
Microsoft®

Dino Esposito

ASP.NET and AJAX:
Architecting
Web Applications

http://lib.ommolketab.ir
http//lib.ommolketab.ir

PUBLISHED BY
Microsoft Press
A Division of Microsoft Corporation
One Microsoft Way
Redmond, Washington 98052-6399

Copyright © 2009 by Dino Esposito

All rights reserved. No part of the contents of this book may be reproduced or transmitted in any form or by any means
without the written permission of the publisher.

Library of Congress Control Number: 2008940527

Printed and bound in the United States of America.

1 2 3 4 5 6 7 8 9 QWT 4 3 2 1 0 9

Distributed in Canada by H.B. Fenn and Company Ltd.

A CIP catalogue record for this book is available from the British Library.

Microsoft Press books are available through booksellers and distributors worldwide. For further infor mation about
international editions, contact your local Microsoft Corporation offi ce or contact Microsoft Press International directly at
fax (425) 936-7329. Visit our Web site at www.microsoft.com/mspress. Send comments to msinput@microsoft.com.

Microsoft, Microsoft Press, ActiveX, Expression, IntelliSense, Internet Explorer, MS, MSDN, Natural, Silverlight,
SQL Server, Visual Basic, Visual C#, Visual InterDev, Visual Studio, Windows, Windows Media, Windows Server and
Windows Vista are either registered trademarks or trademarks of Microsoft Corporation in the United States and/or other
countries. Other product and company names mentioned herein may be the trademarks of their respective owners.

The example companies, organizations, products, domain names, e-mail addresses, logos, people, places, and events depicted
herein are fi ctitious. No association with any real company, organization, product, domain name, e-mail address, logo,
person, place, or event is intended or should be inferred.

This book expresses the author’s views and opinions. The information contained in this book is provided without any
express, statutory, or implied warranties. Neither the authors, Microsoft Corporation, nor its resellers, or distributors will
be held liable for any damages caused or alleged to be caused either directly or indirectly by this book.

Acquisitions Editor: Ben Ryan
Developmental Editor: Lynn Finnel
Project Editor: Tracy Ball
Editorial Production: S4Carlisle Publishing Services
Technical Reviewer: Kenn Scribner; Technical Review services provided by Content Master, a member of
CM Group, Ltd.
Cover: Tom Draper Design

Body Part No. X15-28134

http://lib.ommolketab.ir
http//lib.ommolketab.ir

To the people who help me to smile and often smile, play and laugh with me.

—Dino

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 v

Contents at a Glance

Part I The (Much Needed) Facelift for the Old Web

 1 Under the Umbrella of AJAX. 3

 2 The Easy Way to AJAX . 27

 3 AJAX Architectures . 61

Part II Power to the Client

 4 A Better and Richer JavaScript . 101

 5 JavaScript Libraries . 129

 6 AJAX Design Patterns. 163

 7 Client-Side Data Binding . 223

 8 Rich Internet Applications . 269

 Index . 309

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 vii

Table of Contents
Acknowledgments .xi

Introduction .xiii

Part I The (Much Needed) Facelift for the Old Web

 1 Under the Umbrella of AJAX. 3

What Web Do We Want? . 4

It’s All About User Experience . 4

Origins of the Web . 7

Paradox of the Web . 9

The Biggest Benefi t of AJAX. 11

What’s AJAX, Exactly? . 12

The Paradigm Shift . 14

AJAX and New Web Projects . 17

Adding AJAX Capabilities . 17

Architecture Is the Concern . 18

The Case for Rich Internet Applications . 22

Summary . 24

 2 The Easy Way to AJAX . 27

The ASP.NET AJAX Infrastructure . 28

The Page’s Script Manager . 28

The Microsoft JavaScript Library . 35

Partial Rendering . 37

The UpdatePanel Control . 37

Programming Updatable Panels . 43

Minimizing Data Transfer . 47

Shades of Partial Rendering . 48

AJAX and JavaScript Injections . 53

Remote Methods . 54

Widgets and Effects. 56

Summary . 60

Microsoft is interested in hearing your feedback so we can continually improve our books and learning

resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

http://lib.ommolketab.ir
http//lib.ommolketab.ir

viii Table of Contents

 3 AJAX Architectures . 61

The AJAX Service Layer Pattern. 62

Architectural Overview . 62

Inside the HTTP Façade . 70

The AJAX Presentation Layer . 79

Security Considerations . 83

The AJAX Server Pages Pattern . 87

Architectural Overview . 88

The Classic Postback Model Revisited . 90

Libraries in Action . 92

Summary . 97

Part II Power to the Client

 4 A Better and Richer JavaScript . 101

JavaScript Today . 102

The Language and the Browser. 102

Pillars of the Language . 105

JavaScript (If Any) of the Future . 108

The Microsoft AJAX Library . 110

Overview of the Library . 110

JavaScript Language Extensions . 112

Object-Oriented Extensions. 115

Framework Facilities . 119

Summary . 126

 5 JavaScript Libraries . 129

From Server Controls to JavaScript Widgets . 130

The ASP.NET Factor . 130

The Widget Factor . 132

The jQuery Library . 137

The Library at a Glance . 138

The Core Library . 140

jQuery Selectors. 142

Working on Wrapped Sets . 149

jQuery Utilities . 151

Summary . 161

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Table of Contents ix

 6 AJAX Design Patterns. 163

Design Patterns and Code Development. 163

Generalities About Design Patterns . 164

Patterns in AJAX Development . 166

Patterns for JavaScript Development . 168

The Singleton Pattern . 169

The Model-View-Controller Pattern . 170

The On-Demand JavaScript Pattern . 175

The Predictive Fetch Pattern . 178

Generalities of the Predictive Fetch Pattern . 178

Creating a Reference Implementation . 180

The Timeout Pattern . 186

Generalities of the Timeout Pattern . 187

A Timeout Pattern Reference Implementation. 188

Related Patterns . 192

The Progress Indicator Pattern . 194

Generalities of the Progress Indicator Pattern . 194

A Progress Indicator Reference Implementation 196

Canceling an Ongoing Remote Task. 206

Other Patterns . 213

The Micro-Link Pattern . 213

The Cross-Domain Proxy Pattern . 215

The Submission Throttling Pattern . 218

Summary . 221

 7 Client-Side Data Binding . 223

An Architectural Tour of ASP.NET Data Binding . 224

Defi ning the HTML Template. 224

Defi ning the Data Source . 230

Data Binding at the Time of AJAX . 232

The Browser-Side Template Pattern . 235

Generalities of the BST Pattern . 235

Creating a BST Reference Implementation . 238

The HTML Message Pattern . 250

Generalities of the HM Pattern . 250

Developing an HM Reference Implementation . 253

http://lib.ommolketab.ir
http//lib.ommolketab.ir

x Table of Contents

A Look at ASP.NET AJAX 4.0. 260

ASP.NET AJAX Templates . 260

ASP.NET Library for ADO.NET Data Services. 266

Summary . 268

 8 Rich Internet Applications . 269

Looking for a Richer Web . 269

The Dream of Binary Code Running over the Web 270

Browser Plug-ins . 271

Microsoft Silverlight at a Glance . 274

Elements of the Silverlight Architecture. 275

Graphics and Multimedia . 277

Building Applications . 279

The Programming Model of Microsoft Silverlight . 282

WPF-Based User Interface . 282

The .NET Base Class Library . 286

Isolated Storage . 289

Networking . 295

Microsoft Silverlight and Code Security . 302

The Security Model . 302

Security Attributes . 303

Secure by Design . 306

Summary . 308

Index . 309

Microsoft is interested in hearing your feedback so we can continually improve our books and learning

resources for you. To participate in a brief online survey, please visit:

www.microsoft.com/learning/booksurvey/

What do you think of this book? We want to hear from you!

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 xi

Acknowledgments

A team of people helped me to assemble this book.

Ben Ryan was sneakily convinced to support the project on a colorful Las Vegas night,
 during an ethnic dinner during which we watched waiters coming up from and going down
to the wine cellar in transparent elevators.

Lynn Finnel just didn’t want to let Dino walk alone in this key project after brilliantly
 coordinating at least fi ve book projects in the past.

Kenn Scribner is now Dino’s offi cial book alter ego. Kenn started working with Dino on
books back in 1998 in the age of COM and the Active Template Library. How is it possible
that a book with Dino’s name on the cover isn’t reviewed and inspired (and fi xed) by Kenn’s
unique and broad perspective on the world of software? The extent to which Kenn can be
helpful is just beyond human imagination.

Roger LeBlanc joined the team to make sure that all these geeks sitting together at the
same virtual desktop could still communicate using true English syntax and semantics.

I owe you all the (non-rhetorically) monumental “Thank you” for being so kind, patient,
and accurate.

—Dino

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 xiii

Introduction

This book is the Web counterpart to another recently released book I co-authored with
Andrea Saltarello: Microsoft .NET: Architecting Applications for the Enterprise (Microsoft
Press, 2008). I wrote it, in part, in response to the many architectural questions—both small
questions and big ones—that I was asked repeatedly while teaching ASP.NET, AJAX, and
Silverlight classes.

Everybody in the industry is committed to AJAX. Everybody understands the impact of it.
Everybody recognizes the enormous power that can be derived from its employment in
 real-world solutions.

Very few, though, know exactly how to make it happen. There are so many variations to AJAX
and so many implementations that even after you have found one that suits your needs, you
are left wondering whether that is the best possible option.

The fact is that AJAX triggered a chain reaction in the world of the Web. AJAX represents a
change of paradigm for Web applications. And, as the history of science proves, a paradigm
shift has always had a deep impact, especially in scenarios that were previously stable and
consolidated.

I estimate that it will take about fi ve years to absorb the word AJAX (and all of its background)
into the new defi nition of the Web. And the clock started ticking about four years ago. The
time at which we say “the Web” without feeling the need to specify whether it contains AJAX
or not . . . well, that time is getting closer and closer. But it is not that time yet.

Tools and programming paradigms for AJAX, which were very blurry just a few years ago,
are getting sharper every day. Whether we are talking about JavaScript libraries or suites
of server controls, I feel that pragmatic architectures can be identifi ed. You fi nd them
 thoroughly discussed in Chapter 3, “AJAX Architectures.”

Architecting a Web application today is mostly about deciding whether to prefer the richness
of the solution over the reach of the solution. Silverlight and ASP.NET AJAX are the two
platforms to choose from as long as you remain in the Microsoft ecosystem. But the rich vs.
reach dilemma is a general one and transcends platforms and vendors. A neat answer to that
dilemma puts you on the right track to developing your next-generation Web solution.

Who This Book Is For

I believe that this book is ideal reading for any professionals involved with the ASP.NET
 platform and who are willing or needing to fi nd a solution that delivers a modern and rich
user experience.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

xiv Introduction

Companion Content

Examples of techniques and patterns discussed in the book can be found at the following
site: http://www.microsoft.com/learning/en/us/books/12926.aspx.

Hardware and Software Requirements

You’ll need the following hardware and software to work with the companion content
 included with this book:

■ Nearly any version of Microsoft Windows, including Vista (Home Premium Edition,
Business Edition, or Ultimate Edition), Windows Server 2003 and 2008, and
Windows XP Pro.

■ Microsoft Visual Studio 2008 Standard Edition, Visual Studio 2008 Enterprise Edition,
or Microsoft Visual C# 2008 Express Edition, and Microsoft Visual Web Developer 2008
Express Edition.

■ Microsoft SQL Server 2005 Express Edition, Service Pack 2 or Microsoft SQL Server 2005,
Service Pack 3, or Microsoft SQL Server 2008.

■ The Northwind database of Microsoft SQL Server 2000 is used to demonstrate data-access
techniques. You can obtain the Northwind database from the Microsoft Download Center
(http://www.microsoft.com/downloads/details.aspx?FamilyID=06616212-0356-46A0-8DA2-
EEBC53A68034&displaylang=en).

■ 1.6 GHz Pentium III+ processor, or faster.

■ 1 GB of available, physical RAM.

■ Video (800 by 600 or higher resolution) monitor with at least 256 colors.

■ CD-ROM or DVD-ROM drive.

■ Microsoft mouse or compatible pointing device.

Find Additional Content Online

As new or updated material becomes available that complements this book, it will be posted
online on the Microsoft Press Online Developer Tools Web site. The type of material you
might fi nd includes updates to book content, articles, links to companion content, errata,
sample chapters, and more. This Web site is available at http://www.microsoft.com/learning/
books/online/developer and is updated periodically.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Introduction xv

Support for This Book

Every effort has been made to ensure the accuracy of this book and the companion content.
As corrections or changes are collected, they will be added to a Microsoft Knowledge
Base article.

Microsoft Press provides support for books and companion content at the following Web site:

http://www.microsoft.com/learning/support/books

Questions and Comments

If you have comments, questions, or ideas regarding the book or the companion content, or
questions that are not answered by visiting the sites above, please send them to Microsoft
Press via e-mail to

mspinput@microsoft.com

Or via postal mail to

Microsoft Press
Attn: Microsoft ASP.NET and AJAX: Architecting Web Applications Editor
One Microsoft Way
Redmond, WA 98052-6399

Please note that Microsoft software product support is not offered through the above
addresses.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 1

Part I

The (Much Needed) Facelift
for the Old Web

In this part:

Chapter 1: Under the Umbrella of AJAX . 3

Chapter 2: The Easy Way to AJAX. 27

Chapter 3: AJAX Architectures . 61

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 3

Chapter 1

Under the Umbrella of AJAX

 Forget what we think we know about the limitations of the Web, and begin to
imagine a wider, richer range of possibilities.

 —Jesse James Garrett

 In 2007, more or less at the same time I was proudly showcasing my hot new book on ASP.NET
AJAX, an old friend of mine started investigating the features of AJAX and the still largely unknown
Silverlight platform. He had just been given the task of planning and coordinating a huge
 migration project within his company.

 He spent about ten years building, maintaining, and progressively enhancing a vertical
 application that had won an industry award and was aimed at some special categories of
professionals, such as lawyers and public accountants. At some point, his company had been
acquired by a larger group and the old application had to be integrated into an existing Web
platform.

 With the whole company about to abruptly switch from a desktop mindset to a Web paradigm,
my friend was trying to be reasonably thoughtful. He was looking for the best available tools
of the current Web paradigm to minimize the pain and costs of migration while delivering an
 effective, desktop-like experience to the existing users. With all the buzz and hype around
AJAX (and that fancy new thing known as Silverlight), his efforts seemed to be a matter of
 prudence and the fruit of an innate “try before you buy” attitude.

 I met my friend at TechEd 2007, where I was giving a couple of presentations on the subject
of ASP.NET AJAX. To my greatest surprise, at the end of my last session he came by and
 whispered apologetically, “Sorry Dino, but is that all of it?” He was aware that his question
might sound insolent or silly and that it undermined the beautiful story I had just told the
audience.

 My presentation had been about how a new age of prosperity and success was about to
begin for all Web developers and architects. It included the success story of how one of the
building blocks of Web 2.0 came along. I told the fantastic story of how the Web was, all of a
sudden, about to offer the same set of functionality as the desktop.

 Unfortunately, the Web is not the desktop.

 And it will never be like that, no matter which moderating suffi x you attach to the word
 desktop. You can label the Web as desktop over HTTP or browser-hosted desktop or even
desktop in the cloud. It is, and will always be, a pure marketing gimmick.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

4 Part I The (Much Needed) Facelift for the Old Web

What Web Do We Want?

 My friend got it right quite quickly. The Web is the Web, with its pros and cons. Using AJAX
(or even Silverlight) as a shortcut or, worse yet, as a magic wand to simplify development—
from developing new commercial Web sites to performing complex enterprise migration
projects—is just incorrect. And it’s potentially a deadly decision with regard to the assets of a
company.

 My friend, who looked at AJAX with a totally unbiased mind, had the farsightedness to clearly
and quickly see that AJAX was something important for Web-related development but that it
was not the easy fi x that many people were enthusiastically depicting it to be. (And to some
extent, it’s still being depicted that way today, two years later.)

 In light of this, the following equation is not realistic:

desktop = Web + AJAX

 It doesn’t work outside the dreams of some IT managers.

 Although my friend had perceived the key facts about AJAX, his insight didn’t solve his
 primary concern. By fi guring out AJAX quickly, though, he was able to focus his brainstorming
in the right direction and center his thoughts around the right questions.

 So what are the right questions to ask about AJAX?

It’s All About User Experience

 As I see things, there’s just one key question, and a number of more technical and in-depth
questions spread out from this question later. The fundamental question is, “What Web do
we want?”

 Admittedly, the question implies we are not entirely happy with today’s Web and are looking
for a different type of Web. At the end of the day, what we all want from the Web is a much
better user experience, in the broadest possible meaning of both the term user and the term
experience.

 So what does user experience mean to various people?

User Experience for Dummies

 Jesse James Garrett has made it into the history books as the man who coined the now
 ubiquitous and universal acronym AJAX, back in 2005. (To read the full story, pay a visit to
http://www.adaptivepath.com/ideas/essays/archives/000385.php.)

 For readers who might have spent the last three years in a remote rainforest with no
 connectivity at all, I’ll spell out the acronym here—Asynchronous JavaScript And XML.
(Later in the chapter, I’ll comment on the role and importance of each part of the acronym.)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 1 Under the Umbrella of AJAX 5

 Jesse James Garrett, however, is neither a software architect nor a Web developer. He calls
himself an experience designer, and he’s also the author of a widely referenced book on Web
design titled The Elements of User Experience (New Riders Press, 2002). In short, Jesse James
Garrett is probably one of the most qualifi ed people in the world to give us a concise and
comprehensible defi nition of user experience (UE).

 Understanding the whys and wherefores of UE is the fi rst step to understanding what
Web we want and how to go forward and look for valid technologies to employ in its
implementation.

 The concept of UE is made of many disparate parts. Creating a positive user experience for
a Web site involves enabling end users to use the site for their own purposes, which might
include business, work, personal activities and interests, and entertainment. UE is about how
a Web site (or, generally, any system) is perceived, learned about, and fi nally used; and how a
user feels about that.

 A brilliant team of developers, architects, and designers might be able to serve up a set of Web
functions that meet the original strategic intent. But they might fail to provide a consistent
and pleasant user experience. Using Garrett’s wording, the concept of a good user experience
sounds like this:

 A site that really works fulfi lls your strategic objectives while meeting the needs of
your users. Even the best content and the most sophisticated technology won’t help
you balance those goals without a cohesive, consistent user experience to support it.

 A superior UE springs from a powerful mix of usability, data and work fl ows (often referred
to as information architecture), appealing graphics, and interaction model. As you can see,
there’s no code or software architecture involved at this level. Software comes later or is
 developed in parallel to fi guring out how to implement these characteristics. For sure, it takes
the overall Web development thing to another dimension.

User Experience for the Poor Web User

 Let’s set aside these concepts from the fi eld of experience design as applied to the Web and
focus on the software side of the new Web. For the purposes of this book, we’ll happily
 assume that someone on the development team has valuable ideas they want to instill in the
otherwise foggy minds of the team’s members.

 For the end user, the next WWW (short for the Web We Want) is centered on providing the
user with a high-quality, fi rst-class experience when passing through your site. Whatever that
means. Figuring out what that means is the job of developers, designers, and UE people.

 Note This is a sort of psychological note. For about ten years, the poor Web user navigated
to a site to get some sort of information related to personal or business interests—documents,
 reports, charts, prices, best prices, timetables, account balances, various types of news, live scores,
 itineraries, guides, essays, and so on.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

6 Part I The (Much Needed) Facelift for the Old Web

 For part of this decade, the poor Web user felt lucky and happy to draw something of value
from the bottomless well of the Internet. At some point, though, while the well remained largely
bottomless, other critical resources began to be scarce—bandwidth and, more importantly,
 patience.

 The poor Web user could accept slow responses when he had enthusiasm for this new thing.
But when the exciting new thing turned to a commodity, the enthusiasm vanished and the
poor Web user began to wonder if there could be a better way to accomplish the same tasks.
Now if there’s no better way, he feels unhappy and starts looking around for smarter and more
 cutting-edge competitors.

User Experience for Developers

 In raw developer terms, a high-quality user experience means essentially a more responsive
application that can better deal with network latency. Web users today are more sophisticated
than they were ten years ago and demand higher performance and responsiveness regardless
of the latency and bandwidth hurdles you, as a developer, might have to overcome.

 However, you can’t change the laws of physics. It still takes electrons a certain amount of time
to move from one place to another. Therefore, developers work to optimize the server-side
code and logic to tweak every ounce of performance and scalability from that code. But often
even this isn’t enough. That’s when developers look to other tricks, perhaps even very new
tricks that require rethinking how Web applications interact with the user.

 The tricks mostly involve asking the application to do more work on the browser’s side—even
in the background, when the browser is idle—by sending and requesting much less data
over the wire and by repainting smaller areas of the page. In summary, we will accept more
roundtrips, but each carrying only a small chunk of data and only if the communication is
performed in the background and results in partial page refreshes instead of complete page
browser reloads.

 From a developer’s perspective, this is not a small step at all. It’s not merely a smart form of
optimization. Instead, it’s a huge jump that changes our understanding of the foundation of
the Web as we know it today.

 A more responsive application is also more interactive from the user’s perspective. It shows
animations, visual effects, and sharp graphics that change quickly and smoothly to refl ect the
state of the page. This aspect of the new Web is an enhancement aimed at improving the
experience. However, it doesn’t have much to do with hard-core, server-side development
and the information architecture.

 It is rather more about having enhanced graphics and layout, which are more the purview
of the Web designer and artist than the implementing developer. In the end, though, some
browser-side code trickery will still be necessary to give the user the impression that the
page is more responsive and easier to interact with. Building a nice user experience is a team
effort—design plus browser-side script.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 1 Under the Umbrella of AJAX 7

 How can developers implement more responsive and interactive Web pages? Again, let
me answer this question with another question. What is a Web page made of? HTML and
JavaScript. These are the pillars of Web pages as we know and write them today. Any tricks
you come up with will necessarily be applied here.

User Experience for Managers

 Written four years ago, Garrett’s aforementioned excellent essay on AJAX is starting to look a
bit—yes, let’s say it—outdated. The paper discusses incontrovertible facts about the mechanics
of the Web with and without AJAX. But it also contains an introduction and a conclusion that
are a bit misleading when read today, four years later. (As a rule of thumb, I consider fi ve years
of software progress as the logical equivalent to a geological era. So four years are defi nitely a
lot of time.)

 Managers might sometimes read through moderately technical stuff like what you fi nd in
Garrett’s work, but it’s very hard for them to read between the lines and grasp the implications
of a technical description. What remains in their mind is that the interactivity and responsiveness
gap between desktop and Web applications is now closing thanks to AJAX.

 AJAX is a big innovation and a revolutionary change for the Web. However, it’s not free and
often costs you quite a bit in terms of resources.

 Managers see the user experience as mashups and cool features. Building a mashup, though,
is not like querying a database table on a local or remote server. Using mashups makes
 well-designed information architecture more essential than ever. It makes software architecture
slightly different and raises a whole bunch of new development issues.

 Making Web sites appealing and easy to navigate is more possible with AJAX than without
it. But AJAX is not magic; it will never give you a desktop platform over HTTP. And, fi nally,
there’s the matter of tradeoffs and making (ideally, correct) decisions.

Origins of the Web

 The Web We Want is a Web that can deliver a much better user experience. As a Web developer
or architect, your role is to increase the responsiveness of pages and the interactivity of most
features. The former will likely require some architectural work on code and information; the
latter just requires more script code to be put to work.

 The fi nal destination for this book is to take you to the recommended architectural changes
needed to get the Web We Want.

 AJAX is a revolution. Great, but why? What is wrong with the old Web?

 Let’s begin by looking at the limitations imposed by the origins of the Web and take our fi rst
step toward understanding why the recommended architectural changes are necessary to
shift to the new, more responsive Web.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

8 Part I The (Much Needed) Facelift for the Old Web

The First Cry

 The Web as we know it today was prototyped in the early 1990s at CERN, the European
Organization for Nuclear Research. (The acronym originates from the French name of the
organization.)

 Scientists at CERN worked on the concept of hypertext and arranged an ad hoc markup
 language for expressing interlinked text-based documents and a communication protocol
for retrieving such documents. Needless to say, the markup language is HTML and the
 communication protocol is HTTP. HTTP in particular works on top of a Transmission Control
Protocol (TCP) connection occurring over port 80 by default.

 The fi rst experiment of connecting two machines over HTTP took place in the summer of
1991. Less than two years later, the CERN waived any copyrights on it, thus offi cially starting
the era of the World Wide Web.

 A lot has happened since. We had, for instance, the browser wars. This refers to a period in the
late 1990s when basically each new browser release was made to edge out competitors by
 developing custom extensions to the markup and building in-house technologies to improve
the programmability of sites and, only as a side effect, the user experience. Standardization via
the World Wide Web Consortium (W3C) committees helped to have an offi cial specifi cation for
some Web features such as CSS and HTML Document Object Model (DOM). To be effective,
though, a Web standard must be widely supported by actual browsers. It took years before all
major browsers aligned to support a common set of features (often only in the realm of standard
 specifi cations) that was powerful enough to begin a new era for the Web—the AJAX era.

The Mechanics of the Web

 The Web is based on a request/response model that involves a client browser and the Web
server. This is shown in Figure 1-1.

HTTP request

Browser

CSS
<html>

:
</html>

FIGURE 1-1 The traditional Web application model

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 1 Under the Umbrella of AJAX 9

 According to this model, a continuous action originates a sort of stop-and-go pattern. The user
interacts with the page and at some point sends a request back to the server. As the server
processes the request, the user waits. Next, a new page is displayed to the user that requires
some more work. The work produces a new request to the server, after which the user waits—
over and over again.

 In HTML, the user starts a request by hitting a submit button. Today, the standard implementation
of the HTML Document Object Model also requires a script-based method, but that was not the
case in the beginning. The browser interprets a submit click as the order of submitting the content
of the host form to the specifi ed action URL. Next, the browser freezes the user interface (UI) until
a new HTML page is received.

 In the classic Web model, the browser implements a request by sending out an HTML form
and receiving a brand new HTML page.

The Original Purpose of HTML and HTTP

 HTML and HTTP were created at CERN to serve a well-defi ned purpose: improving the fl ow
of information across the network and sharing documents more easily using the hypertext
model. A document created using HTML can contain links to other documents in the same
network—for example, documents referenced in the bibliography of a scientifi c paper.

 After they were released for public use in 1993, HTML and HTTP gained the incredible
 success we all know. An army of developers were able to use HTML and HTTP to build
 millions of pages in richer and richer Web sites. Since then, HTTP and HTML in particular have
been squeezed to extract every single fragment of functionality.

 Quite paradoxically, the Web was originally created to serve as an internal tool in a relatively
small community of people—at least compared to today’s communities. It turned out,
 instead, to be a monster that changed our personal lives and our businesses.

Paradox of the Web

 The use of the adverb paradoxically is deliberate. So what is the paradox of the Web?
In 15 years, developers and designers have been able to build the World Wide Web as we
know it today using extremely simple tools that were not specifi cally designed for the job.

 This process has given rise to two opposing forces. One is the force of progress, which wants
the Web to become more powerful every day, with new features and applications. The other
is the resistance from the limitations of the building blocks of the Web, which are not really
designed to support the current workload.

 The paradox lies in the fact that rebuilding the Web entirely is completely unrealistic. We need
to improve it signifi cantly, but without changing its (now inadequate) columns.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

10 Part I The (Much Needed) Facelift for the Old Web

The Sturdy, Old Columns That Hold Up the Web

 The Web wasn’t designed for many of the purposes we use it for today. In particular, it wasn’t
designed to do any publishing. It wasn’t specifi cally aimed at building the presentation layer
for any distributed systems. Supporting multimedia content and rich graphics was certainly
not a priority.

 More importantly, it was not designed to secure its content. HTTP is an extremely simple
and effi cient protocol, but it’s not technologically secure. What about HTTPS, then? HTTPS is
 essentially an extra layer of cryptography applied at the gate when the packet leaves or reaches
the computer. HTTPS protects the message but doesn’t help much with authentication and
authorization. What about client certifi cates? Well, they certainly work. But like HTTPS, client
certifi cates are a feature bolted onto the native (and unsecure) HTTP protocol.

 Why was HTTP designed this way?

 In 1991, the whole theme of Web security was unimaginable. Web security started to be
a serious issue only after the bold success of the World Wide Web made it worthwhile
for hackers to plan their attacks. Once we started sending money over the Web, with the
 associated personal information, then and only then did it make it worthwhile for malicious
hackers. Before that, hacking was more a college prank than anything.

 Born as a tool to manage HTTP connections and parse HTML pages, the browser became an
increasingly powerful tool step by step with the rapid increase in the number of Web sites
around the world.

 One of the fi rst enhancements that browsers made to the syntax of HTML was the support
for a programming language—JavaScript. The fi rst browser to deploy a JavaScript engine
was Netscape Navigator 2.0 in December 1995. JavaScript was introduced to give authors of
Web-deployed documents the ability to incorporate some logic and action in HTML pages.

 Later on, other features were added, such as cookies, the Document Object Model (DOM) for
publicly exposing in a programmable way the content being displayed, and cascading style
sheets (CSS) to quickly style elements of the page. In the heat of the “war of the browsers,”
multiple browsers offered the same features with each using its own syntax and model. By
the end of the last century, it was clear that serious Web programming couldn’t be planned
or actually done without common worldwide standards.

 The W3C committees made it happen. As a result of their efforts, we have standard HTML
and a standard JavaScript language. These are the pillars of today’s Web. And for the
 purposes of today, they are tottering pillars.

Pillars Can’t Be Changed

 A pillar is not something you can replace without possibly causing the building to collapse.
You can fi x it or make it stronger, but you can’t replace it. This is the situation we currently
face with the pillars of the World Wide Web: HTML and JavaScript.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 1 Under the Umbrella of AJAX 11

 These twin supports for the Web are common and popular. Revolutionary changes to either
of them would seriously affect activity on the Internet. Existing applications wouldn’t be
touched, but new browsers would be needed to run applications based on the modifi ed
 pillars. The whole world of users would split in two—those who can change browsers and
those who can’t or don’t want to change browsers. For the Web, which owes its popularity to
being accessible to all, this is a nightmare scenario.

 The Web grew too quickly to allow people to consider the adequacy or limitations of its
 pillars. Or, put another way, people found it easier to push the Web to the maximum instead
of planning for an infrastructure with more capabilities. On the other hand, the Web is public
and since 1993 it has not been the intellectual property of any company or organization.
Changes to it are possible, but only if they’re in compliance with accepted and recognized
standards.

 Note Despite the Java prefi x in its name, the JavaScript language has very little to do
with the popular Java language. JavaScript was designed to look like a simpler Java for
 nonexpert page authors—hence, the name. JavaScript is an interpreted, dynamic-binding,
and weakly typed language with fi rst-class functions. It has some light fl avors of object
 orientation, it’s not compiled and, maybe more importantly, it’s subject to the browser’s
 implementation.

 Created to add action to Web pages, and kept simple on purpose, the JavaScript language
perfectly met initial expectations for it, but it failed to exceed those expectations. That’s
why JavaScript is currently a pain in the neck for Web developers. But we can’t replace
it without breaking widely agreed upon and stable standards. This is a big part of the
Web paradox.

The Biggest Benefi t of AJAX

 What users want is a better experience, and not all Web applications and sites offer that.
For this reason, the world of the Web is moving toward AJAX.

 AJAX is defi nitely a plus for the Web.

 AJAX capabilities address the user’s experience in the broadest sense—by providing a
 continuous feel, fl icker-free updates, interface facilities, mashups, live data, and so on. AJAX
is the way that’s available to us to reinforce the tottering pillars safely and making them more
stable.

 AJAX is the only signifi cant plus we can afford. This limitation is not merely a matter of
 money or economics. We simply can’t get a new Web redesigned from the foundation
up and implemented without disrupting or just slowing down service. The Web is now a
 fundamental commodity. We all need it. No serious disruptions are allowed.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

12 Part I The (Much Needed) Facelift for the Old Web

What’s AJAX, Exactly?

 AJAX is not a technology. AJAX is not something you can install and run. AJAX doesn’t
 require any plug-in modules and is not browser specifi c. Quite the opposite: the key to the
success of AJAX is that virtually any browsers released in the past fi ve years are great hosts
for AJAX-based applications. So what’s AJAX?

 AJAX is a blanket term. As disappointing as it may sound, the term AJAX was coined
 primarily as a concise and cool way to sell a set of technologies and a new approach to Web
development.

 What initially was simply a clever approach to building pages, scaled to the size of an entire
real-world Web front end, turned out to be the incarnation of a new paradigm for writing
Web applications. The AJAX approach is probably destined to last for many years or until
conditions exist for rebuilding the Web from scratch (whichever comes fi rst).

A New Way to Do Web Programming

 AJAX refers to using a set of specifi c browser technologies to build pages. It’s amazing to note
that all these technologies are nothing really new. We’re talking about browser technologies
that have been around for ten years now—XMLHttpRequest, DOM, and JavaScript.

 It’s simple to use these technologies to implement a given set of features in an individual page.
It’s much more complex to build an entire application according to the AJAX paradigm. Why?

 Especially with the advent of ASP.NET, the world of Web programming has been simplifi ed.
Frameworks offer a thick layer of abstraction over basic HTML and HTTP interaction, and
the ASP.NET development environment makes it easy with automated code generation and
remote debugging. And all of it works on the assumption that the browser sends an HTML
form to get back an HTML page, one of the foundational pillars of the Web.

 It’s relatively easy to change the paradigm for a single feature in a single page. It can be quite
 diffi cult, however, to extend the new paradigm to the whole application. Why? Because the world
of AJAX programming has not been similarly simplifi ed—most AJAX implementations (at least
effi cient and properly designed implementations) are still built by hand. But this will change.

The XMLHttpRequest Object

 As I mentioned, AJAX stands for Asynchronous JavaScript and XML. Five years after its
 introduction, and from a more technological point of view, we can say that the fi rst part of
the acronym is acceptable but the second part is arguable.

 The AJAX development model revolves around one common software element—the
XMLHttpRequest object. The availability of this object in most browsers’ object model is the
key to the current ubiquity and success of AJAX applications.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 1 Under the Umbrella of AJAX 13

 Originally introduced with Internet Explorer 5.0, the XMLHttpRequest object is an internal
object that the browser publishes to its scripting engine. In this way, the script code found in
any client page—typically, JavaScript code—can invoke the object and take advantage of its
functionality.

 The XMLHttpRequest object allows script code to send HTTP requests and handle their
responses. Functionally speaking, and despite the XML in the name, the XMLHttpRequest
 object is nothing more than a tiny object model to place HTTP calls via script in a
 non-browser-led way. The object is scripted from client JavaScript code and, with regard to
the browser, it operates asynchronously. (With respect to your code, on the other hand, the
call can be either synchronous or asynchronous.)

 When a connection to a Web server is led by the browser, the current page displayed to the
user is lost. The page becomes inactive and frozen as soon as the user clicks to submit the
content to some remote server.

 With XMLHttpRequest, conversely, developers directly control the placement and outcome
of the request. The actual mechanics of the request/response don’t make any difference to
the user. However, the possibility of using XMLHttpRequest enables Web developers to build
features that ultimately deliver a much better user experience.

The Document Object Model

 In addition to XMLHttpRequest, a second technology contributes to making AJAX so effective
and attractive—the availability of an object model that exposes the current content of the
page in an updatable manner.

 Microsoft pioneered updatable Web pages in the late 1990s. With Internet Explorer 4.0
 (released back in 1997), Microsoft introduced Dynamic HTML (DHTML), which is a powerful
combination of HTML, style sheets, and scripts that allows programmatic changes to any
displayed page. Several companies since then have worked out their own DHTML object
model—often referred to as the Browser Object Model (BOM). The W3C committee worked
hard to get vendors to agree on an interoperable and language-neutral solution for exposing
Web pages through an updatable programming interface. The result is the Document Object
Model (DOM) as opposed to a browser-specifi c BOM.

 The DOM is a platform-independent and language-neutral representation of the contents of
a Web page that scripts can access and use to modify the content, structure, and style of the
document.

 Note I’d even dare say that without an updatable DOM the whole AJAX approach wouldn’t be
possible at all. Using XMLHttpRequest, a developer can asynchronously connect to a URL and
grab some fresh data. However, how could she integrate such fresh data into the current page
without an updatable representation of the page? That’s why the DOM is required and critical.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

14 Part I The (Much Needed) Facelift for the Old Web

The Paradigm Shift

 We’re all witnessing (and as users, we’re also contributing) to an interesting and fairly unique
phenomenon—the Web is undergoing an epochal change right before our eyes as a result of
our actions.

 Only ten years ago, the majority of developers considered an application far too serious a
thing to reduce it to an unordered mix of script and markup code. In the late 1990s, the cost
of an application was sweat, blood, tears, and endless debugging sessions. There was neither
honor nor fame for the “real” programmer in writing Web applications.

 As drastic as it might sound, the Web revolutionized the concept of an application. Now
AJAX is revolutionizing the concept of a Web application.

 The Web will always remain separate from the desktop, but Web applications are going to
enter a new age.

The Pages-for-Forms Model

 Today, communication between the browser and the Web server occurs through forms.
A form is a collection of values stored in a group of HTML input fi elds.

 From a user’s perspective, the transition occurs through pages. A page is a piece of HTML
markup returned by the Web server. Each user action that originates a new request for the
server results in a new page (or a revamped version of the current page) being downloaded
and displayed.

 The browser-to-server communication employs the classic HTTP protocol. As is widely
known, the HTTP protocol is stateless, which means that each request is not related to the
next and no state is automatically maintained, neither on the client nor on the server.

 The state objects developers know and use in, say, ASP.NET are nothing more than an
 abstraction provided by the server programming environment. The state objects developers
know and use on the client (for example, cookies) are nothing more than an abstraction
 provided by the client browser.

 The Pages-for-Forms model was just fi ne in the beginning of the Web age when pages
 contained little more than formatted text, hyperlinks, and maybe some images. The success
of the Web has prompted users to ask for increasingly more powerful features, and it has
led developers and designers to create more sophisticated services and graphics. As a result,
 today’s pages are heavy and cumbersome.

 Given the current architecture of Web applications, each user action requires a complete
 redraw of the page. Subsequently, heavier pages render out slowly and produce a good
deal of fl ickering. Projected to the whole set of pages in a large, portal-like application, this
 mechanism is perfect for causing great frustration to the poor end user.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 1 Under the Umbrella of AJAX 15

 Because nobody is willing to come back to the scanty, “Times New Roman” pages of the
 mid-1990s, a new Web model is possible only via a smarter form of interaction between the
client and the Web server.

The Data-for-Data Model

 For too many years, the old Web model survived because of compatibility and reach. To
 accommodate businesses, Web sites had to be as easy as possible to reach for any potential
customer. From a technology perspective, the AJAX revolution was ready to start back in
1999 when XMLHttpRequest and an updatable DOM were designed and implemented.

 It took a few more years instead.

 This happened because for quite some time only high-end browsers (also known as rich,
 up-level browsers) provided support for both XMLHttpRequest and an updatable DOM. For a
long time, only companies that could exercise strict control over the capabilities of the client
browsers were able to choose the AJAX model for their sites. In short, for too long a rich
browser also has meant a browser with too limited reach. For too long, using such a browser
defi nitely has been a bad choice for most businesses.

 Around 2004, many people realized at the same time that, perhaps because of a rare astral
convergence, 90 percent of the browsers available in the marketplace were supporting the
same set of features—in particular, both XMLHttpRequest and an updatable DOM.

 This made it possible for Web architects and developers to set up the Data-for-Data
 interaction model. According to this model, a Web page puts plain data in the body of a
HTTP packet instead of inserting the content of an HTML form. And the Web server just
 returns plain data—not a whole new HTML page—as its response. Figure 1-2 offers a
 graphical view of the model.

AJAX layer

Browser

HTTP request

Response

JavaScriptJavaScript

FIGURE 1-2 The AJAX Web application model

http://lib.ommolketab.ir
http//lib.ommolketab.ir

16 Part I The (Much Needed) Facelift for the Old Web

 Some JavaScript code embedded in the client page triggers an HTTP request to the Web
server using XMLHttpRequest. When the response comes back, another piece of client code
parses it to some JavaScript object and, using DOM, integrates the new content in the current
page.

 From the user’s perspective, the operation takes place asynchronously, and the user can keep
on reading and scrolling the page without interruption.

 Important Is the Data-for-Data interaction model—the essence of AJAX—really a faster
model? Certainly, the Data-for-Data model moves around much less information than the classic
HTTP page response. However, the big issue is network latency, which is more signifi cant a factor
than the transmitted quantity of data. And network latency affects the Data-for-Data interaction
model because requested data is delayed. Moreover, the more roundtrips you make, the more
network latency affects your application (that is, the effects are additive). So what’s the point?

 Performance, though, is not only made of raw numbers. Where a user and a user interface are
concerned, the concept of performance morphs into the concept of perceived performance.
A user who can keep on working with a page will feel much better than one who cannot.
Therefore, data requests are made in the background and performed asynchronously. The user
never knows the data was requested, and the user interface never “freezes” while waiting for new
data. Most commonly, smaller portions of the page are independently updated, further providing
the feeling of (increasing) perceived performance.

 Is that all? As my old friend understood quite quickly, unfortunately XMLHttpRequest and an
 updatable DOM are only the starting point of a much longer revolution that necessarily will need
to touch on the architecture of pages and applications.

Refactoring to AJAX: Features, Pages, and Applications

 Gaining the ability to place asynchronous calls to the Web server while bypassing the browser’s
standard procedure is only the fi rst, and largely preliminary, step to building an AJAX site.

 When the benefi ts of the AJAX model are being discussed, often the following example is
given. Suppose you want to know the balance of your bank account or any other simple and
small piece of information. With the standard Web model, you submit a request to a server
URL and wait for a new page to be (downloaded and) served. Intertwined with advertising,
banners, graphics, menus, and disclaimers is the number you were looking for. With AJAX,
on the other hand, the page remains up and running (with all of its banners, menus, and
 disclaimers) and only the number is downloaded.

 Unfortunately, the example addresses only the feature level. It says nothing about the rest of
the page and the rest of the application.

 AJAX is a paradigm shift. And a paradigm shift always has a dramatic impact because it
 requires that people change their habits and embrace new and largely unknown practices.

 Refactoring is a key word in AJAX.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 1 Under the Umbrella of AJAX 17

 What should you refactor in your application? The whole application? Or only a bunch of
 individual pages? Or should you simply consider optimizing just one critical feature or two?

AJAX and New Web Projects

 After a decade of increasingly powerful tools and technologies designed for effective and
quick development of Web sites and applications (such as ASP, Microsoft Visual InterDev,
Dreamweaver, Java Server Pages, ASP.NET, and Microsoft Visual Studio), we’ve been pushed
into the AJAX age where no such tools exist.

 The world of AJAX development is not yet embraced by the tools you use. Everything you
need can be manually created; however, very few tools exist. This is the issue that project
leads (such as my old friend) and IT managers face when they get past the initial enthusiasm.

 As I see things, there are three ways to approach AJAX. One is to just add AJAX capabilities to
an existing solution or to a new solution designed in the traditional, non-AJAX way. Another
is sticking to the Web paradigm (HTML and HTTP) but rethinking the architecture of the
 application and its implementation. This means learning new patterns, facing new issues,
solving new problems, and using new tools. The third approach is to take the route of a
Rich Internet Application (RIA)—a desktop-like application hosted in the Web browser via a
 plug-in.

 I’m going to give a quick strategic overview of these three approaches in the rest of the
chapter. The remainder of this book goes into more detail about a particular approach. Part I,
“The (Much Needed) Facelift for the Old Web,” covers the fi rst approach in more technical
depth. The second approach and RIAs are covered in Part II, “Power to the Client.”

Adding AJAX Capabilities

 Most Web sites today might be signifi cantly improved in terms of usability and user experience
with a touch of AJAX. As mentioned, the core of the AJAX model is an internal browser object
and the DOM. The interface of both is defi ned according to standards—still a de facto standard
for XMLHttpRequest and an offi cial W3C standard for the DOM.

 This means that adding AJAX capabilities requires only a bit of script code. You can add AJAX
capabilities to any page regardless of the underlying programming platform—be it classic
ASP, ASP.NET, Java Server Pages, PHP, or plain HTML.

Selective Updates

 Adding AJAX capabilities entails working at the page level, when not directly at the feature
level. The scaffolding of the application doesn’t change, and so it is for the inspiring
 principles and overall architecture.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

18 Part I The (Much Needed) Facelift for the Old Web

 With this approach, you apply selective updates to the parts of a page that need a facelift.
You do so by employing smart tricks to work around the classic behavior of the page.

 Vendors provide some tools to make this process quick and effective. Effectiveness here is a
critical parameter. A solution that applies AJAX updates to a Web page can be based only on
JavaScript and must work well in a cross-browser manner.

 The perfect example of what “adding AJAX capabilities” means is ASP.NET partial rendering,
which I’ll cover in Chapter 2, “The Easy Way to AJAX.” Other possibilities exist, too. For example,
vendors of UI suites such as Telerik, Infragistics, ComponentArt, and Gaiaware offer their own
products that, in the ASP.NET world, allow you to reuse your skills entirely while getting a fully
AJAX-enabled presentation layer.

Costs and Benefi ts

 By simply adding AJAX capabilities, you don’t turn your architecture upside down and you
save signifi cant time and costs. It’s by far the cheapest option, and it still gets you a Web site
that is perceived to be much faster than the old one.

 For developers, the impact is limited, as all they have to learn is how to use a small set of new
controls and features. Adding AJAX capabilities is the most conservative choice; take what
you have and make it better.

 In my opinion, this approach is ideal for existing Web sites when it’s ascertained they need
some updating. If you have a complex site and are concerned about the architecture, this
option is probably as good (or as bad) as others. Selecting a different option certainly gives
rise to additional issues, such as possible shortage of skills, higher learning curves, and longer
development times. Like everything else in AJAX, there’s a tradeoff to be considered.

 Note Currently, the world of the Web is evolving and it’s hard to see which products and
 approaches will emerge from the process. For what it’s worth, this strategy has no signifi cant
future.

 It certainly can be used, and it still makes your site work for you; however, the underlying
 approach is a dead end. It’s likely that in a few years new tools will be created to make building
AJAX solutions a walk in the park in much the same way it is today with classic ASP.NET.

Architecture Is the Concern

 If ASP.NET fully embraces the old model of the Web, which is centered around JavaScript
and HTML, should we conclude that ASP.NET is dead? And if so, what does the future have in
store for us?

 The ASP.NET application model based on postbacks and view states is, technologically
s peaking, probably a thing of the past. However, this doesn’t mean that thousands of pages

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 1 Under the Umbrella of AJAX 19

will be wiped out tomorrow and that hundreds of applications must be rewritten. More
simply, a superior model is coming out that is more powerful both technologically and
architecturally.

 To take full advantage of the AJAX model, a different architecture is necessary and new
 patterns must be taken into account.

Some Common Architectural Concerns

 If adding AJAX capabilities to an existing site doesn’t have a huge impact on any of the parts
involved, why on earth should we ever consider a different approach?

 In ASP.NET, the classic Web model is implemented through the Web Forms API. The Web
Forms API is based on the concept of the postback. The current page contains just one HTML
form and one or more submit buttons. When the user clicks, the content is uploaded and the
new page is downloaded. The new page is created based on the content that page controls
have stored in the view state and based on the outcomes of the postback event.

 The Web Forms model was created to make Windows and Web development nearly the same
in the .NET platform. ASP.NET also has the merit of bringing a new family of developers to
the arena of building Web applications. For years, Web development has required a radically
different set of skills (such as HTML, JavaScript, DOM, and CSS) than smart C++ developers
possessed. With ASP.NET, building Web applications has become a matter of doing plain old
programming with a fi rst-class language such as C#.

 The Web Forms model sacrifi ced, almost entirely, JavaScript and client-side interaction. With
AJAX, instead, we are moving back to the original characteristics of the Web. And the Web
Forms model is less adequate every day.

 The Web Forms model can still work if you plan to add only a few new features. It stops
working if you want to design a more interactive application from scratch.

Two Tiers and a Data Format

 The original enthusiasm for AJAX tends to wane when project leads fi gure out what it takes
to build a true AJAX application from the ground up. They can see the benefi ts (interactivity,
responsiveness, user experience, performance, and scalability) of an AJAX application, but
they fi nd it diffi cult to plan for it. Why? Most often it’s the lack of tools and a clear vision of
the fi nal architecture.

 Don’t be too surprised to see different people talk about AJAX with different, often opposite,
feelings—one saying it is the next big cool thing, and the other replying that its rate of adoption
is slowing down.

 AJAX is a plus and a necessity. But it requires a new architecture, new patterns, and a new
ad hoc platform from vendors, including Microsoft. This is coming, but slowly.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

20 Part I The (Much Needed) Facelift for the Old Web

 Architecturally speaking, an AJAX application is not really complex. It’s based on two layers:
a client tier and a server tier. The front end sends requests to the back tier, and the back tier
sends responses back. (See Figure 1-3.)

AJAX Client Tier

AJAX Server Tier

JSON

JSON

HTTP

FIGURE 1-3 The classic AJAX architecture

 The client tier contains JavaScript code and makes intensive use of the browser’s native
XMLHttpRequest object. The server tier represents a collection of public HTTP endpoints
enabled to receive calls from the client browser. The server tier tops everything else the
 application back end needs to have—business logic, domain model, services, workfl ows,
and data access layer.

JSON as the Fat-Free Alternative to XML

 As mentioned, AJAX is all about the browser and Web server exchanging plain data over
HTTP requests. The word data, though, is far too generic. What kind of data goes into the
body of the packet? And how is it serialized?

 A form of serialization/deserialization is required to exchange data over the wire. In the
 classic Web model, the content of the HTML form is serialized as shown here:

fieldname1=value1&fieldname2=value2& ... & fieldnameN=valueN

 In a nutshell, it represents a collection of name/value pairs. The value, though, needs to be a
string or, at least, a string representation of a given typed value or object.

 All browsers know how to serialize the content of an HTML form to such a string and how
to deserialize back. When you set up a mechanism that bypasses the browser, you are also
charged with this additional serialization task.

 For many years, XML has been touted as the lingua franca of the Web. XML can be used to
express any value using proper schemas. And XML is also part of the acronym AJAX. But XML
is not really suited for the task. A better option does exist—JavaScript Object Notation, or
JSON for short.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 1 Under the Umbrella of AJAX 21

 Since the early days of AJAX, JSON has been the de facto standard for browsers and Web
servers to exchange data. Just like XML, JSON is text based, but it’s simpler and more human
readable than full XML.

 JSON doesn’t compete with XML everywhere XML is used. However, as far as browser/Web
server communication is concerned, it is a more lightweight and effi cient alternative to XML.
JSON is not as good as XML in terms of interoperability, but interoperability is not the point
here. Conversely, JSON is much quicker to parse than XML and gets you JavaScript-typed
objects rather than untyped DOM trees as the XML DOM. Finally, to use XML from JavaScript
you need a client-side XML parser in addition to the JavaScript parser, and XML parser
 programmable interfaces aren’t as standardized as those of JavaScript and the HTML DOM.

 Writing your own XML parser in JavaScript is certainly not impossible, but it’s not really
practical. Standard XML is too big for the purpose because it includes a schema, validation,
processing instructions, comments, and white spaces. If we reduce XML to something simpler
that just includes attributes and nodes, all that we have is JSON that uses angle brackets
 instead of curly brackets. Here’s a sample JSON serialization that represents an object with a
property id holding a value of 5:

{id=”5”}

 And here’s the same code segment in “simple” XML:

<id>5</id>

 The key reason for choosing JSON is that a free JSON parser already exists in all browsers—
JavaScript’s eval function. In summary, when an AJAX request is made, the JavaScript code
in the page prepares the JSON string and fi lls the body of the HTTP packet. On the way
back, the JavaScript code in the page uses the eval function to evaluate the returned JSON
 response to some JavaScript object for further use.

 To use JSON—and subsequently enable AJAX—you need ad hoc endpoints on the server
side that understand and manage JSON strings. These endpoints can be anything the
 available technologies let you create—ASMX Web services, WCF services, REST services,
ADO.NET services, as well as plain HTTP handlers, ISAPI, or CGI applications.

Costs and Benefi ts

 An AJAX architecture doesn’t seem much different from a classic multitier architecture.
So why does it seem so problematic to embrace it? After all, it should be nothing new to
many architects and developers. Really?

 The success of ASP.NET and the power of visual tools and wizards in Visual Studio made it so
convenient to skim over architectural considerations. Data source controls, autogenerated
typed DataSets, and catch-all code-behind page classes are too often used arbitrarily just to

http://lib.ommolketab.ir
http//lib.ommolketab.ir

22 Part I The (Much Needed) Facelift for the Old Web

make it work. The extreme fl exibility of the ASP.NET platform makes it work in one way or
another. However, when architectural changes are required, the costs increase signifi cantly.

 A well-architected ASP.NET application already has its own business layer neatly separated
from the rest that incorporates the data model, application services, and workfl ows.
A well-architected ASP.NET application has its own data access layer and model of data that
the business layer works with. Finally, the “perfect” ASP.NET application includes a UI layer
(typically, in the code-behind class) where application-specifi c, server-side operations are
orchestrated.

 If you already have all of this, how much will AJAX cost you? You probably need an extra layer
of AJAX-specifi c services (which I’ll discuss in Chapter 3, “ AJAX Architectures,”) and some
 enrichment on client pages (as discussed in Part II). It’s not a picnic, but also it’s not a tragedy.

 If you don’t have any of this already, well, you just need to rearchitect the application.

The Case for Rich Internet Applications

 AJAX remains a Web feature, and Web solutions are characterized by reach. If your solution
has to have wide reach and penetration, it has to work with the Web. And AJAX makes for
a richer Web.

 AJAX, though, will never be applied to building desktop applications for the Web. AJAX will
remain limited to HTML for presentation and JavaScript for logic—more power to the client,
but within the constraints of HTML and JavaScript.

 An RIA, instead, gives you a fl avor of a desktop application because it leverages the
 programming power of more powerful and tailor-made technologies for presentation and
logic. An RIA comes out of a browser extension—a plug-in—that basically adds a virtual
machine to produce the output. For years, Adobe Flash has taken this road to success and
gained adoption mostly because it was the only RIA—even though it was not particularly
easy to program.

 In 2008, Microsoft released Silverlight. Silverlight is a cross-browser and cross-platform
 environment for building RIAs using C# as the programming language and a subset of
Windows Presentation Foundation (WPF) as the delivery format for the presentation.
Silverlight defi nitely provides the right tools for rich applications.

Reach vs. Rich

 Should you opt for an AJAX solution or for Silverlight? What’s the role of AJAX now that
Silverlight is here? Will Silverlight be the killer of AJAX?

 Let’s face it. The Web is a whole step backward in terms of interactivity and responsiveness if
you compare it to desktop solutions. But the Web compensates for this limitation with wide
reach and ease of deployment.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 1 Under the Umbrella of AJAX 23

 If, in your vision, the factor reach is the predominant factor, go for a Web-based AJAX
 solution. If the winner is the factor richness, you should take the Silverlight route.

RIA Offers Better HTML

 Today’s Web pages use HTML to express their contents. But what’s HTML, exactly? Is it a
 document format? Or is it an application delivery format? If you look at the origins of the
Web, you should conclude that HTML is a document format designed to contain information,
some images, and, more importantly, links to other documents.

 This is not the way we use HTML today.

 Today, we use HTML pages with tons of tables, CSS styles, and zillions of images sometimes
used for the pictures they contain, but often also used to add compelling separators and
rounded and shadowed borders to otherwise ugly and squared blocks of markup.

 We actually use HTML for publishing and as a delivery format for our user interfaces.
Admittedly, HTML is not the perfect fi t for this job. To be a good application delivery format,
HTML lacks at least a richer layout model, built-in graphics, and media capabilities.

 An RIA platform such as Silverlight has a lot more to offer. In particular, Silverlight offers a
large subset of WPF—the presentation platform introduced with the .NET Framework 3.0.
It gives you layout tools, advanced input, rich controls, graphics, media, animation, data
 binding, and styles.

 For a developer, building a Silverlight application is not much different than writing a
 desktop application. Forget about HTML and its unique features to be learned and digested
before proceeding.

 Note Silverlight allows you to write WPF-style applications to run over the Web. In what way
is this different from having the desktop over the Web? First, a Silverlight application requires
a host HTML page and a browser plug-in. Second, a Silverlight application remains a partially
trusted, sandboxed application. Third, a Silverlight application doesn’t have full access to all of
the available classes offered by the .NET Framework.

RIA Offers Better JavaScript

 Rich Internet solutions are all about doing more work on the client. However, as long as the
client environment remains the Web browser, the only tool we can leverage to do such work
is JavaScript.

 As mentioned, JavaScript is an interpreted language subject to the implementation that each
distinct browser provides for it and limited by an object-based—not object-oriented—syntax
and a weak type system.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

24 Part I The (Much Needed) Facelift for the Old Web

 Some libraries exist to give developers a better coding experience with JavaScript, but it’ll
never be like having the luxury of a compiled language in the browser. Silverlight gets you
exactly this through its embedded core CLR, which supports C#, Visual Basic .NET, and even
dynamic languages such as Ruby and Python.

 Note A fourth approach exists to design AJAX solutions in the real world. It’s not based on
ASP.NET or analogous Web frameworks. The approach consists of writing the Web front end
in an intermediate language and then processing the classes through an ad hoc compiler that
will produce HTML and JavaScript. This approach was fi rst heralded by Google with the Google
Web Toolkit (GWT). With GWT, you write your application front end using Java classes and the
GWT compiler then parses the code and produces equivalent Web pages made of HTML and
JavaScript.

 Backbase is another product in the same category. With Backbase, you write code in a custom
language and the code is then translated to HTML and JavaScript before being executed.
To express the expected behavior, Backbase offers a dual application programming interface
(API): a declarative XML-based API and a procedural JavaScript API. The code is processed by
a browser-hosted runtime, which renders it to the DOM. Widgets and JavaScript utilities are
 available to simplify and speed up coding.

 Microsoft Volta is a product currently under development that gets inspiration from this model
and extends it to other non-Web platforms such as Silverlight and Windows Forms.

 Summary

 Most attentive developers in the community have been developing around interactive and
highly responsive Web technologies since the late 1990s. So both AJAX and Silverlight are
not brand new ideas. Indirect evidence of this statement is the fact that all real technologies
behind AJAX, and even the plug-in technology behind Silverlight, are nothing new.

 So what stopped such highly responsive technologies from gaining success and adoption for
all this time? The primary factor that slowed down XMLHttpRequest and DOM was certainly
the lack of cross-browser support for these techniques, which hindered them from reaching
a critical mass of acceptance and use. For this reason, cutting-edge client technologies have
been pushed to the corner for some years, where they’ve been forced to observe the success
of ASP.NET and the triumph of the classic Web model.

 A signifi cant share of these applications today would need a bit of facelift to look better and
run faster, and the addition of some AJAX capabilities is the perfect remedy. However, AJAX
is a much more pervasive paradigm that might inspire a complete redesign of some other
applications.

 When it comes to this, though, many wonder whether AJAX is ready for prime time. As of today,
the ASP.NET platform provides decent, but not excellent, support for AJAX development. AJAX
support for ASP.NET excels in the task of building the server tier of an AJAX application, but it is

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 1 Under the Umbrella of AJAX 25

insuffi cient as far as the presentation layer is concerned. The next version of ASP.NET is expected
to fi ll the gap signifi cantly.

 Silverlight is another option to improve the Web. The challenge of Silverlight is to emulate
the Microsoft Windows interface and build a desktop-like application with the same
 language and presentation technologies. Silverlight is an attractive option that in one way or
another falls under the umbrella of AJAX and rich presentation for the Web.

 In summary, the Web needs a facelift and AJAX is the new paradigm to evolve and regenerate
the Web. You can revamp the Web in three ways. You can simply spice up existing solutions with
new features. You can refactor the architecture to meet new requirements and employ new
design patterns. Or you can build a truly rich Web application using Silverlight. The tradeoff is
reach versus richness.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 27

Chapter 2

The Easy Way to AJAX

 If you know how to spend less than you get, you have the philosopher’s stone.

 —Benjamin Franklin

 The core technology of the whole AJAX paradigm is the XMLHttpRequest object. Any AJAX
frameworks you might happen to work with will use this object under the hood. If you end
up using a different application programming interface (API), well, it’s only an abstraction
layer built to overcome browser differences and simplify programming.

 By this defi nition, the programming model of AJAX applications seems to be clear and
 unquestionable. You write code that captures client-side events, conduct an operation on the
server via XMLHttpRequest, get the results, and update the user interface. All the client-side
programming is done through JavaScript. Sounds exciting? It is, but the devil is in the details.

 The XMLHttpRequest object alone won’t take you far. An approach to AJAX based on
 scripting an HTTP automation object is effective only when applied to individual features or
bottlenecks in existing pages. It doesn’t scale if you try to apply it to large applications—it’s
too expensive in terms of skills to acquire it and time to implement it. On the other hand,
XMLHttpRequest is a small but critical object; it’s a building block and it’s essential.

 AJAX applications require a change of paradigm and some imagination. When it comes
to rewriting Web applications for AJAX, nearly all aspects of the application need to be
redesigned, reconsidered, refactored, and often rewritten. Opting for AJAX all the way
through might be too much for too many companies, and it’s not a step you should take
lightheartedly.

 There has to be a simpler and easier way to apply AJAX patterns.

 A simpler way to write AJAX applications involves maintaining, to a large extent, the same
ASP.NET architecture based on view state and postbacks. A simpler way to work with AJAX
involves using a new set of server controls that surround an area of the page and refresh that
 independently from the rest of the page.

 A simpler way to AJAX passes through a component that, using XMLHttpRequest, could
 exchange HTML messages with the Web server having the same page URL as its server-side
counterpart. In ASP.NET AJAX, this approach goes under the name of partial rendering.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

28 Part I The (Much Needed) Facelift for the Old Web

The ASP.NET AJAX Infrastructure

 ASP.NET partial rendering is centered around a new container control—the UpdatePanel
control—that you use to surround portions of existing pages, or portions of new pages
 developed with the usual programming model of ASP.NET. A postback request that
 originates within any of these updatable regions is captured by the UpdatePanel control and
resolved asynchronously using XMLHttpRequest. In this way, fresh HTML is downloaded for
the selected region, bypassing the browser and reducing page fl ickering.

 Partial rendering is offered natively in ASP.NET 3.5 and also works in ASP.NET 2.0 through a
separate download—the ASP.NET AJAX Extensions. (For more information, see the following
Web site: http://www.asp.net/downloads.)

 Partial rendering is the tip of the iceberg, though. It is built on top of the Microsoft ASP.NET
AJAX infrastructure that includes a few other server controls—primarily, the ScriptManager
control—and a general-purpose JavaScript library.

 Before delving deep into the mechanics and design goals of partial rendering, let’s take a
closer look at the underlying infrastructure.

The Page’s Script Manager

 I can never say this enough: If you want AJAX, be ready to write (or import) a lot of JavaScript
code. AJAX involves doing more work on the client. For a Web application, the client is the
browser, and the browser can be programmed only by using JavaScript (with the obvious
 exception of special plug-ins, such as Adobe Flash or Silverlight).

 So JavaScript is important, but who writes all the (nontrivial) code you need? It might be you;
more likely, it might be some third-party vendor, some organization behind an open-source
project or, why not, just Microsoft.

 For a variety of reasons (both cultural and historical), a large share of developers have a love/
hate relationship with JavaScript. Some even feel sick solely at the appearance of the <script>
tag. Others prefer to write an entire application of tens of thousands of lines of code in
JavaScript.

 To keep everybody happy and productive, the emerging form of compromise consists of
hiding JavaScript from view when you use AJAX in a simple form. It sounds like a reasonable
approach. In a simple form, like in partial rendering, AJAX is just an extension to the classic
application model of ASP.NET. And JavaScript doesn’t play a central role in classic ASP.NET.
So although JavaScript is necessary for AJAX to work, minimizing the developer’s exposure to
JavaScript is defi nitely a gentle touch.

 In ASP.NET, the ScriptManager control is a multifaceted new server control that silently
 manages most of the script code around an AJAX page.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 2 The Easy Way to AJAX 29

The ScriptManager Control

 ScriptManager is by far the most important control in the server infrastructure of ASP.NET
AJAX because it performs a number of essential tasks. For example, the ScriptManager
 control manages and delivers common script resources, such as the fi les that form the
Microsoft JavaScript client library. It also enables or disables general features such as partial
rendering, page method calls, and history management. The ScriptManager is also the
component that triggers the creation of JavaScript proxies for invoking Web services and
Windows Communication Foundation (WCF) services from within a client page.

 Regardless of its numerous capabilities, the ScriptManager control is primarily a helper
 control made available for the convenience of an army of ASP.NET developers. It represents
a sort of declarative interface for a number of common tasks in an ASP.NET AJAX page. As
we’ll see in more detail in just a moment, you can certainly link script fi les to a page using
the plain old HTML <script> tag. However, if you do it through the ScriptManager control,
you have—free of charge—additional services, such as automatic support for localized and
debugged versions of the same script. To link the Microsoft JavaScript client library to a page,
you can certainly use the <script> tag again and make it point to all the fi les in the library
that you need. However, by simply dropping a ScriptManager control in the page, you have it
for free and without needing to have any intimate knowledge of the library details.

 The following code shows the simplest and most common way to insert the script manager
in an ASP.NET page:

<asp:ScriptManager runat="server" ID="ScriptManager1" />

 The control produces no user interface, works exclusively on the server, and doesn’t add any
extra bytes to the page download.

 The control should be considered as a sort of script console in the page; as such, you don’t
need (and don’t want) to have multiple instances of it in the same page. If multiple script
managers are defi ned in the same page, you are going to get an exception.

 Let’s learn more about the main services the ScriptManager control provides.

 Important What about using the ScriptManager control in master pages? Should you defi ne
and confi gure the script manager in the master and let all content pages inherit it? And what if
one content page out of, say, 300 pages needs a different confi guration?

 The suggested practice is to place ScriptManager in the master page using the most common
confi guration (that is, using the most commonly valid values for its properties). Next, when you
need to write a content page that requires different settings, you get a proxy for the manager
and enter changes through the proxy. The proxy is a control named ScriptManagerProxy. From
a syntax standpoint, it’s allowed to have ScriptManager in the master and ScriptManagerProxy
in the content page. And the proxy can overwrite settings defi ned in the manager. Note,
though, that the ScriptManagerProxy supports only a subset of the properties defi ned on the
ScriptManager control. To override just one of the manager’s properties that are not replicated

http://lib.ommolketab.ir
http//lib.ommolketab.ir

30 Part I The (Much Needed) Facelift for the Old Web

through the proxy, you might want to write some code in the Page_Load event of the page and
access the local script manager instance through the following code:

// Find a reference to the script manager defined for this page

ScriptManager proxy = ScriptManager.GetCurrent(this);

 Once you hold the reference to the real manager, you can enter your changes safely. Note that
the same ScriptManagerProxy control uses this technique internally.

Logistics for Partial Rendering

 The ScriptManager control orchestrates partial rendering. It exposes a Boolean property—the
EnablePartialRendering property—through which developers can enable and disable partial
 rendering on a given page. Partial rendering is enabled by default. As a result, the ScriptManager
injects ad hoc pieces of script code in the HTML of the host page to initialize the partial
 rendering, client-side engine.

 In addition, the ScriptManager control exposes a server-side interface for various tasks related
to partial rendering. For example, it offers a property—the AsyncPostBackSourceElementID
property—to check whether the current postback is because of a standard ASP.NET request
or a partial rendering request. Likewise, it lets you set a timeout for the partial rendering
 operation and offers to capture any resulting exception.

 The ScriptManager also lets you programmatically register triggers for updatable panels, and
it supplies a mechanism to return server-generated data along with the updated markup.
Last, but certainly not least, the script manager is also responsible for coordinating the
 process that generates the fragment of fresh HTML to send to the requesting browser.

Scripts, Just Served Better

 By extensively relying on client capabilities, ASP.NET AJAX requires a lot of script code. The
only HTML-supported way of linking script fi les to a page is the <script> tag and its src
 attribute. The ScriptManager control can be used to save yourself the direct manipulation
of quite a few <script> tags and also obtain richer features, such as built-in management of
 localized and debug versions of scripts.

 You use the Scripts collection to tell the ScriptManager about the scripts you want to add
to the page. The collection can be accessed either declaratively or programmatically. The
 following example illustrates the script-loading model you can use to load optional and
 custom scripts:

<asp:ScriptManager runat="server" ID="ScriptManager1">

 <Scripts>

 <asp:ScriptReference

 Name="YourCompany.ScriptLibrary.Timer.js"

 Assembly="YourCompany.ScriptLib" />

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 2 The Easy Way to AJAX 31

 <asp:ScriptReference

 Path="~/Scripts/MyFavoriteLib.js" />

 </Scripts>

</asp:ScriptManager>

 You can reference script fi les, including ASP.NET AJAX system scripts, either from an assembly
or from a disk fi le.

 One of the additional free services offered by ScriptManager that isn’t offered by the classic
<script> tag is the ability to automatically link debug or release script fi les, as appropriate.
ASP.NET uses a special naming convention to distinguish between debug and release script fi les.
Given a release script fi le named script.js, its debug version is expected to be fi led as script.debug.js.

 In general, the main difference between debug and release scripts is that the release scripts
remove unnecessary blank characters, comments, trace statements, and assertions. Normally,
the burden of switching the links to debug and release scripts when needed in a page falls
upon the developer. The ScriptManager control takes on this burden and, based on run-time
conditions, picks debug scripts when the debug attribute of the <compilation> section in the
web.confi g fi le is true and picks release scripts otherwise.

 Script fi les can have localizable elements such as text strings for messages and user-interface
elements. When the EnableScriptLocalization property of the ScriptManager control is set to
true and the page’s UI culture is set, the script manager automatically retrieves script fi les for
the current culture, if there are any, and if properly registered. Localization is driven by the
UICulture attribute in the @Page directive and the UICulture property in the Page class:

<%@ Page Language="C#" UICulture="it-IT" ... %>

 This information is not enough for the ScriptManager to pick up localized scripts. You also
need to specify which UI cultures you intend to support for each referenced script. You
 indicate the supported cultures through the ResourceUICultures property on individual script
references. The property is a comma-separated string of culture symbols. Here’s an example:

<asp:ScriptManager ID="ScriptManager1" runat="server" EnableScriptLocalization="true">

 <Scripts>

 <asp:ScriptReference Path="Person.js" ResourceUICultures="it-IT, en-US" />

 </Scripts>

</asp:ScriptManager>

 Note that ResourceUICultures is ignored if the Path attribute is not specifi ed on the script
reference tag. At this point, if the page requires a script named person.js and the UI culture
is set to it-IT, the ScriptManager object attempts to retrieve a script fi le named person.it-IT.js
from the indicated path.

 Note If you use the ScriptManager control, you don’t have to worry about linking the Microsoft
JavaScript client library. In addition to the user-requested scripts, the ScriptManager control
 automatically emits in the client page any ASP.NET AJAX required scripts.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

32 Part I The (Much Needed) Facelift for the Old Web

Scripts, Just Made Global

 Globalization is a programming feature that refers to the code’s ability to support multiple
cultures. A request processed on the server has a number of ways to get and set the
 current culture settings. For example, you can use the Culture attribute on the @Page
 directive, the Culture property on the Page class, or perhaps the <globalization> section in
the web.confi g fi le. How can you access the same information on the client from JavaScript?

 When the EnableScriptGlobalization property is true, the ScriptManager emits proper script
code that sets up a client-side global Sys.CultureInfo object that JavaScript classes can
consume to display their contents in a culture-based way. Only a few methods and a few
JavaScript objects support globalization. In particular, it will work for the localeFormat method
of Date, String, and Number types. Custom JavaScript classes, though, can be made global by
simply calling into these methods or accepting a Sys.CultureInfo object in their signatures.

 The following line of code shows how to get the culture-specifi c format for a short date
representation:

var dateFormat = Sys.CultureInfo.CurrentCulture.dateTimeFormat.ShortDatePattern;

 The ScriptManager control reads globalization data through server-side objects and then
 arranges and emits a JavaScript array that contains it all.

 Note The class Page has two properties with a similar name that are both necessary when you
want to support multiple languages in a page. The properties are Culture and UICulture. Both
properties are of type String, but they can only be assigned some predefi ned culture names and
not just any strings. What’s the purpose of having both?

 The two properties refer to distinct capabilities and affect different areas of the user interface.
The Culture property affects the results of functions such as date, number, and currency
 formatting. The UICulture property, on the other hand, determines the localized resource fi le
from which page resources are loaded.

Adding Service References to Pages

 The ScriptManager control also plays a role in creating the conditions for some client-side
JavaScript function to invoke a remote Web or WCF service. The Services section of the
 control hosts references to .asmx or .svc endpoints that refer to ASP.NET XML Web services
and WCF services, respectively.

<asp:ScriptManager ID="ScriptManager1" runat="server">

 <Services>

 <asp:ServiceReference Path="~/LiveQuotes.svc" />

 <asp:ServiceReference Path="~/DataService.asmx" />

 </Services>

</asp:ScriptManager>

 The Services section also has a programmatic counterpart in the Services collection exposed
by the ScriptManager control.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 2 The Easy Way to AJAX 33

 Invoking a service is merely a matter of arranging an HTTP request to a public service
 endpoint using the proper content type, headers, and body format. As far as AJAX-enabled
Web and WCF services are concerned, the body format is expressed as a JSON string. This
means that you need code that prepares the request and serializes input data to JSON. On
the way back, you also need some code that parses the JSON response into JavaScript objects.

 A proxy class does just this. In JavaScript, as well as in classic server-side ASP.NET, to
 invoke a remote service you need a proxy. When processing a ServiceReference object, the
ScriptManager control just emits a <script> tag and makes it point to a service URL that
 generates the much-needed JavaScript proxy, as shown here:

<script src="/LiveQuotes.svc/js" type="text/javascript"></script>

 The service infrastructure (both for .asmx and .svc endpoints) understands the special syntax
of adding /js to the URL and generates and returns a JavaScript proxy for the service.

Defi ning History Points Within Pages

 An AJAX application tends to replace classic URL-to-URL browser navigation with script-driven
HTTP requests. The history feature of an AJAX application doesn’t necessarily coincide with
the list of visited URLs. More likely, the history of an AJAX application is a list of action points
scattered through one or a few pages. In a nutshell, AJAX breaks the assumption that the
 previous state of a Web application coincides with the previously visited URL.

 Clearly, this is a big change.

 The net effect is that all the user interaction with an AJAX page produces a single entry in the
browser’s history. Hence, when you click the Back button you are redirected to the previously
visited distinct URL, which might be an entirely new page—even a page in a different
application.

 There’s no simple solution to this problem; there are only hacks to work around it. The most
common hack that works is adding a hash string to the URL whenever the page moves to a
state that you want to track. A hash is a string appended to the URL prefi xed by a pound sign
(#) symbol. Here’s a sample AJAX-trackable URL:

http://www.contoso.com/default.aspx#s=1

 When you change the URL to simply add or modify a hash, the browser doesn’t navigate
away from the current page. In addition, it also adds the new URL to its history list. As a
result, the user now can navigate back and forward to the URL with the hash and can even
bookmark it.

 In the .NET Framework 3.5 Service Pack 1, the ScriptManager control provides an ad hoc
API to add a hash to the URL when the fl ow reaches a particular point. Adding a hash to the
 current URL at a given point is a practice referred to as “adding a history point.”

http://lib.ommolketab.ir
http//lib.ommolketab.ir

34 Part I The (Much Needed) Facelift for the Old Web

 A history point refers to a state of the page that is signifi cant for the page and the
 application. This state is so signifi cant that you want to bookmark it for a future reference.
For example, if you offer a pageable control such as a DetailsView, any page change is a
 possible history point. Here’s the corresponding code:

protected void DetailsView1_PageIndexChanged(object sender, EventArgs e)

{

 // Get significant information to create the hash (that is, the page index)

 string state = (sender as DetailsView).PageIndex.ToString();

 // Add the history point(s) (Name/Value)

 ScriptManager.GetCurrent(this).AddHistoryPoint("s", state);

 . . .

}

 A history point is a set of name/value pairs, where the name is an arbitrary but unique string
and the value is a string-based representation of any information that will let you restore the
bookmarked state.

 Whenever the browser navigates to a URL with an attached hash, the ScriptManager control
detects it and fi res a Navigate event. By handling this event, you read the hash, fi gure out the
page state to restore, and restore it.

protected void ScriptManager1_Navigate(object sender, HistoryEventArgs e){

 string key = e.State.AllKeys[0]; // First key

 string state = String.Empty;

 if (String.Equals(key, "s"))

 {

 // Get the hash and convert to an integer (uses an extension method)

 state = e.State[key];

 int pageIndex = state.ToInt32();

 // Restore the state

 DetailsView1.PageIndex = pageIndex;

 }

}

 In classic Back/Forward navigation, the browser retrieves and restores the page. In AJAX
navigation, the browser can provide us only with the hash string we associated with a visited
pseudo-URL. It’s up to the page to re-create the desired state based on the information
stored in the hash.

 History management is disabled by default. To turn it on, you must set the property
EnableHistory of the ScriptManager to true. Finally, note that in ASP.NET AJAX managing
 history also can be done from within JavaScript in the client side.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 2 The Easy Way to AJAX 35

The Microsoft JavaScript Library

No AJAX capability would ever be possible without a client-side engine right in the page.
With today’s browsers, a similar engine can be written only in JavaScript. The page engine
governs the execution of out-of-band calls, provides a fi rst level of validation of input data,
implements simple calculations, caches frequently used data, operates as a controller behind
the user’s view, and supplies developers more powerful tools (and more abstraction) to
 manipulate the page DOM and arrange needed operations.

To do any serious programming on the client side of a Web application, therefore, you need
a rich, cross-browser extension to the core JavaScript language and the standard DOM. Enter
the Microsoft JavaScript client library.

A Richer JavaScript Is Here

The JavaScript package you fi nd in most browsers includes primitive types and a few smarter
types to manage regular expressions and custom objects. Beyond that, a client page mostly
uses JavaScript to program the page DOM. The DOM represents the programming gateway
to the page constituent elements, but it’s not designed to provide programming facilities
such as those you can fi nd in a general-purpose library.

The Microsoft JavaScript client library is a set of JavaScript fi les that, all together, power up
the language with object-oriented features while hiding differences in the various browsers’
implementation of JavaScript and in the DOM implementations. The library also offers a
stub for the XMLHttpRequest object and facilities for handling events—a feature that often
 browsers implement in different ways.

You can get the Microsoft JavaScript client library from http://www.asp.net/downloads. The
library is made of three fi les, as described in Table 2-1.

TABLE 2-1 Script Files Forming the Microsoft JavaScript Client Library

Script Description

MicrosoftAjax.js Core part of the library. It contains object-oriented extensions, the
network stack, and a number of facilities, such as those for tracing and
debugging.

MicrosoftAjaxWebForms.js This fi le contains script functions to support ASP.NET partial rendering.
In particular, it defi nes the client-side engine and programming
 interface for partial rendering.

MicrosoftAjaxTimer.js This fi le contains the client-side programming interface of the Timer
server control, a built-in control that comes with ASP.NET AJAX. The
control creates a timer on the client and makes it post back upon
 timeout.

The library is self-contained in the sense that it has no dependencies other than on the
JavaScript language and standard interfaces of the DOM. This means that after you have
loaded the library in a page, you can start using it regardless of the type of browser you’re

Script Description

http://lib.ommolketab.ir
http//lib.ommolketab.ir

36 Part I The (Much Needed) Facelift for the Old Web

using. (OK, the library, itself, takes care of the many little differences that exist between
browsers’ DOM implementation.) It also means that you can use the Microsoft JavaScript
 library regardless of the technology used to write the host page. It doesn’t have to be
ASP.NET with AJAX extensions. It can be the classic ASP.NET, ASP, plain HTML, or even PHP.
Just link the fi les in the page and go.

 Note Why, instead of discussing script-based ways to enhance JavaScript, aren’t we all planning
a new and standard version of the language? JavaScript is currently versioned only as 1.2 and is
probably still in its infancy.

 A 2.0 version of JavaScript is still in the works, but a general agreement on the features to
 implement is far from being reached. Since the beginning, JavaScript has been the language
for quick-and-dirty-but-especially-quick things and tricks. It has always been good enough for
 everything that was attempted with it, which basically is the main reason for its limited growth.
You only make the effort to change things when something dire forces you to.

Pros and Cons of the JavaScript Language

 Introduced around 1995 to add more action to HTML pages, the JavaScript language was not
expressly designed for developers. Rather, it was devised as a tool for Web designers to script
page elements and styles.

 JavaScript is not a classic object-oriented language, and its objects are different in nature
than those you work with in languages such as C#. In C#, an object is the instance of a class,
but in JavaScript there’s no explicit idea of a class. In a true object-oriented language, a class
is a template for object creation and defi nes the properties and methods an object will have.
Once defi ned, these properties and methods are set in stone. You can’t manipulate an object
by adding or removing properties or methods at runtime. In JavaScript, conversely, an object
is a sort of dictionary. It’s a collection of <string, object> pairs that can be modifi ed at any
time through its prototype.

 JavaScript also pays for the lack of great development tools and subtle differences between
browsers in the implementation of the language engine and DOM representation.

 For all these reasons, not many developers really like JavaScript and few can write high-quality
JavaScript code. It seems easy and trivial to do, but it’s much tougher than one might think at fi rst.

 On the other hand, JavaScript is a mature and consolidated language. Its dynamic-binding
capability makes it extremely powerful in the right hands. Successful libraries such as Dojo,
jQuery, Prototype, Script.aculo.us, and Yahoo UI are solid proof of its usefulness.

Adding Object-Orientation to JavaScript

 The most important objective of the Microsoft JavaScript client library is adding a stronger
sense of object orientation to JavaScript. This is accomplished by adding some type-system
extensions and the notions of namespace, inheritance, and interface.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 2 The Easy Way to AJAX 37

 Inheritance, in particular, is obtained through the prototype property of JavaScript objects.
Encapsulation, on the other hand, depends on the model used to create (pseudo) classes. If
the class results from a single function (closure), encapsulation is total; if a prototype-based
model is used, encapsulation is purely nominal.

 As mentioned, JavaScript classes you get through the Microsoft JavaScript library are not
real classes. They’re simply JavaScript objects that group together other objects, including
 functions. They’re, in a sense, pseudo-classes. We’ll cover programming aspects of the
Microsoft JavaScript library in Chapter 4, “A Better and Richer JavaScript.”

 Note Where are we headed as far as Web programming is concerned? If you’re a developer
who feels sick when exposed to JavaScript for too long, the next couple of years might be hard
for you.

 It seems that at least in the near future we’ll be using more plain HTML, much more JavaScript,
and fewer server controls. For years, server controls have been the primary and preferred tool
for building Web pages with ASP.NET. Server controls, though, are barely confi gurable black
boxes as far as their HTML output is concerned. If their HTML doesn’t fully work for you (not
 accessible enough, not easy to style, not XHTML compliant, or whatever), it’s hard to change.
For this reason, we’re predicting a return to using plain HTML and cascading style sheets (CSS)
to style. Full control over HTML is what Web people want. We’ll return to this topic in Chapter 5,
“JavaScript Libraries,” to discuss the possible evolution of server controls, from HTML producer to
script code producer.

Partial Rendering

 The problem with today’s Web pages is that they are cumbersome. Or should I more
 elegantly say, rich? Such pages take a while to download and refresh. And having a signifi cant
set of interactive features, they tend to refresh quite often. The result is that their users spend
a lot of time just waiting for the browser’s window to redraw.

 This waste of time would even be valuable if only the new content could justify it. Instead, for
the most part, the new content is the old content with some very small exceptions. Fact is, in
 nearly all postbacks only a small fraction of the page is really updated, but the whole page is
served.

 After all, this is just the reason that led to the introduction of the AJAX paradigm. The AJAX
paradigm, though, might be expensive to apply all the way through. In the real world, a
 postback-based control like the UpdatePanel control turns out to be really handy.

The UpdatePanel Control

 Let’s suppose you want to minimize page refreshes by using the XMLHttpRequest object. You
write some JavaScript code that intercepts, say, a button click and then places a call to some
URL exposed by the application—for example, a custom HTTP handler. When the response is

http://lib.ommolketab.ir
http//lib.ommolketab.ir

38 Part I The (Much Needed) Facelift for the Old Web

received, the same JavaScript code parses it, extracts usable data, and updates the DOM. This
is how it works in theory and in all public demos of the AJAX paradigm.

 In the real world, you have no ready-made URL to invoke that can return just the data you
want. You have to create it, and you have to put code behind it. This code must be factored
out of the existing mainstream and moved from, say, a button click event handler to a
 separate function. In this way, you can invoke the code easily from the invoked HTTP handler.
And what about input and output parameters? They must be marshaled from JavaScript to
.NET and vice versa. Your code is also responsible for that.

 As you can see, using XMLHttpRequest in the real world requires a nontrivial redesign of each
page and likely of the whole application.

Motivation for Partial Rendering

 Partial rendering is an interesting form of compromise between a pure AJAX approach and the
existing ASP.NET codebase. The idea behind partial rendering is that you wrap any portions of
the page that might be updated by some user in an ad hoc panel control. When a postback
that refreshes that panel is requested, some special code executes that hooks up the postback
process and returns only the delta of the page that has changed. That same special code then
will take care of updating the current DOM tree with the fresh content just downloaded.

 You don’t need to change anything in your server-side code. A postback always occurs, and
the page life cycle is entirely preserved. The only difference between a partial rendering
postback (sometimes referred to as async postback) and a classic postback is the involvement
of the browser. The browser does it all in a classic postback model; the browser is bypassed in
an async postback and doesn’t directly manage the request from start to fi nish.

 The impact of partial rendering on existing code is close to zero. All that you need to
learn is how to use a small set of new server controls—UpdatePanel, ScriptManager, and
UpdateProgress. No new application architecture is required, and no code refactoring needs
to be done. At the same time, by maintaining the classic ASP.NET application model, partial
rendering doesn’t deliver you the full power of AJAX. (See the upcoming section “Shades of
Partial Rendering.”)

The Syntax at a Glance

 The UpdatePanel control is a container control defi ned in the System.Web.Extensions
 assembly. It belongs specifi cally to the System.Web.UI namespace. The control class is
 declared as follows:

public class UpdatePanel : Control

{

. . .

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 2 The Easy Way to AJAX 39

 Although it’s logically similar to the classic ASP.NET Panel control, the UpdatePanel control
differs from the classic panel control in a number of respects. In particular, it doesn’t derive
from Panel and, subsequently, it doesn’t feature the same set of capabilities as ASP.NET
 panels, such as scrolling, styling, wrapping, and content management. The UpdatePanel
 control derives directly from Control, meaning that it acts as a mere AJAX-aware container of
child controls and provides no UI-related facilities.

 To use partial rendering in an ASP.NET page, you place one or more UpdatePanel controls
and use them to surround a group of contiguous controls that might be subject to updates
during the page lifetime, as shown here:

 <asp:UpdatePanel runat="server" ID="UpdatePanel1">

 <ContentTemplate>

 <%--

 This region of the page can be updated separately from the rest.

 You only have to configure how and when.

 --%>

 </ContentTemplate>

 <Triggers>

 <%--

 List here server-side events that will cause the content

 of this panel to update asynchronously.

 --%>

 </Triggers>

</asp:UpdatePanel>

 In addition, you need to add a ScriptManager control to the page. That’s the essence of
 partial rendering. And it just magically works. Well, not just magically, but it works.

 Each UpdatePanel must be associated with a set of triggers that determine when the content
of the panel will be refreshed. A trigger is essentially a server-side event handled through a
postback. A typical trigger is the Click event of a Button control or the SelectedIndexChanged
event of a DropDownList control with the autopostback feature enabled.

 Note At this point, a common thought shows up in many developers’ minds. Wouldn’t it suffi ce
to surround the whole body of the page with an UpdatePanel control?

 If you do this, it certainly works. However, let’s consider possible drawbacks. By having a single
UpdatePanel control to wrap the whole page, you receive a partial rendering response that has
nearly the same size as a classic ASP.NET postback. So it won’t certainly be worse than in classic
ASP.NET. In addition, partial rendering gives your users the pleasure of a continuous experience
with the page—no wait, no full refresh, no fl ickering.

 The point is that with limited extra effort, you can do much better and limit the response
 returned for each update to just a fraction of the page size, making better use of bandwidth.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

40 Part I The (Much Needed) Facelift for the Old Web

Mechanics of Partial Rendering

 A partial rendering operation is always triggered by a postback request, such as when the user clicks
a submit button, clicks a hyperlink button, or changes the selection in an autopostback list control.
This means that the browser kicks in and starts the procedure for a regular form submission.

 The HTML 4.0 DOM standard states that a compliant browser must fi re a submit event to its
JavaScript scripting engine before opening the socket and letting the HTTP packet go. This is
a key point.

 When partial rendering is enabled on a page, the ScriptManager control emits ad hoc script
code that just registers a built-in handler for the submit event on the (single) ASP.NET page
form. The following script code actually triggers the magic of partial rendering. You can fi nd
it in the HTML produced by any ASP.NET page where partial rendering is enabled.

<script type="text/javascript">

//<![CDATA[

Sys.WebForms.PageRequestManager._initialize(

 'ctl00$ScriptManager1', document.getElementById('Form1'));

//]]>

</script>

 Sys.WebForms.PageRequestManager is a JavaScript object defi ned in the Microsoft JavaScript
client library. (The ScriptManager control therefore adds a reference to the library, too.) In
the code snippet, the _initialize method registers a handler for the submit event of the Form1
HTML form element. The built-in handler is defi ned in the Microsoft JavaScript client library.

 First, the handler cancels the browser request, thus preventing the browser from killing the
present UI and HTML page. Next, it rewrites the content of the captured HTML form to add
some extra information and then conducts the request in person by placing a JavaScript
call via XMLHttpRequest. Figure 2-1 provides a comparison of classic ASP.NET and A SP.NET
 partial rendering.

Browser

Web Server

HTML
form

HTML
page

Classic form
submission

model

Classic ASP.NET

HTML
form

Browser

JavaScript Page
Request Manager

Web Server

Modified
HTML form

Tailor-made
response

XML
HTTP

Request

ASP.NET Partial
Rendering

Direct DOM
updates via
JavaScript

FIGURE 2-1 High-level schema of a partial rendering call

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 2 The Easy Way to AJAX 41

 In a partial rendering scenario, the size of the HTTP packet that is uploaded to the server
is slightly larger than in a classic postback scenario. This is because of the amount of extra
information to be passed to handle the partial rendering. In particular, the form submitted
in a partial rendering operation also includes the name of the instance of the ScriptManager
control that will govern the process on the server. Most of the time, this is the only extra
 information being passed.

Server-Side Partial Rendering

 The ASP.NET runtime doesn’t treat an asynchronous postback request differently from
a standard one. It fi nds a proper HTTP handler and sets it to work. The page life cycle
 continues as usual until rendering time approaches. This means that your code-behind class
will receive regular Init and Load events, the view state is properly deserialized, and state on
controls is restored and updated with posted data. The postback event is then executed, and
controls are further updated according to the results. At this point, you need to render out
some response for the caller.

 Did you remember I mentioned that an extra parameter gets added to the HTML form in an
asynchronous postback? Well, that extra parameter is just the ID of the ScriptManager that is
active on the page. Here’s an example of the extra parameter:

// The ID of the script manager is associated with the UpdatePanel to be refreshed

ScriptManager1=UpdatePanel1

 During the page life cycle, the page HTTP handler, somewhere in between the Init and Load
events, loops through the form’s parameter and matches IDs to server control instances. If a
valid match is found, the HTTP handler attempts to talk to the control through the members
of the IPostBackDataHandler interface—a standard ASP.NET interface that has been around
since the fi rst version of ASP.NET.

 The ScriptManager’s implementation of this interface saves in some internal state the list of
panels to be updated. Finally, at rendering time—precisely from its PreRender event handler,
the ScriptManager switches the rendering algorithm to a custom one that takes into account
only panels.

 The normal rendering algorithm for an ASP.NET page consists of a recursive visit of the
tree of controls, starting from the root of the page. In a partial rendering scenario, the
 modifi ed algorithm begins its recursive visit from the root of the UpdatePanel to refresh.
 Post-rendering steps (that is, serializing the new view state) are accomplished as usual and
are in no way different from a standard postback.

 The markup produced is serialized as text into a buffer using an internal record-based
 representation format. This string is the response written to the output stream and received
by the calling instance of XMLHttpRequest.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

42 Part I The (Much Needed) Facelift for the Old Web

 Important A partial rendering operation might involve multiple updatable panels. More
often than not, the need to refresh a second or third panel manifests during the execution
of server-side code. On purpose, the UpdatePanel control provides an Update method for
 programmatically ordering a refresh of the panel. The rendering algorithm simply looks at the
list of panels to update in the ScriptManager’s state and loops over them.

Role of View State

 As you can clearly see from Figure 2-1, partial rendering is just a smart trick to bypass the
browser and optimize the rendering of ASP.NET pages. Any other aspect of the ASP.NET
 application model remains intact, including view state.

 Too often belittled (mostly because of programmer misuse), the view state plays a key role
in the Web Forms model of ASP.NET. It’s the storage that allows you to write stateful code
over a stateless protocol. The impact of view state on well-designed pages is signifi cantly
less today than in the past. More exactly, the bad reputation of the view state grew out of
the fi rst version of ASP.NET and poorly designed pages. Starting with ASP.NET 2.0, Microsoft
largely improved the serialization algorithm, getting you an average 50 percent savings on
the view state size for any page. For well-designed pages, therefore, the size of the view state
these days is no longer a signifi cant issue.

 This said, with the view state on board, the size of a postback is much larger than with a
 specifi c, well-defi ned AJAX operation. Partial rendering is not immune from view state. If the
page has the view state enabled, the view state will be serialized back to the page and added
to the response along with the new markup.

 The view state served within a partial rendering operation is always the view state of the
whole page. In no case will the view state be limited to the subset of controls involved with
the update.

Smooth Page Updates

 After the generated response is served back to the page request manager in the browser’s
context (as shown in Figure 2-1), another piece of the Microsoft JavaScript library will take
care of parsing it up. The response looks like an array of records where each record might
refer to an UpdatePanel section, a hidden fi eld, or perhaps a block of server-generated data
to share with the JavaScript environment.

 Any UpdatePanel record is resolved by extracting the markup and attaching that to the
 corresponding <div> or tag in the DOM with a matching ID. The DOM update occurs
through the innerHTML property, as shown here:

document.getElementById("UpdatePanel1").innerHTML = markup;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 2 The Easy Way to AJAX 43

 Similarly, hidden fi elds are resolved by loading the new content into the matching DOM
 elements. Finally, server-generated data (referred to as data items) that needs to be loaded
into the JavaScript engine is copied into the state of the PageRequestManager object and
made available to JavaScript functions and event handlers. Figure 2-2 shows a graphical
 representation of the content received by the browser after a partial rendering operation.

FIGURE 2-2 Anatomy of a partial rendering response

 Note In Figure 2-2, you also see in the list of request headers an extra header that appears
only in case of partial rendering postbacks. It is the x-microsoftajax header set to a value of
Delta=true. If you’re writing a run-time module (for example, the HTTP module) and need to
distinguish regular and asynchronous postbacks, you can use that header as a discriminant. In a
run-time module, in fact, you have access only to the request object and you have none of the
ScriptManager facilities at hand. The header is your only help.

Programming Updatable Panels

 The UpdatePanel control has a fairly rich programming interface that boils down to three
main areas: conditional updates, programmatic updates, and dynamic templates.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

44 Part I The (Much Needed) Facelift for the Old Web

Conditional Updates

 If you use an UpdatePanel control as-is—that is, without setting any of its properties—you
get the following behavior:

■ Any postbacks originated by controls contained in the updatable panel will refresh the
panel.

■ Any other panel refresh originated in the page will refresh the page, too.

■ The subtree contained in the UpdatePanel control is rendered as an HTML block,
 namely within a <div> tag.

 In the real world, this behavior is rarely what you want. In particular, you might want to gain
much tighter control over the conditions that, if met, take the panel to refresh.

 Two properties are available to help. They are ChildrenAsTriggers and UpdateMode. The
former is a Boolean property and indicates whether child controls of an UpdatePanel act as
implicit triggers. By default, any child control is a potential trigger. As we’ll see in a moment,
any UpdatePanel can also have a separate list of explicit triggers. What happens if you set
ChildrenAsTriggers to false?

 In this case, any postback originated by child controls is processed as usual by the browser
and determines whether a full page refresh is needed. What’s the purpose? It gives you a
chance to enable only a few of the UpdatePanel’s child controls as (explicit) triggers.

 The UpdateMode property accepts only values from an enumerated type. Feasible values are
Always and Conditional, with the former being the default value. When you set the property
to Conditional, the panel stops refreshing with any partial rendering operation that goes
on within the page. It refreshes only if any of its triggers (both implicit and explicit) fi re. By
 properly using the UpdateMode property, you can reduce the payload of asynchronous
 postbacks as well as display up-to-date information without setting up a timer and polling
the server.

 As mentioned, you can associate an UpdatePanel control with a list of explicit triggers for the
refresh. Triggers can be defi ned either declaratively or programmatically. You add an event
trigger declaratively using the <Triggers> section of the UpdatePanel control:

<asp:UpdatePanel runat="server" ID="UpdatePanel1" UpdateMode="Conditional">

 <ContentTemplate>

. . .

 </ContentTemplate>

 <Triggers>

 <asp:AsyncPostBackTrigger

 ControlID="DropDownList1"

 EventName="SelectedIndexChanged" />

 </Triggers>

</asp:UpdatePanel>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 2 The Easy Way to AJAX 45

 You need to specify two pieces of information for each trigger—the ID of the control to monitor,
and the name of the event to catch. It is essential to note that the AsyncPostBackTrigger component
is a server-side component that can work only on server-side events. The real trigger of the action
is on the client when the user clicks. This action originates a postback which, in turn, results in a
server-side event fi red against the controls in the ASP.NET page. These server-side events—not
 client events—can be caught in a partial rendering operation. In the previous code snippet, the
panel is refreshed when the selection changes on a drop-down list control named DropDownList1.

 Usually, the AsyncPostBackTrigger component points to controls placed outside the
UpdatePanel. However, if the panel has the ChildrenAsTriggers property set to false, it could
make sense for you to defi ne a child control of the UpdatePanel as the asynchronous trigger.

 Note You can register controls (typically, buttons) to perform an asynchronous postback instead
of a synchronous postback, which would update the entire page. This is what happens when you
invoke the RegisterAsyncPostBackControl method, as shown here:

 protected void Page_Load(object sender, EventArgs e)

{

 // When Button1 is clicked, a partial rendering operation occurs.

 ScriptManager1.RegisterAsyncPostBackControl(Button1);

}

 Reasonably, the control you pass as an argument should be a control not included in any
 updatable panels and not listed as a trigger—otherwise, why bother calling this method?
So which panel will be updated? If there’s just one update panel, that panel will be updated.
Otherwise, it’s up to you to indicate in the postback event handler which panel to update by
 using the Update method on the UpdatePanel control.

Commanding Programmatic Updates

 As mentioned, the content of an UpdatePanel control can be refreshed programmatically via
the Update method. Here’s the method’s signature:

public void Update()

 The method doesn’t take any special action itself but is limited to informing the script
 manager in the page that another panel has to be refreshed. You resort to using the method
if you have some server logic to determine whether an additional UpdatePanel control
should be updated as the side effect of an asynchronous postback.

 An invalid operation exception can be thrown from within the Update method in a couple
of well-known situations. One situation is if you call the method when the UpdateMode
 property of the UpdatePanel is set to Always. The exception is thrown in this case because a
method invocation prefi gures a conditional update—you do it when you need it—which is
just the opposite of what the Always value of the UpdateMode property indicates. The other
situation in which the exception is thrown is when the Update method is called during or
 after the page’s rendering stage.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

46 Part I The (Much Needed) Facelift for the Old Web

Dynamic Templates

 The content of an updatable panel is defi ned through a template property—the
ContentTemplate property. Just like any other template property in ASP.NET controls,
ContentTemplate can be set programmatically. Consider the following page fragment:

<asp:ScriptManager ID="ScriptManager1" runat="server" />

<asp:UpdatePanel ID="UpdatePanel1" runat="server">

 <%-- Left empty deliberately. Will be filled out programmatically --%>

</asp:UpdatePanel>

 In the PreInit event of the code-behind page, you can set the ContentTemplate
 programmatically, as shown here:

protected void Page_PreInit(object sender, EventArgs e)

{

 // You could also read the URL of the user control from a configuration file

 string ascx = "SomeUserControl.ascx";

 UpdatePanel1.ContentTemplate = this.LoadTemplate(ascx);

}

 You are not allowed to set the content template past the PreInit event. However, at any time
before the rendering stage, you can add child controls programmatically. Note that you
should use the following code:

LiteralControl lit = new LiteralControl("Test");

UpdatePanel1.ContentTemplateContainer.Controls.Add(lit);

 If you try to add a child control programmatically to the Controls collection of an
UpdatePanel directly—as you would probably try at fi rst—all that you get is a run-time
 exception. You should use the ContentTemplateContainer property instead. The reason is that
what you really want to do is add controls to or remove controls from the content template,
not add them to or remove them from the UpdatePanel itself.

Additional Capabilities

 You can use any number of UpdatePanel controls in your page. The only limitation might be
the total number of controls you end up having in the page. Likewise, UpdatePanel controls
can be freely nested.

 Because a partial rendering page doesn’t interfere much with the standard page life cycle,
any security barrier you might have in your application remains functional. The timing of an
asynchronous postback, in fact, is like that of a postback and occurs after all authentication
and authorization steps have been taken.

 Asynchronous pages are an ASP.NET feature designed to mitigate the impact of long-running
tasks. By fl agging as asynchronous a page that carries a potentially lengthy task, you instruct
the ASP.NET runtime to split the page execution in two parts—before and after the lengthy
task—picking twice an available thread from the pool. If you apply partial rendering to such a
page, it will behave just fi ne and in the same way as with a classic postback model.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 2 The Easy Way to AJAX 47

Note In this context, a lengthy task is a task started within a postback event handler that might
take awhile to complete. However, the server is required to return the page containing the
 results produced by this task to the browser. The task is expected to return some content to the
user regardless of the time it takes to produce those results. The problem with this operation is
that an ASP.NET thread will wait until the task terminates, which might pose scalability issues.
Asynchronous pages avoid this bottleneck and increase scalability.

 By default, the UpdatePanel wraps the HTML generated by its child controls with a <div> tag
named after the ID of the control. You switch to a inline tag by setting the property
RenderMode to Inline, whereas the default value is Block.

Minimizing Data Transfer

 The UpdatePanel control works with the idea of limiting the refresh of the page to only
the portions of it that are touched by the postback. A clear mapping between user actions
and portions of the page that are updated consequently is key to successfully adopting the
UpdatePanel control in an ASP.NET site.

Golden Rules for Placing UpdatePanels

 The fi rst practical step for successfully migrating page behavior to partial rendering entails
that you, given the expected behavior of the page, identify the portions of the page subject
to refresh. If you have, say, a complex table layout but only a small fragment of only one cell
changes in the page lifetime, there’s no reason to keep the whole table in an UpdatePanel
control. Only the server-side control that displays the modifi able text should be wrapped by
the panel.

 The portions of the page that you should consider to be candidates to be wrapped by an
UpdatePanel control should be as small as possible. They also should include the minimum
amount of markup and the fewest number of ASP.NET controls. Note, though, that you can’t
wrap in an UpdatePanel an incomplete chunk of HTML. For example, you can’t wrap a single
table row; you either wrap the entire table or the content of individual cells.

 The second step consists of associating each candidate region with a list of refresh
 conditions. You basically answer the question, “When does this region get updated?” After
you have compiled a list of candidate regions, and for each you have a list of refresh events,
you’re pretty much done.

 The fi nal step is mapping this information to UpdatePanel controls and triggers. If all the
regions you have identifi ed are disjointed, you’re fi ne. If not, you use properties and triggers
on the UpdatePanel control to obtain the expected page behavior, thereby minimizing the
impact of postbacks and page fl ickering.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

48 Part I The (Much Needed) Facelift for the Old Web

 If needed, updatable panels can be nested. There’s no syntax limitation to the levels of
nesting allowed. Just consider that any nested panel refreshes when its parent is refreshed,
 regardless of the settings.

 Let’s be honest. Identifying the perfect location for an UpdatePanel might not be a trivial
task. Covering a disjoint set of regions with a collection of UpdatePanels is not always
 possible. Multiple smaller UpdatePanels are better than one big panel—if you can fi nd
a disjoint set of regions to update individually. However, given the number of properties
 supported by the UpdatePanel control, there’s always room for a good compromise between
user experience and performance.

Crunching the Numbers for Partial Rendering

 The size of the partial rendering response is made of two components: the delta of the page
and view state. With proper techniques like those just described, you can minimize the size of
the delta. No partial rendering techniques help you to minimize the size of the view state.

 To minimize the size of the view state, you resort to classic ASP.NET techniques that share
nothing with partial rendering. You can, for instance, disable the view state for the entire
page or for some of the constituent controls. Disabling the view state requires a different
programming style because all controls will no longer retain their previous state. In many
cases, disabling the view state for popular controls such as Button and TextBox doesn’t even
require developers to change anything in their code. The same can be said for controls, such
as the GridView, with a lot of style properties.

 Even though the overall size of the view state is much smaller than in the fi rst version of
ASP.NET, it’s always a chunk of data that is not used on the client and that is uploaded and
 downloaded with each request.

 Note Starting with ASP.NET 2.0, Microsoft introduces control state within the view state. Control
state refers to some control properties that are saved to the view state whether the view state
is disabled or not. Each control is responsible for defi ning its own control state and, as a page
 developer, you can’t modify that. This means that even if you disable the view state altogether,
an extra block of data is always attached to the response as the page view state.

Shades of Partial Rendering

 Partial rendering is defi nitely the easiest way to add AJAX capabilities to an ASP.NET
Web site. It has a relatively low impact on the structure of existing pages, doesn’t require
 signifi cant new skills, doesn’t require exposure to JavaScript, and leaves the application model
intact. Advocates of a pure AJAX approach might say that partial rendering completely
 misses the whole point of AJAX. And such a statement is not a false one.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 2 The Easy Way to AJAX 49

 Haven’t we said that AJAX is key because it puts forth a new programming paradigm for
building Web applications? And now we’re back to giving kudos to partial rendering—an
 approach that admittedly maintains the old programming model of classic Web applications?
What’s the point?

 Overall, partial rendering is only one possible way to approach AJAX. It preserves most of
your current investments and is relatively cheap to implement. Partial rendering just makes
your pages refresh in a smarter way, thus delivering the same pleasant effect of a canonical
AJAX feature.

 Partial rendering doesn’t turn your existing application into a true AJAX application. There’s
no architectural new point in partial rendering. It’s a great technique to quickly update legacy
applications, and it’s an excellent choice when you lack the time, skills, or budget to move on
and redesign the application. But in a good number of cases, an improved user interface and
optimized rendering are all that your users demand. So partial rendering would perfectly fi t in.

 On the other hand, building true AJAX applications where all the presentation logic lives
on the client written in JavaScript is not trivial either, no matter how much help third-party
 libraries might offer.

 In the end, you should be aware of the structural limitations that partial rendering has. You
might want to start with partial rendering to improve your pages and then move on to other,
more purely AJAX, solutions to fi x particular bottlenecks that still remain. My advice is that a
pure AJAX approach where a lot of JavaScript is involved is a solution that should be considered
carefully; and that you should have good reasons for both adopting or refusing it.

 JavaScript will never make you productive; a server-side application model will never give
you the responsiveness and interactivity users loudly demand. Finding the right balance and
making the correct tradeoffs is entirely up to you and your creativity. AJAX is cool, but AJAX
is structurally a tough tradeoff to make.

 Important Why is it so darned hard to write pure AJAX applications? AJAX applications are all
about the client, and the client is JavaScript and HTML. Both have signifi cant limitations in light
of the complexity of applications these days.

 JavaScript is an interpreted language, and it does not have a particularly modern syntax.
Additionally, JavaScript is subject to the implementation that browsers provide. So a feature
might be fl aky in one browser and super-optimized in another. Originally born as a document
format, HTML is used more as an application delivery format. But for this purpose, HTML is
 simply inadequate because it lacks strong, built-in graphics and layout capabilities. Silverlight 2.0
with its embedded Common Language Runtime (CLR), support for managed languages, and full
support for Windows Presentation Foundation (WPF) tries to address both issues.

User Feedback

 Partial rendering is a small and simple AJAX framework living within the boundaries of classic
ASP.NET. It offers a great way to add basic AJAX capabilities to ASP.NET pages, but it also suffers

http://lib.ommolketab.ir
http//lib.ommolketab.ir

50 Part I The (Much Needed) Facelift for the Old Web

from a number of limitations. I’ll present three areas of functionality where partial rendering
just can’t do better than it does—and it can’t be improved because of some structural
 limitations. Let’s start with the visual feedback provided to the user during update operations.

 In a classic Web scenario, each postback requires a full page refresh. Every time the user
makes a request to the server, she’s mentally prepared to wait. The browser freezes the
 current page, making it inaccessible to users. Operations then follow one another, but only
one executes at a time.

 There’s often no need for showing an update progress panel. The browser’s progress bar
shown in the status bar is normally enough. Some sites—commonly travel Web sites—strive
to offer a slightly better experience by using some nice tricks, such as using script to display
an animated GIF (image) as the new page loads up. In any case, the user has clues of what’s
going on. In an AJAX scenario, this is different.

 The mechanics of the asynchronous postback keeps the displayed page up and running.
So the biggest improvement of AJAX—the continuous feel with the page—can become its
major weakness if not handled properly. Having the computer engaged in a potentially long
task might be problematic. Will the user resist the temptation of reclicking that button over
and over again? Will the user patiently wait for the results to show up? Finally, will the user be
frustrated and annoyed by waiting without any clue of what’s going on?

 The partial rendering API comes with a helper control—the UpdateProgress control—that has
been specifi cally designed to provide user feedback while one or more UpdatePanel controls
are being updated. The control just displays a panel with some information about what is
going on. You use CSS to style and position the panel at your leisure—for example, you can
center it within the page.

 The user interface associated with an UpdateProgress control is displayed and hidden by the
ASP.NET AJAX framework and doesn’t require you to do any work on your own. Here’s the
structure of an UpdateProgress control:

<asp:UpdateProgress runat="server" ID="UpdateProgress1">

 <ProgressTemplate>

. . .

 </ProgressTemplate>

</asp:UpdateProgress>

 The ASP.NET AJAX framework displays the contents of the ProgressTemplate property while
the user is waiting for a panel to update. You can specify the template either declaratively
or programmatically. In the latter case, you assign the property any object that implements
the ITemplate interface. For the former situation, you can easily specify the progress control’s
markup declaratively. You can place any combination of controls in the progress template.
However, most of the time, you’ll probably just put some text there and an animated GIF.
(See Figure 2-3.)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 2 The Easy Way to AJAX 51

FIGURE 2-3 The UpdateProgress control in action

 A nice feature to mention about the UpdateProgress control is its DisplayAfter property.
Through this property, you can control how long the framework should wait before popping
up the progress panel. By default, the property is set to 0.5 seconds—meaning that if a
partial rendering operation hasn’t terminated after 0.5 seconds, a progress panel will be
 displayed to notify the user about what the system is doing.

 The UpdateProgress control is much less enticing than you might think at fi rst. The control
is great at showing some free progress messages, but it’s not designed to be a gauge
 component. It’s merely a container for the user-defi ned panel that the ScriptManager control
shows before the panel refresh begins and that it hides immediately after completion. If
you’re looking for a real gauge bar to monitor the progress of a server-side task, partial
rendering and the UpdateProgress control are not the right tools. As you’ll see in a moment,
polling is one of the main drawbacks of partial rendering and polling is unavoidable for
 monitoring server tasks from the client.

 Likewise, the Cancel button you see in the fi gure is less powerful than expected. It’s a
 client-side button with a piece of JavaScript code attached. Here’s the typical code it contains:

function abortPostBack()

{

 var manager = Sys.WebForms.PageRequestManager.getInstance();

 if (manager.get_isInAsyncPostBack())

 manager.abortPostBack();

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

52 Part I The (Much Needed) Facelift for the Old Web

 The Sys.WebForms.PageRequestManager object is a JavaScript class that governs the
 execution of any partial rendering calls. In the preceding code, this object checks whether an
asynchronous postback is going on and then just kills it. As you can imagine, canceling the
pending operation has no impact at all on what is happening on the server. All that it does is
close the socket through which the browser will receive any response. In other words, if your
postback triggered a transaction, canceling the client request won’t stop, let alone roll back,
that transaction.

Disabling Visual Elements During Updates

 Any AJAX operation, including partial rendering operations, requires you to take care of the
user interface to prevent users from clicking where they’re not allowed to. This is an entirely
new problem that Web developers face, but it’s an important one.

 In addition, with partial rendering, disabling input elements is almost a necessity. Any
 clicking, in fact, that fi res a postback while another one is pending would abort the current
call. No facilities in ASP.NET AJAX provide for a queue where postback requests are
 accumulated to be further serviced sequentially.

Issues with Concurrent Calls

 Partial rendering doesn’t support concurrent asynchronous postbacks. This means that you
are not allowed to have two asynchronous postbacks going on at the same time. Partial
 rendering bypasses the standard browser mechanism that handles an HTTP request. It hooks
up the submit event of the form, cuts the standard browser handler out, and fi nally places
the HTTP request using XMLHttpRequest.

 The request that reaches the Web server differs from a regular ASP.NET request only in that
it has an extra HTTP header. The request sends in the contents of the posting form, including
the view-state hidden fi eld. The response is not pure HTML but represents a text record
where each fi eld describes the new status of a page element—update panels, hidden fi elds,
and scripts to run on loading.

 As you can see, the underlying model of partial rendering is still the model of classic ASP.
NET pages. It’s a sort of stop-and-go model where the users posts back, waits for a while,
and then receives a new page. While waiting for the next page, there’s not much the user can
do. Only one server operation per session occurs at a time. Partial rendering is only a smarter
way of implementing the old model.

 From a technical standpoint, the major factor that prevents multiple asynchronous postbacks
is the persistence of the view-state information. When two requests go, both send out the
same copy of the view state, but each reasonably returns a different view state. Which one is
good for the page, then?

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 2 The Easy Way to AJAX 53

 Whenever a request for an asynchronous postback is raised, the partial rendering framework
checks whether another operation is pending. If so, by default, it silently kills the ongoing
request to make room for the new one—a last-win discipline.

 This fact has a clear impact on developers. In fact, you should always modify the user
 interface to ensure that users can’t start a second operation before the fi rst is terminated.
Otherwise, the fi rst operation is aborted in favor of the second. This happens even when the
two operations are logically unrelated.

 Note When concurrent calls are necessary, you should consider moving that page (if not
the whole application) to a more AJAX-oriented design. Alternatively, you can consider
 implementing that feature within the page using some of the features covered in the next
 chapter, such as page methods or script services.

Issues with Polling

 Among other things, AJAX pages are popular because they can deliver the client information
in a timely manner. A page starts polling a remote URL, grabs fresh information, and returns
it to the client for the actual display. Implemented via partial rendering, polling is subject
to being interrupted when the user starts a new partial rendering operation that restarts
 automatically upon the response of the previous poll request.

 Polling can’t just happen effectively with partial rendering. If you need to poll a given server
resource, do that via direct XMLHttpRequest calls.

AJAX and JavaScript Injections

 For architects of Web solutions, fi nding the right way to AJAX today might not be trivial.
The overall community of experts is still exploring the main street for getting to AJAX and
 attempting to fi nd an approach that is clearly superior.

 ASP.NET partial rendering is defi nitely an easy way to AJAX, although it has some drawbacks
and architectural limitations. At the end of the day, AJAX is about having more action on the
client. And more action on the client is only possible via more JavaScript in Web pages.

 To embrace AJAX on a large scale, you probably need a framework—be it the ASP.NET
 partial rendering or a commercial framework such as those you can get from companies
like Gaiaware, Telerik, Infragistics, ComponentArt, and so on. However, it’s always possible,
and in some cases even desirable, to have certain features in pages implemented (or
 re-implemented) using JavaScript and plain calls to XMLHttpRequest.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

54 Part I The (Much Needed) Facelift for the Old Web

 Spot injections of JavaScript code can improve the performance of your pages today without
requiring you to invest (and, to some extent, also bet) on a framework. No perfect AJAX
framework exists today—be aware of this.

Remote Methods

 The whole AJAX movement started when people realized that a powerful combination
of XMLHttpRequest and DOM manipulation could refresh portions of pages nicely and
 effectively. Keep in mind that this approach, although functional, is very simple and doesn’t
scale to large applications with hundreds of pages and complex transition workfl ows. On the
other hand, this is just the class of applications for which classic ASP.NET rocks.

 Simple and direct calls to remote HTTP endpoints, on the other hand, can bring to the client
just the data you need in a particular situation without spinning up the whole page life cycle
and rendering the full page. You can program HTTP direct calls in various ways. You can
use the XMLHttpRequest object directly; you can use the simplifi ed programming interface
 offered by popular JavaScript libraries such as Prototype or jQuery; or you can use page
methods in ASP.NET AJAX.

Page Methods

 Page methods are public and static methods exposed by the code-behind class of an ASP.
NET page. These methods are decorated with the WebMethod attribute. These methods can
be invoked directly via JavaScript and return their response to a JavaScript callback. Methods
are static and, as such, they have no access to controls in the page and communicate without
view state.

 Using page methods saves you from the burden of creating and publishing a Web or a WCF
service that is JSON enabled. At the same time, though, it binds you to having page-scoped
methods that can’t be called from within a page different from the one where they are
 defi ned. Here’s a sample page method:

public class TestPage : System.Web.UI.Page

{

 [WebMethod]

 public static DateTime GetTime()

 {

 return DateTime.Now;

 }

}

 You can use any data type in the signature of page methods, including .NET Framework
types as well as user-defi ned types. All types will be transparently JSON-serialized during
each call.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 2 The Easy Way to AJAX 55

 The page class where you defi ne methods might be the direct code-behind class or, better
yet, a parent class. In this way, in the parent class you can implement the contract of the
 public server API and keep it somewhat separated from the rest of event handlers and
 methods that are specifi c to the page life cycle and behavior. Because page methods are
 required to be static methods, you can’t use the syntax of interfaces to defi ne the contract.
You have to resort to abstract base classes instead.

 Alternatively, you can defi ne Web methods as inline code in the .aspx source fi le as follows:

<script type="text/C#" runat="server">

 [WebMethod]

 public static DateTime GetTime()

 {

 return DateTime.Now;

 }

</script>

 As mentioned, page methods are specifi c to a given ASP.NET page. Only the host page can
call its methods. Cross-page method calls are not supported. If they are critical for your
 scenario, I suggest that you move to using Web or WCF services.

Invoking Page Methods

 Page methods are not enabled by default. No client-side support for them is generated
 unless you set the EnablePageMethods property to true in the page’s script manager:

<asp:ScriptManager runat="server" ID="ScriptManager1" EnablePageMethods="true" />

 For the successful execution of a page method, the ASP.NET AJAX application must have the
ScriptModule HTTP module enabled in the web.confi g fi le:

<httpModules>

 <add name="ScriptModule"

 type="System.Web.Handlers.ScriptModule, System.Web.Extensions" />

</httpModules>

 Among other things, the module intercepts the application event that follows the loading of
the session state, executes the method, and then serves the response to the caller. Acquiring
session state is the step that precedes the start of the page life cycle. For page method calls,
therefore, there’s no page life cycle and child controls are not initialized and processed.

 When the code-behind class of an ASP.NET AJAX page contains WebMethod-decorated static
methods, the run-time engine emits a JavaScript proxy class nearly identical to the class that
gets generated for a Web service. You use a global instance of this JavaScript class to call
server methods. The name of the class is hard-coded to PageMethods.

 The PageMethods proxy class has as many methods as there are Web methods in the
 code-behind class of the page. In the proxy class, each mapping method takes some
 additional parameters necessary to an asynchronous callback: completed callback, failed

http://lib.ommolketab.ir
http//lib.ommolketab.ir

56 Part I The (Much Needed) Facelift for the Old Web

callback, and user context data. The completed callback is necessary to update the page with
the results of the call. The other parameters are optional. The following code snippet shows
a JavaScript function that calls a page method and leaves the methodCompleted callback the
burden of updating the user interface as appropriate:

function fnButton1Clicked()

{

 PageMethods.GetTime(methodCompleted);

}

function methodCompleted(results, context, methodName)

{

 // Format the date-time object to a more readable string

 var displayString = results.format("ddd, dd MMMM yyyy");

 $get("Label1").innerHTML = displayString;

}

 In the next chapter, we’ll delve deeper into the mechanics of calling HTTP endpoints from
JavaScript and discuss features such as timeout and error handling for page and Web and
WCF service method calls.

 Finally, from page methods you can access session state, the ASP.NET Cache, and User
 objects, as well as any other intrinsic objects. You can do that using the Current property on
HttpContext. The HTTP context is not specifi c to the page life cycle and is, instead, a piece of
information that accompanies the request from the start.

Page Methods vs. Services

 Services are global to the application, whereas page methods are specifi c to a page. This said,
from a programming standpoint no difference exists between service methods and page
methods. Performance is nearly identical. A minor difference is the fact that page methods
are always emitted as inline JavaScript, whereas this aspect is confi gurable for services.

 Web and WCF services are publicly exposed over the Web and, as such, they’re publicly
 callable by other clients. A method exposed through a Web or WCF service is visible from
multiple pages; a page method, conversely, is scoped to the page that defi nes it. On the other
hand, a set of page methods saves you from the additional work of developing a service.

 In a real-world application, services you call from within a Web page are hardly the same
 services that populate your business layer. To isolate core services from front-end services
and avoid possible Web attacks, I recommend that you create your own façade of ad hoc
services that internally script the core services of the application and the business logic.

Widgets and Effects

 AJAX is about placing out-of-band remote calls, but it’s also about implementing a richer
user experience. Rich user experience means implementing advanced UI features such as

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 2 The Easy Way to AJAX 57

 drag-and-drop, modality, resize, graphics, and visual effects. There’s no way to add rich capabilities
and functionalities to Web pages other than by crafting good and tricky JavaScript code.

 Commercial frameworks provide rich controls that automatically deliver a better experience
and make your UI look more appealing. Commercial frameworks, though, are rarely a
 lightweight choice in the sense that they have a signifi cant impact on your presentation layer.
A commercial framework gives you a lot, but it’s a pervasive programming experience.

 Are there simpler solutions? You can try Microsoft’s control extenders, or you can go with ad
hoc JavaScript libraries such as jQuery.

AJAX Control Toolkit

 The AJAX Control Toolkit is a shared-source library of Web widgets specifi cally designed for
ASP.NET. It’s not included in the ASP.NET 3.5 platform and should be downloaded separately.
You can get it from http://www.codeplex.com/AjaxControlToolkit.

 Widgets in the toolkit are known as extenders. First and foremost, an extender is an ASP.NET
server control. An extender represents a logical behavior that can be attached to one or more
control types to extend their base capabilities. Extenders decouple controls from behaviors and
make it possible to extend existing controls with new behaviors. In a certain way, extenders
come to mean the same thing as aspects that add new capabilities to existing controls.

 In the AJAX Control Toolkit, you fi nd more than 30 extenders that you can use to enrich
controls, especially input controls. Let’s briefl y consider a common example: adding a popup
date-picker widget to a text box used to collect a date.

 You start by linking the AJAX Control Toolkit assembly to the project and then place an
 extendee TextBox control in the page:

<%@ Register Assembly="AjaxControlToolkit" Namespace="AjaxControlToolkit" TagPrefix="act" %>. . .
<asp:TextBox ID="Birthday" runat="server" />

 Later in the ASPX source, you add a new control—the CalendarExtender control:

<act:CalendarExtender runat="server" ID="CalendarExtender1"

 TargetControlID="Birthday"

 Format="dd/MM/yyyy" />

 The extender targets the page control with the specifi ed ID and adds a new behavior to it.
The behavior is further confi gured using a few public properties on the extender control,
such as Format to indicate the desired date format.

 The preceding code snippet is suffi cient to display a popup calendar as the associated text
box receives the focus. As an alternative, you can display the popup when the user clicks a
page button. In this case, the ID of the button is set through the extender’s PopupButtonID

http://lib.ommolketab.ir
http//lib.ommolketab.ir

58 Part I The (Much Needed) Facelift for the Old Web

property. As mentioned, the Format property indicates the format of the date as it will be
written to the text box when the user dismisses the calendar popup. (See Figure 2-4.)

FIGURE 2-4 The calendar extender and other extenders in action

 The code necessary to create and display the date picker lives entirely on the client side and
is contained in a JavaScript fi le. It therefore displays instantaneously, which increases the level
of responsiveness of the page and improves the overall user experience.

 The page displayed in Figure 2-4 also features a few other extenders from the AJAX Control
Toolkit. In particular, you see the TextBoxWatermark extender that applies to text boxes
and displays help text when the text box is empty. The Slider extender, on the other hand,
uses JavaScript to hide the controlled text box element and show its own user interface as a
 replacement. The NumericUpDown extender adds some extra markup to the text box and
attaches JavaScript code to properly edit the content of the text box as the user clicks the up
and down buttons.

 In all cases, an extender doesn’t interfere with the programming interface of the underlying
HTML elements. In other words, no matter how many (and which) extenders you attached to,
say, a text box, the value property of the <input> element always returns the expected value.
The companion JavaScript code guarantees that and overrides the process that retrieves and
returns the content of the value property.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 2 The Easy Way to AJAX 59

 Finally, note that not all extenders can be applied to all server controls. The source code of
the extender server control declares through an attribute the base class of extendee controls.
Most of the time, an extender control is limited to injecting some JavaScript code in the body
of the host page. More sophisticated extender controls, such as the one that supports modal
panels, can also feature a server-side programming interface. For more information and
samples, visit http://www.asp.net/ajax/ajaxcontroltoolkit/samples.

The jQuery Library

 Written by John Resig, the jQuery library consists of a single .js fi le you can download from
http://docs.jquery.com/Downloading_jQuery. The whole set of jQuery functionality can be
divided into a few areas: DOM query and manipulation, effects and animation, AJAX, core
functions to work with arrays, fi lter data, and “detect browser” capabilities. I’ll cover jQuery
and JavaScript programming in more detail in Chapters 4 and 5. For now, I just want to focus
on jQuery widgets.

 Widgets for the user interface belong to a special variation of the jQuery library—the jQuery
UI library, which is available and described at http://ui.jquery.com. The UI library contains
features such as drag-and-drop, sorting, and resizing, as well as free visual effects. The core
functionalities are combined into a number of reusable widgets, including accordions, date
pickers, dialog boxes, sliders, and tab containers.

 The programming style of UI widgets is similar to the core jQuery library. For example, to add
date-picking capabilities to a text box, here’s what you need:

$("#birthday").datepicker();

 In this case, the birthday ID refers to an <input> element in the page; the datepicker()
 function just registers a handler for the onfocus DOM event and pops up a calendar when
the event is fi red.

 Similarly, given the following HTML you can build up a slider:

<div id="slider1">

 <div class="ui-slider-handle"></div>

</div>

 To attach the slider widget to the HTML, you run a piece of JavaScript, as shown here:

$("#slider1").slider();

 In jQuery, the $ function is a shorthand notation to get a DOM reference to the ID prefi xed
with the # symbol. Figure 2-5 shows the fi nal effect of the slider, with the default CSS style.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

60 Part I The (Much Needed) Facelift for the Old Web

FIGURE 2-5 A slider widget created with jQuery UI

 Widgets are essential to making your Web pages more appealing and interactive. Widgets,
though, require nontrivial JavaScript code. For this reason, libraries of widgets are very
 popular today, with Microsoft’s AJAX Control Toolkit and jQuery being two of the most used.
With jQuery, you write the JavaScript code yourself; with the AJAX Control Toolkit you rely on
a server-side extender control. Widgets are just another aspect of AJAX—an aspect geared
toward interactivity and user experience.

 Summary

 Cheap and effective, partial rendering is the easy way to AJAX, but it doesn’t embody the
 demand for a change of paradigm for Web applications. Partial rendering is normally an excellent
starting point in the journey to AJAX and doesn’t prevent further optimization and even radical
refactoring. Opting for partial rendering or a pure AJAX design is a matter of considering the
tradeoffs. But in case it isn’t clear enough already, the whole AJAX matter is a huge tradeoff.

 Partial rendering provides an excellent compromise between the need to implement
 asynchronous and out-of-band functionality and the desire to use the same familiar ASP.NET
application model. As you’ve seen in this chapter, any ASP.NET page can be easily transformed
into an ASP.NET AJAX page. You divide the original page into regions and assign each markup
region to a distinct UpdatePanel control. From that point on, each updatable region can be
refreshed individually through independent and asynchronous calls that do not affect the rest
of the page. The current page remains up and active while regions are updated.

 The combination between partial rendering and widgets delivers a powerful solution that’s
not so revolutionary that it embraces full AJAX or requires new design and coding. Partial
 rendering is always worth a look. And, once again, because AJAX is a huge tradeoff you
should feel free to build your solution piecemeal and as a puzzle of different techniques
and technologies.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 61

Chapter 3

AJAX Architectures

 Freedom is not worth having if it does not include the freedom to make mistakes.

 —Mahatma Gandhi

 In the previous chapter, we examined strategies for getting AJAX easily and smoothly into
our ASP.NET applications. Partial rendering is defi nitely worth a try because it doesn’t require
a steep and long learning curve and has a limited, often low, impact on the existing code.

 Unfortunately, though, partial rendering doesn’t really capture the heart of the AJAX
 paradigm. A very similar metaphor to describe partial rendering in the context of AJAX is
the following. Partial rendering doesn’t teach you how to fi sh; rather, it opens up a new fi sh
market nearby where you can order nearly all types of fi sh and pay for it. In the fi sh market,
though, deliveries are not possible every day and the fi sh is not always the catch of the day.
All things considered, if you want your seafood shopping to be easy and are ready to make
some compromises, this fi sh market is an excellent solution—just as partial rendering might
be a good solution in the AJAX world.

 What alternatives exist to partial rendering?

 Pushing the focus to the server was ASP.NET’s remarkable contribution to the success of
the Web platform. Before ASP.NET, Web professionals and software professionals were two
 distinct categories of developers, with different skills. With ASP.NET, many C++ developers
approached the Web without needing to learn JavaScript and HTML in depth. AJAX
moves the focus back to the client, and the Web client platform is made of JavaScript and
HTML. This means that at the other extreme of partial rendering you fi nd a handcrafted
 combination of JavaScript and HTML.

 Frankly, a similar solution can hardly be employed in a large enterprise solution with hundreds
of pages because such an approach is too risky, fragile, and error prone. An alternative that
can really speed up development while remaining reliable and effective is to use specialized
server controls that offer AJAX functionalities out of the box. Many commercial frameworks do
 exactly this. Depending on the level of abstraction of the various frameworks, you might feel
like you’re using a brand new component-based language on top of ASP.NET or just an
 enhanced version of ASP.NET.

 Regardless of the level of abstraction, the underlying architecture remains the same.
You essentially design the user interface using server controls that emit both JavaScript and
HTML. The output of each server control is bound to some JavaScript event handlers that

http://lib.ommolketab.ir
http//lib.ommolketab.ir

62 Part I The (Much Needed) Facelift for the Old Web

fi re HTTP calls to the Web server as the user interacts with input elements. The server-side
 recipients of HTTP calls might also take different shapes (for example, SOAP, JSON, or
REST services), depending on the design principles and vision that inspired the framework
you’re using.

 In this chapter, we’ll review the two main AJAX application architectures that have emerged
as the most popular and effective. No recognized names exist (that I’m aware of) to indicate
these two architectural patterns. I’ll (kind of arbitrarily) refer to them as AJAX Service Layer
and AJAX Server Pages.

The AJAX Service Layer Pattern

 At the highest level of abstraction, Web applications are client/server applications that
 require an Internet connection between the two layers. Before AJAX, this connection was
 incorporated in the special client application—the browser. The browser opens the
 connection, clears the user interface, and then updates the screen with the results of a
 server operation.

 With AJAX, the client code has the ability to bypass the browser and can handle connections
itself. This enables the client to enter user interface updates without fully refreshing the
 displayed page—a great step forward toward usability and rich user experiences.

 To make the usability of Web applications grow as close as possible to that of desktop
 applications, the overall software platform must fulfi ll two key requirements. As mentioned,
one is a client-side infrastructure that can manage the Internet connection with the server.
The other requirement is the availability of a public and known programming interface on
the server—the AJAX-specifi c service layer.

Architectural Overview

 Any AJAX solution is made of two main layers that are neatly separated but communicating—
the JavaScript and HTML presentation layer and a service layer that acts as a façade for HTTP
endpoints. Figure 3-1 gives an overview of the architecture.

 The presentation layer is hosted in the browser and communicates via HTTP with an ad hoc
façade made of URLs. Behind the URLs, you have server code at work. The server code can
be exposed in a number of ways determined by the programming API you choose—for
 example, Windows Communication Foundation (WCF) services.

 The data being exchanged between the presentation layer and the HTTP façade depends on
the client and server APIs and their capabilities. However, most of the time, albeit not always
and not necessarily, JSON is the serialization format of choice.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 3 AJAX Architectures 63

Browser

Roundtrip

JavaScript and HTML

HTTP Façade

Rest of the system
(Business layer, DAL)

Internet
Local/Intranet

FIGURE 3-1 A typical AJAX architecture

 The communication between the HTTP façade and the rest of the system happens either locally
or over a protected network environment where only trusted callers are allowed.

HTTP Façade

 As shown in Figure 3-1, the HTTP façade just reworks a more convenient API for the
 presentation layer to call. The API is built on top of application services and workfl ows. The
HTTP façade just scripts these middle-tier components from the client.

 The architectural relevance of the HTTP façade is that it decouples the middle tier from
a very special presentation layer, such as an AJAX presentation layer. An AJAX presentation
layer is special essentially because it’s a partial trust Web client.

 For security reasons, service technologies hosted on the Web server require special adjustments
to enable JavaScript callers. In addition, it’s likely that some of the application services you have
in the middle tier run critical procedures. Any piece of code bound to a URL in the HTTP façade,
instead, is publicly exposed over the Internet. Not an ideal situation for a business-critical
 service. So decoupling application services from the AJAX presentation layer is a measure of
design but also a matter of security.

 As an architect, you know that a business layer might sometimes include an outermost layer
of code that is used to script the domain model and business components and services.
The structure of this layer is inspired by the Service Layer pattern. In general, a service layer

http://lib.ommolketab.ir
http//lib.ommolketab.ir

64 Part I The (Much Needed) Facelift for the Old Web

defi nes an interface for the presentation layer to trigger predefi ned system actions. As the
name suggests, the service layer is a sort of boundary that marks where the presentation
layer ends and the business logic begins. The service layer is designed to keep coupling
 between the presentation layer and business logic to a minimum, regardless of how the
 business logic is organized within the business logic layer.

 How does the HTTP façade relate to a service layer?

HTTP Façade and the Service Layer Pattern

 A service layer doesn’t really perform any task directly. All that it does is orchestrate the
set of business objects in the middle tier. The service layer has an intimate knowledge
of the business logic (including components, workfl ows, and services), and likewise it
knows the domain model, if any, very well. The service layer is, therefore, part of the
 business layer.

 Ideally, the HTTP façade lives on top of the business layer and, subsequently, it lives
on top of the service layer. Despite the word service in the name, a service layer is not
 necessarily made of services such as WCF or Web services. The service layer also can be a
plain collection of classes. This is not uncommon in classic ASP.NET applications, where the
 code-behind class lives on the server and doesn’t need a Web or WCF interface to call into
the middle tier. A service-based service layer is more common when you have a smart client
and need a physical connection to the server to operate. In this case, a WCF service is the
best option.

 In general, I suggest you opt for a WCF service only if you really need it. Note that having
a WCF service only to connect presentation and business components might be overkill in
some simple cases. On the other hand, when the client is an AJAX platform, you do need
an HTTP endpoint to start server-side operations. In the .NET Framework 3.5, a simple
WCF service is an excellent HTTP endpoint, but other options exist as well. The endpoint
exposed to the client can be made of the services in the service layer (if you have services
there), or it can be an additional layer of ad hoc AJAX services that just talk to the service
layer or, more in general, to the business layer. (See Figure 3-2.)

 The service layer (if you have one) is the layer invoked by the presentation layer. In the case
of an AJAX presentation layer, either the service layer is publicly exposed to the Internet
(becoming itself the HTTP façade) or it’s shielded by a made-to-measure HTTP façade.

 Let’s expand on the technologies available to build an HTTP façade.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 3 AJAX Architectures 65

Internet
Local/Intranet

Browser

Roundtrip

JavaScript and HTML

HTTP Façade

Data Access Layer

Service Layer

Business Layer

Application
Services Components

Domain
Model

FIGURE 3-2 The HTTP façade and the middle tier

Technologies for the HTTP Façade

 The HTTP façade is the list of public URLs known to and managed by the AJAX presentation
layer. In an AJAX scenario, the presentation layer is made of only JavaScript code. All the logic
you can’t or don’t want to code in JavaScript must be referenced on the server.

 Public HTTP endpoints are the only point of contact between AJAX clients and server
 applications. In the .NET Framework 3.5, you can write endpoints callable by AJAX clients
 using a number of technologies.

 To start off, an AJAX-callable endpoint can be an .asmx ASP.NET Web service. If this is your
choice, you need to confi gure the host application so that its hosted Web services can accept
JSON calls in addition to, or instead of, SOAP calls.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

66 Part I The (Much Needed) Facelift for the Old Web

 Note In the context of ASP.NET AJAX, Web-hosted services are instrumental to the defi nition
of a public, contract-based API that JavaScript code can invoke. It doesn’t mean that you can
call just any public Web services from an AJAX client. More precisely, you can call only services
that live in the same domain as the calling page in full respect of the Same Origin Policy (SOP)
 implemented by most browsers. This is a security measure, not a technical limitation. In the
 context of ASP.NET AJAX, you should think of Web services as a sort of application-specifi c
 façade to expose some server-side logic to a JavaScript (or Silverlight) client.

 Starting with the .NET Framework 3.5, you can also use a WCF service to contain all the logic
you want to expose to AJAX clients. As you’ll see later in the chapter, though, you get only
the Web WCF programming interface and, as such, only a subset of the typical WCF features.
In particular, the area of security is thinned down.

 Either through the WCF platform or via manual implementation, you can build custom
services that operate according to the principles of Representational State Transfer (REST).
Abstractly speaking, the ideal service for AJAX applications is centered around the idea of
having data and resources to expose to Web clients. It’s reachable over HTTP and requires
that clients use URLs (and optionally HTTP headers) to access data and command operations.
Clients interact with the service using HTTP verbs such as GET, POST, PUT, and DELETE.
Put another way, the URL is a representation of a resource and the HTTP verb describes
the action you want to take regarding the resource’s representation. Data exchanged in
those interactions is represented in simple formats such as JSON and plain XML, or even in
 syndication formats such as RSS and ATOM.

 A service with these characteristics is a REST service. For more information about REST, have a
look at the original paper that describes the vision behind it at: http://www.ics.uci.edu/~fi elding/
pubs/dissertation/top.htm.

 If you don’t want to add WCF to your application but still need a service, you can then opt
for a custom, handmade HTTP handler. An HTTP handler is just a public URL exposed by
a Web application, so it can reliably serve any purpose the presentation needs to address.
Compared to WCF services, plain HTTP handlers lack a lot of facilities, including the
 automatic JSON serialization of input and output data. (You can use the same tools that WCF
uses, but you’ll need to use them directly—they’re not used on your behalf automatically.)

 The long list of technologies through which you can implement your HTTP façade also includes
ADO.NET services. Introduced with the .NET Framework 3.5 Service Pack 1, ADO.NET services
wrap a domain model built with Entity Framework and expose it through a REST interface. For
CRUDy user interfaces, when you hold a data model on the server, ADO.NET Data Services
(formerly known as Astoria) might make some sense. Expect some good news with respect to
consuming ADO.NET services from ASP.NET pages in the next version of the platform.

 In the end, no matter how you physically implement HTTP endpoints, they point to code meant
to be the back end of the application. Services in the HTTP façade are application-specifi c
chunks of server-side code that implement some of the presentation logic. Services in the HTTP

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 3 AJAX Architectures 67

façade are not autonomous services in the SOA sense of the expression and are not expected
to be available outside of the realm of the application.

 Services in the HTTP façade are devised to be private services of the application, but they
happen to be reachable through public HTTP endpoints. This impedance mismatch should
be carefully addressed to prevent security holes in the overall system. (I’ll return to this point
later in the chapter.)

Data Transfer and Data Formats

 In a rich Web application, at some point, you need to call some server-based code. In doing
so, you likely need to pass some input data and wait to receive some other data back. Clearly,
a serialization format is required to transform platform-specifi c data (for example, a .NET
 object) into an HTTP network packet. For years, this fi eld has been the reign of XML. To a
large extent, this is still the reign of XML, but not when a Web browser is used as the client.

 Shorthand for JavaScript Object Notation, JSON is the emerging standard format for
 browsers and Web servers to exchange data over HTTP when a script-led request is made.
The main reasons for preferring JSON over XML can be summarized by saying that overall
JSON is simpler than full-blown XML and gets a free deserialization engine in virtually any
browser that supports JavaScript. I’ll return to this point in a moment. Meanwhile, you can
learn more about the syntax and purposes of JSON at http://www.json.org.

 JSON is a text-based format specifi cally designed to move the state of an object across
tiers. It’s natively supported by JavaScript in the sense that a JSON-compatible string can be
 evaluated to a JavaScript object through the JavaScript eval function. However, if the JSON
string represents the state of a custom object, it’s your responsibility to ensure that the
 defi nition of the corresponding class is available on the client.

 The ASP.NET AJAX network stack (see Chapter 4, “A Better and Richer JavaScript,” for
 details) takes care of creating JSON strings for each parameter to pass to a service in the
HTTP façade. On the server, formatter classes receive the data and use .NET refl ection to
 populate matching managed classes. On the way back, .NET managed objects are serialized
to JSON strings and sent over. The script manager is called to guarantee that proper classes
 referenced in the JSON strings—the Web service proxy classes—exist on the client. The
 nicest thing is that all this machinery is transparent to programmers.

 The JSON format describes the state of the object, an example of which is shown here:

{"ID"="ALFKI", "Company":"Alfred Futterkiste"}

 The string indicates an object with two properties—ID and Company—and their respective,
text-serialized values. If a property is assigned a nonprimitive value—say, a custom object—the
value is recursively serialized to JSON, as in the code snippet shown here:

{"ID"="ALFKI",

 "Company":"Alfred Futterkiste",

 "Address":{"Street="543 Oberstr", "City"="Berlin", "Country":"Germany"} }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

68 Part I The (Much Needed) Facelift for the Old Web

 Services in the HTTP façade preferably receive and return HTTP packets with JSON
 content. Commonly used technologies for implementing services didn’t support JSON until
 recently. In the .NET platform, both the ASP.NET Web service and WCF platforms underwent
some rework to enable JavaScript clients. The WCF platform, in particular, introduced in
.NET 3.5 a new type of binding specifi cally aimed at JavaScript clients. In this way, the core
service remains isolated from the binding details and the specifi c features of the AJAX caller.

Why JSON Is Preferable to XML

 For years, XML has been touted as the lingua franca of the Web. Now that AJAX has become
a key milestone for the entire Web, XML has been pushed to the side in favor of JSON as far
as data representation over the Web is concerned.

 Why is JSON preferable to XML in AJAX scenarios?

 The main reason for dropping XML and SOAP in favor of JSON is that JSON is much easier to
handle from within a JavaScript-powered client than any XML-based format. JSON is slightly
simpler and more appropriate for the JavaScript language to process than XML. Although
JSON might not be easier for humans to understand than XML—this is just my thought,
by the way—it’s certainly easier for a machine to process than XML. Nothing like an XML
parser is required for JSON. Everything you need to parse the text is built into the JavaScript
 language. JSON is also less verbose than XML and less ambitious, too. JSON, in fact, is not as
good as XML for interoperability purposes.

 The JSON syntax is not perfect either. The industrial quantity of commas and quotes
it requires makes it a rather quirky format. But can you honestly say that XML is more
forgiving?

 With JSON, you also gain a key architectural benefi t at a relatively low cost. You always
 reason in terms of objects instead of dealing with untyped Document Object Model (DOM)
trees. On the server, you defi ne your entities and implement them as classes in your favorite
managed language. When a service method needs to return an instance of any class, the
state of the object is serialized to JSON and travels over the wire. On the client, the JSON
string is received and processed, and its contents are loaded into an array, or a kind of mirror
JavaScript object, with the same interface as the server class. The interface of the class is
 inferred from the JSON stream. In this way, both the service and the client page code use the
same logical defi nition of an entity.

 Obviously, from a purely technical standpoint, the preservation of the data contract doesn’t
strictly require JSON to be implemented. You could get to the same point using XML as
well. In that case, though, you need to get yourself an XML parser that can be used from
JavaScript.

 Parsing some simple XML text in JavaScript might not be an issue, but getting a full-blown
parser is another story completely. Performance and functionality issues will likely lead to

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 3 AJAX Architectures 69

a proliferation of similar components with little in common. And then you must decide
whether such a JavaScript XML parser should support things such as namespaces, schemas,
whitespaces, comments, and processing instructions.

 As I see it, for the sake of compatibility you will end up with a subset of XML limited to nodes
and attributes. At that point, it’s merely a matter of choosing between the angle brackets of
XML and the curly brackets of JSON. Additionally, JSON has a free parser already built into
the JavaScript engine—the aforementioned function eval.

 Also labeled as the fat-free alternative to XML, JSON has ultimately been a very convenient
choice for architects of Web frameworks and is today the real currency exchanged by browsers
and AJAX-enabled services. As JSON’s popularity has grown, its use has become harder and
harder to ignore.

HTML Presentation Layer

 The presentation layer of an AJAX solution can’t be anything signifi cantly different than
a powerful mix of HTML and JavaScript. The only issue that needs to be decided is who
writes the JavaScript code for the page and how the HTML markup for the user interface is
 generated. Is that the responsibility of the development team? Is that something that can be
safely delegated to a library of controls?

 For a number of reasons, more and more Web applications need to gain control of every
 single pixel of their user interface. Accessibility, styling, and the need to work well on the
 largest possible number of browsers require that a Web application must have extremely
 fl exible HTML presentation capabilities that the developer can fully control.

 This seems to be a development that precludes the use of server controls—meaning
you won’t be able to use one of the hottest features of ASP.NET and probably the main
 reason behind ASP.NET’s success. Server controls can’t always guarantee total control
over the generated HTML, but this is not necessarily a problem for most pages and
 applications. As a matter of fact, there’s growing demand for more control over HTML;
but the demand for the high level of productivity that server controls can offer has not
decreased yet.

 If you look at the future of ASP.NET 4.0, you see that Microsoft is investing a lot in a powerful
JavaScript framework to bind incoming data to existing HTML elements. This prefi gures
 future server-side pages as being dense with JavaScript and plain HTML.

 If you look at what independent software vendors (ISVs) are doing, you see products
that are essentially libraries of server controls that emit both HTML and JavaScript. Each
 control has its own client-side object model that talks to the server by asynchronous
 postbacks similar to partial rendering operations or, in other cases, via direct calls to Web
or WCF services.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

70 Part I The (Much Needed) Facelift for the Old Web

 Microsoft seems to be focused on building a robust and powerful JavaScript framework;
 subsequently, third-party vendors seem to be focused on building server controls on top of that.

 Have server controls defi nitely been surpassed? It’s hard to say.

 For sure, we need some sort of tool to help write HTML and JavaScript. I doubt that we’ll end
up back where we were in the early days of Web, handcrafting HTML and JavaScript in pages.
Large applications with hundreds of pages just can’t afford this model.

 For the past fi ve years or so, server controls have been the primary tool used to help
 developers write the HTML presentation layer. In the future, we will certainly have a new
 generation of server controls that emit HTML and JavaScript, as well as HTML helpers like
those you fi nd today in the view objects of ASP.NET MVC Framework applications.

Inside the HTTP Façade

 The HTTP façade is the collection of public HTTP endpoints you can invoke from within Web
pages via JavaScript. There are two main categories of endpoints: service endpoints and page
endpoints.

 Service endpoints refer to Web or WCF services that expose some server-side logic to the client.

 Page endpoints refer to some client-callable logic exposed by the page itself. Page endpoints
are just the Page Methods presented in the previous chapter. Using page methods saves you
from the burden of creating a JSON-enabled Web service or a WCF service. At the same
time, though, it limits the scope of the method to the sole page where it’s defi ned. When you
use page methods, the page itself operates as the service and the page method is just the
 publicly callable operation.

 Let’s examine the format of requests placed to HTTP endpoints.

Anatomy of an HTTP Request

 A request made to a Web or WCF service has a well-defi ned format. It sets the content-type
header to application/json and points to the URL of the service method of choice. Input
parameters are embedded in the body of the request as a JSON string. In Figure 3-3, you
can see the details of a request made to a WCF service. In particular, the method invoked is
GetQuotesFromConfi g and the service endpoint is livequotes.svc.

 The request body is a plain JSON string, such as the one shown here:

{"isOffline":true}

 The GetQuotesFromConfi g method takes just one Boolean parameter, whose formal name
is isOffl ine. The JSON string just describes an object with one property named isOffl ine that
stores a value of true.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 3 AJAX Architectures 71

FIGURE 3-3 Internals of an AJAX request to a WCF service

 The response is always a JSON string; in particular, it’s the JSON serialization of the value
returned by the invoked method. If the method returns an array of StockInfo objects, here’s
some possible output:

{"d":

 [{"__type":"StockInfo:#Samples.Services.FinanceInfo",

 "Change":"+8.87%",

 "Day":"12\/16\/2008",

 "ProviderName":"Unknown Provider",

 "Quote":"57.549",

 "Symbol":"CONTOSO",

 "Time":"8:53 PM"},

 {"__type":"StockInfo:#Samples.Services.FinanceInfo",

 "Change":"-5.62%",

 "Day":"12\/16\/2008",

 "ProviderName":"Unknown Provider",

 "Quote":"30.793",

 "Symbol":"NANCY DAVOLIO INC",

 "Time":"8:53 PM"}

]

}

 Let’s see what’s required to write WCF services to be invoked via AJAX calls.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

72 Part I The (Much Needed) Facelift for the Old Web

WCF Services

 To be invoked from within an ASP.NET AJAX page, a service must meet a number of
 requirements, the strictest of which relate to the location of the endpoint and underlying
platform. AJAX-enabled services must be hosted in the same domain from which the call
is made. If we consider using WCF services to back an AJAX front end, the service must be
hosted in an Internet Information Services (IIS) application on the same Web server as the
ASP.NET application.

 Important By default, AJAX-enabled WCF services run side by side with the ASP.NET application
in the same AppDomain. Requests for an .svc resource are fi rst dispatched to the ASP.NET
runtime, but then the WCF hosting infrastructure intercepts these requests and routes them
out of the HTTP pipeline. ASP.NET doesn’t participate in the processing of WCF requests past
the PostAuthenticateRequest event in the request life cycle. At that point, in fact, the WCF
 infrastructure intercepts the request and starts processing that in total autonomy. In the default
confi guration, the WCF service method has no access to ASP.NET intrinsics, ASP.NET impersonation
and URL authorization settings are ignored, and HTTP modules interested in fi ltering the WCF
request past the PostAuthenticateRequest event never get a chance to do their work.

 To expose WCF services to an ASP.NET AJAX client, you need the .NET Framework 3.5
 running on the Web server. The reason is that some changes to the run-time engine of the
WCF platform are necessary to support AJAX calls; and these changes have been made only
with the .NET Framework 3.5.

 In particular, to support AJAX calls you need to be able to expose service methods through
HTTP requests and subsequently map methods to URLs. This is just what the WCF Web
 programming model has to offer. The WCF Web programming model enables services to
support plain-old XML (POX) style messaging instead of SOAP, which is the key step to
 enabling the JSON calls typical of ASP.NET AJAX clients.

 The following code snippet shows how to use the new WebGet attribute in the defi nition of
a service contract:

[ServiceContract]

public interface ICalculator {

 [OperationContract]

 [WebGet]

 long Add(long x, long y);

 [OperationContract]

 [WebGet(UriTemplate="Sub?p1={x}&p2={y}")]

 long Subtract(long x, long y);

}

 The WebGet attribute qualifi es a method as a retrieval operation and enables callers to use
the HTTP GET verb to invoke it. The WebGet attribute also features the UriTemplate property.
You use this property to specify which URL format is accepted to invoke the method. If not

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 3 AJAX Architectures 73

otherwise specifi ed via an explicit UriTemplate property, the URI template for a WebGet
method like the aforementioned Add is the following:

theService.svc/Add?x=1&y=2

 The service name is followed by the method name, and formal parameters follow in order,
each with its own actual value. You can change this standard URI template by changing the
method name and formal parameter names.

 The WebInvoke attribute indicates that a given method has to be considered as a logical invoke
operation that can be invoked using any HTTP verb, but typically the POST verb is called upon:

[ServiceContract]

public interface ICalculator {

 [OperationContract]

 [WebInvoke(Method="Post",

 RequestFormat=WebMessageFormat.Xml,

 ResponseFormat=WebMessageFormat.Json)]

 long Add(long x, long y);

}

 Through the WebInvoke attribute, you can set the URI template, the method to be used to
invoke the method, as well as the format for the request and response text.

 To be invoked from an AJAX client, a WCF service must be confi gured with a new binding
model—the webHttpBinding model. The webHttpBinding model is a basic HTTP binding
 except that it doesn’t use SOAP. In addition, the scriptable endpoints must feature a behavior
where Web scripting is explicitly enabled. Here’s an excerpt from a sample confi guration
script for an AJAX-enabled WCF service:

<system.serviceModel>

 <behaviors>

 <endpointBehaviors>

 <behavior name="ajaxBehavior">

 <enableWebScript />

 </behavior>

 </endpointBehaviors>

 <serviceBehaviors>

 <behavior name="metadataBehavior">

 <serviceMetadata httpGetEnabled="true" />

 </behavior>

 </serviceBehaviors>

 </behaviors>

. . .

</system.serviceModel>

 Attached to an endpoint behavior, the enableWebScript element enables the runtime to
 generate the JavaScript proxy for the service. In addition, you might also want to publish
 service metadata for retrieval using an HTTP GET request.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

74 Part I The (Much Needed) Facelift for the Old Web

 The services hosted by the Web application must be confi gured especially to use the Web
HTTP-specifi c binding model, as shown here:

<system.serviceModel>

 . . .

 <services>

 <service name="Samples.TimeService"

 behaviorConfiguration="metadataBehavior">

 <endpoint contract="Samples.ITimeService"

 binding="webHttpBinding"

 behaviorConfiguration="ajaxBehavior" />

 </service>

 </services>

</system.serviceModel>

 The confi guration of a WCF service specifi es key pieces of information—the binding model
(mandatory), contract, and behavior. For AJAX-enabled services, the only possible binding
scheme is webHttpBinding. The contract attribute indicates which contract the endpoint is
exposing. If the service class implements a single contract type, the contract attribute can
be omitted in the endpoint section. Finally, the behaviorConfi guration attribute contains the
name of the behavior to be used in the endpoint.

 Note In some particular scenarios, you can also resort to a simplifi ed confi guration scheme
for AJAX-enabled WCF services. In the service endpoint fi le—the .svc fi le—you use the Factory
 attribute in the @ServiceHost directive and make it point to a system-provided class that supplies
default settings for binding and endpoint behaviors. Here’s the code for the .svc endpoint fi le:

 <%@ ServiceHost

 Factory="System.ServiceModel.Activation.WebScriptServiceHostFactory"

 Service="Samples.Services.TimeService" %>

 Note that you can use simplifi ed confi guration only for service classes that implement one
 contract only.

 The defi nition of the service contract for an AJAX-enabled WCF service is not different from
that of any other WCF services. You use the OperationContract attribute to qualify a method
as a public service method, and you use the optional WebGet and WebInvoke attributes to
confi gure the URL template. Here’s an example:

[ServiceContract(Namespace="Samples.Services", Name="TimeService")]

public interface ITimeService

{

 [OperationContract]

 DateTime GetTime();

 [OperationContract]

 string GetTimeFormat(string format);

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 3 AJAX Architectures 75

public class TimeService : ITimeService

{

 public DateTime GetTime()

 {

 return DateTime.Now;

 }

. . .

}

 You should be sure to give meaningful values to the Namespace and Name properties of the
ServiceContract attribute. The reason is that the concatenation of those values determines
the name of the JavaScript proxy class used to access the WCF service. If you leave them
blank, the JavaScript proxy for the preceding service will be named tempuri.org.ITimeService.
Not really a nice or helpful name!

 For AJAX-enabled WCF services, the data contract—namely, the agreement between the
 service and client that describes the data to be exchanged—also is defi ned in the canonical
way. You use an implicit contract for serialization, and deserialization is used for collections,
primitive types, dates, enumerations, and the GUID; an explicit contract is required for
 custom complex types. In this case, you use the DataContract and DataMember attributes on
class members to determine which members go into the serialization stream.

 For more information on WCF services, you might want to refer to Juval Lowy’s excellent
book Programming WCF (O’Reilly, 2008).

 Important The confi guration of a WCF service is different if the client is a Silverlight application.
In such a case, in fact, you are not allowed to use webHttpBinding and must resort to the
 basicHttpBinding model, which executes the method call over a SOAP 1.1 channel.

ASP.NET Web Services

 The primary reason for choosing ASP.NET Web services instead of WCF as the technology for
building your HTTP façade is that ASP.NET Web services don’t require ASP.NET 3.5 or newer
versions. You can call ASP.NET Web services from AJAX clients as long as your Web server
runs the .NET Framework 2.0 plus AJAX Extensions 1.0.

 A Web service made to measure for an ASP.NET AJAX application is similar to any other ASP.NET
Web service you might write for whatever purposes. Just one peripheral aspect, though, marks a
key difference. You must use a new attribute to decorate the class of the Web service that is not
allowed on regular ASP.NET Web services—the ScriptService attribute. Here’s how to use it:

namespace Samples.WebServices

{

 [ScriptService]

 [WebService(Namespace = "urn:webarch.book/")]

 public class TimeService : System.Web.Services.WebService, ITimeService

 {

 [WebMethod]

http://lib.ommolketab.ir
http//lib.ommolketab.ir

76 Part I The (Much Needed) Facelift for the Old Web

 public DateTime GetTime()

 {

 return DateTime.Now;

 }

. . .

 }

}

 Note that the ScriptService attribute simply enables AJAX callers to connect to the service;
it doesn’t prevent SOAP callers from sending their packets. As a result, an ASP.NET AJAX
Web service might have a double public interface: the JSON-based interface consumed by
the hosting ASP.NET AJAX application, and the classic SOAP-based interface exposed to any
 clients, from any platforms, that can reach the service URL.

 How can the ASP.NET runtime handle .asmx requests properly?

 To enable Web service calls from within AJAX applications, you need to add the following
script to the application’s web.confi g fi le. It removes any ASMX handler you might have and
registers a special new HTTP handler factory to service incoming .asmx requests:

<httpHandlers>

 <remove verb="*" path="*.asmx" />

 <add verb="*" path="*.asmx"

 type="System.Web.Script.Services.ScriptHandlerFactory" />

. . .

</httpHandlers>

 This setting is included in the default web.confi g fi le that Microsoft Visual Studio 2008 creates
for you when you create an AJAX-enabled Web project.

 A handler factory determines which HTTP handler is in charge of serving a given set of
 requests. The specialized handler factory for .asmx requests distinguishes JSON calls made by
script code from ordinary Web service calls coming from SOAP-based clients, including ASP.
NET and Windows Forms applications. JSON-based requests are served by a different HTTP
handler (informally known as the REST handler), whereas regular SOAP calls take the usual
route in the ASP.NET pipeline. (See Figure 3-4.)

content-type

(new)

(new)

ASMX
HTTP

Handler
Factory

Web Service
Handler

REST
Handler

Check
ScriptService
attribute

content-type=none

content-type=application/json

ASMX request

ASMX request

SOAP

JSON

ASP.NET runtime

FIGURE 3-4 How ASP.NET handles incoming .asmx requests

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 3 AJAX Architectures 77

 The handler factory determines the handler to use by looking at the content-type header of
the incoming request. The REST handler uses .NET refl ection to specifi cally check whether the
Web service class is decorated with the ScriptService attribute. If it is not, it refuses the call.

 You can disable SOAP clients by entering the following confi guration script into the web.confi g
fi le of the ASP.NET application that hosts the Web service:

<system.Web>

 . . .

 <webServices>

 <protocols>

 <clear />

 </protocols>

 </webServices>

. . .

</system.Web>

 This simple change disables any protocols defi ned for ASP.NET Web services (in particular,
SOAP) and lets the service reply only to JSON requests. Note that with these settings on,
you can no longer call the Web service through the browser’s address bar for a quick test.
Likewise, you can’t ask for the WSDL by adding the ?wsdl suffi x to the URL.

 When you write an AJAX-enabled ASP.NET Web service, you have no need for a contracted
interface as with WCF services. However, extracting an interface from the service class is
rarely a bad idea.

public class TimeService : System.Web.Services.WebService, ITimeService

{

 [WebMethod]

 public DateTime GetTime()

 {

 return DateTime.Now;

 }

. . .

}

 Public methods of the Web service class decorated with the WebMethod attribute can be
invoked from the AJAX page. Any method is invoked using the HTTP POST verb and returns
any value as a JSON object. You can change these default settings on a per-method basis by
using an optional attribute—ScriptMethod. In particular, through the ScriptMethod attribute
you can enable HTTP GET calls and use XML instead of JSON as the serialization format.

 Enabling the use of the HTTP GET verb opens security holes: the service method can be
 invoked through a cross-site scripting attack that attaches external script to the <script> or
 HTML tags. These HTML elements are the sole elements allowed to access resources
from outside the current domain. However, they always operate through a GET verb. This
means that by keeping the HTTP GET verb disabled on your Web service method you

http://lib.ommolketab.ir
http//lib.ommolketab.ir

78 Part I The (Much Needed) Facelift for the Old Web

 prevent at the root any possible cross-site scripting attacks. More in general, my opinion is
that you should have very good reasons to use the ScriptMethod attribute, anyway.

 Finally, deriving the Web service class from System.Web.Services.WebService is not mandatory
either. If you use that class as a parent, all that you gain is that you enable the service to access
ASP.NET intrinsics directly without using the HttpContext.Current object as an intermediary.

 Important By default, AJAX-enabled WCF services process requests for method execution
 outside the ASP.NET pipeline. Requests for ASP.NET Web services methods, conversely, are
 treated as standard ASP.NET requests. In other words, .asmx requests fl ow through the classic
request life cycle whereas .svc requests are routed out of the pipeline at some point.

 By switching WCF services to ASP.NET compatibility mode, you ensure that .svc requests are
treated identically to .asmx requests with respect to ASP.NET intrinsics, URL authorization, and
impersonation. However, the ASP.NET compatibility mode for WCF services breaks the WCF
 ability to behave consistently across hosting environments and transports. Compatibility mode is
an option only for WCF services that will always operate over HTTP and be hosted by IIS, which
is just what the majority of AJAX-enabled WCF services do.

Custom Services

 Nothing prevents you from connecting your AJAX or Silverlight page to a custom HTTP
 handler exposed by your ASP.NET application. A call to a custom HTTP handler requires that
you manage the HTTP request from start to fi nish. To call an HTTP handler, you need to write
JavaScript code that uses XMLHttpRequest and, on the server, you need to parse any input
data, execute your action, and serialize any output data to a valid format that the AJAX caller
can understand.

 Calling HTTP handlers is defi nitely something that can be done. However, compared to the
native machinery in place for ASP.NET Web services and WCF services, it’s just a little bit
more work that you could otherwise avoid. It’s defi nitely doable, and it gives you total
 control over the request. And, among other things, it gives you a chance for exchanging
data that is not JSON.

ADO.NET Data Services

 Introduced with the .NET Framework 3.5 SP1, ADO.NET Data Services are a framework to
 create and consume data services via a fl exible, RESTful interface. But what’s a RESTful interface
for data, exactly?

 Essentially, it’s a programming interface to refer to data as any other resource representation
available over HTTP. Data is treated as a representation of a resource, and HTTP methods are
used to act on the resource via its representation. You use the GET verb to query data, POST
to create, PUT to update, and DELETE to delete data.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 3 AJAX Architectures 79

 Data is wrapped up with a special service that you work with using HTTP verbs via a uniform
URL syntax. The URL syntax allows you to address every piece of information. Here are some
sample URLs you can use against a data service:

/Customers

/Customers('ALFKI')

/Customers('ALFKI')/ContactName

/Customers?$orderby=Country

 An ADO.NET data service incorporates an entity data model created with Entity Framework (EF).
The operations you execute via HTTP target the data modeled by the EF model. An ADO.NET
data service is an .svc resource that AJAX and Silverlight applications can freely access to receive
JSON data.

 The Visual Studio 2008 environment for Silverlight 2 provides some facilities to consume
ADO.NET Data Services. Facilities consist essentially of the automatic creation of all required
 entity classes for the model wrapped by the service. Here’s how you consume an ADO.NET
data service:

// Get a reference to the data context class

Uri svc = new Uri("Northwind.svc", UriKind.Relative);

DataServiceContext ctx = new DataServiceContext(svc);

// Run a query. OnLoaded is the callback to update the UI.

Uri query = new Uri("Customers?$orderby=Country", UriKind.Relative);

ctx.BeginExecute<Customer>(query, OnLoaded, ctx);

 The DataServiceContext class is a Silverlight class whose assembly (named
System.Data.Services.Client) is automatically linked to the project as soon as you add an
ADO.NET Data Services reference.

 What about ASP.NET AJAX?

 In ASP.NET AJAX, you call an ADO.NET data service via XMLHttpRequest. However, more
facilities are coming with ASP.NET 4.0. In particular, the next version of ASP.NET will offer
classes and methods to support typical operations such as insert, query, update, and delete,
plus a programming interface to make client-side data binding easy and effective.

The AJAX Presentation Layer

 From an ASP.NET AJAX perspective, differences between Web and WCF services are
 defi nitely blurred. All that an AJAX client expects from Web and WCF services is to execute
some code and return some data. Most of the other extraordinary capabilities of the WCF
platform are of little interest to an AJAX client.

 Also from an ASP.NET AJAX perspective, the biggest difference between Web and WCF
 services and plain HTTP handlers is that the former two provide automatic data marshaling
between the .NET space and the JSON format. However, this occurs only if proper proxy
classes are employed to drive the call to a remote service.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

80 Part I The (Much Needed) Facelift for the Old Web

Getting a Proxy for the HTTP Façade

 When you add a Web or WCF service to a classic Web application project or to a Windows
Forms project, you go through a Visual Studio 2008 wizard, indicate the URL of the service,
specify the desired namespace, and fi nally have the wizard generate a proxy class and add it
in the folds of the project solution.

 When you add a reference to Web or WCF services to an ASP.NET AJAX page, no Visual
Studio 2008 wizard will be there to silently invoke an SDK tool that automagically creates
the proxy class. In the fi rst place, you don’t add a service reference through the Web project.
Instead, you programmatically add the service reference to the ASP.NET page, as shown here:

<asp:ScriptManager ID="ScriptManager1" runat="server">

 <Services>

 <asp:ServiceReference Path="appAjaxLayer.svc" />

. . .

 </Services>

</asp:ScriptManager>

 The script manager emits the following markup:

<script src="appAjaxLayer.svc/js" type="text/javascript"></script>

 If you’re testing your page and have debug mode set in the web.confi g fi le, the suffi x to the
service URL will be /jsdebug instead of /js.

 The /js suffi x is the magic word that instructs the service infrastructure to generate a
JavaScript proxy class for the page code to call into the service. The ability to generate
a JavaScript proxy class is built into the REST handler that was shown in Figure 3-4 for ASMX
Web services and into the AJAX-enabled Web programming model of WCF. In particular, for
WCF services the enableWebScript attribute of the endpoint behavior enables the generation
of the proxy; subsequently, it enables the service to be scripted from an AJAX client.

 The JavaScript proxy class is named according to different rules for Web and WCF services.
For Web services, the proxy gets the exact fully qualifi ed name of the class behind the .asmx
 endpoint. As mentioned earlier, for WCF services the name of the proxy class is determined by the
concatenation of the Namespace and Name properties specifi ed in the ServiceContract attribute
you’re targeting. Note, therefore, that when you call a WCF service method you’re actually calling
a method defi ned on a contract. To invoke a WCF service, it’s the contract that matters, not the
class that implements it. In fact, the same service class can implement multiple contracts.

Using the Proxy

 After you have the JavaScript proxy, invoking the Web or WCF service is nearly the same thing.
The proxy object comes as a singleton and exposes the same set of contracted methods you
have on the original service. The communication model is asynchronous and requires you to
specify at least a callback function to use in case of successful execution. Here’s an example:

// Async call of method GetQuotes with a callback

Samples.Services.FinanceInfoService.GetQuotes(symbols, onDataAvailable);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 3 AJAX Architectures 81

The code can refer to a Web service as well as a WCF service. If it refers to a Web service, the
Web service class is named Samples.Services.FinanceInfoService; if it refers to a WCF service,
the namespace of the service contract might be Samples.Services and the name of the contract
might be FinanceInfoService. The preceding code snippet invokes the method GetQuotes.

In addition to the regular list of parameters for the service method, each proxy method can
take up to three extra parameters. The fi rst extra parameter is mandatory and represents
the callback to invoke if the method execution is successful. The second and third optional
 parameters indicate, respectively, the callback to use in case of failure and a state object to
pass to both callbacks. In the code snippet just shown, the onDataAvailable parameter refers
to a JavaScript callback to call only if the method executes successfully.

The signature of the success and failure callbacks is similar, but the internal format of the
results parameter can change quite a bit. Here’s the callback signature:

function method(results, context, methodName)

Table 3-1 provides more details about the various arguments.

TABLE 3-1 Arguments for a JavaScript Proxy Callback Function

 Argument Description

 results Indicates the return value from the method in the case of success. In the case
of failure, a JavaScript Error object mimics the exception that occurred on the
server during the execution of the method.

 context The state object passed to the callback.

 methodName The name of the service method that was invoked.

The JavaScript proxy exposes a number of properties and methods for you to confi gure. The
list is presented in Table 3-2.

TABLE 3-2 Static Properties on a JavaScript Proxy Class

 Property Description

 path Gets and sets the URL of the underlying Web service

 timeout Gets and sets the duration (in seconds) before the method call times out

 defaultSucceededCallback Gets and sets the default JavaScript callback function to invoke for any
successful call to a method

 defaultFailedCallback Gets and sets the default JavaScript callback function, if any, to invoke
for a failed or timed-out call

 defaultUserContext Gets and sets the default JavaScript state object, if any, to be passed to
success and failure callbacks

If you set a “default succeeded” callback, you don’t have to specify a “succeeded” callback in
any successive call as long as the desired callback function is the same. The same holds true
for the failed callback and the user context object. The user context object is any JavaScript
object, fi lled with any information that makes sense to you, that gets automatically passed to
any callback that handles the success or failure of the call.

Argument Description

Property Description

http://lib.ommolketab.ir
http//lib.ommolketab.ir

82 Part I The (Much Needed) Facelift for the Old Web

 Note The JavaScript code injected for the proxy class uses the path property to defi ne the URL
to the Web service. You can change the property programmatically to redirect the proxy to a
different URL.

The JavaScript Model-Controller Pattern

 Compared to the Web pages we were writing only fi ve or six years ago, today’s Web pages
contain much more JavaScript. It’s hard to predict the future evolution of the Web but, as of
today, the role of server controls is diminishing. Fewer and fewer developers are satisfi ed with
pieces of server code that churn out all the HTML for the page.

 A few years ago, only very simple JavaScript functions were added to Web pages to optimize
very specifi c features and smooth bottlenecks. With the growing amount of JavaScript that
is being added to pages, organizing that code in a readable and serviceable way becomes
a must.

 Recently, a number of people in the developer community started considering the
 implications of bringing the Model-View-Controller (MVC) pattern to JavaScript. Personally,
I believe that anything that looks like MVC in JavaScript requires an ad hoc framework and an
appropriate programming style. In other words, the fi nal JavaScript will probably look like a
brand new language—which is not necessarily a bad thing.

 Even without reaching the lofty heights of a complete implementation of MVC in JavaScript,
I recommend that you consider the creation of a “controller” object in every page with a good
amount of JavaScript code. The controller will be merely a container of methods associated
with user-clicking events.

 Any of the methods would then talk to the “model”—whatever that means to you. I tend to
consider the “model” in an MVC pattern as just the server side of an application—the middle
tier in a layered system. In an ASP.NET AJAX context, the “model” can also be the topmost
part of the middle tier—the service layer.

 By rethinking your client-side page code in terms of a controller and a model, you
 automatically make it easier to read and more practical to write because you essentially
 establish a discipline for developers to follow.

 Note What about the view, then? In an ASP.NET AJAX page, the view is just HTML. I don’t see
the point of having an additional layer of JavaScript code that creates the view—perhaps via the
HTML DOM. In an MVC architecture, the “view” creates the user interface; here, instead, the view
is already hardcoded in HTML. In my opinion, all a “view” layer can possibly do is update the
 entire user interface to make it refl ect the current status of the page.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 3 AJAX Architectures 83

Security Considerations

 Services in the HTTP façade are called by two groups of users—legitimate users and outsiders.
Legitimate users connect through a regular Web front end, be it ASP.NET AJAX or Silverlight 2.
Outsiders reach the URL using any platform they can—usually a custom, full-trust application.

 Any Web presentation layer runs over HTTP, and HTTP wasn’t designed with security in mind.
HTTP was designed to be stateless and was kept simple overall to make it easy for engineers
to provide an implementation for just about every platform. On the other hand, the problem
of Web security arose only after the Web became public and millions of people all over the
world started using it.

 HTTPS is only a layer of cryptography applied at the gate on both sides of the communication.
It guarantees confi dentiality and integrity; it can’t do much as far as authentication and
 authorization are concerned. HTTPS doesn’t transport user credentials, but at least it does ensure
through digital certifi cates that the two communicating parties are who they claim to be.

 It’s realistic to estimate that at least a few of the services in the HTTP façade are business-critical
services and thus require protection from unauthorized access. Let’s see what you can do
about it.

 Note As baffl ing as it might sound, you read it right. Yes, HTTP has no native security features in
it. What about HTTPS, then?

 As commonly defi ned, HTTPS is a uniform resource identifi er that combines HTTP with a
 cryptography engine, such as Secure Sockets Layer (SSL) or Transport Layer Security (TLS). HTTPS is
like HTTP except that it uses a different port (port 443 instead of port 80) and adds a cryptography
mechanism down the stack between TCP and HTTP. In this regard, HTTP even with the fi nal S is
not a technologically secure protocol if you’re looking for authentication and authorization. You
need HTTP authentication on top of it or something like ASP.NET support (cookies and such).
Authorization is, of course, up to the individual application. If you still fi nd this statement hard to
accept, consider that when HTTP is used, WCF leverages its own infrastructure and bindings to
ensure security and authentication.

The HTTP Façade Is Not Your Middle Tier

 To design an effective ASP.NET AJAX architecture, you must fully understand a key fact. The
HTTP façade and business application services—the services that can raise your application
to the level of a service-oriented application—are different things.

 In an ASP.NET AJAX (or Silverlight) application, the HTTP façade exposes a few hosted services
that are, conceptually speaking, an internal part of the application. However, for technical
reasons, these services are exposed through public endpoints over IIS. Everything you have in
the HTTP façade is private by design but public by deployment.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

84 Part I The (Much Needed) Facelift for the Old Web

 As mentioned, for AJAX-enabled WCF services you can’t use the wsHttpBinding binding
model and all of its security options. From an ASP.NET AJAX client, you must resort to the
webHttpBinding scheme, which is much simpler from a security perspective. It supports only
the following options: no security, transportation security (HTTPS), and clear text credentials.

 A service that enables Silverlight clients is forced to the basicHttpBinding scheme, instead.
As you can see in Figure 3-5, the basicHttpBinding scheme doesn’t offer a Silverlight client
the same security options a full-trust client would get. Security options for WCF services are
limited to HTTPS and default to no security at all.

FIGURE 3-5 Security modes for basicHttpBinding in Silverlight

 Should such a simple security model in AJAX and Silverlight scenarios be surprising at all? Well,
AJAX and Silverlight are Web clients that have one main interest in services: craft a request and
then look at the response. REST embodies this approach, and it’s all about simplicity. If you
need to protect sensitive data while it’s being transmitted, you have HTTPS as an option. If you
need authentication, you have to look elsewhere, as we’ll see in a moment.

 Important SOAP vs. REST is an ongoing debate that essentially comes down to a developer’s
love for standards vs. a developer’s love for simplicity. After having spent years wishing for Web
standards, developers and architects have discovered the weight that support for standards adds
to development. So REST emerged as the lightweight alternative to services.

 People like REST because overall it’s simple, cheap, and easy to implement. REST is standardless
in the sense that there’s no standard to dictate the format of the data being exchanged; with
REST you can return whatever you want, formatted as you like. I’m not so sure that simplicity
all the way through is always a good argument. There are scenarios where simplicity is king
and makes it really cheaper and faster without side effects. And there are scenarios where the
 certainty of standards (message envelope, data types, constructs) is the real added value.

Built-in Security Countermeasures

 The scaffolding for AJAX-enabled Web and WCF services contains some measures to raise
the security bar and hinders outsiders from crashing the party. For example, by default HTTP
GET calls are disabled and a particular content type is required—the application/json type.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 3 AJAX Architectures 85

 Thanks to these measures, cross-site scripting can’t reach the service through the <script>
tag. The <script> tag (as well as the tag) certainly can accept a cross-domain URL
that points to the service, but it can invoke it only via an HTTP GET and without specifying
a particular request header and content type. Unless you change the default settings, an
 AJAX-enabled service is immune from cross-site scripting.

 Built-in countermeasures, though, do not resolve the problem of offering services only to
authenticated and authorized users.

Replay Attacks

 Although it’s safe from cross-site scripting, an AJAX-enabled service is still vulnerable to
 replay attacks. A replay attack occurs when an attacker intercepts a message that two parties
legitimately exchange and replays it on behalf of one of the parties.

 Because services in the HTTP façade are connected to the middle tier of the application, a replay
attack can produce bad consequences. Unless mitigated, the services would process the message
as a legitimate message, thus opening the door of the middle tier to unauthorized users.

 To perpetrate a basic replay attack against an AJAX-enabled service, you don’t even have to
be an expert hacker. All that you need is some expertise with the classes in the System.Net
namespace of the .NET Framework to craft a Web request from a full-trust Windows Forms
or console application.

 Services in the HTTP façade are exposed, and you have to defend them. The fi rst rule to
 apply is this: Do not expose in the HTTP façade any critical business logic. The second rule is
this: Find a way to discriminate between legitimate users and outsiders.

Discriminate Against Outsiders

 Any security barrier you place around the HTTP façade at the network level (for example,
a fi rewall) to fi lter outsiders would likely stop legitimate calls too. When all calls come from
a plain Web browser and from the Internet place, you need a reliable way to welcome
 legitimate users and reject outsiders.

 To do so, you have to identify a piece of information that only legitimate users can easily
provide. The simplest and most effective piece of information is an authentication cookie
generated by the ASP.NET forms authentication.

 To protect critical services in the HTTP façade, you isolate in a reserved area of the site any
ASP.NET pages that invoke a sensitive service method and any services to protect. After
 pages and services are placed in a protected area of the site, access to them requires that
users go through a login page.

 The login page gets credentials from the user and verifi es whether the user is authorized to
visit the page. If all is fi ne, the request is authorized and an authentication cookie is generated
and attached to the response. From now on, any requests the user makes to the application,
 including requests directed at services in the HTTP façade, will bring the cookie. (See Figure 3-6.)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

86 Part I The (Much Needed) Facelift for the Old Web

Presentation

HTTP Façade

Login

URL

JavaScript Silverlight2

SOAP

User

JSON

JSON/
SOAP

auth
cookie

auth
cookie

auth
cookie

FIGURE 3-6 Legitimate users and outsiders around the HTTP façade

 In ASP.NET, login pages require that forms authentication be turned on. Furthermore,
 anonymous users should be denied access to any resources within the protected area. Here’s
a sample confi guration script you can use:

<location path="ProtectedAreaOfTheSite">

 <system.web>

 <authorization>

 <deny users="?" />

 </authorization>

 </system.web>

</location>

 If necessary, login pages can be placed on a different server and work over HTTPS. This
 solution, however, has no impact on the security of the HTTP façade.

 Outsiders can still try to access the services via the public URL. In this case, though, because
the service IIS endpoint is also placed behind an authorization section, they will receive an
HTTP 401 error code (unauthorized access). The outsider call will pass only if the outsider can
show a valid authentication cookie. But this can happen only if a cookie theft has occurred
previously. However, this is all another problem that relates to the security of the Web site
rather than to the security of the services in the HTTP façade.

 The only viable alternative to using cookies and ASP.NET Forms authentication are client
 certifi cates installed on all client machine.

Trusting the HTTP Façade

 Should WCF and Web services do something on their own to keep outsiders off the site?
If you place service endpoints behind a protected area of the site, you’re as safe as with any
other ASP.NET pages based on Forms authentication. To give you an idea, if you combine
Forms authentication with HTTPS you have the same security level currently used by online
banking applications and payment sites.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 3 AJAX Architectures 87

 It’s therefore safe for the middle tier to trust the upper HTTP façade and accept any calls
coming down the way. However, nothing prevents you from implementing an extra check for
authorization within the body of service methods. In this case, though, you need to access
credentials information from within the service.

 AJAX-enabled services can carry this information only via the authentication cookie or client
certifi cates. Programmatically, a service gets user credentials via intrinsic objects of the
 run-time platform. ASP.NET XML Web services live within the ASP.NET runtime and have full
access to the ASP.NET intrinsics, including the User object.

 By default, instead, WCF service calls are processed by the WCF runtime, which lives side by
side with ASP.NET, but it’s not a part of it. As a result, a WCF service method can’t access the
HTTP request context and put its hands on the User object. The only possible workaround is
running all the WCF services hosted by the site in ASP.NET compatibility mode.

 You turn compatibility mode on in the confi guration fi le, as shown here:

<system.serviceModel>

 <serviceHostingEnvironment aspNetCompatibilityEnabled="true" />

. . .

</system.serviceModel>

 In addition, each service is required to express its explicit approval of the model. A service
does this by decorating the service class—not the service contract—with the
AspNetCompatibilityRequirements attribute, as shown here:

[AspNetCompatibilityRequirements(

 RequirementsMode = AspNetCompatibilityRequirementsMode.Allowed)]

public class TimeService : ITimeService

{

. . .

}

 Note that, by default, a WCF service has the RequirementsMode property set to NotAllowed.
If this value is not changed to either Allowed or Required, you get a run-time exception as
you attempt to make a call to the service.

 Note WCF services have been designed to be independent from binding and transportation.
By turning on ASP.NET compatibility mode, you break this rule because you make the service
 dependent on IIS as the host and HTTP as the transportation protocol. On the other hand,
 services in the HTTP façade are just AJAX-specifi c services so, in this regard, enabling ASP.NET
compatibility is actually a natural choice.

The AJAX Server Pages Pattern

 AJAX Server Pages indicates the working style of pages that employ a new generation of
AJAX-enabled server controls. These controls work over the classic postback model of
ASP.NET, except they use asynchronous requests and exchange a mix of script and markup.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

88 Part I The (Much Needed) Facelift for the Old Web

 In the AJAX Server Pages pattern, AJAX capabilities of a page mostly result from the
 individual AJAX capabilities of constituent controls. Awaiting for ASP.NET 4.0, these special
controls today exist only in ad hoc commercial libraries.

 Important On a more emphatic note, I believe that many of the most popular suites of controls
currently available in the marketplace are implementing their own framework on top of the AJAX
Server Pages architectural pattern. I wouldn’t say the same for the Microsoft’s ASP.NET AJAX
framework as of version 3.5 Service Pack 1. As you’ll see in the rest of the chapter, Microsoft’s
 partial rendering is an effective, but relatively rudimentary, approach to AJAX server pages.

 The gist of AJAX Server Pages is that it uses server controls and postback as usual. It’s about
 allowing you to continue writing code-behind classes that talk to the middle tier, oblivious of the
AJAX factor. It’s about completely integrating AJAX in the ASP.NET platform so that everything is
different under the hood even though it looks, walks, and quacks the same on the surface. Fully
implementing the AJAX Server Pages pattern means that you don’t even realize AJAX is a special
fl avor of the application and keep on doing the same thing, but over asynchronous requests. And
where the classic ASP.NET platform was shielding you only from generation of HTML, the AJAX
Server Pages pattern on top of ASP.NET also shields you from details of asynchronous requests.
As mentioned, today this is possible only if you pick up a commercial library. With ASP.NET 4.0,
things might be a bit different. Time will tell.

Architectural Overview

 Today, server controls are experiencing hard times, but for different reasons. Not always is
the generated markup easy to style via cascading style sheets (CSS). And, more importantly,
not always do server controls let developers gain full control over the generated markup. This
means that getting XHTML, text encoding, and the desired syntax is harder than it should be.

 AJAX requires that more and more work be done (and subsequently programmed) on the
client using HTML and JavaScript. This requirement allows you to better manage situations
involving the preceding points and overall weakens the role of server controls.

 But with ASP.NET server controls, developers can reach a level of productivity that is currently
unmatched by other approaches. In addition, with server controls developers can leverage
most of their existing skills and learn to use new features with surprisingly short learning curves.

Classic ASP.NET Server Controls

 Offi cially released in early 2002 after two years of experimentation, ASP.NET marked a
 watershed and changed the world of Web development forever. ASP.NET was an improvement
over the existing model of Active Server Pages (ASP), which was already a milestone in Web
development itself. ASP.NET reinforced the point of developing HTML markup on the server
and added composable black boxes known as server controls.

 Server controls didn’t exist before ASP.NET. And if my memory serves me, any attempt to use
server-side blocks of code in classic ASP page was not very heartily welcomed at the time.
Before ASP.NET arrived, the world of Web development on the Microsoft platform was ruled

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 3 AJAX Architectures 89

by design-time controls, which were especially popular in Visual InterDev 6.0. A design-time
control runs only within the development environment to help create a fi nished combination
of HTML and script. When the page is run, the script executes just like a handwritten script,
without any extra costs on the server side.

 Note As a personal anecdote, I like to recall that I wrote a sort of prototype of what we would
call a server control today while fl ying home from my fi rst ever conference in the United States.
It was the late summer of 1999. (By the way, the control I tested was, guess what, a data grid.)
Only two months later, I would have my initial exposure to ASP.NET, still named ASP+ at the time.

 The independently developed idea of server-side controls didn’t really get rave reviews from
the circle of my peers—too much pressure on the server and subsequent poor performance.
However, server controls became a worldwide standard in just a few months with the fi rst
public builds of ASP.NET.

 In classic ASP.NET, server controls are merely black boxes that output markup and some sparse
chunks of JavaScript code. Such server controls usually have no client-side object model and
leverage the view state to rebuild their own state across successive requests. Furthermore, very
few such server controls control their own postbacks. Only button controls, therefore, post
back, in addition to the few controls that expose an autopostback property. When the postback
occurs, the response covers the entire page and not just the modifi ed delta.

Increasing JavaScript Emissions in the Page

 The biggest difference between classic ASP.NET controls and AJAX-enabled server controls is
in the amount of JavaScript code emitted. Whereas only the smartest among classic ASP.NET
controls (for example, validation controls) emit small chunks of JavaScript code, AJAX-enabled
server controls link a full client-side object model realized in JavaScript.

 For example, an AJAX-enabled Label control will group in a JavaScript function a set of
 methods for client code to refresh the rendered markup. Here’s a brief excerpt written using
the Microsoft AJAX Library. (I’ll cover the library in the next chapter.)

Samples.Label = function Samples$Label(domElement)

{

 Samples.Label.initializeBase(this);

 this._element = domElement;

}

function Samples$Label$get_text()

{

 if (arguments.length !== 0) throw Error.parameterCount();

 return this._element.innerHTML;

}

function Samples$Label$set_text(value)

{

 var e = Function._validateParams(arguments, [{name: 'value', type: String}]);

 if (e) throw e;

 this._element.innerHTML = value;

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

90 Part I The (Much Needed) Facelift for the Old Web

 A client-side object model for each control is essential in an AJAX application that uses server
controls. An AJAX-enabled control differs from a classic ASP.NET control because it emits markup
and JavaScript. However, the emission of JavaScript is not limited to just the few lines required to
support a specifi c feature (such as quick validation checks on user input); instead, they cover the
entire behavior of the control, including the interaction with the user and the postback.

 As discussed in Chapter 2, “The Easy Way to AJAX,” an AJAX postback doesn’t return the
 entire new page, just an updated delta of it. In the AJAX Server Pages pattern, an AJAX
 control that governs its own postbacks returns the updated delta of its markup and perhaps
that of other controls in the page. The updated markup is then easily applied on a per- control
basis if each control has its own client object model.

 Having a JavaScript model for each control also makes it easier to arrange data binding and
updates that integrate into the page DOM data calculated by server methods. Realistically, to
have a JavaScript model for each control you need to pick up a commercial library.

Code-Behind and Service Layer

 In a model where server controls are used to produce the user interface and JavaScript is
mostly used to refresh the DOM and trigger asynchronous requests, do you really need an
HTTP façade?

 If you adopt the AJAX Server Pages pattern, you can have an HTTP façade, but you aren’t
forced to have one in your applications.

 The AJAX Server Pages pattern requires you to write all (or at least most) of your Web
 application in managed code, thus abstracting away JavaScript and AJAX machinery. Don’t
misunderstand me, though: you will still need a lot of JavaScript code to do AJAX, but you
delegate the underlying framework to managing most or all of it. You write JavaScript yourself
only if it’s necessary to achieve a particular feature (for example, simultaneous calls or polling).

 With AJAX Server Pages, most of your application is still written in code-behind classes,
which are better if they’re enriched with a pattern that adds testability and separation of
 concerns. My favorite is the Model-View-Presenter (MVP) pattern. (For more information
about patterns in layered applications, check out my book Microsoft .NET: Architecting
Applications for the Enterprise, Microsoft Press, 2008.)

 With AJAX Server Pages, you don’t really need an AJAX service layer; however, on the server,
from the code-behind class you directly call the application services in the middle tier.

The Classic Postback Model Revisited

 The AJAX Server Pages pattern doesn’t introduce a different application model. It’s still based
on the classic postback model. More exactly, it’s a revisitation of the postback model and has
similarities with the partial rendering model in ASP.NET AJAX.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 3 AJAX Architectures 91

It’s Always a Postback

 Figure 3-7 shows graphically the difference between classic ASP.NET partial rendering and
the AJAX Server Pages pattern.

Partial Rendering

Request
Server

Server

Request

New button
captionNew label

Browser

Browser

Text

Other text

Suggestions

content

Markup for
UpdatePanel1

Markup for
UpdatePanel2

AJAX Server Pages

ASP.NET AJAX
PageRequestManager class

2 1

Callback manager
of the postback control

FIGURE 3-7 Comparing partial rendering and AJAX Server Pages

 The difference is in the granularity of the postback event (entire page vs. control), the
 content of the returned delta, and the behavior of the manager component that updates
the page. Overall, the AJAX Server Pages pattern is an improved and smarter form of partial
 rendering. Let’s dig out more.

A Smarter Form of Partial Rendering

 As we saw in Chapter 2, ASP.NET partial rendering works by installing a centralized handler
for the form’s submit event. Whenever a form in the page submits its content through the
browser, a smart piece of JavaScript code kicks in and invokes the request to the ASP.NET
AJAX client framework.

 The body of the request is slightly modifi ed to include extra data. Next, the request executes
asynchronously. When the response is received, the ASP.NET AJAX client framework manages
to update the user interface. The response is organized in update-panels. An update-panel

http://lib.ommolketab.ir
http//lib.ommolketab.ir

92 Part I The (Much Needed) Facelift for the Old Web

is a fraction of the page that includes multiple controls and implicit or explicit postback
 triggers. The update-panel is a mere container that exists for the convenience of update. It’s
not responsible for triggering the postback and updating the page.

 As the upper part of Figure 3-7 shows, partial rendering replaces parts of the page over a
postback. The overall page is a patchwork of update-panels that, in turn, are a patchwork of
individual controls.

 The AJAX Server Pages pattern requires a much more sophisticated scheme. Each control
might be able to post back and carry markup back to the client. The response takes different
formats depending on the framework, so it’s the framework code that actually applies it to
the DOM.

 A framework that fully embraces the AJAX Server Pages pattern will also likely enhance
two aspects of classic partial rendering that are often recognized as weak points of the
 technology: view state transmission and simultaneous calls. For example, the framework
callback manager—either implemented as a global component or incorporated in the client
object model of each control—can manage partial view state and implement a queue to
support concurrent requests while serving them strictly sequentially.

Libraries in Action

 In an AJAX Server Pages scenario, server controls emit markup and JavaScript. The JavaScript
code they emit uses functionalities from a framework library, where typically you fi nd an
 object model for each of the controls plus some general facilities.

 Common facilities include a callback manager to prepare asynchronous requests and
 parse-related responses, possibly a queue to serialize concurrent calls, maybe a client cache,
and client-side cross-cutting aspects such as drag-and-drop, resizability, and modality.

 Let’s see how three popular commercial libraries implement the AJAX Server Pages pattern.

 Note This section of the chapter is not intended to be a comprehensive cheat sheet about
 various commercial products. I focus only on how libraries arrange the communication between
the client page and the server environment. Put another way, I limit my discussion to considering
what controls each library offers, what is downloaded to the client, and how the callback
 manager works. The purpose is not to argue which library is preferable.

Telerik’s RadControls for ASP.NET AJAX

 This library offers a range of controls that abstract away from low-level ASP.NET and HTML
capabilities to offer more high-level components aligned with what developers commonly
need to do within a Web page. You fi nd enhanced versions of common controls such as text
and combo boxes, as well as rich controls such as grids, tree views, and toolbars. In particular,
you have date, numeric, and masked text boxes, as well as a templated combo box.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 3 AJAX Architectures 93

 RadControls for ASP.NET AJAX is fully integrated with the Microsoft ASP.NET AJAX
 framework, and internally it uses the partial rendering engine to generate some of its output.
In a typical RadControls page, you fi nd the ASP.NET ScriptManager control as well as the
 in-house RadAjaxManager control. Here’s an example of a page that handles a combo box
item selection on the server:

<asp:ScriptManager runat="server" ID="ScriptManager1" />

<telerik:RadComboBox ID="RadComboBox1" runat="server"

 EnableLoadOnDemand="true"

 DataTextField="CompanyName"

 OnItemsRequested="RadComboBox1_ItemsRequested">

 <HeaderTemplate>

. . .

 <HeaderTemplate>

 <ItemTemplate>

. . .

 </ItemTemplate>

</telerik:RadComboBox>

<telerik:RadAjaxManager ID="RadAjaxManager1" runat="server">

 <AjaxSettings>

 <telerik:AjaxSetting AjaxControlID="i0">

 <UpdatedControls>

 <telerik:AjaxUpdatedControl ControlID="RadComboBox1" />

 </UpdatedControls>

 </telerik:AjaxSetting>

 </AjaxSettings>

</telerik:RadAjaxManager>

 The page doesn’t contain any explicit UpdatePanel controls, but it’s still heavily based on
built-in partial rendering. In addition, a bunch of script code is downloaded to the client that
contains Telerik’s client-side library.

 In the sample page, the RadComboBox control fi res a postback event using an injected click
handler and uses the code in the internal JavaScript library to perform an asynchronous
 postback. On the server, the following code is employed:

public partial class DefaultCS: XhtmlPage

{

 void RadComboBox1_ItemsRequested(object o, RadComboBoxItemsRequestedEventArgs e)

 {

 // e.Text refers to the currently selected content of the combo box

. . .

 }

. . .

}

 The server-side event handler does its own work and then yields to the page’s rendering
 engine. As we saw in Chapter 2, the ScriptManager in the page hooks up the rendering process
and proceeds through the list of UpdatePanels registered for updates.

 The content of the RadAjaxManager control determines how many UpdatePanel regions
will be silently created on the server to produce markup. In the code snippet, it’s the same
RadComboBox1 control to be updated, as stated by the AjaxSetting element.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

94 Part I The (Much Needed) Facelift for the Old Web

 The RadControls library is smart enough to distinguish calls for on-demand data from page
updates. In the former case, a proprietary text format is used to return markup. In the latter
case, full partial rendering markup is returned, including view state.

 The code discussed here can be seen in action at http://demos.telerik.com/aspnet-ajax/ComboBox.

Gaiaware’s Gaia AJAX

 The Gaia AJAX library features server controls whose level of abstraction is really close to
that of standard ASP.NET controls. Most of the Gaia Ajax controls inherit from their ASP.NET
counterparts. This means, for instance, that every single property you have in, say,
System.Web.UI.WebControls.Button is also available in the Gaia AJAX Button control.

 In a certain way, Gaia AJAX doesn’t simply provide a library to do some good AJAX
 programming—it really replaces ASP.NET basic controls with new controls that support AJAX
from the ground up. The library provides out-of-the-box advanced controls, such as TabControl,
FishEye, Toolbar, and Window, but it also includes simpler controls such as Label, Button, and
CheckBox, as well as ASP.NET-specifi c controls, such as CheckBoxList and RadioButtonList.

 All of these controls fi re a server-side event when their state is changed on the client. The
 connection with the server is obviously asynchronous and nearly identical to a classic ASP.NET
postback. As a developer, you don’t need to write a single line of JavaScript code, and no markup
is explicitly returned to the client.

 Asynchronous postbacks and no markup returned? Where’s the magic?

 Quite simply, Gaia AJAX controls record their server changes and have an internal component
to serialize changes through JavaScript code to run on the client. Here’s an example:

<form id="form1" runat="server">

 <gaia:Label ID="Label1" runat="server" />

 <gaia:Button ID="Button1" runat="server"

 OnClick="Button1_Click" Text="Click me" />

</form>

 When you click the button, the following managed code is run:

protected void Button1_Click(object sender, EventArgs e)

{

 Label1.Text = "Hello Gaia AJAX";

}

 Is this really AJAX? Isn’t it plain ASP.NET, instead?

 Sure, ASP.NET partial rendering also puts forth a similar application model, but it requires
ScriptManager and UpdatePanel controls. The beauty of Gaia AJAX is that you need no
ScriptManager, no updatable panels, no Web services, and no (explicit) JavaScript. You write

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 3 AJAX Architectures 95

code as you would in ASP.NET, except that you can take advantage of some richer controls
and—a fairly unique feature—AJAX aspects. But before I get into AJAX aspects, a look at the
request payloads is in order.

 The response you get from the server when you execute the preceding code is shown here:

$G('Label1').setText('Hello Gaia AJAX');

$FChange('__VIEWSTATE', 43,

 'EHgtIYXNSZW5kZXJlZGceBFRleHQFFEhlbGxvIEFqYXggV29ybGQgMi4wZGQCAw8

 PFgIfAGdkZGSL1pkb0d1wQuK4M9lMGeOIWhPkMA==');

Gaia.Control.setUpdateControl(null, true);

 The $G function comes from the Gaia JavaScript library and is equivalent to
document.getElementById. It simply retrieves the element modifi ed on the server and
 updates its displayed text. Next, the view state is also updated to refl ect server changes.
Any controls updated during the postback will add their own update script to the
 response to update each control’s client-side object model.

 A rather unique feature of Gaia AJAX is that it returns partial view state. The $FChange
 function gets the modifi ed portion of the view state and recomposes it with what’s on the
client. The number in the call to $FChange indicates the position where the changes to the
client view state must be inserted.

 As mentioned, aspects are another feature of Gaia AJAX that deserves attention. An aspect
is a behavior you might want to get from a variety of controls such as modality, resizability,
or draggability. Every Gaia AJAX control has a special Aspects collection property. By adding
 aspects into this collection, the control will render appropriate client-side code, thus
 modifying the actual behavior of the control. Let’s consider the following Window control:

<gaia:Window ID="Window1" runat="server"

 Caption="Summary"

 Height="480px"

 Width="600px"

 Visible="false"

 CssClass="gaiax">

. . .

</gaia:Window>

 By adding the modal aspect, you make the window display with modality, as shown here:

protected override void OnLoad(EventArgs e)

{

 // The window is now modal, movable, and resizable

 Window1.Aspects.Add(new AspectModal());

 Window1.Aspects.Add(new AspectDraggable());

 Window1.Aspects.Add(new AspectResizable());

}

protected void Button1_Click(object sender, EventArgs e)

{

 // Display the window (with all of its configured aspects)

 Window1.Visible = true;

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

96 Part I The (Much Needed) Facelift for the Old Web

 Aspects can be added to any Gaia controls, but not to standard ASP.NET controls. Likewise,
the optimized JavaScript rendering after a postback applies only to Gaia controls. If you use
non-Gaia controls, the library will emit plain markup for the control.

 For more information, pay a visit to http://www.gaiaware.net.

 Note Another popular suite of controls, ComponentArt’s WebUI, can be seen as the
 representative of the other AJAX pattern we covered earlier in the chapter—the AJAX Service
Layer. ComponentArt hosts a white paper on their Web site that explains the motivation of their
innovative approach to ASP.NET AJAX programming. The white paper can be obtained from
http://www.componentart.com/webui/ajax.aspx.

 In summary, the idea is that server controls generate JavaScript code and storage arrays
 containing the minimum data and style information required to display the user interface. Next,
developers are required to write JavaScript logic for event handlers. In doing so, developers
fi nd available a full client object model nearly identical to the object model of a server control.
Some controls are also capable of connecting to confi gured (custom) Web services and get data
autonomously. Directly bindable to control elements, these Web services clearly form the AJAX
Service Layer.

The Tough Call

 A pattern is a known and well-established core solution applicable to a family of concrete
design points. A pattern is a core solution and, as such, it might need adaptation to a
specifi c context.

 If two patterns exist for a given design problem, therefore, it’s not because of redundancy.
If two patterns exist for a given design problem, it’s because they offer a different
 perspective on the problem and in the end provide different solutions with different pros
and cons. If you compare two similar patterns, you’ll rarely ever have an absolute winner.
Instead, you’ll have one pattern that might adapt better than the other to a given context.

 This said, when is AJAX Service Layer preferable over AJAX Server Pages? And when is
the opposite true?

 In the past few years, I’ve changed my mind many times about what would be the most
effective way to get AJAX in ASP.NET applications. And I’m still not entirely committed
to a particular answer. I feel that the most effective way shouldn’t force you too far
away from the classic ASP.NET programming model. Of the two patterns, AJAX Server
Pages is clearly the closest to this defi nition.

 AJAX Server Pages propose a model that is easier to learn and apply, and it builds on
the skills that a development team might already have. In this regard, it works great for
large applications. In my humble opinion, this would have been the perfect approach
for evolving the ASP.NET platform. On the fl ip side, it realistically requires a commercial
library to supply the scaffolding.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 3 AJAX Architectures 97

 The two libraries mentioned here (Gaia AJAX and RadControls) are, to my knowledge,
excellent implementations of the AJAX Server Pages pattern. RadControls offer more
sophisticated controls; Gaia, on the other hand, really blurs the distinction between
ASP.NET and ASP.NET AJAX. It looks like ASP.NET, but it does AJAX.

 AJAX Service Layer is more of an architectural pattern. It requires a bit more design
work on the presentation and business layers. You have to extract functionalities from
the existing middle tier and craft a new tier of AJAX-enabled services. In addition, the
presentation layer requires much more JavaScript. However, the JavaScript you need in
this context is not always code that a server control can automatically generate.

 The AJAX Service Layer forces you to write much of the presentation logic in JavaScript.
ASP.NET is evolving in this direction. ASP.NET already provides an excellent framework
to invoke services, and in the next version it’s expected to strengthen the abstraction
level of JavaScript to make it a more modern language. A good point in favor of
the AJAX Service Layer is that the same server architecture serves well both an
ASP.NET AJAX and a Silverlight client. The same doesn’t hold true for the AJAX Server
Pages pattern. A good commercial product to consider to power up the presentation
of AJAX and Silverlight clients in a service layer scenario is the aforementioned
ComponentArt’s WebUI.

 Note A bunch of other products, from a completely different category, exist to build AJAX front
ends: Google Web Toolkit, Backbase, and Visual GUI, to name a few. And more will undoubtedly
be available over time. The products mentioned here such as Telerik and Gaia were mentioned
because they most closely fi t the AJAX Server Pages pattern with the least impact to the ASP.NET
developer. Other viable options cause you to write more code in support or change the way
ASP.NET pages are developed in some way.

 Summary

 AJAX burst into the Web world only a few years ago, and it’s revolutionizing the infrastructure
of Web applications. Are ASP.NET and AJAX destined to remain separate things, to be
 combined only when you need them to be?

 My (way too easy?) forecast is that in fi ve years we’ll forget that there ever was a time
when AJAX was just an option rather than the standard. AJAX is an “option” today for two
main reasons. First, it’s a relatively new approach that is a true paradigm shift for mature
and consolidated technologies. Second, applying AJAX is currently a bit expensive. However,
fi ve years from now AJAX will become a standard part of nearly all contemporary Web
 development tools. It might even become harder to build Web applications that do not
 incorporate AJAX.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

98 Part I The (Much Needed) Facelift for the Old Web

 But keep in mind that today, to make developing AJAX solutions smooth and effective, you
need to get (and pay for) a commercial product. If you stick to the Microsoft platform as it
exists today, AJAX development becomes expensive because of limited productivity.

 Overall, two main architectures exist to add AJAX to a Web application. You can drive the
presentation layer using manual or injected JavaScript and direct calls to an AJAX service
layer. Alternatively, you can keep using the same ASP.NET application model and adopt
 improved or perfected versions of partial rendering.

 In any case, as you move toward AJAX you can’t save yourself from the JavaScript learning
curve. Even though many libraries promise to keep you away from JavaScript, I suggest that
you still come to grips with JavaScript programming. In the end, you’ll fi nd yourself working
not with the classic JavaScript application, but rather with a modifi ed JavaScript library
 designed for the AJAX framework you decide to use. This is exactly the topic we’ll cover in
the next chapter.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 99

Part II

Power to the Client

In this part:

Chapter 4: A Better and Richer JavaScript. 101

Chapter 5: JavaScript Libraries. 129

Chapter 6: AJAX Design Patterns .163

Chapter 7: Client-Side Data Binding. .223

Chapter 8: Rich Internet Applications .269

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 101

Chapter 4

A Better and Richer JavaScript

 Language is the source of misunderstandings.

 —Antoine de Saint-Exupery

 Aside from the social implications of it, the Web 2.0 from a technology viewpoint is mostly
about running more JavaScript code on the client. You can’t just take the standard JavaScript
language that most browsers support today and ask any developer to write immensely
 capable applications using it. As a projectwide approach, it just doesn’t scale and work
the way you might expect. JavaScript is not like, say, C#. JavaScript is a very special type of
 language; it’s probably not the language everybody would choose to use today to power up
the client side of the Web. However, it’s the only common language we have, and we have to
stick to it to reach the largest audience.

 So what if you want (or more likely need) more power on the client?

 Be ready to write more JavaScript code; more importantly, be ready to import more
JavaScript code written by others. Either of these two ways of using JavaScript is OK, as they
are not mutually exclusive options.

 JavaScript is not the perfect language, and, amazingly, it was not designed to be the super
language to rule the Web. JavaScript is popular, and this is its major strength and most
 signifi cant weakness. It’s a strength because it allows you to reach virtually every browser and
every user; it’s a weakness because its widespread use makes implementing any important
change or extension painful in terms of achieving compatibility.

 In summary, I fi rmly believe that for the time being you can’t just transform JavaScript into
something else that is radically different from what the language is today. However, the
Web has repeatedly proven to be a surprisingly dynamic and agile environment; so who
really knows what could happen in fi ve years? Giving a judgment today, I would say that
a winning approach needs to evolve the language without breaking compatibility with all
of today’s browsers. It ultimately means creating new libraries that add new features to
the language. However, these libraries must be created using the same core language and,
 ideally, they should also be stacked up and composed together in a recipe that suits any
given application.

 In this chapter and the next, I’ll review two JavaScript libraries that work well together today
and that will probably evolve together in the near future: the Microsoft AJAX library and
the jQuery library.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

102 Part II Power to the Client

JavaScript Today

 AJAX would not be possible without JavaScript. And this happens not because JavaScript is
such a powerful language, but because JavaScript is so popular and built in nearly the same
form in virtually all browsers released in the past fi ve years.

 Three ingredients, combined in the right doses, almost spontaneously originated the AJAX
 paradigm shift: a standard browser-hosted programming language (JavaScript), a standard object
model to fully represent the document being viewed (the W3C’s Document Object Model), and
a suffi ciently rich browser object model that includes the key XMLHttpRequest object.

 Separating these elements is almost impossible nowadays. JavaScript is more than a simple
programming language and, as you’ll see later in the chapter, modern libraries refl ect that.

The Language and the Browser

 JavaScript is a language tailor-made for the Web and, more specifi cally, for the browser. In
fact, there’s no compiler currently available that allows you to create binaries from a bunch of
JavaScript source fi les.

 The only exception I’m aware of is the Managed JScript compiler for the .NET Framework.
However, I don’t recall ever meeting someone who used it concretely to build applications
and not simply as a proof of some concepts.

 I won’t stray too far from the truth by saying that there’s no life for JavaScript outside the
realm of a Web browser. Of course, this is largely due to where JavaScript originated and the
purpose it fulfi lled at the time. Let’s briefl y recall the origins of the language.

Original Goals of the Language

 The fi rst appearance of JavaScript as a browser-hosted language dates back to late 1995,
when the fi rst beta of Netscape Navigator 2 was released. JavaScript was introduced to give
authors of Web documents the ability to incorporate some logic and action in HTML pages.
Before then, a Web page was essentially a static collection of HTML tags and text. Historically,
the fi rst signifi cant enhancement made to the syntax of HTML was the support for tags to
include script code.

 JavaScript was not designed to be a classic and cutting-edge programming language—not even
by the standards of 15 years ago. The primary goal of its designers was to create a language
that resembled a simpler Java that could be used with ease by nonexpert page authors.

 To some extent, the design of JavaScript was infl uenced by many languages, but the
 predominant factor was simplicity. It was named JavaScript because the language was essentially
meant to be a powerful language (like Java) but focused on scripting. No other relationships,
beyond the deliberate reference in the name, exist between Java and JavaScript.

 As a result, JavaScript is an interpreted and weakly typed language that also supports
 dynamic binding and objects. JavaScript, however, is not a fully object-oriented language.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 4 A Better and Richer JavaScript 103

 Note Originally developed at Netscape by Brendan Eich, JavaScript was fi rst named LiveScript.
The name was changed to JavaScript when Netscape added support for Java technology in
its Navigator browser. The script suffi x was simply meant to be the script version of an
 excellent programming language like Java. In no way was the language supposed to be a
spinoff of Java.

 Later, Microsoft created a similar language for its Internet Explorer browser and named it
JScript to avoid trademark issues. In 1997, JavaScript was submitted to the European Computer
Manufacturers Association (ECMA) International for standardization. The process culminated a
couple of years later in the standardized version of the language named ECMAScript.

The Scripting Engine

 Being an interpreted language, JavaScript requires an ad hoc run-time environment to
 produce visible effects from the source code. The run-time environment is often referred
to as the browser’s scripting engine. As such, the JavaScript’s run-time environment can
be slightly different from one browser to the next. The result is that the same JavaScript
 language feature might provide a different performance on different browsers and might
be fl awed on one browser while working effi ciently on another one.

 This fact makes it hard to write good, cross-browser JavaScript code and justifi es the love/hate
relationship (well, mostly hate) that many developers have developed with the language over
the years.

 The diagram in Figure 4-1 shows the overall structure of a scripting engine.

Source
Code

JavaScript Language
Interpreter

DOM
Objects

Your
Objects

Browser
Objects

Scripting Engine

FIGURE 4-1 The browser’s scripting engine

http://lib.ommolketab.ir
http//lib.ommolketab.ir

104 Part II Power to the Client

 The engine is a component that is hosted in the browser and receives the source code to
 process. Armed with language knowledge, the engine can resolve any name in the source code
that can be mapped to a syntax element—keywords, variables, local functions, and objects.

 In addition, the source code processed within a Web browser is likely populated with
 specifi c objects coming from a variety of sources. For example, you can fi nd DOM objects
to access the content being displayed in the page as well as browser-specifi c objects such as
XMLHttpRequest and window. Furthermore, any libraries you reference from the page are also
published to the engine. After the script has been loaded, the browser runs the script through
the engine. This action results in the functionality defi ned by the commands in the code.

 As mentioned, although JavaScript is defi nitely a stable language that hasn’t faced signifi cant
changes for 10 years now, virtually any broadly used library is packed with forks in code to
distinguish the behavior of different browsers and ensure the same overall interface.

 One of the fi rst rules—if not the fi rst rule—you should follow to write good AJAX applications
is get yourself a powerful JavaScript library that adds abstraction and features to the JavaScript
language and that works in a cross-browser manner.

 Note As far as the ASP.NET platform is concerned, the good news is that you have neither to
reinvent the wheel nor to invent your own wheel to proceed. In fact, the AJAX extensions
to ASP.NET include a cross-browser core library that you can use as the foundation for any
JavaScript code you might need beyond ready-made objects and functionalities.

Recognized Flaws

 As you’ll see in a moment, JavaScript has a number of drawbacks, both technical and
 infrastructural. In spite of all these factors, though, JavaScript works just great for the majority
of Web applications. And nothing any better has been invented yet.

 All things considered, the limitations of JavaScript can be summarized as two elements: it is
an interpreted language, and it is not fully object oriented. The former drawback makes
the language signifi cantly slower than a compiled language. The latter makes it harder for
 developers to write complex code.

 These were not limitations in the beginning, about 10 years ago. Nonetheless, they are
now limitations that become more evident every day. Replacing JavaScript, however, is not
 something that can happen overnight.

 JavaScript is so popular and widely used that making any breaking changes to it would break
too many applications. Yet the direction that JavaScript is taking in light of AJAX addresses
the two aforementioned limitations.

 The Google Chrome browser (which you can read more about at http://www.google.com/chrome)
comes with an open-source JavaScript engine that compiles source code to native machine code
before executing it. As a result, Chrome runs JavaScript applications at the speed of a compiled
binary, which is signifi cantly better than any bytecode or interpreted code.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 4 A Better and Richer JavaScript 105

 The Microsoft AJAX library, as well as other popular JavaScript libraries, such as Prototype, offers
some built-in features to add inheritance to JavaScript objects and fl avors of object orientation.

 Note Chrome and its V8 JavaScript engine are taking an innovative approach to dealing with
the growth in size and complexity of JavaScript code in AJAX applications. Other libraries are
trying to offer more powerful instruments to raise the abstraction level of the original JavaScript
language. We are not seeing either a brand new language or an improved core language, but
something is happening on the client side to make JavaScript code more effective.

Pillars of the Language

 In more than 10 years of existence, JavaScript has never been as central a technology in the
world of Web computing as it is today following the arrival of AJAX. JavaScript code in the
 average Web page has grown from just a few lines of trivial code that just scripts page elements
to hundreds of kilobytes of code providing rich object models, if not true frameworks.

 Because it was not created to be a spinoff of a true compiled programming language,
JavaScript supports all the syntax elements of a common structured programming language,
such as if, switch, for, and while statements. Types are not strongly enforced and are associated
with values rather than with variables. Let’s briefl y review the pillars of the JavaScript language.

 Note Any piece of source code written in JavaScript and completely delivered to a browser is
immediately executable. Clearly, this provides the potential for malicious code to be downloaded
and run on the client computer. To contain the risk, the browser runs any script within a sandbox.
A sandbox is a virtual environment where hosted programs can perform only controlled actions
and are typically not granted permissions to operate on the fi le system and the local hardware.

 In addition, browsers also commonly restrict scripts from accessing any information from an
 external site. This is known as a same origin policy. Violating the same origin policy may result in
a cross-site scripting attack.

Objects as Dictionaries

 The JavaScript language allows you to use objects, but it doesn’t natively support all principles
of object-oriented programming (OOP), such as inheritance, encapsulation, and polymorphism.
To some extent, some of these principles can be recognized here and there in the language’s
capabilities; however, JavaScript can’t be described as a fully object-oriented (OO) language.

 The primary reason for not cataloging JavaScript as an OO language is that the defi nition of
an object you get from JavaScript is different from the commonly accepted idea of an object
you get out of classic OO languages such as C++ or C#.

 In C# and C++, you create new objects by telling the runtime which class you want to instantiate.
A class is a fi xed template used for the object creation. A class defi nes the properties and

http://lib.ommolketab.ir
http//lib.ommolketab.ir

106 Part II Power to the Client

 methods an object will have, and these properties and methods are forever fi xed. In C# and
C++, you can’t manipulate the structure of an object by adding or removing properties and
methods at runtime.

 In JavaScript, objects are essentially dictionaries of values or associative arrays. An object is
a container of name/value pairs that can be added at any time, and especially at runtime. In
an attempt to express a JavaScript object via a C# notation, you would probably resort to
 something similar to the following:

Dictionary<string, object>

 The property name is a string that acts as the key in the dictionary, as shown here:

var obj = new YourJavaScriptObject();

obj["Property"] = "Hello";

 You can also use an alternate syntax based on the dot notation. The effect is the same:

obj.Property = "Hello";

 JavaScript objects contain more than just a dictionary of values. In particular, they contain
the prototype object. The prototype is like a directory that defi nes the public interface of the
object. By acting on the prototype, you can augment the capabilities of the object in a fully
dynamic manner.

Functions as Objects

 Another fundamental characteristic of JavaScript is that functions are fi rst-class language
 elements and objects themselves. In other words, functions might have properties and can
be passed around and interacted with as you would do with any other object.

 You can use the new operator with a function. When you do so, you get an entirely new object
and can reference it internally using the this keyword. Just like any other object, the function
has its own prototype property that determines the public interface of the new object:

MyPet = function (name, isDog)

{

 this._name = name;

 this._isDog = isDog;

}

MyPet.prototype = {

 get_Name = function() {return this._name;},

 get_IsDog = function() {return this._isDog;}

}

 Given the preceding code, you can use the new operator on the MyPet function and invoke
the members in the prototype.

Dynamic Typing

 The nature of objects and functions makes JavaScript a very dynamic language. Types are not an
exception and don’t force developers to follow strict rules as in a classic programming language.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 4 A Better and Richer JavaScript 107

 Like many other scripting languages, JavaScript recognizes a few primitive types (string,
 number, date, Boolean) but doesn’t let you declare a variable of a given, fi xed type.
Variables are untyped on declaration and can hold values of different types during their
lifetime. As mentioned, in JavaScript types are associated with values rather than with
variables.

x = "1"; // It is a string

x = 1; // It is a number

 For this reason, equality operators work in a slightly different manner. Given the following
lines of code, what would be the result of the expression x == y?

x = "1";

y = 1;

 If you look at the code from an OO perspective, you can have only one answer: false. Quite
surprisingly, instead, in JavaScript x==y returns true because the comparison is made on the
value, not the type. To get the expected result, you must switch to the === operator, which
checks value and type.

 JavaScript provides the typeof built-in function to test the type of an object. Another
 approach is duck typing. Duck typing basically consists of providing the freedom of invoking
on an object any methods it seems to have. If it does not have a particular method, you just
get a run-time exception. Duck typing originates from the statement: If it walks like a duck
and quacks like a duck, I would call it a duck.

Closures and Prototypes

 The three pillars of object orientation can be implemented in JavaScript to various
 degrees. For example, encapsulation is easy to get via the var keyword in a closure model.
Encapsulation is impossible to achieve if you are working with a prototype model. The
 prototype model makes it easy to build inheritance, and polymorphism can be obtained via
a combination of functions and duck typing.

 There are two main models for designing classes in JavaScript: closures and prototypes. The
models are not entirely equivalent, so choosing one over the other is a matter of evaluating
the tradeoffs. Also, the performance you get for both models in the major browsers is not the
same. Let’s learn more about the closure model.

 In the closure model, a custom object is a single function where all members are defi ned
 together within the same (closed) context, as shown here:

// The Person object is entirely defined here

Person = function()

{

 var _firstName; // private member

 var _lastName; // private member

 this.get_FirstName = function() { return this._firstName; }

 this.get_LastName = function() { return this._lastName; }

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

108 Part II Power to the Client

 The use of the var keyword keeps a member declaration local to the context and ensures
data encapsulation. Accessing _fi rstName and _lastName members from outside the closure
is impossible, as is the case when accessing a private member from outside a class defi nition
in C# or C++. Members not tagged with the var keyword are meant to be public. The object
 declaration occurs in a single place and through a unique constructor. Using objects built as
 closures can be memory intensive because a new instance is required for any work—just like
in C# or C++.

 The prototype model defi nes the public structure of the class through the built-in prototype
object. The defi nition of an object, however, is not centered around a single point of scope.
Here’s how the object defi nition changes if you opt for the prototype model:

Person = function (firstName, lastName)

{

 this._firstName = firstName;

 this._lastName = lastName;

}

Person.prototype = {

 get_FirstName = function() {return this._firstName;},

 get_LastName = function() {return this._lastName;}

}

 As you can see, the object constructor and members are clearly separated. Members are
shared by all instances and are private only by convention. Using the var keyword in the
 defi nition of, say, _fi rstName would make it private and inaccessible. On the other hand, not
using the var keyword keeps the member public and therefore visible from the outside.

 Because members of the prototype are global and static, the prototype model reduces the amount
of memory required by each instance of the object and makes object instantiation a bit faster.

 Note Prototypes have a good load time in nearly all modern-day browsers, and load times are
excellent in Firefox. On the other hand, closures are faster than prototypes in all recent versions
of Internet Explorer.

JavaScript (If Any) of the Future

 Two pillars carry the whole weight of the Web: HTML and JavaScript. Neither of them seems
to be entirely appropriate in the age of AJAX. And neither can be blissfully dismissed and
 replaced for compatibility and interoperability reasons. Regarding JavaScript, what can we do?

 Like HTML, JavaScript is very effi cient in doing the few and relatively simple things it was
originally designed to do. The point is that the community of developers needs much
more—more programming power and more performance.

 Personally, I value programming power and language expressivity more than performance.
To some extent, performance and JavaScript still sound to me like incompatible concepts.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 4 A Better and Richer JavaScript 109

Performance is especially relevant in a scenario where an ounce of performance lost in some
task might be automatically multiplied by some factor, such as the growing number of requests.
With JavaScript, frankly, there are no such risks. The JavaScript code runs on the client and on a
computer that serves a single user at a time. There’s no bad performance multiplier around.

 JavaScript performance can become an issue—but not really a showstopper—only when you
have so many lines of code (something like several hundred kilobytes) that it just takes too
much to produce a user-friendly result.

 Improving JavaScript might be desirable. But if so, how should that be done? There are two
main schools of thought, plus a clever ploy.

Overhauling the Language

 The specifi cation for JavaScript 2.0 is currently being discussed and defi ned. You can fi nd
more details at http://www.mozilla.org/js/language/evolvingJS.pdf. JavaScript 2.0 is expected
to be a signifi cant overhaul of the language.

 The most radical change that will come with JavaScript 2.0 is support for real classes and
 interfaces. The following syntax should be acceptable in the next version:

class Person

{

 this.FirstName = "dino";

 this.LastName = "esposito";

}

var p = new Person();

 Compile-time type checking is another aspect waiting for improvement. A component that
requires strict mode will have static type checking and a number of other checks performed
before execution, such as verifi cation that all referenced names are known and that only
comparisons between valid types are made.

 Namespaces and packages complete the set of hot features slated for the next JavaScript.
A package is a library of code that is automatically loaded only on demand.

It’s All About Security

 Another camp sees the future of JavaScript in a different manner. This camp is well
 represented by Douglas Crockford—one of the creators of JSON. According to Douglas,
security is the biggest concern for JavaScript developers. So by simply making JavaScript a
more secure programming environment, we would make JavaScript a better environment.

 Douglas suggests adding a verifi er to analyze the source and spot unsafe code and a
 transformer to add indirection and run-time checks around critical instructions. More in
 general, the vision put forth by Douglas is centered on the idea of improving the language
by making today’s de facto standard solutions a native part of the language.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

110 Part II Power to the Client

Google’s V8 Engine

 As mentioned, a new approach to JavaScript programming is coming out with Google’s Chrome
browser—the V8 engine. V8 is a new JavaScript engine specifi cally designed for optimized
 execution of large JavaScript applications.

 The basic idea is that the browser operates as a just-in-time JavaScript compiler, wrapping
functions into memory objects and turning them into machine code. In addition to dynamic
machine-code generation, the increment of improved performance is the result of a couple
of other factors: fast property access and effi cient garbage collection. For more information,
check out http://code.google.com/p/v8.

The Microsoft AJAX Library

 A truly powerful JavaScript library today can’t ignore the dependencies existing between the
language itself and the Document Object Model (DOM) and Browser Object Model (BOM).
Subsequently, a modern JavaScript library is made of three fundamental pieces: a fl avor of
object orientation, facilities for visual effects, and a network stack.

 It is not coincidental that this is also the recipe for the Microsoft AJAX library—one of the
pillars of the Microsoft strategy for AJAX. Initially developed to back up the ASP.NET AJAX
Extensions 1.0, and successively integrated in ASP.NET 3.5, the library is still being improved
and enhanced for ASP.NET 4.0.

 The next release of ASP.NET is expected to ship a stronger and more powerful client platform
that results from the integration of the newer AJAX library and the newest version of another
quite popular and largely complementary library—the jQuery library.

Overview of the Library

 The Microsoft AJAX library is written in JavaScript, although with a strong sense of object
orientation. ASP.NET AJAX takes the JavaScript language to the next level by adding some
type-system extensions, the notion of namespace and interface, plus facilities for inheritance.
In addition, the ASP.NET AJAX JavaScript supports enumerations and refl ection, and it has a
number of helper functions to manipulate strings and arrays.

Constituent Files

 The Microsoft AJAX library is coded using the base set of instructions that characterize the
core JavaScript language, and it is persisted to a set of .js fi les. These .js fi les are not installed
as distinct fi les on the Web server when you install ASP.NET. They are embedded as resources
into the ASP.NET AJAX assembly—system.web.extensions. If you want them available as
 distinct fi les (for example, for your home perusal), go to http://msdn2.microsoft.com/en-us/
asp.net/bb944808.aspx, check the license agreement, and get them as a single downloaded
compressed fi le.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 4 A Better and Richer JavaScript 111

We already hinted at it in Chapter 2, “The Easy Way to AJAX,” but let’s briefl y review in Table 4-1
the fi les that make up the library.

TABLE 4-1 Files That Form the Microsoft AJAX Library

Script Description

MicrosoftAjax.js A core part of the library, this fi le contains object-oriented
extensions, the network stack, and a number of facilities, such as
those for tracing and debugging.

MicrosoftAjaxWebForms.js This fi le contains script functions to support ASP.NET partial
rendering. In particular, it defi nes the client-side engine and
programming interface for partial rendering.

MicrosoftAjaxTimer.js This fi le contains the client-side programming interface of the
Timer server control, a built-in control that comes with ASP.NET
AJAX. The control creates a timer on the client and makes it post
back upon timeout.

As you can see, these are plain JavaScript fi les that can be linked from any sort of Web page
regardless of the technology it is written for—PHP, classic ASP.NET, ASP, or even plain HTML.

Linking the Microsoft AJAX Library

In ASP.NET 3.5 pages, you don’t need to load fi les from the Microsoft AJAX library explicitly.
This is a viable option when you don’t have a customized version of the fi les to load. If you
embed a ScriptManager control in your pages, the control will automatically recognize the
Microsoft AJAX library fi les you need and will download them as required.

By default, script fi les will be extracted from the resources of the system.web.extensions
 assembly. If you hold your own copies of the scripts and want to reference them instead, you
use the ScriptManager control as shown here:

<asp:ScriptReference Name="MicrosoftAjax.js"

 Path="./MyScripts/MicrosoftAjax.js" />

You need the Name property to identify the name of the embedded resource that contains
the client script fi le. The Path property can optionally be used to specify the physical server
location where the named script fi le has to be loaded from.

When both Name and Path are specifi ed, Path is the winner. Does it really make sense to
specify both? Sure it does. When both properties are specifi ed, you actually replace the
 standard MicrosoftAjax.js with the specifi ed script.

 Tip This trick can be used to take advantage of the script-related services of the ScriptManager
control and also in scenarios where your pages are not dependent on the Microsoft AJAX library.
By setting the Name property to MicrosoftAjax.js and the Path property to, say, jquery.js, you
load jQuery instead of Microsoft AJAX while taking advantage of all the extra facilities of the
ScriptManager control that we reviewed in Chapter 2. Read the full story at http://weblogs.asp.net/
bleroy/archive/2008/07/07/using-scriptmanager-with-other-frameworks.aspx.

Script Description

http://lib.ommolketab.ir
http//lib.ommolketab.ir

112 Part II Power to the Client

 Note As general advice, I suggest that to reference a script fi le you don’t strictly need the
ScriptManager control. However, you should always consider using the ScriptManager control
because of the handy services it provides, such as its ability to detect script duplicates and its free
compression and localization.

No Bells and Whistles

As you’ll see in greater detail in a moment, the Microsoft AJAX library provides core JavaScript
services such as type extensions, OOP fl avors, and an AJAX-enabled network stack. It doesn’t
provide any facilities for adding visual effects to your pages.

The integration between Microsoft AJAX library and jQuery that is coming out with the next
version of ASP.NET will make up for this. You’ll have a script framework that offers a richer
JavaScript with advanced and commonly used widgets such as those provided by jQuery.

Let’s dig out now the key capabilities of the Microsoft AJAX library.

JavaScript Language Extensions

The JavaScript language features a set of built-in objects, including Function, Object, Boolean,
Array, Number, and String. All intrinsic objects have a read-only property named prototype.
The prototype property provides a base set of functionality shared by any new instance of an
object of that class.

 New functionality can be added to each object by extending and improving its prototype.
This is exactly what the Microsoft AJAX library does.

Primitive Types

The Microsoft AJAX library contains code that defi nes new objects and extends existing
JavaScript objects with additional functionality. Table 4-2 lists the main global objects defi ned
in the library and explains how they relate to original JavaScript types.

 TABLE 4-2 Top-Level Objects in the Microsoft AJAX Library

Object Description

Array Extends the native Array object. This object groups static methods to add, insert,
remove, and clear elements of an array. It also includes static methods to enumerate
elements and check whether a given element is contained in the array.

 Boolean Extends the native Boolean object. This object defi nes a static parse method to infer a
Boolean value from a string or any expression that evaluates to a Boolean value.

 Date Extends the native Date object with a couple of instance methods: localeFormat
and format. These methods format the date using the locale or invariant culture
information.

Object Description

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 4 A Better and Richer JavaScript 113

TABLE 4-2 Top-Level Objects in the Microsoft AJAX Library

Object Description

Error Defi nes a static create method to wrap the JavaScript Error object and add a richer
constructor to it. This object incorporates a couple of properties—message and
name—to provide a description of the error that occurred and identify the error by
name. A number of built-in error objects are used to simulate exceptions. In this case,
the name property indicates the name of the exception caught.

 Function Extends the native Function object. This object groups methods to defi ne classes,
namespaces, delegates, and a bunch of other object-oriented facilities.

 Number Extends the native Number object. This object defi nes a static parse method to infer
a numeric value from a string or any expression that evaluates to a numeric value.
In addition, it supports a pair of static formatting methods: localeFormat and format.

 Object Extends the native Object object. This object groups methods to read type information,
such as the type of the object being used.

 RegExp Wraps the native RegExp object.

 String Extends the native String object. This object groups string manipulation methods, such
as trim methods and endsWith and startsWith methods. In addition, it defi nes static
localeFormat and format methods that are close relatives of the String.Format method
of the managed String type.

 After the Microsoft AJAX library has been added to an application, the following code will
work just fi ne:

var s = "Dino";

alert(s.startsWith('D'));

 The native JavaScript String object doesn’t feature either a startsWith or an endsWith method;
the extended AJAX String object, instead, does.

New Types

 As mentioned, it’s only in a future version of JavaScript that you can start creating new
 complex and custom types as you do today in classic object-oriented languages. The
Microsoft AJAX library, though, provides its own application programming interface (API) to
let you register new objects—essentially custom JavaScript functions—with the library and
use them as classes with an object-oriented fl avor.

 No new keyword is added for compatibility reasons, but a couple of new methods must be
used to wrap the defi nition of a new type, as shown next for the sample MyClass type:

Type.registerNamespace("Samples");

Samples.MyClass = function ()

{

. . .

}

// Other blocks of code here for class members

. . .

Samples.MyClass.registerClass("Samples.MyClass");

Object Description

http://lib.ommolketab.ir
http//lib.ommolketab.ir

114 Part II Power to the Client

 Enumerations are a special breed of a new type in JavaScript. As in the .NET Framework, an
enumeration represents an easily readable alternative to integers. Here’s a sample defi nition
for an enumerated type in JavaScript:

Type.registerNamespace("Samples");

// Define an enumeration type and register it.

Samples.Color = function() {};

Samples.Color.prototype =

{

 Red: 0xFF0000,

 Blue: 0x0000FF,

 Green: 0x00FF00,

 White: 0xFFFFFF

}

Samples.Color.registerEnum("Samples.Color");

 To register an enumerated type, you use a tailor-made registration function—the registerEnum
function.

Shorthand Functions

 I would fi nd it hard to believe that most of you reading this book have never made the mistake
of using the name of the HTML element in a page as a shortcut to get the corresponding
DOM reference. Suppose you have a text box element named TextBox1 in the client page. The
 following script code won’t work on all browsers:

alert(TextBox1.value);

 The correct form ratifi ed by the World Wide Web Consortium (W3C) paper for the HTML
DOM standard is shown here:

alert(document.getElementById("TextBox1").value);

 The correct form is clearly more verbose and bothersome to write over and over again.
The Microsoft AJAX library comes to the rescue with the $get global function. Simply put, the
$get function is a shortcut for the document.getElementById function. If the Microsoft AJAX
library is in use, the following expression is fully equivalent to the one just shown:

alert($get("TextBox1").value);

 The $get function has two overloads. If you call $get passing the sole ID, the function falls
back into document.getElementById. Alternatively, you can specify a container as the second
argument, as shown here:

var parent = $get("Div1");

$get("TextBox1", parent);

 If the container element supports the getElementById method, the function returns the output
of element.getElementById; otherwise, the $get function uses the DOM interface to explore the
contents of the subtree rooted in the element to locate any node with the given ID.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 4 A Better and Richer JavaScript 115

 Although $get is only an alias for a regular JavaScript function, it is often mistaken for a new
language element. Other similar shortcuts exist in the library to create objects and add or
remove event handlers.

 Note The $get function has a lot in common with jQuery’s $ root object. To be precise, early
builds of the Microsoft AJAX library were still using the same $ expression that was renamed later
to avoid collisions. The $get object in the Microsoft AJAX library is merely a direct DOM selector
that just fi lters by ID. The $ object in jQuery, instead, is a full selector that supports a much richer
CSS-based syntax to fi lter DOM elements to return.

Object-Oriented Extensions

 In JavaScript, the Function object is the main tool you use to combine code with properties
and forge new components. In the Microsoft AJAX library, the Function object is extended
to incorporate type information, as well as namespaces, inheritance, interfaces, and
enumerations.

Namespaces and Classes

 A namespace provides a way of grouping and classifying the types belonging to a library.
Not a type itself, a namespace adds more information to the defi nition of each type in the
library to better qualify it.

 All custom JavaScript functions belong to the global space of names. In the Microsoft
AJAX library, you can associate a custom function with a particular namespace, for purely
 organizational reasons. When declaring a custom type in the Microsoft AJAX library, you
can do as follows:

Type.registerNamespace("Samples");

Samples.Person = function Samples$Person(firstName, lastName)

{

 this._firstName = firstName;

 this._lastName = lastName;

}

// Define the body of all members

function Samples$Person$ToString()

{

 return this._lastName + ", " + this._firstName;

}. . .

// Define the prototype of the class

Samples.Person.prototype =

{

 ToString: Samples$Person$ToString,

 get_FirstName: Samples$Person$get_FirstName,

 set_FirstName: Samples$Person$set_FirstName,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

116 Part II Power to the Client

 get_LastName: Samples$Person$get_LastName,

 set_LastName: Samples$Person$set_LastName

}

// Register the class

Samples.Person.registerClass("Samples.Person");

 The Type.registerNamespace method adds the specifi ed namespace to the run-time
 environment. In a way, the registerNamespace method is equivalent to using the namespace
{…} construct in C#. The Samples.Person function defi ned following the namespace
 declaration describes a Person type in the Samples namespace. Finally, the newly defi ned
function must be registered as a class with the Microsoft AJAX library framework. You use
the registerClass method on the current function.

 The registerClass method takes a number of parameters. The fi rst parameter is mandatory,
and it indicates the public name that will be used to expose the JavaScript function as a class.
Additional and optional parameters (not shown in the preceding code) are the parent class, if
there is any, and any interface implemented by the class. We’ll get into this in just a moment.

 The Microsoft AJAX library follows the prototype model (as opposed to closures) to defi ne its
own custom types. The goal of the ASP.NET AJAX team was to deliver a model that provided
the best quality and performance on the largest number of browsers. Prototypes have a
good load time in all browsers; and indeed, they have excellent performance in Firefox.
Furthermore, prototypes lend themselves well, more than closures do, to debugging as far as
object instantiation and access to private members are concerned.

 Note In the defi nition of a new class, you can use an anonymous function or a named function.
In terms of syntax, both solutions are acceptable. The convention, though, is that you opt for
named functions and name each function after its fully qualifi ed name, replacing the dot symbol
(.) with a dollar symbol ($). The convention is justifi ed by the help this approach provides to
IntelliSense in Microsoft Visual Studio 2008.

Inheritance and Polymorphism

 Let’s now defi ne a new class, Citizen, that extends Person by adding a new property: a
 national identifi cation number. Here’s the skeleton of the code you need:

// Declare the class

Samples.Citizen = function Samples$Citizen(firstName, lastName, id)

{

. . .

}

// Define the prototype of the class

Samples.Citizen.prototype =

{

. . .

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 4 A Better and Richer JavaScript 117

// Register the class

Samples.Citizen.registerClass("Samples.Citizen", Samples.Person);

 Note that the fi rst argument of registerClass is a string, but the second one has to be an
 object reference. The second argument indicates the object acting as the parent of the newly
created object. Let’s fl esh out this code a bit.

 In the constructor, you’ll set some private members and call the base constructor to initialize
the members defi ned on the base class. The initializeBase method (defi ned on the revisited
Function object you get from the library) retrieves and invokes the base constructor:

Samples.Citizen = function Samples$Citizen(firstName, lastName, id)

{

 Samples.Citizen.initializeBase(this, [firstName, lastName]);

 this._id = id;

}

 You pass initializeBase the reference to the current object as well as an array with any
 parameters that the constructor to call requires. You can use the [...] notation to defi ne an
 array inline. If you omit the [...] notation, be ready to handle a parameter count exception.

 Quite often, developers derive a class because they need to add new members or alter the
behavior of an existing method or property. Object-oriented languages defi ne a proper
 keyword to fl ag members as overridable. How is that possible in JavaScript?

 Any member listed in the prototype of an object is automatically public and overridable.
Here’s the prototype of the Citizen class:

Samples.Citizen.prototype =

{

 ToString: Samples$Citizen$ToString,

 get_ID: Samples$Citizen$get_ID

}

 The class has a read-only ID property and overrides the ToString method defi ned in the
 parent class. Let’s have a look at the implementation of the overriding method:

function Samples$Citizen$ToString()

{

 var temp = Samples.Citizen.callBaseMethod(this, 'ToString');

 temp += " [" + this._id + "]";

 return temp;

}

 You use callBaseMethod to invoke the same method on the parent class. Defi ned on the
Function class, the callBaseMethod method takes up to three parameters: the instance, the
name of the method, plus an optional array of arguments for the base method.

 As mentioned earlier, the ToString method on the Person class returns a LastName, FirstName
string. The ToString method on the Citizen class returns a string in the following format:
LastName, FirstName [ID].

http://lib.ommolketab.ir
http//lib.ommolketab.ir

118 Part II Power to the Client

 Note When the prototype model is used, JavaScript has no notion of private members because
no common closure can be provided for all methods contributing to the same object. As a result,
private members are conventionally indicated by the underscore symbol (_) prefi xing their
names. They’re still public and accessible, though.

Interfaces

 An interface describes a group of related behaviors that are typical of a variety of classes. In
general, an interface can include methods, properties, and events; in JavaScript, it contains
only methods.

 Keeping in mind the constraints of the JavaScript language, to defi ne an interface you create
a regular class with a constructor and a prototype. The constructor and each prototyped
method, though, will just throw a not-implemented exception. Here’s the code for the
 sample Sys.IDisposable built-in interface:

Type.registerNamespace("Sys");

Sys.IDisposable = function Sys$IDisposable()

{

 throw Error.notImplemented();

}

function Sys$IDisposable$dispose()

{

 throw Error.notImplemented();

}

Sys.IDisposable.prototype =

{

 dispose: Sys$IDisposable$dispose

}

Sys.IDisposable.registerInterface('Sys.IDisposable');

 The following statement registers the Citizen class, makes it derive from Person, and implements
the IDisposable interface:

Samples.Citizen.registerClass('Samples.Citizen',

 Samples.Person, Sys.IDisposable);

 To implement a given interface, a JavaScript class simply provides all methods in the interface
and lists the interface while registering the class:

function Samples$Citizen$dispose

{

 this._id = "";

}

Samples.Citizen.prototype =

{

 dispose: Samples$Citizen$dispose

. . .

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 4 A Better and Richer JavaScript 119

 Note, though, that you won’t receive any run-time error if the class that claims to implement
a given interface doesn’t really support all the methods. You will receive an error if a caller
happens to invoke an interface function your class didn’t implement, so by convention all
 interface methods should be implemented.

 If a class implements multiple interfaces, you simply list all required interfaces in the registerClass
method as additional parameters. Here’s an example:

Sys.Component.registerClass('Sys.Component', null,

 Sys.IDisposable,

 Sys.INotifyPropertyChange,

 Sys.INotifyDisposing);

 As you can see, in this case you don’t have to group interfaces in an array.

Framework Facilities

 Many layers of code form the Microsoft AJAX library, including a layer specifi cally created to
smooth the creation of rich UI controls with AJAX capabilities. (See http://www.codeplex.com/
AjaxControlToolkit for example controls.) This particular aspect of the library, though, is expected
to evolve signifi cantly in the next release of ASP.NET.

 Let’s focus instead on other core facilities you fi nd in the library, such as event handling,
 debugging, and networking. To start out, let’s attack with refl ection capabilities.

Refl ection

 While debugging some JavaScript code, isn’t it a bit frustrating when you need to know the
actual type of a variable and cannot get it exact? In general, refl ection refers to the ability of
a function to examine the structure of an object at runtime. When it comes to refl ection, the
JavaScript language doesn’t offer much. The Microsoft AJAX library largely makes up for this.

 In plain JavaScript, the built-in typeof operator returns information about the type of the
variable you are dealing with. The operator, though, is limited to the core set of JavaScript
types. Let’s consider the following code snippet:

Samples.Citizen = new function() {

. . .

}

var c = new Samples.Citizen();

alert(typeof c);

 As expected, the displayed string is a generic object.

 Adding a thick object-oriented infrastructure, the Microsoft AJAX library makes it easy to
track the exact name of the pseudo-type of a given object. The following code returns a
more precise message, as shown in Figure 4-2.

// Returns "Samples.Citizen"

var c = new Samples.Citizen();

alert(Object.getTypeName(c));

http://lib.ommolketab.ir
http//lib.ommolketab.ir

120 Part II Power to the Client

FIGURE 4-2 The “real” type name of a JavaScript object

Whenever a new object is registered with the Microsoft AJAX framework, its name and
 pseudo-type are added to an internal list. Refl ection functions just look up these internal
 dictionaries and return what they read.

 Note I use the expression pseudo-type to indicate a type that has its own fully qualifi ed name
 according to the Microsoft AJAX library, such as Person in the preceding code snippet. It should
be noted, though, that at the lower level of the JavaScript engine there remains a plain object type.

In the Microsoft AJAX library, refl ection capabilities are offered as extensions of the Type
object. These methods enable you to collect information about an object, such as what it
inherits from, whether it implements a particular interface, and whether it is an instance
of a particular class. Note that the Type class aliases the built-in JavaScript Function object.
Therefore, many of the methods exposed through the general interface of the Type object
are also available through the instance of any custom type (that is, function) you create.

Table 4-3 lists the members of the Type object, which is also a compendium of the refl ection
capabilities of the Microsoft AJAX library.

 TABLE 4-3 Members of the Type Object

 Member Description

 callBaseMethod Invokes a base class method with specifi ed arguments

 getBaseMethod Gets the implementation of a method from the base class of the specifi ed
instance

 getBaseType Gets the base type of the specifi ed instance

 getInterfaces Returns the list of interfaces that the type implements

 getName Gets the name of the type of the specifi ed instance

 implementsInterface Indicates whether a given instance implements the specifi ed interface

 inheritsFrom Indicates whether the type inherits from the specifi ed base type

 initializeBase Invokes the base constructor of a given type

 isClass Indicates whether the specifi ed type is a Microsoft AJAX library class

 isImplementedBy Indicates whether the specifi ed interface is implemented by the object

 isInstanceOfType Indicates whether the object is an instance of the specifi ed type

 isInterface Indicates whether the specifi ed type is an interface

Member Description

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 4 A Better and Richer JavaScript 121

TABLE 4-3 Members of the Type Object

Member Description

isNamespace Indicates whether the specifi ed object is a namespace

Parse Returns an instance of the type that is specifi ed by a type name

registerClass Registers an object as a Microsoft AJAX library class

registerEnum Registers an object as a Microsoft AJAX library enumeration

registerInterface Registers an object as a Microsoft AJAX library interface

registerNamespace Creates a namespace

Finally, here’s a brief example of how to use refl ection in practice:

var t = Samples.Components.Timer;

var obj = new Samples.Components.Timer();

if (obj.isInstanceOfType(t))

{

 alert(t.getName() + " is a " + obj.getName() + ".");

}

The Application Object

The execution of each Web page that links the Microsoft AJAX library is controlled by an
application object. This object is an instance of a private class—the Sys._Application class.
An instance of the application object is created in the body of the library, specifi cally in the
MicrosoftAjax.js fi le:

// Excerpt from MicrosoftAjax.js

Sys.Application = new Sys._Application();

If properly initialized, the application object invokes a pair of page-level callbacks with fi xed
names—pageLoad and pageUnload:

function pageLoad(sender, args)

{

 // sender is the Sys.Application instance

 // args is of type Sys.ApplicationLoadEventArgs

. . .

}

function pageUnload(sender, args)

{

 // sender is the Sys.Application instance

 // args is of type Sys.ApplicationLoadEventArgs

. . .

}

In particular, pageLoad is a good place for the page to perform any initialization tasks that
 require the Microsoft AJAX library. This is more reliable than using the window’s onload event.

The pageLoad callback receives a Sys.ApplicationLoadEventArgs data structure packed with
the list of Microsoft AJAX library components already created and a Boolean fl ag to indicate
that the callback is invoked within a regular postback or a partial rendering operation.

Member Description

http://lib.ommolketab.ir
http//lib.ommolketab.ir

122 Part II Power to the Client

 Beyond page loading events, the Sys.Application object serves one main purpose: providing
access to client-side page components. Generally, the term component denotes an object
that is reusable and can interact with other objects in the context of a framework. In the
Microsoft AJAX framework, a component is a JavaScript object that inherits from the
Sys.Component class. These objects are tracked by the library infrastructure and exposed via
methods on the Sys.Application object.

 In particular, the fi ndComponent method scrolls the run-time hierarchy of Microsoft AJAX
components for the current page until it fi nds a component with a matching ID. The method
has two possible prototypes:

Sys.Application.findComponent(id);

Sys.Application.findComponent(id, parent);

 The former overload takes the ID of the component, uses it to look up the component,
and then navigates the hierarchy all the way down from the root. When a non-null parent
 argument is specifi ed, the search is restricted to the subtree rooted in the context object. The
id parameter must be a string; the parent parameter must be a Microsoft AJAX library object.
The method returns the object that matches the ID, or it returns null if no such object is found.

 The Microsoft AJAX library also supports a shortcut for retrieving run-time components—the
$fi nd method. The $fi nd method is an alias for fi ndComponent:

var $find = Sys.Application.findComponent;

 You can use this method to locate all components created by server controls that use the
Microsoft AJAX library (for example, extenders in the AJAX Control Toolkit and new controls
in ASP.NET 4.0), as well as by your own JavaScript code. You can’t use $fi nd to locate DOM
elements; for DOM elements, you must resort to $get.

String Manipulation

 The Sys.StringBuilder class adds advanced text manipulation capabilities to Web pages
based on the library. As the name suggests, the class mimics the behavior of the managed
StringBuilder class defi ned in the .NET Framework.

 When you create an instance of the builder object, you specify initial text. The builder caches the
text in an internal array by using an element for each added text or line. The Sys.StringBuilder
object doesn’t accept objects other than non-null strings. You add text using the append and
appendLine methods. The toString method composes the text by using the join method of the
JavaScript array class.

// Build an HTML table as a string

var header = "<table><thead> ... </thead>";

var footer = "<tfoot> ... </tfoot></table>";

var builder = new Sys.StringBuilder(header);. . .

builder.append(footer);

alert(builder.toString());

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 4 A Better and Richer JavaScript 123

 The Microsoft AJAX library String class is also enriched with a format method that mimics the
behavior of the Format method on the .NET Framework String class:

alert(String.format("Today is: {0}", new Date()));

 You defi ne placeholders in the format string using {n} elements. The real value for placeholders
is determined by looking at the n.th argument in the format method call.

Debugging

 Another class that is worth mentioning is the Sys._Debug class. An instance of this internal
class is assigned to the Sys.Debug global object:

Sys.Debug = new Sys._Debug();

 In your pages, you use the Sys.Debug object to assert conditions, break into the debugger, or
trace text. For example, the traceDump method writes the contents of the specifi ed object in
a human-readable format in the Microsoft AJAX library trace area. The trace area is expected
to be a <textarea> element with a mandatory ID of traceConsole. You can place this element
anywhere in the page:

<textarea id="traceConsole" cols="40" rows="10" />

 The traceDump method accepts two parameters, as shown here:

Sys.Debug.traceDump(object, name)

 The name parameter indicates descriptive text to display as the heading of the object dump.
The text can contain HTML markup. Figure 4-3 shows the output of a trace dump.

FIGURE 4-3 The Microsoft AJAX library debugging tracer in action

http://lib.ommolketab.ir
http//lib.ommolketab.ir

124 Part II Power to the Client

 You use the clearTrace method to clear the output console. The fail method breaks into the
debugger and the method assert displays a message if the specifi ed condition is false.

The Network Stack

The most relevant feature of an AJAX library is the ability to execute out-of-band Web
 requests from the client browser. In particular, AJAX extensions to ASP.NET let you invoke
Web service methods without dismissing the currently displayed page. This ability leverages
the networking support built into the Microsoft AJAX library.

In the Microsoft AJAX library, a remote request is represented by an instance of the
Sys.Net.WebRequest class. Table 4-4 lists the properties of the class.

TABLE 4-4 Members of the Sys.Net.WebRequest Object

Member Description

body Gets and sets the body of the request

executor Gets and sets the Microsoft AJAX library object that will take care of executing the
request

headers Gets the headers of the request

httpVerb Gets and sets the HTTP verb for the request

timeout Gets and sets the timeout, if any, for the request

url Gets and sets the URL of the request

 The WebRequest class defi nes the url property to get and set the target URL and the headers
property to add header strings to the request. If the request is going to be a POST, you set
the body of the request through the body property. A request executes through the method
invoke. The completed event informs you about the completion of the request.

 Each Web request is executed through an internal class—the Web request manager—that
employs an “executor” to open the socket and send the packet. All executors derive from a
common base class—the Sys.Net.WebRequestExecutor class.

 The Microsoft AJAX library defi nes just one HTTP executor—the Sys.Net.XMLHttpExecutor
class. As the name suggests, this executor uses the popular XMLHttpRequest object to
 execute the HTTP request.

 The Sys.Net.WebRequest class is essentially a framework class that other higher level
 classes use, but page authors hardly ever use it. I’ve seen this class used only a few times in
 real-world JavaScript code. As you saw in Chapter 2, the ASP.NET AJAX framework makes
it so easy to invoke a Web service method or perhaps a static method on a page that you
hardly feel the need to invoke another type of HTTP endpoint.

 If you need to download a resource such as a JavaScript fi le, you need quite a bit of code if
you go through this class.

Member Description

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 4 A Better and Richer JavaScript 125

var endpoint = "ondemand.js";

var request = new Sys.Net.WebRequest();

request.set_url(endpoint);

request.add_completed(function() {...});

request.invoke();

 With other AJAX libraries—for instance, jQuery—this code reduces to just one line. I’ll return
to jQuery in the next chapter.

 Note All AJAX libraries are associated with the XMLHttpRequest browser object. So what else
could an executor be other than a reference to the XMLHttpRequest browser object? In general,
an HTTP executor is any means you can use to carry out a Web request. An alternative executor
might be based on HTTP frames. The idea is to use a dynamically created inline frame to
 download the response of a given request and then parse that result into usable objects.

The Eventing Model

 Building cross-browser compatibility for events is not an easy task. Internet Explorer has its
own eventing model, and so do Firefox and Safari. For this reason, the event model of the
Microsoft AJAX library is a new abstract API that joins together the standard W3C API and
the Internet Explorer model. The new API is closely modeled after the standard W3C API.

 In addition to using different method names (add/removeEventListener is for Firefox, and
attach/detachEvent is for Internet Explorer), browsers differ in the way they pass event data
down to handlers. In Internet Explorer, an event handler receives its data through the global
window.event object; in Firefox, the event data is passed as an argument to the handler.
In the Microsoft AJAX library, event handlers receive a parameter with proper event data.

 Another signifi cant difference is in the way mouse and keyboard events are represented. The
Microsoft AJAX library abstracts away any differences between browsers by providing ad hoc
enumerated types, such as Sys.UI.Key and Sys.UI.MouseButton. Here’s some sample code:

function Button1_Click(e)

{

 if (e.button === Sys.UI.MouseButton.leftButton)

 {

. . .

 }

}

function keyboard_EnterPressed(e)

{

 if (e.keyCode === Sys.UI.Key.enter)

 {

. . .

 }

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

126 Part II Power to the Client

 The Microsoft AJAX library provides a shorthand notation to create DOM event hookups and
removal. For example, you can use the $addHandler and $removeHandler aliases to add and
remove a handler. Here’s the syntax:

$addHandler(element, "eventName", handler);

$removeHandler(element, "eventName", handler);

 In many cases, you’ll want to hook up several handlers to a DOM event for a component.
Rather than manually creating all the required delegates and related handlers, you can use a
condensed syntax to add and remove multiple handlers:

initialize: function()

{

 var elem = this.get_element();

 $addHandlers(

 elem,

 {[

 'mouseover': this._mouseHoverHandler,

 'mouseout': this._mouseOutHandler,

 'focus', this._focusHandler,

 'blur', this_blurHandler

]},

 this);

}

 The $clearHandlers alias, conversely, removes all handlers set for a particular DOM element in
a single shot.

 If you write a component and wire up some events, it’s essential that you clear all handlers
when the component is unloaded, or even earlier, if you don’t need the handler any longer.
For example, you should do that from the component’s dispose method to break circular
references between your JavaScript objects and the DOM. Correctly applied, this trick easily
prevents nasty memory leaks.

 Summary

 JavaScript is one of the pillars of the Web. Now that the arrival of AJAX is shaking the
 foundation of the Web, what about JavaScript? Is JavaScript going to change in the
near future?

 For years, the JavaScript language has remained very stable, and this stability created the
environmental conditions for AJAX to fl ourish and thrive. AJAX means more and more code
hosted and running within the client browser. This code can only be written in JavaScript.

 The perception of a language is different when you have only a few lines of code to write as
opposed to when you have to use it to write large sections of the application. For this more
exacting job, JavaScript seems more inadequate every day. And JavaScript 2.0 is slowly but
steadily emerging. JavaScript 2.0 is not a thing of the immediate future, though.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 4 A Better and Richer JavaScript 127

 For now, a better and richer JavaScript is possible only through libraries that cover the parts
of client-side programming that the language doesn’t natively cover. Classes, networking,
static type checking, and a common and cross-browser model for managing events and
 exploring the document are all features required in modern JavaScript code. Popular libraries,
such as the Microsoft AJAX library, provide just this.

 The key trait of the Microsoft AJAX library is the set of extensions to transform JavaScript into
an object-oriented language. JavaScript is not a true OOP language even though it always
has supported objects and also provides a rudimentary mechanism for prototyping classes
and derived classes. The Microsoft AJAX library builds on top of this basic functionality to
add namespace and interface support in addition to a number of helpful facilities.

 In the next chapter, I’ll cover another extremely popular library that addresses UI enhancements
and makes it so easy and effective to add AJAX capabilities to Web pages. This library is jQuery.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 129

Chapter 5

JavaScript Libraries

 You can’t wait for inspiration. You have to go after it with a club.

 —Jack London

 If you look back at the events that have characterized the past fi ve years of Web
 programming, you see that server controls have been welcomed as a powerful productivity
tool since the advent of ASP.NET but are being belittled as AJAX gains wider acceptance.
Although server controls often boost your productivity, the HTML they generate usually can’t
be modifi ed to any great extent, and sometimes they don’t work well (if at all) with partial
page updates. Developers today are instead turning to frameworks such as the Microsoft
AJAX library and creating their own client applications that embrace AJAX, even at the cost
of increased JavaScript development on their part. AJAX is that powerful.

 The fact is, in addition to enabling partial page updates, AJAX also allows us to view the use
of JavaScript in Web pages in a different—and largely positive—light. As you read in the
previous chapter, Web developers are turning their attention to JavaScript. But JavaScript
is nothing new; it’s not the hot new Web technology that enables features to be used that
were impossible or impractical to use before. JavaScript was there before AJAX arrived on
the scene, and it’s a building block of the whole Web experience.

 At fi rst glance, this renewed interest in JavaScript can be seen as the resurgence of a technology
that was pushed aside maybe too hastily. A more thoughtful look, however, reveals a key fact
that makes the initial impression inaccurate. The new wave of interest for JavaScript originates
from a different category of professionals—the people who authored so many ASP.NET pages
in the past fi ve years and established the Web as a common element of our everyday life.

 These people are looking for a valid and reliable set of client-side programming tools.
JavaScript is there and works, although it’s not perfect. It’s natural, then, that JavaScript is the
starting point for any experiment aimed at increasing the interactivity and responsiveness
of Web pages. But as we clearly saw in Chapter 4, “A Better and Richer JavaScript,” today’s
JavaScript is not entirely up to the task. Extensions are required, and they are being built.
One extremely popular extension to JavaScript and Web pages is the jQuery library.

 In this chapter, I’ll describe the main characteristics of the jQuery library and focus in
 particular on CSS selectors, function chaining, and wrapped sets. I’ll also cover more specifi c
topics such as using jQuery to enhance ASP.NET controls, eventing, effects, browser-side
caching, AJAX capabilities, plug-ins, and the user interface.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

130 Part II Power to the Client

 Before going any further, though, it’s helpful to take a detailed look at the ongoing evolution
that is moving server controls into the background in favor of JavaScript widgets—precisely
an area where jQuery excels.

From Server Controls to JavaScript Widgets

 The advent of ASP.NET shifted the focus of Web development to the server side. For a few
years, Web pages contained only the smallest possible amount of JavaScript that could make
the page minimally functional. In ASP.NET, in particular, JavaScript was mostly used to do
some preliminary, client-side validation of input data and to trigger a postback from HTML
elements such as hyperlink and list elements not natively enabled for form submission.

 With ASP.NET, a new category of professionals started coding for the Web. Prior to ASP.NET,
Web developers were typically not individuals trained in computer engineering or science, but
rather free-thinking and creative individuals who simply made it work. Today, we see trained
developers bringing their skills to the Web, and this changes everything. These developers
started their Web careers using ASP.NET with a very limited knowledge of basic Web client-side
technologies such as JavaScript, CSS, and the Document Object Model (DOM). Although not
 necessarily creative in a layout and artistic sense, the new wave of Web developers are strong
in the engineering sense, and the nature of how applications work today is vastly different than
how they worked even fi ve or six years ago. Now these professionals are discovering the client
side of the Web, and they are demanding better and richer tools.

 These new tools aren’t necessarily tools that dumb down the artistic side because of skill
 limitations; rather they are tools that enhance the developer’s ability to engineer the
 applications while making the other necessary parts (markup, CSS) more accessible and
less developed by hand.

The ASP.NET Factor

 ASP.NET pages are made of code, markup tags, literal text, and server controls. Based on
the request, the server controls generate the right markup language. The ASP.NET runtime
 combines the output of all controls and serves the client a page to display in a browser.

 The programming richness of ASP.NET springs from an unlimited library of server controls
that covers the basic tasks of HTML interaction—for example, collecting text through input
tags—as well as more advanced functionalities such as calendaring, menus, tree views, and
grid-based data display.

Why Was ASP.NET a Milestone?

 ASP.NET was a winner because it combined an effective programming model with high-level
and object-oriented programming languages. No special skills other than classic software
development skills were required for getting started with ASP.NET. This fact did more to lure

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 5 JavaScript Libraries 131

C++, Java, and Pascal developers into developing ASP.NET solutions than any other reason.
ASP.NET was a milestone in the history of Web programming because it opened up Web
programming to virtually all developers.

 When the ASP.NET platform was introduced, server controls looked like a panacea for all
evils. They were perfect because they were a convenient tradeoff between performance and
productivity.

 Server controls made it very easy to generate complex markup for pages. With the help of a
powerful integrated development environment (IDE) such as Visual Studio, developers could
drag one control from the toolbox and drop it on the Web Form drawing surface. Developers
could then select some of the control’s properties and set values declaratively. Finally, developers
only had to point the browser to the page to see the result. Easy, effective, and especially quick.

 Books and tons of articles have been written in the past few years to illustrate how to create
custom ASP.NET server controls and how to effectively use existing controls. Now, all of a
sudden, server controls seem to have lost all of their sex appeal. Why is this?

The Wind Is Changing for Server Controls

 The initial enthusiasm for server controls was mostly because of the productivity they could
guarantee. Now, a few years later, other factors are being considered and seem to be prevailing.

 Server controls are black boxes of markup. Using them is similar to carrying on a conversation
while using only predefi ned sentences from a vocabulary list. You can choose how to
 combine sentences and pick out one of many similar sentences, but you do not have total
freedom of expression. You can’t craft the sentence yourself; you can’t control every word,
verb, and preposition you use in the sentence.

 This is the major strength and weakness of the server controls. Out-of-the-box output was
their strength until now. Today, it’s turning into a major weakness because the application’s
users are demanding increased complexity and server interaction, which are things that can’t
be backfi lled into existing server controls.

 Styling server controls is critical, too. Despite the fact that Microsoft enriched ASP.NET with
features such as themes, skins, and CSS adapters, to gain total control of the user interface
appearance you need to resort to CSS over raw HTML.

 Finally, server controls are necessarily bound to view state and the classic page life cycle
 triggered by the ASP.NET HTTP runtime. View state results in a few KBs of extra stuff added
to the page. Although it’s not as large as it was in the fi rst version of ASP.NET, the view state
is still an unnecessary burden added to the page download that is useful only for restoring
the state of the control once it’s back on the server. In an AJAX model where the paradigm
moves toward direct data-for-data calls (as discussed in Chapter 1, “Under the Umbrella of
AJAX”), the view state is a legacy item; and a heavy legacy item, indeed.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

132 Part II Power to the Client

 What’s the future (if any) of server controls?

 Server controls are still a formidable and largely unparalleled instrument of productivity.
Pages are getting richer in terms of client code, but writing client code manually is error
prone, even if you use advanced JavaScript libraries. My forecast—or simply my guess—is
that server controls will be used more as black boxes to generate JavaScript code based on
some JavaScript libraries—including the Microsoft AJAX library and jQuery.

The Widget Factor

The current re-emergence of JavaScript in Web programming is the result of a new quest for
interactivity now being conducted by ASP.NET developers—that is, a category of professionals
with a strong programming background and not necessarily skilled in scripting and HTML.

The answers to the demand for more interactivity are not so different from the answers
found by the fi rst Web page authors 10 or more years ago. The popularity of the Web and
the programming frameworks are different, though.

More JavaScript is required, and it must be better organized. This raises the need for
 libraries, possibly object-oriented libraries. Another factor is the effectiveness and speed of
potential solutions. At the end of the day, through JavaScript you need to manipulate the
DOM, manipulate the style elements, add some effects, and provide a richer user interface.
Working in a cross-browser manner is also a key requirement. These are common tasks that
must be automated to be effective and provide concrete added value while speeding up the
development of AJAX-based applications.

In one word, these are widgets—that is, ad hoc JavaScript components to make the Web user
interface more attractive and easier to use. Widgets are the foundation of the enhanced
user experience AJAX applications deliver to users.

Most Popular Libraries

 The rush to making the client side of the Web as rich and appealing as possible started a few
years ago and produced quite a few libraries, all reasonably describing themselves with the
same set of words: unique, easy-to-use, intuitive, extensible, high-performance, rich Internet
application. I don’t think I’m oversimplifying it if I say that the differences between all these
JavaScript libraries are quite blurry. You can pick any one of them and be relatively satisfi ed
with it. Table 5-1 lists some of these libraries.

 TABLE 5-1 Popular JavaScript Libraries

 Library URL

 Dojo http://www.dojotoolkit.org

 Ext JS http://www.extjs.com

 jQuery http://jquery.com

 Prototype JS http://www.prototypejs.org

 Script.aculo.us http://script.aculo.us

 Yahoo! UI http://developer.yahoo.com/yui

Library URL

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 5 JavaScript Libraries 133

 The list of available libraries doesn’t end here, of course. A more comprehensive, but hardly
exhaustive, list can be found on Wikipedia at the following address: http://en.wikipedia.org/
wiki/Comparison_of_JavaScript_frameworks.

 Libraries are all cross-browser products and offer various licensing models. The memory
required to run in the browser and the download time also vary based on the core
 characteristics of the library and the optional features you choose to download. The overall
range is between 20 KB and 300 KB.

 Let’s dig out some more information about these libraries. As you’ll note, some of these
libraries are just specializations of another library that have grown to be an independent
product at some point.

The Dojo Library

 In Dojo, you fi nd prepackaged components for common user interface elements such as
menus, tabs, tooltips, date-picker, time-picker, treeview with drag-and-drop, ready-made
forms, and input validation.

 Dojo also offers sortable tables, 2D vectorial graphics, and animated effects such as fades
and wipes. It also abstracts the popular XMLHttpRequest object to a custom component.
Dojo’s XMLHttpRequest component automatically falls back to using an IFRAME element
when this is convenient.

 Dojo also provides local data storage that extends cookies and leverages any browser’s
 capabilities. The abstract model works with Internet Explorer, Firefox, and Safari.

The ExtJS Library

 The ExtJS library was originally built as an add-on to the Yahoo! UI library. Now available as
version 2.0, ExtJS is a totally independent library, although it’s fully interoperable with jQuery
and Prototype.

 ExtJS is built around a set of widgets, including a variety of input controls (text and numeric
fi elds, date-pickers, lists, sliders), panels, trees, and grids. In addition, ExtJS features some
application-level capabilities such as modal dialog boxes and interactive validation message
boxes that pop up when invalid content is entered into a fi eld.

 A DOM component is available to select page elements that match a fi lter, along with a
page-level data store acting as a local cache for data that can be in JSON and XML formats.

The PrototypeJS Library

 The PrototypeJS library is available as a single JavaScript fi le, or it can be distributed as part
of larger projects in combination with Ruby on Rails and Script.aculo.us.

 The library offers an abstraction over XMLHttpRequest that is two-fold. In particular, you
fi nd a function to receive raw data from a remote HTTP endpoint and a function to receive
a chunk of HTML to be injected as-is into the existing DOM. In terms of AJAX patterns, the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

134 Part II Power to the Client

Ajax.Request function implements the Browser-Side Template (BST) pattern, which leaves on
the client the burden of producing HTML from the raw endpoint response.

var url = "...";

var call = new Ajax.Request(

 url,

 { parameters: { ... },

 onSuccess: onCompleted,

 onFailure: onFailed

 }

);

 The Ajax.Updater function, on the other hand, implements the HTML Message (HM) pattern
and receives HTML from the HTTP endpoint. The received HTML response is then automatically
injected inside a specifi ed DOM object.

var url = "...";

var domElement = document.getElementById("...");

var call = new Ajax.Updater(

 domElement,

 url

);

 In addition to providing an abstraction over XMLHttpRequest, PrototypeJS offers an
 emulation of classes and, thus, a fl avor of object orientation. As with the Microsoft AJAX
 library, there’s no magic behind the feature—the core JavaScript prototype property is used.
Here’s a quick example of the syntax that is supported to defi ne a new class:

var Person = Class.create(

 baseClass,

 {initialize: function (first, last)

 {

 this.FirstName = first;

 this.LastName = last;

 }

 }

);

 The fi rst argument, if specifi ed, is the parent class. If no parent class is required, you just skip
the parameter. Finally, the initialize method serves as a constructor for the new class.

The Script.aculo.us Library

 The Script.aculo.us library is built on top of PrototypeJS and adds cool visual effects to DOM
elements in the page. The library is articulated in a bunch of distinct JavaScript fi les, each
providing a specifi c skill—effects, drag-and-drop, sliders, or controls.

 One single fi le—the scriptaculous.js fi le—governs the loading of any necessary JavaScript
fi les for the requested features. If you just need a specifi c subset of features, you explicitly list
them using the following syntax:

<script src="scriptaculous.js?load=effects,dragdrop" type="text/javascript"></script>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 5 JavaScript Libraries 135

 The scripts available on demand are builder, effects, dragdrop, controls, and slider. It should be
noted that some of the scripts might have a dependency on others. In this case, the loading
engine will manage extra downloads.

 The library is especially known for its visual effects, which are quick and easy to set up. Here’s
a brief example:

<script type="text/javascript" language="javascript">

 // <![CDATA[

 $('panel_ExtraInfo').appear({duration: 3.0});

 //]]>

</script>

 The sample script takes three seconds to switch the CSS display attribute of the specifi ed
DOM element to visible. The $ function is shorthand for document.getElementById.

The Yahoo! UI Library

 The Yahoo! UI library is articulated in four types of components: core, utilities, UI controls,
and CSS components, plus developer and build tools such as a logger and profi ler.

 The library’s core block is made of a set of tools for event management and DOM manipulation
along with the Yahoo! Global object, which contains several utilities such as methods for
 type-checking and user agent detection, a class model, and behaviors to augment the DOM
element’s capabilities.

 The library offers facilities to access browser events such as mouse and keyboard events, and
it also provides its own object to publish custom events and subscribe to other components’
custom events.

 The Yahoo! UI library comes with a set of predefi ned CSS fi les to automatically style all default
elements of a page in a consistent manner. You use the Reset CSS fi le to fi x any inconsistent
styles of HTML elements and the Base CSS fi le to apply consistent settings instead. For
 example, one of the CSS fi les in the Base suite is designed to style common HTML elements
so that they fi t in a 100 percent wide page.

 A few UI controls exist out of the box that address most common necessities for Web
 pages—buttons, a calendar, a color-picker, menus, various types of panels, a slider, and
 tabstrips. Such components are entirely client-side components created and commanded
using JavaScript code.

 The Yahoo! UI library also has an optional (and free) library of ASP.NET controls—the YUIAsp.Net
library. By means of this library, you can actually use the YUI widgets even if you have limited
knowledge of JavaScript. The following code snippet shows how to emit a JavaScript-based link
button component from the Yahoo! UI library through an ASP.NET server control:

<yui:Button ID="btnLink" runat="server"

 Text="Hooked by ASP.NET?"

 Target="_blank"

 ButtonType="Link"

 NavigateUrl="http://www.asp.net"

/>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

136 Part II Power to the Client

 For more information on Yahoo! UI server controls, have a look at http://www.yuiasp.net.

 In the category of utilities, you fi nd functions to add various capabilities such as AJAX
 connectivity, downloads, history, and cookies management.

 Important As mentioned, the size of JavaScript libraries ranges from 20 KB to 300 KB. However,
these numbers depend on the actual features you download and are subject to further reduction
because of minifi cation—the equivalent of compilation for JavaScript interpreted code. Minifi cation
consists of removing unnecessary characters from JavaScript code, such as white spaces, newlines,
comments, and block delimiters. All of these characters add readability to the code, but they are
not strictly required for execution. The average savings is in the order of 40 percent.

 This savings can be further increased by applying GZIP compression to the minifi ed JavaScript
fi le. Experiments demonstrate that the combination of minifying and GZIP produces a better
result than using only minifi cation or GZIP-ping alone. Not all minifi ers produce the same code,
and this affects the subsequent performance of GZIP. As a rule of thumb, you can expect to get
about half the size from minifi cation and up to one-third of the input size from GZIP. This would
make for a fi nal (and ideal) one-sixth of the original size.

 Some of the aforementioned libraries have their own minifi er, such as the Yahoo! UI Compressor
and the JS Dojo Minifi er. Most minifi ers are based on JSMin, developed by Douglas Crockford,
which is available at http://www.crockford.com/javascript/jsmin.html. Building your own
 team-based minifi er is not diffi cult, as the engine can be easily wrapped in a Windows Forms
or an ASP.NET tailor-made front end.

Libraries and the Process of Natural Selection

 As you can see, all JavaScript libraries have a lot in common. In addition, you can synthesize
the content of a JavaScript library with three macro features:

■ UI widgets and effects

■ Flavors of object orientation

■ Programming utilities such as AJAX, downloads, caching, and history

 When all the libraries look sort of the same, which one should you choose?

 Note In the mid-1970s, two technologies for video recording vied to conquer the market:
JVC’s VHS and Sony’s Betamax. The winner was VHS in spite of the fact that, with good reason,
many people considered Betamax to be the superior technology. So the best technology is
not necessarily the one that is best received by the marketplace. The success of a particular
 technology often depends on a mix of factors.

 Ancient Romans used to say that the voice of the people was the voice of the gods. Applied to
this discussion, this saying means that if users establish the success of a particular technology,
you are probably better off going with that technology, too—unless you have strong reasons
and good evidence to do otherwise. For JavaScript libraries, the winner seems to be jQuery, and
jQuery is the one I feel most comfortable recommending—unless you have valid reasons for
picking up another (mostly equivalent) one.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 5 JavaScript Libraries 137

 If all the libraries look the same to you, I suggest you start with jQuery. This library is simple
to use and powerful at the same time. This said, choosing jQuery, PrototypeJS, or maybe
Yahoo! UI is ultimately a matter of personal preference.

 As a developer, you need a higher level tool to focus on for client-side coding than the raw
JavaScript language. Libraries exist to raise the level of abstraction and provide a signifi cantly
more powerful set of functions. You and your team, though, decide what really makes you
more powerful.

 This said, the reasons why more and more developers are using jQuery, and the reasons why
in this book I am presenting jQuery as the winner, can be summarized as follows:

■ With jQuery, you tend to write far fewer lines of code than with other libraries.

■ It has a common-sense API and is easy to understand.

■ The extensible architecture of jQuery has triggered the creation of a large number of
plug-ins that will likely satisfy any need you might have.

 For us .NET people, another good reason for picking jQuery is the fact that it is now distributed
with ASP.NET MVC and probably will be also when ASP.NET 4.0 is rolled out.

 If I had to mention only one reason to look at jQuery I’d pick the chaining of queries. As
you’ll see in the rest of the chapter, jQuery is mostly about selecting DOM elements, placing
them into groups, and applying functions and effects to all of them. Because most jQuery
functions return another jQuery object, you can easily build intuitive statements that are
 surprisingly easy to chain together to create intricate but understandable effects. Here’s a
brief example that shows you how to disable all input elements in a page:

// For each DOM element of class <input>, set the disabled attribute to "disabled".

$("input").attr("disabled", "disabled");

 Isn’t this code similar to the code snippet listed earlier based on Script.aculo.us? Sure, it is
 because we’re talking about the same kind of object. You just need to make your choice of
libraries.

The jQuery Library

 Like many other JavaScript libraries, jQuery offers DOM and CSS manipulation and
 navigation, event handling, nice user interface effects, and AJAX capabilities. However, the
main trait of the library is call chaining. Most methods, after execution, return the same
jQuery object they have been called from. In this way, you can chain new commands to the
object, thus building an effective workfl ow.

 As mentioned, Microsoft is now fully supporting jQuery and, among other things, distributes
it with the ASP.NET MVC framework. Furthermore, extensions have been developed to fully
integrate jQuery IntelliSense in Microsoft Visual Studio 2008 SP1. Starting with the next
 version of .NET, jQuery will become a constituent part of the ASP.NET platform. As such, it

http://lib.ommolketab.ir
http//lib.ommolketab.ir

138 Part II Power to the Client

will be fully supported by Microsoft Product Support Services in a 24/7 modality. (Microsoft
Product Support Services is the group that answers the phone when you call technical
 support for help.) The library, though, will continue to be developed independently by the
same group of people who made it so successful.

The Library at a Glance

 Written by John Resig, the jQuery library consists of a single .js fi le, which is available from
http://docs.jquery.com/Downloading_jQuery. At the time of this writing, the latest available
version is numbered 1.3 and was released in the winter of 2009.

Size of the Library

 The download site offers three versions of the library: uncompressed, packed, and minimized.
The size of the uncompressed version measures nearly 100 KB and contains completely
 uncompressed and un-minifi ed code that is full of comments and written in a human-readable
way. This is defi nitely the version to pick up for debugging and for your own perusal.

 The minifi ed version is about 50 KB. With all extra characters removed from the source, the code
is impractical, if not impossible, to read for humans. However, it works just fi ne for computers.
(At the end of the day, JavaScript minifi cation is also a form of obfuscation.) Once GZIPped, the
minifi ed version of the library is only 15 KB and takes only a few moments to download.

 Note If you are not able to use GZIP for downloading, you might want to consider the packed
version of jQuery, which is about 30 KB in size. The packed version, though, requires more
 initialization time on the client. The packed version consists of the eval() of a string of code,
where the public names of functions and common segments of text have been replaced with
shorter strings that need to be restored before execution. The jQuery offi cial site recommends
you evaluate the packed version very carefully because it might have unexpected performance
issues. In general, the best option is the minifi ed version, possibly with GZIP to speed up
 downloading. Note, though, that some old versions of Internet Explorer may be unhappy with
GZIP. See http://support.microsoft.com/kb/823386 for more information.

Fundamental Traits

 The whole set of jQuery functionality can be divided into four main areas: DOM query and
manipulation, visual effects and animation, AJAX, and core functions to work with arrays,
 fi lter data, and detect browser capabilities.

 A separate leg of the jQuery library is jQuery UI—a library of visual components and widgets.
The project home page is located at http://ui.jquery.com. All the widgets form a comprehensive
library to install separately from the core library. It’s possible to use components individually,
but you might need to download other widgets because of dependencies. To smooth the
whole process, the jQuery UI site supplies a builder component that assembles the proper
JavaScript fi le for your own needs.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 5 JavaScript Libraries 139

 The jQuery library is extensible through the mechanism of plug-ins. A jQuery plug-in consists
of a bunch of new methods and functionality grouped in a new fi le. A plug-in is not like a
new class; it has more to do with adding methods to the prototype of the jQuery root object.
As a result, adding new capabilities is as easy as writing a few new JavaScript functions. Once
you create a plug-in, using the newly added plug-in functionality is as easy as using a built-in
jQuery method.

 Extensibility and chainability are two fundamental traits of jQuery, and they are probably the
key to its wide and growing adoption.

Using the Library in Visual Studio 2008

 As mentioned, Microsoft is now committed to fully supporting jQuery. As we await the
next major release of the .NET Framework, the fi rst step that demonstrates Microsoft’s
 commitment to jQuery is the release of the documentation fi le created to enable IntelliSense
when the jQuery library is used within an ASP.NET project.

 From http://docs.jquery.com/Downloading_jQuery, you can download the fi le jquery-1.3.vsdoc.js
and enable IntelliSense within Visual Studio 2008. You also need a Visual Studio 2008 Service
Pack 1 patch (as described in Knowledge Base article 958502) for the documentation fi le to be
correctly processed, as shown in Figure 5-1.

FIGURE 5-1 IntelliSense in action on jQuery objects within Visual Studio 2008

 In ASP.NET, you can either use a plain <script> tag to link the library or you can list it in the
Scripts section of the ScriptManager control, as shown here:

<asp:ScriptManager id="ScriptManager1" runat="server">

 <Scripts>

 <asp:ScriptReference path="jquery-1.3.min.js" />

 </Scripts>

</asp:ScriptManager>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

140 Part II Power to the Client

 Obviously, you don’t need to deploy the Visual Studio documentation fi le to the server. The fi le
must simply be available in your Visual Studio 2008 project and, if the aforementioned patch is
installed, Visual Studio 2008 will automatically check and consume the documentation fi le.

 Note The Visual Studio 2008 SP1 patch for the script documentation fi le is not specifi cally
 intended for the jQuery library, but it’s valid for all JavaScript fi les. Visual Studio 2008 SP1
looks for documentation fi les related to any script fi le. In particular, Visual Studio searches for
 xxx-vsdoc.js in the same folder that contains the xxx script fi le. If the vsdoc fi le is not found, Visual
Studio searches for an xxx.debug.js fi le, and fi nally it looks for the xxx.js fi le. If you already have a
fully documented debug script fi le, there’s no strict need for you to create a vsdoc fi le.

The Core Library

 The word query in the library’s name says it all—the jQuery library is primarily designed for
running (clever) queries over the DOM. The library supplies a powerful interface to select
DOM elements that goes far beyond the simple search for all elements that match a given
ID. For example, you can easily select all elements that share a given CSS class, have certain
attributes, or appear in a given position in the tree. More importantly, you can chain multiple
clauses together and prepare complex queries.

The $ Function

 The root of the jQuery library is the jQuery function. The function is defi ned as an extension
to the browser’s window object and is aliased with the popular $ function. Here’s the function
defi nition as it comes from the source:

var jQuery = window.jQuery = window.$ = function(selector, context)

{

 return new jQuery.fn.init(selector, context);

};

 Every time you reference the jQuery or $ function, you end up creating a new function that
 accepts two parameters—a selector and a context. The selector indicates the query expression
to run over the DOM; the context indicates the portion of the DOM from which to run the
query. If no context is specifi ed, the jQuery function looks for DOM elements within the entire
page DOM.

 Note In the defi nition of the jQuery object, you can recognize an instance of the Builder design
pattern. The pattern recommends separating the construction of a complex object from its
 representation. You use an internal helper object as the builder and isolate in that helper all the
required building logic. In this way, the constructor focuses on the expected behavior to provide
the internal implementation and logic. The init function is the builder of the jQuery object.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 5 JavaScript Libraries 141

 From the preceding defi nition, four initialization options are available for you to use:

jQuery(expression, [context])

jQuery(html, [ownerDocument])

jQuery(elements)

jQuery(callback)

 The fi rst option takes a selector string and returns an array of matching HTML elements.
The second one accepts an HTML string, creates the related subtree, and appends it to the
specifi ed owner documents, if any. The third overload picks up the specifi ed DOM element
or elements. Finally, the fourth option just takes a callback function and runs it on the entire
document as soon as the page’s document is fully loaded.

 The return value you get can be a single DOM element, including the whole document or,
more often, a new jQuery object.

Wrapped Sets

 The jQuery object incorporates an initially empty JavaScript array. When the jQuery object
is returned from a query, the array is packed with references to selected DOM elements. For
this reason, any returned jQuery object is often referred to as a wrapped set.

 A wrapped set is never null, even though no matching elements have been found. You check
the actual size of the wrapped set by looking at the length property of the jQuery object, as
shown here:

// All IMG tags in the page

var wrappedSet = new jQuery("img");

if (wrappedSet.length == 0)

 alert("No IMG tags found.");

else

{

 // The String.format function comes from the Microsoft AJAX library

 alert(String.format("{0} IMG tags found.", wrappedSet.length));

}

 The wrapped set is not a special data container; rather, it’s a jQuery-specifi c term to indicate
the results of a query. However, once you hold all the elements you were looking for, you
need to process them. To start off, let’s see which methods are available on the root $
function.

Helper Methods of the $ Function

 The root jQuery object is augmented with a bunch of helper methods that perform some
common tasks, such as enumerating the content of the wrapped set. Helper methods are
listed in Table 5-2.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

142 Part II Power to the Client

 TABLE 5-2 Helper Methods on the jQuery Object

 Method Description

 each(callback) This method loops over the entire list of DOM elements in the wrapped set and
executes the specifi ed JavaScript callback.

 length This method gets the number of DOM elements contained in the wrapped set.

 eq(position) This method gets rid of all elements in the wrapped set except the one at
the specifi ed position. The index of the sole element to preserve ranges from
0 to length–1. After the method, property length equals 1.

 get() This method extracts the wrapped set from the jQuery object and returns it as
a JavaScript array of DOM elements.

 get(index) This method returns the DOM element found at the specifi ed 0-based position in
the wrapped set.

This method is provided for compatibility reasons. It sort of violates the rule of
chainability of jQuery because it returns a DOM object rather than a jQuery object.
It isn’t possible to continue another jQuery chain given a DOM object.

 index(element) This method loops over the wrapped set looking for the specifi ed DOM element.
If a match is found, the current 0-based index is returned. The method returns –1
if the object wasn’t found.

 These methods form only the core set of jQuery accessors. Many more operations are
 available on wrapped sets, and many others can be added through plug-ins. I’ll return to
the topic of operations that are possible on a wrapped set later in the chapter, right after
 discussing the syntax used to arrange queries.

jQuery Selectors

 In the jQuery library, a selector is an expression used to select DOM elements to return. In a
way, the selector is the jQuery counterpart of an SQL statement used to select rows from
a database table.

 The selector expression is driven by the CSS 3.0 syntax and can reach a nontrivial level of
complexity. In addition to basic CSS selectors, the library features a few predefi ned selectors
named fi lters.

CSS Selectors

 Table 5-3 lists the CSS selectors supported by the jQuery object.

 TABLE 5-3 Supported jQuery Selectors

Selector Description

 #id Returns the fi rst element in the DOM with a matching ID. An empty
wrapped set is returned otherwise. Periods and colons in the ID must
be escaped with a backslash.

 element Returns all DOM elements with a matching tag name.

 .class Returns all DOM elements with a matching CSS class.

Method Description

Selector Description

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 5 JavaScript Libraries 143

 TABLE 5-3 Supported jQuery Selectors

 Selector Description

 * Returns all DOM elements in the page.

 selector1, ..., selectorN Applies all given basic selectors, and returns the combined results.
A selector can be any of the preceding selectors.

 ancestor descendant Given an ancestor selector, returns the collection of all descendant
elements that match the descendant selector. For example, “div p”
returns all <p> elements within a <div>.

 parent > child Given a selector, returns the collection of all child elements that
match the child selector.

 previous + next Given a selector, returns the collection of all sibling elements that
match the next selector and are located next to the previous selector.

 previous ~ sibling Given a selector, returns the collection of all sibling elements that
match the sibling selector and follow the previous selector.

To retrieve a DOM element by ID, you need the following code:

var domElement = $("#DataGrid1");

The # symbol doesn’t belong to the ID string. It’s just a prefi x for the $ function to disambiguate
ID strings, CSS classes, and HTML tag names. The # symbol comes from the CSS 3.0 syntax.

The preceding code snippet is functionally equivalent to the following standard DOM statement:

var domElement = document.getElementById("DataGrid1");

The similarity between classic DOM methods and the $ function ends here. The $ function is
much more powerful because it returns a wrapped set for you to perform further operations.

Note The HTML DOM standard allows you to have multiple elements named in the same way.
If multiple elements match the ID, the method getElementById returns only the fi rst match. On
the other hand, the getElementsByName method returns the entire collection. In jQuery, you
don’t have a direct counterpart to getElementsByName, even though you can easily simulate that
by using an attribute fi lter.

CSS Selectors in Action

It’s worth showing some quick examples of selectors, such as those listed in Table 5-3.

The following selector selects all <input> elements in the current <form>:

form input

You can also select all <input> elements within a particular form by switching to the following
syntax. In this case, Form1 is the ID of the form you want to search within:

#Form1 input

Selector Description

http://lib.ommolketab.ir
http//lib.ommolketab.ir

144 Part II Power to the Client

 Given a selector, such as input, you can further restrict the query to all such elements having
a given CSS class—say, MyTextBox:

input.MyTextBox

 Things can be even more sophisticated, such as when you want to get all elements
whose CSS class is appHeader located within any <div> in the page:

div span.appHeader

The search can be limited to child or sibling elements. Let’s consider the following:

h2 + p

The query returns all <p> elements that are next to an <h2> element. Being next to an
 element means sharing the same parent and coming immediately after the element. As an
example, consider the following markup:

<p id="Header">Samples</p>

<h2>Welcome</h2>

<p id="First">Hello</p>

<p id="Second">Dino</p>

Only the <p> named First is selected with an h2+p selector because it’s the only one next to
an <h2> element and sibling.

Filters

Selectors can be further refi ned by applying fi lters on position, content, attributes, and
 visibility. A fi lter is a sort of built-in function applied to the wrapped set returned by a basic
selector. Table 5-4 lists positional fi lters in jQuery.

TABLE 5-4 Positional Filters

Positional Filters Description

:fi rst Returns the fi rst DOM element that matches

:last Returns the last DOM element that matches

:not(selector) Returns all DOM elements that do not match the specifi ed selector

:even Returns all DOM elements that occupy an even position in a 0-based indexing

:odd Returns all DOM elements that occupy an odd position in a 0-based indexing

:eq(index) Returns the DOM element in the wrapped set that occupies the specifi ed
0-based position

:gt(index) Returns all DOM elements that occupy a position in a 0-based indexing greater
than the specifi ed index

:lt(index) Returns all DOM elements that occupy a position in a 0-based indexing less
than the specifi ed index

Positional Filters Description

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 5 JavaScript Libraries 145

TABLE 5-4 Positional Filters

Positional Filters Description

:header() Returns all DOM elements that are headers, such as H1, H2, and the like

:animated() Returns all DOM elements that are currently being animated via some
functions in the jQuery library

What’s the difference between the get(index) we met in Table 5-2 and the eq(index) we
just found in Table 5-4? The defi nition is nearly the same, but the role is radically different.
The get(index) is a function on the jQuery object and applies to a wrapped set; the eq(index)
is a fi lter and applies to a selector. Let’s consider the two statements shown next:

// Both queries select the first DIV with a CSS class different from infoPanel

var elem1 = $("div:not(.infoPanel):eq(0)"); // returns a jQuery object

var elem2 = $("div:not(.infoPanel)).get(0); // returns a DOM element

 The variable elem1 is a jQuery object. The variable elem2 is a plain DOM element; in particular,
it’s a reference to a <div> element.

Table 5-5 lists all supported fi lters through which you can select elements that are children of
a parent element.

TABLE 5-5 Child Filters

Child Filters Description

:nth-child(expression) Returns all child elements of any parent that match the given expression.
The expression can be an index or a math sequence (for example, 3n+1),
including standard sequences such as odd and even.

:fi rst:child Returns all elements that are the fi rst child of their parent.

:last-child Returns all elements that are the last child of their parent.

:only-child Returns all elements that are the only child of their parent.

A particularly powerful fi lter is nth-child. It supports a number of different input expressions,
as shown here:

:nth-child(index)

:nth-child(even)

:nth-child(odd)

:nth-child(sequence)

The fi rst format selects the n.th child of all HTML elements in the source selector. All child
 elements placed at any odd or even position in a 0-based indexing are returned if you
 specify the odd or even fi lter instead.

 Finally, you can pass the nth-child fi lter a mathematical sequence such as 3n to indicate all
elements in a position that are a multiple of 3. The following selector picks up all rows in
a table (labeled Table1) that are on the positions determined by the sequence 3n+1—that is,
1, 4, 7, and so forth:

#Table1 tr:nth-child(3n+1)

Positional Filters Description

Child Filters Description

http://lib.ommolketab.ir
http//lib.ommolketab.ir

146 Part II Power to the Client

 Table 5-6 lists expressions to fi lter elements by content.

 TABLE 5-6 Content Filters

 Content Filters Description

 :contains(text) Returns all elements that contain the specifi ed text

 :empty Returns all elements with no children

 :has(selector) Returns all elements that contain at least one element that matches the given
selector

 :parent Returns all elements that have at least one child

 As far as content fi lters are concerned, you should note that any text in an HTML element is
considered a child node. So elements selected by the :empty fi lter have no child nodes and
no text as well, like
.

 A popular and powerful category of fi lters are attribute fi lters. Attribute fi lters allow you
to select HTML elements where a given attribute is in a given relationship with a value.
Table 5-7 lists all attribute fi lters supported in jQuery.

 TABLE 5-7 Attribute Filters

 Attribute Filters Description

 [attribute] Returns all elements that have the specifi ed attribute. This fi lter selects the
element regardless of the attribute’s value.

 [attribute = value] Returns all elements where the specifi ed attribute (if present) is set to the
specifi ed value.

 [attribute != value] Returns all elements whose specifi ed attribute (if present) has a value
different from the given one.

 [attribute ^= value] Returns all elements whose specifi ed attribute (if present) has content that
starts with the given value.

 [attribute $= value] Returns all elements whose specifi ed attribute (if present) has content that
ends with the given value.

 [attribute *= value] Returns all elements whose specifi ed attribute (if present) has content that
contains the given value.

 Attribute fi lters can also be concatenated by simply placing two or more of them side by
side, as in the following example:

var elems = $("td[align=right][valign=top]");

 The returned set includes all <td> elements where the horizontal alignment is right and the
vertical alignment is top.

 The next expression, which is much more sophisticated, demonstrates the power and fl exibility
of jQuery selectors, as it combines quite a few of them:

#Table1 tr:nth-child(3n+1):has(td[align=right]) td:odd

Content Filters Description

Attribute Filters Description

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 5 JavaScript Libraries 147

 It reads as follows:

 Within the body of element Table1, select all <tr> elements at positions 1, 4, 7,
and so forth. Next, you keep only table rows where a <td> element exists with the
attribute align equal to the value of right. Furthermore, of the remaining rows you
take only the cells on columns with an odd index.

 The result is a wrapped set made of <td> elements. Let’s consider the following HTML table
and apply the preceding selector to it:

<table id="Table1" border="1">

 <tr>

 <td></td>

 <td>Country</td>

 <td>Capital</td></tr>

 <tr>

 <td>1</td>

 <td>Norway</td>

 <td align="right">Oslo</td></tr>

 <tr>

 <td>2</td>

 <td>Italy</td>

 <td align="right">Rome</td></tr>

 <tr>

 <td>3</td>

 <td>Spain</td>

 <td align="right">Madrid</td></tr>

 <tr>

 <td>4</td>

 <td>UK</td>

 <td>London</td></tr>

 <tr>

 <td>5</td>

 <td>France</td>

 <td>Paris</td></tr>

 <tr>

 <td>6</td>

 <td>Greece</td>

 <td>Athens</td></tr>

 <tr>

 <td>7</td>

 <td>Belgium</td>

 <td>Brussels</td></tr>

</table>

 Only the fourth row (including the header) matches both the :nth-child and :has fi lters. Of the
three cells, only the one in the middle has an even index in a 0-based indexing. In Figure 5-2,
you see the output that results, with some extra CSS styling applied to the wrapped set:

<script type="text/javascript">

 $("#Table1 tr:nth-child(3n+1):has(td[align=right]) td:odd")

 .css("background", "yellow");

</script>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

148 Part II Power to the Client

Country

UK
Spain

France
Greece
Belgium

Italy
Norway1

2
3
4
5
6
7

Oslo
Rome

Madrid

Paris
London

Brussels
Athens

Capital

FIGURE 5-2 Only matching table cells have their background color turned to yellow.

Finally, a couple more fi lters exist that are related to the visibility of elements. The :visible fi lter
returns all elements that are currently visible. The :hidden fi lter returns all elements that are
currently hidden from view. The wrapped set also includes all input elements of type hidden.

Form Filters

A special family of fi lters exists for HTML input elements. Table 5-8 lists all of them.

TABLE 5-8 Form Filters

 Form Filters Description

 :input Returns all elements that have a role in collecting input data

 :text Returns all input elements whose type attribute is text

 :password Returns all input elements whose type attribute is password

 :checkbox Returns all input elements whose type attribute is checkbox

 :radio Returns all input elements whose type attribute is radio

 :submit Returns all input elements whose type attribute is submit

 :reset Returns all input elements whose type attribute is reset

 :image Returns all input elements whose type attribute is image

 :button Returns all input elements whose type attribute is button

 :fi le Returns all input elements whose type attribute is fi le

 :hidden Returns all input elements whose type attribute is hidden

 :enabled Returns all input elements that are currently enabled

 :disabled Returns all input elements that are currently disabled

 :checked Returns all input elements that are currently checked

 :selected Returns all input elements that are currently selected

 The :input fi lter, in particular, refers to all logical input elements you might fi nd within a page
form and is not limited solely to the <input> elements. In fact, it also picks up <textarea>
and <select> elements used to display multiline text boxes and lists. The fi lters in Table 5-8
 provide handy shortcuts for selecting homogeneous elements and are functionally equivalent
to the other legal jQuery selectors. For example, :checkbox is equivalent to the following:

form input[type=checkbox]

Form Filters Description

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 5 JavaScript Libraries 149

 Other nice helpers are available to grab all input elements in a page form that are currently
enabled or disabled and all check boxes and radio buttons currently selected.

Working on Wrapped Sets

 The jQuery library is great at selecting DOM elements that match a given expression. But
how would you process elements? The simplest possible approach entails that you set up a
loop and run a function over each item in the wrapped set:

var expression = "...";

var wrappedSet = $(expression);

for(i = 0; i< wrappedSet.length; i++)

{

 processElement(wrappedSet.get(i));

}

function processElement(domElement)

{

. . .

}

 In such a manual iteration, you access DOM elements directly, as usual in classic JavaScript
programming. The jQuery library, though, offers a couple of alternate routes that are
 functionally equivalent to manual iteration. And, nicely enough, they also result in more
compact and even more readable code.

Looping over Wrapped Sets

 To loop over a wrapped set, the fi rst option to consider is the each method. (See Table 5-2.)
Here’s a code snippet that shows the method in action that turns the foreground color of all
<input> tags in a form to blue, plus some other work on background color and border style:

$("form input").each(

 function(i) {

 // this is already mapped to the element being processed

 this.style.color = "blue";

 this.style.background-color = "yellow";

 this.style.border-style = "dashed";

 }

);

 The difference between each and a manual JavaScript loop lies in the fact that the function
each automatically maps the this object to the element being processed. The callback function,
however, received an integer parameter that is the 0-based index of the iteration—the “i” in
function(i).

 The jQuery each function executes a user-defi ned callback on any element associated with
the wrapped set. This is defi nitely the option to choose whenever you have custom code to
run on each selected element.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

150 Part II Power to the Client

Some Predefi ned Operations

 A fairly large number of operational methods exist to make it even quicker and easier for you
to execute common operations on the content of the wrapped set. The predefi ned operations
belong to four functional groups: to traverse the DOM, manipulate the DOM, work with
 attributes, and work with CSS.

 The list of individual operations is fairly long and variegated and deserves a book of its
own. In this book, I’ll briefl y skim through some of the operations to give you an idea of
the power of jQuery. For more details, you can either refer to the online documentation at
http://docs.jquery.com or pick up a book such as jQuery in Action, by Bear Bibeault, Yehuda
Katz, and John Resig (Manning Publications, 2008).

 For example, you can use the css function to apply some CSS settings to the wrapped set. Here’s
an example that rewrites the previous example using the css function:

$("form input").css(

 {'color' : 'blue',

 'background-color' : 'yellow',

 'border-style' : 'dashed'}

);

 Likewise, you can add, remove, and even toggle a CSS class on the elements in the wrapped
set. You do this via the addClass, removeClass, and toggleClass functions.

 The attr function, on the other hand, allows you to set one or multiple attributes on all
 elements in a wrapped set. For example, here’s how to disable all input elements in a
single shot:

$("form input").attr(

 {'disabled' : 'disabled'}

);

 The html function sets the HTML content of a given element. The html function uses the
 innerHTML property internally. To set the inner text of an element, instead, you use the text
function and pass the text to set as the argument.

 Note This is a good place to comment on the benefi ts of having a cross-browser library.
Although it’s not part of the standard DOM, the property innerHTML is supported by all browsers
and works anywhere in the same way. The same can’t be said for the analogous property that only
sets the text. This property is innerText in Internet Explorer and, for instance, textElement in Firefox.
The text function hides differences and provides the same functionality across all browsers.

 You also have a method to wrap each matched element with the specifi ed HTML content
(the wrap method) and a method to replace all matched elements with the specifi ed HTML
or DOM elements (the replaceWith method).

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 5 JavaScript Libraries 151

Chaining Methods

 As mentioned, almost every method within the library returns the query object itself. This
allows for building chains of calls. In this way, you express the desired behavior with just one
line of code. Consider the following:

$("a").addClass("Hyperlink").attr(alt, "Click me").show();

 All individual methods return the jQuery object, thus making it possible for you to execute a
new operation on the resulting wrapped set. Each new operation generates a new wrapped
set, and so forth.

 Among the set of predefi ned operations, there are some that let you add or remove elements
from the selection. For example, the following code fi rst selects all elements and then
adds all <p> elements. The fi nal wrapped set is styled using the css function:

$("span").add("p").css(...);

 Likewise, you can remove all elements from the wrapped set that do not match a specifi ed
function:

// Get all and <p>, style them, and then remove those

// that don't match the function

$("span").add("p").css(...).filter(

 function(index) {

 // Must return a Boolean

 return this.attr("width") > 300;

 }

);

 There’s no limit to the chains of methods you can create. You will fi nd this provides for
 maximum fl exibility and expressivity.

jQuery Utilities

 Among the countless methods available on jQuery objects, I’d like to select and further
 discuss a few more that fall into popular functional areas, such as visual effects, AJAX,
 caching, and events. Let’s start with event handling and manipulation.

Event Handling

 As discussed in Chapter 4, normalizing event handling to a cross-browser API is a necessary
but nontrivial task for any serious JavaScript library. The jQuery library is no exception.

 The event-handling API is organized into two groups of functions: general event functions
plus a long list of helpers. General functions provide the foundation for helpers to work;
helpers do the magic of making jQuery programming easy and effective.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

152 Part II Power to the Client

 Table 5-9 lists basic functions to binding and unbinding handlers to HTML element events.

TABLE 5-9 Core Event-Handling API

 Function Description

 bind Binds a handler to one or more events for each element in the wrapped set

 one Binds a handler to one or more events to be executed once for each element in
the wrapped set

 trigger Triggers a given event for each element in the wrapped set

 triggerHandler Triggers all bound handlers on an element for a specifi c event, and cancels the
default browser actions

 unbind Removes bound events from each element in the wrapped set

 The bind function attaches a handler to a given event on all elements in a wrapped set. Here’s
a brief example that attaches a handler to the click event of a button. The handler simply
changes the button’s caption once it is clicked:

$("#btnProcess").bind("click",

 function(e) {

 $("#btnProcess").text("Processing ... ");

 }

);

 The complete signature of the bind method is shown here:

bind(eventName, eventData, eventHandler)

 The event name is a string that contains the name of the event (or events) to bind. You
can register the same handler for multiple events by simply separating event names with a
blank space. The following example toggles a CSS style when the mouse enters or leaves an
input button:

$("input[type=button]).bind("mouseenter mouseleave",

 function(e) {

 $(this).toggleClass("hovered");

 }

);

 The second argument of bind—the event arguments—is optional. If specifi ed, it indicates
user-defi ned data to be passed to the handler:

$("#btnProcess").bind("click", {newText: "Processing..."}, handler)

 The handler then retrieves this data through the data property of the function’s argument:

function handler(e)

{

 $("#btnProcess").text(e.data.newText");

}

 Each event handler receives an object with a few predefi ned properties, as described in
Table 5-10.

Function Description

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 5 JavaScript Libraries 153

TABLE 5-10 Properties of the Event Object

 Property Description

 type Gets the name of the event, such as “click”.

 target Gets a reference to the DOM element that issued the event. It can be the same
element that registered the handler or one of its children.

 pageX Gets the x mouse coordinate relative to the document.

 pageY Gets the y mouse coordinate relative to the document.

The event object also features a couple of methods: preventDefault and stopPropagation. The
preventDefault method cancels the default action the browser would take after the event.
It doesn’t stop, though, the bubbling of the event through the object’s stack. The method
stopPropagation stops the bubbling but doesn’t prevent the browser’s action. To do both
things, you need not call any of these methods; you just return false from the event handler.

Any handlers attached through the bind method can be detached using the unbind method.
The method takes two optional parameters: the names of the event and handler. If none
is specifi ed, all handlers are removed from all elements in the wrapped set. By specifying
 parameters, you can unbind all handlers from certain events and only certain handlers for
certain events.

The one method is similar to bind except that it runs any bound handlers only once and
 removes them all after that.

Finally, the trigger method causes the library to invoke any handlers registered with the
 specifi ed event. The following shows how to programmatically trigger a click event on a button:

$("#btnProcess").trigger("click");

 The triggerHandler function differs from trigger in two respects: it prevents the browser’s
 default action, and it affects only one element in the wrapped set. If the wrapped set contains
multiple matching elements, only the fi rst has handlers triggered for the specifi ed event:

// No browser-led focus on the first <input> tag in the page

$("input").triggerHandler("focus");

 Before we look at event helpers built using the core eventing API, let’s look at three special
event functions that are commonly used: ready, hover, and toggle.

 The ready function takes a function and runs it when the document is ready to be traversed
and manipulated. The hover function accepts two handlers. The fi rst is run when the
mouse hovers over an element in the wrapped set. The second runs when the mouse leaves
the element’s area. The toggle function performs an even smarter task: it takes two or more
 handlers and runs them alternately as the user clicks. In other words, the fi rst click on a
matching element runs the fi rst handler, the second click runs the second handler, and so on.
When the bottom of the handler list is reached, all subsequent clicks run back from the fi rst
function in the list.

Property Description

http://lib.ommolketab.ir
http//lib.ommolketab.ir

154 Part II Power to the Client

 Table 5-11 shows some helpers built to make it easier for you to bind handlers to commonly
used DOM events.

 TABLE 5-11 Event Helpers

 Helper Description

 blur

blur(fn)

Triggers the blur event on the wrapped set. If a function is specifi ed, it binds that
to the blur event of matching elements.

 change

change(fn)

Triggers the change event on the wrapped set. If a function is specifi ed, it binds
that to the change event of matching elements.

 click

click(fn)

Triggers the click event on the wrapped set. If a function is specifi ed, it binds that
to the click event of matching elements.

 dblclick

dblclick(fn)

Triggers the dblclick event on the wrapped set. If a function is specifi ed, it binds
that to the dblclick event of matching elements.

 error

error(fn)

Triggers the error event on the wrapped set. If a function is specifi ed, it binds that
to the error event of matching elements.

 focus

focus(fn)

Triggers the focus event on the wrapped set. If a function is specifi ed, it binds that
to the focus event of matching elements.

 keydown

keydown(fn)

Triggers the keydown event on the wrapped set. If a function is specifi ed, it binds
that to the keydown event of matching elements.

 keypress

keypress(fn)

Triggers the keypress event on the wrapped set. If a function is specifi ed, it binds
that to the keypress event of matching elements.

 keyup

keyup(fn)

Triggers the keyup event on the wrapped set. If a function is specifi ed, it binds that
to the keyup event of matching elements.

 load(fn) Binds a function to the load event of matching elements in the wrapped set.

 mousedown(fn) Binds a function to the mousedown event of matching elements in the wrapped set.

 mousemove(fn) Binds a function to the mousemove event of matching elements in the wrapped set.

 mouseout(fn) Binds a function to the mouseout event of matching elements in the wrapped set.

 mouseover(fn) Binds a function to the mouseover event of matching elements in the wrapped set.

 mouseup(fn) Binds a function to the mouseup event of matching elements in the wrapped set.

 resize(fn) Binds a function to the resize event of matching elements in the wrapped set.

 scroll(fn) Binds a function to the scroll event of matching elements in the wrapped set.

 select

select(fn)

Triggers the select event on the wrapped set. If a function is specifi ed, it binds that
to the select event of matching elements.

 submit

submit(fn)

Triggers the submit event on the wrapped set. If a function is specifi ed, it binds
that to the submit event of matching elements.

 unload(fn) Binds a function to the unload event of matching elements in the wrapped set.

 Helpers come in two forms: with and without a parameter. The parameter, if any, is a function
to execute when the event is fi red. If no parameter is specifi ed, the method triggers the given
event on any element in the wrapped set. For example, the following code registers a click
event for a given button. The binding executes as soon as the document is fully loaded and
ready to be manipulated programmatically.

Helper Description

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 5 JavaScript Libraries 155

$(document).ready(function() {

 $("#btnProcess").click(

 function(e) {

 $("#btnProcess").text("Processing ... ");

 }

);

});

The internal implementation of events in the jQuery library is largely based on the standard
DOM model. The helpers listed in Table 5-11 all refer to standard DOM events.

Visual Effects

One of the renowned characteristics of the jQuery library is its set of visual effects. The library
defi nes a few effects out of the box, plus a simple but effective engine for custom animations.

Predefi ned effects act on the visibility, height, and opacity of elements in the wrapped set.
Table 5-12 lists available effects.

TABLE 5-12 Predefi ned Visual Effects

 Function Category Description

 show Visibility Turns on the visibility of any elements in the wrapped set.

 hide Visibility Turns off the visibility of any elements in the wrapped set.

 toggle Visibility Toggles the visibility of any elements in the wrapped set.

 slideDown Sliding Displays any matching elements by adjusting their height so that the
display happens by revealing the element progressively.

 slideUp Sliding Hides any matching elements using the same algorithm as the
slideDown function.

 slideToggle Sliding Slides all matching elements down or up, inverting the current setting.

 fadeIn Fading Displays any matching elements by adjusting their opacity so that the
display happens to fade in the element.

 fadeOut Fading Hides any matching elements using the same algorithm as the fadeIn
function.

 fadeTo Fading Fades the opacity of all matching elements to a specifi ed value.

Visual effects are obtained by modifying the values contained within certain CSS attributes:
display for visibility, height for sliding, and opacity for fading.

Visibility functions come in two forms. A parameterless signature just shows, hides, or toggles
 elements immediately. You can employ a graceful animation that shows, hides, or toggles
 elements in a given timeframe and also fi res an optional callback after completion. Here’s
an example:

$("btnOrdersInfo").click(

 function(e) {

 $("panelOrders").show(2000);

 }

);

Function Category Description

http://lib.ommolketab.ir
http//lib.ommolketab.ir

156 Part II Power to the Client

 In the code snippet, the panel with order information takes two seconds to appear (with free
animation) and no function is run on completion. The duration of the animation can be set
explicitly by passing the actual number of milliseconds or implicitly by passing any of the
 following predefi ned values: normal, slow, or fast.

 Sliding and fading effects always require a speed argument—either a number of milliseconds
or a predefi ned modality, as shown in the preceding example. The following code fades out
the content of the order panel in one second, and then it loads fresh data synchronously
from the server. When ready, it fades in the panel, and when it is done it changes the style
of the panel.

$("btnOrdersInfo").click(

 function(e) {

 $("panelOrders").fadeOut(1000);

 populateOrderPanel();

 $("#panelOrders").fadeIn(2000,

 function() {

 $("#panelOrders").css(...);

 }

);

 }

);

 The heart of jQuery animations is the animate function. The function receives an array of
property/value assignments where the property refers to a CSS attribute. The function simply
animates the CSS property of each matching element from its current value to the specifi ed
value. Here’s an example:

$("#Panel1").animate(

 { width: "70%",

 opacity: 0.4,

 borderWidth: "10px"

 },

 2000);

 At the end of the animation, the Panel1 element will have the specifi ed width, opacity,
and border width. The animation will take two seconds to complete. CSS properties must
be specifi ed using camelCase (that is, the fi rst character is lowercase and fi rst character of
each following word is uppercase). For example, you should use borderWidth instead of
 border-width.

 Note that you can also do relative animations, such as increasing (or decreasing) a property
value by a percentage or by a fi xed value, as shown here:

$("#Panel1").animate(

 { width: "-=70%",

 opacity: "+=0.4"

 },

 2000);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 5 JavaScript Libraries 157

 By default, all animations in jQuery are automatically queued and execute in an orderly
 manner, one after another. This is a necessary precondition to be able to chain multiple calls
to animate and other animation functions. Let’s consider the following example:

$("#div1").animate({ width: "90%" }, 5000 });

$("#div1").animate({ fontSize: '10em' }, 1000);

$("#div1").animate({ borderWidth: 5 }, 1000);

 You have an animation made of three steps. They are automatically queued and execute
 sequentially. To gain some parallelism—if this is what you want—do as follows. Add a queue:
false fl ag in the options of the animate() call you want to run immediately without queuing.
Let’s consider the following rewrite of the previous example:

$("#div1").animate({ width: "90%" }, {queue:false, duration:5000 });

$("#div1").animate({ fontSize: '10em' }, 1000);

$("#div1").animate({ borderWidth: 5 }, 1000);

 The net effect is that the fi rst two animations start together and the third won’t begin until
the font size has reached the expected value.

AJAX Functions

 AJAX support in jQuery is centered around an abstraction of the browser’s XMLHttpRequest
object and counts on a bunch of helper functions. To compose and control all aspects of your
Web request, you use the ajax function, as shown next:

$.ajax(

 {

 type: "POST",

 url: "getOrder.aspx",

 data: "id=1234&year=2007",

 success: function(response) {

 alert(response);

 }

 }

);

 The ajax function gets a list of parameters, such as type, url, data, dataType, cache, async,
and success. The dataType parameter indicates the type of the expected response, whereas
s uccess indicates the completion callback. The callback function receives the URL response
as its sole argument.

 In addition, a number of helpers exist to simplify common operations such as downloading a
script. The following code shows how to load a script fi le. The script is automatically executed
upon loading:

$.getScript("sample.js");

http://lib.ommolketab.ir
http//lib.ommolketab.ir

158 Part II Power to the Client

 The load function is another very useful piece of code. It downloads markup and
 automatically injects it in the current DOM. The following code shows how to populate a
menu programmatically:

// The content of the URL is attached to the specified section of the DOM

$("#menu").load("menu.aspx");

 Finally, you have get, post, and getJSON functions to use GET and POST verbs and get some
JSON content from a URL.

Caching

 A client-side cache is essential to writing nontrivial JavaScript code to run within the browser. In this
context, a cache doesn’t refer to some sort of persistent storage; more simply, it’s a data container
where developers can store data that relates to a given DOM element. Here’s an example:

var url = "...";

var response = $.get(url);

$("#grid").data("Markup", response);

 The response of the URL is cached in a slot named Markup and associated with the local
cache of the DOM element named grid. To read back the content of the store, you use the
data function with just one argument—the name of the element:

alert($("#grid").data("Markup"));

 Elements added to the cache can be removed by using the removeData function. The jQuery
caching API is particularly helpful in the implementation of the Predictive Fetch AJAX pattern
that we’ll consider in Chapter 7, “Client-Side Data Binding.” The UI leg of the jQuery library
(more on this in a moment) also extensively uses the data function.

jQuery Plug-ins

 A signifi cant share of the jQuery capabilities we just examined has been developed as
 plug-ins on top of the root jQuery object. A plug-in is a jQuery mechanism for adding new
functions to the library. A repository of community-developed plug-ins exists that contains
a few hundred ready-to-use components. Check it out at http://plugins.jquery.com.

 Using a plug-in is as easy as using a built-in jQuery function and, as mentioned, many of
the features we considered (for example, animation) are built as plug-ins. Writing a plug-in
involves nothing more than writing a bunch of public functions to extend the jQuery object.
Here’s an example:

jQuery.fn.traceWrappedSet = function() {

 var buffer = "";

 this.each(function() {

 buffer += this;

 buffer += "\n";

 });

 return buffer;

};

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 5 JavaScript Libraries 159

 The function loops through the content of the wrapped set and traces out the type of the
object selected. Clearly, this function returns a string, not a further chainable jQuery object.
To use this new function, you do as follows:

$(document).ready(

 function() {

 var x = $("button").traceWrappedSet();

 alert(x);

 }

);

 Admittedly, this example is not all that useful because it just outputs a vague
 string—Object—for each element in the wrapped set. However, making the trace
 function smarter—and subsequently more useful—is not a huge task and only requires
looping over the prototype of each object or linking in the Microsoft AJAX library.
The purpose of this section, though, is limited to showing what it takes to extend the
jQuery library.

 There are a few guidelines to adhere to so as not to break compatibility and to make it easier
to integrate with other jQuery code.

 First you need to distinguish between jQuery methods and jQuery functions. In jQuery, a method
is a way to process the content of the wrapped set. A method should use this.each to iterate over
the current wrapped set for promoting cleaner and more standard code. The method must return
the jQuery object. If this is not the case (as in our example), it should be explicitly documented.
Within the body of a method, this always references the current jQuery object.

 A function is a piece of JavaScript code that performs an operation not specifi cally aimed at
processing the content of a wrapped set.

 Methods and functions both must end with a semicolon (;) so as not to break code during
the process of minifi cation. All new methods should be attached to the jQuery.fn object. All
functions, on the other hand, should be directly attached to the jQuery object.

 Inside of the plug-in code, you should always avoid using the $ shorthand notation and use the
jQuery object instead. This allows users to change the alias for jQuery in a single place. Finally, the
convention is to name your plug-in fi le as jquery.xxx.js, where xxx is the name of your plug-in.

 For more information and sample code, refer to http://docs.jquery.com/Plugins/Authoring.

The jQuery UI Framework

 jQuery UI is the jQuery framework for the user interface. It features a set of visual controls
as well as a wide range of plug-ins for increasing the interactivity of pages. The jQuery
UI project is developed separately from the main core library. You can visit the project
homepage at http://ui.jquery.com to get the source code and related demos.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

160 Part II Power to the Client

 The framework lists a number of core interaction plug-ins to add aspects to a set of
matching elements. Aspects include special client-side capabilities such as draggability
and resizability. The full list of interactions includes the following plug-ins: draggable,
droppable, resizable, selectable, and sortable.

 The draggable interaction makes elements in the set draggable by the mouse, whereas
the droppable interaction transforms all elements in the wrapped set in drop targets.
Similarly, sortable allows you to reorder a list of items via the mouse and selectable lets
you select items in a list by clicking. Finally, the resizable interaction makes an element
dynamically resizable.

 Using such plug-ins couldn’t be easier. All you have to do is defi ne the wrapped set
through selectors and then invoke the method, as shown here:

// The element can be resized dynamically

$("#grid").resizable();

 If you apply the method to, say, a grid, you can resize only the surrounding table that
defi nes the grid. It doesn’t make columns resizable. However, by making smart use of
the plug-in, you can code your way to getting a fully customizable grid.

 All interactions have the same syntax made of four signatures. Here’s the syntax for the
resizable interaction:

resizable(options)

resizable("disable")

resizable("enable")

resizable("destroy")

 The options argument consists of a set of assignments on a fi xed set of properties that
cover all UI plug-ins. For the resizable interaction, some interesting options are handles
(where you drag to resize), minWidth/minHeight and maxWidth/maxHeight to delimit
the range of resizability, and aspectRatio to specify whether the original ratio of the
 element must be preserved.

 The other signatures simply refer to special actions such as enabling, disabling, or
 removing the interaction on the elements in the wrapped set.

 In addition to interaction aspects, such as draggable and resizable, the jQuery UI has
a number of widgets, including Accordion, DatePicker, Dialog, Slider, and Tabs. The
Accordion widget represents a container of collapsible panels where only one can be
visible at a time. You apply the method to a panel with child elements, as shown here:

<div id="Accordion1">

 <div>

 <h3>...</h3>

 <div>

. . .

 </div>

 </div>

. . .

</div>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 5 JavaScript Libraries 161

 Each item should contain two elements: header and body. To activate the accordion
 behavior, you use the following code:

$("#Accordion1").accordion();

 Using jQuery UI is really easy. For example, to create a dialog box all you need to do is
create a <div> to defi ne the expected user interface. Next, you just invoke the dialog
method, as shown here:

$("#DialogBox1").dialog();

 All widgets depend on a few fi les. Typically, a widget depends on its own fi le plus
some interaction plug-ins. For example, the Dialog widget depends on the draggable
and resizable interactions because the resulting dialog box can be dragged around and
resized at will. When using such a widget, you must reference all required script fi les in
your pages.

 You can check the http://ui.jquery.com/download Web site for the version of the library
that is currently the most stable one available. When downloading, you can create your
own package that contains only the components you need.

 Summary

 As emphatic as it might sound, knowing how to use JavaScript is a necessary skill today.
However, you probably don’t have to learn all the nitty-gritty details of the language to write
good production code. This is because of the availability of powerful libraries such as jQuery.

 jQuery delivers a number of benefi ts. In the fi rst place, it makes JavaScript code easier
and quicker to write. The library provides helper functions that dramatically increase your
 productivity while decreasing frustration. In addition, the resulting code is much easier
to read (which greatly simplifi es maintenance) and robust, because the higher level of
 abstraction hides a number of checks and error-handling procedures.

 In a world of Web programming that is moving irreversibly toward client programming,
jQuery is a broadly accepted and successful library. Centered around the idea of selectors
and function chaining, the library allows you to write compact and cross-browser code.
You can easily group HTML elements that match a condition and perform operations
on them. Operations include DOM manipulation, styling, animation, plus advanced user
 interface operations.

 Now that we know the tools to manipulate JavaScript more effectively, we can move ahead
towards AJAX patterns. In the next chapter, we attack the patterns used to implement the
most popular and requested features of Web applications—data binding and templating.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 163

Chapter 6

AJAX Design Patterns

 It is possible to fail in many ways, while to succeed is possible only in one way.

 —Aristotle

 AJAX is not a technology itself; it’s all about how you, as an architect, use and combine a
bunch of existing, and fairly stable and mature, Web technologies. AJAX tells you to employ
XMLHttpRequest and the Document Object Model (DOM) in your site. AJAX suggests you
opt for two-tier architecture with a JavaScript-based front end and a server-side façade of
HTTP endpoints. However, AJAX doesn’t really tell you how these technologies are used in
the real world and how you should use them in your site. Quite the opposite, many times
AJAX technical presentations are about what you could do rather than about what you should
do and why.

 As in general software design, if you’re looking for guidance on the most applicable tested
solutions to recurring problems, you need a set of simple design patterns. Because design
patterns are essentially a package that includes a description of the problem, a list of
 participating actors, and a commonly accepted solution, it’s not surprising that some of them
are paradigm specifi c.

 As we’ll see in this chapter, some really general patterns—including Singleton, Factory,
or perhaps Strategy—can be applied to AJAX applications as well as to any other type of
 application. In addition, the AJAX paradigm has its own set of design patterns inspired by the
internal mechanics and peculiarities of AJAX applications.

Design Patterns and Code Development

 The word pattern is one of those overloaded terms that morphed from its common usage to
assume a very specifi c meaning in computer science. According to the dictionary, a pattern is
a template or model that can be used to generate things—any number of things. In software,
we use patterns in design solutions at two levels: implementation and architecture.

 At the highest level, two main families of software patterns are recognized: design
 patterns and architectural patterns. You look at design patterns when you dive into the
 implementation and design of the code. You look at architectural patterns when you fl y high
looking for the overall design of the system. In AJAX, we are mostly interested in design
patterns because there are not so many possible architectural patterns. There are two main
architectural patterns, which we identifi ed and discussed at length in Chapter 3, “AJAX
Architectures”: the AJAX Server Layer pattern and the Active Server Pages pattern.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

164 Part II Power to the Client

Generalities About Design Patterns

 A design pattern is a known and well-established core solution applicable to a family of
concrete problems that might show up during implementation. A design pattern is a core
solution and, as such, it might need adaptation to a specifi c context. This feature becomes a
major strength when you consider that, due to their inherent fl exibility, the same pattern can
be applied many times in many slightly different scenarios.

 Design patterns are not created in a lab; it’s quite the opposite. They originate from the real
world and from the direct experience of developers and architects. You can think of a design
pattern as a package that includes the description of a problem, a list of actors participating
in the problem, and a practical solution.

 The primary reference for design patterns is the book Design Patterns: Elements of Reusable
Object-Oriented Software by Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides
(who are often referred to as “the GoF,” or “Gang of Four”).

Applying Design Patterns

 You don’t choose a design pattern; the most appropriate design pattern for the problem
you’re facing normally emerges out of your refactoring steps. We could say that the pattern
is buried under your classes, but digging it out is entirely up to you.

 The wrong way to use design patterns is by going through a list of patterns and matching
them to the problem. Instead, it works the other way around. You have a problem and you
have to match the problem to the pattern. How can you do that?

 It’s quite simple to explain, but it’s not so easy to apply. Simply put, you have to understand
the problem and generalize it.

 If you can take the problem back to its roots, and get the gist of it, you’ll probably fi nd a
tailor-made pattern just waiting for you. Why is this so? Well, if you really reached the root
of the problem, chances are that someone else did the same in the past 15 years (the period
during which design patterns became more widely used). So the solution is probably just
there for you to read and apply.

 As a general rule, keep in mind that design patterns are typically generalized solutions and
should never be interpreted dogmatically. They won’t save your project when it’s in trouble,
but they can defi nitely help you out.

The Real Value of Patterns

 Many people would agree in principle that there’s plenty of value in design patterns. Fewer
people, though, would be able to indicate what the value is and where it can be found. Using
design patterns, per se, doesn’t make your solution more valuable. In the end, what really
matters is whether or not your solution works and meets requirements.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 6 AJAX Design Patterns 165

 Armed with requirements and design principles, you are up to the task of solving a problem.
On your way to the solution, though, a systematic application of design principles to the
problem sooner or later takes you into the immediate neighborhood of a known design
 pattern. That’s a certainty because, ultimately, patterns are solutions that others have already
found and catalogued.

 At that point, you have a solution with some structural likeness to a known design pattern.
It’s up to you, then, to determine whether an explicit refactoring to more closely align with
that pattern will bring some added value to the solution. Basically, you have to decide
 whether or not the known pattern you’ve found represents a further, and desirable,
 refi nement of your current solution.

 Don’t worry, though, if your solution doesn’t match a pattern. It means that you have a
 solution that works, and you can be happy with that.

 In summary, patterns might be an end when you refactor according to them, and they might
be a means when you face a problem that is clearly resolved by a particular pattern. Patterns
are not an added value for your solution, but they are valuable for you as an architect or a
developer looking for a solution.

 Note Much like cookbooks, you hardly read a pattern book from cover to cover. You hold on to
it, keep it within reach, and then get it off the shelf when you need it. You probably won’t read
about the million different ways to prepare spaghetti. But if you are in the mood for, say, seafood
spaghetti, you’ll open the cookbook and fl ip through its pages with a clear idea of what you’re
looking for.

Patterns and Idioms

 Software patterns indicate well-established solutions to recurring design problems. This means
that developers end up coding their way to a given solution over and over again. And they
might be repeatedly writing the same boilerplate code in a given programming language.

 Sometimes specifi c features of a given programming language can help signifi cantly in quickly
and elegantly solving a recurring problem. That specifi c set of features is referred to as an idiom.

 An idiom is a pattern hard-coded in a programming language or implemented out of the
box in a framework or technology. Like a design pattern, an idiom represents a solution to a
recurring problem. However, in the case of idioms, the solution to the problem doesn’t come
through design techniques but merely by using the features of the programming language.
Whereas a design pattern focuses on the object-oriented paradigm, an idiom focuses on the
technology of the programming language.

 An idiom is a way to take advantage of the language capabilities and obtain a desired behavior
from the code. In general, an idiom refers to a very specifi c, common, and eye-catching piece
of code that accomplishes a given operation—sometimes as simple as adding to a counter or
as complex as the implementation of a design pattern.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

166 Part II Power to the Client

 In C#, for example, the ++ operator can be considered a programming idiom for the
 recurring task of adding to a counter variable. The same can be said for the as keyword when
it comes to casting to a type and defaulting to null in case of failure.

 Events are the canonical example of a programming idiom. Behind events, you fi nd the
Observer pattern. The foreach construct, instead, is a hard-coded implementation of the
Iterator pattern. In .NET 3.5, LINQ-to-SQL is a programming idiom for the Query Object
 pattern, whereas the DataContractSerializer class in the .NET Framework can be rightly
 considered an idiom for the Memento pattern. And the list goes on.

Patterns in AJAX Development

 A Web-specifi c and quite special paradigm such as AJAX requires its own set of design
 patterns. These patterns are a variation of the classic categories of design software patterns
you may know. All in all, I estimate that three general patterns apply to virtually any AJAX
application and, together, capture the gist of AJAX.

 As a Web architect with a full understanding of the AJAX paradigm, you’re probably quite
familiar with them already. If not, the following sections provide a good jumping-off point
for fully comprehending the scope and power of AJAX.

Dynamic Data Download

 AJAX is all about making asynchronous HTTP requests from within the displayed page. As
a user, you can trigger some actions from within the current page and download extra data
without necessarily navigating to a distinct page or URL.

 You can download any kind of data over an HTTP connection, but to manage it successfully
on the client you need data in a format that can be easily manipulated via JavaScript. As
discussed in Chapter 3, this data can hardly be exposed as XML; most of the time, the JSON
format is a better option.

 The ability to dynamically download data can be further expanded to cover other interesting
scenarios, such as dynamic download of script and auxiliary resources such as images,
 multimedia content, syndication, and live data.

Page DOM Manipulation

 After data is downloaded in a client browser context, you have to process it, and this act
will likely result in some display updates. The DOM makes it straightforward for your code
to dynamically change the appearance and content of page elements. All you need to do is
get a reference to the desired page element and simply change the appropriate property of
that object. As a result, the browser immediately updates the displayed content without any
page refresh.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 6 AJAX Design Patterns 167

 The ability to manipulate the content and styles of page elements via the DOM is a feature
second to none in AJAX. In my opinion, this ability is even more valuable than the canonical
AJAX ability of placing out-of-band remote calls via XMLHttpRequest. If you can’t update the
page content, there’s not much else you can do with any downloaded data.

User Actions

 So, given AJAX you can download data at will and incorporate it in the currently displayed
tree of content. All these things, though, are client-side actions triggered by the user’s
 clicking in the user interface. How would you track user actions?

 In a classic, non-AJAX application, a form submission is the only possible reaction to a user’s
action. Using a form submission as the sole response to user activity, though, is overall slow
and limiting.

 The application’s response to a user action must be quick and aimed at holding the user’s
attention. In addition, because the action doesn’t result in a full page refresh, it must result
in some nice graphical effects that clarify the intended target of the action. As an example,
sorting a table of data might be really quick to do, especially if the data is already cached
locally. In this case, the pattern recommends that you make it graphically clear when the
 operation starts, how long it lasts, when it’s fi nished, and what results it has produced.

 In an AJAX application, you must take into account the state of critical portions of the user
interface, in much the same way you do in a Microsoft Windows application. If the user is
 expected not to replicate a click, you should disable the button or, at the very minimum,
 display a warning message. Likewise, if the operation is expected to take a long time, you must
inform the user and ideally do that only if it’s taking more time than expected— whatever
this means to you in the specifi c context. The wide application of this pattern defi nitely
 transforms a classic Web application into a real AJAX application with a level of interactivity
and responsiveness comparable to desktop solutions.

 As we’ll see later in the chapter, this foundation pattern can be split into a number of
more specifi c patterns that tell you how to combine the need for a superb and appealing
 experience with a limited number of roundtrips—which is really the new currency with which
you measure the quality of AJAX applications.

Unique URL

 Regardless of the technology used to create it, an AJAX application tends to replace
 URL-to-URL browser navigation with script-driven HTTP requests. Subsequently, the history
of an AJAX application doesn’t necessarily coincide with the list of its visited URLs.

 More likely, an AJAX history is a list of action points scattered throughout one page or a few
pages. In a nutshell, AJAX breaks the assumption that the previous state of a Web application
coincides with the previously visited URL. This is a big change and can be seen as the
 offspring of the new paradigm that AJAX pushes for Web applications. The net effect is that

http://lib.ommolketab.ir
http//lib.ommolketab.ir

168 Part II Power to the Client

all the user interaction with an AJAX page produces a single entry in the browser’s history.
Hence, when you click the Back button you are redirected to the previously visited distinct
URL, which might be an entirely different page, even a page in a different application.

 As of today, very few browsers provide an application programming interface (API) in their
 object model to add signifi cant states of a page to the global browser history. Worse yet, many
browsers lack the notion of a save point—that is, a signifi cant state in the page lifetime that
you want to store for returning to later. Browsers add only URLs to their history, and only URLs
that you have reached through the browser itself. With AJAX pages, instead, you often reach
URLs using a distinct HTTP engine based on the XMLHttpRequest object. All of this navigation
would be lost if a recent browser isn’t employed—a notable exception is the newest version of
Internet Explorer (8.0)—or if the Web framework (for example, ASP.NET 3.5 SP1) isn’t able to
do some smart tricks.

 The pattern you use to ensure that any relevant action is tracked properly and can be repeated
is named Unique URL. The Unique URL pattern entails that you use, for each application state
you want to track, a mangled URL that contains any relevant event-specifi c content following
the hash (#) character. Here’s an example:

http://www.contoso.com/default.aspx#s=1

 The key fact to keep in mind here is that browsers consider any text that follows the hash (#)
character to be an optional part of the URL. Therefore, the browser doesn’t reload the
page if a new URL is set that differs from the current one except for the hash. Whenever
your application is in a state that needs be tracked, you set the location of the browser to
the same base URL plus a different hash. Obviously, the hash will correspond to pieces of
 information that are useful for reconstructing the valid state of the application.

 For example, in the sample URL just shown, the #s=1 hash indicates information that the
 application can use to rebuild the corresponding state.

 Interestingly, this basic AJAX pattern is natively implemented in some AJAX frameworks, such
as the aforementioned ASP.NET 3.5 SP1. In this case, you can reasonably call it an idiom.

Patterns for JavaScript Development

 No programming language is good at reinventing the wheel for every project. All
 applications share a common set of general behaviors. Subsequently, broadly accepted
implementations of these behaviors exist and are frequently applied or adapted. These
 common solutions are design patterns. For many years, the amount of the JavaScript code
required by Web pages and the complexity of that code was not signifi cant enough to justify
forming or using design patterns. With AJAX, this aspect changes radically.

 Good libraries can simplify and smooth development. However, a library usually provides a
set of features that extend the language capabilities by making it easier and faster to obtain

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 6 AJAX Design Patterns 169

a common feature. A library won’t necessarily be of any help with the implementation of a
recurrent behavior. A library is mostly a tool; sometimes you need to develop a strategy fi rst.
Enter patterns of JavaScript development.

The Singleton Pattern

 The Singleton pattern is a classic pattern. Have you ever needed to use a global object (or a
few global objects) to serve all requests to a given class? If you have, you have used the
Singleton pattern.

Generalities of the Singleton Pattern

 The Singleton pattern is described as a way to ensure that a class has only one instance for
which a global point of access is required. Here’s a C# example:

public class Helpers

{

 public static Helpers DefaultInstance = new Helpers();

 protected Helpers() {}

 public void DoWork(...)

 {

. . .

 }

 public void DoMoreWork(...)

 {

. . .

 }

}

 In a consumer class, you take advantage of Helpers through the following syntax:

Helpers.DefaultInstance.DoWork();

 What about JavaScript? The Singleton works perfectly in JavaScript, especially if you are using
some layer of object orientation in your code.

The Singleton Pattern Used with the Microsoft AJAX Client Library

 Suppose you create a JavaScript class with a set of public functions. With the Microsoft AJAX
client library we discussed in Chapter 4, “A Better and Richer JavaScript,” this is not really a
hard thing to do. Here’s an example:

Type.registerNamespace('Samples');

Samples.Helpers = function()

{

 Samples.Helpers.initializeBase(this);

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

170 Part II Power to the Client

Samples.Helpers.prototype = {

 DoWork : function(...)

 {

. . .

 },

 DoMoreWork : function(...)

 {

. . .

 }

}

Samples.Helpers.registerClass('Samples.Helpers');

 To transform the preceding class into a Singleton pattern, you add an extra line to the script
to create the default instance of the class:

Samples.Helpers._staticInstance = new Samples.Helpers();

 Next, you defi ne static entry points for the client code to call:

Samples.Helpers.DoWork = function(...)

{

 Samples.Helpers._staticInstance.DoWork(...);

}

Samples.Helpers.DoMoreWork = function(...)

{

 Samples.Helpers._staticInstance.DoMoreWork(...);

}

 In your own implementation, you can exercise stricter control over the creation of the actual
instance of the class. For example, you can use a static method—say, getInstance—instead of
using the static fi eld as in the example. In such a new getInstance method, you can add any
logic for the factory.

 The implementation of the Singleton pattern used in this example is the same as you fi nd in
the JavaScript proxy classes that the ASP.NET AJAX generates for any Web or WCF service
registered via the ScriptManager control. (See Chapter 2, “The Easy Way to AJAX.”)

 The second implementation suggested is implemented by the PageRequestManager class in the
Microsoft AJAX library—the client-side console that governs any partial rendering operation.

The Model-View-Controller Pattern

 Separation of concerns (SoC) is important in the presentation layer for a number of reasons.
First and foremost, SoC is a fundamental design principle that contributes to creating the
right combination of coupling and cohesion for a component. Second, SoC makes it easier
for the presentation layer to implement a navigational workfl ow to decide which view comes
next. Does this apply to a presentation layer based on JavaScript? Sure it does, and why not?

 Wherever you have complexity to handle in the presentation layer and with interaction between
UI elements and the rest of the system, SoC is helpful. In particular, with regard to the user
 interface, the Model-View-Controller (MVC) pattern is an effective way to achieve separation of
concerns and improved manageability and readability of the code, even with JavaScript code.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 6 AJAX Design Patterns 171

 Introduced back in 1979 as a way to progress from monolithic and autonomous views, the
MVC pattern went through a natural evolution and morphed into other patterns, such as
Model2—a specifi c Web adaptation of MVC—and Model-View-Presenter (MVP).

 In JavaScript, what really matters is that you end up writing code that is easy to read and
maintain. In this context, all in all I consider the plain-old MVC pattern effective enough to
go with as-is, putting aside more powerful patterns such as MVP that express most of their
power when you have a multiplatform presentation. Let’s revisit the basics of MVC and then
see how to employ it in JavaScript.

Generalities of the MVC Pattern

 The primary goal of MVC is to split the application into distinct pieces—the model, view, and
controller. The model refers to the state of the application, wraps the application’s functionalities,
and notifi es the view of state changes. The view refers to the generation of any graphical
 elements displayed to the user, and it captures and handles any user actions. The controller
maps user actions to actions on the model and selects the next view. These three actors are often
 referred to as the MVC triad. Figure 6-1 shows the interaction between the members of the triad.

View Controller Model

User action

Invoke action

Execute the requested task

Notify changes

Updated model

Ask for changes

New view served
to the user

FIGURE 6-1 The MVC triad in action

 A view is made of interactive elements such as input fi elds, buttons, and lists. The view waits for
any user actions. When the user, say, clicks a button, the view simply forwards the call to the
controller. How this happens has changed quite a bit over the years and is defi nitely an aspect

http://lib.ommolketab.ir
http//lib.ommolketab.ir

172 Part II Power to the Client

that largely depends on platform, languages, and development tools. The controller performs
the specifi ed action and likely interacts with the model during execution. The model updates
its state and notifi es the view about the need to refresh. In some implementations of MVC,
the controller tells the view to refresh. In one way or another, the view ends up refreshing its
 content after the controller has completed the requested operation.

 For more information on the MVC pattern as well as other patterns for the presentation layer,
you might want to check out Chapter 7 of the book Microsoft .NET: Architecting Applications
for the Enterprise by Dino Esposito and Andrea Saltarello (Microsoft Press, 2008.)

MVC in JavaScript

 To get a reasonable implementation of MVC, you need a bit of object orientation. The elements
in the triad can be implemented as classes in a JavaScript library, such as the Microsoft AJAX
library, Dojo, or perhaps PrototypeJS. Alternatively, the elements of the triad can be simpler
 closures that contain private and public methods and provide a given behavior.

 The model is a JavaScript object that contains everything that describes the representation
of the data the user interface is working with. If the user interface is about displaying a list
of data items, the model will certainly contain an array with the data to display plus some
 methods to add, remove, and select elements from the in-memory list.

 The view is an object where some of the methods are essentially dispatchers for controller
actions. The view captures user-generated events and handles them by forwarding a call to
a specifi c controller method. It’s up to your MVC implementation to fi gure out how to map
UI events to controller methods. For example, the mapping can be as simple as that shown in
the following code:

Samples.Mvc.View.prototype = {

 init: function() {

 $get("Button1").onclick = function() {

 Samples.Mvc.Globals.getView()._controller.Button1_Click();

 Samples.Mvc.Globals.getView().refresh();

 };

 },

. . .

}

 The view object features an initialization method in which all constituent elements of the
view—typically, input fi elds—are mapped to built-in event handlers. These event handlers
automatically invoke an appropriate method on the controller associated with the view. To
keep things as smooth as possible, it’s the MVC JavaScript library—not your page code—that
takes care of the mapping.

 The following listing shows a sample implementation of the MVC pattern in JavaScript. For
 simplicity, but without loss of generality, I’ll assume that just one view exists for each Web page.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 6 AJAX Design Patterns 173

Type.registerNamespace('Samples.Mvc');

///

// Globals

///

Samples.Mvc.Globals = function() {

 Samples.Mvc.Globals.initializeBase(this);

 this._view = null;

}

Samples.Mvc.Globals.prototype = {

 getView: function(elem) {

 // Retrieve the view for the specified DOM element

 . . .

 return this._view;

 },

 registerView: function(view) {

 this._view = view;

 }

};

Samples.Mvc.Globals.registerClass('Samples.Mvc.Globals');

Samples.Mvc.Globals._staticInstance = new Samples.Mvc.Globals();

Samples.Mvc.Globals.getView = function() {

 return Samples.Mvc.Globals._staticInstance.getView();

}

Samples.Mvc.Globals.registerView = function(view) {

 Samples.Mvc.Globals._staticInstance.registerView(view);

}

///

// The View

///

Samples.Mvc.View = function(objController, objModel) {

 Samples.Mvc.View.initializeBase(this);

 this._controller = objController;

 this._model = objModel;

 this.init();

}

Samples.Mvc.View.prototype = {

 init: function() {

 $get("Button1").onclick = function() {

 Samples.Mvc.Globals.getView(this)._controller.Button1_Click();

 Samples.Mvc.Globals.getView(this).refresh();

 };

 // Map other events here

. . .

 },

http://lib.ommolketab.ir
http//lib.ommolketab.ir

174 Part II Power to the Client

 refresh: function() {

 if (this._model.isDirty()) {

 $get("Label1").innerHTML = this._model.getTextForDisplay();

 // Update other parts of the UI here

. . .

 }

 }

}

Samples.Mvc.View.registerClass('Samples.Mvc.View');

///

// The Model

///

Samples.Mvc.Model = function() {

 Samples.Mvc.Model.initializeBase(this);

 this._isDirty = false;

}

Samples.Mvc.Model.prototype = {

 getTextForDisplay: function() {

 this.setDirty(false);

 return new Date().toTimeString();

 },

 setDirty: function(state) {

 this._isDirty = state;

 },

 isDirty: function() {

 return this._isDirty;

 }

}

Samples.Mvc.Model.registerClass('Samples.Mvc.Model');

///

// The Controller

///

Samples.Mvc.Controller = function(objModel) {

 Samples.Mvc.Controller.initializeBase(this);

 this._model = objModel;

}

Samples.Mvc.Controller.prototype = {

 Button1_Click: function() {

 this._model.setDirty(true);

 }

}

Samples.Mvc.Controller.registerClass('Samples.Mvc.Controller');

 Upon instantiation, the view receives a reference to the model and controller. The view
 constructor initializes the view by registering built-in handlers for each UI event the view

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 6 AJAX Design Patterns 175

generates. For example, if the view contains a button and is interested in handling the click
event on it, the view will register an onclick handler. This handler will simply invoke a method
on the associated controller.

 You still need to obtain a reference to the view from the button handler. For this reason,
I created a global class that lists all views in the page and returns the view that a given input
element belongs to. The view will register itself with the global object.

 The model exposes a Boolean property to indicate whether its state has been modifi ed since
the last time the view has rendered. In addition, the model exposes members to make its
content available to the view and the controller.

 Finally, the controller lists methods to be bound to user interface events. These methods
 interact with the model to refl ect the intention of user actions.

 Note A much simpler but equally effective MVC-like solution that you fi nd in some pages
 entails simply grouping event handlers in controller classes. There’s no explicit defi nition of view
and model in this pattern, but the role of the controller is nearly the same as in classic MVC. The
view is the entire DOM, and the model can be any data structure—an object as well as sparse
scalar data.

The On-Demand JavaScript Pattern

 Downloading JavaScript is essential for the behavior and functionality of any Web page and
especially for AJAX pages. However, downloading JavaScript might have an impact on the
perceived performance of the page. More often than not, the time it takes to download a
single JavaScript fi le is minimal. However, when a Web page references many fi les, all of them
need to be downloaded and processed before full interaction between the user and the
 interface is possible. This fact defi nitely suggests that the page is slow.

 By placing all script references at the bottom of the page and, better yet, by using a tool to
compose different scripts together, you can make the script download process more effi cient
from the user perspective. In particular, a solution that combines multiple JavaScript fi les into a
single fi le reduces the number of browser requests, thus resulting in a faster download time for
the user and less load on the Web server. The version of the ScriptManager control that comes
with ASP.NET 3.5 SP1 supports exactly this feature through the new CompositeScript collection.

 As an alternative to referencing script fi les statically, you can opt for dynamic download. The
On-Demand JavaScript pattern can help with this.

Generalities of the On-Demand JavaScript Pattern

 The pattern itself is simple and revolves around the problem of pulling JavaScript from the
server after the page has been loaded. Downloading script is one common aspect of a more
general pattern, known as Multistage Download, that focuses on downloading JavaScript fi les
only and doing so using a strictly on-demand policy.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

176 Part II Power to the Client

 There are various ways to download JavaScript on demand. The fi rst approach that springs
to mind is using the AJAX XMLHttpRequest object to set up a synchronous or asynchronous
download. Downloading a script, though, is not enough. The script must also be processed
and initialized.

 Another approach entails using the DOM and adding a new <script> tag on the fl y. This
 approach saves developers from managing the download and initialization on their own. All
that is required is adding the element to the DOM; the browser will do the rest.

 The On-Demand pattern is useful in combination with other patterns that we’ll cover in this
chapter, such as the Predictive Fetch pattern, and in the next chapter, such as the HTML
Template pattern.

Using XMLHttpRequest to Download Scripts on Demand

 Through the XMLHttpRequest object, you open a socket to a given HTTP endpoint and
download what the Web server returns for that endpoint. If it’s JavaScript content, it must
be processed through the eval function before it becomes usable. Any code not inside a
 function will be executed immediately.

 Using the AJAX API in the jQuery library, here’s the code you need to download on demand
a JavaScript fi le as the user clicks a button:

<script type="text/javascript">

 $(document).ready(function() {

 $('#btnDownload').click(downloadPersonScript);

 });

 function downloadPersonScript() {

 url = "person.js";

 $.getScript(url, done)

 }

 function done() {

 var p = new Samples.Person("Dino", "Esposito");

 alert(p.ToString());

 }

</script>

 You use the $.getScript method to reach a given URL and download its content. In particular,
the $.getScript method expects to receive a JavaScript content type and fails otherwise. The
$.getScript method passes any received content through eval.

 More importantly, the $.getScript method works asynchronously. This is a key point to
 consider when it comes to dynamic download.

 Unless you opt for using XMLHttpRequest in a synchronous manner, you need a callback
function that fi res when the download is complete and eval has been called. You can’t simply
check for the existence of the downloadable object, download it, and then start using it.
Some synchronization is necessary. The following code won’t work without synchronization:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 6 AJAX Design Patterns 177

if (!Samples.Person)

 downloadPersonScript();

var p = new Samples.Person("Dino", "Esposito");

 Downloading scripts using XMLHttpRequest makes your code subject to the same common
restrictions of the XMLHttpRequest object—in particular, you can download script only from
the same origin URL of the requesting page.

Using the DOM to Download Scripts on Demand

 As an alternative to using XMLHttpRequest, you can insert a made-to-measure new <script>
element into the DOM, as shown here:

// Assume the <head> tag has a unique ID

var head = document.getElementById("myHead");

// Create a new <script> element and configure it

var script = document.createElement('script');

script.type = 'text/javascript';

script.src = "person.js";

// Add the newly created <script> element to the header

head.appendChild(script);

 You can add the new <script> tag any place in the DOM, including to the <head> or <body>
element. When you choose to add a new script via the DOM, you benefi t from a number of
free services offered by the browser’s implementation of the DOM. In particular, the DOM
itself will take care of initializing the script for you.

 However, the differences between using the DOM and XMLHttpRequest don’t end here. Let’s
take a closer look at other differences.

 Along with the tag, the <script> tag is the only HTML tag that can be set to any URL,
regardless of the origin domain. Put another way, it’s perfectly legitimate and legal to link
script fi les from any domain you can reach via HTTP. If you opt for the DOM approach, you
can then download script from anywhere in the Web; however, you’re limited to the current
Web server if you go with XMLHttpRequest.

 If you use the DOM approach, the script remains in the DOM until the page is unloaded.
Any script downloaded via XMLHttpRequest can’t be further tracked as an object after it
has been processed by the eval function. The fact that the script downloaded via DOM
 remains attached to the DOM itself might also be a problem if you run the download code
 periodically and each time add a new <script> tag to the DOM tree.

 Generally, you could say that doing a download via DOM is more effective from a
 functional standpoint, but such effectiveness comes at the price of reduced fl exibility.
Going through the DOM limits you to dynamically downloading only JavaScript fi les.
Going through XMLHttpRequest doesn’t result in such a limitation. In fact, the URL can
point to any other resource, such as plain data as well as JSON data. In particular, JSON can
be a convenient way to download a self-contained object packed with data. This option
can be pursued only if you opt for implementing the On-Demand pattern via the more

http://lib.ommolketab.ir
http//lib.ommolketab.ir

178 Part II Power to the Client

 fl exible approach represented by XMLHttpRequest or any other functionally equivalent API
 provided by specialized libraries such as jQuery.

The Predictive Fetch Pattern

 Let’s take a look at a few fundamental patterns of AJAX applications that allow you to quickly and
effectively achieve the primary goal of any AJAX application—providing a better user experience.

 AJAX is mostly about making the user interface highly responsive. The application should
 respond to user actions quickly—ideally, instantaneously. Being more responsive doesn’t
necessarily mean that less data is being sent across the wire or that faster responses are
 generated on the server. AJAX is about getting a user any requested data quickly—regardless
of how you obtain that and the complexity (in terms of time and space) that it takes.

 The Predictive Fetch pattern helps you work out a solution to improve the user experience
regardless of network and server conditions.

Generalities of the Predictive Fetch Pattern

 Many actions that originate around a Web application require a response from the server
and, subsequently, a roundtrip. How long will it take to complete a request? This value is
known as the Time To Last Byte, or TTLB. Two main factors affect the TTLB value: latency
 related to data transfer, and server processing overhead.

 Although you can try to smooth these two factors through specifi c network and code
 contrivance, using an appropriate pattern can drive you to a comprehensive solution that
 offers a better experience regardless of the network and code details.

Details of the Predictive Fetch Pattern

 The two words that form the name of the pattern say it all. The idea behind the pattern is to
 predict the next user actions and preload some of the data that it will be necessary to show later.

 Whether it’s downloaded during idle time or simply asynchronously in the background, data
is cached on the client using some JavaScript data structure. Next, when the user triggers the
action for which that previously cached data is required, some client-side code retrieves it
and uses it to refresh the user interface as appropriate.

 In the end, the Predictive Fetch pattern is a sort of context-sensitive, client-side cache that
requires a well-defi ned strategy about what to download and when to download it.

Motivations for Using the Predictive Fetch Pattern

 In a Web application, the main hurdle on the way to full user satisfaction is the usually long
waiting time the user experiences for results to be visible and consumable. Ideally, responses
should be displayed in a range of time that is below the level of human consciousness, or
at least very close to it. This means displaying results in just a few milliseconds. Is that really
possible in a Web scenario?

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 6 AJAX Design Patterns 179

 Refreshing the user interface in 10 milliseconds or so is clearly possible in a Windows client,
but it’s diffi cult to make this happen in a classic Web application model. If a roundtrip is
required, the user should typically be prepared to wait as long as a few seconds for the
 response to come back. This overhead is all part of the current game and can be overcome
only by resorting to smart design tricks.

 It’s not just about user experience, however.

 Another motivation for improving the actual response time is throughput. It’s a simple
 equation, after all. If you can reduce the waiting time, you give users of your application more
time to work with application, thus giving them one more chance to increase their productivity.
Note, though, that in this context, productivity might be a relative concept. If the user expects
to spend minutes on a page, can a savings of just a few seconds make a huge difference? Well,
consider that the user’s reduced level of frustration resulting from shorter waiting periods will
put her in a positive mood. With AJAX, it always boils down to improving the user’s experience
by making the user feel like she’s in control of the application.

Open Points Regarding the Predictive Fetch Pattern

 From a functional standpoint, Predictive Fetch is not such a hard pattern to implement. It
doesn’t present high technical hurdles for you to clear. As we’ll see in a moment, by using
helpers from some JavaScript libraries, you can implement it quite quickly.

 The important point to keep in mind about the Predictive Fetch pattern relates to devising an
effective strategy for fetching data.

 You can’t prefetch just any data the user requests from any stage of the user interface. You
must be careful to cover either the most likely actions or the most critical actions, regardless
of their likelihood.

 As you can see, the strategy you choose to employ is the most important aspect of the
Predictive Fetch pattern, and it’s not something that can be hard-coded in a recurring pattern
solution. It’s part of the architecture and belongs to the overall solution. For example, you must
decide for which actions you want to preload data and then you have to guess the user’s choice
and download the right set of data, or at least the most likely set of data the user will need.

 The main drawback of using the Predictive Fetch pattern is that it opens up the possibility
of loading data that will never be requested by the user. This creates unnecessary traffi c
 overhead and also can use some memory in the client PC unnecessarily.

 Another point to consider is the resulting behavior of the application, which might appear
to be sort of random, if not inconsistent, to the end user. Imagine two similar features in
a page—one that supports predictive fetch and one that doesn’t. Clearly, when the user
selects the one that doesn’t support predictive fetch, she will experience a much longer
response time. When she selects the other function, the response time is immediate. This
difference in performance can be confusing and possibly can contribute to creating a
 mysterious aura about your application, if not a really negative feeling.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

180 Part II Power to the Client

Creating a Reference Implementation

 Let’s see how to implement predictive fetch using the jQuery library for client-side caching
facilities.

A Sample Scenario for the Predictive Fetch Pattern

 Figure 6-2 shows a sample Web page that allows the user to pick a customer name from a list
and click it to see details about the customer, such as his address, country of residence, and
contact name.

FIGURE 6-2 A sample page using the Predictive Fetch pattern

 When the user selects a customer, he cannot be absolutely certain that he will also be able to
examine the list of orders the customer has placed in a given period of time. However, as an
architect who knows the arrangement of the pages in the site, you can anticipate that this is
an action that’s very likely to occur.

 The page is designed in a way that requires two clicks to get to the orders. This is reasonable
because, by design, viewing the orders is only a possible operation. Quite likely, the user will
spend some time looking at the customer details and then turn his attention to the orders
only later. A good strategy to implement, then, would be to bet on this behavior occurring
and retrieve the orders immediately after displaying the customer details. In this way,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 6 AJAX Design Patterns 181

it’s likely that when the user focuses on the orders, all the information will already be on the
 client and only a click away from the user.

Managing Remote Calls

 Retrieving the customer information is an operation that can be implemented in a variety of
ways, including using partial rendering. The asynchronous retrieval of orders, instead, must
be an out-of-band operation resolved via XMLHttpRequest. In this example, let’s assume you
use services for any remote connections:

<script type="text/javascript">

 function findCustomer() {

 var list = $get("<%= DropDownList1.ClientID %>");

 var customerID = list.options[list.selectedIndex].value;

 displayCustomer(customerID);

 }

 function displayCustomer(customerID) {

 // Get data through a roundtrip

 Samples.DataService.LookupCustomer(

 customerID,

 onSearchComplete,

 null,

 customerID);

 }

 function onSearchComplete(results, context, methodName) {

 // Display customer information

 $get("customerData").style.visibility = "visible";

 $get("companyID").innerHTML = results.ID;

 $get("companyName").innerHTML = results.CompanyName;

 $get("companyContact").innerHTML = results.ContactName;

 $get("companyCity").innerHTML = results.City;

 $get("companyCountry").innerHTML = results.Country;

 // Predict next step: download and display orders

 displayOrders(results.ID);

 }

. . .

</script>

 The fi ndCustomer function is bound to the click event on a UI element and runs as the user
chooses to retrieve customer information. The function reads the currently selected customer
ID and invokes a remote service.

 The data retrieval occurs asynchronously, and the OnSearchComplete callback is invoked
when all details about the specifi ed customer have been found and downloaded. As in the
preceding code, the callback function populates the user interface with customer data and
then triggers the download of orders:

function displayOrders(customerID) {

 // Prefetch (downloading HTML markup via the service)

 var orders = Samples.DataService.FindOrdersByCustomerAsMarkup(

 customerID,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

182 Part II Power to the Client

 onPrefetchComplete,

 null,

 customerID);

}

function onPrefetchComplete(results, context, methodName) {

 // Display data

 $('#orderGrid').html(results);

 // Enable the "View Orders" button

 $('#btnViewOrders').attr('disabled', '');

}

 Orders are downloaded in the background as the user consults the displayed information
about the customer. The callback for the order retrieval operation updates the (hidden)
 portion of the user interface where orders will appear. Next, the callback function enables
the button that provides access to that part of the user interface. When the user fi nally clicks
on the View Orders button, the list of orders is displayed instantaneously.

 Figure 6-3 shows the user interface immediately after downloading the customer details. The
View Orders button is disabled, and the page is silently performing an asynchronous request
for order information.

FIGURE 6-3 Prefetching order data for the displayed customer

 When orders are ready for inspection, the View Orders button becomes clickable. At this
point, though, the markup with the list of orders is already incorporated into the DOM.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 6 AJAX Design Patterns 183

The click causes the change of a CSS style, and the display is immediate, as shown in
Figure 6-4.

The button is now enabled.

FIGURE 6-4 Screen shot showing the orders are ready for inspection

 If the user is mainly interested in the orders that a given customer has placed during a
 particular period of time, in the case of severe latency he might have to wait a few seconds until
the View Orders button becomes clickable. Clearly, this delay could be a source of problems.

 However, rather than assuming the predictive fetch functionality isn’t feasible, you should
wonder whether such a design is optimal for the use case depicted in the page requirements.
Such an implementation is best suited for a scenario where the user is primarily interested in
customer details and might optionally show some interest in the orders. If the orders are the
only information that matters, you’re better off getting customer details and orders in the
same roundtrip.

Caching Makes Applications Faster and Prettier

 Imagine that a user, after viewing details about a given customer (say, customer A), moves to
customer B. According to the sample implementation of the pattern just seen, the code will
fi re two pairs of requests—details and orders for customer A and customer B. So far, so good.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

184 Part II Power to the Client

 What if the user at some point goes back to customer A? Should you download details and
orders again? And over and over again? Obviously not.

 Client-side caching is an interesting enhancement that can save AJAX applications quite a few
roundtrips in the context of each browser session. I’m not talking about persistent data storage
obtained via cookies or other browser-specifi c capabilities. More simply, I’m talking about
 storing previously downloaded data (both customer details and orders) in an in- memory,
client-side, JavaScript-based cache for as long as the current browser session lasts.

 As you saw in Chapter 5, “JavaScript Libraries,” the jQuery library—which, by the way, is a
 must-have in AJAX applications—provides an excellent client cache implementation through the
data function. The data function represents the API to access an internal data container where
developers can store data that relates to all DOM elements in the selected wrapped set. Here’s
how to rewrite the previous predictive fetch example to make use of a client caching mechanism:

<script type="text/javascript">

 function findCustomer() {

 var list = $get("<%= DropDownList1.ClientID %>");

 var customerID = list.options[list.selectedIndex].value;

 displayCustomer(customerID);

 }

 function displayCustomer(customerID) {

 // Check jQuery cache first

 var record = $('#customerData').data(customerID);

 if (typeof (record) !== 'undefined') {

 onSearchComplete(record, customerID, "");

 }

 else {

 // Get data through a roundtrip

 Samples.DataService.LookupCustomer(

 customerID,

 onSearchComplete,

 null,

 customerID);

 }

 }

 function onSearchComplete(results, context, methodName) {

 // Save to the jQuery cache

 $('#customerData').data(results.ID, results);

 // Display customer information

 $get("customerData").style.visibility = "visible";

 $get("companyID").innerHTML = results.ID;

 $get("companyName").innerHTML = results.CompanyName;

 $get("companyContact").innerHTML = results.ContactName;

 $get("companyCity").innerHTML = results.City;

 $get("companyCountry").innerHTML = results.Country;

 // Predict next step: download and display orders

 displayOrders(results.ID);

 }

. . .

</script>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 6 AJAX Design Patterns 185

 In the displayCustomer function, you fi rst check whether the customer record is held in the
local cache. If so, you invoke the callback directly, passing the record in the cache as the data
to process. The jQuery library associates a local data container with a DOM element. In this
case, the DOM element of choice is named customerData and is the <div> that contains the
HTML representation of the customer information.

<div class="actionPanel" id="customerData">

 <table>

 <tr>

 <td class="label">ID</td>

 <td style="width:10px;" />

 <td></td>

 </tr>

 <tr>

 <td class="label">Company</td>

 <td style="width:10px;" />

 <td></td>

 </tr>

. . .

 <tr>

 <td colspan="2"><input id="btnOrders" type="button" value="View Orders"

 disabled="disabled"

 onclick="viewOrders()" /></td>

 </tr>

 </table>

</div>

 The onSearchComplete function is responsible for adding fresh data to the cache. The jQuery’s
data function accepts two arguments: a key and the related value.

 var key = results.ID;

var value = results;

$('#customerData').data(key, value);

 Each data container, in fact, operates as a dictionary and requires a unique key to identify
some content.

 To cache orders, you use the same approach. In this case, though, there’s an additional point
to consider. Here’s the revised code that downloads orders:

function displayOrders(customerID) {

 // Check jQuery cache first

 var record = $('#orderGrid').data(customerID);

 if (typeof (record) !== 'undefined') {

 onPrefetchComplete(record, customerID, "");

 }

 else {

 // Prefetch

 var orders = Samples.DataService.FindOrdersByCustomerAsMarkup(

 customerID,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

186 Part II Power to the Client

 onPrefetchComplete,

 null,

 customerID);

 }

}

 You must pass the customer ID to the callback that processes retrieved orders for the
 callback to add it properly to the cache. You can use the context parameter of service proxies,
as discussed in Chapter 3:

function onPrefetchComplete(results, context, methodName) {

 // Save to the jQuery cache

 var key = context; // Represents the customer ID

 $('#orderGrid').data(key, results);

 // Display data

 $('#orderGrid').html(results);

 $('#btnOrders').attr('disabled', '');

}

 In this example, I don’t bother to remove data from the jQuery cache. This means that the
size of the cache grows until you dismiss the browser window. Because the browser window
consumes the memory of the local PC, this might not be an urgent problem to solve.
However, nothing really prevents you from addressing this concern also in your solution. The
jQuery cache API provides the removeData function to clear previously cached data items.
The real point, though, is the strategy you use to decide which element you drop and when.

Summary of the Predictive Fetch Pattern

 Predictive Fetch is a powerful pattern, but it requires you to make a number of architectural
decisions. Architectural decisions are the most delicate part of the system. If a design decision
is easy to make, it’s not architectural. Period.

 Ultimately, a predictive fetch is a guess. And, just like any guess, it can be right or wrong. The
more you know the system, the more you can make accurate guesses where the chances of
success are far beyond 50 percent.

 Finally, note that although Predictive Fetch is presented as an AJAX pattern, it has some value
also when applied to the server side in combination with an effi cient caching technique or tool.

The Timeout Pattern

 The beauty of AJAX is that you can serve your users Web applications that present live data,
such as news and any other streamed content. Although mashup pages with live data are
 helpful for users—and are an essential part of the user experience—they defi nitely put a lot
of pressure on the server that provides the service. This pressure isn’t too bad if there’s also a
live user viewing and consuming that stream of data.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 6 AJAX Design Patterns 187

 In particular with multitab browsers, it’s easy for users to forget about a page opened in a hidden
tab that regularly, and frequently, polls the server for fresh data. So it happens that users leave a
workstation for hours while the application, unaware of the user’s absence, keeps on polling.

 A well-designed AJAX application will adopt some countermeasures to fi ght this bad user
habit. The Timeout pattern is the most common (and effective) approach to use.

Generalities of the Timeout Pattern

 The primary purpose of the Timeout pattern is determining whether the user is still active and
working with the application and, if not, terminating the session. The expression “terminating
the session” is a bit more vague than it might sound at fi rst.

 In particular, the expression doesn’t necessarily refer to an ASP.NET session that is abruptly
terminated by the runtime. It refers, instead, to any page-specifi c, costly practice that you
want to terminate unless the user explicitly confi rms an interest in it.

Details of the Timeout Pattern

 As the name suggests, the purpose of the pattern is timing out a user who fails to prove she’s
still present and working with the application. By implementing the pattern, you claim your
application’s right to be lazy unless forced to work.

 Implementing the pattern means monitoring the user’s activity to the extent that it’s
 possible. You will have the client-side code to determine whether the browser session is still
active and suspend any server interaction if it isn’t.

 The pattern works well when a periodic refresh is needed, such as when the user is
 periodically downloading any sort of live data, including multimedia streaming, news, sports
scores, stock quote updates, and so forth.

Motivations for Using the Timeout Pattern

 Why would you use such a pattern? There’s essentially one huge driving force: avoiding a
massive waste of bandwidth and server resources. The fundamental principle is that no server
work is done unless there’s a live user to request that it be done.

 Before AJAX, this condition was trivially true for each possible Web application. With AJAX, this
is no longer the case. Within an AJAX application, requests can be triggered programmatically
and, in the case of naïve pages, even against the user’s will. Blocking abuse of server resources
(and bandwidth) is precisely the intent of the Timeout pattern.

Terminating a Browser Session

 In an AJAX application, the server-side session is much less useful than in a classic ASP.NET
application. The state of an AJAX application is on the client and normally lasts as long as the
browser’s window is up and running.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

188 Part II Power to the Client

 You defi nitely don’t want a client page to poll the server every 10 seconds for days because,
say, the user is at home sick and forgot to shut down the machine on his last day in the
 offi ce. This is defi nitely a scenario you could overlook in a classic Web scenario, but it’s one
you need to specifi cally address in an AJAX scenario.

 You apply the same timeout mechanism you are familiar with for ASP.NET sessions and
 dispose of any state after a specifi ed amount of time has elapsed without activity. The trick is,
how do you detect client activity?

 In classic ASP.NET, this question usually has an easy answer. Every request placed at the Web
server for a specifi c application will keep the application live for another slice of the fi xed
timeout period.

 What is the default action that restarts the timer on a client environment?

 The simplest option entails you use a plain time-based approach. When the timer expires,
you stop whatever operation in that context where the results are too expensive for you. For
example, if that page is streaming some sporting events to a potentially huge audience, you
might want to stop each connected browser every 45 minutes and ask the user—if any user
is still there—to click a button to restart the streaming.

 A more sophisticated approach entails that you set up a timer but then monitor input devices
such as the keyboard and mouse. As your page receives keyboard and mouse events, the
timer is restarted. When the timer naturally expires, the session is terminated.

A Timeout Pattern Reference Implementation

 The Timeout pattern can have a number of different implementations, depending on the
various features you want to enable and support. Let’s look at a simple but signifi cant
 example based on plain time-based session termination.

A Sample Scenario for the Timeout Pattern

 You have a page that performs a periodic refresh of some sort. Let’s consider, for simplicity,
a digital clock that goes back to the server every few seconds to report the current time.
Admittedly, this example is of no practical use, not even in a deliberately naïve application,
but it perfectly serves the purpose of simulating a periodic user interface refresh without
burdening the demonstration with unnecessary details.

 Note If you need to display a digital clock in a Web page, you’re much better off using a client
timer to display the date and time on the local PC. You can obtain the local PC date and time
through the Date object in JavaScript.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 6 AJAX Design Patterns 189

 The digital clock is obtained using ASP.NET partial rendering and the newest Timer server control:

<asp:UpdatePanel runat="server" ID="UpdatePanel1">

 <ContentTemplate>

 <h4>

 <asp:Label runat="server" ID="Label1" />

 </h4>

 </ContentTemplate>

 <Triggers>

 <asp:AsyncPostBackTrigger ControlID="Timer1" EventName="Tick" />

 </Triggers>

</asp:UpdatePanel>

<asp:Timer ID="Timer1" runat="server" OnTick="Timer1_Tick" Interval="1500" />

 The Timer control emits script code and confi gures the setInterval browser function. At every
interval, the timer invokes a built-in JavaScript function that performs a postback on behalf
of the Timer1 server control. On the server, ASP.NET resolves the request by invoking the
 function associated with the OnTick handler:

protected void Timer1_Tick(object sender, EventArgs e)

{

 Label1.Text = DateTime.Now.ToLongTimeString();

}

 Regardless of the relevance of the example, what you have here is a prototype of a periodic
refresh scenario. You have a task that executes periodically and frequently from the client to
request some work on the server. This task must go on only if there’s a real user in front of
the screen, or else the server’s resources are simply wasted.

 The simplest way to detect if a user is using the page is by setting up another timer and
 having it expire at the end of an interval large enough not to disturb a working user and small
enough not to waste much bandwidth in the case of an absent user. This magic number, as
you can see, is strictly dependent on the particular application. To make the example easily
manageable and testable, let’s set it to just a few seconds, as shown in the following code:

<script type="text/javascript">

 var timer = null;

 function pageLoad()

 {

 if (timer === null)

 {

 timer = new Samples.Components.Timer(5000, stopTask);

 timer.start();

 }

 }

 function pageUnload()

 {

 if (timer != null)

 timer.stop();

 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

190 Part II Power to the Client

 function stopTask()

 {

 // Stop the timer

 timer.stop();

 // Stop the periodic refresh

 stopPeriodicRefresh();

 // Ask the user to continue

 AskIfTheUserWantsToContinue();

 }

 function AskIfTheUserWantsToContinue()

 {

 // Ask if the user wants to continue

 var answer = window.confirm("Is it OK to continue?");

 if (answer)

 {

 // Restart the periodic task

 startPeriodicRefresh();

 // Restart our own timeout engine

 if (timer !== null)

 timer.start();

 return;

 }

 }

 function stopPeriodicRefresh()

 {

 // Anything that can stop the periodic task

 var clock = $find("<%= Timer1.ClientID %>");

 clock._stopTimer();

 }

 function startPeriodicRefresh()

 {

 // Anything that can start the periodic task

 var clock = $find("<%= Timer1.ClientID %>");

 clock._startTimer();

 }

</script>

 Note that I’m using a custom timer class—the Samples.Components.Timer class. The class is
just a wrapper around basic JavaScript timer functions such as setTimeout and setInterval.
As a result, in the example the custom timer invokes the stopTask callback every fi ve seconds.
(Of course, this interval will be in minutes rather than seconds for a real application.)

 Initially, when the timer expires, you stop the periodic refresh and display a message box to
the user. Figure 6-5 shows an example.

 If a user is really working at the PC, the dialog box will be handled in one way or another
and result either in confi rming the task or in an explicit termination. If the user left the
 workstation, the dialog box will stay up indefi nitely; more importantly, the periodic refresh is
delayed and all related bandwidth is saved.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 6 AJAX Design Patterns 191

FIGURE 6-5 The periodic task has been temporarily stopped.

 As mentioned, you can use a smarter approach to time out a user. Instead of blindly waiting
for a given interval to expire, you can monitor keyboard activity and restart the timer each
time the user types something. Here’s how:

// Start the timer

var timer = setTimeout(callback, 5000);

. . .

// Registers a keyboard handler triggered whenever

// users type something into the specified input field

$get("TextBox1").onkeypress = adjustTimer;

function adjustTimer()

{

 // Clear the current timer and start another one

 clearTimeout(timer);

 // Renew the timer for another 5 seconds

 timer = setTimeout(callback, 5000);

};

 The same trick can be applied to mouse events too.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

192 Part II Power to the Client

Open Points Regarding the Timeout Pattern

 The Timeout pattern implementation we’ve just discussed is ideal for situations where your
primary concern is saving bandwidth and server resources. However, this is not the only
 possible scenario where the pattern is helpful. There are a number of possible options for an
application to take once it has ascertained that the user is inactive.

 For example, it might be wise to clear the content of a page that contains sensitive
 information. An inactive user might be a user who left the computer unattended or simply
a user who minimized the browser window to do other things. If this scenario represents a
 security hazard, you might want to use the Timeout pattern to clear the content of the page
by simply refreshing it and perhaps deleting any related cookies.

 In some cases, before clearing the current content of the page you might want to save it on
the server. Of course, you choose this sort of autosave option for pages where the user is
 expected to do quite a bit of work, such as fi lling out a long and complex form.

 Another possible action related to clearing the page of an inactive user is letting the server
application know about the inactivity. Depending on the application, the code on the server
might decide to kill the server session, schedule its future actions differently, or both.

Related Patterns

 A number of other AJAX patterns are related to the Timeout pattern and can be used in
combination with it. The name of one of these patterns has been repeatedly mentioned in
the preceding paragraphs—the Periodic Refresh pattern. Let’s dig out a bit more detail.

The Periodic Refresh Pattern

 Simply put, periodic refresh means sending an XMLHttpRequest request to some server
 endpoint periodically. The purpose of the pattern is to keep the user up to date with whatever
type of information the server application is processing.

 It’s not always and not necessarily news or live updates to sports scores. The pattern also
helps to track from the client the status of shared objects in a multiuser environment and the
progress of some server tasks.

 Without beating around the bush, let me say up front that periodic refresh can be quite an
expensive operation. There are bandwidth costs and consumption of server resources. This
option might not be a real source of troubles if the refresh occurs once an hour and for
only a few users. However, for a period of a few seconds and for a large group of users, it’s
 defi nitely problematic.

 Not having the pattern in place is problematic too, as it signifi cantly reduces the usability of
the user interface and makes the overall user experience poorer.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 6 AJAX Design Patterns 193

 As an architect, you own the design decision. A good approach that works most of the
time is increasing the frequency of requests while diminishing the size of the content. One
 possible way to use it is to send just the portion of the information that has changed since
the last refresh.

 Another point to consider is the latency of server requests. If the impact of latency might be
so high that a request takes more than the timer’s period, you might want to do something
to optimize the schedule. One idea is to issue a new request immediately after getting a
 response without waiting for the period to expire. Then, on the server, if necessary you defer
the response until the application determines it is time to release the response.

The Heartbeat Pattern

 In an AJAX application, it’s quite common that the user is active and willingly working with
the application but no requests reach the Web server for a while. On the other hand, the
Web server has no way to fi gure out what’s happening on the client. Subsequently, if it
doesn’t receive requests for a time, it just times out the server session. Therefore, when the
user fi nally posts the completed form back to the server, she will get an unpleasant surprise.

 To avoid that outcome, the client application should send a heartbeat message via
XMLHttpRequest with appropriate frequency. A heartbeat message can have any form and
content that is suitable in a particular scenario. For example, it can be an empty request that
just proves the existence of life on the client and has the sole purpose of keeping the server
session up and running. In this case, the interval must be any length that is less than the
 session timeout confi gured for the application.

 In other cases, the server might need to track carefully which user is active and which user
has abandoned the application. As you can see, in such a scenario the server imposes
a stricter requirement and needs to know about users much more frequently than the
20 or 30 minutes of a typical server session timeout period. In the implementation of the
Heartbeat pattern, you set the heartbeat interval to the few minutes you need and then
have a server module track the last heartbeat received from each client. When no fresher
heartbeat is received for the interval, the user is considered gone.

 Not only is the frequency higher in the latter case, but also the content of the message might
be signifi cantly large. Higher frequency and larger content pose the same design issues we’ve
just seen for the Periodic Refresh pattern.

The Event Scheduling Pattern

 The more the logic gets sophisticated, the more you need to schedule actions to happen in
the future. AJAX applications are no exception. In JavaScript code, you have just one tool to
schedule events—timers. Timers are a powerful tool that allow you to repeat actions at fi xed
intervals or to schedule an action to happen only once, at a given time.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

194 Part II Power to the Client

 Timers require the use of callback functions, which is where you physically place the code
you want to run at scheduled times. The browser’s setInterval and setTimeout functions are
essential in the implementation of this simple but extremely common AJAX pattern. The
Event Scheduling pattern is hardly ever used alone; more often than not, you fi nd it used in
conjunction with Periodic Refresh and also with optimization patterns such as Submission
Throttling, which I’ll cover later in the chapter.

The Progress Indicator Pattern

 When users of any computer application start a potentially lengthy operation, the user
 interface should be updated to refl ect that some work is in progress and that results may not
be available for a while. Implementing this pattern is relatively easy in Windows applications;
however, you encounter structural diffi culties if you try the same thing in a Web scenario.

 In Web applications, displaying static text such as “Please, wait” just before the operation
begins is easy. But what if you want to provide more informative feedback, such as the
 estimated time to completion or the percentage of work done?

 In Web applications, lengthy tasks occur on the server, and there are no built-in facilities to
push state information to the client browser. On the other hand, there’s no easy way either
for a client to grab status information and update a progress bar. So what’s the point?

 The Progress Indicator pattern offers guidance on how to structure the JavaScript client and
the server application so that they can share information about server progress and report
that information in a timely fashion to the user.

Generalities of the Progress Indicator Pattern

 The purpose of the Progress Indicator pattern is to help developers provide feedback to
 users while users are waiting for server responses. The intended feedback here is not simply
a “Please, wait” or “Loading. . .” message; the feedback should provide the real status of the
server and the progress that has been made on the server.

Details of the Progress Indicator Pattern

 A progress indicator is some piece of user interface that is displayed only for the time it takes
to complete a lengthy remote operation. There are two basic ways to obtain the information
to show.

 One way is to estimate (or just guess) the time it should take and then relate that to the
 actual time that it’s taking. To compute how long it took to get to the current point, you can
obviously use a timer. With proper adjustments, you can show the user a gauge that moves
constantly and that always reaches 100 percent when the operation is really completed.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 6 AJAX Design Patterns 195

 The second approach entails designing the lengthy task to expose some progress
 information and using a second component to monitor any exposed information. The server
operation can write to a known location its current status as it makes progress. At the same
time, a second monitoring channel is enabled to make periodical reads from the same known
location and report the current status to the client.

 Associated with the monitoring channel will be a piece of user interface that incorporates
server information in a layout that is visually pleasing to the user.

The ASP.NET UpdateProgress Control

 It’s important to clarify up front the fundamental difference that exists between an
 implementation of the Progress Indicator pattern and the built-in UpdateProgress server
 control you fi nd in ASP.NET 3.5.

 A powerful control with many handy properties, the UpdateProgress control can’t do much
more for you than display a static template, which at most is embellished with an animated GIF
or a marquee. In other words, the UpdateProgress control alone is not good at obtaining and
displaying context information about what’s really going on with the server. No interaction is
possible between the UpdateProgress control and the application code being executed.

 In addition, the UpdateProgress control is tightly coupled with the partial rendering engine
and the UpdatePanel control. For example, the UpdateProgress control doesn’t work if you
start the remote operation via an explicit XMLHttpRequest call either via custom script or the
ASP.NET-generated JavaScript proxy for a Web or WCF service.

 Note You might think that UpdateProgress offers an excellent benefi t in its ability to cancel
 ongoing calls. I’ll return to this point later to discuss the details; for now, suffi ce it to say that
all that the control can do is host a button with some JavaScript attached that, if clicked, closes
the socket through which the client is receiving the response of the operation. No server
 functionality is ever exercised as a result of the cancel operation. Instead, the server processes its
normal response regardless of the user’s client-side cancellation request.

Open Points Regarding the Progress Indicator Pattern

 To implement the Progress Indicator pattern effectively, you need to have available a
 monitor component and a “monitorable” task. The monitor component polls a shared piece
of server memory and reads its content. The monitorable task consists of a normal piece of
code that performs a given server-side task, plus an extra layer of code that publishes its
state to a shared memory in agreement with the monitor.

 The architectural decision, therefore, is about whether you prefer a simple empirical
 estimation of the remaining time or a precise report of what’s going on. In the former case,
you need to employ magic numbers for each monitorable action to establish the maximum
expected length and update the feedback based on that.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

196 Part II Power to the Client

 To obtain a precise report, you need a client and server framework and you must force your
monitorable task to expose a public API. Last, but certainly not least, in some cases this course
of action might have an impact on the algorithm you employ for the task. For example, if you
need to update 100 records on a database table and choose to do that via a single stored
 procedure call, you can hardly display the user feedback about the record being currently
 updated. To make the task monitorable, you must switch to a loop-based algorithm and call
the stored procedure 100 times on a single record or fewer times on a small group of records.

 Another open point relates to the precise moment when you should display the progress
indicator. By default, the UpdateProgress control doesn’t display its graphical template if the
partial rendering operation completes in less than half a second. Let’s say that one second is
close to instantaneous for Web users. If the task will take more time than that, it’s advisable
to bring up some feedback.

 Displaying the progress bar only after a fi xed time is an instance of the Event Scheduling pattern
and is resolved using a JavaScript timer.

A Progress Indicator Reference Implementation

 Implementing the Progress Indicator pattern is a three-step operation. You defi ne the API
that reads and writes the status information from a persistent store, such as a database, disk
fi le, or shared block of memory. Next, you provide an event sink for the client to connect
via XMLHttpRequest to the server and read the current status. Finally, you set up a client
JavaScript API that represents the monitoring service that periodically connects to the server
to measure progress.

 The pattern should be implemented to work regardless of the technique you use to start the
partial page update—be it the UpdatePanel control, a page method, or a Web service method.

A Sample Scenario for the Progress Indicator Pattern

 Figure 6-6 shows a sample page that uses an implementation of the pattern. When the user
clicks to start the operation, two things happen. First, the task is effectively started on the
server using, say, a page method. (See Chapter 2 for details.) Second, a monitor is activated
to set up a periodic refresh of the user interface based on any content read from the server
from a task-specifi c location.

 In the sample application shown in Figure 6-6, the feedback displayed takes the form of a
progress bar based on a percentage. In the fi gure, you also see a pseudo-gauge bar close to
the “Please wait” message. That’s not a real progress bar, though; it’s merely an animated GIF
that mimics the behavior of a progress bar.

 Let’s delve deeper into the steps that form such a solution.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 6 AJAX Design Patterns 197

FIGURE 6-6 Monitoring the progress of a remote task

Defi nition of the Server API

 You need a server-side, contract-based API to read and write status information from a
known container. In the following listing, you see the source code of a ProgressMonitor class
that implements a given interface:

namespace Samples.Server

{

 public interface IProgressMonitor

 {

 void SetStatus(int taskID, object message);

 string GetStatus(int taskID);

 }

 public class ProgressMonitor : IProgressMonitor

 {

 // Sets the current status of the task

 public void SetStatus(int taskID, object message)

 {

 HttpContext.Current.Cache.Insert(

 taskID.ToString(),

 message,

http://lib.ommolketab.ir
http//lib.ommolketab.ir

198 Part II Power to the Client

 null,

 DateTime.Now.AddMinutes(5),

 Cache.NoSlidingExpiration);

 }

 // Reads the current status of the task

 public string GetStatus(int taskID)

 {

 object o = HttpContext.Current.Cache[taskID.ToString()];

 if (o == null)

 return String.Empty;

 return (string) o;

 }

 }

}

 The interface features two methods—GetStatus and SetStatus—to read and write the status
of the task, respectively. The choice of the data container is ultimately up to the class author.
The ProgressMonitor class saves data to the ASP.NET Cache. The SetStatus method adds a
new item and gives it an absolute expiration policy of fi ve minutes. The value is arbitrary
and can be adapted to meet the expectations of a particular application. You can also make
it an external parameter and enhance the class to read the cached item duration from the
 confi guration fi le. An explicit expiration date is helpful to avoid having the ASP.NET Cache fi ll
up quickly with too many items with too short a lifetime. You use the task ID value as the key
to add and retrieve status information from within the cache.

 Note It’s worth mentioning that from a performance standpoint it would be desirable to limit
the pressure on the cache generated by frequent inserts and removals of short-lived items. A
more scalable solution entails using a global hash table that is permanently stored in one fi xed
slot within the ASP.NET Cache.

Implementing the Task

 The task to monitor must be refactored as a list of distinct steps. Between two successive
steps you call the preceding ProgressMonitor class to save information about the current
 status of the task.

 The task server API is there to serve any number of tasks that any clients might have started.
Whether the data store for task information is a database or plain memory, you need a way
to uniquely identify the task. An ID is an effective way. This information, though, must be
generated somewhere and passed down to the task somehow.

 Here’s an example of how to structure a task to support monitoring:

private void Process(int taskID, /* params */ ...)

{

 ProgressMonitor progMonitor = new ProgressMonitor();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 6 AJAX Design Patterns 199

 // First step

 progMonitor.SetStatus(taskID, "Now performing first step...");

 DoFirstStep(...);

 // Second step

 progMonitor.SetStatus(taskID, "Now performing second step...");

 DoSecondStep(...);

. . .

 // Final step

 progMonitor.SetStatus(taskID, "Finalizing...");

 DoFinalStep(...);

}

 The SetStatus method gets a string—it can actually be any .NET object—representing the
message to pass to the user interface. The monitoring component will read this message
from the shared memory location—the ASP.NET Cache in the example—and report it to the
client for actual display.

 The task ID is generated as a random number on the client and passed as an additional
 argument to the server method that implements the monitorable task. The following code
shows how to generate a random number in JavaScript that falls in a given range:

function getNumber(minNumber, maxNumber)

{

 var num = minNumber + Math.floor(Math.random() * maxNumber);

 return num;

}

 On the server, the task ID is used as the key to set status information in whatever data
 container you decide to use. The client uses the ID also to retrieve currently set information
about the progress of a given task.

 Note Can the task ID be generated on the server? Of course, you can generate a random
 number of a unique string (for example, a GUID) much more easily on the server than on the
client. On the client, in fact, you rely on JavaScript functions only to get a random number. If
you prefer a GUID, for example, you should consider making a roundtrip to the server, invoking
some service method that gets you a GUID, and then using it from the client to uniquely identify
the task. Alternatively, you could pregenerate some GUIDs and embed them in the page as
JavaScript data. For our purposes, a random JavaScript number large enough to include 10 digits
or more should be enough.

Defi nition of the Event Sink

 In addition to the endpoint for starting the potentially lengthy operation, you also need
a second public API on the server that can be called from JavaScript to obtain status
 information. As you know, there are two ways for an ASP.NET AJAX page to expose

http://lib.ommolketab.ir
http//lib.ommolketab.ir

200 Part II Power to the Client

 client-callable endpoints: Web or WCF services and page methods. You can use any of
these techniques to implement the monitoring service. (To implement the task, though,
you can also opt for plain partial rendering.)

 In terms of performance, calling a Web or WCF service or a page method is nearly
the same. Writing a service gives you the benefi t of a unique layer of code for
all pages in the application. However, using a page method is easier in some regards
 because it doesn’t require you to focus on extra details such as confi guration
and contracts.

 Let’s use a page method to enable the monitoring service. Whenever you opt to use a
page method, though, you must have the EnablePageMethods attribute turned on in the
ScriptManager control for the page.

 As discussed in Chapter 2, a page method is specifi c to a page, meaning that if two pages
need to monitor tasks, you need to replicate the monitoring code in each page. Although
a service is probably the best option, a simple trick can save you from writing the same
page method for each and every page that includes a potentially lengthy operation.
It suffi ces that you inherited any such page from the same base class, like the one
shown here:

public class UpdateProgressPage : System.Web.UI.Page

{

 static ProgressMonitor _progMonitor = new ProgressMonitor();

 [WebMethod]

 public static string GetCurrentStatus(int taskID)

 {

 return _progMonitor.GetStatus(taskID);

 }

}

 Note that the name of the public method—GetCurrentStatus—is arbitrary, but once you
have chosen it then it must be considered fi xed because you have to hard-code it in a
JavaScript client fi le. The GetCurrentStatus method essentially polls the shared data container
where the task stores its status, and it reports any content back to the client. The overall
 pattern is depicted in Figure 6-7.

 The server task is triggered via XMLHttpRequest and, therefore, requires some client code.
If you trigger the task via partial rendering, the JavaScript code might not be written by
you, but it still exists and runs. The monitoring service, instead, is triggered and controlled
by some custom JavaScript code. That’s why you need a client API for the Progress
Indicator pattern.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 6 AJAX Design Patterns 201

Step 3: Start a monitoring
service that reads from
the shared container.

Step 4: The monitoring service brings
state information to the client and updates
the user interface.

Task ID

Page methods
Web service
UpdatePanel

Step 1: Start a remote task.

Storage Step 2: The task saves its current
state to a shared container.

Step 1

Step 2

Step 3

Task ID

Start Task . . .

Browser – test.aspx

Remote call
to start the task

Task ID

Event sink as a
page method

test.aspx.cs

Read task status

Write task status

Monitoring service
on a second channel

FIGURE 6-7 A graphical view of the Progress Indicator pattern

Defi nition of the Client API

 In Figure 6-6, you see a Start Task button that upon being clicked starts the remote task to
be monitored. Let’s see the JavaScript code attached to that button. This code, in fact, is
 responsible for initiating the implementation of the Progress Indicator pattern.

<script type="text/javascript">

 var progressManager = null;

 // Called when the page is fully loaded. Use it to complete the initialization.

 function pageLoad()

 {

 progressManager = new Samples.Progress();

 }

 // Called when the user clicks to start the operation.

 function startTask()

 {

 // Start the remote task (using a page method named "ExecuteTask "in this case).

 var taskID = progressManager.getTaskID();

 PageMethods.ExecuteTask(taskID, taskCompleted, taskFailed);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

202 Part II Power to the Client

 // Turn on the progress monitor

 updateUI(true);

 progressManager.startMonitor(taskID, 2000, updateProgress,

 updateProgressCompleted);

 }

 // Callback that signals that the remote method execution terminated.

 function taskCompleted(results, context, methodName)

 {

 // Stop progress and reset UI

 progressManager.stopMonitor();

 updateUI(false);

 // Update page DOM with task results

 $get("<%= Label1.ClientID %>").innerHTML = results;

 }

. . .

</script>

 Associated with the click event of the button in Figure 6-6, the startTask method does three
main things. First, it gets a random number to use as the unique task ID. Second, it starts the
server-side task to monitor via a progress bar. Third, it activates the monitoring service to
poll the status and update the user interface.

 As you can see in the preceding listing, the server-side task is implemented as a page
 method—the ExecuteTask method—and invoked via the PageMethods proxy. This is arbitrary
and certainly doesn’t limit your programming power. You can start a remote task using Web
or WCF services or even using partial rendering.

 The client API for the monitoring service is all in the Samples.Progress JavaScript class
 written using the Microsoft AJAX Client JavaScript library. Instantiated upon page loading,
the class has three essential public methods: getTaskID, startMonitor, and stopMonitor. As
 mentioned, getTaskID returns a randomly generated number used to uniquely identify the
task. If you don’t trust the JavaScript Math object, you can get a GUID from a Web service or
 pregenerate some GUIDs on the server and embed them in the page. You can use the Page.
ClientScriptRegisterArrayDeclaration method to easily embed a JavaScript array in a Web page.

 The startMonitor method takes the ID of the task to monitor and the desired interval in
 milliseconds. In addition, the method accepts a couple of callbacks—one to update the
user interface with status information, and one to reset the user interface at the end of the
 operation. Here’s the source code of the Samples.Progress class:

Type.registerNamespace('Samples');

// Constructor

Samples.Progress = function Samples$Progress()

{

 Samples.Progress.initializeBase(this);

 this._timerID = null;

 this._taskID = null;

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 6 AJAX Design Patterns 203

 this._progressCallback = null;

 this._msInterval = null;

 this._callback = null;

}

// Start the timer to periodically check the status of the ongoing task

function Samples$Progress$startMonitor(taskID,

 msInterval, progressCallback, progressCompletedCallback)

{

 if (arguments.length !== 4) throw Error.parameterCount();

 // Update internal members

 _taskID = taskID;

 _msInterval = msInterval;

 _progressCallback = progressCallback;

 _progressCompletedCallback = progressCompletedCallback;

 this._startTimer();

}

// Stop the timer

function Samples$Progress$stopMonitor()

{

 window.clearTimeout(_timerID);

 if (_progressCompletedCallback !== null)

 _progressCompletedCallback();

}

// Get task ID

function Samples$Progress$getTaskID(taskID)

{

 return Samples.Random.getNumber(0, 10000000);

}

// Start the timer to control progress

function Samples$Progress$_startTimer()

{

 this._callback = Function.createDelegate(this, this._checkProgress);

 _timerID = window.setTimeout(this._callback, _msInterval);

}

// Modify the request to add the task ID to a hidden field (for UpdatePanel pages)

function Samples$Progress$modifyRequestForTaskId(request, taskID, hiddenField)

{

 var body = request.get_body();

 var token = "&" + hiddenField + "=";

 body = body.replace(token, token + taskID);

 request.set_body(body);

 return request;

}

// Timer function(s)

function Samples$Progress$_checkProgress()

{

 PageMethods.GetCurrentStatus(_taskID,

 this._onFeedbackReceived, this._onFeedbackFailed, this);

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

204 Part II Power to the Client

function Samples$Progress$_onFeedbackReceived(results, context)

{

 context._startTimer();

 if (_progressCallback !== null)

 _progressCallback(results);

}

function Samples$Progress$_onFeedbackFailed(results)

{

 // No major catastrophe...the user interface simply won't be updated.

}

// Class prototype

Samples.Progress.prototype =

{

 getTaskID: Samples$Progress$getTaskID,

 startMonitor: Samples$Progress$startMonitor,

 stopMonitor: Samples$Progress$stopMonitor,

 modifyRequestForTaskId: Samples$Progress$modifyRequestForTaskId,

 _startTimer: Samples$Progress$_startTimer,

 _checkProgress: Samples$Progress$_checkProgress,

 _onFeedbackReceived: Samples$Progress$_onFeedbackReceived,

 _onFeedbackFailed: Samples$Progress$_onFeedbackFailed

}

// Register the new class

Samples.Progress.registerClass('Samples.Progress');

 The Samples.Progress class is built around the timer that polls the server at regular intervals.
Implemented through the window’s setTimeout function, the timer calls back an internal
method when the interval has elapsed. This method does one key thing: it calls the event sink
on the server that retrieves the current status of the task.

 function Samples$Progress$_checkProgress()

{

 PageMethods.GetCurrentStatus(_taskID,

 this._onFeedbackReceived, this._onFeedbackFailed, this);

}

As mentioned, the event sink is a publicly exposed method that the JavaScript client can
 invoke. In this implementation, I assume it’s a page method named GetCurrentStatus. The
call to the event sink is a classic ASP.NET AJAX remote method invocation. Hence, it requires
a couple of callbacks for success and failure and can optionally carry a context object. No
 special action is required in case of failure; it just won’t update the user interface. Instead,
whenever signifi cant status information is downloaded to the client, you need to update the
user interface and restart the timer for the next update:

function Samples$Progress$_onFeedbackReceived(results, context)

{

 context._startTimer();

 if (_progressCallback !== null)

 _progressCallback(results);

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 6 AJAX Design Patterns 205

 The success callback receives the Samples.Progress object through the context parameter
and restarts the timer. After that, it just invokes the page-defi ned callback and updates the
 progress bar. In the ASP.NET page, you start the monitoring service when the user clicks to
begin the operation and stop the service from within any callback (success or failure) that
runs after the operation has completed.

Updating the User Interface

 So much for the infrastructure, but how would you update the user interface? A key element
is the callback function you pass to startMonitor to refresh the user interface with the current
status. What this function does depends on the markup in the page that is used to show the
progress.

 If all that you have is a tag to display a message, the following is a good example of
a callback:

function updateProgress(msg)

{

 $get("Label1").innerHTML = msg;

}

 The callback function receives any value that the task publishes as its current status through
the server progress API. It can be any .NET object, provided that the content is serializable.
Let’s suppose the task status is a number that indicates the percentage of progress made.
Suppose you signal progress using the following code:

progMonitor.SetStatus(taskID, "5");

 The updateProgress callback function will just receive a value of “5” and is entirely responsible
for updating the user interface interpreting that value. If you want to display a classic
 progress meter, you have to code it here. Here’s an example of how you can do it:

function updateProgress(perc)

{

 var table = "<table width=100%><tr><td>{2}%</td></tr>" +

 "<tr><td bgcolor=blue width='{0}%'> </td>" +

 "<td width='{1}%'></td></tr></table>";

 table = String.format(table, perc, 100-perc, perc);

 $get("Label1").innerHTML = table;

}

 To display a progress bar, you build a dynamic <table> tag and split one of its rows into two
cells. The leftmost cell takes a share of the row equivalent to the work done and is rendered
with a different color. The dynamically built markup is then attached to the DOM wherever
you like. If you want it centered in the page, you can style it properly using CSS. Figure 6-8
shows the result with an indication of the ongoing polling.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

206 Part II Power to the Client

FIGURE 6-8 Polling the server for the current status of a given task

 The Web Development Helper tool at the bottom of the browser window logs all requests
from the browser. (Get it for free at http://www.nikhilk.net.) As you can see, the monitoring
service places calls for feedback every two seconds. (See the Timestamp column.) The
 response of each request consists of a number that indicates the percentage of work done.
This number is passed to the updateProgress function and is used in the building of a
 dynamic HTML table.

Canceling an Ongoing Remote Task

 After the task has been triggered, the client no longer has control over it. You need a
 homemade client and server framework like the one we just discussed to know about its
ongoing status. The client page regains control over the overall operation only after the
 response generated by the task has been downloaded to the client.

 The solution presented shows a way to “read” the status of the task on the fl y, but it lacks
a mechanism to “pass” data to the task dynamically, as the task proceeds. In the preceding
implementation, the framework is not bi-directional. What would be the advantage of a
bi-directional monitor framework? Primarily, such a framework would give you a chance to
abort an ongoing task from the AJAX client.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 6 AJAX Design Patterns 207

The Too-Easy Way of Canceling Tasks

 ASP.NET AJAX supplies some machinery out of the box that makes canceling a remote
 operation a really easy job. This machinery has some limitations and can’t be considered a
full-fl edged solution. In the fi rst place, the task must be accomplished as a partial rendering
operation. Second, no extra work should be required on the server to compensate for
abruptly stopping the task.

 Figure 6-9 shows a sample page that pops up a progress template with a Cancel button. By
clicking the button, you cancel the ongoing operation. But is this really what happens?

FIGURE 6-9 The user interface to cancel a remote task

 The progress template contains a client button bound to a piece of JavaScript code. The
 following code is attached to the click event of the button:

function abortTask()

{

 var manager = Sys.WebForms.PageRequestManager.getInstance();

 if (manager.get_isInAsyncPostBack())

 manager.abortPostBack();

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

208 Part II Power to the Client

 As its fi rst step, the function retrieves the page request manager. In the Microsoft AJAX client
library, the PageRequestManager object is the nerve center of partial rendering. Upon page
initialization, the page request manager registers a handler for the form’s submit event. In
this way, the request manager is involved each time the page is going to post back. The
 request manager makes a copy of the request’s body as prepared by the browser and runs it
through the current HTTP executor—by default, the popular XMLHttpRequest object.

 The page request manager sets up the eventing model of partial rendering and tracks
the ongoing operation. If there’s any pending operation, the Boolean property named
 isInAsyncPostBack returns true. When the user clicks the Cancel button shown in Figure 6-9,
the page request manager kicks in and aborts the current request through its abortPostBack
method.

 To understand exactly why this approach won’t take you that far, let’s briefl y take a look at
the source code of the abortPostBack method within the PageRequestManager class in the
Microsoft AJAX client library:

function Sys$WebForms$PageRequestManager$abortPostBack()

{

 if (!this._processingRequest && this._request)

 {

 this._request.get_executor().abort();

 this._request = null;

 }

}

 If there’s a pending request, the manager instructs the executor of the request to abort. The
executor is a JavaScript class that inherits from Sys.Net.WebRequestExecutor and takes care of
sending the request and receiving the response. In the Microsoft client AJAX library, there’s
only one executor class—the Sys.Net.XMLHttpExecutor class. The class therefore uses the
XMLHttpRequest object to execute a request. In brief, when the preceding code calls up the
abort method, it basically tells the XMLHttpRequest object to abort. Put another way, it simply
orders the object to close the socket through which the executor will receive any response data.

 Can you see where this leads to? Let’s suppose that the remote task performs a disruptive
action on the server. For example, let’s say that the user is given a chance to delete a few
records from a database table with a button click. Canceling the operation through a Cancel
button, as shown earlier, doesn’t really stop the server operation. It simply closes the socket
through which you can receive a confi rmation message. The abortPostBack method on the
PageRequestManager object is merely a client-side method that has no effect on what’s
 going on in the server.

Designing an Interruptible Server Task

 In addition to be monitorable, an interruptible task will periodically check if any feedback
came from the client that requests it to quit. Some enhancements are required to the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 6 AJAX Design Patterns 209

 previously discussed framework to make the server code receive and process dynamic client
feedback such as a click on the Cancel button.

 The progress server API is now based on the following contract:

public interface IProgressMonitor

{

 void SetStatus(int taskID, object message);

 string GetStatus(int taskID);

 bool ShouldTerminate(int taskID);

 void RequestTermination(int taskID);

}

 Compared to the contract discussed in the preceding section there are two new methods:
ShouldTerminate and RequestTermination. The former returns a Boolean value indicating whether
or not the ongoing task should be terminated. The RequestTermination method represents
the entry point in the progress server API for clients willing to stop a task. When invoked, the
method creates a task-related entry in the data container (for example, the ASP.NET Cache) that
ShouldTerminate checks to determine whether interruption was requested.

public bool ShouldTerminate(int taskID)

{

 string taskResponseID = GetSlotForResponse(taskID);

 object o = HttpContext.Current.Cache[taskResponseID];

 if (o == null)

 return false;

 return true;

}

// Sets the task for termination

public void RequestTermination(int taskID)

{

 string taskResponseID = GetSlotForResponse(taskID);

 HttpContext.Current.Cache.Insert(

 taskResponseID,

 (object) false,

 null,

 DateTime.Now.AddMinutes(CONFIG_MAX_TIME_MINUTES),

 Cache.NoSlidingExpiration);

 return;

}

private string GetSlotForResponse(int taskID)

{

 return String.Format("{0}-Quit", taskID);

}

 To support dynamic interruption, the task will periodically invoke ShouldTerminate right
before updating the status. In this way, it will be informed on a timely basis of any client
 requests to quit. Here’s the typical structure of a monitorable and interruptible task:

public static string ExecuteTask(int tasked, /* params */ ...)

{

 InMemoryProgressMonitor progMonitor = new InMemoryProgressMonitor();

http://lib.ommolketab.ir
http//lib.ommolketab.ir

210 Part II Power to the Client

 // Preliminary check

 if (progMonitor.ShouldTerminate(taskID))

 {

 // Compensate if needed

. . .

 return "Task aborted--0% done";

 }

 // First step: 5%

 progMonitor.SetStatus(taskID, "5");

 DoFirstStep(...);

 if (progMonitor.ShouldTerminate(taskID))

 {

 // Compensate if needed

. . .

 return "Task aborted--5% done";

 }

. . .

 // Another step: 69%

 progMonitor.SetStatus(taskID, "69");

 DoSecondStep(...);

 if (progMonitor.ShouldTerminate(taskID))

 {

 // Compensate if needed

. . .

 return "Task aborted--69% done";

 }

. . .

 // Final step

 progMonitor.SetStatus(taskID, "100");

 DoFinalStep(...);

 if (progMonitor.ShouldTerminate(taskID))

 {

 // Compensate if needed

. . .

 return "Task aborted--100% done";

 }

 // Response

 return "Task completed at: " + DateTime.Now.ToString();

}

 The method is articulated in individual steps. Around each step, the method fi rst reads any
communication from the client that has arrived in the meantime and then, if allowed to
 continue, it writes the current status. If requested to stop, the method attempts to roll back
or compensate what has been done so far and then returns. Figure 6-10 shows a possible
user interface after the user has interrupted an ongoing server task.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 6 AJAX Design Patterns 211

FIGURE 6-10 Screen shot showing that the user interrupted an ongoing server task.

Interrupting a Task from the Client

 To abruptly terminate a remote task from the client, you add a Cancel button to the user
 interface. This time, though, you make the click handler point to your own abort method in
the client progress API:

<script type="text/javascript">

var progressManager = null;

var taskID = null;

function pageLoad()

{

 progressManager = new Samples.Progress();

}

. . .

function abortTask()

{

 // The task ID is set when the task is started

 progressManager.abortTask(taskID);

}

</script>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

212 Part II Power to the Client

 Let’s take a look at the modifi ed client progress API. To stop an ongoing task or, more
 precisely, to place a request to quit a task, you invoke a new server method exposed by the
progress monitor server API as part of the application’s server-side logic:

// Cancel the operation

function Samples$Progress$abortTask()

{

 PageMethods.TerminateTask(_taskID,

 null,

 null,

 null);

}

 The TerminateTask method now pairs GetCurrentStatus in the base page class that incorporates
the API for the monitoring component:

public class UpdateProgressPage : System.Web.UI.Page

{

 static ProgressMonitor _progMonitor = new ProgressMonitor();

 [WebMethod]

 public static string GetCurrentStatus(int taskID)

 {

 return _progMonitor.GetStatus(taskID);

 }

 [WebMethod]

 public static void TerminateTask(int taskID)

 {

 _progMonitor.RequestTermination(taskID);

 }

}

 Implemented in this way, task cancelation is far more effective as you produce effects on the
server code. The bi-directional progress monitor framework is a duplex channel that a server
task and its JavaScript client can use to exchange data in the form of messages.

What About Rollbacks?

 The framework built to monitor and stop running an ASP.NET AJAX task doesn’t really stop
anything—it only notifi es the task that the user requested it to quit. If properly designed, the
task promptly stops and returns. What about the work it has done already?

 In general, when a task is interrupted, it should undo any changes it has made and return.
How can you get this behavior?

 There’s not much that progress monitor framework can do on its end. All the work is
 delegated to the actual implementation of the task. If any behavior within the remote task
can be wrapped in the outermost transaction, you can roll it back after the task has been
 interrupted. You can easily achieve the same result if you use a workfl ow. In this case, you
wrap the task in a TransactionScope activity, use a Code activity to set the current status, and

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 6 AJAX Design Patterns 213

check about any termination request. If the task has to terminate, you throw an exception
and automatically cause the transaction to roll back.

 Unfortunately, not all operations can be easily rolled back automatically. This is true for
 database updates, but what about changes made to, say, a Microsoft Offi ce document?
In general, you can implement the task within a TransactionScope block and safely and
 effectively use any objects that implement the ITransaction interface. If you do so, all of these
objects will roll back or commit accordingly. And each of these objects will know how to
undo its changes. In the worst case, at the very minimum you inform the user that the task
has been notifi ed of the user’s request for termination.

Other Patterns

 The patterns we just covered represent building blocks of most AJAX applications. As
 mentioned, patterns should not be used dogmatically, nor should they be pursued at all cost.
Patterns just help, and that’s good enough for patterns to exist and thrive.

 Among other things, designing an AJAX application means understanding the range of new
options you have for accomplishing the application’s task. On the other hand, wasn’t AJAX
declared to be all about enhancing the user’s experience since the beginning? Do you recall
the sentence from Chapter 1, “Under the Umbrella of AJAX,” that described how the acronym
AJAX was introduced back in 2005? It sounded was something like, “Begin to imagine a wider,
richer range of possibilities.”

 Well, AJAX patterns make up the compass to orientate you in a new Web world. A
good place to read about the state-of-the-art developments related to AJAX patterns is
http://www.ajaxpatterns.org. If you feel unsecure about how to go forward with a given
 feature, maybe there’s an AJAX pattern to start you off or steer you back onto the right track.

 Let’s explore a few more patterns of AJAX applications.

The Micro-Link Pattern

 If I have to summarize in a single sentence the entire content and impact of AJAX in the
world of the Web, I’d say AJAX is about showing new content on the existing page without
reloading the whole page. The Micro-Link pattern is just the formal defi nition of this
characteristic.

Page Links and Micro-Links

 The Micro-Link pattern is at the core of AJAX because it’s about showing new and updated
content quickly and smoothly. In a way, a micro-link is an evolution, if not an abstraction, of
the classic page hyperlink. Most of the time, a hyperlink involves a roundtrip to the server to
download new content via a full page refresh.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

214 Part II Power to the Client

 As an example, consider a weather Web site. It initially shows a list of cities and offers to
dig out more information for each city. You select the city and you are shown the current
 conditions. The page, however, also includes links to, say, a 10-day forecast for the area,
 reported airport delays, the satellite map, and maybe a video with the forecast.

 All this content likely can’t fi t into one page. On the other hand, classic links that take you
to a different page, or to a different view of the same page, would force a page refresh.
A micro-link, therefore, is used. It’s a lighter hyperlink that either displays content that is
already downloaded but currently hidden or downloads content from the server using an
XMLHttpRequest call.

 As a result, the user clicks on a button or scrolls over some text and gets the additional
 content displayed in the way that you, as the page author, chose—as a popup, by dynamic
DOM manipulation, as a modal dialog box, as a ToolTip, and so forth.

 The impact on the page fl ow is minimal, content appears more quickly, and the browser
works less. In addition, only information that is relevant at a given time is presented, perhaps
topped with some animation to further enhance it. The state of the page is maintained
(on the client side), thus generating an overall working model similar to a desktop scenario.

Micro-Links in Action

 More often than not, a micro-link entails downloading some content on demand from the
server through an XMLHttpRequest call and inserting it on the page. Micro-links are ideal
to use to help the user drill down into some content, by expanding out deeper levels of
information.

 The key decision to be made is whether the content has to be downloaded on demand,
fetched in advance, or even incorporated in the initial page content but kept hidden until the
user clicks. If you opt for on-demand download, local caching is another aspect to take into
account.

 Micro-links don’t necessarily have to be clickable anchor tags. The trigger of a micro-link
can be nearly any event you can capture around the page, including clicking, tapping the
 keyboard, making mouse movements, and switching input focus (“blur”).

 What kind of action can a micro-link consist of, anyway? Whatever action you want to
 associate with a micro-link, it has to be implemented with some JavaScript code. The code
can simply turn on or off the CSS visibility or display attribute of some elements. Likewise, the
code can download data or HTML from a remote server and attach it to the DOM. Finally, the
code can just create new markup on the fl y using the DOM API.

 The new content can be appended to the current page, or it can replace some existing
 content. No options are precluded; it all depends on page requirements. As an example,
 consider that by using micro-links a site that mainly serves the purpose of showing
 information can completely remove the need for page reloads.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 6 AJAX Design Patterns 215

Micro-Links in jQuery

 In the jQuery library (which is discussed in Chapter 5), you fi nd some helpers to more easily
implement the Micro-Link pattern. The load method, in particular, gets some HTML from a
remote resource and injects it into the DOM. Here’s how:

// The content of the URL is attached to the specified section of the DOM

$("#menu").load("menu.aspx");

 As you can see, when attached to a DOM event handler, such a method does most of the
 micro-link work for you. More generally, the implementation of the Micro-Link pattern
 consists of a remote call plus some DOM manipulation. This is just what the load method
does with a single instruction.

 If you plan to use the jQuery’s load method, though, you might want to consider making it
point to a custom HTTP handler. In this way, you save a bit of work in the ASP.NET runtime
pipeline and can more easily shape up the response.

 The complete syntax of the jQuery load method is shown here:

load(url, [data], [callback])

 The url parameter clearly indicates the source of data to download. The data parameter
is an optional collection of name/value pairs for the server to process. Finally, the callback
 parameter is an optional callback function that will be invoked after the download is
 completed either successfully or not.

 The load function performs a GET request unless the data argument is specifi ed; if that’s the
case, it switches to a POST request.

The Cross-Domain Proxy Pattern

 If you ask around about what the main reason is for introducing AJAX features into a Web
application, you’ll likely fi nd that user experience is the most popular answer. And what about
the second most popular answer? This is likely to be mashup.

 A mashup is a Web page that generates its content by combining data from a variety of
Internet sources. You know the Web is rich and large and much of its content is freely
 available. You also know that when the content is not free, it can likely be licensed by
 entering into an agreement with the owner. So why should you re-create content if existing
content is already available? A mashup is a new type of Web page that aggregates existing
content from various legal sources.

The Same Origin Policy Problem

 The external content you want to access lives outside of your site domain. To access it, you
need to perform an HTTP call. It can be a plain HTTP GET or POST, or it can go through the
public interface of an exposed Web service.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

216 Part II Power to the Client

 There’s no limitation at all in placing HTTP in any Web server calls from within a full-trust
 application such as the ASP.NET runtime or the client browser. But when the caller is script
code, restrictions apply. In a nutshell, browsers apply the Same Origin Policy (SOP), meaning
that any script loaded from one “origin” can’t access a resource on a different “origin.” In this
regard, an origin refers to a domain, name, protocol, and port. SOP is a defensive measure
that involves not trusting content loaded from any Web sites as a means of preventing
 cross-site scripting (XSS) attacks.

 SOP doesn’t apply to some tags, such as <script> and tags. This means that you
can download images and scripts from any site, but your local or downloaded script
is not allowed to place an XMLHttpRequest call to a different server than from where the
script came.

 Note Although using SOP makes complete sense as a defensive measure to avoid XSS attacks, it
seems to blindly cut off safer activities you can perform via XMLHttpRequest. This point is being
debated and will likely be settled soon.

 The direction that browsers are taking seems to be that of enabling only XMLHttpRequest
calls to reach cross-domain resources if the remote server opts in using specialized XML-based
policy fi les. Internet Explorer 8, for example, provides an ad hoc object named XDomainRequest
to exchange data across domains. Because the XDomainRequest object does not refer to any
 standard, Microsoft kept it separate from XMLHttpRequest, which is, conversely, steadily on its
way to becoming a Word Wide Web Consortium (WC3) ratifi ed standard. XDomainRequest has
been created by Microsoft and is currently supported only in Internet Explorer 8.

Web Remoting via JavaScript

 Although waiting for more powerful (and hopefully standard and cross-browser) tools to
place cross-domain calls via JavaScript, there’s just one way to code mashups in an AJAX
 application. The client script calls into a proxy hosted in the same Web server as the current
page. This step will work around the SOP limitation.

 The proxy is any code behind a SOP-compatible HTTP endpoint. It’s likely made of managed
code running within the ASP.NET worker process. The proxy, then, will perform a regular call
to the service of choice using plain HTTP verbs or more sophisticated protocols such as SOAP.
The response is received on the server, formatted as required, and then sent back to the
browser, as shown in Figure 6-11.

 For example, suppose the implementation of the Micro-Link pattern enables your users
to drill down into a feature to get more information. And suppose also that this extra
 information must come from a mashup. In this case, you can use jQuery’s load method to
point to a custom ASHX HTTP handler in your site, which in turn will connect to the desired
source to get requested data. The custom HTTP handler you pass to the load method is, in
fact, your cross-domain proxy.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 6 AJAX Design Patterns 217

Browser

Proxy

www.MyServer.com
www.contoso.com

FIGURE 6-11 A graphical view of the Cross-Domain Proxy pattern

Handling Errors

 A page that relies on the content provided by some external provider must be ready to
 handle any failed access. The problem could be caused by some network failure or result
from your improper handling of received data.

 This possibility is more likely than you might think, and it also depends on the agreement
you have with the service provider. For example, some sites enable you to grab content, but
they reserve the right to disconnect you in case of increased traffi c. When you arrange a
mashup, make sure you have a well-defi ned recovery plan. In many cases, you still need to
display data to your users. That’s why it’s so important to have a plan B you can switch to in
case of trouble.

 Among the options to consider if you can’t get fresh data from the provider, I’d list showing
cached results or an alternate service. If neither of these solutions works, you still have the
option of admitting the failure and displaying a graceful message to your users.

 Note Last but not least, whenever you build a mashup you should determine whether the
 content is free and under what conditions it is free to use. It’s not unusual that Web sites that own
information of public interest make it available for free only for personal and noncommercial use.
In this case, of course, there’s no guarantee that you’ll be always able to access that information
via a Web service or HTTP. If traffi c increases, and cuts are needed, noncommercial users are the
fi rst to be cut off. If you intend to make commercial use of external content, you might want to
consider a service-level agreement with the organization providing the content.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

218 Part II Power to the Client

The Submission Throttling Pattern

 Web pages work by submitting data to the Web server. In the classic Web model, the
 browser is the only actor that is able to communicate with the Web server. The browser,
though, is driven by the user. In addition to typing a new URL in the address bar, the user
can click in the displayed page to navigate somewhere or she can submit the content of a
 fi lled-in form. In a non-AJAX scenario, the submission of the form can only be explicit and
happen when the user clicks on an HTML button of type submit.

 In AJAX, there are more options and submission of any content doesn’t have to be explicit.
Let’s review some of the approaches, starting with an AJAX revisitation of the explicit
 submission model.

The Explicit Submission Pattern

 This pattern is familiar to millions of users of Web applications. As a user, you do some work
with the page and then, when you’re ready, you click some button to send content to the
server. In AJAX, you can explicitly submit content using any button (not necessarily an HTML
submit button) and even by using any event as the trigger.

 More importantly, because in AJAX you have much more power on the client, you can even
consider submitting any content to the server in chunks and in multiple steps instead of a
single shot. If you opt for sending it all at one time, you’re performing an explicit submission;
otherwise, you’re throttling your submission, mostly for performance reasons.

 In the end, it’s key to note that when using AJAX, explicit submission via a fi xed type of button
is no longer the sole option. Pick any of the available options, but be aware of the alternatives.

Piecemeal Submission

 The primary alternative to classic explicit submission is an implementation of the Submission
Throttling pattern. Simply put, the pattern suggests you cache the content to submit in a
browser buffer and submit it piecemeal over multiple steps. What’s the benefi t of this approach?

 Some AJAX applications are characterized by a high number of requests. The canonical
example is the server-based autocompletion engine. As the user types into a text box, a
 request is made to the server for suggestions. You can only imagine the number of requests
that hit the Web server at peak times! Bandwidth and server considerations make unfi ltered
content submission impractical.

 To reach a reasonable compromise between the responsiveness of the application and the
Web server workload, you might want to take control of the submission process and never
let the user explicitly submit a form. To understand throttling, let’s examine how a typical
 autocompletion feature is actually implemented. The discussion is based on the source code
of Microsoft’s AutoComplete extender in the AJAX Control Toolkit.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 6 AJAX Design Patterns 219

 The autocomplete extender seems to place a request for suggestions as the user types
 content into the input box. So you would expect a handler for the keypress event that makes
the call to the specifi ed Web or WCF service. If you dig out the code, however, this is not
what you fi nd. Here’s an excerpt of what you fi nd instead:

// Handler for the text box keydown event

_onKeyDown: function(ev)

{

 // A key has been pressed, so we reset the timer

 this._timer.set_enabled(false);

 // Is it a special key?

 if (k === Sys.UI.Key.esc) {

. . .

 }

 else if (k === Sys.UI.Key.up) {

. . .

 }

 else if (k === Sys.UI.Key.down) {

. . .

 }

 else if (k === Sys.UI.Key.enter) {

. . .

 }

 else if (k === Sys.UI.Key.tab) {

. . .

 }

 else {

 this._timer.set_enabled(true);

 // Start the timer to retrieve results since now it's an actual key

 }

}

 First, the extender uses an internal timer confi gured to an interval of one second (by default).
The timer is started when a text box gets the focus. As soon as a key is pressed down, the
timer is stopped and an analysis of the key begins. If the key is one with a special meaning
(such as Enter, ESC, arrows or Tab) the extender proceeds with its own code. If the key
pressed indicates content to be entered in the text box buffer, the timer is started.

 The timer is stopped and restarted every time an actual key is typed. If you stop typing for
one second (or whatever interval you confi gure), on the tick of the timer, the actual content
of the input fi eld is submitted to receive suggestions. Not a big change for users, but great
news for the server.

Timers to Simulate Multithreading

 As you might already know, there are no multithreading capabilities in JavaScript. This simply
means that the language doesn’t offer any construct through which you can describe a
chunk of code that runs in “parallel” with another one. Any piece of JavaScript code runs in a
single execution thread. The interpreter takes any code we provide and executes it as fast as
possible, but sequentially. Period.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

220 Part II Power to the Client

 Timers, though, are an inherently asynchronous tool. By creating a timer in JavaScript, you’re
telling the interpreter to run that code as soon as possible, but not necessarily right away. If
the code you associate with the timer callback is simple enough and the interval is appropriate,
the interpreter will be able to schedule it properly and advance multiple tasks simultaneously.

 In other words, JavaScript doesn’t publicly expose thread constructs to the script developer.
However, it makes timers available, and timers are an effective way to schedule tasks so that
multiple tasks can progress concurrently.

 Timers are an essential element in the implementation of a submission-throttling solution.

The Live Form Pattern

 The fundamental need related to submission throttling is to send requests to the server in a
controlled way, at fi xed intervals, instead of uploading them as the need arises. In an AJAX
world, a request can take various forms. It can be a call to a Web service as well as a plain GET
call made via XMLHttpRequest. It can also be a POST request made to upload information to
the server.

 In the autocompletion example, submission throttling is used to reduce the number of
 requests that hit the Web server. As a result, some of the events that would cause a request
to fi re are swallowed by the client code and only a subset is actually served. If a user types
multiple characters in a text box in less than one second (or whatever interval is confi gured),
only one request is placed instead of many.

 Throttling is also useful for form submission processes. In this case, the pattern takes a
 different name—Live Form. The idea is that you don’t wait for the user to complete his work
and explicitly submit the form; instead, you anticipate the user’s actions by sending partially
fi lled form content to the server for immediate validation and feedback.

 A common implementation consists of placing an XMLHttpRequest call every time the user tabs
out of a fi eld. The request goes asynchronously and modifi es the form and user interface as a
result. Another approach might consist of a scheduled upload that occurs every few seconds.

 When you choose to throttle the data submission, you also need to decide how the server
can fi gure out if it’s time to begin processing uploaded data. As far as forms are concerned,
I like a mix of Live Form and Explicit Submission. That is, you implement Live Form and have
the content uploaded and validated asynchronously. When some valid content is available on
the server, you enable the Submit button for users to click explicitly. When the server receives
input via the Submit button, it can start processing the request.

 Should you upload the current content of the form when the user clicks the button to explicitly
submit? Or should you rely on the fact that valid data is already on the server? Well, both options
are valid in theory. In practice, it depends on the particular form and your needs. If you detect
that further changes have been made to the client that makes the client content different from
the server content, a full explicit data submission is required.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 6 AJAX Design Patterns 221

 Summary

 AJAX applications are peculiar because they are Web applications designed and
 implemented in a way that is signifi cantly different from the canonical request/response
 pattern of classic Web processes. In AJAX, patterns also have the value of showing
 developers and architects what can be done in addition to submitting the content of a form
over a browser-led HTTP communication.

 Although today we still tend to refer to AJAX as something external to the known world of
Web and something to explain and understand via explicit patterns, in the near future it will
be incorporated into the same notion of the Web. AJAX is not a temporary trend; AJAX is the
new partner that will revitalize the Web.

 Patterns help you to fi nd effective solutions. In AJAX, however, they also help to spot
 problems and potential caveats. Many of the AJAX patterns you fi nd documented are trivial
to understand. In this chapter, I selected patterns that, in my opinion, are the foundation of
the new AJAX mindset.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 223

Chapter 7

Client-Side Data Binding

 Do not fear to be eccentric in opinion; every opinion now accepted
was once eccentric.

 —Bertrand Russell

 No doubt that if you bought this book you have a strong interest in AJAX. As repeatedly
mentioned in earlier chapters, though, along with its many shiny lights AJAX also has a dark
side. AJAX is quick and easy to implement for simple individual features of a page; you’ll fi nd
that it’s much less trivial as you scale it to the size of an entire application.

 More often than not, Web applications are the front end of one or more enterprise systems.
Data from these enterprise systems is variegated and must be aggregated, perhaps even
formatted, before display. Sure, you might say, “Isn’t this that cool thing called mashup?”
Yes, sort of.

 Mashup isn’t necessarily a complicated thing. It’s all about capturing data and assembling it
into a presentation format. In classic ASP.NET, you have ad hoc server controls that expose
HTML templates and data source properties. Undoubtedly, this has been the coolest feature
of the ASP.NET platform since it came out a few years ago. A data source property refers to
a collection of objects; a template is a piece of HTML with placeholders for data. Creating
a server-side mashup is a task you accomplish in three relatively simple steps: you defi ne
the templates; you get the data; you connect data to the templates. This is the gist of data
 binding and, more importantly, the essence of data-driven Web applications—the most
popular (if not the only) type of Web application.

 The power of classic ASP.NET data binding lies in the fact that you do everything on the
server using a true programming language and rely on powerful tools, such as facilities in
the Microsoft .NET Framework and data-bound server controls. Furthermore, these server
 controls often offer important extra features such as paging and sorting.

 With classic ASP.NET, data binding isn’t really an issue. It’s as powerful and fl exible as you
might reasonably need. But it takes a full page reload for each interaction.

 With AJAX, you realize that many tasks that were traditionally performed on the server can
now take place on the client. This results in fewer roundtrips to the server, saves valuable
bandwidth and, last but not least, offers users an overall better experience. However,
 employing AJAX means offl oading most of the data binding work to the client, where only
JavaScript can be used. And this is really a tricky point.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

224 Part II Power to the Client

 The programming environment you fi nd within a client browser has little in common with the
programming power the .NET Framework offers on the server. Client-side data binding is still
possible and viable, but it’s a much less obvious option than one might think at fi rst.

 In this chapter, I’ll review a couple of general approaches to client-side data binding that are
developed around a pair of popular AJAX design patterns. Then I’ll review the tools that the
next ASP.NET platform will offer out of the box.

An Architectural Tour of ASP.NET Data Binding

 In general, data binding is the process that retrieves data from a given source (whether it’s
a database query, an XML fi le, or in-memory data) and dynamically associates this data with
properties on user interface elements.

 In ASP.NET, user interface elements are essentially server controls that have been specifi cally
designed to support data binding—that is, data-bound controls. Data-bound controls are
not another family of controls; they’re simply server controls that feature a few well-known
 data-related properties and feed them using a well-known set of collection objects.

 Up until now, in ASP.NET data binding has been a server-side process. The data binding
 process in general, though, doesn’t necessarily have to be only a server-side process. Let’s
examine the characteristics of server-side ASP.NET data binding so that we can identify key
actions and components to replicate those same characteristics in a client-side scenario.

 The whole idea of Web data binding is held up by two pillars: the HTML template and the
data source.

Defi ning the HTML Template

 The purpose of the vast majority of software applications is to present some content to users
through their user interface. The purpose of a Web application is to present some content to
users through HTML.

 How would you generate the HTML?

 There are two main approaches. One entails using automated markup factories that take
some data in as input and massage that into a fi xed-schema user interface. The other stems
from the idea of using templates and a declarative syntax to express bindings between
markup elements and data fi elds. In the latter case, the fi nal shape of the user interface is not
known in advance and is largely subject to developer customization.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 7 Client-Side Data Binding 225

Automated HTML Factories

 If you made it this far, I think it’s safe to assume you’re familiar with the DataGrid control. The
DataGrid control is a good example of an automated HTML factory.

 Like other ASP.NET server controls, the DataGrid control generates HTML markup. However,
the resulting HTML is the result of an assembling process whose rules are hard-coded. When
you use a DataGrid control, you pass data and some optional settings to the component. In
return, you always get an HTML table.

 The schema of the output you get is fi xed and can’t be changed to something signifi cantly
different. You can customize the style of cells and rows. You can change the number of cells
in a given row and group the values of multiple cells in a single one. You can add or remove
a header or footer. But that’s about all you can do.

 For DataGrid controls, you can’t apply a custom template for each data item; you can’t even
apply the same custom template to all data items. The only possible template for bound data
is the one that is hard-coded in the component.

 In general terms, an automated HTML factory is a component that generates markup
 algorithmically using a hard-coded workfl ow. Here’s an example of how it could work:

// This factory generates an HTML table

string GenerateMarkup(List<Customer> data)

{

 StringBuilder buffer = new StringBuilder("<table>");

 foreach(Customer c in data)

 {

 buffer.Append("<tr>");

 buffer.AppendFormat("<td title="{0}">{1}</td><td>{2}</td><td>{3}</td>",

 c.CustomerID, c.CompanyName, c.Country, c.ContactName);

 buffer.Append("</tr>");

 }

 // Finalize

 buffer.Append("</table>");

 return buffer.ToString();

}

 The structure of the resulting markup is set in stone in the code of the factory. The only
changes allowed are those explicitly provided for by the programming interface of the factory.

Template-Based HTML Factories

 Another popular server control in ASP.NET is the Repeater control. At its core, the Repeater
control simply loops through a given data collection and applies a user-defi ned HTML
 template to each bound data item.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

226 Part II Power to the Client

 To this category of HTML factories belong controls that implement an extremely simple
 rendering algorithm with no hard-coded workfl ow logic except the basic loop over bound
data. In the ASP.NET toolbox of controls, you fi nd the ListView and DataList controls in
 addition to the aforementioned Repeater control.

 The functioning of a template-based HTML factory is illustrated in the following pseudo-code:

// This factory generates a completely custom HTML structure

string GenerateMarkup(List<Customer> data,

 string headerTemplate,

 string itemTemplate,

 string footerTemplate)

{

 StringBuilder buffer = new StringBuilder();

 // Apply the header template

 if (!String.IsNullOrEmpty(headerTemplate))

 {

 string header = GenerateHeader(headerTemplate);

 buffer.Append(header);

 }

 // Apply the item template

 if (!String.IsNullOrEmpty(itemTemplate))

 {

 foreach(Customer c in data)

 {

 string item = GenerateItem(itemTemplate, c);

 buffer.Append(item);

 }

 }

 // Apply the footer template

 if (!String.IsNullOrEmpty(footerTemplate))

 {

 string footer = GenerateFooter(footerTemplate);

 buffer.Append(footer);

 }

 // Finalize

 return buffer.ToString();

}

 Any user interface based on a list of data items will reasonably have an optional header and
footer, plus a template for the data item. (It might even have more items, such as separators,
but this is enough to demonstrate the concept.) The algorithm simply applies the header
template, loops through the item list, and fi nally applies the footer.

 The fi nal format of the HTML results from the markup used for the header, footer, and items. It’s
another way of building an HTML table or producing a horizontal, breadcrumb-like list of items.

 I haven’t said much about HTML templates or answered questions about how you might defi ne
them. Well, the answer is, “It depends.” In particular, it depends on the tools you’re using. In
ASP.NET, an HTML template is a plain piece of markup intertwined with <% . . . %> code blocks.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 7 Client-Side Data Binding 227

 Code blocks basically contain data binding expressions that are evaluated at compile time
and translated into executable statements. At runtime, then, statements produce literals
 integrated with markup.

 In general, an HTML template contains placeholders for external bindable data. The syntax
for defi ning these data placeholders is determined by the framework.

The ITemplate Interface

 In ASP.NET, an HTML template is exposed by data-bound controls as a property of type
ITemplate. Here’s the defi nition of the interface:

public interface ITemplate

{

 void InstantiateIn(Control container);

}

 As a developer, you don’t work with this interface directly most of the time. Often, all you do
is defi ne a chunk of HTML with some code blocks. This content is then parsed and compiled
into a class that implements the ITemplate interface. Hence, an HTML template is ultimately
an object that implements the ITemplate interface.

 The InstantiateIn method is responsible for manipulating the structure of the provided
 container to incorporate data-bound content. Looking at the pseudo-code just shown, you
can compare the ITemplate object to the method GenerateItem because it generates the user
interface markup in accordance with an HTML-explicit schema. Generally, though, in ASP.NET
the ITemplate interface is the mechanism through which data-driven parts of the HTML user
interface are generated.

 The following code snippet shows HTML templates in an ASP.NET Repeater control. The fi nal
output is a list of bulleted points showing the last and fi rst names of Northwind employees.

<asp:repeater runat="server" ID="Repeater1">

 <HeaderTemplate>

 Employees

 <hr />

 </HeaderTemplate>

 <ItemTemplate>

 <%# Eval("lastname") %>,

 <%# Eval("firstname") %>

 </ItemTemplate>

 <FooterTemplate>

 </FooterTemplate>

</asp:repeater>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

228 Part II Power to the Client

 You defi ne the appearance by defi ning the header, footer, and item templates. Templates are
defi ned as plain markup. ASP.NET compiles each template element to an ITemplate object
whose code is similar to the following listing. The listing shows that the code behind HTML
templates returns a list of bulleted points:

public class BulletedPointHeaderTemplate : ITemplate

{

 public void InstantiateIn(Control container)

 {

 // Add markup literals to the page tree

 container.Controls.Add(new LiteralControl(" Employees <hr /> "));

 }

}

public class BulletedPointFooterTemplate : ITemplate

{

 public void InstantiateIn(Control container)

 {

 // Add markup literals to the page tree

 container.Controls.Add(new LiteralControl(""));

 }

}

public class BulletedPointItemTemplate : ITemplate

{

 public void InstantiateIn(Control container)

 {

 // Add markup literals to the page tree

 container.Controls.Add(new LiteralControl(""));

 // Add a data-bindable element

 Label lblLastName = new Label();

 lblLastName.DataBinding += new EventHandler(this.BindLastName);

 container.Controls.Add(lblLastName);

 // Add markup literals to the page tree

 container.Controls.Add(new LiteralControl(", "));

 // Add a data-bindable element

 Label lblFirstName = new Label();

 lblFirstName.DataBinding += new EventHandler(this.BindFirstName);

 container.Controls.Add(lblFirstName);

 }

 // Handler of the DataBinding event for the Label element

 // that renders the lastname column in the template.

 private void BindLastName(Object sender, EventArgs e)

 {

 Label l = (Label) sender;

 IDataItemContainer container = (IDataItemContainer) l.NamingContainer;

 l.Text = DataBinder.GetPropertyValue(container.DataItem, "lastname").ToString();

 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 7 Client-Side Data Binding 229

 // Handler of the DataBinding event for the Label element

 // that renders the firstname column in the template.

 private void BindFirstName(Object sender, EventArgs e)

 {

 Label l = (Label) sender;

 IDataItemContainer container = (IDataItemContainer) l.NamingContainer;

 l.Text = DataBinder.GetPropertyValue(container.DataItem, "firstname").ToString();

 }

}

 There are many possible ways to create a template. First and foremost, you can create it
explicitly using plain markup. In addition, you can also create it as a code-only class. In this
case, you set the template properties as shown here:

Repeater1.HeaderTemplate = new BulletedPointHeaderTemplate();

Repeater1.FooterTemplate = new BulletedPointFooterTemplate();

Repeater1.ItemTemplate = new BulletedPointItemTemplate();

 Finally, you can populate an HTML template with the content of an ASCX user control, as
shown here:

Repeater1.HeaderTemplate = Page.LoadTemplate("bulletedpointheader.ascx");

Repeater1.FooterTemplate = Page.LoadTemplate("bulletedpointfooter.ascx");

Repeater1.ItemTemplate = Page.LoadTemplate("bulletedpointitem.ascx");

 The ASP.NET’s ITemplate mechanism is unique, powerful, and fl exible. At a higher level of
abstraction, though, you can recognize two overall approaches to producing HTML. You can
defi ne the user interface via chunks of HTML literals intertwined with declarative pieces of
data. You use a tailor-made and arbitrary syntax to specify bindings. Alternatively, you pass
the bindable date to a class method and do everything via code.

 To top off the discussion, let’s briefl y compare the two approaches.

Template-Based Approach vs. Automated Approach

 A template-based approach to generating the user interface Web application is clearly an
approach that’s easier to follow and implement. As a developer, you specify explicitly the
HTML markup you desire, which also enables you to use designer tools. Maintenance is
greatly facilitated.

 An approach based on code gives you total control over the rendering algorithm, but once
it’s developed this approach can’t be changed without recompiling. An automated generator
doesn’t depend on any external syntax to insert placeholders; at the same time, however, it
provides you with a fi xed way to place and expand bindings.

 In classic ASP.NET, you typically use a template-based approach and resort to automated
HTML factories when you need to implement a particular rendering algorithm. In this case,
you usually develop a custom data-bound control.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

230 Part II Power to the Client

 In classic ASP.NET, though, you do your job entirely on the server, where you have available
to you powerful designer tools such as the Microsoft Visual Studio 2008 Web Forms designer,
fi rst-class languages such as C#, and the power of the full .NET Framework.

 Defi ning HTML templates to be used from within the client browser in a JavaScript
 environment is a bit more complicated. Likewise, creating automated HTML factories in
JavaScript might not be a walk in the park. Nonetheless, effective AJAX solutions require
powerful data binding, and they require it to happen entirely on the client side.

Defi ning the Data Source

 Many .NET classes can be used as data sources—and not just those that have to do with
database content such as ADO.NET data containers. In ASP.NET, any object that exposes
the IEnumerable interface is a valid bindable data source. Many bindable objects, though,
 actually implement more advanced versions of IEnumerable, such as ICollection and IList.

Feasible Data Sources in ASP.NET

 The IEnumerable interface defi nes the minimal application programming interface (API) to
enumerate the contents of the data source:

public interface IEnumerable

{

 IEnumerator GetEnumerator();

}

 Richer interfaces such as ICollection and IList add other members, including Count, CopyTo,
Add, and Remove. In particular, you can bind a Web control to the following classes:

■ ADO.NET container classes such as DataSet, DataTable, and DataView

■ Data readers

■ Custom collections, dictionaries, and arrays

 To be honest, I should note that the DataSet and DataTable classes don’t actually implement
IEnumerable or any other interfaces that inherit from it. However, both classes do store
 collections of data internally. These collections are accessed using the methods of an
 intermediate interface—IListSource—which performs the trick of making DataSet and
DataTable classes look like they implement a collection.

 Today, as it will be in the near future, the most common approach is binding controls to
 collections of custom objects. Custom objects, then, will be more and more a representation
of entities from the problem’s domain created using ad hoc frameworks such as LINQ-to-SQL
and Entity Framework.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 7 Client-Side Data Binding 231

Data Binding Properties

 All data-bound controls implement the DataSource and DataSourceID properties, plus a few
other properties that serve the purposes of certain data-bound controls.

 The DataSource property lets you specify the data source object the control is linked to. Note
that this link is logical and does not result in any overhead or underlying operation until you
explicitly bind the data to the control.

 You activate data binding on a control by calling the DataBind method. When the method
executes, the control actually loads data from the associated data source, evaluates the
 data-bound properties (if any), and generates the markup to refl ect changes. Here’s the
 declaration of the DataSource property:

public virtual object DataSource {get; set;}

 The DataSource property is declared to be of type object, and it can ultimately accept objects
that implement either IEnumerable (including data readers) or IListSource. By the way, only
DataSet and DataTable implement the IListSource interface.

 The DataSource property of a data-bound control is generally set programmatically.
However, nothing prevents you from adopting a kind of declarative approach as follows:

<asp:DropDownList runat="server" id="theList"

 DataSource="<%# GetData() %>"

. . .

/>

 In this example, GetData is a public or protected member of the code-behind page class that
returns a bindable object.

 The DataSourceID property gets or sets the ID of the data source component from which
the data-bound control retrieves its data. This property is the point of contact between
data-bound controls and a family of data source controls that includes, among others,
SqlDataSource and ObjectDataSource. Here’s the declaration of the DataSourceID property:

public virtual string DataSourceID {get; set;}

 By setting DataSourceID, you tell the control to turn to the associated data source control for
any needs related to data—retrieval, paging, sorting, counting, or updating.

 As mentioned, both DataSource and DataSourceID are available on all data-bound controls.
However, the two properties are mutually exclusive. If both are set, you get an invalid
 operation exception at runtime. Note, though, that you also get an exception if DataSourceID
is set to a string that doesn’t correspond to an existing data source control.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

232 Part II Power to the Client

 Note A few other data binding properties are supported in ASP.NET. They are DataMember,
DataTextField, DataValueField, and DataKeyField.

 DataMember gets or sets the name of the data collection to extract when data binding to a data
source. DataMember has no relevance if you bind to data using DataSourceID with standard
data source components. The DataTextField property specifi es which property of a data-bound
item should be used to defi ne the display text of the nth element in a list control. Similar to
DataTextField, the DataValueField property specifi es which property of a data-bound item should
be used to identify the nth element in a list control.

 Finally, the DataKeyField property gets or sets the name of key fi eld in the specifi ed data source.
The property lets data-bound controls uniquely identify a particular object in the bound list.

Data Binding at the Time of AJAX

 ASP.NET server-side data binding is a mature and consolidated technology backed by a
 number of rich controls for creating grids, lists, and trees to represent hierarchical data. All
the work is done by server controls, and customization is allowed through HTML templates.
Data is specifi ed using a collection of entity objects or ADO.NET containers.

 How can we port this whole solution to the client side?

 In this section, I’ll briefl y outline the key facts of client-side data binding and then explore
them in depth in the remainder of the chapter.

Tools for Effective Client-Side Data Binding

 In a Web scenario, any data to display comes from the server. And the server manages data
in formats that depend on the server platform. In an ASP.NET context, within the Web server,
data is represented as a collection of .NET objects. On the client, however, data must be
 represented in a format that JavaScript can manipulate.

 The fi rst point to deal with is the marshaling of data across the wire and from a .NET
 representation to a JavaScript-compliant representation. In Chapter 3, “AJAX Architectures,”
we identifi ed the ideal marshaling format in JSON, the JavaScript Object Notation format.
ASP.NET AJAX provides a built-in layer of code to automatically expose server data returned
by Windows Communication Foundation (WCF) services as JavaScript objects. Internally, the
transformation is accomplished using JSON as the intermediate format, as shown in Figure 7-1.

 After you have data on the client in a format that you can handle, you need to decide how to
format it into displayable HTML.

 Unfortunately, there are no controls on the client comparable to ASP.NET’s DataGrid control
or any other ASP.NET controls. The browser doesn’t feature any component that, bound
to data, can generate markup, as in classic server-side ASP.NET. Subsequently, you need
a client-side engine that performs data binding, preferably with some template support.
Currently, ASP.NET AJAX is not much help here.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 7 Client-Side Data Binding 233

Browser JavaScript
object

Web
Server

.NET
object

JavaScript
Proxy

AJAX-Enabled
Service Layer

JSON

FIGURE 7-1 Marshaling data from the server side to the client side

 How can you build such a client-side engine for data binding?

 Out of the box, the browser has only two low-level tools for turning data into HTML. One is
the innerHTML property. Exposed by all elements in the Document Object Model (DOM),
this property replaces the content of the element with the provided HTML string. A similar
 functionality is also offered by the somewhat slower DOM API. The standard DOM API works
by creating and editing a tree of objects that represent HTML elements and related attributes.

 In the end, a client-side engine for data binding must fi rst be able to generate HTML based
on an array of JavaScript objects. The fi nal layout can be determined algorithmically, or it
can result from HTML templates. The production of the HTML is not a process completely
 separated from displaying the content. If you opt for generating HTML as a string, you can
display it only via the innerHTML property—the faster option. Otherwise, you can opt for
 designing the desired HTML layout by composing a tree of HTML elements via the DOM API.
In this latter case, you make a tradeoff between fl exibility and speed of rendering.

 Note I guess that after reading these words some readers might reasonably wonder whether
things really can be more fl exible than creating a string. My point here is contrasting two
 approaches for generating HTML—building an HTML string via code, or specifying an HTML
template and having some library do the rest. Building an HTML string via code is, these days, a
task that is greatly simplifi ed by a client-side StringBuilder object that the Microsoft AJAX library
has made available. In this way, you write HTML the way you want as you write code for it.

 Again, is there a way to gain more fl exibility? Flexibility is a concept with many attributes and
 variables, and although we may agree on a general defi nition, it may mean slightly different things
to different people. In this context, I believe that the key question to answer is, how easy will be
modifying the HTML you produce via code? Sometimes a simple modifi cation to an HTML template
can do the trick much quicker and in a less error-prone way. On the other hand, if changes require
you to add a lot of logic to the rendering process, the fl exibility of code is largely unparalleled.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

234 Part II Power to the Client

Partial Rendering Is Still an Option

 In Chapter 2, “The Easy Way to AJAX,” we explored ASP.NET partial rendering and labeled it
as the easy way to AJAX. The key fact about partial rendering is that it provides an excellent
compromise between the need to implement asynchronous data loading and display and the
desire to use the same, familiar ASP.NET application model.

 Data binding is certainly a hot topic these days for Web applications. It represents one of the
most diffi cult tasks to implement in an AJAX way, if only because there is no (current) framework
support. Applied to data binding, partial rendering is still a viable option for the time being.

 The main problem we face today is the lack of proper tools on the client to turn data into
HTML quickly and effectively. Options do exist, but the likelihood is high that you’ll fi nd holes
in any options when you try to apply them to your particular context. Later in this chapter,
we’ll examine a preview of ASP.NET AJAX 4.0, which is scheduled to be released later in 2009.
ASP.NET AJAX 4.0 is a promising attempt from Microsoft to supply a powerful and effective
platform for client-side, data-driven applications.

 Limited to data binding, the UpdatePanel control and the entire partial rendering paradigm
is an option to consider. I recommend taking a careful look at it, especially if you need a rich
data display that includes sorting, paging, and fi ltering capabilities. Obtaining that through
partial rendering takes only a moment. Getting the same functionality via a pure AJAX
 approach defi nitely takes more time and might be a more error-prone approach.

 On the other hand, as you might recall from Chapter 2, the UpdatePanel control works on
top of a full postback that includes the transportation of full view state and the execution of
almost the entire page life cycle. However, rendering happens on the server, where you have
a lot of powerful tools to control the HTML being produced.

 In partial rendering, the response is much smaller than in classic ASP.NET, but the whole
 request isn’t really faster. In practice, though, this might not be a problem. What Web
 application do you want? What’s most important for you? Is it pure performance? Or is it the
quality of the user experience? If it’s the latter, partial rendering might still work for you.

 A pure AJAX approach almost always performs better than an approach based on partial
rendering. When the rendering happens on the client and the server sends back only data,
the response is usually tiny—several times smaller than a classic ASP.NET response. However,
this simple fact alone doesn’t make it a full-fl edged solution. To be really effective and also to
substantially reduce the number of roundtrips, it has to be combined with an effective HTML
generation engine and client-side caching.

 As of today, no tools exist that are quick to use, effective, mature, and consolidated. Someone
will certainly develop such tools one day, and probably in the not-too-distant future. Until then,
partial rendering will remain an option for data binding, and any other pure AJAX approach
will require lots of work on your part or it will require you to use third-party products.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 7 Client-Side Data Binding 235

The Browser-Side Template Pattern

 Let’s see what you can do yourself to implement a client-side data binding solution. Aside
from partial rendering, you can take one of two routes. You can have the Web server send
only data to the client and have the client prepare HTML either algorithmically or based on
templates. This approach is referred to as the Browser-Side Template (BST) pattern.

 The second option entails the server generating and returning HTML. This approach is known
as the HTML Message (HM) pattern. With this approach, the request is less effi cient than
with BST, but it’s much faster and smaller than with partial rendering. And it doesn’t require a
powerful JavaScript framework.

 Let’s attack browser-side template fi rst.

Generalities of the BST Pattern

 HTML is a text format; so ultimately creating an HTML display is a matter of creating a big
string of text. You can loop over the bound data and algorithmically produce a big HTML
string using concatenation and other string manipulation tools. This approach works. Period.
But is it a solution that’s effi cient and easy to maintain?

 The BST pattern is centered on rules to produce a string of HTML markup as the fi nal output
while having a collection of objects with a few public properties as the input. The idea behind the
pattern is that you use HTML templates to defi ne how you would like the fi nal HTML to appear.
And then you employ a relatively simple (and separated) engine to bind data to the template.

The BST Pattern Explained

 In the design of a client-side engine for data binding, you need to strive for separation
 between the user interface and presentation logic. The user interface is the HTML you
 produce; the presentation logic is the logic you use to combine data and HTML elements.

 The user interface is expressed using HTML templates—namely, hidden chunks of HTML that
contain placeholders for actual data. At rendering time, such templates become the input of
a tailor-made JavaScript framework that parses the HTML and expands placeholders based
on bound data.

 The resulting HTML is then displayed using the innerHTML property. Alternatively, the
JavaScript client engine might parse the HTML templates to a DOM tree. However, in this
case the burden of the JavaScript would be signifi cant and probably so high as to invalidate
the decision to use HTML templates.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

236 Part II Power to the Client

What’s an HTML Template Exactly?

 I’ve used the expression “HTML template” many times already, but I haven’t yet shown you
an example of what it could look like. Here’s an example:

<tr style="background-color: #F0FAFF;">

 <td align="left"> #Symbol </td>

 <td align="right"> #Quote </td>

 <td align="right"> #Change </td>

</tr>

 The template contains standard HTML elements and placeholders defi ned using a
 framework-specifi c declarative syntax. In the example, #Quote and other similar strings
 represent placeholders for bound data. Marking placeholders with a leading # symbol is an
arbitrary choice made by the author of the JavaScript framework. In other words, you can use
any syntax you like as long as the JavaScript binding engine can recognize it. (The code later in
the chapter will distinguish between the property to be substituted and the background color.)

 You might think of placeholders as context variables to be substituted in at rendering time.
Clearly, such a template gives it more fl exibility than a static HTML page.

 As you can see, the preceding HTML template is a partial chunk of HTML. Taken alone, an
HTML template doesn’t represent a displayable piece of HTML. This poses another problem.
How do you place a template in a Web page without disturbing the browser? As you know,
each browser could react differently to incomplete or invalid markup. In some cases, there’s
a risk that the HTML template leaks in the displayed document without it having been
 massaged fi rst.

 There are many ways to hide HTML fragments in a Web page. You can use, for instance,
 customized HTML tags. You can use XML data islands. Or you can use plain HTML tags
that are hidden from view using CSS styles. Here’s an example that combines XML data
 islands and CSS styles:

<xml id="item" style="display:none">

 <tr style="background-color:#F0FAFF;">

 <td align="left"> #Symbol </td>

 <td align="right"> #Quote </td>

 <td align="right"> #Change </td>

 </tr>

</xml>

 The combination of a browser-supported tag and the no-display CSS style ensures that the
markup is correctly loaded in the DOM but is not displayed until some code runs to turn it on.

Mixing Data and Templates

 For data binding to happen, you need a JavaScript component that loads the content of the
template and parses it. In doing so, the component will recognize and expand placeholders
to include bound data.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 7 Client-Side Data Binding 237

 The JavaScript component is not a generic HTML builder. Instead, it must be targeted to a
particular HTML layout—either a grid, a list, or perhaps a hierarchical tree. In a sense, the
JavaScript component is a sort of client-side control that incorporates a rendering algorithm
and makes it customizable through templates and public members.

 In general, you can have many such components—one for each data-bound layout you
 intend to use and support. Each layout can, in turn, support one or multiple HTML templates.
For example, to obtain a simple list of data items, you might want to defi ne three templates:
header, footer, and item. The item template is the only one that will reasonably support
 binding. The JavaScript HTML list builder will fi rst render the header. Next, it will look
through the bound data collection and render an instance of the item template for each
bound data item. Finally, it will render the footer.

 This is the simplest possible approach to building HTML on the client because it barely
implements the minimal set of features one would expect from a browser-side template and
binding engine. As we’ll see in a moment, in the real world you need a more sophisticated
HTML builder that accepts a few function delegates to style any piece of bound data before
it’s appended to the HTML buffer. Put another way, you need a JavaScript component with a
programming model that looks similar to that of an ASP.NET data-bound control. Whereas
a DataGrid control fi res an ItemDataBound event, the JavaScript HTML builder will execute a
JavaScript callback to customize the rendering process to a large extent.

Dual-Side Templating

 The Dual-Side Templating pattern is a variation of BST that attempts to combine server and
client code to optimize the rendering process and make it the smoothest whenever and
wherever possible. Suppose you need to display a grid of data and want it to automatically
refresh at a given interval. The periodic refresh can be achieved via AJAX by placing a remote
call to some service, grabbing data, and displaying that data through client-side data binding
and HTML templates. But what about the initial display of data?

 You have a few options.

 First, you can fi re a call to the service and grab data as soon as the page is loaded from the
Web server. After it’s on the client, the data is processed by the HTML builder and packaged
into markup using embedded HTML templates. You reuse the same scheme you would use
for periodic updates. The model doesn’t change, but you fi re an extra request to the service
and delay the fi rst display of the page.

 A second option to consider is one that addresses the latter point—it delays the fi rst display
of the page. You grab any data to be bound on the server and serve it to the client using
a pre-initialized JavaScript variable. Upon loading the data, you have some ad hoc code
to read data from the variable and build the markup accordingly. Again, you have just one
rendering model and save an extra roundtrip. On the fl ip side, you have some extra code to
embed (and run) in the page startup.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

238 Part II Power to the Client

 A third option to consider entails the server just serving up the initial display of the grid as
plain HTML. At the same time, ad hoc HTML templates and JavaScript will be embedded in
the page as usual. When needed, an asynchronous request is placed, data is downloaded and
packaged into markup, and fi nally data is displayed, replacing the initial grid.

 Ultimately, dual-side templating is an optimization of BST and the key difference is in the
content of the page placeholder that receives and hosts data. The placeholder is empty in
classic BST. The placeholder is either fi lled programmatically on the client or populated on
the server in dual-side templating. As a general recommendation, if you’re considering using
BST, you should also consider using dual-side templating.

Creating a BST Reference Implementation

 A key achievement of the BST pattern is separating the code that produces the view of
data from the data displayed in the view. This concept can be summarized for ASP.NET
 developers by saying that you need the JavaScript counterpart of data-bound server
 controls. In JavaScript, this means having a set of specifi c HTML builders exposing their own
 programming model.

 Let’s go through an example of how to design and implement an HTML builder that renders
a template-based grid of data.

BST: The Big Picture

 In Figure 7-2, you see the full diagram of the steps involved in a BST solution. The page
 contains the hidden HTML templates to be used, and it also defi nes a placeholder for the
area where the downloaded data should be displayed.

Browser

Placeholder Refresh

Browser

HTML Template

Refresh

Callback to process data JSON

Web ServerHTML builder at work

Invoke a Web service to get data
from the server

HTML Template

CONT

Symbol Last Change

FICT

FOD

NWIND

8.3

1.45

81.5

3.82

+1.3

–0.3

+0.1

+2.9

FIGURE 7-2 Browser-side templates in action

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 7 Client-Side Data Binding 239

 The user triggers a remote call that downloads some data to the client. The data is managed by a
JavaScript callback, which takes care of instantiating a new breed of component—the HTML builder.

 The HTML builder receives a reference to one or more HTML templates in the page DOM and
the downloaded data, and it returns an HTML string. Finally, the callback injects the string in
the page DOM. Figure 7-3 is a preview of the sample page we’ll start building in a moment.

FIGURE 7-3 The fi nal data-bound page in action

 This said, let’s have a look at some code.

Preparing the Page

 The heart of BST is a JavaScript class that implements the rendering engine. In the sample
implementation I’m presenting here, this class is named HtmlListBuilder. The class accepts up
to three HTML templates—for the header, footer, and data-bound items. You can reference

http://lib.ommolketab.ir
http//lib.ommolketab.ir

240 Part II Power to the Client

these templates directly from the DOM or specify them as plain string literals. Here’s an
 excerpt of the initialization code for each page with data binding capabilities:

// This variable represents an HTML builder component

var builder = null;

// Using the Microsoft AJAX client library

function pageLoad()

{

 if (builder === null)

 {

 builder = new Samples.HtmlListBuilder();

 builder.loadHeader($get("header"));

 builder.loadFooter($get("footer"));

 builder.loadItemTemplate($get("item"));

 }

}

 You can embed HTML templates directly in the page in invisible <div> tags. This works
as long as the markup in the block is well formed. However, this is not always possible. As
you’ll see in a moment, when building a table you can’t just express header, footer, and item
 templates as three independent and well-formed HTML fragments.

 Note Here we are making an important (and implicit) assumption: each necessary template must
be expressed individually. Another option would be to use just one complete HTML template
that uses some ad hoc syntax to indicate which parts are to be repeated for each data item and
which ones are either static or data-bound but repeated only once. In many cases, using just one
 complete template works, and this is the approach taken by ASP.NET AJAX 4.0. The approach in
this demo is more akin to what happens in ASP.NET server controls, where you have a distinct
HTML template property for each portion of the fi nal user interface you want to customize.

 A better option is to embed templates as XML data islands, as shown here:

<xml id="header" style="display:none;">

 <table cellpadding="4" cellspacing="2">

 <tr style="background-color:#6B696B;color:White;">

 <th>SYMBOL</th>

 <th>LAST</th>

 <th>CHANGE</th>

 </tr>

</xml>

<xml id="footer" style="display:none;">

 </table>

</xml>

<xml id="item" style="display:none;">

 <tr">

 <td align="left"> #Symbol </td>

 <td align="right"> #Quote </td>

 <td align="right"> #Change </td>

 </tr>

</xml>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 7 Client-Side Data Binding 241

 As you can see, the template is a chunk of HTML that refers to binding fi elds using a custom
notation. In this case, I’m using the #PropertyName expression to indicate the placeholder for
a bound value. In particular, the expression refers to the value of the property PropertyName
on the currently bound data item. The syntax you use to identify the bound value is totally
arbitrary; any expression that you know how to parse within the HTML builder might work.
When data is fi nally available, you invoke the bind method on the HTML builder and obtain
the generated HTML as a string.

 The following code shows how to make a call to a WCF service that returns a collection of
objects. Each object represents the current quote and last change of a stock symbol.

// Invoked after a user clicks some UI button

function getLiveQuotes()

{

 // Invoke a WCF service that gets updated stock quotes. Note that

 // you are actually calling a service defined in your domain. If needed

 // the service will implement the Cross-Domain Proxy pattern and forward your

 // call to a remote service.

 Samples.WebServices.LiveQuoteService.Update(onDataAvailable);

}

// Callback invoked when the results of the service call have been downloaded

function onDataAvailable(results)

{

 // The variable results contain the JavaScript version of the

 // service response. This is expected to be a collection of JavaScript objects.

 // Have the HTML builder generate the HTML markup

 var html = builder.bind(results);

 // Display the markup within the browser

 $get("grid").innerHTML = html;

}

 Clearly, in this example the element named grid is the placeholder in the page that expects to
receive the fi nal output.

The HTML Builder

 The component responsible for combining HTML templates and external data is the Samples.
HtmlListBuilder object. An instance of this JavaScript object is created upon page loading and
properly initialized by loading HTML templates:

builder = new Samples.HtmlListBuilder();

builder.loadHeader($get("header"));

builder.loadFooter($get("footer"));

builder.loadItemTemplate($get("item"));

 An HTML builder is essentially a factory for HTML markup and implements a fi xed rendering
algorithm. As mentioned, the algorithm for the HtmlListBuilder component consists of looping
through the bound data and applying a template for each item. Before and after the item
 template, the builder applies a static (that is, not data-bound) template for the header and footer.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

242 Part II Power to the Client

 The component can be written in plain JavaScript or by using any JavaScript library with
a fl avor of object orientation. In this case, I’ll use the Microsoft AJAX client library. The
 following code shows the constructor of the component:

Type.registerNamespace('Samples');

// Class constructor

// This code gets called when you instantiate this class

Samples.HtmlListBuilder = function Samples$HtmlListBuilder()

{

 // Calls the base constructor, if any

 Samples.HtmlListBuilder.initializeBase(this);

 // Initializes the private members

 this._header = "";

 this._footer = "";

 this._itemTemplate = "";

}

Samples.HtmlListBuilder = function Samples$HtmlListBuilder(header, footer)

{

 // Calls the base constructor, if any

 Samples.HtmlListBuilder.initializeBase(this);

 // Initializes the private members

 this._header = header;

 this._footer = footer;

 this._itemTemplate = "";

}

 When you instantiate the builder, you can optionally provide header, footer, and item
 templates via the constructor. In this case, templates must be passed in as plain HTML strings.

 If you don’t specify templates through the constructor, you’ll use ad hoc members to set
them. In particular, the builder features three properties—one for each supported template.

// PROPERTY header: string

function Samples$MarkupBuilder$get_header()

{

 if (arguments.length !== 0)

 throw Error.parameterCount();

 return this._header;

}

function Samples$MarkupBuilder$set_header(value)

{

 // Note Function._validateParams is defined by the AJAX Framework...

 var e = Function._validateParams(arguments, [{name: 'value', type: String}]);

 if (e)

 throw e;

 this._header = value;

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 7 Client-Side Data Binding 243

// PROPERTY footer: string

function Samples$MarkupBuilder$get_footer()

{

 if (arguments.length !== 0)

 throw Error.parameterCount();

 return this._footer;

}

function Samples$MarkupBuilder$set_footer(value)

{

 var e = Function._validateParams(arguments, [{name: 'value', type: String}]);

 if (e)

 throw e;

 this._footer = value;

}

// PROPERTY itemTemplate: string

function Samples$MarkupBuilder$get_itemTemplate()

{

 if (arguments.length !== 0)

 throw Error.parameterCount();

 return this._itemTemplate;

}

function Samples$MarkupBuilder$set_itemTemplate(value)

{

 var e = Function._validateParams(arguments, [{name: 'value', type: String}]);

 if (e)

 throw e;

 this._itemTemplate = value;

}

 In the Microsoft AJAX client library, you defi ne properties using a pair of functions: one for
 accessing the value, and one for assigning the value. Moreover, the library provides some helpers
to validate parameters, such as the _validateParams method, which takes the list of arguments
used in the function call and validates it against the provided list of expected arguments.

 The header, footer, and itemTemplate properties don’t contain any special logic. All that
 properties do internally is check input and manage an associated private member. HTML
template properties can also be set programmatically using the content of the DOM subtree.
Here’s the list of methods you can use:

// METHOD:: loadHeader()

function Samples$MarkupBuilder$loadHeader(domElement)

{

 var temp = domElement.innerHTML;

 this._header = temp;

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

244 Part II Power to the Client

// METHOD:: loadFooter()

function Samples$MarkupBuilder$loadFooter(domElement)

{

 var temp = domElement.innerHTML;

 this._footer = temp;

}

// METHOD:: loadItemTemplate()

function Samples$MarkupBuilder$loadItemTemplate(domElement)

{

 var temp = domElement.innerHTML;

 this._itemTemplate = temp;

}

 The loadHeader, loadFooter, and loadItemTemplate methods take a DOM reference and
 extract the HTML out of it to save back into the property.

 Finally, the generation of HTML takes place in the bind method. This is where the rendering
algorithm is implemented:

function Samples$MarkupBuilder$bind(data, callback)

{

 var temp = this._generate(data, callback);

 return temp;

}

function Samples$MarkupBuilder$_generate(data, itemCallback)

{

 var pattern = /#\w+/g; // regular expression

 var _builder = new Sys.StringBuilder(this._header);

 for(i=0; i<data.length; i++)

 {

 var dataItem = data[i];

 var template = this._itemTemplate;

 var matches = template.match(pattern);

 for (j=0; j<matches.length; j++)

 {

 var text = matches[j];

 var memberName = text.slice(1);

 // Invoke a callback to further modify the data to be bound

 var memberData = dataItem[memberName];

 var temp = memberData;

 if (itemCallback !== undefined)

 {

 temp = itemCallback(memberName, dataItem);

 }

 template = template.replace(matches[j], temp);

 }

 _builder.append(template);

 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 7 Client-Side Data Binding 245

 _builder.append(this._footer);

 // Return the markup

 var markup = _builder.toString();

 return markup;

}

 The bind method takes two arguments. One is the JavaScript array representing the data to
bind. The other is the JavaScript callback to be invoked during the rendering to personalize
individual items based on run-time conditions and data values. I’ll return to discussing the
role of the callback in a moment.

 The bind method essentially accumulates HTML text in a buffer. The buffer is represented by
a Sys.StringBuilder JavaScript object. As a fi rst step, the header template is loaded into the
buffer. Next, a loop is started over the bound collection of data. The item template string
is parsed to isolate all substrings that match the syntax you used for data bindings. In the
sample code, bindings take the form of #PropertyName.

 The following regular expression recognizes all occurrences of words prefi xed by the #
symbol:

var pattern = /#\w+/g;

 The match method on the JavaScript string object takes the expression and returns an array
of matching substrings. For each match, you fi rst cut off the leading # character and then
replace the property name with the actual value for that property in the current data item.

 At the end of the loop, the footer template is appended to the buffer and the entire buffer is
then returned to the caller.

 Note The list rendering pattern discussed here is common and can be applied to nearly all
 possible markup layouts you can think of. Obviously, you might want to create more specifi c
rendering algorithms, such as one for rendering a grid or a tree. The need for a more specifi c
rendering algorithm might also arise from the need to use more specifi c callbacks to customize
particular portions of the user interface.

Customized Item Rendering

 Is there anything in this code that we can improve? The code presented in this chapter barely
implements the minimal set of features that one would expect from a browser-side template
and binding engine. Let’s have another look at Figure 7-3, which presents current quotes and
changes for some stock prices. Wouldn’t it be nice if you could render in red the stocks that
have fallen and render in green stocks that have risen?

http://lib.ommolketab.ir
http//lib.ommolketab.ir

246 Part II Power to the Client

 In a classic server-side data binding model, you likely use a DataGrid or GridView control to
produce the HTML. For a GridView, for instance, you can handle the RowDataBound event of
the GridView control and directly modify the style of the cells involved:

void GridView1_RowDataBound(object sender, GridViewRowEventArgs e)

{

 // Let's assume cell #2 contains the current change and the

 // change is a string that already includes a leading + for

 // rising stocks and a leading – for falling stocks.

 if (e.Row.Cells[2].Text.StartsWith("+"))

 e.Row.Cells[2].ForeColor = Color.Green;

 else if (e.Row.Cells[2].Text.StartsWith("-"))

 e.Row.Cells[2].ForeColor = Color.Red;

}

 As you can see, this is neat and effective. Unfortunately, this is a server-side solution.

 In a client-side solution, you need a more sophisticated HTML builder that accepts one
or more JavaScript callbacks. JavaScript callbacks will be used essentially to inject some
 custom code and massage any piece of bound data before it’s appended to the buffer. Such
JavaScript callbacks can be given any programming interface that works for you.

 In the following example, you see a slightly modifi ed version of the code shown earlier. The
code invokes a remote service and grabs data asynchronously. Data is then passed to the
HTML builder along with a JavaScript callback. As a result, the generated markup includes
the standard HTML layout hard-coded in the builder, plus any page-specifi c customization
applied by the callback.

// Invoked after a user clicks on some UI button

function getLiveQuotes()

{

 // Grab data from a remote source

 Samples.WebServices.LiveQuoteService.Update(onDataAvailable);

}

// Callback invoked when the results of the service call have been downloaded

function onDataAvailable(results, applyFormatting)

{

 // Have the HTML builder generate the HTML markup using the

 // callback to further style the output

 var html = builder.bind(results, applyFormatting);

 // Display the markup within the browser

 $get("grid").innerHTML = html;

}

// Callback function to personalize the markup

function applyFormatting(memberName, dataItem)

{

 var propValue = dataItem[memberName];

 if (memberName === "Change" && propValue.charAt(0) === "+")

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 7 Client-Side Data Binding 247

 {

 return "" + propValue + "";

 }

 if (memberName == "Change" && propValue.charAt(0) === "-")

 {

 return "" + propValue + "";

 }

 return propValue;

}

 As mentioned, the prototype of the callbacks, as well as the injection points, are entirely
up to you. In this case, the rendering callback is invoked for each bound data item and for
each binding element found in the item template. As an example, for the following HTML
 template, the callback is invoked three times for each element in the collection to personalize
the markup for the Symbol, Quote, and Change properties:

<xml id="item" style="display:none;">

 <tr >

 <td align="left"> #Symbol </td>

 <td align="right"> #Quote </td>

 <td align="right"> #Change </td>

 </tr>

</xml>

 In the example, the callback is expected to receive the data item itself plus the name of the
property for which it’s invoked. The idea is to style the content of the Change property in a
way that refl ects the course of the stock—green for a stock rising in price, and red for a stock
that is falling in price.

function applyFormatting(memberName, dataItem)

{

 // Return the modified markup to append to the buffer

}

 The callback returns a string containing the modifi ed markup to be appended to the
 builder’s buffer.

Customized Markup Rendering

 The approach discussed can be further extended and applied virtually to any piece of the
markup the builder is generating. Put another way, wherever you have a #Word expression
in the HTML templates, you can have a piece of JavaScript to dynamically expand it to a
 data-bound or static chunk of HTML. Let’s consider the following template:

<xml id="item" style="display:none;">

 <tr>

 <td align="left"> #Symbol </td>

 <td #Style1 align="right"> #Quote </td>

 <td align="right"> #Change </td>

 </tr>

</xml>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

248 Part II Power to the Client

 As you can see, the second <td> element contains a #Style1 expression. Because the
 expression matches the #Word pattern, it will be caught by the regular expression manager.
As a result, the rendering callback is invoked with the following arguments:

applyFormatting("Style1", dataItem)

 Any string the function returns is substituted for the #Style1 expression in the template.
Here’s a possible example:

function applyFormatting(memberName, dataItem)

{

 if (memberName === "Style1")

 {

 if (dataItem["Change"].charAt(0) === "+")

 return "style='background-color:yellow;'";

 else

 return "";

 }

. . .

}

 If the data item currently being bound represents a rising stock, the background color of
the cell that contains the #Style1 expression is styled as yellow. (See shaded numbers in the
Last column in Figure 7-4.) Note that legitimate constructs using the “#” notation, such as
CSS color values, are also provided to the applyFormatting method. However, once there, the
color values are ignored (they don’t match a named property in the data item).

 By injecting JavaScript callbacks in the rendering process that generates the markup for the
incoming data, you gain a lot of fl exibility and can achieve nearly any combination of styles,
data, and markup you might dream of.

 Note The HTML templates you use for data binding might contain elements with a unique
ID. These elements can be further referenced and scripted but not until the HTML template is
processed by the browser. After the innerHTML property of a page element has been updated
to include an element with a given ID, you can start scripting that element. The following code
shows exactly how to do that:

function onDataAvailable(results)

{

 // Bind data

 var temp = builder.bind(results, applyFormatting);

 // Update the UI

 $get("grid").innerHTML = temp;

 // Now you can script elements (such as "lblProvider") in the HTML templates

 $get("lblProvider").innerHTML = results[0].ProviderName;

}

 An HTML template defi ned as pure HTML and stored in a hidden <div> tag is still part of the
DOM, so you’re not strictly required to wait until the template is bound and displayed within
its page container. However, the empirical rule of waiting for the template to display before
you script template elements keeps you on the safe side in case the technology used for HTML
 templates is not entirely based on plain HTML.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 7 Client-Side Data Binding 249

FIGURE 7-4 Customized rendering for data-bound pages

Making Your Solution Juicier with jQuery Effects

 The jQuery library contains a number of visual facilities and effects that you can employ
 during data binding. For example, you can hide or overlay the template for the time it takes
for fresh data to be downloaded. When data is received, you can update the template in the
background and fade it in slowly.

 The following code shows a jQuery-enabled version of the callback that displays data-bound
templates after a remote call to a service is made:

function onDataAvailable(results)

{

 // Bind data and update the UI

 var markup = builder.bind(results, applyFormatting);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

250 Part II Power to the Client

 // A bit of jQuery animation

 $("#grid").fadeOut(1000, function() {

 // Update the DOM with the data-bound template

 $("#grid").html(markup);

 // Display the grid with a fade-in effect

 $("#grid").fadeIn(1000);

 });

 // Display service description

 updateServiceDescription(results[0].ProviderName);

}

 The fadeOut method hides the content of the specifi ed DOM element (the grid) in one
 second. At the end of the fade-out algorithm, the specifi ed callback runs to update the
 innerHTML property of the grid and fade it in slowly in one second.

The HTML Message Pattern

 The BST pattern forces you to generate any HTML you need in the browser using the
JavaScript language. In general, this is a good thing because it allows you to isolate all (or,
at least, most) of the presentation logic in the one tier. In addition, by using templates and
JavaScript callbacks you can keep up with the inherently dynamic nature of HTML and
 manage to accommodate characteristics of the data and the user’s expectations.

 Templates help you a lot in wedding code fl exibility with ease of maintenance. A
 general-purpose class such as the HtmlListBuilder presented here completes the offering and
closes the circle. You can’t reasonably rely on plain JavaScript statements to generate HTML
and mix generation with sprinkles of presentation logic. Code will soon get too complex,
hard to read, and inevitably error-prone. Helper classes, which are better if developed with
the help of a rich framework such as the Microsoft AJAX client library, come to the rescue.

 Although the BST approach seems to perfectly embody the philosophy of AJAX, you should
also wonder whether it’s the only approach possible to building data-driven applications that
don’t cause full postbacks and page reloads.

 Let’s consider an alternative to the browser-side templating model. In particular, I’ll
 present here the HTML Message (HM) pattern, which is a smarter implementation of the
 partial-rendering feature of ASP.NET AJAX.

Generalities of the HM Pattern

 According to the HM pattern, the server-side code is responsible for generating blocks of
HTML markup to be displayed in the browser. A user action that requires, say, a grid refresh
generates an HTTP request that the ASP.NET application resolves by responding with an
HTML fragment.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 7 Client-Side Data Binding 251

 How is this approach different from classic ASP.NET or ASP.NET partial rendering? Isn’t partial
rendering just returning a piece of HTML? What’s the point of using the HM pattern?

The HM Pattern Explained

 In HM, you still need to write a good deal of JavaScript in client pages. So typically you
place a call to a remote Web or WCF service (or even a plain ASP.NET page method) using
JavaScript. This step marks a huge difference from classic ASP.NET. So what, then, is the
 difference between HM and BST?

 Unlike BST, an HM solution is based on the idea that you receive ready-made, data-bound
markup from the server instead of plain data. In this way, the logic required on the browser
side is extremely thin and simple. All that is required, in fact, is merely the display.

 A possible implementation of the pattern entails that you make a call to a remote URL
to receive an HTML snippet ready for display. The remote URL can either be a Web or
WCF service or an ad hoc HTTP handler. The client asks the server for some data, and the
server returns data plus layout and style information. The request is still asynchronous and
 AJAX-based; the size of the response should generally be small and subsequently limited to
relatively short snippets to preclude lengthy update delays or partial UI fl ashing. Figure 7-5
shows the mechanics of the HM pattern.

Browser JavaScript
object

Web Server

JavaScript
Proxy

AJAX-Enabled
Service Layer

JSON HTML

FIGURE 7-5 The mechanics of the HM pattern

 On the client, the HTML snippet is appended to the DOM by using the innerHTML property
of the designated container. In an HM scenario, the service or the HTTP handler that returns
HTML snippets is clearly application-specifi c, because the HTML response is closely tied to
the application’s display style and expectations.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

252 Part II Power to the Client

Motivation for Using the HM Pattern

 At fi rst glance, you might reasonably wonder what the point of using the HM pattern is. The
pattern is concerned with making a request and getting HTML fragments back. As you know,
HTML fragments typically contain both markup and data. But in an AJAX world, we tend to
prefer to minimize content transfer by moving around only data and leaving any layout and
formatting of information to the client.

 If you delve deeper, you can fi nd other reasons for not using the HM pattern. Here’s a
brief list of shortcomings. Be cautious with HTML responses because such responses might
not only affect bandwidth but also create an undesired coupling between the server-side
 services and pages. If this happens, at a minimum, you might fi nd it hard to develop the
middle and presentation tiers simultaneously. Furthermore, any change you decide to make
to the structure of the user interface most likely will have an impact on the server-side HTML
 factory and will therefore increase coupling there. Finally, a naïve implementation of the
server-side code might lead to coupling the HTML factory with business logic. However,
when you opt for this pattern, it’s always a good idea to work to keep the HTTP endpoint
and the HTML factory at a low level of coupling. By doing this, changes to the HTML factory
don’t affect the outermost HTTP endpoint—be it a WCF service or an ASP.NET HTTP handler.

 Note that in this section, which is trying to explain the motivation for using the HM pattern,
I still have yet to provide a single valid reason to justify the use of the pattern. This weird
 approach is deliberate.

 The HM pattern is the offspring of the classic request-for-markup Web model. The difference
is that you now use XMLHttpRequest to carry the request instead of the request being
 browser-led. When is HM recommended?

 If you’re porting an existing large application to AJAX, it’s not unusual that you work with
conventional ASP.NET pages where all the HTML generation happens on the server side. In
cases where you have a large quantity of legacy code, you might fi nd it quicker to implement
HTML responses to preserve existing code as much as possible. (Keep in mind that an HM
solution is still more effi cient than partial rendering, though not as fast to implement.)

 Another scenario in which you might want to consider using HM is when your presentation
code and markup are particularly complex and you prefer to build it on the server, where you
can rely on more powerful programming languages and tools. Finally, another valid situation
to use it in is when your team has a clear server-side programming bias and doesn’t feel
 particularly comfortable using JavaScript.

BST vs. HTML Message

 The HM pattern moves the entire burden of UI generation to the server and, in particular,
to the endpoint you call from the client. On one hand, the HM pattern allows you to use
 managed code to implement any complex logic required to generate the markup. On the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 7 Client-Side Data Binding 253

server, you can read confi guration fi les, connect to remote services, and access databases of
HTML templates with a freedom and programming power that is impossible to obtain within
the client browser using BST.

 At the same time, with HM you write the code that generates the markup without having
much help from visual tools such as designers. This means that any required changes to the
markup have to be addressed with C# code and there’s no clear separation between layout,
data, and code-behind fi les vs. layout/markup fi les.

 A possible workaround consists of defi ning some internal ASP.NET pages that the service
queries for markup in a server-to-server scenario. These pages work as templates; they can
be created with Visual Studio 2008 and simply deployed in the same Microsoft Internet
Information Services (IIS) application that hosts the AJAX service layer. These pages will be
invoked programmatically, and the markup they return is then forwarded to the client.

 In addition, the HTML Message pattern tends to generate more traffi c than plain calls going
to a service that returns raw data. I should note, though, that the HTML Message pattern
 results in less traffi c than partial rendering. The more you add styles and HTML sugar, the
more the size of the packet you return grows. In light of this, you can decouple HTML styling
from HTML layout and embed in the markup only references to client-side CSS classes for
styling. If you reduce the HTML markup to just layout and data, the percentage of extra stuff
that is transferred beyond raw data might be signifi cantly smaller.

 However, BST is not free of risks as far as excess data is concerned. If the data objects you
serialize to JSON contain much more data than needed, you still risk consuming more
 bandwidth than strictly necessary. A badly optimized BST solution might be the weaker
 solution when compared with a hyper-optimized HM solution.

 HM is ideal for specifi c and relatively simple actions the user can accomplish from a page,
such as asking to see the balance of an account. In this case, you can develop a simple HTTP
factory, put it behind an HTTP endpoint, and get markup to show directly. But this approach
must be carefully evaluated for data binding and more sophisticated things.

Developing an HM Reference Implementation

 Let’s see what it takes to build a sample application based on the HTML Message AJAX
 design pattern. We’ll just rework the previous example and invoke a service asynchronously
to get a list of stock quotes rendered as a nice-looking HTML grid.

HM: The Big Picture

 In an HM implementation, all the work occurs on the server. From a client perspective, the
AJAX call is a call that brings ready-made HTML to the client that will then be displayed.
(See Figure 7-6.)

http://lib.ommolketab.ir
http//lib.ommolketab.ir

254 Part II Power to the Client

Browser

Placeholder

Browser

Refresh

CONT

Symbol Last Change

FICT

FOD

NWIND

8.3

1.45

81.5

3.82

+1.3

–0.3

+0.1

+2.9

Refresh

HTML

Web Server

Invoke a Web service to get data
from the server

HTML generation
occurs here

Callback to process data

FIGURE 7-6 The HM pattern in action

 The following code shows all that you need to have and run on the client:

function getLiveQuotes()

{

 // Invoke a proxy for a WCF service designed to return HTML responses.

 // Input data is read from a configuration file.

 Samples.FinanceInfoService.GetQuotesFromConfigAsHtml(onDataAvailable);

}

function onDataAvailable(results)

{

 // Update the UI

 $get("grid").innerHTML = results;

}

 From the client, you invoke a service and receive a string as the response. The string is made
of HTML that the AJAX callback just attaches to the innerHTML property of the placeholder
element.

 Note The Dual-Side Template pattern also can be combined with the HTML Message pattern,
which results in pages that fi rst display HTML content generated on the server and then
 periodically, or upon the user’s request, connect and get fresh updates.

The Remote Service

 While discussing the BST example, we didn’t pay much attention to the structure of the
 sample service returning data. All in all, that was a not as relevant an aspect in the context

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 7 Client-Side Data Binding 255

of a BST scenario as it will be for an HM scenario. Things are a bit different if you consider an
HM solution. So let’s briefl y examine what we expect from the data provider service.

 The following bit of code shows the contract of the stock quote service we used in the BST
and HM examples:

[ServiceContract(Namespace="Samples.Services", Name="FinanceInfoService")]

public interface IFinanceInfoService

{

 [OperationContract]

 StockInfo[] GetQuotes(string symbols);

 [OperationContract(Name="GetQuotesFromConfig")]

 StockInfo[] GetQuotes();

 [OperationContract(Name = "GetQuoteseAsHtml")]

 string GetQuotesAsHtml(string symbols);

 [OperationContract(Name = "GetQuotesFromConfigAsHtml")]

 string GetQuotesAsHtml();

}

 The service is built around a couple of internal components—the fi nder and renderer.
The fi nder connects to a given public fi nance service and obtains live data. The fi nder
 component is characterized by an interface, and the actual fi nder class to use is read from
the confi guration fi le. As you can easily imagine, this is an aspect of the implementation that
lends itself very well to the use of dependency injection or some similar patterns, such as
Plugin or Service Locator.

 Any data that is obtained through a fi nder class is then composed into an HTML snippet
using a renderer component. The renderer component exposes an interface and can be
 replaced also by simply changing a setting in the confi guration fi le. The default HTML
 renderer builds a table with some hard-coded styles.

 The following code snippet shows the interfaces of the fi nder and rendered classes:

public interface IFinanceInfoFinder

{

 string ProviderName { get; }

 StockInfo[] FindQuoteInfo(string symbols);

}

public interface IFinanceInfoRenderer

{

 string GenerateHtml(StockInfo[] stocks);

}

 The interfaces guarantee smooth interoperability as the data obtained by the fi nder fl ows
directly into the methods of the renderer.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

256 Part II Power to the Client

 Here’s the implementation of service methods:

public StockInfo[] GetQuotes(string symbols)

{

 // Get the finder component to use (using a locator/factory pattern)

 IFinanceInfoFinder finder = ResolveFinder();

 if (finder == null)

 throw new NullReferenceException("Invalid Finder component.");

 // Find and return quote information

 return finder.FindQuoteInfo(symbols);

}

public StockInfo[] GetQuotes()

{

 // Get the list of symbols from an entry in the configuration file

 string symbols = ResolveSymbolsFromConfig();

 // Return information

 return GetQuotes(symbols);

}

public string GetQuotesAsHtml(string symbols)

{

 // Get stock information

 StockInfo[] stocks = GetQuotes(symbols);

 // Get the Renderer component to use

 IFinanceInfoRenderer renderer = ResolveRenderer();

 if (renderer == null)

 throw new NullReferenceException("Invalid Renderer component.");

 // Generate HTML and return

 return renderer.GenerateHtml(stocks);

}

public string GetQuotesAsHtml()

{

 // Get the list of symbols from an entry in the configuration file

 string symbols = ResolveSymbolsFromConfig();

 // Return information

 return GetQuotesAsHtml(symbols);

}

 An essential implementation of the fi nder component is coded in a base class from which
actual fi nder classes will inherit:

public class BaseFinanceInfoFinder : IFinanceInfoFinder

{

 public BaseFinanceInfoFinder()

 {

 }

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 7 Client-Side Data Binding 257

 public virtual string ProviderName

 {

 get { return "BaseInfoFinder"; }

 }

 StockInfo[] IFinanceInfoFinder.FindQuoteInfo(string symbols)

 {

 return this.FindQuoteInfo(symbols);

 }

 protected virtual StockInfo[] FindQuoteInfo(string symbols)

 {

 return null;

 }

}

 Each fi nder class will override the ProviderName property and the FindQuoteInfo method to
set up a Cross-Domain Proxy pattern, connect to any confi gured service, and grab data.

Markup Rendering

 In the sample implementation, the GenerateHtml method of the renderer builds a table
based on some predefi ned and hard-coded settings. In general, it can use any other style
information that might be passed around from the client. However, the stock quote service is
designed to pick up any renderer “service” that is confi gured as the offi cial HTML generator.
Any interaction between the stock quote service and the renderer occurs through the
IFinanceInfoRenderer interface.

 To actually generate HTML, you can take any possible approach. You can use in-memory
 versions of data-bound server controls, you can extract HTML templates from user controls,
or fi nally, you can build HTML by hand, as shown here:

public class DefaultFinanceInfoRenderer : BaseFinanceInfoRenderer

{

 public DefaultFinanceInfoRenderer()

 {

 }

 protected override string GenerateHtml(StockInfo[] stocks)

 {

 string[] headers = { "SYMBOL", "LAST", "CHANGE", "TIME" };

 string[] columns = { "Symbol", "Quote", "Change", "Time" };

 StringBuilder builder = new StringBuilder();

 // Construct HTML

 builder.AppendFormat("<table cellpadding='{0}'

 cellspacing='{1}'

 border='{2}'

 rules='{3}'

 frame='{4}'

 style='{5}'>",

 4, 0, 1, "rows", "hsides", "background-image:url(./images/bkgnd.gif);");

http://lib.ommolketab.ir
http//lib.ommolketab.ir

258 Part II Power to the Client

 builder.AppendFormat("<tr style='background-color:{0};color:{1};'>",

 "#6B696B", "white");

 // Define header

 for (int i = 0; i < headers.Length; i++)

 {

 builder.AppendFormat("<th>{0}</th>", headers[i]);

 }

 builder.Append("</tr><tr>");

 // Define body

 for (int i = 0; i < stocks.Length; i++)

 {

 StockInfo stock = stocks[i];

 for (int j = 0; j < columns.Length; j++)

 {

 string value = (string) Utils.GetPropertyValue(stock, columns[j]);

 builder.AppendFormat("<td style='color:{0}' align='{1}'>{2}</td>",

 (value.StartsWith("+") ? "green"

 : (value.StartsWith("-") ? "red" : "")),

 (j == 0 ? "left" : "right"),

 value);

 }

 builder.Append("</tr><tr>");

 }

 // Define footer

 builder.AppendFormat("<td style='background-color:#eeeeee;'

 align='right'

 colspan='{0}'><small><i>

 provided by {1}</i></small></td>",

 columns.Length,

 stocks[0].ProviderName);

 builder.Append("</tr></table>");

 return builder.ToString();

 }

 }

 As you can see, the HTML renderer contains a mix of markup, data, layout, and, in some
 cases, even logic. If you have reasons to opt for an HTML Message approach, it’s your
 responsibility to pay a lot of attention to how you design the server-side code to maintain
coupling at an acceptable level.

The DynamicPopulate Extender

 In the AJAX Control Toolkit (which you can see at http://www.codeplex.com/AjaxControlToolkit),
you can fi nd an ad hoc component—the DynamicPopulate extender—that works well with an
HTML Message service. Bound to a client trigger control (say, a button), the extender invokes a
service method and attaches the results to the innerHTML property of a friend DOM element.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 7 Client-Side Data Binding 259

 Obviously, the DynamicPopulate extender requires an HTML Message service in the server
layer. Here’s some code that demonstrates the use of the extender:

<act:DynamicPopulateExtender runat="server"

 ID="DynamicPopulateExtender1"

 BehaviorID="DynamicPopulateExtender1"

 ClearContentsDuringUpdate="false"

 TargetControlID="grid"

 UpdatingCssClass="updating"

 ServicePath="LiveQuotes.svc"

 ServiceMethod="GetQuotesFromConfigAsHtmlEx"

/>

 The DynamicPopulate extender imposes an additional requirement on the service. The method
you reference from the ServiceMethod attribute is required to have the following prototype:

string MethodName(string contextKey);

 The contextKey parameter can contain any data serialized in any format that the service
method knows how to process.

 One of the issues you might run into when using the extender is that it doesn’t prevent the
default event when the user clicks on a button. So if the button is an ASP.NET button, the
postback still occurs, which invalidates the service call. Here’s a more common way of using
the DynamicPopulate extender:

<asp:Button runat="server" id="btnRefresh" text="Live Quotes"

 onclientclick="invoke();return false;" />

 The JavaScript invoke function does the following:

function invoke()

{

 // Retrieve the extender through the MS AJAX library hierarchy

 var extender = $find("DynamicPopulateExtender1");

 // Invoke the extender

 var contextKey = ""; // or any other string the method will understand

 extender.populate(contextKey);

}

 Based on this code, the UI is updated by merging the HTML response with the element
 specifi ed through the TargetControlID property of the extender.

A Quick Demo in ASP.NET MVC

 Overall, the HM pattern can be seen as a specialized version of the partial-rendering
 approach that doesn’t include view state and gives you total control over the response for
the client. Good support for HM, which is also better than MS AJAX-based partial rendering,
is offered through the newest Microsoft platform for ASP.NET development—the ASP.NET
Model-View-Controller (MVC) pattern framework. Let’s briefl y go through an example.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

260 Part II Power to the Client

 In ASP.NET MVC, any response for the client is generated by the controller component. Any
client action that results in a server request must be directed at a controller method. The
name of the controller and its method are coded into the URL in a pure REST fashion. The
controller method normally invokes a View object to generate the full view for the browser.
However, the controller method can just return an HTML snippet generated internally.

 The framework makes available the AJAX ActionLink component for when you want to
quickly incorporate HTML into the client page in response to a user action. If the invoked
controller action returns HTML markup, this content can be automatically inserted into the
inner space of the specifi ed DOM element. To get this, you just specify the element to update
in the AjaxOptions settings:

<%= Ajax.ActionLink("Details",

 "/MyController/GetCustomerDetails",

 new AjaxOptions { LoadingElementId="lblWait", UpdateTargetId="pnlDetails" })%>

 The ActionLink component generates a hyperlink, and the fi rst parameter indicates the
text of the hyperlink. The second argument is the URL that contains information about the
 controller and the method to involve in the processing of the request. In this case, it will be
the MyController class and the GetCustomerDetails method.

 Any HTML this method returns is attached to the body of the pnlDetails DOM element. The
lblWait DOM element is displayed for the time it takes to download the response and is
 hidden immediately after. Here’s a sample controller method:

public string GetCustomerDetails(string id)

{

 // Return HTML

. . .

}

 It’s also recommended that any element you use as the loading element be initially hidden
from view using CSS.

A Look at ASP.NET AJAX 4.0

 The reason why I’m covering ASP.NET AJAX 4.0 here in a data binding chapter is that the
upcoming release of ASP.NET AJAX provides strong and largely enhanced support for
 data-driven applications. In particular, ASP.NET AJAX 4.0 will provide support for declarative
HTML templates, a declarative data binding syntax, and facilities to call ADO.NET Data
 Services from a JavaScript client.

ASP.NET AJAX Templates

 Earlier in the chapter, I discussed why having HTML templates simplifi es the process of
 creating a dynamic data-driven user interface in the browser. Your client code calls a

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 7 Client-Side Data Binding 261

 remote service, gets JavaScript data, and then binds bits and pieces of that data into ad hoc
 placeholders defi ned in the templates. In the end, ASP.NET AJAX 4.0 provides some built-in
scaffolding for implementing the BST pattern.

 ASP.NET AJAX templates can be used in ASP.NET pages as well as in plain HTML pages as
long as a few JavaScript fi les are linked—in particular, MicrosoftAjaxTemplates.js.

Structure of a Template

 In ASP.NET AJAX, an HTML template is essentially a <div> tag that contains fi xed and
 repeatable parts. A fi xed part is a fragment of HTML that is emitted only once—such as a
header or footer. A repeatable part is an HTML fragment that is linked to data and repeated
for each bound element.

 An HTML template is initially hidden from view, and the framework takes care of turning on
the visibility attribute of interested parts as appropriate. A common way to control visibility is
by defi ning in the page a sys-template CSS style, as shown here:

<style type="text/css">

 .sys-template { display:none; visibility:hidden; }

</style>

 The sys-template style is the discriminating element that determines whether a fragment of
HTML will be emitted once or repeated. Let’s consider the following template:

<div>

 <table id="grid" class="sys-template">

 <tr>

 <th>SYMBOL</th>

 <th>LAST</th>

 <th>CHANGE</th>

 </tr>

 <tr>

 <td align="left">{{ Symbol }}</td>

 <td align="right">{{ Quote }}</td>

 <td align="right">{{ Change }}</td>

 </tr>

 </table>

</div>

 As you can see, the entire table uses the sys-template style. This means that a table will be
created for each bound element. To emit a table row for each bound item without repeating
the header row, you need a different approach, as shown here:

<div>

 <table>

 <tr>

 <th>SYMBOL</th>

 <th>LAST</th>

 <th>CHANGE</th>

 </tr>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

262 Part II Power to the Client

 <tbody id="grid" class="sys-template">

 <tr>

 <td align="left">{{ Symbol }}</td>

 <td align="right">{{ Quote }}</td>

 <td align="right">{{ Change }}</td>

 </tr>

 </tbody>

 </table>

</div>

 The table now contains a <tbody> element styled as a sys-template. That part will be
 repeated for each bound item. To identify a repeatable part, you use a unique ID. In this case,
the ID is grid.

 The syntax used to insert data-bound expressions consists of wrapping property names in
a pair of double curly brackets {{ . . . }}. For example, the {{ Symbol }} expression indicates a
 placeholder for the value of Symbol property on the bound data item object.

 To render a template, you can embed the following code in your page and control every
 aspect of data binding, from data download to rendering:

// Target element is where you attach and display the templated markup

var target = $get("productList");

target.innerHTML = "";

for (var i = 0, i < dataSource.length; i++)

{

 // Element productListTemplate is the element with the sys-template style

 productListTemplate.createInstance(target, dataSource[i]);

}

 ASP.NET AJAX 4.0 compiles the template into an internal object that exposes the
 createInstance method. The method takes a reference to the target DOM element where the
HTML must be displayed. In addition, the method requires the data object to bind.

 A much better option is using a data display component, such as the Sys.UI.DataView
 component. The DataView component automates many tasks.

The Sys.UI.DataView Component

 Associated with a bindable HTML template, the DataView component is a relatively easy
way to create data-driven user interfaces. In the test page, you place an HTML template and
link to an external service, be it a WCF service or anything else, including an ADO.NET data
service.

 In addition, you must create an instance of the DataView component. You can do that in
either of two ways: by using JavaScript in a script block or via markup. Let’s examine the
JavaScript approach fi rst.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 7 Client-Side Data Binding 263

 The following JavaScript function is invoked after a user event such as a button click or a
timer tick. In this case, I’m assuming the code will be called after a timer tick and the global
DataView instance is disposed of and then re-created.

var dv = null;. . .

function getLiveQuotes()

{

 // UI value to pass to the service

 var isOffline = $get("<%= chkOffline.UniqueID %>").checked;

 // Create the DataView and pass arguments for the associated data source

 if (dv !== null)

 dv.dispose();

 dv = $create(

 Sys.UI.DataView,

 {

 serviceUri: "/LiveQuotes.svc",

 parameters: {isOffline:isOffline},

 query: "GetQuotesFromConfig"

 },

 {},

 {},

 $get("grid"));

}

 You use the $create shortcut from the Microsoft AJAX client library to instantiate the
 component. The $create facility takes the type of the object to create and the initial
 confi guration. The fi nal argument indicates the DOM element that the component should be
attached to.

 The net effect of the preceding code is invoking the Livequotes.svc WCF service to call the
GetQuotesFromConfi g method. The method call is passed a value for the isOffl ine formal
 argument. The value comes from the JavaScript isOffl ine variable.

 To initialize the DataView component via markup, you fi rst add a few xmlns attributes to the
<body> tag of the page:

<body

 xmlns:sys="javascript:Sys"

 xmlns:dataview="javascript:Sys.UI.DataView"

 sys:activate="*">

 The attributes register a namespace and map a tag prefi x to the DataView class. The
sys:activate attribute specifi es the IDs of elements that will be used to display data in the
template. By using an asterisk (*), you indicate that all elements are candidates.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

264 Part II Power to the Client

 You use a sys:attach attribute to cause ASP.NET AJAX to create an instance of the DataView. The
following example shows how to instantiate a DataView control by using a sys:attach attribute:

<div sys:attach="dataview"

 dataview:serviceuri="livequotes.svc" >

. . .

</div>

 The value you pass to sys:attach will match the prefi x registered for Sys.UI.DataView in the
<body> tag. To set properties on the DataView instance, you use attributes scoped with the
component’s namespace.

Injecting Logic into the Template

 What if you want to inject some logic into the template so that certain parts are based on
run-time conditions and the content of bound items? You can do that in two ways. First, you
can handle the itemCreated event on the DataView component in much the same way you
did in server-side ASP.NET programming with data-bound controls.

 Alternatively, you can add inline code in the template using the declarative syntax that
Microsoft provides. The syntax is based on JavaScript fragments wrapped by HTML comments:

<table>

 <tr>

 <th>SYMBOL</th>

 <th>LAST</th>

 <th>CHANGE</th>

 </tr>

 <tbody id="grid" class="sys-template">

 <tr>

 <td align="left">{{ Symbol }}</td>

 <td align="right">{{ Quote }}</td>

 <td align="right">

 <!--*

 var prefix = Change.substr(0, 1);

 if (prefix === "+")

 {

 *-->

 <!--* } else {*-->

 <!--* } *-->

 {{ Change }}

 </td>

 </tr>

 </tbody>

</table>

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 7 Client-Side Data Binding 265

 When it comes to rendering the third cell of each row, ASP.NET AJAX 4.0 runs some code that
checks the fi rst character of the Change property on the bound data item. If this character is
a plus sign (+), it means the current stock is rising in price. Subsequently, the text is wrapped
by a green tag; otherwise, a red tag is used.

 Figure 7-7 shows that ASP.NET AJAX 4.0 allows you to obtain the same graphical results we
obtained with the manual implementation of patterns but without writing complex pieces of
JavaScript code.

FIGURE 7-7 ASP.NET AJAX 4.0 templates in action

The Sys.Data.DataSource Component

 The DataView component works in conjunction with a data source. The data source can be
anything that is, or returns, a collection of data. When you create a DataView, you can specify
the URL to a service. The service URL, as well as details on how to call it, are grouped into a
data source component—an instance of the Sys.Data.DataSource class. The creation of the
data source is implicit when you specify a service URL.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

266 Part II Power to the Client

 The DataView also features a read/write property named data through which you can
 execute binding using explicit data. In this case, the bound data can be any JavaScript array
object as well as a property of any object returned from a service. The data property is useful
when you want to set up a master/detail scenario.

<body xmlns:sys="javascript:Sys"

 xmlns:dataview="javascript:Sys.UI.DataView"

 sys:activate="*">

 <div id="grid" class="sys-template">

 <table sys:attach="dataview" dataview:data="{{ myData }}">

 <thead>

 <tr><td>Name</td><td>Description</td></tr>

 </thead>

. . .

 </table>

 </div>

</body>

 In the listing, the variable passed to data—that is, the myData variable—is any JavaScript
variable that contains an array of data objects.

 Note ASP.NET AJAX 4.0 features many more capabilities, including UI commands and live
data binding. In particular, live data binding is responsible for updating the user interface of a
DataView component so that it refl ects changes in the data as they occur.

 Live data binding is a form of two-way data binding. In this case, if the user modifi es a bound
value, the underlying data item is updated. Likewise, if the underlying data item is modifi ed from
another source, the displayed UI element is updated. At the same time, you can defi ne interactive
elements in the template that fi re a client command as the user clicks or enters keystrokes. These
commands are aimed at executing further commands that might involve server operations such
as Select, Delete, Edit, or Update.

ASP.NET Library for ADO.NET Data Services

 In ASP.NET AJAX 4.0, you also fi nd a set of wrapper classes for consuming ADO.NET Data
Services from a JavaScript client. An analogous set of classes has existed for Silverlight since
the release of Silverlight 2.0.

Generalities of the ADO.NET Data Services Framework

 ADO.NET Data Services is a new framework introduced with the .NET Framework 3.5 Service
Pack 1 (SP1) that allows you to access data services over the Web. An ADO.NET data service
makes data available through a service interface so that you can query, fi lter, and update
data using URIs and HTTP verbs in a RESTful fashion.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 7 Client-Side Data Binding 267

 Through the ADO.NET Data Services framework, you can expose a data source as a REST
service. The data source is typically an object model created using LINQ-to-SQL or the Entity
Framework. Some sample URIs are shown here:

/Customers('ALFKI')/ContactName

/Customers?$orderby=Country

/Customers('ALFKI')/Orders?$filter=ShippedDate ge '2007-01-01'

 The fi rst URI returns the contact name of the specifi ed customer; the second URI returns
all customers in the data source ordered by country. The fi nal URI returns all orders for the
specifi ed customer where the ship date is 2007 or later.

 To access an ADO.NET data service from JavaScript, you need a proxy class. ASP.NET AJAX
provides facilities for you to place calls to a data service.

Using a Proxy for ADO.NET Data Services

 The Sys.Data.AdoNetServiceProxy class simplifi es the interaction between an ASP.NET AJAX
page and ADO.NET Data Services. You create an instance of the proxy, as shown here:

var service = new Sys.Data.AdoNetServiceProxy("/northwind.svc");

 After you hold an instance of the proxy, you call the method query to retrieve data. Here’s
how to retrieve all the content of the Customers data store. (The Customers data store might
or might not be a database table.)

exampleService.query("/Customers$orderby=Country", onSuccess, onFailure);

 The AdoNetServiceProxy class uses the information you provide to build the actual URL for
the service. The query you specify is appended to the URL of the service. When the real URL
is ready, the proxy class takes care of executing the request asynchronously. You can indicate
a callback for when the call is successful, and you can also indicate one for when the call fails.

 The AdoNetServiceProxy class provides methods to perform Create, Read, Update, Delete
(CRUD) operations from the client via the data service. In addition to executing individual
INSERT, DELETE, and UPDATE operations immediately, you can also combine multiple
 actions. You use the createActionSequence method when you want to execute multiple data
 modifi cation actions as a batch.

 Finally, the proxy also supports deferred loading, meaning that not all relationships in the
model entities are expanded upon loading. If deferred loading is enabled, the proxy takes
care of loading extra data on demand.

Displaying Content from an ADO.NET Data Service

 The content returned by an ADO.NET data service can be bound to the user interface using
an ad hoc data source component. To facilitate this, ASP.NET AJAX 4.0 supplies the
Sys.Data.AdoNetDataSource class.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

268 Part II Power to the Client

 The DataView component works well in conjunction with the AdoNetDataSource object. The
following code shows how to use the AdoNetDataSource control with the DataView. Here’s an
example:

<div>

 <ul class="sys-template"

 sys:attach="dataview"

 dataview:datasource="{{ new Sys.Data.AdoNetDataSource() }}"

 dataview:serviceuri="/northwind.svc"

 dataview:query="Customers?$filter=ShippedDate ge '2007-01-01'">

 {{ CompanyName }}

</div>

 Summary

 To build a data-driven presentation, you have two options. First, you download data
 asynchronously to the client and then parse it to create some application-specifi c HTML
 presentation. Second, you generate the user interface on the server and then serve it up to
the client. In the latter case, the presentation is extremely thin and simple.

 Two popular AJAX patterns have been developed to illustrate these scenarios: the
 Browser-Side Template pattern and the HTML Message pattern. The BST pattern is
 generally faster and moves less data over the wire. On the other hand, BST requires more
 programming work and ideally some tools and frameworks that as yet only partially exist.
ASP.NET AJAX 4.0 seems to be leaning in this direction with its DataView component and
 declarative syntax for client data binding.

 As far as AJAX and the browser are concerned, JavaScript is the only possible way of coding
any behavior. If you’re not happy with JavaScript, you might want to look at Silverlight—
which is exactly the topic I’ll cover in the next chapter.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 269

Chapter 8

Rich Internet Applications

 Train up a fi g tree in the way it should go, and when you are old sit under the
shade of it.

 —Charles Dickens

 What really makes an Internet application rich? Is it the ability to deep-zoom into displayed
images? Or is it the ability to display a compelling user interface within the browser while
connecting to server-side services and to download and process data?

 Like many of you, I love watching videos while comfortably sitting in my living room or while
I’m waiting for the next fl ight in an airport. I’m happy that the quality of this media can be so
high and that I can fully enjoy it. But frankly, I would defi ne the term Rich Internet Application
(RIA) another way.

 I consider an RIA to be an application that works over the Web in a canonical Web site.
In addition, this application must be able to offer an appealing user interface and connect
 asynchronously to services. An RIA must have programming power on the client and possibly
an effective programming model. Finally, an RIA must be a secure application.

 Although my criteria for an application to qualify as an RIA seem to be met by nearly any Web
site that makes intensive use of AJAX features, an RIA is different from a Web application. More
precisely, an RIA is more than just a Web application. This is so for one reason in particular: you
need an ad hoc platform and run-time environment to build and execute an RIA.

 Microsoft Silverlight is the latest (and most compelling) of these platforms.

Looking for a Richer Web

 I’m not too far from the truth when I say that the browser has been the most important
 application of the 1990s. By leveraging the Transmission Control Protocol/Internet Protocol
(TCP/IP) infrastructure and some new languages (both markup and scripting), the browser
changed our lives and introduced us to the world of the Internet.

 The Web as we know it today was offi cially born in 1993 and came of age only a few
years later. Since then, though, it started a quest for a sort of Web Holy Grail. And the
quest is probably destined to last for at least some of the foreseeable future. It’s a quest
to have binary code running within the browser—in a secure manner and with maximum
interoperability.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

270 Part II Power to the Client

The Dream of Binary Code Running over the Web

 The dream of using the Web to deploy rich and trusty applications to virtually any user
 visiting a site is probably as old as the Web itself. And this dream has never been completely
fulfi lled. Today, with Silverlight version 2.0 (and probably even more with Silverlight 3.0),
we’ve never been so close to making that old dream come true.

The Initial ActiveX Attempt

 You might recall that Microsoft joined the Internet party relatively late, back in 1997. However,
the company was pretty quick to learn the basics and soon started to lead the development
efforts.

 We owe Dynamic HTML to Microsoft, and Dynamic HTML later made it to the HTML 4.0
World Wide Web Consortium (W3C) standard. We owe XMLHttpRequest to Microsoft, and
you know the key role played by this component in AJAX.

 I’m fairly sure that had Microsoft failed to create that component some other company
would have done it instead. So my purpose here is not to reinvigorate a pointless argument
about the role of Microsoft in the growth of the Web. My point is to show that Microsoft
made a couple of great contributions to Web development in its early days.

 When a software boom is consolidating, many companies and many people have a lot of ideas,
but not all of these ideas will prove successful or work. In the early days of Web development,
along with XMLHttpRequest and Dynamic HTML, Microsoft also came out with ActiveX.

 The idea of ActiveX was to enable browsers to execute binary code for building rich solutions
 instead of being limited to HTML and JavaScript. Although ActiveX components are still
 supported and used, it certainly has not been a big success. Frankly, we could even call it a
 failure—or, more precisely, the right thing done in the wrong way.

The Thorns of Security and Interoperability

 At the beginning of the Web, security was not a concern. In fact, it was quite the opposite.
The Web was born from the notion that information should be freely shared. The theme of
Web security gained importance only when the Web became attractive to and rewarding for
hackers and fraudsters.

 ActiveX was not designed with a strong security model. There was security in ActiveX, but
not a really effective model. Simply put, an ActiveX component is expected to tell the host
environment how safe it is to run and script it. This is sort of the same as asking the chef
whether his or her recommendation is really a good choice. Can you guess the answer?

 At some point, to prevent problems browsers started defaulting to more restrictive security
settings, with the result that users had to change settings manually to run some applications
based on ActiveX.

 That’s generally why ActiveX failed.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 8 Rich Internet Applications 271

 In addition to security, another particularly large and sharp thorn affected ActiveX—
interoperability. The Web is all about reach. Browsers and servers running on heterogeneous
platforms can connect and work together. With ActiveX, the client was limited to the
Microsoft Windows platforms, and often also limited to the Internet Explorer browser. These
limitations were defi nitely too severe to gain wide acceptance for the technology.

The Flash Attempt

 To some extent, though, ActiveX was headed in the right direction. HTML and JavaScript
alone are not suffi cient to build rich user interfaces and applications hosted within a browser.
In the late 1990s, Adobe Flash emerged as a more reliable way to run more powerful code
within the browser, but entirely on the client side.

 Flash employed a restrictive security model by essentially stopping running code from
 performing potentially dangerous operations. Flash didn’t open the entire client platform
to programming; instead, it offered a common set of functionalities on virtually any software
platform. It was secure. It was fully interoperable. And it let users write much richer and more
powerful applications than by using pure HTML and JavaScript.

 For a number of reasons, Flash was the only player in the RIA arena for a long time. The
 situation changed when Microsoft released the fi rst version of Silverlight in the summer of
2007. Silverlight 1.0 wasn’t all that powerful in terms of programming, but it carried a key
message: “Microsoft is back in the RIA arena.”

 I like to think of Silverlight 2.0 as the old idea of ActiveX revamped, adapted to current times
and, last but not certainly least, done properly in terms of both security and interoperability.
Equipped with a Microsoft .NET Framework client framework, Silverlight makes it possible
for you to write .NET applications that run within the browser, sandboxed and not limited to
Windows.

 Note Microsoft has made Silverlight available for a number of Windows and Mac platforms.
For the Linux platform, you don’t have any runtime directly available from Microsoft, however.
Microsoft is working with the Mono group at Novell to produce a run-time environment for
Linux. At this time, though, there’s no released Linux product that matches the capabilities
of Silverlight 2.0 for Windows and Mac. In summary, Silverlight addresses the theme of full
 interoperability in a much better way than in the past, but Flash’s market penetration is still deeper.

Browser Plug-ins

 The Web went through several phases of standardization. Many vendors over the years
 proposed their own solutions to the problems and limitations perceived as hurdles on the
way to making the Web a success. One problem for which vendors attempted to devise a
common solution was the ideal way of running native code from within a Web browser.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

272 Part II Power to the Client

A Brief History of Plug-ins

 The aforementioned ActiveX technology is just Microsoft’s attempt to make binary code run
within a Web browser, thus giving developers the opportunity to embed non-HTML objects
in pages.

 Before ActiveX, Netscape developed the concept of a browser plug-in in conjunction with
Adobe. A browser plug-in is a program that simply adds new capabilities to the browser,
 possibly in a cross-platform manner. After it’s registered with the browser, the plug-in can
display content that the browser doesn’t know how to handle.

 The fi rst example of a plug-in was an embeddable component capable of displaying a PDF
fi le directly inside the browser. Other popular plug-ins that followed were the QuickTime and
RealPlayer plug-ins used to play videos from within Web pages.

 A plug-in relies on the browser’s user interface and underlying infrastructure. For security
reasons, the range of a plug-in is limited to a possible set of actions.

 Netscape was the fi rst vendor to develop and implement plug-ins. Netscape developed the
Netscape Plug-in Application Programming Interface (NPAPI) technology and implemented
it for the fi rst time in Netscape Navigator 2.0. Subsequently, nearly all other browsers have
supported NPAPI, including Firefox, Safari, Opera, and Konqueror. Recently, Google Chrome
also included support for NPAPI plug-ins. Internet Explorer supported NPAPI for a few
 versions but stopped supporting it with version 5.5.

 The NPAPI architecture evolved in npruntime, an NPAPI extension that enables scripting.
Thanks to npruntime, a plug-in can both access any script objects in the browser and
be scriptable itself. For more information on NPAPI and npruntime, have a look at
https://developer.mozilla.org/en/Plugins.

Security Concerns

 Overall, ActiveX didn’t capture the heart of developers for a variety of reasons, and security
concerns (along with interoperability limitations) were at the top of the list. However, note
that technologically speaking NPAPI and ActiveX are not too different as far as security is
concerned.

 Once they’re hosted in a browser, an NPAPI plug-in and an ActiveX component execute
 binary code and enjoy the same privileges as the browser process. Therefore, an NPAPI
 plug-in and an ActiveX component can be equally harmful.

 The popular idea of NPAPI being somewhat more secure than ActiveX is justifi ed by a couple of
other points. First, it’s the download model supported by the browser. With the best intention
of making the user’s life easier, Internet Explorer automatically downloads any missing ActiveX
controls that the page references. This type of security can be fully confi gured by users and
administrators, but it’s inherently more prone to having users install undesired code.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 8 Rich Internet Applications 273

 The other option initially pursued by Netscape and Firefox consisted of either blocking any
automatic download or accepting downloads only from trusted locations.

 A second reason NPAPI is considered more secure than ActiveX is that a deep sense of
 insecurity has arisen with regard to ActiveX. Born as an adaptation of Component Object
Model (COM) and OLE2 technologies, ActiveX was not specifi cally targeted to the Web. This
means that a wide choice of components was available for developers to include in Web
pages. And these components were created to provide a given functionality, regardless of
the platform and location. The likelihood of hosting potentially dangerous components was
inherently higher than with Web-specifi c NPAPI plug-ins.

The <object> Tag

 ActiveX lost its appeal quite soon, and in the late 1990s it was already clear that ActiveX
would never come anywhere near to being a de facto standard. The plug-in technology
evolved and consolidated, but it did so mostly as a way to host unsupported fi le types
 within the browser.

 In HTML, the <object> tag is the standard way to include objects such as images, videos,
and special fi les (such as PDF fi les) inside a browser. The <object> tag provides the type and
data attributes through which you indicate the type of content you are embedding and the
 content. Here’s an example:

<object data="TheContentToShow.pdf"

 type="application/pdf">

 Click here to save a local copy

</object>

 If the content referenced by the <object> tag can’t be displayed, the content of the tag is
processed and displayed alternatively. For the browser to display the specifi ed content, a
plug-in is required. But what’s a plug-in exactly?

Characteristics of a Browser Plug-in

 A plug-in is a platform-specifi c binary library that gets hosted within the browser. The plug-in
knows how to deal with a given content type and how to create a graphical representation for it.

 A browser that encounters an <object> tag fi rst reads the type attribute and fi gures out what
plug-in to load. The browser reserves a portion of the page user interface for the plug-in and
loads it. Finally, the browser streams the content of the referenced fi le to the plug-in.

 By design, a plug-in must implement a given set of interfaces to write to the browser’s client
area, initialize and position itself, and support scripting and streaming. Among other things, a
plug-in receives pointers to the browser networking infrastructure for any outside connection
it might need. Installing a plug-in is usually a smooth experience, but it typically requires
 local administrative privileges.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

274 Part II Power to the Client

Plug-ins for Hosting Applications

 A plug-in doesn’t necessarily have to be a viewer of some special graphic or a multimedia
player. It can be a sort of virtual machine instead and host and run external code. In this case,
the data attribute of the <object> tag describes the program to run and the type attribute
indicates the type of the executable being passed to the plug-in.

 Adobe Flash and, more recently, Microsoft Silverlight are two excellent examples of browser
plug-ins that operate as a sort of virtual machine running external code.

 On one hand, people want the ability to run rich applications over the Internet. On the other
hand, though, people want to do it in a fully secure way. Is the browser’s sandbox enough?

 The browser sandbox is a run-time environment used to host executable Web content in a
way that doesn’t cause damage to the local machine. The sandbox is a restricted environment
that doesn’t allow hosted content to access protected resources, such as hardware and the
local fi le system.

 A sandbox, though, relies entirely on the security model and tools of the host operating system.
If there’s a way to work around the operating system security mechanism, the sandbox can’t
stop malicious users from running arbitrary code.

 For a rich Internet application, therefore, the browser’s sandbox is necessary but not suffi cient.
Each RIA virtual machine must provide its own made-to-measure security model to prevent
arbitrary and potentially harmful code from being run.

 Adobe Flash provided a solution to the issue by essentially developing a custom language
and its run-time interpreter. The interpreter acts as the virtual machine and permits only
 operations considered legal.

 In Microsoft Silverlight, an existing and familiar programming model is used—the .NET
Framework and related languages. Because the .NET platform was not originally designed
to be used within a Web browser, an ad hoc virtual machine is required with a brand new,
tailor-made security model. The virtual machine is known as the CoreCLR (or sometimes
the “mini-CLR”), and it implements its code access security layer on top of the concept of
 transparent code. I’ll return to this topic later in the chapter.

 In a nutshell, browser plug-ins are the means through which the old dream of running binary
code over the Web is currently realized. The plug-in operates as a virtual machine, and its
content is the source code of the external application to be run.

 Let’s discover more about the latest plug-in for building RIAs—Microsoft Silverlight.

Microsoft Silverlight at a Glance

 The quest for an RIA environment is the result of the inherent limitations of the AJAX
 approach. AJAX solves many issues and can defi nitely make for smoother and better received
Web applications. AJAX, however, is based on HTML and JavaScript. The difference between

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 8 Rich Internet Applications 275

a classic Web (plus AJAX) application and an RIA is found in the quality and capabilities of
the user interface and the programming power.

 An RIA offers a new delivery format (for Silverlight, it’s the Windows Presentation Foundation
markup language) and compiled programming languages for expressing any related logic.

 Microsoft Silverlight offers a .NET-based programming model, rich programming languages,
code libraries, and controls for quick UI prototyping. All that you need to run .NET RIAs is
incorporated in a small, 4-megabyte (MB) executable. (See Figure 8-1.)

FIGURE 8-1 Downloading the Silverlight 2.0 plug-in

 Architecturally speaking, Silverlight is based on a core version of the full .NET Framework
common language runtime (CLR) and doesn’t require the .NET Framework to be installed on
the local machine.

Elements of the Silverlight Architecture

 The Silverlight platform is a Web platform that runs partially trusted applications. However,
from a graphical standpoint it sits somewhere between a classic browser-based Web user
interface and a smart client.

Silverlight vs. AJAX

 Silverlight provides obvious benefi ts beyond what is offered by AJAX solutions. It offers
 compiled code written in high-level languages such as C# instead of interpreted JavaScript
code. It offers the rendering power of Windows Presentation Foundation (WPF) instead
of plain HTML. Beyond the mere syntax, the key point here is the design of the markup
 languages. The WPF markup—the XAML language—is in effect an application delivery
 format; the HTML language, conversely, is a plain document format. HTML lacks a powerful
layout manager, rich graphics and multimedia, and expressivity.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

276 Part II Power to the Client

Silverlight vs. Smart Clients

 As mentioned, a Silverlight application is a Web solution, although it might look like a smart
client solution. A Web solution is characterized by easy deployment and wide reach. To
 deploy or update an application, you need to touch only one server. At the same time, clients
can connect from whatever platform understands HTML and HTTP.

 A smart client solution is a desktop solution and has an inherently strong link to the client
operating system. By using a technology such as ClickOnce, you can ease deployment and
update your applications quite simply. A smart client solution, though, still requires Windows
and a version of the .NET Framework on the client.

 Recently, the WPF platform on .NET 3.x started supporting a new type of application known
as XAML Browser Application (XBAP). What’s the difference between this and Silverlight?

 An XBAP is a full WPF application packaged and is deployed over the Web in a way that
mimics a typical browser’s behavior. Internally, the application is deployed via a ClickOnce
manifest fi le. The manifest fi le causes the WPF application to be loaded into Internet Explorer.

 The XBAP application runs in partial trust and is subject to all the typical limitations of partial
trust applications, such as no free local fi le access and no URLs accessible outside the same
origin domain.

 Both Silverlight and XBAP applications are partially trusted. XBAP applications support the
full range of elements of the XAML syntax, including the 3D application programming
interface (API). In addition, XBAP applications require the .NET Framework on the client.
Functionally speaking, XBAP and Silverlight are not all that different. With the release of the
recently announced Silverlight 3.0, the two technologies could likely be nearly the same.

 Today, a Silverlight application is a full Web application; an XBAP application is a smart client
application running within the browser in partial trust mode. That’s the key difference.

Running Silverlight Applications

 A Silverlight application is a piece of binary code hosted in a classic Web page, no matter
how you write that. It can be an ASP.NET (AJAX) page as well as an HTML page written using
PHP Hypertext Preprocessor (PHP) or perhaps Active Server Pages (ASP) or Java Server Pages.
To run the Silverlight application, a user must have the Silverlight plug-in installed on the
 local machine. In addition, the visited page must reference content of the Silverlight type, as
shown here:

<object

data="data:application/x-silverlight-2,"

type="application/x-silverlight-2" >

 <param name="source" value="ClientBin/HelloSilver.xap" />

 <param name="onerror" value="onSilverlightError" />

 <param name="background" value="blue" />

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 8 Rich Internet Applications 277

 <img src="http://go.microsoft.com/fwlink/?LinkId=108181"

 alt="Get Microsoft Silverlight"

 style="border-style: none" />

</object>

 You can use either the data attribute on the <object> tag or the source parameter to make
the browser point to the URL of the Silverlight application. The application is represented
as a XAP (pronounced “zap”) package and contains XAML markup plus compiled managed
code. (XAP fi les contain the compressed assemblies and resources necessary to run a given
Silverlight 2.0 application, as you’ll see later in the chapter.)

 The browser streams the XAP package to the installed Silverlight plug-in and has the plug-in
execute it within the embedded core CLR.

 If you write the host page using ASP.NET, you can resort to an ad hoc server control to emit
any required HTML markup:

<asp:Silverlight ID="Xaml1" runat="server"

 Source="~/ClientBin/Helloworld.xap"

 Version="2.0"

 Width="100%"

 Height="500px" />

 The main benefi t of using the Silverlight server control is that it can automatically handle for
you any trouble related to a missing plug-in.

 Silverlight is a cross-platform product that Microsoft releases for a number of Windows and
Mac platforms. The Moonlight group associated with the Mono project is porting Silverlight
to Linux. A version of Silverlight for Linux is expected sometime around the fall of 2009.
Check out the following URL for the latest news and an updated roadmap:
http://www.mono-project.com/MoonlightRoadmap.

Graphics and Multimedia

 Because it was created to deliver a pleasant experience to Web users, Silverlight naturally
features strong capabilities in graphics and multimedia. In the current version, graphics are
limited to 2D, but 3D capabilities are expected to be included in the next version. Graphics
support is provided by the WPF engine, which is a much better tool to use to design a
 graphically interactive user interface than HTML.

 Silverlight also has excellent capabilities when it comes to playing videos, especially
 high-quality videos.

Media Pack

 Media support in Silverlight is provided by the MediaElement control, which delivers
 high-quality media without any additional components, such as Windows Media Player
or other vendors’ players.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

278 Part II Power to the Client

 Silverlight supports a number of formats, including a variety of Windows Media Video (WMV)
formats such as WMV7, WMV8, and WMV9, plus WMV advanced profi le VC1 and non-VC1.
Audio formats include Windows Media Audio (WMA) and MP3 with various bit rates.

 Finally, Silverlight supports ASX playlists over a number of protocols, including HTTP, HTTPS,
Microsoft Metadirectory Services (MMS), and Real-Time Streaming Protocol (RTSP).

 The MediaElement component also supports streaming from an enabled server. Depending
on the protocol available, streaming can be live or occur through buffering and progressive
download. It’s also worth mentioning a feature named Smooth Streaming that Silverlight
 supports in combination with a media extension for Microsoft Internet Information Services
(IIS) 7.0 on Windows Server 2008. It’s a sort of adaptive streaming of media to Silverlight
 clients over HTTP.

 Basically Smooth Streaming detects the media capabilities of the local PC and bandwidth,
and it determines the ideal video quality of a media fi le. In cases where there is a large
 bandwidth, users can experience true high defi nition; otherwise, the quality is adequate to
the situation and still no buffering occurs.

Animation

 Again, because it was created to deliver a better user experience, Silverlight supports animation.
Coded via the markup syntax of the user interface, animation is achieved by varying individual
properties of visual objects over a period of time and within a range of values.

 Based on the data type of the property being animated, a few different types of animation
classes have been defi ned. You have DoubleAnimation for double types, ColorAnimation for
colors, and PointAnimation for varying the value of a Point property between two target
 values using linear interpolation.

 In addition, to animate properties of other types you can switch to a form of discrete
 interpolation, which consists of jumping from one value to another in a predefi ned sequence.
This form of animation is represented by the ObjectAnimationUsingKeyFrames object in
Silverlight.

Deep Zoom

 A unique capability of Silverlight is a technology called Deep Zoom, which allows users to
zoom to an almost arbitrary depth in properly confi gured images. Once you defi ne the size
of the image to appear in the screen, you defi ne the only parameter that actually affects
performance—the number of pixels to be displayed. By clicking or using the mouse wheel,
you can zoom in on and out from the image without actually downloading more data than
you can fi t in the area.

 The Silverlight engine loads progressively higher resolution images and applies smooth
 fading and panning to them to provide a better experience to users. Over the Web, you

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 8 Rich Internet Applications 279

are often torn between providing high-quality images full of details that are clear and crisp
or opting for blurry, low-level images that are far quicker to download.

 Deep Zoom offers a good way out by letting you initially link a low-resolution image and then
have users interact with that to see more details quickly and effi ciently. More importantly, you
have available a powerful API to write the zoom code yourself, the way you want it to be.

 Deep Zoom requires images to be expressed in a richer format that doesn’t simply include
the pixels for a given resolution. The trick consists of representing the image through an
 “image pyramid,” which is essentially a collection of copies of the image for each zoom step
you want to support. All the information is wrapped up in an XML fi le that the Deep Zoom
engine in the Silverlight plug-in processes.

 As it turns out, you can’t simply reference a native JPG or PNG image through Deep Zoom.
Microsoft provides an ad hoc tool to create Deep Zoom–compatible images starting from
the original one you would like to display. The tool is Deep Zoom Composer. You can
 download it from http://go.microsoft.com/fwlink/?LinkId=116569.

Building Applications

 When it comes to building a Silverlight application, Visual Studio 2008 provides you with two
project templates: the Silverlight application and Silverlight class library. That a Silverlight
application is something special is fairly obvious. It’s a bit less obvious that you also need a
Silverlight-specifi c class library.

 A Silverlight binary is different from other .NET binaries. The .NET CLR is slightly different
from the Silverlight CoreCLR, and the two CLRs support different formats. This is one of the
reasons why you can’t just reuse any existing .NET class library in Silverlight. Another reason
is that the Silverlight and .NET environment are backed by different versions of the .NET
Framework with a different set of classes. In summary, code compatibility between .NET and
Silverlight might exist at the source level; it doesn’t exist at the binary level.

 Note that this aspect is expected to change with the release of Silverlight 3.0 and .NET
Framework 4.0. It’s reasonable to expect by then that the .NET CLR will be split into a core
CLR plus some extensions. And, at that point, the Silverlight CLR will match the .NET core CLR
exactly.

Code and Markup

 The overall structure of a Silverlight application is not that different from a Windows or
ASP.NET application: it’s always made of markup and a code-behind class. The markup describes
the user interface and is expressed using the XAML language. The code-behind class contains
any code and event handlers that relate to user interface elements. The code-behind class can
address any class in the referenced assemblies. The code-behind class is ultimately compiled to
an assembly.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

280 Part II Power to the Client

 The following markup shows the header of a typical Silverlight application. The root tag
UserControl groups the entire user interface:

<UserControl x:Class="HelloSilver.Page"

 xmlns="http://schemas.microsoft.com/client/2007"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 Width="500"

 Height="500"

 Loaded="UserControl_Loaded">

 <Canvas x:Name="LayoutRoot" Background="Cyan">

. . .

 </Canvas>

</UserControl>

 The x:Class attribute specifi es the name of the code-behind class. The Loaded attribute refers
to the handler of the load event of the page. The handler is defi ned in the code-behind class,
as shown here:

void UserControl_Loaded(object sender, RoutedEventArgs e)

{

. . .

}

 As in ASP.NET Web Forms, you can programmatically refer to user interface elements by name.
In particular, the name is given by the content of the x:Name attribute of the markup tag.

Programming Languages

 The code-behind class can be written in C#, Microsoft Visual Basic .NET, plus a few dynamic
languages such as IronPython and IronRuby. The CoreCLR provides the capabilities to process
code compiled to the CLR’s intermediate language.

 In a Silverlight project, you can refer to an external library written in a different (but
 supported) .NET language.

 No JavaScript is required within the Silverlight page. However, you can still have JavaScript
in the Web page that hosts the Silverlight plug-in. The script in the page can access the
Silverlight plug-in and script its content. At the same time, managed code within the
Silverlight application can access and invoke JavaScript functions and any objects published
to the browser’s scripting engine.

 In one word, the browser-to-Silverlight communication is bidirectional.

XAP Packages

 A Silverlight application is deployed as a XAP package fi le. The package contains an assembly
that results from the compilation of the code-behind class, plus any referenced assemblies
and a manifest fi le. The markup is appended as a resource to the primary assembly.

 As Figure 8-2 clearly shows, the XAP package is actually a ZIP archive just renamed to a
 different extension.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 8 Rich Internet Applications 281

FIGURE 8-2 Renamed to a .zip extension, a Silverlight package shows up nicely in WinZip.

 The XAP package must be deployed to the host Web application, preferably to the ClientBin
Web server folder. Note, though, that using the ClientBin server folder is merely a convention.
You can actually reference the XAP package from everywhere in the Web server.

 What about the size of the XAP package? A package that contains only code is hardly larger
than a few kilobytes (KBs). In .NET and Silverlight, the base size of any assembly is 4 KB. In
10 KB of Silverlight code, you can normally pack quite a bit of logic. The size of the package
might grow signifi cantly if you reference several external assemblies (not already part of the
Silverlight platform) or include as resources graphic fi les or multimedia content. For really
large packages, streaming and on-demand download are options to consider carefully.

 Like any other resource downloaded through the browser, XAP packages end up going to
the Temporary Internet Files folder. This means that clearing your browser’s cache removes
the Silverlight application from the local machine. At the same time, if an unexpired
copy of the package is already available in the cache, the browser receives an HTTP 304
 not-modifi ed status code and no copy is downloaded.

CLR Instancing

 You’ll have a single copy of the CLR per browser process. Next, for each browser process
there will be an AppDomain for each Silverlight plug-in. This means that if the same page
contains multiple Silverlight plug-ins, each plug-in will live in its own space within a distinct
AppDomain.

 Nothing will be shared between plug-ins at the system level. Two plug-ins that want to
communicate must do that through code. The simplest way, though, is by using the HTML
Document Object Model (DOM) of the surrounding page. For example, the code in one
plug-in might write data to, say, a hidden fi eld in the page DOM. A second plug-in might
access the same hidden fi eld by name and read any content written by another Silverlight
application.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

282 Part II Power to the Client

The Programming Model of Microsoft Silverlight

 Programming Silverlight is not much different from programming any other .NET application,
whether it is an ASP.NET, Windows Forms, or WPF application. In all cases, the application is
made of a collection of source code fi le pairs—a markup fi le plus a code-behind class fi le.
Differences in the code-behind class are only the result of the different set of classes supported
by the Silverlight CoreCLR. The Silverlight markup has little in common with ASP.NET or
Windows Forms markup, but it’s a compatible subset of the WPF 3.5 markup language.

 Because it’s a compatible subset of WPF, you’re not going to have the same set of syntax
 elements, but the provided set makes it possible for you to build similar solutions. For example,
you might not be able to use the same WPF syntax to add, say, a ToolTip to a Silverlight
 control; however, you’ll defi nitely have a way to add ToolTips to a Silverlight user interface.

WPF-Based User Interface

 The subset of WPF made available to Silverlight applications should be intended as a way to
enable Web developers to create rich user interfaces rather than as an attempt to port desktop
WPF applications to the Web.

 Space constraints make it hard to stuff the whole WPF machinery into less than 5 MB. As a
result, some features have been dropped (for example, 3D) while others have been trimmed
down (for example, triggers and data templates). The Silverlight WPF-based user interface,
though, is powerful enough to let you port a moderately complex WPF application to the
Web without much pain.

 In addition, some new controls and features have been added to Silverlight that weren’t part
of WPF 3.5. This includes ad hoc controls such as the DataGrid and DatePicker controls. These
controls have been added to WPF recently with the WPF Toolkit. (See http://wpf.codeplex.com
for more information.)

 A few components characterize the user interface of a Silverlight application. In the fi rst
place, you fi nd the layout manager to determine the shape of the visual tree of UI elements.
In addition, controls, the data binding manager, and the style (or layout) manager are other
aspects of the Silverlight UI that deserve a closer look.

Layout Manager

 A typical Silverlight application is built from a tree of objects where UserControl is the root
of the tree. In turn, the UserControl element contains a number of child elements laid out or
stacked in a variety of ways. Elements refer to basic shapes, layout managers, storyboards,
and controls, including custom third-party and user controls.

 There are four main ways to lay out visual elements in a Silverlight user interface that
 correspond to the same number of layout managers—Grid, StackPanel, Canvas, and
ScrollViewer.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 8 Rich Internet Applications 283

 The Grid element divides the entire user interface into a matrix of rows and columns in a
way that is similar to the HTML table element. Each subtree contained within the Grid is then
mapped to a grid cell for display. Following is a brief example of a grid with one column
and three rows. In practical terms, it means that the overall UI will display in three horizontal
panes, two of which have a fi xed height (a sort of header and footer).

<Grid x:Name="LayoutRoot">

 <Grid.RowDefinitions>

 <RowDefinition Height="30" />

 <RowDefinition />

 <RowDefinition Height="40" />

 </Grid.RowDefinitions>

 <Grid.ColumnDefinitions>

 <ColumnDefinition />

 </Grid.ColumnDefinitions>

 <StackPanel Grid.Row="1" Grid.Column="0">

. . .

 </StackPanel>

. . .

</Grid>

 The StackPanel element lays out elements side by side either horizontally or vertically. As a
developer, you have no way to control the exact x,y position of each element; you can control
only its relative location with respect to the previous one. With a StackPanel, the order in
which elements are declared in the source code does matter.

 The Canvas element is the one to choose if you need to control the exact coordinates of
where each visual element should display. You use the Top and Left properties and assign
them values related to the top-left corner of the canvas:

<Canvas x:Name="LayoutRoot" Background="White">

 <Button Canvas.Left="10" Canvas.Top="10" ... />

. . .

</Canvas>

 Finally, the ScrollViewer element is useful when you need to display more content in a smaller
space with horizontal scrollbars, vertical scrollbars, or both.

Common Controls

 Silverlight provides many of the base controls of WPF, including TextBox, Button, RadioButton,
CheckBox, ListBox, and Slider. In addition, it offers a set of controls not natively available in
WPF 3.5, such as DataGrid, HyperlinkButton, WatermarkTextBox, and DatePicker. It doesn’t yet
support some advanced controls you have in WPF such as the RichTextBox control.

 The framework for visual controls is totally extensible and allows you to easily create your
own controls. It should be noted, though, that in WPF (and subsequently in Silverlight) you
don’t need to plan a custom control with the same frequency you do from Windows Forms
or Web Forms.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

284 Part II Power to the Client

 WPF and Silverlight controls provide excellent support for styles and templates. If all that
you need from a control is simply a different set of visual styles or alternate content, you can
resort to a different style. For example, to add an icon to the caption of a button you don’t
need a specialized control; it will suffi ce to use a plain Button control with an ad hoc style
that overwrites the Content property.

 Likewise, if you want to give a control a different shape (say, create a rounded button), you
simply opt for a custom control template and store it in an ad hoc style. The following code
shows how to arrange a button with a circular shape and a background with grades of a
 certain color:

<Button x:Name="Button1" Click="Button1_Click" Content="Hi" >

 <Button.Template>

 <ControlTemplate>

 <Canvas>

 <Ellipse Width="50" Height="50">

 <Ellipse.Fill>

 <RadialGradientBrush GradientOrigin=".3,.2">

 <GradientStop Offset=".2" Color="White"></GradientStop>

 <GradientStop Offset="1" Color="Blue"></GradientStop>

 </RadialGradientBrush>

 </Ellipse.Fill>

 </Ellipse>

 <ContentPresenter Canvas.Left="15" Canvas.Top="15" />

 </Canvas>

 </ControlTemplate>

 </Button.Template>

</Button>

 In the end, when do you really need to create a custom control? In two cases: when you need
a control that provides functionality that doesn’t exist and when you want to give a control
a behavior that doesn’t exist. But for purely visual changes—no matter how complex and
sophisticated—you can do it with styles and templates.

The Data Binding Manager

 Data binding is one of the most powerful features of the WPF platform. In particular, data
binding in WPF can also be bidirectional, and it can both update the UI when the data store
changes and update the data store when the content displayed in the UI changes. The overall
functionality is preserved in Silverlight, but some syntax differences apply. Let’s dig into the
details.

 In Silverlight, there are two ways to do data binding—via code and declaratively. To bind via
code, you create an instance of the Binding class and set its Source property to the object
that provides data. The constructor of the Binding class also takes the name of the property
on the source that contains the value to bind.

Binding binding = new Binding("DisplayName");

binding.Source = new MySourceObject(...);

Label1.SetBinding(TextBlock.TextProperty, binding);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 8 Rich Internet Applications 285

 In the preceding code snippet, the value of the property DisplayName on the specifi ed
 instance of the MySourceObject class is used to populate the target of the binding
 operation—the Text property of the Label1 control. In the example, Label1 is assumed to be
an instance of the WPF’s TextBlock element.

 Alternatively, you can accomplish this declaratively, as shown here:

<TextBlock x:Name="Label1"

 Text ="{Binding DisplayName}" />

 In the markup, the TextBlock element has its Text property set to an expression. The keyword
Binding indicates a data binding operation and specifi es the content. The declarative syntax,
though, lacks a fundamental piece of information—where’s the source object?

 For the sake of simplicity, in Silverlight the data source of declarative forms of data binding is
assumed to be the nearest data context object. In WPF, the property DataContext indicates
an implicit data source shared by multiple elements. Once set, the DataContext property
represents a valid data source for all data-bound elements in its scope. If there’s data binding
in action and the source object is not explicitly indicated, it defaults to the currently set
DataContext. The reason for such an implementation is to avoid multiple source objects in
the markup code.

Label1.DataContext = new MyDataSource(...);

 In Silverlight, you set the DataContext property programmatically for the element you’re
 interested in binding or for one of its parents. In the latter case, all child elements of the
 parent will share the same data context.

 Finally, to bind a collection of objects to a rich control such as the DataGrid, you use the
ItemsSource property and bind it to a .NET collection of objects with public properties:

DataGrid1.ItemsSource = collection;

 If you want the data binding to be two-way, make sure the bound collection is of type
ObservableCollection.

Compatibility Between Silverlight and WPF Code

 Simplifying the porting of existing WPF code to the Web certainly is not the primary goal of
Silverlight. This said, to some extent porting is possible, but it depends on how the WPF API
is used in the original desktop application.

 To start, in Silverlight you have no triggers or, more precisely, you don’t have triggers
in all places. For example, there is a Triggers collection on UI elements—descendants of
FrameworkElement—but not in styles, data, and control templates.

 Likewise, data binding is supported in Silverlight but not in the same manner as in WPF. For
example, you have the Binding element and you have data context, data templates, and

http://lib.ommolketab.ir
http//lib.ommolketab.ir

286 Part II Power to the Client

observable collections. However, you have no triggers and you don’t have the same set of
markup elements. Also, the internal implementation is quite different. The Binding object in
Silverlight has far fewer properties than in WPF.

 Globalization is another area that might be a source of headaches for you. For performance
reasons, the Silverlight CLR doesn’t include its own globalization data for all supported
cultures. Instead, the CultureInfo class in Silverlight relies on the globalization functionality
provided by the underlying operating system. This means that there’s no way for you to give
applications the same globalization settings across different operating systems.

 Finally, WPF has a richer set of controls that are not available in Silverlight. A good example is
the RichTextBox control.

 In summary, porting a Silverlight application to WPF is relatively trivial, although as a developer
you should be concerned about possible performance “gotchas” that could be caused by the
richer object model. Porting in the opposite direction is not realistic, unless we are talking about
a moderately complex WPF application that doesn’t extensively use cool and effective WPF
 features such as triggers and data binding.

The .NET Base Class Library

 The .NET Base Class Library available to you in Silverlight isn’t the same one you have
 available in any other .NET application. There are various reasons for this, including space
constraints and security.

 In Silverlight, you fi nd threads, timers, LINQ, XML, isolated storage, and networking, as
well as cryptography, sockets, and proxies for remote services. You won’t fi nd ADO.NET or
 anything that looks like a client-side database. Likewise, you won’t fi nd full fi le system access.
In general, though, you have quite a powerful programming model that is incomparably
richer and faster than with JavaScript.

Support for LINQ

 In the .NET Framework, most of the time you enjoy LINQ capabilities through the key-
words added to the C# and Visual Basic .NET languages. Keywords such as from and select,
though, are just syntactic sugar and simply build on top of some classes defi ned in the .NET
Framework. The same set of classes is supported in Silverlight.

 In particular, in Silverlight you have LINQ-to-Objects, LINQ-to-XML, and also LINQ-to-JSON.
LINQ-to-Objects allows you to query over collections and arrays of in-memory data.
 LINQ-to-XML allows you to query over the content of XML documents. Finally, LINQ-to-JSON
(at this time, a Silverlight-only feature) lets you query over a stream of JSON objects. Here’s a
brief code snippet that shows LINQ-to-XML:

String xml = ...;

XDocument doc = XDocument.Parse(xml);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 8 Rich Internet Applications 287

List<MyButton> buttons = (from b in doc.Descendants("Button")

 select new MyButton

 {

 Enabled = Boolean.Parse(b.Attribute("Enabled").Value),

 Text = b.Attribute("Text").Value

 }).ToList();

 The XML content is fi rst loaded into an XDocument object and then used as the input for
a LINQ query. The query selects elements from the root of the XML documents that match a
given set of criteria and projects the output to a collection of data transfer objects.

 In a similar manner, you can proceed with JSON data that you might have received from a
RESTful (Representational State Transfer) service:

JsonArray data = (JsonArray) JsonArray.Load(stream);

var members = from member in data

 where member["Age"] > 20

 select member;

foreach (JsonObject member in members)

{

 string name = member["Name"];

 int age = member["Age"];

 // Proceed ...

. . .

}

 To use LINQ-to-JSON, you need to import the System.Json assembly and add the System.Json
namespace to your source code.

Support for Threads

 In Silverlight, you can create threads in two ways. You can use the Thread class directly, or
you can rely on the system-provided ThreadPool class that manages a pool of threads for
you. Here’s how to create a thread explicitly. As you can see, the code is not really different
from the code you would use from a classic .NET application:

ThreadStart code = new ThreadStart(DoSomething);

Thread t = new Thread(code);

t.Start();

 The body of the thread is given by the DoSomething function with the following prototype:

private void DoSomething()

{

 // Do the work

 . . .

 // Update the UI

 this.Dispatcher.BeginInvoke(delegate {

 lblThreadOutput.Text = "Updated from a background, non-UI thread.";

 });

}

http://lib.ommolketab.ir
http//lib.ommolketab.ir

288 Part II Power to the Client

 The Dispatcher object allows you to access the UI thread from the outside so that you can
include UI code right in the external thread. (Achieving this same effect in Windows Forms
would require more effort on your part.) The BeginInvoke method just takes a delegate
 (including anonymous delegates) and runs it on the correct UI thread from where updating
UI controls is safe.

 Just as in full .NET, in Silverlight you can rely on the advanced services of the BackgroundWorker
class. The class encapsulates a background task and fi res common events such as start,
 completed, progress made, and canceled. More importantly, the class completely shields
you from the details of marshaling UI tasks over to the correct thread. You just provide event
 handlers and the class does the work of running them appropriately:

bkgndWorker = new BackgroundWorker();

bkgndWorker.DoWork += new DoWorkEventHandler(_bkgndWorker_DoWork);

// Register additional event handlers for "completed" and "progress" events

bkgndWorker.RunWorkerCompleted +=

 new RunWorkerCompletedEventHandler(_bkgndWorker_RunWorkerCompleted);

bkgndWorker.ProgressChanged +=

 new ProgressChangedEventHandler(_bkgndWorker_ProgressChanged);

// Enables additional features (report progress, and cancel)

bkgndWorker.WorkerReportsProgress = true;

bkgndWorker.WorkerSupportsCancellation = true;

// Start (passing some input values)

object data = ...;

bkgndWorker.RunWorkerAsync(data);

 The background task represented by the DoWork event runs on a distinct thread. Every time
the task invokes the ReportProgress method, the ProgressChanged callback is invoked on the
UI thread to update the user interface.

private void _bkgndWorker_DoWork(object sender, DoWorkEventArgs e)

{

 // Do some work

 for (int i=0; i< (int) e.Argument; i++)

 {

 // Update UI to reflect what you’re doing

 bkgndWorker.ReportProgress(i / 100);

 // Check whether cancellation was requested

 if (bkgndWorker.CancellationPending)

 {

 e.Cancel = true;

 return;

 }

 }

}

 The background worker class also provides a mechanism to intercept requests for canceling
the pending task and then proceed.

 The BackgroundWorker class should be your primary choice for threading needs in Silverlight,
notably because of its automatic context switching to the UI thread.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 8 Rich Internet Applications 289

Support for Timers

 One of the most common scenarios for using Silverlight is for making asynchronous requests to
some remote HTTP façade. Most of the time, though, these requests must go out periodically;
a timer, therefore, is a much needed utility. The following code shows how to initialize a timer
object in Silverlight:

Timer timer = new Timer(new TimerCallback(DoWork),

 data, /* some input value: indicates the user context */

 Timeout.Infinite, /* wait this time before starting */

 Timeout.Infinite); /* period */

 The timer constructor takes the callback that will be repeated periodically plus one object
that represents input data. Finally, you can specify in milliseconds the time to wait before
starting the timer and the period. The timer callback takes the following form:

void DoItPeriodically(object userContext)

{

 // Do some work

 . . .

 // Update the UI if needed

 Label1.Dispatcher.BeginInvoke(delegate {

 Label1.Text = DateTime.Now.ToString();

 });

}

 As you can see, the timer callback runs on a different, non-UI thread, meaning that you need
a dispatcher to update any visual control.

 If you need to start or stop the timer programmatically, you can do that using the Change
method, as shown here:

// Start the timer in 1 second and set the period to 2 seconds

timer.Change(1000, 2000);

 To stop the timer, you set the period to Infi nite.

Isolated Storage

 Nearly all applications greatly benefi t from local data storage. By local storage, I mean the
application’s ability to save some data on the client machine. This has never been an issue for
desktop applications, which have full access to the local disk and fi le system.

 For Web applications, though, it has always been a mission-impossible task. For security
 reasons, any code hosted by Web pages—typically, JavaScript code—can’t just access the
fi le system of the local machine. For years, Web page developers resorted to cookies, or
 server-side storage, to save some user-specifi c information.

 As far as local storage is concerned, Silverlight is a platform sitting somewhere in between
the Web and desktop. A Silverlight application can’t freely perform I/O operations on the

http://lib.ommolketab.ir
http//lib.ommolketab.ir

290 Part II Power to the Client

user’s hard disk because those are considered critical from a security perspective. However, a
Silverlight application takes advantage of a special and constrained programming interface
that permits disk access only under certain conditions. This .NET Framework API is known as
isolated storage, and Silverlight fully supports it.

Why Is Local Storage Important?

 What kind of content should an application store on the user’s local disk? Although it mostly
depends on the particular application, a couple of categories of data can be easily identifi ed.
First, applications might need to save application settings and everything that can be fi led
under that tag. Application settings include user preferences, confi guration, extra features
installed, and also user-specifi c data that is helpful and useful to the application.

 Second, applications might need to temporarily save any data that the user is still working
on and that has not been committed yet. For example, you could save in the local storage
the draft of a form so that users can come back later and fi ll out the rest of the form without
losing any information. The user will eventually submit this work to the server, but until then
data has to be maintained on the client and updated as needed.

 These two broad categories of data going into the local storage of a Silverlight application
have signifi cant differences as far as their size is concerned. Application settings are usually
short pieces of data limited to just a few KBs. Working data, on the other hand, is usually
a much larger chunk of data, even in the order of MBs, that contains text or binary data
 representing a piece of work. The storage system of Silverlight lends itself very well to
 accommodating user preferences, but it might not be as effective for larger blocks of data.

 In the .NET Framework, isolated storage is a storage mechanism that enables partially trusted
applications to save data on the local machine without violating any security policies set on the
computer. Isolated storage has been around since the fi rst version of the .NET Framework and
is especially useful for downloaded, partially trusted components that are not usually given
access to the standard I/O mechanisms. Through isolated storage, applications coming from
potentially untrusted sources can still do some disk I/O, albeit in a controlled and safe way.

 Note Silverlight has its own implementation of the isolated storage feature and doesn’t directly
rely on the bits provided with the .NET Framework. This is not surprising because Silverlight is
not a desktop platform and doesn’t rely on a full edition of the .NET Framework installed on the
 client machine.

The Storage System

 The entry point in the Silverlight isolated storage subsystem is the IsolatedStorageFile class
and in particular one of its static methods: GetUserStoreForApplication or GetUserStoreForSite.
Both methods get you a logical token that can be used to perform any supported operation
on the virtual fi le system. Here’s how to get a token:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 8 Rich Internet Applications 291

using (IsolatedStorageFile iso =

 IsolatedStorageFile.GetUserStoreForApplication())

{

. . .

}

 When you call one of the initialization methods, the system creates a subdirectory specifi c to
the application or the site (if it doesn’t exist already). The token that is returned to you tracks
which part of the physical fi le system your application is enabled to work on.

 The root of the isolated storage fi le system is located in a hidden folder within the subtree
reserved for the current user. If you’re using Windows Vista, the hidden isolated storage
folder lives under the Users directory. If you’re using Windows 2003 Server, it is located under
the Documents and Settings folder for the current user.

 In summary, each Silverlight application has its own virtual fi le system that is completely
separated from the fi le system that’s visible to other full-trust applications. A Silverlight
 application can’t just navigate out of its personal fi le system. File names are always intended
to be relative, meaning that you can’t use absolute paths that include drive information.
At the same time, any relative path that includes ellipses (\. .\. .\) is not allowed.

Working with Files and Directories

 The IsolatedStorageFile class features a number of methods to perform Create, Read, Update,
Delete (CRUD) operations and lookup operations on fi les and directories. Here’s a quick
 example that shows how to create a new directory:

using (var iso = IsolatedStorageFile.GetUserStoreForApplication())

{

 iso.CreateDirectory("MyData");

}

 What if you need to create a child subdirectory? All that you have to do is create a directory
name that includes both the parent directory and the new directory. If you can’t provide the
full name of the directory as a hard-coded string, you can use the Path class to build the
name programmatically. Here’s how to do it:

string dir = Path.Combine("MyData", "Pictures");

iso.CreateDirectory(dir);

 To enumerate the content of a directory, you use ad hoc methods such as GetFileNames and
GetDirectoryNames. Both methods return an array of strings with all the names that match
the specifi ed search criteria:

string[] filelist = iso.GetFileNames("*.dat");

 In Silverlight, you can’t make any use of the DirectoryInfo and FileInfo classes that in the full
.NET Framework are so helpful when it comes to doing any special work on fi les and directories.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

292 Part II Power to the Client

The classes exist, but your application code is just not allowed to use it. The following code
compiles successfully, but it throws an exception once it is executed:

DirectoryInfo dir = new DirectoryInfo(@"c:\");

 The problem with the previous code is just security; I’ll return to the topic of security later in
the chapter.

Working with File Streams

 The content of a fi le is available as a stream for reading and writing purposes. The CreateFile
and OpenFile methods on the IsolatedStorageFile class just return the stream to the
 application code.

 Silverlight supports one particular type of stream, represented by the
IsolatedStorageFileStream class. Therefore, an alternative way of getting a fi le stream in
Silverlight is to explicitly create a new instance of the fi le stream class. Here’s how you can
proceed:

using (IsolatedStorageFile iso =

 IsolatedStorageFile.GetUserStoreForApplication())

{

 IsolatedStorageFileStream stream;

 stream = new IsolatedStorageFileStream(TESTFILE, FileMode.OpenOrCreate, iso);

. . .

}

 The constructor of the IsolatedStorageFileStream class accepts the name of the fi le to access
and a FileMode value (OpenOrCreate, Append, Create, Open, and so on) that sheds some light
on your intentions regarding the fi le. Finally, the third parameter is the reference to the root
of the virtual fi le system.

 Once you have a stream to operate on the content of a fi le—for reading or writing—
you have two options to proceed. The fi rst option entails that you use the synchronous
or asynchronous API for I/O defi ned for stream classes. The stream class features pairs of
 methods such as Read/Write and BeginRead/BeginWrite in addition to classic stream methods
such as Flush, Close, SetLength, and Seek. Finally, a stream lists a number of properties,
 including CanRead, CanWrite, Length, and Position.

 The second option is based on the fact that you leverage a helper reader or writer class to work
with the stream content. As in the full .NET Framework, these classes are named StreamReader
and StreamWriter and have nearly the same programming model. The following code snippet
shows how to create a fi le and write some content to it using a stream writer helper class:

using (IsolatedStorageFile iso =

 IsolatedStorageFile.GetUserStoreForApplication())

{

 IsolatedStorageFileStream stream;

 stream = new IsolatedStorageFileStream(TESTFILE, FileMode.OpenOrCreate, iso);

 StreamWriter writer = new StreamWriter(stream);

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 8 Rich Internet Applications 293

 writer.Write(DateTime.Now.ToString());

 writer.Close();

 stream.Close();

}

 Largely similar is the code that reads content from a stream. Here’s the part that relates to
the StreamReader class:

StreamReader reader = new StreamReader(stream);

content = reader.ReadToEnd();

reader.Close();

 The Write method of the StreamWriter class has a number of overloads to let you write
the content of a bunch of types—bytes, arrays, characters, Booleans, and objects. The
StreamReader class, on the other hand, is mostly a text reader class and offers facilities to
read text fi les.

 What if you need to deal with binary content? Silverlight also has in store for you a
 tailor-made version of the BinaryReader and BinaryWriter pair of .NET Framework classes.

Storage Management

 When the GetUserStoreForApplication method is invoked, it fi rst checks whether the proper
subtree exists and, if not, it will create it. As an application developer, you have to worry
only about your own fi les and directories. The system guarantees that the isolated storage
 infrastructure is always up and running for you. But does it really?

 To sum it up, there’s a possibility that the end user, deliberately or not, could clear stored
data or disable the isolated storage feature altogether. By right-clicking on a Silverlight
 window in any browser, you get the dialog box shown in Figure 8-3.

FIGURE 8-3 The Silverlight confi guration manager

http://lib.ommolketab.ir
http//lib.ommolketab.ir

294 Part II Power to the Client

 The check box at the bottom of the Application Storage tab says it all. If the user deselects
that button, isolated storage stops working and any call made to any API results in an
 exception. In light of this, it is recommended that you create your own helper at least for the
initialization methods, such as GetUserStoreForApplication, that do include some exception
handling.

 In Figure 8-3, the two delete buttons also enable end users to erase any content in the
 selected isolated storage. This means that as an application developer you must be ready
to handle the possibility that all of your previously stored data is gone. The suggestion is to
store in the Silverlight storage only data that you know how to re-obtain or data that you
can do without. No data that is critical for the application should be stored in the Silverlight
 storage. The risk is only that the user might delete it.

 Note Is Silverlight good for building occasionally connected applications? There’s no
 technological reason for not doing that. However, such applications need to work offl ine and
save data locally. This can raise two issues in a Silverlight environment.

 First, what if the user deletes data or disables storage? Second, what if the disk quota for the
 application (or site) is exceeded?

 The answer to the fi rst question is that there’s no answer. However, an occasionally connected
application sounds like an application for a small and smart category of users who can be
 instructed and informed about the confi guration dialog. The risk, however, is that by misusing
the Silverlight environment they end up losing their own work. For the second question, the size
of the disk quota (as we’ll see in a moment) can be adapted to any need.

Disk Quotas

 To avoid having downloaded applications fl ood the local hard disk with their settings and
user-specifi c data, a threshold has been set that indicates the maximum capacity of the user
store for a given application.

 By using the Quota property on the IsolatedStorageFile class, you can learn about the current
quota of disk space that the current application is assigned. The AvailableFreeSpace property,
on the other hand, informs you about any remaining space. By default, each Silverlight
 application is given 1 MB of disk space on the local user’s machine to save its own data.
The quota is per application and per site, meaning that if you download multiple Silverlight
 applications from the same site, the current quota is the maximum amount of disk space that
Silverlight applications can consume in total.

 There might be situations, though, where the limit of the disk quota is too low. In these
 cases, the Silverlight base class library makes available a method on the IsolatedStorageFile
class through which the application can ask the local user to increase the quota to a given
value. The method is IncreaseQuotaTo.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 8 Rich Internet Applications 295

using (IsolatedStorageFile iso =

 IsolatedStorageFile.GetUserStoreForApplication())

{

 bool ok = iso.IncreaseQuotaTo(5000000);

 MessageBox.Show(ok ? "Accepted" : "Denied");

}

 The method accepts a long value that indicates the larger size you request and returns a
Boolean value that indicates, instead, the user response to the request. Any attempt to increase
the application’s quota, therefore, must be explicitly approved by the user. Applications are not
allowed to silently and arbitrarily increase the quota. Any call to the IncreaseQuotaTo method
results in a dialog box being displayed to the user, as shown in Figure 8-4.

FIGURE 8-4 The dialog box displayed when the application attempts
to increase the disk quota

 Note that the IncreaseQuotaTo method throws an exception if the new quota is not larger
than the old quota. To reset the quota and clear any stored data, you resort to the dialog box
that was shown in Figure 8-3, select the site of choice, and delete the data store. The next
time the storage is initialized, a new subtree of directories will be re-created.

Networking

 For an RIA, communication is a fundamental asset. Through communication, the application
calls for data to process and passes the results back to the server. The big difference between
an RIA and a JavaScript application is found in what each can do on the client; both types of
applications are dependent on the server for input and output.

 Network communication in Silverlight is singularly based on an asynchronous API. The
 application code invokes a component and asks it to download a resource; the component
starts working and fi res an event when it has fi nished retrieving the resource. The provided
callback does the rest, which consists of updating the user interface with the results
 calculated on the server.

 Invoking services—whether WS-* Web services, WCF services, or perhaps ADO.NET Data
Services—is also asynchronous. In Silverlight, synchronous calls are not supported.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

296 Part II Power to the Client

 Note By playing a trick, you can invoke a URL in a synchronous manner. The trick, however, is
just a trick. Although it doesn’t rely on hacks and undocumented features, still it might be the
source of performance issues. Use this trick if you need it, but be careful.

 So what’s the trick? It basically consists of using the Silverlight-to-DOM API and invoking the
browser’s XMLHttpRequest object. Here’s an example:

ScriptObject xhr = HtmlPage.Window.CreateInstance("XmlHttpRequest");

xhr.Invoke("open", "POST", url, false);. . .

xhr.Invoke("send", body);

string response = (string) xhr.GetProperty("responseText");

 A synchronous call blocks the application until a response is received from the remote server. For
this reason, you should use this approach very carefully.

Downloading Data

 The communication API in Silverlight comes in three fl avors. You have a simple API to
 download resources from the Web. You have a bit more sophisticated API to issue HTTP
 requests, including POST requests. Finally, you have an ad hoc API for invoking services over
HTTP. Let’s attack with the API to get some text or binary content downloaded to the client.
The API is centered around the WebClient class.

 The WebClient class is an extremely simple class that basically operates as a downloader. The
class offers two pairs of methods to download text and binary content in an asynchronous
manner. Here’s some code that gets a string from a URL:

WebClient client = new WebClient();

Uri endpoint = new Uri("http://YourServer/Samples_Web/test.ashx");

client.DownloadStringCompleted +=

 new DownloadStringCompletedEventHandler(OnDownloadStringCompleted);

client.DownloadStringAsync(endpoint);

 The DownloadStringAsync method connects to the specifi ed URL and retrieves data. After
data has been fully downloaded on the client, the DownloadStringCompleted event is fi red so
that the client can handle any response.

void OnDownloadStringCompleted(object sender, DownloadStringCompletedEventArgs e)

{

 string response = e.Result;

. . .

}

 The WebClient class performs an HTTP GET and returns the raw response as returned by the
endpoint. If you use WebClient to connect to an AJAX-enabled WCF service, you’ll get back
a JSON string and you’re entirely on your own when parsing that to a JavaScript (or other)
object.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 8 Rich Internet Applications 297

 To download binary content (for example, an image or an on-demand XAP package), you
follow the same pattern, except that you need to call into another method—OpenReadAsync.
The syntax is exactly the same as before:

WebClient client = new WebClient();

Uri endpoint = new Uri("http://YourServer/Samples_Web/extra.xap");

client.OpenReadCompleted +=

 new OpenReadCompletedEventHandler(OnReadCompleted);

client.OpenReadAsync(endpoint);

 The response from the invoked URL is exposed to the callback via a Stream object. The following
code snippet shows how to process a dynamically downloaded XAP package and transform its
content into a user control object that can be plugged into an existing Silverlight object model:

private void OnReadCompleted(object sender, OpenReadCompletedEventArgs e)

{

 if (e.Error != null)

 return;

 // Load a particular assembly from XAP

 Assembly a = GetAssemblyFromPackage(assemblyName, e.Result);

 // Get an instance of the XAML object

 object page = a.CreateInstance(className);

 // Get the user control object that represents the visual tree in the package

 UserControl uc = page as UserControl

. . .

}

private Assembly GetAssemblyFromPackage(string assemblyName, Stream xapStream)

{

 // Local variables

 Uri assemblyPath = null;

 StreamResourceInfo packageBits = null;

 StreamResourceInfo assemblyBits = null;

 AssemblyPart part = null;

 // Initialize

 assemblyPath = new Uri(assemblyName, UriKind.Relative);

 packageBits = new StreamResourceInfo(xapStream, null);

 assemblyBits = Application.GetResourceStream(packageBits, assemblyPath);

 // Extract an assembly

 part = new AssemblyPart();

 Assembly a = part.Load(assemblyBits.Stream);

 return a;

}

 In the example, the stream you download represents the content of the XAP package. Some
work is required to unzip the package and extract the bits of the entry point assembly—that
is, the assembly that contains the code-behind for the new Silverlight application.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

298 Part II Power to the Client

 After the bits for the assembly have been found, you create an Assembly object out of it
 using the Silverlight-specifi c AssemblyPart class. From the Assembly object, with a bit of
 refl ection you can dynamically create an instance of the code-behind class and cast that to
the UserControl type.

Managing Web Requests

 The WebRequest class offers a richer interface for when you need to arrange HTTP calls
 using POST or other verbs. Generally, the WebRequest class helps you whenever you need
to perform more than just a GET from a plain URL. The programming interface is also more
 sophisticated. Let’s see how to post some data to a URL:

Uri endpoint = new Uri(...);

WebRequest request = WebRequest.Create(endpoint);

request.Method = "POST";

request.ContentType = "application/x-www-form-urlencoded";

 At this point, you need to prepare the body of the request. The WebRequest class makes
available a request stream, but it forces you to fi ll the stream asynchronously. (Not exactly a
delicate touch!) The preceding code snippet continues with the following lines:

// Data to pass down to the request body builder

MyRequestState state = new MyRequestState();

state.Request = request;

state.Symbols = symbol;

request.BeginGetRequestStream(new AsyncCallback(InitializeRequest), state);

 Any data to write into the body are grouped into a custom data object (for example,
MyRequestState) that also references the current request object. The data object is then
passed as context to the BeginGetRequestStream method along with the callback that will
physically write to the stream:

private void InitializeRequest(IAsyncResult asyncResult)

{

 MyRequestState state = asyncResult.AsyncState as MyRequestState;

 WebRequest request = state.Request;

 Stream requestStream = request.EndGetRequestStream(asyncResult);

 StreamWriter writer = new StreamWriter(requestStream);

 writer.Write("Symbols=");

 writer.Write(state.Symbols);

 writer.Flush();

 requestStream.Close();

 request.BeginGetResponse(new AsyncCallback(HandleResponse), request);

}

 Finally, the BeginGetResponse method kicks off the call, and HandleResponse will be invoked
when results are received:

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 8 Rich Internet Applications 299

private void HandleResponse(IAsyncResult asyncResult)

{

 WebRequest request = asyncResult.AsyncState as WebRequest;

 using (WebResponse response = request.EndGetResponse(asyncResult))

 {

 using (Stream responseStream = response.GetResponseStream())

 {

 // Read and process

. . .

 }

 }

}

 The response is made available through a Stream object.

Consuming Services

 Consuming services from Silverlight couldn’t be easier. All that you have to do is link the Web
or WCF service to the project through the canonical Add Service Reference dialog box, as
shown in Figure 8-5.

FIGURE 8-5 Adding a service reference to a Silverlight project

 When you’re done with the confi guration, you can start writing code against the proxy class
that Visual Studio 2008 automatically generates for you. Here’s an example:

StockServiceClient client = new StockServiceClient();

client.GetQuotesCompleted += new

 EventHandler<GetQuotesCompletedEventArgs>(OnGetQuotesCompleted);

client.GetQuotesAsync(symbols);

 The entire process is in no way different from what you would do in a Windows Forms or
ASP.NET project.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

300 Part II Power to the Client

 When you add a WCF reference, Visual Studio 2008 also generates a client confi guration fi le
where it specifi es the binding mode, address, and contract name. In Silverlight, WCF services
can be called only by using the basicHttpBinding mode.

 Silverlight also fully supports ADO.NET Data Services. After you’ve linked in this way as a
 service to a Silverlight application, you can proceed with the following code:

private void UserControl_Loaded(object sender, RoutedEventArgs e)

{

 Uri svc = new Uri("SimpleNorthwind.svc", UriKind.Relative);

 ctx = new NorthwindEntities(svc);

 coll = new ObservableCollection<Customer>();

}

 An ADO.NET Data Service is a service wrapper around an object model created with Entity
Framework. When you instantiate the xxxEntities class, you also indicate the URI of the service
that exposes it. The instance of the “entities” class is referred to as the data context.

 Next, you use the data context to fi re a query against the service using the rich syntax
 supported by ADO.NET Data Services:

private void Button1_Click(object sender, RoutedEventArgs e)

{

 Uri query = new Uri("CustomerSet?$orderby=Country", UriKind.Relative);

 ctx.BeginExecute<Customer>(query, OnExecuted, ctx);

}

void OnExecuted(IAsyncResult result)

{

 try

 {

 NorthwindEntities ctx = (NorthwindEntities) result.AsyncState;

 IEnumerable<Customer> results = ctx.EndExecute<Customer>(result);

 foreach (var item in results)

 coll.Add(item);

 // Update the UI

 Dispatcher.BeginInvoke(() =>

 {

 grid.ItemsSource = coll;

 });

 }

 catch (DataServiceRequestException ex)

 {

 MessageBox.Show(ex.Response.ToString());

 }

}

Cross-Domain Requests

 By default, from Silverlight you can place calls only to URLs located in the same server
 domain that has served the calling page. If needed, the local service then places a
 server-to-server call to the desired server on any domain you want. This restriction, known as
the Same Origin Policy (SOP), is applied by browsers for security reasons.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 8 Rich Internet Applications 301

 In AJAX sites, SOP is often overcome by using a trick in which the remote Web service returns
executable script rather than plain data. You reference the service through the <script>
tag, and it downloads executable script that builds data. In this way, you get data from an
 external site in full respect of SOP. The <script> tag (as well as the tag) is not subject
to SOP. The trick requires the collaboration of the remote Web service, which must be
 designed to return script code.

 Flash introduced a more formal (and also secure) mechanism. According to this model, a
Web site can declare that it is happy to receive calls from JavaScript code hosted in external
domains. It does that by putting a fi le named CrossDomain.xml in its root directory. Here’s
possible content for such a fi le:

<?xml version="1.0" encoding="UTF-8"?>

<cross-domain-policy xmlns:xsi= http://www.w3.org/2001/XMLSchema-instance

 xsi:noNamespaceSchemaLocation="http://www.adobe.com/xml/schemas/PolicyFile.xsd">

 <allow-access-from domain="*" />

</cross-domain-policy>

 The value of the domain attribute indicates which sites are enabled to call in resources in the
site. By using *, the site declares itself open toward external Flash applications that are calling.

 The format of the CrossDomain.xml fi le allows for fi ltering of which caller is accepted and
which is not, but once a caller has been accepted it gains full access to the site. In other
words, there’s no way to limit, say Site, to access only a given subtree of the site. To make up
for this, Silverlight also supports another confi guration fi le—the ClientAccessPolicy.xml fi le.
Here’s an excerpt:

<access-policy>

 <cross-domain-access>

 <policy>

 <allow-from>

 <domain uri="*" />

 </allow-from>

 <grant-to>

 <resource path="/PubServices/" include-subpaths="true" />

 </grant-to>

 </policy>

 </cross-domain-access>

</access-policy>

 The uri attribute of the <domain> element indicates a site that is welcome, while * just opens
the server to accept any incoming call from Silverlight clients. However, the <grant-to> node
lets you restrict the areas of the site an external caller can programmatically access.

 Note Unfortunately, no confi guration fi le is supported for JavaScript callers. Today, no
browser script engine supports this mechanism or anything similar. This situation penalizes the
XMLHttpRequest object and makes it impossible for the component to place cross-domain calls.
Internet Explorer 8, in fact, provides an ad hoc component for cross-domain script calls—the
XDomainRequest object. We’ll see what other browsers will do in the upcoming months. Some
good news is also expected from the W3C, which is working on standardizing a mechanism for
enabling XMLHttpRequest to make calls to external domains that in some way have opted in.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

302 Part II Power to the Client

Microsoft Silverlight and Code Security

 Users and administrators are always concerned when it comes to downloading executable
code that comes from the Internet. In which way is Silverlight better than ActiveX and at least
as secure as Flash? How can Silverlight’s runtime prevent risky code from executing? How can
it recognize that now it is enabled to execute a large share of the .NET Framework classes?
Let’s explore the security model of Silverlight.

The Security Model

 Silverlight’s CLR uses an innovative security model that is a sort of simplifi ed version of the
security model employed for the .NET Framework. Silverlight doesn’t use the Code Access
Security (CAS) model of .NET; instead, it opts for an adapted version of the concept of code
transparency. Code transparency is an attribute-based security model that was introduced in
.NET to distinguish critical and noncritical code. With some simplifi cation and adaptation, the
model has been ported to Silverlight, which makes it a really safe and secure platform.

Code Access Security

 In the .NET Framework, in the process of loading an assembly, the CLR gets some evidence
about it. Based on the evidence, the CLR fi gures out the code group of the assembly.

 A code group defi nes the list of privileged actions that participating assemblies are allowed
to perform. Whenever some code is about to execute a privileged action, the CLR verifi es its
permissions through the code group and throws an exception if it fi nds out that anything is
wrong. Permissions for code groups are determined by the machine administrator.

 The role played by the administrator in a CAS scenario is just what makes the CAS model
 critical if you consider its porting to Silverlight. What if the administrator (that is, in many
cases the end user) doesn’t do much to protect the system? Or he isn’t very restrictive?

Code Transparency

 The CAS model therefore is not supported in Silverlight. Instead, code access security in
Silverlight is guaranteed by a brand new security model.

 Silverlight’s CoreCLR reverses the basic principle of CAS completely. Any code that goes
through the CoreCLR is not trusted; no evidence is ever checked, and no code group is ever
created. Any code that goes through the CoreCLR is simply not allowed to call into other
methods that require higher privileges.

 This model is also referred to as code transparency, meaning that any code is transparent
 unless it’s marked at the assembly level with a different security attribute. Can you see the
difference between this and CAS?

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 8 Rich Internet Applications 303

 Like CAS, code transparency lets you distinguish in some way between safe and unsafe code;
however, in Silverlight the security level is an attribute of the code and does not depend on
the settings and choices of some administrator. Additionally, security attributes are fi xed
 forever and cannot be changed by an administrator at some time.

 This is an important point, and not one most new Silverlight developers are aware of. So let’s
delve deeper into the security attributes of Silverlight code.

Security Attributes

 Any code that runs within the Silverlight run-time environment belongs to one of the
 following categories: transparent code, critical code, or safe-critical code. The level
of security hazard associated with any method on any class is identifi ed with an attribute:
SecurityTransparentAttribute, SecurityCriticalAttribute, or SecuritySafeCriticalAttribute.

Transparent Code

 The concept of code transparency is nothing new in the .NET Framework. It refers to code
that is marked as unable to call into full-trust code. Transparent code is not allowed to
 perform any actions that would possibly elevate the permissions of the call stack. Transparent
code is determined differently in the .NET fully fl edged CLR and in the Silverlight CoreCLR.

 In the .NET CLR, only the code in methods or assemblies explicitly decorated with the
SecurityTransparent attribute is transparent. In other words, all code is fully trusted unless it is
downgraded via the SecurityTransparent attribute.

 In the CoreCLR, conversely, all code is transparent unless a different security attribute is used.
In particular, this means that by default all the code in a Silverlight application cannot directly
execute any critical operations such as invoking unsafe or unverifi able code or attempting
system-wide changes through the P/Invoke subsystem. Any application code in the Silverlight
virtual machine runs as partially trusted and can invoke only other transparent code or, at
most, code marked with the SecuritySafeCritical attribute. In no way can any transparent
code call directly a piece of code marked as SecurityCritical.

 In case you’re still a little uncertain about it, let me rephrase the explanation. In Silverlight,
all application code—that is any code written by developers within a project—can only be
transparent. As such, it’s not allowed to call into any method of any class that is declared as
SecurityCritical. At most, transparent code can call into methods declared as SecuritySafeCritical.
These rules are strictly enforced by the CoreCLR, and they do not depend on any external
 confi guration or settings being managed by an administrator.

Critical Code

 In Silverlight, critical code runs in full-trust mode with none of the limitations that affect
transparent code. Critical code has unlimited access to all machine resources, including
 installed hardware and the fi le system.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

304 Part II Power to the Client

 Although uncontrolled execution of critical code downloaded from a Web site can put any
local computer at risk, still it is viable for applications to access resources such as the fi le
system. Critical code is not absolutely evil. More simply, the attribute refers to code that can
manage valuable resources of a computer. Thus, if executed in an uncontrolled way it can
create a security hazard.

 Executing critical code safely in the context of a Silverlight application still makes a lot of
sense and, additionally, it’s sometimes unavoidable, legitimate, and desired. The whole point
is about how to execute it in a safe way. Enter safe-critical code.

Safe-Critical Code

 The CoreCLR invariably throws a method-access exception every time that the application
code attempts to execute any critical code. For example, most of the methods in the
System.IO.DirectoryInfo class are marked as critical, as you can see in Figure 8-6.

FIGURE 8-6 A class with security-critical members

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 8 Rich Internet Applications 305

 This means, for example, that because the class constructor is critical, the simple instantiation
of the DirectoryInfo class will throw an exception in Silverlight:

// Throws a security exception (an absolute file path is required to instantiate the class)

DirectoryInfo dir = new DirectoryInfo("c:\new folder");

 However, some directory operations might still be useful and required in a Silverlight
 application. In this case, a different attribute is used to indicate a member that works with
critical resources, but which does it in a controlled and therefore safe way.

 In Figure 8-6, you see that the get accessor of the Exists property is declared as
SecuritySafeCritical. This means that security-wise, it is acceptable that some application code
gets to know whether a given directory exists. It is not acceptable, though, that the code can
freely navigate within the fi le system to fi nd it.

 In summary, safe-critical code is full-trust code and acts as a smart proxy toward critical code.
A safe-critical method does a number of checks before passing control to a critical method.
Security checks can include parameter validation and any sort of API-specifi c checks aimed at
ensuring that the application state is acceptable for the call to continue. Safe-critical methods
are a delicate element because they represent the gateway for downloaded application
code to access a critical method.

 Application code is allowed to call into safe-critical code, as Figure 8-7 shows.

Silverlight Plug-in

Application code

Transparent

Safe-Critical Critical

FIGURE 8-7 Types of Silverlight code and security attributes

http://lib.ommolketab.ir
http//lib.ommolketab.ir

306 Part II Power to the Client

 The perfect example of safe-critical code is the isolated storage API. It wraps access to the
local fi le system, but it exposes a safe API that enables application code to see and work only
with a secure subtree of the disks.

 Important The SecuritySafeCritical attribute is new to Silverlight. The whole concept of code
transparency, though, is nothing new in the .NET Framework. Attributes such as SecurityCritical
and SecurityTransparent have existed for a long time in the .NET Framework.

 Another long-standing security attribute defi ned in the .NET Framework is the
SecurityTreatAsSafe attribute. Why has SecurityTreatAsSafe not been ported to Silverlight, and
why has it been replaced by SecuritySafeCritical instead?

 In the desktop CLR transparency model, all public critical methods are automatically marked
as SecurityTreatAsSafe. In the context of Silverlight, a similar setting would enable transparent
code to call into any public critical methods, thus severely invalidating the whole security model.
In addition, a distinct treat-as-safe attribute applicable to transparent code make little sense
 because transparent code is safe by nature. So the treat-as-safe attribute makes sense especially
if combined with critical code. The SecuritySafeCritical attribute is just the combination of
SecurityCritical and SecurityTreatAsSafe.

Secure by Design

 Safe-critical code is the layer shielding application code from critical local resources. But who
provides safe-critical methods? Or, put another way, is it possible for a developer to inject
her own set of safe-critical methods in a Silverlight application? As you can understand, the
 ability to create safe-critical code is essential to assessing whether Silverlight is safe or not.

Application Code vs. Platform Code

 Regardless of the security attributes, any piece of Silverlight code falls into one of two
 families: application code and platform code. Application code is any custom code that
 developers write for an application and that users download to their machines. Platform
code is all the system code that makes Silverlight run.

 Application code can only be transparent; any attempt to directly invoke a critical method
results in a method access security exception. Platform code can be of any type: transparent,
critical, or safe-critical. How do you distinguish between application and platform code?

 For the CoreCLR, safe-critical code can be defi ned only in an assembly recognized as platform
code. This fact eliminates at the root the possibility that malicious application developers
write their own safe-critical methods that are, in the end, a vehicle for attacks.

 Platform code is not written by Silverlight application developers.

 The CoreCLR recognizes as platform code only code defi ned in assemblies loaded from the
local Silverlight installation directory and digitally signed by Microsoft. Only such assemblies
are allowed to contain safe-critical or critical code.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Chapter 8 Rich Internet Applications 307

 In no way can the CoreCLR be fooled to consider safe-critical code a piece of application
code. To state it clearly, no code downloaded from the Internet by a Silverlight application
can be treated as safe-critical, and only Microsoft can create safe gateways to access critical
APIs within the .NET Framework.

Inheritance Rules

 The Silverlight security model doesn’t prevent inheritance, but it limits the way in which you
derive new classes from existing ones. Security attributes apply to methods, so in principle
you can derive your classes from any existing class. The overriding of methods, though, is
strictly governed. In particular, you can override transparent methods as well as safe-critical
methods. You can’t override, though, any virtual method that is marked as critical.

 Is it safe to override a safe-critical method from a Silverlight application? Doesn’t this represent
a possible breach in the overall security model?

 When you override a method, which actions can you reasonably take? For example, you
can invoke the base method implementation and code some extra tasks. Alternatively, you
can completely change the implementation of the method by having the code do radically
 different things.

 In both cases, you are still limited to calling into transparent or safe-critical code. Unless the
base class contains security holes (for example, it doesn’t mark as critical an internal virtual
method that manipulates critical resources), overriding safe-critical methods isn’t riskier than
any other application code. The following code shows a typical (and allowed) way to derive a
new class while overriding a safe-critical method:

public class StreamReader : System.IO.StreamReader

{

 static StreamReader()

 {

 }

 public StreamReader(Stream s) : base(s)

 {

 }

 // This method was originally a safe-critical method. It is now

 // a transparent method.

 public override string ReadToEnd()

 {

 string text = base.ReadToEnd();

 // Does some extra work; for example, turn to JSON

 return ToJson(text);

 }

}

 The same restrictions apply to interfaces. An application class can implement only security-
transparent interfaces that don’t contain critical methods.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

308 Part II Power to the Client

 Summary

 Microsoft’s answer to users’ demands for ad hoc tools for building rich Internet applications
is Silverlight. Silverlight places itself in the same product area as Adobe Flash, but it is not
a standalone product. It comes with strong connections to ASP.NET AJAX, WPF, the .NET
Framework 3.x, and the Expression suite of products.

 Silverlight represents Microsoft’s way of building a compelling user interface for Web
 applications in a cross-browser and cross-platform scenario. A browser plug-in, Silverlight
 focuses on .NET Web applications that need media support, sophisticated forms of
 interactivity, and client processing power.

 In a way, Silverlight can be seen as a .NET-in-the-sandbox solution because it brings most of
the programming power of the full .NET Framework to the client browser and—here’s the most
important point—without the need to have the .NET Framework installed on the local PC.

 Silverlight and AJAX are two faces of the same coin, as both aim at improving the overall user
experience over the Web. Silverlight requires a browser plug-in to be installed, and a browser
plug-in requires administrative privileges. AJAX is entirely based on HTML and JavaScript
and, as such, guarantees an unparalleled reach.

 In the end, you choose between Silverlight and AJAX based on application-specifi c tradeoffs.
I like to summarize this as the rich versus reach dilemma. If you value the richness of the user
interface and application more than reach, the natural choice is Silverlight. Instead, if reach
counts more, you should go into the AJAX arena.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 309

Index

Symbols and
Numbers
(hash) symbol, 168, 236, 245
(pound) symbol, 33
symbol, 143
#id selector, 142
#PropertyName expression,

241, 245
#Quote placeholder, 236
#Style1 expression, 248
#Word expression, 247–48
$.getScript method, 176
$ function, 59, 140–41

helper methods, 141–42
parameters, 140

$ root object, 115
$ shorthand notation, 159
$addHandler alias, 126
$clearHandlers alias, 126
$create shortcut, 263
$fi nd method, 122
$G function, 94
$get function, 114–15
$removeHandler alias, 126
:animated()fi lter, 145
:button fi lter, 148
:checkbox fi lter, 148
:checked fi lter, 148
:contains(text) fi lter, 146
:disabled fi lter, 148
:empty fi lter, 146
:enabled fi lter, 148
:eq(index) fi lter, 144–45
:even fi lter, 144
:fi le fi lter, 148
:fi rst fi lter, 144
:fi rst-child fi lter, 145
:gt(index) fi lter, 144
:has(selector) fi lter, 146
:header()fi lter, 145
:hidden fi lter, 148
:image fi lter, 148
:input fi lter, 148
:last fi lter, 144
:last-child fi lter, 145
:lt(index) fi lter, 144
:not(selector) fi lter, 144
:nth-child fi lter, 145
:nth-child(expression)

fi lter, 145
:odd fi lter, 144
:only-child fi lter, 145

:parent fi lter, 146
:password fi lter, 148
:radio fi lter, 148
:reset fi lter, 148
:selected fi lter, 148
:submit fi lter, 148
:text fi lter, 148
:visible fi lter, 148
. . . (ellipses), 291
* (asterisk) symbol, 263
* selector, 143
.asmx, 65
.asmx endpoints, 32
.asmx requests, 76, 78
.aspx source fi le, 55
.class selector, 142
.js fi les, 110
.NET Base Class Library, 286

LINQ support, 286–87
thread support, 287–88
timer support, 289

.NET Framework
classes, as data source, 230
classes, Silverlight and, 23
code security, 302
data binding, 223–24
data transfer to JavaScript,

232–33
DataContractSerializer class, 166
enumerations, 114
isolated storage, 289–90, 308.

See also storage
jQuery library, 137, 139
Managed Jscript compiler, 102
presentation platform, 23
security attributes, 306
Silverlight, 274–75,

279, 308
StringBuilder class, 122
Web Forms model, 19
XBAP applications, 276

.NET Framework 2.0, 75

.NET Framework 3.5
binding, 68
HTTP endpoint, 64
LINQ-to-SQL, 166
Service Pack 1, 33, 66, 78, 266
WCF services, 66–67, 72

.svc endpoint, 32

.svc fi le, 74

.svc requests, 72, 78
/js prefi x, 80
/jsdebug prefi x, 80

@Page directive
Culture attribute, 32
UI culture attribute, 31

@ServiceHost directive, 74
_ (underscore) symbol, 118
_fi rstName members, 108
_initialize method, 40
_lastName members, 108
[. . .] notation, 117
[attribute != value] fi lter, 146
[attribute $= value] fi lter, 146
[attribute *= value] fi lter, 146
[attribute ^= value] fi lter, 146
[attribute = value] fi lter, 146
[attribute] fi lter, 146
~~ operator, 166
+ (plus) character, 265
<body> tag, 263
<div> dialog method, 161
<div> element, 21, 185
<div> tag, 44, 248

as template, 261
HTML template, 240

<domain> element, 301
<form> element, 143
<grant-to> node, 301
<h2> element, 144
 tag, 77–78

Same Origin Policy, 216
<input> elements, 143–44, 148

color, 149
extenders, 58
widgets, 59–60

<object> tag, 277
plug-ins, 273

<p> element, 144
<script> tag, 29, 77–78, 139

cross-domain requests, 301
cross-site scripting attacks, 85
Same Origin Policy, 216
script downloads, 176–78

<select> element, 148
 element, 144
 tag, 47, 205

color, 265
<table> tag, 205
<tbody> element, 262
<td> element, 146–47, 248
<textarea> element, 123, 148
= = = operator, 107
3D API, 276
3D graphics, 277
401 errors, 86

http://lib.ommolketab.ir
http//lib.ommolketab.ir

310 abortPostBack method

A
abortPostBack method, 208
abstract base classes, 55
access, unauthorized, 85–86
Accordion widget, 160
ActionLink component, 260
Active Server Pages (ASP), 88, 276
ActiveX, 270

security, 272–73
Add member, 230
addClass function, 150
administrator permissions, 302–03
ADO.NET Data Services, 21, 78–79

ASP.NET library, 266–68
container classes, 230
content display, 267–68
HTTP façade, 66–67
proxy class, 267
Silverlight, 300

Adobe, 272
Adobe Flash, 22, 271

cross-domain requests, 301
plug-ins, 274

AdoNetDataSource object, 268
AJAX, 3, 221

API, script downloads, 176
architecture, 61–62. See also

architecture
ASP.NET 4.0 data binding, 260–68
aspects, 94–96
benefi ts, 11, 18
connectivity, Yahoo!

UI library, 136
costs, 7, 18
data binding, 232
defi ned, 12
design patterns. See AJAX design

patterns
history feature, 33–34, 167–68
implementation, 27
infrastructure, 28–37
JavaScript injections, 53–60
JavaScript library, 35–37
jQuery library functions, 157–58
library. See Microsoft AJAX library
network stack, 67
page script manager, 28–34
paradigm change, 27
partial rendering, 37–53, 61.

See also partial rendering
PrototypeJS library, 133–34
pure applications, 49
refactoring to, 16–17
Silverlight, 308
templates, 260–66
vs. Silverlight, 23, 275
WCF services, 73–74

Web and, 4–11
Web site development, 17

AJAX 4.0, 260–68
AJAX Control Toolkit, 57–59, 258

obtaining, 57
AJAX design patterns, 163, 213, 221

applying, 164
code development, 163–68
Cross-Domain Proxy pattern,

215–17
dynamic data download, 166
generalities, 164–66
Heartbeat pattern, 193–94
idioms, 165–66
JavaScript development, 168–78
Micro-Link pattern, 213–15
On-Demand JavaScript pattern,

175–78
page DOM manipulation,

166–67
Periodic Refresh pattern, 192–93
Predictive Fetch pattern, 178–86
Progress Indicator pattern,

194–213
Singleton pattern, 169–70
Submission Throttling pattern,

218–20
Timeout pattern, 186–92
unique URL, 167–68
user actions, 167
value of, 164–65

AJAX Extensions 1.0, 75
Ajax.request function, 133–34
Ajax.Updater function, 134
AjaxOptions settings, 260
AjaxSetting element, 93
aliases, 115

fi ndComponent, 122
Function object, 21
handler addition and removal,

126
handlers, 126
jQuery object, 159

Always value, 44
exceptions, 45

ancestor descendant selector, 143
animate function, 156–57
animate() call, 157
animation, Silverlight, 278
anonymous functions, 116
asynchronous requests,

Silverlight, 295–96
API (application programming

interface). See application
programming interface (API)

append method, 122
appendLine method, 122
appHeader class, 144

application code, 306–07
safe critical code, 304–06

application object, 121–22
application programming interface

(API), 27
3D, 276
browser, 168
caching, jQuery, 158
client progress, 196, 200–05,

211–12
custom JavaScript functions,

113–14
DOM, 233
dual, 24
event handling, 151–55
HTTP façade, 62–63
jQuery library, 137
server, 197–98
Silverlight communication,

296–98
task server, 198
W3C, 125

applyFormatting method, 248
architecture, 61–62, 97–98

data binding, 224–34
HTTP façade, 70–79
multitier, 21
patterns, 61–62, 163. See also

Server Pages pattern; Service
Layer pattern

presentation layer, 79–82
Silverlight, 275–77
Web, 18–19

Aristotle, 163
Array object, 112
arrays, 117

custom, 230
interfaces, 119
wrapped sets, 141

as keyword, 166
ASCX, template creation, 229
ASMX Web services, 21
ASP (Active Server Pages), 88, 276
ASP.NET, 12

compatibility mode, 87
controls, Server Pages pattern,

88–89
controls, YUIAsp.Net library, 135
data binding, 224–34.

See also data binding
data sources, 230
fl exibility, 21–22
Forms authentication, 86–87
future of, 18–19, 69
IPostBackDataHandler

interface, 41
JavaScript, 130–31
JavaScript libraries, 104

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Builder design pattern 311

jQuery library, 137–39
layers, 22
library, 266–68
panels, 39
partial rendering. See partial

rendering
ScriptManager. See ScriptManager

control
server controls, 69
server-side Web development,

130–31
template properties, 46
templates, 260–66
timeouts, 187–88
UpdateProgress control, 195
view state, 42
WCF services, 72
Web service, 65–67
Web services, HTTP façade, 75–78

ASP.NET 2.0
control state, 48
partial rendering, 28
view state, 42

ASP.NET 3.5
CompositeScript collection, 175
Microsoft AJAX library, 110–11
partial rendering, 28
UpdateProgress control, 195

ASP.NET 4.0, 69, 79, 88
data binding, 260–68
Microsoft AJAX library, 110

ASP.NET AJAX. See AJAX
ASP.NET AJAX Extensions 1.0, 110
ASP.NET MVC

applications, 70
HTML Message pattern demo,

259–60
jQuery library, 137–38

aspect ratio, 160
aspects, 94–96
Aspects property, 95–96
AspNetCompatibilityRequirements

attribute, 87
Assembly object, 298
AssemblyPart class, 298
assert method, 124
asterisk (*) symbol, 263
ASX formats, 278
async parameter, 157
async postback, 38
Asynchronous JavaScript And XML.

See AJAX
asynchronous pages, 46–47
asynchronous postbacks, 45

authentication and
authorization, 46

canceling, 52
Gaia, 94

multiple, 52–53
partial rendering, 52–53
UpdateMode property, 44
user feedback, 50–52

asynchronous requests, 87–88,
91–92

Partial Fetch method, 181–82
Silverlight, 289

AsyncPostBackSourceElementID
property, 30

AsyncPostBackTrigger, 45
attr function, 150
attribute fi lters, 143, 146–47
audio formats, 278
authentication, 10

ASP.NET Forms, 85–87
asynchronous postbacks, 46
cookie, 85–86
HTTP and, 83

authorization, 10
asynchronous postbacks, 46
HTTP and, 83

AutoComplete extender, 218–19
autocompletion, 218–19
automated factories, HTML, 225
autonomous views, 171
autopostback feature, 39
autosave, 192
AvailableFreeSpace property, 294

B
Back/Forward navigation, 34
BackBase, 24, 97
BackgroundWorker class, 288
bandwidth

BST vs. HM pattern, 253
conserving, 187, 223
Periodic Refresh pattern, 192
streaming, 278

Base CSS fi le, 135
basicHttpBinding, 75, 84
BeginGetResponse method, 298
BeginInvoke method, 288
BeginRead/BeginWrite method, 292
BeginRequestStream method, 298
behaviorConfi guration attribute, 74
Betamax, 136
Bibeault, Bear, 150
binary code

ActiveX, 270
Flash, 271
interoperability, 270–71
over Web, 270–71
security, 270–71

BinaryReader class, 293
BinaryWriter class, 293
bind function, 152

bind method, 241, 244–45
binding. See data binding
Binding class, 284
Binding element, 285
black box, 88–89, 131
blur(fn) helper, 154
body member, 124
body property, 124
Boolean object, 112
Boolean parameters, 70
Boolean properties, 44, 208

MVC pattern, 175
Boolean values, 295
brackets

curly, 262
JSON and XML, 69

browser, 62
API, 168
basic model, 8–9
cross-browser compatibility, 18,

125–26, 132, 150
high-end, 15
history, 167–68
HTML data conversion, 233
JavaScript and, 102–05
navigation, 33–34, 167–68
optimization, 6–7
plug-ins. See plug-ins
Same Origin Policy (SOP),

66, 215–16
sandbox, 274
scripting engine, 103–04
session termination, 187–88
technologies, 12
wars, 1990s, 8

Browser Object Model (BOM), 13
JavaScript dependencies, 110

Browser-Side Template (BST)
pattern, 133–34, 235, 268

data and template mixing, 236–37
dual-side templating, 237–38
HTML builder, 241–45
HTML template, 236
item rendering, customized,

245–47
jQuery library effects, 249–50
markup rendering, customized,

247–48
page preparation, 239–41
reference implementation,

238–50
vs. HTML Message pattern,

252–53
BST (Browser-Side Template)

pattern. See Browser-Side
Template (BST) pattern

buffer, 245
Builder design pattern, 140

http://lib.ommolketab.ir
http//lib.ommolketab.ir

312 builder script

builder script, 135
building applications, Silverlight,

279–81
bulleted lists, 228
business layer, 22, 63–64
business logic, 97

HTML Message pattern, 252
protecting, 83, 85

Button control, 94, 283–84
disabling, 48

button handlers, 175
bytecode, 104

C
C#, 19

~~ operator, 166
code-behind class, 280
HM pattern, 253
keywords, 286
namespace{. . .} construct, 116
objects in, 36, 105–06
Silverlight, 22
Singleton pattern, 169

C++, 19
objects in, 105–06

cache parameter, 157
caching, 158

client-side, 178
Predictive Fetch pattern, 183–86
size, performance, 198

Calendarextender control, 57–59
call chaining. See chaining
callback functions, 80–82, 149, 157

arguments for, 81
Partial Fetch method, 181–82
script downloads, 176

callback manager, 92
callback parameter, 215
callbacks

fade effects, 249
GetCurrentStatus method, 204–05
HTML template, 245
JavaScript, 246–47
pageLoad and pageUnload, 121
startMonitor method, 202,

205–06
success and failure, 204–05
timer, 289
updateProgress function, 205

callBaseMethod, 117
callBaseMethod member, 120
calls. See requests
camelCase, 156
Cancel button, 51–52, 207–08, 211
cancellation requests, 195
CanRead property, 292
Canvas element, 282–83

CanWrite property, 292
CAS (Code Access Security) model,

302–03
Cascading Style Sheets (CSS), 10

attributes, 155–56
future of, 37
hiding HTML, 236
property naming convention, 156
selectors, 142–44
server controls, 131
Server Pages pattern, 88
user feedback, 50
Yahoo! UI library, 135

CERN, 8
CGI, 21
chaining, 151

animations, 157
call, 137
jQuery library, 137, 139

Change method, 289
Change property, 247, 265
change(fn) helper, 154
CheckBox control, 283
CheckBox control (Gaia), 94
CheckBoxList control (Gaia), 94
child controls, 44–45

adding, programmatic, 46
page methods, 55

child fi lters, 145
ChildrenAsTriggers property, 44
circular references, 126
Citizen class, 116–18
classes, 36. See also specifi c classes

ADO.NET container, 230
as data source, 230
bindable, 230
code-behind. See code-behind

class
creating, Dojo syntax, 134
CSS, 150
custom, 230
data readers, 230
derived, 117, 127
fi nder, 255–57
formatter, 105
in C# and C++, 105–06
inheritance rules, 307
interfaces, 118–19
JavaScript, 36–37
JSON, 68
managed, 67
object-oriented extensions,

115–16
proxy, 79–82
renderer, 255–57
Service Layer pattern, 64
Silverlight, 79
Singleton pattern, 169–70

template creation, 229
timer, 190
Web services, proxy, 67

clearTrace method, 124
click event, 39, 152, 202, 207

registering, 154
triggering, 153

click handler, 211
click(fn) helper, 154
ClickOnce technology, 276
client browser. See browser
client certifi cates, 10
client side, 20

API, 200–05, 211–12
BST pattern, 133–34
caching, 158, 178, 183–86
Cancel button, 51–52
cancellation request, 195
controls, 89–90
data binding. See data binding
data transfer, 232–33
focus, 61
JavaScript, 28
JavaScript API, 196
monitoring, Timeout pattern, 187
object model, 90, 92, 95–96
out-of-band requests, 124–25
page-component access, 122
power, JavaScript, 101
programming, JavaScript

library, 35
task ID, 198–99
task interruption, 211–12
task termination, 211–12
user actions, 167
Web development, 130

ClientAccessPolicy.xml fi le, 301
ClientBin Web server folder, 281
Close method, 292
closure model, 107–08
CLR (Common Language Runtime).

See Common Language
Runtime (CLR)

code
access security, 302
application, 304–06
application vs. platform, 306–07
binary. See binary code
BST vs. HM pattern, 252–53
bytecode, 104
compatibility, 279
compatibility, WPF, 285–86
critical, 303–04
development, design patterns,

163–68
fl exibility, 233
GZIP compression, 136
idioms, 165–66

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 data 313

interpreted, 104
jQuery minimization, 137
machine, 110
malicious, 105
managed, 90
manual iteration, 149
Microsoft AJAX library, 119
minifi cation, 136
MVC pattern improvements, 170
performance and, 109
safe vs. unsafe, 303
safe-critical, 304–06
sample, plug-ins, 159
security, Silverlight. See code

security, Silverlight
server side, 66–68, 252
Silverlight, 279–80
source, 104–05
source code fi le pairs, 282
transparency, 302–03

Code Access Security (CAS) model,
302–03

Code activity, 212–13
code group, 302
code security, Silverlight, 302

access security, 302
application code vs. platform

code, 306–07
code transparency, 302–03
critical code, 303–04
design security, 306–07
inheritance rules, 307
safe-critical code, 304–06
security attributes, 303–06
security model, 302–03

code-behind class, 21–22
HTTP façade, 64
page methods, 54–55
partial rendering, 41
Server Pages pattern, 88, 90
Silverlight, 279–80
source code fi le pairs, 282

collections, custom, 230
color values, 248
ColorAnimation class, 278
combo boxes, 92–93
Common Language Runtime (CLR)

Silverlight, 24
Silverlight instancing, 281
Silverlight security, 302. See also

CoreCLR
compatibility

.NET and Silverlight, 279
code, 279, 285–86
code, WPF, 285–86
cross-browser, 18, 125–26, 132, 150
JavaScript changes, 101, 108–09
JSON vs. XML, 69

compatibility mode, 78, 87
compiled programming languages,

104–05
compilers

AJAX solutions, 24
JavaScript, 110
Managed Jscript, 102

completed event, 124
Component Object Model

(COM), 273
ComponentArt, 18, 96–97
components, 122
CompositeScript collection, 175
concatenation, 146
concurrent requests, 92

partial rendering, 52–53
conditional updates, 44–45
Conditional value, 44
confi g fi le, 87
constructors, 117

initialize method, 134
interfaces, 118
jQuery object, 140
templates, 242

container classes, 230
container element, 114–15
content fi lters, 146
Content property, 284
ContentTemplate property, 46
ContentTemplateContainer

property, 46
content-type headers, 77
context argument, 81
context parameter, 186
context, query, 140–41
contextKey parameter, 259
contract attribute, 74
contracts, 80

progress server API, 209
control state, 48
controller classes, 175
controller, MVC pattern,

171–72
controls. See also server controls

button, 89
design time, 88–89
script, 135

Controls collection, 46
cookies, 85–86, 289

Dojo library, 133
Yahoo! UI library, 136

CopyTo member, 230
CoreCLR, 274, 302–03

application code vs. platform
code, 306–07

code transparency, 303
safe-critical code, 304–05

Count member, 230

Create, Read, Update, Delete (CRUD)
operations, 267, 291

CreateFile method, 292
createInstance method, 262
critical code, 303–04
Crockford, Douglas, 109, 136
cross-browser compatibility, 18,

125–26, 132, 150
Cross-Domain Proxy pattern, 215

error handling, 217
Same Origin Policy, 215–16
Web remoting via JavaScript, 216

cross-domain requests, Silverlight,
300–01

CrossDomain.xml fi le, 301
Cross-Domain-Proxy pattern, 257
cross-page method calls, 55
cross-site scripting attacks, 77–78,

85, 216
CRUD operations, 267, 291
CRUDy user interface, 66
CSS (Cascading Style Sheets). See

Cascading Style Sheets (CSS)
css function, 150
Culture attribute, 32
Culture property, 32
culture settings, 32
CultureInfo class, 286
Current property, 56
custom arrays, 230
custom collections, 230
custom dictionaries, 230
custom events, 135
custom handlers, 78
custom HTML tags, 236
custom item rendering, 245–47
custom markup rendering, 247–48
custom objects, 230
custom services, 78

D
data

binding. See data binding
caching, 158
contract, 75
deletion, 294
downloads. See downloads
encapsulation, JavaScript, 107–08
exchange, HTTP façade, 66
exchange, Service Layer pattern,

62–63
fetching. See Predictive Fetch

pattern
formats, Service Layer pattern,

67–68
items, 43
preloading, 178

http://lib.ommolketab.ir
http//lib.ommolketab.ir

314 data

data (continued)
serialization, 20–21
server-to-client transport, 232–33
services, 78–79
source controls, 21–22
source, defi nition, 230–34
storage. See storage
storage, Dojo library, 133
transfer latency, 178
transfer minimization, 47–48
transfer, Service Layer pattern,

67–68
data access layer, 22
data attribute, 277

<object> tag, 274
data binding, 68, 73–74,

223–24, 268
AJAX, 232
ASP.NET, 224–34
ASP.NET 4.0, 260–68
Browser-Side Template (BST)

pattern, 235–50. See also
Browser-Side Template (BST)
pattern

data source defi nition, 230–34
HTML Message pattern, 250–60.

See also HTML message pattern
HTML template, 224–30
jQuery library, 152
partial rendering, 234
properties, 231–32
Silverlight programming, 284–85
tools for, 232–33

data function, 157–58, 184
data parameter, 215
data property, 152
data reader classes, 230
data source component, 267–68
data source properties, 223
DataBind method, 231
data-bound controls, 227

properties, 231–32
data-bound items, 239–41
DataContext property, 285
DataContract attribute, 75
DataContractSerializer class, 166
Data-for-Data model, 15–16
DataGrid control, 225, 237, 246,

282–83
DataKeyField property, 232
DataList control, 226
DataMember attribute, 75
DataMember property, 232
DataServiceContext class, 79
DataSet class, 230–31
DataSets, typed, 21–22
DataSource property, 231–32
DataSourceID property, 231–32
DataTable class, 230–31

DataTextField property, 232
dataType parameter, 157
DataValueField property, 232
DataView class, 230
DataView component, 262–64, 268
Date data types, 32
Date object, 112
date picker widget, 57–59, 160
DatePicker control, 282–83
dblclick(fn) helper, 154
de Saint-Exupery, Antoine, 101
debug mode, 80
debug script fi les, 31
debugging, 123–24

refl ection, 119
Deep Zoom, 278–79
Deep Zoom Composer, 279
defaultSucceededCallback

property, 81
defaultUserContext property, 81
deferred loading, 267
delta, 89–90

size, 48
derived classes, 117, 127
deserialization, 75
design patterns. See AJAX design

patterns
Design Patterns (Gamma, Helm,

Johnson, and Vlissides), 164
design-time controls, 88–89
desktop applications

AJAX and, 3–4
Rich Internet Applications

and, 22–24
developers, 6–7
DHTML (Dynamic HTML), 13, 281
dialog box creation, 161
dialog method, 161
Dialog widget, 160
Dickens, Charles, 269
dictionaries

as objects, 105–06
custom, 230

directories, storage, 291–92
DirectoryInfo class, 291–92
disabling of visual elements during

updates, 52
discrete interpolation, 278
disk quotas, 294–95
Dispatcher object, 288
display attribute, 214
DisplayAfter property, 51–52
displayCustomer function, 185
DisplayName property, 285
dispose method, 126
Document Object Model (DOM),

8–10, 12–13
$get method, 122
API, 233

circular references, 126
CLR instancing, 281
handler hookup and removal, 126
ID, 143
JavaScript dependencies, 110
JavaScript downloads, 176
JavaScript library, 35–36
On-Demand JavaScript pattern,

177–78
page manipulation, 166–67
queries, 140–41
retrieval, 143
script downloads, 177–78
smooth page updates, 42–43
visual effects. See visual effects

document.getElementById function,
95, 114–15, 135

documentation fi les, 140
Documents and Settings folder, 291
Dojo library, 36, 133

JS Dojo Minifi er, 136
domain attribute, 301
DoSomething function, 287
dot notation, 106
DoubleAnimation class, 278
downloads, 166, 175–76

binary content, 297
Silverlight, 296–98
XAP packages, 281

DownloadStringAsync method, 296
DownloadStringCompleted

event, 296
DoWork event, 288
drag-drop script, 135
draggable interaction, 160
DropDownList control, 39
droppable interaction, 160
dual application programming

interface, 24
Dual-Side Templating pattern, 254
duck typing, 107
dynamic data download, 166
Dynamic HTML (DHTML), 13, 281
dynamic programming

languages, 106
dynamic table, 205–06
dynamic templates, 46
dynamic typing, 106
DynamicPopulate extender, 258–59

E
each method, 149
each(callback) method, 142
ECMA (European Computer

Manufacturers Association), 103
ECMAScript, 103
EF (Entity Framework), 79, 230, 300
effects script, 135

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 functions 315

Eich, Brendan, 103
elem1 variable, 145
elem2 variable, 145
element selector, 142
elements

adding/removing, 151
aspects, 160
caching, 158
chaining, 151
hidden, 148
interactivity, 159–61
loop processing, 149
selecting, 143–44
Silverlight layout manager,

282–83
visual effects, 155–57
wrapping, 149–50

Elements of User Experience,
The (Garrett), 5

ellipses (. . .), 291
EnableHistory property, 34
EnablePageManager attribute, 200
EnablePageMethods property, 55
EnablePartialRendering property, 30
EnableScriptGlobalization

property, 32
EnableScriptLocalization property, 31
enableWebScript attribute, 80
enableWebScript element, 73
encapsulation, 37

JavaScript, 107–08
endpoints, 21

.svc fi le, 74
event sink, 199–200
HTTP. See HTTP endpoints
IIS, 86
page, 70
periodic refresh, 192
public service, 33
script downloads, 176
service, 70

endsWith method, 113
entity data model, 79
Entity Framework (EF), 79,

230, 300
entry points, static, 170
enumerations, 180–81
eq(position) method, 142
error handling, 217
Error object, 113
error(fn) helper, 154
errors

code 401, 86
handling, 217
interfaces, 119

Esposito, Dino, 172
European Computer Manufacturers

Association (ECMA), 103

European Organization for Nuclear
Research, 8

eval function, 21, 67, 69, 176
event handlers, 125. See also

handlers; HTTP handlers; REST
handlers

adding/removing, 115
grouping, controller class, 175
JavaScript, 61–62
MVC pattern, 172
postbacks, 47
server side, 93
threads, 288

event handling, 151–55
event object properties, 153
event scheduling, 196
event sink, 196, 199–200
eventing model, 125–26
events

as idioms, 166
custom, 135
helpers, 154
keyboard, 125, 135, 188, 191
mouse, 125, 135, 188

exceptions
CoreCLR, 304
data binding, 231
directories and fi les, 291–92
disk quota, 295
duck typing, 107
invalid operation, 231
not-implemented, 118
parameter count, 117
RequirementsMode, 87
Update method, 45

ExecuteTask method, 202
executor class, 208
executor member, 124
executors, 124

HTTP, 125
Exists property, SecuritySafeCritical

attribute, 305
explicit contracts, 75
Explicit Submission, 220
explicit triggers, 44–45
extenders, 57–59
extensibility, jQuery library, 139
extensions. See JavaScript language

extensions; object-oriented
extensions

ExtJS library, 133

F
factories

HTML templates, 229–30
HTML, automated, 225
HTML, template-based, 225–27

Factory attribute, 74
fadeIn function, 155
fadeOut function, 155
fadeout method, 250
fadeTo function, 155
fading effects, 156
fail method, 124
failure callbacks, 204–05
fi le streams, storage, 292–93
FileInfo class, 291–92
FileMode value, 292
fi les, storage, 291–92
fi lters, 144–48

attribute, 143, 146–47
child, 145
content, 146
positional, 144–45

FinanceInfoservice, 81
fi ndComponent method, 122
fi ndCustomer function, 181
fi nder class, 255–57
FindQuoteInfo method, 257
Firefox, 125

Dojo library compatibility, 133
NAPI, 272
prototypes, 108
textElement property, 150

fi rewall, 85
FishEye control (Gaia), 94
Flash, 271

cross-domain requests, 301
plug-ins, 274

fl exibility, 233
Flush method, 292
focus(fn) helper, 154
footer

HTML template, 228, 239–41
list items, 226, 237

foreach construct, 166
form fi lters, 148–49
form submission, 167, 220
Format method, 123
Format property, 57–58
formatter classes, 67
forms, 14–15
Franklin, Benjamin, 27
free content, 217
Function class, 117
Function object, 112–13, 115

aliases, 120
function(i), 149
functions. See also specifi c functions

AJAX, jQuery library, 157–58
anonymous, 116
as objects, 106
event handling, 151–55
JavaScript, 106
JavaScript, custom, 113–14

http://lib.ommolketab.ir
http//lib.ommolketab.ir

316 functions

functions (continued)
named, 116
registration, 114
shorthand, 114–15, 135
timer, 190
visibility, 155–56
vs. methods, jQuery library, 159

G
Gaia AJAX library, 97
Gaiaware, 18, 94–96
Gamma, Erich, 164
Gandhi, Mahatma, 61
Garrett, Jesse James, 3–5, 7
GenerateHtml method, 257
GenerateItem method, 227
Get call, 220
get function, 158
GET request, 215
GET verb, 72–73, 77–78, 158

security, 84
get() method, 142
get(index) method, 142, 145
getBaseMethod member, 120
getBaseType member, 120
GetCurrentStatus method, 200, 204
GetCustomerDetails method, 260
GetData member, 231
GetDirectoryNames method, 291
getElementById method, 143
getElementsByName method, 143
GetFileNames method, 291
getInstance method, 170
getInterfaces member, 120
getJSON function, 158
getName member, 120
GetQuotes method, 81
GetQuotesFromConfi g method,

70–71, 263
GetStatus method, 198
getTaskID method, 202
GetUserStoreForApplication

method, 290, 293–94
GetUserStoreForSite method, 290
global members, 108
Global object, 135, 169
globalization, 32, 286
Google, 24
Google Chrome browser,

104–05, 110
Google V8 engine, 105, 110
Google Web Toolkit, 24, 97
graphics, Silverlight, 277–79
grid element, 241

caching, 158
Grid element, 282–83
grids, 160

GridView control, 246
GridView control, disabling, 48
GUID, 199, 202
GZIP compression, 136

jQuery library, 138

H
handlers. See also event handlers;

HTTP handlers; REST handlers
adding and removing, 126
binding/unbinding, 152
button, 175
custom, 78
factory, 76–77
IPostBackDataHandler

interface, 41
MVC pattern, 174–75
onclick, 174–75
OnTick, 189
partial rendering, 40–41
REST, 76

handles, 160
hash (#) symbol, 168, 236, 245
hash strings, 33–34
header

HTML template, 228, 239–41
list items, 226

headers, 43
concurrent call issues, 52
content-type, 77
HTTP request, 70

headers member, 124
headers property, 124
Heartbeat pattern, 193–94
Helm, Richard, 164
helper methods, $ function,

141–42
helpers

event, 154
parameters, 154

hidden elements, 148
hidden HTML, 236

template, 261
hide function, 155
history feature, 33–34, 167–68
history point addition, 33–34
hosting applications, plug-ins, 274
hover function, 153
HTML, 10–11

binding/unbinding, 152
browser/server basic model, 8–9
builder, BST pattern, 241–45
changing/replacing, 10–11
custom tags, 236
Data-for-Data model, 15
Document Object Model (DOM).

See Document Object
Model (DOM)

factories, 225–27, 229–30
generating, 257–58
hiding, 236
JavaScript limitations, 108–09
limitations, 49
origins, 8
Pages-for-Forms model, 14–15
plain type, 248
plain, future of, 37
presentation layer. See

presentation layer
purpose of, 9
renderer, 257–58
Rich Internet Applications, 23
script fi les, linking to page, 30–31
standardization, 10
string creation, 233, 235
table, 205–06
tables, 225–26
template, 224–30, 236
template-based factories, 225–27
templates, hidden, 261

HTML 4.0 DOM standard, 40, 114
HTML 4.0 standard, 270
html function, 150
HTML Message pattern, 134,

250–51, 268
ASP.NET MVC demo, 259–60
Dual-Side Templating pattern,

combined, 254
DynamicPopulate extender,

258–59
markup rendering, 257–58
motivation for, 252
reference implementation,

253–60
remote service, 254–57
vs. BST pattern, 252–53

HtmlListBuilder class, 239–41, 250
HTTP, 10–11

401 error code, 86
binding, 73–74
Data-for-Data model, 15–16
direct calls, 54–56
executor, 124–25
origins, 8
purpose of, 9
requests. See requests
security, 10, 83
statelessness, 14
verbs, 66, 78. See also

specifi c verbs
HTTP endpoints, 30, 64, 66–67,

70, 124
HTML Message pattern, 252
requests, 70–71
script downloads, 176

HTTP façade, 62–64, 70–79
ADO.NET services, 78–79

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 JavaScript 317

ASP.NET Web services, 75–78
custom services, 78
HTTP request, 70–71
proxy, 80–82
security, 83–84
Server Pages pattern, 90
Service Layer pattern, 64
technologies for, 65–67
trusting, 86–87
WCF services, 72–75

HTTP handler
custom, 66–67, 78
factory, 76–77
load method, 215–16

HttpContext, 56
HttpContext.Current object, 78
HTTPS, 10, 83
httpVerb member, 124
HyperlinkButton control, 283
hyperlinks, 213–14

I
ICollection interface, 230
id parameter, 122
ID property, 117
IDE (integrated development

environment), 131
idioms, 165–66
IDisposable interface, 118
IEnumerable interface, 230–31
IFinanceInfoRenderer interface, 257
IFRAME elements, 133
IIS (Internet Information Services).

See Internet Information
Services (IIS)

IList interface, 230
IListSource interface, 230–31
images

Deep Zoom, 278–79
JPG and PNG, 279

impedance mismatch, 67
implementsInterface member, 120
implicit contracts, 75
implicit triggers, 44–45
IncreaseQuotaTo property, 294–95
independent software vendors

(ISVs), 69–70
index(element) method, 142
information architecture, 5
Infragistics, 18
inheritance, 36–37, 116–18, 307
inheritsFrom member, 120
Init event, partial

rendering, 41
initialize method, 134
initializeBase member, 120
initializeBase method, 117
inner text, 150

innerHTML property, 42, 150, 233,
235, 254

DynamicPopulate extender, 258
fade effects, 250
HTML Message pattern, 251
scripting, 248

innerText property, 150
input controls, 57–59
input elements, 61–62. See also

<input> elements
disabling, 52, 137, 150

InstantiateIn method, 227
integer functions, 149
integrated development

environment (IDE), 131
IntelliSense, 116

jQuery library, 139
interactivity, 167

JavaScript, 132
jQuery UI, 159–61
widgets, 132

interfaces, 118–19
Internet Explorer, 103, 125

closures and prototypes, 108
Dojo library compatibility, 133
GZIP, 138
innerText property, 150

Internet Explorer 4.0, 13
Internet Explorer 5.0, 13
Internet Explorer 8,

XDomainRequest object, 301
Internet Explorer 8.0, 168, 216
Internet Information Services (IIS)

endpoints, 86
HM pattern, 253
Smooth Streaming, 278
WCF services, 72

interoperability. See also
compatibility

ActiveX, 271
fi nder and renderer classes, 255
JavaScript, 108–09
JSON vs. XML, 68
Web binary code, 270–71

interpolation, 278
interpreted code, 104
interpreted programming

languages, 104
interruptible server tasks,

208–10
invoke function, 259
invoke method, 124
IronPython, 280
IronRuby, 280
ISAPI, 21
isClass member, 120
isImplementedBy member, 120
isInstanceOfType member, 120
isInterface member, 120

isNamespace member, 121
isOffl ine argument, 263
isOffl ine parameter, 70
isolated storage

safe critical code, 306
Silverlight, 289–95

IsolatedStorageFile class, 290–92
IncreaseQuotaTo property,

294–95
Quota property, 294

IsolatedStorageFileStream class,
292–93

ISVs (independent software
vendors), 69–70

itemCreated event, 264
ItemDataBound event, 237
ITemplate interface, 50, 227–29
items, customized rendering,

245–47
ItemSource property, 285
Iterator pattern, 166
ITransaction interface, 213

J
Java Server Pages, 276
Java, vs. JavaScript, 11
JavaScript, 10, 12, 101–02, 126–27,

129–30
AJAX design patterns, 168–78.

See also specifi c patterns
AJAX injections, 53–60
ASP.NET, 130–31
callbacks, 246–47
changing/replacing, 10–11
client API, 196
compatibility, changes and,

104–05
compiler, 110
data binding. See data binding
data transfer from .NET, 232–33
Data-for-Data model, 16
fl aws, 104–05
future of, 37, 108–10, 126–27
Google V8 engine, 110
GZIP compression, 136
hiding from view, 28
HTML builder, 236–39, 241–45
injections, polling, 54
interactivity, 132
language, 109
language and browser, 102–08
libraries. See JavaScript libraries;

Microsoft JavaScript client
library

mashups, 216
minifi cation, 136
Model-Controller pattern, 82
MVC pattern, 172–75

http://lib.ommolketab.ir
http//lib.ommolketab.ir

318 JavaScript

JavaScript (continued)
MVC pattern sample, 172–75
object-orientation addition,

36–37
On-Demand pattern, 175–78
overhaul, 109
parsing, 235
presentation layer. See

presentation layer
pros and cons of, 36
proxy, 33, 73, 75, 80–81
Rich Internet Applications,

23–24
security, 109
selective updates, 18
server controls, 131–32
Server Pages pattern, emissions

increasing, 89–90
Silverlight, 280
standardization, 10
syntax, 49
timers, 219–20
types, 106–07
variables, 107
versions, 36
vs. Java, 11
Web remoting, 216
widgets, 56–60
Yahoo! UI library, 135–36

JavaScript 2.0, 109, 126
JavaScript language extensions

new, 113–14
primitive, 112–13
shorthand functions, 114–15

JavaScript libraries, 105, 127,
129–30, 161

Dojo library, 133
ExtJS library, 133
jQuery library, 137–61. See also

jQuery library
list of, 132–33
memory requirements, 133
popular, 132–33
PrototypeJS library, 133–34
Script.aculo.us library,

134–35
selection, 136–37
server controls and widgets,

130–37
size, 136
synthesis of features, 136–37

JavaScript Notation. See JSON
Johnson, Ralph, 164
JPG images, 279
jQuery function, 140–41
jQuery in Action (Bibeault, Katz,

and Resig), 150
jQuery library, 36, 137–38, 161

$ function, 140–42
$ root object, 115
AJAX functions, 157–58
benefi ts of, 136–37
BST pattern, 249–50
caching, 158, 184
core library, 140–42
downloading, 138
fundamentals, 138–39
jQuery UI, 138
methods vs. functions, 159
micro-links, 215
obtaining, 59
plug-ins, 139, 158–59
Predictive Fetch pattern, 180
selectors, 142–49
size, 138
UI framework, 159–61
utilities, 151–61
visual effects, 155–57
Visual Studio 2008, 139–40
widgets, 138
wrapped sets, 141, 149–51

jQuery object, 140–41
alias, 159
CSS selectors, 142–43
helper methods, $ function,

141–42
plug-ins, 158–59
wrapped sets, 141

jQuery UI
downloading, 161
widgets, 160

jQuery.fn object, 159
JS Dojo Minifi er, 136
Jscript, 103
JSMin, 136
JSON, 232

endpoints, 21
page methods, 54
serialization, 62, 67–68, 77
services, invoking, 33
strings, 21, 67–68, 70–71
vs. XML, 20–21, 67–69
Web services, 76–77

JVC, 136

K
Katz, Yehuda, 150
keyboard events, 125, 135

timeouts, 188, 191
keydown(fn) helper, 154
keypress event, 219
keypress(fn) helper, 154
keyup(fn) helper, 154
keywords, 286
Konqueror, 272

L
Label control, 89, 94
Label1 control, 285
LastName, FirstName string, 117
last-win discipline, 53
latency, 193
layers, ASP.NET, 22
layout manager, 282–83
lblWait element, 260
Left property, 283
legitimate users, 83
length method, 142
Length property, 141, 292
libraries, 97, 168–69

.NET Base Class Library, 286–89
ASP.NET, 266–68
binary, 273. See also plug-ins
Gaiaware’s Gaia AJAX, 94–96
JavaScript. See JavaScript libraries
jQuery. See jQuery library
Microsoft AJAX. See Microsoft

AJAX library
RadControls library, 92–94
Server Pages pattern, 92–96
YUIAsp.Net library, 135

linear interpolation, 278
links, 213–14

micro-links. See micro-links
LINQ, .NET Base Class Library,

286–87
LINQ-to-JSON, 286–87
LINQ-to-Objects, 286
LINQ-to-SQL, 166, 230, 267
LINQ-to-XML, 286–87
Linux platform, 271, 277
list items, 226, 228
ListBox control, 283
ListView control, 226
Live Form pattern, 220
Livequotes.svc, 263
LiveScript, 103
Load event, 41
load function, 158
load method, 216

micro-links, 215
load times, 108
load(fn) helper, 154
Loaded attribute, 280
loadFooter method, 244
loadHeader method, 244
loading, deferred, 267
loadItemTemplate method, 244
local storage, 290
localeFormat method, 32
logical tokens, 290
login page, 85–86
London, Jack, 129

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 naming conventions 319

looping
plug-ins, 158–59
Repeater control, 225–27
wrapped sets, 149

Lowy, Juval, 75

M
Mac platform, 271
machine code, 110
managed classes, 67
managed code, 90
Managed Jscript compiler, 102
managers, 7
manual iteration, 149
mapping, MVC pattern, 172
markup, 80, 87–90, 92

ASP.NET, 130
asynchronous postbacks, 94
BST vs. HM pattern, 252–53
customized rendering, 247–48
DataGrid control, 225
HTML Message pattern, 251
HTML templates, 226–28
incomplete/invalid, 236
load function, 158
object dump, 123
RadControls, 94
rendering, HTML Message

pattern, 257–58
server controls, 131
server side, 252
Silverlight, 279–80
source code fi le, 282
startMonitor task, 205–06
template creation, 229–30

Markup slot, 158
mashups, 215, 223

error handling, 217
JavaScript, 216

master page, ScriptManager, 29–30
match method, 245
Math object, 202
media formats, 278
media pack, Silverlight, 277–78
MediaElement control, 277–78
members. See also specifi c members

global and static, 108
overridable, 117
private, 118
public vs. private, 108
Sys.Net.WebRequest class, 124
Type object, 120–21
var keyword, 108

Memento pattern, 166
memory

cache size, 186

JavaScript libraries, 133
Predictive Fetch pattern, 179

metadata, service, 73
methodCompleted callback,

55–56
methodName argument, 81
methods. See also specifi c methods

ad hoc, 291
MVC pattern, 172
overriding, 117, 307
static, 170, 290
vs. functions, jQuery library, 159

Micro-Link pattern, 213–15
micro-links, 213–14

actions, 214
jQuery library, 215

Microsoft, 270
Microsoft .NET: Architecting

Applications for the Enterprise
(Esposito and Saltarello),
90, 172

Microsoft AJAX library, 89,
110, 127

constituent fi les, 110–11
framework facilities, 119–26
JavaScript language extensions,

112–15
linking, 111–12
object-oriented extensions,

115–19
Singleton pattern, 169–70

Microsoft JavaScript client
library, 28

downloading, 35
fi les of, 35–36
object-orientation addition,

36–37
pros and cons, 36

Microsoft Metadirectory Services
(MMS), 278

Microsoft Product Support Services,
137–38

Microsoft Visual Studio 2008,
IntelliSense, 116

MicrosoftAjax.js, 35
MicrosoftAjax.js fi le, 111, 121
MicrosoftAjaxTemplates.js, 261
MicrosoftAjaxTimer.js,

35, 111
MicrosoftAjaxWebForms.js,

35, 111
middle tier

HTTP façade, 63–64
security, 87
unauthorized access, 85

minifi cation, 136, 159
MMS (Microsoft Metadirectory

Services), 278

modality, 95
Mode12, 171
model, MVC pattern,

171–72
Model-View-Controller (MVC)

pattern, 82, 170–75
HM pattern demo, 259–60

Model-View-Presenter (MVP)
pattern, 90, 171

monitoring, progress indication,
195–96

Mono project, 277
monolithic views, 171
Moonlight group, 277
mouse events, 125, 135

timeouts, 188
mousedown(fn) helper, 154
mousemove(fn) helper, 154
mouseout(fn) helper, 154
mouseover(fn) helper, 154
mouseup(fn) helper, 154
MP3 format, 278
multimedia, Silverlight,

277–79
Multistage Downlaod

pattern, 175
multithreading, 219–20
MVC (Model-View-Controller)

pattern. See Model-View
Controller (MVC) pattern

MVP (Model-View-Presenter)
pattern, 90, 171

MyControllerClass, 260
MyPet function, 106
MySourceObject class, 285

N
name parameter, 123
Name property, 75, 80

Microsoft AJAX library, 111
named functions, 116
namespace, DataView

class, 263
Namespace property, 75, 80
namespace{. . .} construct, 116
namespaces, 36–37

JavaScript, 109
object-oriented extensions,

115–16
naming conventions. See also

shorthand notation
brackets, 69
camelCase, 156
fi les, 291
plug-in fi le, 159
semicolon, 159

http://lib.ommolketab.ir
http//lib.ommolketab.ir

320 NAPI (Netscape Plug-in Application Programming Interface)

NAPI (Netscape Plug-in Application
Programming Interface). See
Netscape Plug-in Application
Programming Interface (NAPI)

Navigate event, 34
navigation, 33–34, 167–68
nesting, 46
Netscape, 103, 272
Netscape Navigator, 113, 272
Netscape Navigator 2.0, 10
Netscape Plug-in Application

Programming Interface
(NAPI), 272

security, 272–73
network stack, 67, 124–25
networking, Silverlight, 295–301
new operator, 106
not-implemented exceptions, 118
npruntime, 272
null values, 166
Number data types, 32
Number object, 112–13
NumericUpDown extender, 58

O
Object object, 112–13
ObjectAnimationUsingKeyFrames

object, 278
ObjectDataSource control, 231
object-oriented extensions

classes, 115–16
inheritance and polymorphism,

116–18
interfaces, 118–19
namespaces, 115–16

object-oriented languages, 36, 102,
104–06, 127

ASP.NET, 130–41
JavaScript, 36–37

objects. See also specifi c objects
as dictionaries, 105–06
bindable, 230
circular references, 126
custom, 230
functions as, 106
global, 169
JavaScript, 36, 105–06
JSON strings, 67–68
plain type, 119–20
pseudo-type, 119–20
refl ection, 119–21

ObservableCollection type, 285
Observer pattern, 166
OLE2, 273
onclick handlers, 174–75
onDataAvailable parameter, 81
On-Demand JavaScript pattern,

175–78
one function, 152

one method, 153
OnSearchComplete callback

function, 181
OnSearchComplete

function, 185
OnTick handler, 189
OpenFile method, 292
OpenReadAsync method, 297
Opera, 272
OperationContract attribute, 74
operators, JavaScript, 106
optimization, 6–7
options argument, 160
origin, 216
outsiders, 83

protecting from, 85–86
overriding, methods, 117, 307

P
P/Invoke subsystem, 303
packages, JavaScript, 109
page. See Web page
Page class

Culture property, 32
UICulture property, 31

page endpoints, 70
page methods, 54–55

as page endpoints, 70
event sink, 199–200
invoking, 55–56
vs. services, 56

Page.ClientScriptRegisterArray
Declaration method, 202

pageLoad, 121
PageMethods class, 55–56
PageMethods proxy, 202
PageRequestManager class,

170, 208
PageRequestManager object,

43, 208
Pages-for-Forms model, 14–15
pageUnload, 121
pageX property, 153
pageY property, 153
panel refresh

conditional updates, 44–45
programmatic updates, 45

paradigm shift, 14
parameters

$ function, 140
ajax function, 157
application object, 122
constructor, 117
helpers, 154
integer, 149
interfaces, 119
load method, 215
registerClass method, 116
traceDump method, 123

unbind method, 153
visibility functions, 155

parent > child selector, 143
parent argument, 122
parent class, 55
parent parameter, 122
Parse member, 121
parser, XML, 68–69
parsing, JavaScript, 235
partial page updates, 129
partial rendering, 27

concurrent call issues, 52–53
data binding, 234
disabling of visual elements

during updates, 52
limitations, 48–53, 61
mechanics, 40–41
motivation, 38
page updates, 42–43
polling, 53
postback model, 91–92
Predictive Fetch pattern, 181
Server Pages pattern, 88
server-side, 41–42
size of, 48
syntax, 38–39
task cancellation, 207
UpdateProgress control, 195
user feedback, 49–52
view state, 42
vs. Server Pages pattern,

91–92
partial trust Web client, 63–64
partial view state, 95
Path attribute, 31
Path class, 291
Path property, 81–82, 111
patterns. See also AJAX design

patterns; specifi c patterns
architectural, 61–62
architectural vs. design, 163

performance
cache size, 198
Data-for-Data model and, 16
JavaScript, 108–09
services vs. page methods, 56

Periodic Refresh pattern,
192–93

permissions, 302–03
Person class, 117
PHP Hypertext Preprocessor, 276
piecemeal submission, 218–19
placeholders, 123, 236, 238

Dual-Side Templating
pattern, 238

HM pattern, 254
plain-old XML (POX), 72
plain-type HTML, 248
plain-type objects, 119–20
platform code, 306–07

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 removeData function 321

plug-ins, 271
<object> tag, 273
characteristics, 273
downloading, 158
fi le naming conventions, 159
history, 272
hosting applications, 274
jQuery library, 137, 139, 158–59
jQuery UI, 159–61
Rich Internet Applications, 22
security, 272–73
Silverlight, 23

plus (+) character, 265
PNG images, 279
pnlDetails element, 260
Point property, 278
PointAnimation class, 278
polling, 51

partial rendering, 53
Timeout pattern, 186–87

polymorphism, 116–18
PopupButtonID property, 57–58
ports, HTTP/HTTPS, 83
Position property, 292
positional fi lters, 144–45
post function, 158
POST request, 215, 220
POST verb, 73, 77, 158

WebRequest class, 298
PostAuthenticateRequest

event, 72
postback model, 90–91

partial rendering, 91–92
postbacks, 19

asynchronous. See asynchronous
postbacks

autopostback feature, 39
conditional updates, 44–45
delta, 90
headers, 43
lengthy tasks, 46–47
model. See postback model
partial rendering, 40–41
queue, 52
server controls, 89
Server Pages pattern, 87–88
triggers, 91–92
view state, 42

pound (#) symbol, 33
POX (plain-old XML), 72
Predictive Fetch pattern, 178–79

caching, 183–86
reference implementation

creation, 180–86
sample scenario for, 180–81

PreInit event, 46
PreRender event handler, 41
presentation layer, 62–63, 79, 97

commercial frameworks, 57
HTTP façade proxy, 80–82

JavaScript Model-Controller
pattern, 82

MVC pattern, 170–71
presentation logic, 250

separating from user
interface, 235

preventDefault method, 153
previous ~ sibling selector, 143
previous + next selector, 143
private members, 118
productivity

Predictive Fetch pattern, 179
server controls, 88, 131–32

programmatic updates, 45
programming languages, 102–05.

See also object-oriented
languages; specifi c languages

idioms, 165–66
Silverlight, 280

Programming WCF (Lowy), 75
progress bar display, 196, 205
Progress Indicator pattern,

194–213
ASP.NET UpdateProgress

control, 195
reference implementation,

196–213
sample scenario, 196–213

progress meter, 205
progress template, 207–08
ProgressChanged callback, 288
ProgressMonitor class,

197–98
ProgressTemplate property, 50
PropertyName property, 241
Prototype, 36
Prototype library, 105
prototype model, 107–08

Microsoft AJAX library, 116
prototype object, 106, 108
prototype property, 37, 106

Dojo library, 134
PrototypeJS library, 133–34
prototypes

fi ndComponent method, 122
interfaces, 118–19
overridable, 117

ProviderName property, 257
proxy

ADO.NET Data Services, 267
classes, 79–82
classes, Web services, 67
JavaScript, 73, 75, 80–81
JavaScript, Web remoting, 216
page methods, 55–56
remote services invoking, 33
REST handler, 80
ScriptManager, 29–30

pseudo-type object, 119–20
Python, 24

Q
queries, 140
query chaining. See chaining
query method, 267
Query Object pattern, 166
queue:false fl ag, 157
QuickTime, 272
Quota property, 294
Quote property, 247

R
RadAjaxManager control,

93–94
RadControls library, 97
RadioButton control, 283
RadioButtonList control (Gaia), 94
RandComboBox, 93–94
reach, 22

vs. rich, 23, 308
Read/Write method, 292
read-only properties, 117
ready function, 153
RealPlayer, 272
Real-Time Streaming Protocol

(RTSP), 278
refactoring, 16–17
reference implementation, 180–86

Browser-Side Template (BST)
pattern, 238–50

HTML Message pattern, 253–60
Progress Indicator pattern,

196–213
Timeout pattern, 188–92

refl ection, 119–21
example, 121

refresh. See page updates
RegExp object, 113
RegisterASyncPostBackControl

method, 45
registerClass member, 121
registerClass method, 116–17, 119
registerEnum function, 114
registerEnum member, 121
registerInterface member, 121
registerNamespace member, 121
registerNamespace method, 116
registration functions, 114
release script fi les, 31
remote methods, 54–56
remote requests, 124–25, 181–83
remote services

HTML message pattern, 254–57
invoking, 33

remote tasks, canceling, 206–08
remote URLs, 251
Remove member, 230
removeClass function, 150
removeData function, 158, 186

http://lib.ommolketab.ir
http//lib.ommolketab.ir

322 renderer class

renderer class, 255–57
RenderMode property, 47
Repeater control, 225–27
replaceWith method, 150
replay attacks, 85
ReportProgress method, 288
Representational State Transfer

(REST), 66
request-for-markup Web

model, 252
requests

ajax function, 157
asynchronous, 87–88, 91–92, 166
cancellation, 195
concurrent, 92
cross-domain, Silverlight,

300–01
HTTP endpoints, 70–71
out-of-band, 124–25
partial rendering, 52–53
payloads, 94–95
remote, 124–25, 181–83
Silverlight, 298–99
synchronous, 296

RequestTermination method,
209–10

RequirementsMode property, 87
Reset CSS fi le, 135
Resig, John, 59, 138, 150
resize(fn) helper, 154
resizeable interaction, 160
ResourceUICultures property, 31
response time, 178–79
responsiveness, 178
REST (Representational State

Transfer), 66
REST handler, 76, 84

proxy class, 80
REST services, 21, 267
RESTful interface, 78
results argument, 81
RIA (Rich Internet Application). See

Rich Internet Application (RIA)
rich, vs. reach, 308
Rich Internet Application (RIA),

17, 269, 308
binary code, 270–71
browser plug-ins, 271–74
HTML and, 23
JavaScript, 23–24
Silverlight, 274–81. See also

Silverlight
rich user experience, 56–57
richness, vs. reach, 23
RichTextBox control, 283, 286
rollbacks, 212–13
RowDataBound event, 246
RTSP (Real-Time Streaming

Protocol), 278
Ruby, 24

Ruby on Rails, 133
run-time

errors, interfaces, 119
HTML templates, 227
JavaScript, 103–04
modules, headers, 43

Russell, Bertrand, 223

S
S function, 135
Safari, 125

Dojo library compatibility, 133
NAPI, 272

safe-critical code, 304–06
application code, 304–06

Saltarello, Andrea, 172
Same Origin Policy (SOP), 66, 105

Cross-Domain Proxy pattern,
215–16

Silverlight, 300–01
Samples.HtmlListBuilder object,

241–45
Samples.Person function, 116
Samples.Progress class, 202–04
Samples.Services, 81
Samples.Services.

FinanceInfoService, 81
sandbox, 105
save point, 168
scalability, postbacks, 47
script code/fi les

cross-site scripting attacks,
77–78, 85

debug and release, 31
download, 175
globalization, 32
JavaScript library, 35
linking, 30–31
loading fi les, 157
localizable elements, 31
optional and custom, loading,

30–31
sandbox, 105
Script.aculo.us library, 135
user-interface elements, 31

Script.aculo.us, 36, 133
Script.aculo.us library, 134–35
scriptaculous.js fi le, 134
scripting attacks, 105, 216
scripting engine, 103–04
scripting languages, 107
ScriptManager control, 28

code for, basic, 29
ID, 41
jQuery library, 139
Microsoft AJAX library,

111–12
partial rendering, 30. See also

partial rendering

RadControls library, 93
Services section, 32–33

ScriptManagerProxy, 29–30
ScriptMethod attribute, 77
ScriptModule, 55
Scripts collection, 30–31
ScriptService attribute, 75–76
scroll(fn) helper, 154
scrollbars, 283
ScrollViewer element, 282–83
Secure Sockets Layer (SSL), 83
security, 83

ActiveX, 270–73
binary code over Web, 270–71
code, Silverlight, 302–07. See also

code security, Silverlight
countermeasures, 84–85
GET verb, 77–78
HTTP and, 10
HTTP façade, 63–64
HTTP façade, trusting, 86–87
inheritance rules, 307
JavaScript, 109
middle tier, HTTP façade as,

83–84
NAPI, 272–73
outsiders discrimination, 85–86
plug-ins, 272–73
replay attacks, 85
Same Origin Policy (SOP), 66
timeouts, 192

security model, Silverlight, 302–03
SecurityCritical attribute, 303, 306
SecuritySafeCritical attribute,

303, 306
SecurityTransparent attribute,

303, 306
SecurityTreatAsSafe attribute, 306
Seek method, 292
select(fn) helper, 154
selectable interaction, 160
SelectIndexChanged event, 39
selective updates, 17–18
selector1, …, selectorN selector, 143
selectors, 142

CSS, 142–44
fi lters, 144–48. See fi lters
form fi lters, 148–49
query, 140–41

separation of concerns (SoC),
170–71

serialization, 20–21, 62, 67–68
contracts, 75
JSON, 77
partial rendering, 41
view state, 42
XML, 77

server
basic model, 8–9
resources, 187, 192

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 storage 323

server code, 62
server controls, 37, 69–70, 82, 129

ASP.NET, 88–89, 131
data binding, 223–24
data-bound controls, 224
future of, 132
Gaia AJAX library, 94–96
JavaScript and, 131–32
RadControls, 92–94
Server Pages pattern. See Server

Pages pattern
Silverlight, 276–77
strengths and weaknesses, 131–32
view state, 131

Server Pages pattern, 87–88
advantages and disadvantages,

96–97
ASP.NET classic controls, 88–89
code-behind and Service Layer

pattern, 90
HTTP façade, 90
JavaScript emissions, increasing,

89–90
libraries, 92
postback model, classic, 90–92
vs. partial rendering, 91–92
vs. Service Layer pattern, 96–97

server side, 20
API, 197–98
ASP.NET development, 130–31
ASyncPostBackTrigger, 45
code, 66–68, 88–89, 252
controls, 61–62
data binding, 224, 232, 246
data transfer, 232–33
event handler, 93
focus, 61
HTML Message pattern. See HTML

Message pattern
HTTP endpoints, 64
interruptible tasks, 208–10
markup, 252
mashup, 223–24
optimization, 6
partial rendering, 41–42
processing overhead, 178
security, 63–64
session termination, 192
storage, 289
task ID, 199
task termination, 208–10

service endpoints, 70
Service Layer pattern, 62–63

HTML presentation layer, 69–70
HTTP façade, 63–67, 70–79
JSON vs. XML, 68–69
presentation layer, 62–63, 79–82
security, 83–87
Server Pages pattern and

code-behind, 90

vs. Server Pages pattern, 96–97
ServiceContract attribute, 75, 80
service-level agreements, 217
ServiceMethod attribute, 259
services. See Web services

references, adding to pages,
32–33

Services collection, 32
Services section, 32–33
setInterval function, 189–90
SetLength method, 292
sets, wrapped. See wrapped sets
SetStatus method, 198
setTimeout function, 190, 204
SFChange function, 95
shorthand functions, 114–15, 135
shorthand notation

$ symbol, 159
DOM hookup and removal, 126

ShouldTerminate method, 209–10
show function, 155
Silverlight, 3, 308

.NET Framework, 279
animation, 278
applications, running, 276–77
architecture, 275–77
building applications, 279–81
CLR, 24
code and markup, 279–80
Deep Zoom, 278–79
graphics and multimedia,

277–79
HTML and, 23
instancing, CLR, 281
media pack, 277–78
platform compatibility, 271
plug-ins, 274
programming. See Silverlight

programming
programming languages, 280
Rich Internet Application (RIA),

274–81
security, 84
Service Layer pattern, 97
storage. See storage
ToolTips, 282
vs. AJAX, 275
vs. smart clients, 276
WCF, 75
XAP packages, 280–81

Silverlight 1.0, 271
Silverlight 2,

Visual Studio, 79
Silverlight programming, 282

.NET Base Class Library, 286–89
code security, 302–07
common controls, 283–84
cross-domain requests, 300–01
data binding manager, 284–85
data downloads, 296–98

isolated storage, 289–95.
See also storage

layout manager, 282–83
networking, 295–301
services, 299–300
storage. See storage
Web requests, 298–99
WPF code compatibility, 285–86
WPF-based user interface,

282–86
Singleton pattern, 169–70
slideDown function, 155
Slider control, 283
Slider extender, 58
slider script, 135
Slider widget, 160
slideToggle function, 155
slideUp function, 155
sliding effects, 156
smart client, 64, 276
Smooth Streaming, 278
SOAP, 65, 68, 72

ASP.NET services, 76–77
basicHttpBinding model, 75
disabling clients, 77
vs. REST, 84

SoC (separation of concerns),
170–71

Sony, 136
SOP (Same Origin Policy). See Same

Origin Policy (SOP)
sortable interaction, 160
source code

JavaScript, 105
scripting engine, 104

source parameter, 277
Source property, 284
SqlDataSource control, 231
src attribute, 30
SSL (Secure Sockets Layer), 83
StackPanel element, 282–83
standardization, 8, 17, 271

HTML, 10
JavaScript, 10
Web structure and, 10–11
XMLHttpRequest object, 301

startMonitor method, 202
startsWith method, 113
startTask method, 202
state objects, 14
statements, 227
static entry points, 170
static members, 108
static methods, 170, 290
static properties, 81
stopMonitor method, 202
stopPropagation method, 153
stopTask callback, 190
storage

disk quotas, 294–95

http://lib.ommolketab.ir
http//lib.ommolketab.ir

324 storage

storage (continued)
fi le streams, 292–93
fi les and directories, 291–92
local, 290
management, 293–94
Silverlight, 289–95
system, Silverlight, 290–91

stored procedures, 196
Stream object, 297, 299
streaming, 278
StreamReader class, 292–93
StreamWriter class, 292–93
strict mode, 109
String class, 123
String data type, 32
String object, 112–13
StringBuilder object, 233
strings

comma-separated, 31
event name, 152
hash, 33–34
HTML, creation, 233, 235
JSON. See JSON
manipulation, 122–23
plug-ins, jQuery library, 158–59
serialization, 20–21

Submission Throttling pattern, 218
Explicit Submission pattern,

218–19
Live Form pattern, 220
timers, multithreading, 219–20

submit event, 91, 208
partial rendering, 40–41

submit(fn) helper, 154
success callbacks, 204–05
success parameter, 157
Symbol property, 247, 262
synchronization, 176
synchronous requests, 296
sys:activate attribute, 263
sys:attach attribute, 264
Sys._Debug class, 123–24
Sys.Application object, 121–22
Sys.ApplicationLoadEventArgs, 121
Sys.Component class, 122
Sys.CultureInfo object, 32
Sys.Data.AdoNetDataSource

class, 267
Sys.Data.AdoNetServiceProxy

class, 267
Sys.Data.DataSource component,

265–66
Sys.Debug object, 123
Sys.IDisposable interface, 118
Sys.Net.WebRequest class, 124–25
Sys.Net.WebRequestExecutor class,

124, 208
Sys.Net.XMLHttpExecutor class,

124, 208
Sys.StringBuilder class, 122–23

Sys.StringBuilder object, 245
Sys.UI.DataView component,

262–64
Sys.UI.Key, 125
Sys.UI.MouseButton, 125
Sys.WebForms.PageRequest

Manager object, 40
System.IO.DirectoryInfo class,

304–05
System.Json assembly, 287
System.Json namespace, 287
System.Net namespace, 85
system.web.extensions, 110
System.Web.Extensions assembly, 38
System.Web.Services.WebService, 78
System.Web.UI namespace, 38
sys-template style, 261–62

T
TabControl control (Gaia), 94
table element, 283
tables, 225–26

sys-template style, 261–62
Tabs widget, 160
target property, 153
TargetControlID property, 259
task ID, 198–99
task server API, 198
tasks

client, interrupting, 211–12
implementation, 198–99
monitoring, 195–96
remote, canceling, 206–08
rollbacks, 212–13
server, interruptible, 208–10

TCP (Transmission Control Protocol), 8
TCP/IP (Transmission Control

Protocol/Internet Protocol), 269
Telerik, 18
templates

ASP.NET, 260–66
constructor, 242
creation, 229–30
data and, mixing, 236–37
defi ned, 223
dual-side templating, 237–38
dynamic, 46
HTML, 224–30, 236
HTML factories, 225–27
ITemplate interface, 50
logic injection, 264–65
structure, 261–62
Sys.Data.DataSource component,

265–66
Sys.UI.DataView component,

262–64
URI, 234
URL, 74
XML data islands, 240

Temporary Internet Files folder, 281
TerminateTask method, 212
text box, 92

widgets, 57–59
text function, 150
Text property, 285
TextBlock element, 285
TextBox control, 283

AJAX Control Toolkit, 57–59
disabling, 48

TextBoxWatermark extender, 58
textElement property, 150
third-party software vendors, 69–70
this object, 149
this.each iterations, 159
Thread class, 287
ThreadPool class, 287
threads, 287–88
Time To Last Byte (TTLB), 178
timeout member, 124
Timeout pattern, 186–92

related patterns, 192–206
sample scenario, 188–91

timeout property, 81
timeouts, 193

keyboard, 188, 191
mouse, 188

timer class, 190
Timer control, 189
timers, 204

.NET Base Class Library
support, 289

autocompletion, 219
JavaScript, 219–20
multithreading, 219–20
Progress Indicator pattern,

194–95
TLS (Transport Layer Security), 83
toggle function, 153, 155
toggleClass function, 150
tokens, 290
Toolbar control (Gaia), 94
ToolTips, 282
Top property, 283
toString method, 117–18, 122
trace console element, 123
traceDump method, 123
traffi c, 253
transactions, canceling, 52
TransactionScope activity, 212–13
transfer latency, 178
transformer, JavaScript, 109
Transmission Control

Protocol (TCP), 8
Transmission Control Protocol/

Internet Protocol (TCP/IP), 269
transparency, code, 302–03
Transport Layer Security (TLS), 83
trigger function, 152
trigger method, 153

http://lib.ommolketab.ir
http//lib.ommolketab.ir

 Web development 325

triggerHandler function, 152–53
triggers

child controls, 44–45
explicit, 44–45
implicit, 44–45
partial rendering, 39
postback, 91–92
Silverlight, 285

Triggers collection, 285
TTLB (Time To Last Byte), 178
type attribute, <object> tag, 273–74
Type class, 120
Type object

extensions, 120
members, 120–21

type parameter, 157
type property, 153
Type.registerNamespace method, 116
typeof function, 107
typeof operator, 119
types, 106–07

U
UI layer, 22
UICulture attribute, 31
UICulture property, 31
unauthorized access, 85–86
unbind function, 152
unbind method, 153
underscore (_) symbol, 118
Unique URL pattern, 167–68
unload(fn) helper, 154
Update method

exceptions, 45
UpdatePanel control refresh, 45

UpdateMode property, 44
exceptions, 45

update-panel, 91–92
UpdatePanel control, 28

conditional updates, 44–45
data binding, 234
data transfer minimization, 47–48
dynamic templates, 46
multiple updatable panels, 42
nesting, 46
programmatic updates, 45
RadControls, 93–94
rules for, 47–48
single, limitations of, 39
smooth page updates, 42–43
triggers, 47
Update method, 45
UpdateProgress control, 195

UpdateProgress control, 195
progress bar display, 196

updating/updates, 166–67
conditional, 44–45
dynamic templates, 46
partial rendering, 42–43

programmatic updates, 45
selective, 17–18

uri attribute, 301
URI templates, 234
UriTemplate property, 72–73
url member, 124
url property, 124
URLs

ad hoc façade, 62
ADO.NET Data Services proxy, 267
creation, 37–38
DataView, 265
hash string modifi cation, 33–34
history, 167–68
HTML tags, 177
HTTP façade, 65–67
HTTP verbs, 66
posting data to, 298–99
public, 86
remote, 251
syntax, ADO.NET, 79
template, 74
unique, AJAX design pattern,

167–68
user actions, 167
user context object, 81
user credentials, 85, 87
user experience, 4–6

for developers, 6–7
for managers, 7

user feedback, 49–52
user inputs. See <input> elements;

input elements
user interface

CRUDy, 66
data binding, 224. See also data

binding
HTML presentation layer, 69–70
jQuery library, 159–61
jQuery UI, 159–61
MVC model, 172
Periodic Refresh pattern, 192
presentation logic separation, 235
refreshing, 178–79
responsiveness, 178
Silverlight, WPF-based,

282–86
updating, 205–06
widgets, 59–60

UserControl element, 282
UserControl root tag, 280
Users directory, 291

V
value property, extenders, 58
var keyword, 107–08
variables

JavaScript, 107
placeholders as, 236

verifi er, JavaScript, 109
VHS, 136
View object, 260
view state, 27

disabling, 48
partial, 95
partial rendering, 92
server controls, 131
size, 48

views
autonomous vs. monolithic, 171
MVC pattern, 171–72

visibility attribute, 214
visibility functions, 155–56
visibility, HTML template, 261
Visual Basic .NET

code-behind class, 280
keywords, 286
Silverlight, 24

visual effects, 155–57
jQuery library, 249–50
Script.aculo.us library, 134–35

Visual GUI, 97
Visual InterDev 6.0, 88–89
Visual Studio, 21–22

ADO.NET data services, 79
Visual Studio 2008

jQuery library, 137–40
proxy class, 80
Service Pack 1, 139–40
Silverlight Web services, 299

Vlissides, John, 164
Volta, 24
vsdoc fi le, 140

W
W3C (World Wide Web

Consortium), 270, 301
WatermarkTextBox control, 283
WCF (Windows Communication

Foundation). See Windows
Communication
Foundation (WCF)

Web 2.0, 3, 101
Web applications.

See Web development
Web browser. See browser
Web development, 17.

See also Web page;
Web services

AJAX capability, 17
AJAX Control Toolkit, 57–59
animations, 156–57
architecture concerns, 18–22
ASP.NET, 130–31
client-side, 130
HTML presentation layer, 69–70
interactivity, jQuery UI, 159–61
programming, 12

http://lib.ommolketab.ir
http//lib.ommolketab.ir

326 Web development

Web development (continued)
Rich Internet Application. See Rich

Internet Application (RIA)
selective updates, 17–18
service reference addition, 32–33
user experience, 4–7
visual effects, 155–57
Web applications vs. AJAX

applications, 167
widgets, 56–59

Web Development Helper tool, 206
Web Forms API, 19
Web Forms model, 42
Web page

DOM manipulation, 166–67
free content, 217
links, 213–14
mashup, 215
Pages-for-Forms model, 14–15
polling, 53
selective updates, 17–18
services reference addition, 32–33
slow, 175
updatability, 13–14
updates. See updating/updates

Web remoting, 216
Web requests. See requests
Web services

custom, 66–67
event sink, 199–200
HTTP façade, 65–67
metadata, 73
proxy class, 80–82
Same Origin Policy (SOP), 66
security, 86–87
Silverlight, 299–300
Silverlight consumption, 299–300
vs. page methods, 56

Web We Want (WWW), 5–7
web.confi g fi le

ASP.NET Web services, 76
debug mode, 80
SOAP client disabling, 77

WebClient class, 296–98
WebGet attribute, 72–73
webHttpBinding model, 73, 84
WebInvoke attribute, 73
WebMethod attribute, 77
WebRequest class, 124, 298–99
WebUI, 96–97
widgets, 56–57, 132–35

AJAX Control Toolkit, 57–59
jQuery library, 59–60, 138
jQuery UI, 160–61
slider, 59–60
YUIAsp.Net library, 135

Window control (Gaia), 94–95
window object, 140

window.event object, 125
Windows Communication

Foundation (WCF), 21,
72–75, 232

ASP.NET compatibility mode, 78
event sink, 199–200
HTML template, 241
HTTP façade, 64, 66–68, 72–75
page methods, 54
proxy class, 80–82
public services, 56
runtime, 87
security, 84, 86–87
Silverlight, 75
Silverlight consumption,

299–300
Windows Media Audio (WMA)

formats, 278
Windows Media Video (WMV)

formats, 278
Windows platform, 271
Windows Presentation Foundation

(WPF)
code compatibility, 285–86
Silverlight, 23, 282
Silverlight user interface, 282–86
WPF Toolkit, 282

Windows Vista platform, 291
WMA (Windows Media Audio)

formats, 278
WMV (Windows Media Video)

formats, 278
World Wide Web (WWW). See

also Web development; Web
services

binary code over, 270–71
mechanics, 8–9
origins, 8
paradigm shift, 14–15
paradox of, 9
pillars of, 10–11
restructuring, 10–11
Rich Internet Application. See Rich

Internet Application (RIA)
security and, 10
standardization, 8, 271

World Wide Web Consortium
(W3C), 8, 13, 114, 125, 216,
270, 301

WPF (Windows Presentation
Foundation). See Windows
Presentation Foundation (WPF)

wrap method, 150
wrapped sets, 141, 149

chaining, 151
looping, 149
methods, 159
predefi ned operations, 150

wrapper classes, 266
Write method, 293
WSDL, 77

X
x:Class attribute, 280
x:Name attribute, 280
XAML, 279
XAML Browser Application

(XBAP), 276
XAP packages, 277, 280–81

download example, 297
XBAP (XAML Browser

Application), 276
XDomainRequest object, 216, 301
XML

data islands, 236, 240
parser, 68–69
plain-old (POX), 72
vs. JSON, 20–21, 67–69

XMLHttpRequest object,
12–13, 125

browser history, 168
cross-domain calls, 216, 301
custom handlers, 78
Data-for-Data model, 15–16
Dojo library, 133
event sink, 196
Heartbeat pattern, 193
HTML Message pattern, 252
jQuery library, 157–58
micro-links, 214
On-Demand JavaScript pattern,

176–77
partial rendering, 15
Periodic Refresh pattern, 192–93
polling, 53
Predictive Fetch pattern, 181
PrototypeJS library, 133–34
script downloads, 176–78
standardization, 301
Sys.Net.XMLHttpExecutor

class, 124
task cancellation, 208

xmlns attributes, 263
xxxEntities class, 300

Y
Yahoo! UI Compressor, 136
Yahoo! UI library, 36, 135–36
YUIAsp.Net library, 135

Z
ZIP archive, 280

http://lib.ommolketab.ir
http//lib.ommolketab.ir

About the Author

Dino Esposito

Dino Esposito is an IDesign (http://www.idesign.net) architect and
a trainer based in Rome, Italy. Dino specializes in Microsoft Web
 technologies, including ASP.NET AJAX and Silverlight, and spends
most of his time teaching and consulting across Europe, Australia, and
the United States.

Over the years, Dino has developed hands-on experience and skills
in architecting and building distributed systems for banking and

 insurance companies and, in general, in industry contexts where the demand for security,
optimization, performance, scalability, and interoperability is dramatically high. Every month,
a variety of magazines and Web sites throughout the world publish Dino’s articles on topics
ranging from Web development to data access and from software best practices to Web
 services. A prolifi c author, Dino writes the monthly “Cutting Edge” column for MSDN Magazine
and the “ASP.NET-2-The-Max” newsletter for Dr. Dobb’s Journal. As a widely acknowledged
 expert in Web applications built with .NET technologies, Dino contributes to the Microsoft
content platform for developers and IT consultants. Check out his articles on a variety of
MSDN Developer Center topics, such as ASP.NET, security, and data access.

Dino has written an array of books, most of which are considered state of the art in their
respective areas. His more recent books are Microsoft .NET: Architecting Applications for the
Enterprise (co-authored by Andrea Saltarello) and Programming Microsoft ASP.NET 3.5, both
from Microsoft Press (2008). Dino regularly speaks at industry conferences all over the world
(including Microsoft TechEd, Microsoft DevDays, DevConnections, DevWeek, and Basta) and
local technical conferences and meetings in Europe and the United States.

Dino lives near Rome and keeps in shape playing tennis at least twice a week
at CT Monterotondo.

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

	Cover
	Home Page
	Copyright page

	Dedication
	Contents at a Glance
	Table of Contents
	Acknowledgments
	Introduction
	Who This Book Is For
	Companion Content
	Hardware and Software Requirements
	Find Additional Content Online
	Support for This Book
	Questions and Comments

	Part I: The (Much Needed) Facelift for the Old Web
	Chapter 1: Under the Umbrella of AJAX
	What Web Do We Want?
	It’s All About User Experience
	Origins of the Web
	Paradox of the Web

	The Biggest Benefit of AJAX
	What’s AJAX, Exactly?
	The Paradigm Shift

	AJAX and New Web Projects
	Adding AJAX Capabilities
	Architecture Is the Concern
	The Case for Rich Internet Applications

	Summary

	Chapter 2: The Easy Way to AJAX
	The ASP.NET AJAX Infrastructure
	The Page’s Script Manager
	The Microsoft JavaScript Library

	Partial Rendering
	The UpdatePanel Control
	Programming Updatable Panels
	Minimizing Data Transfer
	Shades of Partial Rendering

	AJAX and JavaScript Injections
	Remote Methods
	Widgets and Effects

	Summary

	Chapter 3: AJAX Architectures
	The AJAX Service Layer Pattern
	Architectural Overview
	Inside the HTTP Façade
	The AJAX Presentation Layer
	Security Considerations

	The AJAX Server Pages Pattern
	Architectural Overview
	The Classic Postback Model Revisited
	Libraries in Action

	Summary

	Part II: Power to the Client
	Chapter 4: A Better and Richer JavaScript
	JavaScript Today
	The Language and the Browser
	Pillars of the Language
	JavaScript (If Any) of the Future

	The Microsoft AJAX Library
	Overview of the Library
	JavaScript Language Extensions
	Object-Oriented Extensions
	Framework Facilities

	Summary

	Chapter 5: JavaScript Libraries
	From Server Controls to JavaScript Widgets
	The ASP.NET Factor
	The Widget Factor

	The jQuery Library
	The Library at a Glance
	The Core Library
	jQuery Selectors
	Working on Wrapped Sets
	jQuery Utilities

	Summary

	Chapter 6: AJAX Design Patterns
	Design Patterns and Code Development
	Generalities About Design Patterns
	Patterns in AJAX Development

	Patterns for JavaScript Development
	The Singleton Pattern
	The Model-View-Controller Pattern
	The On-Demand JavaScript Pattern

	The Predictive Fetch Pattern
	Generalities of the Predictive Fetch Pattern
	Creating a Reference Implementation

	The Timeout Pattern
	Generalities of the Timeout Pattern
	A Timeout Pattern Reference Implementation
	Related Patterns

	The Progress Indicator Pattern
	Generalities of the Progress Indicator Pattern
	A Progress Indicator Reference Implementation
	Canceling an Ongoing Remote Task

	Other Patterns
	The Micro-Link Pattern
	The Cross-Domain Proxy Pattern
	The Submission Throttling Pattern

	Summary

	Chapter 7: Client-Side Data Binding
	An Architectural Tour of ASP.NET Data Binding
	Defining the HTML Template
	Defining the Data Source
	Data Binding at the Time of AJAX

	The Browser-Side Template Pattern
	Generalities of the BST Pattern
	Creating a BST Reference Implementation

	The HTML Message Pattern
	Generalities of the HM Pattern
	Developing an HM Reference Implementation

	A Look at ASP.NET AJAX 4.0
	ASP.NET AJAX Templates
	ASP.NET Library for ADO.NET Data Services

	Summary

	Chapter 8: Rich Internet Applications
	Looking for a Richer Web
	The Dream of Binary Code Running over the Web
	Browser Plug-ins

	Microsoft Silverlight at a Glance
	Elements of the Silverlight Architecture
	Graphics and Multimedia
	Building Applications

	The Programming Model of Microsoft Silverlight
	WPF-Based User Interface
	The .NET Base Class Library
	Isolated Storage
	Networking

	Microsoft Silverlight and Code Security
	The Security Model
	Security Attributes
	Secure by Design

	Summary

	Index
	Symbols and Numbers
	A
	B
	C
	D
	E
	F
	G,H
	I,J
	K,L
	M,N
	O,P
	Q,R
	S
	T
	U,V,W
	X,Y,Z

	About the Author
	Dino Esposito

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ARA <FFFE270633062A062E062F0645062000470630064706200027064406250639062F0627062F0627062A0620004406250646063406270621062000450633062A0646062F0627062A062000410064006F0062006500200050004400460020004A064506430646062000270644062A06390627064506440620004506390647062706200048062A062A063606450646062000390644062706450627062A0620002A0645064A064A063206200048063106480627062806370620002A063406390628064A06290620004806250634062706310627062A062000450631062C0639064A062906200048063906460627063506310620002A0641062706390644064A0629062000480637062806420627062A062E0020004A06450643064606200041062A062D062000450633062A0646062F0627062A0620005000440046002000270644064506460634062306290620002806270633062A062E062F062706450620004100630072006F0062006100740020004806410064006F00620065002000520065006100640065007200200037002E003000200023064806200023062D062F062B062E0029000D000A00>
 /CHS <FEFF4F7F75288FD94E9B8BBE7F6E6765521B5EFA7684002000410064006F006200650020005000440046002065876863517759078F8552A95DE55177FF0C53735305542B68077B7E30018D8594FE63A530014E667B7E30014EA44E9251437D20548C56FE5C423002521B5EFA76840020005000440046002065874EF653EF4EE54F7F75280020004100630072006F0062006100740020548C002000410064006F00620065002000520065006100640065007200200037002E00300020621666F49AD87248672C676562535F003002>
 /CHT <FEFF4F7F752890194E9B8A2D5B9A5EFA7ACB7684002000410064006F006200650020005000440046002065874EF651775099535452A95DE55177FF0C53735305542B6A197C6430018D8590237D50300166F87C6430014E9252D551437D20548C57165C6430025EFA7ACB76840020005000440046002065874EF653EF4EE54F7F75280020004100630072006F0062006100740020548C002000410064006F00620065002000520065006100640065007200200037002E00300020621666F49AD87248672C958B555F3002>
 /CZE <FEFF005400610074006F0020006E006100730074006100760065006E00ED00200070006F0075017E0069006A007400650020006B0020007600790074007600E101590065006E00ED00200073006E00610064006E006F00200070015900ED0073007400750070006E00FD0063006800200064006F006B0075006D0065006E0074016F002000410064006F006200650020005000440046002C0020006B00740065007200E90020006F00620073006100680075006A00ED00200074006100670079002C00200068007900700065007200760061007A00620079002C0020007A00E1006C006F017E006B0079002C00200069006E0074006500720061006B007400690076006E00ED0020007000720076006B0079002000610020007600720073007400760079002E00200056007900740076006F01590065006E00E900200064006F006B0075006D0065006E007400790020005000440046002000620075006400650020006D006F017E006E00E90020006F007400650076015900ED007400200076002000700072006F006700720061006D0065006300680020004100630072006F00620061007400200061002000410064006F00620065002000520065006100640065007200200037002E0030002000610020006E006F0076011B006A016100ED00630068002E>
 /DAN <FEFF004200720075006700200064006900730073006500200069006E0064007300740069006C006C0069006E006700650072002000740069006C0020006100740020006F0070007200650074007400650020006C0065007400740069006C006700E6006E00670065006C006900670065002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E007400650072002C002000640065007200200069006E006400650068006F006C0064006500720020006B006F006400650072002C002000680079007000650072006C0069006E006B0073002C00200062006F0067006D00E60072006B00650072002C00200069006E0074006500720061006B007400690076006500200065006C0065006D0065006E0074006500720020006F00670020006C00610067002E0020004400650020006F007000720065007400740065006400650020005000440046002D0064006F006B0075006D0065006E0074006500720020006B0061006E002000E50062006E00650073002000690020004100630072006F00620061007400200065006C006C006500720020004100630072006F006200610074002000520065006100640065007200200037002E00300020006F00670020006E0079006500720065002E>
 /DEU <FEFFFEFF00560065007200770065006E00640065006E0020005300690065002000640069006500730065002000450069006E007300740065006C006C0075006E00670065006E0020007A0075006D002000450072007300740065006C006C0065006E00200076006F006E0020007A0075006700E4006E0067006C0069006300680065006E002000410064006F006200650020005000440046002D0044006F006B0075006D0065006E00740065006E0020006D0069007400200054006100670073002C002000480079007000650072006C0069006E006B0073002C0020004C006500730065007A00650069006300680065006E002C00200069006E0074006500720061006B0074006900760065006E00200045006C0065006D0065006E00740065006E00200075006E00640020004500620065006E0065006E002E002000450072007300740065006C006C007400650020005000440046002D0044006F006B0075006D0065006E007400650020006B00F6006E006E0065006E0020006D006900740020004100630072006F00620061007400200075006E0064002000410064006F00620065002000520065006100640065007200200037002E00300020006F0064006500720020006800F600680065007200200067006500F600660066006E00650074002000770065007200640065006E002E>
 /ENU (Use these settings to create accessible Adobe PDF documents that include tags, hyperlinks, bookmarks, interactive elements, and layers. Created PDF documents can be opened with Acrobat and Adobe Reader 7.0 and later.)
 /ESP <FEFF005500740069006C0069006300650020006500730074006100200063006F006E0066006900670075007200610063006900F3006E0020007000610072006100200063007200650061007200200064006F00630075006D0065006E0074006F0073002000500044004600200061006300630065007300690062006C00650073002000640065002000410064006F00620065002000710075006500200069006E0063006C007500790061006E0020006500740069007100750065007400610073002C002000680069007000650072007600ED006E00630075006C006F0073002C0020006D00610072006300610064006F0072006500730020006400650020007000E100670069006E0061002C00200065006C0065006D0065006E0074006F007300200069006E00740065007200610063007400690076006F007300200079002000630061007000610073002E002000530065002000700075006500640065006E00200061006200720069007200200064006F00630075006D0065006E0074006F00730020005000440046002000630072006500610064006F007300200063006F006E0020004100630072006F006200610074002C002000410064006F00620065002000520065006100640065007200200037002E003000200079002000760065007200730069006F006E0065007300200070006F00730074006500720069006F007200650073002E>
 /FRA <FEFF005500740069006C006900730065007A00200063006500730020006F007000740069006F006E007300200070006F0075007200200063007200E900650072002000640065007300200064006F00630075006D0065006E00740073002000410064006F006200650020005000440046002000610063006300650073007300690062006C0065007300200064006F007400E90073002000640065002000620061006C0069007300650073002C00200064002700680079007000650072006C00690065006E0073002C0020006400650020007300690067006E006500740073002C00200064002700E9006C00E9006D0065006E0074007300200069006E007400650072006100630074006900660073002000650074002000640065002000630061006C0071007500650073002E0020004C0065007300200064006F00630075006D0065006E0074007300200050004400460020006F006200740065006E00750073002000730027006F0075007600720065006E0074002000640061006E00730020004100630072006F006200610074002000650074002000410064006F00620065002000520065006100640065007200200037002E00300020002800650074002000760065007200730069006F006E007300200075006C007400E900720069006500750072006500730029002E>
 /GRE <FEFF03A703C103B703C303B903BC03BF03C003BF03B903AE03C303C403B5002003B103C503C403AD03C2002003C403B903C2002003C103C503B803BC03AF03C303B503B903C2002003B303B903B1002003BD03B1002003B403B703BC03B903BF03C503C103B303AE03C303B503C403B5002003C003C103BF03C303C003B503BB03AC03C303B903BC03B1002003AD03B303B303C103B103C603B1002000410064006F006200650020005000440046002003C403B1002003BF03C003BF03AF03B1002003C003B503C103B903BB03B103BC03B203AC03BD03BF03C503BD002003B503C403B903BA03AD03C403B503C2002C002003C503C003B503C103C303C503BD03B403AD03C303B503B903C2002C002003C303B503BB03B903B403BF03B403B503AF03BA03C403B503C2002C002003B103BB03BB03B703BB03B503C003B903B403C103B103C303C403B903BA03AC002003C303C403BF03B903C703B503AF03B1002003BA03B103B9002003B503C003AF03C003B503B403B1002E002003A403B1002003AD03B303B303C103C603B10020005000440046002003C003BF03C5002003B403B703BC03B903BF03C503C103B303BF03CD03BD03C403B103B9002003BC03C003BF03C103BF03CD03BD002003BD03B1002003B103BD03BF03B903C703B803BF03CD03BD002003BC03B5002003C403BF0020004100630072006F006200610074002003BA03B103B9002000410064006F00620065002000520065006100640065007200200037002E0030002003BA03B103B9002003BD03B503CC03C403B503C103B7002E>
 /HEB <FEFF05d405e905ea05de05e905d5002005d105e705d105d905e205d505ea002005d005dc05d4002005dc05d905e605d905e805ea002005de05e105de05db05d9002000410064006f006200650020005000440046002005e005d205d905e905d905dd002005d405db05d505dc05dc05d905dd002005ea05d205d905dd002c002005e705d905e905d505e805d9002d05e205dc002c002005e105d905de05e005d905d505ea002c002005e805db05d905d105d905dd002005d005d905e005d805e805d005e705d805d905d105d905d905dd002005d505e905db05d105d505ea002e002005de05e105de05db05d90020005000440046002005e905e005d505e605e805d5002005e005d905ea05df002005dc05e405ea05d505d7002005d1002d0020004100630072006f006200610074002005d505d1002d002000410064006f00620065002000520065006100640065007200200037002e0030002005d505d205e805e105d005d505ea002005de05ea05e705d305de05d505ea002005d905d505ea05e8002e>
 /HUN <FEFF004100200062006500E1006C006C00ED007400E10073006F006B0020006800610073007A006E00E1006C0061007400E100760061006C0020006300ED006D006B00E9006B00650074002C002000680069007600610074006B006F007A00E10073006F006B00610074002C0020006B00F6006E00790076006A0065006C007A0151006B00650074002C00200069006E0074006500720061006B007400ED007600200065006C0065006D0065006B00650074002000E900730020007200E90074006500670065006B00650074002000740061007200740061006C006D0061007A00F300200068006F007A007A00E1006600E900720068006500740151002000410064006F00620065002000500044004600200064006F006B0075006D0065006E00740075006D006F006B0061007400200068006F007A0068006100740020006C00E9007400720065002E002000410020006C00E90074007200650068006F007A006F00740074002000500044004600200064006F006B0075006D0065006E00740075006D006F006B00200061007A0020004100630072006F006200610074002000E9007300200061007A002000410064006F00620065002000520065006100640065007200200037002E003000200061006C006B0061006C006D0061007A00E10073006F006B006B0061006C002C0020007600610067007900200061007A002000610074007400F3006C0020006B00E9007301510062006200690020007600650072007A006900F3006B006B0061006C0020006E00790069007400680061007400F3006B0020006D00650067002E>
 /ITA <FEFF005500740069006C0069007A007A006100720065002000710075006500730074006500200069006D0070006F007300740061007A0069006F006E00690020007000650072002000630072006500610072006500200064006F00630075006D0065006E00740069002000410064006F0062006500200050004400460020006100630063006500730073006900620069006C0069002000630068006500200069006E0063006C00750064006F006E006F0020007400610067002C0020006C0069006E006B00200069007000650072007400650073007400750061006C0069002C0020007300650067006E0061006C0069006200720069002C00200065006C0065006D0065006E0074006900200069006E007400650072006100740074006900760069002000650020006C006900760065006C006C0069002E002000C800200070006F00730073006900620069006C006500200061007000720069007200650020006900200064006F00630075006D0065006E007400690020005000440046002000630072006500610074006900200063006F006E0020004100630072006F00620061007400200065002000410064006F00620065002000520065006100640065007200200037002E003000200065002000760065007200730069006F006E006900200073007500630063006500730073006900760065002E>
 /JPN <FEFF30BF30B0300130CF30A430D130FC30EA30F330AF30013057304A308A300130A430F330BF30E930AF30C630A330D6306A89817D20300130EC30A430E430FC3092542B308030A230AF30BB30B730D630EB306A002000410064006F0062006500200050004400460020658766F830924F5C62103059308B306B306F30013053308C3089306E8A2D5B9A30924F7F75283057307E305930024F5C62103055308C305F00200050004400460020306F0020004100630072006F0062006100740020304A30883073002000410064006F00620065002000520065006100640065007200200037002E003000204EE5964D3067958B304F30533068304C3067304D307E30593002>
 /KOR <FEFFD0DCADF8002C0020D558C774D37CB9C1D06C002C0020CC45AC08D53C002C0020B300D654D6150020C694C18C0020BC0F0020B808C774C5B4AC000020D3ECD568B418C5B40020C788C5B40020C0ACC6A9C790AC000020C27DAC8C0020C561C138C2A4D5600020C2180020C788B294002000410064006F0062006500200050004400460020BB38C11CB97C0020C791C131D558B824BA740020C774B7ECD55C0020C124C815C7440020C0ACC6A9D569B2C8B2E4002E0020C774C6400020AC19C7400020C635C158C7440020C0ACC6A9D558C5EC0020C791C131B41C00200050004400460020BB38C11CB2940020004100630072006F0062006100740020BC0F002000410064006F00620065002000520065006100640065007200200037002E00300020C774C0C1C5D0C11C0020C5F40020C2180020C788C2B5B2C8B2E4002E>
 /NLD (Gebruik deze instellingen om toegankelijke Adobe PDF-documenten met labels, hyperlinks, bladwijzers, interactieve elementen en lagen te maken. U kunt gemaakte PDF-documenten openen met Acrobat en Adobe Reader 7.0 en hoger.)
 /NOR <FEFF004200720075006B00200064006900730073006500200069006E006E007300740069006C006C0069006E00670065006E0065002000740069006C002000E50020006F0070007000720065007400740065002000740069006C0067006A0065006E00670065006C006900670065002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E00740065007200200073006F006D00200069006E006E00650068006F006C0064006500720020006B006F006400650072002C002000680079007000650072006B006F0062006C0069006E006700650072002C00200062006F006B006D00650072006B00650072002C00200069006E0074006500720061006B007400690076006500200065006C0065006D0065006E0074006500720020006F00670020006C00610067002E0020004F0070007000720065007400740065006400650020005000440046002D0064006F006B0075006D0065006E0074006500720020006B0061006E002000E50070006E00650073002000690020004100630072006F0062006100740020006F0067002000410064006F00620065002000520065006100640065007200200037002E00300020006F0067002000730065006E006500720065002E>
 /POL <FEFF005A006100200070006F006D006F00630105002000740079006300680020007500730074006100770069006501440020006D006F017C006E0061002000740077006F0072007A0079010700200142006100740077006F00200064006F0073007401190070006E006500200064006F006B0075006D0065006E00740079002000410064006F006200650020005000440046002C0020007A006100770069006500720061006A0105006300650020007A006E00610063007A006E0069006B0069002C002000680069007000650072014201050063007A0061002C0020007A0061006B014200610064006B0069002C00200065006C0065006D0065006E0074007900200069006E0074006500720061006B007400790077006E00650020006900200077006100720073007400770079002E0020005500740077006F0072007A006F006E006500200077002000740065006E002000730070006F007300F3006200200064006F006B0075006D0065006E0074007900200050004400460020006D006F017C006E00610020006F007400770069006500720061010700200077002000700072006F006700720061006D0061006300680020004100630072006F00620061007400200069002000410064006F00620065002000520065006100640065007200200037002E00300020006900200069006300680020006E006F00770073007A00790063006800200077006500720073006A006100630068002E>
 /PTB <FEFF00550073006500200065007300740061007300200063006F006E00660069006700750072006100E700F5006500730020007000610072006100200063007200690061007200200064006F00630075006D0065006E0074006F007300200061006300650073007300ED00760065006900730020005000440046002000410064006F00620065002000710075006500200069006E0063006C00750065006D00200074006100670073002C002000680079007000650072006C0069006E006B0073002C0020006D00610072006300610064006F007200650073002C00200065006C0065006D0065006E0074006F007300200069006E0074006500720061007400690076006F007300200065002000630061006D0061006400610073002E0020004F007300200064006F00630075006D0065006E0074006F00730020005000440046002000630072006900610064006F007300200070006F00640065006D0020007300650072002000610062006500720074006F007300200063006F006D0020004100630072006F00620061007400200065002000410064006F00620065002000520065006100640065007200200037002E00300020006F007500200070006F00730074006500720069006F007200650073002E>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610063006300650073006900620069006c00650020006300610072006500200069006e0063006c007500640020007400610067007500720069002c002000680069007000650072006c0069006e006b007500720069002c002000730065006d006e0065002000640065002000630061007200740065002c00200065006c0065006d0065006e0074006500200069006e0074006500720061006300740069007600650020015f0069002000730074007200610074007500720069002e00200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f0062006100740020015f0069002000410064006f00620065002000520065006100640065007200200037002e0030002c002000700072006500630075006d0020015f00690020006300750020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043F043E043B044C04370443043904420435002004340430043D043D044B04350020043D0430044104420440043E0439043A043800200434043B044F00200441043E043704340430043D0438044F00200434043E044104420443043F043D044B0445002000410064006F006200650020005000440046002D0434043E043A0443043C0435043D0442043E0432002C00200441043E0434043504400436043004490438044500200442043504330438002C002004330438043F0435044004410441044B043B043A0438002C002004370430043A043B04300434043A0438002C00200438043D0442043504400430043A044204380432043D044B04350020044D043B0435043C0435043D0442044B0020043800200441043B043E0438002E00200421043E043704340430043D043D044B04350020005000440046002D0434043E043A0443043C0435043D0442044B0020043C043E0436043D043E0020043E0442043A0440044B043204300442044C002004410020043F043E043C043E0449044C044E0020004100630072006F00620061007400200438002000410064006F00620065002000520065006100640065007200200037002E00300020043800200431043E043B043504350020043F043E04370434043D043804450020043204350440044104380439002E>
 /SUO <FEFF004B00E40079007400E40020006E00E40069007400E4002000610073006500740075006B0073006900610020006C0075006F0064006500730073006100730069002000680065006C00700070006F006B00E400790074007400F600690073006900E4002000410064006F0062006500200050004400460020002D0064006F006B0075006D0065006E007400740065006A0061002C0020006A006F0074006B0061002000730069007300E4006C007400E4007600E400740020006B006F006F00640069006D00650072006B0069006E007400F6006A00E4002C002000680079007000650072006C0069006E006B006B0065006A00E4002C0020006B00690072006A0061006E006D00650072006B006B0065006A00E4002C002000760075006F0072006F007600610069006B0075007400740065006900730069006100200065006C0065006D0065006E007400740065006A00E40020006A00610020007400610073006F006A0061002E002000410073006500740075007300740065006E0020006100760075006C006C00610020006C0075006F0064007500740020005000440046002D0064006F006B0075006D0065006E00740069007400200076006F00690020006100760061007400610020004100630072006F0062006100740020006A0061002000410064006F00620065002000520065006100640065007200200037002E0030003A006C006C0061002000740061006900200075007500640065006D006D0061006C006C0061002000760065007200730069006F006C006C0061002E>
 /SVE <FEFF0041006E007600E4006E00640020006400650020006800E4007200200069006E0073007400E4006C006C006E0069006E006700610072006E00610020006600F60072002000610074007400200073006B0061007000610020006C00E4007400740069006C006C006700E4006E0067006C006900670061002000410064006F006200650020005000440046002D0064006F006B0075006D0065006E007400200073006F006D00200069006E006E0065006800E5006C006C006500720020007400610067006700610072002C002000680079007000650072006C00E4006E006B00610072002C00200062006F006B006D00E40072006B0065006E002C00200069006E0074006500720061006B007400690076006100200065006C0065006D0065006E00740020006F006300680020006C0061006700650072002E00200044006500200064006F006B0075006D0065006E007400200064007500200073006B00610070006100720020006B0061006E002000F600700070006E00610073002000690020004100630072006F0062006100740020006F00630068002000410064006F00620065002000520065006100640065007200200037002E003000200065006C006C00650072002000730065006E006100720065002E>
 /TUR <FEFF0130006D006C00650072002C002000680069007000650072002000620061011F006C00610072002C002000790065007200200069006D006C006500720069002C002000650074006B0069006C0065015F0069006D006C0069002000F6011F0065006C006500720020007600650020006B00610074006D0061006E006C006100720020006900E7006500720065006E0020006500720069015F0069006C006500620069006C00690072002000410064006F006200650020005000440046002000620065006C00670065006C0065007200690020006F006C0075015F007400750072006D0061006B0020006900E70069006E00200062007500200061007900610072006C0061007201310020006B0075006C006C0061006E0131006E002E0020004F006C0075015F0074007500720075006C0061006E0020005000440046002000620065006C00670065006C0065007200690020004100630072006F006200610074002000760065002000410064006F00620065002000520065006100640065007200200037002E003000200076006500200073006F006E00720061006B00690020007300FC007200FC006D006C0065007200690079006C00650020006100E70131006C006100620069006C00690072002E>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f002000410064006f006200650020005000440046002d0434043e043a0443043c0435043d044204560432002c0020044f043a04560020043c045604410442044f0442044c00200442043504330438002c002004330456043f04350440043f043e04410438043b0430043d043d044f002c002004370430043a043b04300434043a0438002c00200456043d0442043504400430043a044204380432043d045600200435043b0435043c0435043d044204380020043900200448043004400438002e0020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004320020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200037002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements true
 /GenerateStructure true
 /IncludeBookmarks true
 /IncludeHyperlinks true
 /IncludeInteractive true
 /IncludeLayers true
 /IncludeProfiles true
 /MultimediaHandling /EmbedAll
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

