
Ruby on Rails: Up and Running

By Curt Hibbs, Bruce A. Tate

...

Publisher: O'Reilly

Pub Date: August 2006

Print ISBN-10: 0-596-10132-5

Print ISBN-13: 978-0-59-610132-9

Pages: 182

Table of Contents | Index

Ruby on Rails is the super-productive new way to develop full-featured
web applications. With Ruby on Rails, powerful web applications that
once took weeks or months to develop can now be produced in a matter of
days. If it sounds too good to be true, it isn't.

If you're like a lot of web developers, you've probably considered
kicking the tires on Rails - the framework of choice for the new
generation of Web 2.0 developers. Ruby on Rails: Up and Running from O'Reilly takes you out for a
test drive and shows you just how fast
Ruby on Rails can go.

This compact guide teaches you the basics of installing and using both
the Ruby scripting language and the Rails framework for the quick
development of web applications. Ruby on Rails: Up and
Running covers just about everything you
need - from making a simple database-backed application to
adding elaborate Ajaxian features and all the juicy bits in between.
While Rails is praised for its simplicity and speed of development,
there are still a few steps to master on the way. More advanced
material helps you map data to an imperfect table, traverse complex
relationships, and build custom finders. A section on working with Ajax
and REST shows you how to exploit the Rails service frameworks to send
emails, implement web services, and create dynamic user-centric web
pages. The book also explains the essentials of logging to find
performance problems and delves into other performance optimizing
techniques.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

As new web development frameworks go, Ruby on Rails is the talk of the
town. And Ruby on Rails: Up and Running can make
sure you're in on the discussion.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Ruby on Rails: Up and Running

By Curt Hibbs, Bruce A. Tate

...

Publisher: O'Reilly

Pub Date: August 2006

Print ISBN-10: 0-596-10132-5

Print ISBN-13: 978-0-59-610132-9

Pages: 182

Table of Contents | Index

 Copyright

 Preface

 Chapter 1. Zero to Sixty: Introducing Rails

 Section 1.1. Rails Strengths

 Section 1.2. Putting Rails into Action

 Section 1.3. Organization

 Section 1.4. The Web Server

 Section 1.5. Creating a Controller

 Section 1.6. Building a View

 Section 1.7. Tying the Controller to the View

 Section 1.8. Under the Hood

 Section 1.9. What's Next?

 Chapter 2. Active Record Basics

 Section 2.1. Active Record Basics

 Section 2.2. Introducing Photo Share

 Section 2.3. Schema Migrations

 Section 2.4. Basic Active Record Classes

 Section 2.5. Attributes

 Section 2.6. Complex Classes

 Section 2.7. Behavior

 Section 2.8. Moving Forward

 Chapter 3. Active Record Relationships

 Section 3.1. belongs_to

 Section 3.2. has_many

 Section 3.3. has_one

 Section 3.4. What You Haven't Seen

 Section 3.5. Looking Ahead

 Chapter 4. Scaffolding

 Section 4.1. Using the Scaffold Method

 Section 4.2. Replacing Scaffolding

 Section 4.3. Generating Scaffolding Code

 Section 4.4. Moving Forward

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 Chapter 5. Extending Views

 Section 5.1. The Big Picture

 Section 5.2. Seeing Real Photos

 Section 5.3. View Templates

 Section 5.4. Setting the Default Root

 Section 5.5. Stylesheets

 Section 5.6. Hierarchical Categories

 Section 5.7. Styling the Slideshows

 Chapter 6. Ajax

 Section 6.1. How Rails Implements Ajax

 Section 6.2. Playing a Slideshow

 Section 6.3. Using Drag-and-Drop to Reorder Slides

 Section 6.4. Drag and Drop Everything (Almost Everything)

 Section 6.5. Filtering by Category

 Chapter 7. Testing

 Section 7.1. Background

 Section 7.2. Ruby's Test::Unit

 Section 7.3. Testing in Rails

 Section 7.4. Wrapping Up

 Appendix A. Installing Rails

 Section 1.1. Windows

 Section 2.1. OS X

 Section 3.1. Linux

 Appendix B. Quick Reference

 Section 5.1. General

 Section 5.2. Testing

 Section 5.3. RJS (Ruby JavaScript)

 Section 5.4. Active Record

 Section 5.5. Controllers

 Section 5.6. Views

 Section 5.7. Ajax

 Section 5.8. Configuring Your Application

 About the Authors

 Colophon

 Index

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Ruby on Rails: Up and Running

by Bruce A. Tate and Curt Hibbs

Copyright © 2006 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides

Production Editor: Adam Witwer

Copyeditor: Nancy Kotary

Proofreader: Mary Anne Weeks Mayo

Indexer: John Bicklehaupt

Cover Designer: Karen Montgomery

Interior Designer: David Futato

Illustrators: Robert Romano and Jessamyn Read

Printing History:

 August 2006: First Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. Ruby on Rails: Up and Running, the image of an ibex, and related trade dress are
trademarks of O'Reilly Media, Inc.

This work is licensed under the Creative Commons License Attribution 2.0. To view a copy of this
License, visit http://creativecommons.org/licenses/by/2.0/ or send a letter to Creative Commons,
543 Howard Street, 5th Floor, San Francisco, California 94105-3013, USA.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN-13: 978-0-596-10132-9 | ISBN-10: 0-596-10132-5

http://creativecommons.org/licenses/by/2.0/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

[M]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Preface
The Ruby on Rails phenomenon is sweeping through our industry with reckless disregard for
established programming languages, longstanding conventions, or commercial support. You can get a
whole lot of information on Ruby on Rails from articles on the Web, excellent books, and even formal
coursework. However, there's something missing. How does an established programmer, armed with
nothing more than a little Ruby knowledge, go just beyond the basics, and be productive in Rails?

With Ruby on Rails: Up and Running, we are not going to reiterate the reference manual or replace
Google. Instead, we'll strive to give you the big picture of how Rails applications hold together and
tell you where to go for the information that we don't cover in the chapters. You will see how Rails
dynamically adds features to all database models, called Active Record objects. By understanding the
big picture, you'll be able to make better use of the best reference manuals to fill in the details.

We won't try to make you digest a whole lot of words. Instead, we'll give you the theory in the
context of an end-to-end application. We'll walk you through the creation of a simple projectone that
is a little more demanding than a blog or shopping cart, but with a simple enough structure that a
Rails beginner will be able to quickly understand what's going on.

We're not going to try to cover each new feature. Instead, we'll show you the ones we see as the
backbone, forming the most important elements to understand. We will also cover migrations and
Ajax in some detail, because you won't find too much information on those two frameworks yet.

In short, we're not trying to build a comprehensive Rails library. We're going to give you the
foundation you need to get up and running.

Who Should Read This Book?

Ruby on Rails: Up and Running is for experienced developers who are new to Rails and possibly to
Ruby. To use this book, you don't have to be a strong Ruby programmer. We do expect you to be a
programmer, though. You should know enough about your chosen platform to be able to write
programs, install software, run scripts using the system console, edit files, use a database, and
understand how basic web applications work.

Conventions Used in This Book

The following typographic conventions are used in this book:

Plain text

Indicates menu titles, menu options, menu buttons, and keyboard accelerators (such as Alt and

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Ctrl).

Italic

Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames, directories,
and Unix utilities.

Constant width

Indicates commands, the contents of files, and the output from commands.

Constant width bold

Shows commands or other text that should be typed literally by the user.

Constant width italic

Shows text that should be replaced with user-supplied values.

This icon signifies a tip, suggestion, or general note.

This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in
your programs and documentation. You do not need to contact us for permission unless you're
reproducing a significant portion of the code. For example, writing a program that uses several
chunks of code from this book does not require permission. Selling or distributing a CD-ROM of
examples from O'Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

You can get sample code at the main page for Ruby on Rails: Up and Running:
http://www.oreilly.com/catalog/rubyrails/. You will find a ZIP file that contains the sample project as
it exists after each chapter, with each instance of the sample application numbered by chapter. If you
want to skip a chapter, just download the right ZIP file.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: "Ruby on Rails: Up and Running by Bruce A. Tate and Curt Hibbs.

http://www.oreilly.com/catalog/rubyrails/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Copyright 2006 O'Reilly Media, Inc., 978-0-596-10132-9."

If you feel that your use of code examples falls outside fair use or the permission given here, feel free
to contact us at permissions@oreilly.com.

Platforms

Ruby on Rails is cross-platform, but Unix and Windows shells behave differently. For consistency, we
use Windows throughout the book. You can easily run the examples on the Unix or Mac OS X
operating systems as well. You'll see a couple of minor differences:

On Windows, you can specify paths with either the forward slash (/) or backslash (\) character.
We'll try to be consistent and use the forward slash to specify all paths.

On Windows, to run the various Ruby scripts that make up Rails, you need to explicitly type
ruby. On Unix environments, you don't. If you're running Unix, and you are instructed to type
the command ruby script/server, feel free to omit the ruby.

On Windows, to run a process in a separate shell, precede the command with start. On Unix
and Mac OS X, append an ampersand (&) character to run the command in the background.

Safari® Enabled

 When you see a Safari® Enabled icon on the cover of your favorite technology book, that
means the book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search
thousands of top tech books, cut and paste code samples, download chapters, and find quick answers
when you need the most accurate, current information. Try it for free at http://safari.oreilly.com.

How to Contact Us

We have tested and verified the information in this book and in the source code to the best of our
ability, but given the amount of text and the rapid evolution of technology, you may find that
features have changed or that we have made mistakes. If so, please notify us by writing to:

O'Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

800-998-9938 (in the United States or Canada)

http://safari.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

707-829-0515 (international or local)

707-829-0104 (fax)

You can also send messages electronically. To be put on the mailing list or request a catalog, send
email to:

info@oreilly.com

To ask technical questions or comment on the book, send email to:

bookquestions@oreilly.com

As mentioned in the earlier section, we have a web site for this book where you can find code, errata
(previously reported errors and corrections available for public view), and other book information.
You can access this web site at:

http://www.oreilly.com/catalog/rubyrails

For more information about this book and others, see the O'Reilly web site:

http://www.oreilly.com

Acknowledgments

Writing a book is a demanding exercise, taking passion, commitment, and persistence. The authors
on the cover get all of the glory (and possibly the blame). Many people contribute to a book. We'd
like to mention the people who made writing this book such a fulfilling experience.

Collectively, Curt and Bruce would like to thank the outstanding team of reviewers who provided so
many great comments, including David Mabelle, Mauro Cicio, Brooke Hedrick, Faisal Jawdat, Shane
Claussen, Leo de Blaauw, Anne Bowman, Seth Havermann, Dave Hastings, and Randy Hanford. We'd
also like to thank David Geary for fleshing out some of the early ideas in Photo Share.

Ruby on Rails: Up and Running would be nothing without the excellent contributions of the core Ruby
on Rails team. We would like to thank David Heinemeier Hansson (the creator of Rails), Florian
Weber, Jamis Buck, Jeremy Kemper, Leon Breedt, Marcel Molina, Jr., Michael Koziarski, Nicholas
Seckar, Sam Stephenson, Scott Barron, Thomas Fuchs, and Tobias Luetke. Ruby is a fantastic
language, and we would like to thank the many who made it so. We throw out specific thanks to
Yukihiro Matsumoto (a.k.a. "Matz"), the creator of Ruby, and to Dave Thomas and Andy Hunt,
without whom Ruby might have remained virtually unknown outside of Japan.

Bruce would like to specifically thank Curt, for stepping into this project after it seemed that it was
dead. Also, thanks to those at AutoGas who were so instrumental in trying this technology within the
context of a real production applicationespecially the core development team, including Mathew
Varghese, Karl Hoenshel, Cheri Byerley, Chris Gindorf, and Colby Blaisdell. Their collective experience
shaped this book more than you will ever know. Thanks to my Dutch friend Leo, again, for being such
a supportive influence on this book, though you're mostly a Java developer. You have had more
influence on me than you might expect. More than anyone else, I would like to thank my family.
Kayla and Julia, you are the sparks in my soul that keep the creative fires burning. Maggie, you are
my inspiration, and I love you more than I can ever say.

http://www.oreilly.com/catalog/rubyrails
http://www.oreilly.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Curt would like to thank his wife, Wasana, for letting him disappear behind his computer screen late
into the night (and sometimes into the following day) without complaint. I would also like to thank
my friends at O'Reilly, for giving me a forum to spread the word about the incredible productivity
advantages of Ruby on Rails. Specifically, I'd like to thank chromatic for publishing my ONLamp.com
articles, and Mike Loukides for not giving up when I kept telling him I didn't want to write a book.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 1. Zero to Sixty: Introducing Rails

Rails may just be the most important open source project to be introduced in the past 10 years. It's
promoted as one of the most productive web development frameworks of all time and is based on the
increasingly important Ruby programming language. What has happened so far?

By December 2006, you're likely to see more published books on Rails than any of Java's single
flagship frameworks, including JSF, Spring, or Hibernate.

The Rails framework has been downloaded at least 500,000 times in only its second year, as of
May 2006. These statistics compare favorably with the most popular open source frameworks in
any language.[*]

[*] The number 500,000 is actually a conservative estimate. Download statistics for a popular delivery vehicle, called gems,

make it easy to track the number of Rails distributions by gems, but many other distributions exist, such as the Locomotive

distribution on Mac OS X. The real download statistics could easily be twice this number.

The Rails community mailing lists get hundreds of notes a day, compared to dozens on the most
popular web development frameworks in other languages.

The Rails framework has caused an explosion in the use of the Ruby programming language,
which has been relatively obscure until recently.

The Rails buzz generates increasingly hot debates on portals that focus on other programming
languages. The Java community in particular has fiercely debated the Rails platform.

You don't have to go far to find great overviews of Rails. You can watch several educational videos
that show Rails in action, narrated by the founder David Heinemeier Hansson. You can watch him
build simple working applications, complete with a backing database and validation, in less than 10
minutes. But unlike the many quick-and-dirty environments you've seen, Rails lets you keep the
quick and leave the dirty behind. It lets you build clean applications based on the model-view-
controller philosophy. Rails is a special framework.

Sure, Rails has its limitations. Ruby has poor support for object-relational mapping (ORM) for legacy
schemas; the Rails approach is less powerful than Java's approach, for example.[*] Ruby does not
yet have flagship integrated development environments. Every framework has limitations, and Rails
is no different. But for a wide range of applications, the strengths of Rails far outpace its weaknesses.

[*] For example, Hibernate supports three kinds of inheritance mapping, but Rails supports only single-table inheritance. Hibernate

supports composite keys, but Rails is much more limited.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.1. Rails Strengths

As you go through this book, you'll learn how Rails can thrive without all of the extensive libraries
required by other languages. Ruby's flexibility lets you extend your applications in ways that might
have been previously unavailable to you. You'll be able to use a Rails feature called scaffolding to put
database-backed user interfaces in front of your customers quickly. Then, as you improve your code,
the scaffolding melts away. You'll be able to build database-backed model objects with just a couple
of lines of code, and Rails will fill in the tedious details.

The most common programming problem in today's typical development project involves building a
web-based user interface to manage a relational database. For that class of problems, Rails is much
more productive than any other web development framework either of us has ever used. The
strengths aren't limited to any single groundbreaking invention; rather, Rails is packed with features
that make you more productive, with many of the following features building on one other:

Metaprogramming

Metaprogramming techniques use programs to write programs. Other frameworks use
extensive code generation, which gives users a one-time productivity boost but little else, and
customization scripts let the user add customization code in only a small number of carefully
selected points. Metaprogramming replaces these two primitive techniques and eliminates their
disadvantages. Ruby is one of the best languages for metaprogramming, and Rails uses this
capability well.[]

[] Rails also uses code generation but relies much more on metaprogramming for the heavy lifting.

Active Record

Rails introduces the Active Record framework, which saves objects to the database. Based on a
design pattern cataloged by Martin Fowler, the Rails version of Active Record discovers the
columns in a database schema and automatically attaches them to your domain objects using
metaprogramming. This approach to wrapping database tables is simple, elegant, and
powerful.

Convention over configuration

Most web development frameworks for .NET or Java force you to write pages of configuration
code. If you follow suggested naming conventions, Rails doesn't need much configuration. In
fact, you can often cut your total configuration code by a factor of five or more over similar
Java frameworks just by following common conventions.

Scaffolding

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You often create temporary code in the early stages of development to help get an application
up quickly and see how major components work together. Rails automatically creates much of
the scaffolding you'll need.

Built-in testing

Rails creates simple automated tests you can then extend. Rails also provides supporting code
called harnesses and fixtures that make test cases easier to write and run. Ruby can then
execute all your automated tests with the rake utility.

Three environments: development, testing, and production

Rails gives you three default environments: development, testing, and production. Each
behaves slightly differently, making your entire software development cycle easier. For
example, Rails creates a fresh copy of the Test database for each test run.

There's much more, too, including Ajax for rich user interfaces, partial views and helpers for reusing
view code, built-in caching, a mailing framework, and web services. We can't get to all of Rails'
features in this book; however, we will let you know where to get more information. But the best way
to appreciate Rails is to see it in action, so let's get to it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.2. Putting Rails into Action

You could manually install all of the components for Rails, but Ruby has something called gems. The
gem installer accesses a web site, Ruby Forge, and downloads an application unit, called a gem, and
all its dependencies. You can install Rails through gems, requesting all dependencies, with this
command:[*]

[*] If you want to code along with us, make sure you've installed Ruby and gems. Appendix A contains detailed installation

instructions.

gem install rails --include-dependencies

That's itRails is installed. There's one caveat: you also need to install the database support for your
given database. If you've already installed MySQL, you're done. If not, go to http://rubyonrails.org
for more details on Rails installation. Next, here's how to create a Rails project:

MVC and Model2

In the mid-1970s, the MVC (model-view-controller) strategy evolved in the Smalltalk
community to reduce coupling between business logic and presentation logic. With MVC,
you put your business logic into separate domain objects and isolate your presentation
logic in a view, which presents data from domain objects. The controller manages
navigation between views, processes user input, and marshals the correct domain
objects between the model and view. Good programmers have used MVC ever since,
implementing MVC applications using frameworks written in many different languages,
including Ruby.

Web developers use a subtly different variant of MVC called Model2. Model2 uses the
same principles of MVC but tailors them for stateless web applications. In Model2
applications, a browser calls a controller via web standards. The controller interacts with
the model to get data and validate user input, and then makes domain objects available
to the view for display. Next, the controller invokes the correct view generator, based on
validation results or retrieved data. The view layer generates a web page, using data
provided by the controller. The framework then returns the web page to the user. In the
Rails community, when someone says MVC, they're referring to the Model2 variant.

Model2 has been used in many successful projects spread across many programming
languages. In the Java community, Struts is the most common Model2 framework. In
Python, the flagship web development framework called Zope uses Model2. You can read

http://rubyonrails.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

more about the model-view-controller strategy at http://en.wikipedia.org/wiki/Model-
view-controller.

>rails chapter-1
 create
 create app/controllers
 create app/helpers
 create app/models
 create app/views/layouts
 create config/environments
 create components
 create db
 create doc
 create lib

...
 create test/mocks/development
 create test/mocks/test
 create test/unit
 create vendor
...
 create app/controllers/application.rb
 create app/helpers/application_helper.rb
 create test/test_helper.rb
 create config/database.yml
...

We truncated the list, but you get the picture.

http://en.wikipedia.org/wiki/Model-
http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.3. Organization

The directories created during installation provide a place for your code, scripts to help you manage
and build your application, and many other goodies. Later, we'll examine the most interesting
directories in greater detail. For now, let's take a quick pass through the directory tree in the project
we created:

app

This application organizes your application components. It's got subdirectories that hold the
view (views and helpers), controller (controllers), and the backend business logic (models).

components

This directory holds componentstiny self-contained applications that bundle model, view, and
controller.

config

This directory contains the small amount of configuration code that your application will need,
including your database configuration (in database.yml), your Rails environment structure
(environment.rb), and routing of incoming web requests (routes.rb). You can also tailor the
behavior of the three Rails environments for test, development, and deployment with files
found in the environments directory.

db

Usually, your Rails application will have model objects that access relational database tables.
You can manage the relational database with scripts you create and place in this directory.

doc

Ruby has a framework, called RubyDoc, that can automatically generate documentation for
code you create. You can assist RubyDoc with comments in your code. This directory holds all
the RubyDoc-generated Rails and application documentation.

lib

You'll put libraries here, unless they explicitly belong elsewhere (such as vendor libraries).

http://lib.ommolketab.ir
http://lib.ommolketab.ir

log

Error logs go here. Rails creates scripts that help you manage various error logs. You'll find
separate logs for the server (server.log) and each Rails environment (development.log,
test.log, and production.log).

public

Like the public directory for a web server, this directory has web files that don't change, such
as JavaScript files (public/javascripts), graphics (public/images), stylesheets
(public/stylesheets), and HTML files (public).

script

This directory holds scripts to launch and manage the various tools that you'll use with Rails.
For example, there are scripts to generate code (generate) and launch the web server
(server). You'll learn much more about using these scripts throughout this book.

test

The tests you write and those Rails creates for you all go here. You'll see a subdirectory for
mocks (mocks), unit tests (unit), fixtures (fixtures), and functional tests (functional). We
comprehensively cover testing in Chapter 7.

tmp

Rails uses this directory to hold temporary files for intermediate processing.

vendor

Libraries provided by third-party vendors (such as security libraries or database utilities beyond
the basic Rails distribution) go here.

Except for minor changes between releases, every Rails project will have the same structure, with
the same naming conventions. This consistency gives you a tremendous advantage; you can quickly
move between Rails projects without relearning the project's organization. The Rails framework itself
also relies on this consistency because the different Rails frameworks will often discover files solely on
naming conventions and directory structure. For example, later in this example, you'll see the
controller invoke views without any custom code.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.5. Creating a Controller

You've seen that Rails organizes applications into pieces with a model, view, and controller. We'll
start with the controller. Use the generate script (see the sidebar "script/generate") to create a
controller. We'll specify the type of object to create first and then the name of the new controller.
Type:

> ruby script/generate controller Greeting
 exists app/controllers
/
 exists app/helpers/
 create app/views/greeting
 exists test/functional/
 create app/controllers/greeting_controller.rb
 create test/functional/greeting_controller_test.rb
 create app/helpers/greeting_helper.rb

You might not have expected to see so much activity. Rails created your expected controller--
greeting_controller.rb. But you also got a few other files as well:

application.rb

There is not yet a controller for the whole application, so Rails created this one. It will come in
handy later as a place to anchor application-wide concerns, such as security.

views/greeting

Rails knows that controllers and views usually come in pairs, so it created a directory called
views/greeting.

greeting_controller_test.rb

Rails also created a test for your new controller because most Rails developers build automated
unit tests to make it easy to build in and maintain quality.

greeting_helper.rb

Rails helpers provide a convenient place to prevent repetition or tedious code from cluttering
your views.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Ruby developers created Rails to solve their own problems before generalizing and releasing the tool
to solve your problems too. You're seeing an example of excellent experience-based design. Early
Rails users noticed that right after creating a controller, they usually needed additional layers of the
application, and so they modified the controller generator to save themselves a few keystrokes. Rails
inventors eat their own dog food.

1.5.1. Running the Controller

Let's run the application; point your browser to http://127.0.0.1:3000/greeting. You'll get an error
message telling you that index is an unknown action. Let's find out why. Edit the new controller at
the path app/controller/greeting_controller.rb:

 class GreetingController < ApplicationController
 end

script/generate

The Rails generator is an impressive productivity booster. It can help you generate all of
the basic building blocks for your application. If you forget the options, you can just type
ruby script/generate. You'll get the following output:

> ruby script/generate
Usage: script/generate [options] generator [args]

General Options:
 -p, --pretend Run but do not make any changes.
 -f, --force Overwrite files that already exist.
 -s, --skip Skip files that already exist.
 -q, --quiet Suppress normal output.
 -t, --backtrace Debugging: show backtrace on erRailss.
 -h, --help Show this help
 message.

Installed Generators
 Builtin: controller, mailer, model, scaffold, web_service

Because different generators can create overlapping files, they can be destructive, if
you're not careful. Don't worry: Rails gives you quite a bit of help. If you're not sure
about the output of a generator, it's best to run it with the --pretend option to see
exactly what it might generate.

http://127.0.0.1:3000/greeting
http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can also list the options of any of the installed generators. For example, typing ruby
script/generate controller shows you the options for creating a controller.

You can install additional generators. For example, you can use the login generator so
that Rails can create the models, views, and controllers for basic authentication
architecture. This generator also generates code to handle migration from other versions,
scaffolding, and even a web service.

To find the login generator, and other available generators, go to
http://rubyonrails.org/show/Generators. To install a generator, just use gems. For
example, to install the login_generator, type:

gem install login_generator -s http://gems.rubyonrails.org

You haven't told Rails to do anything yet, so getting some kind of error seems logical. Still, you'll
need a little more background before you can fix that problem. Figure 1-2 shows how Rails
controllers work.

Figure 1-2. Rails' model-view-controller flow

Rails uses the Action Pack framework to manage controllers. Web browsers communicate with
servers by sending requests over the HTTP protocol. For our greeting application, the request was
simply to load a URL. The first part of a URL identifies a machine, and the second part identifies a
web resource. In the Action Pack, the resource has at least three parts: a controller, some action to
perform on a controller, and an identifier of a resource. Actions map directly onto controller methods.
For example, for this URL:

http://www.spatulas.com/shopping_cart/total/45

http://www.spatulas.com/ identifies the web server, shopping_cart identifies the controller, total
identifies the action, and 45 identifies a resourceprobably a cart. The web server routes incoming
requests to a Ruby script in the Rails framework called the dispatcher. Rails has one dispatcher per

http://rubyonrails.org/show/Generators
http://www.spatulas.com/shopping_cart/total/45
http://www.spatulas.com/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

web server. Next, the Rails dispatcher parses the URL and invokes the appropriate action on the
appropriate controller. The controller action may then call the model and ultimately invokes a view.

By default, if you call a controller without specifying an action, Rails calls the index action. Now, the
error makes more sense. When we specified the URL app/controller/greeting, we supplied a

controller without an action, so Rails defaulted to a nonexistent index action. You can fix the problem
by adding a method called index to GreetingController. Let's keep things simple by making the
index method print out HTML directly, as shown in Example 1-1.

Example 1-1. Rails controller displaying a greeting

class GreetingController < ApplicationController
 def index
 render :text => "<h1>Welcome to your first Rails application<h1>"
 end
end

Save your code and reload your browseryou'll get the web page in Figure 1-3. Even though you
changed some code, you didn't have to restart the server, redeploy your application, or do anything
but reload your browser. This quick turnaround time, called a rapid feedback loop, is a hallmark of
Ruby and Rails. Often, new Rails developers point to the rapid feedback loop as the feature that
affected their productivity more than anything else.

Figure 1-3. Rendering text from a controller

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.6. Building a View

You now have a controller that renders text, but this design can take you only so far. If you want to
follow Rails MVC conventions, you should render text in a separate view instead of a controller. The
sloppy design is easy enough to fix. Instead of printing raw text in a controller, render it in a view. As
with many web frameworks, Rails can use a template strategy for the view. For Rails, a template is
simply an HTML page with Ruby code mixed in. The Ruby code executes on the server, adding
dynamic content to the HTML page.

Documentation

Unlike many open source projects, Rails has excellent documentation. You can find it all
at http://api.rubyonrails.com. You'll find overviews, tutorials, and even movies. You can
always find the API document for the latest version of Ruby on Rails at the site, with a
full set of documents for every class in the Rails API. You can also find it with your Rails
installation.

The excellent Rails documentation is not an accident. Like Java, Ruby comes with a utility
called RubyDoc that generates documentation from source code and comments that you
provide within the source code. When you install a gem, it also installs the
documentation for the gem. Figure 1-4 shows the documentation for a controller.

Figure 1-4. Rails documentation for the controller

http://api.rubyonrails.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

With Rails, you can generate the view and some helpers that the view will need. Type the generate
command to generate a new controller, greeting, with a view, index. (You do this to tie the view and
controller together.) When it asks you whether to overwrite the controller, type n for no:

 > ruby script/generate controller Greeting index
 exists app/controllers/

 exists app/helpers/
 exists app/views/greeting
 exists test/functional/
overwrite app/controllers/greeting_controller.rb? [Ynaq] n
 skip app/controllers/greeting_controller.rb
overwrite test/functional/greeting_controller_test.rb? [Ynaq] a
forcing controller
 force test/functional/greeting_controller_test.rb
 force app/helpers/greeting_helper.rb
 create app/views/greeting/index.rhtml

The generator created the view, index.rhtml, with helper and test files. Keep the index method, so
Action Pack can find the action, but take the rest of the code out of the index method:

class GreetingController < ApplicationController
 def index
 end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

end

Unlike most MVC frameworks, you didn't specify a view. If your controller doesn't render anything,
Rails uses naming conventions to find the right view. The controller's name determines the view's
directory, and the controller's method name determines the name of the view. In this case, Action
Pack fires the view in app/view/greeting/index.rhtml. You didn't have to edit any XML files or type
any additional code. You provide consistent naming conventions, and Rails infers your intent.

Now, edit the view. You'll find this data:

<h1>Greeting#index</h1>
<p>Find me in app/views/greeting/index.rhtml</p>

Reload your browser to see the previous message in HTML. Rails tells you where to find the file,
should you ever render an unimplemented view. Rails is full of nice finishing touches like these.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.7. Tying the Controller to the View

In MVC, the view usually renders model data provided by the controller. Let's set an instance variable
in the controller and render it in the view. First, add an instance variable called @welcome_message to
the controller:

class GreetingController < ApplicationController
 def index
 @welcome_message = "Welcome to your first Rails application"
 end
end

Now, display the new message in the view by adding a Ruby expression between <%= and %> tags.
Rails renders the value of the expression within these tags, just as if the value of the expression had
been printed in place. Here's a view that prints your welcome message as a level one heading:

<h1><%= @welcome_message %></h1>

Reload. You'll see the same output you got in Example 1-1, though the structure of the application is
different. In Example 1-1, you rendered your view within the controller. Here, you built an RHTML
template. Your HTML tags provided static structure and style, and your Ruby code provided dynamic
content; in this case, a variable set within the controller.

1.7.1. Expressions and Scriptlets

When you're embedding Ruby code, you've got two options. Scriptlets are Ruby code, placed
between <% and %> tags. Scriptlets rely on side effects, or the output of the Ruby code. Expressions
are Ruby expressions placed between <%= and %> tags. The expression presents the value returned by
the Ruby code.

You can experiment with the interaction between the controller and view. We've changed the
controller and view for greeting to show a few examples of expressions and scriptlets in action. First,
we'll set a few values in the controller:

class GreetingController < ApplicationController
 def index
 @age=8

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 @table={"headings" => ["addend", "addend", "sum"],
 "body" => [[1, 1, 2], [1, 2, 3], [1, 3, 4]]
 }
 end
end

Next, here's the view showing expressions and scriptlets, with both interacting with values set in the
controller:

<h1>Simple expression</h1>
<p>Tommy is <%= @age %> years old.</p>

Now, display the value of the instance variable @age, which was set in the controller:

<h1>Iteration using scriptlets</h1>
<% for i in 1..5 %>
 <p>Heading number <%= i %> </p>
<% end %>

Iterate with a scriptlet and show the current count with an expression:

<h1>A simple table</h1>

<table>
 <tr>
 <% @table["headings"].each do |head| %>
 <td>
 <%= head %>
 </td>
 <% end %>
 </tr>

 <% @table["body"].each do |row| %>
 <tr>
 <% row.each do |col| %>
 <td>
 <%= col %>
 </td>
 <% end %>
 </tr>
 <% end %>

</table>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Finally, use both techniques to display the contents of @table.

You'll get the results shown in Figure 1-5.

Figure 1-5. Results of embedded scriptlets and expressions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.8. Under the Hood

As shown earlier, each time you submit a URL, you're creating an HTTP request, which fires a
controller action. Any MVC framework designer needs to decide between reusing the same controller
for each request and creating a new controller copy per request. Rails does the latter strategy, which
it calls request scope. Each HTTP request results in a new controller instance, meaning that you'll also
get a new set of instance variables for each HTTP request. That's going to affect you in at least two
different ways:

On the plus side, you don't need to worry about threading in your controllers because each
request gets a private copy of the controller's instance data.

On the minus side, it will be harder for you to share instance data between requests.
Specifically, if you set instance variables in one controller action method, don't expect to be able
to use them in later HTTP requests. You'll need to share them in a session.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.9. What's Next?

You've created a Rails project. You've created a controller and invoked it from a browser. You've also
created a view and learned how views can interact with controllers and with the Ruby language.
That's a good foundation, but you've seen only two pieces of the model-view-controller design
pattern. In the next chapter, you'll learn how models work. We'll create a database schema and let
Rails use the schema to generate our model for us. We'll then use a Rails framework to help manage
relationships between the different parts of the application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 2. Active Record Basics

Active Record, which controls the interaction between your application and the database, is the heart
of Rails. Active Record's elegant simplicity almost completely eliminates the need for configuration; in
this chapter, you'll see how Active Record's conventions reduce your configuration from hundreds of
lines to a handful. You'll also see how Active Record's metaprogramming dynamically adds
capabilities to your classes, based on the contents and structure of the database. Finally, you'll use
Active Record's elegant extensions of Ruby to quickly validate your code with less effort than ever
before.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.1. Active Record Basics

Martin Fowler cataloged the Active Record design pattern in a book called Patterns of Enterprise
Architecture.[*] The Rails framework is an implementation of that idea. With any Active Record
implementation, users manipulate database tables through record objects. Each record represents a
row in a database table, and each Active Record object has CRUD (Create, Read, Update, and Delete)
methods for database access. This strategy allows simple designs and straightforward mappings
between database tables and application objects.

[*] Design patterns in Patterns of Enterprise Architecture appear in an online catalog. The Active Record pattern is defined at

http://www.martinfowler.com/eaaCatalog/activeRecord.html.

The Rails persistence framework is like Martin Fowler's Active Record on steroids. The Rails version
adds some capabilities that extend Active Record. Table 2-1 shows a list of critical differences,
followed by the benefit to the developer.

Table 2-1. Rails versus Active Record

Difference Benefit

Rails adds attributes automatically,
based on the columns in the database.

Rails developers do not have to specify attributes in more
than one place.

Rails adds relationship management
and validation through a custom
internal language.

Rails developers can declare relationships and model-
based validation to be managed by the framework without
relying on code generation.

Rails naming conventions let the
database discover specific fields.

Rails developers do not need to configure primary and
foreign keys because Active Record discovers them
automatically.

Each Rails enhancement improves readability and reduces the amount of code that you have to write
and maintain. You'll find Active Record to be all at once elegant, powerful, and pragmatic.

2.1.1. Wrapping, Not Mapping

With most Java-based persistence frameworks, you independently build a database table and an
object. You then build a map between the two with code or XML configuration. We call this strategy
object relational mapping (ORM). Java developers usually favor mapping because it can support
many different kinds of database schemas. The drawback of ORM is that your code has more
repetition because you need to specify each column in the database, in your object model, and often

http://www.martinfowler.com/eaaCatalog/activeRecord.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

in configuration files, too.

But Active Record uses a wrapping strategy, not a mapping strategy. A Rails developer starts by
building a relational database and wraps each table with an Active Record class. Each instance of the
class represents a row of the database. The framework then automatically discovers columns from
the database table, and dynamically adds them to the Active Record class. Using Active Record, you
can build a simple mapping to a typical table in two lines of code.

2.1.2. A Brief Example

Let's look at a brief Active Record example and walk through the highlights. Then, we'll implement a
working Active Record model, and walk through the finer points in more detail. Consider the following
Active Record class, which associates many photos to a category:

class Photo < ActiveRecord::Base
 belongs_to :category
end

This Active Record class is surprisingly complete. There are only a few lines of configuration (versus
dozens in a typical Java framework), and no duplication between the model and the schema. Let's
break it down:

class Photo < ActiveRecord::Base

We define a class called Photo that's a subclass of the Base class in the ActiveRecord module. From
naming conventions and the name Photo, Active Record knows that this class wraps a database table
called photos. That information is enough to let Base query the database system tables for all the
columns of photos. Base adds metadata from each column, such as column names, types, and
lengths, to Photo. It then adds an attribute to Photo for each column in the database:

belongs_to :category

Here, you see an example of a domain-specific language (DSL). A DSL is created especially to handle
a certain domain. This language supports object relational mapping. belongs_to is actually a method
of Base, and :category is a Ruby symbol. We use this method to tell Active Record about a many-to-
one relationship between Photo (which wraps the table photos) and Category (which wraps the table
categories). THRough naming conventions, Base discovers the column responsible for managing the
relationship. belongs_to then adds the methods and attributes to Photo that users of Book will need to
manage the many-to-one relationship. For example, you'll learn later that each Photo object has an
attribute called category. So this relationship is nearly trivial to implement, but it adds great power to
Rails.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.1.3. The Secret Sauce

Each great framework has one or more features that set it apart from the rest. The Rails
implementation of Active Record uses a secret sauce composed of three revolutionary ideas:

Convention over configuration

Using Active Record, you'll adhere to a couple of conventions that we'll discuss through the
course of the chapter. If you follow the conventions, Active Record can discover most of what it
needs to know about the database schema, keeping your code simple and elegant.

Metaprogramming

Active Record discovers features of your database schema and automatically adds them to
your object model. For example, Active Record automatically adds to your objects an attribute
for every column in your database.

A language for mapping

Active Record uses Ruby to build a language in a language. You'll use a mapping language to
specify relationships between your tables.

Each of these ideas is a dramatic departure from what you'd normally see with mapping frameworks.
The results, too, are dramatic. You'll find yourself creating more powerful persistent models with less
effort than ever before. Let's get to work and see how Active Record works.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.2. Introducing Photo Share

For the remainder of this book, we'll be working on a single application called Photo Share, a
database-backed web application that allows users to share photos among acquaintances. We'll start
with these simple requirements, called user stories:

Let a user view a set of photos on the Web so others can see them.

Organize photos in categories.

Organize and view slideshows from available photos.

2.2.1. Defining the Model

Rails is a database-centric development environment, so your development will usually begin with the
model. You need to determine the types of objects your application will need. A good starting point is
to underline the important nouns in a list of user stories. We've used italic to signify important nouns,
so we'll have Active Record classes for photos, categories, and slideshows. We'll also need slides, to
keep track of the position of each photo in a slideshow.

There are several important relationships:

A category has many photos, and a photo can have one or more categories.

A category can have other categories.

A slideshow has many slides.

A slide has one photo.

A simple diagram like the one in Figure 2-1 helps to show the entities and relationships in your
model. Index cards work well. For many-to-one relationships, we'll use an arrow to mean belongs to,
so the arrow will point from the one to the many. Two-sided arrows are many-to-many, and a line
without arrows means one-to-one. We'll represent a tree with an arrow that points back to the
originating class. We'll use Active Record to define each of these entities and manage each
relationship. Now, let's code them in Active Record.

Figure 2-1. Photos are placed into nested categories and listed in
slideshows

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.2.2. Configuring Active Record

As always, we start with a Rails project. First, create a Rails project called photos:

rails photos
cd photos

You've now got a Rails project called photos with three environments: development, test, and
production. Rails uses separate databases for each environment (see the sidebar "Three Databases").
To create a database, make sure the MySQL database is started and also start the mysql command
prompt:

mysql -u <username> -p <password>

Now create a database called photos_development:

> mysql
...

mysql> create database photos_development;
Query OK, 1 row affected (0.05 sec)

Configure your database. This chapter uses a development database, so you need to edit
database.yml to look like this:

development:
 adapter: mysql
 database: photos_development

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 username: <your userid>
 password: <your password>
 host: localhost

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.3. Schema Migrations

Here, we'll create and configure the development database. We assume that you're working from the
MySQL command prompt, but you can easily use another database and any alternative user interface
that allows you to update the schema. Keep in mind that it's often useful to be able to execute scripts
to create your development database and test data.

Do not configure your test database as your production or development
database. All data in your test database is replaced each time you execute a
new test.

Three Databases

Rails has three environments: development, test, and production. The Rails environment
called development reloads classes each time you call a new action, so you get a fresh
copy of each class, including any recent development changes. The production
environment loads classes once. With this approach, development performance is worse,
but you get rapid turnaround time between making a change and seeing results in your
browser.

You also get separate development, production, and test databases. Sane developers
don't want to use production databases to write code, because they don't want to create,
modify, or destroy production data. But why would Rails support a separate test
database? In Chapter 7, you'll see that for each new test, Rails creates a fresh copy of
test data, so each test case can modify database data without affecting other tests.

When Rails generates a new project, it creates a file called database.yml with sections
for development, test, and production. You'll need to keep a couple of things in mind as
you configure a database. First, because Rails destroys the data in the test database,
you need to make sure that you don't point this test configuration at your development
or production databases. Second, this file has passwords, in plain text. Make sure you
handle them appropriately.

You'll need an Active Record model object. Don't worry about the details yet; we'll cover them later.
For now, just generate the model object by typing:

> ruby script/generate model Photo
 exists app/models/
 exists test/unit/

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 exists test/fixtures/
 create app/models/photo.rb
 create test/unit/photo_test.rb
 create test/fixtures/photos.yml
 create db/migrate
 create db/migrate/001_create_photos.rb

Rails generated a model object in app/models/photo.rb, but it won't work without a schema.

So, you have a decision to make. You can manage the schema with SQL scripts or with migrations. If
you decide to use simple SQL scripts, you'll need to create database-specific schemas, and you'll
probably wind up creating new test data whenever you create a new table. Rails gives a better
option: schema migrations. You'll have to do a little more work up front, but you'll be able to specify
database-independent schemas and improve your database without losing data. The first step is to
create a database; then, create a migration for each change you want to make to the database.

To use schema migrations, you'll also need to configure Active Record to use Ruby schemas instead
of SQL scripts. If you're running Rails 1.0 or before, edit the config/environment.rb file, and set
active.record.schema.format to :ruby, like this:

config.active_record.schema_format = :ruby

If you're running Rails 1.1 or later, you don't need to do anything because :ruby schemas are the
default. Each change you make to the database schema has an up method to make the change, and
a down method to undo the change.

Now that we've configured the database, we need a migration. Beginning with Rails 1.1, the model
generator creates a migration for you. Look in db/migrate, and you'll find a migration called
001_create_photos.rb. You'll also see methods called up and down. Edit them to look like this:

class CreatePhotos < ActiveRecord::Migration
 def self.up
 create_table "photos" do |photo|
 photo.column "filename", :string
 end
 end

 def self.down
 drop_table "photos"
 end
end

The schema migrations feature keeps track of a list of migrations, and each migration has an
associated version number. The up method creates a photos table with two columns, filename and id,

http://lib.ommolketab.ir
http://lib.ommolketab.ir

and the down method removes it. Each schema migration has steps to do and undo a change. You can
include changes that you need to make in data as well. Then, if you need to move back to a previous
version, you can do so. But now, we need to run the migration. Type this:

> rake migrate
== CreatePhotos: migrating ==
-- create_table("photos")
 -> 0.1250s
== CreatePhotos: migrated (0.1250s) ===

You should now verify that Rails created the database schema. Go to the MySQL command prompt,
use the photos_development database, and show the tables:

>mysql -u root photos_development
Welcome to the MySQL monitor. Commands end with; or \g.
Your MySQL connection id is 46 to server version: 5.0.16-nt

Type 'help;' or '\h' for help. Type '\c' to clear the buffer.

mysql> show tables;
+------------------------------+
| Tables_in_photos_development |
+------------------------------+
| photos |
| schema_info |
+------------------------------+
2 rows in set (0.00 sec)

Active Record created two tables: schema_info and photos. In schema_info, Active Record will keep
track of the state of the existing version number. You'll be able to keep track of photos using the
photos database and keep track of each schema change on that table with a migration. Because
migrations handle both data and schema, you'll be able to maintain data across your migrations.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.4. Basic Active Record Classes

Whether you use migrations or SQL scripts, you'll need to follow the naming conventions. The table
name photos and the definition of the id column are both significant. (With our migration, Rails
created the id column automatically.) Rails uses several naming conventions:

Class and table names

If the name of your database tables is the English plural of the name of your model class, Rails
can usually infer the name of the database table from the name of the Active Record class.
(Active Record will have trouble with some irregulars like sheep, but supports many popular
irregulars like people.)

Identifiers

Similarly, Active Record automatically finds a column called id and uses it as a unique
identifier. The id column should be an integer type, and the column should be populated by the
database. In this case, we'll use an auto-increment sequence. Staying with these conventions
saves you some configuration, and also makes your code much easier to understand.

Foreign keys

Foreign keys should be named <class>_id. For example, our slides table will have a foreign
key named photo_id.

Capitalization

When you're defining a class, capitalize the first letter of each word and omit spaces between
words (commonly called camel casing). But Rails methods, database table names, columns,
attributes, and symbols use underscores to separate words. These conventions are mostly
cosmetic, but Rails often uses symbols to refer to a class name, so make sure you follow these
conventions. For example, to represent a class called ChunkyBacon, you'd use the symbol
:chunky_bacon.

2.4.1. Wrapping the Table

Now we're ready to look at the Active Record model class we created earlier. In the app/models
directory (which contains your project's model classes), Rails created the photo.rb file, along with
some testing code, when we generated our model. Open it:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

class Photo < ActiveRecord::Base
end

Active Record class has all of the information that it needs to wrap the photos table.

2.4.2. The Rails Console

You'll probably spend a good deal of time in the Rails console, one of the many tools created with
each Rails project. The Rails console lets you interactively work with your database-backed models.
When you start a console, Rails does the following:

Connects you to the database

Loads the Active Record classes in app/model

Lets you interactively work with your model, including database operations

Let's start a console now to manipulate the Photo model we created:

ruby script/console

We'll use the console to create some new objects, and save them to the database:[*]

[*] After each statement you type, the console will print the value of object.inspect for the last object returned.

>> photo=Photo.new
=> #<Photo:0x35301d8 @attributes
={"filename"=>""},
@new_record=true>
>> photo.filename = 'cat.jpg'
=> "cat.jpg"
>> photo.save
=> true

The new method on Active Record classes can take a code block:

>> Photo.new do |dog|
?> dog.filename = 'dog.jpg'
>> dog.save
>> end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Both techniques create a new model object and save it to the database. Each produces the same
SQL, so the choice is entirely a matter of your personal preference.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.5. Attributes

You've now seen metaprogramming in action through the console. Your applications will use your
model objects in the same way. One of the drawbacks of Active Record is the terseness of the source
codeit won't tell you much. If you know what's going on under the covers, though, you can easily
understand what attributes and methods your class supports.

2.5.1. Columns

Let's review what happens when Ruby loads the Photo class. From the class name Photo, Active
Record infers that the database table name is photos. It then queries the database system tables,
which have detailed information about the tables in the database, to get the photos table definition.
Next, it places information about the definition of each column into the @@columns class variable.
@@columns is an array of Column objects; each column has these attributes:

name

The name of the database column.

type

The Ruby type of the attribute this column will generate.

number

A Boolean value that's TRue if the column's data is numeric. You'll access it through the
accessor method number?.

limit

The maximum size of the data element. For example, for a database column of type
varchar(45), the limit would be 45.

null

A Boolean value that's true only if the column can be set to null. You'll access it through the
accessor method null?.

text

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A Boolean value that's true only if the column can be interpreted as text. You'll access it
through the accessor text?.

default

The default value you specified in the table definition.

primary

A Boolean value that's true if the column is the Rails unique identifier. You'll access it through
the accessor method primary?.

Your applications can use this column metadata to build dynamic user interfaces. Scaffolding,
discussed in Chapter 4, uses this technique. Normally, you want to get the data only for a column, so
you'll use an attribute's accessors.

2.5.2. Accessors

You've seen that you can access the database columns of a photo by simply calling an accessor like
photo.filename. The Rails implementation isn't necessarily what you'd expect. You might expect to
see the accessor for filename as a method on photo. Strangely, if you type:

photo.methods.include? 'filename'

in the console, you get false, which means that there's no explicit filename accessor for photo.
Active Record uses a Ruby metaprogramming trick to attach attributes. It overrides the
method_missing method, which gets invoked if you call a nonexistent method of some object.
Consider this program:

class Talker
 def method_missing(method)
 if method.to_s =~ /say_/
 puts $'
 end
 end
end

This Talker class responds to any message beginning with say_, even though no method beginning
with say_ exists. For example, Talker.new.say_hello prints hello. Active Record uses this trick to
implement accessors. As a consequence, include? returns false for accessors because the class
doesn't include an explicit accessor method. You'll see later that Active Record also generates custom
finders, like find_by_filename, for each class.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.5.3. Identifiers

The id attribute is special to Active Record because that column serves as the primary key for the
database table. Our migration created the id column, and a primary key based on the id,
automatically. The underlying table definition, shown in Figure 2-2, identifies the primary key with the
primary key(id) statement. You might expect Active Record to recognize the unique identifier by
seeing which columns are included in a table's primary key, but this strategy is not always possible.
Some database managers don't have simple APIs to discover primary or foreign keys, so Active
Record uses the id naming convention instead (see Table 2-2).

Table 2-2. Active Record adds these methods and attributes to model
objects at runtime

Features Purpose

Methods

find_by_<column_name>

Active Record adds a class method to the class for each
column in the database, including id. For example,
Active Record adds find_by_id, find_by_name and
find_by_email to a class wrapping a table having id,
name, and email columns.

find_by_<column_name>_and_<column_name>

Active Record also adds finders that combine groups of
attributes. For example, a Person class wrapping a table
with name and email columns would support
Person.find_by_name_and_email(name, email).

Attributes

<column_name>

Active Record creates an attribute with getters and
setters for each property in the database. For example,
photo.filename = "dog.jpg" would be legal for a photo
instance of a class wrapping a table with a filename
column.

Figure 2-2. The most basic Active Record mapping ties a single table to a
model object

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Identifiers and Legacy Schemas

In a typical Rails migration script, you will not see the id column. Rails manages the id
field for you by default. In the typical case, Active Record maps the id onto a database
sequence, so the database creates the initial value of id. You don't have to let Active
Record manage your identifiers. For example, you could have a Photo class with a
timestamp attribute called created_at:

class Photo < ActiveRecord::Base
 set_primary_key "created_at"
end

There are some restrictions, though. The most prominent restriction (as of Rails 1.1) is
that you can't use composite keys, or primary keys using more than one database
column. If you need to use composite keys, one way to solve the problem is to introduce
a new column to serve as your identifier. It need not be the primary key.

Alternatively, you could create a database view. A view is a logical view of database data.
You can access the results of any query as a view. You could use a view to introduce a
new column or to combine several existing columns into one. Active Record could then
use the view instead of the table.

Rules for updating views vary across database managers, so depending on your
database manager, you'd either have to customize Active Record or use views only for
read-only tables. Both approaches have been successfully used in production
applications.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.6. Complex Classes

For Photo Share, we've built an object model in which one table relates to one class. Sometimes,
you'll want to map more sophisticated object models to a database table. The two most common
scenarios for doing so are inheritance and composition. Let's look at how you'd handle each mapping
with Active Record. These examples are not part of our Photo Share application, but the problems are
common enough that we will show them to you here.

2.6.1. Inheritance

Active Record supports inheritance relationships using a strategy called single-table inheritance,
shown in Figure 2-3. With this kind of inheritance mapping, all descendents of a common class use
the same table. For example, a photographer is a person with a camera. With single-table
inheritance, all columns for both Person and Photographer go into the same table. Consider this table:

CREATE TABLE people (
 id INT AUTO_INCREMENT NOT NULL,
 type VARCHAR(20),
 name VARCHAR(20),
 email VARCHAR(30),
 camera VARCHAR(20),
 PRIMARY KEY (id)
);

Figure 2-3. Rails supports single-table inheritance between an entity
(Person) and subclass (Photographer)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

A query against Person will return people and photographers. Active Record doesn't need to build any
special support to handle a query against a superclass. Subclasses are more difficult. In order to
allow a query returning only Photographers, Active Record must have some way to determine the
type of an object for an individual row. Active Record uses the type field for this purpose.

Now, we need classes, which are trivial:

class Photographer < Person
end

class Person < ActiveRecord::Base
end

We declare Photographer as a subclass of Person. Active Record will manage the type attribute and
everything else. You'll be able to access the camera property from Photographer. We don't need these
classes for Photo Share, so we'll delete them.

You've probably noticed that Active Record's implementation of inheritance is not true inheritance
because all items in an inheritance tree have the same attributes. In our example, all people have
cameras even if they are not photographers. In practice, that limitation is not severe. A parent can
ignore attributes introduced by subclasses. This strategy is a compromise. You get slightly better
performance (because fewer tables means fewer joins) and simplicity at the cost of muddying the
abstraction a little.

Normally, only Active Record needs to set the type attribute. Be careful when
you need to manage type yourself. You can't say person.type because type is a
class method on Object. If you need to see the value of the type field, use
person[:type] instead.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.6.2. Composition

If you want to extend a Person class with Address, you can use a has_one relationship, or you can use
composition. Composition works well when you want to use a pervasive type like address or currency
across many Active Record models. You'll use composed_of for this type of relationship, as shown in
Figure 2-4.

Figure 2-4. Composed of maps many objects onto one table

Let's look at a Person that is composed_of an Address. In a composition relationship, there's a main
class (Person) and one or more component classes (Address). Each component class explicitly
references one or more database columns. Start with a table that's defined like this:

CREATE TABLE people (
 id INT AUTO_INCREMENT NOT NULL,
 type VARCHAR(20),
 name VARCHAR(20),
 email VARCHAR(30),
 street_address VARCHAR(30),
 city VARCHAR(30),
 state VARCHAR(20),
 zip INTEGER(5),
 camera VARCHAR(20),
 PRIMARY KEY (id)
);

You then map the table onto two different classes. First, create a Person class with a composed_of

http://lib.ommolketab.ir
http://lib.ommolketab.ir

relationship:

class Person < ActiveRecord::Base
 composed_of :address, :class_name => "Address",
 :mapping => [[:street_address, :street_address],
 [:city, :city],
 [:state, :State],
 [:zip, :zip]]
end

If the first parameter for composed_of and the name of the component class are the same, Active
Record can infer the name of the component class. Otherwise, you can override it with a :class_name
modifier. For example, you can use composed_of person_address class_name => "Address". Next,
create an Address class:

class Address
 def initialize(street_address, city, state, zip)
 @street_address = street_address
 @city = city
 @state = state
 @zip = zip
 end

 attr_reader :street_address, :city, :state, :zip
end

Address is the component class. For each database column that the component represents, the
component class must have an attribute and a parameter in the initialize method:

>> elvis=Person.new
>> elvis.name="Elvis Presley"
>> elvis.email= "elvis@graceland.com"
>> address=Address.new("3734 Elvis Presley Blvd", "Memphis", "Tennessee", 38118)
>> elvis.address=address
>> elvis.save
>> puts elvis.address.street_address
3734 Elvis Presley Blvd

Though street_address, city, state, and zip are columns on the people table, you don't use those
attributes on any Person object directly. Instead, access these attributes through the address
attribute on Person. Table 2-3 shows the attributes added by a composed_of relationship.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 2-3. Metaprogramming for composed_of :class

Attributes Description

<class> The component class (person.address)

<class>_<attribute> Attributes for the component class (person.address_zip)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.7. Behavior

Active Record lets you manipulate and find table data directly through Active Record classes and
instances. If you want to work with data from a table, use the class. If you want to work with a table
row, use an instance. ActiveRecord::Base class supplies many of the methods, and missing_method
provides most of the rest. You can find the documentation for the latest stable Active Record version
online at the following address: http://api.rubyonrails.com.

2.7.1. Finders

You can use other finders as well. find_by_sql lets you type SQL directly into a finder; find_all
returns all records. In addition, Active Record adds a custom finder called find_by_<column_name> to
each model class for each column in that model's table.

Let's use some of the methods on Photo. We'll use a finder and the destroy method to delete an
object from the database:

Photo.find_by_filename("balboa_park.jpg").destroy

The methods delete and destroy are slightly different. delete aborts on minor errors, but destroy
does not abort unless there's a critical database error. You can also update objects. Let's update the
Photo object for cat.jpg:

>> cat=Photo.find_by_filename "cat.jpg"
...
>> cat.filename="Cat.jpg"
...
>> cat.update
...
>> puts cat.reload.filename
Cat.jpg
...

In this case, we found the cat.jpg record. We next updated the filename attribute and called update
to write the changes to the database.

2.7.2. Validation

http://api.rubyonrails.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

So far, you've used Active Record to do database operations on an object. You can also use Active
Record for simple validation. For example, you can verify that the filename property exists with one
line of code. Change the Photo class in app/models/photo.rb to look like this:

class Photo < ActiveRecord::Base
 validates_presence_of :filename
end

Let's see how the validation works. Go back to the console (you'll need to restart it to reload your
changes), and try to save a blank photo:

>> photo=Photo.new
=> #<Photo:0x3501b70 @attributes={"filename"=>""}, @new_record=true>
>> photo.save
=> false

The save failed. Let's find out why:

>> photo.errors.each {|attribute, error| puts attribute + ": " +error}
filename: can't be blank
=> {"filename"=>["can't be blank"]}

You can do several different kinds of validation, or you can create your own. You could validate an
email message like this:

validates_format_of :email,
 :with => /^([^@\s]+)@((?:[-a-z0-9]+\.)+[a-z]{2,})$/i

Or you could validate the length of a field like this:

validates_length_of :name, :within => 6..100

Later, you'll see that the Rails view integration uses this information to present meaningful error
messages; look for those details in Chapter 5. You've seen the basics of working with Active Record
classes. You use a model object or its class to directly manipulate rows in the database table. Active
Record goes beyond most traditional wrapping frameworks because it helps you manage relationships

http://lib.ommolketab.ir
http://lib.ommolketab.ir

between tables. In the next few sections, let's look into how Active Record manages simple
relationships.

2.7.3. Transactions

Photo Share doesn't require transactions, but for many applications, transactional behavior is critical.
If you have some code that must be executed as a single unit, you can use Active Record
transactions. The most common example is a transfer between two accounts. A transfer is
fundamentally a debit and a credit. The Ruby code for a transfer between from and to Active Record
Account models might look like this:

def transfer(from, to, amount)
 from.debit(amount)
 to.credit(amount)
end

You wouldn't want this method to fail after the debitif it did, the holder of the from account would be
shorted by amount. So you use a transaction. This is the way it works:

def transfer(from, to, amount)
 Account.transaction do
 from.debit(amount)
 to.credit(amount)
 end
end

transaction is a method on all Active Record classes. With this approach, you can maintain the
integrity of your transactions.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.8. Moving Forward

In the next chapter, we'll look at managing relationships between Active Record classes. We'll see
most types of Active Record relationships in action, including:

belongs_to

has_one

has_many

has_and_belongs_to_many

acts_as_list

acts_as_tree

We'll build each of these into our evolving Photo Share object model. Then, we'll take a very quick
look at two other relationships: inheritance and composition. By the end of the next chapter, we'll
have a fully functioning, database-backed object model.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 3. Active Record Relationships

Dealing with relationships is one of the most important jobs of persistence frameworks. The best
persistence frameworks handle relationships with excellent performance for the end user and
simplicity for the developer. Active Record takes advantage of the Ruby language and naming
conventions to simplify both access and configuration of related data. In this chapter, we'll focus on
building relationships between tables, and reflecting those relationships in your model objects.

With validation, shown in the previous chapter, you began to see the domain-specific language built
into Active Record. We'll use that language to define relationships between the objects in our
database. Three components specify a relationship: the relationship itself, the association or target,
and named parameters. More precisely, these are:

relationship

A method, defined through ActiveRecord::Base, which defines the behavior of the relationship.

association(s)

A symbol that specifies the target of the relationship. The symbol may be singular or plural,
based on the cardinality of the target.

named parameters

Like all Ruby methods, the relationship can take an optional number of named parameters,
which may also have default values.

A statement defining a relationship has the form:

 relationship :association :parameter1 => value, :parameter2 => value,...

For example, you might have:

 class Slideshow < ActiveRecord::Base
 has_many :photos :order => position

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Using this small amount of language, you'll be able to define complex relationships quickly. Your
relationships will also be easy to read and maintain. Let's implement the full model for Photo Share,
complete with relationships.

Relational Database Relationships

Relational databases are fundamentally based on different kinds of relationships between
tables. A set of table columns called keys provides the structure for all relationships. A
primary key is a set of columns in a table that uniquely identify a row within that same
table. A foreign key is a set of columns in a table that uniquely identifies a row in another
table. A database manager can join two tables by matching the primary keys in one table
to the foreign keys in another. Active Record also uses primary and foreign keys to
manage relationships. Unlike relational databases, Active Record limits its identifiers to a
single database column.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.1. belongs_to

The most common database relationship is many-to-one. Figure 3-1 shows how Active Record maps
the "many" side of such a relationship. In Photo Share, we want users to be able to build slideshows.
A slideshow contains an ordered list of pictures. We can't simply use pictures in a slideshow because
a picture has no way of keeping its position in a slideshow, so we'll introduce a Slide class. We'll then
need a many-to-one relationship between slides and slideshows: a slideshow consists of many slides,
but each slide (a photo combined with a position) can belong to only one slideshow. To give us the
flexibility that we need (we'll also want the ability to reuse photos in different slideshows), we'll need
another relationship between photos and slides, but let's leave that for later.

Figure 3-1. belongs_to :association relationship between Entity (Slide)
and Association (Slideshow)

As before, let's create our database tables in a migration, so it will be easy to back out any
unnecessary changes. Generate a model and migration to create a new class for Slide, and another
for Slideshow:

 ruby script/generate model Slideshow
 ruby script/generate model Slide

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Rails generates the models and migrations for slideshows and slides. Now, edit the new migration in
db/migrate/create_slideshow.rb. As before, we'll create steps to migrate up and down. The up step
will create the slides and slideshows tables, and the down step will drop them, like this:

class CreateSlideshows < ActiveRecord::Migration
 def self.up
 create_table "slideshows" do |t|
 t.column "name", :string
 t.column "created_at", :datetime
end
 end

 def self.down
 drop_table "slideshows"
 end
end

Edit the new migration in db/migrate/create_slide.rb, like this:

class CreateSlides < ActiveRecord::Migration
 def self.up
 create_table "slides" do |t|
 t.column "position", :integer
 t.column "photo_id", :integer
 t.column "slideshow_id", :integer
 end
 end

 def self.down
 drop_table "slides"
 end
end

You can now run the migrations:

rake migrate

If you want, you can verify that you have slide and slideshow tables in your database. If you decide
that adding these tables was a huge mistake, you could back up to the previous version by typing
rake migrate VERSION=1, which would run the down method in all migrations greater than 1, starting
with the greatest. You can move to any version number in this way. Be careful, though: if your
migration drops a table, you'll lose that data.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

At this point, some data to test the new relationships would be nice. Because we're not running these
in formal tests or in production, let's create some simple SQL scripts.[*] Create a script called
slideshow_data.sql:

[*] You normally wouldn't need to create test data in this way. You would use text fixtures, and load the fixtures with the command

rake load fixtures. See Chapter 7 for more details on using test fixtures.

 insert into slideshows values (1, 'Interesting pictures', now());
 insert into slides values (1, 1, 1, 1);
 insert into slides values (2, 2, 2, 1);
 insert into slides values (3, 3, 3, 1);
 insert into slides values (4, 4, 4, 1);
 insert into slides values (5, 5, 5, 1);
 insert into slides values (6, 6, 6, 1);
 insert into slides values (7, 7, 7, 1);
 insert into slides values (8, 8, 8, 1);
 insert into slides values (9, 9, 9, 1);
 insert into photos values (1, "balboa_park.jpg");
 insert into photos values (2, "camel.jpg");
 insert into photos values (3, "cat_and_candles.jpg");
 insert into photos values (4, "hut.jpg");
 insert into photos values (5, "mosaic.jpg");
 insert into photos values (6, "polar_bear.jpg");
 insert into photos values (7, "police.jpg");
 insert into photos values (8, "sleeping_dog.jpg");
 insert into photos values (9, "stairs.jpg");

First, migrate down to zero and back up by typing rake migrate VERSION=0 and then rake migrate to
make sure that you're starting from scratch. These commands will drop all of the tables and create
them again. Start the MySQL prompt, type use photos_development, and execute the script by typing
source db/slideshow_data.sql at the MySQL prompt. Now that you have working tables, you can
edit the new model in app/models/slide.rb. Add the relationship between slides and slideshows to the
new Slide model class:

 class Slide < ActiveRecord::Base
 belongs_to :slideshow
 belongs_to :photo
 end

Save your changes, and you've got a working belongs_to relationship from Slide to Slideshow and
another from Slide to Photo. To see it in action, go back to the Rails console. (If you closed the
console, type ruby script/console to restart it.) Type the lines in bold:

 >> slide = Slide.find 1
 => ...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 >> slide.photo.filename
 => "balboa_park.jpg"
 >> slide.slideshow.name
 => "Interesting pictures"

belongs_to introduces the photo and slideshow instance variables on slide, and also some behavior.
Table 3-1 shows the methods added to the model by the belongs_to method.

Table 3-1. Metaprogramming for belongs_to and has_one

Added Feature Description

Methods

<association>.nil? Test the association for a nil value: slide.photo.nil?

build_<association>

Build an object of the associated type. Do not initialize the built object to the
root object: slide.build_photo(:filename => "cat.jpg"

In this example, photo.slide is initialized to nil.

create_<association>
Create an object of the associated type, initialized to the root object. It takes
a hash map of attributes for the new object as a parameter:
slide.create_photo({:filename => "cat.jpg", :name => "cat"}

Attributes

<association>
An attribute of the type of the associated object: belongs_to :photo on
Slide allows slide.photo and slide.photo = nil

belongs_to is only the "many" end of a many-to-one relationship. Let's look at the "one" side.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.2. has_many

We'll need to implement has_many relationships on both Photo and Slideshow. Figure 3-2 shows the
mapping between Active Record objects and database tables with has_many.

Figure 3-2. The entity (slideshow) has_many associations (slides)
relationship is a one-to-many relationship

has_many is the other side of a belongs_to relationship, so you don't need to modify the class or table
for Slide. You can merely add the relationship has_many to slideshow.rb:

class Slideshow < ActiveRecord::Base
 has_many :slides
end

And now, photo.rb:

class Photo < ActiveRecord::Base
 has_many :slides

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 validates_presence_of :filename
end

By specifying that a photo has many slides, you give users the ability to use the same photo in
several different slideshows. Remember: a slide is a photo and a position in a specific slideshow. So a
slide can't be reused, but a photo can.

That's all you have to do to manage the second side of the relationship. Now, you can to see all of
the slides associated with a photo, and all of the slides in a slideshow. As usual, you can open the
console to see the model in action:

>> slide = Slide.find 1
...
>> slideshow = slide.slideshow
...
>> slideshow.slides.each {|slide| puts slide.photo.filename}
balboa_park.jpg
camel.jpg
cat_and_candles.jpg
hut.jpg
mosaic.jpg
polar_bear.jpg
police.jpg
sleeping_dog.jpg
stairs.jpg

So you get a list of slides in the slideshow, and each has an associated photo. Active Record is now
managing the has_many relationship between Slideshow and Slide. You could use photo.slides in the
same way. Table 3-2 shows you the metaprogramming for has_many.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Cascading Relationships

Many-to-one relationships introduce some problems for persistence frameworks.
Primarily, the framework designer has to decide whether deleting a parent object also
deletes child objects as well. Automatic deletion of dependent objects is called cascading
deletes. Sometimes, you want automatic deletion to happen. For example, deleting an
invoice should also delete the line items for that invoice. But sometimes, you want
related objects to stay: employees should not be deleted when a department is
dissolved. If you define a relationship with the :dependent option, deleting a row also
deletes the associated objects. For example, to define an invoice, you might specify your
invoice like this:

class Invoice < ActiveRecord::Base
 has_many :line_items, dependent => true
end

With this definition, deleting an invoice would also delete associated line items, each with
a separate query. Sometimes, using a separate query to delete each child is
unnecessarily inefficient, but there's a remedy. If the line items belong to one invoiceand
only oneyou can set the exclusively_dependent parameter on has_many to true, and
Active Record will delete all dependent objects with one query.

Similarly, when you read an object, you need to decide whether to load dependent
objects. By default, Active Record does not cascade loads. But you can load children
when you load a parent by using the :include option on any finder.

Table 3-2. Metaprogramming for has_many

Added feature Description

Methods

<associations><< object
Add an object to the <associations> collection:

photo.slides << a_slide

<associations>.delete object

Delete an object in the <associations> collection. The objects will
be destroyed if the dependent parameter of has_many is set to
TRue:

photo.slides.delete a_slide

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Added feature Description

<associations>_singular_ids
collection

Replace the <associations> collection with a collection of objects
identified by ids in the collection:

photo.slides_singular_ids [1, 2, 3, 4]

<associations>.find

Uses the same rules as a basic find, but operates only on the
items in the <associations> collection:

photo.slides.find_by_position 4

<associations>.clear
Delete all of the objects in the association:

photo.slides.clear

<associations>.empty?
Test to see if <associations> collection is empty:

photo.slides.clear

<associations>.size
Return the number of items in the <associations> collection:

photo.slides.size

<associations>.build

Build an object of the associated type, but do not initialize it to
the root object. It takes a hash map of attributes for the new
object as a parameter:

slide.build_photo(:filename => "cat.jpg"

In this example, photo.slide is initialized to nil.

<associations>.create

Create an object of the associated type, initialized to the root
object. It takes a hash map of attributes for the new object as a
parameter:

slide.build_photo(:filename => "cat.jpg"

In this example, photo.slide is initialized to slide.

Attributes

<associations>
A collection of the associated objects:

slide.photos[4]

<associations>_singular_ids
collection

Replace the <associations> collection with a collection of objects
identified by ids in the collection:

photo.slides_singular_ids [1, 2, 3, 4]

<associations>.find

Uses the same rules as a basic find, but operates only on the
items in the <associations> collection:

photo.slides.find_by_position 4

<associations>.clear
Delete all of the objects in the association:

photo.slides.clear

<associations>.empty?
Test to see if <associations> collection is empty:

photo.slides.clear

<associations>.size
Return the number of items in the <associations> collection:

photo.slides.size

<associations>.build

Build an object of the associated type, but do not initialize it to
the root object. It takes a hash map of attributes for the new
object as a parameter:

slide.build_photo(:filename => "cat.jpg"

In this example, photo.slide is initialized to nil.

<associations>.create

Create an object of the associated type, initialized to the root
object. It takes a hash map of attributes for the new object as a
parameter:

slide.build_photo(:filename => "cat.jpg"

In this example, photo.slide is initialized to slide.

Attributes

<associations>
A collection of the associated objects:

slide.photos[4]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.3. has_one

The simplest database relationship is the one-to-one relationship. With Active Record, you can
implement one-to-one relationships with either belongs_to or has_one. You decide whether to use
belongs_to or has_one based on where the foreign key resides. The class associated to the table with
the primary key uses belongs_to, and the other uses has_one. Figure 3-3 shows a has_one
relationship.

Figure 3-3. In this one-to-one relationship, a Photo has_one File

Let's take a simple example. Hypothetically, you could have decided to implement photos and files in
separate tables. If you put a foreign key called photo_id into the files table, you would have this
Active Record Photo class:

class Photo < ActiveRecord::Base
 has_one :file
 ...
end

has_one is identical to belongs_to with respect to metaprogramming. For example, adding either
has_one :photo or belongs_to :photo to Slide would add the photo attribute to Slide. We really have
no need for adding an extra table to manage a file, so let's move on to the next relationship.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.3.1. has_and_belongs_to_many

Many-to-many relationships are more complex than the three relationships shown so far, because
these relationships require an additional table in the database. Rather than relying on a single foreign
key column, you'll need a relationship table. Each row of a relationship table expresses a relationship
with foreign keys, but has no other data. Figure 3-4 shows our relationship table.

Figure 3-4. A has_and_belongs_to_many association builds a many-to-
many relationship through a join table

Photo Share requires a many-to-many relationship between Photo and Category. A category can hold
many photos, and the same photo can fit into more than one category. As always, you'll start with
the database. You'll need to create a table called categories to hold all categories. You'll also need a
relationship table. The Active Record naming convention for the relationship table is
classes1_classes2, with the classes in alphabetical order, so you need to generate a migration for
the categories table:

ruby script/generate model Category

This generation step creates a migration containing the model table but not the relationship table.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This migration will be a little different. Each photo should be in a category. For our migration, create
a default category called All, and place each photo into that category. Edit your migration, and make
it look like this:

class CreateCategories < ActiveRecord::Migration
 def self.up
 create_table "categories" do |t|
 t.column "name", :string
 t.column "parent_id", :integer
 end
 create_table("categories_photos", :id=>false) do |t|
 t.column "category_id", :integer
 t.column "photo_id", :integer
 end
 Category.new do |category|
 category.name = "All"
 Photo.find(:all).each do |photo|
 photo.categories << category
 photo.save
 end
 end
 end

 def self.down
 drop_table "categories"
 drop_table "categories_photos"
 end
end

That code is simple enough. The new migration creates two tables: one for categories and one as a
join table to manage relationships between our categories and photos. categories is not a model
table, so it needs no id. Because we don't want an id column on our join table, we used the
parameter :id => false when we created categories_photos. But we're not ready to run the
migration until we've created our model objects and defined the relationships between photos and
categories. You can't run the migration yet, though. There's no model class for photos, and no
relationship between Photo and Category.

Category needs a many-to-many relationship, with the exceedingly verbose Ruby method
has_and_belongs_to_many :photos:

class Category < ActiveRecord::Base
 has_and_belongs_to_many :photos
end

You'll also need to add a many-to-many relationship to the Photo class:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

class Photo < ActiveRecord::Base
 validates_presence_of :filename

 has_many :slides
 has_and_belongs_to_many :categories
end

This code adds the categories collection to Photo, and the photos collection to Category. Now, you
can run the migration. Type:

rake migrate

You can verify that it worked in the console. From the console, type:

all = Category.find :first
all.photos.each {|photo| puts photo.filename}

You still get a full view of what's going on with categories. Once again, you need some data to
illustrate what's going on. Add the following to the end of photos_data.sql:

insert into categories values (1, 'All', null);
insert into categories values (2, 'People', 1);
insert into categories values (3, 'Animals', 1);
insert into categories values (4, 'Places', 1);
insert into categories values (5, 'Things', 1);
insert into categories values (6, 'Friends', 2);
insert into categories values (7, 'Family', 2);
insert into categories_photos values (4, 1);
insert into categories_photos values (3, 2);
insert into categories_photos values (3, 3);
insert into categories_photos values (4, 4);
insert into categories_photos values (5, 5);
insert into categories_photos values (3, 6);
insert into categories_photos values (2, 7);
insert into categories_photos values (4, 8);
insert into categories_photos values (4, 9);
insert into categories_photos values (4, 7);

Now, you can see how categories are working inside the console:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

>> category = Category.find_by_name "Animals"
...
>> category.photos.each {|photo| puts photo.filename}
camel.jpg
cat_and_candles.jpg
polar_bear.jpg
>> photo.filename = "cat.jpg"
=> "cat.jpg"

As expected, you get an array called photos on category that's filled with photos that are associated
in the join table categories_photos. Let's add a photo:

>> photo.filename = "cat.jpg"
...
>> photo.save
=> true
>> category.photos << photo
...
>> category.save

Look a little closer at this statement: category.photos << photo. (It adds a photo to
category.photos.) But the save is changing neither the photos nor the categories table. It's actually
adding a row to the categories_photos table. This type of relationship is the only instance in which an
Active Record class does not map directly to the rows and columns of a database table. The methods
and attributes added by the has_and_belongs_to_many method are identical to those added by
has_many and are shown in Table 3-2.

3.3.1.1. Join models

You might wonder whether it's possible to create a Rails model from the categories_photos table. As
of Rails 1.0, you couldn't do such a thing. Now, with new join models in Rails 1.1, it's easy. You can
use has_many and belongs_to with the through parameter. For example, you could easily decide to
map slides in this way:

class Slideshow < ActiveRecord::Base
 has_many :photos :through => :slides
end

This example creates database tables, through migrations or other means, for photos, slideshows,
and slides. The relationship table also serves as a relationship table, and a first class model. The
structure in the example is slightly different from a typical join table. The primary differences are
these:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The Slide is a first class model.

You can add attributes to Slide.

You can use :through with has_many, belongs_to, and has_and_belongs_to_many.

The :through relationship makes it possible to build much more sophisticated relationships, allowing
you to identify and tag each relationship with additional data, as required.

3.3.2. acts_as_list

Active Record has three special relationships that let you explicitly model lists, trees, and nested sets:
acts_as_list, acts_as_tree, and acts_as_nested_set, respectively. We'll look at the two
relationships required by Photo Share in this chapter: acts_as_list and acts_as_tree. acts_as_list
lets you express items as an ordered list and also provides methods to move items around in the
hierarchy. Figure 3-5 shows the mapping. In Photo Share, we'll use acts_as_list to model a
slideshow, which is an ordered list of slides. Later, we'll use acts_as_tree to manage our nested
categories.

Figure 3-5. acts_as_list allows an explicit ordering

First, let's create the slideshow. We want users to be able to move slides up and down in a show.
We'll use the existing slides and add the Active Record relationship acts_as_list:

class Slide < ActiveRecord::Base
 belongs_to :slideshow

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 acts_as_list :scope => "slideshow_id"
 belongs_to :photo
end

This example builds a list of slides that comprise a slideshow. belongs_to is a one-to-many
relationship, imposing structure. acts_as_list is a helper relationship, imposing order and
introducing behavior. To Active Record, each relationship is independent. The Slide model has a
belongs_to relationship with both Slideshow and Photo parents. You use the :scope parameter to tell
Active Record which items belong in the list. In this case, we want the list to contain all slides related
to a slideshow, so set the :scope parameter to :slideshow_id.

To capture ordering, Active Record uses a position attribute by default. Because you have a position
column in the database, you don't need to do anything more to the slides to support the list.
However, you'll want the array of slides to be fetched and displayed in the right order, so make one
small change to Slideshow:

class Slideshow < ActiveRecord::Base
 has_many :slides, :order => :position
end

We're ready to use the list. You can use methods added by acts_as_list to change the order of
slides in the slideshow, and to indicate which items are first and last:

>> show = Slideshow.find 1
...
>> show.slides.each {|slide| puts slide.photo.filename}
cat_and_candles.jpg
hut.jpg
mosaic.jpg
polar_bear.jpg
police.jpg
sleeping_dog.jpg
stairs.jpg
balboa_park.jpg
camel.jpg
>> show = Slideshow.find 1
=> #<Slideshow:0x3901778 @attributes={"name"=>"Interesting pictures", "id"=>"1",
 "created_at"=>"2006-05-11 14:57:06"}>
>> show.slides.first.photo.filename
=> "cat_and_candles.jpg"
>> show.slides.first.move_to_bottom
=> true
>> show.slides.last.photo.filename
=> "camel.jpg"
>> show.reload
=> #<Slideshow:0x3901778 @slides=nil, @attributes={"name"=>"Interesting pictures

http://lib.ommolketab.ir
http://lib.ommolketab.ir

", "id"=>"1", "created_at"=>"2006-05-11 14:57:06"}>
>> show.slides.last.photo.filename
=> "cat_and_candles.jpg"
>>

By convention, positions start at 1 and are sequentially numbered through the end of the list. Position
1 is the top, and the biggest number is the bottom. You can move any item higher or lower, move
items to the top or bottom, create items in any position, and get relative items in the list, as in Table
3-3. Keep in mind that moving something higher means making the position smaller, so you should
think of the position as a priority. Higher positions mean higher priorities, so they'll be closer to the
front of the list.

Table 3-3 shows all the methods added by the acts_as_list relationship. Keep in mind that you'll use
acts_as_list on objects that already have a belongs_to relationship, so you'll also get the methods
and attributes provided by belongs_to. You'll also inherit the methods from array, so
slideshow.slides[1] and slideshow.slides.first are both legal.

Table 3-3. Metaprogramming features for acts_as_list

Added
featuremethods

Description

increment_position
Increments the position attribute of this list element:

slideshow.slides[1].increment_position

decrement_position
Decrement the position attribute of this list element:

slideshow.slides[2].decrement_position

higher_item

Return the previous item in the list. Higher means closer to the front, or
closer to index 1, as in priority:

slideshow.slides[2].higher_item

lower_item

Return the next item in the list. Lower means closer to the back, or farther
from index 1, as in priority:

slideshow.slides[1].lower_item

in_list?
Test whether an object has been added to a list:

slide.in_list?

insert_at position
Insert the current item at a given position. Default is position 1:

slide.insert_at(1)

first?
Return TRue if position==1; false otherwise:

slide.first?

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Added
featuremethods

Description

last?
Return TRue if position is the largest in the list; return false otherwise:

slideshow.slides[7].last?

move_higher
Move this item toward index 1:

slideshow.slides[4].move_lower

move_lower
Move this item away from index 1:

slideshow.slides[3].move_higher

move_to_top
Move this item to index 1:

slideshow.slides[3].move_to_top

move_to_bottom
Make this item the last in the list:

slideshow.slides[3].move_to_bottom

remove_from_list
Remove this item from the list:

slideshow.slides[3].remove_from_list

3.3.3. Trees

Let's think about the most complex relationship: nested categories. you could implement categories
by adding belongs_to :category and has_many :categories to the Category class. The code would
not be easy to read because a category would have an instance variable called category (for the
parent) and another instance variable called categories for the children. What would be better are
instance variables called parent and children, but you'd be forced to override Active Record naming
conventions and to write much more code.

This arrangement is common enough that Active Record has the acts_as_tree relationship, shown in
Figure 3-6. As you would expect, acts_as_tree requires a foreign key called parent_id by default. If
you use the name parent_id, Active Record discovers and uses that foreign key to organize the tree
structure. As always, if you need to override this name, you can do so. Each node of the tree points
to its parent, and the root of the tree is null.

Figure 3-6. The acts_as_tree relationship is recursive, with an entity
(Category) acting as both parent and children

last?
Return TRue if position is the largest in the list; return false otherwise:

slideshow.slides[7].last?

move_higher
Move this item toward index 1:

slideshow.slides[4].move_lower

move_lower
Move this item away from index 1:

slideshow.slides[3].move_higher

move_to_top
Move this item to index 1:

slideshow.slides[3].move_to_top

move_to_bottom
Make this item the last in the list:

slideshow.slides[3].move_to_bottom

remove_from_list
Remove this item from the list:

slideshow.slides[3].remove_from_list

3.3.3. Trees

Let's think about the most complex relationship: nested categories. you could implement categories
by adding belongs_to :category and has_many :categories to the Category class. The code would
not be easy to read because a category would have an instance variable called category (for the
parent) and another instance variable called categories for the children. What would be better are
instance variables called parent and children, but you'd be forced to override Active Record naming
conventions and to write much more code.

This arrangement is common enough that Active Record has the acts_as_tree relationship, shown in
Figure 3-6. As you would expect, acts_as_tree requires a foreign key called parent_id by default. If
you use the name parent_id, Active Record discovers and uses that foreign key to organize the tree
structure. As always, if you need to override this name, you can do so. Each node of the tree points
to its parent, and the root of the tree is null.

Figure 3-6. The acts_as_tree relationship is recursive, with an entity
(Category) acting as both parent and children

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You've already got a Category class and a database table behind it with a parent_id. Let's let Active
Record manage the category tree:

class Category < ActiveRecord::Base
 has_and_belongs_to_many :photos
 acts_as_tree
end

If you'd like, you can order the children with :order modifier as we did in the favorites example, but
you don't have to. The tree is ready to use as is. You can already work with the tree from within the
console:

>> root = Category.find_by_name 'All'
...
>> puts root.children.map {|child| child.name}.join(", ")
People, Animals, Places, Things
...
>> puts root.children[0].children.map {|child| child.name}.join(", ")
Friends, Family
...
>> Category.find_by_name('Family').parent.name
=> "People"

The children are dependent objects of the parents, so if you delete a parent, you'll delete the children
too. Otherwise, what you've created is identical to a has_many relationship and a belongs_to
relationship on category. Table 3-4 shows the methods and attributes added by the acts_as_tree

http://lib.ommolketab.ir
http://lib.ommolketab.ir

relationship.

Table 3-4. Metaprogramming for acts_as_tree

Added feature Description

Methods

All methods from
has_many

A tree will have all of the methods of a has_many relationship, with children as
the <associations> collection:

category.children.create

Attributes

Parent category.parent

Children[]
An array of children:

category.children

http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.4. What You Haven't Seen

Active Record is too big to cover in detail in such a short book, but you should know about its major
capabilities. You'll find each of these capabilities in Active Record, complete with documentation:

Nested sets

Nested sets are useful for storing very large trees when you'd like to retrieve all descendents
often. The nested set uses an algorithm that expresses the set as a depth-first traversal of the
tree. See the Active Record documentation at http://api.rubyonrails.com for details.

Overrides

You can declare your own accessors instead of using the ones that Active Record generates.
Your new ones override those provided by ActiveRecord::Base.

Versioning

Active Record uses the column lock_version, if it exists, to manage concurrency using a
technique called optimistic locking. With this technique, a database engine can store multiple
versions of each piece of data and maintain database integrity if many applications need the
same piece of data.

Count caching

Rather than using SQL to compute the number of certain types of objects, Active Record can
cache the counts for performance.

Timestamping

Active Record can update timestamps when a record is created or updated.

Enhancements

Active Record gets new features frequently. We recommend that you periodically check the
documentation and watch the various Rails mailing lists if you're going to be doing regular Rails
development.

http://api.rubyonrails.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.5. Looking Ahead

In the first three chapters, you learned how to build models, views, and controllers. In the next few
chapters, we'll continue to flesh out the Photo Share application. First, we'll use scaffolding to rapidly
build the user interface. Then, we'll extend the resulting application through controllers and views.
You'll have a full working application a few hours from now.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 4. Scaffolding
For centuries, scaffolding has helped builders provide access and support to buildings through the
early stages of the construction process. Programmers, too, use temporary scaffolding code to lend
structure and support until more permanent code is available. Rails automates scaffolding to make
early coding more productive than ever before.

In almost any Ruby on Rails demonstration of five minutes or more, you're likely to see scaffolding.
Rails opponents dismiss the feature quickly, saying that any scaffolding code must be thrown away,
so the advantages are artificial. In some ways, the detractors are right. Scaffolding user interfaces
are ugly and incomplete. But scaffolding provides more than cheap demo thrills. Here are some
benefits:

You can quickly get code in front of your users for feedback.

You are motivated by faster success.

You can learn how Rails works by looking at generated code.

You can use the scaffolding as a foundation to jumpstarts your development.

You can use metaprogramming that's automatically updated as the structure in the database
changes.

In this chapter, we'll show how to use scaffolding to build a primitive user interface for Photo Share.
Then, in later chapters, we will extend that foundation to flesh out our application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.1. Using the Scaffold Method

We've already demonstrated a working model for Photo Share, including photos, categories,
slideshows, and slides, and you should be able to manage schema from Active Record objects with
the Rails console. The next step is to use scaffolding to build primitive web user interfaces for these
classes. Scaffolding will take you a good ways down the road, but it won't generate a completed
application. That's okay. We're looking for a head start, not a completed production-quality
application.

4.1.1. A List of Photos

Let's start by letting the user manage a list of photos from the Web. Ensure that you've got a
database, that it's configured, and that you've got tables with model objects for slides, slideshows,
categories, and photos.[*] If your server is not started, restart it as usual with ruby script/server.
Point your browser to http://localhost:3000/ to make sure things are working. You'll see the Rails
welcome page if everything is working correctly. Let's build some scaffolding.

[*] If you haven't been coding along but wish to start, you can download all of the code through Chapter 3 from the book's web

page (http://www.oreilly.com/catalog/rubyrails).

You'll start to build scaffolding using the scaffold method. That method goes into the controller, so
we need to generate a controller called Photos:

 ruby script/generate controller Photos

Add the scaffold :photo method to photo_controller.rb, like this:

 class PhotosController < ApplicationController
 scaffold :photo
 end

That's all you needRails will do the rest. Now, load the URL http://localhost:3000/photos to see the
scaffolding in action. You'll see a list of photos, with links to create new photos, edit existing photos,
and show existing photos. With the simple scaffold :photo statement, you got all the pages that
show in Figure 4-1. The scaffolding generates surprisingly complete controller and view code. To be
sure, the scaffolding does not generate production-ready code, but it's a starting point. The next
section shows how scaffolding works.

http://localhost:3000/
http://www.oreilly.com/catalog/rubyrails
http://localhost:3000/photos
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 4-1. Scaffolding renders all four of these views

If you get the following error when trying to access the application:

 Mysql::Error in Photo#list
 Access denied for user: 'root@localhost' (Using password: NO)

it means that you forgot to restart the server.

4.1.2. More Metaprogramming

scaffold :photo does the magic. scaffold is a method on ActionController.[] :photo is a symbol

http://lib.ommolketab.ir
http://lib.ommolketab.ir

that determines the Active Record model that Rails uses for this scaffold. When you specify this single
method, Rails adds to your controller the nine methods in Table 4-1. Four of them render views.
Together, the methods build a simple CRUD interface for your Active Record model based on the
model object. Within the model, the @@content_columns attribute contains information about each of
the columns in the database.

[] You can see the actual definition in the Rails source code. scaffold is actually defined on ClassMethods and mixed in as a

module to ActionController.

Table 4-1. The scaffold :target method on a Rails controller creates the
methods on the controller

Methods Purpose View

index
Renders a welcome page. By default, index redirects to the list controller
action. Also, by default, when a user specifies a controller but no action,
Rails invokes the index action.

No

list
Renders a view with a paginated list of target objects, in which the target

object is the model object for the scaffold.
Yes

create(target) Creates and saves an Active Record object from the target object. No

new Renders a view to create a new controller object. Yes

edit(id) Renders a view to edit the target object with the supplied id. Yes

update(id) Updates the active record target object with the supplied id. No

show(id) Renders a view to show an object Yes

destroy(id) Destroys the object of type target with the supplied id. No

render_scaffold Renders the default view for the view methods if no .rhtml view is present. N/A

Most of the methods listed in Table 4-1 wind up calling the render_scaffold method, which checks to
see whether you've added the corresponding view. (Remember that by default, Rails views will have
the same name as the controller method.) If so, Rails uses your views. Otherwise, the controller
provides default views.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.2. Replacing Scaffolding

In many frameworks (such as those that rely completely on code generation), once you replace any
of the scaffolding, you take on responsibility for managing all of the scaffolding yourself. Not so with
Rails. You can modify or rewrite any single view or controller method without affecting the rest of the
scaffolding. For example, let's add a title page through the index method to the PhotosController
class:

 class PhotosController < ApplicationController
 scaffold :photo

 def index
 render_text('Welcome to Photo Share\'s Title Page')
 end
 end

Now, load http://localhost:3000/photos/index. You'll see the "Welcome to Photo Share's Title Page"
message printed, as in Figure 4-2, which shows that you've overridden the index method provided by
the scaffolding.

Figure 4-2. Overriding the index method

Load http://localhost:3000/photos/listto verify that the rest of the scaffolding is still intact. Rails also
makes it easy to replace a view while leaving the controller scaffolding intact. Let's replace the view
for the show action. Create the file app/views/photos/show.rhtml:

<h1>Show Photos</h1>

http://localhost:3000/photos/index
http://localhost:3000/photos/list
http://lib.ommolketab.ir
http://lib.ommolketab.ir

<p>filename: <%= @photo.filename %></p>

<%= link_to 'list of photos', :action => 'list', :id => @photo %>

You'll see the view shown in Figure 4-3. As before, you can replace some views and leave the others
intact. As you can see, scaffolding stays around until you need to override it. Then it just gradually
melts away, a piece at a time, as you replace it.

Figure 4-3. Overriding a scaffolding view

4.2.1. Scaffolding Is Dynamic

You can use Rails scaffolding to provide a simple user interface while you're working on your
database schema. Your users can then verify that you're maintaining all of the data you need. Let's
see how the Rails scaffolding handles changes in the schema. We'll start by adding columns for a
timestamp, a thumbnail, and a description to the photos database table. Create a new migration
called add_photo_columns that changes the definition of the photos table by typing ruby
script/generate migration add_photo_columns. Edit the resulting migration in db/migrate to look
like this:

class AddPhotoColumns < ActiveRecord::Migration
 def self.up
 add_column "photos", "created_at", :datetime
 add_column "photos", "thumbnail", :string
 add_column "photos", "description", :string
 Photo.find(:all).each do |photo|
 photo.update_attribute :created_at, Time.now
 photo.update_attribute :thumbnail, photo.filename.gsub('.', '_m.')
 end
 end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 def self.down
 remove_column "photos", "created_at"
 remove_column "photos", "thumbnail"
 remove_column "photos", "description"
 end
end

This migration script updates the photos table and the data in it. Now, execute the migration by
typing rake migrate, and reload your browser (http://localhost:3000/photos/list). You'll see the new
columns appear, as in Figure 4-4. In fact, all of the scaffolding views work. So using scaffolding, you
can quickly improve your database schema and model without having to focus on your user interface
development at the same time.

Figure 4-4. A view created using scaffolding

4.2.2. Pros and Cons

You've just seen how to use scaffolding with the scaffold tag, or the metaprogramming approach.
This approach to scaffolding has some critical advantages over other frameworks, like code
generation:

The scaffold tag is dynamic, allowing you the freedom to build on the database schema; the
user interface automatically changes to keep up.

You can override controller methods or views without having to maintain all of the scaffolding
yourself.

The scaffold tag is terse, so you can accomplish much with a single line of code.

In general, the Rails metaprogramming approach provides revolutionary advantages over code
generation. Most significantly, dynamic scaffolding continually changes with the surroundings. But the
metaprogramming approach does have some core disadvantages as well:

You can't see what's going on. If you are learning Rails or scaffolding, having the code hidden
from you is a distinct disadvantage.

http://localhost:3000/photos/list
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The behavior of the scaffolding may change with later versions of Rails. This behavior may be a
distinct disadvantage if you need to maintain predictability.

You can't use the scaffolding code as a base for further development.

For these reasons, Rails offers code generation as an alternative method for scaffolding. We'll explore
the scaffolding code generator next.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.3. Generating Scaffolding Code

Code generation is the other major form of scaffolding. You generate scaffolding with the ruby
script/generate scaffold command. Run it without parameters to see the parameters you can
specify and a description of the generator:

>ruby script/generate scaffold
Usage: script/generate scaffold ModelName [ControllerName] [action, ...]

General Options:
 -p, --pretend Run but do not make any changes.
 -f, --force Overwrite files that already exist.
 -s, --skip Skip files that already exist.
 -q, --quiet Suppress normal output.
 -t, --backtrace Debugging: show backtrace on errors.
 -h, --help Show this help message.
 -c, --svn Modify files with subversion. (Note: svn must be in path)

Description:
 The scaffold generator creates a controller to interact with a model.
...

Here, you need to specify a model and a controller name. So, to generate the scaffolding for the
controller and views of our Photo model, type:

> ruby script/generate scaffold photo photos
...

Respond y when Rails asks if you want to replace a file. Any additional parameters are added as
empty methods on the new controller. If you omit the name of the controller, Rails uses the English
plural of the model name. So, to generate scaffolding for our slides, slideshows and categories, type:

ruby script/generate scaffold slide
...
ruby script/generate scaffold slideshow
...
ruby script/generate scaffold category
...

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.3.1. Inside the Generated Code

Let's look at the controller Rails generated. Your version may be slightly different than the code you
see here, but the principles should be the same. Open apps/controllers/photos_controller.rb:

class PhotosController < ApplicationController
 def index
 list
 render :action => 'list'
 end

 def list
 @photo_pages, @photos = paginate :photos, :per_page => 10
 end

 def show
 @photo = Photo.find(params[:id])
 end

 def new
 @photo = Photo.new
 end

 def create
 @photo = Photo.new(params[:photo])
 if @photo.save
 flash[:notice] = 'Photo was successfully created.'
 redirect_to :action => 'list'
 else
 render :action => 'new'
 end
 end

 def edit
 @photo = Photo.find(params[:id])
 end

 def update
 @photo = Photo.find(params[:id])
 if @photo.update_attributes(params[:photo])
 flash[:notice] = 'Photo was successfully updated.'
 redirect_to :action => 'show', :id => @photo
 else
 render :action => 'edit'
 end
 end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 def destroy
 Photo.find(params[:id]).destroy
 redirect_to :action => 'list'
 end
end

Why Scaffolding Pluralizes Controller Names

When you run scaffolding, and you specify:

 ruby script/generate scaffold Photo

you actually get a model called Photo and a controller called PhotosController. You get
this behavior because the scaffolding generator takes two parameters: the model and
the controller. If you omit the controller, the generator pluralizes the name. Often, that's
what you want, because Rails controllers typically deal with collections of things.

Usually, you want a singular model name. For example, you might want an
administration controller called Admin. If you usually use plurals, you can omit the name
of the controller. If you want a singular controller name, specify both the model and
controller name. For more information, you can get scaffolding help by typing:

 ruby script/generate scaffold

As you can see, Rails generates a controller with each of the methods found in Table 4-1. Point your
browser to http://localhost:3000/photos to verify that the generated code behaves identically to the
code generated with the scaffold :photo method.

But the code is slightly different. Instead of generating the views from within the controller like the
scaffold method, the generated code explicitly renders views in rhtml code. Let's look at one of the
views. Open app/views/photos/list.rhtml:

1 <% for column in Photo.content_columns %>
2 <p>
3 <%= column.human_name %>: <%=h @photo.send(column.name) %>
4 </p>
5 <% end %>
6
7 <%= link_to 'Edit', :action => 'edit', :id => @photo %> |

http://localhost:3000/photos
http://lib.ommolketab.ir
http://lib.ommolketab.ir

8 <%= link_to 'Back', :action => 'list' %>

This view is be rendered by the list method of PhotosController. Let's look at the first and third
lines in detail:

<% for column in Photo.content_columns %>

In line 1, the view loops through each column in the database. Recall that Active Record added
metadata to Photo, maintaining an array with each column in the table. content_columns has
all of the columns that are for public display. (You don't see foreign keys or the id property, for
example.)

<%= column.human_name %>

The view renders a friendly name to serve as a label of the element.

<%=h @photo.send(column.name) %>

The view sends a message to @photo with the name of the column and renders the result. (For
example, @photo.send "filename" would be the same as @photo.filename.)

Figure 4-5 shows the result. The view lists all the properties of a Photo record in the database. The
Filename property was in the database from the beginning; the Created At, Thumbnail, and
Description properties were added by a migration earlier in this chapter. Furthermore, if we add more
properties, the list.rhtml view won't require any modification to display them.

Figure 4-5. This show view is dynamic

The show.rhtml view reflects changes in the database. Now, let's look at a view that's a little less

http://lib.ommolketab.ir
http://lib.ommolketab.ir

dynamic. Open app/views/photos/_form.rhtml:

<%= error_messages_for 'photo' %>

<!--[form:photo]-->
<p><label for="photo_created_at">Created at</label>

<%= datetime_select 'photo', 'created_at' %></p>

<p><label for="photo_filename">Filename</label>

<%= text_field 'photo', 'filename' %></p>

<p><label for="photo_thumbnail">Thumbnail</label>

<%= text_field 'photo', 'thumbnail' %></p>

<p><label for="photo_description">Description</label>

<%= text_field 'photo', 'description' %></p>
<!--[eoform:photo]-->

This view is called a partial, and it's responsible for rendering a form for a photo in edit.rhtml and
new.rhtml. (You'll learn more about partials in the next chapter.) The words in bold are attributes on
Photo. Because you've generated explicit code to render the form, this view works only for the
database columns that were present when you created the scaffolding. So here, you see one of the
primary differences between scaffolding created through metaprogramming and generated
scaffolding. When we used metaprogramming, because our scaffold :photo method generated
scaffolding at runtime, the scaffolding reflects changes in the database. With our generated code, the
scaffolding gives a one-time benefit, but must be maintained thereafter.

4.3.2. The Best of Both Worlds

Most Rails developers use both kinds of scaffolding. The scaffold method helps when you're revising
your Active Record models quickly, because it reflects database changes in the user interface. Later,
you can generate scaffolding and flesh out your controllers and user interfaces, starting from a
foundation of generated code. Using both in combination is a powerful way to work.

Scaffolding does have its limits, though. You get a one-size-fits-all user interface and controller. It's
not going to be right for all purposes, and it's not complete. One of the biggest deficiencies of
scaffolding is the lack of relationship management. Scaffolding does not take relationships in the
existing model under consideration when creating the scaffold.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.4. Moving Forward

In this chapter, we generated scaffolding for a primitive user interface. But there are limits to the
scaffolding code. It doesn't manage relationships, so you can't see or edit the photos associated with
a category or the slides in a slideshow. The views are also ugly and incomplete. In the next chapter,
we'll start to remedy the problems. We'll use the generated scaffolding as a base and build a more
complete user interface. Photo Share is moving quickly, and we're not about to slow down.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 5. Extending Views
So far, you've experienced amazing power in a short time. Rails Active Record has let you build
surprisingly capable models with no more than a handful of lines of code. Scaffolding used the
metaprogramming capabilities of Ruby in concert with the metadata in Active Record to instantly slap
a web face on our database tables. The Rails generators and glue code kept the structure consistent
and provided the necessary tools to develop and debug the application at every step of the way. Now
that we have scaffolding in place for our database tables, its time to start replacing that scaffolding
interface with a prettier interfaceone that lets us manipulate the relationships between our tables.

This will happen faster than you might think; now the fun really begins, as our web application's user
interface rapidly take shape. In this chapter, you will see how to:

Take control of the views rendered through scaffolding

Handle relationships in our views

Manage layouts

Make a simple change to Rails routing

Manage styles

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.1. The Big Picture

Let's step back for a moment to examine the processing steps that occur from the time the server
receives a URL request to when Rails finally returns the resulting HTML response (affectionately know
as the big picture):

The web server receives a request from the browser. A request consists mostly of a URL and
some optional parameters (which may or may not be part of the URL).

1.

The web server is normally configured to serve static resources (like images and stylesheets)
directly.

2.

If the URL does not match a static resource, the web server sends it to the Rails application for
handling. The exact mechanism for doing this depends on both the specific web server and
interface protocol that the Rails application is using (CGI, FCGI, SCGI, and so on).

3.

Once the request gets delivered to the Rails application, regardless of the delivery mechanism,
it is handled exactly the same way.

4.

Rails parses the URL to determine the controller, action, and parameters for the request. With
Rails routing, parts of the URL can specify additional parameters, and the entire routing process
is under your control. Routing rules work the same on any web server because Rails controls all
URL processing with the code in config/routes.rb, without relying on the web server.

5.

The default routing (if you don't modify the routing rules) is http://<base-
url>/<controller>/<action>/<id>. So a URL like http://www.coolsite.com/product/order/23

calls the order method (the action) in the ProductsController class (the controller) with an id
parameter set to the value 23.

6.

The router calls the target action method in the target controller. The action method retrieves
any needed data from any business logic in Active Record models, Action Web Services, or other
backend APIs. The action method then assigns that incoming data to instance variables (like
@accounts or @order). Rails automatically makes any instance variables created in the action
method available to the views.

7.

The action method either lets the default view template render the response, specifies a view
template to render, or redirects the response to another URL. Most commonly, the action
renders the default view template, which has the same name as the action.

8.

Rails renders a view template to create the HTML response text that is sent back to the
browser. A view template may generate the entire HTML response, but more likely is that the
controller will have specified a layout template that is rendered first, with the contents of the
view template being inserted into the layout. Layouts make it easy to include headers, footers,
and other content that should appear on every page.

9.

10.

http://www.coolsite.com/product/order/23
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The view template can also cause other small templates, called partials, to be rendered and
inserted into the view template's output. This approach is great for rendering elements than are
used on more than one page or multiple times on a single page because the code won't have to
be duplicated.

10.

After combining the rendered output of the layout, view template, and any partials invoked by
the view template, the resulting HTML response text is sent back to the browser.

11.

Figure 5-1 shows how Rails handles an HTTP request.

Figure 5-1. Handling an HTTP request

This chapter touches briefly on routing, but focuses on Steps 6 through 10. Later, we'll introduce
Ajax, a richer model for building web-based user interfaces. The Ajax model will change this flow, but
not by much. First, let's work on those features of Photo Share that need attention.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.2. Seeing Real Photos

This chapter is highly dependent on previous chapters, so if you are implementing this Photo Share
application as you read, make sure that you are starting this chapter with the same source code that
we have. For example, in the previous chapter, when you generated the scaffolding for each of the
database tables, you could easily have let the scaffold generator overwrite the model classes in which
we had specified the relationships between the tables.

The easiest way to make sure you are starting with the right code is to download our ZIP file that
contains everything we have done up to this point. You can find this file on the book's web site:
http://www.oreilly.com/catalog/rubyrails. You will want to update config/database.yml to specify

your database configuration.

You also need some real photos to display. That same ZIP file contains sample photos, in the
public/images/photos directory.

And, finally, make sure that your database contains the same data as ours. Use
db/create_tables_with_data.sql to recreate the tables and data in your Photo Share database.

http://www.oreilly.com/catalog/rubyrails
http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.3. View Templates

Photo Share is supposed to be a web application for storing photos, but so far the scaffolding shows
only boring filenames. To make that change, we'll work with view templates and controllers. Edit the
file app/views/photos/show.rhtml, which is the view template created by the scaffold generator. If
you have used template languages like ASP or JSP[*] before, you will recognize the syntax for
embedding executable code within the HTML template. In this case, Rails is using the ERb (Embedded
Ruby) template system for embedding Ruby code within an HTML template. As you recall, text
between <% and %> is Ruby code that is executed, text between <%= and %> is a Ruby expression, and
the results from executing that code is inserted into the HTML when ERb evaluates the template.

[*] ASP is Microsoft's Active Server Pages, and JSP is Sun's Java Server Pages: both are HTML template systems.

Insert this line at the beginning of app/views/photos/show.rhtml:

 <%= image_tag 'photos/' + @photo.filename %>

This line calls the Rails helper function image_tag, which generates an HTML tag for the photo's
filename. By default, images are expected to be in the public/images directory of our Rails app, but
the photos are in public/images/photos, so prefix the filename with photos/.@photo contains the
database record for the photos that we want to display and that was set by the photos controller:

 def show
 @photo = Photo.find(params[:id])
 end

Let's see how this looks. Make sure that the web server is started, browse to
http://127.0.0.1:3000/photos/list, and click on the Show link for any of the pictures. Now that
(Figure 5-2) is much niceran actual picture!

Figure 5-2. Showing an actual photo

http://127.0.0.1:3000/photos/list
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Now that you can see the images, it's time to go back and beautify the photo/list page. Do this by
including the thumbnail image in place of the filename, and make it clickable, as a link to the show
page. This strategy lets you eliminate almost everything else about the photo and enables the user
go to the show page to see the details. Edit app/views/photos/list.rhtml to look like this:

 <h1>Listing photos</h1>

 <table>
 <% for photo in @photos %>
 <tr>
 <td>
 <%= link_to(image_tag("photos/#{photo.thumbnail}",
 :size => '75x56',
 :border => 1),
 url_for(:action => 'show', :id => photo)
)
 %>
 </td>
 <td>
 <%=h photo.filename %>

 <%= link_to 'delete me', { :action => 'destroy', :id => photo },
 :confirm => 'Are you sure?' %>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 </td>
 </tr>
 <% end %>
 </table>

 <%= link_to 'Previous page', { :page => @photo_pages.current.previous }
if @photo_pages.current.previous %>
 <%= link_to 'Next page', { :page => @photo_pages.current.next } if
 @photo_pages.current.next %>

 <%= link_to 'New photo', :action => 'new' %>

There is a lot going on in this code, so we will go through it in considerable detail, but first, let's just
see how it looks. Browse to http://127.0.0.1:3000/photos/list; you should see something like Figure
5-3. This is starting to look halfway decent.

Figure 5-3. Thumbnails in the photo list

http://127.0.0.1:3000/photos/list
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Let's examine that code in detail:

<% for photo in @photos %>

Rails executes the code between <% and %>, looping through each database row contained in
@photos, which contains a list of Photo objects set by the controller. Each Photo, in turn, is
assigned to photo.

"photos/#{photo.thumbnail}"

Ruby allows single quotes and double quotes to delimit strings. Ruby evaluates the contents of
strings with double quotes, but not single quotes. That evaluation pass will process
substitutions. In this example, Ruby substitutes the result of photo.thumbnail, at execution
time, for #{photo.thumbnail}, so this expression is exactly the same as 'photos/' +
photo.thumbnail.

<%= link_to(image_tag(...), url_for(...)) %>

The link_to helper function creates a hyperlink. The first parameter is link text or the image to
display, and the second parameter is the target URL for the link.[*]

[*] In Ruby, these parentheses are optional as long as the resulting code is not ambiguous. We include
parentheses in this case because the parameters to link_to are themselves method calls.

image_tag("photos/#{photo.thumbnail}",

 :size => '75x56',
 :border => 1)>

The image_tag helper function creates an image tag. The first parameter is the path to the thumbnail,
and those remaining specify attributes for the image tag.

url_for(:action => 'show', :id => photo)

The url_for helper creates a URL that targets a given controller and action. Omit the
controller, so that Rails defaults to the controller invoking the view. You need the ID of the
photo to show, so use the photo object. Rails will substitute the ID of that object.

<%=h photo.filename %>

The h method creates properly escaped HTML text, so characters like < become <.[] This
line displays the photo's filename, making sure that any special characters are properly
escaped. We could have used <%= h(photo.filename) %>, but this style is more common

http://lib.ommolketab.ir
http://lib.ommolketab.ir

because it makes the h call look more like its part of the tag.

[] When you include user-entered text from the database, you want escaped text because you don't
know what characters it could contain. A user could accidentally or maliciously enter text that's
interpreted as a database command. Malicious attacks that enter SQL commands into text boxes are
called SQL injection attacks.

<%= link_to 'delete me', { :action => 'destroy', :id => photo },
 :confirm => 'Are you sure?' %>

Here the link_to method is used again. This time it creates a link to the destroy method of the
current controller, but with a twist. We use the :confirm option, which creates a JavaScript
pop-up dialog in the browser asking "Are you sure?" If the user answers "OK," the link is
taken, and the photo entry is destroyed. If the user cancels, then nothing further happens.

<%= link_to 'Previous page', { :page => @photo_pages.current.previous }

Rails supplies pagination helpers to break long lists into multiple pages with Next and Previous
buttons.

def list

@photo_pages, @photos = paginate :photos, :per_page => 10

end

This controller code, not shown in the example, calls the paginate method with two
parameters. The first (:photos) says to read rows from the photos database table, and the
second (:per_page => 10) says to read these rows in groups of 10.

The paginate method returns two values: @photo_pages, which captures the current page while
implementing next and previous, and @photos, which is the list of database rows (photos) for
the page currently in view. You'll get a previous page if one exists.

if @photo_pages.current.previous %>

Our original code creates a link to the previous page of photos (using the @photo_pages object),
but only if there actually is a previous page. Ruby will conditionally executes a line if you
append an if expression at the end of the line.

<%= link_to 'New photo', :action => 'new' %>

You should be able to figure this one out by now. This creates a link to the new action in the
current controller.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.3.1. Layouts

You may have noticed that the HTML pages that we created are incomplete. Rails uses a feature
called layouts to let you specify a common set of display elements for every page rendered by a
controller. This feature is typically useful for common headers, footers, and sidebars. By default, Rails
looks in its app/view/layouts directory for an RHTML file whose name matches the controller's name.

Take a look at app/views/layouts/photos.rhtml; you should see something like this:

 <html>
 <head>
 <title>Photos: <%= controller.action_name %></title>
 <%= stylesheet_link_tag 'scaffold' %>
 </head>
 <body>
 <p style="color: green"><%= flash[:notice] %></p>

 <%= @content_for_layout %>

 </body>
 </html>

This is the layout template for photos controller. The HTML output created by any action in the
photos controller is inserted into the layout where you see the line:

 <%= @content_for_layout %>

and sent back to the browser for display. The end result is a valid HTML page.

Let's modify this layout to add some common links that will show at the bottom of every page. Edit
app/views/layouts/photos.rhtml, and insert the following code just before the </body> tag:

<div style="background-color:LightBlue">
<p>

 <%= link_to 'Photos', :controller => 'photos', :action => 'list' %>

 <%= link_to 'Categories', :controller => 'categories', :action => 'list' %>

 <%= link_to 'Slideshows', :controller => 'slideshows', :action => 'list' %>
</p>
</div>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This layout displays a simple navigation bar with links to the pages that list the photos, categories,
and slideshows. This navigation bar appears at the bottom of every page displayed by the photos
controller.

Browse to http://127.0.0.1:3000/photos/list; you should see a web page like the one in Figure 5-4.
Try clicking the new photo link or any of the thumbnails, and notice that the navigation remains at
the bottom of the page.

Figure 5-4. Common navigation bar

This navigation bar is good, but it still has a few problems. First, it appears only when you are in the
photos controller. If a user clicks on the Categories or Slideshows links, the navigation will be gone.
You really want the same layout to appear throughout. Second, you should move the navigation bar
to the top of the page so that it doesn't seem to jump around as users move from page to page.

By default, Rails looks for a layout file with the same name as the controller, which is why we added
our navigation bar in the app/views/layouts/photos.rhtml file. You can also tell Rails what layout file
to use. We'll do that, not directly in the various controller classes, but in the common parent class for
all of the controllers.

The common superclass for all of the controllers is defined in app/controllers/application.rb. Edit this
file and add layout 'standard' to the class body so that it looks like this:

class ApplicationController < ActionController::Base
 layout 'standard'
end

http://127.0.0.1:3000/photos/list
http://lib.ommolketab.ir
http://lib.ommolketab.ir

This tells Rails to use a layout named "standard" instead of the default name. And putting this in the
superclass is the same as putting it in each controller individually. This approach is better, of course,
because you don't have to duplicate the code, and if you add a new controller in the future, it will
automatically use the same layout.

Now let's create the layout template. Create app/views/layouts/standard.rhtml with the following
content:

<html>
<head>
 <title>Photo Share</title>
 <%= stylesheet_link_tag 'scaffold' %>
</head>
<body>
 <div style="background-color:LightBlue">
 <p>

 <%= link_to 'Photos', :controller => 'photos', :action => 'list' %>

 <%= link_to 'Categories', :controller => 'categories', :action => 'list' %>

 <%= link_to 'Slideshows', :controller => 'slideshows', :action => 'list' %>
 </p>
 </div>

 <p style="color: green"><%= flash[:notice] %></p>

 <%= @content_for_layout %>

</body>
</html>

You probably recognize this text as pure HTML, with a few simple Ruby expressions to link to the list
actions for photos, categories, and slideshows. This layout is the same as photos.rhtml, except that
the navigation bar has been moved to the top of the page. Now you can click on any link, and every
page in this Photo Share application will have this navigation bar at the top.

We no longer need the other layout files in app/views/layouts, so delete all of them, except for
standard.rhtml.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.4. Setting the Default Root

Typing http://127.0.0.1:3000/photos/list or http://localhost:3000/photos/list is getting tedious. It
would be easier to use http://127.0.0.1:3000/ and be directed to whatever page you want to
designate as the starting page. Rails handles all of the URL mapping itself, so you can easily shorten
redundant URLs. config/routes.rb controls the routing for the application, so you need to edit this file
and find this section of comments:

You can have the root of your site routed by hooking up ''
-- just remember to delete public/index.html.
map.connect '', :controller => "welcome"

Now, uncomment the last line and change it to:

map.connect '', :controller => "photos", :action => "list"

With this new routing rule, any time Rails sees an empty URL (represented by the '' parameter), it
should invoke the list action in the photos controller. Before this change will work, you need to
delete the public/index.html file. If you don't, the web server will serve up index.html instead of
list.rhtml whenever you browse to http://127.0.0.1:3000/. Because the index.html is static, Rails will
never get called.

Now try browsing to http://127.0.0.1:3000/; you should see a nice new photos/list page, complete
with thumbnails and navigation bar.

http://127.0.0.1:3000/photos/list
http://localhost:3000/photos/list
http://127.0.0.1:3000/
http://127.0.0.1:3000/
http://127.0.0.1:3000/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.5. Stylesheets

Currently, to change the styling of the application, you have to change each individual HTML element.
If you've used much HTML, you know that our current design will make design work tedious and error
prone. Before we get too far along beautifying our Photo Share application, we should start using
stylesheets to keep all styling in one place. First, we'll create an overall application stylesheet where
we will move the styles for our navigation bar and set a background color for all pages. Then we'll
create a special stylesheet for specifying styles for our photos and thumbnails.

Rails creates a scaffold.css file that contains the basic styling used by generated scaffolding code.
Let's use this as a starting point for our application's overall stylesheet. Copy the file
public/stylesheets/scaffold.css and name this copy public/stylesheets/application.css .

First, change the background color to a very light gray by adding background: #eee; to the section
starting body, p, ol, ul, td {. Then add a .navbar section to style the navigation bar. When you're
done, the beginning of application.css should look like this:

body { background-color: #fff; color: #333; }

body, p, ol, ul, td {
 font-family: verdana, arial, helvetica, sans-serif;
 font-size: 13px;
 line-height: 18px;
 background: #eee;
}

.navbar {
 padding: 7px;
 padding-bottom: 12px;
 margin-bottom: 20px;
 background-color: LightBlue;
}

pre {

Now you need to edit the standard layout file (standard.rhtml) and replace the styling information
for the navigation bar with a reference to the stylesheet. Edit app/views/layouts/standard.rhtml to
look like this:

<html>
<head>
 <title>Photo Share</title>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <%= stylesheet_link_tag
 'application' %>
</head>
<body>
 <div>
 <p class="navbar">

 <%= link_to 'Photos', :controller => 'photos', :action => 'list' %>

 <%= link_to 'Categories', :controller => 'categories', :action => 'list' %>

 <%= link_to 'Slideshows', :controller => 'slideshows', :action => 'list' %>
 </p>
 </div>

 <p style="color: green"><%= flash[:notice] %></p>

 <%= @content_for_layout %>

</body>
</html>

The two changes are highlighted in bold. stylesheet_link_tag creates a link to the application.css
file; adding class="navbar" to the paragraph tag displays it with our .navbar styles.

Let's see how this looks. If you browse to http://127.0.0.1:3000/; it should look like Figure 5-5.

Now let's style the photo thumbnails to have a visual frame. Create the file
public/stylesheets/photos.css containing this:

#thumbnail {
 padding: 1em;
 background: #ddd;
 border: thin solid #333;
}

Figure 5-5. Using a stylesheet

http://127.0.0.1:3000/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Edit app/views/layouts/standard.rhtml and add <%= stylesheet_link_tag 'photos' %> right after the
existing stylesheet tag. Then edit app/views/photos/list.rhtml and add an :id => 'thumbnail'
attribute to the image tag. That part of list.rhtml should look like this:

<%= link_to(image_tag("photos/#{photo.thumbnail}",
 :size => '75x56',
 :border => 1,
 :id => 'thumbnail'),
 url_for(:action => 'show', :id => photo)
)
%>

Browse to http://127.0.0.1:3000/ and it should look like Figure 5-6.

Figure 5-6. Using a stylesheet to display borders on the pictures

http://127.0.0.1:3000/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Things are starting to look pretty good.[*] Now we need to assign photos to categories. Also, we
must be able to create and edit categories.

[*] The borders will look a little different in Microsoft's Internet Explorer (as opposed to Firefox, shown here), due to differences in

CSS handling.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.6. Hierarchical Categories

When we generated scaffold code for categories, we got some basic CRUD screens. But they ignore
the fact that our categories are hierarchical. The basic problem is every category item has a parent
(except for the root category), and there is no way in the CRUD screens to specify the parent of a
category.

For now, we are going to fix this in a very simple way that will get you get up and running quickly.
There will be plenty of time later for a fancier user interface.

Every category has a name, but these names are not always individually unique because they are
qualified by their parents in the hierarchy. For example, you might have two categories named Car,
but one of them might have a parent named Bruce while the other has a parent named Curt. A
unique identifier for a category would prefix the category name with all of its parents. So for these
two Car categories, we might have long names like Root:Bruce:Car and Root:Curt:Car.

Let's implement this attribute as a long_name attribute in our Category model. Edit
app/models/category.rb to look like this (the new lines are in bold):

class Category < ActiveRecord::Base
 has_and_belongs_to_many :photos
 acts_as_tree
 def ancestors_name
 if parent
 parent.ancestors_name + parent.name + ':'
 else
 ""
 end
 end

 def long_name
 ancestors_name + name
 end
end

The long_name method returns a string that is the concatenation of the names of all of its parents
with its own name. ancestors_name is a recursive method that concatenates all of the parent names
with a ":" separator.

You can see this working on our category list page. Edit the categories controller,
app/controllers/categories_controller.rb, and change the list action to this:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

def list
 @all_categories = Category.find(:all, :order=>"name")
end

Notice that we got rid of the pagination, and that we are sorting the categories by name.

Now edit the corresponding view template, app/views/categories/list.rhtml, to look like this:

<h1>Listing categories</h1>

<table>
 <tr>
 <th>Name</th>
 </tr>

<% for category in @all_categories %>
 <tr>
 <td><%=h category.long_name %></td>
 <td><%= link_to 'Edit', :action => 'edit', :id => category %></td>
 <td><%= link_to 'Destroy', { :action => 'destroy', :id => category },
 :confirm => 'Are you sure?' %></td>
 </tr>
<% end %>
</table>

<%= link_to 'New category', :action => 'new' %>

The new code is in bold, and the code dealing with pagination and displaying multiple columns has
been removed; plus, the show link was removed because the show page doesn't display anything you
can't already see on the list page.

The second bolded line calls the new long_name method.

Figure 5-7 shows what you should see when you browse to http://127.0.0.1:3000/categories/list

Figure 5-7. Showing category hierarchy

http://127.0.0.1:3000/categories/list
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Now you need to modify creating and editing a category to let you pick the category's parent. Both
actions use app/views/categories/_form.rhtml to display a category form, so that's the only view
template you need to modify:

<%= error_messages_for 'category' %>

<!--[form:category]-->
<p><label for="category_name">Name</label>

<%= text_field 'category', 'name' %></p>

<p><label for="category_parent_id">Parent Category</label>

<%= collection_select(:category, :parent_id,
 @all_categories, :id, :long_name) %></p>
<!--[eoform:category]-->

Again, the code in bold is new. This code uses the form helper collection_select, which generates
HTML <select> and <option> tags to create a drop-down select list.

The first two parameters to collection_select give the name of the database table and column
whose value this control will set. The remaining three parameters specify the list of choices the user
will have. @all_categories is a list of objects containing the valid choices. :id and :long_name specify
the object attributes that get the key value and display value for each choice.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

For this new form to work, you need to set @all_categories in the controller for the edit and new
methods:

def new
 @category = Category.new
 @all_categories = Category.find(:all, :order=>"name")
 end

...

 def edit
 @category = Category.find(params[:id])
 @all_categories = Category.find(:all, :order=>"name")
 end

Click the Edit link for any category to see the results of your handiwork (Figure 5-8).

Figure 5-8. Drop-down category selection

5.6.1. Assign a Category to a Photo

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Let's update our photo CRUD pages so you can assign categories to a photo. For now, we will take a
simple approach like we did with categories.

As with categories, both the edit photo and new photo pages use a common partial view template
named _form.rhtml. As mentioned earlier, a partial is small template that does not render an entire
page, but just a small, reusable element. This is great for rendering elements that are used on more
than one page because the code won't have to be duplicated. Edit the file
app/views/photos/_form.rhtml, and add the following to the end (just before the HTML comment):

<p>
 <label for="categories">Categories:</label>

 <select id="categories" name="categories[]" multiple="multiple"
 size="10" style="width:250px;">
 <%= options_from_collection_for_select(@all_categories,
 :id, :long_name,
 @selected) %>
 </select>
</p>

This code creates a multiple-selection HTML list box populated with the category objects in the
instance variable @all_categories using the id of each category as the select option's value and the
long_name of each category as the select option's display text. Additionally, each category ID in
@selected is displayed as already selected.

Next, you need to add code to the photos controller to set @all_categories and @selected and then
grab the form results that are posted back to update the database. Edit
app/controllers/photos_controller.rb, and change the edit and update methods to look like this (new
lines are in bold):

def edit
 @photo = Photo.find(params[:id])
 @all_categories = Category.find(:all, :order=>"name")
 @selected = @photo.categories.collect { |cat| cat.id.to_i }
end

def update
 @photo = Photo.find(params[:id])
 @photo.categories = Category.find(params[:categories]) if params[:categories]
 if @photo.update_attributes(params[:photo])
 flash[:notice] = 'Photo was successfully updated.'
 redirect_to :action => 'show', :id => @photo
 else
 render :action => 'edit'
 end
end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

The edit method first retrieves the photo object that has the target ID and then gets a list of all
categories, ordered by name. Finally, it assigns a @selected a list of IDs for all categories already
assigned to this photo. @photo.categories returns a list of category objects, one for each category
assigned to the photo. The Ruby collect method iterates through that list and, using the attached
block of code, creates a new list consisting of just the category IDs (cat.id) converted to an integer
(cat.id.to_i).

When the user saves changes to the edited photo, the form data is directed to the update method.
params[:categories] contains a list of the selected categories (or nil if no categories were selected).
The new if modifier we just added to the update method prevents the line from being executed when
there are no selected categories.

Category.find(params[:categories]) returns a list of category objects, one for each category ID in
params[:categories]. This category list is then assigned to the target photo's categories attribute.

Let's now make a very similar set of changes to the new and create methods. The only difference is
that a new photo doesn't have any existing selected categories, so the @selected variable is not set:

def new
 @photo = Photo.new
 @all_categories = Category.find(:all, :order=>"name")
 @selected = []
end

def create
 @photo = Photo.new(params[:photo])
 @photo.categories = Category.find(params[:categories]) if params[:categories]
 if @photo.save
 flash[:notice] = 'Photo was successfully created.'
 redirect_to :action => 'list'
 else
 @all_categories = Category.find(:all, :order=>"name")
 render :action => 'new'
 end
end

Again, the new lines are bold.

That's all there is to it. You can now assign multiple categories to each photo. Give it a try! You
should be starting to see how easy it is to incrementally build out your Photo Share application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.7. Styling the Slideshows

Now that you've implemented a complex relationship, it's time to spice things up a bit. Let's take
stock of where we are with the Photo Share application:

We have created a common layout that displays navigation links on every page to the three
major areas: photos, categories, and slideshows.

The pages that deal with photos look pretty good.

The pages that deal with categories are functional, but could use some improvement.

We're using cascading stylesheets to specify the visual styling of our pages and their elements.

We haven't yet done anything with the slideshows, which are still using the generated scaffolding. The
page that displays a list of all slideshows is the focal point that links to all the things you can do with
slideshows: create them, edit them, delete them, and play them. Fixing up this page will have the
tremendous visual impact, so this is a good place to start.

Currently, the list slideshows page looks like Figure 5-9 . This is definitely ugly!

Figure 5-9. Current (ugly) slideshow listing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In the process of getting to this goal, you will learn about many new features. At the moment we've
defined only one slideshow, but later on you can create more slideshows.

The slideshow controller's list action already gets the needed information from the database, so you
don't need to modify app/controllers/slideshows_controller.rb . The list method looks like this:

def list
 @slideshow_pages, @slideshows = paginate :slideshows, :per_page => 10
end

You'll want to use the @slideshows instance variable in your view template because it contains a list of
Slideshow objects to display. You've seen this code before; it is used (in this case) to break up long
lists of slideshows into bite-sized chunks.

Edit the view template (app/views/slideshows/list.rhtml) to make it look like this:

<div id="rubyrails-summaries">
 <% for slideshow in @slideshows %>
 <div id="rubyrails-summary">
 <div id='slideshow-caption'>
 <%= slideshow.name %>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <small>(<%= slideshow.slides.size %> slides)</small>
 </div>

 <div id="rubyrails-thumbnails">
 <%= thumbnail_tag slideshow.slides[0] %>
 <%= thumbnail_tag slideshow.slides[1] %>
 <%= thumbnail_tag slideshow.slides[2] %>
 . . .
 </div>

 <div id="rubyrails-controls">
 <small>
 <%= link_to 'Play', :action => 'show', :id => slideshow %>
 <%= link_to 'Edit', :action => 'edit', :id => slideshow %>
 <%= link_to 'Delete', :action => 'destroy', :id => slideshow %>
 </small>
 </div>
 </div>

 <% end %>

 <%= link_to 'Previous page',
 { :page => @slideshow_pages.current.previous }
if @slideshow_pages.current.previous %>

 <%= link_to 'Next page',
 { :page => @slideshow_pages.current.next } if @slideshow_pages.current.next %>
</div>

Figure 5-10 shows how it should look when we're done.

Figure 5-10. Better-looking slideshow listing

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This first thing you should notice is that we are using nested <div> tags instead of tables to format the
contents. Using <div> tags gives you a lot more flexibility and power when specifying the styling
options in the CSS stylesheet. Each display element is contained within its own <div> section with a
unique id attribute. You'll use these same div names in the stylesheet to determine how each
element is displayed. We'll create the stylesheet shortly, but first let's go through the code in this
template:

<% for slideshow in @slideshows %>

You saw this line before in the photos list template. It loops through each database row contained in
@slideshows (which was set by the controller), assigning each, in turn, to slideshow :

<div id='slideshow-caption'>
 <%= slideshow.name %>
 <small>(<%= slideshow.slides.size %> slides)</small>
</div>

This div is simply a caption block that displays the name of the slideshow along with the number of
photos it contains:

<div id="rubyrails-thumbnails">
 <%= thumbnail_tag slideshow.slides[0] %>
 <%= thumbnail_tag slideshow.slides[1] %>
 <%= thumbnail_tag slideshow.slides[2] %>
 . . .
</div>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

This div shows a little preview of the slideshow by displaying the thumbnails of the first three photos
in the slideshow:

<div id="rubyrails-controls">
 <small>
 <%= link_to 'Play', :action => 'show', :id => slideshow %>
 <%= link_to 'Edit', :action => 'edit', :id => slideshow %>
 <%= link_to 'Delete', :action => 'destroy', :id => slideshow %>
 </small>
</div>

Once again, this div should be self-explanatory. It displays a block of links for operating on this
particular slideshow. It includes links to play, edit, and delete the slideshow.

When you try to list slideshows, this code breaks. Rails does not have a helper function to display
thumbnails, but we'll remedy that next.

5.7.1. Creating Your Own Helper Functions

Rails has many built-in helper functions to assist in creating the HTML that is sent back to the
browser, and we have used many of them in our Photo Share application. You can also create your
own helper functions.

You can create two kinds of helper functions. Helper functions that you want to be accessible from
any controller or view template are application-level helper functions; they go in the file
app/helpers/application_helper.rb . Helper functions that are specific to a particular controller go in
app/helpers/ <controller-name> _helper.rb .

We need to implement the thumbnail_tag helper that we used earlier. Because it's specific to the
slideshows_controller , we'll add it to app/helpers/slideshows_helper.rb . All views rendered by the
slideshows_controller will be able to use this helper. Edit app/helpers/slideshows_helper.rb , and
add the following code inside the module definition:

 def thumbnail_tag(slide)
 image_tag "photos/#{slide.photo.thumbnail}" if slide
 end

The meat of the method calls the built-in helper function image_tag , passing the path to the slide's
thumbnail, thus creating the proper image tag. You may have noticed that the view code assumes
that there are at least three slides in a slideshow. Because some slideshows may be shorter, you need
to allow for nil , so add the if slide modifier at the end. Because nil evaluates to false , execute
this line of code only if you're given a slide.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.7.2. Creating the Stylesheet

Remember that we set up our view template with id= attributes: for example, "slideshow-summary"
and "slideshow-thumbnails" . This organization lets you create matching entries in your stylesheet to
specify their display attributes.

First, let's see what the Slideshows Listing page looks like before you create the stylesheet. Then
you'll really appreciate how easily a stylesheet can improve the look of your page. Make sure the
server is started and browse to http://127.0.0.1:3000/slideshows/list ; you should see something like
Figure 5-11 .

Figure 5-11. Before stylesheet

This page is definitely nicer than the earlier version but not as nice as it could be. Now let's create the
stylesheet. Create the file public/stylesheets/slideshows.css with the following contents:

#slideshow-summaries {
 padding: 0.5em;
 float: left;
 background: #ccc;
 margin-left: auto;
 margin-right: auto;
 border-left: thin solid #777;
 border-bottom: thin solid #777;
 border-top: thin solid #aaa;
 border-right: thin solid #aaa;
}

#slideshow-summary {
 padding: 0.5em;

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 margin: 0.5em;
 width: 25em;
 float: left;
 background: #ddd;
 border-left: thin solid #777;
 border-bottom: thin solid #777;
 border-top: thin solid #aaa;
 border-right: thin solid #aaa;
}

#slideshow-thumbnails {
 padding: 0.50em;
 background: #eee;
 border-left: thin solid #aaa;
 border-bottom: thin solid #aaa;
 border-top: thin solid #777;
 border-right: thin solid #777;
}

#slideshow-caption {
 background: #edd;
 border-left: thin solid #aaa;
 border-bottom: thin solid #aaa;
 border-top: thin solid #777;
 border-right: thin solid #777;
 font-size: 1.0em;
}

#slideshow-controls {
 margin-top: 0.50em;
 padding: 0.25em;
 border-left: thin solid #777;
 border-bottom: thin solid #777;
 border-top: thin solid #aaa;
 border-right: thin solid #aaa;
}

For the most part, these style definitions just set borders and background shading. For Rails to be
able to find the stylesheet, you must include a reference to this stylesheet in your HTML pages. Edit
app/views/layouts/standard.rhtml , and insert:

<%= stylesheet_link_tag 'slideshows' %>

immediately after the other stylesheet references.

Now, if you refresh your browser, you should see something like Figure 5-12 .

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 5-12. After stylesheet

That's much better. We still need to implement the ability to create, edit, and play a slideshow. We'll
tackle these in the next chapter because we're going to use Rails's built-in Ajax facilities to create an
intuitive Ajax user interface. In the next chapter, we'll focus on using Ajax to make this user interface
more interactive, dynamic, and exciting.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 6. Ajax
Ajax is one of the most important emerging trends in web applications. Web sites like Google Maps
and Gmail dramatically demonstrate that web applications do not have to be slow, clunky, page-at-a-
time web forms. Ajax techniques can reclaim some of the fluidity and responsiveness that was lost
when we moved from desktop applications to web applications.

Ajax (which stands for the cryptic "Asynchronous JavaScript and XML") is a technique for building
web pages that are more interactive, exciting, and dynamic. Ajax is asynchronous: JavaScript
libraries can communicate with the server at any time, and the web page need not be frozen while
waiting for a response. Ajax uses JavaScript on the browser, any language on the server, and XML to
specify messages.

When you use this emerging technique, a web page can communicate with the server at any time,
updating only those portions of the display that need it. Users experience more responsive web
pages, with immediate feedback. Even though using Ajax techniques usually requires significantly
more sophisticated design and implementation skills, the benefits to the end user are so great that
Ajax-enabled web applications will soon become the rule, not the exception. Fortunately, Rails makes
Ajax so simple that, for typical cases, using Ajax is almost as easy as not using it.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.1. How Rails Implements Ajax

Rails has a simple, consistent model for how it implements Ajax operations. Once the browser has
rendered and displayed the initial web page, different user actions cause it to display a new web page
(like any traditional web application) or trigger an Ajax operation:

Some trigger fires

This trigger could be the user clicking on a button or link, the user making changes to the data
on a form or in a field, or just a periodic trigger (based on a timer).

The web client calls the server

A JavaScript method, XMLHttpRequest, sends data associated with the trigger to an action
handler on the server. The data might be the ID of a checkbox, the text in an entry field, or a
whole form.

The server does something

The server-side action handlera Rails controller action (for our purposes)-- does something
with the data and returns an HTML fragment to the web client.

The client receives the response

The client-side JavaScript, which Rails creates automatically, receives the HTML fragment and
uses it to update a specified part of the current page's HTML, often the content of a <div> tag.

These steps are the simplest way to use Ajax in a Rails application, but with a little extra work, you
can have the server return any kind of data in response to an Ajax request, and you can create
custom JavaScript in the browser to perform more involved interactions. We'll stick to HTML
fragments in this chapter.

Rails uses the Prototype and script.aculo.us JavaScript libraries to implement browser support for
Ajax. You can use these libraries independently of Rails, but with their seamless integration with
Rails, you probably won't want to. Throughout this chapter, we'll exploit the Ajax and special-effects
capabilities that come with Rails to implement missing features in our Photo Share application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.2. Playing a Slideshow

Let's see what happens when we try to play a slideshow. Browse to
http://127.0.0.1:3000/slideshows/list, and click the Play link for our only slideshow. As you can see
in Figure 6-1, this URL invokes the show action on the slideshow controller, but the action is still
using the scaffold code.

Figure 6-1. Playing a slideshow that still uses scaffolding

We need to change this page to actually "play" the slideshow by sequentially displaying the pictures
contained in the slideshow. To do this, we will initially display the first picture in the slideshow; then,
once every two seconds, we'll make an Ajax call to get and display the next picture.

The controller sets up all the slides in a slideshow for playback. You need to start @slideshow with the
current slideshow set to play. You also need to put the current slide (initially, 0) and the whole
slideshow into a holding area called the session, so you won't have to read from the database each

http://127.0.0.1:3000/slideshows/list
http://lib.ommolketab.ir
http://lib.ommolketab.ir

time you play a new slide. Edit the slideshows controller (app/controllers/slideshows_controller.rb),
and modify the show method to look like this:

 def show
 @slideshow = Slideshow.find(params[:id])
 session[:slideshow] = @slideshow
 session[:slide_index] = 0
 @slide = @slideshow.slides[0]
 end

Every two seconds in this code, the browser sends an Ajax request to get the next slide. You can't
use instance variables to keep track of where you are in the slideshow because instance variables
exist only until you finish processing the current request. Use the Rails-provided session object
instead, which is persistent across requests. Let's look at this code in a little more detail.

session[:slideshow] = @slideshow stores a reference to the current slideshow in the session hash at
the key :slideshow. We do the same thing with the index of the current slide that is being played. We
initially set the slide_index to zero to point to the first slide, and our Ajax request increments the
index by one as it displays each slide. We can retrieve these values from the session hash during the
Ajax requests for the next slide.

Now, edit the view template (app/views/slideshows/show.rhtml) to look like this:

 <p><i><%= @slideshow.name %></i></p>

 <div id="slides">
 <%= render :partial => "show_slide" %>
 </div>

 <%= periodically_call_remote :update => 'slides',
 :url => { :action => :show_slide },
 :frequency => 2.0 %>

This RHTML template contains three things: a title line, the div that displays the current slide, and a
magic Ajax incantation that we will now pick apart.

The periodically_call_remote Rails helper function creates JavaScript that periodically sends a
request to the server and uses the HTML fragment that is returned to replace the content of the
update target. In this case, the update target is an HTML element with an ID of 'slides', which is a
<div> tag. The returned HTML fragment replaces the contents of this <div> tag. The URL that makes
the request is constructed to ensure that it will be routed to the show_slide method of the current
controller (the slideshows controller). Finally, the frequency parameter makes the call once every
two seconds. All Ajax help functions take their parameters in key/value pairs, so you can list the
parameters in any order.

We need to display each slide as it comes back to the client; Rails uses a partial HTML template to do

http://lib.ommolketab.ir
http://lib.ommolketab.ir

this work. To create the partial view template, place the following contents in a new file called
app/views/slideshows/_show_slide.rhtml:

 <%= image_tag "photos/#{@slide.photo.filename}" %>
 <p><%= @slide.photo.filename %></p>

And its controller method in app/controllers/slideshows_controller.rb:

 def show_slide
 @slideshow = session[:slideshow]
 session[:slide_index] += 1
 @slide = @slideshow.slides[session[:slide_index]]
 if @slide == nil
 session[:slide_index] = 0
 @slide = @slideshow.slides[0]
 end
 render :partial => "show_slide"
 end

This method retrieves the slideshow information from the session, moves to the next slide (or back to
the beginning if at the end), and then explicitly renders the partial view template show_slide. You
need to render a partial view or render with the option :render_layout => false. Otherwise, Rails
tries to render a full template, including layout. As our page already has a layout, simply render a
partial template, consisting of an image tag for the slide, and its name.

Finally, you need to update your standard layout template to include script tags for the Prototype
JavaScript library because the client-side JavaScript code that Rails creates for you uses them, so in
app/views/layouts/standard.rhtml, insert this line immediately after the title tags:

 <%= javascript_include_tag 'prototype', 'effects', 'dragdrop' %>

This line includes three JavaScript files that are shipped with Rails: prototype.js and two
Script.aculos.us files, effects.js and dragdrop.js. We will use these last two shortly.

Now show a slideshow by loading slideshows/list and clicking Show, and you will see the actual
pictures in the slideshow, changing every two seconds.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.3. Using Drag-and-Drop to Reorder Slides

The scaffolding we have for editing a slideshow shows just the slideshow attributes that are stored
directly in the slideshows table: the slideshow's name and the date on which it was created. The most
important part is missing: the photos that are part of the slideshow!

By now, you've probably realized that this is because the scaffolding code deals with only one
database table: the slideshows table. The relationship data about which photos are assigned to a
slideshow and their order in the slideshow are stored in the slides table. Scaffolding does not handle
relationships, so you have to write the code to edit this relationship data.

We're going to display a list of thumbnails of all the photos that are in a slideshow, and then let the
user reorder them using drag-and-drop. If you've had to struggle through implementing drag-and-
drop before, you're not going to believe how easy this is going to be. Here's a hint: this will take a
total 34 additional lines of Ruby, CSS, and RHTML template!

Let's start by reviewing the current implementation of the edit action in the slideshow controller:

def edit
 @slideshow = Slideshow.find(params[:id])
end

This action expects to find the ID of the slideshow to edit passed in as the id parameter, which is
normally decoded from the URL. You find the slideshow with that ID and assign that slideshow object
to the instance variable @slideshow, so that it can be accessed in the view template.

That is really all that's needed here, so you won't have to add any code to this method. The changes
will start with the edit view template, so edit the template photos/app/views/slideshows/edit.rhtml
and make it look like this (the changes are in bold):

<h1>Editing slideshow</h1>

<%= link_to 'Play this Slideshow',
 :action => 'show', :id => @slideshow %>

<div id='slideshow-contents'>
 <%= render :partial => 'show_slides_draggable' %>
</div>
<div id='slideshow-attributes'>
 <%= start_form_tag :action => 'update', :id => @slideshow %>
 <%= render :partial => 'form' %>

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 <%= submit_tag 'Save Attributes' %>
 <%= end_form_tag %>
</div>

Notice that the existing <%= render :partial => 'form' %> is wrapped in a <div> tag with an id
attribute of slideshow-attributes. You will use this name in one of your CSS files to control how this
section is displayed.

There is also a completely new section that displays thumbnails of the photos in the slideshow:

<div id='slideshow-contents'>
 <%= render :partial => 'show_slides_draggable' %>
</div>

This code also uses a <div> tag with an id attribute, for the same reason: to use a CSS file to control
its appearance. This div also renders a new partial view template named show_slides_draggable,
which we will create next.

Create the file photos/app/views/slideshows/_show_slides_draggable.rhtml with the following
contents:

<ol id='sortable_thumbs'>
 <% for slide in @slideshow.slides %>
 <li id='thumbs_<%= slide.id %>' class='slides'>
 <%= thumbnail_tag slide %>

 <% end %>

<%= sortable_element('sortable_thumbs',
 :url => {:action => 'update_slide_order'}) %>

The first part is pretty standard stuff. We're creating an HTML ordered list, in which each list item is a
thumbnail image of one of the photos in the slideshow (note that the thumbnail_tag helper function
that was created earlier). However, it's the last two lines that do the heavy lifting.

sortable_element is a helper function that generates the JavaScript code that turns our list into a
user-sortable, drag-and-drop-capable list. It wraps this list an HTML form, and the :url option
specifies the URL to post to the server whenever the user changes the order of the list. In this case, it
calls the action method update_slide_order in our slideshow controller. This call works in the
background using an Ajax call.

The update_slide_order method is pretty simple as well. Edit
photos/app/controllers/slideshows_controller.rb, and add this method:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

def update_slide_order
 params[:sortable_thumbs].each_with_index do |id, position|
 Slide.update(id, :position => position)
 end
end

This method iterates through each slide in the list, extracting its ID and position in the list, and uses
this information to update that slide's database row with its new position. Let's walk through this
code in a little more detail:

params is a hash that holds all the parameters sent to the server in the HTTP request.
params[:sortable_thumbs] retrieves the parameter for the sortable_thumbs list, which is an
ordered array of the IDs of each thumbnail in the list.

each_with_index is a Ruby iterator that, just like the each iterator, walks through the array one
item at a time. But on each iteration, each_with_index passes to the code block both the object
held in the array (the slide id) and its index in the array (which is assigned to position).

Slide.update(id, :position => position) then calls the Slide model class to update the slide
identified by id with its new position.

We're almost ready to give it a try, but first let's edit photos/public/stylesheets/slideshows.css and
add some formatting instructions for the two div IDs we created. Add the following at the end of the
file:

#slideshow-contents {
 float: left;
 width: 11em;
 padding: 0.50em;
 text-align: center;
 border-right: thin solid #bbb;
 padding: 0.50em;
 padding-bottom: 10em;
}

#slideshow-attributes {
 margin-left: 23em;
 padding-left: 1.5em;
 padding-top: 1.5em;
}

This causes the contents of the slideshow (which will be a list of thumbnail images) to be displayed
down the left side of the page, and the slideshow's attributes will be displayed immediately to the
right of the thumbnails.

Let's see how this looks. Browse to http://127.0.0.1:3000/slideshows/list, and click the edit link for

http://127.0.0.1:3000/slideshows/list
http://lib.ommolketab.ir
http://lib.ommolketab.ir

our one and only slideshow. It will look like Figure 6-2.

Figure 6-2. A drag-and-drop list of photos

Click on one of the photos, and try dragging it around. When you drop it into a new location,
update_slide_order is called to write the new order to the database.

Let's fix one minor thing here before we move on. Wouldn't it be better to see the number of each
photo appear vertically aligned in the middle of the thumbnail instead of at the bottom? Because the
HTML for each thumbnail image is created by our own helper function, thumbnail_tag, we just need
to edit that function and add a vertical-align style attribute.

First, edit photos/app/helpers/slideshows_helper.rb, and add the code shown in bold:

module SlideshowsHelper
 def thumbnail_tag(slide)
 image_tag("photos/#{slide.photo.thumbnail}",
 :style=>"vertical-align:middle") if slide
 end
end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Now, refresh your browser: the list numbers are nicely centered, as you can see in Figure 6-3.

Figure 6-3. Nicely centered list numbers

With a very small amount of code, we added a very nice drag-and-drop user interface for reordering
the slides in a slideshow. But we're just getting started with our Ajax-enabled user interface.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.4. Drag and Drop Everything (Almost Everything)

We have already displayed a list of thumbnails of all photos that are in the slideshow and enabled the
user to drag them around to rearrange their order in the slideshow. Now let's add a second list of
thumbnails, showing all photos that are not being used in the slideshow.

We'll let the user add a photo to the slideshow by dragging it from the list of unused photos and
dropping it onto the slideshow thumbnails. Similarly, we can enable the user to remove photos from
the slideshow by dragging its thumbnail from the slideshow and dropping on the unused photos list.
Finally, we'll allow the user to filter the unused photos list by category.

As you might expect, we can accomplish all that in a very small amount of code. We will add a mere
58 lines of Ruby code to the models and controllers, 47 lines to the view templates, and 16 lines to
our CSS stylesheet! Figure 6-4 gives you a preview of how this is going to look when we're done.

Figure 6-4. Preview of drag-and-drop slideshow editing

Let's start by updating the slideshow's edit template. Edit photos/app/views/slideshows/edit.rhtml to
look like this:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

<h1>Editing slideshow</h1>

<div id='slideshow-contents'>
 <p style='text-align: center;'>Slideshow Photos</p>
 <div id='slideshow-thumbs'>
 <%= render :partial => 'show_slides_draggable' %>
 </div>
</div>

<div id='slideshow-photo-picker'>
 <p style='text-align: center;'>Unused Photos</p>
 <div id='slideshow-photos'>
 <%= render :partial => 'photo_picker' %>
 </div>
</div>

<div id='slideshow-attributes'>
 <p><%= link_to 'Play this Slideshow', :action => 'show', :id => @slideshow %></p>
 <div style='border: thin solid; padding-left: 1em;'>
 <p style='text-align: center;'>Attributes</p>
 <%= start_form_tag :action => 'update', :id => @slideshow %>
 <%= render :partial => 'form' %>
 <%= submit_tag 'Save Attributes' %>
 <%= end_form_tag %>
 </div>
 <p>
 Hint: Drag and drop photos between the
 two lists to add and remove photos from the
 slideshow. Drag photos within the slideshow to
 rearrange their order.
 </p>
</div>

<%= drop_receiving_element("slideshow-contents",
 :update => "slideshow-thumbs",
 :url => {:action => "add_photo" },
 :accept => "photos",
 :droponempty => "true",
 :loading => visual_effect(:fade),
 :complete => visual_effect(:highlight, 'sortable_thumbs')
) %>

This file has been almost entirely rewritten, so there are no marked-as-changed lines. You can see
that I have laid out this edit page into three sections:

<div id='slideshow-contents'> ... </div>
<div id='slideshow-photo-picker

http://lib.ommolketab.ir
http://lib.ommolketab.ir

'> ... </div>
<div id='slideshow-attributes'> ... </div>

Only the slideshow-photo-picker is new. It shows the list of unused photos that can be added to the
slideshow. We will set up the CSS stylesheet to display these sections side-by-side as you saw them
in Figure 6-4.

slideshow-contents is rendered by the partial template show_slides_draggable, slideshow-photo-
picker is rendered by the partial template photo_picker, and slideshow-attributes is mostly
rendered by the form partial template that was generated from the scaffolding. I say "mostly"
because I added a few things inline around the rendering of form.

Finally, notice two Ajax related helpers: drop_receiving_element and observe_field. We'll come back
to these in a little bit after we have discussed some prerequisite details.

Now, make these changes to photos/app/controllers/slideshows_controller.rb, replacing the edit
method and creating the unused_photos method:

 def edit
 @slideshow = Slideshow.find(params[:id])
 session[:slideshow] = @slideshow
 @photos = unused_photos(@slideshow)
 end

 def unused_photos(slideshow)
 all_photos = Photo.find(:all)
 candidates = []
 for photo in all_photos
 in_slideshow = false
 for slide in slideshow.slides
 if slide.photo.thumbnail === photo.thumbnail
 in_slideshow = true
 break
 end
 end
 candidates << photo if not in_slideshow
 end
 return candidates
 end

The purpose of this code is to retrieve all the data needed by the edit.rhtml view template:

@slideshow = Slideshow.find(params[:id])

The id of the slideshow that you want to edit is passed in the request parameters from the
browser. Here you retrieve that id and read that slideshow from the database, which you store

http://lib.ommolketab.ir
http://lib.ommolketab.ir

in the instance variable @slideshow to make it available to the view template.

session[:slideshow] = @slideshow

Ajax actions requests will be coming in as the user makes changes, and you need to know what
slideshow to change. This line saves a reference to the slideshow in the session hash. I'm using
a key value of :slideshow to save and retrieve this from the session, but that value is arbitrary
and could have been any unique identifier.

@photos = unused_photos(@slideshow)

This line calls the new method unused_photos to retrieve a list of all photos that are not in the
slideshow; it then saves that list in @photos.

def unused_photos(slideshow)

This method returns a list of photos that are not in the slideshow. The logic should be self-
explanatory. First, create an empty array (candidates = []), and then iterate through the list
of all photos, adding them to the array (candidates << photo) if they are not already in the
slideshow. The technique used here is grossly inefficient, but it will suffice for our purposes.

We still need to create the photo_picker template that generates the HTML to display all the photos
that can still be added to a slideshow, so go ahead and create the file
photos/app/views/slideshows/_photo_picker.rhtml with this in it:

<% for photo in @photos %>
 <%= image_tag("photos/#{photo.thumbnail}",
 :style => "vertical-align: middle",
 :id => "photo_#{photo.id}",
 :class => "photos") %>
 <%= draggable_element "photo_#{photo.id}", :revert => true %>
<% end %>

This template iterates through the list of photos in @photos. For each photo, it uses the image_tag
helper to create an HTML image tag and the draggable_element helper to generate the JavaScript
code that makes it draggable. You can see that the first parameter of draggable_element matches the
value of the id attribute (:id => "photo_#{photo.id}") on the image tag. The draggable_element
helper expects the id of the HTML element that it should make draggable, followed by zero or more
options. The single option used here (:revert => true) says to move the element back to its original
position after it is dropped.

But where can these draggable images be dropped? Recall that at the end of the slideshow's
edit.rthtml template we had:

<%= drop_receiving_element("slideshow-contents",
 :update => "slideshow-thumbs",

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 :url => {:action => "add_photo" },
 :accept => "photos",
 :droponempty => "true",
 :loading => visual_effect(:fade),
 :complete => visual_effect(:highlight, 'sortable_thumbs')
) %>

Just like the draggable_element helper, the drop_receiving_element helper expects the ID of the
HTML element onto which you can drop something that was declared as draggable. The remaining
parameters are options that given as name/value pairs (the order is not important). These options
are doing a lot, so let's go through them one at a time:

:update => "slideshow-thumbs"

This gives the ID of the HTML element that should be updated when a photo is dropped on our
slideshow-contents div. The :position and :url options say how, and with what, that HTML
element should be updated. When the :position option is omitted (as it is here), the HTML
returned from the server replaces the target element's HTML. The :position option says that
the returned HTML should be inserted into target element, instead of replacing it. The value
:position can be specified as :before, :top, :bottom, and :after.

:url => {:action => "add_photo" }

This option constructs the URL that is sent to the server (via a background Ajax request) when
a photo is dropped (you've seen this before). This executes the add_photo method in the
current controller (the SlideshowsController). The add_photo action adds the dropped photo to
the slideshow and returns an HTML fragment that will replace the existing HTML in the target
element, which, as you will see, is a rerendering of the slideshow's contents, which now include
the added photo.

:accept => "photos"

Without this option, you could drop any draggable element here. However, this line says that
only HTML elements that have the class attribute "photos" can be dropped here. Remember
that in our photo picker template we gave each photo class attribute of "photos".

:droponempty => "true"

This option says that the user can drop photos here even if the target is completely empty.

:loading => visual_effect(:fade) :complete => visual_effect(:highlight,
'sortable_thumbs')

:loading and :complete (plus a few more events) specify client-side JavaScript event handlers
that are executed at specific points in the progress of the Ajax request. In both cases, we are

http://lib.ommolketab.ir
http://lib.ommolketab.ir

displaying a visual effect that gives the user positive feedback. The :loading event occurs
when the browser begins loading the response, and the :complete event occurs when its all
finished. The code specifies that the dropped photo will fade until it becomes invisible. It also
highlights the target area on which the photo was dropped.

Now we need to create the add_photo method to actually add a dropped photo to the slideshow. Edit
photos/app/controllers/slideshows_controller.rb, and add this:

 def add_photo
 slideshow_id = session[:slideshow].id
 photo_id = params[:id].split("_")[1]
 slide = Slide.new()
 slide.photo_id = photo_id
 slide.slideshow_id = slideshow_id
 if !slide.save
 flash[:notice] = 'Error: unable to add photo.'
 end
 @slideshow = Slideshow.find(slideshow_id)
 session[:slideshow] = @slideshow
 render_partial 'show_slides_draggable'
 end

Let's walk through this code:

slideshow_id = session[:slideshow].id

This line retrieves the current slideshow from the session hash and gets the slideshow's id.

photo_id = params[:id].split("_")[1]

The id attribute of the dropped photo get passed as the :id parameter. If you recall from the
photo_picker template, we set those ids to values such as "photo_1" and "photo_19", so the
remainder of this line of code splits the string on the underscore, grabs the second half, and
assigns it to photo_id.

The next five lines create a new slide, assign to it the photo id and the slideshow id, and then save it
to the database.

Finally, we render and return the show_slides_draggable partial, after setting @slideshow to the
current slideshow (which is needed by the partial template).

All that code handles dragging new photos to add to the slideshow. Now we just need to add a little
more code to implement dragging a photo from the slideshow to the unused photos list as an intuitive
way to remove photos from the slideshow.

The displayed list of photos in the slideshow are already draggable because we made them into a
sortable list. The only problem with the current implementation is that the photos can be dragged

http://lib.ommolketab.ir
http://lib.ommolketab.ir

vertically only. They need to be dragged both vertically for reordering and horizontally to the unused
photos column.

We can drag the photos only vertically because the default option for a sortable list is :constraint =>
'vertical'. Fortunately, you can change this by editing the file
photos/app/views/slideshows/_show_slides_draggable.rhtml and changing the call to the
sortable_element helper to add this :constraint option:

<%= sortable_element('sortable_thumbs',
 :url => {:action => 'update_slide_order'},
 :constraint => '') %>

Now you can drag those photos anywhere. But you still need to make the unused photos list into a
drop receiver that uses Ajax to remove the dropped photo from the slideshow.

To do so, edit photos/app/views/slideshows/edit.rhtml, and add this at the end:

<%= drop_receiving_element("slideshow-photo-picker",
 :update => "slideshow-photos",
 :url => {:action => "remove_slide" },
 :accept => "slides",
 :droponempty => "true",
 :loading => visual_effect(:fade),
 :complete => visual_effect(:highlight, 'slideshow-photos')
) %>

This code is almost identical to the other drop_receiving_element we used. The difference is that the
target is the slideshow-photo-picker, and the action taken on a drop is to call the remove_slide
method. Also, notice that you can drop only "slides" here (that is, HTML elements with a class
attribute of slides). If you go back and take a look at how we defined the partial template
photos/app/views/slideshows/_show_slides_draggable.rhtml, you will see that we did, indeed, make
each item in the sortable list a slide.

Add the remove_slide method to photos/app/controllers/slideshows_controller.rb:

def remove_slide
 slideshow_id = session[:slideshow].id
 slide_id = params[:id].split("_")[1]
 Slide.delete(slide_id)
 @slideshow = Slideshow.find(slideshow_id)
 session[:slideshow] = @slideshow
 @photos = unused_photos(@slideshow)
 render_partial 'photo_picker'
end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

In this code, you get the id of slide you want to remove, and then delete it from the slide database
table. Remember, this action does not delete the photo from the database. The slide data says what
photos are in a given slideshow, and deleting an entry from the slide table removes that slide from its
slideshow. Finally, you render the HTML for the photo picker, which now includes the removed slide.

I'll bet you're anxious to see all this in action. All you need to do is to update the style sheet and then
try it out. Edit photos/public/stylesheets/slideshows.css, and add the following:

#slideshow-photo-picker {
 float: left;
 width: 10em;
 text-align: center;
 border-right: thin solid #bbb;
 padding: 0.50em;
 padding-bottom: 10em;
}

img.thumbnail {
 border: 2px solid black;
 margin-bottom: 1em;
}

img.photos {
 border: 2px solid black;
 margin-bottom: 1em;
}

Whew! That's it: try it now!

The first thing you'll notice is that the Unused Photos section is empty (see Figure 6-5). That's
because all the photos are currently in the slideshow. Just drag a few of the slides out of the
slideshow and drop them into the Unused Photos column; then you'll have something more like
Figure 6-6.

Figure 6-5. Drag and drop add and remove

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure 6-6. Some unused photos

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

6.5. Filtering by Category

Displaying all unused photos might seem acceptable right now, but we have only nine photos. If there
were 900, it would quickly become unusable. So, our final feature in this chapter will be to display
only the unused photos in a particular category.

The first thing to do in our controller is get a list of all categories that can populate the drop-down
selection box. Edit photos/app/controllers/slideshows_controller.rb, and add this line to the end of
the edit method:

@all_categories = Category.find(:all, :order=>"name")

This line retrieves a list of categories that can populate a drop-down selection box that the user will
use to display only those unused photos that are in the selected category.

Now, edit photos/app/views/slideshows/edit.rhtml, and add this right after the 'Play this
Slideshow' line:

<p>
 <label for="category_id">Filter "Unused Photos" on this Category</label>

 <%= collection_select(:category, :id, @all_categories, :id, :long_name) %>
 <%= observe_field(:category_id,
 :frequency => 2.0,
 :update => 'slideshow-photos',
 :url => { :action => 'change_filter'},
 :with => 'category_id') %>
</p>

The collection_select helper is normally used inside an HTML form, but here we are using it
because it conveniently knows how to display a collection in a drop-down box. It will never be
submitted as part of a form.

As shown, the observe_field helper checks the category drop-down box for changes every two
seconds. When a change is detected, an Ajax request is fired off to the change_filter method, which
returns new HTML (that has been appropriately filtered) to replace the slideshow-photos section.

The Category model class automatically shows a collection of all photos that are in a particular
category. However, we need to get a collection of photos that are in a given category and in all of its
child categories.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Edit photos/app/models/category.rb, and add this method:

def photos_including_child_categories
 result = photos.clone
 children.each do |c|
 c.photos_including_child_categories.each {|p|
 result << p if not result.include? p}
 end
 result
end

This method recursively collects a list of all photos in its own category and all of its child categories.
You can use this in to get the list of unused photos to display.

In the meantime, edit photos/app/controllers/slideshows_controller.rb to add the change_filter
method:

 def change_filter
 slideshow_id = session[:slideshow].id
 category_id = params[:category_id] || 1
 session[:category_id] = category_id
 @slideshow = Slideshow.find(slideshow_id)
 session[:slideshow] = @slideshow
 @photos = unused_photos(@slideshow)
 render_partial 'photo_picker'
 end

This method stores the chosen category id in the session hash, retrieves a new list of unused photos,
and then renders the photo_picker. Notice the bold code line in the previous code. This line tries to
retrieve the category id from the request parameters. If there aren't any parameters,
params[:category_id] returns nil, and the || operator returns the rightmost argument ("1" in this
case).

Also, in this slideshow controller, we need to update the method that retrieves the unused photos to
pay attention to the category setting. Do so by editing the unused_photos method; then replace the
line all_photos = Photo.find(:all) with the following:

category_id = session[:category_id] || 1
session[:category_id] = category_id
category = Category.find(category_id)
all_photos = category.photos_including_child_categories

We're done; we've added category filtering! Fire up your browser, and try it (you may need to assign

http://lib.ommolketab.ir
http://lib.ommolketab.ir

some categories to some unused photos). Now it looks like Figure 6-7.

Figure 6-7. Filtering on categories

We've come a long way in a very short time. With fewer than 200 lines of code, we've added drag-
and-drop capability to add and reorder slides. We've also added the core capability to actually show a
slideshow. Ajax made our application much easier to use and more attractive. Next, we'll look into
testing this application.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Chapter 7. Testing
You probably always write automated tests for all your software ... or feel guilty for skipping them.
Dynamically typed languages such as Ruby don't have a compile step that can catch errors, as Java
or C++ does. Well, you'll be happy to know that Ruby on Rails makes automated testing very easy.
In Rails, testing is not something that was bolted on afterwards. Testing has been built in from the
very beginning. Rails was designed to be testable and to produce applications that are testable. It is
so easy to create automated tests for a Rails appli187cation that you should feel guilty if you don't!

We've come this far with our Photo Share web application, but we haven't yet created any tests. In
truth, this was deliberate. You had enough new things to learn as it was. But now it is time to rectify
that oversight and start adding tests to our application. So let's skip the guilt and code some tests.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.1. Background

Instead of wasting time running through the litany of reasons why automated testing is probably the
single most important thing you can do to increase the quality and reliability of your software, we'll
get right down to it. If you haven't gotten the testing religion yet, just Google for "benefits
automated testing."

Rails encourages you to create a well-tested application by actively generating default test cases and
setting up scripts and tools to run three different kinds of tests. For example, when you use
script/generate to create your models and controllers, Rails also generates skeleton test files for you
to fill out with tests for your application. Rails also includes convenient console commands for running
your tests.

Rails has a number of features that make it easy to test your application. In particular, Rails uses a
separate runtime database dedicated to testing and can automatically populate the test database
with fresh sample data (that you provide) before each test. Testing database-driven applications has
always been a headache for developers, but Rails has managed to make it relatively painless.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.2. Ruby's Test::Unit

Ruby uses a testing framework known as Test::Unit (sometimes referred to as test/unit) to run your
application's tests. Test::Unit is similar to the xUnit frameworks that you find in other programming
languages, and implements four major concepts:

An assertion is a single line of code that evaluates an expression and tests the results against an
expected value. For example, you might assert that a password is at least six characters long;
failing an assertion fails the associated test.

A test is a method, whose name begins with test_, that contains a number of related assertions
that, taken together, test one small piece of your application. For example,
test_for_disallowed_passwords might contain assertions that verify that bad passwords are
rejected (such as a password that is too short, contains all spaces, or is the word "password").

A test case class is a subclass of Test::Unit::TestCase that contains a collection of test
methods designed to test a functional area of your application. For our photo share application,
we might have a test case class that tests everything having to do with categories.

A test suite is a collection of test cases. When you run a test suite, it executes the tests in each
test case that it contains. You won't need to use this with Rails applications, because Rails
handles the task of running all your test cases.

Suppose you have the following non-Rails class:

class BasicNumber

 def initialize(number)
 @value = number
 end

 def add(x)
 @value + x
 end

 def multiply(x)
 @value * x
 end

end

Here is an example of a set of tests for this class:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

require "basic_number.rb"
require "test/unit"

class TestBasicNumber < Test::Unit::TestCase

 def test_basic_add
 num = BasicNumber.new(16)
 assert_equal(20, num.add(4))
 assert_equal(0, num.add(-16))
 # this test will fail, to show what happens on failure
 assert_equal(100, num.add(99), "Adding 99 doesn't work")
 end

 def test_basic_multiply
 num = BasicNumber.new(16)
 assert_equal(32, num.multiply(2))
 assert_equal(8, num.multiply(0.5))
 end

end

When you run this test file, it produces this output:

>ruby test_basic_number.rb
Loaded suite test_basic_number
Started
F.
Finished in 0.015 seconds.

 1) Failure:
test_basic_add(TestBasicNumber) [test_basic_number.rb:11]:
Adding 99 doesn't work.
<100> expected but was
<115>.

2 tests, 5 assertions, 1 failures, 0 errors

When you run the test class, it automatically runs all the tests. You don't need to explicitly call a test
runner or create a test suite. Just subclassing Test::Unit::TestCase and running the file causes the
tests to be executed.

Test::Unit provides a large number of assertions you can use, and Table 7-1 shows the main ones.
Most assert methods take an optional message parameter. If a message is included, then that
message is displayed if its assertion fails.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Table 7-1. Commonly used assertions

Assertion Description

assert(boolean, [msg]) Passes if boolean is true

assert_equal(expected, actual, [msg])

assert_not_equal(expected, actual,
[msg])

Passes if expected == actual

assert_match(pattern, string, [msg])

assert_no_match(pattern, string, [msg]
)

Passes if string =~ pattern

assert_nil(object, [msg])

assert_not_nil(object, [msg])
Passes if object == nil

assert_instance_of(class, object, [msg]
)

assert_kind_of(class, object, [msg])

Passes if object.class == class

Passes if object.kind_of?(class)

assert_raise(Exception, ...) {block}

assert_nothing_raised(Exception, ...)
{block}

Passes if the block raises (or doesn't) one of the listed
exceptions

You can define two special methods in your test case class: setup and teardown. Just before each test
method is executed, setup is called to allow you to set up the environment for the test (open a
database connection, load test data, and so on). Likewise, immediately after each test method
returns, teardown is called to clean up and release any resources acquired by setup.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.3. Testing in Rails

Rails extends the Test::Unit framework to include new assertion methods that are specific to web
applications and to the Ruby on Rails framework. Rails also provides explicit higher-level support for
testing by including a consistent method for loading test data and a mechanism for running different
types of test.

7.3.1. Unit Tests, Functional Tests, and Integration Tests

In Rails, these three types of tests have very specific meanings that may differ from what you
expect:

Unit tests are for testing models.

Functional tests are for testing controllers.

Integration tests are for testing higher-level scenarios that exercise interactions between
controllers.

Look at your Photo Share application's directory tree, and you'll find that it contains a test
subdirectory. All tests reside under this test subdirectory, which has several subdirectories of its own:

unit

Holds all unit tests.

functional

Holds all functional tests.

integration

Holds all integration tests.

fixtures

Contains sample data for all tests (more on this later).

Take a look at photos/test/unit, and you'll see that it already contains category_test.rb,
photo_test.rb, slide_test.rb, and slideshow_test.rb. These are test case skeletons created by Rails

http://lib.ommolketab.ir
http://lib.ommolketab.ir

when we generated our model classes. But before you can start filling these skeleton test files, you
first need to understand Rails' environments and fixtures.

7.3.1.1. Environments

We software developers have always distinguished between code running in some form of
development mode versus production mode. Development mode usually offers features such as
active debugging, logging, and array bounds checking. These all add unnecessary overhead, so you
should normally strip those conveniences out of your delivered production code.

This distinction of development versus production has usually been informal and ad hoc. As
introduced in Chapter 2, Rails formalizes this practice using what it calls environments. Rails comes
with three predefined environments: development, test, and production. You can also define new
environments if you like, but most developers don't.

Each environment can have its own database and runtime settings. For example, in production mode,
you usually want as much caching as possible to maximize performance, but in development mode,
you want all caching disabled so that you can make a change and then immediately see it work. The
predefined Rails environments have the default settings that make sense for each environment.

There are several ways to tell Rails what environment to use:

Set the operating system environment variable RAILS_ENV to 'development', 'production', or
'test'.

Specify the environment value in config/environment.rb with a line of Ruby code like this:
ENV['RAILS_ENV'] = 'production'.

Use the -e option on the script/server script to start the WEBrick server. For example,
script/server -e production starts the web server in production mode. Development mode is
the default.

Take a look at the Photo Share application's config/environments directory and you will find three
files: development.rb, test.rb, and production.rb. Each file contains the settings for its environment.
These default environments are pretty well thought out, and it is unlikely that you will need to change
them. But you should change the database settings for each environment. At the beginning of this
book, we set up the development database, and now we need to set up the test database. Edit
config/database.yml, and make sure that the test section looks like this:

test:
 adapter: mysql
 database: photos_test
 username: <your userid>
 password: <your password>
 socket: localhost

Start the mysql command prompt (mysql -u <username> -p <password>). Then, create a database

http://lib.ommolketab.ir
http://lib.ommolketab.ir

called photos_test:

mysql> create database photos_test;
Query OK, 1 row affected (0.05 sec)

Now we can use a built-in feature of Rails to clone the database schema from the production
database to the test database. Open a console window, navigate to the root directory of the Photo
Share application, and run the command:

>rake db:test:clone_structure

You now have a test database that is identical to the development database, except that the tables
do not contain any data. Getting data into these tables to use in our test is what fixtures are all
about.

7.3.1.2. Fixtures

Fixtures contain test data that Rails loads into your models before executing each test. You create
your fixture data in the test/fixtures directory, and they can be in either CSV (comma-separated
value) or YAML (YAML Ain't Markup Language) format.

YAML is the preferred format because it is so simple and readable, consisting mostly of
keyword/value pairs. CSV files are useful when you have existing data in a database or spreadsheet
that you can export to CSV format.

Fixtures for a particular database table should have the same filename as the database table name.
So, to have fixtures for our photos database table, you would have a photos.yml file in the
test/fixtures directory. Rails created a placeholder photos.yml when you created the photos model.
Edit this existing test/fixtures/photos.yml file, and replace its contents with this:

train_photo:
 id: 1
 filename: train.jpg
 created_at: 2006-04-01 03:20:49
 thumbnail: t_train.jpg
 description: This is a cool train!

lighthouse_photo:
 id: 2
 filename: lighthouse.jpg
 created_at: 2006-04-02 14:58:49
 thumbnail: t_lighthouse.jpg
 description: My favorite lighthouse.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

YAML is sensitive to whitespace, so be sure to use spaces instead of tabs, and eliminate any trailing
spaces or tabs. These same two fixtures in CSV format look like this in a photos.csv file (in CSV
format):

id, filename, created_at, thumbnail, description
1, train.jpg, "2006-04-01 03:20:49", t_train.jpg, "This is a cool train!"
2, lighthouse.jpg, "2006-04-02 14:58:49", t_lighthouse.jpg, "My favorite"

In the YAML file, the first line of each fixture is a name that is assigned to that fixture. (A little bit
later, you will see how you can use this name.) The remaining lines are keyword/value pairs, one for
each column in the database table.

Now that we have a test database and some fixtures, we can actually start writing some tests.

7.3.1.3. Unit tests

In Rails, unit tests are for testing your models. The file photos/test/unit/photo_test.rb, for example,
is where to create tests to test the Photo model. Rails created a skeleton of this file when we created
the model. It currently looks like this:

require File.dirname(__FILE__) + '/../test_helper'

class PhotoTest < Test::Unit::TestCase
 fixtures :photos

 # Replace this with your real tests.
 def test_truth
 assert_kind_of Photo, photos(:first)
 end
end

Let's walk through the code a line at a time:

require File.dirname(__FILE__) + '/../test_helper'

There are some serious Ruby idioms in this line of code, but the net result is to instruct Ruby to
require (load) the file test_helper.rb from the parent directory (photos/test). test_helper.rb
activates the Rails environment so that our tests are ready to run. __FILE__ is a special Ruby
constant that contains the full path of the currently executing file. The File.dirname method
takes that full path and removes the filename, returning only the directory path.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

class PhotoTest < Test::Unit::TestCase

This code makes the PhotoTest class a subclass of Test::Unit::TestCase, as is required for
running tests using Test::Unit.

fixtures :photos

This code tells Rails to load sample photo data into the database before each test (any existing
data in the database is purged first). You can load multiple fixtures in one statement like this:
fixtures :photos, :categories, slideshows.

It's finally time to create and run our first test. Edit photos/test/unit/photo_test.rb, and then add this
code in the place of test_truth:

def test_photo_count
 assert_equal 3, Photo.count
end

This test is going to fail because it is asserting that the Photo database table contains three rows, but
photos.yml contains only two. Lets try it and see. Open a command prompt, navigate to the root
directory of our Photo Share application, and run this command:

> rake test:units

You should see the following output:

Started
.F..
Finished in 0.313 seconds.

 1) Failure:
test_photo_count(PhotoTest) [./test/unit/photo_test.rb:7]:
<3> expected but was
<2>.

4 tests, 4 assertions, 1 failures, 0 errors

Remember that the test/units directory contains four test files (even though we have modified only
one of them), so this test ran all four. As expected, our test failed. Let's fix that:

def test_photo_count

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 assert_equal 2, Photo.count
end

When you run the unit tests, you get:

Started
....
Finished in 0.359 seconds.

4 tests, 4 assertions, 0 failures, 0 errors

You know that fixtures are used to populate our database tables. But you can also individually access
each fixture's data using the fixture's name.[*] photos(:train_photo).attributes returns a hash
containing all the keyword/value pairs for the TRain_photo fixture, so
photos(:train_photo).attributes['id'] returns the value of the id property (which is 1). More
interestingly, you can retrieve an entire fixture's entry from the database using its name:

[*] Only the YAML format allows you to name a fixture, so if you use the CSV format, you will not be able to do this.

photo = photos(:train_photo)

Retrieving the TRain_photo object from the database by name is the equivalent to retrieving it by id:

photo = Photo.find(1)

Let's use this feature to add another test to photos/test/unit/photo_test.rb:

def test_photo_content
 assert_equal photos(:train_photo).attributes['id'], 1
 assert_equal photos(:train_photo), Photo.find(1)
 assert_equal photos(:lighthouse_photo).attributes['id'], 2
 assert_equal photos(:lighthouse_photo), Photo.find(2)
end

When you run the unit tests, you get:

Started

http://lib.ommolketab.ir
http://lib.ommolketab.ir

.....
Finished in 0.359 seconds.

5 tests, 8 assertions, 0 failures, 0 errors

Before we move on to functional tests, let's write one more test that exercises our ability to perform
basic CRUD operations with our Photo model. Once again, edit photos/test/unit/photo_test.rb, and
add:

def test_photo_crud
 # create a new photo
 cat = Photo.new
 cat.filename = 'cat.jpg'
 cat.created_at = DateTime.now
 cat.thumbnail = 't_cat.jpg'
 cat.description = 'This is my cat!'

 # save it to the database
 assert cat.save

 # read it back from the database
 assert_not_nil cat2 = Photo.find(cat.id)

 # make sure they are the same
 assert_equal cat, cat2

 # modify this cat and update the database
 cat2.description = 'A ghost of my cat.'
 assert cat2.save

 # delete it from the database
 assert cat2.destroy
end

Let's run the test again and see whether this is going to pass:

Started
......
Finished in 0.594 seconds.

6 tests, 13 assertions, 0 failures, 0 errors

With our guilt suitably assuaged, let's move on to functional tests.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.3.1.4. Functional tests

In Rails, you'll use functional tests to exercise one feature, or function, in your controllers. Functional
and integration tests check the responses to web commands, called http requests. In this section, we
work on functional tests for the photos controller.

We originally created our photos controller by generating scaffolding for it. When you generate
scaffolding for a database table, Rails creates a remarkably complete set of functional tests:

require File.dirname(__FILE__) + '/../test_helper'
require 'photos_controller'

Reraise errors caught by the controller.
class PhotosController; def rescue_action(e) raise e end; end

class PhotosControllerTest < Test::Unit::TestCase
 fixtures :photos

 def setup
 @controller = PhotosController.new
 @request = ActionController::TestRequest.new
 @response = ActionController::TestResponse.new
 end

 def test_index
 get :index
 assert_response :success
 assert_template 'list'
 end

 def test_list
 get :list

 assert_response :success
 assert_template 'list'

 assert_not_nil assigns(:photos)
 end

 def test_show
 get :show, :id => 1

 assert_response :success
 assert_template 'show'

 assert_not_nil assigns(:photo)
 assert assigns(:photo).valid?
 end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 def test_new
 get :new

 assert_response :success
 assert_template 'new'

 assert_not_nil assigns(:photo)
 end
 def test_create
 num_photos = Photo.count

 post :create, :photo => {}

 assert_response :redirect
 assert_redirected_to :action => 'list'

 assert_equal num_photos + 1, Photo.count
 end

 def test_edit
 get :edit, :id => 1

 assert_response :success
 assert_template 'edit'

 assert_not_nil assigns(:photo)
 assert assigns(:photo).valid?
 end

 def test_update
 post :update, :id => 1
 assert_response :redirect
 assert_redirected_to :action => 'show', :id => 1
 end

 def test_destroy
 assert_not_nil Photo.find(1)

 post :destroy, :id => 1
 assert_response :redirect
 assert_redirected_to :action => 'list'

 assert_raise(ActiveRecord::RecordNotFound) {
 Photo.find(1)
 }
 end
end

These tests are in the file photos/test/functional/photos_controller_test.rb and cover the full range of
CRUD operations. The Rails-generated functional tests for our other controllers are very similar.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

You can run the functional tests with the command rake test:functionals but be forewarned that
you will see a lot of errors! You might think that our Photo Share application has many problems, but
the problem is that our tests are simply out of date. Those tests worked perfectly fine when they
were first created and we were using the scaffolding for everything. But since that time, we have
made lots of changes to the code yet never changed the tests to keep up with the evolving code
base. Now we need to fix these tests.

For the purposes of this chapter, we are going to get the photo controller's functional tests working to
give you enough understanding to fix the others yourself. To simplify the test reports, move all
functional tests in photos/test/functional, except for photos_controller_test.rb, to another directory
for safe keeping.

Because you can assign every photo to one or more categories, a lot of the photo controller code also
works with categories. But we don't yet have any test categories, only test photos. So the first thing
to do is to create some fixtures for the categories table and the categories_photos join table.

Edit the file photos/test/fixtures/categories.yml, and replace its contents with this:

all:
 id: 1
 name: All

people:
 id: 2
 name: People
 parent_id: 1

animals:
 id: 3
 name: Animals
 parent_id: 1

things:
 id: 4
 name: Things
 parent_id: 1

Now create the file photos/test/fixtures/categories_photos.yml with this content:

train_category:
 photo_id: 1
 category_id: 4

lighthouse_category:
 photo_id: 2
 category_id: 4

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Finally, edit photos/test/functional/photos_controller_test.rb, and add these two lines at the
beginning of the class definition for CategoriesControllerTest:

fixtures :categories
fixtures :categories_photos

Let's try running our functional tests. From the base directory of our Photo Share application, run this
command:

> rake test:functionals
Started
F.......
Finished in 0.469 seconds.
 1) Failure:
test_create(PhotosControllerTest) [./test/functional/photos_controller_test.rb:5
5]:
Expected response to be a <:redirect>, but was <200>

8 tests, 25 assertions, 1 failures, 0 errors

Hmmm: that wasn't exactly error-free; there was an assertion failure in the method test_create:

def test_create
 num_photos = Photo.count

 post :create, :photo => { }

 assert_response :redirect
 assert_redirected_to :action => 'list'

 assert_equal num_photos + 1, Photo.count
end

This test tries to create a new photo by posting a request to the create action of the current
controller (which is the photo controller). We expected that the create action would save a new photo
to the database and then redirect to the list action. Instead, we got an http 200 response (which is
a normal, everything's OK, response).

A quick look at the create method shows that if the save to the database fails, then the controller
renders and returns the new template, which correctly returns an http 200 response:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

def create
 @photo = Photo.new(params[:photo])
 @photo.categories = Category.find(params[:categories]) if params[:categories]
 if @photo.save
 flash[:notice] = 'Photo was successfully created.'
 redirect_to :action => 'list'
 else
 @all_categories = Category.find(:all, :order=>"name")
 render :action => 'new'
 end
end

Why would the save to the database (@photo.save) fail? Let's take a look at the photo model
(photos/app/models/photo.rb) to see whether that gives us any idea:

class Photo < ActiveRecord::Base
 has_many :slides
 has_and_belongs_to_many :categories
 validates_presence_of :filename
end

If you look closely, you'll see the culprit within the validation: validates_presence_of :filename. This
code will refuse to save any instance of Photo to the database if it does not contain a filename; our
test did not assign a filename. To fix that problem, edit
photos/test/functional/photos_controller_test.rb to look like this:

def test_create
 num_photos = Photo.count

 post :create, :photo => {:filename => 'myphoto.jpg'}

 assert_response :redirect
 assert_redirected_to :action => 'list'

 assert_equal num_photos + 1, Photo.count
end

When you run the functional tests again, you'll see:

> rake test:functionals
Started
........
Finished in 0.468 seconds.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

8 tests, 28 assertions, 0 failures, 0 errors

Excellent. All the functional tests for the photos controller are now succeeding.

Did you notice that functional tests for the photos controller use a lot of assertions that are not part
of Test::Unit but seem to be specific to web development (assert_redirected_to) and even specific
to Rails (assert_template)? Rails provides these additional assertions. Table 7-2 shows all of the
extra assertions provided by Rails.

Table 7-2. Rails-supplied assertions

Assertion Description

assert_dom_equal

assert_dom_not_equal
Asserts that two HTML strings are logically equivalent.

assert_generates Asserts that the provided options can generate the provided path.

assert_tag
Asserts that there is a tag/node/element in the body of the response that
meets all the given conditions.

assert_recognizes Asserts that the routing rules successfully parse the given URL path.

assert_redirected_to Asserts that the response is a redirect to the specified destination.

assert_response
Asserts that the response was the given HTTP status code (or range of
status codes).

assert_routing Asserts that path (URL) and options match both ways.

assert_template Asserts that the request was rendered with the specified template file.

assert_valid Asserts that the provided record is valid by active record standards.

7.3.1.5. Integration tests

Integration tests are a new feature in Rails 1.1. Integration tests are higher-level scenario tests that
verify the interactions between the application's actions, across all controllers.

As you might have guessed by now, integration tests live in the test/integration directory and are run
using the command rake test:integration.

Our Photo Share application hasn't yet been developed to the point where integration tests would be
useful. Here, instead, is a hypothetical integration test to give you a feel for what they are like:

require "#{File.dirname(__FILE__)}/../test_helper"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

class UserManagementTest < ActionController::IntegrationTest
 fixtures :users, :preferences

 def test_register_new_user
 get "/login"
 assert_response :success
 assert_template "login/index"

 get "/register"
 assert_response :success
 assert_template "register/index"

 post "/register",
 :user_name => "happyjoe",
 :password => "neversad"
 assert_response :redirect
 follow_redirect!
 assert_response :success
 assert_template "welcome"
end

This test leads its application through the series of web pages that a new user would go through to
register with the site. You can see that the scenario being tested is pretty easy to follow:

Send an HTTP GET request for the /login page. Now check to see whether the request was
successful and whether the response was rendered by the expected template.

1.

Simulate the user clicking on the "register" button or link by sending an HTTP GET request for
the /register page. Again, check for the proper response.

2.

Simulate the new user filling out and submitting the registration form by sending an HTTP POST
request that includes user_name and password field values. Now verify that the response is a
redirect, follow the redirect, and verify that you successfully end up on the welcome page.

3.

Integration tests can be used to duplicate bugs that have been reported. Then, when you fix the bug,
you will know it because your test will start succeeding. Plus, you then have a test in place that will
alert you if the same bug ever reappears.

7.3.2. Advanced Testing

Rails provides an impressive level of support for testing. But just in case that's not enough for you,
here are a couple of third-party testing tools that are really on the cutting edge and worthy of your
attention.

7.3.2.1. ZenTest

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Self-described as "testing on steroids," ZenTest provides a set of integrated testing tools to automate
and streamline your testing. For example, autotest monitors your projects files for changes. When
autotest detects a change, it automatically runs the appropriate test to verify that the change has not
broken anything.

You can learn more about ZenTest at http://www.zenspider.com/ZSS/Products/ZenTest/.

7.3.2.2. Selenium

Selenium is a testing tool written specifically for web applications. Selenium tests run directly in a
browser, just as real applications do, provided it's a modern browser that supports JavaScript. As
such, it is an ideal tool for testing the Ajax features of a web application.

You can learn more about Selenium on its home page at http://www.openqa.org/selenium/. IBM's
developerWorks has a good article on using Selenium with Ruby on Rails at the following address:
http://www-128.ibm.com/developerworks/java/library/wa-selenium-ajax/index.html.

http://www.zenspider.com/ZSS/Products/ZenTest/
http://www.openqa.org/selenium/
http://www-128.ibm.com/developerworks/java/library/wa-selenium-ajax/index.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

7.4. Wrapping Up

Testing concludes our whirlwind tour through the Rails framework. We've barely scratched the
surface. Photo Share is not nearly complete. We could have easily added:

Security, with the Rails login generator or one of the other login products. With a security
model, you can let each user manage and share her own set of photos, instead of having one
community model.

Uploading photos. You need to let the user upload photos with some other means, but Rails
provides excellent support for simple tasks such as file uploads.

Deployment. We've not even touched on pushing the Photo Share application into production,
but good tools such as Capistrano (http://manuals.rubyonrails.com/read/book/17) allow one-
click deployment and also one-click reversal of changes.

Comments and blogging. You can allow discussion about slides and slideshows. Simple support
isn't difficult, but you can also build in the Typo blogging engine.

We've decided that these changes are beyond the scope of a quick-start book, but this list provides a
sample of the community that's rapidly developing behind Rails. After this pass through Photo Share,
you doubtlessly will be excited about doing more. In the appendixes that follow, we'll give you
another whirlwind tour of what's available and how to find more information.

In Rails, an idea is rapidly crystallizing before our eyes as a real force in this industry, but this
phenomenon is unlike anything you've ever seen before. So far, this explosion is happening within
the open source community, without major commercial investment, and with an amazing amount of
contribution from increasingly diverse contributors. The growth is fueled by a core of smart
developers who understand that beautiful software can also be powerful, that useful development
environments don't need to come from a corporation, and that real innovation doesn't always take
the path you expect. We hope you've experienced a taste of what is to come. The rules are all
changing. Welcome to the new game.

Only the YAML format allows you to name a fixture, so if you use the CSV format, you will not be able
to do this.

http://manuals.rubyonrails.com/read/book/17
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix A. Installing Rails
Ruby on Rails makes developing web applications easier and more productive than ever before. Not
surprisingly, getting a Ruby on Rails development environment installed is pretty easy as well.

This appendix will show you how to get a Rails development environment installed. But be
forewarned: this is a very short appendix because getting started is pretty darn easy.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

1.1. Windows

We present two options for a Windows installation of Ruby on Rails: Instant Rails and RadRails alone
and Instant Rails plus the Rad Rails IDE.

1.1.1. Instant Rails

The easiest way to get started on Windows is to use Instant Rails. Instant Rails (Figure A-1) is a one-
stop Rails runtime solution containing Ruby, Rails, Apache, and MySQL, all preconfigured and ready
to run. There is no installer, you simply unzip it into the directory of your choice and run it. It does
not modify your system environment.

Figure A-1. Instant Rails

For more details about Instant Rails, go to the Instant Rails home page at
http://instantrails.rubyforge.org:

Download and unzip the latest version of the Instant Rails ZIP file from:
http://rubyforge.org/frs/?group_id=904.

1.

Make sure that the installation path (to the directory into which you unzip the archive) does not
contain any space characters, and then start InstantRails.exe.

2.

Instant Rails will detect that it is being started from a new directory and ask whether you want
to have it update the paths in the all of the configuration files. Click Yes.

3.

Click on the "I" button (or press the Alt key twice) to display the main menu.4.

That's all there is to it!

http://instantrails.rubyforge.org
http://rubyforge.org/frs/?group_id=904
http://lib.ommolketab.ir
http://lib.ommolketab.ir

4.

Instant Rails includes the cookbook Rails application from the ONLamp.com article "Rolling with Ruby
on Rails" (http://www.onlamp.com/pub/a/onlamp/2005/01/20/rails.html). The cookbook application
is included as a preinstalled sample application. There is also a version of this tutorial that was
rewritten to be specific to Instant Rails available at http://instantrails.rubyforge.org/wiki/wiki.pl?
Rolling_With_Ruby_On_Instant_Rails_Tutorial. Instant Rails also includes the Photo Share application
from this book.

Instant Rails includes the Apache web server, which you won't use until later in the development of a
Rails application, when you want to more closely duplicate your final deployment environment.
During development, it is easiest use Ruby's built-in web server, WEBrick, or the new Ruby Mongrel
server.

So, for example, to run the cookbook application, execute the Instant Rails menu command Rails
Applications Manage Rails Applications..., select the checkbox next to the cookbook application,
and press the "Start with WEBrick" button. When you browse to http://127.0.0.1:3000/, you will see
the cookbook application.

Instant Rails includes the One-Click Ruby Installer for Windows for its Ruby interpreter, which
includes the SciTE text editor with full Ruby syntax highlighting. After installing Instant Rails, you can
find the SciTE executable at InstantRails/ruby/scite/SciTE.exe.

1.1.2. RadRails

If you want more than a simple text editor, then try out the excellent RadRails IDE. RadRails (Figure
A-2) is an Eclipse plug-in and is available as both a standalone IDE (Eclipse with the plug-in
preinstalled) and as a standard Eclipse plug-in at http://www.radrails.org. With RadRails, you get a
full IDE, complete with an integrated GUI debugger.

Figure A-2. RadRails

http://www.onlamp.com/pub/a/onlamp/2005/01/20/rails.html
http://instantrails.rubyforge.org/wiki/wiki.pl?
http://127.0.0.1:3000/
http://www.radrails.org
http://lib.ommolketab.ir
http://lib.ommolketab.ir

After you install RadRails, you have to configure it to work with your Instant Rails installation:

Execute the menu command Window Preferences.1.

Select Ruby Installed Interpreters.2.

Click the Add button, and give the new interpreter instance a name (like "Instant Rails Ruby");
browse to the Ruby executable at InstantRails/ruby/bin/ruby.exe, and click OK.

3.

While still in the preferences dialog, select Ruby->Ri/rdoc and set the Rdoc and Ri paths to
InstantRails/ruby/bin/rdoc and InstantRails/ruby/bin/ri, respectively. This step lets you use the
built-in documentation features of RadRails.

4.

You can create a new skeleton Rails application via the menus with File New... Rails
RailsProject.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

2.1. OS X

The easiest way to get started on OS X is to use Locomotive (Figure A-3), which is very similar to
Instant Rails on Windows, except that it uses the Lighttpd for the web server (instead of Apache) and
SQLite for the database (instead of MySQL). For more details about Locomotive, go to its home page
at http://locomotive.raaum.org.

Figure A-3. RadRails

Download Locomotive from http://sourceforge.net/project/showfiles.php?group_id=146941
(you can also download the "Bundle" version that contains extra libraries, like Rmagick).

1.

Simply drag and drop the file you just downloaded to your Applications folder.2.

This book uses MySQL for the development database, so we recommend that you install and
use MySQL instead of the SQLite included in Locomotive. Download the latest MySQL packages
from http://dev.mysql.com/downloads/ and run the installer.

3.

To start Locomotive, double-click Locomotive.app.4.

That's all there is to it!

2.1.1. TextMate and RadRails

http://locomotive.raaum.org
http://sourceforge.net/project/showfiles.php?group_id=146941
http://dev.mysql.com/downloads/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

The commercial text-editor-on-steroids TextMate (Figure A-4) is very popular with Rails developers
on OS X. Locomotive provides some minimal built-in support for TextMate. You can right-click a Rails
app in Locomotive and choose to open its directory in TextMate.

Figure A-4. TextMate

TextMate is inexpensive, but not free. You can find out more about TextMate here:
http://macromates.com.

If you want more than a pumped-up text editor, you'll be happy to know that the excellent RadRails
IDE also runs on OS X. See the section "RadRails," earlier in this chapter.

Once installed, you can configure RadRails to work with your Locomotive installation by following the
same steps shown in the Windows section of this appendix.

http://macromates.com
http://lib.ommolketab.ir
http://lib.ommolketab.ir

3.1. Linux

There is no one simple way to install a Ruby on Rails development environment on a Linux
distributions. Although the steps may be similar for each distribution, they are different enough that
we will just point you to some external instructions. If you don't find your distribution here, try a
Google search for "installing ruby on rails on <your-distro-here>".

Fedora Core

http://www.digitalmediaminute.com/howto/fc4rails/

Debian

http://www.debian-administration.org/articles/329

Gentoo

http://gentoo-wiki.com/HOWTO_RoR

Ubuntu (Hoary)

http://paulgoscicki.com/archives/2005/09/ruby-on-rails-on-ubuntu/

Ubuntu (Hoary) using XAMPP

http://townx.org/ruby_on_rails_on_xampp_with_fastcgi_for_ubuntu_hoary

SUSE

http://wiki.rubyonrails.org/rails/pages/RailsOnSUSE

http://www.digitalmediaminute.com/howto/fc4rails/
http://www.debian-administration.org/articles/329
http://gentoo-wiki.com/HOWTO_RoR
http://paulgoscicki.com/archives/2005/09/ruby-on-rails-on-ubuntu/
http://townx.org/ruby_on_rails_on_xampp_with_fastcgi_for_ubuntu_hoary
http://wiki.rubyonrails.org/rails/pages/RailsOnSUSE
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Appendix B. Quick Reference
The whole purpose of this book has been to get you up and running quickly with Ruby on Rails.
You've learned how the core pieces of Rails work and how to use Rails to build a basic web
application. Rails contains more features and capabilities than can be covered in a quick-start book
like this. This appendix contains a concise list of the features of Rails with links to more information.

Substantial parts of this quick reference are taken from "What Is Ruby on Rails" by Curt Hibbs,[*] the
"InVisible Ruby On Rails Reference 1.1.2" by InVisible GmbHd,[] and the official Ruby on Rails API
documentation (http://api.rubyonrails.com). This appendix is released under the Creative Commons
license (http://creativecommons.org/licenses/by-sa/2.5/) and can be downloaded from this book's
web site: http://www.oreilly.com/catalog/rubyrails.

[*] "What Is Ruby on Rails" was published at ONLamp.com in October 2005

(http://www.onlamp.com/pub/a/onlamp/2005/10/13/what_is_rails.html).

[] The "InVisible Ruby On Rails Reference 1.1.2" was released under the Creative Commons license. The original version can

be found at http://blog.invisible.ch/files/rails-reference-1.1.html.

http://api.rubyonrails.com
http://creativecommons.org/licenses/by-sa/2.5/
http://www.oreilly.com/catalog/rubyrails
http://www.onlamp.com/pub/a/onlamp/2005/10/13/what_is_rails.html
http://blog.invisible.ch/files/rails-reference-1.1.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.1. General

5.1.1. Documentation

API for local installation

gem_server

http://localhost:8088/

Official Rails API

http://api.rubyonrails.com

Searchable Rails API

http://rails.outertrack.com

http://railshelp.com

Ruby documentation

http://ruby-doc.org

Excellent multi-API documentation

Includes Ruby, Ruby on Rails, HTML, CSS, JavaScript, DOM, and more: http://www.gotapi.com

5.1.2. Supported Web Servers

WEBrick
Mongrel
Lighttpd
Apache
MS IIS

Learn more: http://wiki.rubyonrails.org/rails/pages/FAQ#webservers.

http://localhost:8088/
http://api.rubyonrails.com
http://rails.outertrack.com
http://railshelp.com
http://ruby-doc.org
http://www.gotapi.com
http://wiki.rubyonrails.org/rails/pages/FAQ#webservers
http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.1.3. Supported Databases

DB2
Firebird
MySQL
Oracle
PostgreSQL
SQLite
SQL Server

Learn more: http://wiki.rubyonrails.org/rails/pages/DatabaseDrivers.

5.1.4. Integrated Development Environments (IDEs)

5.1.4.1. Open Source

Eclipse/RDT

http://rubyeclipse.sourceforge.net

FreeRIDE

http://freeride.rubyforge.org

RadRails (built on Eclipse/RDT)

http://www.radrails.org

RDE (Ruby Development Environment)

http://homepage2.nifty.com/sakazuki/rde_e.html

5.1.4.2. Commercial

ArachnoRuby

http://www.ruby-ide.com/ruby/ruby_ide_and_ruby_editor.php

Komodo

http://wiki.rubyonrails.org/rails/pages/DatabaseDrivers
http://rubyeclipse.sourceforge.net
http://freeride.rubyforge.org
http://www.radrails.org
http://homepage2.nifty.com/sakazuki/rde_e.html
http://www.ruby-ide.com/ruby/ruby_ide_and_ruby_editor.php
http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://www.activestate.com/Products/Komodo

5.1.4.3. Editors

Several options

http://wiki.rubyonrails.org/rails/pages/Editors

5.1.4.4. Debugging

Logfiles

Look for the files development.log, test.log, and production.log.

Interactive Rails Console

http://wiki.rubyonrails.com/rails/pages/Console

http://www.clarkware.com/cgi/blosxom/2006/04/04

Breakpoint

http://wiki.rubyonrails.com/rails/pages/HowtoDebugWithBreakpoint

Debuggers

See the IDEs listed earlier.

Rails debug popup

http://www.bigbold.com/snippets/posts/show/697

5.1.5. Create a New Rails Application

rails app_name

Options:

http://www.activestate.com/Products/Komodo
http://wiki.rubyonrails.org/rails/pages/Editors
http://wiki.rubyonrails.com/rails/pages/Console
http://www.clarkware.com/cgi/blosxom/2006/04/04
http://wiki.rubyonrails.com/rails/pages/HowtoDebugWithBreakpoint
http://www.bigbold.com/snippets/posts/show/697
http://lib.ommolketab.ir
http://lib.ommolketab.ir

-d=xxx or --database=xxx

Specify which database to use (mysql, oracle, postgresql, sqlite3, etc.); defaults to mysql.

-r=xxx or --ruby-path=xxx

Specify the path to Ruby; if not set, the scripts use env to find Ruby.

-f

or
-freeze

Freezes Rails into the vendor/rails directory.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.2. Testing

rake test # Test all units and functionals
rake test:functionals # Run tests for functionals
rake test:integration # Run tests for integration
rake test:units # Run tests for units

5.2.1. Unit Tests

rake test:units

Available assertions:

assert_kind_of Class, @var # same class
assert @var # not nil
assert_equal 1, @p.id # equality
@product.destroy
assert_raise(ActiveRecord::RecordNotFound) { Product.find(@product.id) }

5.2.2. Functional Tests

rake test:functionals

5.2.2.1. Requests

get :action # a get request of the specificed action
get :action, :id => 1,
 { session_hash }, # optional session variables
 { flash_hash } # optional messages in the flash

post :action, :foo => { :value1 => 'abc', :value2 => '123' },

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 { :user_id => 17 },
 { :message => 'success' }

get, post, put, delete, head

assert_response :success
possible parameters are:
:success
:redirect
:missing
:error

5.2.2.2. Redirects

assert_redirected_to :action => :other_action
assert_redirected_to :controller => 'foo', :action => 'bar'
assert_redirected_to http://www.invisible.ch

5.2.2.3. Rendered with Template

assert_template "post/index"

5.2.2.4. Variable Assignments

assert_nil assigns(:some_variable)
assert_not_nil assigns(:some_variable)
assert_equal 17, assigns(:posts).size

5.2.2.5. Rendering of Specific Tags

assert_tag :tag => 'body'
assert_tag :content => 'Rails Seminar'
assert_tag :tag => 'div', :attributes => { :class => 'index_list' }
assert_tag :tag => 'head', :parent => { :tag => 'body' }
assert_tag :tag => 'html', :child => { :tag => 'head' }
assert_tag :tag => 'body', :descendant => { :tag => 'div' }
assert_tag :tag => 'ul',

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 :children => { :count => 1..3,
 :only => { :tag => 'li' } }

5.2.3. Integration Tests

rake test:integration

Hypothetical integration test:

require "#{File.dirname(__FILE__)}/../test_helper"

class UserManagementTest < ActionController::IntegrationTest
 fixtures :users, :preferences
 def test_register_new_user
 get "/login"
 assert_response :success
 assert_template "login/index"

 get "/register"
 assert_response :success
 assert_template "register/index"

 post "/register",
 :user_name => "happyjoe",
 :password => "neversad"
 assert_response :redirect
 follow_redirect!
 assert_response :success
 assert_template "welcome"
end

Learn more: http://jamis.jamisbuck.org/articles/2006/03/09/integration-testing-in-rails-1-1.

5.2.4. More on Testing

Learn more: http://manuals.rubyonrails.com/read/book/5.

5.2.4.1. rake

http://jamis.jamisbuck.org/articles/2006/03/09/integration-testing-in-rails-1-1
http://manuals.rubyonrails.com/read/book/5
http://lib.ommolketab.ir
http://lib.ommolketab.ir

rake is the Ruby version of a make utility. Rails defines a number of rake tasks:

rake db:fixtures:load # Load fixtures into the current environment's
 # database
 # Load specific fixtures using FIXTURES=x,y
rake db:migrate # Migrate the database through scripts in
 # db/migrate. Target
 # specific version with VERSION=x
rake db:schema:dump # Create a db/schema.rb file that can be portably
 # used against any DB supported by AR
rake db:schema:load # Load a schema.rb file into the database
rake db:sessions:clear # Clear the sessions table
rake db:sessions:create # Creates a sessions table for use with
 # CGI::Session::ActiveRecordStore
rake db:structure:dump # Dump the database structure to a SQL file
rake db:test:clone # Recreate the test database from the current
 # environment's database schema
rake db:test:clone_structure # Recreate the test databases from the development
 # structure
rake db:test:prepare # Prepare the test database and load the schema
rake db:test:purge # Empty the test database

rake doc:app # Build the app HTML Files
rake doc:clobber_app # Remove rdoc products
rake doc:clobber_plugins # Remove plugin documentation
rake doc:clobber_rails # Remove rdoc products
rake doc:plugins # Generate documation for all installed plugins
rake doc:rails # Build the rails HTML Files
rake doc:reapp # Force a rebuild of the RDOC files
rake doc:rerails # Force a rebuild of the RDOC files

rake log:clear # Truncates all *.log files in log/ to zero bytes

rake rails:freeze:edge # Lock this application to latest Edge Rails. Lock a
 # specific revision with REVISION=X
rake rails:freeze:gems # Lock this application to the current gems (by
 # unpacking them into vendor/rails)
rake rails:unfreeze # Unlock this application from freeze of gems or
 # edge and return to a fluid use of system gems

rake rails:update # Update both scripts

 and public/javascripts from
 # Rails
rake rails:update:javascripts # Update your javascripts from your current rails
 # install
rake rails:update:scripts # Add new scripts to the application script/
 # directory

rake stats # Report code statistics (KLOCs, etc) from the
 # application

http://lib.ommolketab.ir
http://lib.ommolketab.ir

rake test # Test all units and functionals
rake test:functionals # Run tests for functionalsdb:test:prepare
rake test:integration # Run tests for integrationdb:test:prepare
rake test:plugins # Run tests for pluginsenvironment
rake test:recent # Run tests for recentdb:test:prepare
rake test:uncommitted # Run tests for uncommitteddb:test:prepare
rake test:units # Run tests for unitsdb:test:prepare

rake tmp:cache:clear # Clears all files and directories in tmp/cache
rake tmp:clear # Clear session, cache, and socket files from tmp/
rake tmp:create # Creates tmp directories for sessions, cache, and
 # sockets
rake tmp:sessions:clear # Clears all files in tmp/sessions
rake tmp:sockets:clear # Clears all ruby_sess.* files in tmp/sessions

5.2.5. Scripts

script/about # Information about environenment
script/breakpointer # starts the breakpoint server
script/console # interactive Rails Console
script/destroy # deletes files created by generators
script/generate # -> generators
script/plugin # -> Plugins
script/runner # executes a task in the rails context
script/server # launches the development server
 # http://localhost:3000

script/performance/profiler # profile an exspesive method
script/performance/benchmarker # benchmark different methods

script/process/reaper
script/process/spawner

5.2.6. Generators

ruby script/generate model ModellName
ruby script/generate controller ListController show edit
ruby script/generate scaffold ModelName ControllerName
ruby script/generate migration AddNewTable
ruby script/generate plugin PluginName
ruby script/generate mailer Notification lost_password signup
ruby script/generate web_service ServiceName api_one api_two
ruby script/generate integration_test TestName

http://lib.ommolketab.ir
http://lib.ommolketab.ir

ruby script/generate session_migration

Options:

-p or --pretend

Run but do not make any changes.

-f or --force

Overwrite files that already exist.

-s or --skip

Skip files that already exist.

-q or --quiet

Suppress normal output.

-t or --backtrace

Debugging: show backtrace on errors.

-h or --help

Show this help message.

-c or --svn

Modify files with subversion (note: svn must be in path).

5.2.7. Plug-ins

script/plugin discover # discover plugin repositories
script/plugin list # list all available plugins
script/plugin install where # install the "where" plugin
script/plugin install -x where # install where plugin as SVN external
script/plugin install http://invisible.ch/projects/plugins/where
script/plugin update # update installed plugins
script/plugin source # add a source repository

http://lib.ommolketab.ir
http://lib.ommolketab.ir

script/plugin unsource # removes a source repository
script/plugin sources # lists source repositories

Learn more: http://wiki.rubyonrails.com/rails/pages/Plugins.

Searchable directory of plug-ins: http://www.agilewebdevelopment.com/plugins.

http://wiki.rubyonrails.com/rails/pages/Plugins
http://www.agilewebdevelopment.com/plugins
http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.3. RJS (Ruby JavaScript)

This example:

update_page do |page|
 page.insert_html :bottom, 'list', "#{@item.name}"
 page.visual_effect :highlight, 'list'
 page.hide 'status-indicator', 'cancel-link'
end

generates the following JavaScript:

new Insertion.Bottom("list", "Some item");
new Effect.Highlight("list");
["status-indicator", "cancel-link"].each(Element.hide);

Learn more:

http://api.rubyonrails.com/classes/ActionView/Helpers/PrototypeHelper/JavaScriptGenerator/GeneratorMethods.html

http://www.codyfauser.com/articles/2005/11/20/rails-rjs-templates

http://scottraymond.net/articles/2005/12/01/real-world-rails-rjs-templates

http://www.rubynoob.com/articles/2006/05/13/simple-rails-rjs-tutorial

http://api.rubyonrails.com/classes/ActionView/Helpers/PrototypeHelper/JavaScriptGenerator/GeneratorMethods.html
http://www.codyfauser.com/articles/2005/11/20/rails-rjs-templates
http://scottraymond.net/articles/2005/12/01/real-world-rails-rjs-templates
http://www.rubynoob.com/articles/2006/05/13/simple-rails-rjs-tutorial
http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.4. Active Record

5.4.1. Automated Mapping

Automatically maps:

Tables classes

Rows objects (instances of model classes)

Columns object attributes

Table to class mapping uses English plurals:

An Invoice model class maps to an invoices table.

A Person model class maps to a people table.

A Country model class maps to a countries table.

A SecurityLevel model class maps to a security_levels table.

Learn more: http://api.rubyonrails.com/classes/ActiveRecord/Base.html .

5.4.2. Associations

Four ways of associating models (Figures B-1 and B-2):

Figure B-1. One-to-one and one-to-many relationships

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Figure B-2. Many-to-many relationships

has_one
has_many
belongs_to
has_and_belongs_to_many
def Order < ActiveRecord::Base
 has_many :line_items
 belongs_to :customer # there's a column "customer_id" in the db table
end

def LineItem < ActiveRecord::Base
 belongs_to :order # there's a column "order_id" in the db table
end

def Customer < ActiveRecord::Base
 has_many :orders
 has_one :address
end

def Address < ActiveRecord::Base
 belongs_to :customer
end

belongs_to :some_model,
 :class_name => 'MyClass', # specifies other class name
 :foreign_key => 'my_real_id', # and primary key
 :conditions => 'column = 0' # only finds when this condition met

has_one :some_model,
 # as belongs_to and additionally:
 :dependent => :destroy # deletes associated object
 :order => 'name ASC' # SQL fragment for sorting

has_many :some_model
 # as has_one and additionally:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 :dependent => :destroy # deletes all dependent data
 # calling each objects destroy
 :dependent => :delete_all # deletes all dependent data
 # without calling the destroy methods
 :dependent => :nullify # set association to null, not
 # destroying objects
 :group => 'name' # adds GROUP BY fragment
 :finder_sql => 'select' # instead of the Rails finders
 :counter_sql => 'select ...' # instead of the Rails counters
def Category < ActiveRecord::Base
 has_and_belongs_to_many :products
end
def Product < ActiveRecord::Base
 has_and_belongs_to_many :categories
end

Table categories_products :

Has category_id column

Has product_id column

Does not have id column

5.4.3. Association Join Models (Figure B-3)

Figure B-3. Through model

class Author < ActiveRecord::Base
 has_many :authorships
 has_many :books, :through => :authorships
end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

class Authorship < ActiveRecord::Base
 belongs_to :author
 belongs_to :book
end

class Book < ActiveRecord::Base
 has_one :authorship
end

@author = Author.find :first
@author.authorships.collect { |a| a.book } # selects all books that the author's
 # authorships belong to.
@author.books # selects all books by using the Authorship
 # join model

Also works through has_many associations:

class Firm < ActiveRecord::Base
 has_many :clients
 has_many :invoices, :through => :clients
 has_many :paid_invoices, :through => :clients, :source => :invoice
end

class Client < ActiveRecord::Base
 belongs_to :firm
 has_many :invoices
end

class Invoice < ActiveRecord::Base
 belongs_to :client
end

@firm = Firm.find :first
@firm.clients.collect { |c| c.invoices }.flatten # select all invoices for all clients
 # of the firm
@firm.invoices # selects all invoices by going
 # through the Client join model.

Learn more at the following address:
http://api.rubyonrails.com/classes/ActiveRecord/Associations/ClassMethods.html .

5.4.4. Validations

validates_presence_of :firstname, :lastname # must be filled out

http://api.rubyonrails.com/classes/ActiveRecord/Associations/ClassMethods.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

validates_length_of :password,
 :minimum => 8 # more than 8 characters
 :maximum => 16 # shorter than 16 characters
 :in => 8..16 # between 8 and 16 characters
 :too_short => 'way too short'
 :too_long => 'way to long'

validates_acceptance_of :eula # Must accept a condition
 :accept => 'Y' # default: 1 (ideal for a checkbox)

validates_confirmation_of :password
the fields password and password_confirmation must match

validates_uniqueness_of :user_name # user_name has to be unique
 :scope => 'account_id' # Condition:
 # account_id = user.account_id

validates_format_of :email # field must match a regular expression
 :with => /^(+)@((?:[-a-z0-9]+/.)+[a-z]{2,})$/i

validates_numericality_of :value # value is numeric
 :only_integer => true
 :allow_nil => true

validates_inclusion_in :gender, # value is in enumeration
 :in => %w(m, f)

validates_exclusion_of :age # value is not in Enumeration
 :in => 13..19 # don't want any teenagers

validates_associated :relation
validates that the associated object is valid

Validation options:

:message => 'my own errormessage'
:on => :create # or :update (validates only then)
:if => ... # call method oder Proc

Learn more: http://api.rubyonrails.com/classes/ActiveRecord/Validations.html .

5.4.5. Calculations

Person.average :age
Person.minimum :age

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Person.maximum :age
Person.count
Person.count(:conditions => "age > 26")
Person.sum :salary, :group => :last_name

Learn more at the following address:
http://api.rubyonrails.com/classes/ActiveRecord/Calculations/ClassMethods.html .

5.4.6. Finders

find(42) # object with ID 42
find([37, 42]) # Array with the objects with id 37, 42
find :all
find :first,
 :conditions => ["name = ?", "Hans"] # finds the first record
 # with matching condition

More parameters for find :

:order => 'name DESC' # sql fragment for sorting
:offset => 20 # starts with entry 20
:limit => 10 # only return 10 objects
:group => 'name' # sql fragment GROUP BY
:joins => 'LEFT JOIN ...' # additional LEFT JOIN (rarely used)
:include => [:account, :friends] # LEFT OUTER JOIN with these model
:include => { :groups => { :members=> { :favorites } } }
:select => [:name, :adress] # instead of SELECT * FROM
:readonly => true # objects are write protected

5.4.6.1. Dynamic attribute-based finders

Person.find_by_user_name(user_name)
Person.find_all_by_last_name(last_name)
Person.find_by_user_name_and_password(user_name, password)
Order.find_by_name("Joe Blow")
Order.find_by_email("jb@gmail.com")
Slideshow.find_or_create_by_name("Winter")

Learn more: http://api.rubyonrails.com/classes/ActiveRecord/Base.html .

http://api.rubyonrails.com/classes/ActiveRecord/Calculations/ClassMethods.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.4.6.2. Scope

Employee.with_scope(
 :find => { :conditions => "salary > 10000",
 :limit => 10 }) do
 Employee.find(:all) # => SELECT * FROM employees
 # WHERE (salary > 10000)
 # LIMIT 10

 # scope is cumulative
 Employee.with_scope(
 :find => { :conditions => "name = 'Jamis'" }) do
 Employee.find(:all) # => SELECT * FROM employees
 # WHERE (salary > 10000)
 # AND (name = 'Jamis'))
 # LIMIT 10
 end

 # all previous scope is ignored
 Employee.with_exclusive_scope(
 :find => { :conditions => "name = 'Jamis'" }) do
 Employee.find(:all) # => SELECT * FROM employees
 # WHERE (name = 'Jamis')
 end
end

Learn more:

http://www.codyfauser.com/articles/2006/02/01/using-with_scope-to-refactor-messy-finders

http://blog.caboo.se/articles/2006/02/22/nested-with_scope

5.4.7. Acts

acts_as_l ist:

class TodoList < ActiveRecord::Base
 has_many :todo_items, :order => "position"
 end

 class TodoItem < ActiveRecord::Base
 belongs_to :todo_list
 acts_as_list :scope => :todo_list
 end

http://www.codyfauser.com/articles/2006/02/01/using-with_scope-to-refactor-messy-finders
http://blog.caboo.se/articles/2006/02/22/nested-with_scope
http://lib.ommolketab.ir
http://lib.ommolketab.ir

 todo_list.first.move_to_bottom
 todo_list.last.move_higher

Learn more:

http://api.rubyonrails.com/classes/ActiveRecord/Acts/List/ClassMethods.html

http://api.rubyonrails.com/classes/ActiveRecord/Acts/List/InstanceMethods.html

acts_as_tree:

class Category < ActiveRecord::Base
 acts_as_tree :order => "name"
 end

 Example :
 root
 /_ child1
 /_ subchild1
 /_ subchild2

 root = Category.create("name" => "root")
 child1 = root.children.create("name" => "child1")
 subchild1 = child1.children.create("name" => "subchild1")

 root.parent # => nil
 child1.parent # => root
 root.children # => [child1]
 root.children.first.children.first # => subchild1

Learn more: http://api.rubyonrails.com/classes/ActiveRecord/Acts/Tree/ClassMethods.html .

5.4.8. Callbacks

Callbacks are hooks into the life cycle of an Active Record object that allows you to trigger logic before
or after an alteration of the object state (Table B-1).

Table B-1. Active Record object life cycle

Object state Callback

save

valid?

http://api.rubyonrails.com/classes/ActiveRecord/Acts/List/ClassMethods.html
http://api.rubyonrails.com/classes/ActiveRecord/Acts/List/InstanceMethods.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Object state Callback

 before_validation

 before_validation_on_create

validate

validate_on_create

 after_validation

 after_validation_on_create

 before_save

 before_create

create

 after_create

 after_save

Example:

class Subscription < ActiveRecord::Base
 before_create :record_signup
private
 def record_signup
 self.signed_up_on = Date.today
 end
end

class Firm < ActiveRecord::Base
 # Destroys the associated clients and people when the firm is destroyed
 before_destroy { |record| Person.destroy_all "firm_id = #{record.id}" }
 before_destroy { |record| Client.destroy_all "client_of = #{record.id}" }
end

Learn more: http://api.rubyonrails.com/classes/ActiveRecord/Callbacks.html .

5.4.9. Observers

The Observer classes let you extract the functionality of the callbacks:

class CommentObserver < ActiveRecord::Observer
 def after_save(comment)
 Notifications.deliver_comment("admin@do.com", "New comment was posted", comment)
 end

 before_validation

 before_validation_on_create

validate

validate_on_create

 after_validation

 after_validation_on_create

 before_save

 before_create

create

 after_create

 after_save

Example:

class Subscription < ActiveRecord::Base
 before_create :record_signup
private
 def record_signup
 self.signed_up_on = Date.today
 end
end

class Firm < ActiveRecord::Base
 # Destroys the associated clients and people when the firm is destroyed
 before_destroy { |record| Person.destroy_all "firm_id = #{record.id}" }
 before_destroy { |record| Client.destroy_all "client_of = #{record.id}" }
end

Learn more: http://api.rubyonrails.com/classes/ActiveRecord/Callbacks.html .

5.4.9. Observers

The Observer classes let you extract the functionality of the callbacks:

class CommentObserver < ActiveRecord::Observer
 def after_save(comment)
 Notifications.deliver_comment("admin@do.com", "New comment was posted", comment)
 end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

end

Store observers in app/model/model_observer.rb .

Enable observer by putting this in config/environment.rb:

config.active_record.observers = :comment_observer, :signup_observer

Learn more: http://api.rubyonrails.com/classes/ActiveRecord/Observer.html .

5.4.10. Migration

> ruby script/generate migration MyAddTables

Creates the file db/migrations/001_my_add_tables.rb . The methods up() and down() change the db
schema:

def self.up # brings db schema to the next version
 create_table :table, :force => true do |t|
 t.column :name, :string
 t.column :age, :integer, { :default => 42 }
 t.column :description, :text
 # :string, :text, :integer, :float, :datetime, :timestamp, :time, :date,
 # :binary, :boolean
 end
 add_column :table, :column, :type
 rename_column :table, :old_name, :new_name
 change_column :table, :column, :new_type
 execute "SQL Statement"
 add_index :table, :column, :unique => true, :name => 'some_name'
 add_index :table, [:column1, :column2]
end

def self.down # rollbacks changes
 rename_column :table, :new_name, :old_name
 remove_column :table, :column
 drop_table :table
 remove_index :table, :column
end

http://lib.ommolketab.ir
http://lib.ommolketab.ir

To execute the migration:

> rake db:migrate
> rake db:migrate VERSION=14
> rake db:migrate RAILS_ENV=production

Learn more:

http://api.rubyonrails.org/classes/ActiveRecord/Migration.html

http://glu.ttono.us/articles/2005/10/27/the-joy-of-migrations

http://jamis.jamisbuck.org/articles/2005/09/27/getting-started-with-activerecord-migrations

http://api.rubyonrails.org/classes/ActiveRecord/Migration.html
http://glu.ttono.us/articles/2005/10/27/the-joy-of-migrations
http://jamis.jamisbuck.org/articles/2005/09/27/getting-started-with-activerecord-migrations
http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.5. Controllers

5.5.1. Controller Methods

Each public method in a controller is callable by the default URL scheme /controller/action
(/world/hello, in this example):

class WorldController < ApplicationController
def hello
 render :text => 'Hello world'
end

All request parameters, whether they come from a GET or POST request, or from the URL, are
available through the params hash:

/world/hello/1?foo=bar
id = params[:id] # 1
foo = params[:foo] # bar

Instance variables defined in the controller's methods are available to the corresponding view
templates:

def show
 @person = Person.find(params[:id])
end

Determine the type of response accepted:

def index
 @posts = Post.find :all

 respond_to do |type|
 type.html # using defaults, which will render weblog/index.rhtml
 type.xml { render :action => "index.rxml" }
 type.js { render :action => "index.rjs" }

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 end
end

Learn more: http://api.rubyonrails.com/classes/ActionController/Base.html.

5.5.2. Render

Usually the view template with the same name as the controller method is used to render the results.

5.5.3. Action

render :action => 'some_action' # the default. Does not need to be specified
 # in a controller method called "some_action"
render :action => 'another_action', :layout => false
render :action => 'some_action', :layout => 'another_layout'

5.5.4. Partials

Partials are stored in files whose filename begins with an underscore (like _error, _subform, and
_listitem):

render :partial => 'subform'
render :partial => 'error', :status => 500
render :partial => 'subform', :locals => { :variable => @other_variable }
render :partial => 'listitem', :collection => @list
render :partial => 'listitem', :collection => @list, :spacer_template =>
'list_divider'

5.5.5. Templates

Similar to rendering an action, but finds the template based on the template root (app/views):

render :template => 'weblog/show' # renders app/views/weblog/show

5.5.6. Files

http://api.rubyonrails.com/classes/ActionController/Base.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

render :file => '/path/to/some/file.rhtml'
render :file => '/path/to/some/filenotfound.rhtml', status => 404, :layout => true

5.5.7. Text

render :text => "Hello World"
render :text => "This is an error", :status => 500
render :text => "Let's use a layout", :layout => true
render :text => 'Specific layout', :layout => 'special'

5.5.8. Inline Template

Uses ERb to render the "miniature" template:

render :inline => "<%= 'hello, ' * 3 + 'again' %>"
render :inline => "<%= 'hello ' + name %>", :locals => { :name => "david" }

5.5.9. RJS

def refresh
 render :update do |page|
 page.replace_html 'user_list', :partial => 'user', :collection => @users
 page.visual_effect :highlight, 'user_list'
 end
end

5.5.10. Change content_type

render :action => "atom.rxml", :content_type => "application/atom+xml"

5.5.11. Redirects

http://lib.ommolketab.ir
http://lib.ommolketab.ir

redirect_to(:action => "edit")
redirect_to(:controller => "accounts", :action => "signup")

5.5.12. Nothing

render :nothing
render :nothing, :status => 403 # forbidden

Learn more:

http://api.rubyonrails.com/classes/ActionView/Base.html

http://api.rubyonrails.com/classes/ActionController/Base.html

5.5.13. URL Routing

In config/routes.rb:

map.connect '', :controller => 'posts', :action => 'list' # default
map.connect ':action/:controller/:id'
map.connect 'tasks/:year/:month', :controller => 'tasks',
 :action => 'by_date',
 :month => nil, :year => nil,
 :requirements => {:year => //d{4}/,
 :month => //d{1,2}/ }

Learn more: http://manuals.rubyonrails.com/read/chapter/65.

5.5.14. Filter

Filters can change a request before or after the controller. They can, for example, be used for
authentication, encryption, or compression:

before_filter :login_required, :except => [:login]
before_filter :autenticate, :only => [:edit, :delete]
after_filter :compress

http://api.rubyonrails.com/classes/ActionView/Base.html
http://api.rubyonrails.com/classes/ActionController/Base.html
http://manuals.rubyonrails.com/read/chapter/65
http://lib.ommolketab.ir
http://lib.ommolketab.ir

It's also possible to use a proc for a really small filter action:

before_filter { |controller| false if controller.params["stop_action"] }

Change the order of your filters by using prepend_before_filter and prepend_after_filter (like
prepend_before_filter :some_filter, which will put the some_filter at the beginning of the filter
chain).

If you define a filter in a superclass, you can skip it in the subclass:

skip_before_filter :some_filter
skip_after_filter :some_filter

Learn more: http://api.rubyonrails.com/classes/ActionController/Filters/ClassMethods.html.

5.5.15. Session/Flash

To save data across multiple requests, you can use either the session or the flash hashes. A flash
stores a value (normally text) until the next request, while a session stores data during the complete
session.

session[:user] = @user
flash[:message] = "Data was saved successfully"

<%= link_to "login", :action => 'login' unless session[:user] %>
<% if flash[:message] %>
<div><%= h flash[:message] %></div>
<% end %>

5.5.15.1. Session management

It's possible to turn off session management:

session :off # turn session managment off
session :off, :only => :action # only for this :action
session :off, :except => :action # except for this action
session :only => :foo, # only for :foo when doing HTTPS
 :session_secure => true

http://api.rubyonrails.com/classes/ActionController/Filters/ClassMethods.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

session :off, :only => :foo, # off for foo, if uses as Web Service
 :if => Proc.new { |req| req.parameters[:ws] }

Learn more at the following site:
http://api.rubyonrails.com/classes/ActionController/SessionManagement/ClassMethods.html.

5.5.16. Cookies

5.5.16.1. Setting

cookies[:user_name] = "david" # => Will set a simple session cookie
cookies[:login] = { :value => "XJ-122", :expires => Time.now + 3600}
 # => Will set a cookie that expires in 1 hour

5.5.16.2. Reading

cookies[:user_name] # => "david"
cookies.size # => 2

5.5.16.3. Deleting

cookies.delete :user_name

Option symbols for setting cookies:

value

The cookie's value or list of values (as an array).

path

The path for which this cookie applies (defaults to the root of the application).

http://api.rubyonrails.com/classes/ActionController/SessionManagement/ClassMethods.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

domain

The domain for which this cookie applies.

expires

The time at which this cookie expires, as a Time object.

secure

Whether this cookie is a secure cookie (defaults to false). Secure cookies are transmitted only
to HTTPS servers.

Learn more: http://api.rubyonrails.com/classes/ActionController/Cookies.html.

http://api.rubyonrails.com/classes/ActionController/Cookies.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.6. Views

5.6.1. View Templates

All view templates are stored in app/views /controllername. The extension determines what kind of
template it is:

*.rhtml

Ruby HTML (using ERB)

*.rxml

Ruby XML (using Builder)

*.rjs

Ruby JavaScript

All instance variables of the controller are available to the view. In addition, the following special
objects can be accessed:

headers

The headers of the outgoing response

request

The incoming request object

response

The outgoing response object

params

The parameter hash

http://lib.ommolketab.ir
http://lib.ommolketab.ir

session

The session hash

controller

The current controller

5.6.2. RHTML

RHTML is HTML mixed with Ruby, using tags. All of Ruby is available for programming:

<% %> # executes the Ruby code
<%= %> # executes the Ruby code and displays the result

<% @products.each do |p| %>
 <%= h @p.name %>
<% end %>

The output of anything in <%= %> tags is directly copied to the HTML output stream. To secure against
HTML injection, use the h() function to HTML-escape the output. For example:

<%=h @user_entered_notes %>

5.6.3. RXML

Creates XML files:

xml.instruct! # <?xml version="1.0" encoding="UTF-8"?>
xml.comment! "a comment" # <!-- a comment -->
xml.feed "xmlns" => "http://www.w3.org/2005/Atom" do
 xml.title "My Atom Feed"
 xml.subtitle h(@feed.subtitle), "type" => 'html'
 xml.link url_for(:only_path => false,
 :controller => 'feed',
 :action => 'atom')
 xml.updated @updated.iso8601
 xml.author do

http://lib.ommolketab.ir
http://lib.ommolketab.ir

 xml.name "Jens-Christian Fischer"
 xml.email "jcfischer@gmail.com"
 end
 @entries.each do |entry|
 xml.entry do
 xml.title entry.title
 xml.link "href" => url_for (:only_path => false,
 :controller => 'entries',
 :action => 'show',
 :id => entry)
 xml.id entry.urn
 xml.updated entry.updated.iso8601
 xml.summary h(entry.summary)
 end
 end
end

Learn more: http://rubyforge.org/projects/builder/.

5.6.4. RJS

In addition to HTML and XML templates, Rails also understands JavaScript templates. They allow you
to easily create complex alterations of the displayed page. You can manipulate a page element with
the following methods:

select

Select a DOM element for further processing:

page.select('pattern') # selects an item on the page through a CSS pattern
 # select('p'), select('p.welcome b')
page.select('div.header em').first.hide
page.select('#items li').eacj do |value|
 value.hide
end

insert_html

Inserts content into the DOM at a specific position:

page.insert_html :position, id, content

http://rubyforge.org/projects/builder/
http://lib.ommolketab.ir
http://lib.ommolketab.ir

position can be one of the following:

:top
:bottom
:before
:after

replace_html

Replaces the inner HTML of the specified DOM element:

page.replace_html 'title', "This is the new title"
page.replace_html 'person-45', :partial => 'person', :object => @person

replace

Replaces the outer HTML (i.e., the entire element) of the specified DOM element:

page.replace 'task', :partial => 'task', :object => @task

remove

Removes the specified DOM element:

page.remove 'edit-button'

hide

Hides the specified DOM element:

page.hide 'some-element'

show

Shows the specified DOM element:

page.show 'some-element'

http://lib.ommolketab.ir
http://lib.ommolketab.ir

toggle

Toggles the visibility of a DOM element:

page.toggle 'some-element'

alert

Displays an alert box:

page.alert 'Hello world'

redirect_to

Redirects the browser to a given location:

page.redirect_to :controller => 'blog', :action => 'show', :id => @post

call

Calls another JavaScript function:

page.call foo, 1, 2

assign

Assigns a value to a JavaScript variable:

page.assign "foo", 42

<<

Writes raw JavaScript to the page:

page << "alert('hello world);"

http://lib.ommolketab.ir
http://lib.ommolketab.ir

delay

Delays the code in the block by a number of seconds:

page.delay(10) do
 page.visual_effect :fade, 'notice'
end

visual_effect

Calls a Scriptaculous effect:

page.visual_effect :highlight, 'notice', :duration => 2

sortable

Creates a sortable element:

page.sortable 'my_list', :url => { :action => 'order' }

dragable

Creates a draggable element:

page.dragable 'my_image', :revert => true

drop_receiving

Creates an element for receiving drops:

page.drop_recieving 'my_cart', :url => { :controller => 'cart',
 :action => 'add' }

Learn more: http://api.rubyonrails.com/classes/ActionView/Base.html.

http://api.rubyonrails.com/classes/ActionView/Base.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.6.5. Helpers

Small functions, normally used for displaying data, can be extracted to helpers. Each view has its own
helper class (in app/helpers). Common functionality is stored in app/helpers/application_helper.rb.

5.6.6. Links

link_to "Name", :controller => 'post', :action => 'show', :id => @post.id
link_to "Delete", { :controller => "admin",
 :action => "delete",
 :id => @post },
{ :class => 'css-class',
 :id => 'css-id',
 :confirm => "Are you sure?" }

image_tag "spinner.png", :class => "image", :alt => "Spinner"

mail_to "info@invisible.ch", "send mail",
 :subject => "Support request by #{@user.name}",
 :cc => @user.email,
 :body => '....',
 :encoding => "javascript"

stylesheet_link_tag "scaffold", "admin", :media => "all"

Learn more: http://api.rubyonrails.com/classes/ActionView/Helpers/UrlHelper.html.

5.6.7. HTML Forms

5.6.7.1. Form

<%= form_tag { :action => :save }, { :method => :post } %>

This creates a form tag with the specified action, and makes it a POST request.

Use :multipart => true to define a MIME-multipart form (for file uploads).

5.6.7.2. Text Fields

http://api.rubyonrails.com/classes/ActionView/Helpers/UrlHelper.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

<%= text_field :modelname, :attribute_name, options %>

The following creates a text input field of the form:

<input type="text" name="modelname[attribute_name]" id="attributename" />

Example:

text_field "post", "title", "size" => 20
 <input type="text" id="post_title" name="post[title]"
 size="20" value="#{@post.title}" />

Create a hidden field:

<%= hidden_field ... %>

Create a password field (all input shown as stars):

<%= password_field ... %>

Create a file field:

<%= file_field ... %>

5.6.7.3. Text Area

<%= text_area ... %>

This example:

http://lib.ommolketab.ir
http://lib.ommolketab.ir

text_area "post", "body", "cols" => 20, "rows" => 40

generates:

<textarea cols="20" rows="40" id="post_body" name="post[body]">
 #{@post.body}
</textarea>

5.6.7.4. Radio Button

<%= radio_button :modelname, :attribute, :tag_value, options %>

Example:

radio_button "post", "category", "rails"
radio_button "post", "category", "java"
 <input type="radio" id="post_category" name="post[category]" value="rails"
 checked="checked" />
 <input type="radio" id="post_category" name="post[category]" value="java" />

5.6.7.5. Checkbox

<%= check_box :modelname, :attribute, options, on_value, off_value %>

Example:

check_box "post", "validated" # post.validated? returns 1 or 0
 <input type="checkbox" id="post_validate" name="post[validated]"
 value="1" checked="checked" />
 <input name="post[validated]" type="hidden" value="0" />

check_box "puppy", "gooddog", {}, "yes", "no"
 <input type="checkbox" id="puppy_gooddog" name="puppy[gooddog]" value="yes" />
 <input name="puppy[gooddog]" type="hidden" value="no" />

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.6.7.6. Options

Creates a select tag. Pass an array of choices:

<%= select :variable, :attribute, choices, options,

html_options %>

Example:

select "post",
 "person_id",
 Person.find_all.collect {|p| [p.name, p.id] },
 { :include_blank => true }

 <select name="post[person_id]">
 <option></option>
 <option value="1" selected="selected">David</option>
 <option value="2">Sam</option>
 <option value="3">Tobias</option>
 </select>

<%= collection_select :variable, :attribute, choices, :id, :value %>

5.6.7.7. Date and Time

<%= date_select :variable, :attribute, options %>
<%= datetime_select :variable, :attribute, options %>

Examples:

date_select "post", "written_on"
date_select "user", "birthday", :start_year => 1910
date_select "user", "cc_date", :start_year => 2005,
 :use_month_numbers => true,
 :discard_day => true,
 :order => [:year, :month]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

datetime_select "post", "written_on"

5.6.7.8. end_form Tag

<%= end_form_tag %>

Learn more: http://api.rubyonrails.com/classes/ActionView/Helpers/FormHelper.html.

5.6.8. Layouts

A layout defines the surroundings of an HTML page. You use it to define common look and feel.
Layouts live in app/views/layouts :

<html>
 <head>
 <title>Form: <%= controller.action_name %></title>
 <%= stylesheet_link_tag 'scaffold' %>
 </head>
 <body>
 <%= yield %> # the content will show up here
 </body>
</html>

class MyController < ApplicationController
 layout "standard", :except => [:rss, :atom]
...
end

class MyOtherController < ApplicationController
 layout :compute_layout

 # this method computes the name of the layout to use
 def compute_layout
 return "admin" if session[:role] == "admin"
 "standard"
 end
 ...
end

Layouts have access to the instance variables of the controller.

http://api.rubyonrails.com/classes/ActionView/Helpers/FormHelper.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

Learn more: http://api.rubyonrails.com/classes/ActionController/Layout/ClassMethods.html.

5.6.9. Partials

Partials are building blocks for creating views. They allow you to reuse commonly used display blocks.
They are stored in files:

render :partial => 'product'

This command loads the partial in _product.rthml and passes the instance variable @product to it. The
partial can access it using @product:

render :partial => 'product', :locals => { :product => @bought }

This command loads the same partial but assigns a different instance variable to it:

render :partial => 'product', :collection => @product_list

This renders the partial for each element in @product_list and assigns @product to each element. An
iteration counter is automatically made available to the template with a name of the form
partial_name_counter (in the previous example, product_counter).

Learn more: http://api.rubyonrails.com/classes/ActionView/Partials.html.

http://api.rubyonrails.com/classes/ActionController/Layout/ClassMethods.html
http://api.rubyonrails.com/classes/ActionView/Partials.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.7. Ajax

Be sure to include the JavaScript libraries in the layout:

<%= javascript_include_tag :defaults %>

5.7.1. Linking to Remote Action

<%= link_to_remote "link", :update => 'some_div',
 :url => { :action => 'show', :id => post.id } %>

<%= link_to_remote "link", :url => { :action => 'create',
 :update => { :success => 'good_div',
 :failure => 'error_div' },
 :loading => 'Element.show('spinner'),
 :complete => 'Element.hide('spinner') } %>

5.7.2. Callbacks

:loading

Called when the remote document is being loaded with data by the browser.

:loaded

Called when the browser has finished loading the remote document.

:interactive

Called when the user can interact with the remote document, even though it has not finished
loading.

:success

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Called when the XMLHttpRequest is completed, and the HTTP status code is in the 2XX range.

:failure

Called when the XMLHttpRequest is completed, and the HTTP status code is not in the 2XX
range.

:complete

Called when the XMLHttpRequest is complete (fires after success/failure if they are present).

You can also specify reactions to return codes directly:

link_to_remote word,
 :url => { :action => "action" },
 404 => "alert('Not found...? Wrong URL...?')",
 :failure => "alert('HTTP Error ' + request.status + '!')"

5.7.3. Ajax Forms

You can create a form that will submit via an XMLHttpRequest instead of a POST request. The
parameters are passed exactly the same way (so the controller can use the params method to access
the parameters). Fallback for non-JavaScript-enabled browsers can be specified by using the :action
methods in the :html option:

form_remote_tag :html => { :action => url_for(:controller => 'controller',
 :action => 'action'),
 :method => :post }

5.7.4. Autocompleting Text Field

In the view t\emplate:

<%= text_field_with_auto_complete :model, :attribute %>

In the controller:

auto_complete_for :model, :attribute

http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.7.5. Observe Field

<label for="search">Search term:</label>
<%= text_field_tag :search %>
<%= observe_field(:search,
 :frequency => 0.5,
 :update => :results,
 :url => { :action => :search }) %>
<div id="results"></div>

Optionally specify:

:on => :blur # trigger for event (default :changed or :clicked)
:with => ... # a JavaScript expression to specify what value is sent
 # defaults to "value"
:with => 'bla' # "'bla' = value"
:with => 'a=b' # "a=b"

5.7.6. Observe Form

Same semantics as observe_field.

5.7.7. periodically_call_remote

<%= periodically_call_remote(:update => 'process-list',
 :url => { :action => :ps },
 :frequency => 2) %>

Learn more: http://api.rubyonrails.com/classes/ActionView/Helpers/JavaScriptHelper.html.

http://api.rubyonrails.com/classes/ActionView/Helpers/JavaScriptHelper.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

5.8. Configuring Your Application

A lot of things can be configured in the config/environment.rb file. This list is not exhaustive:

5.8.1. Session Configuration

config.action_controller.session_store = :active_record_store
one of :active_record_store, :drb_store,
:mem_cache_store, or :memory_store or your own class

ActionController::Base.session_options[:session_key] = 'my_app'
 # use an application specific session_key
ActionController::Base.session_options[:session_id] = '12345'
 # use this session_id. Will be created if not specified
ActionController::Base.session_options[:session_expires] = 3.minute.from_now
 # how long before a session expires?
ActionController::Base.session_options[:new_session] = true
 # force the creation of a new session
ActionController::Base.session_options[:session_secure] = true
 # only use sessions over HTTPS
ActionController::Base.session_options[:session_domain] = 'invisible.ch'
 # Specify which domain this session is valid for (default: hostname of server)
ActionController::Base.session_options[:session_path] = '/my_app'
 # the path for which this session applies. Defaults to the
 # directory of the CGI script

Learn more at the following address:
http://api.rubyonrails.com/classes/ActionController/SessionManagement/ClassMethods.html .

5.8.2. Caching Configuration

ActionController::Base.fragment_cache_store = :file_store, "/path/to/cache/directory"

Learn more: http://api.rubyonrails.com/classes/ActionController/Caching.html .

http://api.rubyonrails.com/classes/ActionController/SessionManagement/ClassMethods.html
http://lib.ommolketab.ir
http://lib.ommolketab.ir

About the Authors

Bruce A. Tate is a kayaker, mountain biker, and father of two from Austin, Texas. In 2001, he
founded the J2Life, LLC independent consultancynow called RapidRedwhere his primary focus is on
training, implementation, and consulting for rapid software development using Ruby on Rails. His
customers have included FedEx, Great West Life, AutoGas, TheServerSide, and BEA. His 20 years of
experience span a 13-year stint at IBM and several leadership positions at various startup
companies. He's an international speaker and widely respected author of nine software development
books, including the provocative Beyond Java (O'Reilly), the Jolt-winning Better, Faster, Lighter Java
(O'Reilly), the management-focused From Java to Ruby (Pragmatic), and the smash hit Bitter Java
(Manning).

Curt Hibbs has always been slightly obsessed with new technologies and tracking technology trends.
But he will tell you that this is simply because he is lazy, always looking for new methods and
technologies to make his work easier and more productive. This tendency led to his discovery of Ruby
in 2001 (when it was still relatively unknown outside of Japan) and to his founding several highly
successful Ruby open source projects. For most of his professional career, which started in the early
1970s, Curt has been a consultant to well-known companies such as Hewlett Packard, Intuit, Corel,
WordStar, Charles Schwab, Vivendi Universal, and more. He has also been a principal in several
startups. Curt now works as a Senior Software Engineer for The Boeing Company in St. Louis.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Colophon

The animal on the cover of Ruby on Rails: Up and Running is an ibex (Capra pyrenaica). Found in the
mountains of Europe, central Asia, and North Africa, the ibex spends most of its time at an altitude of
7,500 to 11,500 feet. The ibex is known for its impressively long horns, which can grow up to three
feet on males. During mating season, ibex males bang their horns together in intense battles over
mating rights.

Although the physics of such a feat seems dubious, according to legend, the ibex's horns were so
strong that, if threatened, the animal could hurl itself from a precipice and land unharmed on them.

The cover image is from Riverside Natural History. The cover font is Adobe ITC Garamond. The text
font is Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's
TheSans Mono Condensed.

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

accessors

Action Pack framework

Active Record 2nd 3rd 4th

 attributes

 accessors

 columns

 identifiers

 basic classes

 naming conventions

 behavior

 finders

 transactions

 validation

 complex classes

 composition

 inheritance

 count caching

 nested sets

 overrides

 persistence framework

 Rails framework and

 relationship types

 schema migrations

 secret sauce

 time stamping

 versioning

 wrapping

acts_as_list

 metaprogramming features

acts_as_tree

 metaprogramming features

Ajax (Asychronous JavaScrpt and XML)

 adding slides with drag and drop

 filtering photos by categories

 implementation on Rails

 JavaScript and

 playing a slideshow

 quick reference

 reordering slides with drag-and-drop

Apache

app/controllers/categories_controller.rb

http://lib.ommolketab.ir
http://lib.ommolketab.ir

app/controllers/photos_controller.rb

app/controllers/slideshows_controller.rb

app/helpers/application_helper.rb

app/models/category.rb

app/views/categories/list.rhtml

app/views/layouts/standard.rhtml 2nd

app/views/slideshows/_show_slide.rhtml

app/views/slideshows/list.rhtml

app/views/slideshows/show.rhtml

application.css

application_helper.rb

assertions

 common assertions

 Rails-supplied

associations

automated testing

autotest

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

belongs_to

 metaprogramming

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

categories

 assigning

categories_controller.rb

Category model class

Category.find method

category.rb 2nd

change_filter method

collect method

collection_select helper

collection_select method

columns

commercial IDEs for Rails

components

concurrency management, optimistic locking

config/routes.rb

controllers

 Action Pack framework

 code generated by Rails

 creating

 index action

 layouts and

 quick reference

 running

 tying to views

create method

CSS (Cascading Stylesheets)

 application.css

 photo.css

 scaffold.css

 slideshows.css 2nd 3rd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

databases

databases supported by Rails

Development environment, Rails

directories

dispatcher

div tags

documentation

domain-specific language (DSL)

draggable_element helper

drop_receiving_element helper

DSL (domain-specific language)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

each_with_index

Eclipse

edit app/views/photos/list.rhtml

edit method 2nd

edit.rhtml 2nd 3rd

editors

environments

expressions

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

finders

fixtures

foreign keys

_form.rhtml

Fowler, Martin 2nd

functional tests 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

gems

generate scripts

generators

 quick reference

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

has_and_belongs_to_many

has_many

 metaprogramming

has_one

 metaprogramming

helper functions

hierarchical categories

HTML

 forms

 check boxes

 date and time

 end_form tag

 form tag

 options

 radio buttons

 text areas

 text fields

 fragments

 helper functions for

 mixed with Ruby

 multiple-selection list boxes

 page layouts 2nd 3rd

 stylesheets, advantages of

 templates and ERb

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

identifiers

IDEs (integrated development environments) for Rails

image_tag helper

index action

Instant Rails

integration tests 2nd

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

join models

joins

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

layouts 2nd

 controllers and

lighttpd

links

Linux, Rails installations on

list method

list.rhtml 2nd 3rd

lock_version column

Locomotive

 TextMate and

long_name method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Macintosh OS X Rails installations

 TextMate

metaprogramming

migration

 generators and

migrations

 database tables, creation in 2nd

 naming conventions

 Rails migration scripts

 running

Model2

Mongrel

MVC (model-view-controller)

MySQL 2nd

 Instant Rails and

 server error

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

named parameters

navigation bar

new method

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

object relational mapping

 DSL and

 Ruby and

observe_field helper

open source IDEs for Rails

optimistic locking

OS X Rails installations

 TextMate

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

params

partials 2nd 3rd 4th

path delimiters

periodically_call_remote helper function

persistence frameworks

 relationships

Photo Share

 adding slides with drag and drop

 Ajax implemented features

 application.css

 navigation bar 2nd

 photos, assigning categories to

 photos, filtering by categories

 playing a slideshow

 potential additions

 reordering slides with drag and drop

 slideshows, styling

 source code

 standard.rhtml

 testing

 Photo model

 photos controller functional test

 test subdirectory

photo.css

photo_picker template

_photo_picker.rhtml

photos/app/controllers/slideshows_controller.rb 2nd 3rd 4th 5th

photos/app/helpers/slideshows_helper.rb

photos/app/models/category.rb

photos/app/views/slideshows/_photo_picker.rhtml

photos/app/views/slideshows/_show_slides_draggable.rhtml 2nd

photos/app/views/slideshows/edit.rhtml 2nd 3rd

photos/public/stylesheets/slideshows.css 2nd

photos_controller.rb

plugins, quick references

primary keys

Production environment, Rails

Prototype library

public/stylesheets/photos.css

public/stylesheets/slideshows.css

http://lib.ommolketab.ir
http://lib.ommolketab.ir

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

RadRails 2nd

Rails 2nd

 advantages

 Ajax implementation

 debugging resources

 directories

 editors

 environments 2nd

 generators

 IDEs (integrated development environments)

 installation via gems

 installing

 Instant Rails

 Linux

 Locomotive on OS X

 OS X

 RadRails

 Windows installations

 JavaScript files

 Production environment

 quick reference

 Active Record

 Ajax

 applications, creating

 controllers

 documentation

 generators

 plug-ins

 Rails applications, configuring

 rake

 RJS (Ruby JavaScript)

 scripts

 testing

 views

 supported databases

 supported web servers

 test environment

Rails JavaScript templates

rake

rapid feedback loop

relational databases

http://lib.ommolketab.ir
http://lib.ommolketab.ir

relationship tables

relationships

 acts_as_list

 belongs_to

 has_and_belongs_to_many

 has_many

 has_one

 trees

remove_slide method

render_scaffold method

request scopes

requests

RHTML

 quick reference

RJS (Ruby JavaScript)

RJS quick refernce

routes.rb

Ruby

 gems

Ruby JavaScript (RJS)

ruby keyword

ruby script/generate scaffold command

RubyDoc

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

scaffold.css

scaffolding 2nd

 advantages

 code generation

 controller names, pluralization

 limitations

 relationships and

 render_scaffold method

 replacing

 scaffold :photo method

 scaffold method

 scaffold :target method

script.aculo.us library

script/generate script

script/server script

 defaults

scriptlets

scripts

Selenium

server requests

sessions

show.rhtml

_show_slide.rhtml

_show_slides_draggable.rhtml 2nd

Slide.update()

slides table

slideshow-photo-picker

slideshows table

slideshows.css 2nd 3rd

slideshows_controller.rb 2nd 3rd 4th 5th 6th

slideshows_helper.rb

sortable_element helper function

sprayers

standard.rhtml 2nd 3rd

style sheets 2nd

stylesheet_link_tag

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

test environment, Rails

testing 2nd

 assertions

 common assertions

 Rails-supplied

 automated testing

 environments

 fixtures

 functional tests 2nd

 integration tests 2nd

 quick reference

 Ruby Test::Unit framework

 Rails extensions to

 Test methods, Test Cases, and Test Suites

 test subdirectory

 third-party tools

 unit tests 2nd

thumbnail_tag helper

transactions

trees

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

unit tests 2nd

unused_photos method

update method

update_slide_order method

URL requests

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

validation

views

 default root, setting

 partials 2nd 3rd 4th

 quick reference

 view templates 2nd

 layouts

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

web servers 2nd

WEBrick

Windows

 Rails, installing on

 script calls with ruby keyword

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

XMLHttpRequest

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

YAML (YAML Ain't Markup Language)

http://lib.ommolketab.ir
http://lib.ommolketab.ir

Index

[A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [L] [M] [N] [O] [P] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

ZenTest

http://lib.ommolketab.ir
http://lib.ommolketab.ir

	Ruby on Rails: Up and Running
	Table of Contents
	Copyright
	Preface

	Chapter 1. Zero to Sixty: Introducing Rails
	Section 1.1. Rails Strengths
	Section 1.2. Putting Rails into Action
	Section 1.3. Organization

	Section 1.4. The Web Server
	Section 1.5. Creating a Controller
	Section 1.6. Building a View
	Section 1.7. Tying the Controller to the View
	Section 1.8. Under the Hood
	Section 1.9. What's Next?

	Chapter 2. Active Record Basics
	Section 2.1. Active Record Basics
	Section 2.2. Introducing Photo Share
	Section 2.3. Schema Migrations
	Section 2.4. Basic Active Record Classes
	Section 2.5. Attributes
	Section 2.6. Complex Classes
	Section 2.7. Behavior
	Section 2.8. Moving Forward

	Chapter 3. Active Record Relationships
	Section 3.1. belongs_to
	Section 3.2. has_many
	Section 3.3. has_one
	Section 3.4. What You Haven't Seen
	Section 3.5. Looking Ahead

	Chapter 4. Scaffolding
	Section 4.1. Using the Scaffold Method
	Section 4.2. Replacing Scaffolding
	Section 4.3. Generating Scaffolding Code
	Section 4.4. Moving Forward

	Chapter 5. Extending Views
	Section 5.1. The Big Picture
	Section 5.2. Seeing Real Photos
	Section 5.3. View Templates
	Section 5.4. Setting the Default Root
	Section 5.5. Stylesheets
	Section 5.6. Hierarchical Categories
	Section 5.7. Styling the Slideshows

	Chapter 6. Ajax
	Section 6.1. How Rails Implements Ajax
	Section 6.2. Playing a Slideshow
	Section 6.3. Using Drag-and-Drop to Reorder Slides
	Section 6.4. Drag and Drop Everything (Almost Everything)
	Section 6.5. Filtering by Category

	Chapter 7. Testing
	Section 7.1. Background
	Section 7.2. Ruby's Test::Unit
	Section 7.3. Testing in Rails
	Section 7.4. Wrapping Up

	Appendix A. Installing Rails
	Section 1.1. Windows
	Section 2.1. OS X
	Section 3.1. Linux

	Appendix B. Quick Reference
	Section 5.1. General
	Section 5.2. Testing
	Section 5.3. RJS (Ruby JavaScript)
	Section 5.4. Active Record
	Section 5.5. Controllers
	Section 5.6. Views
	Section 5.7. Ajax
	Section 5.8. Configuring Your Application

	About the Authors
	Colophon
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

