers be used?15.

Are semicolons required at the end of SQL statements in SQL Server 2005?16.

Do comments need to go in a special place in SQL Server 2005?17.

When would you use the ROWCOUNT function versus using the WHERE clause?18.

Is SQL case-sensitive? Is SQL Server 2005 case-sensitive?19.

What is a synonym? Why would you want to create a synonym?20.

21.

22.

http://lib.ommolketab.ir

19.

20.

Can a synonym name of a table be used instead of a table name in a SELECT statement?21.

Can a synonym of a table be used when you are trying to alter the definition of a table?22.

Can you type more than one query in the query editor screen at the same time?23.

http://lib.ommolketab.ir

2.12. Exercises

Unless specified otherwise, use the Student_course database to answer the following questions.

In writing out all the following queries, use table and column aliases wherever you feel that it would
improve the readability of your output. Follow the conventions for writing SQL statements. Also, for
future reference, you may want to get into the practice of saving your queries by question number.
For example, save the query you write for Question 2-2a as query2-2a. Print the query and your
results.

Refer to Appendix A for a complete listing of all tables (and their columns)
available in the Student_course database.

The Student_course database used in this book has the following tables: Student, Dependent,
Course, Section, Prereq (for prerequisite), Grade_report, Department_to_major, and Room.

Display the data from each of these tables by using the simple form of the SELECT *
statement.

a.

Display the first five rows from each of these tables.b.

Display the student name and student number of all students who are juniors (hint: class
= 3).

c.

Display the student names and numbers (from question 2) in descending order by name.d.

Display the course name and number of all courses that are three credit hours.e.

Display all the course names and course numbers (from question 3) in ascending order by
course name.

f.

1.

Display the building number, room number, and room capacity of all rooms in descending order
by room capacity. Use appropriate column aliases to make your output more readable.

2.

Display the course number, instructor, and building number of all courses that were offered in
the Fall semester of 1998. Use appropriate column aliases to make your output more readable.

3.

List the student number of all students who have grades of C or D.4.

List the offering_dept of all courses that are more than three credit hours.5.

Display the student name of all students who have a major of COSC.6.

7.

8.

http://lib.ommolketab.ir

5.

6.

Find the capacity of room 120 in Bldg 36.7.

Display a list of all student names ordered by major.8.

Display a list of all student names ordered by major, and by class within major. Use appropriate
table and column aliases.

9.

Count the number of departments in the Department_to_major table.10.

Count the number of buildings in the Room table.11.

What output will the following query produce?

SELECT COUNT(class)
FROM Student
WHERE class IS NULL

Why do you get this output?

12.

Use the BETWEEN operator to list all the sophomores, juniors, and seniors from the Student table.13.

Use the NOT BETWEEN operator to list all the sophomores and juniors from the Student table.14.

Create synonyms for each of the tables available in the Student_course database. View your
synonyms in the Object Explorer.

15.

http://lib.ommolketab.ir

Chapter 3. Creating, Populating, Altering,
and Deleting Tables
In the SQL Server 2005 database, data is stored in tables (also known as relations in relational
database theory). In Chapter 2, we discussed how to write queries to retrieve data from existing
tables by using the SELECT statement. In this chapter, we will discuss how to create tables and insert
data into them, and how to alter, update, and delete tables and their data using SQL. We start the
chapter with a discussion of data types . You need to know the different data types before you can
use the CREATE TABLE command to create tables. In the CREATE TABLE command, in addition to the
column names, the data types and sizes of the columns have to be included.

http://lib.ommolketab.ir

3.1. Data Types in SQL Server 2005

Every column in a table has a data type. The data type of a column specifies what kind of information
or values can be stored in the column, and what kind of operations can be performed on those
values. It is a matter of mapping the domain values you need to store to the corresponding data
type. In selecting a data type, you should avoid wasting storage space, while allowing enough space
for a sufficient range of possible values over the life of your application. SQL Server 2005 supports 30
different data types. We will discuss the most commonly used data types by dividing the data types
into four major categories: numeric, character, date and time, and miscellaneous.

Domain values are the set of all possible values that a column can have. For
example, the domain values for a GPA column may be 0 to 4.

Several of the primary data types also have valid synonyms that can be used instead of the regular
data types. The synonyms are external names that are intended to make one SQL product
compatible with another.

The more specific you are when selecting a data type for a column, the more accurate the
information in your database will be. The following sections briefly describe each data type and its
valid synonyms.

3.1.1. Numeric Data Types

Numeric data types should be used for storing numeric data, for data on which you want to perform
numeric comparisons or arithmetic operations. Numeric data types can be divided into two groups:
integers and decimals.

3.1.1.1. Integer data types

Integer data types have no digits after the decimal point, and range in size from 1 to 8 bytes of
internal storage. Integer data types in SQL Server 2005 include:

BIGINT, which uses 8 bytes of storage and can be used to store numbers from -263 to 263 -1.
Avoid using the BIGINT data type unless you really need its additional storage capacity.

INT, which uses 4 bytes of storage and can be used to store numbers from -231 to 231 -1.

SMALLINT, which uses 2 bytes of storage and can be used to store numbers from -215 to 215 -1.

http://lib.ommolketab.ir

TINYINT, which uses 1 byte of storage and can be used to store numbers from 0 to 255.

MONEY, which uses 8 bytes of storage.

SMALLMONEY, which uses 4 bytes of storage.

MONEY and SMALLMONEY are included among integer types because they are internally stored the same
way as integers.

The synonym for INT is INTEGER.

3.1.1.2. Decimal data types

Decimal data types allow a larger range of values as well as a higher degree of accuracy than integer
data types . For decimal data types, you can specify a precision and a scale. Precision is the total
number of digits stored, and scale is the maximum number of digits to the right of the decimal point.
The storage space of decimal data varies according to the precision. Decimals with a precision of 1 to
9 would take up 5 bytes of storage space; decimals with a precision of 10 to 19 would take up 9
bytes of storage, and so on.

Decimal data types include:

REAL, which uses 4 bytes for storage and has a precision of 7 digits. The synonym for REAL is
FLOAT[(n)] for n = 1 to 7.

FLOAT, which uses 8 bytes for storage and has a precision of 15 digits. The synonym for FLOAT is
DOUBLE PRECISION and FLOAT[(n)] for n = 8 to 15.

DECIMAL, whose storage size varies based on the specified precision and uses 217 bytes for
storage. The synonyms for DECIMAL are DEC and NUMERIC.

Rounding errors can occur when using the FLOAT or REAL data types. NUMERIC or DECIMAL are better in
such cases, because they give the precision and scale, without the problems of FLOAT or REAL.

When you are trying to select the numeric data type to use, your decision should be based on the
maximum range of possible values that you want to store, and the precision and scale that you need.
But, at the same time, you have to realize that data types that can store a greater range of values
take up more space.

NUMERIC most closely resembles Oracle's NUMBER data type.

3.1.2. Character Data Types

http://lib.ommolketab.ir

Character data types are used to store any combination of letters, numbers and symbols. Single
quotes have to be used when entering character data. SQL Server 2005 has five types of character
data types: CHAR, VARCHAR, TEXT, NCHAR, NVARCHAR.

3.1.2.1. The CHAR data type

CHAR(n)s are fixed-length single-byte character strings that can be used to store up to 8,000 bytes of

data. CHAR data is used when the column length is known and unvarying; for example, a Social
Security number could be of CHAR(9) data type. Because CHARs use a fixed storage length, CHARs are
accessed faster than VARCHARs (varying length character strings). You can and should specify the
maximum byte length of a CHAR(n) data type with a value for n; otherwise, the default size will be

used and the default size may be set to a size much higher than what you need. The synonym for
CHAR is CHARACTER.

3.1.2.2. The VARCHAR data type

VARCHAR(n)s are variable length single-byte character strings that can also be used to store up to
8000 bytes of data. You can and should also specify the maximum byte length of VARCHARs with n,

too; otherwise, as with the CHAR data type, the default size will be used, and the default size may be
set to a size much higher than what you need. Variable length means that if less data than the
specified n bytes is used, the storage size will be the actual length of the data entered. The synonym

for VARCHAR is CHAR VARYING. VARCHAR is the most commonly used character (string) type.

VARCHAR2 is the Oracle equivalent of VARCHAR.

3.1.2.3. The TEXT data type

TEXTs are also variable-length single-byte character strings, but may be used to store more than
8,000 bytes. The TEXT data type, in SQL Server 2005, is a large object data type, better used if you
need to store large strings of data. TEXT has extra overhead that drags down performance.
Therefore, the use of the TEXT data type is not encouraged.

LONG is the Oracle equivalent of TEXT.

3.1.2.4. The NCHAR data type

http://lib.ommolketab.ir

NCHARs are fixed-length Unicode character strings . You can also specify the maximum byte length of
NCHAR with n. The synonym for NCHAR is NATIONAL CHAR.

3.1.2.5. The NVARCHAR data type

NVARCHARs are variable-length Unicode character strings. You can specify the maximum byte of
NVARCHAR length with n. The synonym for NVARCHAR is NATIONAL CHARACTER VARYING.

3.1.2.6. Unicode character strings

Unicode character strings need two bytes for each stored character. Most English and European
alphabets can, however, be stored in single-byte characters. Single-byte character strings can store
up to 8,000 characters, and Unicode character strings can store up to 4,000 characters.

3.1.2.7. Selecting the character data types

Some general rules that you can follow to determine which character data type to use:

Use the variable-length data types (VARCHAR) over fixed-length data types (CHAR) when you
expect a lot of null values or a lot of variation in the size of data.

If a column's data does not vary widely in number of characters, consider using CHAR instead of
VARCHAR.

NVARCHAR or NCHAR data types should not be used unless you need to store 16-bit character
(Unicode) data. NVARCHARs and NCHARs take up twice as much space as VARCHAR or CHAR data
types, reducing I/O performance.

3.1.3. Date and Time Data Types

SQL Server 2005 has two data types for storing date and time information: DATETIME and
SMALLDATETIME. DATETIME uses 8 bytes. SMALLDATETIME uses 4 bytes of storage. Internally, the
DATETIME and SMALLDATETIME values are stored completely differently from how you enter them or
how they are displayed. They are stored as two separate components, a date component and a time
component.

DATE is the Oracle equivalent of DATETIME.

When creating primary keys, do not consider using the DATETIME and SMALLDATETIME data types. From
a performance standpoint, it is better to use a data type that uses less space for a primary key. The

http://lib.ommolketab.ir

less the space used for a primary key, the smaller the table and index, and the less I/O overhead will
be required to access the primary key.

Creation of primary keys will be discussed in Chapter 11.

3.1.4. Miscellaneous Data Types

Among other data types available in SQL Server 2005 are BINARY, IMAGE, BIT, TABLE, SQL_VARIANT,
UNIQUEIDENTIFIER, and the XML data type (one of SQL Server 2005's newest enhancements).

3.1.4.1. The BINARY data type

The BINARY data types are BINARY and VARBINARY.

BINARY data types are used to store strings of bits, and values are entered and displayed using their
hexadecimal (hex) representation. The maximum length of the BINARY data type is 8,000 bytes. You
can specify the maximum byte length of BINARY data with n.

The VARBINARY data type can store up to 8,000 bytes of variable-length binary data. Once again, you
can also specify the maximum byte length with n. The VARBINARY data type should be used (instead of

the BINARY data type) when you expect to have null values or a variation in data size.

RAW is the Oracle equivalent of VARBINARY.

3.1.4.2. The IMAGE data type

The IMAGE data type is a large object binary data type that stores more than 8000 bytes. The IMAGE
data type is used to store binary values and is also used to store pictures.

LONG RAW is the Oracle equivalent of IMAGE.

3.1.4.3. The BIT data type

http://lib.ommolketab.ir

The BIT data type is actually an integer data type that can store only a 0 or a 1 and can consume
only a single bit of storage space. However, if there is only a one bit column in a table, it will actually
take up a whole byte. Up to 8-bit columns are stored in a single byte. The BIT data type is usually
used for true/false or yes/no types of data. BIT columns cannot be NULL and cannot have indexes on
them.

3.1.4.4. The monetary data types

Monetary data types are generally used to store monetary values. SQL Server 2005 has two
monetary data types:

MONEY, which uses 8 bytes of storage

SMALLMONEY, which uses 4 bytes of storage

3.1.4.5. The TABLE data type

The TABLE data type can be used to store the result of a function and can be used as the data type of
local variables. Columns in tables, however, cannot be of type TABLE. Table variables are sometimes
preferable to temporary tables, because table variables are cleaned up automatically at the end of a
function or stored procedure.

Temporary tables are covered in Chapter 6. Discussing functions and stored
procedures is beyond the scope of this book.

3.1.4.6. The SQL_VARIANT data type

Values stored in a SQL_VARIANT column can be any data type except TEXT or IMAGE. The usage of the
SQL_VARIANT data type should be avoided for several reasons: (a) a SQL_VARIANT column cannot be
part of a primary or foreign key; (b) a SQL_VARIANT column cannot be part of a computed column; (c)
a SQL_VARIANT column can be used in indexes or as other unique keys only if they are shorter than
900 bytes; (d) a SQL_VARIANT column must convert the data to another data type when moving data
to objects with other data types.

Foreign keys are discussed in Chapter 11.

http://lib.ommolketab.ir

3.1.4.7. The UNIQUEIDENTIFIER data type

The UNIQUEIDENTIFIER data type, also referred to as globally unique identifier (GUID) or universal
unique identifier (UUID), is a 128-bit generated value that guarantees uniqueness worldwide, even
among unconnected computers.

3.1.4.8. The XML data type

The XML data type is a new data type that has been added to SQL Server 2005 to handle XML data.
XML can model complex data. The XML column can be typed or untyped. Like other data types, the XML
data type must meet specific formatting criteria. It must conform to well-formatted XML criteria
(which is untyped) and you can optionally add additional conformance criteria by specifying a Schema
collection (typed). SQL Server will also allow you to store XML documents associated with multiple
schema definitions. The XML data type will allow you to store complete XML documents or fragments
of XML documents. XML documents are limited to two gigabytes of data.

3.1.5. Selecting Data Types

Here we present some general rules that you can follow to determine which data type to use to
define a column:

Use the smallest possible column sizes. The smaller the column size, the lesser the amount of
data that SQL Server has to store and process, and the faster SQL Server will be able to read
and write the data. In addition, the narrower the column, the faster a sort will be performed on
a column.

Use the smallest possible data type for a column that will hold your data. For example, if you
are going to be storing numbers from 1 to 99 in a column, you would be better off selecting the
TINYINT data type instead of the INT data type.

For numeric data, it is better to use a numeric data type such as INTEGER, instead of using
VARCHAR or CHAR, because numeric data types generally require less space to hold numeric
values then character data types. This saves space, and smaller columns can improve
performance when the columns are searched, joined with other columns, or sorted.

Joins are discussed in Chapter 4.

FLOATs or REALs should not be used to define primary keys. Integer data types can be used for
primary keys.

Avoid selecting the fixed length columns--CHAR or NCHAR--if your column will have a lot of nulls.

http://lib.ommolketab.ir

The NULL in a CHAR or NCHAR field will take up the entire fixed length of 255 characters. This
wastes much space and reduces SQL Server's overall performance.

If you are going to be using a column for frequent sorts, consider an integer-based column
rather than a character-based column. SQL Server sorts integer data faster than character
data. [1]

http://lib.ommolketab.ir

3.2. Creating a Table

In SQL Server 2005, a relational database, data is loaded into tables that are created in a database.
In Chapter 1, we showed you how to create a database. In this section we will concentrate on
creating a table within an existing database.

In SQL, the CREATE TABLE command is used to create a table. In SQL Server 2005, the CREATE TABLE
command has to be typed in the query editor screen.

The general syntax of the CREATE TABLE statement is:

CREATE TABLE Tablename
 (column_name type, column_name, type,)

To demonstrate how this CREATE TABLE command works, we provide two examples.

For the first example, we will create a table called Employee that has four columns (attributes). First,
type the following in the query editor screen (make sure that you have selected the Student_course
database before typing this; if you do not remember how to select the Student_Course database,
refer to Figure 1-16 of Chapter 1):

CREATE TABLE Employee (names VARCHAR(20),
 address VARCHAR(20),
 employee_number INT,
 salary SMALLMONEY)

Execute the query.

You will get:

Command(s) completed successfully.

This CREATE TABLE query created a table called Employee with four columns (in the Student_course
database): names, address, employee_number, and salary. The data type of names is VARCHAR (variable-
length character), with a maximum length of 20 characters. The data type of address is VARCHAR, with
a maximum length of 20 characters. The data type of employee_number is INT and the data type of
salary is SMALLMONEY.

http://lib.ommolketab.ir

To view the Employee table in the Student_course database, expand the Student_course node (under
the Object Explorer) and the Tables node, and you should be able to see the Employee table, as
shown in Figure 3-1.

Figure 3-1. Viewing the Employee table

To look at the table definition of the table you just created, right-click on the table, Employee, and
select Modify. Figure 3-2 shows the table definition of the Employee table.

Figure 3-2. Table Definition of Employee table

http://lib.ommolketab.ir

For the second example to demonstrate the use of the CREATE TABLE command, we will create a table
called Names (type the following query):

CREATE TABLE Names
 (fullname VARCHAR(20))

This table has only one column, fullname. Its data type is VARCHAR and the maximum length of a
name in this table is 20 characters.

http://lib.ommolketab.ir

3.3. Inserting Values into a Table

There are several ways to insert values into a table using SQL in SQL Server 2005. We will illustrate
the two most commonly used ways: using INSERT INTO .. VALUES and using INSERT INTO .. SELECT.

3.3.1. Using INSERT INTO .. VALUES

One way to insert values into one row of a table is to use the INSERT INTO command with the VALUES
option. The INSERT INTO .. VALUES option needs the column list and all the columns in the correct
order.

The general syntax for the INSERT INTO .. VALUES option is:

INSERT INTO TableName
VALUES ('character_attribute_value', numeric_attribute_value, ...)

We will first illustrate inserting data with the INSERT INTO .. VALUES option using the Names table we
created in the preceding section. So, type the following in the query editor:

INSERT INTO Names
VALUES ('Joe Smith')

where:

INSERT is the SQL command to insert data

INTO is a necessary keyword

Names is the name of an existing table

VALUES is another necessary keyword

'Joe Smith' is a string of letters corresponding to the VARCHAR data type

Then click the Execute button. You will get a message that will tell you how many rows were inserted
by the query:

http://lib.ommolketab.ir

(1 row(s) affected)

Now, if you type the following SQL query:

SELECT *
FROM Names

You will get:

fullname

Joe Smith

(1 row(s) affected)

The INSERT INTO .. VALUES option appends rows to a table (that is, rows are added to the end of the
table). So, if you use the INSERT INTO .. VALUES option again as follows:

INSERT INTO Names
VALUES ('Sudip Kumar')

And then type:

SELECT *
FROM Names

You get this result:

fullname

Joe Smith
Sudip Kumar

(2 row(s) affected)

http://lib.ommolketab.ir

If you created a table with n attributes (columns), you usually would have n values in the INSERT INTO

.. VALUES statement, in the order of the definition of the columns in the table. For example, to insert
into the Employee table that you created earlier, the INSERT INTO .. VALUES statement to insert a row
would have to match column for column and would look like this:

INSERT INTO Employee
VALUES ('Joe Smith', '123 4th St.', 101, 2500)

Note that character data is entered with single quotes around it. Numeric data does not use quotes
(as shown by 101 and 2500).

Now if you type:

SELECT *
FROM Employee

You get the following:

names address employee_number salary
-------------------- -------------------- --------------- ------------
Joe Smith 123 4th St. 101 2500.00

(1 row(s) affected)

An INSERT that looks like the following is incorrect, because it does not include all four columns of the
Employee table:

INSERT INTO Employee
VALUES ('Joe Smith', '123 4th St.')

You may INSERT a row with less than all the columns by naming the columns you want to insert into,
like this:

INSERT INTO Employee (names, address)
VALUES ('Joe Smith', '123 4th St.')

In this case, the row will contain nulls or default values for the values left out, which you will see if

http://lib.ommolketab.ir

you type:

SELECT *
FROM Employee

This will give:

names address employee_number salary
-------------------- -------------------- --------------- ------------
Joe Smith 123 4th St. 101 2500.00
Joe Smith 123 4th St. NULL NULL

(2 row(s) affected)

An INSERT that looks like the following is incorrect, because it does not have the values in the same
order as the definition of the table:

INSERT INTO Employee
VALUES (2500, 'Joe Smith', 101, '123 4th St.')

If for some reason the data had to be entered in this order, the previous statement could be
corrected by specifying the column names, as shown here:

INSERT INTO Employee (salary, names, employee_number, address)
VALUES (2500, 'Joe Smith', 101, '123 4th St.')

At this point, typing:

SELECT *
FROM Employee

would give us the following output:

names address employee_number salary
-------------------- -------------------- --------------- ------------
Joe Smith 123 4th St. 101 2500.00

http://lib.ommolketab.ir

Joe Smith 123 4th St. NULL NULL
Joe Smith 123 4th St. 101 2500.00

(3 row(s) affected)

You may actually include the keyword, null, if the address and the salary were unknown:

INSERT INTO Employee
VALUES ('Joe Smith', null, 101, null)

Now having added four rows to our table, type:

SELECT *
FROM Employee

This query will give the following output:

names address employee_number salary
-------------------- -------------------- --------------- ------------
Joe Smith 123 4th St. 101 2500.00
Joe Smith 123 4th St. NULL NULL
Joe Smith 123 4th St. 101 2500.00
Joe Smith NULL 101 NULL

(4 row(s) affected)

To delete all the rows in the Employee table as well as in the Names table, type:

DELETE FROM Employee

Then:

DELETE FROM Names

We will revisit the DELETE command later in the chapter.

http://lib.ommolketab.ir

For the rest of this chapter, we will set up our Employee table with more meaningful data. Suppose we
deleted all the test rows from the previous examples with a DELETE statement and then suppose we
used the INSERT INTO .. VALUES option to insert valid data into the Employee table, making it look like
this:

names address employee_number salary
-------------------- -------------------- --------------- ------------
Joe Smith 123 4th St. 101 2500.00
Pradeep Saha 27 Shillingford 103 3300.00
Sumit Kumar 95 Oxford Rd 105 1200.00
Joya Das 23 Pesterfield Cr 114 2290.00
Terry Livingstone 465 Easter Ave 95 3309.00

(5 row(s) affected)

More than one INSERT INTO .. VALUES command can be typed in on one screen
in SQL Server 2005.

3.3.2. Using INSERT INTO .. SELECT

With the INSERT INTO .. VALUES option, you insert only one row at a time into a table. With the
INSERT INTO .. SELECT option, you may (and usually do) insert many rows into a table at one time.

The general syntax for the INSERT INTO .. SELECT option is:

INSERT INTO target_table(column1, column2, column3, ...)
 "SELECT clause"

We will first illustrate inserting with the INSERT INTO .. SELECT by populating the Names table (the one
that you created earlier in this chapter and then removed all rows from with a DELETE FROM Names).
To copy all the names from the Employee table into the Names table, type the following:

INSERT INTO Names(fullname)
 SELECT names
 FROM Employee

And now if you type:

http://lib.ommolketab.ir

SELECT *
FROM Names

you will get the following five rows of output:

fullname

Joe Smith
Pradeep Saha
Sumit Kumar
Joya Das
Terry Livingstone

(5 row(s) affected)

We do not have to copy all the names from the Employee table to the Names table. For example, we
could restrict the INSERT .. SELECT like this:

INSERT INTO Names(fullname)
 SELECT names
 FROM Employee
 WHERE salary > 2600

This would give us only the following two rows in Names:

fullname

Pradeep Saha
Terry Livingstone

(2 row(s) affected)

As with the INSERT INTO .. VALUES option, if you create a table with n columns, you usually would
have n values in the INSERT INTO .. SELECT option in the order of the table definition, or you would

have to name the columns you are inserting. For example, suppose we have a table called Emp1,
created with three columns:

Emp1 (addr, sal, empno)

http://lib.ommolketab.ir

The columns, addr, sal, empno, stand for address, salary, and employee number, respectively.

Now suppose that we want to load the existing empty table called Emp1 from the Employee table with
the appropriate columns.

As with the INSERT INTO .. VALUES option, the INSERT INTO .. SELECT option
has to match column for column.

An INSERT INTO .. SELECT statement would look like this:

INSERT INTO Emp1(addr, sal, empno)
 SELECT address, salary, employee_number
 FROM Employee

The Emp1 table would now have the following five rows:

addr sal empno
-------------------- ------------ -----------
123 4th St. 2500.00 101
27 Shillingford 3300.00 103
95 Oxford Rd 1200.00 105
23 Pesterfield Cr 2290.00 114
465 Easter Ave 3309.00 95

(5 row(s) affected)

If we created a table, Emp2, with identical columns (or attributes) as Emp1, we could use the following
INSERT to load data from table Emp1 to Emp2:

INSERT INTO Emp2
 SELECT *
 FROM Emp1

The Emp2 table would now have the same data as the Emp1 table. This is one way of creating a backup
table.

Again, note that the Emp2 table has to exist (be created with the same columns and types) before
loading it with the INSERT INTO .. SELECT option.

http://lib.ommolketab.ir

One caution must be pointed out, however. An erroneous INSERT INTO .. SELECT could succeed if the
data types of the SELECT match the data types of the columns in the table to which we are inserting.
For example, say we execute the following statement (remember that both sal and empno are
numeric types):

INSERT INTO Emp1 (addr, sal, empno)
 SELECT address, employee_number, salary
 FROM Employee

This INSERT will succeed because the data types match. The following output results after executing
the previous INSERT statement:

addr sal empno
-------------------- ------------ -----------
123 4th St. 101.00 2500
27 Shillingford 103.00 3300
95 Oxford Rd 105.00 1200
23 Pesterfield Cr 114.00 2290
465 Easter Ave 95.00 3309

(5 row(s) affected)

The wrong information has been inserted in Emp1's columns. The employee_number from Employee has
been inserted into the sal column in Emp1, and the salary of Employee has been inserted into the
empno column of Emp1. So, be careful and line up or match up the columns (attributes) in the INSERT
INTO and SELECT statements when using an INSERT INTO .. SELECT.

As you might have already guessed from the INSERT INTO .. VALUES section, you do not have to
insert the whole row with an INSERT INTO..SELECT. You may load fewer columns than a whole row of
Employee with INSERT .. SELECT. Once again, if we delete all rows from Emp1, and then execute a
statement like this:

INSERT INTO Emp1 (addr, sal)
 SELECT address, salary
 FROM Employee

This INSERT would leave the other column, empno (of the Emp1 table), with nulls as shown here:

SELECT *
FROM Emp1

http://lib.ommolketab.ir

This query produces the following output:

addr sal empno
-------------------- ------------ -----------
123 4th St. 2500.00 NULL
27 Shillingford 3300.00 NULL
95 Oxford Rd 1200.00 NULL
23 Pesterfield Cr 2290.00 NULL
465 Easter Ave 3309.00 NULL

(5 row(s) affected)

In conclusion, you must be careful with the INSERT INTO .. SELECT option, because, unlike the INSERT
INTO .. VALUES option (which inserts one row at a time), you almost always insert multiple rows, and
if types match, the insert will take place whether it makes sense or not.

http://lib.ommolketab.ir

3.4. The UPDATE Command

Another common command used for setting/changing data values in a table is the UPDATE command.
As with INSERT INTO .. SELECT, you often UPDATE more than one row. To examine how the UPDATE
command works, we will use the tables we created in the previous section.

The general format for the UPDATE command is:

UPDATE TableName
SET fieldname...

For example, if you want to set all salaries in the table Emp2 to zero, you may do so with one UPDATE
command:

UPDATE Emp2
SET sal = 0

Now, if you type:

SELECT *
FROM Emp2

You will get:

addr sal empno
-------------------- ------------ -----------
123 4th St. 0.00 101
27 Shillingford 0.00 103
95 Oxford Rd 0.00 105
23 Pesterfield Cr 0.00 114
465 Easter Ave 0.00 95

(5 row(s) affected)

http://lib.ommolketab.ir

This UPDATE command sets all salaries in all rows of the Emp2 table to zero, regardless of previous
values. As with any statement that affects all rows, this may be viewed as a dangerous command
and caution should be observed.

It is often useful to include a WHERE clause in the UPDATE command so that values are set selectively.
For example, if we assume that employee numbers are unique, we can UPDATE a specific employee
from the Employee table with the following statement:

UPDATE Employee
SET salary = 0
WHERE employee_number=101

This query produces the following output:

names address employee_number salary
-------------------- -------------------- --------------- ------------
Joe Smith 123 4th St. 101 0.00
Pradeep Saha 27 Shillingford 103 3300.00
Sumit Kumar 95 Oxford Rd 105 1200.00
Joya Das 23 Pesterfield Cr 114 2290.00
Terry Livingstone 465 Easter Ave 95 3390.00

(5 row(s) affected)

Only employee number 101's row is updated. Once again, note that we do not use the quotes around
101, since employee_number is defined as an INT column (a numeric column). Quotes would have to
be used around any character or string columns.

http://lib.ommolketab.ir

3.5. The ALTER TABLE Command

In the last few sections we looked at how to add, change, and update rows in a table with the INSERT
and UPDATE commands. In this section, we discuss how you can add, change (modify), and delete
columns in a table's definition by using SQL's ALTER TABLE command. ALTER TABLE commands are
known as data definition (DDL) commands, because they change the definition of a table.

3.5.1. Adding a Column to a Table

You may add columns to a table with little difficulty. The general syntax for adding a column to a
table is:

ALTER TABLE
 Tablename
ADD column-name type

For example, to add a column called bonus (a SMALLMONEY column) to the Employee table, you type in
the following:

ALTER TABLE Employee
ADD bonus SMALLMONEY

This command alters the table definition of the Employee table, as shown in Figure 3-3 (to get Figure
3-3, click on the + beside the Employee table and then click on the + beside Columns--in the Object
Explorer on the left side of your screen):

Figure 3-3. Column added to Employee table

http://lib.ommolketab.ir

When columns are added to existing tables, they will initially contain null values. Data may be added
to the new column using an UPDATE command.

3.5.2. Changing a Column's Data Type in a Table

In SQL Server 2005, you can change a column's data type with existing data in it, provided that the
new column data type will accommodate the existing data. The general syntax for changing a
column's data type in a table is:

ALTER TABLE Tablename
ALTER COLUMN column-name new_type

For example, to change the data type of the bonus column from SMALLMONEY to FLOAT, you would type
the following:

ALTER TABLE EMPLOYEE
ALTER COLUMN bonus FLOAT

This query would produce the table definition of the Employee table shown in Figure 3-4.

Figure 3-4. Altered column's data type for bonus column in the Employee
table

You may have to refresh the Employee table before you can see this change
made to the table definition. To refresh the Employee table, right click on the
Employee table and then select Refresh. Then, select the Employee table and
select Modify.

http://lib.ommolketab.ir

3.5.2.1. Changing a column's length in a table

You may want to change the size of a column in a table. You typically make a column larger, and SQL
Server 2005 will not have a problem with that, because larger columns will accommodate existing
data. But, if you want to make a column smaller (which is unusual), sometimes SQL Server 2005 will
let you do it and other times it will not.

When will SQL Server 2005 allow you to reduce the length of your column without any problems?

When you do not have any data in that column yet (it's all NULL).

When all the data in that column is still less than the size you are changing the column to.

If you try to reduce the column size to a size where you would be cutting off some of the data, SQL
Server 2005 will give you an error and will not let you do it.

For example, if you type in the following ALTER TABLE command, trying to change the names column of
the Employee table to a size of 5 (where you would be losing some data):

ALTER TABLE Employee
ALTER COLUMN names VARCHAR(5)

You will get the following error message:

Msg 8152, Level 16, State 14, Line 1
String or binary data would be truncated.
The statement has been terminated.

And, upon viewing the table definition of the Employee table, you will find that the column size of the
names column was not altered.

If, however, you type:

ALTER TABLE
 Employee
ALTER COLUMN names VARCHAR(19)

You will get the message:

Command(s) completed successfully.

http://lib.ommolketab.ir

Now if you look at the table definition of the Employee table, you will see that the names column has
been changed to a size of 19 characters, as shown in Figure 3-5.

Figure 3-5. Altering a column's length in the Employee table

But before you can view this change, you may have to refresh the Employee table.

SQL Server 2005 allowed this reduction in column size, as all the data in the names column was less
than 19 characters in length.

Before you proceed to the following section, please change the size of the names column back to 20.

3.5.3. Deleting a Column from a Table

The following is the general syntax for deleting a column from a table:

ALTER TABLE Tablename
DROP column column-name

For example, to delete the column called bonus from the Employee table, type the following:

ALTER TABLE Employee
DROP column bonus

This query produces the definition of the Employee table shown in Figure 3-6, which matches the
original design for the table shown in Figure 3-2.

http://lib.ommolketab.ir

Figure 3-6. Design of Employee table after dropping a column

The DROP column command will also delete a column even if there is data in it,
so you have to be very careful when using it. This is another one of the
commands that affects multiple rows and caution must be observed.

We will discuss a few other uses of the ALTER TABLE command in subsequent chapters. For example,
you can use it to define or change a default column value, enable or disable an integrity constraint,
manage internal space, and so on.

http://lib.ommolketab.ir

3.6. The DELETE Command

Earlier in the chapter, we saw that the DELETE command can be used to remove all rows of a table. In
this section we revisit the powerful DELETE. Keep in mind as you read this that the DELETE statement
can affect multiple rows as we have seen and hence, one must be careful when using it. Following is
the general syntax of the DELETE command used to delete rows from a table:

DELETE FROM Table
WHERE (condition)

(condition) determines which rows of the table will be deleted. As you saw earlier, if no WHERE
condition is used, all the rows of the table will be deleted.

Multiple rows can be affected by the DELETE command, so be careful when using
it.

Here is an example of using the DELETE command on our original Employee table:

DELETE FROM Employee
WHERE salary < 1500

Now if you type:

SELECT *
FROM EMPLOYEE

You will get the following four rows of output:

names address employee_number salary
-------------------- -------------------- --------------- ------------
Joe Smith 123 4th St. 101 2500.00
Pradeep Saha 27 Shillingford 103 3300.00
Joya Das 23 Pesterfield Cr 114 2290.00
Terry Livingstone 465 Easter Ave 95 3390.00

http://lib.ommolketab.ir

(4 row(s) affected)

http://lib.ommolketab.ir

3.7. Deleting a Table

The general syntax to delete or remove an entire table and its contents is:

DROP TABLE Tablename

For example, to delete the table called Names from your database, you would type the following:

DROP TABLE Names

There are times when it is appropriate to delete all the data in a table and there are times when the
entire table should be eradicated. When a table is dropped, it no longer exists; its definition is
removed from the database. But, when data is deleted from a table with a DELETE statement (maybe
with a WHERE condition), the table may be repopulated, because only the data from the table was
removed, but the definition is intact.

http://lib.ommolketab.ir

3.8. Summary

In this chapter, we dealt with basic table manipulations. We showed you how to create tables, insert
data into tables, update data in tables, add and delete columns from tables, alter column types and
sizes, and delete entire tables. We also discussed the basic data types available in SQL Server 2005.

http://lib.ommolketab.ir

3.9. Review Questions

The INSERT INTO .. VALUES option will insert rows into the _________ of a table.1.

While you are inserting values into a table with the INSERT INTO .. VALUES option, does the
order of the columns in the INSERT statement have to be the same as the order of the columns
in the table?

2.

While you are inserting values into a table with the INSERT INTO .. SELECT option, does the
order of the columns in the INSERT statement have to be the same as the order of the columns
in the table?

3.

When would you use an INSERT INTO .. SELECT option versus an INSERT INTO .. VALUES
option? Give an example of each.

4.

What does the UPDATE command do?5.

Can you change the data type of a column in a table after the table has been created? If so,
which command would you use?

6.

Will SQL Server 2005 allow you to reduce the size of a column?7.

What integer data types are available in SQL Server 2005?8.

What is the default value of an integer data type in SQL Server 2005?9.

What decimal data types are available in SQL Server 2005?10.

What is the difference between a CHAR and a VARCHAR datatype?11.

Does Server SQL treat CHAR as a variable-length or fixed-length column? Do other SQL
implementations treat it in the same way?

12.

If you are going to have too many nulls in a column, what would be the best data type to use?13.

When columns are added to existing tables, what do they initially contain?14.

What command would you use to add a column to a table in SQL Server?15.

In SQL Server, which data type is used to store large object data types?16.

If I do not need to store decimal places, what would be a good numeric data type to use?17.

If I need to store decimal places, but am not worried about rounding errors, what would be a
good data type to use?

18.

Should a column be defined as a FLOAT if it is going to be used as a primary key?19.

http://lib.ommolketab.ir

18.

19.

http://lib.ommolketab.ir

3.10. Exercises

Unless specified otherwise, use the Student_course database to answer the following questions. Also,
use appropriate column headings when displaying your output.

Create a table called Cust with a customer number as a fixed-length character string of 3, an
address with a variable-length character string of up to 20, and a numeric balance.

Insert values into the table with INSERT INTO .. VALUES option. Use the form of INSERT
INTO .. VALUES option that requires you to have a value for each column; therefore, if you
have a customer number, address, and balance, you must insert three values with INSERT
INTO .. VALUES option.

a.

Create at least five tuples (rows in the table) with customer numbers 101 to 105 and
balances between 200 to 2000.

b.

Display the table with a simple SELECT.c.

Show the balances for customers with customer numbers 103 and 104.d.

Add a customer number 90 to your Cust table.e.

Show a listing of the customers in balance order (high to low), using ORDER BY in your
SELECT. (Result: Five tuples, or however many you created.)

f.

1.

From the Student table (from our Student_course database), display the student names,
classes, and majors for freshmen or sophomores (class <= 2) in descending order of class.

2.

From your Cust table, show a listing of only the customer balances in ascending order where
balance > 400. (You can choose some other constant or relation if you want, such as balance
<= 600.) The results will depend on your data.

3.

Create another two tables with the same data types as Cust but without the customer
addresses. Call one table Cust1 and the other Cust2. Use column names cnum for customer
number and bal for balance. Load the table with the data you have in the Cust table with one
less tuple. Use an INSERT INTO .. SELECT with appropriate columns and an appropriate WHERE
clause.

Display the resulting tables.a.

4.

Alter the Cust1 table by adding a date_opened column of type DATETIME. View the table
definition of Cust1.

a.

5.

http://lib.ommolketab.ir

Add some more data to the Cust1 table by using the INSERT INTO .. VALUES option.

After each of the following, display the table.

a.

Set the date_opened value in all rows to '01-JAN-06'.b.

Set all balances to zero.c.

Set the date_opened value of one of your rows to '21-OCT-06'.d.

Change the type of the balance column in the Cust1 table to FLOAT. Display the table
definition. Set the balance for one row to 888.88 and display the table data.

e.

Try changing the type of balance to INTEGER. Does this work in SQL Server?f.

Delete the date_opened column of the Cust1 table.g.

When you are finished with the exercise (but be sure you are finished), delete the tables
Cust, Cust1, and Cust2.

h.

5.

http://lib.ommolketab.ir

3.11. References

[1] Data Type Performance Tuning Tips for Microsoft SQL Server: http://www.sql-server-
performance.com/datatypes.asp

http://www.sql-server-
http://lib.ommolketab.ir

Chapter 4. Joins
This chapter discusses joins --a common way to combine tables in SQL. In Chapter 2, you learned
how to write simple query statements in SQL using just one table. In "real" databases, however, data
is usually spread over many tables. This chapter shows you how to join tables in a database so that
you can retrieve related data from more than one table. The join operation is used to combine related
rows from two tables into a result set. Join is a binary operation. More than two tables can be
combined using multiple join operations. Understanding the join function is fundamental to
understanding relational databases, which are made up of many tables.

We start out the chapter by discussing the JOIN command. Then, we show how the same join could
also be achieved with an INNER JOIN and using a WHERE clause. The concepts of the Cartesian product,
equi-joins and non-equi joins, self joins, and natural joins are also introduced. We also show how
multiple table joins can be performed with nested JOINs and with a WHERE clause. Finally, the concept
of OUTER JOINs, with specific illustrations of the LEFT and RIGHT OUTER joins and the FULL OUTER JOIN,
is also discussed.

http://lib.ommolketab.ir

4.1. The JOIN

In SQL Server 2005, the join is accomplished using the ANSI JOIN SQL syntax (based on ANSI
Standard SQL-92), which uses the JOIN keyword and an ON clause. The ANSI JOIN syntax requires the
use of an ON clause for specifying how the tables are related. One ON clause is used for each pair of
tables being joined. The general form of the ANSI JOIN SQL syntax is:

SELECT columns
FROM table1 JOIN table2
ON table1.column1=table2.column1

The basic idea of a join is as follows: Suppose we have the following two tables, Table 4-1 and Table
4-2.

Table 4-1. The XYZ Table

columnA columnB columnC

X1 Y1 Z1

X2 Y2 Z2

X3 Y3 Z3

Table 4-2. The XDE Table

columnA columnD columnE

X1 D1 E1

X2 D2 E2

X3 D3 E3

The common column between the two tables (Table 4-1 and Table 4-2) is columnA. So the join would
be performed on columnA. A SQL JOIN would give a table where columnA of Table1 = columnA of
Table2. This would produce the new table, Table 4-3, the result of the join, as shown below:

http://lib.ommolketab.ir

Table 4-3. Joining XYZ with XDE

columnA columnB columnC columnA columnD columnE

X1 Y1 Z1 X1 D1 E1

X2 Y2 Z2 X2 D2 E2

X3 Y3 Z3 X3 D3 E3

There are several types of joins in SQL. To be precise, the previous model refers to an inner join,
where the two tables being joined must share at least one common column. The columns of the two
tables being joined by the JOIN command are matched using an ON clause. SQL Server will actually
translate the example JOIN statement to an unambiguous INNER JOIN form, as you shall see. When
inner-joining two tables, the JOIN returns rows from both tables only if there is a corresponding value
in both tables as described by the ON clause column. In other words, the JOIN disregards any rows in
which the specific join condition, specified in the ON clause, is not met.

To illustrate the JOIN using our database (Student_course database), we present the following two
examples.

4.1.1. Example 1

To find the student names and dependent names of all the students who have dependents, we need
to join the Student table with the Dependent table, because the data that we want to display is spread
across these two tables. Before we can formulate the JOIN query, we have to examine both tables
and find out what relationship exists between the two tables. Usually this relationship is where one
table has a column as a primary key and the other table has a column as a foreign key. A primary
key is a unique identifier for a row in a table. A foreign key is so called because the key it references
is "foreign" to the table where it exists.

Let us first look at the table descriptions of the Student and Dependent tables, shown in Figures 4-1
and 4-2, respectively.

Figure 4-1. Description of Student table

http://lib.ommolketab.ir

Figure 4-2. Description of Dependent table

In examining these two tables, we note that student number (stno in the Student table) is the
primary key of the Student table. stno is the unique identifier for each student. The Dependent table,
which was not created with a primary key of its own, contains a reference to the Student table in that
for each dependent, a parent number (pno) is recorded. pno in the Dependent table is a foreign keyit
represents a primary key from the table it is referencing, Student. pno in the Dependent table is not
unique, because a student can have more than one dependent; that is, one stno can be linked to
more than one pno.

From the table descriptions, we can see that the Student table (which has columns stno, sname,
major, class, and bdate) can be joined with the Dependent table (which has columns pno, dname,
relationship, sex, and age) by columns stno from the Student table and pno from the Dependent
table. Following the ANSI JOIN syntax, we can join the two tables as follows:

SELECT stno, sname, relationship, age
FROM Student s JOIN Dependent d
ON s.stno=d.pno

In this construction, Student refers to the Student table and s is the table alias of the Student table.
Likewise, Dependent refers to the Dependent table and d is the table alias of the Dependent table. The
table alias simplifies writing queries or expressions using single-letter table aliases. We very strongly
recommend using table aliases in all multi-table queries. This query requests the student number
(stno) and student name (sname) from the Student table, and the relationship and age from the
Dependent table when the student number in the Student table (stno) matches a parent number
(pno) in the Dependent table.

Table aliases were discussed in Chapter 2.

When the previous query is typed and executed, you will get the following output showing the
dependents of the students:

http://lib.ommolketab.ir

stno sname relationship age
------ -------------------- ------------ ------
2 Lineas Son 8
2 Lineas Daughter 9
2 Lineas Spouse 31
10 Richard Son 3
10 Richard Daughter 5
14 Lujack Son 1
14 Lujack 3
17 Elainie Daughter 4
17 Elainie Son 1
20 Donald Son NULL
20 Donald Son 6
34 Lynette Daughter 5
34 Lynette Daughter 1
62 Monica Husband 45
62 Monica Son 14
62 Monica Daughter 16
62 Monica Daughter 12
123 Holly Son 5
123 Holly Son 2
126 Jessica Son 6
126 Jessica Son 1
128 Brad Son 1
128 Brad Daughter NULL
128 Brad Daughter 2
128 Brad Wife 26
132 George Daughter 6
142 Jerry Daughter 2
143 Cramer Daughter 7
144 Fraiser Wife 22
145 Harrison Wife 22
146 Francis Wife 22
147 Smithly Wife 23
147 Smithly Son 4
147 Smithly Son 2
147 Smithly Son NULL
153 Genevieve Daughter 5
153 Genevieve Daughter 4
153 Genevieve Son 2
158 Thornton wife 22

 (39 row(s) affected)

4.1.2. Example 2

To find the course names and the prerequisites of all the courses that have prerequisites, we need to
join the Prereq table with the Course table. Course names are in the Course table and the Prereq

http://lib.ommolketab.ir

(prerequisites) table contains the relationship of each course to its prerequisite course. The
descriptions of the Prereq table and Course tables are shown in Figures 4-3 and 4-4, respectively.

Figure 4-3. Description of Prereq table

Figure 4-4. Description of Course table

From these descriptions, we first note that the Course table has course_number as its primary keythe
unique identifier for each course. The Prereq table also contains a course number, but the course
number in the Prereq table is not uniquethere are often several prerequisites for any given course.
The course number in the Prereq table is a foreign key referencing the primary key of the Course
table. The Prereq table (which has columns course_number and prereq) can be joined with the Course
table (which has columns course_name, course_number, credit_hours, and offering_dept) by the
relationship column in both tables, course_number, as follows:

SELECT *
FROM Course c JOIN Prereq p
ON c.course_number=p.course_number

The same query could be written without the table alias (using a table qualifier) as follows:

SELECT *
FROM Course JOIN Prereq
ON Course.course_number=Prereq.course_number

However, the use of the table alias is so common that the table-alias form should be used. Also,
aliases let you select columns that have the same names from the tables. This query will display
those rows (12 rows) that have course_number in the Course table equal to course_number in the

http://lib.ommolketab.ir

Prereq table, as follows:

COURSE_NAME COURSE_NUMBER CREDIT_HOURS OFFERING_DEPT COURSE_NUMBER PREREQ
-------------------- ------------- ------------ ------------- ------------- --------
MANAGERIAL FINANCE ACCT3333 3 ACCT ACCT3333 ACCT2220
ORGANIC CHEMISTRY CHEM3001 3 CHEM CHEM3001 CHEM2001
DATA STRUCTURES COSC3320 4 COSC COSC3320 COSC1310
DATABASE COSC3380 3 COSC COSC3380 COSC3320
DATABASE COSC3380 3 COSC COSC3380 MATH2410
ADA - INTRODUCTION COSC5234 4 COSC COSC5234 COSC3320
ENGLISH COMP II ENGL1011 3 ENGL ENGL1011 ENGL1010
FUND. TECH. WRITING ENGL3401 3 ENGL ENGL3401 ENGL1011
WRITING FOR NON MAJO ENGL3520 2 ENGL ENGL3520 ENGL1011
MATH ANALYSIS MATH5501 3 MATH MATH5501 MATH2333
AMERICAN GOVERNMENT POLY2103 2 POLY POLY2103 POLY1201
POLITICS OF CUBA POLY5501 4 POLY POLY5501 POLY4103

 (12 row(s) affected)

Rows from the Course table without a matching row in the Prereq table are not included from the
JOIN result set. Courses that do not have prerequisites are not in the result set.

A primary key is a column or a minimal set of columns whose values uniquely
identify a row in a table. A primary key cannot have a null value. Creation of
primary keys is discussed in Chapter 11.

The inner join uses equality in the ON clause (the join condition). When an equal sign is used as a join
condition, the join is called an equi-join. The use of equi-joins is so common that many people use
the phrase "join" synonymously with "equi-join"; when the term "join" is used without qualification,
"equi-join" is inferred.

When dealing with table combinations, specifically joins, it is a good idea to estimate the number of
rows one might expect in the result set. To find out how many rows will actually occur in the result
set, the COUNT function is used. For example:

SELECT COUNT(*)
FROM Course c JOIN Prereq p
ON c.course_number=p.course_number

will tell us that there are 12 rows in the result set.

In any equi join, let us suppose that the two tables to be joined have X number of rows and Y
number of rows respectively. How many rows does one expect in the join? A good guideline is in the
order of MAX(X,Y). In our case, we have 12 rows in the Prereq table and 32 rows in the Course table.

http://lib.ommolketab.ir

MAX(12,32) = 32, but we actually got 12 rows. MAX(X,Y) is just a guideline. The actual and expected
number of rows need not match exactly. It is possible that some Course-Prereq combinations might
be repeated.

4.1.3. The INNER JOIN

In SQL Server, the keyword combination INNER JOIN behaves just like the JOIN discussed in the
previous section. The general syntax for the INNER JOIN is:

SELECT columns
FROM table1 INNER JOIN table2
ON table1.column1=table2.column1

Using the INNER JOIN, the JOIN query presented in the previous section also could be written as:

SELECT *
FROM Course INNER JOIN Prereq
ON Course.course_number=Prereq.course_number

And, this query too, would produce the same results as given in the previous section.

As with the JOIN, the INNER JOIN cannot be used without the ON clause.

4.1.4. Using a WHERE Clause Instead of a JOIN

Another way of joining tables in SQL Server is to use a WHERE clause instead of using the JOIN or
INNER JOIN command. According to the SQL-92 standard, the inner join can be specified either with
the JOIN/INNER JOIN construction or with a WHERE clause. To perform a join with a WHERE clause, the
tables to be joined are listed in the FROM clause of a SELECT statement, and the "join condition"
between the tables to be joined is specified in the WHERE clause.

The JOIN from the preceding section could be written with a WHERE clause as follows:

SELECT *
FROM Course c, Prereq p
WHERE c.course_number= p.course_number

http://lib.ommolketab.ir

This command will display the same 12 rows as was previously shown (when the JOIN was used). You
will soon see one of the reasons it is better not to use WHERE.

4.1.5. Associative Property of the JOIN

When two tables are being joined, it does not matter whether TableA is joined with TableB, or TableB
is joined with TableA. For example, the following two queries would essentially give the same result
set (output):

SELECT *
FROM Course c JOIN Prereq p
ON c.course_number=p.course_number

and:

SELECT *
FROM Prereq p JOIN Course c
ON p.course_number=c.course_number

The only difference in the two result sets would be the order of the columns . But the result set
column order can be controlled by listing out the columns in the order that you want them after the
SELECT instead of using the SELECT * syntax.

4.1.6. Column Types in Joins

Joins have to be performed on "compatible" columns; that is, a character column may be joined to
another character column, a numeric column may be joined to another numeric column, and so forth.
So, for example, a CHAR column can be joined to a VARCHAR column (both being character columns), or
an INT column can be joined to a REAL column (both being numeric columns). Having made the point
that compatible columns are required, and keeping in mind that SQL is not logical, it is up to the
programmer to match semantics. In reality, why would you join two tables unless a relationship
existed? If you ask SQL to join a job_title column with a last_name column, it will try to do so even
though it makes no sense!

Some columns types--for example, IMAGE--cannot be joined, as these columns will generally not
contain "like" columns. Joins cannot be operated on binary data types.

4.1.7. Performance Hint for Efficient Joins

http://lib.ommolketab.ir

Join on the narrowest columns possible. The narrower the column, the less storage space is used by
SQL Server, and SQL Server can read and write the data faster.

http://lib.ommolketab.ir

4.2. The Cartesian Product

In a SQL statement, a Cartesian product is where every row of the first table in the FROM clause is
joined with each and every row of the second table in the FROM clause. A Cartesian product is
produced when the WHERE form of the JOIN is used without the WHERE. An example of a Cartesian
product (join) would be:

SELECT *
FROM Course c, Prereq p

The preceding command combines all the data in both the tables and makes a new result set. All
rows in the Course table are matched with all rows in the Prereq table (a Cartesian product). This
produces 384 rows of output, of which we show the first 10 rows here:

COURSE_NAME COURSE_NUMBER CREDIT_HOURS OFFERING_DEPT COURSE_NUMBER PREREQ
-------------------- ------------- ------------ ------------- ------------- -------
ACCOUNTING I ACCT2020 3 ACCT ACCT3333 ACCT2220
ACCOUNTING II ACCT2220 3 ACCT ACCT3333 ACCT2220
MANAGERIAL FINANCE ACCT3333 3 ACCT ACCT3333 ACCT2220
ACCOUNTING INFO SYST ACCT3464 3 ACCT ACCT3333 ACCT2220
INTRO TO CHEMISTRY CHEM2001 3 CHEM ACCT3333 ACCT2220
ORGANIC CHEMISTRY CHEM3001 3 CHEM ACCT3333 ACCT2220
INTRO TO COMPUTER SC COSC1310 4 COSC ACCT3333 ACCT2220
TURBO PASCAL COSC2025 3 COSC ACCT3333 ACCT2220
ADVANCED COBOL COSC2303 3 COSC ACCT3333 ACCT2220
DATA STRUCTURES COSC3320 4 COSC ACCT3333 ACCT2220
.
.
.
 (384 row(s) affected)

As we pointed out earlier, before combining tables, it is a good idea to get a count of the number of
rows one might expect. This can be done by:

SELECT COUNT(*) AS [COUNT OF CARTESIAN]
FROM Course c, Prereq p

which produces the following output:

http://lib.ommolketab.ir

COUNT OF CARTESIAN

384

(1 row(s) affected)

From these results, we can see that the results of a Cartesian "join" will be a relation, say Q, which
will have n*m rows (where n is the number of rows from the first relation, and m is the number of
rows from the second relation). In the preceding example, the result set has 384 rows (32 times 12),
with all possible combinations of rows from the Course table and the Prereq table. If we compare
these results with the results of the earlier query (with the WHERE clause), we can see that both the
results have the same structure, but the earlier one has been row-filtered by the WHERE clause to
include only those rows where there is equality between Course.course_number and
Prereq.course_number. Put another way, the earlier results make more sense because they present
only those rows that correspond to one another. In this example, the Cartesian product produces
extra, meaningless rows.

Oftentimes, the Cartesian product is the result of a user having forgotten to use an appropriate WHERE
clause in the SELECT statement when formulating a join using the WHERE format. Note that if the JOIN
or INNER JOIN syntax (ANSI JOIN syntax) is used, one cannot avoid the ON clause (no ON clause
produces a syntax error). Hence, producing a Cartesian product inadvertently in SQL Server 2005
using the JOIN/INNER JOIN is much harder to do.

4.2.1. Uses of the Cartesian Product

Though the Cartesian product is generally regarded as not so useful in SQL per se, if harnessed
properly, a Cartesian product can be used to produce exceptionally useful result sets, for example:

The Cartesian product can be used to generate sample or test data.

The simplest Cartesian product of two sets is a two-dimensional table or a cross-tabulation
whose cells may be used to enter frequencies or to designate possibilities.

The Cartesian product is needed if you want a collection of all ordered n-tuples (rows with n
columns) that can be formed so that they contain one element of the first set, one element of
the second set, . . ., and one element of the nth set. For example, if set (or table) X is the 13-
element set { A, K, Q, J, 10, 9, 8, 7, 6, 5, 4, 3, 2} and set (or table) Y is the 4-element set
{spades, hearts, diamonds, clubs}, then the Cartesian product of those two sets is the 52-
element set { (A, spades), (K, spades), . . ., (2, spades), (A, hearts), . . ., (3, clubs), (2, clubs)
}.

4.2.2. CROSS JOIN Used to Generate a Cartesian Product

http://lib.ommolketab.ir

In SQL Server, a CROSS JOIN can be used to return a Cartesian product of two tables. The form of the
CROSS JOIN is:

SELECT *
FROM Table1 CROSS JOIN Table2

Using our database, Student_course, the following CROSS JOIN would produce the same result
(Cartesian product) as the query (without the WHERE clause) used in the earlier section:

SELECT *
FROM Course CROSS JOIN Prereq p

http://lib.ommolketab.ir

4.3. Equi-Joins and Non-Equi-Joins

Joins with comparison (non-equal) operatorsthat is, =, >, >=, <, <=, and <>--on the WHERE or ON
clauses are called theta joins, where theta represents the relational operator. Inner joins with an =
operator are called equi-joins and joins with an operator other than an = sign are called non-equi-
joins .

4.3.1. Equi-Joins

The most common join involves join conditions with equality comparisons. Such a join, where the
comparison operator is = in the WHERE or ON clause, is called an equi-join. The following is an
example:

SELECT *
FROM Course c JOIN Prereq p
ON c.course_number=p.course_number

Another way to look at a join of any kind is that it is the Cartesian product with an added condition.
The output for this query has been shown earlier in this chapter. You will note that the result of the
join is simply the Cartesian product with the rows where the course numbers are equal. Per the
output, you will see that this query displays all rows that have course_number in the Course table
equal to course_number in the Prereq table. All the join columns have been included in this result set.
This means that course_number has been shown twiceonce from the Course table, and once from the
Prereq tableand, this duplicate column is of course redundant.

4.3.2. Non-Equi-Joins

Joins that do not test for equality are non-equi-joins. Non-equi-joins are rare. The following section
on self joins provides an example of a theta join without an equality (=) operator (a non-equi join).

http://lib.ommolketab.ir

4.4. Self Joins

On some occasions, you will need to join a table with itself. Joining a table with itself is known as a
self join.

In a regular join, a row of a table (Table A) is joined with a row of another table (Table B) if the
column value used for the join in Table A matches the column value used for the join in Table B. One
row of a table is processed at a time. But, if the information that you need is contained in several
different rows of the same table, for example if you need to compare row1, column1, with row2,
column1, you will need to join the table with itself.

Suppose that we want to find all the students who are more senior than other students. We have to
join the Student table with itself. Logically, we need to take a row from the Student table and look
through the rest of the Student table to see which rows fit the criterion ("more senior"). To
accomplish this, we will use two versions of the Student table. Here is our query:

SELECT 'SENIORITY' = x.sname + ' is in a higher class than ' + y.sname
FROM Student AS x, Student AS y
WHERE y.class = 3
AND x.class > y.class

First we alias the Student table as x, and then we alias another instance of the Student table as y.
Then we join where x.class is greater than y.class and we added the WHERE qualifier y.class = 3, so
this effectively gives us only the seniors. We restricted the result to "just seniors" to keep the result
set smaller). The use of the > sign is also an example of a non-equi-join.

+ is a string concatenation operator in SQL Server. String concatenation is
discussed in detail in the next chapter.

This query produces the 70 rows of output (of which we show a sample):

SENIORITY

Mary is in a higher class than Susan
Kelly is in a higher class than Susan
Donald is in a higher class than Susan
Chris is in a higher class than Susan
Jake is in a higher class than Susan
Holly is in a higher class than Susan
Jerry is in a higher class than Susan

http://lib.ommolketab.ir

Harrison is in a higher class than Susan
Francis is in a higher class than Susan
Benny is in a higher class than Susan
Mary is in a higher class than Monica
Kelly is in a higher class than Monica
Donald is in a higher class than Monica
.
.
.
Mary is in a higher class than Phoebe
Kelly is in a higher class than Phoebe
Donald is in a higher class than Phoebe
.
.
.
Mary is in a higher class than Rachel
Kelly is in a higher class than Rachel
Donald is in a higher class than Rachel
.
.
.
Mary is in a higher class than Cramer
Kelly is in a higher class than Cramer
Donald is in a higher class than Cramer
.
.
.
(70 row(s) affected)

In this join, all the rows where x.class is greater than y.class (which is restricted to 3) are joined to
the rows that have y.class = 3. So Mary, the first row that has x.class = 4, is joined to the first row
where class = 3 (y.class = 3), which is Susan. Then, the next row in the Student table with x.class
= 4 is Kelly, so Kelly is joined to Susan (y.class = 3), etc.

To more fully understand how the self join is working, view the data in the
Student table.

The alternative INNER JOIN syntax for this non-equi-join is:

SELECT 'SENIORITY' = x.sname + ' is more senior than ' + y.sname
FROM Student AS x INNER JOIN Student AS y
ON x.class > y.class
WHERE y.class = 3

http://lib.ommolketab.ir

http://lib.ommolketab.ir

4.5. Using ORDER BY with a Join

As with other SELECT statements, the ORDER BY clause can be used in joins to order the result set. For
example, to order the result set (output) of one of the queries presented earlier in this chapter by the
course_number column, we would type the following:

SELECT c.course_name, c.course_number, c.credit_hours, c.offering_dept, p.prereq
FROM Course c JOIN Prereq p
ON c.course_number=p.course_number
ORDER BY c.course_number

Or this alternative:

SELECT c.course_name, c.course_number, c.credit_hours, c.offering_dept, p.prereq
FROM Course c JOIN Prereq p
ON c.course_number=p.course_number
ORDER BY 2

ORDER BY 2 means to order by the second column of the result set. This query produces the same 12
rows as the previous query, but ordered alphabetically in the order of course_number:

COURSE_NAME COURSE_NUMBER CREDIT_HOURS OFFERING_DEPT PREREQ
-------------------- ------------- ------------ ------------- --------
MANAGERIAL FINANCE ACCT3333 3 ACCT ACCT2220
ORGANIC CHEMISTRY CHEM3001 3 CHEM CHEM2001
DATA STRUCTURES COSC3320 4 COSC COSC1310
DATABASE COSC3380 3 COSC COSC3320
DATABASE COSC3380 3 COSC MATH2410
ADA - INTRODUCTION COSC5234 4 COSC COSC3320
ENGLISH COMP II ENGL1011 3 ENGL ENGL1010
FUND. TECH. WRITING ENGL3401 3 ENGL ENGL1011
WRITING FOR NON MAJO ENGL3520 2 ENGL ENGL1011
MATH ANALYSIS MATH5501 3 MATH MATH2333
AMERICAN GOVERNMENT POLY2103 2 POLY POLY1201
POLITICS OF CUBA POLY5501 4 POLY POLY4103

(12 row(s) affected)

http://lib.ommolketab.ir

http://lib.ommolketab.ir

4.6. Joining More Than Two Tables

You will frequently need to perform a join in which you have to get data from more than two tables.
A join is a pair-wise, binary operation. In SQL Server, you can join more than two tables in either of
two ways: by using a nested JOIN, or by using a WHERE clause. Joins are always done pair-wise.

4.6.1. Joining Multiple Tables Using a Nested JOIN

The simplest form of the nested JOIN is as follows:

SELECT columns
FROM table1 JOIN
(table2 JOIN table3
ON table3.column3=table2.column2)
ON table1.column1=table2.column2

Here Tables 2 and 3 are joined to form a virtual table that is then joined to Table 1 to create your
result set. Note that the join in parentheses is completed first.

As an example of a nested join, if we want to see the courses (course names and numbers) that have
prerequisites and the departments (department names) offering those courses, we will have to join
three tables--Course, Prereq, and Department_to_major, because the data that we want to display is
spread among these three tables. We could choose to first join the Course table with the Prereq table,
and then join that result to the Department_to_major table. The Department_to_major table contains
the names of the departments. To determine which columns of the Department_to_major table can be
used in the join, we have to also look at the description of the Department_to_major table, which is
shown in Figure 4-5.

Figure 4-5. Description of Department_to_major table

The query to join the Course table to the Prereq table to the Department_to_major table with the
Course/Prereq join done first is:

http://lib.ommolketab.ir

SELECT c.course_name, c.course_number, d2m.dname
FROM department_to_major d2m JOIN
(course c JOIN prereq p
ON c.course_number=p.course_number)
ON c.offering_dept=d2m.dcode

In the nested JOIN, the part within the parentheses, course c JOIN prereq p ON
c.course_number=p.course_number, is performed first to produce a result set. The internal result is
then used to join to the third table, Department_to_major.

The result of the join is the following 12 rows:

course_name course_number dname
-------------------- ------------- --------------------
MANAGERIAL FINANCE ACCT3333 Accounting
ORGANIC CHEMISTRY CHEM3001 Chemistry
DATA STRUCTURES COSC3320 Computer Science
DATABASE COSC3380 Computer Science
DATABASE COSC3380 Computer Science
ADA - INTRODUCTION COSC5234 Computer Science
ENGLISH COMP II ENGL1011 English
FUND. TECH. WRITING ENGL3401 English
WRITING FOR NON MAJO ENGL3520 English
Math Analysis MATH5501 Mathematics
AMERICAN GOVERNMENT POLY2103 Political Science
POLITICS OF CUBA POLY5501 Political Science

 (12 row(s) affected)

Which join is performed first has performance implications. We could choose to do the
Course/Department_to_major table join first, in which case the query could be written as follows:

SELECT c.course_name, c.course_number, d.dname
FROM (course c JOIN department_to_major d
ON c.offering_dept = d.dcode)
JOIN prereq p
ON p.course_number = c.course_number

For larger tables and multi-table joins, the order will determine which version of the query would be
most efficient.

http://lib.ommolketab.ir

4.7. The OUTER JOIN

In an equi-inner join, rows without matching values are eliminated from the join result. For example,
with the following join, we did not see information on any course that did not have a prerequisite:

SELECT *
FROM Course c, Prereq p
WHERE c.course_number = p.course_number

In some cases, it may be desirable to include rows from one table even if it does not have matching
rows in the other table. This is done by the use of an OUTER JOIN. OUTER JOINs are used when we
want to keep all the rows from the one table, such as Course, or all the rows from the other,
regardless of whether they have matching rows in the other table. In SQL Server, an OUTER JOIN in
which we want to keep all the rows from the first (left) table is called a LEFT OUTER JOIN, and an
OUTER JOIN in which we want to keep all the rows from the second table (or right relation) is called
the RIGHT OUTER JOIN. The term FULL OUTER JOIN is used to designate the union of the LEFT and
RIGHT OUTER JOINs. In the following subsections, we illustrate the LEFT OUTER JOIN, RIGHT OUTER
JOIN, and FULL OUTER JOIN.

4.7.1. The LEFT OUTER JOIN

LEFT OUTER JOINs include all the rows from the first (left) of the two tables, even if there are no
matching values for the rows in the second (right) table. LEFT OUTER JOINs are performed in SQL
Server using a LEFT OUTER JOIN statement.

LEFT JOIN is the same as LEFT OUTER JOIN. The inclusion of the word OUTER is
optional in SQL Server SQL, but we will use LEFT OUTER JOIN instead of LEFT
JOIN for clarity.

The following is the simplest form of a LEFT OUTER JOIN statement:

SELECT columns
FROM table1 LEFT OUTER JOIN table2
ON table1.column1=table2.column1

http://lib.ommolketab.ir

For example, if we want to list all the rows in the Course table (the left, or first table), even if these
courses do not have prerequisites, we type the following LEFT OUTER JOIN statement:

SELECT *
FROM Course c LEFT OUTER JOIN Prereq p
ON c.course_number = p.course_number

Here the LEFT OUTER JOIN is processed as follows: First, all the rows from the Course table that have
course_number equal to the course_number in the Prereq table are joined. Then, when a row (with a
course_number) from the Course table (first table) has no match in Prereq table (second table), the
rows from the Course table are anyway included in the result set with a row of null values joined to
the right side. This means that the courses that do not have prerequisites will get a set of null values
for prerequisites. So, the output (result set) of a LEFT OUTER JOIN includes all rows from the left
(first) table, which in this case is the Course table with matching Prereq rows where applicable.

The use of the *= operator for the LEFT OUTER JOIN is considered old syntax,
and hence its use is not encouraged. It is prone to ambiguities, especially when
joining three or more tables.

The previous query will produce the following 33 rows of output (of which we show the first 13 rows
here):

COURSE_NAME COURSE_NUMBER CREDIT_HOURS OFFERING_DEPT COURSE_NUMBER PREREQ
-------------------- ------------- ------------ ------------- ------------- -------
ACCOUNTING I ACCT2020 3 ACCT NULL NULL
ACCOUNTING II ACCT2220 3 ACCT NULL NULL
MANAGERIAL FINANCE ACCT3333 3 ACCT ACCT3333 ACCT2220
ACCOUNTING INFO SYST ACCT3464 3 ACCT NULL NULL
INTRO TO CHEMISTRY CHEM2001 3 CHEM NULL NULL
ORGANIC CHEMISTRY CHEM3001 3 CHEM CHEM3001 CHEM2001
INTRO TO COMPUTER SC COSC1310 4 COSC NULL NULL
TURBO PASCAL COSC2025 3 COSC NULL NULL
ADVANCED COBOL COSC2303 3 COSC NULL NULL
DATA STRUCTURES COSC3320 4 COSC COSC3320 COSC1310
DATABASE COSC3380 3 COSC COSC3380 COSC3320
DATABASE COSC3380 3 COSC COSC3380 MATH2410
OPERATIONS RESEARCH COSC3701 3 COSC NULL NULL
.
.
.

(33 row(s) affected)

Note the nulls added to courses (due to the LEFT OUTER JOIN) like ACCOUNTING I, ACCOUNTING II,

http://lib.ommolketab.ir

ACCOUNTING INFO SYST, and so on, which are the courses (in the Course table) that do not have
prerequisites.

4.7.2. The RIGHT OUTER JOIN

RIGHT OUTER JOINs include all the rows from the second (right) of the two tables, even if there are no
matching values for the rows in the first (left) table. RIGHT OUTER JOINs are performed in SQL Server
using a RIGHT OUTER JOIN statement.

RIGHT JOIN is the same as RIGHT OUTER JOIN. The inclusion of the word OUTER is
optional in SQL Server SQL, but we will use RIGHT OUTER JOIN instead of RIGHT
JOIN for clarity's sake.

The following is the simplest form of a RIGHT OUTER JOIN statement:

SELECT columns
FROM table1 RIGHT OUTER JOIN table2
ON table1.fieldcolumn1=table2.column1

As an example, we will redo the previous query from the right side. If we want to list all the rows in
the Course table (the right, or second table), even if these courses do not have prerequisites, we may
type the following RIGHT OUTER JOIN statement:

SELECT *
FROM Prereq p RIGHT OUTER JOIN Course c
ON p.course_number = c.course_number

Here, the RIGHT OUTER JOIN is processed as follows. First, all the rows from the Prereq table that
have course_number equal to the course_number in the Course table are joined. Then, when a row
(with a course_number) from the Course table (second table) has no match in the Prereq table (first
table), the rows from the Course table are anyway included in the result set with a row of null values
joined to the left side. This means that courses that do not have prerequisites will get a set of null
values joined to the left side. The output of a RIGHT OUTER JOIN includes all rows from the right
(second) table, which in this case is the Course table, producing output similar to that obtained in the
previous section.

The output consists of 33 rows (of which the first 13 rows are shown here):

COURSE_NUMBER PREREQ COURSE_NAME COURSE_NUMBER CREDIT_HOURS OFFERING_DEPT
------------- -------- -------------------- ------------- ------------ ------------

http://lib.ommolketab.ir

NULL NULL ACCOUNTING I ACCT2020 3 ACCT
NULL NULL ACCOUNTING II ACCT2220 3 ACCT
ACCT3333 ACCT2220 MANAGERIAL FINANCE ACCT3333 3 ACCT
NULL NULL ACCOUNTING INFO SYST ACCT3464 3 ACCT
NULL NULL INTRO TO CHEMISTRY CHEM2001 3 CHEM
CHEM3001 CHEM2001 ORGANIC CHEMISTRY CHEM3001 3 CHEM
NULL NULL INTRO TO COMPUTER SC COSC1310 4 COSC
NULL NULL TURBO PASCAL COSC2025 3 COSC
NULL NULL ADVANCED COBOL COSC2303 3 COSC
COSC3320 COSC1310 DATA STRUCTURES COSC3320 4 COSC
COSC3380 COSC3320 DATABASE COSC3380 3 COSC
COSC3380 MATH2410 DATABASE COSC3380 3 COSC
NULL NULL OPERATIONS RESEARCH COSC3701 3 COSC
.
.
.

(33 row(s) affected)

Once again, note the NULLs added to the unmatched rows from the second table due to the use of
the RIGHT OUTER JOIN.

4.7.3. The FULL OUTER JOIN

The FULL OUTER JOIN includes the rows that are equi-joined from both tables, plus the remaining
rows from the first table and the remaining rows from the second table. NULLs are added to the
unmatched rows from both the first and second tables.

The following is the simplest form of a FULL OUTER JOIN statement:

SELECT columns
FROM table1 FULL OUTER JOIN table2
ON table1.column1=table2.column1

If we want to list all the rows for which a connection exists between the Prereq table and the Course
table (result of a regular JOIN), and in addition, we want all rows from the Prereq table for which
there is no corresponding row in the Course table (LEFT OUTER JOIN), and in addition, we want all
rows in the Course table for which there is no corresponding row in the Prereq table (RIGHT OUTER
JOIN), we would use the following FULL OUTER JOIN statement:

SELECT *
FROM Prereq p FULL OUTER JOIN Course c
ON p.course_number = c.course_number

http://lib.ommolketab.ir

We will get 33 rows:

COURSE_NUMBER PREREQ COURSE_NAME COURSE_NUMBER CREDIT_HOURS OFFERING_DEPT
------------- -------- -------------------- ------------- ------------ ------------
NULL NULL ACCOUNTING I ACCT2020 3 ACCT
NULL NULL ACCOUNTING II ACCT2220 3 ACCT
ACCT3333 ACCT2220 MANAGERIAL FINANCE ACCT3333 3 ACCT
NULL NULL ACCOUNTING INFO SYST ACCT3464 3 ACCT
NULL NULL INTRO TO CHEMISTRY CHEM2001 3 CHEM
CHEM3001 CHEM2001 ORGANIC CHEMISTRY CHEM3001 3 CHEM
NULL NULL INTRO TO COMPUTER SC COSC1310 4 COSC
NULL NULL TURBO PASCAL COSC2025 3 COSC
NULL NULL ADVANCED COBOL COSC2303 3 COSC
COSC3320 COSC1310 DATA STRUCTURES COSC3320 4 COSC
COSC3380 COSC3320 DATABASE COSC3380 3 COSC
COSC3380 MATH2410 DATABASE COSC3380 3 COSC
NULL NULL OPERATIONS RESEARCH COSC3701 3 COSC
NULL NULL ADVANCED ASSEMBLER COSC4301 3 COSC
NULL NULL SYSTEM PROJECT COSC4309 3 COSC
COSC5234 COSC3320 ADA - INTRODUCTION COSC5234 4 COSC
NULL NULL NETWORKS COSC5920 3 COSC
NULL NULL ENGLISH COMP I ENGL1010 3 ENGL
ENGL1011 ENGL1010 ENGLISH COMP II ENGL1011 3 ENGL
ENGL3401 ENGL1011 FUND. TECH. WRITING ENGL3401 3 ENGL
NULL NULL TECHNICAL WRITING ENGL3402 2 ENGL
ENGL3520 ENGL1011 WRITING FOR NON MAJO ENGL3520 2 ENGL
NULL NULL CALCULUS 1 MATH1501 4 MATH
NULL NULL CALCULUS 2 MATH1502 3 MATH
NULL NULL CALCULUS 3 MATH1503 3 MATH
NULL NULL ALGEBRA MATH2333 3 MATH
NULL NULL DISCRETE MATHEMATICS MATH2410 3 MATH
MATH5501 MATH2333 Math Analysis MATH5501 3 MATH
NULL NULL AMERICAN CONSTITUTIO POLY1201 1 POLY
NULL NULL INTRO TO POLITICAL S POLY2001 3 POLY
POLY2103 POLY1201 AMERICAN GOVERNMENT POLY2103 2 POLY
NULL NULL SOCIALISM AND COMMUN POLY4103 4 POLY
POLY5501 POLY4103 POLITICS OF CUBA POLY5501 4 POLY

 (33 row(s) affected)

http://lib.ommolketab.ir

4.8. Summary

After reading this chapter, you should have an appreciation of the concept of the join, a concept very
fundamental to understanding relational databases. We have illustrated, with examples, the regular
JOIN, CROSS JOIN and the Cartesian product, equi-joins and non-equi-joins, the self join, LEFT OUTER
JOIN, RIGHT OUTER JOIN, and FULL OUTER JOIN. We have also discussed how multiple tables can be
joined using a nested join.

http://lib.ommolketab.ir

4.9. Review Questions

What is a join? Why do you need a join?1.

What is an INNER JOIN?2.

Which clause[s] can be used in place of the JOIN in Server SQL?3.

What is the Cartesian product?4.

What would be the Cartesian product of a table with 15 rows and another table with 23 rows?5.

List some uses of the Cartesian product.6.

What is an equi-join?7.

What is a non-equi-join? Give an example of an non-equi-join.8.

What is a self join? Give an example of a self join.9.

What is a LEFT OUTER JOIN?10.

What is a RIGHT OUTER JOIN?11.

What is a CROSS JOIN?12.

What is a FULL OUTER JOIN?13.

Does Server SQL allow the use of *= to perform outer joins?14.

What is the maximum number of rows that a self join can produce?15.

For what kinds of joins will the associative property hold?16.

What would be the Cartesian product of the two sets {a,b,c} and {c,d,e}?17.

http://lib.ommolketab.ir

4.10. Exercises

Unless specified otherwise, use the Student_course database to answer the following questions. Also,
use appropriate column headings when displaying your output.

Create two tables, Stu(name, majorCode) and Major(majorCode, majorDesc), with the following
data. Use VARCHAR for the codes and appropriate data types for the other columns.

Stu

name majorCode

Jones CS

Smith AC

Evans MA

Adams CS

Sumon

Major

majorCode majorDesc

AC Accounting

CS Computer Science

MA Math

HI History

Display the Cartesian product (no WHERE clause) of the two tables. Use SELECT *.... How
many rows did you get? How many rows will you always get when combining two tables
with n and m rows in them (Cartesian product)?

a.

Display an equi-join of the Stu and Major tables on majorCode. First do this using the INNER
JOIN, and then display the results using the equi-join with an appropriate WHERE clause.
Use appropriate table aliases. How many rows did you get?

b.

Display whatever you get if you leave off the column qualifiers (the aliases) on the equi-
join in question 1b. (Note: This will give an error because of ambiguous column names.)

c.

Use the COUNT(*) function instead of SELECT * in the query. Use COUNT to show the numberd.

e.

1.

http://lib.ommolketab.ir

c.

of rows in the result set of the equi-join.
d.

Display the name, majorCode, and majorDesc of all students regardless of whether or not
they have a declared major (even if the major column is null). (Hint: You need to use a
LEFT OUTER JOIN here if Stu is the first table in your equi-join query.)

e.

Display a list of majorDescs available (even if the majorDesc does not have students yet)
and the students in each of the majors. (Hint: You need to use a RIGHT OUTER JOIN here.)

f.

Display the Cartesian product of the two tables using a CROSS JOIN.g.

Create two tables, T1(name, jobno) and T2(jobno, jobdesc). Let jobno be data type INT, and use
appropriate data types for the other columns. Put three rows in T1 and two rows in T2. Give
T1.jobno values 1, 2, 3 for the three rows: <..., 1>,<..., 2,>,<..., 3>, where ... represents
any value you choose. Give T2.jobno the values 1, 2: <1,...>,<2,...>.

How many rows are in the equi-join (on jobno) of T1 and T2?a.

If the values of T2.jobno were <2,...>, <2,...> (with different jobdesc values), how many
rows would you expect to get, and why? Why would the rows have to have different
descriptions?

b.

If the values of T2.jobno were 4, 5 as in <4,...>,<5,...>, how many rows would you
expect to get?

c.

If the values of T1.jobno were <..., 1>,<..., 1>,<..., 1> (with different names) and the
values of T2.jobno were <1,...>,<1...> with different descriptions, how many rows would
you expect to get?

d.

If you have two tables, what is the number of rows you may expect from an equi-join
operation (and with what conditions)? A Cartesian product?

e.

The number of rows in an equi-join of two tables, whose sizes are m and n rows, is from
___ to ____ depending on these conditions: _________ .

f.

2.

Use tables T1 and T2 in this exercise. Create another table called T3(jobdesc, minpay). Let
minpay be of data type SMALLMONEY. Populate the table with at least one occurrence of each
jobdesc from table T2 plus one more jobdesc that is not in T2. Write and display the result of a
triple equi-join of T1, T2, and T3. Use an appropriate comment on each of the lines of the WHERE
clause on which there are equi-join conditions. (Note: You will need two equi-join conditions.)

How many rows did you get in the equi-join?a.

Use the COUNT(*) function and display the number of rows in the equi-join.b.

How many rows would you get in this meaningless, triple Cartesian product (use
COUNT(*))?

c.

In an equi-join of n tables, you always have _______ _ equi-join conditions in the WHERE
clause.

d.

3.

http://lib.ommolketab.ir

In the preceding three exercises, you created tables T1, T2, T3, Stu, and Major. When you
have completed the three exercises, delete these tables.

Answer questions 4 through 8 by using the Student_course database.

d.

Display a list of course names for all of the prerequisite courses.4.

Use a JOIN or INNER JOIN to join the Section and Course tables.

List the course names, instructors, the semesters and years they were teaching in.a.

List the instructor, course names, and offering departments of each of the courses the
instructors were teaching.

b.

5.

Use a LEFT OUTER JOIN to join the Section and Course tables.

List the course names, instructors, and the semesters and years they were teaching in.
Sort in descending order by instructors.

a.

List the instructor, course names, and offering departments of each of the courses the
instructors were teaching.

b.

6.

Use a RIGHT OUTER JOIN to join the Section and Course tables.

For each instructor, list the name of each course they teach and the semester and year in
which they teach that course.

a.

For each course, list the name of the instructor and the name of the department in which
it is offered.

b.

7.

Are there any differences in the answers for questions 5, 6, and 7? Why? Explain.a.

Use a FULL OUTER JOIN to join the Section and Course tables. How do the results vary from
the results of questions 5, 6, and 7?

b.

Discuss the output that the following query would produce:

SELECT *
FROM Course AS c, Prereq AS p
WHERE c.course_number<>p.course_number

9.

Find all the sophomores who are more senior than other students. (Hint: Use a self-join.)10.

11.

12.

http://lib.ommolketab.ir

10.

Find all the courses that have more credit hours than other courses. (Hint: Use a self-join.)11.

Display a list of the names of all students who have dependents, the dependents name,
relationship and age, ordered by the age of the dependent.

12.

http://lib.ommolketab.ir

Chapter 5. Functions
Functions are preprogrammed mini-programs that perform a certain task. As with mathematics,
functions transform values into another result. SQL Server 2005 has a wide range of built-in
functions to carry out various tasks. In this chapter, we introduce several of SQL Server 2005's
useful built-in functions, which can be divided into row-level functions, aggregate functions, and other
special functions. Row-level functions operate on a row at a time, whereas aggregate functions
operate on many rows at once.

In SQL Server, we can group the row-level functions into four types: numeric functions, string
functions, conversion functions, and date functions. Numeric functions are used for calculations. An
example of a numeric function is the SQUARE function, which would return the square (a row at a
time) of every number (row) of a particular column. String functions are used to manipulate strings
in a particular column (again, one row at a time). An example of a string function is SUBSTRING, which
extracts characters from a string. Conversion functions are used to convert a particular column (a
row at a time) from one data type to another. And, date functions (created using the DATETIME data
type) operate on a particular data column or attribute, a row at a time. Date functions are also
considered fundamental to the operations of a database.

The second category of functions that we will discuss is aggregate functions. Aggregate functions
provide a one-number result after calculations based on multiple rows. Examples of aggregate
functions are MIN or AVG, which stand for the minimum or average, respectively, and return the
minimum or average value respectively, of multiple rows of a particular column.

The third category of functions that we will discuss is a special class of "other" functions. These other
functions produce a smaller subset of rows from multiple rows. Example of these other kind of
functions would be the DISTINCT function or the TOP function, both of which produce a smaller subset
of rows from the complete set.

Note that most of the functions discussed in this chapter are placed in a SELECT statement, and so
they are "read-only" or "display-only" functions. Any SELECT statement function will not change the
underlying data in the database. To change the underlying data in a database, UPDATE (instead of
SELECT) would have to be used (as shown in Chapter 3).

We begin the chapter by discussing aggregate functions. We discuss row-level functions later in the
chapter.

http://lib.ommolketab.ir

5.1. Aggregate Functions

An aggregate function (or group function) is a function that returns a result (one number) after
calculations based on multiple rows. We use the term "aggregate" (instead of "group"), because it
avoids confusion later in the book (we discuss other GROUP functions in Chapter 9). An aggregate
function basically combines multiple rows into a single number. Aggregate functions can be used to
count the number of rows, find the sum or average of all the values in a given numeric column, and
find the largest or smallest of the entries in a given column. In SQL, these aggregate functions are:
COUNT, SUM, AVG, MAX, and MIN, respectively. In this section, we examine several of these aggregate
functions.

5.1.1. The COUNT Function

The COUNT function is used to count how many (rows) of something there are, or the number of rows
in a result set. Following is the general syntax for the COUNT function.

 SELECT COUNT(*)
 FROM Table-name(s)

COUNT(*) returns a count of the number of rows in the table(s).

The following query counts the number of rows in the table, Grade_report:

 SELECT COUNT(*) AS [Count]
 FROM Grade_report

The following is its output:

 Count

 209

 (1 row(s) affected)

COUNT(*) counts all rows, including rows that have some (or even all) null values in some columns.

http://lib.ommolketab.ir

In Figure 5-1, we present the table definition of the Grade_report table to remind you of the columns
available in the Grade_report table.

Figure 5-1. Table definition of the Grade_report table

Sometimes we want to count how many items we have in a specific column. The general syntax for
counting the number of items in a specific column is:

 SELECT COUNT(attribute_name)
 FROM Table-name(s)

For example, to count the number of grades in the grade column of the Grade_report table, we could
type the following:

 SELECT COUNT(grade) AS [Count of Grade]
 FROM Grade_report

This produces the following output:

 Count of Grade

 114

 (1 row(s) affected)

COUNT(column) counts only non null columns. Although the Grade_report table has 209 rows, you get
a count of 114 grades rather than 209 grades, because there are some null grades in the grade
column.

The COUNT feature can be quite useful because it can save you from unexpectedly long results. Also,
you can use it to answer "how many" queries without looking at the row-values themselves. In
Chapter 4, which showed how Cartesian products are generated, you learned that SQL does not
prevent programmers from asking questions that have very long or even meaningless answers. Thus,
when dealing with larger tables, it is good to first ask the question, "How many rows can I expect in

http://lib.ommolketab.ir

my answer?" This question may be vital if a printout is involved. For example, consider the question,
"How many rows are there in the Cartesian product of the Student, Section, and Grade_report tables
in our database?" This is answered by the query:

 SELECT COUNT(*) AS Count
 FROM Student, Section, Grade_report

The following output shows the count from this query, which will be equal to the product of the table
sizes of the three tables (the Cartesian product of the three tables). Obviously, in this example, it
would be a good idea to first find out the number of rows in this result set before printing it.

 Count

 321024

 (1 row(s) affected)

Contrast the previous COUNTing-query and its Cartesian product result to this query:

 SELECT COUNT(*) AS [Count]
 FROM Student, Grade_report, Section
 WHERE Student.stno = Grade_report.student_number
 AND Grade_report.section_id = Section.section_id

The following is the result of this query:

 Count

 209

 (1 row(s) affected)

What is requested here is a count of a three-way equi-join rather than a three-way Cartesian
product, the result of which is something you probably would be much more willing to work with.
Note also that you expect a count of about 209 from the sizes of the tables involved: Student (48
rows), Grade_report (209 rows), and Section (32 rows). The expected count of a join operation is of
the order of magnitude of the larger number of rows in the tables.

SQL syntax will not allow you to count two or more columns at the same time. The following query
will not work:

http://lib.ommolketab.ir

 SELECT COUNT (grade, section_id)
 FROM Grade_report

You will get the following error message:

 Msg 174, Level 15, State 1, Line 2
 The COUNT function requires 1 argument(s).

5.1.2. The SUM Function

The SUM function totals the values in a numeric column. For example, suppose you have another table
called Employee that looks like this:

 names wage hours
 --------------- ------------ -----------
 Sumon Bagui 10.0000 40
 Sudip Bagui 15.0000 30
 Priyashi Saha 18.0000 NULL
 Ed Evans NULL 10
 Genny George 20.0000 40

 (5 row(s) affected)

In this Employee table, names is defined as a NVARCHAR column, wage is defined as a SMALLMONEY
column, and hours is defined as SMALLINT.

This Employee table has not been created for you in the Student_course
database. You have to create and insert rows into it in order to run the
following queries.

To find the sum of hours worked, use the SUM function like this:

 SELECT SUM(Hours) AS [Total hours]
 FROM Employee

This query produces the following output:

http://lib.ommolketab.ir

 Total hours

 120

 Warning: Null value is eliminated by an aggregate or other SET operation.
 (1 row(s) affected)

Columns that contain null values are not included in the SUM function (and not in any aggregate
numeric functions except COUNT(*)).

AS [Total hours] is an illustration of an alternative way of giving a title to a
column.

5.1.3. The AVG Function

The AVG function calculates the arithmetic mean (the sum of non null values divided by the number of
non null values) of a set of values contained in a numeric column (or attribute) in the result set of a
query. For example, if you want to find the average hours worked from the Employee table, type:

 SELECT AVG(hours) AS [Average hours]
 FROM Employee

This produces the following output:

 Average hours

 30

 Warning: Null value is eliminated by an aggregate or other SET operation.
 (1 row(s) affected)

Again, note that the null value is ignored (not used) in the calculation of the average, so the total
hours (120) is divided by 4 rather than 5.

5.1.4. The MIN and MAX Functions

http://lib.ommolketab.ir

The MIN function finds the minimum value from a column, and the MAX function finds the maximum
value (once again, nulls are ignored). For example, to find the minimum and maximum wage from
the Employee table, you could type the following:

 SELECT MIN(wage) AS [Minimum Wage], MAX(wage) AS [Maximum Wage]
 FROM Employee

This query produces the following output:

 Minimum Wage Maximum Wage
 ------------ ------------
 20.0000

 Warning: Null value is eliminated by an aggregate or other SET operation.
 (1 row(s) affected)

The MIN and MAX functions also work with character and datetime columns. For example, if we type:

 SELECT "First name in alphabetical order" = MIN(names)
 FROM Employee

We will get:

 First name in alphabetical order

 Ed Evans

 (1 row(s) affected)

And, if we type:

 SELECT "Last name in alphabetical order" = MAX(names)
 FROM Employee

We will get:

http://lib.ommolketab.ir

 Last name in alphabetical order

 Sumon Bagui

 (1 row(s) affected)

In the case of strings, the MIN and MAX are related to the collating sequence of the letters in the
string. Internally, the column that we are trying to determine the MIN or MAX of is sorted
alphabetically. Then, MIN returns the first (top) of the alphabetical list, and MAX returns the last
(bottom) of the alphabetical list.

http://lib.ommolketab.ir

5.2. Row-Level Functions

Whereas aggregate functions operate on multiple rows for a result, row-level functions operate on
values in single rows, one row at a time. In this section, we look at row-level functions that are used
in calculationsfor example, row-level functions that are used to add a number to a column, the ROUND
function, the ISNULL function, and others.

5.2.1. Arithmetic Operations on a Column

A row-level "function" can be used to perform an arithmetic operation on a column.

Strictly speaking a row-level "function" is not a function, but an operation
performed in a result set. But the use of arithmetic operations in result sets
behaves like functions.

For example, in the Employee table, if we wanted to display every person's wage plus 5, we could
type the following:

 SELECT wage, (wage + 5) AS [wage + 5]
 FROM Employee

In this query, from the Employee table, first the wage is displayed, then the wage is incremented by
five with (wage + 5), and displayed.

This query produces the following output:

 wage wage + 5
 ------------ ------------
 10.0000 15.0000
 15.0000 20.0000
 18.0000 23.0000
 NULL NULL
 20.0000 25.0000

 (5 row(s) affected)

http://lib.ommolketab.ir

Similarly, values can be subtracted (with the - operator), multiplied (with
the * operator), and divided (with the / operator) to and from columns.

Once again, note that (wage + 5) is only a "read-only" or "display-only" function, because we are
using it in a SELECT statement. The wage in the Employee table is not actually changing. We are only
displaying what the wage + 5 is. To actually increase the wage in the Employee table by 5, we would
have to use the UPDATE command. Any other arithmetic operation may be performed on numeric
data.

5.2.2. The ROUND Function

The ROUND function rounds numbers to a specified number of decimal places. For example, in the
Employee table, if you wanted to divide every person's wage by 3 (a third of the wage), you would
type (wage/3). Then, to round this, you could use ROUND(wage/3), and include the precision (number
of decimal places) after the comma. In query form, this would be:

 SELECT names, wage, ROUND((wage/3), 2) AS [wage/3]
 FROM Employee

This query produces the following output:

 names wage wage/3
 -------------------- --------------------- ---------------------
 Sumon Bagui 10.00 3.33
 Sudip Bagui 15.00 5.00
 Priyashi Saha 18.00 6.00
 Ed Evans NULL NULL
 Genny George 20.00 6.67

 (5 row(s) affected)

In this example, the values of (wage/3) are rounded up to two decimal places because of the "2"
after the comma after ROUND(wage/3).

5.2.3. Other Common Numeric Functions

Other very common numeric functions include:

http://lib.ommolketab.ir

CEILING(attribute), which returns the next larger integer value when a number contains
decimal places.

FLOOR(attribute), which returns the next lower integer value when a number contains decimal
places.

SQRT(attribute), which returns the square root of positive numeric values.

ABS(attribute), which returns the absolute value of any numeric value.

SQUARE(attribute), which returns a number squared.

5.2.4. The ISNULL Function

The results of the queries in the preceding sections show not only that nulls are ignored, but that if a
null is contained in a calculation on a row, the result is always null. We will illustrate, with a couple of
examples, how to handle this NULL issue.

5.2.4.1. Example 1

In the first example, we will illustrate how to handle the NULL problem and also illustrate how to
create variables on the fly. SQL Server 2005 allows you to create variables on the fly using a DECLARE
statement followed by a @, the variable name (a or b, in our example) and then data type of the
variable (both declared as FLOAT in our example). Variables are assigned values using the SET
statement. And variables can be added in the SELECT statement.

A variable is a special place in memory used to hold data temporarily.

So, type the following sequence to declare the variables (a and b), assign values to them, and then
add them together:

 DECLARE @a FLOAT, @b FLOAT
 SET @a = 3
 SET @b = 2
 SELECT @a + @b AS 'A + B = '

This query gives the result:

 A + B =

http://lib.ommolketab.ir

 5

 (1 row(s) affected)

SQL Server allows the use of SELECT with no FROM clause for such calculations as we have illustrated.

Now, if you set the variable a to null, as follows:

 DECLARE @a FLOAT, @b FLOAT
 SET @a = NULL
 SET @b = 2
 SELECT @a + @b AS 'A + B = '

You get this:

 A + B =

 NULL

 (1 row(s) affected)

To handle the null issue, SQL Server 2005 provides a row-level function, ISNULL, which returns a
value if a table value is null. The ISNULL function has the following form:

 ISNULL(expression1, ValueIfNull)

The ISNULL function says that if the expression (or column value) is not null, return the value, but if
the value is null, return ValueIfNull. Note that the ValueIfNull must be compatible with the data
type. For example, if you wanted to use a default value of zero for a null in the previous example,
you could type this:

 DECLARE @a FLOAT, @b FLOAT
 SET @a = NULL
 SET @b = 2
 SELECT ISNULL(@a, 0) + ISNULL(@b, 0) AS 'A + B = '

Which would give:

http://lib.ommolketab.ir

 A + B =

 2

 (1 row(s) affected)

Here, @b is unaffected, but @a is set to zero for the result set as a result of the ISNULL function. @a is
not actually changed, it is replaced for the purposes of the query.

5.2.4.2. Example 2

For the second example we will use the Employee table. To multiply the wage by hours and avoid the
null-result problem by making the nulls act like zeros, a query could read:

 SELECT names, wage, hours, ISNULL(wage, 0)*ISNULL(hours,0) AS [wage*hours]
 FROM Employee

This query would produce the following output:

 names wage hours wage*hours
 --------------- ------------ ----------- ------------
 Sumon Bagui 10.00 40 400.00
 Sudip Bagui 15.00 30 450.00
 Priyashi Saha 18.00 NULL 0.00
 Ed Evans NULL 10 0.00
 Genny George 20.00 40 800.00

 (5 row(s) affected)

ISNULL does not have to have a ValueIfNull equal to zero. For example, if you want to assume that
the number of hours is 40 if the value for hours is null, then you could use the following expression:

 SELECT names, wage, new_wage = ISNULL(wage, 40)
 FROM Employee

This query would give:

http://lib.ommolketab.ir

 names wage new_wage
 --------------- ------------ ------------
 Sumon Bagui 10.00 10.00
 Sudip Bagui 15.00 15.00
 Priyashi Saha 18.00 18.00
 Ed Evans NULL 40.00
 Genny George 20.00 20.00

 (5 row(s) affected)

5.2.5. The NULLIF Function

SQL Server 2005 also has a NULLIF function, which returns a NULL if expression1 = expression2. If the
expressions are not equal, then expression1 is returned. The NULLIF function has the following form:

 NULLIF(expression1, expression2)

For example, if we want to see whether the wage is 0, we would type:

 SELECT names, wage, new_wage = NULLIF(wage, 0)
 FROM Employee

This query would give:

 names wage new_wage
 --------------- ------------ ------------
 Sumon Bagui 10.00 10.00
 Sudip Bagui 15.00 15.00
 Priyashi Saha 18.00 18.00
 Ed Evans NULL NULL
 Genny George 20.00 20.00

 (5 row(s) affected)

From these results we can see that because none of the wages are equal to 0, the wage
(expression1) is returned in every case. Even the NULL wage (Ed Evans's wage) is not equal to 0, but

NULL is returned anyway, as the value in question is NULL.

If, for example, a wage 15 was unacceptable for some reason, you could null out the value of 15

http://lib.ommolketab.ir

using the NULLIF function like this:

 SELECT names, wage,
 new_wage = NULLIF(wage, 15)
 FROM Employee

This query would give:

 names wage new_wage
 --------------- ------------ ------------
 Sumon Bagui 10.00 10.00
 Sudip Bagui 15.00 NULL
 Priyashi Saha 18.00 18.00
 Ed Evans NULL NULL
 Genny George 20.00 20.00

 (5 row(s) affected)

Again, as can be noted from the previous set of results, you have to be very careful about the
interpretation of the output obtained from a NULLIF function if there were already nulls present in the
columns being tested. Ed Evans's wage was not equal to15, but had a NULL originally (and this may
be wrongly interpreted when the NULLIF function is being used).

5.2.6. Other Row-Level Functions

Other row-level functions in SQL Server 2005 include ABS, which returns the absolute value of a
numeric expression. For example, if we wanted to find the absolute value of -999.99, we could type
the following:

 SELECT ABS(-999.99) AS [Absolute Value]

This query would produce the following output:

 Absolute Value

 999.99

 (1 row(s) affected)

http://lib.ommolketab.ir

There are also several other row-level trigonometric functions available in Server SQL 2005, including
SIN, COS, TAN, LOG, and so forth. But, as these functions are less commonly used, we will not discuss
them.

http://lib.ommolketab.ir

5.3. Other Functions

This section discusses some other useful functions, such as TOP, TOP with PERCENT, and DISTINCT.
These functions help us in selecting rows from a larger set of rows.

5.3.1. The TOP Function

This function returns a certain number of rows. Often, the TOP function is used to display or return
from a result set the rows that fall at the top of a range specified by an ORDER BY clause. Suppose you
want the names of the "top 2" (first two) employees with the lowest wages from the Employee table
(top 2 refers to the results in the first two rows). You would type:

 SELECT TOP 2 names, wage
 FROM Employee
 ORDER BY wage ASC

This query would produce the following output:

 names wage
 --------------- ------------
 Ed Evans NULL
 Sumon Bagui 10.00

 (2 row(s) affected)

To get this output, first the wage column was ordered in ascending order, and then the "top" two
wages were selected from that ordered result set. The columns with the null wages are placed first
with the ascending (ASC) command.

With the TOP command, if you do not include the ORDER BY clause (and the table has no primary key),
the query will return rows based on the order in which the rows appear in the table (probably, but
not guaranteed to be, the order in which the rows were entered in the table). For example, the
following query does not include the ORDER BY clause:

 SELECT TOP 2 names, wage
 FROM Employee

http://lib.ommolketab.ir

And this query returns the following output:

 names wage
 --------------- ------------
 Sumon Bagui 10.00
 Sudip Bagui 15.00

 (2 row(s) affected)

Remember that in relational database, you can never depend on where rows in a table are. Tables
are sets of rows and at times the database engines may insert rows in unoccupied physical spaces.
You should never count on retrieving rows in some order and always use ORDER BY if you desire an
ordering.

5.3.1.1. Handling the "BOTTOM"

Since there is only a TOP command, and no similar BOTTOM command, if you want to get the "bottom"
two employees meaning, the employees with the highest wages (the values in the last two ordered
rows) instead of the top two employees from the Employee table, the top two employees (the highest
wages) would have to be selected from the table ordered in descending order, as follows:

 SELECT TOP 2 names, wage
 FROM Employee
 ORDER BY wage DESC

This query would produce the following output:

 names wage
 --------------- ------------
 Genny George 20.00
 Priyashi Saha 18.00

 (2 row(s) affected)

5.3.1.2. Handling a tie

This section answers an interesting questionwhat if there is a tie? For example, what if you are
looking for the top two wages, and two employees have the same amount in the wage column? To
handle ties, SQL Server has a WITH TIES option that can be used with the TOP function.

http://lib.ommolketab.ir

To demonstrate WITH TIES, make one change in the data in your Employee table, so that the value in
the wage column of Sudip Bagui is also 10, as shown here:

 names wage hours
 --------------- ------------ ------------
 Sumon Bagui 10.0000 40
 Sudip Bagui 10.0000 30
 Priyashi Saha 18.0000 NULL
 Ed Evans NULL 10
 Genny George 20.0000 40

 (5 row(s) affected)

You can use the following UPDATE statement to make the change in the Employee table:

 UPDATE Employee
 SET WAGE = 10
 WHERE names LIKE '%Sudip%'

The LIKE operator is explained later in the chapter.

You can also make this change in the Employee table by right-clicking on the
table from your Object Explorer and selecting Open Table and changing the
data.

Now type the following query:

 SELECT TOP
 2 WITH TIES names, wage
 FROM Employee
 ORDER BY wage ASC

Although you requested only the TOP 2 employees, this query produced three rows, because there
was a tie in the column that you were looking for (and you used with the WITH TIES option), as shown
by the following output:

http://lib.ommolketab.ir

 names wage
 --------------- ------------
 Ed Evans NULL
 Sumon Bagui 10.00
 Sudip Bagui 10.00

 (3 row(s) affected)

The WITH TIES option is not allowed without a corresponding ORDER BY clause.

Remember to change the data in your Employee table back to its original state if
you are doing the exercises as you read the material.

5.3.2. The TOP Function with PERCENT

PERCENT returns a certain percentage of rows that fall at the top of a specified range. For example,
the following query returns the top 10 percent (by count) of the student names from the Student
table based on the order of names:

 SELECT TOP 10 PERCENT sname
 FROM Student
 ORDER BY sname ASC

This query produces the following output:

 sname

 Alan
 Benny
 Bill
 Brad
 Brenda

 (5 row(s) affected)

Again, there is no BOTTOM PERCENT function, so in order to get the bottom 10 percent, you would have
to order the sname column in descending order and then select the top 10 percent, as follows:

http://lib.ommolketab.ir

 SELECT TOP 10 PERCENT sname
 FROM Student
 ORDER BY sname DESC

This query would produce the following output:

 sname

 Zelda
 Thornton
 Susan
 Steve
 Stephanie

 (5 row(s) affected)

Note that the query can be used without the ORDER BY, but because the rows are unordered, the
result is simply a sample of the first 10 percent of the data drawn from the table. Here is the same
query without the use of the ORDER BY:

 SELECT TOP 10 PERCENT sname
 FROM Student

As output, this query returns the first 10 percent of the names based on the number of rows. But, as
the rows are unordered (and there is no primary key in this table), your output would depend on
where in the database these rows reside:

 sname

 Lineas
 Mary
 Zelda
 Ken
 Mario

 (5 row(s) affected)

Once again, ties in this section could be handled in the same way as they were handled in the
preceding section, with the WITH TIES option as shown:

http://lib.ommolketab.ir

 SELECT TOP 10 PERCENT WITH TIES sname
 FROM Student
 ORDER BY sname DESC

The WITH TIES option cannot be used without a corresponding ORDER BY clause.

5.3.3. The DISTINCT Function

The DISTINCT function omits rows in the result set that contain duplicate data in the selected
columns. For example, to SELECT all grades from the Grade_report table, you could type:

 SELECT grade
 FROM Grade_report

This query results in 209 rows, all the grades in the Grade_report table.

To SELECT all distinct grades from the Grade_report table, you would type:

 SELECT DISTINCT grade
 FROM Grade_report

The result set would look like this:

 grade

 NULL
 A
 B
 C
 D
 F

 (6 row(s) affected)

Observe that the syntax requires you to put the word DISTINCT first in the string of attributes,

http://lib.ommolketab.ir

because DISTINCT implies distinct rows in the result set. The preceding statement also produces a row
for null grades (regarded here as a DISTINCT grade). Note also that the result set is sorted (ordered).
The fact that the result set is sorted could cause some response inefficiency in larger table queries.

5.3.3.1. Using DISTINCT with other aggregate functions

In SQL Server 2005, DISTINCT can also be used as an option with aggregate functions like COUNT, SUM
and AVG. For example, to count the distinct grades from the Grade_report table, we can type:

 SELECT "Count of distinct grades" = COUNT(DISTINCT(grade))
 FROM Grade_report

This query will give:

 Count of distinct grades

 5

 Warning: Null value is eliminated by an aggregate or other SET operation.

 (1 row(s) affected)

Because an aggregate function, COUNT, is being used here with an argument, NULL values are not
included in this result set.

As another example, to sum the distinct wages from the Employee table, we can type:

 SELECT "Sum of distinct wages" = SUM(DISTINCT(wage))
 FROM Employee

This query will give:

 Sum of distinct wages

 63.00

 Warning: Null value is eliminated by an aggregate or other SET operation.

 (1 row(s) affected)

http://lib.ommolketab.ir

http://lib.ommolketab.ir

5.4. String Functions

SQL Server 2005 has several functions that operate on strings; for example, functions for the extraction of
part of a string, functions to find the length of a string, functions to find matching characters in strings,
etc. In this section, we explore some of these common and useful string functions. String functions are not
aggregatesthey are row-level functions, as they operate on one value in one row at a time. String
functions are read-only functions and will not change the underlying data in the database unless UPDATE s
are performed. We start our discussion of string functions with string concatenation .

5.4.1. String Concatenation

String manipulations often require concatenation , which means to connect things together. In this section
we look at the string concatenation operator available in SQL Server 2005, the +.

To see an example of concatenation, using the Employee table, we will first list the names of the employees
using the following statement:

 SELECT names
 FROM Employee

This query produces the following output:

 names

 Sumon Bagui
 Sudip Bagui
 Priyashi Saha
 Ed Evans
 Genny George

 (5 row(s) affected)

Now, suppose you would like to concatenate each of the names with ", Esq." Type the following:

 SELECT names + ', Esq.' AS [Employee Names]
 FROM Employee

http://lib.ommolketab.ir

This query produces:

 Employee Names

 Sumon Bagui, Esq.
 Sudip Bagui, Esq.
 Priyashi Saha, Esq.
 Ed Evans, Esq.
 Genny George, Esq.

 (5 row(s) affected)

As another example, suppose you want to add a series of dots (.....) to the left side of the names
column. You would type:

 SELECT ('.....'+ names) AS [Employee Names]
 FROM Employee

to produce the following result set:

 Employee Names

 Sumon Bagui
 Sudip Bagui
 Priyashi Saha
 Ed Evans
 Genny George

 (5 row(s) affected)

Similarly, to add to the right side of names column, type:

 SELECT (names + '.....') AS [Employee Names]
 FROM Employee

This query returns:

 Employee Names

http://lib.ommolketab.ir

 Sumon Bagui.....
 Sudip Bagui.....
 Priyashi Saha.....
 Ed Evans.....
 Genny George.....

 (5 row(s) affected)

5.4.2. String Extractors

SQL has several string extractor functions. This section briefly describes some of the more useful string
extractors, like SUBSTRING , LEFT , RIGHT , LTRIM , RTRIM , and CHARINDEX . Now suppose (again) that the
Employee table has the following data:

 names wage hours
 --------------- ------------ -----------
 Sumon Bagui 10.0000 40
 Sudip Bagui 15.0000 30
 Priyashi Saha 18.0000 NULL
 Ed Evans NULL 10
 Genny George 20.0000 40

 (5 row(s) affected)

And suppose you want to display the names in the following format:

 Employee Names

 Sumon, B.
 Sudip, B.
 Priyashi, S.
 Ed, E.
 Genny, G.

 (5 row(s) affected)

You can achieve this output by using a combination of the string functions to break down names into parts,
re-assemble (concatenate) those parts, and then concatenate a comma and period in their respective
(appropriate) locations. Before we completely solve this particular problem, in the next few sections we will
explain the string functions that you will need to get this output. Then we will show you how to get this
result.

5.4.2.1. The SUBSTRING function

http://lib.ommolketab.ir

The SUBSTRING function returns part of a string. Following is the format for the SUBSTRING function:

 SUBSTRING(stringexpression, startposition, length)

stringexpression is the column that we will be using, startposition tells SQL Server where in the
stringexpression to start retrieving characters from, and length tells SQL Server how many characters to

extract. All three parameters are required in SQL Server 2005's SUBSTRING function. For example, type the
following:

 SELECT names, SUBSTRING(names,2,4) AS [middle of names]
 FROM Employee

This query returns:

 names middle of names
 --------------- ---------------
 Sumon Bagui umon
 Sudip Bagui udip
 Priyashi Saha riya
 Ed Evans d Ev
 Genny George enny

 (5 row(s) affected)

SUBSTRING(names,2,4) started from the second position in the column, names , and extracted four
characters starting from position 2.

Strings in SQL Server 2005 are indexed from 1. If you start at position 0, the following query will show you
what you will get:

 SELECT names, "first letter of names" = SUBSTRING(names,0,2)
 FROM Employee

You will get:

 names first letter of names
 --------------- ---------------------
 Sumon Bagui S

http://lib.ommolketab.ir

 Sudip Bagui S
 Priyashi Saha P
 Ed Evans E
 Genny George G

 (5 row(s) affected)

In the previous output, we got the first letter of the names because the SUBSTRING function started
extracting characters starting from position zero (the position before the first letter) and went two
character positionswhich picked up the first letter of the names field.

We could have also achieved the same output with:

 SELECT names, "first letter of names" = SUBSTRING(names,1,1)
 FROM Employee

Here the SUBSTRING function would start extracting characters starting from position 1 and go only one
character position, hence ending up with only one characterwhich picks up the first letter of the names
field.

SQL Server 2005's SUBSTRING function actually allows you to start at a negative position relative to the
string. For example, if you typed:

 SELECT names, "first letter of names" = SUBSTRING(names,-1,3)
 FROM Employee

You would get the same output as the previous query also, because you are starting two positions before
the first character of names , and going three character places, so you get the first letter of the name.

5.4.2.2. The LEFT and RIGHT functions

These functions return a portion of a string, starting from either the left or right side of stringexpression .

Following are the general formats for the LEFT and RIGHT functions respectively:

 LEFT(stringexpression, n)

Or:

 RIGHT(stringexpression, n)

http://lib.ommolketab.ir

The LEFT function starts from the LEFT of the stringexpression or column and returns n characters, and
the RIGHT function starts from the right of the stringexpression or column and returns n characters.

For example, to get the first three characters from the names column, type:

 SELECT names, LEFT(names,3) AS [left]
 FROM Employee

This query produces:

 names left
 --------------- ----
 Sumon Bagui Sum
 Sudip Bagui Sud
 Priyashi Saha Pri
 Ed Evans Ed
 Genny George Gen

 (5 row(s) affected)

To get the last three characters from the names column (here the count will start from the right of the
column, names), type:

 SELECT names, RIGHT(names,3) AS [right]
 FROM Employee

This query produces:

 names right
 --------------- -------
 Sumon Bagui gui
 Sudip Bagui gui
 Priyashi Saha aha
 Ed Evans ans
 Genny George rge

 (5 row(s) affected)

http://lib.ommolketab.ir

5.4.2.3. The LTRIM and RTRIM functions

LTRIM removes blanks from the beginning (left) of a string. For example, if three blank spaces appear to
the left of a string such as ' Ranu' , you can remove the blank spaces with the following query:

 SELECT LTRIM(' Ranu') AS names

which produces:

 names

 Ranu

 (1 row(s) affected)

It does not matter how many blank spaces precede the non-blank character. All leading blanks will be
excised.

Similarly, RTRIM removes blanks from the end (right) of a string. For example, if blank spaces appear to
the right of Ranu in the names column, you could remove the blank spaces using the RTRIM , and then
concatenate "Saha" with the + sign, as shown here:

 SELECT RTRIM('Ranu ') + ' Saha' AS names

This query produces:

 names

 Ranu Saha

 (1 row(s) affected)

5.4.2.4. The CHARINDEX function

The CHARINDEX function returns the starting position of a specified pattern. For example, if we wish to find
the position of a space in the employee names in the Employee table, we could type:

 SELECT names, "Position of Space in Employee Names" = CHARINDEX(' ',names)

http://lib.ommolketab.ir

 FROM Employee

This query would give:

 names Position of Space in Employee Names
 --------------- -----------------------------------
 Sumon Bagui 6
 Sudip Bagui 6
 Priyashi Saha 9
 Ed Evans 3
 Genny George 6

 (5 row(s) affected)

In Oracle, CHARINDEX is called INSTR .

Now that you know how to use quite a few string extractor functions, you can combine them to produce
the following output, which will require a nesting of string functions:

 Employee Names

 Sumon, B.
 Sudip, B.
 Priyashi, S.
 Ed, E.
 Genny, G.

 (5 row(s) affected)

Following is the query to achieve the preceding output:

 SELECT "Employee Names" = SUBSTRING(names,1,CHARINDEX(' ',names)-1) + ', ' +
 SUBSTRING(names, CHARINDEX(' ',names)+1,1) + '.'
 FROM Employee

In this query, we get the first name with the SUBSTRING(names,1,CHARINDEX(' ',names)-1) portion.
SUBSTRING begins in the first position of names . CHARINDEX(' ',names) finds the first space. We need only

http://lib.ommolketab.ir

the characters up to the first space, so we use CHARINDEX(' ',names) -1 . We then concatenate the
comma and a space with + (', ') . Then, to extract the first character after the first space in the original
names column, we use SUBSTRING(names, CHARINDEX(' ',names)+1,1) , followed by concatenation of a
period.

To display the names in a more useful mannerthat is, the last name, comma, and then the first initialwe
would have to use the following query:

 SELECT "Employee Names" = SUBSTRING(names, (CHARINDEX(' ',names)+1), (CHARINDEX(' ',
 names))) + ', ' + SUBSTRING(names,1,1) + '.'
 FROM Employee

which would produce the following output:

 Employee Names

 Bagui, S.
 Bagui, S.
 Saha, P.
 Eva, E.
 George, G.

 (5 row(s) affected)

In this query, we get the last name with SUBSTRING(names, (CHARINDEX(' ',names)+1) , (CHARINDEX(' ',
names))) . The SUBSTRING begins at the space and picks up the rest of the characters after the space. Then
a comma and a space are concatenated, and then the first letter of the first name and a period are
concatenated.

5.4.3. The UPPER and LOWER Functions

To produce all the fields in the result set (output) in uppercase or in lowercase, you can use the UPPER or
LOWER functions. For example, to produce all the names in the Employee table in uppercase, type:

 SELECT UPPER(names) AS [NAMES IN CAPS]
 FROM Employee

This query produces the following output:

 NAMES IN CAPS

http://lib.ommolketab.ir

 SUMON BAGUI
 SUDIP BAGUI
 PRIYASHI SAHA
 ED EVANS
 GENNY GEORGE

 (5 row(s) affected)

To produce all the names in lowercase, you would type:

 SELECT LOWER(names) AS [NAMES IN SMALL]
 FROM Employee

To further illustrate the nesting of functions, and to produce, in all uppercase, the first name followed by
the first letter of the last name, type:

 SELECT "Employee Names" = UPPER(SUBSTRING(names,1,CHARINDEX(' ',names)-1)) + ', ' +
 SUBSTRING(names,CHARINDEX(' ',names)+1,1) + '.'
 FROM Employee

This query produces the following output:

 Employee Names

 SUMON, B.
 SUDIP, B.
 PRIYASHI, S.
 ED, E.
 GENNY, G.

 (5 row(s) affected)

5.4.4. The LEN Function

The LEN function returns the length (number of characters) of a desired string excluding trailing blanks. For
example, to list the lengths of the full names (including any spaces) in the Employee table, type:

 SELECT names, LEN(names) AS [Length of Names]
 FROM Employee

http://lib.ommolketab.ir

This query produces the following output:

 names Length of Names
 --------------- ---------------
 Sumon Bagui 11
 Sudip Bagui 11
 Priyashi Saha 13
 Ed Evans 8
 Genny George 12

 (5 row(s) affected)

5.4.5. Matching Substrings Using LIKE

Often we want to use part of a string as a condition in a query. For example, consider the Section table
(from our Student_course database), which has the following data:

 SECTION_ID COURSE_NUM SEMESTER YEAR INSTRUCTOR BLDG ROOM
 ---------- ---------- -------- ---- ---------- ------ ------
 85 MATH2410 FALL 98 KING 36 123
 86 MATH5501 FALL 98 EMERSON 36 123
 87 ENGL3401 FALL 98 HILLARY 13 101
 .
 .
 .

We might want to know something about Math coursescourses with the prefix MATH . In this situation, we
need an operator that can determine whether a substring exists in an attribute. Although we have seen
how to handle this type of question with both the SUBSTRING and CHARINDEX functions, another common
way to handle this situation in a WHERE clause is by using the LIKE function.

Using LIKE as an "existence" match entails finding whether a character string exists in a string or valueif
the string exists, the row is SELECT ed for inclusion in the result set. Again of course, we could use
SUBSTRING and/or CHARINDEX for this, but LIKE is a powerful, common and flexible alternative. This
existence-type of the LIKE query is useful when the position of the character string sought may be in
various places in the substring. SQL Server 2005 uses the wildcard character, % , at the beginning or end
of a LIKE -string, when looking for the existence of substrings. For example, suppose we want to find all
names that have "Smith" in our Student table, type the following:

 SELECT *
 FROM Student
 WHERE sname = 'SMITH'

http://lib.ommolketab.ir

which produces the following output:

 STNO SNAME MAJOR CLASS BDATE
 ----- ----------- ------ ----- -------------------------------
 88 Smith NULL NULL 10/15/1979 12:00:00 AM

 (1 row(s) affected)

Note that the case (upper or lower) in the statement WHERE sname = 'SMITH' does not matter, because
SQL Server 2005 is handled as if it is all uppercase (this is by default, and can be changed), although it is
displayed in mixed case (and even if it had been entered in mixed case). In other words, we can say that
data in SQL Server 2005 is not case-sensitive by default.

To count how many people have a name of "Smith," type:

 SELECT COUNT(*) AS Count
 FROM Student
 WHERE sname = 'Smith'

which produces:

 Count

 1

 (1 row(s) affected)

5.4.5.1. Using the wildcard character with LIKE

The percentage sign (%) is SQL Server 2005's wildcard character. For example, if we wanted to find all the
names that had some form of "Smith" in their names from the Student table, we would use % on both ends
of "Smith," as shown here:

 SELECT *
 FROM Student
 WHERE sname LIKE '%Smith%'

http://lib.ommolketab.ir

This query produces the following output, showing any "Smith" pattern in sname :

 STNO SNAME MAJOR CLASS BDATE
 ------ -------------------- ----- ------ -----------------------
 88 Smith NULL NULL 1979-10-15 00:00:00
 147 Smithly ENGL 2 1980-05-13 00:00:00
 151 Losmith CHEM 3 1981-01-15 00:00:00

 (3 row(s) affected)

To find any pattern starting with "Smith" from the Student table, you would type:

 SELECT *
 FROM Student
 WHERE sname LIKE 'Smith%'

This query would produce:

 STNO SNAME MAJOR CLASS BDATE
 ------ -------------------- ----- ------ -----------------------
 88 Smith NULL NULL 1979-10-15 00:00:00
 147 Smithly ENGL 2 1980-05-13 00:00:00

 (2 row(s) affected)

By default, it is not necessary to use UPPER or LOWER before sname in the previous
query since data in SQL Server 2005 is not case sensitive. You can change this
however, by changing SQL Server 2005's database configurations.

To find the Math courses (any course_num starting with MATH) from the Section table, you could pose a
wildcard match with a LIKE as follows:

 SELECT *
 FROM Section
 WHERE course_num LIKE 'MATH%'

This query would produce the following output:

http://lib.ommolketab.ir

 SECTION_ID COURSE_NUM SEMESTER YEAR INSTRUCTOR BLDG ROOM
 ---------- ---------- -------- ---- ---------- ----- -----
 85 MATH2410 FALL 98 KING 36 123
 86 MATH5501 FALL 98 EMERSON 36 123
 107 MATH2333 SPRING 00 CHANG 36 123
 109 MATH5501 FALL 99 CHANG 36 123
 112 MATH2410 FALL 99 CHANG 36 123
 158 MATH2410 SPRING 98 NULL 36 123

 (6 row(s) affected)

5.4.5.2. Finding a range of characters

SQL Server 2005 allows some POSIX-compliant regular expression patterns in LIKE clauses. We will
illustrate some of these extensions for pattern matching.

LIKE can be used to find a range of characters. For example, to find all grades between C and F in the
Grade_report table, type:

 SELECT DISTINCT student_number, grade
 FROM Grade_report
 WHERE grade LIKE '[c-f]'
 AND student_number > 100

This query produces 15 rows of output:

 student_number grade
 -------------- -----
 125 C
 126 C
 127 C
 128 F
 130 C
 131 C
 145 F
 147 C
 148 C
 151 C
 153 C
 158 C
 160 C
 161 C
 163 C

 (15 row(s) affected)

http://lib.ommolketab.ir

By default, note that LIKE is also case-insensitive. You can change this, however, by
changing SQL Server 2005's database configurations.

To find all grades from the Grade_report table that are not between C and F, we use a caret (̂) before the
range we do not want to find:

 SELECT DISTINCT student_number, grade
 FROM Grade_report
 WHERE grade LIKE '[^c-f]'
 AND student_number > 100

This query produces the following 21 rows of output:

 student_number grade
 -------------- -----
 121 B
 122 B
 123 A
 123 B
 125 A
 125 B
 126 A
 126 B
 127 A
 127 B
 129 A
 129 B
 132 B
 142 A
 143 B
 144 B
 146 B
 147 B
 148 B
 155 B
 157 B

 (21 row(s) affected)

As another example, to find all the courses from the Section table that start with "C," but do not have "h"

http://lib.ommolketab.ir

as the second character, we could type:

 SELECT *
 FROM Section
 WHERE course_num LIKE 'C[^h]%'

This query would give the following 10 rows of output:

 SECTION_ID COURSE_NUM SEMESTER YEAR INSTRUCTOR BLDG ROOM
 ---------- ---------- -------- ---- ---------- ----- -----
 90 COSC3380 SPRING 99 HARDESTY 79 179
 91 COSC3701 FALL 98 NULL 79 179
 92 COSC1310 FALL 98 ANDERSON 79 179
 93 COSC1310 SPRING 99 RAFAELT 79 179
 96 COSC2025 FALL 98 RAFAELT 79 179
 98 COSC3380 FALL 99 HARDESTY 79 179
 102 COSC3320 SPRING 99 KNUTH 79 179
 119 COSC1310 FALL 99 ANDERSON 79 179
 135 COSC3380 FALL 99 STONE 79 179
 145 COSC1310 SPRING 99 JONES 79 179

 (10 row(s) affected)

5.4.5.3. Finding a particular character

To find a particular character using LIKE , we would place the character in square brackets [] . For
example, to find all the names from the Student table that begin with a B or G and end in "ill," we could
type:

 SELECT sname
 FROM Student
 WHERE sname LIKE '[BG]ill'

We would get:

 sname

 Bill

 (1 row(s) affected)

http://lib.ommolketab.ir

5.4.5.4. Finding a single character or single digitthe underscore wildcard character

A single character or digit can be found in a particular position in a string by using an underscore, _ , for
the wildcard in that position in the string. For example, to find all students with student_number s in the
130s (130...139) range from the Student table, type:

 SELECT DISTINCT student_number, grade
 FROM Grade_report
 WHERE student_number LIKE '13_'

This query would produce the following:

 student_number grade
 -------------- -----
 130 C
 131 C
 132 B

 (3 row(s) affected)

5.4.5.5. Using NOT LIKE

In SQL Server 2005, the LIKE operator can be negated with the NOT . For example, to get a listing of the
non math courses and the courses that do not start in "C" from the Section table, we would type:

 SELECT *
 FROM Section
 WHERE course_num NOT LIKE 'MATH%'
 AND Course_num NOT LIKE 'C%'

This query would give the following 14 rows of output:

 SECTION_ID COURSE_NUM SEMESTER YEAR INSTRUCTOR BLDG ROOM
 ---------- ---------- -------- ---- ---------- ------ ------
 87 ENGL3401 FALL 98 HILLARY 13 101
 88 ENGL3520 FALL 99 HILLARY 13 101
 89 ENGL3520 SPRING 99 HILLARY 13 101
 94 ACCT3464 FALL 98 RODRIGUEZ 74 NULL
 95 ACCT2220 SPRING 99 RODRIQUEZ 74 NULL

http://lib.ommolketab.ir

 97 ACCT3333 FALL 99 RODRIQUEZ 74 NULL
 99 ENGL3401 FALL 99 HILLARY 13 101
 100 POLY1201 FALL 99 SCHMIDT NULL NULL
 101 POLY2103 SPRING 00 SCHMIDT NULL NULL
 104 POLY4103 SPRING 00 SCHMIDT NULL NULL
 126 ENGL1010 FALL 98 HERMANO 13 101
 127 ENGL1011 SPRING 99 HERMANO 13 101
 133 ENGL1010 FALL 99 HERMANO 13 101
 134 ENGL1011 SPRING 00 HERMANO 13 101

 (14 row(s) affected)

http://lib.ommolketab.ir

5.5. CONVERSION Functions

Sometimes data in a table is stored in a particular data type, but you need to have the data in
another data type. For example, let us suppose that columnA of TableA is of character data type, but
you need to use this column as a numeric column in order to do some mathematical operations.
Similarly, there are times where you have a table with numeric data types and you need characters.
What do you do? SQL Server 2005 provides three functions for converting data types--CAST, CONVERT,
and STR. In the following subsections, we discuss each of these functions.

5.5.1. The CAST Function

The CAST function is a very useful SQL Server 2005 function that allows you to change a data type of
a column. The CAST result can then be used for:

Concatenating strings

Joining columns that were not envisioned as related

Performing unions of tables (unions are discussed in Chapter 7)

Performing mathematical operations on columns that were defined as character but which
actually contain numbers that need to be calculated.

Some conversions are automatic and implicit, so using CAST is not necessary. For example,
converting between numbers with types INT, SMALLINT, TINYINT, FLOAT, NUMERIC, and so on is done
automatically and implicitly as long as an overflow does not occur. But, converting numbers with
decimal places to integer data types truncates values to the right of the decimal place without a
warning, so you should use CAST if a loss of precision is possible.

The general form of the syntax for the CAST function is:

 CAST (original_expression AS desired_datatype)

To illustrate the CAST function, we will use the Employee table that we created earlier in this chapter.
In this table, names was defined as a NVARCHAR column, wage was defined as a SMALLMONEY column, and
hours was defined as a SMALLINT column. We will use CAST to change the display of the hours column
to a character column so that we can concatenate a string to it, as shown in the following query:

 SELECT names, wage, hours = CAST(hours AS CHAR(2)) + ' hours worked per week'
 FROM Employee

http://lib.ommolketab.ir

This query will give us:

 names wage hours
 -------------------- ------------ ------------------------
 Sumon Bagui 10.0000 40 hours worked per week
 Sudip Bagui 15.0000 30 hours worked per week
 Priyashi Saha 18.0000 NULL
 Ed Evans NULL 10 hours worked per week
 Genny George 20.0000 40 hours worked per week

 (5 row(s) affected)

CAST will truncate the value or column if the character length is smaller than the size required for full
display.

CAST is a subset of the CONVERT function, and was added to SQL Server 2005 to comply with ANSI-92
specifications.

5.5.2. The STR Function

STR is a specialized conversion function that always converts from a number (for example, float or
numeric) to a character data type. It allows you to explicitly specify the length and number of
decimal places that should be formatted for the character string.

The general form of the syntax for the STR function is:

 STR(float_expression, character_length, number_of_decimal_places)

character_length and number_of_decimal_places are optional arguments.

character_length must include room for a decimal place and a negative sign. STR rounds a value to

the number of decimal places requested.

We will illustrate the use of the STR function using the Employee table that we created earlier in this
chapter. In this table, the hours column is a SMALLINT column. To format it to two decimal places, we
can use STR. Note that we have to make the character length 5 in this case in order to accommodate
the .00 (the decimal point and zeros). Following is the query showing this:

 SELECT names, wage, hours = STR(hours, 5, 2)
 FROM Employee

http://lib.ommolketab.ir

which produces:

 names wage hours
 -------------------- --------------------- -----
 Sumon Bagui 10.00 40.00
 Sudip Bagui 15.00 30.00
 Priyashi Saha 18.00 NULL
 Ed Evans NULL 10.00
 Genny George 20.00 40.00

 (5 row(s) affected)

5.5.3. The CONVERT Function

Just like the CAST function, the CONVERT function is also used to explicitly convert to a given data type.
But, the CONVERT function has additional limited formatting capabilities.

The general syntax for the CONVERT function is:

 CONVERT(desired_datatype[(length)], original_expression [, style])

CONVERT has an optional third parameter, style, which is used for formatting. If style is not specified,
it will use the default style. Because the CONVERT function has formatting capabilities, it is widely used
when displaying dates in a particular format. Examples of the use of the CONVERT function are
presented in the section, "Default Date Formats and Changing Date Formats" later in this chapter.

http://lib.ommolketab.ir

5.6. DATE Functions

Using the DATETIME and SMALLDATETIME data type, SQL Server 2005 gives you the opportunity to use
several date functions like DAY , MONTH , YEAR , DATEADD , DATEDIFF , DATEPART , and GEtdATE for extracting
and manipulating dates (adding dates, taking the differences between dates, finding the day/month/year
from dates, and so on).

Before we start discussing date functions, we will create a table, DateTable , using the SMALLDATETIME data
type. Then we will discuss date formats and formatting dates.

5.6.1. Creating a Table with the DATETIME Data Type

Suppose that you define SMALLDATETIME types in a table like this:

 CREATE TABLE DateTable (birthdate SMALLDATETIME,
 school_date SMALLDATETIME,
 names VARCHAR(20))

Data can now be entered into the birthdate and school_date columns, which are both SMALLDATETIME
columns, and into the names column. Inserting dates is usually done by using an implicit conversion of
character strings to dates. Following would be an example of an INSERT into DateTable :

 INSERT INTO DateTable
 VALUES ('10-oct-01', '12/01/2006', 'Mala Sinha')

You will get:

 (1 row(s) affected)

Note that single quotes are required around date values. As SMALLDATETIME is not really a character
column, the character strings representing date are implicitly converted provided that the character string
is in a form recognizable by SQL Server.

Now if you type:

 SELECT *

http://lib.ommolketab.ir

 FROM DateTable

The following appears in the DateTable table:

 birthdate school_date names
 --------------------- ----------------------- --------------------
 2001-10-10 00:00:00 2006-12-01 00:00:00 Mala Sinha

 (1 row(s) affected)

The DateTable table has not been created for you. Create it and insert the following data into it:

 birthdate school_date names
 ----------------------- ----------------------- ------------------
 2001-10-10 00:00:00 2006-12-01 00:00:00 Mala Sinha
 2002-02-02 00:00:00 2006-03-02 00:00:00 Mary Spencer
 2002-10-02 00:00:00 2005-02-04 00:00:00 Bill Cox
 1998-12-29 00:00:00 2004-05-05 00:00:00 Jamie Runner
 1999-06-16 00:00:00 2003-03-03 00:00:00 Seema Kapoor

 (5 row(s) affected)

5.6.2. Default Date Formats and Changing Date Formats

By default, SQL Server 2005 reads and displays the dates in the yyyy /mm /dd format. We can change the
format in which SQL Server reads in dates by using SET DATEFORMAT . DATEFORMAT controls only how SQL
Server 2005 interprets date constants that are entered by you, but does not control how date values are
displayed. For example, to have SQL Server 2005 first read the day, then month, and then year, we would
type:

 SET DATEFORMAT dmy
 SELECT 'Format is yyyy/mon/dd' = CONVERT(datetime, '10/2/2003')

And we will get:

 Format is yyyy/mon/dd

 2003-02-10 00:00:00.000

http://lib.ommolketab.ir

 (1 row(s) affected)

In SQL Server 2005, if incorrect dates are used, we will get an out-of-range error. For example, if we tried
to do the following insert with the 32nd day of a month:

 INSERT INTO DateTable
 VALUES ('10-oct-01', '32/01/2006', 'Mita Sinha')

We would get the following error message:

 Msg 296, Level 16, State 3, Line 1
 The conversion of char data type to smalldatetime data type resulted in an out-of-
 range smalldatetime value.
 The statement has been terminated.

In SQL Server 2005, if two-digit year dates are entered, SQL Server 2005's default behavior is to interpret
the year as 19yy if the value is greater than or equal to 50 and as 20yy if the value is less than 50.

5.6.3. Date Functions

In this section we discuss some useful SQL Server 2005 date functions--DATEADD , DATEDIFF , DATEPART ,
YEAR , MONTH , DAY , and GEtdATE .

5.6.3.1. The DATEADD function

The DATEADD function produces a date by adding a specified number to a specified part of a date.

The date parts are: dd for day, mm for month, and yy for year.

The format for the DATEADD function is:

 DATEADD(datepart, number, date_field)

datepart would be either dd , mm , or yy . number would be the number that you want to add to the
datepart . date_field would be the date field that you want to add to.

http://lib.ommolketab.ir

For example, to add 2 days to the birthdate of every person in DateTable we would type:

 SELECT names, 'Add 2 days to birthday' = DATEADD(dd, 2, birthdate)
 FROM Datetable

This query would give:

 names Add 2 days to birthday
 -------------------- -----------------------
 Mala Sinha 2001-10-12 00:00:00
 Mary Spencer 2002-02-04 00:00:00
 Bill Cox 2002-10-04 00:00:00
 Jamie Runner 1998-12-31 00:00:00
 Seema Kapoor 1999-06-18 00:00:00

 (5 row(s) affected)

You can also subtract two days from the birthdate of every person in DateTable by adding a -2 (minus or
negative 2) instead of a positive 2, as shown by the following query:

 SELECT names, 'Add 2 days to birthday' = DATEADD(dd, -2, birthdate)
 FROM Datetable

This query would give:

 names Add 2 days to birthday
 -------------------- -----------------------
 Mala Sinha 2001-10-08 00:00:00
 Mary Spencer 2002-01-31 00:00:00
 Bill Cox 2002-09-30 00:00:00
 Jamie Runner 1998-12-27 00:00:00
 Seema Kapoor 1999-06-14 00:00:00

 (5 row(s) affected)

5.6.3.2. The DATEDIFF function

The DATEDIFF function returns the difference between two parts of a date. The format for the DATEDIFF
function is:

http://lib.ommolketab.ir

 DATEDIFF(datepart, date_field1, date_field2)

Here again, datepart would be either dd , mm , or yy . And, date_field1 and date_field2 would be the two

date fields that you want to find the difference between.

For example, to find the number of months between the two fields, birthdate and school_date of every
person in DateTable , we would type:

 SELECT names, 'Months between birth date and school date' = DATEDIFF(mm, birthdate,
 school_date)
 FROM Datetable

This query would give:

 names Months between birth date and school date
 -------------------- ---
 Mala Sinha 62
 Mary Spencer 49
 Bill Cox 28
 Jamie Runner 65
 Seema Kapoor 45

 (5 row(s) affected)

5.6.3.3. The DATEPART function

The DATEPART function returns the specified part of the date requested. The format for the DATEPART
function is:

 DATEPART(datepart, date_field)

Here too, datepart would be either dd , mm , or yy . And, date_field would be the date field that you want

to request the dd , mm , or yy from.

For example, to find year from the birthdate of every person in DateTable we would type:

 SELECT names, 'YEARS' = DATEPART(yy, birthdate)
 FROM Datetable

http://lib.ommolketab.ir

This query would give:

 names YEARS
 -------------------- -----------
 Mala Sinha 2001
 Mary Spencer 2002
 Bill Cox 2002
 Jamie Runner 1998
 Seema Kapoor 1999

 (5 row(s) affected)

5.6.3.4. The YEAR function

The YEAR(column) function will extract the year from a value stored as a SMALLDATETIME data type. For
example, to extract the year from the school_date column of every person in DateTable , type:

 SELECT names, YEAR(school_date) AS [Kindergarten Year]
 FROM Datetable

This query produces the following output:

 names Kindergarten Year
 -------------------- -----------------
 Mala Sinha 2006
 Mary Spencer 2006
 Bill Cox 2005
 Jamie Runner 2004
 Seema Kapoor 2003

 (5 row(s) affected)

We can also use the YEAR function in date calculations. For example, if you want to find the number of
years between when a child was born (birthdate) and when the child went to kindergarten (the
school_date column) from DateTable , type the following query:

 SELECT names, YEAR(school_date)-YEAR(birthdate) AS [Age in Kindergarten]
 FROM DateTable

http://lib.ommolketab.ir

This query produces the following output:

 names Age in Kindergarten
 -------------------- -------------------
 Mala Sinha 5
 Mary Spencer 4
 Bill Cox 3
 Jamie Runner 6
 Seema Kapoor 4

 (5 row(s) affected)

Here, the YEAR(birthdate) was subtracted from YEAR(school_date).

5.6.3.5. The MONTH function

The MONTH function will extract the month from a date. Then, to add six months to the birth month of every
person in DateTable , we can first extract the month by MONTH(birthdate) , and then add six to it, as
shown here:

 SELECT names, birthdate, MONTH(birthdate) AS [Birth Month], ((MONTH(birthdate)) + 6)
 AS [Sixth month]
 FROM DateTable

This query produces the following output:

 names birthdate Birth Month Sixth month
 ------------------ ----------------------- ----------- -----------
 Mala Sinha 2001-10-10 00:00:00 10 16
 Mary Spencer 2002-02-02 00:00:00 2 8
 Bill Cox 2002-10-02 00:00:00 10 16
 Jamie Runner 1998-12-29 00:00:00 12 18
 Seema Kapoor 1999-06-16 00:00:00 6 12

 (5 row(s) affected)

5.6.3.6. The DAY function

The DAY function extracts the day of the month from a date. For example, to find the day from the
birthdate of every person in DateTable , type the following query:

http://lib.ommolketab.ir

 SELECT names, birthdate, DAY([birthdate]) AS [Date]
 FROM DateTable

which produces the following output:

 names birthdate Date
 -------------------- ----------------------- -----------
 Mala Sinha 2001-10-10 00:00:00 10
 Mary Spencer 2002-02-02 00:00:00 2
 Bill Cox 2002-10-02 00:00:00 2
 Jamie Runner 1998-12-29 00:00:00 29
 Seema Kapoor 1999-06-16 00:00:00 16

 (5 row(s) affected)

5.6.3.7. The GETDATE function

The GEtdATE function returns the current system date and time.

For example:

 SELECT 'Today ' = GETDATE()

will give:

 Today

 2006-01-17 23:17:52.340

 (1 row(s) affected)

To find the number of years since everyone's birthdate entered in our Datetable , and the current date,
we could type:

 SELECT names, 'Number of years ' = DATEDIFF(yy, birthdate, GETDATE())
 FROM Datetable

http://lib.ommolketab.ir

This query will give us:

 names Number of years
 -------------------- ----------------
 Mala Sinha 5
 Mary Spencer 4
 Bill Cox 4
 Jamie Runner 8
 Seema Kapoor 7

 (5 row(s) affected)

5.6.3.8. Inserting the current date and time

Using the GETDATE() function, we can insert or update the current date and time into a column. To
illustrate this, we will add a new record (row) to our DateTable , inserting the current date and time into
the birthdate column of this row using the GETDATE() function, and then add five years to the current
date for the school_date column of this new row. So type:

 INSERT INTO DateTable
 VALUES (GETDATE(), GETDATE()+YEAR(5), 'Piyali Saha')

Then type:

 SELECT *
 FROM DateTable

This query produces the following output (note the insertion of the sixth row):

 birthdate school_date names
 --------------------- --------------------- ------------------
 2001-10-10 00:00:00 2006-12-01 00:00:00 Mala Sinha
 2002-02-02 00:00:00 2006-03-02 00:00:00 Mary Spencer
 2002-10-02 00:00:00 2005-02-04 00:00:00 Bill Cox
 1998-12-29 00:00:00 2004-05-05 00:00:00 Jamie Runner
 1999-06-16 00:00:00 2003-03-03 00:00:00 Seema Kapoor
 2006-01-17 23:19:00 2011-04-01 23:19:00 Piyali Saha

 (6 row(s) affected)

http://lib.ommolketab.ir

http://lib.ommolketab.ir

5.7. Summary

This chapter provided an overview of the functions available in SQL Server 2005. In this chapter, we
looked at several of SQL Server 2005's aggregate, row-level and other functions. We also presented
conversion as well as date functions.

5.7.1. Table of Functions

Aggregate Functions

AVG Averages a group of row values.

COUNT Counts the total number of rows in a result set.

MAX Returns the highest of all values from a column.

MIN Returns the lowest of all values from a column.

SUM Adds all the values in a column.

Row-level Functions

ABS Returns an absolute value.

CEILING Returns the next larger integer value.

FLOOR Returns the next lower integer value.

ISNULL Returns a true value if a data item contains a NULL.

NULLIF Returns a NULL if a certain condition is met in an expression.

ROUND Rounds numbers to a specified number of decimal places.

STR Converts from a number to a character data type.

SQRT Returns the square root of positive numeric values.

SQUARE Returns the square of a number.

String Functions

CHARINDEX Returns the starting position of a specified pattern.

LEFT Returns the left portion of a string up to a given number of characters.

LEN Returns the length of a string.

LIKE Option that matches a particular pattern.

LOWER Converts a string to lower case.

http://lib.ommolketab.ir

Aggregate Functions

RIGHT Returns the right portion of a string.

RTRIM Removes blanks from the right end of a string.

SUBSTRING Returns part of a string.

UPPER Displays all output in upper case.

Date Functions

DATEADD Adds to a specified part of a date.

DATEDIFF Returns the difference between two dates.

DATEPART Returns the specified part of the date requested.

DAY Extracts a day from a date.

GEtdATE Returns the current system date and time.

MONTH Extracts the month from a date.

SET DATEFORMAT Changes the format in which SQL Server reads in dates.

YEAR Extracts the year from a date.

Conversion Functions

CAST Changes a data type of a column in a result set.

CONVERT Explicitly converts to a given data type in a result set.

Other Functions

DISTINCT Omits rows that contain duplicate data.

PERCENT Return a certain percentage of records that fall at the top of a range specified.

TOP Returns a specified number of records from the top of a result set.

RIGHT Returns the right portion of a string.

RTRIM Removes blanks from the right end of a string.

SUBSTRING Returns part of a string.

UPPER Displays all output in upper case.

Date Functions

DATEADD Adds to a specified part of a date.

DATEDIFF Returns the difference between two dates.

DATEPART Returns the specified part of the date requested.

DAY Extracts a day from a date.

GEtdATE Returns the current system date and time.

MONTH Extracts the month from a date.

SET DATEFORMAT Changes the format in which SQL Server reads in dates.

YEAR Extracts the year from a date.

Conversion Functions

CAST Changes a data type of a column in a result set.

CONVERT Explicitly converts to a given data type in a result set.

Other Functions

DISTINCT Omits rows that contain duplicate data.

PERCENT Return a certain percentage of records that fall at the top of a range specified.

TOP Returns a specified number of records from the top of a result set.

http://lib.ommolketab.ir

5.8. Review Questions

What are functions?1.

What are aggregate functions? Give examples of aggregate functions. What is another term for
an aggregate function?

2.

What are row-level functions? Give examples of row-level functions.3.

Is COUNT an aggregate function or a row-level function? Explain why. Give at least one example
of when the COUNT function may come in handy. Does the COUNT function take nulls into account?

4.

Is AVG an aggregate function or a row-level function?5.

What is the NULLIF function? Explain.6.

How are ties handled in SQL Server?7.

How does the DISTINCT function work?8.

Are string functions (for example, SUBSTRING, RIGHT, LTRIM) aggregate functions or row-level
functions?

9.

What is the SUBSTRING function used for?10.

What is the CHARINDEX function used for?11.

What function would you use to find the leftmost characters in a string?12.

What are the LTRIM/RTRIM functions used for?13.

What function would produce the output in all lowercase?14.

What function would you use to find the length of a string?15.

What characters or symbols are most commonly used as wildcard characters in SQL Server
2005?

16.

What is the concatenation operator in Server SQL 2005?17.

What does the YEAR function do?18.

What does the MONTH function do?19.

What does the GEtdATE function do?20.

What will the following query produce in SQL Server 2005?21.

http://lib.ommolketab.ir

20.

 SELECT ('.....'+ names) AS [names]
 FROM Employee

21.

Does Server SQL allow an expression like COUNT(DISTINCT column_name)?22.

How is the ISNULL function different from the NULLIF function?23.

What function would you use to round a value to three decimal places?24.

Which functions can the WITH TIES option be used with?25.

What clause does the WITH TIES option require?26.

What is the default date format in SQL Server 2005?27.

How do dates have to be entered in Server SQL 2005?28.

What function is used to convert between data types?29.

What function is useful for formatting numbers?30.

What function is useful for formatting dates?31.

http://lib.ommolketab.ir

5.9. Exercises

Unless specified otherwise, use the Student_course database to answer the following questions. Also,
use appropriate column headings when displaying your output.

Display the COUNT of tuples (rows) in each of the tables Grade_report, Student, and Section.
How many rows would you expect in the Cartesian product of all three tables? Display the COUNT
(not the resulting rows) of the Cartesian product of all three and verify your result (use SELECT
COUNT(*) ...).

1.

Display the COUNT of section-ids from the Section table. Display the COUNT of DISTINCT
section-ids from the Grade_report table. What does this information tell you? (Hint:
section_id is the primary key of the Section table.)

2.

Write, execute, and print a query to list student names and grades (just two attributes) using
the table alias feature. Restrict the list to students that have either As or Bs in courses with ACCT
prefixes only.

Here's how to complete this problem:

Get the statement to work as a COUNT of a join of the three tables, Student, Grade_report,
Section. Use table aliases in the join condition. Note that a join of n tables requires (n - 1)
join conditions, so here you have to have two join conditions: one to join the Student and
Grade_report tables, and one to join the Grade_report and Section tables. Note the
number of rows that you get (expect no more rows than is in the Grade_report table).
Why do you get this result?

a.

Modify the query and put the Accounting condition in the WHERE clause. Note the number of
rows in the resultit should be a good bit less than in question 3a.

b.

Again, modify the query and add the grade constraints. The number of rows should
decrease again. Note that if you have WHERE x and y or z, parentheses are optional, but
then the criteria will be interpreted according to precedence rules.

c.

The reason that we want you to "start small" and add conditions is that it gives you a check on
what you ought to get and it allows you to output less nonsense. Your minimal starting point
should be a count of the join with appropriate join conditions.

3.

Using the Student table, answer the following questions:

How many students have names like Smith?a.

b.

c.

4.

http://lib.ommolketab.ir

a.

How many have names that contain the letter sequence Smith?b.

How many student names end in LD?c.

How many student names start with S?d.

How many student names do not have "i" as the second letter?e.

Would SELECT * FROM Student WHERE sname LIKE 'Smith%' find someone whose name is:

LA SMITHi.

SMITH-JONESii.

SMITH JR.iii.

SMITH, JRiv.

f.

Using the Course table, answer the following questions:

List the junior-level COSC courses (LIKE COSC3xxx) and the name of the courses.a.

List all the courses except the junior-level COSC courses (use NOT LIKE).b.

5.

Using the COUNT feature, determine whether there are duplicate names or student numbers in
the Student table.

6.

Assume that all math courses start with MATH. How many math courses are there in the Section
table? From the count of courses, does it appear that there any math courses in the Section
table that are not in the Course table? Again, using COUNTs, are there any math courses in the
Course table that are not in the Section table? Does it appear that there are any courses at all
that are in the Grade_report, Section, or Course tables that are not in the others? (We will study
how to ask these questions in SQL in a later chapter.) Note that a query like the following would
not work:

 SELECT g.section_id
 FROM Grade_report g, Section t
 WHERE g.section_id <> t.section_id

Explain why WHERE .. <> .. will not work to produce the desired output.

7.

For every table in the Student_course database, we would like to compile the following
information: attributes, number of rows, number of distinct rows, and rows without nulls. Find
this information using different queries and compile the information in a table as shown here:

8.

http://lib.ommolketab.ir

Table Attribute Rows Distinct Rows Rows without Nulls

Student Stno 48 48 48

 Sname 48 47 48

 Major 48 8

 Class etc. etc. etc.

Section Section_id etc. etc. etc.

The other tables in the Student_course database are Grade_report, Dependent, Section, Room,
Course, Prereq, and Department_to_major.

Hint: You can use the following query:

 SELECT COUNT(*)
 FROM Student
 WHERE sname IS NULL

8.

Find the count, sum, average, minimum, and maximum capacity of rooms in the database.
Format the output using the STR function.

Where there is a null value for the capacity, assume the capacity to be 40, and find the
average room size again.

a.

9.

Using the Student table, display the first 10 rows with an appended initial. For the appended
initial, choose the halfway letter of the name, so that if a name is Evans, the initial is A (half of
the length +1). If the name is Conway, the initial is W (again, (half of the length +1)). You do
not need to round up or down, just use (LEN(Name)/2)+1 as the starting place to create the
initial. Use appropriate column aliases. Your result should look like this (actual names may vary
depending on the current database):

 PERSON# NAMES
 --------- ------------------------
 1 Lineas, E.
 2 Mary, R.
 3 Brenda, N.
 4 Richard, H.
 5 Kelly, L.
 6 Lujack, A.
 7 Reva, V.
 8 Elainie, I.
 9 Harley, L.
 10 Donald, A.

10.

http://lib.ommolketab.ir

Display the preceding output in all capital letters.a.

Find the names of the bottom 50 percent of the students, ordered by grade.

Find the names of the top 25 percent of the seniors, ordered by grade.a.

Now use the WITH TIES option with part (b). Is there any difference in the output?b.

11.

Count the number of courses taught by each instructor.

Count the number of distinct courses taught by each instructor.a.

12.

Count the number of classes each student is taking.13.

Display all the names that are less than five characters long from the Student table.14.

List all the students with student numbers in the 140s range.15.

Find all the students (the student names should be listed only once) who received As and Bs.16.

Would you call TOP an aggregate function? Why or why not?17.

Add an asterisk (*) to the names of all juniors and seniors who received at least one A. (This
question will take a few steps, and you will have to approach this problem in a step-by-step
manner.)

18.

In this chapter, we used a table called Employee. Add a birthdate column and an
employment_date column to the Employee table. Insert values into both the columns.

Display the current ages of all the employees.a.

Find the youngest employee.b.

Find the oldest employee.c.

Find the youngest employee at the time of employment.d.

Find the oldest employee at the time of employment.e.

Add five years to the current ages of all employees. Will any of the employees be over 65
in five years?

f.

List the birth months and names of all employees.g.

19.

http://lib.ommolketab.ir

Chapter 6. Query Development and Derived
Structures
A problem in SQLand in all programming, for that matteris the development of long queries or
statements. One way to create long queries is to begin modestly and to incrementally build or
develop the query of interest. This is the approach described in this chapter, which we will illustrate
by developing a few queries. And, as you'll find out, often the appropriate placement of parentheses
within the query is required to get the right answer to a question.

Another way to develop queries is to use derived structuresa pseudo-table, of sorts. In Server SQL
2005, derived structures include such things as views (both real and inline views) and temporary
tables (both temporary and global), both of which enable us to easily manipulate partial displays of
tables. The partial displays can then be connected to answer a complicated database query. This
chapter discusses derived structures, focusing specifically on views and temporary tables, and how
query development can be aided with the use of derived structures.

http://lib.ommolketab.ir

6.1. Query Development

Queries are sometimes developed after some initial experimentation, yet other times they are the
result of modifying previously stored queries. The best way to understand how the query building
process works is to look at an example. Suppose we want to find the names of all students in the
Student_course database who major in computer science (COSC) and have earned a grade of B in
some course. To do so, we can follow these steps:

Type the following query to find students who major in computer science:

 SELECT *
 FROM Student
 WHERE major = 'COSC'

This query produces the following 10 rows of output:

 STNO SNAME MAJOR CLASS BDATE
 ------ -------------------- ----- ------ -----------------------
 3 Mary COSC 4 1978-07-16 00:00:00
 5 Zelda COSC NULL 1978-02-12 00:00:00
 8 Brenda COSC 2 1977-08-13 00:00:00
 14 Lujack COSC 1 1977-02-12 00:00:00
 17 Elainie COSC 1 1976-08-12 00:00:00
 31 Jake COSC 4 1978-02-12 00:00:00
 121 Hillary COSC 1 1977-07-16 00:00:00
 128 Brad COSC 1 1977-09-10 00:00:00
 130 Alan COSC 2 1977-07-16 00:00:00
 142 Jerry COSC 4 1978-03-12 00:00:00

 (10 row(s) affected)

1.

To find the student rows in the preceding output who have earned a B in a course, we first need
to add the Grade_report table, shown in Figure 6-1, with a join (to get the grades of those
students who are computer science majors).

Figure 6-1. Table definition of the Grade_report table

2.

http://lib.ommolketab.ir

The join query now looks like (note the choice of columns in the SELECT statement, so that we
can see the student names, majors, sections and grades):

SELECT stu.sname, stu.major, g.section_id, g.grade
FROM Student stu, Grade_report g
WHERE stu.major = 'COSC'
 AND stu.stno = g.student_number

This query produces 48 rows of output (of which we show the first 20 rows):

sname major section_id grade
-------------------- ----- ---------- -----
Mary COSC 85 A
Mary COSC 87 B
Mary COSC 90 B
Mary COSC 91 B
Mary COSC 92 B
Mary COSC 96 B
Mary COSC 101 NULL
Mary COSC 133 NULL
Mary COSC 134 NULL
Mary COSC 135 NULL
Zelda COSC 90 C
Zelda COSC 94 C
Zelda COSC 95 B
Brenda COSC 85 A
Brenda COSC 92 A
Brenda COSC 94 C
Brenda COSC 95 B
Brenda COSC 96 C
Brenda COSC 102 B
Brenda COSC 133 NULL
.
.
.
(48 row(s) affected)

To add the condition for Bs, we need to add another AND clause in the WHERE condition, by
adding a fifth line to the query:

3.

http://lib.ommolketab.ir

SELECT stu.sname, major, section_id, grade
FROM Student stu, Grade_report g
WHERE stu.major = 'COSC'
 AND stu.stno = g.student_number
 AND g.grade = 'B'

This query produces the following 14 rows of output:

sname major section_id grade
-------------------- ----- ---------- -----
Mary COSC 87 B
Mary COSC 90 B
Mary COSC 91 B
Mary COSC 92 B
Mary COSC 96 B
Zelda COSC 95 B
Brenda COSC 95 B
Brenda COSC 102 B
Lujack COSC 102 B
Lujack COSC 145 B
Lujack COSC 158 B
Hillary COSC 90 B
Hillary COSC 94 B
Hillary COSC 95 B

(14 row(s) affected)

3.

To get only the student names from the preceding output, we reduce the result set by typing:

SELECT stu.sname
FROM Student stu, Grade_report g
WHERE stu.major = 'COSC'
 AND stu.stno = g.student_number
 AND g.grade = 'B'

This query produces the following output, a list of all the students who are majoring in COSC
and received a grade of B:

sname

Mary
Mary
Mary
Mary

4.

http://lib.ommolketab.ir

Mary
Zelda
Brenda
Brenda
Lujack
Lujack
Lujack
Hillary
Hillary
Hillary

(14 row(s) affected)

The point of this process is that it allows us to test as we go, verify that the query works up to
that point, and ensure that we have a reasonable result before we move to the next
enhancement.

To get the answer in a more reasonable "easy-to-read" orderly manner, a final presentation
using DISTINCT (to find the distinct names) and ORDER BY (to order by names) could be added to
the query, as follows:

SELECT DISTINCT(stu.sname)
FROM Student stu, Grade_report g
WHERE stu.major = 'COSC'
 AND stu.stno = g.student_number
 AND g.grade = 'B'
 ORDER BY stu.sname

which would give:

sname

Brenda
Hillary
Lujack
Mary
Zelda

(5 row(s) affected)

But note that the DISTINCT and ORDER BY do not have to be used together. When the DISTINCT is
used, the ORDER BY is not necessary. DISTINCT automatically orders the result set. So writing the
previous query without the ORDER BY clause would give you the same output. Try it.

5.

http://lib.ommolketab.ir

http://lib.ommolketab.ir

6.2. Parentheses in SQL Expressions

As queries get longer, they can become very ambiguous to humans without the appropriate use of
parentheses. In programming languages like C, you can write a statement like this:

 x = y + z * w

How is this statement computed? The answer depends on precedence rules. Usually in programming
languages (and in SQL), clauses in parentheses have the highest precedence. The authors of this
book advocate fully parenthesized expressions for three reasons:

It makes the expression easier to debug.

It tells anyone else who looks at your expression that it is written as you intended, because you
explicitly and unambiguously wrote the expression in a fully parenthesized way.

There is no guarantee that another SQL language will behave like the one you learned.

In SQL, the precedence problem occurs when AND and OR are used in the same query. For example,
what does the following query request? Does AND or OR have precedence or is the rule "left to right"?

 SELECT *
 FROM Student
 WHERE class = 3 OR class = 4 AND stno < 100

This query produces the following 12 rows of output:

 STNO SNAME MAJOR CLASS BDATE
 ------ -------------------- ----- ------ -----------------------
 3 Mary COSC 4 1978-07-16 00:00:00
 13 Kelly MATH 4 1980-08-12 00:00:00
 20 Donald ACCT 4 1977-10-15 00:00:00
 24 Chris ACCT 4 1978-02-12 00:00:00
 31 Jake COSC 4 1978-02-12 00:00:00
 49 Susan ENGL 3 1980-03-11 00:00:00
 62 Monica MATH 3 1980-10-14 00:00:00
 122 Phoebe ENGL 3 1980-04-15 00:00:00
 131 Rachel ENGL 3 1980-04-15 00:00:00
 143 Cramer ENGL 3 1980-04-15 00:00:00

http://lib.ommolketab.ir

 151 Losmith CHEM 3 1981-01-15 00:00:00
 160 Gus ART 3 1978-10-15 00:00:00

 (12 row(s) affected)

The point is that you do not have to know the precedence rules to write an unambiguous expression.
If you use parentheses appropriately, you make the expression clear and unambiguous. Consider the
following examples. If we type the following:

 SELECT *
 FROM Student
 WHERE class = 3 OR (class = 4 AND stno < 100)

we get the following 12 rows of output:

 STNO SNAME MAJOR CLASS BDATE
 ------ -------------------- ----- ------ -----------------------
 3 Mary COSC 4 1978-07-16 00:00:00
 13 Kelly MATH 4 1980-08-12 00:00:00
 20 Donald ACCT 4 1977-10-15 00:00:00
 24 Chris ACCT 4 1978-02-12 00:00:00
 31 Jake COSC 4 1978-02-12 00:00:00
 49 Susan ENGL 3 1980-03-11 00:00:00
 62 Monica MATH 3 1980-10-14 00:00:00
 122 Phoebe ENGL 3 1980-04-15 00:00:00
 131 Rachel ENGL 3 1980-04-15 00:00:00
 143 Cramer ENGL 3 1980-04-15 00:00:00
 151 Losmith CHEM 3 1981-01-15 00:00:00
 160 Gus ART 3 1978-10-15 00:00:00

 (12 row(s) affected)

The preceding query has the parentheses around the AND clause, the result of which is that the AND is
performed first. The following query has the parentheses around the OR clause, meaning that the OR
is performed first:

 SELECT *
 FROM Student
 WHERE (class = 3 OR class = 4) AND stno < 100

This query results in the following seven rows of output:

http://lib.ommolketab.ir

 STNO SNAME MAJOR CLASS BDATE
 ------ -------------------- ----- ------ -----------------------
 3 Mary COSC 4 1978-07-16 00:00:00
 13 Kelly MATH 4 1980-08-12 00:00:00
 20 Donald ACCT 4 1977-10-15 00:00:00
 24 Chris ACCT 4 1978-02-12 00:00:00
 31 Jake COSC 4 1978-02-12 00:00:00
 49 Susan ENGL 3 1980-03-11 00:00:00
 62 Monica MATH 3 1980-10-14 00:00:00

 (7 row(s) affected)

As the preceding two query statements demonstrate, appropriate placement of parentheses
eliminates any ambiguity in queries that contain both AND and OR.

6.2.1. Operator Precedence

In SQL Server 2005, when complex expressions use multiple operators, precedence rules determine
the sequence in which the operations are performed. The order of execution can significantly affect
the resulting value (as you saw in the example in the preceding section). Although we can usually
control precedence with parentheses, it is important to learn, or have at least a reference, to the
order of precedence.

Operators have the following precedence (the following list is shown from the highest level of
precedence to the lowest level of precedence):

 * (multiply), / (divide), % (modulo)
 + (add), + (concatenate), - (subtract)
 =, >, <, >=, <=, != (not equal to), !>, !<
 NOT
 AND
 BETWEEN, IN, LIKE, OR
 = (assignment)

6.2.2. Data Type Precedence

When an operator combines two expressions of different data types, the data type precedence rules
specify which data type is converted to the other. The data type with the lower precedence is
converted to the data type with the higher precedence. Here we list the precedence order for SQL
Server 2005 data types (again shown from the highest level of precedence to the lowest level of
precedence):

http://lib.ommolketab.ir

SQL_VARIANT

DATETIME

SMALLDATETIME

FLOAT

REAL

DECIMAL

MONEY

SMALLMONEY

BIGINT

INT

SMALLINT

TINYINT

BIT

NTEXT

TEXT

IMAGE

UNIQUEIDENTIFIER

NVARCHAR

NCHAR

VARCHAR

CHAR

BINARY

This order means that if a number of an INT data type is multiplied to a number that is of a FLOAT
data type, the result would be a FLOAT data type. To illustrate something like this, we will use the
Employee table that we created in the last chapter. The design of the Employee table is shown in
Figure 6-2.

Note that the data type of the hours column is SMALLINT. If we multiply this column (hours) by 0.75
(a FLOAT), we get a FLOAT data type in the result set, as shown here:

 SELECT names, hours, 'Hours * .75' = hours * .75
 FROM Employee

http://lib.ommolketab.ir

Figure 6-2. Table definition of the Employee table

This query gives us:

 names hours Hours * .75
 -------------------- ------ --------------------------------------
 Sumon Bagui 40 30.00
 Sudip Bagui 30 22.50
 Priyashi Saha NULL NULL
 Ed Evans 10 7.50
 Genny George 40 30.00

 (5 row(s) affected)

http://lib.ommolketab.ir

6.3. Derived Structures

Derived structures may become necessary as the queries we build get larger and we have to use a
more step-by-step approach to find a result. Derived structures help us to build queries on top of other
queries. In this section, we discuss two of the most commonly used derived structuresviews and
temporary tables.

6.3.1. Views

In SQL, a view (also called a virtual table) is a mechanism to procure a restricted subset of data that
is accessible in ways akin to ordinary tables. We use the word "akin" because some operations on
views (such as some updates and deletes) may be restricted which otherwise would be allowed if
performed on the underlying structure itself.

A view serves several purposes:

It helps to develop a query step by step.

It can be used to restrict a set of users from seeing part of the database in a multiuser systemthis
can be considered a security feature.

Views provide a layer of abstraction to data, facilitating backward compatibility and horizontal and
vertical partitioning of data.

Views provide a seamless way to combine data from multiple sources.

Views do not occupy much disk space, as they have no data of their own.

When you use a view for queries, you use it just as you would use the underlying table(s).

Views can be used to create other views or queries.

Views are typically a way of building queries on top of other queries.

6.3.1.1. Creating views

A view can be regarded as a named SELECT statement that produces a result set (a view) that you can
further work on. The SELECT statement that is used to create a view can be from one or more
underlying tables or from other views in the current or other databases.

The general SQL syntax used to create a view is:

http://lib.ommolketab.ir

 CREATE VIEW view_name AS
 SELECT ...

The following example creates a view called namemaj , which is a view of students' names and majors
from the Student table. To create the view namemaj , type the following in the SQL query editor screen:

 CREATE VIEW namemaj AS
 SELECT sname, major
 FROM Student

And then execute this query in the regular way. A view will be created.

You will get the following message:

 Command(s) completed successfully.

To view namemaj , click on Views in the Object Explorer, and then click dbo.namemaj and then Columns ,
as shown in Figure 6-3 .

Figure 6-3. Viewing the view namemaj

A view is a stored SELECT statement. Each time a view is accessed, the SELECT statement in the view is
run.

6.3.1.2. Using views

The new view can be used just like a table in the FROM clause of any SELECT statement, as shown here:

 SELECT *
 FROM namemaj

http://lib.ommolketab.ir

This query will give 48 rows of output, of which we show the first 10 rows:

sname major

 -------------------- -----
 Lineas ENGL
 Mary COSC
 Zelda COSC
 Ken POLY
 Mario MATH
 Brenda COSC
 Romona ENGL
 Richard ENGL
 Kelly MATH
 Lujack COSC
 .
 .
 .
 (48 row(s) affected

Just like an ordinary table, a view can be filtered and used in a SELECT . For example, type the following
query:

 SELECT n.major AS [Major], n.sname AS [Student Name]
 FROM namemaj AS n, Department_to_major AS d
 WHERE n.major = d.dcode
 AND d.dname LIKE 'COMP%'

which produces the following output:

 Major Student Name
 ----- --------------------
 COSC Mary
 COSC Zelda
 COSC Brenda
 COSC Lujack
 COSC Elainie
 COSC Jake
 COSC Hillary
 COSC Brad
 COSC Alan
 COSC Jerry

 (10 row(s) affected)

http://lib.ommolketab.ir

6.3.1.3. ORDER BY in views

SQL Server 2005 does not allow you to use an ORDER BY when creating views . For example, if we try
to create an ordered view called namemaj1 , as follows:

 CREATE VIEW namemaj1 AS
 SELECT sname, major
 FROM Student
 ORDER BY sname

we will get the following error message:

 Msg 1033, Level 15, State 1, Procedure namemaj1, Line 4
 The ORDER BY clause
 is invalid in views, inline functions, derived tables,
 subqueries, and common table expressions, unless TOP or FOR XML is also specified.

Some SQL languages, such as Oracle, allow the use of ORDER BY when creating
views.

But an ORDER BY can be used in the FROM clause after the view has been created, as shown:

 SELECT *
 FROM namemaj
 ORDER BY major

This query produces 48 rows, of which we show the first 10 rows here:

 sname major
 -------------------- -----
 Smith NULL
 Thornton NULL
 Lionel NULL
 Sebastian ACCT
 Harrison ACCT
 Francis ACCT

http://lib.ommolketab.ir

 Donald ACCT
 Chris ACCT
 Gus ART
 Benny CHEM
 .
 .
 .
 (48 row(s) affected)

6.3.1.4. SELECT INTO in views

You cannot use a SELECT INTO statement when creating a view, because it is a combined data definition
language (DDL) and data manipulation language (DML) statement, as shown here:

 CREATE VIEW new_view AS
 SELECT * INTO new_view
 FROM Employee

You will get the following error message:

 Msg 156, Level 15, State 1, Procedure new_view, Line 2
 Incorrect syntax near the keyword 'INTO'.

You can, however, issue a SELECT INTO statement when the view is used in the FROM clause, as shown:

 CREATE VIEW new_view AS
 SELECT *
 FROM namemaj
 WHERE major = 'MATH'

You will get:

 Command(s) completed successfully.

And now if you type:

http://lib.ommolketab.ir

 SELECT * INTO copy_of_new_view
 FROM new_view

You will get:

 (7 row(s) affected)

Now if you type:

 SELECT *
 FROM copy_of_new_view

You will get the following 7 rows:

 sname major
 -------------------- -----
 Mario MATH
 Kelly MATH
 Reva MATH
 Monica MATH
 Sadie MATH
 Stephanie MATH
 Jake MATH

 (7 row(s) affected)

6.3.1.5. Column aliases in views

Column aliases can be used instead of column names in views. For example, type the following to
create a view called namemaj2 with column aliases :

 CREATE VIEW namemaj2 AS
 SELECT sname AS [name], major AS [maj]
 FROM Student
 WHERE major = 'COSC'

You will get:

http://lib.ommolketab.ir

 Command(s) completed successfully.

Then type:

 SELECT *
 FROM namemaj2

This query produces the following 10 rows of output, with the column aliases in the column headings:

 name maj
 -------------------- ----
 Mary COSC
 Zelda COSC
 Brenda COSC
 Lujack COSC
 Elainie COSC
 Jake COSC
 Hillary COSC
 Brad COSC
 Alan COSC
 Jerry COSC

 (10 row(s) affected)

To use the column aliases in a query, the name of the view or table alias (in this case, a view alias) has
to precede the column alias, as shown in this query:

 SELECT namemaj2.[name], namemaj2.[maj]
 FROM namemaj2
 WHERE namemaj2.[name] LIKE 'J%'

This query produces the following output:

 name maj
 -------------------- ----
 Jake COSC
 Jerry COSC

 (2 row(s) affected)

http://lib.ommolketab.ir

The same query could also be written as follows, where n is the table (view) alias:

 SELECT n.[name], n.[maj]
 FROM namemaj2 AS n
 WHERE n.[name] LIKE 'J%'

6.3.1.6. Data in views

A view consists of a set of named columns and rows of data, just like a real table; however, a view has
no data of its own. Data is stored only in the underlying table used to create the view, and not in the
view. The view stores only the SELECT statement (rather than the actual data), and data is dynamically
produced from the underlying table when the view is used. Therefore, views depend on the underlying
tables and act like a filter on the underlying tables.

When data in the original table is changed, the view is automatically updated. Therefore, the view is
always up to date. And, when data is changed through a view, the original (underlying) table is also
automatically updated.

6.3.1.6.1. Changing data in views

To demonstrate how changing data through a view automatically updates the original table, begin with
the following Employee table, which we created and used in Chapter 5 :

 names wage hours
 --------------- ------------ -----------
 Sumon Bagui 10.0000 40
 Sudip Bagui 15.0000 30
 Priyashi Saha 18.0000 NULL
 Ed Evans NULL 10
 Genny George 20.0000 40

 (5 row(s) affected)

Create a view called Employee_view from the Employee table, as follows:

 CREATE VIEW Employee_view AS
 SELECT names
 FROM Employee

1.

2.

http://lib.ommolketab.ir

To output the entire contents of the view, type the following query:

 SELECT *
 FROM Employee_view

which produces the following output:

 names

 Sumon Bagui
 Sudip Bagui
 Priyashi Saha
 Ed Evans
 Genny George

 (5 row(s) affected)

2.

To update the data in the view, Employee_view , type the following UPDATE query:

 UPDATE Employee_view
 SET names = 'Mala Saha'
 WHERE names LIKE 'Priya%'

3.

You will get:

 (1 row(s) affected)

Now, to view the contents of the view, Employee_view , type:

 SELECT *
 FROM Employee_view

This query now produces the following output (the third name has changed):

 names

1.

http://lib.ommolketab.ir

 Sumon Bagui
 Sudip Bagui
 Mala Saha
 Ed Evans
 Genny George

 (5 row(s) affected)

Then, view the contents of the underlying table by typing the following (and note that the third
name of this table has changed too):

 SELECT *
 FROM Employee

This now gives:

 names wage hours
 --------------- ------------ -----------
 Sumon Bagui 10.0000 40
 Sudip Bagui 15.0000 30
 Mala Saha 18.0000 NULL
 Ed Evans NULL 10
 Genny George 20.0000 40

 (5 row(s) affected)

If a row were added or deleted from the view, Employee_view , the same change would also
appear in the underlying table.

Therefore, when adding, changing, or deleting data in views, you should always be very careful,
because you do not want to unintentionally change the original underlying table. Remember that
a view may sometimes be only a partial section of a table.

2.

6.3.1.6.2. Changing data in tables

If data is changed in the original table, such as our Employee table, the same data in all the views
related to this underlying table also gets changed.

6.3.1.7. Deleting views

A view can be deleted with a DROP VIEW . For example, to delete the view called Employee_view , you
would type:

http://lib.ommolketab.ir

 DROP VIEW Employee_view

You will get:

 Command(s) completed successfully.

6.3.2. Temporary Tables

In SQL Server 2005, temporary tables reside in SQL Server 2005's default temporary database, tempdb
. Every time that SQL Server 2005 is stopped and restarted, a brand new copy of tempdb is built. So
temporary tables are automatically destroyed when the user who created them disconnects from SQL
Server 2005.

Though temporary tables involve extra storage as well as extra programming effort, temporary tables
are useful for doing work that requires multiple passes to avoid doing repetitive work. Temporary
tables are useful for doing work on a "picture of the data" in the database. As the name implies, no
permanent storage of the temporary structure is anticipated; when the use of the temporary data is
over, the table is deleted. Data in temporary tables is static and not reflective of updates to the original
table(s). As with views, temporary tables may also allow you to develop SQL queries in a step-by-step
manner and may be used to simplify complex queries.

6.3.2.1. Creating temporary tables

In SQL Server 2005, temporary tables are created in the same way that permanent tables are created;
that is, with a CREATE TABLE or a SELECT INTO statement; however, temporary table names must begin
with either # or ## .

6.3.2.1.1. Creating local temporary tables

Local temporary tables are created with # in front of the table name and are visible only to the user
who is currently connected to the database. They are deleted when the user disconnects from this
instance of SQL Server. They are local to the session in which they are created. Thus they are not
visible in any other session, not even to one from the same host or login.

You cannot have foreign key constraints on a temporary table.

We discuss foreign key constraints in Chapter 11 .

The general SQL Server 2005 syntax for creating a local temporary table is:

http://lib.ommolketab.ir

 SELECT column_name, ..., column_name INTO #local_temporary_tablename
 FROM permanent_tablename
 WHERE...

As an example of how to create a local temporary table, #Temp1 , type the following SELECT query:

 SELECT s.sname, s.stno, d.dname, s.class INTO #Temp1
 FROM Student s, Department_to_major d
 WHERE s.major = d.dcode
 AND (s.class = 1 or s.class = 2)
 AND s.major = 'COSC';

You will get:

 (6 row(s) affected)

This query creates a local temporary table called #Temp1 . You can use #Temp1 as a regular table for this
session. To view the data in #Temp1 , type the following:

 SELECT *
 FROM #Temp1

This query produces the following six rows of output:

 sname stno dname class
 -------------------- ----- ---------------- -----
 Brenda 8 Computer Science 2
 Lujack 14 Computer Science 1
 Elainie 17 Computer Science 1
 Hillary 121 Computer Science 1
 Brad 128 Computer Science 1
 Alan 130 Computer Science 2

 (6 row(s) affected)

You can view the local temporary table from the tempdb under Object Explorer. From the Object
Explorer, click Databases, System Databases, tempdb, and then Temporary Tables. You will see the
temporary table, #Temp1, as shown in Figure 6-4 .

http://lib.ommolketab.ir

Figure 6-4. Viewing the local temporary table from the Object Explorer

As in Figure 6-4 , in SQL Server 2005, the local temporary table that you create is appended by a
system generated suffixa 12-digit number with leading zeros. The local temporary table name that you
provide cannot be more than 116 characters, allowing 128 characters for the name of the local
temporary table. This is done by SQL Server because SQL Server allows a number of sessions to create
a local temporary table with the same name without the names colliding with each other.

6.3.2.1.2. Creating global temporary tables

Global temporary tables are created with a prefix of ## . Global temporary tables can be accessed by
anyone who logs onto the database, as long as the creator of the global temporary table is still logged
on. The global temporary table will be dropped automatically when the session that created it ends and
when all other processes that reference it have stopped referencing it. Therefore, even though the
process that created the table may have ended, if another process is still using it, then it will still be
alive.

The general SQL Server syntax for creating a global temporary table is:

 SELECT column_name, ..., column_name INTO ##global_temporary_tablename
 FROM permanent_tablename
 WHERE...

As an example of how to create a global temporary table, type the following SELECT query:

 SELECT s.sname, s.stno, d.dname, s.class INTO ##Temp1
 FROM Student s, Department_to_major d
 WHERE s.major = d.dcode
 AND (s.class = 1 or s.class = 2)
 AND s.major = 'COSC';

You will get:

 (6 row(s) affected)

http://lib.ommolketab.ir

This query creates a global temporary table called ##Temp1 . You can use ##Temp1 as a regular table for
this session. To view the data in ##Temp1 , type the following:

 SELECT *
 FROM ##Temp1

You will get the same output given previously (for the local temporary table).

A global temporary table can also be viewed from the tempdb option of the Object Explorer. From the
Object Explorer, click Databases, System Databases, tempdb, and then Temporary Tables, and you will
see the global temporary table, ##Temp1 , as shown in Figure 6-5 .

Figure 6-5. Viewing the global temporary table from the Object Explorer

Unlike with views, updating data in local or global temporary tables does not
change the data in the underlying original table.

You will note that, unlike the local temporary table, the global temporary table does not have a system
generated suffix attached to the name of the global temporary table. In fact, when creating global
temporary tables, you have to be careful that one with the same name does not already exist, so as to
prevent collisions between tables in any one session. There can be only one instance of a global
temporary table with any particular name.

For example, if you type the following query and try to create another global temporary called ##Temp1
:

 SELECT s.sname, s.stno, d.dname, s.class INTO ##Temp1
 FROM Student s, Department_to_major d
 WHERE s.major = d.dcode
 AND (s.class = 1 or s.class = 2)
 AND s.major = 'MATH';

http://lib.ommolketab.ir

You will get the following error message:

 Msg 2714, Level 16, State 6, Line 1
 There is already an object named '##Temp1' in the database.

6.3.2.1.3. Deleting temporary tables

If you want to delete a temporary table (local or global) before ending the session, you can use the
DROP TABLE statement, just as you would to delete a permanent table.

For example, with the following query

 DROP TABLE ##Temp1

you will get this message:

 Command(s) completed successfully.

To view this change (drop), click on select Temporary Tables and then select Refresh, and you will see
that the temporary table ##Temp1 no longer exists, as shown in Figure 6-6 .

Figure 6-6. Viewing the global temporary table from the Object Explorer

http://lib.ommolketab.ir

6.4. Query Development with Derived Structures

In this section, we discuss how derived structures such as views and temporary tables can be used in
query development.

To illustrate this process, we will list from our standard database, Student_course, the name, student
number, and department name of students who are freshman or sophomores and computer science
majors.

In Step 1, we will develop a query, and in Step 2, we will show how to use this query with derived
structures. In Step 2, Option 1 shows how the query can be turned into a view, Option 2 shows how
the query can be turned into an inline view, and Option 3 shows how the query can be used to create
a temporary table.

6.4.1. Step 1: Develop a Query Step by Step

The first step is to see which columns we need and in which tables these columns are found. We
need student names (sname) and numbers (stno), which are found in the Student table.
Department names (dname) are found in the Department_to_major table. To find the department
names that correspond to the student majors, we have to combine the Student and
Department_to_major tables. To combine these two tables, we will join the tables where major
from the Student table joins with the dcode from the Department_to_major table as follows
(because the statements eventually will be filtered by class, we include class in the result set):

 SELECT s.sname, s.stno, d.dname, s.class
 FROM Student s, Department_to_major d
 WHERE s.major = d.dcode

After you type the query and run it, you will get the following 45 rows of output:

 sname stno dname class
 -------------------- ------ -------------------- ------
 Lineas 2 English 1
 Mary 3 Computer Science 4
 Zelda 5 Computer Science NULL
 Ken 6 Political Science NULL
 Mario 7 Mathematics NULL
 Brenda 8 Computer Science 2
 Romona 9 English NULL
 Richard 10 English 1

1.

http://lib.ommolketab.ir

 Kelly 13 Mathematics 4
 Lujack 14 Computer Science 1
 Reva 15 Mathematics 2
 Elainie 17 Computer Science 1
 Harley 19 Political Science 2
 Donald 20 Accounting 4
 Chris 24 Accounting 4
 Jake 31 Computer Science 4
 Lynette 34 Political Science 1
 Susan 49 English 3
 Monica 62 Mathematics 3
 Bill 70 Political Science NULL
 Hillary 121 Computer Science 1
 Phoebe 122 English 3
 Holly 123 Political Science 4
 Sadie 125 Mathematics 2
 Jessica 126 Political Science 2
 Steve 127 English 1
 Brad 128 Computer Science 1
 Cedric 129 English 2
 Alan 130 Computer Science 2
 Rachel 131 English 3
 George 132 Political Science 1
 Jerry 142 Computer Science 4
 Cramer 143 English 3
 Fraiser 144 Political Science 1
 Harrison 145 Accounting 4
 Francis 146 Accounting 4
 Smithly 147 English 2
 Sebastian 148 Accounting 2
 Losmith 151 Chemistry 3
 Genevieve 153 NULL NULL
 Lindsay 155 NULL 1
 Stephanie 157 Mathematics NULL
 Gus 160 Art 3
 Benny 161 Chemistry 4
 Jake 191 Mathematics 2

 (45 row(s) affected)

To find all the freshmen and sophomores (class 1 and 2) from the Student table, add AND
(s.class = 1 or s.class = 2) to the end of the previous query, as follows:

 SELECT s.sname, s.stno, d.dname, s.class
 FROM Student s, Department_to_major d
 WHERE s.major = d.dcode
 AND (s.class = 1 or s.class = 2)

2.

http://lib.ommolketab.ir

Running this query produces the following 21 rows of output:

 sname stno dname class
 -------------------- ------ -------------------- ------
 Lineas 2 English 1
 Brenda 8 Computer Science 2
 Richard 10 English 1
 Lujack 14 Computer Science 1
 Reva 15 Mathematics 2
 Elainie 17 Computer Science 1
 Harley 19 Political Science 2
 Lynette 34 Political Science 1
 Hillary 121 Computer Science 1
 Sadie 125 Mathematics 2
 Jessica 126 Political Science 2
 Steve 127 English 1
 Brad 128 Computer Science 1
 Cedric 129 English 2
 Alan 130 Computer Science 2
 George 132 Political Science 1
 Fraiser 144 Political Science 1
 Smithly 147 English 2
 Sebastian 148 Accounting 2
 Lindsay 155 NULL 1
 Jake 191 Mathematics 2

 (21 row(s) affected)

Now that we have the department names of all the freshmen and sophomores, we need to find
the computer science majors from this group, so we add AND s.major = 'COSC' to the previous
query as follows:

 SELECT s.sname, s.stno, d.dname, s.class
 FROM Student s, Department_to_major d
 WHERE s.major = d.dcode
 AND (s.class = 1 or s.class = 2)
 AND s.major = 'COSC'

This query produces the following output (six rows), which finally gives us the student name,
student number, and department name of students who are freshman or sophomores and
computer science majors:

 sname stno dname class
 -------------------- ------ -------------------- ------
 Brenda 8 Computer Science 2

3.

http://lib.ommolketab.ir

 Lujack 14 Computer Science 1
 Elainie 17 Computer Science 1
 Hillary 121 Computer Science 1
 Brad 128 Computer Science 1
 Alan 130 Computer Science 2

 (6 row(s) affected)

Note that in each case where we add more filtering in the WHERE clause, the number of rows
declines. If the number of rows does not decline, that could represent a problem.

6.4.2. Step 2: Using a Derived Structure

This step shows how the previous query (developed in Step 1) can be turned into a view (Option 1),
inline view (Option 2), or temporary table (Option 3). Each one of these derived structures will
produce the same end results, so as you develop your own queries, you may use whichever derived
structure you become most comfortable with and/or is most appropriate.

Derived structures are also very useful when you wish to use nested functions.

6.4.2.1. Option 1: Turning your query into a view

To create a view (called stu_view) using the previous example query, type:

 CREATE VIEW stu_view AS
 SELECT s.sname, s.stno, d.dname, s.class
 FROM Student s, Department_to_major d
 WHERE s.major = d.dcode
 AND (s.class = 1 or s.class = 2)
 AND s.major = 'COSC'

You can now SELECT from the view by typing:

 SELECT *
 FROM stu_view
 WHERE sname LIKE 'BR%'

http://lib.ommolketab.ir

This query produces the following output, which includes all the names in the view stu_view that start
with "Br":

 sname stno dname class
 -------------------- ------ -------------------- ------
 Brenda 8 Computer Science 2
 Brad 128 Computer Science 1

 (2 row(s) affected)

Remember that the view always reflects the database as it is, and a view takes up no extra storage
in the database, because no data is stored in a view.

6.4.2.2. Option 2: Using an inline view

You can also place a query in the FROM clause of a SELECT statement and thereby create what is called
an inline view. An inline view exists only during the execution of a query. The main purpose of an
inline view is to simplify the development of a one-time query. In a typical development scenario, a
person would probably devise a SELECT statement, test it, examine the result, wrap it in parentheses,
and continue with the development by using the inline view.

Follow these general steps to develop an inline view:

Develop a query:

 SELECT column1, column2, ...
 FROM TableName
 WHERE ...

1.

Wrap the results into parentheses and make it into an inline view:

 SELECT *
 FROM (SELECT column1, column2, ... FROM TableName WHERE ...)

2.

Display the columns in the inline view:

 SELECT v.column1, v.column2, ...
 FROM (SELECT column1, column2, ... FROM TableName WHERE ...) v

3.

http://lib.ommolketab.ir

You could then proceed to make the previous query an inline view and add more complexity as
needed. The beauty of creating a query in steps is that you can examine each step using counts and
TOP qualifiers to see whether you're heading in the right direction.

Let's look at an example of an inline view for our sample problem. In this example, we create the
same view as previously inline -- that is, we create the view on the fly, give it an alias of v, and use it
just as we would use a stored table or view, as follows:

 SELECT v.sname, v.dname, v.class
 FROM (SELECT s.sname, s.stno, d.dname, s.class
 FROM Student AS s, Department_to_major AS d
 WHERE s.major = d.dcode
 AND (s.class = 1 or s.class = 2)
 AND s.major = 'COSC') AS v

This query produces the following six rows of output:

 sname dname class
 -------------------- -------------------- ------
 Brenda Computer Science 2
 Lujack Computer Science 1
 Elainie Computer Science 1
 Hillary Computer Science 1
 Brad Computer Science 1
 Alan Computer Science 2
 (6 row(s) affected)

In the final result set of the outer query, the column names reference the names used in the inline
view result set.

6.4.2.3. Option 3: Using a global temporary table

To create a global temporary table (called ##Temp2) using the query developed in Step 1, type:

 SELECT s.sname, s.stno, d.dname, s.class INTO ##Temp2
 FROM Student s, Department_to_major d
 WHERE s.major = d.dcode
 AND (s.class = 1 or s.class = 2)
 AND s.major = 'COSC'

Once you run or execute your query, you have created a temporary table called ##Temp2.

http://lib.ommolketab.ir

Now if you type:

 SELECT *
 FROM ##Temp2

You should get the following six rows of output, which should be exactly the same as you received in
the other options:

 sname stno dname class
 -------------------- ------ -------------------- ------
 Brenda 8 Computer Science 2
 Lujack 14 Computer Science 1
 Elainie 17 Computer Science 1
 Hillary 121 Computer Science 1
 Brad 128 Computer Science 1
 Alan 130 Computer Science 2

 (6 row(s) affected)

In all the examples of views and temporary tables, the SQL programmer weighs programming effort
(individual and team), storage costs, and query efficiency to choose which structure is appropriate.

http://lib.ommolketab.ir

6.5. Summary

In this chapter, we provided you with an overview of different derived structures available in SQL
Server. Each of these derived structures has its own advantages and disadvantages, and once you
have knowledge of the different derived structures, it is up to you to select the derived structure that
you wish to use to make your work easier or more efficient. Oftentimes it is not easy to formulate a
query all at once. The derived structures will help you formulate your queries in a more systematic
step-by-step manner.

http://lib.ommolketab.ir

6.6. Review Questions

Which has precedence, AND or OR?1.

Why do we need derived structures?2.

What is a view?3.

List some advantages of using views.4.

List some advantages of using temporary tables.5.

Can temporary tables replace views in all cases?6.

What is the difference between a view and temporary table?7.

What is the difference between a local temporary table and global temporary table?8.

If data is changed in a view, is it changed in the original table?9.

If data is changed in a temporary table, does it automatically change data in the original table?10.

What happens to local temporary tables after the session has been ended?11.

What happens to global temporary table after the session has been ended?12.

Which type of temporary table has a system-generated suffix attached to it? What does this
suffix mean?

13.

Why are inline views helpful?14.

In SQL Server, is the ORDER BY clause allowed during the creation of a view?15.

Is SELECT INTO allowed in a view? Why or why not?16.

Where is the data stored in a view?17.

How do you delete views?18.

How do you delete a temporary table?19.

Do you need to delete a local temporary table? Why or why not?20.

Which operators have the highest/lowest precedence?21.

In SQL Server, if a column of FLOAT data type were divided by a column of REAL data type, what
data type would the resulting column have? (Hint: refer to the section on Data Type

22.

23.

http://lib.ommolketab.ir

21.

Preference.)

22.

Is an ORDER BY clause necessary when you use a DISTINCT? Why or why not?23.

http://lib.ommolketab.ir

6.7. Exercises

Unless specified otherwise, use the Student_course database to answer the following questions. Also,
use appropriate column headings when displaying your output.

Develop and execute a query to find the names of students who had HERMANO as an instructor
and earned a grade of B or better in the class. Develop the query by first finding sections where
HERMANO was the instructor. Save this query. Edit the query and modify it to join the Section
table with the Grade_report table. Add the grade constraint.

1.

Using the Student table, create a duplicate table called Stutab that contains all rows from the
Student table. Hint: Look at the design of the Student table to see the columns and their
definitions. Create the Stutab table with a CREATE TABLE command. Insert data into Stutab using
the INSERT INTO .. SELECT option.

Using the newly created Stutab table:

List student names and majors of the juniors and seniors.a.

List student names of the COSC majors.b.

Create a view (call it vstu) that contains student names and majors for the COSC majors.c.

List the student names and majors from vstu in descending order by name.d.

Modify a row in your view of your table so that a student changes his or her major.e.

Display of the view. Did modifying the view, vstu, also change the parent table, Stutab?f.

Try to modify the view again, but this time, change the major to COMPSC--an obviously
invalid column in the Stutab table, because the column was defined as four characters.
Can you do it? What happens?

g.

Using Stutab, create a local temporary table (call it #stutemp) that contains student names
and majors for the COSC majors.

h.

List the student names and majors from #stutemp in ascending order by name.i.

Modify a row in #stutemp so that a student changes his or her major.j.

Display the local temporary table. Did modifying your temporary table, #stutemp, also
change the parent table, Stutab.

k.

Try to modify the local temporary table again, but this time change the major to COMPSC--
again, an obviously invalid field in Stutab, because the field was defined as four

l.

m.

2.

http://lib.ommolketab.ir

characters. Can you do it? What happens?

l.

Using Stutab, create a global temporary table (call it ##gstutemp) that contains student
names and majors for the COSC majors.

m.

List the student names and majors from ##gstutemp in ascending order by name.n.

Modify a row in ##gstutemp so that a student changes his or her major.o.

Display the global temporary table. Did modifying your temporary table, ##gstutemp, also
change the parent table, Stutab.

p.

Try to modify the global temporary table again, but this time change the major to COMPSC--
again, an obviously invalid field in Stutab, because the field was defined as four
characters. Can you do it? What happens?

q.

Create an inline view (call it invstu) that contains student names and majors for COSC
majors.

r.

Perform an experiment to determine the precedence in a query with three conditions linked by
AND and OR. Which precedence is followed: AND, OR, or left-to-right?

Run this query:

 SELECT *
 FROM Student
 WHERE stno < 100 AND major = 'COSC' OR major = 'ACCT'

Then run the following two queries and determine which one gives you the same output as the
preceding non parenthesized statement:

 SELECT *
 FROM Student
 WHERE (stno < 100 AND major = 'COSC') OR major = 'ACCT'

or:

 SELECT *
 FROM Student
 WHERE stno < 100 AND (major = 'COSC' OR major = 'ACCT')

What happens if you put the OR first instead of the AND and run the query without parentheses?

3.

Develop a query to find the instructor name and course name for computer science courses
(use the Section table).

4.

http://lib.ommolketab.ir

Convert your query into a view.a.

Convert the query into an inline view with column aliases and test it.b.

Include an ORDER BY clause outside of the inline view in the main query and run your query
again.

c.

4.

http://lib.ommolketab.ir

Chapter 7. Set Operations
In Chapter 4, we looked at how data can be retrieved from multiple tables using joins. In this
chapter, we discuss how data can also be retrieved from multiple tables by using set operations . We
look at the set operations available in SQL Server 2005. Because not all the SQL set operations are
explicitly available in SQL Server 2005, we will also look at the IN predicate and its negation, NOT..IN,
which are ways around the explicit set operations. In the final section of this chapter, we look at the
UNION operation in relation to the join operation, and how the UNION operation can be used to get the
results of some joins.

http://lib.ommolketab.ir

7.1. Introducing Set Operations

A set is a collection of objects. In relational databases, a table can be regarded as a set of rows.
Elements in a set do not have to be ordered. In relational databases, rows do not have to be ordered
as they are entered or stored. Set operations are used in SQL to retrieve data from multiple sets, and
include a binary union, binary intersection and binary set difference . A result set is obtained in SQL
from the result of a SELECT.

A binary union is a set operation on two sets, the result of which contains all the elements of both
sets. A binary intersection generates values in common between two sets. And, a binary set
difference generates values in one set less those contained in another set.

Three explicit set operations are used in SQL: UNION, INTERSECT, and MINUS (for set difference). SQL
Server 2005 allows the explicit use of the UNION and INTERSECT operations. Because the MINUS set
operation cannot be explicitly used in SQL Server 2005, we will illustrate the MINUS operation by using
the very common IN predicate and its negation, NOT..IN, which enable us to accomplish the same
result as using INTERSECT and MINUS.

The format of a set statement is as follows:

 set OPERATOR set

where OPERATOR is a UNION, INTERSECT or MINUS, and where "set" is defined by a SELECT.

First we will discuss the UNION operator; the INTERSECT operator will be discussed later in the chapter.

The following is the syntax for a general form of an UNION:

 SELECT *
 FROM TableA
 UNION
 SELECT *
 FROM TableB

Set statements allow us to combine two distinct sets of data (two result sets) only if we insure union
compatibility, as explained in the next section.

7.1.1. Union Compatibility

http://lib.ommolketab.ir

Union compatibility, the commonly used SQL terminology for set compatibility, means that when
using set operations, the two sets (in this case, the results of two SELECTs) being unioned have to
have the same number of similar columns and the columns have to have compatible data types. Next
we will explain what compatible data types means, and we will return to the issue of "similar"
columns in a later section.

So what does "compatible" data types mean? The data types of the columns of the two sets being
unioned do not necessarily have to be exactly the same, meaning that they may differ in length and
even type, but they have to be "well-matched." For union compatibility, the three basic data types
are numeric, string, and dates. All numeric columns are compatible with one another, all string
columns are compatible with one another, and all date columns are compatible with one another. For
numbers, SQL will convert integers, floating-point numbers, and decimals into a numeric data type,
to make them compatible with one another. So any numeric column (for example, integers) can be
unioned with any other numeric column (for example, decimals). Likewise, any fixed-length character
column and any variable-length character column will be converted to a character data type, and
take on the larger size of the character columns being unioned. Similarly, date columns will be
combined to a date data type.

For union compatibility, the three basic data types are numeric, string, and
dates.

Union compatibility can happen in several ways:

By unioning two tables or views that have identical columns (which implies the same domains as
well).

By taking two subsets from a table and combining them.

By using two views from two tables respectively with the columns chosen so that they are
compatible.

For the data type precedence rules, refer to the "Data Type Precedence" section
in Chapter 6.

http://lib.ommolketab.ir

7.2. The UNION Operation

In SQL Server 2005, a binary union is performed with the UNION set operation. A UNION takes the
result sets from two (or more) queries and returns all rows from the results sets as a single result set
(removing the duplicates). In this section, we illustrate how a UNION works; although there are other
ways to retrieve this information, we are showing the UNION alternative.

Suppose that we want to find the names of all students who are computer science (COSC) majors,
along with all students who are MATH majors from the Student table, we may write the following query
that uses the UNION set operator:

 SELECT sname
 FROM Student
 WHERE major = 'COSC'
 UNION
 SELECT sname
 FROM Student
 WHERE major = 'MATH'

The two sets being unioned must have the same number of columns in the
result sets of the SELECT clauses.

While executing the UNION, SQL first executes the first part of the query:

 SELECT sname
 FROM Student
 WHERE major = 'COSC'

This part virtually produces the following 10 rows of output:

 sname

 Mary
 Zelda
 Brenda
 Lujack

http://lib.ommolketab.ir

 Elainie
 Jake
 Hillary
 Brad
 Alan
 Jerry

 (10 row(s) affected)

Then SQL executes the second part of the query:

 SELECT sname
 FROM Student
 WHERE major = 'MATH'

This part virtually produces the following 7 rows of output:

 sname

 Mario
 Kelly
 Reva
 Monica
 Sadie
 Stephanie
 Jake

 (7 row(s) affected)

SQL then combines the two virtual sets of results (the UNION operation), which includes throwing out
any duplicates (an extra "Jake," in this case), leaving us with the following 16 rows of output:

 sname

 Alan
 Brad
 Brenda
 Elainie
 Hillary
 Jake
 Jerry
 Kelly
 Lujack

http://lib.ommolketab.ir

 Mario
 Mary
 Monica
 Reva
 Sadie
 Stephanie
 Zelda

 (16 row(s) affected)

Prior to SQL Server 7, SQL Server always returned the result of a UNION in sorted order. This was so
because the UNION eliminated duplicate rows using a sorting strategy. The ordering was simply a by-
product of the sorting to eliminate duplicates. Newer versions of SQL Server, however, have several
alternative strategies available for removing duplicates, so there is no guarantee of any particular
order when you use UNION. If you would like to order the output, you should explicitly use ORDER BY at
the end of your last SELECT statement.

The maximum number of rows possible when a UNION is used is the sum of the
number of rows in the two result sets (or tables) in the two SELECT clauses.

7.2.1. Similar Columns in Unions

Earlier, we mentioned that for a union to be successful, there has to be union compatibility, and the
two sets being unioned have to have similar columns. So what does similar columns mean?

If we wrote the earlier UNION example like this:

 SELECT major
 FROM Student
 WHERE major = 'COSC'
 UNION
 SELECT sname
 FROM Student
 WHERE major = 'MATH'

We would get a result set, but would the result set (output) be valid? The answer is no. You are
trying to union majors and student names. These are not similar columns (though the data types of
the two columns are compatible), and it does not make sense to union two different types of
columns. So, before performing a union operation, you have to be very careful that you union like
columns, and not "apples and oranges."

http://lib.ommolketab.ir

7.2.2. Unioning Constants or Variables

In SQL Server 2005, a group of SELECT statements can also be used to union constants or variables:

 SELECT col1=100, col2=200
 UNION
 SELECT col1=400, col2=500
 UNION
 SELECT col1=100*3, col2=200*3
 UNION
 SELECT 900, 400

This query will produce:

 col1 col2
 ----------- -----------
 100 200
 300 600
 400 500
 900 400

 (4 row(s) affected)

Note that the output here happens to be sorted by the first column.

http://lib.ommolketab.ir

7.3. The UNION ALL Operation

UNION ALL works exactly like UNION, but does not expunge duplicates or sort the results. UNION ALL is
more efficient in execution (because UNION ALL does not have to expunge the duplicates), and
occasionally you may need to keep duplicates (just to keep all occurrences or records), in which case
you can use UNION ALL.

The following is the same query previously shown for UNION, but using UNION ALL instead of UNION:

 SELECT sname
 FROM Student
 WHERE major = 'COSC'
 UNION ALL
 SELECT sname
 FROM Student
 WHERE major = 'MATH'

This query results in 17 unsorted rows, including one duplicate, Jake; using UNION produced 16 rows
with no duplicates:

 sname

 Mary
 Zelda
 Brenda
 Lujack
 Elainie
 Jake
 Hillary
 Brad
 Alan
 Jerry
 Mario
 Kelly
 Reva
 Monica
 Sadie
 Stephanie
 Jake

 (17 row(s) affected)

http://lib.ommolketab.ir

http://lib.ommolketab.ir

7.4. Handling UNION and UNION ALL Situations with an
Unequal Number of Columns

As has been mentioned earlier, in order to successfully UNION or UNION ALL result sets, the result sets
being unioned have to have the same number of columns. That is, all queries in a UNION or UNION ALL
operation must return the same number of columns. But what if all the queries being used in the
UNION or UNION ALL do not return the same number of columns?

If we want to union two result sets that do not have the same number of columns, we have to use
NULL (or other) values in the column-places as place holders. For example, from our Student_course
database, if we want to union the Course table and the Prereq table with all the columns, under
normal circumstances, this would not be possible, because the Course table has four columns and the
Prereq table has only two. Therefore, to perform a UNION ALL operation, we would have to place NULL
values or some other values in the columns that will be empty, as follows (this example uses NULL as
a place holder):

 SELECT c.*, NULL
 FROM Course c
 WHERE c.credit_hours = 4
 UNION ALL
 SELECT NULL, p.course_number, NULL, NULL, p.prereq
 FROM Prereq p

This query produces the following 18 rows of output:

 COURSE_NAME COURSE_NUMBER CREDIT_HOURS OFFERING_DEPT
 -------------------- ------------- ------------ ------------- --------
 INTRO TO COMPUTER SC COSC1310 4 COSC NULL
 DATA STRUCTURES COSC3320 4 COSC NULL
 ADA - INTRODUCTION COSC5234 4 COSC NULL
 CALCULUS 1 MATH1501 4 MATH NULL
 SOCIALISM AND COMMUN POLY4103 4 POLY NULL
 POLITICS OF CUBA POLY5501 4 POLY NULL
 NULL ACCT3333 NULL NULL ACCT2220
 NULL CHEM3001 NULL NULL CHEM2001
 NULL COSC3320 NULL NULL COSC1310
 NULL COSC3380 NULL NULL COSC3320
 NULL COSC3380 NULL NULL MATH2410
 NULL COSC5234 NULL NULL COSC3320
 NULL ENGL1011 NULL NULL ENGL1010
 NULL ENGL3401 NULL NULL ENGL1011

http://lib.ommolketab.ir

 NULL ENGL3520 NULL NULL ENGL1011
 NULL MATH5501 NULL NULL MATH2333
 NULL POLY2103 NULL NULL POLY1201
 NULL POLY5501 NULL NULL POLY4103

 (18 row(s) affected)

We can also use other values (other than NULL) as placeholders, as shown here:

 SELECT c.*, COU_NUM = 'XXXXXXXXXXXX'
 FROM Course c
 WHERE c.credit_hours = 4
 UNION ALL
 SELECT 'XXXXXXXXXXXXX', p.course_number, 00000000000, 'XXXXXXXXXXXXX', p.prereq
 FROM Prereq p

This query gives the same output as the previous query, but this time we have used a series of Xs
and 0s as placeholders instead of NULL (we have 18 rows of output):

 COURSE_NAME COURSE_NUMBER CREDIT_HOURS OFFERING_DEPT COU_NUM
 -------------------- ------------- ------------ ------------- ------------
 INTRO TO COMPUTER SC COSC1310 4 COSC XXXXXXXXXXXX
 DATA STRUCTURES COSC3320 4 COSC XXXXXXXXXXXX
 ADA - INTRODUCTION COSC5234 4 COSC XXXXXXXXXXXX
 CALCULUS 1 MATH1501 4 MATH XXXXXXXXXXXX
 SOCIALISM AND COMMUN POLY4103 4 POLY XXXXXXXXXXXX
 POLITICS OF CUBA POLY5501 4 POLY XXXXXXXXXXXX
 XXXXXXXXXXXXX ACCT3333 0 XXXXXXXXXXXXX ACCT2220
 XXXXXXXXXXXXX CHEM3001 0 XXXXXXXXXXXXX CHEM2001
 XXXXXXXXXXXXX COSC3320 0 XXXXXXXXXXXXX COSC1310
 XXXXXXXXXXXXX COSC3380 0 XXXXXXXXXXXXX COSC3320
 XXXXXXXXXXXXX COSC3380 0 XXXXXXXXXXXXX MATH2410
 XXXXXXXXXXXXX COSC5234 0 XXXXXXXXXXXXX COSC3320
 XXXXXXXXXXXXX ENGL1011 0 XXXXXXXXXXXXX ENGL1010
 XXXXXXXXXXXXX ENGL3401 0 XXXXXXXXXXXXX ENGL1011
 XXXXXXXXXXXXX ENGL3520 0 XXXXXXXXXXXXX ENGL1011
 XXXXXXXXXXXXX MATH5501 0 XXXXXXXXXXXXX MATH2333
 XXXXXXXXXXXXX POLY2103 0 XXXXXXXXXXXXX POLY1201
 XXXXXXXXXXXXX POLY5501 0 XXXXXXXXXXXXX POLY4103

 (18 row(s) affected)

NULL does not have a data type, so it can be used as a placeholder for both numeric and character
columns. But when using other values as placeholders, the data types have to match. Hence we used

http://lib.ommolketab.ir

'XX...' (in the query with the single quotes) for the character columns, and 000s (in the query
without quotes) for the numeric columns.

http://lib.ommolketab.ir

7.5. The IN and NOT..IN Predicates

Although SQL Server 2005 does not have the MINUS (difference) operator, it does have an IN
predicate and its negation, the NOT..IN, which enables us to create differences. Let us look at this
predicate from a set point of view. If we find the objects from set A that are not in set B, we have
found the difference of set A and B (A - B).

7.5.1. Using IN

The following is a simple example of an IN predicate with constants in a SELECT statement:

 SELECT sname, class
 FROM Student
 WHERE class IN (3,4)

In this example, IN (3,4) is called a subquery-set, where (3, 4) is the set in which we are testing
membership. This query says: "Find all student names from the Student table where the class is in
the set (3, 4)." It produces the following 17 rows of output:

 sname class
 -------------------- ------
 Mary 4
 Kelly 4
 Donald 4
 Chris 4
 Jake 4
 Susan 3
 Monica 3
 Phoebe 3
 Holly 4
 Rachel 3
 Jerry 4
 Cramer 3
 Harrison 4
 Francis 4
 Losmith 3
 Gus 3
 Benny 4

 (17 row(s) affected)

http://lib.ommolketab.ir

The preceding query produces the same output as the following query:

 SELECT sname, class
 FROM Student
 WHERE class = 3 OR class = 4

In other words, the IN(3,4) means belonging to either set (3) OR set (4), as shown by the WHERE
class = 3 OR class = 4.

7.5.1.1. Using IN as a subquery

We can expand the IN predicate's subquery-set part to be an actual query. For example, consider the
following query:

 SELECT Student.sname
 FROM Student
 WHERE Student.stno IN
 (SELECT g.student_number
 FROM Grade_report g
 WHERE g.grade = 'A')

Subqueries will be discussed at length in the next chapter.

Note the following about this query:

WHERE Student.stno references the name of the column in the Student table.

g.student_number is the column name in the Grade_report table.

stno in the Student table and student_number in the Grade_report table have the same domain.

Note also that you must retrieve the information from the same domains for purposes of union
compatibility.

The preceding query produces the following 14 rows of output:

 sname

http://lib.ommolketab.ir

 Lineas
 Mary
 Brenda
 Richard
 Lujack
 Donald
 Lynette
 Susan
 Holly
 Sadie
 Jessica
 Steve
 Cedric
 Jerry

 (14 row(s) affected)

You could view the preceding query as a result derived from the intersection of the sets A and B,
where set A is the set of student numbers in the student set (from the Student table) and set B is the
set of student numbers in the grade set (from the Grade_report table) that have As.

To make this command behave like a set operator (as if it were an INTERSECT operator), you can add
the qualifier DISTINCT to the result set as follows:

 SELECT DISTINCT (Student.sname)
 FROM Student
 WHERE Student.stno IN
 (SELECT DISTINCT (g.student_number)
 FROM Grade_report g
 WHERE g.grade = 'A')

This query produces the following 14 rows of output:

 sname

 Brenda
 Cedric
 Donald
 Holly
 Jerry
 Jessica
 Lineas
 Lujack
 Lynette
 Mary

http://lib.ommolketab.ir

 Richard
 Sadie
 Steve
 Susan

 (14 row(s) affected)

Here, SQL Server 2005 sorts the results for you and does not return duplicates.

7.5.2. The INTERSECT Operator

From a set point of view, an INTERSECT means if we find objects from set A that are also in set B (and
vice versa), we have found the intersection of sets A and B. SQL Server 2005 has an INTERSECT
operator.

The following query is the previous query written using an INTERSECT (but we displayed student
numbers instead of student names):

 SELECT s.stno
 FROM Student s
 INTERSECT
 SELECT g.student_number
 FROM Grade_report g
 WHERE g.grade = 'A'

This query gives the following 14 rows of output:

 stno

 2
 3
 8
 10
 14
 20
 34
 49
 123
 125
 126
 127
 129
 142

http://lib.ommolketab.ir

 (14 row(s) affected)

In this query, we had to display student numbers (stno) instead of the student names (sname)
because of the set compatibility issue discussed earlier. INTERSECT is a set operator, so the two sets
being intersected have to have the same number of columns and the columns have to have
compatible data types.

Another example of the use of the INTERSECT operator would be, for example, if we wanted to find all
the students who had dependents, in which case we could type:

 SELECT s.stno
 FROM Student s
 INTERSECT
 SELECT d.pno
 FROM Dependent d

This query would give the following 19 rows of output:

 stno

 2
 10
 14
 17
 20
 34
 62
 123
 126
 128
 132
 142
 143
 144
 145
 146
 147
 153
 158

 (19 row(s) affected)

Though the INTERSECT operator gives us the right answer, in some ways the IN as a subquery
(discussed earlier) is better to use, because when SQL Server 2005 performs the INTERSECT, it selects

http://lib.ommolketab.ir

sets based on what is mentioned in the SELECT statements. So, for example, if we wanted the student
names in addition to the student numbers, and we typed:

 SELECT s.stno, s.sname
 FROM Student s
 INTERSECT
 SELECT d.pno, relationship
 FROM Dependent d

The query would not work.

Here we would have to use an IN with a subquery as discussed earlier:

 SELECT s.stno, s.sname
 FROM Student AS s
 WHERE (s.stno IN
 (SELECT pno
 FROM Dependent AS d))

giving us the following 19 rows of output:

 stno sname
 ---- ------------------
 2 Lineas
 10 Richard
 14 Lujack
 17 Elainie
 20 Donald
 34 Lynette
 62 Monica
 123 Holly
 126 Jessica
 128 Brad
 132 George
 142 Jerry
 143 Cramer
 144 Fraiser
 145 Harrison
 146 Francis
 147 Smithly
 153 Genevieve
 158 Thornton

 (19 row(s) affected)

http://lib.ommolketab.ir

7.5.3. Using NOT..IN

The NOT..IN is really a negated IN predicate. If you use the NOT..IN in your query, your query may
perform poorly. The reason is that when NOT..IN is used, no indexing can be used, because the
NOT..IN part of the query has to test the set with all values to find out what is not in the set. For
smaller tables, no difference in performance will likely be detected. Nonetheless, we discuss how to
use NOT..IN in this section, to demonstrate the logical negative of the IN predicate, which will help to
complete your overall understanding of the SQL language. Instead of using NOT..IN, it is often
preferable to use NOT EXISTS or outer join techniques, both of which are discussed later on.

Indexing is discussed in detail in Chapter 11.

Sometimes the NOT..IN may seem to more easily describe the desired outcome or may be used for a
set difference. For a simple example, consider the following query:

 SELECT sname, class
 FROM Student
 WHERE class IN (1,3,4)

This query produces the following 28 rows of output:

 sname class
 -------------------- ------
 Lineas 1
 Mary 4
 Richard 1
 Kelly 4
 Lujack 1
 Elainie 1
 Donald 4
 Chris 4
 Jake 4
 Lynette 1
 Susan 3
 Monica 3
 Hillary 1
 Phoebe 3
 Holly 4
 Steve 1
 Brad 1

http://lib.ommolketab.ir

 Rachel 3
 George 1
 Jerry 4
 Cramer 3
 Fraiser 1
 Harrison 4
 Francis 4
 Losmith 3
 Lindsay 1
 Gus 3
 Benny 4

 (28 row(s) affected)

Contrast the preceding query to the following query:

 SELECT sname, class
 FROM Student
 WHERE class NOT IN (2)

The output in this case is the same as the preceding output because the Student table only has
classes 1, 2, 3, and 4. If counts (results) did not "add up," this would show that some value of class
was not 1, 2, 3, or 4.

As another example, suppose that you want the names of students who are not computer science
(COSC) or math (MATH) majors. The query would be:

 SELECT sname, major
 FROM Student
 WHERE major NOT IN ('COSC','MATH')

which produces the following output (28 rows):

 sname major
 -------------------- -----
 Lineas ENGL
 Ken POLY
 Romona ENGL
 Richard ENGL
 Harley POLY
 Donald ACCT
 Chris ACCT
 Lynette POLY

http://lib.ommolketab.ir

 Susan ENGL
 Bill POLY
 Phoebe ENGL
 Holly POLY
 Jessica POLY
 Steve ENGL
 Cedric ENGL
 Rachel ENGL
 George POLY
 Cramer ENGL
 Fraiser POLY
 Harrison ACCT
 Francis ACCT
 Smithly ENGL
 Sebastian ACCT
 Losmith CHEM
 Genevieve UNKN
 Lindsay UNKN
 Gus ART
 Benny CHEM

 (28 row(s) affected)

The example output gave all majors other than COSC and MATH. But you must be very careful with the
NOT..IN predicate, because if nulls are present in the data, you may get odd answers with NOT..IN.

As an example, consider the following table called Stumajor:

 name major
 -------------------- --------------------
 Mary Biology
 Sam Chemistry
 Alice Art
 Tom NULL

 (4 row(s) affected)

The table Stumajor has not been created for you in the Student_course
database. You have to create it, insert the records shown, and then run the
queries that follow.

If you perform the following query:

 SELECT *

http://lib.ommolketab.ir

 FROM Stumajor
 WHERE major IN ('Chemistry','Biology')

It produces the following output:

 name major
 -------------------- --------------------
 Mary Biology
 Sam Chemistry

 (2 row(s) affected)

If you perform the following query:

 SELECT *
 FROM Stumajor
 WHERE major NOT IN ('Chemistry','Biology')

It produces the following output:

 name major
 -------------------- --------------------
 Alice Art

 (1 row(s) affected)

The value, null, is not equal to anything. You might expect that NOT..IN would give you <Tom,null>,
but it does not. Why? Because nulls in the selection column (here, major) are not matched with a
NOT..IN.

7.5.3.1. Using NOT..IN in a subquery

A NOT..IN can also be used in a subquery. For example, assume that we have another table called
Instructor, as shown here:

 iname teaches
 -------------------- --------------------
 Richard COSC
 Subhash MATH

http://lib.ommolketab.ir

 Tapan BIOCHEM

 (3 row(s) affected)

The Instructor table has not been created for you in the Student_course
database. You have to create it, insert the records shown, and then run the
queries that follow.

Now, if we want to find all the departments that do not have instructors, we could type the following
query:

 SELECT *
 FROM department_to_major d
 WHERE d.dcode NOT IN
 (SELECT dcode
 FROM department_to_major d, instructor i
 WHERE d.dcode=i.teaches)

This query produces the following output (6 rows):

 Dcode DNAME
 ----- --------------------
 ACCT Accounting
 ART Art
 CHEM Chemistry
 ENGL English
 POLY Political Science
 UNKN NULL

 (6 row(s) affected)

Note that in this case, the NOT..IN "behaved" correctly and reported the NULL value for DNAME!

http://lib.ommolketab.ir

7.6. The Difference Operation

Because SQL Server 2005 does not support the MINUS predicate, we will show the set difference
operation using a NOT..IN with two examples.

7.6.1. Example 1

Suppose that set A is the set of students in classes 2, 3, or 4 and set B is the set of students in class
2. We could use the NOT..IN predicate to remove the students in set B from set A (a difference
operation) by typing the following query:

 SELECT sname, class
 FROM Student
 WHERE class IN (2,3,4)
 AND NOT class IN (2)

which produces the following output (17 rows):

 sname class
 -------------------- ------
 Mary 4
 Kelly 4
 Donald 4
 Chris 4
 Jake 4
 Susan 3
 Monica 3
 Phoebe 3
 Holly 4
 Rachel 3
 Jerry 4
 Cramer 3
 Harrison 4
 Francis 4
 Losmith 3
 Gus 3
 Benny 4

 (17 row(s) affected)

http://lib.ommolketab.ir

7.6.2. Example 2

To illustrate another difference operation, we will use views with the NOT..IN to give the effect of a
difference operation. Suppose for example, you wanted to find the names of those students who do
not major in COSC or MATH but delete from that set those students who have made an A in some
course.

First, using the NOT..IN, we will create a view (view1) of the names and majors of the students who
are not COSC or MATH majors using the following query:

 CREATE VIEW view1 AS
 SELECT sname, major
 FROM Student
 WHERE major NOT IN ('COSC', 'MATH')

View1 will have the same 28 rows of output as shown earlier in this chapter.

Then, using the IN predicate, we will create another view (view2) of names and majors of students
who have received As using the following query:

 CREATE VIEW view2 AS
 SELECT Student.sname, Student.major
 FROM Student
 WHERE Student.stno IN
 (SELECT g.student_number
 FROM Grade_report g
 WHERE g.grade = 'A')

If we type:

 SELECT *
 FROM view2;

We get the following 14 rows of output:

 sname major
 -------------------- -----
 Lineas ENGL
 Mary COSC

http://lib.ommolketab.ir

 Brenda COSC
 Richard ENGL
 Lujack COSC
 Donald ACCT
 Lynette POLY
 Susan ENGL
 Holly POLY
 Sadie MATH
 Jessica POLY
 Steve ENGL
 Cedric ENGL
 Jerry COSC

 (14 row(s) affected)

Then, to find those students who are not majoring in COSC or MATH, and remove from that set those
who made an A in some course, the difference operation could be approached using the NOT..IN as
follows, using the views created earlier:

 SELECT sname
 FROM view1
 WHERE sname NOT IN
 (SELECT sname
 FROM view2)

This query produces the following output (19 rows):

 sname

 Ken
 Romona
 Harley
 Chris
 Bill
 Phoebe
 Rachel
 George
 Cramer
 Fraiser
 Harrison
 Francis
 Smithly
 Sebastian
 Losmith
 Genevieve
 Lindsay

http://lib.ommolketab.ir

 Gus
 Benny

 (19 row(s) affected)

This query has the same effect as view1--view2 (all students who are not majoring in COSC or MATH,
MINUS students who made an A in some course).

http://lib.ommolketab.ir

7.7. The Union and the Join

In Chapter 4 , we discussed joins. In this section, we discuss some differences between the two operations, the UNION
and the JOIN . Although the UNION operation and the JOIN operation are similar in that they both combine two tables or
sets of data, the approaches used by the two operations are different. We will first present an example of when a JOIN
may be used versus when a UNION may be used, and then we will present some other differences between the UNION
and the JOIN .

7.7.1. When a JOIN May Be Used Versus When a UNION May Be Used

A JOIN is very commonly used in queries. As we discussed previously (in Chapter 4), JOIN s (specifically, equi-joins)
involve a result set created based on tables where the tables are linked via some common column. The UNION operator
is mostly used to combine two sets of information where the genesis of the information is not as straightforward as in a
join. Consider the following two examples.

7.7.1.1. Example 1: A straightforward join operation

Suppose that we wanted to find the names of students who took accounting courses. This is a straightforward join
example. This type of query would involve joining the Student , Section , and Course tables and selecting the student
names from the result set. In this case though, we actually have to join the Student table to the Grade_report table
first, and then join that result to the Section table, because we cannot directly join the Student table to the Section
table. Then, we join that combined result to the Course tableso this ends up becoming a four-table join, with the
Grade_report table acting like a bridge between Student and Section . The JOIN query would be:

 SELECT DISTINCT(sname)
 FROM Course c JOIN (Section se JOIN
 (Student s JOIN Grade_report g
 ON s.stno = g.student_number)
 ON se.section_id = g.section_id)
 ON c.course_number = se.course_num
 AND c.course_name LIKE 'ACC%'

This query would give the following 20 rows of output:

 sname

 Alan
 Bill
 Brad
 Brenda
 Cedric

http://lib.ommolketab.ir

 Chris
 Donald
 Hillary
 Holly
 Jessica
 Kelly
 Ken
 Mario
 Monica
 Phoebe
 Romona
 Sadie
 Steve
 Susan
 Zelda

 (20 row(s) affected)

Note that we had to use a DISTINCT in the previous query, as the result of a JOIN gives duplicates.

This example query could also be answered using subqueries, which are discussed later, but the point is that it is easy
to see the relationship between the three (actually four) tables.

7.7.1.2. Example 2: A not-so-straightforward query

Suppose that we wanted to find something like the names of the students who take accounting courses and combine
them with the names of students who also major in subjects that use overhead projectors in the courses they take.
This could be done using a join with this database, but it would involve finding a join-path through most of the
database. For a much larger database, it might be very impractical to consider such a large join. It would be easier to
first find the set of names of students who take accounting courses (call this set A) and then find students who major
in subjects that use projectors (set B), then union sets A and B. The UNION approach allows us to simplify the problem
and check intermediate results, so we will present this problem using a UNION . Further, each part of the problem can
be done with joins or subqueries as needed for efficiency and then the results finally unioned. Set operations allow us
to create sets of results any way we can and then combine the result sets using set operations; UNION is a set
operation.

Following, we present the UNION approach to doing this query. The first step is to do the parts individually. That is, first
find the set of names of students who take accounting courses (this is the first half of the query before the UNION).
Once this is done, then do the second part individually; that is, find the students who major in subjects that use
projectors. Once you have the result for both parts, UNION the two results. We will not need the DISTINCT here, as
UNION does not keep the duplicates. Here is a query that shows this approach:

 SELECT sname
 FROM Course c JOIN (Section se JOIN
 (Student s JOIN Grade_report g
 ON s.stno = g.student_number)
 ON se.section_id = g.section_id)
 ON c.course_number = se.course_num
 AND c.course_name LIKE 'ACC%'

http://lib.ommolketab.ir

 UNION
 SELECT sname
 FROM Student s JOIN
 (Department_to_major d
 JOIN (Course c JOIN
 (Room r JOIN Section se
 ON r.room = se.room)
 ON se.course_num = c.course_number)
 ON c.offering_dept = d.dcode)
 ON s.major = d.dcode
 AND r.ohead = 'Y'

This query produces 30 rows:

 sname

 Alan
 Bill
 Brad
 Brenda
 Cedric
 Chris
 Cramer
 Donald
 Elainie
 Hillary
 Holly
 Jake
 Jerry
 Jessica
 Kelly
 Ken
 Lineas
 Lujack
 Mario
 Mary
 Monica
 Phoebe
 Rachel
 Richard
 Romona
 Sadie
 Smithly
 Steve
 Susan
 Zelda

 (30 row(s) affected)

http://lib.ommolketab.ir

7.7.2. A Summary of the Other Differences Between the UNION and the JOIN

In this section, we summarize our JOIN /UNION discussion with three abstract tables containing three rows each of
symbolic data. Relations or tables are sets of rows .

We will first show the union. Assume that we have the following two tables.

Table A

ColumnA ColumnB ColumnC

X1 Y1 Z1

X2 Y2 Z2

X3 Y3 Z3

Table B

ColumnA ColumnB ColumnC

X4 Y4 Z4

X5 Y5 Z5

X6 Y6 Z6

A SQL UNION can be shown would be:

 SELECT * FROM TableA
 UNION
 SELECT * FROM TableB

which produces the following table as a result:

Table C

ColumnA ColumnB ColumnC

X1 Y1 Z1

X2 Y2 Z2

X3 Y3 Z3

X4 Y4 Z4

http://lib.ommolketab.ir

ColumnA ColumnB ColumnC

X5 Y5 Z5

X6 Y6 Z6

Using a similar set of diagrams, the join operation could be shown as follows with the following two tables (joining
TableA and TableD into TableE):

Table A

ColumnA ColumnB ColumnC

X1 Y1 Z1

X2 Y2 Z2

X3 Y3 Z3

Table D

ColumnA ColumnD ColumnE

X1 D1 E1

X2 D2 E2

X3 D3 E3

Now, a SQL JOIN would be:

 SELECT *
 FROM TableA a JOIN TableD d
 ON a.ColumnA = d.ColumnA

Giving the following table:

Table E

TableA.ColumnA TableA.ColumnB TableA.ColumnC TableB.ColumnA TableB.ColumnD TableB.ColumnE

X1 Y1 Z1 X1 D1 E1

X2 Y2 Z2 X2 D2 E2

X3 Y3 Z3 X3 D3 E3

X5 Y5 Z5

X6 Y6 Z6

Using a similar set of diagrams, the join operation could be shown as follows with the following two tables (joining
TableA and TableD into TableE):

Table A

ColumnA ColumnB ColumnC

X1 Y1 Z1

X2 Y2 Z2

X3 Y3 Z3

Table D

ColumnA ColumnD ColumnE

X1 D1 E1

X2 D2 E2

X3 D3 E3

Now, a SQL JOIN would be:

 SELECT *
 FROM TableA a JOIN TableD d
 ON a.ColumnA = d.ColumnA

Giving the following table:

Table E

TableA.ColumnA TableA.ColumnB TableA.ColumnC TableB.ColumnA TableB.ColumnD TableB.ColumnE

X1 Y1 Z1 X1 D1 E1

X2 Y2 Z2 X2 D2 E2

X3 Y3 Z3 X3 D3 E3

http://lib.ommolketab.ir

Following are the major differences between UNION s and JOIN s:

In a UNION , all the rows in the resulting tables (sets) being unioned have to be compatible; in a JOIN , only the
joining columns of the tables being joined have to be compatiblethe other columns may be different.

In a UNION , no "new" columns can be added to the final result of the UNION ; in a JOIN , new columns can be
added to the result of the JOIN .

In a UNION , the number of columns in the result set has to be the same as the number of columns in the sets
being unioned; in a JOIN , the number of columns in the result set may vary.

http://lib.ommolketab.ir

7.8. A UNION Used to Implement a Full Outer Join

In Chapter 4, you read that the outer join adds rows to the result set that would otherwise be
dropped from an inner join of both tables due to the join condition. Remember that an inner join
(also known as an equi-join, ordinary join or regular join) combines two tables by finding common
values on some column(s) common to the two tables. In an outer join, we are saying, "we want all
the rows from one table and only the joined rows from the other." In SQL Server 2005, the outer
joins are in two classesleft and right, depending on how the query is written. A full outer join means
that we want all rows from both tables being joined, and "fill in those rows where a join does not
produce a result with nulls." In SQL Server 2005, a UNION can also be used to achieve this full outer
join.

Some SQL languages do not directly support the full outer join, but SQL Server
2005 directly supports it.

In SQL Server 2005, you can create a full outer join by writing a union of the left outer join and the
right outer join, like this:

 SELECT with right outer join
 UNION
 SELECT with left outer join

The order of the left outer join and the right outer join does not matter and can be reversed. To
illustrate the workings of the UNION version of the full outer join, let us again use the table called
Instructor, created earlier in this chapter:

 iname teaches
 -------------------- --------------------
 Richard COSC
 Subhash MATH
 Tapan BIOCHEM

If we want to get a listing of all instructors and the names of the departments for which they teach
(which will be done by a regular equi-join) plus a listing of the rest of the instructors, regardless of
whether they belong to a department, plus a listing of the rest of the departments, regardless of
whether they have instructors, we would write the following query to achieve the full outer join effect
with a UNION:

http://lib.ommolketab.ir

 SELECT *
 FROM Department_to_major AS d LEFT JOIN Instructor AS I
 ON d.dcode=i.teaches
 UNION
 SELECT *
 FROM Department_to_major AS d RIGHT JOIN Instructor AS I
 ON d.dcode=i.teaches

This query produces the following output (9 rows):

 Dcode DNAME iname teaches
 ----- -------------------- -------------------- --------------------
 NULL NULL Tapan BIOCHEM
 ACCT Accounting NULL NULL
 ART Art NULL NULL
 CHEM Chemistry NULL NULL
 COSC Computer Science Richard COSC
 ENGL English NULL NULL
 MATH Mathematics Subhash MATH
 POLY Political Science NULL NULL
 UNKN NULL NULL

 (9 row(s) affected)

First, the LEFT JOIN was done, outer joining the department_to_major table and the Instructor table
(so that all the rows of the department_to_major table were added to the result set). Then, a RIGHT
JOIN was done, again joining the department_to_major table to the Instructor table (but this time all
the rows of the Instructor table were added to the result set). Finally, a UNION of the two results sets
was performed, creating the effect of a full outer join (where the rows from both the tables were
added back after the join).

http://lib.ommolketab.ir

7.9. Summary

In this chapter, we discussed the set operators available in SQL Server 2005. After reading this
chapter, you should have an appreciation of how and when to use UNIONs and INTERSECTs, and how to
handle the difference problem, although SQL Server 2005 does not have an explicit MINUS operator.
Oftentimes queries can be approached in more than one way. In several places, we also showed how
the same queries could also be approached without the use of set operators.

http://lib.ommolketab.ir

7.10. Review Questions

What are the major differences between the UNION operation and the JOIN operation?1.

What is the major difference between the UNION and the UNION ALL?2.

What major set operator does SQL Server 2005 not have? How can these problems be
resolved?

3.

What does union compatibility mean?4.

What data types are union-compatible?5.

What is the maximum number of rows that can result from a UNION of two tablesone with 5 rows
and the other with 6 rows?

6.

What is the maximum number of rows that can result from a JOIN of two tablesone with 5 rows
and the other with 6 rows?

7.

How can a UNION be used to implement an outer join? Explain.8.

Does SQL Server 2005 support the MINUS operation? How can this be resolved? Give examples.9.

What is a full outer join? Does SQL Server 2005 directly support a full outer join?10.

Do you need the same number of columns to perform a union?11.

Do you need the same data types to perform a union?12.

Do you need the same number of columns to perform a join?13.

From the examples given in the chapter, what does the UNION JOIN appear to do?14.

If a VARCHAR column were unioned with a CHAR column, what would the resulting column be?
(Hint: refer to the "Data Type Precedence" section in Chapter 6.)

15.

What does set compatibility mean?16.

What is the maximum number of rows that can result from a INTERSECT of two tablesone with 5
rows and the other with 6 rows?

17.

Do you need the same number of columns to perform an INTERSECT operation?18.

Do you need the same data types to perform an INTERSECT operation?19.

http://lib.ommolketab.ir

7.11. Exercises

Unless specified otherwise, use the Student_course database to answer the following questions. Also,
use appropriate column headings when displaying your output.

In this exercise, you'll test the UNION statement. Having seen how the UNION statement works,
demonstrate some permutations to see what will work "legally" and what won't. First, create
two tables as follows:

Table 1

A B

x1 y1

r1 s1

Table 2

A B C D

x2 y2 z2 w2

r2 s2 t2 u2

Make the type of As and Bs CHAR(2). Let the type of C in Table2 be VARCHAR(2) and D in Table2
be VARCHAR(3).

Try the following statements and note the results:

 SELECT * FROM Table1 UNION SELECT * FROM Table2
 SELECT * FROM Table1 UNION SELECT A,B FROM Table2
 SELECT * FROM Table1 UNION SELECT B,A FROM Table1
 SELECT * FROM Table1 UNION SELECT A,C FROM Table2
 SELECT * FROM Table1 UNION SELECT A,D FROM Table2
 CREATE VIEW viewx AS
 SELECT A,B
 FROM Table2
 SELECT *
 FROM Table1
 UNION
 SELECT *
 FROM viewx

1.

http://lib.ommolketab.ir

Feel free to experiment with any other combinations that you deem appropriate or that you
wonder about.

Create and print the result of a query that generates the names, class, and course numbers of
students who have earned Bs in computer science courses. Store this query as Q7_2. Then,
revise Q7_2 to delete from the result set those students who are sophomores (class = 2). Use
NOT..IN to select those students who are sophomores.

2.

Find the names, grades, and course numbers of students who have earned As in computer
science or math courses. Join the Section and Grade_report tables (be careful to not create the
Cartesian product). Then, UNION the set of "course numbers COSC% and A" with the set of
"course number MATH% and A."

Hint: Start with the query to get names, grades, and course numbers for COSC% and A, and
then turn this into a view. Do the same for MATH% and A, and then execute the UNION
statement as follows (using your view names):

 SELECT *
 FROM view1a
 UNION
 SELECT *
 FROM view1b

3.

Find the names and majors of students who have made a C in any course. Make the "who have
made a C in any course" a subquery for which you use IN.

4.

A less-obvious example of a difference query is to find a difference that is not based on simple,
easy-to-get sets. Suppose that set A is the set of student names who have made As and Bs in
computer science (COSC) courses. Suppose further that set B is the set of students who have
taken math courses (regardless of what grade they earned).

Then, set A minus set B would contain names of students who have made As or Bs in computer
science courses, less those who have taken math courses. Similarly, set B minus set A would be
the set of students who took math courses, less those who took COSC courses and made an A
or a B in some COSC course.

Build these queries into set difference queries as views based on student numbers and execute
them, as follows:

Write a query that gives the student number, name, course, and grade for each set. Save
each query as Q7_5a and Q7_5b.

a.

Reconstruct each query into a view of just student numbers, verify that it works, and then
create views to create set A and set B. Verify that you have the same number of tuples in
set A as you have in Q7_5a, and the same number of tuples in set B as you have in
Q7_5b.

b.

c.

5.

http://lib.ommolketab.ir

Display the student numbers of students in each set differenceshow (set A minus set B)
and (set B minus set A). Look at the original queries, Q7_5a and Q7_5b, to verify your
result.

c.

Create two tables, T1 and T2, that contain a name and a salary column. In the first table, order
the columns by name, and then by salary. In the second table, order the columns by salary,
and then by name. Use the same data types for each - VARCHAR(20), NUMBER, for example.
Populate the tables with two tuples each.

6.

Can you UNION the two tables in the preceding question with the following query?

 SELECT *
 FROM T1
 UNION
 SELECT *
 FROM T2

Why or why not? If not, can you force the union of the two tables? Illustrate how. Be sure to
DROP the tables when you are finished.

7.

Using the Instructor table you created in this chapter (as well as the tables supplied in the
Student_course database), find the following (use the UNION or INTERSECT operator if you feel it
is appropriate):

All departments that have instructors. First do this using an IN predicate, and then using a
regular join.

a.

Find all students who are also instructors.b.

Find all instructors who are not students.c.

Find all students who are not instructors.d.

Find all students as well as instructors.e.

8.

Using the Student table, find all the students who major in math and are seniors. Hint: Use the
INTERSECT operator for this.

9.

http://lib.ommolketab.ir

7.12. Optional Exercise

De Morgan's Theorem.In the binary case, DeMorgan's Theorem tells us that [not(A and B)] =
[not(A) or not(B)]. For example, suppose that A is the set of rows where students are juniors
and B is the set of rows where students are females. And suppose that you were asked the
question, "Find the students who are not (female and juniors)." Clearly this is the set [not(A
and B)]. You can answer this question by finding the set of students who are not juniors
[not(A)] and then or-ing this with the set of students who are not females [not(B)]. At times it
is easier to find one or the other of the results via a query, and the point here is that the two
methods of finding a result is equivalent.

Question: Find the result set for all sections that are offered in building 13 and call this set A.
Find the result set for all sections that are offered in building 36 and call this set B. Construct
the SQL to find the following result sets:

The result of set A OR set B (use WHERE building = 13 or building = 36).a.

The result of the complement of (a): NOT(set A OR set B).b.

The result of NOT(set A) AND NOT(set B).c.

The count of all rows in the Section table.d.

Is the count in d = a + b? Is the result of c the same as the result of b? Explain why or why not
in each case (Hint: You may apply the De Morgan's Theorem which states that NOT(set A or
set B) = NOT(set A) and NOT(set b).

1.

http://lib.ommolketab.ir

Chapter 8. Joins Versus Subqueries
The purpose of this chapter is to demonstrate the use of subqueries. Subqueries may often be used
as alternatives to joins. There are two main issues to consider when choosing between subqueries
and joins (and other techniques for combining tables). First, you must consider how to get the
information. By understanding the limitations of joins and subqueries (as well as sets and other table-
combining techniques), you will increase your choices as to how to get information from the
database. Second, you must also consider performance. You usually a have choice of how to get
multi-table informationjoins, sets, subqueries, views, and so forth. In larger databases, you need to
be flexible and consider other choices if a query performs poorly and/or if the query is done often.

Although set operations logically are also viable choices for retrieving data from
multiple tables, set operations (discussed in Chapter 7) are less common and
usually less efficient than joins and subqueries.

http://lib.ommolketab.ir

8.1. Subquery with an IN Predicate

Suppose that a query requests a list of names and numbers of students (which are in the Student
table in our Student_course database) who have made As or Bs in any course (grades are in the
Grade_report table in our Student_course database). You can complete this query as either a
subquery or a join. As a subquery with an IN predicate, it will take the following form:

 SELECT Student.sname, Student.stno
 FROM Student
 WHERE "link to Grade_report"
 IN ("link to Student" - subquery involving Grade_report)

In this format, the part of the query that contains:

 SELECT Student.sname, Student.stno
 FROM Student
 WHERE "link to Grade_report"

is said to be the outer query. The part of the query that contains:

 ("link to Student" - subquery involving Grade_report)

is the inner query.

The link between the Student table and the Grade_report table is the student number. In the Student
table, the appropriate column is stno, and in the Grade_report table, it is student_number. When
linking the tables in the subquery with an IN predicate, the linking columns are all that can be
mentioned in the WHERE..IN and in the result set of the subquery. Thus, the statement with a
subquery is as follows:

 SELECT Student.sname, Student.stno
 FROM Student
 WHERE Student.stno
 IN (SELECT gr.student_number
 FROM Grade_report gr
 WHERE gr.grade = 'B' OR gr.grade = 'A')

http://lib.ommolketab.ir

 ORDER BY Student.stno

The part of the query before the IN is often called the outer query. The part of
the query after the IN is called the inner query.

This query produces the following output (31 rows):

 sname stno
 -------------------- -----
 Lineas 2
 Mary 3
 Zelda 5
 Ken 6
 Mario 7
 Brenda 8
 Richard 10
 Kelly 13
 Lujack 14
 Reva 15
 Harley 19
 Donald 20
 Chris 24
 Lynette 34
 Susan 49
 Hillary 121
 Phoebe 122
 Holly 123
 Sadie 125
 Jessica 126
 Steve 127
 Cedric 129
 George 132
 Jerry 142
 Cramer 143
 Fraiser 144
 Francis 146
 Smithly 147
 Sebastian 148
 Lindsay 155
 Stephanie 157

 (31 row(s) affected)

http://lib.ommolketab.ir

http://lib.ommolketab.ir

8.2. The Subquery as a Join

An alternative way to perform the preceding query would be to use a join instead of a subquery, as
follows:

 SELECT Student.sname, Student.stno
 FROM Student, Grade_report gr
 WHERE Student.stno = gr.student_number
 AND (gr.grade = 'B' OR gr.grade = 'A')

This query produces 67 rows of output (of which we show the first 15 rows here):

 sname stno
 --------- ------
 Lineas 2
 Lineas 2
 Lineas 2
 Lineas 2
 Mary 3
 Mary 3
 Mary 3
 Mary 3
 Mary 3
 Mary 3
 Brenda 8
 Brenda 8
 Brenda 8
 Richard 10
 Kelly 13
 .
 .
 .

 (67 row(s) affected)

Now, the question is why the join has 67 rows of output instead of 31 rows of output (produced by
the subquery).

When the join version is used to combine tables, any Student-Grade_report row (tuple) that has
equal student numbers and a grade of A or B is selected. Thus, you should expect many duplicate

http://lib.ommolketab.ir

names in the output. To get the result without duplicates, add the qualifier DISTINCT to the join query
as follows:

 SELECT DISTINCT Student.sname, Student.stno
 FROM Student, Grade_report AS gr
 WHERE Student.stno = gr.student_number
 AND (gr.grade = 'B' OR gr.grade = 'A')

This query produces the following output (31 rows):

 sname stno
 -------------------- ------
 Lineas 2
 Mary 3
 Zelda 5
 Ken 6
 Mario 7
 Brenda 8
 Richard 10
 Kelly 13
 Lujack 14
 Reva 15
 Harley 19
 Donald 20
 Chris 24
 Lynette 34
 Susan 49
 Hillary 121
 Phoebe 122
 Holly 123
 Sadie 125
 Jessica 126
 Steve 127
 Cedric 129
 George 132
 Jerry 142
 Cramer 143
 Fraiser 144
 Francis 146
 Smithly 147
 Sebastian 148
 Lindsay 155
 Stephanie 157

 (31 row(s) affected)

http://lib.ommolketab.ir

When DISTINCT is used, internal sorting is performed before the result set is displayed. Such internal
sorting may decrease response time for a query.

In the subquery version of the query, duplication of names does not occur in the output. This is so
because you are setting up a set (the subquery) from which you will choose namesa given name is
either in the subquery set or it is not. Remember that the student number (stno) is unique in the
Student table.

Also, the question of which is more efficient, the join or the subquery, depends on which SQL
language and database you are using. Without using extra tools, one way to test alternatives is to try
the queries on the data or a subset of the data. Database systems such as SQL Server 2005 provide
ways (tools) to find out how queries are executed.

http://lib.ommolketab.ir

8.3. When the Join Cannot Be Turned into a Subquery

When a column from a table needs to be in the result set, that table has to be in the outer query. If
two tables are being used, and if columns from both tables have to be in the result set, a join is
necessary. This type of join cannot be turned into a subquery, because information from both tables
has to be in the result set. But if the result set does not need the columns from more than one table,
then the join can be turned into a subquery. The other tables can be included such that the filtering
conditions can be in the subquery (or inner query), and the table that has the needed result set
columns is in the outer query.

Consider this example. Our original query (the first query discussed in this chapter), requested the
list of names and student numbers of students who made As or Bs in any course. Student names and
numbers are both in the Student table; the Grade_report table is needed only as a filter, so we could
write this as a subquery, and also turn it into a join.

Now, if this original query had asked for output from the Grade_report table also, such as, "list the
names, numbers, and grades of all students who have made As or Bs," the query would be asking for
information from both the Student and Grade_report tables. In this case, you would have to join the
two tables to get the information; you could not just query the Grade_report table, because that
table has no names in it. Similarly, the Student table contains no grades. So you would not be able to
write this as a subquery. Refer again to the original query example:

 SELECT Student.sname, Student.stno
 FROM Student
 WHERE Student.stno
 IN (SELECT gr.student_number
 FROM Grade_report gr
 WHERE gr.grade = 'B' OR gr.grade = 'A')
 ORDER BY Student.stno

This query asks for information only from the Student table (student names and numbers). Although
the query used the Grade_report table, nothing from the Grade_report table was in the outer result
set. Again, the Grade_report table is needed only as a filter (to get the student numbers of those who
have As and Bs); hence we were able to write this as a subquery.

The following join query asks for information from both the Student and Grade_report tables (a result
set that lists both names and grades of all students who have made As or Bs in any course):

 SELECT DISTINCT Student.sname, gr.grade
 FROM Student, Grade_report gr
 WHERE Student.stno = gr.student_number
 AND (gr.grade = 'B' OR gr.grade = 'A')

http://lib.ommolketab.ir

This query produces 41 rows of output (of which we show the first 25 rows here):

 sname grade
 -------------------- -----
 Brenda A
 Brenda B
 Cedric A
 Cedric B
 Chris B
 Cramer B
 Donald A
 Fraiser B
 Francis B
 George B
 Harley B
 Hillary B
 Holly A
 Holly B
 Jerry A
 Jessica A
 Jessica B
 Kelly B
 Ken B
 Lindsay B
 Lineas A
 Lineas B
 Lujack A
 Lujack B
 Lynette A
 .
 .
 .

 (41 row(s) affected)

As this example demonstrates, if information from a table is needed in a result set, then that table
cannot be buried in a subqueryit must be in the outer query.

http://lib.ommolketab.ir

8.4. More Examples Involving Joins and IN

The purpose of this section is to further demonstrate several queries that will and will not allow the
use of the subquery. As we have discussed, some joins can be expressed as subqueries whereas
others cannot. Further, all subqueries with the IN predicate can be re-formed as a join. Whether you
can use a subquery depends on the final, outer result set. Some more examples will help clarify this
point.

8.4.1. Example 1

Find the names of all the departments that offer a course with INTRO in the title. To formulate our
query, we need to use the Course table (to find the course names) and the Department_to_major
table (to find the names of the departments).

Begin by viewing the column names in the tables.

If you have forgotten how to view the column names of a table, refer to Figure
1-21.

Figure 8-1 gives the column names in the Course table:

Figure 8-1. Column names of the Course table

Figure 8-2 gives the column names of the Department_to_major table:

Figure 8-2. Column names of the Department_to_major table

http://lib.ommolketab.ir

Our query needs a department name (dname) from the Department_to_major table. We also need
course information from the Course table, because our query depends on a course name; however,
no course information appears in the result set. We did not ask for the names of the courses, just
that they have INTRO in the title. The result set asks only for department names. We can find this
result by using a subquery, with the Department_to_major table as the outer query, because all the
information in the result set is contained in the outer query. The query would be as follows:

 SELECT d2m.dname
 FROM Department_to_major d2m
 WHERE d2m.dcode
 IN (SELECT Course.offering_dept
 FROM Course
 WHERE Course.course_name LIKE '%INTRO%')

which produces the following output:

 dname

 Computer Science
 Political Science
 Chemistry

 (3 row(s) affected)

8.4.2. Example 2

List the student name, student major code, and section identifier of students who earned Cs in
courses taught by Professor Hermano (HERMANO).

First, we determine which tables are needed. We want to find the student name and major code, and
a section identifier for courses taken, so we need the Student and Grade_report tables for the result
set. We will need to use the Section table for a filter. The instructor does not appear in the result set.
Again, it is a good idea to look at the column names in each of the tables first.

Figure 8-3 gives the column names of the Student table.

Figure 8-3. Columns names of the Student table

http://lib.ommolketab.ir

Figure 8-4 gives the column names of the Grade_report table.

Figure 8-4. Column names of the Grade_report table

Figure 8-5 gives the column names of the Section table.

After we have determined which tables we need, we have to determine where the columns that are
needed in the result set are located. We need to get the names and major codes from the Student
table, and the section identifiers from the Grade_report table. So the result set part of the query (the
outer query) must contain the Student and Grade_report tables. The rest of the query can contain
any other tables that we need to locate the columns. The resulting query may look like this (a
combination of a join and a subquery):

Figure 8-5. Column names of the Section table

 SELECT s.sname, s.major, g.section_id
 FROM Student s, Grade_report g
 WHERE g.student_number = s.stno
 AND g.grade = 'C'

http://lib.ommolketab.ir

 AND g.section_id IN
 (SELECT t.section_id
 FROM Section t
 WHERE t.instructor LIKE 'HERMANO')

which produces the following output:

 sname major section_id
 -------------------- ----- ----------
 Richard ENGL 126

 (1 row(s) affected)

The previous query could also have been done as a three-table join, as follows:

 SELECT s.sname, s.major, t.section_id
 FROM Student s, Grade_report g, Section t
 WHERE s.stno = g.student_number
 AND g.section_id =t.section_id
 AND g.grade='C'
 AND t.instructor LIKE 'HERMANO'

8.4.3. Example 3

List the name and major code of students who earned Cs in courses taught by Professor King (KING).

Again, we first need to determine which tables are needed. We need to collect student names and
major codes in the result set and we need the Grade_report and Section tables for filtering
conditions. (You viewed the columns available in each of these tables in the preceding example.)
Next, we need to determine where the columns that are needed in the result set are located. In this
example, they are all in the Student table.

Because the only table needed in the outer query is the Student table, we can structure the query in
any of the following ways:

Student join Grade_report join Section [three-table join]1.

Student subquery (Grade_report join Section) [Student outer, join in subquery]2.

Student join Grade_report subquery (Section) [similar to Example 2 but with a different result
set]

3.

4.

http://lib.ommolketab.ir

3.

Student (subquery Grade_report (subquery Section)) [a three-level subquery]4.

Each of these queries produces the same result set with different efficiencies. We'll study them
further in the exercises at the end of the chapter.

http://lib.ommolketab.ir

8.5. Using Subqueries with Operators

In this section, we look at examples that demonstrate the use of subqueries with comparison operators.
These examples are based on the Room table, which has the following data:

 BLDG ROOM CAPACITY OHEAD
 ----- ----- -------- -----
 13 101 85 Y
 36 123 35 N
 58 114 60 NULL
 79 179 35 Y
 79 174 22 Y
 58 112 40 NULL
 36 122 25 N
 36 121 25 N
 36 120 25 N
 58 110 NULL Y

 (10 row(s) affected)

In previous chapters, you have seen SELECT s with conditions like the following:

 SELECT *
 FROM Room
 WHERE capacity = 25

In this example, 25 is a constant and = is a comparison operator. The constant can be replaced by a
subquery, and the operator can be any of the comparison operators (= , <> , < , > , <= , or >=). For
example, we could devise a query to tell us which classrooms have a below-average capacity by
computing the average in a subquery and using a comparison operator, like this:

 SELECT *
 FROM Room
 WHERE capacity <
 (SELECT AVG(capacity)
 FROM Room)

This query produces the following six rows of output, showing six rooms with below-average capacity:

http://lib.ommolketab.ir

 BLDG ROOM CAPACITY OHEAD
 ------ ------ -------- -----
 36 120 25 N
 36 121 25 N
 36 122 25 N
 36 123 35 N
 79 174 22 Y
 79 179 35 Y

 Warning: Null value is eliminated by an aggregate or other SET operation.

 (6 row(s) affected)

The only problem with using subqueries in this fashion is that the subquery must return only one row . If
an aggregate function is applied to a table in the subquery in this fashion, you will always get only one
roweven if there is a WHERE clause that excludes all rows, the subquery returns one row with a null value.
For example, if we were to change the preceding query to the following and force multiple rows in the
subquery,

 SELECT *
 FROM Room
 WHERE capacity <
 (SELECT AVG(capacity)
 FROM Room
 WHERE bldg = 99)

we would get:

 BLDG ROOM CAPACITY OHEAD
 ------ ------ -------- -----

 (0 row(s) affected)

We get no rows selected because there is no bldg = 99 . If we were to change the query to the following:

 SELECT *
 FROM Room
 WHERE bldg =
 (SELECT bldg
 FROM Room
 WHERE capacity > 10)

http://lib.ommolketab.ir

we would get the following error message:

 BLDG ROOM CAPACITY OHEAD
 ------ ------ -------- -----
 Msg 512, Level 16, State 1, Line 1
 Subquery returned more than 1 value. This is not permitted when the subquery follows
 =, !=, <, <=, >, >= or when the subquery is used as an expression.

When using comparison operators, only single values are acceptable from the subquery. Again, to ensure
that we get only one row in the subquery and hence a workable query, we can use an aggregate with no
GROUP BY or HAVING (to be discussed in Chapter 9).

As with all queries, the caveat to audit the result is always applicable.

http://lib.ommolketab.ir

8.6. Summary

In this chapter, we have introduced the subquery. We have given examples of situations in which it
would be good to use subqueries, cases where subqueries could be turned into joins, and cases
where they cannot be turned into joins. After reading this chapter, you should have a better
appreciation for subqueries and joins.

http://lib.ommolketab.ir

8.7. Review Questions

What is a subquery?1.

Which part of the query/subquery is considered the inner query, and which part is considered
the outer query?

2.

Can a subquery always be done as a join? Why or why not?3.

When writing a query that will have a subquery, how do you determine which table/tables will
go in the outer query?

4.

Which predicate can usually be reformulated into a join?5.

When using operators, are many values acceptable from a result of a subquery?6.

What can you do to insure a working subquery?7.

http://lib.ommolketab.ir

8.8. Exercises

Unless specified otherwise, use the Student_course database to answer the following questions. Also,
use appropriate column headings when displaying your output.

Use the techniques from this chapter to construct and execute the following queries:

Find the student numbers of students who have earned As or Bs in courses taught in the fall
semester. Do this in two ways: first using a subquery, and then using a join.

1.

Find all students who took a course offered by the Accounting department. List the student
name and student number, the course name, and the grade in that course. (Hint: Begin with
Department_to_major and use an appropriate WHERE.) Note that this task cannot be done with a
multilevel subquery. Why?

2.

For every students who is a sophomore (class = 2), find the name and the name of the
department that includes the student's major.

3.

Find the names of the departments that offer courses at the junior or senior levels (either one)
but not at the freshman level. The course level is the first digit after the prefix; for example,
AAAA3yyy is a junior course, and so on.

Hint: Begin by creating the outer querythe names of departments that offer courses at the
junior or senior levels. Save this query as q8_4. Then, construct the subquerya list of
departments that offer courses at the freshman level. Save the subquery as a view. Examine
both lists of departments. When you have the outer query and the subquery results, recall the
original query that you saved (q8_4) and add the subquery. Check your result with the
department lists you just generated. Redo the last part of the experiment with your view. You
should get the same result.

4.

Find the names of courses that are prerequisites for other courses. List the course number and
name, and the number and name of the prerequisite.

5.

List the names of instructors who teach courses that have other than three-hour credits. Do the
problem in two ways: once with IN and once with NOT..IN.

6.

Create a table called Secretary with the columns dcode (of data type CHAR(4)) for department
code and name (of data type VARCHAR(20)) for the secretary name. Populate the table as follows:

Secretary

dCode name

ACCT Beryl

COSC Kaitlyn

7.

http://lib.ommolketab.ir

Secretary

7.

ENGL David

HIST Christina

BENG Fred

HINDI Chloe

Create a query that lists the names of departments that have secretaries (use IN and the
Secretary table in a subquery with the Department_to_major table in the outer query).
Save this query as q8_7a.

a.

Create a query that lists the names of departments (using the Department_to_major table)
that do not have secretaries (use NOT IN). Save this query as q8_7b.

b.

Add one more row to the Secretary table that contains <null,'Brenda'> (which you could
see, for example, in a situation in which you have hired Brenda but have not yet assigned
her to a department).

c.

Recall q8_7a and rerun it. Recall q87_b and rerun it.

The behavior of NOT..IN when nulls exist may surprise you. If nulls may exist in the
subquery, then NOT..IN either should not be used (Chapter 10 shows how to use another
predicate, NOT EXISTS, which is a workaround to this problem), or should include AND
whatever IS NOT NULL. If you use NOT..IN in a subquery, you must either ensure that nulls
will not occur in the subquery or use some other predicate (such as NOT EXISTS). Perhaps
the best advice is to avoid NOT..IN unless you cannot figure out another way to solve a
problem.

d.

To see a correct answer, add the phrase WHERE dcode IS NOT NULL to the subquery in the
IN and NOT..IN cases and run them again.

e.

Do not delete the Secretary table, because we will revisit this problem in Chapter 10.

Devise a list of course names that are offered in the fall semester in rooms where the capacity
is equal to or above the average room size.

8.

ENGL David

HIST Christina

BENG Fred

HINDI Chloe

Create a query that lists the names of departments that have secretaries (use IN and the
Secretary table in a subquery with the Department_to_major table in the outer query).
Save this query as q8_7a.

a.

Create a query that lists the names of departments (using the Department_to_major table)
that do not have secretaries (use NOT IN). Save this query as q8_7b.

b.

Add one more row to the Secretary table that contains <null,'Brenda'> (which you could
see, for example, in a situation in which you have hired Brenda but have not yet assigned
her to a department).

c.

Recall q8_7a and rerun it. Recall q87_b and rerun it.

The behavior of NOT..IN when nulls exist may surprise you. If nulls may exist in the
subquery, then NOT..IN either should not be used (Chapter 10 shows how to use another
predicate, NOT EXISTS, which is a workaround to this problem), or should include AND
whatever IS NOT NULL. If you use NOT..IN in a subquery, you must either ensure that nulls
will not occur in the subquery or use some other predicate (such as NOT EXISTS). Perhaps
the best advice is to avoid NOT..IN unless you cannot figure out another way to solve a
problem.

d.

To see a correct answer, add the phrase WHERE dcode IS NOT NULL to the subquery in the
IN and NOT..IN cases and run them again.

e.

Do not delete the Secretary table, because we will revisit this problem in Chapter 10.

Devise a list of course names that are offered in the fall semester in rooms where the capacity
is equal to or above the average room size.

8.

http://lib.ommolketab.ir

Chapter 9. Aggregation and GROUP BY
The SQL construction GROUP BY is a SELECT statement clause that is designed to be used in
conjunction with aggregation (discussed in Chapter 5) to group data of similar types. An aggregate
function is one that extracts informationsuch as a COUNT of rows or an average, minimum, or
maximumby operating on multiple rows. We first discuss using GROUP BY on one column, and then on
two columns. Then, we look at how to use GROUP BY in conjunction with the ORDER BY, HAVING, and
WHERE clauses. Finally, we discuss aggregation with subqueries and complexities that nulls present in
aggregate functions and other queries. As we introduce the GROUP BY and HAVING, and expand on the
ORDER BY (which has been introduced earlier) in this chapter, we first present a SELECT in modified
BNF showing the GROUP BY, HAVING and ORDER BY, before we start the rest of the discussion.

http://lib.ommolketab.ir

9.1. A SELECT in Modified BNF

BNF, short for Backus Naur Form, is used to describe syntax rules. A general form (in modified BNF)
of the SELECT statement for SQL Server, with the FROM, WHERE, GROUP BY, HAVING and ORDER BY would
be:

SELECT result-set
[FROM Tables]
[WHERE row-filter]
[GROUP BY column names]
[HAVING after-filter on groups]
[ORDER BY column names]

The [..] notation means that the contained code is optional.

http://lib.ommolketab.ir

9.2. The GROUP BY Clause

GROUP BY is used in conjunction with aggregate functions to group data on the basis of the same values in a
column. GROUP BY returns one row for each value of the column(s) that is grouped. You can use GROUP BY to
group by one column or multiple columns.

As an example of how to group by one column, the following statement shows how you can use the
aggregate COUNT to extract the number of class groups (number of students in each class) from the Student
table:

SELECT class, COUNT(*) AS [count]
FROM Student
GROUP BY class

This query produces the following five rows of output, which is grouped by one column, class :

class count
----- -----------
NULL 10
1 11
2 10
3 7
4 10

(5 row(s) affected)

This type of statement gives you a new way to retrieve and organize aggregate data. Other aggregate
functions would have a similar syntax.

You have to group by at least the attributes/expressions you are aggregating.

If a GROUP BY clause contains a two-column specification, the result is aggregated and grouped by two
columns. For example, the following is COUNT of class and major from the Student table:

SELECT class, major, COUNT(*) AS [count]
FROM Student

http://lib.ommolketab.ir

GROUP BY class, major

This query produces the following output (24 rows), which is grouped by class within major :

class major count
----- ----- -----------
NULL NULL 3
2 ACCT 1
4 ACCT 4
3 ART 1
3 CHEM 1
4 CHEM 1
NULL COSC 1
1 COSC 4
2 COSC 2
4 COSC 3
NULL ENGL 1
1 ENGL 3
2 ENGL 2
3 ENGL 4
NULL MATH 2
2 MATH 3
3 MATH 1
4 MATH 1
NULL POLY 2
1 POLY 3
2 POLY 2
4 POLY 1
NULL UNKN 1
1 UNKN 1

(24 row(s) affected)

The sequence of the columns in a GROUP BY clause has the effect of ordering the output. If we change the
order of the GROUP BY like this:

SELECT class, major, COUNT(*) AS [count]
FROM Student
GROUP BY major, class

our result will look like this:

class major count

http://lib.ommolketab.ir

----- ----- -----------
NULL NULL 3
NULL COSC 1
NULL ENGL 1
NULL MATH 2
NULL POLY 2
NULL UNKN 1
1 COSC 4
1 ENGL 3
1 POLY 3
1 UNKN 1
2 ACCT 1
2 COSC 2
2 ENGL 2
2 MATH 3
2 POLY 2
3 ART 1
3 CHEM 1
3 ENGL 4
3 MATH 1
4 ACCT 4
4 CHEM 1
4 COSC 3
4 MATH 1
4 POLY 1

(24 row(s) affected)

Here the output is grouped by major within class .

A statement like the following will cause a syntax error, because it says that you are to count both class
and major , but GROUP BY class only:

SELECT class, major, COUNT(*)
FROM Student
GROUP BY class

This query results in the following error message:

Msg 8120, Level 16, State 1, Line 1
Column 'Student.MAJOR' is invalid in the select list because it is not contained in either
 an aggregate function or the GROUP BY clause.

To be syntactically and logically correct, you must have all the non aggregate columns of the result set in

http://lib.ommolketab.ir

the GROUP BY clause. For example, let's take a look at the data of Table 9-1 .

Table 9-1. Room table

BLDG ROOM CAPACITY OHEAD
----- ----- -------- -----
13 101 85 Y
36 123 35 N
58 114 60 NULL
79 179 35 Y
79 174 22 Y
58 112 40 NULL
36 122 25 N
36 121 25 N
36 120 25 N
58 110 NULL Y

(10 row(s) affected)

The following query would be improper, because you must GROUP BY "ohead " to SUM capacities for each
ohead value:

SELECT ohead, SUM(capacity)
FROM Room

ohead , an attribute in the Room table (in our Student_Course database), is short for
rooms with overhead projectors.

This query would produce an error message similar to what we saw previously:

Msg 8120, Level 16, State 1, Line 1
Column 'Room.OHEAD' is invalid in the select list because it is not contained in either an
 aggregate function or the GROUP BY clause.

If you SELECT columns and use an aggregate function, you must GROUP BY the non aggregate attributes. The
correct version of the last statement is as follows:

http://lib.ommolketab.ir

SELECT ohead, SUM(capacity) AS [sum]
FROM Room
GROUP BY ohead

which produces the following three rows of output:

ohead sum
----- -----------
NULL 100
N 110
Y 142

Warning: Null value is eliminated by an aggregate or other SET operation.

(3 row(s) affected)

This is the sum of room capacities for rooms that have no overhead projectors (N), rooms that have
overhead projectors (Y), and rooms in which the overhead projector capacity is unknown (null).

Observe that in the Room table, some rooms have null values for ohead , and the null rows are summed and
grouped along with the non-null rows.

9.2.1. GROUP BY and ORDER BY

To enhance the display of a GROUP BY clause, you can combine it with an ORDER BY clause. Consider the
following example:

SELECT class, major, COUNT(*) AS [count]
FROM Student
GROUP BY class, major

The output for this query was presented earlier in the chapter.

This result set can also be ordered by any other column from the result set using the ORDER BY . For
instance, the following example orders the output in descending order by COUNT(*) :

SELECT class, major, COUNT(*) AS [count]
FROM Student
GROUP BY class, major
ORDER BY COUNT(*) DESC

http://lib.ommolketab.ir

This query produces the following output (24 rows):

class major count
------ ----- -----------
4 ACCT 4
1 COSC 4
3 ENGL 4
2 MATH 3
4 COSC 3
1 ENGL 3
NULL NULL 3
1 POLY 3
2 POLY 2
NULL POLY 2
2 COSC 2
2 ENGL 2
NULL MATH 2
3 MATH 1
4 MATH 1
NULL ENGL 1
2 ACCT 1
3 ART 1
3 CHEM 1
4 CHEM 1
NULL COSC 1
4 POLY 1
NULL UNKN 1
1 UNKN 1

(24 row(s) affected)

9.2.2. GROUP BY and DISTINCT

When a SELECT clause includes all the columns specified in a GROUP BY clause, the use of the DISTINCT
function is unnecessary and inefficient, because the GROUP BY clause groups rows in such a way that the
column(s) that are grouped will not have duplicate values.

http://lib.ommolketab.ir

9.3. The HAVING Clause

The GROUP BY and HAVING clauses are used together. The HAVING clause is used as a final filter (rather
than as a conditional filter) on the aggregate column values in the result set of a SELECT statement.
In other words, the query has to be grouped before the HAVING clause can be applied. For example,
consider the following statement, which displays the count of students in various classes (classes of
students = 1, 2, 3, 4, corresponding to freshman, sophomore, and so on):

SELECT class, COUNT(*) AS [count]
FROM Student
GROUP BY class

This query produces the following output:

class count
----- -----------
NULL 10
1 11
2 10
3 7
4 10

(5 row(s) affected)

If you are interested only in classes that have more than a certain number of students in them, you
could use the following statement:

SELECT class, COUNT(*) AS [count]
FROM Student
GROUP BY class
HAVING COUNT(*) > 9

which produces the following four rows of output:

class count
----- -----------
NULL 10

http://lib.ommolketab.ir

1 11
2 10
4 10

(4 row(s) affected)

9.3.1. HAVING and WHERE

Whereas HAVING is a final filter in a SELECT statement, the WHERE clause, which excludes rows from a
result set, is a conditional filter. HAVING is used to filter based on aggregate values, WHERE cannot do
that. Consider the following two queries:

SELECT class, COUNT(*) AS [count]
FROM Student
GROUP BY class
HAVING class = 3

SELECT class, COUNT(*) AS [count]
FROM Student
WHERE class = 3
GROUP BY class

Both queries produce the following output:

class count
----- -----------
3 7

(1 row(s) affected)

In a typical implementation, the first of these two queries is less efficient because the query engine
has to complete the query before removing rows WHERE class = 3 from the result. In the second
version, the rows WHERE class = 3 are removed before the grouping takes place. WHERE is not always
a substitute for HAVING, but when it can be used instead of HAVING, it should be. Notice that in the
example:

SELECT class, COUNT(*) AS [count]
FROM Student
GROUP BY class

http://lib.ommolketab.ir

HAVING COUNT(*) > 9

HAVING and WHERE are not interchangeable because the grouping has to take place before the HAVING
could have an effect. You cannot know in advance what the counts for each class are until they are
counted.

Consider the following query, its meaning, and the processing that is required to finalize the result
set:

SELECT class, major, COUNT(*) AS [count]
FROM Student
WHERE major = 'COSC'
GROUP BY class, major
HAVING COUNT(*) > 2

This query produces the following output:

class major count
----- ----- -----------
1 COSC 4
4 COSC 3

(2 row(s) affected)

In this example, all computer science (COSC) majors (per the WHERE clause) will be grouped and
COUNTed and then displayed only if COUNT(*) > 2. The query might erroneously be interpreted as
"Group and count all COSC majors by class, but only if there are more than two in a class." This
interpretation is wrong, because SQL applies the WHERE, then applies the GROUP BY, and, finally, filters
with the HAVING criterion.

http://lib.ommolketab.ir

9.4. GROUP BY and HAVING: Aggregates of Aggregates

A "usual" GROUP BY has an aggregate and a column that are grouped like this:

SELECT COUNT(stno) AS [count of student no], class
FROM Student
GROUP BY class

This produces a result set of 5 rows of counts by class:

count of student no class
------------------- -----
10 NULL
11 1
10 2
7 3
10 4

(5 row(s) affected)

Although you must have class or some other attribute in the GROUP BY, you do not have to have the
class in the result set. Consider the following query, which generates the same numeric information
as the previous query, but does not report the class in the result:

SELECT COUNT(stno) AS [count of student no]
FROM Student
GROUP BY class

This query produces the following five rows of output:

count of student no

10
11
10
7

http://lib.ommolketab.ir

10

(5 row(s) affected)

This previous example may seem contradictory to the preceding discussion, but it is not. You must
have all the non aggregate columns from the result set in the GROUP BY, but you do not have to have
the columns in the result set that you are grouping. That example may prove useful when a grouped
result is needed in a filter. For example, how would you find the class with the most students?

9.4.1. Aggregation and Grouping in SQL Server 2005

SQL Server 2005 will not allow you to handle aggregation and grouping by nesting aggregates. For
example, suppose you want to find the class with the minimum number of students. You might try
the following query:

SELECT MIN(COUNT(stno))
FROM Student
GROUP BY class

Though it may seem logical, this query will not work in SQL Server 2005. It will produce the following
error message:

Msg 130, Level 15, State 1, Line 1
Cannot perform an aggregate function on an expression containing an aggregate or a
subquery.

The MIN function is an aggregate function, and aggregate functions operate on rows within tables. In
this case, the query is asking MIN to operate on a table of counted classes that have not yet been
calculated. The point is that SQL Server 2005 does not handle this mismatch of aggregation and
grouping.

This mismatch of aggregation and grouping can be handled by other SQL
languages, such as Oracle.

To handle this mismatch of aggregation and grouping in SQL Server 2005, you can use derived
structures such as temporary tables, inline views, or regular views (derived structures are covered in
Chapter 6). Using either a temporary table or an inline view is the most logical way to solve this
problem, so only these two choices are described here.

http://lib.ommolketab.ir

9.4.1.1. Aggregation and grouping handled with a global temporary table

This section shows how we can handle the mismatch of aggregation and grouping (described earlier)
using a global temporary table.

The following steps describe how to use a global temporary table to find the class with the minimum
number of students:

Display the counts of classes, grouped by class:

SELECT COUNT(stno) AS [count of students]
FROM Student
GROUP BY class

This query produces the following five rows of output:

count class
----------- ------
10 NULL
11 1
10 2
7 3
10 4

(5 row(s) affected)

1.

To find the minimum number of students in a class, count the students (you could use stno for
student number) grouped by class, and put this result in ##Temp1 (a global temporary table)--
shown by the first query following, and then find the minimum number of students in a class
from the global temporary table, ##Temp1, with SELECT MIN(count) AS [MINIMUM COUNT] FROM
##Temp1, and then use this information in a subquery with a HAVING clause as follows: First type
the query:

SELECT (COUNT([stno])) AS [count], class INTO ##Temp1
FROM Student
GROUP BY [class]

After executing the previous query, type:

2.

http://lib.ommolketab.ir

SELECT COUNT(stno) AS [count of stno], class
FROM Student
GROUP BY class
HAVING COUNT(stno) =
(SELECT MIN(count) AS [Minimum count]
FROM ##Temp1)

This query produces the desired output (the class with the minimum number of students):

count of stno class
------------- -----
7 3

(1 row(s) affected)

9.4.1.2. Aggregation and grouping handled with an inline view

As described in Chapter 6, you can put a query in the FROM clause of a SELECT statement to create an
inline view. An inline view exists only during the execution of a query.

The following steps describe how to use an inline view to find the class with the minimum number of
students:

Count the stno in the FROM clause of the SELECT statement as follows:

SELECT "Min of Count" = MIN(c)
FROM (SELECT c = COUNT(stno)
FROM Student
GROUP BY class) AS in_view

Because SQL Server 2005 cannot directly find aggregates of aggregates, in the previous query,
we give a name to the COUNT in the inline view, c, to temporarily store the aggregate result in
the inline view, in_view. We then operate on the inline view as though it were a table and find
the minimum value for c.

The previous query produces the following output:

Min of Count

7

1.

http://lib.ommolketab.ir

(1 row(s) affected)

To find out which class has the minimum count, you can write the final query using the previous
query as a subquery with a HAVING clause in the outer part of the final query, as follows:

SELECT class, "Count of Class" = COUNT(*)
FROM Student
GROUP BY class
HAVING COUNT(*) =
(SELECT MIN(c)
FROM (SELECT COUNT(stno) AS [c]
FROM Student
GROUP BY class) AS in_view)

2.

This query produces the desired output:

class Count of Class
----- --------------
3 7

(1 row(s) affected)

So, although SQL Server 2005 does not handle a mismatch of aggregation and HAVING, you can use
your knowledge of temporary tables and inline views to work around the problem. This problem may
also be solved using regular views. It is also noteworthy to see the process of query development in
that some problems require using small queries and building from them to a final result.

Once again, Chapter 6 covers the advantages and disadvantages of using each
one of the derived structures.

http://lib.ommolketab.ir

9.5. Auditing in Subqueries

In this section, we consider a potential problem of using aggregation with subqueries. As with
Cartesian products and joins, aggregation hides details and should always be audited. The two tables
that follow will be used to illustrate this problem.

Table 9-2 is similar to the Grade_report table and contains a student section identifier (ssec), grades
(gd), and student names (sname).

Table 9-2. GG table

ssec gd sname
----------- ---- ------------
100 A Brenda
110 B Brenda
120 A Brenda
200 A Brenda
210 A Brenda
220 B Brenda
100 A Richard
100 B Doug
200 A Richard
110 B Morris

(10 row(s) affected)

Tables 9-2 and 9-3 (GG and SS) have not been created for you. You have to
create them (and insert the records shown) and then run the queries that
follow.

Table 9-3 is similar to the Section table and contains a section identifier (sec) and an instructor name
(iname).

Table 9-3. SS table

http://lib.ommolketab.ir

sec iname
----------- ------------
100 Jones
110 Smith
120 Jones
200 Adams
210 Jones

(5 row(s) affected)

Now suppose that you want to find out how many As each instructor awarded. You might start with a
join of the GG and SS tables. A normal equi-join would be as follows:

SELECT *
FROM GG, SS
WHERE GG.ssec = SS.sec

This query would produce the following output (nine rows):

ssec gd sname sec iname
----------- ---- ------------ ----------- ------------
100 A Brenda 100 Jones
110 B Brenda 110 Smith
120 A Brenda 120 Jones
200 A Brenda 200 Adams
210 A Brenda 210 Jones
100 A Richard 100 Jones
100 B Doug 100 Jones
200 A Richard 200 Adams
110 B Morris 110 Smith

(9 row(s) affected)

In addition, the following query tells you that there are six As in the GG table:

SELECT COUNT(*) AS [Count of As]
FROM GG
WHERE gd = 'A'

http://lib.ommolketab.ir

giving:

Count of As

6

(1 row(s) affected)

Now, if you want to find out which instructor gave the As, you would type this query:

SELECT SS.iname
FROM SS, GG
WHERE SS.sec = GG.ssec
 AND GG.gd = 'A'

You get the following six rows of output:

iname

Jones
Jones
Adams
Jones
Jones
Adams

(6 row(s) affected)

Now, to find "how many" As each instructor gave, include a COUNT and GROUP BY as follows:

SELECT SS.iname AS [iname], COUNT(*) AS [count]
FROM SS, GG
WHERE SS.sec = GG.ssec
 AND GG.gd = 'A'
GROUP BY SS.iname

This query produces the following output:

http://lib.ommolketab.ir

iname count
------------ -----------
Adams 2
Jones 4

(2 row(s) affected)

This shows that instructor Adams gave two As and instructor Jones gave four As. So far, so good.
You should note that the final count/grouping has the same number of As as the original tablesthe
sum of the counts equals 6. Now, if you had devised a COUNT query with a sub-SELECT, you could get
an answer that looked correct but in fact was not. For example, consider the following subquery
version of the preceding join query:

SELECT SS.iname AS [iname], COUNT(*) AS [count]
FROM SS
WHERE SS.sec IN
 (SELECT GG.ssec
 FROM GG
 WHERE GG.gd = 'A')
GROUP BY SS.iname

This query produces the following output:

iname count
------------ -----------
Adams 1
Jones 3

(2 row(s) affected)

The reason that you get this output is that the second query is counting names of instructors and
whether an A is present in the set of courses that this instructor teachesnot how many As are in the
set, just whether any exist. The previous join query gives you all the As in the joined table and hence
gives the correct answer to the question "How many As did each instructor award?" The sub-
SELECTed query answers a different question: "In how many sections did the instructor award an A?"

The point in this example is that if you are SELECTing and COUNTing, it is a very good idea to audit
your results often. If you want to COUNT the number of As by instructor, begin by first counting how
many As there are. Then, you can construct a query to join and count. You should be able to total
and reconcile the number of As to the number of As by instructor. The fact that the result makes
sense is very useful in determining (albeit not proving) correctness.

http://lib.ommolketab.ir

http://lib.ommolketab.ir

9.6. Nulls Revisited

Nulls present a complication with regard to aggregate functions and other queries, because nulls are
never equal to, less than, greater than, or not equal to any value. Using aggregates by themselves on
columns that contain nulls will ignore the null values. For example, suppose you have the following Table
9-4 called Sal .

Table 9-4. Sal table

Name salary
------------ -----------
Joe 1000.00
Sam 2000.00
Bill 3000.00
Dave NULL

(4 row(s) affected)

Table 9-4 (Sal) has not been created for you. You have to create it to run the
queries that follow.

Now consider the following query:

SELECT COUNT(*) AS [count], AVG(salary) AS [average], SUM(salary) AS [sum], MAX(salary)
AS [max], MIN(salary) AS [min]
FROM Sal

which produces the following output:

count average sum max min
----------- ----------- ----------- ----------- -----------
4 2000.00 6000.00 3000.00 1000.00

http://lib.ommolketab.ir

Warning: Null value is eliminated by an aggregate or other SET operation.

(1 row(s) affected)

COUNT (*) counts all the rows. But, the AVERAGE , SUM , MAX , and MIN functions ignore the nulled salary
row in computing the aggregates. Counting columns also indicates the presence of nulls. If you count by
using the following query:

SELECT COUNT(name) AS [Count of Names]
FROM Sal

you get:

Count of Names

4

(1 row(s) affected)

If you use the "salary" column, you get:

SELECT COUNT(salary) AS [Count of salary]
FROM Sal

which produces:

Count of salary

3

Warning: Null value is eliminated by an aggregate or other SET operation.

(1 row(s) affected)

This result indicates that you have a null salary. If you want to include nulls in the aggregate and have a
rational value to substitute for a value that is not known (a big assumption), you can use the ISNULL
function.

http://lib.ommolketab.ir

The ISNULL function was introduced and discussed in Chapter 5 .

ISNULL returns a value if the value is null. ISNULL has the form ISNULL(column name , value if null),

which is used in place of the column name. For example, if you type the following:

SELECT name, ISNULL(salary, 0) AS [salary]
FROM Sal

you get the following output:

name salary
------------ -----------
Joe 1000.00
Sam 2000.00
Bill 3000.00
Dave 0.00

(4 row(s) affected)

If you type the following:

SELECT COUNT(ISNULL(salary,0)) AS [Count of salary]
FROM Sal

you get:

Count of salary

4

(1 row(s) affected)

The "Count of salary" is now 4 instead of the 3 that you received earlier when the ISNULL function was
not used.

If you type the following:

http://lib.ommolketab.ir

SELECT AVG(ISNULL(salary, 0)) AS [Average of salary]
FROM Sal

you get:

Average of salary

1500.00

(1 row(s) affected)

The "Average of salary" is now 1500.00, instead of the 2000.00 that you had received earlier because
the zero value for the null was used in the calculation. What seems almost contradictory to these
examples is that when grouping is added to the query, nulls in the grouped column are included in the
result set. So, if the Sal table had another column like this:

Name salary job
------------ ----------- --------------------
Joe 1000.00 Programmer
Sam 2000.00 NULL
Bill 3000.00 Plumber
Dave NULL Programmer

And if you ran a query like this:

SELECT SUM(salary) AS [Sum of salary], job
FROM Sal
GROUP BY job

You would get the following output:

Sum of salary Job
------------- --------------------
2000.00 NULL
3000.00 Plumber
1000.00 Programmer

Warning: Null value is eliminated by an aggregate or other SET operation.

http://lib.ommolketab.ir

(3 row(s) affected)

The aggregate will ignore values that are null, but grouping will compute a value for the nulled column
value.

http://lib.ommolketab.ir

9.7. Summary

In this chapter we not only introduced the GROUP BY and HAVING clauses, but we also discussed what
would and would not work and some efficiency issues. We discussed how aggregates and grouping
can be handled in SQL Server 2005 and how it is always important to audit your queries and the
results for correctness.

http://lib.ommolketab.ir

9.8. Review Questions

What do aggregate functions do?1.

How does the GROUP BY clause work?2.

What is the difference between a GROUP BY and ORDER BY?3.

What is the HAVING clause used for?4.

Can the WHERE clause always be considered a substitute for the HAVING clause? Why or why not?5.

Do functions of functions have to be handled in a special way in Server SQL 2005?6.

Will nulls in grouped columns be included in a result set?7.

How do aggregate functions treat nulls?8.

Does the sequence of the columns in a GROUP BY clause have an effect on the end result?9.

When would it not make sense to use the GROUP BY and DISTINCT functions together?10.

Is GROUP BY affected by nulls?11.

Which comes first in a SELECT statement, an ORDER BY or GROUP BY? Why?12.

The GROUP BY and ________________ clauses are used together.13.

http://lib.ommolketab.ir

9.9. Exercises

Unless specified otherwise, use the Student_course database to answer the following questions. Also,
use appropriate column headings when displaying your output.

Display a list of courses (course names) that have prerequisites and the number of prerequisites
for each course. Order the list by the number of prerequisites.

1.

How many juniors (class = 3) are there in the Student table?2.

Group and count all MATH majors by class and display the count if there are two or more in a
class. (Remember that class here refers to freshman, sophomore, and so on and is recorded as
1, 2, and so on.)

3.

Print the counts of As, Bs, and so on from the Grade_report table.

Using temporary tables (local or global), print the minimum counts of the grades (that is,
if there were 20 As, 25 Bs, and 18 Cs, you should print the minimum count of grades as C)
from the Grade_report table.

a.

Using inline views, print the maximum counts of the grades (that is, if there were 20 As,
25 Bs, and 18 Cs, you should print the maximum count of grades as B) from the
Grade_report table.

b.

Why would you not want to use views for this problem?c.

4.

Print the counts of course numbers offered in descending order by count. Use the Section table
only.

5.

Create a table with names and number-of-children (NOC). Populate the table with five or six
rows. Use COUNT, SUM, AVG, MIN, and MAX on the NOC attribute in one query and confirm that the
numbers you get are what you expect.

6.

Create a table of names, salaries and job locations. Populate the table with at least 10 rows and
no fewer than three job locations. (There will be several employees at each location.) Find the
average salary for each job location with one SELECT.

7.

Print an ordered list of instructors and the number of As they assigned to students. Order the
output by number of As (lowest to greatest). You can (and probably will) ignore instructors that
assign no As.

8.

Create a table called Employees with a name, a salary and job title. Include exactly six rows.
Make the salary null in one row, the job title null in another, and both the salary and the job
title in another. Use this data:

9.

http://lib.ommolketab.ir

Name Salary Title

Mary 1000 Programmer

Brenda 3000

Stephanie Artist

Alice

Lindsay 2000 Artist

Christina 500 Programmer

Display the table.a.

Display count, sum, maximum, minimum, and average salary.b.

Display count, sum, maximum, minimum, and average salary, counting salary as 0 if no
salary is listed.

c.

Display the average salary grouped by job title on the table as is.d.

Display the average salary grouped by job title when null salary is counted as 0.e.

Display the average salary grouped by job title when salary is counted as 0 if it is null and
include a value for "no job title."

f.

9.

Find the instructor and the section where the maximum number of As were awarded.10.

Find the COUNT of the number of students by class who are taking classes offered by the
computer science (COSC) department. Perform the query in two ways: once using a condition in
the WHERE clause and once filtering with a HAVING clause. (Hint: These queries need a five-table
join.)

11.

Delete (DROP) all of your "scratch" tables (the ones you created just for this exercise: Employees,
NOC, and any others you may have created).

http://lib.ommolketab.ir

Chapter 10. Correlated Subqueries
A correlated subquery is an inner subquery whose information is referenced by the main, outer query
such that the inner query may be thought of as being executed repeatedly. In this chapter, we
discuss correlated subqueries in detail. We discuss existence queries (EXISTS) and correlation as well
as NOT EXISTS. We also take a look at SQL's universal and existential qualifiers. Before discussing
correlated subqueries in detail however, let's make sure that you understand what constitutes a
noncorrelated subquery.

http://lib.ommolketab.ir

10.1. Noncorrelated Subqueries

A noncorrelated subquery is a subquery that is independent of the outer query. In other words, the
subquery could be executed on its own. The following is an example of a query that is not correlated:

SELECT s.sname
FROM Student s
WHERE s.stno IN
 (SELECT gr.student_number
 FROM Grade_report gr
 WHERE gr.grade = 'A')

The first part of the preceding query (the first three lines) is the main, outer query, and the second
part (the part in parentheses) is the subquery (also referred to as an inner, nested, or embedded
query). To demonstrate that this subquery is an independent entity, you could run it by itself:

SELECT gr.student_number
 FROM Grade_report gr
 WHERE gr.grade = 'A'

which would produce the following output (17 rows):

student_number

2
3
8
8
10
14
20
129
142
129
34
49
123
125
126

http://lib.ommolketab.ir

127
142

(17 row(s) affected)

The preceding subquery is thought of as being evaluated first, creating the set of student numbers
who have As. Then, the subquery's result set is used to determine which rows (tuples) in the main
query will be SELECTed. So, the full query results in the following output (14 rows):

sname

Lineas
Mary
Brenda
Richard
Lujack
Donald
Lynette
Susan
Holly
Sadie
Jessica
Steve
Cedric
Jerry

(14 row(s) affected)

http://lib.ommolketab.ir

10.2. Correlated Subqueries

As stated at the beginning of the chapter, a correlated subquery is an inner subquery whose
information is referenced by the main, outer query such that the inner query may be thought of as
being executed repeatedly.

Correlated subqueries present a different execution scenario to the database manipulation language
(DML) than do ordinary, noncorrelated subqueries. The correlated subquery cannot stand alone, as it
depends on the outer query; therefore, completing the subquery prior to execution of the outer query
is not an option. The efficiency of the correlated subquery varies; it may be worthwhile to test the
efficiency of correlated subqueries versus joins or sets.

One situation in which you cannot avoid correlation is the "for all" query, which
is discussed later in this chapter.

To illustrate how a correlated subquery works, the following is an example of the non-correlated
subquery from the previous section revised as a correlated subquery:

SELECT s.sname
FROM Student s
WHERE s.stno IN
 (SELECT gr.student_number
 FROM Grade_report gr
 WHERE gr.student_number = s.stno
 AND gr.grade = 'A')

This query produces the following output (14 rows), which is the same as the output of the
noncorrelated subquery (shown earlier):

sname

Lineas
Mary
Brenda
Richard
Lujack
Donald
Lynette
Susan

http://lib.ommolketab.ir

Holly
Sadie
Jessica
Steve
Cedric
Jerry

(14 row(s) affected)

In this example, the inner query (the part in parentheses) references the outer oneobserve the use
of s.stno in the WHERE clause of the inner query. Rather than thinking of this query as creating a set
of student numbers that have As, each row from the outer query can be considered to be SELECTed
individually and tested against all rows of the inner query one at a time until it is determined whether
a given student number is in the inner set and whether that student earned an A.

This query was illustrated with and without correlation. You might think that a correlated subquery is
less efficient than doing a simple subquery, because the simple subquery is done once, whereas the
correlated subquery is done once for each outer row. However, the internal handling of how the
query executes depends on the SQL and the optimizer for that database engine.

The correlated subquery acts like a nested DO loop in a programming language, where the first row
from the Student table is SELECTed and tested against all the rows in the Grade_report table, and
then the second Student row is SELECTed and tested against all rows in the Grade_report table. The
following is the DO loop in pseudocode:

LOOP1: For each row in Student s DO
 LOOP2: For each row in Grade_report gr DO
 IF (gr.student_number = s.stno) THEN
 IF (gr.grade = 'B') THEN TRUE
 END LOOP2;
 IF TRUE, THEN Student row is SELECTed
END LOOP1

http://lib.ommolketab.ir

10.3. Existence Queries and Correlation

Correlated queries are often written so that the question in the inner query is one of existence. For
example, suppose you want to find the names of students who have taken a computer science (COSC)
class and have earned a grade of B in that course. This query can be written in several ways. For
example, you can write it as a noncorrelated subquery as follows:

SELECT s.sname
FROM Student s
WHERE s.stno IN
 (SELECT gr.student_number FROM Grade_report gr, Section
 WHERE Section.section_id = gr.section_id
 AND Section.course_num LIKE 'COSC%'
 AND gr.grade = 'B')

This query produces the following output (17 rows):

sname

Lineas
Mary
Brenda
Lujack
Reva
Harley
Chris
Lynette
Hillary
Phoebe
Holly
George
Cramer
Fraiser
Francis
Lindsay
Stephanie

(17 row(s) affected)

You can think of this query as first forming the set of student numbers of students who have made

http://lib.ommolketab.ir

Bs in COSC coursesthe inner query result set. In the inner query, you must have both the
Grade_report table (for the grades) and the Section table (for the course numbers). Once you form
this set of student numbers (by completing the inner query), the outer query looks through the
Student table and SELECTs only those students who are in the inner query set.

This query could also be done by creating a double-nested subquery containing
two INs, or it could be written using a three-table join.

Had we chosen to write the query with an unnecessary correlation, it might look like this:

SELECT s.sname
FROM Student s
WHERE s.stno IN
 (SELECT gr.student_number
 FROM Grade_report gr, Section
 WHERE Section.section_id = gr.section_id
 AND Section.course_num LIKE 'COSC%'
 AND gr.student_number = s.stno
 AND gr.grade = 'B')

The output of this query would be the same as the previous query. In this case, the use of the
Student table in the subquery is unnecessary. Although correlation is unnecessary, this example is
included to show the following:

When correlation is necessary

How to untangle unnecessarily correlated queries

How you might migrate your thought process toward correlation, should it be necessary

First, let's look at situations in which the correlation of a subquery is necessary, and introduce a new
predicate: EXISTS.

10.3.1. Using EXISTS

In situations in which the correlation of a subquery is necessary, you can write the correlated
subquery with the EXISTS predicate, which looks like this:

SELECT s.sname
FROM Student s
WHERE EXISTS
 (SELECT 1 FROM Grade_report gr, Section

http://lib.ommolketab.ir

 WHERE Section.section_id = gr.section_id
 AND Section.course_num LIKE 'COSC%'
 AND gr.student_number = s.stno
 AND gr.grade = 'B')

The output of this query would be the same as the output (17 rows) of both of the previous queries.

Let's dissect this query. The EXISTS predicate says, "Choose the row from the Student table in the
outer query if the subquery is true (that is, if a row in the subquery exists that satisfies the condition
in the subquery WHERE clause)." Because no actual result set is formed, "SELECT 1" is used as a
"dummy" result set to indicate that the subquery is true (1 is returned) or false (no rows are
returned). In the noncorrelated case, we tied the student number in the Student table to the inner
query by the IN predicate as follows:

SELECT s.stno
FROM Student s
WHERE s.stno IN
 (SELECT "student number ...)

When using the EXISTS predicate, we do not use any column of the Student table, but rather are
seeking only to find whether the subquery WHERE can be satisfied.

We have indicated that we are using EXISTS with (SELECT 1...). Using the EXISTS predicate, the
subquery does not form a result set per se, but rather causes EXISTS to returns true or false. The use
of SELECT * in the inner query is common among SQL programmers. However, from an "internal"
standpoint, SELECT * causes the SQL engine to check the data dictionary unnecessarily. As the actual
result of the inner query is not important, it is strongly suggested that you use SELECT 'X' (or SELECT
1 ...) instead of SELECT * ... so that a constant is SELECTed instead of some "sensible" entry. The
SELECT 'X' .. or SELECT 1 ... is simply more efficient.

In the EXISTS case, we do not specify any columns to be SELECTed in the inner query's result set;
rather, we use a dummy result--SELECT 'X' (or we could use SELECT 1). If the subquery WHERE is
satisfied, it returns true, and if the inner query is not satisfied, it selects nothing, then the subquery
returns false. The EXISTS predicate forces us to correlate the query. To illustrate that correlation is
usually necessary with EXISTS, consider the following query:

SELECT s.sname
FROM Student s
WHERE EXISTS
 (SELECT 'X' FROM Grade_report gr, Section t
 WHERE t.section_id = gr.section_id
 AND t.course_num LIKE 'COSC%'
 AND gr.grade = 'B')

http://lib.ommolketab.ir

This query produces 48 rows of output (of which we show the first 20 rows):

sname

Lineas
Mary
Zelda
Ken
Mario
Brenda
Romona
Richard
Kelly
Lujack
Reva
Elainie
Harley
Donald
Chris
Jake
Lynette
Susan
Monica
Bill.
.
.

(48 row(s) affected)

This query uses EXISTS, but has no correlation. This syntax infers that for each student row, we test
the joined Grade_report and Section tables to see whether there is a course number like COSC and a
grade of B (which, of course, there is). We unnecessarily ask the subquery question over and over
again. The result from this latter, uncorrelated EXISTS query is the same as the following:

SELECT s.sname
FROM Student s

The point is that the correlation is usually necessary when we use EXISTS.

Consider another example in which a correlation could be used. Suppose that we want to find the
names of all students who have three or more Bs. A first pass at a query might be something like
this:

SELECT s.sname
FROM Student s WHERE "something" IN

http://lib.ommolketab.ir

 (SELECT "something"
 FROM Grade_report
 WHERE "count of grade = 'B'" > 2)

This query can be done with a HAVING clause, as you saw previously (Chapter 9), but we want to
show how to do this in yet another way. Suppose we arrange the subquery to use the student
number (stno) from the Student table as a filter and count in the subquery only when a row in the
Grade_report table correlates to that student. The query (this time with an implied EXISTS) looks like
this:

SELECT s.sname
FROM Student s
WHERE 2 < (SELECT COUNT(*)
 FROM Grade_report gr
 WHERE gr.student_number = s.stno
 AND gr.grade = 'B')

which results in the following output (8 rows):

sname

Lineas
Mary
Lujack
Reva
Chris
Hillary
Phoebe
Holly

(8 row(s) affected)

Although there is no EXISTS in this query, it is implied. The syntax of the query does not allow an
EXISTS, but the sense of the query is "WHERE EXISTS a COUNT of 2 which is less than..." In this
correlated subquery, we have to examine the Grade_report table for each member of the Student
table to see whether the student has more than two Bs. We test the entire Grade_report table for
each student row in the outer query.

If it were possible, a subquery without the correlation would be more desirable, because it would
appear simpler to understand. The overall query might be as follows:

SELECT s.sname
FROM Student s

http://lib.ommolketab.ir

WHERE s.stno IN
 (subquery that defines a set of students who have made 3 Bs)

Therefore, we might attempt to write the following query:

SELECT s.sname
FROM Student s
WHERE s.stno IN
 (SELECT gr.student_number
 FROM Grade_report gr
 WHERE gr.grade = 'B')

However, as the following output (27 rows) shows, this query would give us only students who
earned at least one B:

sname

Lineas
Mary
Zelda
Ken
Mario
Brenda
Kelly
Lujack
Reva
Harley
Chris
Lynette
Hillary
Phoebe
Holly
Sadie
Jessica
Steve
Cedric
George
Cramer
Fraiser
Francis
Smithly
Sebastian
Lindsay
Stephanie

(27 row(s) affected)

http://lib.ommolketab.ir

To get a list of students who have earned at least three Bs, we could try the following query:

SELECT s.sname
FROM Student s
WHERE s.stno IN
 (SELECT gr.student_number, COUNT(*)
 FROM Grade_report gr
 WHERE gr.grade = 'B'
 GROUP BY gr.student_number
 HAVING COUNT(*) > 2)

However, this approach does not work, because the subquery cannot have two columns in its result
set unless the main query has two columns in the WHERE .. IN.

Here, the subquery must have only gr.student_number to match s.stno. So, we might try to
construct an inline view, as shown in the following query:

SELECT s.sname
FROM Student s
WHERE s.stno IN
 (SELECT vi.student_number
 FROM (SELECT student_number, ct = COUNT(*)
 FROM Grade_report gr
 WHERE gr.grade = 'B'
 GROUP BY student_number
 HAVING COUNT(*) > 2) AS vi)

This is an example of the inline view, discussed in Chapter 6. This query succeeds in SQL Server
2005, producing the following output (8 rows):

sname

Lineas
Mary
Lujack
Reva
Chris
Hillary
Phoebe
Holly

(8 row(s) affected)

http://lib.ommolketab.ir

This query also works in Oracle, but it may fail in other SQL languages.

As you can see, several ways exist to query the database with SQL. In this case, the correlated
subquery may be the easiest to see and perhaps the most efficient.

10.3.2. From IN to EXISTS

A simple example of converting from IN to EXISTS--uncorrelated to correlated (or vice versa)--would
be to move the set test in the WHERE .. IN of the uncorrelated subquery to the WHERE of the EXISTS in
the correlated query.

As an example, consider the following uncorrelated subquery:

SELECT *
FROM Student s
WHERE s.stno IN
 (SELECT g.student_number
 FROM Grade_report g
 WHERE grade = 'B')

The following is the same query written as a correlated subquery:

SELECT *
FROM Student s
WHERE EXISTS
 (SELECT g.student_number
 FROM Grade_report g
 WHERE grade = 'B'
 AND s.stno = g.student_number)

This query produces 27 rows of output (of which we show the first 15 rows):

STNO SNAME MAJOR CLASS BDATE
------ -------------------- ----- ------ -----------------------
2 Lineas ENGL 1 1980-04-15 00:00:00
3 Mary COSC 4 1978-07-16 00:00:00

http://lib.ommolketab.ir

5 Zelda COSC NULL 1978-02-12 00:00:00
6 Ken POLY NULL 1980-07-15 00:00:00
7 Mario MATH NULL 1980-08-12 00:00:00
8 Brenda COSC 2 1977-08-13 00:00:00
13 Kelly MATH 4 1980-08-12 00:00:00
14 Lujack COSC 1 1977-02-12 00:00:00
15 Reva MATH 2 1980-06-10 00:00:00
19 Harley POLY 2 1981-04-16 00:00:00
24 Chris ACCT 4 1978-02-12 00:00:00
34 Lynette POLY 1 1981-07-16 00:00:00
121 Hillary COSC 1 1977-07-16 00:00:00
122 Phoebe ENGL 3 1980-04-15 00:00:00
123 Holly POLY 4 1981-01-15 00:00:00.
.
.

(27 row(s) affected)

This example gives you a pattern to move from one kind of query to the other kind and to test the
efficiency of both kinds of queries. Both of the preceding queries should produce the same output.

10.3.3. NOT EXISTS

As with the IN predicate, which has a NOT IN compliment, EXISTS may also be used with NOT. In some
situations, the predicates EXISTS and NOT EXISTS are vital. For example, if we ask a "for all" question,
it must be answered by "existence"--actually, the lack thereof (that is, "not existence"). In logic, the
statement, "find x for all y" is logically equivalent to "do not find x where there does not exist a y."
Or, there is no x for no y. Or, you cannot find an x when there is no y.

In SQL, there is no "for all" predicate. Instead, SQL uses the idea of "for all" logic with NOT EXISTS. (A
word of caution, howeverSQL is not simply a logic exercise, as you will see.) In this section, we look
at how EXISTS and NOT EXISTS work in SQL. In the following section, we address the "for all" problem.

Consider the following query:

SELECT s.sname
FROM Student s
WHERE EXISTS
 (SELECT 'X'
 FROM Grade_report gr
 WHERE s.stno = gr.student_number
 AND gr.grade = 'C')

which produces the following output (24 rows):

http://lib.ommolketab.ir

sname

Zelda
Ken
Mario
Brenda
Richard
Reva
Donald
Jake
Susan
Monica
Bill
Sadie
Jessica
Steve
Alan
Rachel
Smithly
Sebastian
Losmith
Genevieve
Thornton
Gus
Benny
Lionel

(24 row(s) affected)

For this correlated subquery, "student names" are SELECTed when:

The student is enrolled in a section (WHERE s.stno = gr.student_number)

The same student has a grade of C (note the correlation in the WHERE clause in the inner query)

Both statements must be true for the student row to be SELECTed. Recall that we use SELECT 1 or
SELECT 'X' in our inner query, because we want the subquery to return something if the subquery is
true. The actual value of the "something" does not matter. true means something is returned; false
means nothing was returned from the subquery. Therefore, SELECT .. EXISTS "says" SELECT ..
WHERE true. The inner query is true if any row is SELECTed in the inner query.

Now consider the preceding query with a NOT EXISTS in it instead of EXISTS for students who do not
have a grade of C:

SELECT s.sname
FROM Student s
WHERE NOT EXISTS
 (SELECT 'X'

http://lib.ommolketab.ir

 FROM Grade_report gr
 WHERE s.stno = gr.student_number
 AND gr.grade = 'C')

This query produces the following output (24 rows):

sname

Lineas
Mary
Romona
Kelly
Lujack
Elainie
Harley
Chris
Lynette
Smith
Hillary
Phoebe
Holly
Brad
Cedric
George
Jerry
Cramer
Fraiser
Harrison
Francis
Lindsay
Stephanie
Jake

(24 row(s) affected)

In this query, we are still SELECTing with the pattern SELECT .. WHERE true because all SELECTs with
EXISTS work that way. But, the twist is that the subquery has to be false to be SELECTed with NOT
EXISTS. If the subquery is false, then NOT EXISTS is true and the outer row is SELECTed.

Now, logic implies that if either s.stno <> gr.student_number or gr.grade <> 'C', then the subquery
"fails"--that is, it is false for that student row. As the subquery is false, the NOT EXISTS would return a
TRue for that row. Unfortunately, this logic is not quite what happens. Recall that we characterized
the correlated subquery as follows:

LOOP1: For each row in Student s DO
 LOOP2: For each row in Grade_report DO

http://lib.ommolketab.ir

 IF (gr.student_number = s.stno) THEN
 IF (gr.grade = 'C') THEN TRUE
 END LOOP2;
 IF TRUE, THEN student row is SELECTed
END LOOP1

Note that LOOP2 is completed before the next student is tested. In other words, just because a
student number exists that is not equal, it will not cause the subquery to be false. Rather, the entire
subquery table is parsed and the logic is more like this:

For the case .. WHERE EXISTS s.stno = gr.student_number ..., is there a gr.grade = 'C'? If, when
the student numbers are equal, no C can be found, then the subquery returns no rowsit is false for
that student row. So, with NOT EXISTS, we will SELECT students who have student numbers equal in
the Grade_report and Student tables, but who have no C in the Grade_report table. The point about
"no C in the Grade_report table" can be answered true only by looking at all the rows in the inner
query and finding no C for that student.

http://lib.ommolketab.ir

10.4. SQL Universal and Existential Qualifiers

In SQL, "for all" and "for each" are the universal qualifiers, whereas "there exists" is the existential
qualifier. As mentioned in the preceding section, SQL does not have a "for all" predicate; however,
logically, the following relationship exists:

For all x, WHERE P(x) is true ...

which is logically the same as the following:

There does not exist an x, WHERE P(x) is not true.

A "for all" type SQL query is less straightforward than the other queries we have used, because it
involves a double-nested, correlated subquery using the NOT EXISTS predicate. The next section
shows an example.

10.4.1. Example 1

To show a "for all" type SQL query, we will use another table in our Student_course databasea table
called Cap (for "capability"). This table has names of students who have multiple foreign-language
capabilities. We begin by looking at the table by typing the following query:

SELECT *
FROM Cap
ORDER BY name

This query produces the following output (18 rows):

NAME LANGU
--------- -------
BRENDA FRENCH
BRENDA CHINESE
BRENDA SPANISH
JOE CHINESE
KENT CHINESE
LUJACK SPANISH
LUJACK FRENCH
LUJACK GERMAN
LUJACK CHINESE
MARY JO FRENCH
MARY JO GERMAN

http://lib.ommolketab.ir

MARY JO CHINESE
MELANIE FRENCH
MELANIE CHINESE
RICHARD SPANISH
RICHARD FRENCH
RICHARD CHINESE
RICHARD GERMAN

(18 row(s) affected)

Suppose that we want to find out which languages are spoken by all students (for which we would
ask the question, "For each language, does it occur with all students?"). Although this manual
exercise would be very difficult for a large table, for our practice table, we can answer the question
by displaying and manually counting in the table ordered by language.

To see how to answer a question of the type--"Which languages are spoken by all students?"--for a
much larger table where sorting and examining the result would be tedious, we will construct a
query. After showing the query, we will dissect the result. Following is the query to answer our
question:

SELECT name, langu
FROM Cap x
WHERE NOT EXISTS
 (SELECT 'X'
 FROM Cap y
 WHERE NOT EXISTS
 (SELECT 'X'
 FROM Cap z
 WHERE x.langu = z.langu
 AND y.name = z.name))

As you will see, all the for all/for each questions follow this double-nested,
correlated NOT EXISTS pattern.

This query produces the following output (7 rows):

name langu
--------- -------
BRENDA CHINESE
RICHARD CHINESE
LUJACK CHINESE
MARY JO CHINESE
MELANIE CHINESE

http://lib.ommolketab.ir

JOE CHINESE
KENT CHINESE

(7 row(s) affected)

10.4.1.1. The way the query works

To SELECT a "language" spoken by all students, the query proceeds as follows:

SELECT a row in Cap (x) (outer query).1.

For that row, begin SELECTing each row again in Cap (y) (middle query).2.

For each of the middle query rows, we want the inner query (Cap z) to be true for all cases of
the middle query (remember that true is translated to false by the NOT EXISTS). As each inner
query is satisfied (it is true), it forces the middle query to continue looking for a matchto look at
all cases and eventually conclude false (evaluate to false overall). If the middle query is false,
the outer query sees true because of its NOT EXISTS.

To make the middle query (y) find false, all the inner query (z) occurrences must be true;
that is, the languages from the outer query must exist with all names from the middle one (y) in
the inner one (z). For an eventual "match," every row in the middle query for an outer query
row must be false (that is, every row in the inner query is true).

3.

These steps are explained in further detail in the next example, in which we use a smaller table, so
that the explanation is easier to understand.

10.4.2. Example 2

Suppose that we have the simpler table Cap1 (see Table 10-1) when attempting to answer the
question "Which languages are spoken by all students?"

Table 10-1. Cap1

http://lib.ommolketab.ir

Name Language
------------ ------------
Joe Hindi
Mary Hindi
Mary French

(3 row(s) affected)

The table Cap1 does not exist in the Student_course database. You will have to
create it. Keep the column names and types similar to the table Cap.

The query will be similar to the one used in the previous section:

SELECT name, language
FROM Cap1 x
WHERE NOT EXISTS
 (SELECT 'X'
 FROM Cap1 y
 WHERE NOT EXISTS
 (SELECT 'X'
 FROM Cap1 z
 WHERE x.language = z. language
 AND y.name = z.name))
ORDER BY language

This query produces the following output:

name language
------------ ------------
Joe Hindi
Mary Hind

(2 row(s) affected)

10.4.2.1. The way this query works

http://lib.ommolketab.ir

The following is a step-by-step explanation of how this query would work in Table 10-1 (Cap1):

The row <Joe, Hindi> is SELECTed by the outer query (x).1.

The row <Joe, Hindi> is SELECTed by the middle query (y).2.

The row <Joe, Hindi> is SELECTed by the inner query (z).3.

The inner query is true:

 X.LANGUAGE = Hindi
 Z.LANGUAGE = Hindi
 Y.NAME = Joe
 Z.NAME = Joe

4.

Because the inner query returns a row (is true), the NOT EXISTS of the middle query translates
this to false and continues with the next row in the middle query. The middle query SELECTs
<Mary, Hindi> and the inner query begins again with <Joe, Hindi> seeing:

 X.LANGUAGE = Hindi
 Z.LANGUAGE = Hindi
 Y.NAME = Mary
 Z.NAME = Joe

This is false, so the inner query SELECTs a second row <Mary, Hindi>:

 X.LANGUAGE = Hindi
 Z.LANGUAGE = Hindi
 Y.NAME = Mary
 Z.NAME = Mary

This is true, so the inner query is TRue. (Notice that the X.LANGUAGE has not changed yet; the
outer query [X] is still on the first row.)

5.

Because the inner query returns a row (is true), the NOT EXISTS of the middle query translates
this to false and continues with the next row in the middle query.

The middle query now SELECTs <Mary, French> and the inner query begins again with <Joe,
Hindi> seeing:

 X.LANGUAGE = Hindi
 Z.LANGUAGE = Hindi

6.

http://lib.ommolketab.ir

 Y.NAME = Mary
 Z.NAME = Joe

This is false, so the inner query SELECTs a second row <Mary, Hindi>:

 X.LANGUAGE = Hindi
 Z.LANGUAGE = Hindi
 Y.NAME = Mary
 Z.NAME = Mary

This is true, so the inner query is true.

Because the inner query is true, the NOT EXISTS of the middle query again converts this true to
false and wants to continue, but the middle query is out of rows. Thus the middle query is
false.

7.

Because the middle query is false, and because we are testing

"SELECT distinct name, language
 FROM Cap1 x
 WHERE NOT EXISTS
 (SELECT 'X' FROM Cap1 y ...",

the false from the middle query is translated to true for the outer query and the row <Joe,
Hindi> is SELECTed for the result set. Note that "Hindi" occurs with both "Joe" and "Mary."

8.

The second row in the outer query will repeat the previous steps for <Mary, Hindi>. The value
"Hindi" will be seen to occur with both "Joe" and "Mary" as <Mary, Hindi> is added to the result
set.

9.

The third row in the outer query begins with <Mary, French>. The middle query SELECTs <Joe,
Hindi> and the inner query SELECTs <Joe, Hindi>. The inner query sees the following:

 X.LANGUAGE = French
 Z.LANGUAGE = Hindi
 Y.NAME = Joe
 Z.NAME = Mary

This is false, so the inner query SELECTs a second row, <Mary, Hindi>:

 X.LANGUAGE = French

10.

http://lib.ommolketab.ir

 Z.LANGUAGE = Hindi
 Y.NAME = Joe
 Z.NAME = Mary

This is false, so the inner query SELECTs a third row, <Mary, French>:

 X.LANGUAGE = French
 Z.LANGUAGE = French
 Y.NAME = Joe
 Z.NAME = Mary

This is also false. The inner query returns no rows (fails). The inner query evaluates to false,
which causes the middle query to returns rows (see TRue) because of the NOT EXISTS. Because
the middle query sees true, it is finished and evaluated to true. Because the middle query
evaluates to TRue, the NOT EXISTS in the outer query changes this to false and X.LANGUAGE =
French fails because X.LANGUAGE = French did not occur with all the values of NAME.

Consider again the "for all" query presented in Example 2:

SELECT name, language
FROM Cap1 x
WHERE NOT EXISTS
 (SELECT 'X'
 FROM Cap1 y
 WHERE NOT EXISTS
 (SELECT 'X'
 FROM Cap1 z
 WHERE x.language = z. language
 AND y.name = z.name))
ORDER BY language

A clue as to what a query of this kind means can be found in the inner query where the outer query is
tested. In the phrase that says WHERE x.language = z. language..., the x.language is where the

query is testing which language occurs for all names.

This query is a SQL realization of a relational division exercise. Relational division is a "for all"
operation just like that illustrated earlier. In relational algebra, the query must be set up into a
divisor, dividend, and quotient in this pattern:

Quotient (B) Dividend(A, B) divided by Divisor (A).

If the question is "What language for all names?" then the Divisor, A, is names, and the Quotient, B, is
language. It is most prudent to set up SQL like relational algebra with a two-column table (like Cap or
Cap1) for the Dividend and then treat the Divisor and the Quotient appropriately. Our query will have
the column for language, x.language, in the inner query, as language will be the quotient. We have

http://lib.ommolketab.ir

chosen to also report name in the result set.

10.4.3. Example 3

Note that the preceding query is completely different from the following query, which asks, "Which
students speak all languages?":

SELECT DISTINCT name, language
FROM Cap1 x
WHERE NOT EXISTS
 (SELECT 'X'
 FROM Cap1 y
 WHERE NOT EXISTS
 (SELECT 'X'
 FROM Cap1 z
 WHERE y.language = z.language
 AND x.name = z.name))
ORDER BY language

This query produces the following output:

name language
------------ ------------
Mary French
Mary Hindi

(2 row(s) affected)

Note that the inner query contains x.name, which means the question was "Which names occur for all
languages?" or, put another way, "Which students speak all languages?" The "all" goes with
languages for x.name.

http://lib.ommolketab.ir

10.5. Summary

In this chapter, we discussed the correlated subquery, noncorrelated subquery, EXISTS, and NOT
EXISTS. We described situations where the correlation of a subquery is necessary and can be written
with the EXISTS predicate, and other times when EXISTS can be used, even with no correlation. We
also introduced loops and discussed how the "for all" and "for each" are used in SQL.

http://lib.ommolketab.ir

10.6. Review Questions

What is a noncorrelated subquery?1.

Which type of subquery can be executed on its own?2.

Which part of a query is evaluated first, the query or the subquery?3.

What are correlated subqueries?4.

What does the EXISTS predicate do?5.

What are considered universal qualifiers?6.

Is correlation necessary when we use EXISTS? Why?7.

Explain how the "for all" type SQL query involves a double-nested correlated subquery using the
NOT EXISTS predicate.

8.

http://lib.ommolketab.ir

10.7. Exercises

Unless specified otherwise, use the Student_course database to answer the following questions. Also,
use appropriate column headings when displaying your output.

List the names of students who have received Cs. Do this in three ways: (a) as a join, (b) as an
uncorrelated subquery, and (c) as a correlated subquery. Show both results and account for any
differences.

1.

In section "Existence Queries and Correlation," you were asked to find the names of students
who have taken a computer science class and earned a grade of B. We noted that it could be
done in several ways. One query could look like this:

SELECT s.sname
FROM Student s
WHERE s.stno IN
 (SELECT gr.student_number
 FROM Grade_report gr, Section
 WHERE Section.section_id = gr.section_id
 AND Section.course_num LIKE 'COSC___ _'
 AND gr.grade = 'B')

Redo this query, putting the finding of the COSC course in a correlated subquery. The query
should be as follows:

The Student table uncorrelated subquery to the Grade_report table, correlated EXISTS to the
Section table.

2.

In the section "SQL Universal and Existential Qualifiers," we illustrated both an existence query:

SELECT s.sname
FROM Student s
WHERE EXISTS
 (SELECT 'X'
 FROM Grade_report gr
 WHERE Student.stno = gr.student_number
 AND gr.grade = 'C')

and a NOT EXISTS version:

3.

http://lib.ommolketab.ir

SELECT s.sname
FROM Student s
WHERE NOT EXISTS
 (SELECT 'X'
 FROM Grade_report gr
 WHERE Student.stno = gr.student_number
 AND gr.grade = 'C')

Show that the EXISTS version is the complement of the NOT EXISTS versioncount the rows in the
EXISTS result, the rows in the NOT EXISTS result, and the rows in the Student table. Also, devise
a query to give the same result with IN and NOT..IN.

Discover whether all students take courses by counting the students, and then count those
students whose student numbers are in the Grade_report table and those whose student
numbers are not in the table. Use IN and then NOT..IN, and then use EXISTS and NOT EXISTS.
How many students take courses and how many students do not?

Find out which students have taken courses but who have not taken COSC courses. Create
a set of student names and courses from the Student, Grade_report, and Section tables
(use the prefix COSC to indicate computer science courses). Then, use NOT..IN to "subtract"
from that set another set of student names of students (who take courses) who have
taken COSC courses. For this set difference, use NOT..IN.

a.

Change NOT..IN to NOT EXISTS (with other appropriate changes) and explain the result.
The "other appropriate changes" include adding the correlation and the change of the
result column in the subquery set.

b.

4.

There exists a table called Plants. List the table and then find out what company or companies
have plants in all cities. Verify your result manually.

5.

Run the following query and print the result:

SELECT distinct name, langu
FROM Cap x
WHERE NOT EXISTS
 (SELECT 'X'
 FROM Cap y
 WHERE NOT EXISTS
 (SELECT 'X'
 FROM Cap z
 WHERE X.langu =Z.langu
 AND Y.name=Z.name))

Save the query (e.g., save forall) and hand in the result.

a.

6.

http://lib.ommolketab.ir

Recreate the Cap table (e.g., call it some other name, such as LANG1). To do this, first
create the table and then use the INSERT statement with the sub select option (INSERT
INTO LANG1 AS SELECT * FROM Cap).

a.

Add a new person to your table who speaks only BENG.b.

Recall your previous SELECT (get for all).c.

CHANGE the table from CAP to LANG1 (for all occurrences, use CHANGE/Cap/lang1/ repeatedly,
assuming that you called your table LANG1).

d.

Start the new query (the one you just created with LANG1 in it).e.

How is this result different from the situation in which Newperson was not in LANG1? Provide
an explanation of why the query did what it did.

f.

The Department_to_major table is a list of four-letter department codes with the department
names. In Chapter 8, Exercise 7 (hereafter referred to as Exercise 8-7), you created a table
called Secretary, which should now have data like this:

Secretary

dCode Name

ACCT Beryl

COSC Kaitlyn

ENGL David

HIST Christina

BENG Fred

Null Brenda

In Exercise 8-7, you did the following:

Create a query that lists the names of departments that have secretaries (use IN and the
Secretary table in a subquery). Save this query as q8_7a.

1.

Create a query that lists the names of departments that do not have secretaries (use
NOT..IN). Save this query as q8_7b.

2.

Add one more row to the Secretary table that contains <null,'Brenda'>. (This could be a
situation in which you have hired Brenda but have not yet assigned her to a department.)

3.

Recall q8_7a and rerun it.4.

Recall q8_7b and rerun it.5.

7.

http://lib.ommolketab.ir

5.

We remarked in Exercise 8-7 that the NOT..IN predicate has problems with nulls: the behavior
of NOT..IN when nulls exist may surprise you. If nulls may exist in the subquery, then NOT..IN
should not be used. If you use NOT..IN in a subquery, you must ensure that nulls will not occur
in the subquery or you must use some other predicate, such as NOT EXISTS. Perhaps the best
advice is to avoid NOT..IN.

Here, we repeat Exercise 8-7 using NOT EXISTS:

Reword query q8_7a to use EXISTS. You will have to correlate the inner and outer queries. Save
this query as q10_7aa.

8.

Reword query q8_7b to use NOT EXISTS. You will have to correlate the inner and outer queries.
Save this query as q10_7bb. You should not have a phrase IS NOT NULL in your NOT EXISTS
query.

9.

Rerun q8_9a with and without <null, Brenda>.10.

Rerun q8_9b with and without <null, Brenda>.

Note the difference in behavior versus the original question. List the names of those
departments that do or do not have secretaries. The point here is to encourage you to use NOT
EXISTS in a correlated subquery, rather than NOT..IN.

11.

http://lib.ommolketab.ir

Chapter 11. Indexes and Constraints on
Tables
In previous chapters, we concentrated primarily on retrieving information from existing tables. This
chapter revisits the creation of tables, but focuses on how indexes and constraints can be added to
tables to make the tables more efficient and to increase the integrity of the data in the tables (and
hence in the database). Referential integrity constraints and other constraints are also discussed.

SQL Server 2005 does not need indexes to successfully retrieve results for a SELECT statement. But,
an index may speed up queries and searches on the indexed columns and may facilitate sorting and
grouping operations. As tables get larger, the value of using proper indexes becomes more of an
issue. Indexes can be used to find data quickly that satisfy conditions in a WHERE clause, find matching
rows in a JOIN clause, or to efficiently maintain uniqueness of the key columns during INSERTs and
UPDATEs.

Constraints are a very powerful ways to increase the data integrity in a database. Integrity implies
believability and correctness. Any data that destroys the sense of correctness is said to lack integrity.
For example, a constraint is used to establish relationships with other tables. A violation of integrity
would be, for instance, if a nonexistent referenced row were included in the relationship. The
CONSTRAINT clause can be used with the CREATE TABLE and the ALTER TABLE statements to create
constraints or delete constraints, respectively.

http://lib.ommolketab.ir

11.1. The "Simple" CREATE TABLE

You have seen a "simple" CREATE TABLE statement in Chapter 3. To refresh your memory, here is an
example:

CREATE TABLE Test1
 (name VARCHAR(20),
 ssn CHAR(9),
 dept_number INT,
 acct_balance SMALLMONEY)

The following are the elements of this CREATE TABLE command:

We created a table called Test1.

name is a variable-length character string with maximum length of 20

ssn (Social Security number) is a fixed-length character string of length 9

dept_number is an integer (which in SQL Server 2005 simply means no decimals allowed)

acct_balance is a currency column

Beyond choosing data types for columns in tables, you may need to make other choices to create an
effective database. You can create indexes on tables, which then can be used to aid in the
enforcement of certain validation rules. You also can use other "add-ons" called CONSTRAINTs, which
make you enter good data (or, prevents you from entering invalid data into the database) and hence
maintain the integrity of a database. In the following sections, we explore indexes and then
CONSTRAINTs.

http://lib.ommolketab.ir

11.2. Indexes

SQL Server 2005 allows you to create several indexes on a table. In SQL Server 2005, it is the job of
the query optimizer to determine which indexes will be the most useful in processing a specific query.
Although indexes may speed up queries in large tables, indexes will slow update operations (insert,
delete, update), because every update causes a rebuild of the index. We begin by introducing the
"simple" CREATE INDEX statement.

Discussing the query optimizer is beyond the scope of this book.

11.2.1. The "Simple" CREATE INDEX

The CREATE INDEX statement is used to create a new index on some column in an existing table. The
following is the general syntax for the CREATE INDEX statement:

CREATE INDEX index_name
ON Tablename (column [ASC | DESC])

For example, if we wanted to create an index called ssn_ndx on the ssn column, in descending order
of ssn, for the Test1 table, we would type the following:

CREATE INDEX ssn_ndx
ON Test1 (ssn DESC)

You will get:

Command(s) completed successfully.

This result means that the index was successfully created. Although the user has the option of setting
the column in ascending (ASC) or descending (DESC) order, if DESC is not included, the index will be
created in ascending order, because ASC is the default order for indexes .

http://lib.ommolketab.ir

To view the index that you just created, click on the + sign beside the newly created table, Test1,
and then click on the + sign beside the Indexes node, and you will be able to see that index that we
just created, ssn_ndx, and you will get Figure 11-1.

Figure 11-1. Viewing the index

Now, to see if this index, ssn_ndx, is in ascending order or descending order, right-click on the index,
ssn_ndx and select Properties, and you will get Figure 11-2. Figure 11-2 shows that this index,
ssn_ndx, is in descending order, indexed by the ssn column.

Also from Figure 11-2, to add more columns to the index key, we can click Add; to remove columns
from the index key, we can select the key and then click Remove.

To prevent duplicate values in indexed columns, you must use the UNIQUE option in the CREATE INDEX
statement, as follows:

CREATE UNIQUE INDEX ssn_ndx1
ON Test1 (ssn DESC)

This query will create the unique index, ssn_ndx1, as shown in Figure 11-3.

The UNIQUE option can be used on columns that will not be a primary key in a table. A primary key is
a key or field that uniquely identifies a row in a table.

The UNIQUE option will disallow duplicate entries for a column even though the column is not a
primary key in a table. NULLs are allowed in nonprimary key indexes.

11.2.2. Deleting Indexes Using SQL

You can use a DROP INDEX statement to delete an index in SQL. The general format of the DROP INDEX
statement is as follows:

DROP INDEX Table_name.index_name

http://lib.ommolketab.ir

For example, to delete the index ssn_ndx1 created on Test1, you would type the following:

DROP INDEX Test1.ssn_ndx1

Figure 11-2. Index properties

Figure 11-3. Showing the UNIQUE index

http://lib.ommolketab.ir

Unused indexes slow data modification without helping retrieval. So, if you have indexes that are not
being used, you should delete (drop) them. All indexes will automatically get deleted (dropped) if the
table is deleted.

Indexes cannot be created on all column types in SQL Server 2005. For
example, you cannot create an index on a column of TEXT, NTEXT, or IMAGE data
type.

http://lib.ommolketab.ir

11.3. Constraints

As with indexes, constraints can be added to tables. As explained previously, constraints are added to
give tables more integrity. In this section, we discuss some of the constraints available in SQL Server
2005: the NOT NULL constraint, the PRIMARY KEY constraint, the UNIQUE constraint, the CHECK
constraint, and a few referential constraints.

11.3.1. The NOT NULL Constraint

The NOT NULL constraint is an integrity CONSTRAINT that allows the database creator to deny the
creation of a row where a column would have a null value. Usually, a null signifies a missing data
item. As discussed in previous chapters, nulls in databases present an interpretation problemdo they
mean not applicable, not available, unknown, or what? If a situation in which a null is present could
affect the integrity of the database, then the table creator can deny anyone the ability to insert nulls
into the table for that column. To deny nulls, we can create a table with the NOT NULL constraint on a
column(s) after the data type. The following example shows how to include the NOT NULL constraint
using a CREATE TABLE statement:

CREATE TABLE Test2
 (name VARCHAR(20),
 ssn CHAR(9),
 dept_number INT NOT NULL,
 acct_balance SMALLMONEY)

In this newly created table, Test2, the dept_number column, now has a NOT NULL constraint included
(and the Allow Nulls option is unchecked, as shown in Figure 11-4).

Figure 11-4. Table definition of Test2

http://lib.ommolketab.ir

The NOT NULL constraint can also be added to the column after the table has been created. You can
check the Allow Nulls option of the dept_number column in Figure 11-4, or you can use SQL to do this.
To do this in SQL, you will have to use the ALTER TABLE command, as we illustrate in the following
example.

Suppose that we created the Test2 table as follows:

CREATE TABLE Test2
 (name VARCHAR(20),
 ssn CHAR(9),
 dept_number INT,
 acct_balance SMALLMONEY)

Now, we want to add a NOT NULL constraint (using SQL) after the table has been created. To do so,
we must use the ALTER COLUMN option within the ALTER TABLE statement, with the following general
syntax:

ALTER TABLE Tablename

ALTER COLUMN column_name column_type(size) NOT NULL

So, to set the dept_number column in the Test2 table to NOT NULL, we would type the following:

ALTER table Test2
ALTER COLUMN dept_number INTEGER NOT NULL

This query will give us the same table definition that we got in Figure 11-4.

But you need to understand the following three things about the ALTER COLUMN extension of the ALTER
TABLE statement:

The column type and size must always be typed after the column name. For example, the

following statement will cause SQL Server 2005 to announce a syntax error:

ALTER TABLE Test2
ALTER COLUMN name NOT NULL

You will get following error message:

Msg 156, Level 15, State 1, Line 2

http://lib.ommolketab.ir

Incorrect syntax near the keyword 'NOT'.

If you type only the column type, without the column size, the column size will reset to the

default maximum size of the data type.

You cannot put a NOT NULL constraint on a column that already contains nulls.

11.3.2. The PRIMARY KEY Constraint

When creating a table, a PRIMARY KEY constraint will prevent duplicate values for the column(s)
defined as a primary key. Internally, the designation of a primary key also creates a primary key
index.

Designation of a primary key will be necessary for the referential integrity constraints that follow. The
designation of a primary key also automatically puts the NOT NULL constraint in the definition of the
column(s), as you will see in an example later in the chapter. A fundamental rule of relational
database is that primary keys cannot be null.

One of the following three options can be used to set the primary key.

11.3.2.1. Option 1

The first option is to declare the primary key while creating the table, in the CREATE TABLE statement.
Here, the PRIMARY KEY constraint is added to the column upon creation:

CREATE TABLE Test2a
 (ssn CHAR(9) CONSTRAINT ssn_pk PRIMARY KEY,
 name VARCHAR2(20), etc.

ssn_pk is the name of the PRIMARY KEY constraint for the ssn column. It is conventional to name all
CONSTRAINTs (although most people often do not bother to name NOT NULL constraints).

The following two options of setting the primary key are preferable because they provide greater
flexibility.

11.3.2.2. Option 2

The second option available to create a primary key is called the table format, in which the CREATE
TABLE looks like the following:

http://lib.ommolketab.ir

CREATE TABLE Test2a
 (ssn CHAR(9),
 blah blah ..,
 acct_balance NUMBER,
 CONSTRAINT ssn_pk PRIMARY KEY (ssn))

11.3.2.3. Option 3

The third option available to create a primary key is to add the stipulation of the PRIMARY KEY post
hoc by using the ALTER TABLE command. The syntax for the PRIMARY KEY in the ALTER TABLE
command would be as follows:

ALTER TABLE Tablename
ADD CONSTRAINT constraint_name PRIMARY KEY (column_name(s))

So, to make ssn a primary key column in Test2, we could type the following:

ALTER TABLE Test2
ADD CONSTRAINT ssn_pk PRIMARY KEY (ssn)

But, once you type in that syntax, you will receive the following error message:

Msg 8111, Level 16, State 1, Line 1
Cannot define PRIMARY KEY constraint on nullable column in table 'Test2'.
Msg 1750, Level 16, State 0, Line 1
Could not create constraint. See previous errors.

This error occurs because SQL Server 2005 does not allow you to define a primary key on a column
that has not been specified as NOT NULL. So, we need to first make ssn a column that will not accept
nulls as follows:

ALTER TABLE Test2
ALTER COLUMN ssn CHAR(9) NOT NULL

The design of the Test2 table will now be as in shown in Figure 11-5.

http://lib.ommolketab.ir

Figure 11-5. New table definition of Test2

Now we can type the following command to create the primary key:

ALTER TABLE Test2
ADD CONSTRAINT ssn_pk PRIMARY KEY (ssn)

Figure 11-6 shows the primary key constraint that we just created (note the key icon on the left of
the ssn column).

Figure 11-6. Primary key constraint

You can view this ssn_pk constraint by clicking the + sign beside Test2, and then clicking the + sign
beside the Keys node. You will get the results shown in Figure 11-7.

Figure 11-7. The ssn_pk constraint

You can modify, rename, delete, or refresh this ssn_pk constraint by right-clicking ssn_pk, as shown

http://lib.ommolketab.ir

in Figure 11-8.

11.3.2.4. Concatenated primary keys

In relational databases, it is sometimes necessary to define more than one column as the primary
key. When more than one column makes up a primary key, it is called a concatenated primary key.
In SQL Server 2005, however, you cannot directly designate a concatenated primary key with a
statement like the following:

Figure 11-8. Changing constraint properties

CREATE TABLE Test2a
 (ssn CHAR(9) PRIMARY KEY,
 salary INT PRIMARY KEY)

This query will give the following error message:

Msg 8110, Level 16, State 0, Line 1
Cannot add multiple PRIMARY KEY constraints to table 'Test2a'.

In SQL Server 2005, you can define the concatenated primary key in the following way:

CREATE TABLE Test2a
 (ssn CHAR(9),
 salary INT,
 CONSTRAINT ssn_salary_pk PRIMARY KEY (ssn, salary))

http://lib.ommolketab.ir

The table definition of the Test2a table will now be as shown in Figure 11-9.

Figure 11-9. Table definition of Test2a

Or, you can create the concatenated primary key in two separate statements, first with a CREATE
TABLE:

CREATE TABLE Test2b
 (ssn CHAR(9) NOT NULL,
 salary INT NOT NULL)

Then, with an ALTER TABLE:

ALTER TABLE Test2b
ADD CONSTRAINT ssn_salary_pk1 PRIMARY KEY (ssn, salary)

This query will produce the same table definition as was shown in Figure 11-9.

We called this latter constraint ssn_salary_pk1, because you cannot have another constraint called
ssn_salary_pk (which was a constraint created for table Test2a). Figure 11-10 shows the constraints
created for table Test2b. Note that the constraint shows up not only as a key constraint, but also as
an index.

Figure 11-10. Viewing the constraints

http://lib.ommolketab.ir

Another example of a concatenated primary key. Suppose that we have a new table in our
database, Grade1, which has columns student_number, section_id, and grade. Further suppose that a
grade cannot be determined by either the student_number or section_id alone. Because both these
columns (together) are required to uniquely identify a grade, the student_number and section_id will
have to be the concatenated primary key of the Grade1 table.

The CREATE TABLE and ALTER TABLE sequence for creating the Grade1 table with the concatenated
primary key as is shown next. First we create the Grade1 table:

CREATE TABLE Grade1
 (student_number CHAR(9) NOT NULL,
 section_id CHAR(9) NOT NULL,
 grade CHAR(1))

Then we define the concatenated primary key:

ALTER TABLE Grade1 ADD CONSTRAINT snum_section_pk
 PRIMARY KEY (student_number, section_id)

Figure 11-11 gives the table definition of table Grade1.

Figure 11-11. Table definition of Grade1

Figure 11-12 shows the constraint snum_section_pk.

Figure 11-12. The snum_section_pk constraint

http://lib.ommolketab.ir

11.3.3. The UNIQUE Constraint

Like PRIMARY KEY, UNIQUE is another column integrity constraint. UNIQUE is different from PRIMARY KEY
in three ways:

UNIQUE keys can exist in addition to (or without) the PRIMARY KEY.

UNIQUE does not necessitate NOT NULL, whereas PRIMARY KEY does.

There can be more than one UNIQUE key, but only one PRIMARY KEY.

As an example of using the UNIQUE constraint, suppose that we created a table of names and
occupational titles in which everyone was supposed to have a unique title. Further suppose that the
table had an employee number as a primary key. The statement to create the table might look like
the following:

CREATE TABLE Emp
 (empno INT,
 name VARCHAR(20),
 title VARCHAR(20),
 CONSTRAINT empno_pk PRIMARY KEY (empno),
 CONSTRAINT title_uk UNIQUE (title))

Figure 11-13 shows the table definition of the newly created Emp table.

Figure 11-13. Table definition of Emp

http://lib.ommolketab.ir

From Figure 11-13, we can see that both the empno and title fields will not allow nulls, as empno is
defined as a primary key and title is defined as unique.

Figure 11-14 shows the empno_pk and title_uk constraints of the Emp table.

Figure 11-14. Showing the empno_pk and title_uk constraints

In SQL Server 2005, when you declare a PRIMARY KEY or UNIQUE constraint, internally a unique index
is created just as if you had used the CREATE INDEX command. In terms of internal storage and
maintenance of indexes in SQL Server 2005, there is no difference between unique indexes created
using the CREATE INDEX command and indexes created using the UNIQUE constraint. In fact, an index
is a type of a constraint. When it comes to the query optimizer, how the index was created is
irrelevant to the query optimizer. The query optimizer makes decisions based on the presence of a
unique index.

Discussing the query optimizer is beyond the scope of this book.

11.3.4. The CHECK Constraint

In addition to the NOT NULL, PRIMARY KEY and UNIQUE constraints, we can also include a CHECK
constraint on our column definitions in SQL Server 2005. A CHECK constraint will disallow a value that
is outside the bounds of the CHECK. Consider the following example:

CREATE TABLE StudentA
 (ssn CHAR(9),
 class INT
 CONSTRAINT class_ck CHECK (class BETWEEN 1 AND 4),
 name VARCHAR(20))

This query will give the table definition of table StudentA as shown in Figure 11-15.

http://lib.ommolketab.ir

Figure 11-15. Table definition of StudentA

To view the CHECK constraint, click the + sign beside table StudentA, and then click the + sign beside
Constraints, and you will get Figure 11-16.

Figure 11-16. The CHECK constraint

Once the CHECK constraint has been added, we could not, for example, successfully execute the
following INSERT:

INSERT INTO StudentA VALUES ('123456789', 5, 'Smith')

We would get the following error message:

Msg 547, Level 16, State 0, Line 1
The INSERT statement conflicted with the CHECK constraint "class_ck". The conflict
occurred in database "Student_course", table "dbo.StudentA", column 'class'.
The statement has been terminated.

This error occurs because the values of the column class have to be between 1 and 4 (and we tried
to insert 5). We could however, enter a null value for class, which technically does not violate the
integrity constraint (unless we specify so by making class also NOT NULL).

11.3.5. Deleting a Constraint

http://lib.ommolketab.ir

The following is the general SQL syntax to delete any named constraint:

ALTER TABLE Tablename
DROP CONSTRAINT constraint_name

For example, in table Test2a we created a constraint called ssn_salary_pk, which made both the ssn
and salary columns primary keys of Test2a. If we want to delete this constraint, which means
making both the ssn and salary columns just regular columns (and not primary keys), we would type
the following:

ALTER TABLE Test2a
DROP CONSTRAINT ssn_salary_pk

Now the table definition of table Test2a will appear as shown in Figure 11-17. As can be seen from
Figure 11-17, the primary keys are no longer marked, as was shown in Figure 11-9.

Figure 11-17. Primary keys no longer marked

Figure 11-18 also shows no constraints for table Test2a.

Figure 11-18. Constraint deleted

11.3.6. Referential Integrity Constraints

http://lib.ommolketab.ir

A relational database consists of relations (tables) and relationships between tables. To define a
relationship between two tables, we create a referential integrity constraint. A referential integrity
constraint is one in which a row in one table (with a foreign key) cannot exist unless a value (column)
in that row refers to a primary key value (column) in another table. This is a primary key-foreign key
relationship between two tables. For example, suppose we have the following two tables:

A foreign key is a column in one table that is used to link that table to another
table in which that column is a primary key. Relationships are implemented in
relational databases through foreign keys/primary key relationships.

Table 11-1. Department table

Deptno Deptname

1 Accounting

2 Personnel

3 Development

Table 11-2. Employee table

empno Empname Dept

100 Jones 2

101 Smith 1

102 Adams 1

104 Harris 3

To maintain referential integrity, it would be inappropriate to enter a row (tuple) in the Employee table
that did not have an existing department number already defined in the Department table. To try to
insert the following row into the Employee table would be a violation of the integrity of the database,
because department number 4 does not exist (that is, it has no integrity):

<105,'Walsh',4>

Likewise, it would be invalid to try to change a value in an existing row (that is, perform an UPDATE)
to make it equal to a value that does not exist. If, for example, we tried to change:

<100,'Jones',2>

http://lib.ommolketab.ir

to:

<100,'Jones',5>

This operation would violate database integrity, because there is no department 5.

Finally, it would be invalid to delete a row in the Department table that contains a value for a
department number that is already in the Employee table. For example, if:

<2,'Personnel'>

were deleted from the Department table, then the row:

<100,'Jones',2>

would refer to a nonexistent department. It therefore would be a reference or relationship with no
integrity.

In each case (INSERT, UPDATE, and DELETE), we say that there needs to be a referential integrity
constraint on the dept column in the Employee table referencing deptno in the Department table. When
this primary key (deptno in the Department table)-foreign key (dept in the Employee table) relationship
is defined, we have defined the relationship of the Employee table to the Department table.

In the INSERT and UPDATE cases discussed earlier, you would expect (correctly) that the usual action
of the system would be to deny the action. In SQL Server 2005, in the case of the DELETE and UPDATE
commands, there is an option available that will allow us to CASCADE the DELETE or UPDATE operations
respectively. Whereas an "ordinary" referential integrity constraint would simply disallow the deletion
of a row where the referenced row would be orphaned, a CASCADEd delete would delete the
referencing row as well. If, for example, in the previous data we deleted department 3, in a CASCADEd
delete situation, the referencing row in the Employee table, <104,Harris,3>, would be deleted as well.

11.3.6.1. Defining the referential integrity constraint

To enable a referential integrity constraint, it is necessary for the column that is being referenced to
be first defined as a primary key. In the preceding Employee-Department example, we have to first
create the Department table with a primary key. The CREATE TABLE statement for the Department table
(the referenced table) could look like this:

CREATE TABLE Department

http://lib.ommolketab.ir

 (deptno INT,
 deptname VARCHAR(20),
 CONSTRAINT deptno_pk PRIMARY KEY (deptno))

The table definition of the Department table would then be as shown in Figure 11-19.

Figure 11-19. Table definition of Department table

The constraints for the Department table would be as shown in Figure 11-20.

Figure 11-20. Constraint of the Department table

The Employee table (the referencing table containing the foreign key) would then be created using this
statement:

CREATE TABLE Employee
 (empno INT CONSTRAINT empno_pk1 PRIMARY KEY,
 empname VARCHAR(20),
 dept INT CONSTRAINT dept_fk REFERENCES Department(deptno))

The table definition of the Employee table would then be as shown in Figure 11-21.

Figure 11-21. Table definition of the Employee table

http://lib.ommolketab.ir

Now, to view the referential integrity constraints of the Employee table, click the + sign beside
Employee and then click the + sign beside Keys, you will get Figure 11-22.

To modify the foreign key, right-click dept_fk and select Modify, as shown in Figure 11-23.

You will get the results shown in Figure 11-24. You can expand the Table And Columns Specification
option (under General), and you will be able to see what the foreign key base table is (that is, the
table with the foreign key, which in this case is the Employee table), what the foreign key columns are
(in this case, dept), what the primary/unique key base table is (that is, the table with the primary
key, which in this case is Department), the primary/unique key column (which in this case is deptno).
You can change these options by clicking on the ... icon on the right of General.

Figure 11-22. Viewing the referential integrity constraints of the
Employee table

Figure 11-23. Modifying the foreign key

http://lib.ommolketab.ir

The CREATE TABLE Employee... statement defines a column, dept, to be of type INT, but the
statement goes further in defining dept to be a foreign key that references another table, Department.
Again, within the Department table, the referenced column, deptno, has to be an already-defined
primary key.

Also note that the Department table has to be created first. If we tried to create the Employee table
before the Department table with the referential CONSTRAINT, we would be trying to reference a
nonexistent table and this would also cause an error.

11.3.6.2. Adding the foreign key after tables are created

As we have seen with other constraints, the foreign key can be added after tables are created. To do
so, we must first have set up the primary key of the referenced table. The syntax of the ALTER TABLE
command to add a foreign key to a referencing table would look like this:

ALTER TABLE xxx
 ADD CONSTRAINT dept_fk
 FOREIGN KEY (dept)
 REFERENCES Department(deptno)

Figure 11-24. The dept_fk foreign key

http://lib.ommolketab.ir

The (optional) name of the CONSTRAINT is dept_fk. Note that the column's data types in the
references clause must agree with the column's data types in the referenced table.

11.3.6.3. DELETE and the referential CONSTRAINT

There are a couple of options in the DELETE option of a foreign key referential constraint in SQL
Server 2005--CASCADE and NO ACTION. Both of these options specify what action takes place on a row
if that row has a referential relationship and the referenced row is deleted from the parent table. First
we discuss the default, which is NO ACTION, and then we look at the CASCADE option.

ON DELETE NO ACTION. If the NO ACTION alternative is used in the ON DELETE option of the CREATE
TABLE command, and we try to delete a row from the parent table (in this case, the Department table)
that has a referencing row in the dependent table (in this case, the Employee table), then SQL Server
2005 will raise an error and the delete action on the row in the parent table will be undone. The NO
ACTION option on the ON DELETE option is the default.

The ON DELETE NO ACTION option is added after the REFERENCES clause of a CREATE TABLE command.
The CREATE TABLE command with the ON DELETE NO ACTION would be as shown in the next example.

In order to create the following Employee table, you will need to delete the
previous one.

http://lib.ommolketab.ir

CREATE TABLE Employee
 (empno INT CONSTRAINT empno_pk2 PRIMARY KEY,
 empname VARCHAR(20),
 dept INT REFERENCES Department(deptno)
 ON DELETE NO ACTION)

Make sure that you have created the Department table first before you attempt
to create this Employee table.

The design of the Employee table will now be as shown in Figure 11-25.

Figure 11-25. Viewing the referential integrity constraints of the
Employee table

Then, to view the ON DELETE NO ACTION, from Figure 11-25, right-click on
EFK_Employee_dept_33D4B598 and select Modify, similar to what is shown in Figure 11-23. You will
get Figure 11-26, the Foreign Key Relationships screen. On this screen, under Table Designer,
expand the "INSERT And UPDATE Specification" option, and you will see the Delete Rule as No Action,
shown in Figure 11-26.

ON DELETE CASCADE. The ON DELETE CASCADE option may be added after the REFERENCES clause of
a CREATE TABLE command, as shown here:

In order to create the following Employee table, you will need to delete the
previous one.

CREATE TABLE Employee
 (empno INT CONSTRAINT empno_pk3 PRIMARY KEY,
 empname VARCHAR(20),
 dept INT REFERENCES Department(deptno)
 ON DELETE CASCADE)

http://lib.ommolketab.ir

The table definition of the Employee table will be similar to what was shown in Figure 11-21.

Figure 11-26. Viewing the ON DELETE NO ACTION

The ON DELETE CASCADE option will be included in the referential integrity constraint. To view the ON
DELETE CASCADE, from the Foreign Key Relationships screen, once again expand the "INSERT And
UPDATE Specification" option, and you will see the Delete Rule as Cascade, shown in Figure 11-27.

CASCADE will allow the deletions in the dependent table (in this case, the Employee table) that are
affected by the deletions of the tuples in the referenced table (in this case, the Department table).
Suppose, for example, that we had deptno = 3 in the Department table. Also suppose that we had
employees in department 3. If we deleted department 3 in the Department table, then with CASCADE
we would also delete all employees in the Employee table with dept = 3.

11.3.6.4. UPDATE and the referential CONSTRAINT

Both the CASCADE and NO ACTION options are also available with the ON UPDATE option of a foreign key
referential constraint enforcement in SQL Server 2005. Both these options specify what action takes
place on a row if that row has a referential relationship and the referenced row is updated in the
parent table. In the following discussion, we show the syntax of these two options.

ON UPDATE NO ACTION. Just as with the ON DELETE option, if the NO ACTION option is used with the
ON UPDATE option of the CREATE TABLE command, and we try to update a row from the parent table (in

http://lib.ommolketab.ir

this case, the Department table) that has a referencing row in the dependent table (in this case, the
Employee table), then SQL Server 2005 will raise an error and the update action on the row in the
parent table will be rolled back. The NO ACTION option on the ON UPDATE option is the default.

Figure 11-27. Viewing the ON DELETE CASCADE option

Just as in the ON DELETE NO ACTION option, the ON UPDATE NO ACTION option is added after the
REFERENCES clause of a CREATE TABLE command. The CREATE TABLE command with the ON UPDATE NO
ACTION would be as shown here:

In order to create the following Employee table, you will need to delete the
previous one.

CREATE TABLE Employee
 (empno INT CONSTRAINT empno_pk4 PRIMARY KEY,
 empname VARCHAR(20),
 dept INT REFERENCES Department(deptno)
 ON UPDATE NO ACTION)

http://lib.ommolketab.ir

Make sure you have created the Department table first before you attempt to
create this Employee table.

Once again, the design of the Employee table will be similar to what was shown in Figure 11-21.

The ON UPDATE NO ACTION option will be included in the referential integrity constraint. View the ON
UPDATE NO ACTION as shown in Figure 11-27. Figure 11-27 also shows the Update Rule.

ON UPDATE CASCADE. The ON UPDATE CASCADE option is also added after the REFERENCES clause of a
CREATE TABLE command, as shown here:

In order to create the following Employee table, you will need to delete the
previous one.

CREATE TABLE Employee
 (empno INT CONSTRAINT empno_pk5 PRIMARY KEY,
 empname VARCHAR(20),
 dept INT REFERENCES Department(deptno)
 ON UPDATE CASCADE)

The design of the Employee table will be similar to what was shown in Figure 11-21.

The ON UPDATE CASCADE option will be included in the referential integrity constraint. To view the ON
UPDATE CASCADE, from the Foreign Key Relationships screen, once again expand the "INSERT And
UPDATE Specification" option, and you will see the Update Rule as Cascade, shown in Figure 11-28.

Figure 11-28. Viewing the ON UPDATE CASCADE

http://lib.ommolketab.ir

When CASCADE is included in the ON UPDATE option, the row is updated in the referencing table (in this
case, the Employee table) if that row is updated in the parent table (in this case, the Department
table).

11.3.6.5. Using the ON DELETE and ON UPDATE together

You can also use the ON DELETE and ON UPDATE options together if needed. Both the ON DELETE and ON
UPDATE do not necessarily have to be set to the same option. That is, both of them do not have to be
set to NO ACTION or CASCADE at the same time. You can have a NO ACTION option set for one option
and a CASCADE set for the other option. For example, you may create the Employee table as follows:

Once again, note that before you create this Employee table, delete the previous
version.

CREATE TABLE Employee
 (empno INT CONSTRAINT empno_pk6 PRIMARY KEY,
 empname VARCHAR(20),
 dept INT REFERENCES Department(deptno)
 ON UPDATE CASCADE
 ON DELETE NO ACTION)

http://lib.ommolketab.ir

Once again, the table definition of the Employee table would then be as shown in Figure 11-21.

Both the ON UPDATE CASCADE option and the ON DELETE NO ACTION option will be included in the
referential integrity constraint. Once again, from the Foreign Key Relationships screen, expand the
"INSERT And UPDATE Specification" option, and you will see the Delete Rule as well as Update Rule.

The foreign key relationships figure will be as shown in Figure 11-29.

Figure 11-29. Setting the ON DELETE and ON UPDATE together

So, in summary, SQL Server 2005 gives you quite a bit of flexibility in setting up your referential
integrity constraints.

http://lib.ommolketab.ir

11.4. Summary

In this chapter, we showed you how to create indexes and constraints using different options. We
also showed you how to view, edit, and delete indexes and constraints. We explained referential
integrity constraints, and also showed you how to create, view and edit them.

http://lib.ommolketab.ir

11.5. Review Questions

What is an index?1.

Does an index slow down updates on indexed columns?2.

What is a constraint?3.

How many indexes does SQL Server 2005 allow you to have on a table?4.

What command would you use to create an index?5.

Is there a difference between an index and a constraint?6.

What is the default ordering that will be created by an index (ascending or descending)?7.

When can the UNIQUE option be used?8.

What does the IGNORE NULL option do?9.

How do you delete an index?10.

What does the NOT NULL constraint do?11.

What command must you use to include the NOT NULL constraint after a table has already been
created?

12.

When a PRIMARY KEY constraint is included in a table, what other constraints does this imply?13.

What is a concatenated primary key?14.

How are the UNIQUE and PRIMARY KEY constraints different?15.

What is a referential integrity constraint? What two keys does the referential integrity constraint
usually include?

16.

What is a foreign key?17.

What does the ON DELETE CASCADE option do?18.

What does the ON UPDATE NO ACTION do?19.

Can you use the ON DELETE and ON UPDATE in the same constraint?20.

http://lib.ommolketab.ir

11.6. Exercises

Unless specified otherwise, use the Student_course database to answer the following questions.
Unless otherwise directed, name all CONSTRAINTs.

To test choices of data types, create a table with various data types like this:

CREATE TABLE Test3
 (name VARCHAR(20),
 ssn CHAR(9),
 dept_number INTEGER,
 acct_balance SMALLMONEY)

Then insert values into the table to see what will and will not be accepted. The following data
may or may not be acceptable. You are welcome to try other choices.

'xx','yy',2,5
'xx','yyy',2000000000,5
'xx','yyyy',2,1234567.89

1.

Create an index of ssn in ascending order of ssn. TRy to insert some new data in the ssn
column. Does your ssn column take nulls?

Does your ssn column take duplicates? If so, how can you prevent this column from taking
duplicates?

a.

Include a NOT NULL constraint on the ssn column. Now try to insert some new data in the
ssn column with nulls in the ssn column. What happens?

b.

With this NOT NULL constraint, is it necessary to include the PRIMARY KEY constraint? Why
or why not? Now include the PRIMARY KEY constraint and see whether there is any
difference in the types of values it accepts.

c.

Include some data with null values in the dept_number and acct_balance columns. Now
include the NOT NULL constraint in the acct_balance column. What happens?

d.

Include the NOT NULL constraint in the acct_balance column. What happens?e.

2.

http://lib.ommolketab.ir

e.

Delete Test3.

To test the errors generated when NOT NULL is used, create a table called Test4, which looks like
this:

CREATE TABLE Test4
 (a CHAR(2) NOT NULL,
 b CHAR(3))

Input some data and try to enter a null value for A. Acceptable input data for a null is "null."

3.

Create or recreate, if necessary, Test3, which does not specify a primary key. Populate the table
with at least one duplicate ssn. Then, try to impose the PRIMARY KEY constraint with an ALTER
TABLE command. What happens?

Recreate the Test3 table, but this time add a primary key of ssn. If you still have the Test3
table from Exercise 4, you may be able to delete offending rows and add the PRIMARY KEY
constraint. Enter two more rows to your tableone containing a new ssn and one with a
duplicate ssn. What happens?

a.

4.

Create the Department and Employee tables, as per the examples earlier in the chapter, with all
the constraints (PRIMARY KEYs, referential and UNIQUE constraints). You can add the constraints
at create time or you can use ALTER TABLE to add the constraints. Populate the Department table
first with departments 1, 2, and 3. Then populate the Employee table.

Note: before doing the next few exercises, it is prudent to create two tables, called Deptbak and
Empbak, to contain the data you load, because you will be deleting, inserting, dropping,
recreating, and so on. You can create Deptbak and Empbak tables (as temporary tables) with the
data we have been using with a query like:

SELECT *
INTO Deptbak
FROM Dept

Then, when you have added, deleted, updated, and so on and you want the original table from
the start of this problem, you simply run the following commands:

DROP TABLE Dept
SELECT *
INTO Dept
FROM Deptbak

a.

5.

http://lib.ommolketab.ir

Create a violation of insertion integrity by adding an employee to a nonexistent
department. What happens?

a.

Create an UPDATE violation by trying to change an existing employee to a nonexistent
department, and then by trying to change a referenced department number.

b.

Try to delete a department for which there is an employee. What happens? What happens
if you try to DELETE a department to which no employee has yet been assigned?

c.

Redo this entire experiment (starting with Exercise 5a), except that this time create the
Employee table with the ON DELETE CASCADE. View the table definition of the Employee table.

d.

Redo exercises 5a-5c, except that this time, create the Employee table with the ON DELETE
NO ACTION.

e.

Redo exercises 5a-5c, except that this time, create the Employee table with the ON UPDATE
CASCADE.

f.

Redo exercises 5a-5c, except that this time, create the Employee table with the ON UPDATE
NO ACTION.

g.

Redo exercises 5a-5c, except that this time, create the Employee table with the ON UPDATE
NO ACTION and ON DELETE CASCADE together.

h.

Create a table (your choice) with a PRIMARY KEY and a UNIQUE constraint. Insert data into the
table and, as you do, enter a good row and a bad row (the bad row violates a constraint).
Demonstrate a violation of each of your constraints one at a time. Show the successes and the
errors as you receive them.

6.

In this chapter, the Employee table was referenced to (depended on) the Department table.
Suppose that there were another table that depended on the Employee table, such as Dependent,
where the Dependent table contained the columns name and empnum. Create the Dependent table.
Then add the referential constraint where empnum references the Employee table, with ON DELETE
CASCADE (and note that the Employee table also has an ON DELETE CASCADE option). You are
creating a situation in which the Dependent table references the Employee table, which
references the Department table. Will SQL Server let you do this? If so, and if you delete a tuple
from the Department table, will it cascade through the Employee table and on to the Dependent
table?

7.

http://lib.ommolketab.ir

Appendix A. The Student Database and
Other Tables Used in This Book

Table A-1. Table definitions of the tables in the Student_course database

STUDENT
 STNO NOT NULL SMALLINT PRIMARY KEY
 SNAME NVARCHAR(20)
 MAJOR NVARCHAR(4)
 CLASS SMALLINT
 BDATE SMALLDATETIME

DEPENDENT
 PNO SMALLINT
 DNAME NVARCHAR(20)
 RELATIONSHIP NVARCHAR(8)
 SEX CHAR(1)
 AGE SMALLINT

GRADE_REPORT
 STUDENT_NUMBER NOT NULL SMALLINT
 SECTION_ID NOT NULL SMALLINT
 GRADE CHAR(1)
 PRIMARY KEY(STUDENT_NUMBER, SECTION_ID)

SECTION
 SECTION_ID NOT NULL SMALLINT PRIMARY KEY
 COURSE_NUM NVARCHAR(8)
 SEMESTER NVARCHAR(6)
 YEAR CHAR(2)
 INSTRUCTOR NVARCHAR(10)
 BLDG SMALLINT
 ROOM SMALLINT

DEPARTMENT_TO_MAJOR
 DCODE NOT NULL NVARCHAR(4) PRIMARY KEY
 DNAME NVARCHAR(20)

COURSE
 COURSE_NAME NVARCHAR(20)

http://lib.ommolketab.ir

 COURSE_NUMBER NOT NULL NVARCHAR(8) PRIMARY KEY NOT NULL
 CREDIT_HOURS SMALLINT
 OFFERING_DEPT NVARCHAR(4)

 ROOM
 BLDG NOT NULL SMALLINT
 ROOM NOT NULL SMALLINT
 CAPACITY SMALLINT
 OHEAD NVARCHAR(1)
 PRIMARY KEY(BLDG, ROOM)

 PREREQ

COURSE_NUMBER NVARCHAR(8) PREREQU NVARCHAR(8) PRIMARY KEY
(COURSE_NUMBER, PREREQ)

ER Diagram for the Student_course Database

Figure A-1. Diagram for the Student_course database

1.

http://lib.ommolketab.ir

A.1.

A.1.1. Brief English Description of the ER Diagram

Student may be registered in one or more (M) Grade_Reports (Grade_report is for a specific
course).

A Grade_Report must relate to one and only one (1) Student.

(Students may be in the database and not registered for any courses, but if a course is recorded
in the Grade_report table, it must be related to one and only one student).

1.

A Section must have one or more (M) Grade_Reports (Sections only exist if they have students
in them).

A Grade_Report must relate to one and only one (1) Section.

2.

A Section must relate to one and only one (1) Course.

A Course may be offered as one or more (M) Sections.

(Courses may exist where they are not offered in a section, but a section, if offered, must relate
to one and only one course).

3.

A Student may be related to one and only one (1) Department_to_major (A student may or may
not have declared a major).

A Department_to_major may have one or more (M) Students (A department may or may not
have student-majors).

4.

A Course must be related to one and only one (1) Department_to_major.

A Department_to_major may offer one or more (M) Courses.

5.

A Section must be offered in one and only one (1) Room.

A Room may host one or more (M) Sections.

6.

A Course may have one or more (M) Prereq (A course may have one or more prerequisites).

A Prereq may be a prerequisite for one or more (M) Courses.

7.

A Student may have one or more (M) Dependents.

A Dependent must be related to one or more (N) Students.

8.

http://lib.ommolketab.ir

8.

Table A-2. Table definition of other tables that have been used in this
book

PLANTS
 COMPANY NVARCHAR(20)
 PLANTLO NVARCHAR(15)
 PRIMARY KEY(COMPANY, PLANTLO)

CAP
 NAME NVARCHAR(9)
 LANGU NVARCHAR(7)
 PRIMARY KEY(NAME, LANGU)

http://lib.ommolketab.ir

Appendix B. Script Used to Create the
Student_course Database
Here we present the actual script used to create the Student_Course database.

drop table student;
drop table grade_report;
drop table section;
drop table department_to_major;
drop table plants;
drop table prereq;
drop table course;
drop table cap;
drop table room;
drop table teststu;
create table Student
(STNO SMALLINT PRIMARY KEY NOT NULL,
 SNAME NVARCHAR(20) NULL,
 MAJOR NVARCHAR(4) NULL,
 CLASS SMALLINT NULL,
 BDATE SMALLDATETIME NULL)
;
create table Grade_report
(STUDENT_NUMBER SMALLINT NOT NULL,
 SECTION_ID SMALLINT NOT NULL,
 GRADE CHAR(1),
 CONSTRAINT stno_secid PRIMARY KEY (STUDENT_NUMBER, SECTION_ID))
;
create table Section
(SECTION_ID SMALLINT PRIMARY KEY NOT NULL,
 COURSE_NUM NVARCHAR(8),
 SEMESTER NVARCHAR(6),
 YEAR CHAR(2),
 INSTRUCTOR NVARCHAR(10),
 BLDG SMALLINT,
 ROOM SMALLINT)
;
create table Department_to_major
(Dcode NVARCHAR(4) PRIMARY KEY NOT NULL,
 DNAME NVARCHAR(20))
;
create table Plants
(COMPANY NVARCHAR(20),
 PLANTLO NVARCHAR(15))

http://lib.ommolketab.ir

;
create table Prereq
(COURSE_NUMBER NVARCHAR(8),
 PREREQ NVARCHAR(8),
 CONSTRAINT couno_pre PRIMARY KEY(COURSE_NUMBER, PREREQ))
;
create table Course
(COURSE_NAME NVARCHAR(20),
 COURSE_NUMBER NVARCHAR(8) PRIMARY KEY NOT NULL,
 CREDIT_HOURS SMALLINT,
 OFFERING_DEPT NVARCHAR(4))
;
create table Cap
(NAME NVARCHAR(9),
 LANGU NVARCHAR(7))
;
create table Room
 (BLDG SMALLINT NOT NULL,
 ROOM SMALLINT NOT NULL,
 CAPACITY SMALLINT,
 OHEAD NVARCHAR(1),
 CONSTRAINT bldg_room PRIMARY KEY(BLDG, ROOM))
;
create table Dependent
(PNO SMALLINT NOT NULL,
 DNAME NVARCHAR(20) NULL,
 RELATIONSHIP NVARCHAR(8) NULL,
 SEX CHAR(1) NULL,
 AGE SMALLINT NULL)
;
insert into cap values('BRENDA','FRENCH');
insert into cap values('BRENDA','CHINESE');
insert into cap values('RICHARD','CHINESE');
insert into cap values('RICHARD','GERMAN');
insert into cap values('MARY JO','FRENCH');
insert into cap values('RICHARD','FRENCH');
insert into cap values('LUJACK','GERMAN');
insert into cap values('LUJACK','CHINESE');
insert into cap values('MARY JO','GERMAN');
insert into cap values('MARY JO','CHINESE');
insert into cap values('MELANIE','FRENCH');
insert into cap values('LUJACK','FRENCH');
insert into cap values('MELANIE','CHINESE');
insert into cap values('BRENDA','SPANISH');
insert into cap values('RICHARD','SPANISH');
insert into cap values('JOE','CHINESE');
insert into cap values('LUJACK','SPANISH');
insert into cap values('KENT','CHINESE');
insert into course values('ACCOUNTING I','ACCT2020',3,'ACCT');
insert into course values('ACCOUNTING II ','ACCT2220',3,'ACCT');
insert into course values('MANAGERIAL FINANCE','ACCT3333',3,'ACCT');
insert into course values('ACCOUNTING INFO SYST','ACCT3464',3,'ACCT');

http://lib.ommolketab.ir

insert into course values('INTRO TO COMPUTER SC','COSC1310',4,'COSC');
insert into course values('TURBO PASCAL','COSC2025',3,'COSC');
insert into course values('ADVANCED COBOL','COSC2303',3,'COSC');
insert into course values('DATA STRUCTURES ','COSC3320',4,'COSC');
insert into course values('DATABASE','COSC3380',3,'COSC');
insert into course values('OPERATIONS RESEARCH ','COSC3701',3,'COSC');
insert into course values('ADVANCED ASSEMBLER','COSC4301',3,'COSC');
insert into course values('SYSTEM PROJECT','COSC4309',3,'COSC');
insert into course values('ADA - INTRODUCTION','COSC5234',4,'COSC');
insert into course values('NETWORKS','COSC5920',3,'COSC');
insert into course values('ENGLISH COMP I','ENGL1010',3,'ENGL');
insert into course values('ENGLISH COMP II ','ENGL1011',3,'ENGL');
insert into course values('WRITING FOR NON MAJO','ENGL3520',2,'ENGL');
insert into course values('ALGEBRA ','MATH2333',3,'MATH');
insert into course values('DISCRETE MATHEMATICS','MATH2410',3,'MATH');
insert into course values('CALCULUS 1','MATH1501',4,'MATH');
insert into course values('AMERICAN CONSTITUTIO','POLY1201',1,'POLY');
insert into course values('INTRO TO POLITICAL S','POLY2001',3,'POLY');
insert into course values('AMERICAN GOVERNMENT ','POLY2103',2,'POLY');
insert into course values('SOCIALISM AND COMMUN','POLY4103',4,'POLY');
insert into course values('POLITICS OF CUBA','POLY5501',4,'POLY');
insert into course values('TECHNICAL WRITING ','ENGL3402',2,'ENGL');
insert into course values('FUND. TECH. WRITING ','ENGL3401',3,'ENGL');
insert into course values('INTRO TO CHEMISTRY','CHEM2001',3,'CHEM');
insert into course values('ORGANIC CHEMISTRY ','CHEM3001',3,'CHEM');
insert into course values('CALCULUS 2','MATH1502',3,'MATH');
insert into course values('CALCULUS 3','MATH1503',3,'MATH');
insert into course values('MATH ANALYSIS','MATH5501',3,'MATH');
insert into department_to_major values('ACCT','Accounting');
insert into department_to_major values('ART','Art');
insert into department_to_major values('COSC','Computer Science');
insert into department_to_major values('ENGL','English');
insert into department_to_major values('MATH','Mathematics');
insert into department_to_major values('POLY','Political Science');
insert into department_to_major values('UNKN',null);
insert into department_to_major values('CHEM','Chemistry');
insert into grade_report values(2,85,'D');
insert into grade_report values(2,102,'B');
insert into grade_report values(2,126,'B');
insert into grade_report values(2,127,'A');
insert into grade_report values(2,145,'B');
insert into grade_report values(3,85,'A');
insert into grade_report values(3,87,'B');
insert into grade_report values(3,90,'B');
insert into grade_report values(3,91,'B');
insert into grade_report values(3,92,'B');
insert into grade_report values(3,96,'B');
insert into grade_report values(3,101,null);
insert into grade_report values(3,133,null);
insert into grade_report values(3,134,null);
insert into grade_report values(3,135,null);
insert into grade_report values(8,85,'A');

http://lib.ommolketab.ir

insert into grade_report values(8,92,'A');
insert into grade_report values(8,96,'C');
insert into grade_report values(8,102,'B');
insert into grade_report values(8,133,null);
insert into grade_report values(8,134,null);
insert into grade_report values(8,135,null);
insert into grade_report values(10,101,null);
insert into grade_report values(10,112,null);
insert into grade_report values(10,119,null);
insert into grade_report values(10,126,'C');
insert into grade_report values(10,127,'A');
insert into grade_report values(10,145,'C');
insert into grade_report values(13,85,'B');
insert into grade_report values(13,95,'B');
insert into grade_report values(13,99,null);
insert into grade_report values(13,109,null);
insert into grade_report values(13,119,null);
insert into grade_report values(13,133,null);
insert into grade_report values(13,134,null);
insert into grade_report values(13,135,null);
insert into grade_report values(14,102,'B');
insert into grade_report values(14,112,null);
insert into grade_report values(14,91,'A');
insert into grade_report values(14,135,null);
insert into grade_report values(14,145,'B');
insert into grade_report values(14,158,'B');
insert into grade_report values(15,85,'F');
insert into grade_report values(15,92,'B');
insert into grade_report values(15,99,null);
insert into grade_report values(15,102,'B');
insert into grade_report values(15,135,null);
insert into grade_report values(15,145,'B');
insert into grade_report values(15,158,'C');
insert into grade_report values(17,112,null);
insert into grade_report values(17,119,null);
insert into grade_report values(17,135,null);
insert into grade_report values(19,102,'B');
insert into grade_report values(19,119,null);
insert into grade_report values(19,133,null);
insert into grade_report values(19,158,'D');
insert into grade_report values(20,87,'A');
insert into grade_report values(20,94,'C');
insert into grade_report values(6,201,null);
insert into grade_report values(8,201,null);
insert into grade_report values(24,90,'B');
insert into grade_report values(34,90,'B');
insert into grade_report values(49,90,'C');
insert into grade_report values(62,90,'C');
insert into grade_report values(70,90,'C');
insert into grade_report values(121,90,'B');
insert into grade_report values(122,90,'B');
insert into grade_report values(123,90,'B');

http://lib.ommolketab.ir

insert into grade_report values(125,90,'C');
insert into grade_report values(126,90,'C');
insert into grade_report values(127,90,'C');
insert into grade_report values(128,90,'F');
insert into grade_report values(129,90,'A');
insert into grade_report values(130,90,'C');
insert into grade_report values(131,90,'C');
insert into grade_report values(132,90,'B');
insert into grade_report values(142,90,'A');
insert into grade_report values(143,90,'B');
insert into grade_report values(144,90,'B');
insert into grade_report values(145,90,'F');
insert into grade_report values(146,90,'B');
insert into grade_report values(147,90,'C');
insert into grade_report values(148,90,'C');
insert into grade_report values(31,90,'C');
insert into grade_report values(151,90,'C');
insert into grade_report values(153,90,'C');
insert into grade_report values(155,90,'B');
insert into grade_report values(157,90,'B');
insert into grade_report values(158,90,'C');
insert into grade_report values(163,90,'C');
insert into grade_report values(161,90,'C');
insert into grade_report values(160,90,'C');
insert into grade_report values(5,90,'C');
insert into grade_report values(7,90,'C');
insert into grade_report values(9,90,'F');
insert into grade_report values(62,94,'C');
insert into grade_report values(70,94,'C');
insert into grade_report values(49,94,'C');
insert into grade_report values(5,94,'C');
insert into grade_report values(6,94,'C');
insert into grade_report values(7,94,'C');
insert into grade_report values(8,94,'C');
insert into grade_report values(9,94,'F');
insert into grade_report values(5,95,'B');
insert into grade_report values(6,95,'B');
insert into grade_report values(7,95,'B');
insert into grade_report values(8,95,'B');
insert into grade_report values(9,95,'F');
insert into grade_report values(121,95,'B');
insert into grade_report values(122,95,'B');
insert into grade_report values(123,95,'B');
insert into grade_report values(125,95,'B');
insert into grade_report values(126,95,'B');
insert into grade_report values(127,95,'B');
insert into grade_report values(128,95,'F');
insert into grade_report values(129,95,'B');
insert into grade_report values(130,95,'C');
insert into grade_report values(121,94,'B');
insert into grade_report values(122,94,'B');
insert into grade_report values(123,94,'B');

http://lib.ommolketab.ir

insert into grade_report values(125,94,'C');
insert into grade_report values(126,94,'C');
insert into grade_report values(127,94,'C');
insert into grade_report values(128,94,'F');
insert into grade_report values(129,94,'A');
insert into grade_report values(130,94,'C');
insert into grade_report values(24,95,'B');
insert into grade_report values(24,96,'B');
insert into grade_report values(24,97,null);
insert into grade_report values(24,98,null);
insert into grade_report values(24,99,null);
insert into grade_report values(24,100,null);
insert into grade_report values(34,98,null);
insert into grade_report values(34,97,null);
insert into grade_report values(34,93,'A');
insert into grade_report values(49,98,null);
insert into grade_report values(49,97,null);
insert into grade_report values(49,93,'A');
insert into grade_report values(123,98,null);
insert into grade_report values(123,97,null);
insert into grade_report values(123,93,'A');
insert into grade_report values(125,98,null);
insert into grade_report values(125,97,null);
insert into grade_report values(125,93,'A');
insert into grade_report values(126,98,null);
insert into grade_report values(126,97,null);
insert into grade_report values(126,93,'A');
insert into grade_report values(127,98,null);
insert into grade_report values(127,97,null);
insert into grade_report values(127,93,'A');
insert into grade_report values(142,100,null);
insert into grade_report values(143,100,null);
insert into grade_report values(144,100,null);
insert into grade_report values(145,100,null);
insert into grade_report values(146,100,null);
insert into grade_report values(147,100,null);
insert into grade_report values(148,100,null);
insert into grade_report values(142,107,null);
insert into grade_report values(143,107,null);
insert into grade_report values(144,107,null);
insert into grade_report values(145,107,null);
insert into grade_report values(146,107,null);
insert into grade_report values(147,107,null);
insert into grade_report values(148,107,null);
insert into grade_report values(142,202,null);
insert into grade_report values(143,202,null);
insert into grade_report values(144,202,null);
insert into grade_report values(145,202,null);
insert into grade_report values(146,202,null);
insert into grade_report values(147,202,null);
insert into grade_report values(148,202,null);
insert into grade_report values(142,88,null);

http://lib.ommolketab.ir

insert into grade_report values(143,88,null);
insert into grade_report values(144,88,null);
insert into grade_report values(145,88,null);
insert into grade_report values(146,88,null);
insert into grade_report values(147,88,null);
insert into grade_report values(148,88,null);
insert into grade_report values(142,89,'A');
insert into grade_report values(143,89,'B');
insert into grade_report values(144,89,'B');
insert into grade_report values(145,89,'F');
insert into grade_report values(146,89,'B');
insert into grade_report values(147,89,'B');
insert into grade_report values(148,89,'B');
insert into grade_report values(151,97,null);
insert into grade_report values(153,97,null);
insert into grade_report values(155,97,null);
insert into grade_report values(157,97,null);
insert into grade_report values(158,97,null);
insert into grade_report values(160,97,null);
insert into grade_report values(161,97,null);
insert into grade_report values(163,97,null);
insert into grade_report values(151,109,null);
insert into grade_report values(153,109,null);
insert into grade_report values(155,109,null);
insert into grade_report values(157,109,null);
insert into grade_report values(158,109,null);
insert into grade_report values(160,109,null);
insert into grade_report values(161,109,null);
insert into grade_report values(163,109,null);
insert into grade_report values(151,201,null);
insert into grade_report values(153,201,null);
insert into grade_report values(155,201,null);
insert into grade_report values(157,201,null);
insert into grade_report values(158,201,null);
insert into grade_report values(160,201,null);
insert into grade_report values(161,201,null);
insert into grade_report values(163,201,null);
insert into plants values('GULP OIL','PITTSBURGH');
insert into plants values('GULP OIL','GULF BREEZE');
insert into plants values('GULP OIL','MOBILE');
insert into plants values('GULP OIL','SAN FRANCISCO');
insert into plants values('GULP OIL','HONOLULU');
insert into plants values('GULP OIL','BINGHAMTON');
insert into plants values('IBN COMPUTERS','PITTSBURGH');
insert into plants values('IBN COMPUTERS','GULF BREEZE');
insert into plants values('IBN COMPUTERS','MOBILE');
insert into plants values('IBN COMPUTERS','SAN FRANCISCO');
insert into plants values('IBN COMPUTERS','HONOLULU');
insert into plants values('IBN COMPUTERS','BINGHAMTON');
insert into plants values('BO$S TIRES','PITTSBURGH');
insert into plants values('BO$S TIRES','GULF BREEZE');
insert into plants values('BO$S TIRES','MOBILE');

http://lib.ommolketab.ir

insert into plants values('BO$S TIRES','SAN FRANCISCO');
insert into plants values('BO$S TIRES','HONOLULU');
insert into plants values('BO$S TIRES','BINGHAMTON');
insert into plants values('BANK D$AMERICER','PITTSBURGH');
insert into plants values('BANK D$AMERICER','GULF BREEZE');
insert into plants values('BANK D$AMERICER','MOBILE');
insert into plants values('BANK D$AMERICER','SAN FRANCISCO');
insert into plants values('BANK D$AMERICER','HONOLULU');
insert into plants values('BANK D$AMERICER','BINGHAMTON');
insert into plants values('COLONEL MOTORS','PITTSBURGH');
insert into plants values('COLONEL MOTORS','GULF BREEZE');
insert into plants values('COLONEL MOTORS','SAN FRANCISCO');
insert into plants values('COLONEL MOTORS','HONOLULU');
insert into plants values('COLONEL MOTORS','BINGHAMTON');
insert into plants values('COLONEL MOTORS','TUSCALOOSA');
insert into plants values('COKE COLA','PITTSBURGH');
insert into plants values('COKE COLA','GULF BREEZE');
insert into plants values('COKE COLA','MOBILE');
insert into plants values('COKE COLA','SAN FRANCISCO');
insert into plants values('COKE COLA','HONOLULU');
insert into plants values('COKE COLA','BINGHAMTON');
insert into plants values('COKE COLA','TUSCALOOSA');
insert into plants values('WENDIES','PITTSBURGH');
insert into plants values('WENDIES','GULF BREEZE');
insert into plants values('WENDIES','MOBILE');
insert into plants values('WENDIES','SAN FRANCISCO');
insert into plants values('WENDIES','HONOLULU');
insert into plants values('WENDIES','BINGHAMTON');
insert into plants values('WENDIES','TUSCALOOSA');
insert into plants values('CAPTAIN E$S','PITTSBURGH');
insert into plants values('CAPTAIN E$S','GULF BREEZE');
insert into plants values('CAPTAIN E$S','MOBILE');
insert into plants values('CAPTAIN E$S','SAN FRANCISCO');
insert into plants values('CAPTAIN E$S','HONOLULU');
insert into plants values('CAPTAIN E$S','BINGHAMTON');
insert into plants values('CAPTAIN E$S','TUSCALOOSA');
insert into plants values('RADAR SHACK','PITTSBURGH');
insert into plants values('RADAR SHACK','GULF BREEZE');
insert into plants values('RADAR SHACK','SAN FRANCISCO');
insert into plants values('RADAR SHACK','HONOLULU');
insert into plants values('RADAR SHACK','BINGHAMTON');
insert into plants values('RADAR SHACK','TUSCALOOSA');
insert into plants values('PHIL$S BAKE SHOP','PITTSBURGH');
insert into plants values('PHIL$S BAKE SHOP','GULF BREEZE');
insert into plants values('PHIL$S BAKE SHOP','SAN FRANCISCO');
insert into plants values('PHIL$S BAKE SHOP','HONOLULU');
insert into plants values('PHIL$S BAKE SHOP','BINGHAMTON');
insert into plants values('PHIL$S BAKE SHOP','TUSCALOOSA');
insert into plants values('WYATT$S TOMBSTONE','PITTSBURGH');
insert into plants values('WYATT$S TOMBSTONE','GULF BREEZE');
insert into plants values('WYATT$S TOMBSTONE','SAN FRANCISCO');
insert into plants values('WYATT$S TOMBSTONE','HONOLULU');

http://lib.ommolketab.ir

insert into plants values('WYATT$S TOMBSTONE','BINGHAMTON');
insert into plants values('WYATT$S TOMBSTONE','TUSCALOOSA');
insert into plants values('EAST PUBLISHING','PITTSBURGH');
insert into plants values('EAST PUBLISHING','GULF BREEZE');
insert into plants values('EAST PUBLISHING','SAN FRANCISCO');
insert into plants values('EAST PUBLISHING','HONOLULU');
insert into plants values('EAST PUBLISHING','BINGHAMTON');
insert into plants values('EAST PUBLISHING','TUSCALOOSA');
insert into plants values('UTAH BOB$S','PITTSBURGH');
insert into plants values('UTAH BOB$S','GULF BREEZE');
insert into plants values('UTAH BOB$S','SAN FRANCISCO');
insert into plants values('UTAH BOB$S','HONOLULU');
insert into plants values('UTAH BOB$S','BINGHAMTON');
update plants set company = replace(company,'$','''');
insert into prereq values('ACCT3333','ACCT2220');
insert into prereq values('COSC3320','COSC1310');
insert into prereq values('COSC3380','COSC3320');
insert into prereq values('COSC3380','MATH2410');
insert into prereq values('COSC5234','COSC3320');
insert into prereq values('ENGL1011','ENGL1010');
insert into prereq values('ENGL3401','ENGL1011');
insert into prereq values('ENGL3520','ENGL1011');
insert into prereq values('MATH5501','MATH2333');
insert into prereq values('POLY2103','POLY1201');
insert into prereq values('POLY5501','POLY4103');
insert into prereq values('CHEM3001','CHEM2001');
insert into room values(13,101,85,'Y');
insert into room values(36,123,35,'N');
insert into room values(58,114,60,null);
insert into room values(79,179,35,'Y');
insert into room values(79,174,22,'Y');
insert into room values(58,112,40,null);
insert into room values(36,122,25,'N');
insert into room values(36,121,25,'N');
insert into room values(36,120,25,'N');
insert into room values(58,110,null,'Y');
insert into section values(85,'MATH2410','FALL','98','KING',36,123);
insert into section values(86,'MATH5501','FALL','98','EMERSON',36,123);
insert into section values(87,'ENGL3401','FALL','98','HILLARY',13,101);
insert into section values(88,'ENGL3520','FALL','99','HILLARY',13,101);
insert into section values(89,'ENGL3520','SPRING','99','HILLARY',13,101);
insert into section values(90,'COSC3380','SPRING','99','HARDESTY',79,179);
insert into section values(91,'COSC3701','FALL','98',null,79,179);
insert into section values(92,'COSC1310','FALL','98','ANDERSON',79,179);
insert into section values(93,'COSC1310','SPRING','99','RAFAELT',79,179);
insert into section values(94,'ACCT3464','FALL','98','RODRIGUEZ',74,null);
insert into section values(95,'ACCT2220','SPRING','99','RODRIQUEZ',74,null);
insert into section values(96,'COSC2025','FALL','98','RAFAELT',79,179);
insert into section values(97,'ACCT3333','FALL','99','RODRIQUEZ',74,null);
insert into section values(98,'COSC3380','FALL','99','HARDESTY',79,179);
insert into section values(99,'ENGL3401','FALL','99','HILLARY',13,101);
insert into section values(102,'COSC3320','SPRING','99','KNUTH',79,179);

http://lib.ommolketab.ir

insert into section values(107,'MATH2333','SPRING','00','CHANG',36,123);
insert into section values(109,'MATH5501','FALL','99','CHANG',36,123);
insert into section values(112,'MATH2410','FALL','99','CHANG',36,123);
insert into section values(119,'COSC1310','FALL','99','ANDERSON',79,179);
insert into section values(126,'ENGL1010','FALL','98','HERMANO',13,101);
insert into section values(127,'ENGL1011','SPRING','99','HERMANO',13,101);
insert into section values(133,'ENGL1010','FALL','99','HERMANO',13,101);
insert into section values(134,'ENGL1011','SPRING','00','HERMANO',13,101);
insert into section values(135,'COSC3380','FALL','99','STONE',79,179);
insert into section values(145,'COSC1310','SPRING','99','JONES',79,179);
insert into section values(158,'MATH2410','SPRING','98',null,36,123);
insert into section values(201,'CHEM2001','FALL','99',null,58,114);
insert into section values(202,'CHEM3001','SPRING','00','CARNEAU',58,null);
insert into section values(100,'POLY1201','FALL','99','SCHMIDT',null,null);
insert into section values(101,'POLY2103','SPRING','00','SCHMIDT',null,null);
insert into section values(104,'POLY4103','SPRING','00','SCHMIDT',null,null);
insert into student values(2,'Lineas','ENGL','1','15-APR-80');
insert into student values(3,'Mary','COSC','4','16-JUL-78');
insert into student values(8,'Brenda','COSC','2','13-AUG-77');
insert into student values(10,'Richard','ENGL','1','13-MAY-80');
insert into student values(13,'Kelly','MATH','4','12-AUG-80');
insert into student values(14,'Lujack','COSC','1','12-FEB-77');
insert into student values(15,'Reva','MATH','2','10-JUN-80');
insert into student values(17,'Elainie','COSC','1','12-AUG-76');
insert into student values(19,'Harley','POLY','2','16-APR-81');
insert into student values(20,'Donald','ACCT','4','15-OCT-77');
insert into student values(24,'Chris','ACCT','4','12-FEB-78');
insert into student values(34,'Lynette','POLY','1','16-JUL-81');
insert into student values(49,'Susan','ENGL','3','11-MAR-80');
insert into student values(62,'Monica','MATH','3','14-OCT-80');
insert into student values(70,'Bill','POLY',null,'14-OCT-80');
insert into student values(121,'Hillary','COSC','1','16-JUL-77');
insert into student values(122,'Phoebe','ENGL','3','15-APR-80');
insert into student values(123,'Holly','POLY','4','15-JAN-81');
insert into student values(125,'Sadie','MATH','2','12-AUG-80');
insert into student values(126,'Jessica','POLY','2','16-JUL-81');
insert into student values(127,'Steve','ENGL','1','11-MAR-80');
insert into student values(128,'Brad','COSC','1','10-SEP-77');
insert into student values(129,'Cedric','ENGL','2','15-APR-80');
insert into student values(130,'Alan','COSC','2','16-JUL-77');
insert into student values(131,'Rachel','ENGL','3','15-APR-80');
insert into student values(132,'George','POLY','1','16-APR-81');
insert into student values(142,'Jerry','COSC','4','12-MAR-78');
insert into student values(143,'Cramer','ENGL','3','15-APR-80');
insert into student values(144,'Fraiser','POLY','1','16-JUL-81');
insert into student values(145,'Harrison','ACCT','4','12-FEB-77');
insert into student values(146,'Francis','ACCT','4','11-JUN-77');
insert into student values(147,'Smithly','ENGL','2','13-MAY-80');
insert into student values(148,'Sebastian','ACCT','2','14-OCT-76');
insert into student values(31,'Jake','COSC','4','12-FEB-78');
insert into student values(151,'Losmith','CHEM','3','15-JAN-81');
insert into student values(153,'Genevieve','UNKN',null,'15-OCT-79');

http://lib.ommolketab.ir

insert into student values(155,'Lindsay','UNKN','1','15-OCT-79');
insert into student values(157,'Stephanie','MATH',null,'16-APR-81');
insert into student values(158,'Thornton',null,null,'15-OCT-79');
insert into student values(163,'Lionel',null,null,'15-OCT-79');
insert into student values(161,'Benny','CHEM','4','10-JUN-80');
insert into student values(160,'Gus','ART ','3','15-OCT-78');
insert into student values(5,'Zelda','COSC',null,'12-FEB-78');
insert into student values(7,'Mario','MATH',null,'12-AUG-80');
insert into student values(9,'Romona','ENGL',null,'15-APR-80');
insert into student values(6,'Ken','POLY',null,'15-JUL-80');
insert into student values(88,'Smith',null,null,'15-OCT-79');
insert into student values(191,'Jake','MATH','2','10-JUN-80');
insert into dependent values(2,'Matt','Son','M',8);
insert into dependent values(2,'Mary','Daughter','F',9);
insert into dependent values(2,'Beena','Spouse','F',31);
insert into dependent values(10,'Amit','Son','M',3);
insert into dependent values(10,'Shantu','Daughter','F',5);
insert into dependent values(14,'Raju','Son','M',1);
insert into dependent values(14,'Rani',' ','F',3);
insert into dependent values(17,'Susan','Daughter','F',4);
insert into dependent values(17,'Sam','Son','M',1);
insert into dependent values(20,'Donald II','Son','M',Null);
insert into dependent values(20,'Chris','Son','M',6);
insert into dependent values(34,'Susan','Daughter','F',5);
insert into dependent values(34,'Monica','Daughter','F',1);
insert into dependent values(62,'Tom','Husband','M',45);
insert into dependent values(62,'James','Son','M',14);
insert into dependent values(62,'Hillary','Daughter','F',16);
insert into dependent values(62,'Phoebe','Daughter','F',12);
insert into dependent values(123,'James','Son','M',5);
insert into dependent values(123,'Jon','Son','M',2);
insert into dependent values(126,'Om','Son','M',6);
insert into dependent values(126,'Prakash','Son','M',1);
insert into dependent values(128,'Mithu','Son','M',1);
insert into dependent values(128,'Mita','Daughter','F',Null);
insert into dependent values(128,'Nita','Daughter','F',2);
insert into dependent values(128,'Barbara','Wife','F',26);
insert into dependent values(132,'Rekha','Daughter','F',6);
insert into dependent values(142,'Rakhi','Daughter','F',2);
insert into dependent values(143,'Mona','Daughter','F',7);
insert into dependent values(144,'Susan','Wife','F',22);
insert into dependent values(145,'Susie','Wife','F',22);
insert into dependent values(146,'Xi du','Wife','F',22);
insert into dependent values(147,'Barbara','Wife','F',23);
insert into dependent values(147,'Sebastian','Son','M',4);
insert into dependent values(147,'Jake','Son','M',2);
insert into dependent values(147,'Losmith','Son','M',Null);
insert into dependent values(153,'Madhu','Daughter','F',5);
insert into dependent values(153,'Mamta','Daughter','F',4);
insert into dependent values(153,'Mahesh','Son','M',2);
insert into dependent values(158,'Sally','wife', 'F',22);

http://lib.ommolketab.ir

select top 6 sname, major, class into teststu from student;

http://lib.ommolketab.ir

Glossary of Terms
Aggregate Function

A function that returns a result based on values of some attributes in multiple rows.

Alias

A temporary intra-query substitute for a table name or column name.

Alphanumeric

A data type that will accept a combination of characters as well as numbers.

Anomaly

An undesirable consequence of a data modification.

Attribute

Column in a table.

Binary Intersection

An operation on two sets that generates unique values in common between two sets.

Binary Set Difference

An operation on two sets that generates values in one set less those contained in another.

Binary Union

An operation on two sets that generates all unique elements of both sets.

http://lib.ommolketab.ir

Byte

A storage unit consisting of 8 bits.

Candidate Key

A column (attribute, or group of columns) that identifies a unique row in a table. One of the
candidate keys is chosen to be the primary key.

Cartesian Product

A binary operation resulting in the combination of all rows of one table with all rows of another
table.

CHAR(size)

Data type that stores fixed-length character data, size characters long.

Columns

Vertical slices of a table. Columns are defined to be one data type.

Column Alias

A temporary column name within a query.

Comments

Nonexecutable words included in SQL queries for documentation.

Constant

An unvarying value used in a query.

Constraint

http://lib.ommolketab.ir

A restriction placed on a value in a database used to increase data integrity.

Correlated Subquery

A subquery in which the information in the subquery is referenced by the outer, main query. A
correlated subquery cannot stand alone; it depends on the outer query.

Data

Recorded facts pertaining to entities.

Database

A collection of logically associated or related data.

Database Administrator (DBA)

See DBA.

DBA (Database Administrator)

A person who has all system privileges and the ability to grant all privileges to other users. The
DBA creates and drops users and space in a database.

DDL (Data Definition Language)

A language used to define the internal schema and conceptual schema in a database.

DML (Data Manipulation Language)

A language used to manipulate data (INSERT, UPDATE, and DELETE).

Default

A value assigned to data when no value is supplied.

http://lib.ommolketab.ir

Domain

The set of all possible values that a column value can have.

Entity

An object about which data is recorded

Entity Relationship (ER) Diagram

A visual tool to describe how data in a database is arranged.

Equi-Join

A join condition with equality comparisons only.

Execute

Run a query to get an output of the task requested.

Field

An attribute or column in a table. A field is defined to be of one data type.

Float

A data type that accepts numbers with decimals.

Foreign Key

An attribute that is a primary key of another table. Relationships are implemented with the use
of foreign keys in relational databases.

Full Outer Join

Used to designate the union of the left and right outer joins.

http://lib.ommolketab.ir

Functionally Dependent

A relationship between two attributes in a relation. Attribute Y is functionally dependent on
attribute X if attribute X identifies attribute Y.

Global Temporary Table

Temporary tables that can be accessed by anyone signed on while the table exists.

Group Function

A function that returns a result based on multiple rows. Also known as an aggregate function.

Index

An internal table created to speed up queries and searches in database.

Inline View

A view that exists only during the execution of a query.

Inner Query

A subquery.

Integer

A data type that accepts only whole numbers and no decimals.

Join

An operation used to combine related rows from two tables into one table based on a logical
comparison of column values.

Key

A column value that uniquely identifies a row in a table.

http://lib.ommolketab.ir

Large Object Data Type (LOB)

LOBs are data types that can store large amounts (up to four gigabytes) of raw data, binary
data (such as images) or character text data.

Local Temporary Tables

Temporary tables that are local to the session in which they are created.

Noncorrelated Subquery

A subquery that is independent of the outer query.

Non-Equi Join

Joins that do not test for equality.

Null

A value given to a data item when the result is unknown.

Outer Join

A join condition where all the rows from one table (for example, the left table) are kept in the
result set even though those rows do not have matching rows in the other table (the right
table).

Outer Query

The part of the query that will return the result set. Outer queries are usually designated when
a query has one or more subqueries (inner queries).

Primary Key

A candidate key selected to be the key of a table. The primary key will uniquely identify a row
in a table.

http://lib.ommolketab.ir

Qualifier

A prefix used to identify a column of a particular table. For example, in "Student.sname,"
Student is the table qualifier.

Query

A SQL instruction used to retrieve data from one or more tables or views. Queries begin with
the SQL keyword SELECT.

Record

A named collection of data items. In a relational model, a record is a physical realization of a
row.

Referential Integrity

The property that guarantees that values from one column that depend on values from another
column are present in the "other column."

Relation

A two-dimensional table containing single-value entries and no duplicate rows. The data type of
the columns is the same in every row. The order of the rows is immaterial as the table is
considered a set of rows. Often a relation is defined as a populated table. See also Table.

Relational Database

A database consisting of relations (tables).

Relationship

An association between two tables.

Result Set

Output of a SQL statement.

http://lib.ommolketab.ir

Row

A horizontal slice of a table. A row is also known as a "tuple" and at times is called a "record";
however, a "record" usually refers to a physical representation of data and a row refers to a
logical representation.

Row Filter

A criterion that is used to select rows based on certain criteria.

Row Function

A function that is performed on a single row of a table.

Schema

A design of the database typically using an entity relationship diagram.

Script

A sequence of SQL statements.

Self Join

A join condition where a table is joined with itself.

Set

A data structure that represents a collection of rows with no order and no duplicate rows.

Set Compatibility

For two sets (or tables) to be set compatible, both sets must match in number of items and
must have compatible data types. Set compatibility is also referred to as union compatibility.

SQL (Structured Query Language)

A language for defining the structure and processing of a relational database.

http://lib.ommolketab.ir

SQL Statements

Used to issue commands to a database.

String

A mixture of letters, numbers, spaces, and other symbols where one byte is assigned to a
symbol.

String Function

A row function used to manipulate string data.

Subquery

The inner query within the outer (main) query; usually one SELECT query within another
SELECT query.

Subset

Some group of objects taken from a set.

Synonym

External names of objects in the data that are intended to allow the object to be addressed in
more than one way.

Table

Consists of rows of information, each of which contains the same kind of values (columns). It is
also referred to as a relation in the relational model.

Table Alias

A temporary name given to a table within a query.

http://lib.ommolketab.ir

Table Qualifiers

A query mechanism used to define where a column comes from. Qualifiers are often needed
when more than one table is being used in a query.

Temporary Table

A table in which the result of a SELECT is temporarily saved and then used in other SELECT
statements - see Global Temporary Tables and Local Temporary Tables.

Tuple

A row in a table.

Union Compatibility

When working with sets (tables), for two sets to have union compatibility, both sets must
match in number of items and must have compatible data types.

View

A query that is stored in the data dictionary and is rerun when called for. A view appears to a
user to be a table.

XML

A universal language used to generically identify data that will be shared.

http://lib.ommolketab.ir

Important Commands and Functions
ABS

Row-level function that returns an absolute value.

ALTER COLUMN

Command used to change a column's size or type in a table.

ALTER TABLE

Command used to modify a table's definition.

AND

Logical operator that, when used in a WHEREclause, means that both criteria have to be met for
a row to be included in the result set.

ASC

Function used in ORDER BY to put a SQL result set in ascending order.

AVG

Aggregate function used to average a group of row values.

BETWEEN

An operator used to determine whether a value occurs within a given range of values
(inclusive); used with a WHERE clause.

BIGINT

http://lib.ommolketab.ir

Integer data type that can store numbers from -263 to 263 - 1.

BINARY

Data type used to store strings of bits.

BIT

Data type that consumes only a single bit of storage.

CAST

Conversion function used to change a data type of a column within a query.

CEILING

Row-level function that returns the next larger integer.

CHAR(size)

Character data type used when the column length is known and unvarying.

CHARACTER

Data type used to store any combination of letters, numbers, and symbols.

CHARINDEX

String function that returns the starting position of a specified pattern.

CHECK

Integrity constraint used to create bounds for a column value.

CONSTRAINTS

http://lib.ommolketab.ir

Restrictions that can be placed on values when creating database objects such as tables and
views.

CONVERT

Conversion function used to explicitly convert to a given data type within in a query.

COUNT(*)

Function used to count the total number of rows in a result set.

COUNT(attribute)

Group function that counts the number of rows where attribute is not NULL.

CREATE INDEX

Command used to create an index.

CREATE DATABASE

Command used to create a database.

CREATE SYNONYM

Command used to create a synonym.

CREATE TABLE

Command used to create a table.

CREATE VIEW

Command used to create a view.

CROSS JOIN

http://lib.ommolketab.ir

A query option used to generate a Cartesian product.

DATE

Oracle equivalent of DATETIME .

DATEADD

Date function that adds to a specified part of a date.

DATEDIFF

Date function that returns the difference between two dates.

DATEFORMAT

Date function that controls how SQL Server interprets date constants that are entered for
dates.

DATEPART

Date function that returns the specified part of the date requested.

DATETIME

Data type that can be used for dates.

DAY

Date function that extracts a day from a date.

DEC

Data type; synonym for DECIMAL data type.

DECIMAL

http://lib.ommolketab.ir

Numeric data type whose storage type varies based on a specified precision.

DECLARE

Command used to create variables on the fly within a script.

DELETE FROM

Command that deletes rows in a table that may satisfy a given condition.

DESC

Function used in ORDER BY to put a SQL result set into descending order.

DISTINCT

Result set function that omits rows that contain duplicate data.

DROP COLUMN

Command used to delete a column in a table.

DROP CONSTRAINT

Command used to delete a named constraint.

DROP INDEX

Command used to delete an index.

DROP SYNONYM

Command used to delete a synonym.

DROP TABLE

http://lib.ommolketab.ir

Command used to delete a table.

DROP VIEW

Command used to delete a view.

EXISTS

A keyword in a SQL statement that returns true in a WHERE clause if the subquery following it
returns at least one row.

FLOAT

Decimal data type that has a precision of 15 digits.

FLOOR

Row-level function which returns the next lower integer value when a number contains decimal
places.

GEtdATE

Date function that returns the current system date and time.

GROUP BY

Produces one summary row for the aggregate value of all values for a given column.

GUID

Global unique identifier; UNIQUEIDENTIFIER data type guarantees worldwide uniqueness, even
among unconnected computers.

HAVING

Part of a SQL statement that is used to determine which groups of a GROUP BY will be included
in the result set.

http://lib.ommolketab.ir

IMAGE

Large object binary data type; used to store pictures.

IN

Logical operator for a WHERE clause that tests for inclusion in a named set.

INT

Integer data type that can store numbers from -231 to 231 - 1.

INDEX BY

Command used to create an index on a table by a certain column value.

INNER JOIN

Command used to combine two tables in an equi-join operation.

INSERT INTO.. SELECT

A way to insert many rows into a new table at one time.

INSERT INTO..VALUES

A way to insert values into a table one row at a time.

INSERT

Command that allows for the addition of new rows to a table.

INTEGER

Numeric data type that has no digits after the decimal point.

http://lib.ommolketab.ir

INTERSECT

Set operation that combines two queries such that it returns all rows that are the same in both
result sets.

IS NOT NULL

Function that tests for the NOT NULL condition.

ISNULL

Function that returns a true value if a data item contains a null.

JOIN

Command used to join two tables; synonymous with INNER JOIN.

LEFT

String function that returns the left portion of a string up to a given number of characters.

LEFT JOIN

Same as LEFT OUTER JOIN .

LEFT OUTER JOIN

A join where all the rows from the first (left) table are kept in the result set, regardless of
whether they have matching rows in the second (right) table.

LEN

String function that returns the length of a string.

LIKE

http://lib.ommolketab.ir

A WHERE clause option that matches a particular pattern.

LONG

Oracle equivalent of TEXT data type.

LOWER

String function used to convert a string to lowercase.

LTRIM

String function that removes blanks or other named character from the beginning of a string.

MAX

Aggregate function that returns the highest of all values from a column in a set of rows.

MIN

Aggregate function that returns the lowest of all values from a column in a set of rows.

MINUS

Set operation that returns only those rows from the result of the first query that are not in the
result of the second query; not available in SQL Server.

MONEY

Data type used with currency data.

MONTH

Date function that extracts the month from a date.

NATIONAL CHARACTER

http://lib.ommolketab.ir

A data type; synonym for NCHAR data type.

NCHAR

Fixed-length Unicode character data type.

NOT

Operator that reverses the effect of any logical operator such as IN, LIKE, and EXISTS.

NOT BETWEEN

Operator that allows you to determine whether a value does not occur within a given range of
values.

NOT EXISTS

Operator that returns true in a WHERE clause if the subquery following it returns no rows.

NOT NULL

Operator that returns true if an attribute has a non-null value.

NOT NULL Constraint

Integrity constraint that denies the creation of a row when an attribute has a null value.

NULL

Value that is unknown.

NULLIF

Function that returns a NULL if a certain condition is met in an expression.

NUMERIC

http://lib.ommolketab.ir

Synonym for DECIMAL data type.

NVARCHAR

Variable-length Unicode character data type.

OR

Binary logical operator that returns a true value if either one of the expressions is true.

ORDER BY

Clause that sorts the results of a query before they are displayed.

OUTER JOIN

Join where rows from a table are kept in the result set although there is no matching row in the
other table used in the join.

PERCENT

Function that is used to return a certain percentage of records that fall at the top of a range
specified.

PRIMARY KEY

Constraint used to create a primary key in a table; used in CREATE TABLE and ALTER TABLE
commands.

REAL

Decimal data type that has a precision of seven digits.

REFERENCES

Constraint part that defines the table name and key used to reference another table.

http://lib.ommolketab.ir

RIGHT

String function that returns the right portion of a string.

RIGHT JOIN

Same as RIGHT OUTER JOIN .

RIGHT OUTER JOIN

Join where all the rows from the second (right) relation are kept whether matched or not in a
join operation.

ROUND

Function used to round numbers to a specified number of decimal places.

ROWCOUNT(n)

Function that returns the first n rows.

RTRIM

String function that removes blanks from the right end of a string.

SELECT

Command that allows you to retrieve rows from tables (or views) in a database.

SET

Command used to assign values to variables.

SET DATEFORMAT

Date function used to change the format in which SQL Server reads in dates.

http://lib.ommolketab.ir

SMALLDATETIME

Data type used to store dates.

SMALLINT

Integer data type that can store numbers between -215 to 215 - 1.

SMALLMONEY

Data type that can be used with currency data.

SQUARE

Row-level function that returns the square of a number.

SQL_VARIANT

Data type used to store values of any data type except TEXT or IMAGE.

SQRT

Row-level function that returns the square root of positive numeric values.

STR

Conversion function that always converts from a number to a character data type.

SUBSTRING

String function that returns part of a string.

SUM

Group function that adds up all the values for a column value in a set of rows.

http://lib.ommolketab.ir

TABLE

A two-dimensional (row by column) arrangement of data.

TEXT

Character large object data type.

TINYINT

Integer data type that can store numbers between 0 and 255.

TOP

Function that returns a specified number of records from the top of a result set.

UNION

Set operation that combines two queries such that it returns all distinct rows for the result sets
of both queries. The two queries must have union-compatible result sets.

UNION ALL

Set operation that combines two queries and returns all rows from both the SELECT statements
(queries). A UNION ALL also includes duplicate rows. The two queries must have union-
compatible result sets.

UNIQUE

Integrity constraint that disallows duplicate entries for an attribute even though the column is
not a primary key.

UNIQUEIDENTIFIER

Data type that guarantees uniqueness of the identifier, even among unconnected computers.

http://lib.ommolketab.ir

UPDATE

Command that changes values in specified columns in specified tables .

UPPER

String function used to display all output in uppercase.

USE

Command used to open a database.

UUID

Universal unique identifier; the UNIQUEIDENTIFIER data type that guarantees uniqueness, even
among unconnected computers.

VARBINARY

Data type used to store variable-length binary data.

VARCHAR

Character data type used when the field length is varying.

VARCHAR2

Oracle equivalent of VARCHAR.

WHERE

Row filter part of a SQL statement that allows you to specify criteria on column values for rows
that are being selected from a table.

WITH TIES

Clause used with the TOP function to retrieve rows that are ties.

http://lib.ommolketab.ir

XML

A new SQL Server data type used to model complex data.

YEAR

Date function that extracts the year from a date.

http://lib.ommolketab.ir

About the Author

Dr. Sikha Bagui is an Assistant Professor in the Department of Computer Science at the University
of West Florida in Pensacola. She teaches a variety of computer science courses and database
courses, and her research areas are database design, data mining, pattern recognition, and statistical
computing. Dr. Bagui has published many journal articles and co-authored several books with Dr.
Earp. Books co-authored with Dr. Earp are Learning SQL: A Step-by-Step Guide using Oracle and
Learning SQL: A Step-by-Step Guide using Access, both published by Addison Wesley; Database
Design Using ER Diagrams, published by CRC Press, and Advanced SQL Functions in Oracle 10g,
published by Wordware Publishing.

Dr. Richard Walsh Earp is the former Chair of and a former Associate Professor in the Department
of Computer Science at the University of West Florida in Pensacola, Florida. He also served at Dean of
the College of Science and Technology at that institution. He has taught a variety of computer science
courses, including database systems and advanced database systems. Dr. Earp has authored and co-
authored several papers and has co-authored several books with Dr. Bagui. Dr. Earp was also an
instructor with Learning Tree International for several years and worked for Computer Sciences
Corporation at the Naval Air Station in Pensacola, Florida as a database consultant after his
retirement from academia.

http://lib.ommolketab.ir

Colophon

The animal on the cover of Learning SQL on SQL Server 2005 is a Spanish ribbed newt (Pleurodeles
waltl). This salamander inhabits the ponds, lakes, and calm brooks of the Iberian Peninsula and
Morocco. The ribbed newt is an amphibian, but is rarely found on land; if its watery habitat dries out,
the newt burrows into mud and waits for rain.

The ribbed newt gets its name from the pointed ribs that can often be seen poking through its skin.
This feature protects the newts from some enemiestheir obviously sharp bones discourage predators
in search of tender prey. When attacked, the newt can force the ribs through its own skin, presenting
a pointed defense. The ribs also resemble warts, common in more poisonous newt species. Although
the ribbed newt is not as toxic as others, their similarities give predators pause.

The ribbed newt is an able swimmer and voracious predator. It consumes most attainable moving
prey, including aquatic insects, other invertebrates or amphibians, and small fish.

The cover image is from the Dover Pictoral Archive. The cover font is Adobe ITC Garamond. The text
font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's
TheSans Mono Condensed.

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

ABS function

aggregate functions

 AVG

 COUNT

 GROUP BY clause and

 ORDER BY CLAUS and

 HAVING clause and

 MAX 2nd

 MIN 2nd

 SUM

aggregates

 nesting

 nulls and

aliases

 column aliases 2nd

 table aliases

 as table qualifiers

ALTER COLUMN command

ALTER TABLE command 2nd 3rd

AND operator

 WHERE clause, SELECT statement

ANSI JOIN SQL syntax

ASC function

auditing subqueries

AVG function 2nd

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

BETWEEN operator

 WHERE clause, SELECT statement 2nd

BIGINT data type

BINARY data type 2nd

binary intersection

binary set difference

binary unions

BIT data type 2nd

BNF (Backus Naur Form)

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Cartesian product

 CROSS JOIN and

CAST conversion function

CAST function

CEILING function

CHAR data type 2nd

CHARACTER data type

character data types

 CHAR data type

 NCHAR data type

 NVARCHAR data type

 selecting

 TEXT data type

 Unicode character strings

 VARCHAR data type

CHARINDEX function 2nd

CHECK constraint

CHECK integrity constraint

color coding, query editor

column aliases

columns

 joins

 table definitions

 UNION ALL operation

 UNION set operation

columns, tables

 adding, ALTER TABLE command

 aliases

 arithmetic operations

 data types, ALTER TABLE command

 deleting, ALTER TABLE command

commands

 ALTER COLUMN

 ALTER TABLE 2nd 3rd

 CREATE DATABASE

 CREATE INDEX

 CREATE SYNONYM

 CREATE TABLE 2nd

 CREATE VIEW

 DECLARE

 DELETE 2nd

http://lib.ommolketab.ir

 DELETE FROM

 DROP COLUMN

 DROP CONSTRAINT

 DROP INDEX

 DROP SYNONYM

 DROP TABLE

 DROP VIEW

 INDEX BY

 INNER JOIN

 INSERT

 INSERT INTO...SELECT

 INSERT...INTO

 JOIN

 SELECT

 SET

 UPDATE 2nd

 USE

comments, statements

concatenation, string functions

constants, UNION operation

constraints

 CHECK

 deleting

 NOT NULL

 PRIMARY KEY 2nd

 referential integrity

 UNIQUE

conversion functions

 CAST 2nd

 CONVERT

 STR

CONVERT function 2nd

correlated queries

correlated subqueries 2nd

 EXISTS predicate

 IN predicate

 NOT EXISTS predicate

COUNT function 2nd 3rd

 IS NOT NULL condition

 IS NULL condition

CREATE DATABASE command

CREATE INDEX command

CREATE INDEX statement

CREATE SYNONYM command

CREATE TABLE command 2nd

CREATE TABLE statement

CREATE VIEW command

CROSS JOIN

CROSS JOIN query option

http://lib.ommolketab.ir

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

data in views

data type precedence, parentheses

data types

 BIGINT

 BINARY

 BIT

 CHAR

 CHARACTER

 character data types

 CHAR data type

 NCHAR data type

 NVARCHAR data type

 selecting

 TEXT data type

 Unicode character strings

 VARCHAR data type

 date and time data types

 DATETIME

 DEC

 DECIMAL

 FLOAT

 IMAGE

 INT

 INTEGER

 LONG

 miscellaneous data types

 BINARY data type

 BIT data type

 IMAGE data type

 monetary data types

 SQL_VARIANT data type

 TABLE data type

 UNIQUEIDENTIFIER data type

 XML data type

 MONEY

 NATIONAL CHARACTER

 NCHAR

 number data types

 NUMERIC

 numeric, integers

 NVARCHAR

http://lib.ommolketab.ir

 selection tips

 SMALLDATETIME

 SMALLINT

 SMALLMONEY

 SQL VARIANT

 TEXT

 TINYINT

 UNIQUE IDENTIFIER

 VARBINARY

 VARCHAR

 VARCHAR2

 XML

databases

 creating

 deleting

 master

 model

 msdb

 system, default

 tempdb

date and time data types

date functions

 DATE TIME data type

 DATEADD

 DATEDIFF

 DATEPART

 DAY

 formats

 GETDATE

 MONTH 2nd

 YEAR

DATE TIME data type

DATEADD function 2nd

DATEDIFF function 2nd

DATEFORMAT function

DATEPART function 2nd

DATETIME data type

DAY function 2nd

DEC data type

DECIMAL data type

decimal data types

DECLARE command

DELETE command 2nd

DELETE FROM command

deleting

 constraints

 databases

 indexes

 tables, DELETE command

derived structures

 query development and

 tables, temporary

http://lib.ommolketab.ir

 views

 column alises

 creating views

 data in

 ORDER BY claus

 SELECT INTO statement

 using views

DESC function

Designer tab

difference operation, NOT IN predicate

displaying data, SELECT statement

DISTINCT function 2nd 3rd

DROP COLUMN command

DROP CONSTRAINT command

DROP INDEX command

DROP INDEX statement

DROP SYNONYM command

DROP TABLE command

DROP VIEW command

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

entering queries

entering statements

Environment tab

equi-joins

 non-equi joins

ER diagram

error messages, viewing

executing queries

 stopping execution

existential qualifiers

EXISTS keyword

EXISTS predicate, correlated subqueries

expressions

 parentheses in

 data type precedence and

 operator precedence and

extraction, string functions

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

FLOAT data type

FLOOR function

foreign keys

 referential integrity constraints

formats

FROM, SELECT statement

FULL OUTER JOIN

functions

 ABS

 aggregate functions

 AVG 2nd

 COUNT 2nd 3rd

 MAX

 MIN

 SUM 2nd

 ASC

 CEILING

 conversion

 CAST

 CONVERT 2nd

 STR

 date functions

 DATEADD 2nd

 DATEDIFF 2nd

 DATEPART 2nd

 DAY 2nd

 GETDATE 2nd

 MONTH

 YEAR 2nd

 DATEFORMAT

 DESC

 FLOOR

 LIKE

 numeric

 row-level functions

 arithmetic operations on columns

 DISTINCT 2nd

 IS NOT NULL

 IS NULL

 ISNULL

 NULLIF 2nd

http://lib.ommolketab.ir

 ROUND 2nd

 TOP 2nd 3rd

 ROWCOUNT 2nd

 SET DATEFORMAT

 SORT

 SQUARE

 STR

 string functions

 CHARINDEX 2nd

 concatenation

 extraction

 LEFT 2nd

 LEN

 LOWER

 LTRIM

 RIGHT 2nd

 RTRIM 2nd

 SUBSTRING 2nd

 UPPER 2nd

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

GETDATE function 2nd

grid form, query results

GROUP BY clause

 aggregate functions and

 ORDER BY clause and

 DISTINCT function

grouping, aggregates and

GUID

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

HAVING clause 2nd

 aggregates and

 WHERE clause and

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

IMAGE data type 2nd

IN operator

IN predicate

 correlated subqueries

 joins, examples

 set operations

 subqueries and

INDEX BY command

indexes

 deleting

INNER JOIN command 2nd

inner joins

INSERT command

INSERT INTO SELECT command

INSERT INTO...SELECT command

INSERT...INTO command

INT data type

INTEGER data type

integer data types

integrity constraints

 CHECK

 UNIQUE

INTERSECT operator, set operations 2nd

IS NOT NULL condition, COUNT function

IS NOT NULL function

IS NULL condition, COUNT function

ISNULL function 2nd

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

JOIN

 associative property

 CROSS JOIN

 nested

 OUTER JOIN

 FULL OUTER JOIN

 LEFT OUTER JOIN

 RIGHT OUTER JOIN

 syntax

 UNION and

 WHERE clause and

joins

 columns

 equi-joins

 IN predicate and, examples

 INNER JOIN

 inner joins

 nested

 non-equi-joins

 ORDER BY clause and

 outer joins

 full outer join

 left outer join

 right outer join

 self-joins

 Student_course database

 subqueries as

 tables, multiple

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

LEFT function 2nd

LEFT JOIN

LEFT OUTER JOIN 2nd

LEN string function 2nd

LIKE clause

LIKE function

Load script, table creation

LONG data type

LOWER function

LOWER string function

LTRIM function

LTRIM string function

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

master database

MAX aggregate function

MAX function

MIN aggregate function

MIN aggregation function

MINUS set operation

miscellaneous data types

 BINARY data type

 BIT data type

 IMAGE data type

 monetary data types

 SQL_VARIANT data type

 TABLE data type

 UNIQUEIDENTIFIER data type

 XML data type

model database

monetary data types

MONEY data type

MONTH date function

MONTH function

msdb database

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

NATIONAL CHARACTER data type

NCHAR data type 2nd

nested joins

New Database dialog box

non-equi-joins

noncorrelated subqueries

NOT BETWEEN operator

NOT EXISTS operator

NOT EXISTS predicate, correlated subqueries

NOT IN predicate, set operations 2nd

NOT NULL constraint

NOT NULL operator

NOT operator

NULLIF function 2nd

NULLL value

nulls, aggregates and

number data types, decimal data types

NUMERIC data type

numeric data types, integers

numeric functions

NVARCHAR data type 2nd

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

ON DELETE CASCADE option, referential integrity constraint

ON DELETE NO ACTION option, referential integrity constraint

ON UPDATE NO ACTION option, referential integrity constraint

ON UPDATE option, referential integrity constraint

operators

 AND

 BETWEEN

 IN

 NOT

 NOT BETWEEN

 NOT EXISTS

 NOT NULL

 OR

 precedence, parentheses and

 subqueries and

OR operator

 WHERE clause, SELECT statement

ORDER BY clause

 aggregate functions

 joins and

 views

ORDER BY clause, SELECT statement

 ascending/descending order

 NULL value and

 order within order

OUTER JOIN 2nd

 FULL OUTER JOIN

 LEFT OUTER JOIN

 RIGHT OUTER JOIN

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

parentheses, expressions

 data type precedence and

 operator predecence and

parsing queries

PERCENT function

PRIMARY KEY constraint 2nd 3rd

primary keys

printing query results

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

qualifiers

 existential

 unversal

queries

 correlated queries

 CROSS JOIN

 entering

 error messages, viewing

 executing

 stopping execution

 parsing

 printing

 results

 displaying

 printing

 saving to file

 saving

 subqueries

 auditing in

 IN predicates

query development

 derived structures and

Query Editor

 color coding

 opening

 New Query button

 right-clicking

Query Execution tab

Query Results tab

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

REAL data type

referential integrity constraints

REFRERENCES constraint

results of queries

 displaying

 grid form

 text form

 saving to file

RIGHT function 2nd

RIGHT OUTER JOIN 2nd

ROUND function 2nd

row-level functions

 arithmetic operations on columns

 DISTINCT

 ISNULL

 NULLIF

 ROUND

 TOP

 PERCENT and

ROWCOUNT function 2nd

rows, tables

 displaying

 selecting

RTRIM function 2nd

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

saving

 queries

 query results to file

scripts, Student_course database

SELECT command

SELECT INTO statement, views

SELECT statement

 FROM and

 ORDER BY clause

 ascending/descending order

 NULL value and

 order within order

 WHERE clause

 AND operator

 BETWEEN operator 2nd

 OR operator

self-joins

SET command

SET DATEFORMAT function

set operations

 binary intersection

 binary set differences

 binary unions

 difference, NOT IN predicate

 IN predicate

 INTERSECT

 INTERSECT operator

 NOT IN predicate

 UNION 2nd

 columns and

 JOIN and

 UNION ALL 2nd

 columns and

 union compatibility

sets

SMALLDATETIME data type

SMALLINT data type

SMALLMONEY data type

SORT function

Souce Control tab

SQL Server Management Studio, starting

http://lib.ommolketab.ir

SQL_VARIANT data type 2nd

SQUARE function

statements

 comments

 entering

 writing

STR function 2nd

string functions

 CHARINDEX

 concatenation

 extraction

 LEFT

 LEN 2nd

 LOWER 2nd

 LTRIM 2nd

 RIGHT

 RTRIM

 SUBSTRING

 UPPER

strings

 substrings, LIKE function

 Unicode character strings

Student_course database

 creating

 joins

 objects

 script

 tables

 default

subqueries

 as joins

 auditing in

 IN predicate and

 operators and

SUBSTRING function 2nd

substrings, LIKE function

SUM function 2nd

synonyms

syntax

system databases, default

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

T-SQL (Transact-SQL)

table aliases

 as table qualifiers

TABLE data type

table definitions

 columns

 modifying

 viewing

tables

 columns

 adding

 aliases

 data types

 deleting

 creating

 Load script

 data, viewing

 deleting

 DELETE command

 joins, multiple

 rows

 displaying

 selecting

 Student_course database

 default

 temporary

 tuples

tempdb database

terms, glossary of

TEXT data type 2nd

Text Editor tab

text form, query results

TINYINT data type

TOP function 2nd

 PERCENT and

tuples

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

Unicode character strings

UNION ALL set operation 2nd

 columns and

union compatibility

UNION set operation 2nd

 columns and

 JOIN and

UNIQUE constraint

UNIQUE IDENTIFIER data type

UNIQUE integrity constraint

UNIQUEIDENTIFIER data type

universal qualifiers

UPDATE command 2nd

UPPER function 2nd

USE command

USE, opening databases

UUID (Universal unique identifier)

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

VARBINARY data type

VARCHAR data type 2nd

VARCHAR2 data type

views

 column alises

 creating

 data in

 ORDER BY clause

 SELECT INTO statement

 using

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

WHERE clause

 JOIN and

 SELECT statement

 AND operator

 BETWEEN operator 2nd

 OR operator

WHERE row filter

WITH TIES clause

writing statements

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

XM Ldata type

XML data type

http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y]

YEAR function 2nd

http://lib.ommolketab.ir

	Learning SQL on SQL Server 2005
	Table of Contents
	Learning SQL on SQL Server 2005
	Dedication

	Preface
	Why This Book?
	SQL and SQL Server
	Audience and Coverage
	A Few Notes About SQL Server 2005 Installation
	Conventions Used in This Book
	Using Code Examples
	How to Contact Us
	Acknowledgments

	Chapter 1. Starting Microsoft SQL Server 2005
	Section 1.1. Starting Microsoft SQL Server 2005 and SQL Server 2005's Management Studio
	Section 1.2. Creating a Database in Microsoft SQL Server 2005
	Section 1.3. The Query Editor
	Section 1.4. Creating Tables Using the Load Script
	Section 1.5. Viewing Table Definitions
	Section 1.6. Modifying Table Definitions
	Section 1.7. Viewing Table Data
	Section 1.8. Deleting a Table
	Section 1.9. Deleting a Database
	Section 1.10. Entering a SQL Query or Statement
	Section 1.11. Parsing a Query
	Section 1.12. Executing a Query
	Section 1.13. Saving a Query
	Section 1.14. Displaying the Results
	Section 1.15. Stopping Execution of a Long Query
	Section 1.16. Printing the Query and Results
	Section 1.17. Customizing SQL Server 2005
	Section 1.18. Summary
	Section 1.19. Review Questions
	Section 1.20. Exercises

	Chapter 2. Beginning SQL Commands in SQL Server
	Section 2.1. Displaying Data with the SELECT Statement
	Section 2.2. Displaying or SELECTing Rows or Tuples from a Table
	Section 2.3. The COUNT Function
	Section 2.4. The ROWCOUNT Function
	Section 2.5. Using Aliases
	Section 2.6. Synonyms
	Section 2.7. Adding Comments to SQL Statements
	Section 2.8. Some Conventions for Writing SQL Statements
	Section 2.9. A Few Notes About SQL Server 2005 Syntax
	Section 2.10. Summary
	Section 2.11. Review Questions
	Section 2.12. Exercises

	Chapter 3. Creating, Populating, Altering, and Deleting Tables
	Section 3.1. Data Types in SQL Server 2005
	Section 3.2. Creating a Table
	Section 3.3. Inserting Values into a Table
	Section 3.4. The UPDATE Command
	Section 3.5. The ALTER TABLE Command
	Section 3.6. The DELETE Command
	Section 3.7. Deleting a Table
	Section 3.8. Summary
	Section 3.9. Review Questions
	Section 3.10. Exercises
	Section 3.11. References

	Chapter 4. Joins
	Section 4.1. The JOIN
	Section 4.2. The Cartesian Product
	Section 4.3. Equi-Joins and Non-Equi-Joins
	Section 4.4. Self Joins
	Section 4.5. Using ORDER BY with a Join
	Section 4.6. Joining More Than Two Tables
	Section 4.7. The OUTER JOIN
	Section 4.8. Summary
	Section 4.9. Review Questions
	Section 4.10. Exercises

	Chapter 5. Functions
	Section 5.1. Aggregate Functions
	Section 5.2. Row-Level Functions
	Section 5.3. Other Functions
	Section 5.4. String Functions
	Section 5.5. CONVERSION Functions
	Section 5.6. DATE Functions
	Section 5.7. Summary
	Section 5.8. Review Questions
	Section 5.9. Exercises

	Chapter 6. Query Development and Derived Structures
	Section 6.1. Query Development
	Section 6.2. Parentheses in SQL Expressions
	Section 6.3. Derived Structures
	Section 6.4. Query Development with Derived Structures
	Section 6.5. Summary
	Section 6.6. Review Questions
	Section 6.7. Exercises

	Chapter 7. Set Operations
	Section 7.1. Introducing Set Operations
	Section 7.2. The UNION Operation
	Section 7.3. The UNION ALL Operation
	Section 7.4. Handling UNION and UNION ALL Situations with an Unequal Number of Columns
	Section 7.5. The IN and NOT..IN Predicates
	Section 7.6. The Difference Operation
	Section 7.7. The Union and the Join
	Section 7.8. A UNION Used to Implement a Full Outer Join
	Section 7.9. Summary
	Section 7.10. Review Questions
	Section 7.11. Exercises
	Section 7.12. Optional Exercise

	Chapter 8. Joins Versus Subqueries
	Section 8.1. Subquery with an IN Predicate
	Section 8.2. The Subquery as a Join
	Section 8.3. When the Join Cannot Be Turned into a Subquery
	Section 8.4. More Examples Involving Joins and IN
	Section 8.5. Using Subqueries with Operators
	Section 8.6. Summary
	Section 8.7. Review Questions
	Section 8.8. Exercises

	Chapter 9. Aggregation and GROUP BY
	Section 9.1. A SELECT in Modified BNF
	Section 9.2. The GROUP BY Clause
	Section 9.3. The HAVING Clause
	Section 9.4. GROUP BY and HAVING: Aggregates of Aggregates
	Section 9.5. Auditing in Subqueries
	Section 9.6. Nulls Revisited
	Section 9.7. Summary
	Section 9.8. Review Questions
	Section 9.9. Exercises

	Chapter 10. Correlated Subqueries
	Section 10.1. Noncorrelated Subqueries
	Section 10.2. Correlated Subqueries
	Section 10.3. Existence Queries and Correlation
	Section 10.4. SQL Universal and Existential Qualifiers
	Section 10.5. Summary
	Section 10.6. Review Questions
	Section 10.7. Exercises

	Chapter 11. Indexes and Constraints on Tables
	Section 11.1. The
	Section 11.2. Indexes
	Section 11.3. Constraints
	Section 11.4. Summary
	Section 11.5. Review Questions
	Section 11.6. Exercises

	Appendix A. The Student Database and Other Tables Used in This Book
	Section A.1.

	Appendix B. Script Used to Create the Student_course Database
	Glossary of Terms
	Important Commands and Functions
	About the Author
	Colophon
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

