
C# Cookbook, 2nd Edition

By Jay Hilyard, Stephen Teilhet

...

Publisher: O'Reilly

Pub Date: January 2006

Print ISBN-10: 0-596-10063-9

Print ISBN-13: 978-0-59-610063-6

Pages: 1184

Table of Contents | Index

With C# Cookbook, 2nd Edition, you'll be able to learn and improve your mastery of both the C#
language and the .NET platform. This updated bestseller has been completely revised to account for
C# 2.0, the latest version of this popular object-oriented programming language. It also includes
more than 100 new code solutions (over 300 overall) to common problems and tasks that you're
sure to face as a C# programmer.

Nearly every solution, or "recipe," contains a complete, documented code sample showing you how
to solve the specific problem, as well as a detailed discussion of how and why the underling
technology works. This question-solution-discussion format is a proven teaching method, as any fan
of O'Reilly's "Cookbook" series can attest to. In fact, no other source offers a learn-as-you-go
format quite like this.

C# Cookbook, 2nd Edition is organized into 20 chapters, each of which focuses on a particular topic
in creating C# solutions. Here's just a taste of what's covered:

Numeric data types

Strings and characters

Classes and structures

Generics

Exception handling

Delegates, events, and anonymous methods

Filesystem interactions

Web site access

XML usage (including XPath and XSLT)

Networking

Threading

Unsafe code

Best of all, you don't have to be an experienced C# or .NET developer to use C# Cookbook, 2nd
Edition. You just have to be someone who wants to solve a problem now, without having to learn all
the related theory first.

C# Cookbook, 2nd Edition

By Jay Hilyard, Stephen Teilhet

...

Publisher: O'Reilly

Pub Date: January 2006

Print ISBN-10: 0-596-10063-9

Print ISBN-13: 978-0-59-610063-6

Pages: 1184

Table of Contents | Index

 Copyright

 Dedication

 Preface

 Who This Book Is For

 What You Need to Use This Book

 Platform Notes

 How This Book Is Organized

 What Was Left Out

 Conventions Used in This Book

 About the Code

 Using Code Examples

 Comments and Questions

 Safari Enabled

 Acknowledgments

 Chapter 1. Numbers and Enumerations

 Introduction

 Recipe 1.1. Determining Approximate Equality Between a Fraction and Floating-Point Value

 Recipe 1.2. Converting Degrees to Radians

 Recipe 1.3. Converting Radians to Degrees

 Recipe 1.4. Using the Bitwise Complement Operator with Various Data Types

 Recipe 1.5. Testing for an Even or Odd Value

 Recipe 1.6. Obtaining the High Word or Low Word of a Number

 Recipe 1.7. Converting a Number in Another Base to Base10

 Recipe 1.8. Determining Whether a String Is a Valid Number

 Recipe 1.9. Rounding a Floating-Point Value

 Recipe 1.10. Choosing a Rounding Algorithm

 Recipe 1.11. Converting Celsius to Fahrenheit

 Recipe 1.12. Converting Fahrenheit to Celsius

 Recipe 1.13. Safely Performing a Narrowing Numeric Cast

 Recipe 1.14. Finding the Length of Any Three Sides of a Right Triangle

 Recipe 1.15. Finding the Angles of a Right Triangle

 Recipe 1.16. Displaying an Enumeration Value as a String

 Recipe 1.17. Converting Plain Text to an Equivalent Enumeration Value

 Recipe 1.18. Testing for a Valid Enumeration Value

 Recipe 1.19. Testing for a Valid Enumeration of Flags

 Recipe 1.20. Using Enumerated Members in a Bit Mask

 Recipe 1.21. Determining if One or More Enumeration Flags Are Set

 Recipe 1.22. Determining the Integral Part of a Decimal or Double

 Chapter 2. Strings and Characters

 Introduction

 Recipe 2.1. Determining the Kind of Character a char Contains

 Recipe 2.2. Determining Whether a Character Is Within a Specified Range

 Recipe 2.3. Controlling Case Sensitivity When Comparing Two Characters

 Recipe 2.4. Finding All Occurrences of a Character Within a String

 Recipe 2.5. Finding the Location of All Occurrences of a String Within Another String

 Recipe 2.6. Implementing a Poor Man's Tokenizer to Deconstruct a String

 Recipe 2.7. Controlling Case Sensitivity When Comparing Two Strings

 Recipe 2.8. Comparing a String to the Beginning or End of a Second String

 Recipe 2.9. Inserting Text into a String

 Recipe 2.10. Removing or Replacing Characters Within a String

 Recipe 2.11. Encoding Binary Data as Base64

 Recipe 2.12. Decoding a Base64-Encoded Binary

 Recipe 2.13. Converting a String Returned as a Byte[] Back into a String

 Recipe 2.14. Passing a String to a Method That Accepts only a Byte[]

 Recipe 2.15. Converting Strings to Other Types

 Recipe 2.16. Formatting Data in Strings

 Recipe 2.17. Creating a Delimited String

 Recipe 2.18. Extracting Items from a Delimited String

 Recipe 2.19. Setting the Maximum Number of Characters a StringBuilder Can Contain

 Recipe 2.20. Iterating over Each Character in a String

 Recipe 2.21. Improving String Comparison Performance

 Recipe 2.22. Improving StringBuilder Performance

 Recipe 2.23. Pruning Characters from the Head and/or Tail of a String

 Recipe 2.24. Testing a String for Null or Empty

 Recipe 2.25. Appending a Line

 Recipe 2.26. Encoding Chunks of Data

 Chapter 3. Classes and Structures

 Introduction

 Recipe 3.1. Creating Union-Type Structures

 Recipe 3.2. Allowing a Type to Represent Itself as a String

 Recipe 3.3. Converting a String Representation of an Object into an Actual Object

 Recipe 3.4. Implementing Polymorphism with Abstract Base Classes

 Recipe 3.5. Making a Type Sortable

 Recipe 3.6. Making a Type Searchable

 Recipe 3.7. Indirectly Overloading the +=, -=, /=, and *= Operators

 Recipe 3.8. Indirectly Overloading the &&, ||, and ?: Operators

 Recipe 3.9. Turning Bits On or Off

 Recipe 3.10. Making Error-Free Expressions

 Recipe 3.11. Minimizing (Reducing) Your Boolean Logic

 Recipe 3.12. Converting Between Simple Types in a Language-Agnostic Manner

 Recipe 3.13. Determining When to Use the Cast Operator, the as Operator, or the is Operator

 Recipe 3.14. Casting with the as Operator

 Recipe 3.15. Determining a Variable's Type with the is Operator

 Recipe 3.16. Implementing Polymorphism with Interfaces

 Recipe 3.17. Calling the Same Method on Multiple Object Types

 Recipe 3.18. Adding a Notification Callback Using an Interface

 Recipe 3.19. Using Multiple Entry Points to Version an Application

 Recipe 3.20. Preventing the Creation of an Only Partially Initialized Object

 Recipe 3.21. Returning Multiple Items from a Method

 Recipe 3.22. Parsing Command-Line Parameters

 Recipe 3.23. Retrofitting a Class to Interoperate with COM

 Recipe 3.24. Initializing a Constant Field at Runtime

 Recipe 3.25. Writing Code That Is Compatible with the Widest Range of Managed Languages

 Recipe 3.26. Building Cloneable Classes

 Recipe 3.27. Assuring an Object's Disposal

 Recipe 3.28. Releasing a COM Object Through Managed Code

 Recipe 3.29. Creating an Object Cache

 Recipe 3.30. Rolling Back Object Changes

 Recipe 3.31. Disposing of Unmanaged Resources

 Recipe 3.32. Determining Where Boxing and Unboxing Occur

 Chapter 4. Generics

 Introduction

 Recipe 4.1. Deciding When and Where to Use Generics

 Recipe 4.2. Understanding Generic Types

 Recipe 4.3. Getting the Type of a Generic Type

 Recipe 4.4. Replacing the ArrayList with Its Generic Counterpart

 Recipe 4.5. Replacing the Stack and Queue with Their Generic Counterparts

 Recipe 4.6. Implementing a Linked List

 Recipe 4.7. Creating a Value Type That Can Be Initialized to Null

 Recipe 4.8. Reversing the Contents of a Sorted List

 Recipe 4.9. Making Read-Only Collections the Generic Way

 Recipe 4.10. Replacing the Hashtable with Its Generic Counterpart

 Recipe 4.11. Using foreach with Generic Dictionary Types

 Recipe 4.12. Constraining Type Arguments

 Recipe 4.13. Initializing Generic Variables to Their Default Values

 Chapter 5. Collections

 Introduction

 Recipe 5.1. Swapping Two Elements in an Array

 Recipe 5.2. Reversing an Array Quickly

 Recipe 5.3. Reversing a Two-Dimensional Array

 Recipe 5.4. Reversing a Jagged Array

 Recipe 5.5. Writing a More Flexible StackTrace Class

 Recipe 5.6. Determining the Number of Times an Item Appears in a List<T>

 Recipe 5.7. Retrieving All Instances of a Specific Item in a List<T>

 Recipe 5.8. Inserting and Removing Items from an Array

 Recipe 5.9. Keeping Your List<T> Sorted

 Recipe 5.10. Sorting a Dictionary's Keys and/or Values

 Recipe 5.11. Creating a Dictionary with Max and Min Value Boundaries

 Recipe 5.12. Displaying an Array's Data as a Delimited String

 Recipe 5.13. Storing Snapshots of Lists in an Array

 Recipe 5.14. Persisting a Collection Between Application Sessions

 Recipe 5.15. Testing Every Element in an Array or List<T>

 Recipe 5.16. Performing an Action on Each Element in an Array or List<T>

 Recipe 5.17. Creating a Read-Only Array or List<T>

 Chapter 6. Iterators and Partial Types

 Introduction

 Recipe 6.1. Implementing Nested foreach Functionality in a Class

 Recipe 6.2. Creating Custom Enumerators

 Recipe 6.3. Creating an Iterator on a Generic Type

 Recipe 6.4. Creating an Iterator on a Non-generic Type

 Recipe 6.5. Creating Iterators That Accept Parameters

 Recipe 6.6. Adding Multiple Iterators on a Single Type

 Recipe 6.7. Implementing Iterators as Overloaded Operators

 Recipe 6.8. Forcing an Iterator to Stop Iterating

 Recipe 6.9. Dealing with Finally Blocks and Iterators

 Recipe 6.10. Organizing Your Interface Implementations

 Recipe 6.11. Generating Code That Is No Longer in Your Main Code Paths

 Chapter 7. Exception Handling

 Introduction

 Recipe 7.1. Verifying Critical Parameters

 Recipe 7.2. Knowing When to Catch and Rethrow Exceptions

 Recipe 7.3. Identifying Exceptions and Their Usage

 Recipe 7.4. Handling Derived Exceptions Individually

 Recipe 7.5. Assuring Exceptions Are Not Lost When Using Finally Blocks

 Recipe 7.6. Handling Exceptions Thrown from Methods Invoked via Reflection

 Recipe 7.7. Debugging Problems When Loading an Assembly

 Recipe 7.8. Mapping Back and Forth Between Managed Exceptions and HRESULTs

 Recipe 7.9. Handling User-Defined HRESULTs

 Recipe 7.10. Preventing Unhandled Exceptions

 Recipe 7.11. Getting Exception Information

 Recipe 7.12. Getting to the Root of a Problem Quickly

 Recipe 7.13. Creating a New Exception Type

 Recipe 7.14. Obtaining a Stack Trace

 Recipe 7.15. Breaking on a First-Chance Exception

 Recipe 7.16. Preventing the Nefarious TypeInitializationException

 Recipe 7.17. Handling Exceptions Thrown from an Asynchronous Delegate

 Recipe 7.18. Giving Exceptions the Extra Info They Need with Exception.Data

 Recipe 7.19. Looking at Exceptions in a New Way Using Visualizers

 Recipe 7.20. Dealing with Unhandled Exceptions in WinForms Applications

 Chapter 8. Diagnostics

 Introduction

 Recipe 8.1. Controlling Tracing Output in Production Code

 Recipe 8.2. Providing Fine-Grained Control over Debugging/Tracing Output

 Recipe 8.3. Creating Your Own Custom Switch Class

 Recipe 8.4. Compiling Blocks of Code Conditionally

 Recipe 8.5. Determining Whether a Process Has Stopped Responding

 Recipe 8.6. Using Event Logs in Your Application

 Recipe 8.7. Changing the Maximum Size of a Custom Event Log

 Recipe 8.8. Searching Event Log Entries

 Recipe 8.9. Watching the Event Log for a Specific Entry

 Recipe 8.10. Finding All Sources Belonging to a Specific Event Log

 Recipe 8.11. Implementing a Simple Performance Counter

 Recipe 8.12. Implementing Performance Counters That Require a Base Counter

 Recipe 8.13. Enabling and Disabling Complex Tracing Code

 Recipe 8.14. Capturing Standard Output for a Process

 Recipe 8.15. Creating Custom Debugging Displays for Your Classes

 Recipe 8.16. Determining Current appdomain Settings Information

 Recipe 8.17. Boosting the Priority of a Process Programmatically

 Recipe 8.18. Looking at Your Runtime Environment and Seeing What You Can Do About It

 Chapter 9. Delegates, Events, and Anonymous Methods

 Introduction

 Recipe 9.1. Controlling When and If a Delegate Fires Within a Multicast Delegate

 Recipe 9.2. Obtaining Return Values from Each Delegate in a Multicast Delegate

 Recipe 9.3. Handling Exceptions Individually for Each Delegate in a Multicast Delegate

 Recipe 9.4. Converting Delegate Invocation from Synchronous to Asynchronous

 Recipe 9.5. Wrapping Sealed Classes to Add Events

 Recipe 9.6. Passing Specialized Parameters to and from an Event

 Recipe 9.7. An Advanced Interface Search Mechanism

 Recipe 9.8. An Advanced Member Search Mechanism

 Recipe 9.9. Observing Additions and Modifications to a Hashtable

 Recipe 9.10. Using the Windows Keyboard Hook

 Recipe 9.11. Tracking and Responding to the Mouse

 Recipe 9.12. Using Anonymous Methods

 Recipe 9.13. Set up Event Handlers Without the Mess

 Recipe 9.14. Using Different Parameter Modifiers in Anonymous Methods

 Recipe 9.15. Using Closures in C#

 Recipe 9.16. Performing Multiple Operations on a List Using Functors

 Chapter 10. Regular Expressions

 Introduction

 Recipe 10.1. Enumerating Matches

 Recipe 10.2. Extracting Groups from a MatchCollection

 Recipe 10.3. Verifying the Syntax of a Regular Expression

 Recipe 10.4. Quickly Finding Only the Last Match in a String

 Recipe 10.5. Replacing Characters or Words in a String

 Recipe 10.6. Augmenting the Basic String Replacement Function

 Recipe 10.7. Implementing a Better Tokenizer

 Recipe 10.8. Compiling Regular Expressions

 Recipe 10.9. Counting Lines of Text

 Recipe 10.10. Returning the Entire Line in Which a Match Is Found

 Recipe 10.11. Finding a Particular Occurrence of a Match

 Recipe 10.12. Using Common Patterns

 Recipe 10.13. Documenting Your Regular Expressions

 Recipe 10.14. Using Built-in Regular Expressions to Parse ASP. NET Pages

 Chapter 11. Data Structures and Algorithms

 Introduction

 Recipe 11.1. Creating a Hash Code for a Data Type

 Recipe 11.2. Creating a Priority Queue

 Recipe 11.3. Creating a Double Queue

 Recipe 11.4. Determining Where Characters or Strings Do Not Balance

 Recipe 11.5. Creating a One-to-Many Map (MultiMap)

 Recipe 11.6. Creating a Binary Tree

 Recipe 11.7. Creating an n-ary Tree

 Recipe 11.8. Creating a Set Object

 Chapter 12. Filesystem I/O

 Introduction

 Recipe 12.1. Creating, Copying, Moving, or Deleting a File

 Recipe 12.2. Manipulating File Attributes

 Recipe 12.3. Renaming a File

 Recipe 12.4. Determining Whether a File Exists

 Recipe 12.5. Choosing a Method of Opening a File or Stream for Reading and/or Writing

 Recipe 12.6. Accessing Part of a File Randomly

 Recipe 12.7. Outputting a Platform-Independent EOL Character

 Recipe 12.8. Creating, Writing to, and Reading from a File

 Recipe 12.9. Determining Whether a Directory Exists

 Recipe 12.10. Creating, Copying, Moving, or Deleting a Directory

 Recipe 12.11. Manipulating Directory Attributes

 Recipe 12.12. Renaming a Directory

 Recipe 12.13. Searching for Directories or Files Using Wildcards

 Recipe 12.14. Obtaining the Directory Tree

 Recipe 12.15. Parsing a Path

 Recipe 12.16. Parsing Paths in Environment Variables

 Recipe 12.17. Verifying a Path

 Recipe 12.18. Using a Temporary File in Your Application

 Recipe 12.19. Opening a File Stream with Just a File Handle

 Recipe 12.20. Writing to Multiple Output Files at One Time

 Recipe 12.21. Launching and Interacting with Console Utilities

 Recipe 12.22. Locking Subsections of a File

 Recipe 12.23. Watching the Filesystem for Specific Changes to One or More Files or Directories

 Recipe 12.24. Waiting for an Action to Occur in the Filesystem

 Recipe 12.25. Comparing Version Information of Two Executable Modules

 Recipe 12.26. Querying Information for All Drives on a System

 Recipe 12.27. Encrypting/Decrypting an Existing File

 Recipe 12.28. Compressing and Decompressing Your Files

 Chapter 13. Reflection

 Introduction

 Recipe 13.1. Listing Referenced Assemblies

 Recipe 13.2. Listing Exported Types

 Recipe 13.3. Finding Overridden Methods

 Recipe 13.4. Finding Members in an Assembly

 Recipe 13.5. Finding Members Within an Interface

 Recipe 13.6. Determining and Obtaining Nested Types Within an Assembly

 Recipe 13.7. Displaying the Inheritance Hierarchy for a Type

 Recipe 13.8. Finding the Subclasses of a Type

 Recipe 13.9. Finding All Serializable Types Within an Assembly

 Recipe 13.10. Filtering Output When Obtaining Members

 Recipe 13.11. Dynamically Invoking Members

 Recipe 13.12. Providing Guidance to Obfuscators

 Recipe 13.13. Determining if a Type or Method Is Generic

 Recipe 13.14. Reading Manifest Resources Programmatically

 Recipe 13.15. Accessing Local Variable Information

 Recipe 13.16. Creating a Generic Type

 Chapter 14. Web

 Introduction

 Recipe 14.1. Converting an IP Address to a Hostname

 Recipe 14.2. Converting a Hostname to an IP Address

 Recipe 14.3. Parsing a URI

 Recipe 14.4. Forming and Validating an Absolute Uri

 Recipe 14.5. Handling Web Server Errors

 Recipe 14.6. Communicating with a Web Server

 Recipe 14.7. Going Through a Proxy

 Recipe 14.8. Obtaining the HTML from a URL

 Recipe 14.9. Using the New Web Browser Control

 Recipe 14.10. Tying Database Tables to the Cache

 Recipe 14.11. Caching Data with Multiple Dependencies

 Recipe 14.12. Prebuilding an ASP.NET Web Site Programmatically

 Recipe 14.13. Escaping and Unescaping Data for the Web

 Recipe 14.14. Using the UriBuilder Class

 Recipe 14.15. Inspect and Change Your Web Application Configuration

 Recipe 14.16. Working with HTML

 Recipe 14.17. Using Cached Results When Working with HTTP for Faster Performance

 Recipe 14.18. Checking out a Web Server's Custom Error Pages

 Recipe 14.19. Determining the Application Mappings for ASP.NET Set Up on IIS

 Chapter 15. XML

 Introduction

 Recipe 15.1. Reading and Accessing XML Data in Document Order

 Recipe 15.2. Reading XML on the Web

 Recipe 15.3. Querying the Contents of an XML Document

 Recipe 15.4. Validating XML

 Recipe 15.5. Creating an XML Document Programmatically

 Recipe 15.6. Detecting Changes to an XML Document

 Recipe 15.7. Handling Invalid Characters in an XML String

 Recipe 15.8. Transforming XML

 Recipe 15.9. Tearing Apart an XML Document

 Recipe 15.10. Putting Together an XML Document

 Recipe 15.11. Validating Modified XML Documents Without Reloading

 Recipe 15.12. Extending XSLT Transformations

 Recipe 15.13. Getting Your Schema in Bulk from Existing XML Files

 Recipe 15.14. Passing Parameters to XSLT Transformations

 Chapter 16. Networking

 Introduction

 Recipe 16.1. Writing a TCP Server

 Recipe 16.2. Writing a TCP Client

 Recipe 16.3. Simulating Form Execution

 Recipe 16.4. Downloading Data from a Server

 Recipe 16.5. Using Named Pipes to Communicate

 Recipe 16.6. Pinging Programmatically

 Recipe 16.7. Send SMTP Mail Using the SMTP Service

 Recipe 16.8. Check out Your Network Connectivity

 Recipe 16.9. Use Sockets to Scan the Ports on a Machine

 Recipe 16.10. Use the Current Internet Connection Settings

 Recipe 16.11. Download a File Using FTP

 Chapter 17. Security

 Introduction

 Recipe 17.1. Controlling Access to Types in a Local Assembly

 Recipe 17.2. Encrypting/Decrypting a String

 Recipe 17.3. Encrypting and Decrypting a File

 Recipe 17.4. Cleaning up Cryptography Information

 Recipe 17.5. Verifying that a String Remains Uncorrupted Following Transmission

 Recipe 17.6. Wrapping a String Hash for Ease of Use

 Recipe 17.7. A Better Random Number Generator

 Recipe 17.8. Storing Data Securely

 Recipe 17.9. Making a Security Assert Safe

 Recipe 17.10. Preventing Malicious Modifications to an Assembly

 Recipe 17.11. Verifying That an Assembly Has Been Granted Specific Permissions

 Recipe 17.12. Minimizing the Attack Surface of an Assembly

 Recipe 17.13. Obtaining Security/Audit Information

 Recipe 17.14. Granting/Revoking Access to a File or Registry Key

 Recipe 17.15. Protecting String Data with Secure Strings

 Recipe 17.16. Securing Stream Data

 Recipe 17.17. Encrypting web.config Information

 Recipe 17.18. Obtaining the Full Reason a SecurityException Was Thrown

 Recipe 17.19. Achieving Secure Unicode Encoding

 Recipe 17.20. Obtaining a Safer File Handle

 Chapter 18. Threading and Synchronization

 Introduction

 Recipe 18.1. Creating Per-Thread Static Fields

 Recipe 18.2. Providing Thread-Safe Access to Class Members

 Recipe 18.3. Preventing Silent Thread Termination

 Recipe 18.4. Polling an Asynchronous Delegate

 Recipe 18.5. Timing out an Asynchronous Delegate

 Recipe 18.6. Being Notified of the Completion of an Asynchronous Delegate

 Recipe 18.7. Determining Whether a Request for a Pooled Thread Will Be Queued

 Recipe 18.8. Configuring a Timer

 Recipe 18.9. Storing Thread-Specific Data Privately

 Recipe 18.10. Granting Multiple Access to Resources with a Semaphore

 Recipe 18.11. Synchronizing Multiple Processes with the Mutex

 Recipe 18.12. Using Events to Make Threads Cooperate

 Recipe 18.13. Get the Naming Rights for Your Events

 Recipe 18.14. Performing Atomic Operations Among Threads

 Chapter 19. Unsafe Code

 Introduction

 Recipe 19.1. Controlling Changes to Pointers Passed to Methods

 Recipe 19.2. Comparing Pointers

 Recipe 19.3. Navigating Arrays

 Recipe 19.4. Manipulating a Pointer to a Fixed Array

 Recipe 19.5. Returning a Pointer to a Particular Element in an Array

 Recipe 19.6. Creating and Using an Array of Pointers

 Recipe 19.7. Switching Unknown Pointer Types

 Recipe 19.8. Converting a String to a char*

 Recipe 19.9. Declaring a Fixed-Size Structure with an Embedded Array

 Chapter 20. Toolbox

 Introduction

 Recipe 20.1. Dealing with Operating System Shutdown, Power Management, or User Session Changes

 Recipe 20.2. Controlling a Service

 Recipe 20.3. List What Processes an Assembly Is Loaded In

 Recipe 20.4. Using Message Queues on a Local Workstation

 Recipe 20.5. Finding the Path to the Current Framework Version

 Recipe 20.6. Determining the Versions of an Assembly That Are Registered in the Global Assembly Cache (GAC)

 Recipe 20.7. Getting the Windows Directory

 Recipe 20.8. Capturing Output from the Standard Output Stream

 Recipe 20.9. Running Code in Its Own appdomain

 Recipe 20.10. Determining the Operating System and Service Pack Version of the Current Operating System

 About the Authors

 Colophon

 Index

Copyright © 2006 O'Reilly Media, Inc. All rights reserved.

Printed in the United States of America.

Published by O'Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (safari.oreilly.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: John Osborn Cover Designer: Emma Colby

Production
Editor:

Mary Brady
Interior
Designer:

David Futato

Copyeditor: Norma Emory
Cover
Illustrator:

Name Here

Proofreader:
Genevieve
Rajewski

Illustrators:
Robert Romano, Jessamyn Read, and
Lesley Borash

Indexer:
Ellen Troutman
Zaig

Printing History:

January 2004: First Edition.

January 2006: Second Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly Media, Inc. The Cookbook series designations, C# Cookbookbook title>, the image of a
garter snake, and related trade dress are trademarks of O'Reilly Media, Inc.

<insert special trademark info here>

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and O'Reilly Media, Inc. was aware of
a trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors
assume no responsibility for errors or omissions, or for damages resulting from the use of the
information contained herein.

ISBN: 0-59610-063-9

[M]

Dedication

Jay

To Owen and Drew,

Thank you for teaching me how to be a kid again

I love you both,

Daddy

Steve

To my two loving sons, Patrick and Nicholas Teilhet

Preface
C# is a language targeted at developers for the Microsoft .NET platform who have already worked
with a C-like language such as C, C++, or Java. Unlike previous versions of C or C++ for the
Microsoft Windows platform, C# code runs under a managed execution environment. While C and
C++ developers using Visual Studio .NET can write managed code using Managed C++, C# offers a
middle path between C++'s overall power but sometimes difficult code and the higher-level task
orientation provided by Visual Basic .NET. Microsoft portrays C# as a modern and innovative
language for .NET development that will be familiar to current C++ programmers while allowing more
runtime control over the executing code.

C# allows you to perform many C/C++-like functions such as direct memory access via pointers and
operator overloading that are not supported in Visual Basic .NET. C# is the system-level
programming language for .NET. You can still do great application-level work in C#, but it really
shines when you need to build code a little closer to the Framework.

If you have seen C#, you may have noticed that it looks a lot like Java; Java programmers will feel
very much at home in C# once they learn the Framework SDK. C# can also be a great language for
Visual Basic .NET programmers when they need a little more control over what the code is doing and
don't want to have to write C++ to gain an advantage. On the Web, you'll find a large community of
people doing really neat things with C# and tons of sample code on sites such as
http://www.gotdotnet.com, http://www.codeproject.com, and http://www.4guysfromrolla.com.

We put this book together based on programming problems we ran into when we were first learning
C# as well as during our continued use of it. Since the first edition we have encountered a whole new
set of problems to overcome and with the help of C# 2.0, we have created new solutions for them.
We hope that it will help you get past some of the common (and not-so-common) pitfalls and initial
questions everyone has when learning a new language as well as the slightly off the beaten path
items that come up during a development cycle. There are recipes dealing with things we found
missing from the .NET Framework Class Library (FCL), even though Microsoft has provided tons of
functionality to keep folks from reinventing the wheel. Some of these solutions you might
immediately use and some may never darken your door, but we hope this book helps you get the
most out of C# and the .NET Framework.

The book is laid out with respect to the types of problems you will solve as you progress through your
life as a C# programmer. These solutions are called recipes; each recipe consists of a single problem,
its solution, a discussion of the solution and other relevant related information, and finally where you
can look for more information about the classes used from the FCL, other books addressing this topic,
related articles, and other recipes. The question-answer format provides complete solutions to
problems, making the book easy to read and use. Nearly every recipe contains a complete,
documented code sample showing you how to solve the specific problem, as well as a discussion of
how the underlying technology works and a list of alternatives, limitations, and other considerations
when appropriate.

http://www.gotdotnet.com
http://www.codeproject.com
http://www.4guysfromrolla.com

Who This Book Is For

You don't have to be an experienced C# or .NET developer to use this bookit is designed for users of
all levels. This book provides solutions to problems that developers face every day as well as some
that may come along infrequently. The recipes are targeted at the real-world developer who needs to
solve problems now, not learn lots of theory first before being able to solve the problem. While
reference or tutorial books can teach general concepts, they do not generally provide the help you
need in solving real-world problems. We chose to teach by example, the natural way for most people
to learn.

The majority of the problems addressed in this book are frequently faced by C# developers, but
some of the more advanced problems call for more intricate solutions that combine many techniques.
Each recipe is designed to help you quickly understand the problem, learn how to solve it, and find
out any potential trade-offs or ramifications to help you solve your problems quickly, efficiently, and
with minimal effort.

To save you even the effort of typing in the solution, we provide the sample code for the book on the
O'Reilly web site to facilitate the "editor inheritance" mode of development (copy and paste) as well
as to help less experienced developers see good programming practice in action. The sample code
provides a running test harness that exercises each of the solutions, but enough of the code is
provided in each solution in the book to allow you to implement the solution without the sample code.
The sample code is available from the book's catalog page:
http://www.oreilly.com/catalog/csharpckbk2.

http://www.oreilly.com/catalog/csharpckbk2

What You Need to Use This Book

To run the samples in this book, you need a computer running Windows 2000 or later (if you are using
Windows NT 4.0, you can use many, but not all, of the examples in this book; in particular, ASP.NET
and .NET Web Services do not run on NT 4.0). A few of the networking and XML solutions require
Microsoft Internet Information Server (IIS) Version 5 or later.

To open and compile the samples in this book, you need Visual Studio .NET 2005. If you are proficient
with the downloadable Framework SDK and its command-line compilers, you should not have any
trouble following the text of this book and the code samples.

Platform Notes

The solutions in this book are developed using Visual Studio .NET 2005. The differences between
Version 2.0 and Version 1.1 of the .NET Framework are significant and the sample code has changed
from the first edition to reflect that. A complete list of differences between Version 2.0 and Version 1.1
of the .NET Framework can be found at http://www.gotdotnet.com/team/upgrade/apiChanges.aspx.

http://www.gotdotnet.com/team/upgrade/apiChanges.aspx

How This Book Is Organized

This book is organized into 20 chapters, each of which focuses on a particular topic in creating C#
solutions. The following paragraphs summarize each chapter to give you an overview of this book's
contents:

Chapter 1, Numbers and Enumerations

This chapter focuses on the numeric and enumeration data types used in C# code. Recipes
cover such things as numeric conversions, using bitwise operators on numbers, and testing
strings to determine whether they contain a numeric value. The display, conversion, and
testing of enumeration types and recipes on using enumerations that consist of bit flags are
also shown.

Chapter 2, Strings and Characters

This chapter covers both the String and Char data types. Various recipes show how to compare
strings in various ways, encode/decode strings, break strings apart, and put them back
together again, to name a few.

Chapter 3, Classes and Structures

This large chapter contains recipes dealing with both class and structure data types. This
chapter covers a wide range of recipes from design patterns to converting a class to
interoperating with COM.

Chapter 4, Generics

This is a new chapter focusing on the new generics capacity in C#, which allows you to have
code operate uniformly on values of different types. There are recipes to help your general
understanding of generics as well as when they are appropriate to use, what support is
provided in the Framework for them, and how to create custom implementations of collections
using generics.

Chapter 5, Collections

This chapter examines recipes that make use of collections. The collection recipes make use
ofas well as extend the functionality ofthe array (single, multi, and jagged), the List<T>, and
the Hashtable. The new generic-based collections are explored, and the various ways to create
your own strongly typed collection are also discussed.

Chapter 6, Iterators and Partial Types

In this chapter, two of the new features of C# are used to solve very different programming
problems. We show how you can implement iterators for generic and nongeneric types and
implement foreach functionality using iterators, as well as custom iterator implementations.
The other feature of C# in this chapter is partial types. We show how you can use partial types
to do things like better segment your code and how to generate code that is more easily
extensible.

Chapter 7, Exception Handling

The recipes in this chapter focus on the best ways to implement exception handling in your
application. Preventing unhandled exceptions, reading and displaying stack traces, and
throwing/rethrowing exceptions are included recipes. In addition, specific recipes show how to
overcome some tricky situations, such as exceptions from late-bound called methods, and how
to build a custom exception visualizer for the debugger.

Chapter 8, Diagnostics

This chapter explores recipes that use data types that fall under the System.Diagnostics
namespace. Recipes deal with the trace/Debug classes, event logs, processes, performance
counters, and custom debugger displays for your types.

Chapter 9, Delegates, Events, and Anonymous Methods

This chapter's recipes show how delegates, events, and anonymous methods can be used in
your applications. Recipes allow manipulation of delegates that call more than one method,
synchronous delegates, asynchronous delegates, and Windows keyboard hooks. Anonymous
methods are explored and recipes show their usage in place of old-style delegates as well as
their use in implementing closures and functors.

Chapter 10, Regular Expressions

This chapter covers a very useful set of classes that are used to run regular expressions
against strings. Recipes enumerate regular expression matches, break up strings into tokens,
find/replace characters, and verify the syntax of a regular expression. A recipe is also included
that contains many common regular expression patterns.

Chapter 11, Data Structures and Algorithms

This chapter goes a bit outside of what is provided for you in the .NET Framework Class Library
and implements certain data structures and algorithms that are not in the FCL, or possibly are
not in existence exactly the way you would like to use them, but ones that you have used to
solve problems before. Items such as queues, maps, trees, and hashes are explored.

Chapter 12, Filesystem I/O

This chapter deals with filesystem interactions in four distinct ways. The first way is to look at
typical file interactions; the second way looks at directory-or folder-based interactions; the
third way deals with paths and temporary files; and the fourth way deals with advanced
filesystem I/O topics.

Chapter 13, Reflection

This chapter shows ways to use the built-in assembly inspection system provided by the .NET
Framework to determine what types, interfaces, and methods are implemented within an
assembly and how to access them in a late-bound fashion.

Chapter 14, Web

This chapter covers accessing a web site and its content as well as programmatically
determining web site configuration. Among the recipes in this chapter are using the new web
browser control and setting up caching triggers to refresh cached data when a database table
changes.

Chapter 15, XML

If you use .NET, it is likely that you will be dealing with XML to one degree or another; in this
chapter, we explore some of the uses for XML, including XPath and XSLT, and topics such as
the validation of XML and transformation of XML to HTML.

Chapter 16, Networking

This chapter explores the connectivity options provided by the .NET Framework and how to
programmatically access network resources. Recipes for using TCP/IP directly, named pipes for
communication, building your own port scanner, and more are covered here.

Chapter 17, Security

There are many ways to write secure code and protect data using the .NET Framework, and in
this chapter, we explore areas such as controlling access to types, encryption and decryption,
random numbers, securely storing data, and using programmatic and declarative security.

Chapter 18, Threading and Synchronization

This chapter addresses the subject of using multiple threads of execution in a .NET program
and issues like how to implement threading in your application, protecting resources from and
allowing safe concurrent access, storing per-thread data, and the use of asynchronous
delegates for processing.

Chapter 19, Unsafe Code

This chapter discusses how C# allows you to step outside of the safe environment of managed
code and write code that is considered unsafe by the .NET Framework. The possibilities and

restrictions of using unsafe code in C# are addressed by illustrating solutions to problems using
unsafe code.

Chapter 20, Toolbox

This chapter has recipes for those random sorts of operations that developers run into over and
over again, like determining locations of system resources, sending email, and working with
services. It also covers some less frequently accessed but helpful application pieces like
message queuing, running code in a separate AppDomain, and finding the versions of
assemblies in the GAC.

In some cases, certain recipes are related. In these cases, the See Also section of the recipe as well
as some text in the Discussion will note the relationships.

What Was Left Out

This book is not a reference or a primer about C#. Some good primers and reference books are C# in
a Nutshell, C# Language Pocket Reference, and Learning C#, all titles available from O'Reilly. The
MSDN Library is also invaluable. It is included with Visual Studio .NET 2005 and available online at
http://msdn.microsoft.com/library/default.asp.

This book is not about how to use Visual Studio .NET 2005 to build, compile, and deploy applications.
See Mastering Visual Studio .NET (O'Reilly) for excellent coverage of these topics.

http://msdn.microsoft.com/library/default.asp

Conventions Used in This Book

This book uses the following typographic conventions:

Italic

Used for URLs, names of directories and files, options, and occasionally for emphasis.

Constant width

Used for program listings and for code items such as commands, options, switches, variables,
attributes, keys, functions, types, classes, namespaces, methods, modules, properties,
parameters, values, objects, events, event handlers, XML tags, HTML tags, macros, the
contents of files, and the output from commands.

Constant width bold

Used in program listings to highlight an important part of the code.

//…

Ellipses in C# code indicate text that has been omitted for clarity.

<!--…-->

Ellipses in XML Schemas and documents' code indicate text that has been omitted for clarity.

This icon indicates a tip, suggestion, or general note.

This icon indicates a warning or caution.

About the Code

Nearly every recipe in this book contains one or more code samples. These samples are included in a
single solution and are pieces of code and whole projects that are immediately usable in your
application. Most of the code samples are written within a class or structure, making it easier to use
within your applications. In addition to this, any using directives are included for each recipe so that
you will not have to search for which ones to include in your code.

Complete error handling is included only in critical areas, such as input parameters. This allows you
to easily see what is correct input and what is not. Many recipes omit error handling. This makes the
solution easier to understand by focusing on the key concepts.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in this book in
your programs and documentation. You do not need to contact us for permission unless you're
reproducing a significant portion of the code. For example, writing a program that uses several
chunks of code from this book does not require permission. Selling or distributing a CD-ROM of
examples from O'Reilly books does require permission. Answering a question by citing this book and
quoting example code does not require permission. Incorporating a significant amount of example
code from this book into your product's documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title, author,
publisher, and ISBN. For example: "C# Cookbook, 2nd edition by Jay Hilyard and Stephen Teilhet.
Copyright 2006 O'Reilly Media, Inc., 0-596-10063-9."

If you feel your use of code examples falls outside fair use or the preceding permission, feel free to
contact us at permissions@oreilly.com.

Comments and Questions

Please address any comments or questions concerning this book to the publisher:

O'Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-998-9938 (in the U.S. or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional information.
You can access this page at:

http://www.oreilly.com/catalog/csharpckbk2

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see
our web site at:

http://www.oreilly.com

http://www.oreilly.com/catalog/csharpckbk2
http://www.oreilly.com

Safari Enabled

When you see a Safari® Enabled icon on the cover of your favorite technology book,
it means the book is available online through the O'Reilly Network Safari Bookshelf.

Safari offers a solution that's better than e-books. It's a virtual library that lets you easily search
thousands of top technology books, cut and paste code samples, download chapters, and find quick
answers when you need the most accurate, current information. Try it for free at
http://safari.oreilly.com.

http://safari.oreilly.com

Acknowledgments

This book started for us after a long development cycle for a new product from Compuware called
DevPartner SecurityChecker. Much was learned, and some of the concepts for recipes in this edition
helped to build that product. With the advent of C# 2.0 and the new features in C#, we took the
opportunity to reexamine how we did things in the first edition to see how we could improve the
existing recipes as well as learn better ways of accomplishing programming tasks with C#. During the
process Jay moved on to other opportunities from Compuware while Steve continued to help develop
the forthcoming version of SecurityChecker. We have learned an incredible amount about C# and the
Framework in general while we worked hard to help bring you a better understanding of how C# has
evolved and how it can help you do your job better in this edition.

This book would have been impossible without the following people and we'd like to acknowledge all
of their efforts.

Ralph Davis, our editor, who helped keep us on track, refereed the technical discussions, and was a
steadying influence on a stormy project. Thank you for all of your efforts during the process and for
your professionalism. It was most appreciated and impressive given the circumstances.

Ian Griffiths and Nicholas Paldino, our technical editors, who gave us their honest takes on our efforts
and made good suggestions on how to make the recipes even better. They helped to make this an
even better book and for that we thank them."

From Jay Hilyard

Thanks to Steve Teilhet for his ideas, friendship, and generally calm demeanor, which helped me get
past the challenging stages of the book. I enjoyed working with you again, even though most of it
was on nights and weekends this time.

Special thanks to my wife Brooke to whom I owe an immense debt of gratitude for so many things.
You are a fabulous mother and an even better wife. Who would have thought I would be the one to
write the "Cookbooks"? Thank you and I love you.

My sons, Owen and Andrew, understood when Daddy couldn't go to the beach and went to bed
willingly on nights when I needed them to the most. I am truly blessed to have two fine sons.

Thanks to Phil and Gail for being there to help in ways that only grandparents can.

Thanks for Matt Pietrek for helping to explain why the 2.0 Framework reacted as it did when I tried
new things before there were many other resources available.

Thanks to the Compuware gang of my era that helped produce DevPartner Studio and
SecurityChecker. My perspective on development using .NET was expanded greatly from my
discussions and experiences with all of you and I wish you all the very best. I say thank you to Steve
Munyan, Barry Tannenbaum, Craig Neth, Kit Von Sück, Bob Newton, Garry Poegel, Katie King, Alice
Pizzuto, Xin Li, Charles Kekeh, Tom Wagner, Bill Holmes, Jeff Simmons, Russ Osterlund, John Lyon-

Smith, Katrina Lyon-Smith, Ian Goodsell, Rich Chiodo, Andy Najberg, Bob Crowling, and everyone
else.

Thanks to Patrick Hynds, Duane LaFlotte, and Naveen Kohli for helping to keep my .NET interest
high.

Thanks to Tim Pelletier, Scott Cronshaw, Lance Simpson, David Bennett, Suzanne Gibson, Kate
Keisling, and Shawn McGowan for helping to reignite my passion for writing software. The best is yet
to come.

Thanks to Kristen Acheson for being a great friend and a fan.

Finally, thanks again to my family and friends for asking about a book they don't understand and for
being excited for me.

From Steve Teilhet

I'm proud to count Jay Hilyard as a good friend, excellent coworker, and hardworking coauthor. It's
not every day that you find a person who is not only a good friend, but you also work so well with.
Thank you for everything.

Kandis Teilhet, my wife, was there every step of the way to give me the strength to persevere and
finish this work. Words cannot express my love for you.

Patrick and Nicholas Teilhet, my two sons, made the rough patches smooth. I couldn't wish for two
better sons.

My mom and dad were there to listen and give support.

Thanks to Bill Holmes, Paul Pelski, and Jeff Simmons who helped me sort through several of the
newer recipes and to provide some great ideas for recipes. Thanks also to Xin Li and Tom Wagner
who helped examine the code to make sure it worked in real-world applications.

Thanks to the SecurityChecker development team (and friends) who helped me expand my
knowledge of C# and also helped me through the rough patches: Garry Poegel, Andrew Fournier,
Katie King, Kelley-Sue LeBlanc, Xin Li, Alicia Rhoades, Tom Wagner, Tim Weaver, Dave Chestnutt,
Steve Munyan, Bob Newton, Charles Kekeh, Barry Tannenbaum, and Dennis Murphy. Thanks for all
your help and supportI think this calls for a celebration.

Chapter 1. Numbers and Enumerations

Introduction

Recipe 1.1. Determining Approximate Equality Between a Fraction and Floating-Point Value

Recipe 1.2. Converting Degrees to Radians

Recipe 1.3. Converting Radians to Degrees

Recipe 1.4. Using the Bitwise Complement Operator with Various Data Types

Recipe 1.5. Testing for an Even or Odd Value

Recipe 1.6. Obtaining the High Word or Low Word of a Number

Recipe 1.7. Converting a Number in Another Base to Base10

Recipe 1.8. Determining Whether a String Is a Valid Number

Recipe 1.9. Rounding a Floating-Point Value

Recipe 1.10. Choosing a Rounding Algorithm

Recipe 1.11. Converting Celsius to Fahrenheit

Recipe 1.12. Converting Fahrenheit to Celsius

Recipe 1.13. Safely Performing a Narrowing Numeric Cast

Recipe 1.14. Finding the Length of Any Three Sides of a Right Triangle

Recipe 1.15. Finding the Angles of a Right Triangle

Recipe 1.16. Displaying an Enumeration Value as a String

Recipe 1.17. Converting Plain Text to an Equivalent Enumeration Value

Recipe 1.18. Testing for a Valid Enumeration Value

Recipe 1.19. Testing for a Valid Enumeration of Flags

Recipe 1.20. Using Enumerated Members in a Bit Mask

Recipe 1.21. Determining if One or More Enumeration Flags Are Set

Recipe 1.22. Determining the Integral Part of a Decimal or Double

Introduction

Simple types are value types that are a subset of the built-in types in C#, although, in fact, the types
are defined as part of the .NET Framework Class Library (.NET FCL). Simple types are made up of
several numeric types and a bool type. These numeric types consist of a decimal type (decimal), nine
integral types (byte, char, int, long, sbyte, short, uint, ulong, ushort), and two floating-point
types (float, double). Table 1-1 lists the simple types and their fully qualified names in the .NET
Framework.

Table 1-1. The simple data types

Fully qualified name Alias Value range

System.Boolean bool true or false

System.Byte byte 0 to 255

System.SByte sbyte -128 to 127

System.Char char 0 to 65535

System.Decimal decimal
-79,228,162,514,264,337,593,543,950,335 to

79,228,162,514,264,337,593,543,950,335

System.Double double -1.79769313486232e308 to 1.79769313486232e308

System.Single float -3.40282347E+38 to 3.40282347E+38

System.Int16 short -32768 to 32767

System.Uint16 ushort 0 to 65535

System.Int32 int -2,147,483,648 to 2,147,483,647

System.UInt32 uint 0 to 4,294,967,295

System.Int64 long -9,223,372,036,854,775,808 to 9,223,372,036,854,775,807

System.UInt64 ulong 0 to 18,446,744,073,709,551,615

The C# reserved words for the various data types are simply aliases for the fully qualified type name.
Therefore, it does not matter whether you use the type name or the reserved word: the C# compiler
will generate identical code.

It should be noted that the following types are not Common Language Specification-compliant (CLS-
compliant): sbyte, ushort, uint, and ulong. They might not be supported by other .NET languages
as a result of this. This lack of support might limit or impede the interaction between your C# code
and code written in another CLS-compliant language, such as Visual Basic .NET.

Enumerations implicitly inherit from System.Enum, which in turn inherits from System.ValueType.
Enumerations have a single use: to describe items of a specific group. For example, the colors red,
blue, and yellow could be defined by the enumeration ValidShapeColor; likewise, square, circle, and
triangle could be defined by the enumeration ValidShape. These enumerations would look like the
following:

 enum ValidShapeColor
 {
 Red, Blue, Yellow
 }

 enum ValidShape
 {
 Square = 2, Circle = 4, Triangle = 6
 }

Each item in the enumeration receives a numeric value regardless of whether you assign one or not.
Since the compiler automatically adds the numbers starting with zero and incrementing by one, for
each item in the enumeration, the ValidShapeColor enumeration previously defined would be exactly
the same if it were defined in the following manner:

 enum ValidShapeColor
 {
 Red = 0, Blue = 1, Yellow = 2
 }

Enumerations are good code-documenting tools. For example, it is more intuitive to write the
following:

 ValidShapeColor currentColor = ValidShapeColor.Red;

instead of this:

 int currentColor = 0;

Either mechanism will work, but the first method is easy to read and understand, especially for a new
developer taking over someone else's code. It also has the benefit of being type-safe, which the use
of raw ints does not provide.

Recipe 1.1. Determining Approximate Equality Between a
Fraction and Floating-Point Value

Problem

You need to compare a fraction with a value of type double or float to determine whether they are
within a close approximation to each other. Take, for example, the result of comparing the
expression 1/6 and the value 0.16666667. These seem to be equivalent, except that 0.16666667 is
precise to only eight places to the right of the decimal point, and 1/6 is precise to the maximum
number of digits to the right of the decimal point that the data type will hold.

Solution

To compare the approximate equality between a fraction and a floating-point value, verify that the
difference between the two values is within an acceptable tolerance:

 using System;

 // Override that uses the System.Double.Epsilon value
 public static bool IsApproximatelyEqualTo(double numerator,
 double denominator,
 double dblValue)
 {
 return IsApproximatelyEqualTo(numerator,
 denominator, dblValue, double.Epsilon);
 }

 // Override that allows for specification of an epsilon value
 // other than System.Double.Epsilon
 public static bool IsApproximatelyEqualTo(double numerator,
 double denominator,
 double dblValue,
 double epsilon)
 {
 double difference = (numerator/denominator) - dblValue;

 if (Math.Abs(difference) < epsilon)
 {
 // This is a good approximation.
 return true;
 }

 else
 {
 // This is NOT a good approximation.
 return false;
 }
 }

Replacing the type double with float allows you to determine whether a fraction and a float value
are approximately equal.

Discussion

Fractions can be expressed as a numerator over a denominator; however, storing them as a
floating-point value might be necessary. Storing fractions as floating-point values introduces rounding
errors that make it difficult to perform comparisons. Expressing the value as a fraction (e.g., 1/6)
allows the maximum precision. Expressing the value as a floating-point value (e.g., 0.16667) can limit
the precision of the value. In this case, the precision depends on the number of digits that the
developer decides to use to the right of the decimal point.

You might need a way to determine whether two values are approximately equal to each other. This
comparison is achieved by defining a value (epsilon), representing the smallest positive value by
which two numbers can differ and still be considered equal. In other words, by taking the absolute
value of the difference between the fraction (numerator/denominator) and the floating-point value
(dblValue) and comparing it to a predetermined value passed to the epsilon argument, you can
determine whether the floating-point value is a good approximation of the fraction.

Consider a comparison between the fraction 1/7 and its floating-point value, 0.14285714285714285.
The following call to the IsApproximatelyEqualTo method indicates that there are not enough digits to
the right of the decimal point in the floating-point value to be a good approximation of the fraction
(there are six digits, although seven are required):

 bool Approximate = Class1.IsApproximatelyEqualTo(1, 7, .142857, .0000001);
 // Approximate == false

Adding another digit of precision to the third parameter of this method now indicates that this more
precise number is what you require for a good approximation of the fraction 1/7:

 bool Approximate = Class1.IsApproximatelyEqualTo(1, 7, .1428571, .0000001);
 // Approximate == true

See Also

See the "Double.Epsilon Field" and "Single.Epsilon Field" topics in the MSDN documentation.

Recipe 1.2. Converting Degrees to Radians

Problem

When using the trigonometric functions of the Math class, all units are in radians. You have one or
more angles measured in degrees and want to convert these to radians in order to use them with the
members of the Math class.

Solution

To convert a value in degrees to radians, multiply it by /180:

 using System;

 public static double ConvertDegreesToRadians (double degrees)
 {
 double radians = (Math.PI / 180) * degrees;
 return (radians);
 }

Discussion

All of the static trigonometric methods in the Math class use radians as their unit of measure for
angles. It is very handy to have conversion routines to convert between radians and degrees,
especially when a user is required to enter data in degrees rather than radians. After all, humans
understand degrees better than radians.

The equation for converting degrees to radians is shown here:

 radians = (Math.PI / 180) * degrees

The static field Math.PI contains the constant .

Recipe 1.3. Converting Radians to Degrees

Problem

When using the trigonometric functions of the Math class, all units are in radians; instead, you require
a result in degrees.

Solution

To convert a value in radians to degrees, multiply it by 180/:

 using System;

 public static double ConvertRadiansToDegrees(double radians)
 {
 double degrees = (180 / Math.PI) * radians;
 return (degrees);
 }

Discussion

All of the static trigonometric methods in the Math class use radians as their unit of measure for
angles. It is very handy to have conversion routines to convert between radians and degrees;
displaying degrees to a user is more informative than displaying radians.

The equation for converting radians to degrees is shown here:

 degrees = (180 / Math.PI) * radians

The static field Math.PI contains the constant .

Recipe 1.4. Using the Bitwise Complement Operator with
Various Data Types

Problem

The bitwise complement operator (~) is overloaded to work directly with int, uint, long, ulong,
and enumeration data types consisting of the underlying types int, uint, long, and ulong.
However, you need to perform a bitwise complement operation on a different numeric data type.

Solution

To use the bitwise complement operator with any data type, you must cast the resultant value of the
bitwise operation to the type you wish to work with. The following code demonstrates this technique
with the byte data type:

 byte y = 1;
 byte result = (byte)~y;

The value assigned to result is 254.

Discussion

The following code shows incorrect use of the bitwise complement operator on the byte data type:

 byte y = 1;
 Console.WriteLine("~y = " + ~y);

This code outputs the following surprising value:

 -2

Clearly, the result from performing the bitwise complement of the byte variable is incorrect; it should

be 254. In fact, byte is an unsigned data type, so it cannot be equal to a negative number. If you
rewrite the code as follows:

 byte y = 1;
 byte result = ~y;

you get a compile-time error: "Cannot implicitly convert type 'int' to 'byte.'" This error message gives
some insight into why this operation does not work as expected. To fix this problem, you must
explicitly cast this value to a byte before you assign it to the result variable, as shown here:

 byte y = 1;
 byte result = (byte)~y;

This cast is required because the bitwise operators are overloaded to operate on only six specific data
types: int, uint, long, ulong, bool, and enumeration data types. When one of the bitwise
operators is used on another data type, that data type is converted to the supported data type that
matches it most closely. Therefore, a byte data type is converted to an int before the bitwise
complement operator is evaluated:

 0x01 // byte y = 1;
 0xFFFFFFFE // The value 01h is converted to an int and its
 // bitwise complement is taken.
 // This bit pattern equals -2 as an int.
 0xFE // The resultant int value is cast to its original byte data type.

Notice that the int data type is a signed data type, unlike the byte data type. This is why you receive
-2 for a result instead of the expected value 254. This conversion of the byte data type to its nearest
equivalent is called numeric promotion. Numeric promotion also comes into play when you use
differing data types with binary operators, including the bitwise binary operators.

Numeric promotion is discussed in detail in the C# Language Specification
document in section 7.2.6 (this document is available at
http://msdn.microsoft.com/vcsharp/programming/language). Understanding
how numeric promotion works is essential when using operators on differing
data types and when using operators with a data type that is not overloaded to
handle them. Knowing this can save you hours of debugging time.

http://msdn.microsoft.com/vcsharp/programming/language

Recipe 1.5. Testing for an Even or Odd Value

Problem

You need a simple method to test a numeric value to determine whether it is even or odd.

Solution

The solution is actually implemented as two methods. To test for an even integer value, use the
following method:

 public static bool IsEven(int intValue)
 {
 return ((intValue % 2) == 0);
 }

To test for an odd integer value, use the following method:

 public static bool IsOdd(int intValue)
 {
 return ((intValue % 2) == 1);
 }

Discussion

Every odd number always has its least-significant bit set to 1. Therefore, by checking whether this bit
is equal to 1, you can tell whether it is an odd number. Conversely, testing the least-significant bit to
see whether it is 0 can tell you whether it is an even number.

To test whether a value is even, you AND the value in question with 1 and then determine whether
the result is equal to zero. If it is, you know that the value is an even number; otherwise, the value is
odd. This operation is part of the IsEven method.

On the other hand, you can determine whether a value is odd by ANDing the value with 1, similar to
how the even test operates, and then determine whether the result is 1. If so, you know that the
value is an odd number; otherwise, the value is even. This operation is part of the IsOdd method.

Note that you do not have to implement both the IsEven and IsOdd methods in your application,
although implementing both methods might improve the readability of your code. You can implement
one in terms of the other. For example, here is an implementation of IsOdd in terms of IsEven:

 public static bool IsOdd(int intValue)
 {
 return (!IsEven(intValue));
 }

The methods presented here accept only 32-bit integer values. To allow this method to accept other
numeric data types, you can simply overload it to accept any other data types that you require. For
example, if you need to also determine whether a 64-bit integer is even, you can modify the IsEven
method as follows:

 public static bool IsEven(long longValue)
 {
 return ((longValue & 1) == 0);
 }

Only the data type in the parameter list needs to be modified.

Recipe 1.6. Obtaining the High Word or Low Word of a
Number

Problem

You have a 32-bit integer value that contains information in both its lower and upper 16 bits. You need
methods to get the high word (first 16 bits) and/or the low word (last 16 bits) of this value.

Solution

To get the high word of an integer value, perform a bit-wise AND between it and the value, as shown
in the following method:

 public static int GetHighWord(int intValue)
 {
 return (intValue & (0xFFFF << 16));
 }

To get the low word of a value, use the following method:

 public static int GetLowWord(int intValue)
 {
 return (intValue & 0x0000FFFF);
 }

This technique can easily be modified to work with other sizes of integers (e.g., 8-bit, 16-bit, or 64-
bit); this trick is shown in the Discussion section.

Discussion

In order to determine the values of the high word of a number, use the following bit-wise AND
operation:

 uint intValue = Int32.MaxValue;

 uint MSB = intValue & (0xFFFF << 16);

 // MSB == 0xFFFF0000

This method simply ANDs the number to another number with all of the high word set to 1. This
method will zero out all of the low word, leaving the high word intact.

In order to determine the values of the low word of a number, use the following bitwise AND
operation:

 uint intValue = Int32.MaxValue;
 uint LSB = intValue & 0x0000FFFF;

 // LSB == 0x0000FFFF

This method simply ANDs the number to another number with all of the low word set to 1, which zeros
out all of the high word, leaving the low word intact.

The methods presented here accept only 32-bit integer values. To allow this method to accept other
numeric data types, you can simply overload this method to accept any other data types that you
require. For example, if you need to also acquire the low or high byte of a 16-bit integer, you can use
the same structure as the GetHighWord method as follows:

 public static short GetHighByte(short shortValue)
 {
 return (short)(shortValue & (0xFF << 8));
 }

The GetLowWord method is modified as shown here:

 public static short GetLowByte(short shortValue)
 {
 return (short)(shortValue & (short)0xFF);
 }

Recipe 1.7. Converting a Number in Another Base to
Base10

Problem

You have a string containing a number in base2 (binary), base8 (octal), base10 (decimal), or base16
(hexadecimal). You need to convert this string to its equivalent integer value and display it in base10.

Solution

To convert a number in another base to base10, use the overloaded static Convert.ToInt32 method
on the Convert class:

 string base2 = "11";
 string base8 = "17";
 string base10 = "110";
 string base16 = "11FF";

 Console.WriteLine("Convert.ToInt32(base2, 2) = " +
 Convert.ToInt32(base2, 2));

 Console.WriteLine("Convert.ToInt32(base8, 8) = " +
 Convert.ToInt32(base8, 8));

 Console.WriteLine("Convert.ToInt32(base10, 10) = " +
 Convert.ToInt32(base10, 10));

 Console.WriteLine("Convert.ToInt32(base16, 16) = " +
 Convert.ToInt32(base16, 16));

This code produces the following output:

 Convert.ToInt32(base2, 2) = 3
 Convert.ToInt32(base8, 8) = 15
 Convert.ToInt32(base10, 10) = 110
 Convert.ToInt32(base16, 16) = 4607

Discussion

The static Convert.ToInt32 method has an overload that takes a string containing a number and an
integer defining the base of this number. This method then converts the numeric string into an
integer. Console.WriteLine then converts the number to base10 and displays it.

The other static methods of the Convert class, such as ToByte, ToInt64, and ToInt16, also have this
same overload, which accepts a number as a string and the base in which this number is expressed.
Unfortunately, these methods convert from a string value expressed in base2, base8, base10, and
base16 only. They do not allow for converting a value to a string expressed in any other base types
than base10. However, the ToString methods on the various numeric types do allow for this
conversion.

See Also

See the "Convert Class" and "Converting with System.Convert" topics in the MSDN documentation.

Recipe 1.8. Determining Whether a String Is a Valid
Number

Problem

You have a string that possibly contains a numeric value. You need to know whether this string
contains a valid number.

Solution

Use the static TryParse method of any of the numeric types. For example, to determine whether a
string contains a double, use the following method:

 string str = "12.5";
 double result = 0;
 if(double.TryParse(str,
 System.Globalization.NumberStyles.Float,
 System.Globalization.NumberFormatInfo.CurrentInfo,
 out result))
 {

 // Is a double!
 }

Discussion

This recipe shows how to determine whether a string contains only a numeric value. The tryParse
method returns true if the string contains a valid number without the exception that you will get if
you use the Parse method. Since TRyParse does not throw exceptions, it performs better over time
given a set of strings where some do not contain numbers.

See Also

See the "Parse" and "TryParse" topics in the MSDN documentation.

Recipe 1.9. Rounding a Floating-Point Value

Problem

You need to round a number to a whole number or to a specific number of decimal places.

Solution

To round any number to its nearest whole number, use the overloaded static Math.Round method,
which takes only a single argument:

 int x = (int)Math.Round(2.5555); // x == 3

If you need to round a floating-point value to a specific number of decimal places, use the overloaded
static Math.Round method, which takes two arguments:

 decimal x = Math.Round(2.5555, 2); // x == 2.56

Discussion

The Round method is easy to use; however, you need to be aware of how the rounding operation
works. The Round method follows the IEEE Standard 754, section 4 standard. This means that if the
number being rounded is halfway between two numbers, the Round operation will always round to the
even number. An example will show what this means to you:

 decimal x = Math.Round(1.5); // x == 2
 decimal y = Math.Round(2.5); // y == 2

Notice that 1.5 is rounded up to the nearest even whole number and 2.5 is rounded down to the
nearest even whole number. Keep this in mind when using the Round method.

See Also

See Recipes 1.1 and 1.22; see the "Math Class" topic in the MSDN documentation.

Recipe 1.10. Choosing a Rounding Algorithm

Problem

The Math.Round method will round the value 1.5 to 2; however, the value 2.5 will also be rounded to 2
using this method. You may always want to round to the greater number in this type of situation
(e.g., round 2.5 to 3 instead of 2). Conversely, you might want to always round to the lesser number
(e.g., round 1.5 to 1).

Solution

Use the static Math.Floor method to always round up when a value is halfway between two whole
numbers:

 public static double RoundUp(double valueToRound)
 {
 return (Math.Floor(valueToRound + 0.5));
 }

Use the following technique to always round down when a value is halfway between two whole
numbers:

 public static double RoundDown(double valueToRound)
 {
 double floorValue = Math.Floor(valueToRound);
 if ((valueToRound - floorValue) > .5)
 {
 return (floorValue + 1);
 }
 else
 {
 return (floorValue);
 }
 }

Discussion

The static Math.Round method rounds to the nearest even number (see Recipe 1.9 for more
information). However, there are some times that you do not want to round a number in this
manner. The static Math.Floor method can be used to allow for different manners of rounding.

Note that the methods used to round numbers in this recipe do not round to a specific number of
decimal points; rather, they round to the nearest whole number.

See Also

See Recipes 1.9 and 1.22; see the "Math Class" topic in the MSDN documentation.

Recipe 1.11. Converting Celsius to Fahrenheit

Problem

You have a temperature reading measured in Celsius and need to convert it to Fahrenheit.

Solution

 public static double CtoF(double celsius)
 {
 return (((0.9/0.5) * celsius) + 32);
 }

To generate a double result while maintaining the same ratio (9 to 5) as the integers give, 0.9 and 0.5
are used in the calculation.

Discussion

This recipe makes use of the following Celsius-to-Fahrenheit temperature conversion equation:

 TempFahrenheit = ((9 / 5) * TempCelsius) + 32

The Fahrenheit temperature scale is widely used in the United States. However, much of the rest of
the world uses the Celsius temperature scale.

Recipe 1.12. Converting Fahrenheit to Celsius

Problem

You have a temperature reading measured in Fahrenheit and need to convert it to Celsius.

Solution

 public static double FtoC(double fahrenheit)
 {
 return ((0.5/0.9) * (fahrenheit - 32));
 }

Discussion

This recipe makes use of the following Fahrenheit-to-Celsius temperature conversion equation:

 TempCelsius = (5 / 9) * (TempFahrenheit - 32)

The Fahrenheit temperature scale is widely used in the United States. However, much of the rest of
the world uses the Celsius temperature scale.

Recipe 1.13. Safely Performing a Narrowing Numeric Cast

Problem

You need to cast a value from a larger value to a smaller one, while gracefully handling conditions
that result in a loss of information. For example, casting a long to an int results in a loss of
information only if the long data type is greater than int.MaxSize.

Solution

The simplest way to do this check is to use the checked keyword. The following method accepts two
long data types and attempts to add them together. The result is stuffed into an int data type. If an
overflow condition exists, the OverflowException is thrown:

 using System;

 public void UseChecked(long lhs, long rhs)
 {
 int result = 0;

 try
 {
 result = checked((int)(lhs + rhs));
 }
 catch (OverflowException e)
 {
 // Handle overflow exception here.
 }
 }

This is the simplest method. However, if you do not want the overhead of throwing an exception and
having to wrap a lot of code in try/catch blocks to handle the overflow condition, you can use the
MaxValue and MinValue fields of each type. A check using these fields can be done prior to the
conversion to insure that no loss of information occurs. If this does occur, the code can inform the
application that this cast will cause a loss of information. You can use the following conditional
statement to determine whether sourceValue can be cast to a short without losing any information:

 // Our two variables are declared and initialized.
 int sourceValue = 34000;

 short destinationValue = 0;

 // Determine if sourceValue will lose information in a cast to a short.
 if (sourceValue <= short.MaxValue && sourceValue >= short.MinValue)
 {
 destinationValue = (short)sourceValue;
 }
 else
 {
 // Inform the application that a loss of information will occur.
 }

Discussion

A narrowing conversion occurs when a larger type is cast down to a smaller type. For instance,
consider casting a value of type Int32 to a value of type Int16. If the Int32 value is smaller than or
equal to the Int16.MaxValue field and the Int32 value is higher than or equal to the Int16.MinValue
field, the cast will occur without error or loss of information. Loss of information occurs when the
Int32 value is larger than the Int16.MaxValue field or the Int32 value is lower than the Int16.MinValue
field. In either of these cases, the most significant bits of the Int32 value are truncated and
discarded, changing the value after the cast.

If a loss of information occurs in an unchecked context, it will occur silently without the application
noticing. This problem can cause some very insidious bugs that are hard to trackdown. To prevent
this, check the value to be converted to determine whether it is within the lower and upper bounds of
the type that it will be cast to. If the value is outside these bounds, then code can be written to
handle this situation. This code could force the cast not to occur and/or possibly inform the
application of the casting problem. This solution can aid in the prevention of hard-to-find arithmetic
bugs from appearing in your applications.

You should understand that both techniques shown in the Solution section are valid. However, the
technique you use will depend on whether you expect to hit the overflow case on a regular basis or
only occasionally. If you expect to hit the overflow case quite often, you might want to choose the
second technique of manually testing the numeric value. Otherwise, it might be easier to use the
checked keyword, as in the first technique.

In C#, code can run in either a checked or unchecked context; by default, the
code runs in an unchecked context. In a checked context, any arithmetic and
conversions involving integral types are examined to determine whether an
overflow condition exists. If so, an OverflowException is thrown. In an
unchecked context, no OverflowException will be thrown when an overflow
condition exists.

A checked context can be set up by using the /checked{+} compiler switch, by
setting the Check for Arithmetic Overflow/Underflow project property to true,
or by using the checked keyword. An unchecked context can be set up using the
/checked- compiler switch, by setting the Check for Arithmetic
Overflow/Underflow project property to false, or by using the unchecked
keyword.

Notice that floating-point and decimal types are not included in the code that handles the conversions
to integral types in this recipe. The reason is that a conversion from any integral type to a float,
double, or decimal will not lose any information; therefore, it is redundant to check these
conversions.

In addition, you should be aware of the following when performing a conversion:

Casting from a float, double, or decimal type to an integral type results in the truncation of
the fractional portion of this number. Furthermore, if the integral portion of the number exceeds
MaxValue for the target type, the result will be undefined unless the conversion is done in a
checked context, in which case it will trigger an OverflowException.

Casting from a float or double to a decimal results in the float or double being rounded to 28
decimal places.

Casting from a double to a float results in the double being rounded to the nearest float value.

Casting from a decimal to a float or double results in the decimal being rounded to the
resulting type (float or double).

Casting from an int, uint, or long to a float could result in the loss of precision, but never
magnitude.

Casting from a long to a double could result in the loss of precision, but never magnitude.

See Also

See the "Checked Keyword" and "Checked and Unchecked" topics in the MSDN documentation.

Recipe 1.14. Finding the Length of Any Three Sides of a
Right Triangle

Problem

You need to calculate the length of one side of a triangle when either the lengths of two sides are
known or one angle and the length of a side are known.

Solution

Use the Math.Sin, Math.Cos, and Math.Tan methods of the Math class to find the length of one side.
The equations for these methods are as follows:

 double theta = 40;
 double hypotenuse = 5;
 double oppositeSide = 0;
 double adjacentSide = 0;
 oppositeSide = Math.Sin(theta) * hypotenuse;
 oppositeSide = Math.Tan(theta) * adjacentSide;
 adjacentSide = Math.Cos(theta) * hypotenuse;
 adjacentSide = oppositeSide / Math.Tan(theta);
 hypotenuse = oppositeSide / Math.Sin(theta);
 hypotenuse = adjacentSide / Math.Cos(theta);

where theta () is the known angle, the oppositeSide variable is equal to the length of the side
opposite to the angle theta, and the adjacentSide variable is equal to the length of the side adjacent
to the angle theta. The hypotenuse variable is equal to the length of the hypotenuse of the triangle.
See Figure 1-1.

Figure 1-1. A right triangle

In addition to these three static methods, the length of the hypotenuse of a right triangle can be
calculated using the Pythagorean theorem. This theorem states that the hypotenuse of a right
triangle is equal to the square root of the sum of the squares of the other two sides. This equation
can be realized using the Math.Sqrt static method, as follows:

 double hypotenuse = Math.Sqrt((xSide * xSide) + (ySide * ySide));

where xSide and ySide are the lengths of the two sides that are not the hypotenuse of the triangle.

Discussion

Finding the length of a side of a right triangle is easy when an angle and the length of one of the
sides are known. Using the trigonometric functions sine, cosine, and tangent, you can derive the
lengths of either of the two unknown sides. The equations for sine, cosine, and tangent are defined
here:

 sin(Theta) = oppositeSide / hypotenuseSide
 cos(Theta) = adjacentSide / hypotenuseSide
 tan(Theta) = oppositeSide / adjacentSide

where theta is the value of the known angle. Rearranging these equations allows you to derive the
following equations:

 oppositeSide = sin(theta) * hypotenuse;
 oppositeSide = tan(theta) * adjacentSide;
 adjacentSide = cos(theta) * hypotenuse;
 adjacentSide = oppositeSide / tan(theta);
 hypotenuse = oppositeSide / sin(theta);
 hypotenuse = adjacentSide / cos(theta);

These equations give you two methods to find the length of each side of the triangle.

When none of the angles is known but the lengths of two of the sides are known, use the
Pythagorean theorem to determine the length of the hypotenuse. This theorem is defined as follows:

 Math.Sqrt(hypotenuse * hypotenuse) = Math.Sqrt((xSide * xSide) +
 (ySide * ySide))

Simplifying this equation into a syntax usable by C#, you obtain the following code:

 double hypotenuse = Math.Sqrt((xSide * xSide) +
 (ySide * ySide));

where hypotenuse is equal to the length of the hypotenuse, and xSide and ySide are the lengths of
the other two sides.

See Also

See the "Math Class" topic in the MSDN documentation.

Recipe 1.15. Finding the Angles of a Right Triangle

Problem

You need to calculate an angle of a triangle when the lengths of two sides are known.

Solution

Use the Math.Atan, Math.Acos, or Math.Asin static methods of the Math class. The following code
calculates the angle theta and returns the value in radians:

 double theta = Math.Atan(OppositeSide / AdjacentSide);
 theta = Math.Acos(AdjacentSide / Hypotenuse);
 theta = Math.Asin(OppositeSide / Hypotenuse);

To get the angle in degrees, use the following code:

 double theta = Math.Atan(oppositeSide / adjacentSide) * (180 / Math.PI);
 theta = Math.Acos(adjacentSide / hypotenuse) * (180 / Math.PI);
 theta = Math.Asin(oppositeSide / hypotenuse) * (180 / Math.PI);

where theta is the known angle value, oppositeSide is equal to the length of the side opposite to the
angle, and adjacentSide is equal to the length of the side adjacent to the angle. The hypotenuse is
the length of the hypotenuse of the triangle. See Figure 1-1 in Recipe 1.14 for a graphical
representation of these sides of a right triangle and Recipes 1.2 and 1.3 for converting between
degrees and radians.

Discussion

In some cases, you need to determine an angle of a right triangle when only the lengths of two sides
are known. The three trigonometric functions arcsine, arccosine, and arctangent allow you to find any
angle of a right triangle, given this information. The static methods Math.Atan, Math.Acos, and
Math.Asin on the Math class provide the functionality to implement these trigonometric operations.

See Also

See Recipe 1.14; see the "Math Class" topic in the MSDN documentation.

Recipe 1.16. Displaying an Enumeration Value as a String

Problem

You need to display the textual or numeric value of an enumeration member.

Solution

To display an enumeration value as a string, use the ToString method that each enumeration
member inherits from System.Enum.

Using the following ValidShape enumeration type as an example, you can obtain the textual and
numeric values so that you can display them:

 enum ValidShape
 {
 Square, Circle, Cylinder, Octagon
 }

Using the ToString method of the ValidShape enumeration type, you can derive the value of a
specific ValidShape enumeration value directly:

 Console.WriteLine(ValidShape.Circle.ToString());
 Console.WriteLine(ValidShape.Circle.ToString("G"));
 Console.WriteLine(ValidShape.Circle.ToString("D"));
 Console.WriteLine(ValidShape.Circle.ToString("F"));
 Console.WriteLine(ValidShape.Circle.ToString("X"));

This generates the following output:

 Circle
 Circle
 1
 Circle
 00000001

If you are working with a variable of type ValidShape, the enumeration values can be derived in the
same manner:

 ValidShape shapeStyle = ValidShape.Cylinder;

 Console.WriteLine(shapeStyle.ToString());
 Console.WriteLine(shapeStyle.ToString("G"));
 Console.WriteLine(shapeStyle.ToString("D"));
 Console.WriteLine(shapeStyle.ToString("F"));
 Console.WriteLine(shapeStyle.ToString("X"));

The following is displayed.

 Cylinder
 Cylinder
 2
 Cylinder
 00000002

Discussion

Deriving the textual or numeric representation of an enumeration value is a simple matter, using the
ToString instance method on the Enum type. This method can accept a character indicating the type
of formatting to place on the enumeration value. The character can be one of the following: G, g, D,
d, X, x, F, or f. See Table 1-2 for a description of these formatting types.

Table 1-2. Formatting types

Formatting
type

Name Description

G or g (General) Displays the string representation of the enumeration value.

F or f (Flag)
Displays the string representation of the enumeration value. The
enumeration is treated as if it were a bit field.

D or d (Decimal) Displays decimal equivalent of the enumeration.

X or x (Hexadecimal) Displays hexadecimal equivalent of the enumeration.

When printing out the values of an enumeration with the Flags attribute, the information displayed
takes into account that more than one of the enumeration values may have been ORed together. The
output will be all of the enumerations printed out as strings separated by commas or as the ORed
numeric value, depending on the formatting chosen. For example, consider if the Flags attribute was
added to the ValidShape enumeration as follows:

 [Flags]
 enum ValidShape
 {
 Square = 0, Circle = 1, Cylinder = 2, Octagon = 4
 }

Now if you change the code for this recipe as follows:

 ValidShape shapeStyle = ValidShape.Circle | ValidShape.Cylinder;

 Console.WriteLine(shapeStyle.ToString());
 Console.WriteLine(shapeStyle.ToString("G"));
 Console.WriteLine(shapeStyle.ToString("D"));
 Console.WriteLine(shapeStyle.ToString("F"));
 Console.WriteLine(shapeStyle.ToString("X"));

you will see the following output:

 Circle, Cylinder
 Circle, Cylinder
 3
 Circle, Cylinder
 00000003

This provides a flexible way of extracting the flags that you are currently using on an enumeration
type.

See Also

See the "Enum.ToString Method" and the "Enumeration Format Strings" topics in the MSDN
documentation.

Recipe 1.17. Converting Plain Text to an Equivalent
Enumeration Value

Problem

You have the textual value of an enumeration element, possibly from a database or text file. This
textual value needs to be converted to a usable enumeration type.

Solution

The static Parse method on the Enum class allows the textual value of an enumeration element to be
converted to a usable enumeration value. For example:

 try
 {
 Language proj1Language = (Language)Enum.Parse(typeof(Language),
 "VBNET");
 Language proj2Language = (Language)Enum.Parse(typeof(Language),
 "UnDefined");
 }
 catch (ArgumentException e)
 {
 // Handle an invalid text value here
 //(such as the "UnDefined" string)
 }

where the Language enumeration is defined as:

 enum Language
 {
 Other = 0, CSharp = 1, VBNET = 2, VB6 = 3
 }

Discussion

The static Enum.Parse method converts text to a specific enumeration value. This technique is useful
when a user is presented a list of values, with each value defined in an enumeration. When the user
selects an item from this list, the text chosen can be easily converted from its string representation
to its equivalent enumeration value using Enum.Parse. This method returns an object, which must
then be cast to the target enum type in order to use it.

In addition to passing Enum.Parse a single enumeration value as a string, you can also pass the
enumeration value as its corresponding numeric value. For example, consider the following line:

 Language proj1Language = (Language)Enum.Parse(typeof(Language),
 "VBNET");

You can rewrite this as follows to perform the exact same action:

 Language proj1Language = (Language)Enum.Parse(typeof(Language), "2");

This is assuming that the Language.VBNET enumeration value is equal to 2.

Another interesting feature of the Parse method is that it can accept a comma-delimited list of
enumeration names or values and then logically OR them together. The following example creates an
enumeration with the languages VBNET and CSharp ORed together:

 Language proj1Language = (Language)Enum.Parse(typeof(Language),
 "CSharp, VBNET");

Each individual element of the comma-delimited list is trimmed of any whitespace, so it does not
matter if you add any whitespace between each item in this list.

See Also

See the "Enum.Parse Method" topic in the MSDN documentation.

Recipe 1.18. Testing for a Valid Enumeration Value

Problem

When you pass a numeric value to a method that accepts an enumeration type, it is possible to pass
a value that does not exist in the enumeration. You want to perform a test before using this numeric
value to determine if it is indeed one of the ones defined in this enumeration type.

Solution

To prevent this problem, test for the specific enumeration values that you allow for the enumeration-
type parameter using a switch statement to list the values.

Using the following Language enumeration:

 enum Language
 {
 Other = 0, CSharp = 1, VBNET = 2, VB6 = 3
 }

Suppose you have a method that accepts the Language enumeration, such as the following method:

 public void HandleEnum(Language language)
 {
 // Use language here…
 }

You need a method to define the enumeration values you can accept in HandleEnum. The
CheckLanguageEnumValue method shown here does that:

 public static bool CheckLanguageEnumValue(Language language)
 {
 switch (language)
 {
 // All valid types for the enum listed here
 // This means only the ones we specify are valid.

 // Not any enum value for this enum
 case Language.CSharp:
 case Language.Other:
 case Language.VB6:
 case Language.VBNET:
 break;
 default:
 Debug.Assert(false, language +
 " is not a valid enumeration value to pass.");
 return false;
 }
 return true;
 }

Discussion

Although the Enum class contains the static IsDefined method, it should not be used. IsDefined uses
reflection internally, which incurs a performance penalty. Also, versioning of the enumeration is not
handled well. Consider the scenario in which you add the value MgdCpp (managed C++) to the
Languages enum in the next version of your software. If IsDefined is used to check the argument
here, it will allow MgdCpp as a valid value, since it is defined in the enumeration, even though the code
for which you are validating the parameter is not designed to handle it. By being specific with the
switch statement shown in CheckLanguageEnumValue, you reject the MgdCpp value and the code does
not try to run in an invalid context. This, after all, is what you were after in the first place.

The enumeration check should always be used whenever the method is visible to external objects. An
external object can invoke methods with public visibility, so any enumerated value passed in to this
method should be screened before it is actually used.

Methods with internal, protected, and internal protected visibility have a much smaller scope
than public methods, but can still suffer from the same problems as the public methods. Methods
with private visibility may not need this extra level of protection. Use your own judgment on whether
to use the CheckLanguageEnumValue method to evaluate enumeration values passed in to private
methods.

The HandleEnum method can be called in several different ways. Three of these are shown here:

 HandleEnum(Language.CSharp)
 HandleEnum((Language)1)
 HandleEnum((Language)someVar) // Where someVar is an int type

Any of these method calls is valid. Unfortunately, the following method calls are also valid:

 HandleEnum((Language)100)

 int someVar = 100;
 HandleEnum((Language)someVar)

These method calls will also compile without errors, but odd behavior will result if the code in
HandleEnum tries to use the value passed in to it (in this case the value 100).In many cases an
exception will not even be thrown; HandleEnum just receives the value 100 as an argument, as if it
were a legitimate value of the Language enumeration.

The CheckLanguageEnumValue method prevents this from happening by screening the argument for
valid Language enumeration values. The following code shows the modified body of the HandleEnum
method:

 public void HandleEnum(Language language)
 {
 if (CheckLanguageEnumValue(language))
 {
 // Use language here…
 }
 else
 {
 // Deal with the invalid language value here…
 }
 }

See Also

To test for a valid enumeration within an enumeration marked with the Flags attribute, see Recipe
1.19.

Recipe 1.19. Testing for a Valid Enumeration of Flags

Problem

You need to determine if a given value is a valid enumeration value or a valid combination of
enumeration values (i.e., bit flags ORed together in an enumeration marked with the Flags
attribute).

Solution

To make it possible to test whether a value is a valid enumeration value or some combination of valid
enumeration values, add an All member to the existing enumeration equal to all the members of the
enumeration ORed together. Then use the HandleFlagsEnum method to do the test.

There is a problem with using Enum.IsDefined with an enumeration marked with the Flags attribute.
Consider if the Language enumeration was written as follows:

 [Flags]
 enum Language
 {
 CSharp = 1, VBNET = 2, VB6 = 4
 }

Valid values for Language are the set of numbers {1, 2, 3, 4, 5, 6, 7}. However, the values 3, 5,
6, and 7 are not explicitly represented in this enumeration. The value 3 is equal to the CSharp and
VBNET enumeration members ORed together, and the value 7 is equal to all of the enumeration
members ORed together. For the values 3, 5, 6, and 7, the Enum.IsDefined method will return false,
indicating that these are not valid values, when in fact they are. You need a way to determine if a
correct set of flags has been passed into a method.

To fix this problem you can add a new member to the Language enumeration to define all values for
which the Language enumeration is valid. In this case, the Language enumeration would be rewritten
as:

 [Flags]
 enum Language
 {
 CSharp = 1, VBNET = 2, VB6 = 4,
 All = (CSharp | VBNET | VB6)
 }

The new All enumeration member is equal to all other Language members ORed together. Now, when
you want to validate a Language flag, all you have to do is the following:

 public bool HandleFlagsEnum(Language language)
 {
 if ((language != 0) && ((language & Language.All) == language))
 {
 return (true);
 }
 else
 {
 return (false);
 }
 }

Discussion

If you want to use the HandleFlagsEnum method with existing code, all that is required is to add an
All member to the existing enumeration. The All member should be equal to all the members of the
enumeration ORed together.

The HandleFlagsEnum method then uses this All member to determine if an enumeration value is
valid. This is accomplished by ANDing the language value with Language.All, then verifying that the
result equals the original language parameter.

This method can also be overloaded to handle the underlying type of the enumeration as well (in this
case, the underlying type of the Language enumeration is an integer). The following code determines
if an integer variable contains a valid Language enumeration value:

 public static bool HandleFlagsEnum(int language)
 {
 if ((language != 0) && ((language & (int)Language.All) == language))
 {
 return (true);
 }
 else
 {
 return (false);
 }
 }

The overloaded HandleFlagsEnum methods return true if the language parameter is valid and false

otherwise.

See Also

To test for a valid enumeration within an enumeration not marked with the Flags attribute, see
Recipe 1.18.

Recipe 1.20. Using Enumerated Members in a Bit Mask

Problem

An enumeration of values is needed to act as bit flags that can be ORed together to create a
combination of values (flags) in the enumeration.

Solution

Mark the enumeration with the Flags attribute:

 [Flags]
 enum Language
 {
 CSharp = 0x0001, VBNET = 0x0002, VB6 = 0x0004, Cpp = 0x0008
 }

Combining elements of this enumeration is a simple matter of using the bitwise OR operator (|). For
example:

 Language lang = Language.CSharp | Language.VBNET;

Discussion

Adding the Flags attribute to an enumeration marks this enumeration as individual bit flags that can
be ORed together. Using an enumeration of flags is no different than using a regular enumeration
type. It should be noted that failing to mark an enumeration with the Flags attribute will not
generate an exception or a compiletime error, even if the enumeration values are used as bit flags.

The addition of the Flags attribute provides you with two benefits. First, if the Flags attribute is
placed on an enumeration, the ToString and ToString("G") methods return a string consisting of the
name of the constant(s) separated by commas. Otherwise, these two methods return the numeric
representation of the enumeration value. Note that the ToString("F") method returns a string
consisting of the name of the constant(s) separated by commas, regardless of whether this
enumeration is marked with the Flags attribute. For an indication of why this works in this manner,
see the "F" formatting type in Table 1-2 in Recipe 1.16.

The second benefit is that when you examine the code and encounter an enumeration, you can
better determine the developer's intention for this enumeration. If the developer explicitly defined
this as containing bit flags (with the Flags attribute), you can use it as such.

An enumeration tagged with the Flags attribute can be viewed as a single value or as one or more
values combined into a single enumeration value. If you need to accept multiple languages at a single
time, you can write the following code:

 Language lang = Language.CSharp | Language.VBNET;

The variable lang is now equal to the bit values of the two enumeration values ORed together. These
values ORed together will equal 3, as shown here:

 Language.CSharp 0001
 Language.VBNET 0010
 ORed bit values 0011

The enumeration values were converted to binary and ORed together to get the binary value 0011 or
3 in base10. The compiler views this value both as two individual enumeration values
(Language.CSharp and Language.VBNET) ORed together or as a single value (3).

To determine if a single flag has been turned on in an enumeration variable, use the bitwise AND (&)
operator, as follows:

 Language lang = Language.CSharp | Language.VBNET;

 if((lang & Language.CSharp) == Language.CSharp)
 Console.WriteLine("The enum contains the C# enumeration value");
 else
 Console.WriteLine("The enum does NOT contain the C# value");

This code will display the text "The enum contains the C# enumeration value." The ANDing of these
two values either will produce zero if the variable lang does not contain the value Language.CSharp,
or it will produce the value Language.CSharp if lang contains this enumeration value. Basically,
ANDing these two values looks like this in binary:

 Language.CSharp | Language.VBNET 0011
 Language.CSharp 0001
 ANDed bit values 0001

This is dealt with in more detail in Recipe 1.21.

In some cases the enumeration can grow quite large. You can add many other languages to this
enumeration, as shown here:

 [Flags]
 enum Language
 {
 CSharp = 0x0001, VBNET = 0x0002, VB6 = 0x0004, Cpp = 0x0008,
 FortranNET = 0x0010, JSharp = 0x0020, MSIL = 0x0080
 }

When a Language enumeration value is needed to represent all languages, you would have to OR
together each value of this enumeration:

 Language lang = Language.CSharp | Language.VBNET | Language.VB6 ;

Instead of doing this, you can simply add a new value to this enumeration that includes all languages
as follows:

 [Flags]
 enum Language
 {
 CSharp = 0x0001, VBNET = 0x0002, VB6 = 0x0004, Cpp = 0x0008,
 FortranNET = 0x0010, JSharp = 0x0020, MSIL = 0x0080,
 All = (CSharp | VBNET | VB6 | Cpp | FortranNET | JSharp | MSIL)
 }

Now there is a single enumeration value, All, that encompasses every value of this enumeration.
Notice that there are two methods of creating the All enumeration value. The second method is
much easier to read. Regardless of which method you use, if individual language elements of the
enumeration are added or deleted, you will have to modify the All value accordingly.

Similarly, you can also add values to capture specific subsets of enumeration values as follows:

 [Flags]
 enum Language
 {
 CSharp = 0x0001, VBNET = 0x0002, VB6 = 0x0004, Cpp = 0x0008,
 CobolNET = 0x000F, FortranNET = 0x0010, JSharp = 0x0020,
 MSIL = 0x0080,
 All = (CSharp | VBNET | VB6 | Cpp | FortranNET | Jsharp | MSIL),

 VBOnly = (VBNET | VB6),
 NonVB = (CSharp | Cpp | FortranNET | Jsharp | MSIL)
 }

Now you have two extra members in the enumerations, one that encompasses VB-only languages
(Languages.VBNET and Languages.VB6) and one that encompasses non-VB languages.

Recipe 1.21. Determining if One or More Enumeration
Flags Are Set

Problem

You need to determine if a variable of an enumeration type, consisting of bit flags, contains one or
more specific flags. For example, given the following enumeration Language:

 [Flags]
 enum Language
 {
 CSharp = 0x0001, VBNET = 0x0002, VB6 = 0x0004, Cpp = 0x0008
 }

determine, using Boolean logic, if the variable lang in the following line of code contains a language
such as Language.CSharp and/or Language.Cpp:

 Language lang = Language.CSharp | Language.VBNET;

Solution

To determine if a variable contains a single bit flag that is set, use the following conditional:

 if((lang & Language.CSharp) == Language.CSharp)
 {
 // Lang contains at least Language.CSharp.
 }

To determine if a variable exclusively contains a single bit flag that is set, use the following
conditional:

 if(lang == Language.CSharp)
 {

 // lang contains only the Language.CSharp.
 }

To determine if a variable contains a set of bit flags that are all set, use the following conditional:

 if((lang & (Language.CSharp | Language.VBNET)) ==
 (Language.CSharp | Language.VBNET))
 {
 // lang contains at least Language.CSharp and Language.VBNET.
 }

To determine if a variable exclusively contains a set of bit flags that are all set, use the following
conditional:

 if((lang | (Language.CSharp | Language.VBNET)) ==
 (Language.CSharp | Language.VBNET))
 {
 // lang contains only the Language.CSharp and Language.VBNET.
 }

Discussion

When enumerations are used as bit flags and are marked with the Flags attribute, they usually will
require some kind of conditional testing to be performed. This testing necessitates the use of the
bitwise AND (&) and OR (|) operators.

Testing for a variable having a specific bit flag set is done with the following conditional statement:

 if((lang & Language.CSharp) == Language.CSharp)

where lang is of the Language enumeration type.

The & operator is used with a bit mask to determine if a bit is set to 1. The result of ANDing two bits
is 1 only when both bits are 1; otherwise, the result is 0. You can use this operation to determine if a
specific bit flag is set to a 1 in the number containing the individual bit flags. If you AND the variable
lang with the specific bit flag you are testing for (in this case Language.CSharp), you can extract that
single specific bit flag. The expression (lang & Language.CSharp) is solved in the following manner if
lang is equal to Language.CSharp:

 Language.CSharp 0001
 lang 0001
 ANDed bit values 0001

If lang is equal to another value such as Language.VBNET, the expression is solved in the following
manner:

 Language.CSharp 0001
 lang 0010
 ANDed bit values 0000

Notice that ANDing the bits together returns the value Language.CSharp in the first expression and
0x0000 in the second expression. Comparing this result to the value you are looking for
(Language.CSharp) tells you whether that specific bit was turned on.

This method is great for checking specific bits, but what if you want to know whether only one
specific bit is turned on (and all other bits turned off) or off (and all other bits turned on)? To test if
only the Language.CSharp bit is turned on in the variable lang, you can use the following conditional
statement:

 if(lang == Language.CSharp)

Consider if the variable lang contained only the value Language.CSharp. The expression using the OR
operator would look like this:

 lang = Language.CSharp;
 if ((lang != 0) &&(Language.CSharp == (lang | Language.CSharp)))
 {
 // CSharp is found using OR logic.
 }

 Language.CSharp 0001
 lang 0001
 ORed bit values 0001

Now, add a language value or two to the variable lang and perform the same operation on lang:

 lang = Language.CSharp | Language.VB6 | Language.Cpp;
 if ((lang != 0) &&(Language.CSharp == (lang | Language.CSharp)))
 {

 // CSharp is found using OR logic.
 }

 Language.CSharp 0001
 lang 1101
 ORed bit values 1101

The first expression results in the same value as you are testing against. The second expression
results in a much larger value than Language.CSharp. This indicates that the variable lang in the first
expression contains only the value Language.CSharp, whereas the second expression contains other
languages besides Language.CSharp (and may not contain Language.CSharp at all).

Using the OR version of this formula, you can test multiple bits to determine if they are both on and
all other bits are off. This is done in the following conditional statement:

 if((lang != 0) && ((lang | (Language.CSharp | Language.VBNET)) ==
 (Language.CSharp | Language.VBNET)))

Notice that to test for more than one language you simply OR the language values together. By
switching the first | operator to an & operator, you can determine if at least these bits are turned on.
This is done in the following conditional statement:

 if((lang != 0) && ((lang & (Language.CSharp | Language.VBNET)) ==
 (Language.CSharp | Language.VBNET)))

When testing for multiple enumeration values, it may be beneficial to add a value to your
enumeration, which ORs together all the values you want to test for. If you wanted to test for all
languages except Language.CSharp, your conditional statement(s) would grow quite large and
unwieldy. To fix this, you add a value to the Language enumeration that ORs together all languages
except Language.CSharp. The new enumeration looks like this:

 [Flags]
 enum Language
 {
 CSharp = 0x0001, VBNET = 0x0002, VB6 = 0x0004, Cpp = 0x0008,
 AllLanguagesExceptCSharp = VBNET | VB6 | Cpp
 }

and your conditional statement might look similar to the following:

 if((lang != 0) && (lang | Language.AllLanguagesExceptCSharp) ==
 Language. AllLanguagesExceptCSharp)

This is quite a bit smaller, easier to manage, and easier to read.

Use the AND operator when testing if one or more bits are set to 1. Use the OR
operator when testing if one or more bits are set to 0.

Recipe 1.22. Determining the Integral Part of a Decimal or
Double

Problem

You need to find the integer portion of a decimal or double number.

Solution

You can find the integer portion of a decimal or double by truncating it to the whole number closest
to zero. To do so, use the overloaded static System.Math.Truncate method, which takes either a
decimal or a double as an argument and returns the same type:

 decimal pi = (decimal)System.Math.PI;
 decimal decRet = System.Math.Truncate(pi); // decRet = 3

 double trouble = 5.555;
 double dblRet = System.Math.Truncate(trouble);

Discussion

The truncate method is new in the 2.0 version of the Framework and helps to "round" out the
mathematical capabilities of the Framework. The truncate method has the net effect of simply
dropping the fractional portion of the number and returning the integral part. Once floating-point
numbers get over a certain size, they do not actually have a fractional part, but have only an
approximate representation of their integer portion.

See Also

See Recipe 1.9; see the "System.Math.Truncate Method" topic in the MSDN documentation.

Chapter 2. Strings and Characters

Introduction

String usage abounds in just about all types of applications. The System.String type does not derive
from System.ValueType and is therefore considered a reference type. The string alias is built into C#
and can be used instead of the full name.

The FCL does not stop with just the String class; there is also a System.Text.StringBuilder class for
performing string manipulations and the System.Text.RegularExpressions namespace for searching
strings. This chapter will cover the String class and the System.Text.StringBuilder class.

The System.Text.StringBuilder class provides an easy, performance-friendly method of manipulating
string objects. Even though this class duplicates much of the functionality of a String class, the
StringBuilder class is fundamentally different in that the string contained within the StringBuilder
object can actually be modifiedyou cannot modify a string object. However, this duplicated
functionality provides a more efficient manipulation of strings than is obtainable by using the String
class.

Recipe 2.1. Determining the Kind of Character a char
Contains

Problem

You have a variable of type char and wish to determine the kind of character it containsa letter, digit,
number, punctuation character, control character, separator character, symbol, whitespace, or
surrogate character. Similarly, you have a string variable and want to determine the kind of
character in one or more positions within this string.

Solution

To determine the value of a char, use the built-in static methods on the System.Char structure shown
here:

 Char.IsControl Char.IsDigit
 Char.IsLetter Char.IsNumber
 Char.IsPunctuation Char.IsSeparator
 Char.IsSurrogate Char.IsSymbol
 Char.IsWhitespace

Discussion

The following examples demonstrate how to use the methods shown in the Solution section in a
function to return the kind of a character. First, create an enumeration to define the various types of
characters:

 public enum CharKind
 {
 Letter,
 Number,
 Punctuation,
 Unknown
 }

Next, create a method that contains the logic to determine the type of a character and to return a
CharKind enumeration value indicating that type:

 public static CharKind GetCharKind(char theChar)
 {
 if (Char.IsLetter(theChar))
 {
 return CharKind.Letter;
 }
 else if (Char.IsNumber(theChar))
 {
 return CharKind.Number;
 }
 else if (Char.IsPunctuation(theChar))
 {
 return CharKind.Punctuation;
 }
 else
 {
 return CharKind.Unknown;
 }
 }

If, however, a character in a string needs to be evaluated, use the overloaded static methods on the
char structure. The following code modifies the GetCharKind method to accept a string variable and
a character position in that string. The character position determines which character in the string is
evaluated.

 public static CharKind GetCharKindInString(string theString, int charPosition)
 {
 if (Char.IsLetter(theString, charPosition))
 {
 return CharKind.Letter;
 }
 else if (Char.IsNumber(theString, charPosition))
 {
 return CharKind.Number;
 }
 else if (Char.IsPunctuation(theString, charPosition))
 {
 return CharKind.Punctuation;
 }
 else
 {
 return CharKind.Unknown;
 }
 }

The GetCharKind method accepts a character as a parameter and performs a series of tests on that
character using the Char type's built-in static methods. An enumeration of all the different types of
characters is defined and is returned by the GetCharKind method.

Table 2-1 describes each of the static Char methods.

Table 2-1. Char methods

Char method Description

IsControl A control code in the ranges \U007F, \U0000\U001F, and \U0080\U009F.

IsDigit Any decimal digit in the range 09.

IsLetter Any alphabetic letter.

IsNumber Any decimal digit or hexadecimal digit.

IsPunctuation Any punctuation character.

IsSeparator A space separating words, a line separator, or a paragraph separator.

IsSurrogate Any surrogate character in the range \UD800\UDFFF.

IsSymbol
Any mathematical, currency, or other symbol character. Includes characters that
modify surrounding characters.

IsWhitespace

Any space character and the following characters:

\U0009

\U000A

\U000B

\U000C

\U000D

\U0085

\U2028

\U2029

The following code example determines whether the fifth character (the charPosition parameter is
zero-based) in the string is a digit:

 if (GetCharKind("abcdefg", 4) == CharKind.Digit) {…}

In Version 2.0 of the .NET Framework, a few extra Is* functions were added to augment the existing
methods. If the character in question is a letter (i.e., the IsLetter method returns true), you can
determine if the letter is uppercase or lowercase by using the methods in Table 2-2.

Table 2-2. Upper- and lowercase Char methods

Char method Description

IsLower A character that is lowercase

IsUpper A character that is uppercase

If the character in question is a surrogate (i.e., the IsSurrogate method returns true), you can use
the methods in Table 2-3 to get more information on the surrogate character.

Table 2-3. Surrogate Char methods

Char method Description

IsHighSurrogate A character that is in the range \UD800 to \UDBFF

IsLowSurrogate A character that is in the range \UDC00 to \UDFFF

In addition to these surrogate methods, an additional method, IsSurrogatePair, returns true only if
two characters create a surrogate pairthat is, one character is a high surrogate and one character is
a low surrogate.

The final addition to this group of methods is the IsLetterOrDigit method, which returns TRue only if
the character in question is either a letter or a digit. To determine if the character is either a letter or
a digit, use the IsLetter and IsDigit methods.

See Also

See the "Char Structure" topic in the MSDN documentation.

Recipe 2.2. Determining Whether a Character Is Within a
Specified Range

Problem

You need to determine whether a character in a char data type is within a range, such as between
the numbers 1 and 5 or between the letters A and M.

Solution

Use the built-in comparison support for the char data type. The following code shows how to use the
built-in comparison support:

 public static bool IsInRange(char testChar, char startOfRange, char endOfRange)
 {
 if (testChar >= startOfRange && testChar <= endOfRange)
 {
 // testChar is within the range.
 return (true);
 }
 else
 {
 // testChar is NOT within the range.
 return (false);
 }
 }

There is only one problem with that code. If the startOfRange and endOfRange characters have
different cases, the result may not be what you expect. The following code, which makes a case-
insensitive comparison, can be used to solve this problem:

 public static bool IsInRangeCaseInsensitive(char testChar,
 char startOfRange, char endOfRange)
 {
 testChar = char.ToUpper(testChar);
 startOfRange = char.ToUpper(startOfRange);
 endOfRange = char.ToUpper(endOfRange);

 if (testChar >= startOfRange && testChar <= endOfRange)
 {
 // testChar is within the range.
 return (true);
 }
 else
 {
 // testChar is NOT within the range.
 return (false);
 }
 }

Discussion

The IsInRange method accepts three parameters. The first is the testChar character that you need to
check on, to test if it falls between the last two parameters on this method. The last two parameters
are the starting and ending characters, respectively, of a range of characters. The testChar
parameter must be between startOfRange and endOfRange or equal to one of these parameters for
this method to return TRue; otherwise, false is returned.

The IsInRange method can be called in the following manner:

 bool inRange = IsInRange('c', 'a', 'g');
 bool inRange = IsInRange('c', 'a', 'b');
 bool inRange = IsInRange((char)32, 'a', 'g');

The first call to this method returns TRue, since c is between a and g. The second method returns
false, since c is not between a and b. The third method indicates how an integer value representative
of a character would be passed to this method.

Note that this method tests whether the testChar value is inclusive between the range of characters
startOfRange and endOfRange. If you wish to determine only whether testChar is between this range
exclusive of the startOfRange and endOfRange character values, you should modify the if statement,
as follows:

 if (testChar > startOfRange && testChar < endOfRange)

Recipe 2.3. Controlling Case Sensitivity When Comparing
Two Characters

Problem

You need to compare two characters for equality, but you need the flexibility of performing a case-
sensitive or case-insensitive comparison.

Solution

Use the Equals instance method on the char structure to compare the two characters:

 public static bool IsCharEqual(char firstChar, char secondChar)
 {
 return (IsCharEqual(firstChar, secondChar, false));
 }

 public static bool IsCharEqual(char firstChar, char secondChar,
 bool caseSensitiveCompare)
 {
 if (caseSensitiveCompare)
 {
 return (firstChar.Equals(secondChar));
 }
 else
 {
 return (char.ToUpper(firstChar).Equals(char.ToUpper(secondChar)));
 }
 }

The first overloaded IsCharEqual method takes only two parameters: the characters to be compared.
This method then calls the second IsCharEqual method with three parameters. The third parameter
on this method call defaults to false so that when this method is called, you do not have to pass in a
value for the caseSensitiveCompare parameterit will automatically default to false.

Discussion

Using the ToUpper method in conjunction with the Equals method on the String class allows you to

choose whether to take into account the case of the strings when comparing them. To perform a
case-sensitive comparison of two char variables, simply use the Equals method, which, by default,
performs a case-sensitive comparison. Performing a case-insensitive comparison requires that both
characters be converted to their uppercase values (they could just as easily be converted to their
lowercase equivalents, but for this recipe you convert them to uppercase) before the Equals method
is invoked. Setting both characters to their uppercase equivalents removes any case sensitivity
between the character values, and they can be compared using the case-sensitive Equals comparison
method as though it were a case-insensitive comparison.

You can further extend the overloaded IsCharEqual methods to handle the culture of the characters
passed in to it:

 public static bool IsCharEqual(char firstChar, CultureInfo firstCharCulture,
 char secondChar, CultureInfo secondCharCulture)
 {
 return (IsCharEqual(firstChar, firstCharCulture,
 secondChar, secondCharCulture, false));
 }

 public static bool IsCharEqual(char firstChar, CultureInfo firstCharCulture,
 char secondChar, CultureInfo secondCharCulture,
 bool caseSensitiveCompare)
 {
 if (caseSensitiveCompare)
 {
 return (firstChar.Equals(secondChar));
 }
 else
 {
 return (char.ToUpper(firstChar, firstCharCulture).Equals
 (char.ToUpper(secondChar, secondCharCulture)));
 }
 }

The addition of the CultureInfo parameters to these methods allows you to pass in the culture
information for the strings that you are calling ToUpper on. This information allows the ToUpper
method to correctly uppercase the character based in the culture-specific details of the character
(i.e., the language, region, etc., of the character).

Note that you must include the following using directives to compile this code:

 using System;
 using System.Globalization;

Recipe 2.4. Finding All Occurrences of a Character Within
a String

Problem

You need a way of searching a string for multiple occurrences of a specific character.

Solution

Use IndexOf in a loop to determine how many occurrences of a character exist, as well as to identify
their location within the string:

 using System;
 using System.Collections;
 using System.Collections.Generic;

 public static int[] FindAllOccurrences(char matchChar, string source)
 {
 return (FindAllOccurrences(matchChar, source, -1, false));
 }

 public static int[] FindAllOccurrences(char matchChar, string source,
 int maxMatches)
 {
 return (FindAllOccurrences(matchChar, source, maxMatches, false));
 }

 public static int[] FindAllOccurrences(char matchChar, string source,
 bool caseSensitivity)
 {
 return (FindAllOccurrences(matchChar, source, -1, caseSensitivity));
 }

 public static int[] FindAllOccurrences(char matchChar, string source,
 int maxMatches, bool caseSensitivity)

 {
 List<int> occurrences = new List<int>();
 int foundPos = -1; // -1 represents not found.
 int numberFound = 0;
 int startPos = 0;

 char tempMatchChar = matchChar;
 string tempSource = source;

 if (!caseSensitivity)
 {
 tempMatchChar = char.ToUpper(matchChar);
 tempSource = source.ToUpper();
 }

 do
 {
 foundPos = tempSource.IndexOf(matchChar, startPos);
 if (foundPos > -1)
 {
 startPos = foundPos + 1;
 numberFound++;

 if (maxMatches > -1 && numberFound > maxMatches)
 {
 break;
 }
 else
 {
 occurrences.Add(foundPos);
 }
 }
 } while (foundPos > -1);

 return (occurrences.ToArray());
 }

Discussion

The FindAllOccurrences method is overloaded to allow the last two parameters (maxMatches and
caseSensitivity) to be set to a default value if the developer chooses not to pass in one or both of
these parameters. The maxMatches parameter defaults to -1, indicating that all matches are to be
found. The caseSensitivity parameter defaults to false to allow for a case-insensitive search.

The FindAllOccurrences method starts out by determining whether case sensitivity is turned on. If
false were passed in to the caseSensitivity parameter, both matchChar and source are set to all
uppercase. This prevents a case-sensitive search.

The main loop in this method is a simple do loop that terminates when foundPos returns -1, meaning
that no more matchChar characters can be found in the source string. You use a do loop so that the
IndexOf operation is executed at least one time before the check in the while clause is performed.
This check determines whether there are any more character matches to be found in the source
string.

Once a match is found by the IndexOf method, the numberFound variable is incremented by one to

indicate that another match was found, and startPos is moved past the previously found match to
indicate where the next IndexOf operation should start. The startPos is increased to the starting
position of the last match found plus one. The +1 is needed so that you do not keep matching the
same character that was previously matched. Otherwise, an infinite loop will occur in the code if at
least one match is found in the source string.

Finally, a check is made to determine whether you are done searching for matchChar characters. If
the maxMatches parameter is set to -1, the code keeps searching until it arrives at the end of the
source string. Any other number indicates the maximum number of matchChar characters to search
for. The maxMatches parameter limits the number of matches that can be made in the source string. If
this check indicates that you are able to keep this match, it is stored in the occurrences List<int>.

Recipe 2.5. Finding the Location of All Occurrences of a
String Within Another String

Problem

You need to search a string for every occurrence of a specific string. In addition, the case sensitivity,
or insensitivity, of the search needs to be controlled.

Solution

Using IndexOf or IndexOfAny in a loop, you can determine how many occurrences of a character or
string exist as well as their locations within the string. To find each occurrence of a string in another
string using a case-sensitive search, use the following code:

 using System;
 using System.Collections;
 using System.Collections.Generic;

 public static int[] FindAll(string matchStr, string searchedStr, int startPos)
 {
 int foundPos = -1; // -1 represents not found.
 int count = 0;
 List<int> foundItems = new List<int>();

 do
 {
 foundPos = searchedStr.IndexOf(matchStr, startPos);
 if (foundPos > -1)
 {
 startPos = foundPos + 1;
 count++;
 foundItems.Add(foundPos);

 Console.WriteLine("Found item at position: " + foundPos.ToString());
 }
 } while (foundPos > -1 && startPos < searchedStr.Length);

 return ((int[])foundItems.ToArray());
 }

If the FindAll method is called with the following parameters:

 int[] allOccurrences = FindAll("Red", "BlueTealRedredGreenRedYellow", 0);

the string "Red" is found at locations 8 and 19 in the string searchedStr. This code uses the IndexOf
method inside a loop to iterate through each found matchStr string in the searchStr string.

To find a character in a string using a case-sensitive search, use the following code:

 public static int[] FindAll(char MatchChar, string searchedStr, int startPos)
 {
 int foundPos = -1; // -1 represents not found.
 int count = 0;
 List<int> foundItems = new List<int>();

 do
 {
 foundPos = searchedStr.IndexOf(MatchChar, startPos);
 if (foundPos > -1)
 {
 startPos = foundPos + 1;
 count++;
 foundItems.Add(foundPos);

 Console.WriteLine("Found item at position: " + foundPos.ToString());
 }
 } while (foundPos > -1 && startPos < searchedStr.Length);

 return ((int[])foundItems.ToArray());
 }

If the FindAll method is called with the following parameters:

 int[] allOccurrences = FindAll('r', "BlueTealRedredGreenRedYellow", 0);

the character 'r' is found at locations 11 and 15 in the string searchedStr. This code uses the IndexOf
method inside a do loop to iterate through each found matchChar character in the searchStr string.
Overloading the FindAll method to accept either a char or string type avoids the performance hit of
boxing the char type to a string type.

To find each occurrence of a string in another string using a case-insensitive search, use the following
code:

 public static int[] FindAny(string matchStr, string searchedStr, int startPos)
 {
 int foundPos = -1; // -1 represents not found.
 int count = 0;
 List<int> foundItems = new List<int>();

 // Factor out case-sensitivity
 searchedStr = searchedStr.ToUpper();
 matchStr = matchStr.ToUpper();

 do
 {
 foundPos = searchedStr.IndexOf(matchStr, startPos);
 if (foundPos > -1)
 {
 startPos = foundPos + 1;
 count++;
 foundItems.Add(foundPos);
 Console.WriteLine("Found item at position: " + foundPos.ToString());
 }
 } while (foundPos > -1 && startPos < searchedStr.Length);

 return ((int[])foundItems.ToArray());
 }

If the FindAny method is called with the following parameters:

 int[] allOccurrences = FindAny("Red", "BlueTealRedredGreenRedYellow", 0);

the string "Red" is found at locations 8, 11, and 19 in the string searchedStr. This code uses the
IndexOf method inside a loop to iterate through each found matchStr string in the searchStr string.
The search is rendered case-insensitive by using the ToUpper method on both the searchedStr and
the matchStr strings.

To find a set of characters in a string, use the following code:

 public static int[] FindAny(char[] MatchCharArray, string searchedStr,
 int startPos)
 {
 int foundPos = -1; // -1 represents not found.
 int count = 0;
 List<int> foundItems = new List<int>();

 do
 {
 foundPos = searchedStr.IndexOfAny(MatchCharArray, startPos);

 if (foundPos > -1)
 {
 startPos = foundPos + 1;
 count++;
 foundItems.Add(foundPos);

 Console.WriteLine("Found item at position: " + foundPos.ToString());
 }
 } while (foundPos > -1 && startPos < searchedStr.Length);

 return ((int[])foundItems.ToArray());
 }

If the FindAll method is called with the following parameters:

 int[] allOccurrences = FindAll(new char[] MatchCharArray = {'R', 'r'},
 "BlueTealRedredGreenRedYellow", 0);

the characters 'r' or 'R' is found at locations 8, 11, 15, and 19 in the string searchedStr. This code uses
the IndexOfAny method inside a loop to iterate through each found matchStr string in the searchStr
string. The search is rendered case-insensitive by using an array of char containing all characters,
both uppercase and lowercase, to be searched for.

Discussion

In the example code, the foundPos variable contains the location of the found character/string within
the searchedStr string. The startPos variable contains the next position at which to start the search.
The IndexOf or IndexOfAny method is used to perform the actual searching. The count variable simply
counts the number of times the character/string was found in the searchedStr string.

The example uses a do loop so that the IndexOf or IndexOfAny operation is executed at least one time
before the check in the while clause is performed. This check determines whether there are any
more character/string matches to be found in the searchedStr string. This loop terminates when
foundPos returns -1 (meaning that no more character/strings can be found in the searchedStr string)
or when an out-of-bounds condition exists. When foundPos equals -1, there are no more instances of
the match value in the searchedStr string; therefore, you can exit the loop. If, however, the startPos
overshoots the last character element of the searchedStr string, an out-of-bounds condition exists
and an exception is thrown. To prevent this, always check to make sure that any positioning
variables that are modified inside of the loop, such as the startPos variable, are within their intended
bounds.

Once a match is found by the IndexOf or IndexOfAny method, the if statement body is executed to
increment the count variable by one and to move the startPos up past the previously found match.
The count variable is incremented by one to indicate that another match was found. The startPos is
increased to the starting position of the last match found plus 1. Adding 1 is necessary so that you do

not keep matching the same character/string that was previously matched, which will cause an
infinite loop to occur in the code if at least one match is found in the searchedStr string. To see this
behavior, remove the +1 from the code.

There is one potential problem with this code. Consider the case where:

 searchedStr = "aaaa";
 matchStr = "aa";

The code contained in this recipe will match "aa" three times.

 (aa)aa
 a(aa)a
 aa(aa)

This situation may be fine for some applications, but not if you need it to return only the following
matches:

 (aa)aa
 aa(aa)

To do this, change the following line in the while loop:

 startPos = foundPos + 1;

to this:

 startPos = foundPos + matchStr.Length;

This code moves the startPos pointer beyond the first matched string, disallowing any internal
matches.

To convert this code to use a while loop rather than a do loop, the foundPos variable must be
initialized to 0, and the while loop expression should be as follows:

 while (foundPos >= 0 && startPos < searchStr.Length)
 {

 foundPos = searchedStr.IndexOf(matchChar, startPos);
 if (foundPos > -1)
 {
 startPos = foundPos + 1;
 count++;
 }
 }

See Also

See the "String.IndexOf Method" and "String.IndexOfAny Method" topics in the MSDN
documentation.

Recipe 2.6. Implementing a Poor Man's Tokenizer to
Deconstruct a String

Problem

You need a quick method of breaking up a string into a series of discrete tokens or words.

Solution

Use the Split instance method of the String class. For example:

 string equation = "1 + 2 - 4 * 5";
 string[] equationTokens = equation.Split(new char[1]{' '});

 foreach (string Tok in equationTokens)
 Console.WriteLine(Tok);

This code produces the following output:

 1
 +
 2
 -
 4
 *
 5

The Split method may also be used to separate people's first, middle, and last names. For example:

 string fullName1 = "John Doe";
 string fullName2 = "Doe, John";
 string fullName3 = "John Q. Doe";

 string[] nameTokens1 = fullName1.Split(new char[3]{' ', ',', '.'});
 string[] nameTokens2 = fullName2.Split(new char[3]{' ', ',', '.'});

 string[] nameTokens3 = fullName3.Split(new char[3]{' ', ',', '.'});

 foreach (string tok in nameTokens1)
 {
 Console.WriteLine(tok);
 }
 Console.WriteLine("");

 foreach (string tok in nameTokens2)
 {
 Console.WriteLine(tok);
 }
 Console.WriteLine("");

 foreach (string tok in nameTokens3)
 {
 Console.WriteLine(tok);
 }

This code produces the following output:

 John
 Doe

 Doe
 John

 John
 Q

 Doe

Notice that a blank is inserted between the period and the space delimiters of the fullName3 name;
this is correct behavior. If you do not want to process this space in your code, you can choose to
ignore it.

Discussion

If you have a consistent string with parts, or tokens, that are separated by well-defined characters,
the Split function can tokenize the string. Tokenizing a string consists of breaking the string down
into well-defined, discrete parts, each of which is considered a token. In the two previous examples,
the tokens were either parts of a mathematical equation (numbers and operators) or parts of a name
(first, middle, and last).

There are several drawbacks to this approach. First, if the string of tokens is not separated by any

well-defined character(s), it will be impossible to use the Split method to break up the string. For
example, if the equation string looked like this:

 string equation = "1+2-4*5";

you would clearly have to use a more robust method of tokenizing this string (see Recipe 10.7 for a
more robust tokenizer).

A second drawback is that a string of tokenized words must be entered consistently in order to gain
meaning from the tokens. For example, if you ask users to type in their names, they may enter any
of the following:

 John Doe
 Doe John
 John Q Doe

If one user enters his name the first way and another user enters it the second way, your code will
have a difficult time determining whether the first token in the string array represents the first or last
name. The same problem will exist for all of the other tokens in the array. However, if all users enter
their names in a consistent style, such as First Name, space, Last Name, you will have a much easier

time tokenizing the name and understanding what each token represents.

See Also

See Recipe 10.7; see the "String.Split Method" topic in the MSDN documentation.

Recipe 2.7. Controlling Case Sensitivity When Comparing
Two Strings

Problem

You need to compare the contents of two strings for equality. In addition, the case sensitivity of the
comparison needs to be controlled.

Solution

Use the Compare static method on the String class to compare the two strings. Whether the
comparison is case-insensitive is determined by the third parameter of one of its overloads. For
example:

 string lowerCase = "abc";
 string upperCase = "AbC";
 int caseInsensitiveResult = string.Compare(lowerCase, upperCase,
 StringComparison.CurrentCultureIgnoreCase);
 int caseSensitiveResult = string.Compare(lowerCase,
 StringComparison.CurrentCulture);

The caseSensitiveResult value is -1 (indicating that lowerCase is "less than" upperCase) and the
caseInsensitiveResult is zero (indicating that lowerCase "equals" upperCase).

Discussion

Using the static string.Compare method allows you the freedom to choose whether to take into
account the case of the strings when comparing them. This method returns an integer indicating the
lexical relationship between the two strings. A zero means that the two strings are equal, a negative
number means that the first string is less than the second string, and a positive number indicates
that the first string is greater than the second string.

By setting the last parameter of this method (the comparisonType parameter) to either
StringComparison.CurrentCultureIgnoreCase or StringComparison.CurrentCulture, you can
determine whether the Compare method takes into account the case of both strings when comparing.
Setting this parameter to StringComparison.CurrentCulture forces a case-sensitive
comparison;setting it to StringComparison.CurrentCulture-IgnoreCase forces a case-insensitive
comparison. In the case of the overloaded version of the method with no comparisonType parameter,

comparisons are always case-sensitive.

See Also

See the "String.Compare Method" topic in the MSDN documentation.

Recipe 2.8. Comparing a String to the Beginning or End
of a Second String

Problem

You need to determine whether a string is at the head or tail of a second string. In addition, the case
sensitivity of the search needs to be controlled.

Solution

Use the EndsWith or StartsWith instance method on a string object. Comparisons with EndsWith and
StartsWith are always case-sensitive. The following code compares the value in the string variable
head to the beginning of the string Test:

 string head = "str";
 string test = "strVarName";
 bool isFound = test.StartsWith(head);

The example shown next compares the value in the string variable tail to the end of the string test.

 string tail = "Name";
 string test = "strVarName";
 bool isFound = test.EndsWith(tail);

In both examples, the isFound Boolean variable is set to true, since each string is found in test.

To do a case-insensitive comparison, employ the static string.Compare method. The following two
examples modify the previous two examples by performing a case-insensitive comparison. The first is
equivalent to a case-insensitive StartsWith string search:

 string head = "str";
 string test = "strVarName";
 int isFound = string.Compare(head, 0, test, 0, head.Length, true);

The second is equivalent to a case-insensitive EndsWith string search:

 string tail = "Name";
 string test = "strVarName";
 int isFound = string.Compare(tail, 0, test, (test.Length - tail.Length),
 tail.Length, true);

Discussion

Use the BeginsWith or EndsWith instance methods to do a case-sensitive search for a particular string
at the beginning or end of a string. The equivalent case-insensitive comparison requires the use of
the static Compare method in the String class. If the return value of the Compare method is zero, a
match was found. Any other number means that a match was not found.

See Also

See the "String.StartsWith Method," "String.EndsWith Method," and "String.Compare Method" topics
in the MSDN documentation.

Recipe 2.9. Inserting Text into a String

Problem

You have some text (either a char or a string value) that needs to be inserted at a specific location
inside of a second string.

Solution

Using the Insert instance method of the String class, a string or char can easily be inserted into a
string. For example, in the code fragment:

 string sourceString = "The Inserted Text is here -><-";

 sourceString = sourceString.Insert(28, "Insert-This");
 Console.WriteLine(sourceString);

the string sourceString is inserted between the > and < characters in a second string. The result is:

 The Inserted Text is here ->Insert-This<-

Inserting a single character into sourceString between the > and < characters is shown here:

 string sourceString = "The Inserted Text is here -><-";
 char insertChar = '1';

 sourceString = sourceString.Insert(28, Convert.ToString(insertChar));
 Console.WriteLine(sourceString);

There is no overloaded method for Insert that takes a char value, so converting the char to a string
of length one is the next best solution.

Discussion

There are two ways of inserting strings into other strings, unless, of course, you are using the regular
expression classes. The first involves using the Insert instance method on the String class. This
method is also slower than the others since strings are immutable, and, therefore, a new string
object must be created to hold the modified value. In this recipe, the reference to the old string
object is then changed to point to the new string object. Note that the Insert method leaves the
original string untouched and creates a new string object with the inserted characters.

To add flexibility and speed to your string insertions, use the Insert instance method on the
StringBuilder class. This method is overloaded to accept all of the built-in types. In addition, the
StringBuilder object optimizes string insertion by not making copies of the original string; instead,
the original string is modified.

If you use the StringBuilder class instead of the String class to insert a string, your code appears
as:

 StringBuilder sourceString =
 new StringBuilder("The Inserted Text is here -><-");
 sourceString.Insert (28, "Insert-This");
 Console.WriteLine(sourceString);

The character insertion example changes to the following code:

 char charToInsert = '1';
 StringBuilder sourceString =
 new StringBuilder("The Inserted Text is here -><-");
 sourceString.Insert (28, charToInsert);
 Console.WriteLine(sourceString);

Note that when using the StringBuilder class, you must also use the System.Text namespace.

See Also

See the "String.Insert Method" topic in the MSDN documentation.

Recipe 2.10. Removing or Replacing Characters Within a
String

Problem

You have some text within a string that needs to be either removed or replaced with a different
character or string. Since the replacing operation is somewhat simple, using a regular expression to
aid in the replacing operation is not worth the overhead.

Solution

To remove a substring from a string, use the Remove instance method on the String class. For
example:

 string name = "Doe, John";
 name = name.Remove(3, 1);
 Console.WriteLine(name);

This code creates a new string and then sets the name variable to refer to it. The string contained in
name now looks like this:

 Doe John

If performance is critical, and particularly if the string removal operation occurs in a loop so that the
operation is performed multiple times, you can instead use the Remove method of the StringBuilder
object. The following code modifies the str variable so that its value becomes 12345678:

 StringBuilder str = new StringBuilder("1234abc5678", 12);
 str.Remove(4, 3);
 Console.WriteLine(str);

To replace a delimiting character within a string, use the following code:

 string commaDelimitedString = "100,200,300,400,500";
 commaDelimitedString = commaDelimitedString.Replace(',', ':');
 Console.WriteLine(commaDelimitedString);

This code creates a new string and then makes the commaDelimitedString variable refer to it. The
string in commaDelimitedString now looks like this:

 100:200:300:400:500

To replace a placeholding string within a string, use the following code:

 string theName = "Mary";
 string theObject = "car";
 string ID = "This <ObjectPlaceholder> is the property of <NamePlaceholder>.";
 ID = ID.Replace("<ObjectPlaceholder>", theObject);
 ID = ID.Replace("<NamePlaceholder>", theName);
 Console.WriteLine(ID);

This code creates a new string and then makes the ID variable refer to it. The string in ID now looks
like this:

 This car is the property of Mary.

As when removing a portion of a string, you may, for performance reasons, choose to use the
Replace method of the StringBuilder class instead. For example:

 string newName = "John Doe";

 str = new StringBuilder("name = <NAME>");
 str.Replace("<NAME>", newName);
 Console.WriteLine(str.ToString());
 str.Replace('=', ':');
 Console.WriteLine(str.ToString());

 str = new StringBuilder("name1 = <FIRSTNAME>, name2 = <FIRSTNAME>");
 str.Replace("<FIRSTNAME>", newName, 7, 12);
 Console.WriteLine(str.ToString());
 str.Replace('=', ':', 0, 7);
 Console.WriteLine(str.ToString());

This code produces the following results:

 name = John Doe
 name : John Doe
 name1 = John Doe, name2 = <FIRSTNAME>
 name1 : John Doe, name2 = <FIRSTNAME>

Note that when using the StringBuilder class, you must use the System.Text namespace.

Discussion

The String class provides two methods that allow easy removal and modification of characters in a
string: the Remove instance method and the Replace instance method. The Remove method deletes a
specified number of characters starting at a given location within a string. This method returns a new
string object containing the modified string.

The Replace instance method that the String class provides is very useful for removing characters
from a string and replacing them with a new character or string. At any point where the Replace
method finds an instance of the string passed in as the first parameter, it will replace it with the
string passed in as the second parameter. The Replace method is case-sensitive and returns a new
string object containing the modified string. If the string being searched for cannot be found in the
original string, the method returns a reference to the original string object.

The Replace and Remove methods on a string object always create a new string object that contains
the modified text. If this action hurts performance, consider using the Replace and Remove methods
on the StringBuilder class.

The Remove method of the StringBuilder class is not overloaded and is straightforward to use. Simply
give it a starting position and the number of characters to remove. This method returns a reference
to the same instance of the StringBuilder object with the Replace method that modified the string
value.

The Replace method of the StringBuilder class allows for fast character or string replacement to be
performed on the original StringBuilder object. These methods return a reference to the same
instance of the StringBuilder object with the Replace method that was called. If you are performing
a replace operation that uses a format string under your control, then you should use the
AppendFormat method of the StringBuilder class.

Note that this method is case-sensitive.

See Also

See the "String.Replace Method," "String.Remove Method," "StringBuilder.Replace Method," and
"StringBuilder.Remove Method" topics in the MSDN documentation.

Recipe 2.11. Encoding Binary Data as Base64

Problem

You have a byte[] representing some binary information, such as a bitmap. You need to encode this
data into a string so that it can be sent over a binary-unfriendly transport such as email.

Solution

Using the static method Convert.ToBase64String on the Convert class, a byte[] may be encoded to its
String equivalent:

 using System;

 public static string Base64EncodeBytes(byte[] inputBytes)
 {
 return (Convert.ToBase64String(inputBytes));
 }

Discussion

The Convert class makes encoding between a byte[] and a String a simple matter. The parameters
for this method are quite flexible. It provides the ability to start and stop the conversion at any point
in the input byte array.

To encode a bitmap file into a string that can be sent to some destination via email, you can use the
following code:

 byte[] image = null;
 using (FileStream fstrm = new FileStream(@"C:\WINNT\winnt.bmp",
 FileMode.Open, FileAccess.Read))
 {
 using (BinaryReader reader = new BinaryReader(fstrm))
 {
 byte[] image = new byte[reader.BaseStream.Length];
 for (int i = 0; i < reader.BaseStream.Length; i++)
 {
 image[i] = reader.ReadByte();

 }
 }
 }
 string bmpAsString = Base64EncodeBytes(image);

The bmpAsString string can then be sent as the body of an email message.

To decode an encoded string to a byte[], see Recipe 2.12.

See Also

See Recipe 2.12;see the "Convert.ToBase64CharArray Method" topic in the MSDN documentation.

Recipe 2.12. Decoding a Base64-Encoded Binary

Problem

You have a String that contains information such as a bitmap encoded as base64. You need to
decode this data (which may have been embedded in an email message) from a String into a byte[]
so that you can access the original binary.

Solution

Using the static method Convert.FromBase64String on the Convert class, an encoded String may be
decoded to its equivalent byte[]:

 using System;

 public static byte[] Base64DecodeString(string inputStr)
 {
 byte[] decodedByteArray =
 Convert.FromBase64String(inputStr);

 return (decodedByteArray);
 }

Discussion

The static FromBase64String method on the Convert class makes decoding an encoded base64 string a
simple matter. This method returns a byte[] that contains the decoded elements of the String.

If you receive a file via email, such as an image file (.bmp), that has been converted to a string, you
can convert it back into its original bitmap file, using something like the following:

 byte[] imageBytes = Base64DecodeString(bmpAsString);
 using (FileStream fstrm = new FileStream(@"C:\winnt_copy.bmp",
 FileMode.CreateNew, FileAccess.Write))
 {
 using (BinaryWriter writer = new BinaryWriter(fstrm))
 {
 writer.Write(imageBytes);

 }
 }

In this code, the bmpAsString variable was obtained from the code in the Discussion section of Recipe
2.11. The imageBytes byte[] is the bmpAsString String converted back to a byte[], which can then
be written back to disk.

To encode a byte[] to a String, see Recipe 2.13.

See Also

See Recipe 2.11; see the "Convert.FromBase64CharArray Method" topic in the MSDN
documentation.

Recipe 2.13. Converting a String Returned as a Byte[]
Back into a String

Problem

Many methods in the FCL return a byte[] because they are providing a byte stream service, but
some applications need to pass strings over these byte stream services. Some of these methods
include:

 System.Diagnostics.EventLogEntry.Data
 System.IO.BinaryReader.Read
 System.IO.BinaryReader.ReadBytes
 System.IO.FileStream.Read
 System.IO.FileStream.BeginRead
 System.IO.MemoryStream // Constructor
 System.IO.MemoryStream.Read
 System.IO.MemoryStream.BeginRead
 System.Net.Sockets.Socket.Receive
 System.Net.Sockets.Socket.ReceiveFrom
 System.Net.Sockets.Socket.BeginReceive
 System.Net.Sockets.Socket.BeginReceiveFrom
 System.Net.Sockets.NetworkStream.Read
 System.Net.Sockets.NetworkStream.BeginRead
 System.Security.Cryptography.CryptoStream.Read
 System.Security.Cryptography.CryptoStream.BeginRead

In many cases, this byte[] might contain ASCII-or Unicode-encoded characters. You need a way to
recombine this byte[] to obtain the original string.

Solution

To convert a byte array of ASCII values to a complete string, use the following method:

 string constructedString = Encoding.ASCII.GetString(characters);

To convert a byte array of Unicode values to a complete string, use the following method:

 string constructedString = Encoding.Unicode.GetString(characters);

Discussion

The GetString method of the Encoding class (returned by the ASCII property) converts 7-bit ASCII
characters contained in a byte array to a string. Any value larger than 127 (0x7F) will be ANDed with
the value 127 (0x7F) and the resulting character value will be displayed in the string. For example, if
the byte[] contains the value 200 (0xC8), this value will be converted to 72 (0x48), and the character
equivalent of 72 (0x48) ('H') will be displayed. The Encoding class can be found in the System.Text
namespace. The GetString method is overloaded to accept additional arguments as well. The
overloaded versions of the method convert all or part of a string to ASCII and then store the result in
a specified range inside a byte[].

The GetString method returns a string containing the converted byte[] of ASCII characters.

The GetString method of the Encoding class (returned by the Unicode property) converts Unicode
characters into 16-bit Unicode values. The Encoding class can be found in the System.Text
namespace. The GetString method returns a string containing the converted byte[] of Unicode
characters.

See Also

See the "ASCIIEncoding Class" and "UnicodeEncoding Class" topics in the MSDN documentation.

Recipe 2.14. Passing a String to a Method That Accepts
only a Byte[]

Problem

Many methods in the FCL accept a byte[] consisting of characters instead of a string. Some of these
methods include:

 System.Diagnostics.EventLog.WriteEntry
 System.IO.BinaryWriter.Write
 System.IO.FileStream.Write
 System.IO.FileStream.BeginWrite
 System.IO.MemoryStream.Write
 System.IO.MemoryStream.BeginWrite
 System.Net.Sockets.Socket.Send
 System.Net.Sockets.Socket.SendTo
 System.Net.Sockets.Socket.BeginSend
 System.Net.Sockets.Socket.BeginSendTo
 System.Net.Sockets.NetworkStream.Write
 System.Net.Sockets.NetworkStream.BeginWrite
 System.Security.Cryptography.CryptoStream.Write
 System.Security.Cryptography.CryptoStream.BeginWrite

In many cases, you might have a string that you need to pass into one of these methods or some
other method that accepts only a byte[]. You need a way to break up this string into a byte[].

Solution

To convert a string to a byte[] of ASCII values, use the GetBytes method on the Encoding class:

 byte[] retArray = Encoding.ASCII.GetBytes(characters);

To convert a string to a byte[] of Unicode values, use the GetBytes method on the Encoding class:

 byte[] retArray = Encoding.Unicode.GetBytes(characters);

Discussion

The GetBytes method of the Encoding class (returned by the ASCII property) converts ASCII
characterscontained in either a char[] or a stringinto a byte[] of 7-bit ASCII values. Any value
larger than 127 (0x7F) is converted to the ? character. The Encoding class can be found in the
System.Text namespace. The GetBytes method is overloaded to accept additional arguments as well.
The overloaded versions of the method convert all or part of a string to ASCII and then store the
result in a specified range inside a byte[], which is returned to the caller.

The GetBytes method of the Encoding class (returned by the Unicode property) converts Unicode
characters into 16-bit Unicode values. The Encoding class can be found in the System.Text
namespace. The GetBytes method returns a byte[], each element of which contains the Unicode
value of a single character of the string.

A single Unicode character in the source string or in the source char[] corresponds to two elements
of the byte[]. For example, the following byte[] contains the ASCII value of the letter S:

 byte[] sourceArray = {83};

However, for a byte[] to contain a Unicode representation of the letter S, it must contain two
elements. For example:

 byte[] sourceArray = {83, 0};

The Intel architecture uses a little-endian encoding, which means that the first element is the least-
significant byte and the second element is the most-significant byte. Other architectures may use
big-endian encoding, which is the opposite of little-endian encoding. The UnicodeEncoding class
supports both big-endian and little-endian encodings. Using the UnicodeEncoding instance
constructor, you can construct an instance that uses either big-endian or little-endian ordering. This
is accomplished by using one of the two following constructors:

 public UnicodeEncoding (bool bigEndian, bool byteOrderMark);
 public UnicodeEncoding (bool bigEndian, bool byteOrderMark,
 bool throwOnInvalidBytes);

The first parameter, bigEndian, accepts a Boolean argument. Set this argument to true to use big-
endian or false to use little-endian.

In addition, you have the option to indicate whether a byte order mark preamble should be generated
so that readers of the file will know which endianness is in use.

See Also

See the "ASCIIEncoding Class" and "UnicodeEncoding Class" topics in the MSDN documentation.

Recipe 2.15. Converting Strings to Other Types

Problem

You have a string that represents the equivalent value of a number ("12"), char ("a"), bool
("true"), or a color enumeration ("Red"). You need to convert this string to its equivalent value
type. Therefore, the number "12" would be converted to a numeric value such as int, short, float,
and so on. The string "a" would be converted to a char value 'a', the string "true" would be
converted to a bool value, and the color "Red" could be converted to an enumeration value (if an
enumeration were defined that contained the element Red).

Solution

Use the Parse static method of the type that the string is to be converted to. To convert a string
containing a number to its numeric type, use the following code:

 // This code requires the use of the System and System.Globalization namespaces.

 string longString = "7654321";
 int actualInt = Int32.Parse(longString); // longString = 7654321
 string dblString = "-7654.321";
 double actualDbl = Double.Parse(dblString, NumberStyles.AllowDecimalPoint |
 NumberStyles.AllowLeadingSign); // dblString = "-7654.321"

To convert a string containing a Boolean value to a bool type, use the following code:

 // This code requires the use of the System namespace.

 string boolString = "true";
 bool actualBool = Boolean.Parse(boolString); // actualBool = true

To convert a string containing a char value to a char type, use the following code:

 // This code requires the use of the System namespace.

 string charString = "t";

 char actualChar = char.Parse(charString); // actualChar = 't'

To convert a string containing an enumeration value to an enumeration type, use the following code:

 // This code requires the use of the System namespace.

 enum Colors
 {
 red, green, blue
 }

 string colorString = "blue";
 // Note that the Parse method below is a method defined by System.Enum,
 // not by Colors.
 Colors actualEnum = (Colors)Colors.Parse(typeof(Colors), colorString);
 // actualEnum = blue

Discussion

The static Parse method available on certain data types allows easy conversion from a string value to
the value of that specific value type. The Parse method is supported by the following types:

Table 2-4.

Boolean Int64

Byte SByte

Decimal Single

Double UInt16

Int16 UInt32

Int32 UInt64

Notice that these types are all ValueTypes; other types, such as IPAddress, also support the Parse
method. In addition to the Parse methods that take a single string parameter and convert it to the
target data type, each numeric type has a second overloaded version of the Parse method that
includes a second parameter of type System.Globalization.NumberStyles. This allows the Parse
method to correctly handle specific properties of numbers, such as leading or trailing signs, decimal
points, currency symbols, thousands separators, and so forth. NumberStyles is marked as a flag-style
enumeration, so you can bitwise OR more than one enumerated value together to allow a group of
styles to be used on the string.

The NumberStyles enumeration is defined as follows:

AllowCurrencySymbol

If the string contains a number with a currency symbol, it is parsed as currency; otherwise, it is
parsed as a number.

AllowDecimalPoint

Allows a decimal point in the number.

AllowExponent

Allows the number to be in exponential notation format.

AllowHexSpecifier

Allows characters that specify a hexadecimal number.

AllowLeadingSign

Allows a leading sign symbol.

AllowLeadingWhite

Ignores any leading whitespace.

AllowParentheses

Allows parentheses.

AllowThousands

Allows group separators.

AllowTrailingSign

Allows a trailing sign symbol.

AllowTrailingWhite

Ignores any trailing whitespace.

Any

Applies any of the previous styles. This style simply ORs together all of the preceding styles.

Currency

Same as the All style, except that the AllowExponent style is omitted.

Float

Equivalent to AllowLeadingWhite, AllowTrailingWhite, AllowLeadingSign, Allow-
DecimalPoint, and AllowExponent.

HexNumber

Equivalent to AllowLeadingWhite, AllowTrailingWhite, and AllowHexSpecifier.

Integer

Equivalent to AllowLeadingWhite, AllowTrailingWhite, and AllowLeadingSign.

None

Applies none of the styles.

Number

Equivalent to AllowLeadingWhite, AllowTrailingWhite, AllowLeadingSign, Allow-
TrailingSign, AllowDecimalPoint, and AllowThousands.

If the NumberStyle parameter is not supplied when it is required (as when, for example, a numeric
string includes a thousands separator) or if the NumberStyle enumeration is used on a string that
does not contain a number in the supplied NumberStyle format, a FormatException exception will be
thrown. If the size of the number in the string is too large or too small for the data type, an
OverFlowException exception will be thrown. Passing in a null for the SourceString parameter will
throw an ArgumentNullException exception.

The Parse method of the two non-numeric data types, bool and char, also deserve some additional
explanation. When calling Boolean.Parse, if a string value contains anything except a value equal to
the static properties Boolean.FalseString, Boolean. TrueString, or the string literals "false" or
"TRue" (which are case-insensitive), a FormatException exception is thrown. Passing in a null for the
SourceString parameter throws an ArgumentNullException exception.

When invoking char.Parse, if a string value containing more than one character is passed as its
single argument, a FormatException exception is thrown. Passing in a null for the string parameter
throws an ArgumentNullException exception.

The static Enum.Parse method returns an Object of the same type as specified in the first parameter

of this method (EnumType). This value is viewed as an Object type and must be cast to its correct
enumeration type.

This method throws an ArgumentException exception if the Value parameter cannot be matched to a

string in the enumeration. An ArgumentNullException exception is thrown if a null is passed in to the
Value parameter.

If you do not want an exception to be thrown while attempting to convert a string to a particular
type, consider using the tryParse method in types in which it is available. This method will not throw
an exception if the conversion fails. Instead, it returns a Boolean true if the conversion succeeds and
a false if the conversion fails.

Recipe 2.16. Formatting Data in Strings

Problem

You need to format one or more embedded pieces of information inside of a string, such as a number,
character, or substring.

Solution

The static string. Format method allows you to format strings in a variety of ways.

For example:

 int ID = 12345;
 double weight = 12.3558;
 char row = 'Z';
 string section = "1A2C";

 string output = string.Format(@"The item ID = {0:G} having weight = {1:G}
 is found in row {2:G} and section {3:G}", ID, weight, row,
 section);
 Console.WriteLine(output);
 output = string.Format(@"The item ID = {0:N} having weight = {1:E}
 is found in row {2:E} and section {3:E}", ID, weight, row,
 section);
 Console.WriteLine(output);
 output = string.Format(@"The item ID = {0:N} having weight = {1:N}
 is found in row {2:E} and section {3:D}", ID, weight, row,
 section);
 Console.WriteLine(output);
 output = string.Format(@"The item ID = {0:(#####)} having weight = {1:0000.00}
 lbs is found in row {2} and section {3}", ID, weight, row,
 section);
 Console.WriteLine(output);

The output is as follows:

 The item ID = 12345 having weight = 12.3558 is found in row Z and section 1A2C
 The item ID = 12,345.00 having weight = 1.235580E+001 is found
 in row Z and section 1A2C
 The item ID = 12,345.00 having weight = 12.36 is found in row Z and section 1A2C

 The item ID = (12345) having weight = 0012.36 lbs is found in row Z and section 1A2C

To simplify things, the string.Format method can be discarded;all the work can be done in the
System.Console.WriteLine method, which calls string.Format internally, as shown here:

 Console.WriteLine(@"The item ID = {0,5:G} having weight = {1,10:G} " +
 "is found in row {2,-5:G} and section {3,-10:G}",
 ID, weight, row, section);

The output of this WriteLine method is:

 The item ID = 12345 having weight = 12.3558 is found in
 row Z and section 1A2C

Discussion

The string.Format method allows a wide range of formatting options for string data. The first
parameter of this method can be passed a string that may look similar to the following:

 "The item ID = {0,5:G}"

The text The item ID = will be displayed as is, with no changes. The interesting part of this string is the
section enclosed in braces. This section has the following form:

 {index, alignment:formatString}

Notice that this format is for numbers; different types can have differing format strings. This section can
contain the following three parts:

index

A number identifying the zero-based position of the section's data in the args parameter array.

The data is to be formatted accordingly and substituted for this section. This number is required.

alignment

The number of spaces to insert before or after this data. A negative number indicates left
justification (spaces are added to the right of the data), and a positive number indicates right
justification (spaces are added to the left of the data). This number is optional.

formatString

A string indicating the type of formatting to perform on this data. This section is where most of the
formatting information usually resides. Tables 2-4 and 2-5 contain valid formatting codes that can
be used here. This part is optional.

Table 2-5. The standard formatting strings

Formatting
character(s)

Meaning

C or c
Use the currency format. A precision specifier can optionally follow, indicating the
number of decimal places to use.

D or d
Use the decimal format for integral types. A precision specifier can optionally follow,
which represents the minimum number of digits in the formatted number.

E or e
Use scientific notation. A precision specifier can optionally follow, indicating the
number of digits to use after the decimal point.

F or f
Use fixed-point format. A precision specifier can optionally follow, which represents
the number of digits to display to the right of the decimal point.

G or g

Use the general format. The number is displayed in its shortest form. A precision
specifier, which represents the number of significant digits to display, can optionally
follow.

N or n

Use the number format. A minus sign is added to the beginning of a negative
number, and thousands separators are placed accordingly in the number. A
precision specifier, which represents the number of digits to display to the right of
the decimal point, can optionally follow.

P or p

Use the percent format. The number is converted to a percent representation of
itself. A precision specifier, indicating the number of decimal places to use, can
optionally follow.

R or r

Use the round-trip format. This format allows the number to be formatted to a
representation that can be parsed back to its original form by using the Parse
method. Any precision specifier is ignored.

X or x

Use the hexadecimal format. The number is converted to its hexadecimal
representation. The uppercase X produces a hexadecimal number with all capital
letters A through F . The lowercase x produces a hexadecimal number with all
lowercase letters a through f . A precision specifier can optionally follow, which
represents the minimum number of digits in the formatted number.

Table 2-6. Custom formatting strings

Formatting
character(s)

Meaning

0
Use the zero placeholder format. If a digit in the original number exists in
this position, display that digit. If there is no digit in the original string,
display a zero.

#
Use the digit placeholder format. If a digit in the original number exists in
this position, display that digit. If there is no digit in the original string,
display nothing.

.

Use the decimal point format. The decimal point is matched up with the
decimal point in the number that is to be formatted. Formatting to the right
of the decimal point operates on the digits to the right of the decimal point in
the original number. Formatting to the left of the decimal point operates in
the same way.

,
Use the thousands separator format. A thousands separator will be placed
after every three digits starting at the decimal point and moving to the left.

%
Use the percentage placeholder format. The original number is multiplied by
100 before being displayed.

E or e
Use the scientific notation format. A precision specifier, indicating the
number of digits to use after the decimal point, can optionally follow.

\
Use the escape character format. The \ character and the next character
after it are grouped into an escape sequence.

Any text within single
or double quotes such
as "aa" or 'aa'

Use no formatting; display as is and in the same position in which the text
resides in the format string.

;
Used as a section separator between positive, negative, and zero formatting
strings.

Any other character
Use no formatting; display as is and in the same position in which it resides
in the format string.

In addition to the string.Format and the Console.WriteLine methods, the overloaded ToString instance
method of a value type may also use the formatting characters in Table 2-5 . Using ToString , the code
looks like this:

 float valueAsFloat = 122.35;
 string valueAsString = valueAsFloat.ToString("[000000.####]");

After the ToString call, the valueAsString variable holds a formatted version of the number contained
in valueAsFloat . It looks like this:

 [000122.35]

The overloaded ToString method accepts a single parameter of type IFormatProviders . The
IFormatProvider provided for the valueAsFloat.ToString method is a string containing the formatting
for the value type plus any extra text that needs to be supplied.

See Also

See the "String.Format Method," "Standard Numeric Format Strings," and "Custom Numeric Format
Strings" topics in the MSDN documentation.

Recipe 2.17. Creating a Delimited String

Problem

You have an array of strings to format as delimited text and possibly to store in a text file.

Solution

Using the static Join method of the String class, the array of strings can be easily joined in as little
as one line of code. For example:

 string[] infoArray = new string[5] {"11", "12", "Checking", "111", "Savings"};
 string delimitedInfo = string.Join(",", infoArray);

This code sets the value of delimitedInfo to the following:

 11,12,Checking,111,Savings

Discussion

The Join method concatenates all the strings contained in a string array. Additionally, a specified
delimiting character(s) is inserted between each string in the array. This method returns a single
string object with the fully joined and delimited text.

Unlike the Split method of the String class, the Join method accepts only one delimiting character
at a time. In order to use multiple delimiting characters within a string of values, subsequent Join
operations must be performed on the information until all of the data has been joined together into a
single string. For example:

 string[] infoArray = new string[4] {"11", "12", "Checking", "Savings"};
 string delimitedInfoBegin = string.Join(",", infoArray, 0, 2);
 string delimitedInfoEnd = string.Join(",", infoArray, 2, 2);
 string[] delimitedInfoTotal = new string[2] {delimitedInfoBegin,
 delimitedInfoEnd};
 string delimitedInfoFinal = string.Join(":", delimitedInfoTotal);
 Console.WriteLine(delimitedInfoFinal);

produces the following delimited string:

 11,12:Checking,Savings

See Also

See the "String.Join Method" topic in the MSDN documentation.

Recipe 2.18. Extracting Items from a Delimited String

Problem

You have a string, possibly from a text file, which is delimited by one or more characters. You need to
retrieve each piece of delimited information as easily as possible.

Solution

Using the Split instance method on the String class, you can place the delimited information into an
array in as little as a single line of code. For example:

 string delimitedInfo = "100,200,400,3,67";
 string[] discreteInfo = delimitedInfo.Split(new char[1] {','});

 foreach (string Data in discreteInfo)
 Console.WriteLine(Data);

The string array discreteInfo holds the following values:

 100
 200
 400
 3
 67

Discussion

The Split method, like most methods in the String class, is simple to use. This method returns a
string array with each element containing one discrete piece of the delimited text split on the
delimiting character(s).

In the Solution, the string delimitedInfo is comma-delimited. However, it can be delimited by any
type of character or even by more than one character. When there is more than one type of
delimiter, use code like the following:

 string[] discreteInfo = delimitedInfo.Split(new char[3] {',', ':', ' '});

This line splits the delimitedInfo string whenever one of the three delimiting characters (comma,
colon, or space character) is found.

The Split method is case-sensitive. To split a string on the letter a in a case-insensitive manner, use
code like the following:

 string[] discreteInfo = delimitedInfo.Split(new char[2] {'a', 'A'});

Now, anytime the letter a is encountered, no matter what its case, the Split method views that
character as a delimiter.

See Also

See the "String.Join Method" topic in the MSDN documentation.

Recipe 2.19. Setting the Maximum Number of Characters
a StringBuilder Can Contain

Problem

You want to insure that the data assigned to a StringBuilder object does not exceed a certain
number of characters.

Solution

Use the overloaded constructor of the StringBuilder class, which accepts a parameter for maximum
capacity. The following code creates a StringBuilder object that has a maximum size of 10
characters:

 System.Text.StringBuilder sbMax = new System.Text.StringBuilder(10, 10);
 sbMax.Append("123456789");
 sbMax.Append("0");

This code creates a StringBuilder object, sbMax, which has a maximum length of 10 characters. Nine
characters are appended to this string and then a tenth character is appended without a problem.
However, if the next line of code is executed:

 sbMax.Append("#");

the length of sbMax goes beyond 10 characters and an ArgumentOutOfRangeException is thrown.

Discussion

The string object is immutable and, as such, has no use for a built-in method to prevent its length
from going beyond a certain point. Fortunately, the StringBuilder object contains an overloaded
constructor that allows the maximum size of its string to be set. The StringBuilder constructor that
you are concerned with is defined as follows:

 public StringBuilder(int initialCapacity, int maxCapacity)

For most applications, the initialCapacity and maxCapacity parameters can be identical. This way
gives you the best performance, overall. If these two parameters are not identical, it is critical that
they can coexist. The following line of code:

 System.Text.StringBuilder sbMax = new System.Text.StringBuilder(30, 12);

will throw an ArgumentOutOfRangeException. The reason is that the initialCapacity parameter is
larger than maxCapacity, causing the exception. While you may not be explicitly writing these values
for your application, if you are calculating them using some type of expression, you may run into
these problems.

To handle an attempt to append characters to the StringBuilder string, forcing it beyond the
maximum size, wrap any code to append text to the StringBuilder object in a try-catch block:

 try
 {
 sbMax.Append("New String");
 }
 catch(ArgumentOutOfRangeException rangeE)
 {
 // Handle overrun here.
 }

In addition to the Append method, you should also wrap any AppendFormat, Insert, and Replace
methods of the StringBuilder object in a try-catch block. Any of these methods can allow
characters to be added to the StringBuilder string, potentially causing its length to exceed its
maximum specified length.

See Also

See the "StringBuilder.Append Method" topic in the MSDN documentation.

Recipe 2.20. Iterating over Each Character in a String

Problem

You need to iterate over each character in a string efficiently in order to examine or process each
character.

Solution

C# provides two methods for iterating strings. The first is the foreach loop, which can be used as
follows:

 string testStr = "abc123";
 foreach (char c in testStr)
 {
 Console.WriteLine(c.ToString());
 }

This method is quick and easy. Unfortunately, it is somewhat less flexible than the second method,
which uses the for loop instead of a foreach loop to iterate over the string. For example:

 string testStr = "abc123";
 for (int counter = 0; counter < testStr.Length; counter++)
 {
 Console.WriteLine(testStr[counter]);
 }

Discussion

The foreach loop is simpler and thus less error-prone, but it lacks flexibility. In contrast, the for loop
is slightly more complex, but it makes up for that in flexibility.

The for loop method uses the indexer of the string variable testStr to get the character located at
the position indicated by the counter loop index. Care must be taken not to run over the bounds of
the string array when using this type of looping mechanism.

A for loop is flexible enough to change how looping over characters in a string is performed. For

example, the loop can be quickly modified to start and end at a specific point in the string by simply
changing the initializer and conditional expressions of the for loop. Characters can be skipped by
changing the iterator expression to increment the counter variable by more than one. The string

can also be iterated in reverse order by changing the for loop expressions, as shown:

 for (int counter = testStr.Length - 1; counter >= 0; counter--)
 {
 Console.WriteLine(testStr[counter].ToString());
 }

The compiler optimizes the use of a foreach loop iterating through a vector
arrayone that starts at zero and has only one dimension. Converting a foreach
loop to another type of loop, such as a for loop, may not produce any
noticeable increases in performance.

It should be noted that each of these methods was compiled using the /optimize compiler option.
However, adding or removing this option has very little impact on the resulting Microsoft
Intermediate Language (IL) code.

Recipe 2.21. Improving String Comparison Performance

Problem

Your application consists of many strings that are compared frequently. You have been tasked with
improving performance and making more efficient use of resources.

Solution

Use the intern pool to improve resource usage and, in turn, improve performance.

In some cases string interning will not yield the performance improvements
that you want. The more string comparisons made in your application, the
better your chances that string interning will improve your application. There
are two costs associated with string interning. The first is that the interned
string is not freed until the appdomain is shut down. The second is that the
process of interning a string takes up extra time regardless of whether or not
the string was previously interned.

The Intern and IsInterned instance methods of the String class allow you to use the intern pool.
Use the following static methods to make use of the string intern pool:

 using System;
 using System.Text;

 public class InternedStrCls
 {
 public static void CreateInternedStr(char[] characters)
 {
 string NonInternedStr = new string(characters);
 String.Intern(NonInternedStr);
 }

 public static void CreateInternedStr(StringBuilder strBldr)
 {
 String.Intern(strBldr.ToString());
 }

 public static void CreateInternedStr(string str)
 {

 String.Intern(str);
 }

 public static void CreateInternedStr(string[] strArray)
 {
 foreach(string s in strArray)
 {
 String.Intern(s);
 }
 }
 }

Discussion

The CLR automatically stores all string literals declared in an application in an area of memory called
the intern pool. The intern pool contains a unique instance of each string literal found in your code,
which can allow for more efficient use of resources by not storing multiple copies of strings that
contain the same string literal. Another possible benefit is enhanced speed when making string
comparisons. When two strings are compared using either the == operator or the Equals instance
method of the String Class, a test is done to determine whether each string variable reference is the
same. If they are not, then each string's length is checked. If the lengths of both strings are equal,
each character is compared individually. However, if you can guarantee that the references, instead
of the string contents, can be compared, much faster string comparisons can be made. String
interning does just that: it guarantees that the references to equivalent string values are the same,
eliminating the possibility of attempting the length and character-by-character checks. This yields
better performance in situations in which the references to two equal strings are different and the
length and character-by-character comparisons have to be made.

Note that the only strings automatically placed in this intern pool by the compiler are string
literalsstrings surrounded by double quotesfound in code by the compiler. The following lines of code
will place the string "foo" into the intern pool:

 string s = "foo";
 StringBuilder sb = new StringBuilder("foo");
 StringBuilder sb2 = new StringBuilder().Append("foo");

The following lines of code will not place the string "foo" into the intern pool:

 char[] ca = new char[3] {'f','o','o'};
 StringBuilder sb = new StringBuilder().Append("f").Append("oo");

 string s1 = "f";
 string s2 = "oo";
 string s3 = s1 + s2;

You can programmatically store a new string created by your application in the intern pool using the
static string.Intern method. This method returns a string referencing the string literal contained in
the intern pool, or, if the string is not found, the string is entered into the intern pool and a reference
to this newly pooled string is returned.

There is also another method used in string interning called IsInterned. This method operates
similarly to the Intern method, except that it returns null if the string is not in the intern pool, rather
than adding it to the pool. If the string is found, this method returns a string referencing the string
literal contained in the intern pool, or, if the string is not found, it returns null.

An example of using this method is shown here:

 string s1 = "f";
 string s2 = "oo";
 string s3 = s1 + s2;
 if (String.IsInterned(s3) == null)
 {
 Console.WriteLine("NULL");
 }

However, if you add the following bolded line of code, the IsInterned test returns a non-null string
object:

 string s1 = "f";
 string s2 = "oo";
 string s3 = s1 + s2;

 InternedStrCls.CreateInternedStr(s3);
 if (String.IsInterned(s3) == null)
 {
 Console.WriteLine("NULL");
 }

The Intern method is useful when you need a reference to a string, even if it does not exist in the
intern pool.

The IsInterned method can optimize the comparison of a single string to any string literal or
manually interned string. Consider that you need to determine whether a string variable contains any
string literal that has been defined in the application. Call the string.IsInterned method with the
string variable as the parameter. If null is returned, there is no match in the intern pool, and thus
there is no match between the string variable's value and any string literals:

 string s1 = "f";

 string s2 = "oo";
 string s3 = s1 + s2;

 if (String.IsInterned(s3) != null)
 {
 // If the string "foo" has been defined in the app and placed
 // into the intern pool, this block of code executes.
 }
 else
 {
 // If the string "foo" has NOT been defined in the app NOR been placed
 // into the intern pool, this block of code executes.
 }

Exercise caution when using the string interning methods. Calling the Intern method for every string
that your application creates will actually cause the application's performance to slow considerably,
since this method must search the intern pool for the string.

Another potential problem with the IsInterned method in particular stems from the fact that every
string literal in the application is stored in this intern pool at the start of the application. If you are
using IsInterned to determine whether a string exists, you are comparing that string against all
string literals that exist in the application, as well as any you might have explicitly interned, not just
the ones in the scope in which IsInterned is used.

See Also

See the "String.Intern Method" and "String.IsInterned Method" topics in the MSDN documentation.

Recipe 2.22. Improving StringBuilder Performance

Problem

In an attempt to improve string-handling performance, you have converted your code to use the
StringBuilder class. However, this change has not improved performance as much as you had
hoped.

Solution

The chief advantage of a StringBuilder object over a string object is that it preallocates a default
initial amount of memory in an internal buffer in which a string value can expand and contract. When
that memory is used, however, .NET must allocate new memory for this internal buffer. You can
reduce the frequency with which this occurs by explicitly defining the size of the new memory using
either of two techniques. The first approach is to set this value when the StringBuilder class
constructor is called. For example, the code:

 StringBuilder sb = new StringBuilder(200);

specifies that a StringBuilder object can hold 200 characters before new memory must be allocated.

The second approach is to change the value after the StringBuilder object has been created, using
one of the following properties or methods of the StringBuilder object:

 sb.Capacity = 200;
 sb.EnsureCapacity(200);

Discussion

As noted in previous recipes in this chapter, the String class is immutable; once a String is assigned
to a variable of type string, the string pointed to by that variable cannot be changed in any way. So
changing the contents of a string variable entails the creation of a new string containing the modified
string. The reference variable of type string must then be changed to reference this newly created
string object. The old string object will eventually be marked for collection by the garbage collector,
and, subsequently, its memory will be freed. Because of this busy behind-the-scenes action, code
that performs intensive string manipulations using the String class suffers greatly from having to

create new string objects for each string modification, and greater pressure is on the garbage
collector to remove unused objects from memory more frequently.

The StringBuilder class solves this problem by preallocating an internal buffer to hold a string. The
contents of this string buffer are manipulated directly. Any operations performed on a StringBuilder
object do not carry the performance penalty of creating a whole new string or StringBuilder object
and, consequently, filling up the managed heap with many unused objects.

There is one caveat with using the StringBuilder class, which, if not heeded, can impede
performance. The StringBuilder class uses a default initial capacity to contain the characters of a
string, unless you change this default initial capacity through one of the StringBuilder constructors.
Once this space is exceeded, by appending characters, for instance, a new string buffer is allocated
that is double the size of the original buffer. For example, a StringBuilder object with an initial size of
20 characters will be increased to 40 characters, then to 80 characters, and so on. The string
contained in the original internal string buffer is then copied to this newly allocated internal string
buffer along with any appended or inserted characters.

The default capacity for a StringBuilder object is 16 characters;in many cases, this is much too
small. To increase this size upon object creation, the StringBuilder class has an overloaded
constructor that accepts an integer value to use as the starting size of the preallocated string.
Determining an initial size value that is not too large (thereby allocating too much unused space) or
too small (thereby incurring a performance penalty for creating and discarding a large number of
StringBuilder objects) may seem like more of an art than a science. However, determining the
optimal size may prove invaluable when your application is tested for performance.

In cases in which good values for the initial size of a StringBuilder object
cannot be obtained mathematically, try running the applications under a
constant load while varying the initial StringBuilder size. When a good initial
size is found, try varying the load while keeping this size value constant. You
may discover that this value needs to be tweaked to get better performance.
Keeping good records of each run, and committing them to a graph, will be
invaluable in determining the appropriate number to choose. As an added note,
using Perf-Mon (Administrative Tools Performance Monitor) to detect and
graph the number of garbage collections that occur might also provide useful
information in determining whether your StringBuilder initial size is causing
too many reallocations of your StringBuilder objects.

The most efficient method of setting the capacity of the StringBuilder object is to set it in the call to
its constructor. The overloaded constructors of a StringBuilder object that accept a capacity value
are defined as follows:

 public StringBuilder(int capacity)

 public StringBuilder(string str, int capacity)

 public StringBuilder(int capacity, int maxCapacity)

 public StringBuilder(string str, int startPos, int length, int capacity)

In addition to the constructor parameters, one property of the StringBuilder object allows its

capacity to be increased (or decreased). The Capacity property gets or sets an integer value that
determines the new capacity of this instance of a StringBuilder object. Note that the Capacity
property cannot be less than the Length property.

A second way to change the capacity is through the EnsureCapacity method, which is defined as
follows:

 public int EnsureCapacity(string capacity)

This method returns the new capacity for this object. If the capacity of the existing object already
exceeds that of the value in the capacity parameter, the initial capacity is retained, and this value is
also returned by this method.

There is one problem with using these last two members. If any of these members increases the size
of the StringBuilder object by even a single character, the internal buffer used to store the string
has to be reallocated. These methods are useful if they are used in exceptional cases when the
StringBuilder capacity may need an extra boost, so that fewer reallocations are performed in the
long run.

The StringBuilder object also contains a Length property, which, if increased, appends spaces to the
end of the existing StringBuilder object's string. If the Length is decreased, characters are truncated
from the StringBuilder object's string. Increasing the Length property can increase the Capacity
property, but only as a side effect. If the Length property is increased beyond the size of the
Capacity property, the Capacity property value is set to the new value of the Length property. This
property acts similarly to the Capacity property:

 sb.Length = 200;

The String and StringBuilder objects are considered nonblittable, which
means that they must be marshaled across any managed/ unmanaged
boundaries in your code. The reason is that strings have multiple ways of being
represented in unmanaged code, and there is no one-to-one correlation
between these representations in unmanaged and managed code. In contrast,
types such as byte, sbyte, short, ushort, int, uint, long, ulong, IntPtr,
and UIntPtr are blittable types and do not require conversion between
managed and unmanaged code. One-dimensional arrays of these blittable
types, as well as structures or classes containing only blittable types, are also
considered blittable and do not need extra conversion when passed between
managed and unmanaged code.

The String and StringBuilder objects take more time to marshal, due to
conversion between managed and unmanaged types. Performance will be
improved when calling unmanaged code through Platform Invoke (P/Invoke, for
short) methods if only blittable types are used. (See Recipe 2.14 for information
on how to get a byte array from a string.) Consider using a byte array instead
of a String or StringBuilder object, if at all possible.

Using unsafe code is also an option, since a string can be cast to a char*, which
can then be passed directly to a P/Invoke or COM method. To operate
correctly, the P/Invoke or COM method has to accept a WCHAR argument(s).

See Also

See the "StringBuilder Class" topic in the MSDN documentation.

Recipe 2.23. Pruning Characters from the Head and/or Tail
of a String

Problem

You have a string with a specific set of characters, such as spaces, tabs, escaped single/double
quotes, any type of punctuation character(s), or some other character(s), at the beginning and/or
end of a string. You want a simple way to remove these characters.

Solution

Use the trim, TrimEnd, or trimStart instance methods of the String class:

 string foo = "--TEST--";
 Console.WriteLine(foo.Trim(new char[1] {'-'})); // Displays "TEST"

 foo = ",-TEST-,-";
 Console.WriteLine(foo.Trim(new char[2] {'-',','})); // Displays "TEST"

 foo = "--TEST--";
 Console.WriteLine(foo.TrimStart(new char[1] {'-'})); // Displays "TEST--"

 foo = ",-TEST-,-";
 Console.WriteLine(foo.TrimStart(new char[2] {'-',','})); // Displays "TEST-,-"

 foo = "--TEST--";
 Console.WriteLine(foo.TrimEnd(new char[1] {'-'})); // Displays "--TEST"

 foo = ",-TEST-,-";
 Console.WriteLine(foo.TrimEnd(new char[2] {'-',','})); //Displays ",-TEST"

Discussion

The TRim method is most often used to eliminate whitespace at the beginning and end of a string. In
fact, if you call trim without any parameters on a string variable, this is exactly what happens. The
trim method is overloaded to allow you to remove other types of characters from the beginning and
end of a string. You can pass in a char[] containing all the characters that you want removed from
the beginning and end of a string. Note that if the characters contained in this char[] are located

somewhere in the middle of the string, they are not removed.

The TRimStart and trimEnd methods remove characters at the beginning and end of a string,
respectively. These two methods are not overloaded, unlike the trim method. Rather, these two
methods accept only a char[]. If you pass a null into either one of these methods, only whitespace
is removed from the beginning or the end of a string.

See Also

See the "String.Trim Method," "String.TrimStart Method," and "String.TrimEnd Method" topics in the
MSDN documentation.

Recipe 2.24. Testing a String for Null or Empty

Problem

You need a quick and easy way to check if a string is either null or of zero length.

Solution

Use the static IsNullOrEmpty method of the String class:

 bool stringTestResult = String.IsNullOrEmpty(testString);

Discussion

The IsNullOrEmpty method is a very convenient method in that it allows you to test a string for null
or zero length with a single method call. This method returns true if the string passed in to it is equal
to one of the following:

Null

String.Empty

Otherwise, this method returns false.

See Also

See the "String.IsNullOrEmpty Method" topic in the MSDN documentation.

Recipe 2.25. Appending a Line

Problem

You need to append a line, including a line terminator, to the current string.

Solution

Use the AppendLine method of the StringBuilder class:

 StringBuilder sb = new StringBuilder("First line of string");

 // Terminate the first line.
 sb.AppendLine();

 // Add a second line.
 sb.AppendLine("Second line of string");

This code will display the following:

 First line of string
 Second line of string

Discussion

The AppendLine method accepts a string and returns a reference to the same instance of the
StringBuilder object on which this method was called. The string that is passed in to this method
has a newline character or characters automatically appended on to the end of this string. The
newline character(s) is dependent on the type of platform you are running. For example, Windows
uses the \r\n carriage return and line-feed characters to represent a newline; on a Unix system the
newline consists of only the line-feed character \n. You do not need to worry about this, as the
AppendLine method knows which newline character(s) to apply.

If you simply want to add several blank lines to your string, you can call AppendLine with no
parameters. This effectively adds only a newline character to the current string in the StringBuilder
object on which it was called. Calling this method with no parameter can also be used to add a

newline character(s) to the current line, if the current line has no newline character(s). For example,
the code in the Solution added a string with no newline character(s) to the instantiated
StringBuilder object sb. You can then call sb.AppendLine() to force a newline character to be
appended to this text.

See Also

See the "StringBuilder.AppendLine Method" topic in the MSDN documentation.

Recipe 2.26. Encoding Chunks of Data

Problem

You need to encode some data; however, you will be receiving it in blocks of a certain size, not all at
once. Your encoder needs to be able to append each block of data to the previous one to reconstitute
the entire data stream.

Solution

Use the Convert method on the Encoder class. The following method, ConvertBlocksOfData , will
accept character arrays and keep passing them into the Convert method until there are no more
character arrays to process. The final output of the Convert method is a byte array of a particular
encoding, in this case UTF7.

 public static void ConvertBlocksOfData()
 {
 // Create encoder.
 Encoding encoding = Encoding.UTF7;
 Encoder encoder = encoding.GetEncoder();

 // Set up static size byte array.
 // In your code you may want to increase this size
 // to suit your application's needs.
 byte[] outputBytes = new byte[20];

 // Set up loop to keep adding to buffer until it's full
 // or the inputBuffer is finished.
 bool isLastBuffer = false;
 int startPos = 0;
 while (!isLastBuffer)
 {
 // Get the next block of character data.
 // GetInputBuffer is defined at the end of the Solution section.
 char[] inputBuffer = GetInputBuffer(out isLastBuffer);

 // Check to see if we will overflow the byte array.
 if ((startPos + inputBuffer.Length) >= outputBytes.Length)
 {
 Console.WriteLine("RESIZING ARRAY");

 // Resize the array to handle the extra data.
 byte[] tempBuffer = new byte[outputBytes.Length];
 outputBytes.CopyTo(tempBuffer, 0);

 outputBytes = new byte[tempBuffer.Length * 2];
 tempBuffer.CopyTo(outputBytes, 0);
 }

 // Copy the input buffer into our byte[] buffer
 // where the last copy left off.
 int charsUsed;
 int bytesUsed;
 bool completed;
 encoder.Convert(inputBuffer, 0, inputBuffer.Length, outputBytes, startPos,
 inputBuffer.Length, isLastBuffer, out charsUsed,
 out bytesUsed,
 out completed);

 // Increment the starting position in the byte[]
 // in which to add the next input buffer.
 startPos += inputBuffer.Length;
 }

 // Display data.
 Console.WriteLine("isLastBuffer == " + isLastBuffer.ToString());
 foreach (byte b in outputBytes)
 {
 if (b > 0)
 Console.Write(b.ToString() + " -- ");
 }
 Console.WriteLine();
 }

The following code simply creates a text string of the alphabet and returns character arrays
containing incremental blocks of characters from this string. The character arrays returned are of a
particular size, in this case six characters. Note that this code is used only to exercise the
ConvertBlocksOfData method; in your code you may have a stream of data that originates from a
network or local filesystem and arrives in chunks rather than as one long continuous stream of data.

 const int size = 6; // The amount of data that we will return in the char[]
 static int index = 0; // Where we are in the original text string

 // Dummy method to pass data into the calling method in chunks
 public static char[] GetInputBuffer(out bool isLastBuffer)
 {

 // The input string
 string text = "abcdefghijklmnopqrstuvwxyz";

 char[] inputBuffer = null;

 if ((index + size) < text.Length)
 {

 // Create the buffer to return (we are not finished).
 inputBuffer = text.ToCharArray(index, size);
 isLastBuffer = false;
 }
 else
 {
 // Create the buffer to return (we are finished).
 inputBuffer = text.ToCharArray(index, text.Length - index);
 isLastBuffer = true;
 }

 // Increment the index to the next chunk of data in text.
 index += size;

 return (inputBuffer);
 }

Discussion

In this recipe you use the GetInputBuffer method to pass chunks of data, in this case character
arrays of size six, back to the ConvertBlocksOfData method. In this method the chunks of data are
fed into the Convert method, which keeps accepting chunks of data until the GetInputBuffer method
returns TRue in its isLastBuffer out parameter. This signals the Convert method that it is finished
creating the byte array and it is time to clean up. The result of this is that the Convert method
creates a single continuous byte array converted to a particular encoding from individual chunks of
data in the form of character arrays.

The Convert method was chosen because it was designed to be used to encode data of an unspecified
size, as well as data that arrives in chunks as opposed to all at once. In certain situations, such as
when a server application returns data over the network in packets of a specific size and the data is
too large to fit into a single packet, a data stream object will not be able to return the complete
stream. Instead, the stream object will return chunks of the entire stream until there is no more to
return.

The Convert method and its parameters are defined as follows:

 public virtual void Convert(char[] chars, int charIndex, int charCount,
 byte[] bytes,
 int byteIndex, int byteCount,
 bool flush, out int charsUsed,
 out int bytesUsed, out bool completed)

This method's parameters are defined here:

chars

The character array used as the input.

charIndex

At what index to start encoding data in the chars array.

charCount

How much data to encode in the chars array.

bytes

The byte array that will hold the encoded chars character array.

byteIndex

At which position in the bytes array to start storing the encoded characters.

byteCount

The maximum allowable characters that will be converted and stored in this array.

flush

A false value should be passed into this parameter until the last chunk of data is converted.
Upon receiving the last chunk of data, a true value should be passed into this parameter.

charsUsed

An out parameter that indicates how many characters were converted.

bytesUsed

An out parameter that indicates how many bytes were created and stored in the bytes array as
a result of the encoding process.

completed

An out parameter returning true if all characters totaling (charCountcharIndex) were encoded
and a false if they were not all encoded.

Of these parameters the flush parameter deserves a bit more discussion. This parameter is used to
tell the Convert method that the current character array is the final bit of data that is being passed in.

Only at this point should you pass in the value true to this parameter. This tells the Encoder object on
which the Convert method was called to finish encoding the current character array that was passed
in and then to clean up after itself. At this point you should not pass in any more data to the Convert
method.

The Convert method will throw an ArgumentException if you accidentally overflow the inputBuffer
byte array. To prevent this from happening, you can resize this inputBuffer to allow it to hold this
additional data. The code to do this is in the ConvertBlocksOfData method and is shown here:

 // Check to see if we will overflow the byte array.
 if ((startPos + inputBuffer.Length) >= outputBytes.Length)
 {

 Console.WriteLine("RESIZING ARRAY");

 // Resize the array to handle the extra data.
 byte[] tempBuffer = new byte[outputBytes.Length];
 outputBytes.CopyTo(tempBuffer, 0);
 outputBytes = new byte[tempBuffer.Length * 2];
 tempBuffer.CopyTo(outputBytes, 0);
 }

This code simply stores the original outputBytes buffer into a temporary buffer called tempBuffer and
then resizes the outputBytes buffer by twice the original size. The tempBuffer data is then copied
back into the outputBytes buffer, where it is eventually passed into the Convert method. We chose to
double the size of the buffer since that is the normal behavior of .NET collections, such as the
ArrayList . You may want to look at this code and determine for yourself if this is the optimal size for
your application or if this value needs to be tweaked.

If you want to change the encoding type to another type such as Encoding.Unicode , which takes up
twice as many bytes per character as UTF7, you will need to fix up the starting position and lengths
for your byte array. The following code shows the changes needed to the ConvertBlocksOfData
method in order for it to work with the Unicode encoding:

 public static void ConvertBlocksOfData()
 {
 // Create encoder.
 Encoding encoding = Encoding.Unicode;
 Encoder encoder = encoding.GetEncoder();

 // Set up static size byte array.
 // In your code you may want to increase this size
 // to suit your application's needs.
 byte[] outputBytes = new byte[20];

 // Set up loop to keep adding to buffer until it's full
 // or the inputBuffer is finished.
 bool isLastBuffer = false;

 int startPos = 0;
 while (!isLastBuffer)
 {

 // Get the next block of character data.
 char[] inputBuffer = GetInputBuffer(out isLastBuffer);

 // Check to see if we will overflow the byte array.
 if (((startPos * 2) + (inputBuffer.Length * 2)) >= outputBytes.Length)
 {
 Console.WriteLine("RESIZING ARRAY");

 // Resize the array to handle the extra data.
 byte[] tempBuffer = new byte[outputBytes.Length];
 outputBytes.CopyTo(tempBuffer, 0);
 outputBytes = new byte[tempBuffer.Length * 2];

 tempBuffer.CopyTo(outputBytes, 0);
 }

 // Copy the input buffer into our byte[] buffer
 // where the last copy left off.
 int charsUsed;
 int bytesUsed;
 bool completed;
 encoder.Convert(inputBuffer, 0, inputBuffer.Length, outputBytes,
 startPos * 2,
 inputBuffer.Length * 2, isLastBuffer,
 out charsUsed,
 out bytesUsed, out completed);

 // Increment the starting position in the byte[]
 // in which to add the next input buffer.
 startPos += inputBuffer.Length;
 }

 // Display data.
 Console.WriteLine("isLastBuffer == " + isLastBuffer.ToString());
 foreach (byte b in outputBytes)
 {
 if (b > 0)
 Console.Write(b.ToString() + " -- ");
 }
 Console.WriteLine();
 }

The highlighted lines indicate the changes that are needed. These changes simply take into account
the larger size of the Unicode-encoded characters that will be placed in the outputBytes buffer.

See Also

See the "Encoder.Convert Method" topic in the MSDN documentation.

Chapter 3. Classes and Structures

Introduction

Structures, like any other value type, implicitly inherit from System.ValueType. At first glance, a
structure is similar to a class but is actually very different. Knowing when to use a structure over a
class will help tremendously when designing an application. Using a structure incorrectly can result in
inefficient and hard-to-modify code.

Structures have two performance advantages over reference types. First, if a structure is allocated
on the stack (i.e., it is not contained within a reference type), access to the structure and its data is
somewhat faster than access to a reference type on the heap. Reference type objects must follow
their reference onto the heap in order to get at their data. However, this performance advantage
pales in comparison to the second performance advantage of structures: namely, that cleaning up
the memory allocated to a structure on the stack requires a simple change of the address to which
the stack pointer points, which is done at the return of a method call. This call is extremely fast
compared to allowing the garbage collector to automatically clean up reference types for you in the
managed heap; however, the cost of the garbage collector is deferred so that it's not immediately
noticeable.

The performance of structures falls short in comparison to that of classes when they are passed by
value to other methods. Because they reside on the stack, a structure and its data have to be copied
to a new local variable (the method's parameter that is used to receive the structure) when it is
passed by value to a method. This copying takes more time than passing a method a single reference
to an objectunless the structure is the same size as or smaller than the machine's pointer size; thus,
a structure with a size of 32 bits is just as cheap to pass as a reference (which happens to be the size
of a pointer) on a 32-bit machine. Keep this in mind when choosing between a class and a structure.
While creating, accessing, and destroying a class's object may take longer, it also might not balance
the performance hit when a structure is passed by value a large number of times to one or more
methods. Keeping the size of the structure small minimizes the performance hit of passing it around
by value.

Structures can also cause degradation in performance when they are passed to methods that require
an object, such as any of the nongeneric collection types in the FCL. Passing a structure (or any
simple type, for that matter) into a method requiring an object causes the structure to be boxed.
Boxing is wrapping a value type in an object. This operation is time-consuming and may degrade
performance.

As concerns the object-oriented capabilities of classes and structures, classes have far more
flexibility. A structure cannot contain a user-defined default constructor, since the C# compiler
automatically provides a default constructor that initializes all the fields in the structure to their
default values. This is also why no field initializers can be added to a structure. If you need to
override the default field values, a structure might not be the way to go. However, a parameterized
constructor that initializes the structure's fields to any value that is necessary can be created.

Structures, like classes, can inherit from interfaces, but unlike classes, structures cannot inherit from
a class or a structure. This limitation precludes creating structure hierarchies, as you can do with
classes. Polymorphism as implemented through an abstract base class is also prohibited when using a
structure, since a structure cannot inherit from another class.

Use a class if:

Its identity is important. Structures get copied implicitly when being passed by value into a
method.

It will have a large memory footprint.

Its fields need initializers.

You need to inherit from a base class.

You need polymorphic behavior. That is, you need to implement an abstract base class from
which you will create several similar classes that inherit from this abstract base class. (Note that
polymorphism can be implemented via interfaces as well, but it is usually not a good idea to
place an interface on a value type, since a boxing operation will occur if the structure is
converted to the interface type.) For more on polymorphism through interfaces, see Recipe
3.16.

Use a structure if:

It will act like a primitive type (int, long, byte, etc.).

It must have a small memory footprint.

You are calling a P/Invoke method that requires a structure to be passed in by value. Platform
Invoke, or P/Invoke for short, allows managed code to call out to an unmanaged method
exposed from within a DLL. Many times an unmanaged DLL method requires a structure to be
passed in to it; using a structure is an efficient method of doing this and is the only way if the
structure is being passed by value.

You need to avoid the overhead of garbage collection.

Its fields need to be initialized only to their default values. This value would be zero for numeric
types, false for Boolean types, and null for reference types.

You do not need to inherit from a base class (other than ValueType, from which all structs
inherit).

You do not need polymorphic behavior.

Recipe 3.1. Creating Union-Type Structures

Problem

You need to create a data type that behaves like a union type in C++. A union type is useful mainly
in interop scenarios in which the unmanaged code accepts and/or returns a union type; we suggest
that you do not use it in other situations.

Solution

Use a structure and mark it with the StructLayout attribute (specifying the LayoutKind.Explicit
layout kind in the constructor). In addition, mark each field in the structure with the FieldOffset
attribute. The following structure defines a union in which a single signed numeric value can be
stored:

 using System.Runtime.InteropServices;
 [StructLayoutAttribute(LayoutKind.Explicit)]
 struct SignedNumber
 {
 [FieldOffsetAttribute(0)]
 public sbyte Num1;
 [FieldOffsetAttribute(0)]
 public short Num2;
 [FieldOffsetAttribute(0)]
 public int Num3;
 [FieldOffsetAttribute(0)]
 public long Num4;
 [FieldOffsetAttribute(0)]
 public float Num5;
 [FieldOffsetAttribute(0)]
 public double Num6;
 [FieldOffsetAttribute(0)]
 public decimal Num7;
 }

The next structure is similar to the SignedNumber structure, except that it can contain a String type in
addition to the signed numeric value:

 [StructLayoutAttribute(LayoutKind.Explicit)]

 struct SignedNumberWithText
 {
 [FieldOffsetAttribute(0)]
 public sbyte Num1;
 [FieldOffsetAttribute(0)]
 public short Num2;
 [FieldOffsetAttribute(0)]
 public int Num3;
 [FieldOffsetAttribute(0)]
 public long Num4;
 [FieldOffsetAttribute(0)]
 public float Num5;
 [FieldOffsetAttribute(0)]
 public double Num6;
 [FieldOffsetAttribute(0)]
 public decimal Num7;
 [FieldOffsetAttribute(16)]
 public string Text1;
 }

Discussion

Unions are structures usually found in C++ code; however, there is a way to duplicate that type of
structure using a C# structure data type. A union is a structure that accepts more than one type at a
specific location in memory for that structure. For example, the SignedNumber structure is a union-
type structure built using a C# structure. This structure accepts any type of signed numeric type
(sbyte, int, long, etc.), but it accepts this numeric type at only one location, or offset, within the
structure.

Since StructLayoutAttribute can be applied to both structures and classes, a
class can also be used when creating a union data type.

Notice the FieldOffsetAttribute has the value zero passed to its constructor. This denotes that this
field will be at the zeroth offset (this is a byte offset) within this structure. This attribute is used in
tandem with the StructLayoutAttribute to manually enforce where the fields in this structure will
start (that is, the offset from the beginning of this structure in memory where each field will start).
The FieldOffsetAttribute can be used only with a StructLayoutAttribute set to
LayoutKind.Explicit. In addition, it cannot be used on static members within this structure.

Unions can become problematic, since several types are essentially laid on top of one another. The
biggest problem is extracting the correct data type from a union structure. Consider what happens if
you choose to store the long numeric value long. MaxValue in the SignedNumber structure. Later, you
might accidentally attempt to extract a byte data type value from this same structure. In doing so,
you will get back only the first byte of the long value.

Another problem is starting fields at the correct offset. The SignedNumberWithText union overlays

numerous signed numeric data types at the zeroth offset. The last field in this structure is laid out at
the 16th byte offset from the beginning of this structure in memory. If you accidentally overlay the
string field Text1 on top of any of the other signed numeric data types, you will get an exception at
runtime. The basic rule is that you are allowed to overlay a value type on another value type, but you
cannot overlay a reference type over a value type. If the Text1 field is marked with the following
attribute:

 [FieldOffsetAttribute(14)]

this exception is thrown at runtime (note that the compiler does not catch this problem):

 An unhandled exception of type 'System.TypeLoadException' occurred in
 Chapter_Code.exe.

 Additional information: Could not load type Chapter_Code.SignedNumberWithText from
 assembly 14 because it contains an object field at offset 14 that is incorrectly
 aligned or overlapped by a non-object field.

It is imperative to get the offsets correct when using complex unions in C#.

See Also

See the "StructLayoutAttribute Class" topic in the MSDN documentation.

Recipe 3.2. Allowing a Type to Represent Itself as a String

Problem

Your class or structure needs to control how its information is displayed when its ToString method is
called. In addition, you need to apply different formats to this information. For example, when
creating a new data type, such as a Line class, you might want to allow objects of this type to be able
to display themselves in a textual format. In the case of a Line object, it might display itself as (x1,
y1)(x2, y2) .

Solution

Override and/or implement the IFormattable.ToString method to display numeric information, such
as for a Line structure:

 using System;
 using System.Text;
 using System.Text.RegularExpressions;

 public struct Line : IFormattable
 {
 public Line(int startX, int startY, int endX, int endY)
 {
 x1 = startX;
 x2 = endX;
 y1 = startY;
 y2 = endY;
 }
 public int x1;
 public int y1;
 public int x2;
 public int y2;

 public double GetDirectionInRadians()
 {
 int xSide = x2 - x1;
 int ySide = y2 - y1;
 if (xSide == 0) // Prevent divide-by-zero.
 return (0);
 else
 return (Math.Atan (ySide / xSide));
 }
 public double GetMagnitude()
 {

 int xSide = x2 - x1;
 int ySide = y2 - y1;
 return (Math.Sqrt((xSide * xSide) + (ySide * ySide)));
 }

 // This overrides the Object.ToString method.
 // This override is not required for this recipe
 // and is included for completeness.
 public override string ToString()
 {
 return (String.Format("({0},{1}) ({2},{3})", x1, y1, x2, y2));
 }
 public string ToString(string format)
 {
 return (this.ToString(format, null));
 }
 public string ToString(IFormatProvider formatProvider)
 {
 return (this.ToString(null, formatProvider));
 }
 public string ToString(string format, IFormatProvider formatProvider)
 {
 StringBuilder compositeStr = new StringBuilder("");
 if ((format != null) && (format.ToUpper().Equals("V")))
 {
 double direction = this.GetDirectionInRadians();
 double magnitude = this.GetMagnitude();
 string retStringD = direction.ToString("G5", formatProvider);
 string retStringM = magnitude.ToString("G5", formatProvider);
 compositeStr.Append("magnitude = ").Append(retStringM).Append
 ("\tDirection = ").Append(retStringD);
 }
 else
 {
 string retStringX1 = this.x1.ToString(format, formatProvider);
 string retStringY1 = this.y1.ToString(format, formatProvider);
 string retStringX2 = this.x2.ToString(format, formatProvider);
 string retStringY2 = this.y2.ToString(format, formatProvider);
 compositeStr.Append("(").Append(retStringX1).Append(",").Append
 (retStringY1).Append(")(").Append(retStringX2).Append
 (",").Append(retStringY2).Append(")");
 }
 return (compositeStr.ToString());
 }
 }

Discussion

The ToString method provides a convenient way to display the current contents, or state, of a

structure (this recipe works equally well for reference types). The solution section of this recipe shows
the various implementations of ToString for both numeric and textual data. The Line class contains
two points in space that form the endpoints of a line. This line data is then fed into the ToString
methods for that class to produce formatted output.

The following code exercises the ToString methods of the Line class:

 using System.Globalization;

 public static void TestLineToString()
 {
 Line V1 = new Line(0, 0, 40, 123);
 Line V2 = new Line(0, -2, 1, 11);
 Line V3 = new Line(0, 1, 0, 1);

 Console.WriteLine("\r\nTest Default ToString method");
 Console.WriteLine("V1 = " + V1);
 Console.WriteLine("V2 = " + V2);
 Console.WriteLine("V1.ToString() = {0:V}", V1.ToString());
 Console.WriteLine("V2.ToString() = {0:V}", V2.ToString());

 Console.WriteLine("\r\nTest overloaded ToString(format) method");
 Console.WriteLine("V1.ToString(\"D\") = {0:D}", V1);
 Console.WriteLine("V1.ToString(\"D5\") = {0:D5}", V1);
 Console.WriteLine("V2.ToString(\"F\") = {0:F}", V2);
 Console.WriteLine("V1.ToString(\"N\") = {0:N}", V1);
 Console.WriteLine("V2.ToString(\"n\") = {0:n}", V2);
 Console.WriteLine("V1.ToString(\"E\") = {0:E}", V1);
 Console.WriteLine("V2.ToString(\"X\") = {0:X}", V2);

 Console.WriteLine("\r\nTest overloaded ToString(formatProvider) method");
 NumberFormatInfo NullFormatter = null;
 NumberFormatInfo Formatter = new NumberFormatInfo();
 Formatter.NegativeSign = "!";
 Formatter.PositiveSign = "+";
 Console.WriteLine("V2.ToString(Formatter) = " + V2.ToString(Formatter));
 Console.WriteLine("V2.ToString(Formatter) = " + V2.ToString(Formatter));
 Console.WriteLine("V2.ToString(null) = " + V2.ToString(NullFormatter));
 Console.WriteLine("V2.ToString(null) = " + V2.ToString(NullFormatter));
 Console.WriteLine("V2.ToString(new CultureInfo(\"fr-BE\")) = "
 + V2.ToString(new CultureInfo("fr-BE"))); //French - Belgium
 Console.WriteLine("V2.ToString(new CultureInfo(\"fr-BE\")) = "
 + V2.ToString(new CultureInfo("fr-BE"))); //French - Belgium

 Console.WriteLine
 ("\r\nTest overloaded ToString(format, formatProvider) method");
 Console.WriteLine("V2.ToString(\"D\", Formatter) = " + V2.ToString("D",
 Formatter));
 Console.WriteLine("V2.ToString(\"F\", Formatter) = " + V2.ToString("F",
 Formatter));
 Console.WriteLine("V2.ToString(\"D\", null) = "

 + V2.ToString("D", null));
 Console.WriteLine("V2.ToString(\"F\", null) = " + V2.ToString("F", null));
 Console.WriteLine("V2.ToString(\"D\", new CultureInfo(\"fr-BE\")) = "
 + V2.ToString("D", new CultureInfo("fr-BE"))); //French - Belgium
 Console.WriteLine("V2.ToString(\"F\", new CultureInfo(\"fr-BE\")) = "
 + V2.ToString("F", new CultureInfo("fr-BE"))); //French - Belgium
 Console.WriteLine("\r\nTest overloaded ToString(\"V\", formatProvider) method");
 Console.WriteLine("V2.ToString(\"V\", Formatter) = " + V2.ToString("V",
 Formatter));
 Console.WriteLine("V2.ToString(\"V\", null) = " + V2.ToString("V", null));
 }

This code displays the following results:

 Test Default ToString method
 V1 = (0,0) (40,123)
 V2 = (0,-2) (1,11)
 V1.ToString() = (0,0) (40,123)
 V2.ToString() = (0,-2) (1,11)

 Test overloaded ToString(format) method
 V1.ToString("D") = (0,0)(40,123)
 V1.ToString("D5") = (00000,00000)(00040,00123)
 V2.ToString("F") = (0.00,-2.00)(1.00,11.00)
 V1.ToString("N") = (0.00,0.00)(40.00,123.00)
 V2.ToString("n") = (0.00,-2.00)(1.00,11.00)
 V1.ToString("E") = (0.000000E+000,0.000000E+000)(4.000000E+001,1.230000E+002)
 V2.ToString("X") = (0,FFFFFFFE)(1,B)

 Test overloaded ToString(formatProvider) method
 V2.ToString(Formatter) = (0,!2)(1,11)
 V2.ToString(Formatter) = (0,!2)(1,11)
 V2.ToString(null) = (0,-2)(1,11)
 V2.ToString(null) = (0,-2)(1,11)
 V2.ToString(new CultureInfo("fr-BE")) = (0,-2)(1,11)
 V2.ToString(new CultureInfo("fr-BE")) = (0,-2)(1,11)

 Test overloaded ToString(format, formatProvider) method
 V2.ToString("D", Formatter) = (0,!2)(1,11)
 V2.ToString("F", Formatter) = (0.00,!2.00)(1.00,11.00)
 V2.ToString("D", null) = (0,-2)(1,11)
 V2.ToString("F", null) = (0.00,-2.00)(1.00,11.00)
 V2.ToString("D", new CultureInfo("fr-BE")) = (0,-2)(1,11)
 V2.ToString("F", new CultureInfo("fr-BE")) = (0,00,-2,00)(1,00,11,00)

 Test overloaded ToString("V", formatProvider) method
 V2.ToString("V", Formatter) = magnitude = 13.038 direction = 1.494
 V2.ToString("V", null) = magnitude = 13.038 direction = 1.494

This method prints out the two x and y coordinates that make up the start and end points of a line for
the Line class. An example output of the Line.ToString() method is:

 (0,0) (40,123)

This output could also be displayed as the magnitude and direction of this line. This result is
demonstrated in the overloaded ToString method that accepts both a format string and an
IFormatProvider .

The next overloaded ToString method takes a single argument, format , which is a String containing

the formatting information of the type. This method calls the last overloaded ToString method and
passes the format information as the first parameter and a null as the second parameter. The
following ToString method operates similarly to the previous ToString method, except that it accepts
an IFormatProvider data type as its only parameter. The format parameter of the last ToString
method is set to null when called by this method.

The final ToString method is where all the real work takes place. This method accepts two
parameters, a String (format) containing formatting information and an IFormatProvider
(formatProvider) containing even more specific formatting information. The format string makes use
of predefined formats such as "D", "d", "F", "f", "G", "g", "X" , and "x" , to name a few. (See
Recipe 2.16 for more information on the formatting character codes.) These formats specify whether
the information will be displayed as decimal ("D" or "d"), general ("G" or "g"), hexadecimal ("X" or
"x"), or one of the other types. As a note, calling ToString with no parameters always sets the
format type to general. In addition, this method also takes a special format character "V" or "v" . This
character formatting code is not one of the predefined formatting codes; instead, it is one that we
added to provide special handling of a Line object's output in vector format. This code allows the Line
type to be displayed as a magnitude and a direction:

 magnitude = 13.038 direction = 1.494

The second parameter accepts any data type that implements the IFormatProvider interface. Three
data types in the FCLCultureInfo, DateTimeFormatInfo , and NumberFormatInfo implement this
interface. The CultureInfo class contains formatting information specific to the various supported
cultures that exist around the world. The DateTimeFormatInfo class contains formatting information
specific to date and time values; similarly, the NumberFormatInfo class contains formatting information
specific to numbers.

This ToString method sets up a variable, compositeStr , which will contain the final formatted value
of the Line type. Next, the format parameter is checked for null . Remember, the previous ToString
method that accepts the IFormatProvider parameter will call this form of the ToString method and
pass in a format value of null . So you must be able to handle a null value gracefully at this point. If
the format parameter passed in to the Line type is not null and is equal to the character "V" , you
are able to provide a string to display this line as a magnitude and a direction. The direction and
magnitude values are obtained for this object and are displayed in a General format with five

significant digits of precision. If, on the other hand, any other type of formatting character code was
passed inincluding null each of the individual coordinates are formatted using the ToString method of
the Int32 structure. These coordinates are concatenated into a string and returned to the caller to be
displayed.

The method:

 public string ToString(string format, IFormatProvider formatProvider)

must be implemented, since the structure implements the IFormattable interface. The IFormattable
interface provides a consistent interface for this ToString method:

 public interface IFormattable
 {
 string ToString(string format, IFormatProvider formatProvider);
 }

For the Line structure, the IFormattable.ToString method passes its parameters to the Int32
structure's ToString method with the same method signature, which provides a more uniform
formatting capability for Line values.

Using the IFormattable interface forces you to implement the
IFormattable.ToString method to more effectively display your type's value(s).
However, you do not have to implement it, as you can see for yourself by
removing this interface from the Line structure's declaration. For performance's
sake, it is best to not implement this interface on structures, due to the cost of
boxing the structure; however, this needs to be weighed with the design of the
type. Implementing this interface on a class does not incur a performance
penalty.

See Also

See Recipe 2.16; see the "IFormatProvider Interface" topic in the MSDN documentation.

Recipe 3.3. Converting a String Representation of an
Object into an Actual Object

Problem

You need a way of accepting a string containing a textual representation of an object and converting it
to an object usable by your application. For example, if you were provided with the string
representation of a line (x1, y1)(x2, y2) , you would want to convert it into a Line structure.

Solution

Implement a Parse method on your Line structure:

 using System;
 using System.Text;
 using System.Text.RegularExpressions;
 public struct Line : IFormattable
 {
 public Line(int startX, int startY, int endX, int endY)
 {
 x1 = startX;
 x2 = endX;
 y1 = startY;
 y2 = endY;
 }
 public int x1;
 public int y1;
 public int x2;
 public int y2;
 public override bool Equals(object obj)
 {
 bool isEqual = false;
 if (obj == null || (this.GetType() != obj.GetType()))
 {
 isEqual = false;
 }
 else
 {
 Line theLine = (Line)obj;
 isEqual = (this.x1 == theLine.x1) &&
 (this.y1 == theLine.y1) &&
 (this.x2 == theLine.x2) &&
 (this.y2 == theLine.y2);

 }
 return (isEqual);
 }
 public bool Equals(Line lineObj)
 {
 bool isEqual = (this.x1 == lineObj.x1) &&
 (this.y1 == lineObj.y1) &&
 (this.x2 == lineObj.x2) &&
 (this.y2 == lineObj.y2);
 return (isEqual);
 }
 public override int GetHashCode()
 {
 return ((x1 + x2) ^ (y1 + y2));
 }
 public static Line Parse(string stringLine)
 {
 if (stringLine == null)
 {
 throw (new ArgumentNullException(
 "stringLine",
 "A null cannot be passed into the Parse method."));
 }
 // Take this string (x1,y1)(x2,y2) and convert it to a Line object.
 int X1 = 0;
 int Y1 = 0;
 int X2 = 0;
 int Y2 = 0;
 MatchCollection MC = Regex.Matches(stringLine,
 @"\s*\(\s*(?<x1>\d+)\s*\,\s*(?<y1>\d+)\s*\)\s*\(\s*(?<x2>" +
 @"\d+)\s*\,\s*(?<y2>\d+)\s*\)");
 if (MC.Count == 1)
 {
 Match M = MC[0];
 X1 = int.Parse(M.Groups["x1"].Value);
 Y1 = int.Parse(M.Groups["y1"].Value);
 X2 = int.Parse(M.Groups["x2"].Value);
 Y2 = int.Parse(M.Groups["y2"].Value);
 }
 else
 {
 throw (new ArgumentException("The value " + stringLine +
 " is not a well formed Line value."));
 }
 return (new Line(X1, Y1, X2, Y2));
 }
 public double GetDirectionInRadians()
 {
 int xSide = x2 - x1;
 int ySide = y2 - y1;
 if (xSide == 0) // Prevent divide-by-zero.
 return (0);

 else
 return (Math.Atan (ySide / xSide));
 }
 public double GetMagnitude()
 {
 int xSide = x2 - x1;
 int ySide = y2 - y1;
 return (Math.Sqrt(Math.Sqrt((xSide * xSide) + (ySide * ySide))));
 }
 public override string ToString()
 {
 return (String.Format("({0},{1}) ({2},{3})", x1, y1, x2, y2));
 }
 public string ToString(string format)
 {
 return (this.ToString(format, null));
 }
 public string ToString(IFormatProvider formatProvider)
 {
 return (this.ToString(null, formatProvider));
 }
 public string ToString(string format, IFormatProvider formatProvider)
 {
 StringBuilder compositeStr = new StringBuilder("");
 if ((format != null) && (format.ToUpper().Equals("V")))
 {
 double direction = this.GetDirectionInRadians();
 double magnitude = this.GetMagnitude();
 string retStringD = direction.ToString("G5", formatProvider);
 string retStringM = magnitude.ToString("G5", formatProvider);
 compositeStr.Append(
 "magnitude = ").Append(retStringM).Append(
 "\tDirection = ").Append(retStringD);
 }
 else
 {
 string retStringX1 = this.x1.ToString(format, formatProvider);
 string retStringY1 = this.y1.ToString(format, formatProvider);
 string retStringX2 = this.x2.ToString(format, formatProvider);
 string retStringY2 = this.y2.ToString(format, formatProvider);
 compositeStr.Append("(").Append(retStringX1).Append(",").Append(
 retStringY1).Append(")(").
 Append(retStringX2).Append(",").Append(
 retStringY2).Append(")");
 }
 return (compositeStr.ToString());
 }
 }

Discussion

The Parse method is used to reconstruct one data typein this case, a String into the data type
containing that Parse method. For example, if the string "123" were passed into the int.Parse
method, the numeric data type 123 would be extracted and then returned. Many other types in the FCL
use a Parse method to reconstruct an object of its own type from another data type, such as a string .
Note that you are not limited as far as the type and number of parameters that can be passed into this
method. As an example, see how the DateTime.Parse and DateTime. ParseExact methods are defined
and overloaded.

The parsing of a string containing the start and end coordinates of a line is a little more difficult. To
make things easier, use a regular expression to extract the beginning and ending x and y coordinates.

The regular expression parses out the individual coordinate values provided by the stringLine string
parameter. Each found coordinate is passed on to the static int. Parse method on the int structure.
This final step obtains the final parsed integer values from the matches produced by the regular
expression. If the regular expression does not extract the required coordinates, you can assume that
the stringLine parameter does not contain a well-formed string that can be converted to a Line
object.

The following code:

 Console.WriteLine("Line.Parse(\"(12,2)(0,45)\") = " + Line.Parse("(12,2)(0,45)"));
 Console.WriteLine("Line.Parse(\"(0,0)(0,0)\") = " + Line.Parse("(0,0)(0,0)"));

produces this output:

 Line.Parse("(12,2)(0,45)") = (12,2) (0,45)
 Line.Parse("(0,0)(0,0)") = (0,0) (0,0)

When implementing a Parse method on your own types, you need to consider
the situation in which invalid data is passed to this method. When this happens,
an ArgumentException should be thrown. When a null is passed in, you should
instead throw an ArgumentNullException .

See Also

See the "Parse Method" topic and the parse sample under the ".NET SamplesHow To: Base Data
Types" topic in the MSDN documentation.

Recipe 3.4. Implementing Polymorphism with Abstract
Base Classes

Problem

You need to build several classes that share many common traits. These classes may share common
properties, methods, events, delegates, and even indexers; however, the implementation of these
may be different for each class. These classes should not only share common code but also be
polymorphic in nature. That is to say, code that uses an object of the base class should be able to use
an object of any of these derived classes in the same manner.

Solution

Use an abstract base class to create polymorphic code. To demonstrate the creation and use of an
abstract base class, here is an example that makes use of three classes, each defining a media type:
magnetic, optical, and punch card. An abstract base class, Media, is created to define what each
derived class will contain, as shown in Example 3-1.

Example 3-1. Implementing an abstract base class (Media)

public abstract class Media
{
 public abstract void Init();
 public abstract void WriteTo(string data);
 public abstract string ReadFrom();
 public abstract void Close();
 private IntPtr mediaHandle = IntPtr.Zero;
 public IntPtr Handle
 {
 get {return(mediaHandle);}
 }
}

Next, the three specialized media type classes Magnetic, Optical, and PunchCard, which inherit from
Media, are defined to override each of the abstract members, as shown in Example 3-2.

Example 3-2. Implementing derived classes (Magnetic, Optical, and
PunchCard)

public class Magnetic : Media
{
 public override void Init()
 {
 Console.WriteLine("Magnetic Init");
 }
 public override void WriteTo(string data)
 {
 Console.WriteLine("Magnetic Write");
 }
 public override string ReadFrom()
 {
 Console.WriteLine("Magnetic Read");
 string data = "";
 return (data);
 }
 public override void Close()
 {
 Console.WriteLine("Magnetic Close");
 }
}
public class Optical : Media
{
 public override void Init()
 {
 Console.WriteLine("Optical Init");
 }
 public override void WriteTo(string data)
 {
 Console.WriteLine("Optical Write");
 }
 public override string ReadFrom()
 {
 Console.WriteLine("Optical Read");
 string data = "";
 return (data);
 }
 public override void Close()
 {
 Console.WriteLine("Optical Close");
 }
}
public class PunchCard : Media
{
 public override void Init()
 {
 Console.WriteLine("PunchCard Init");

 }
 public override void WriteTo(string data)
 {
 Console.WriteLine("PunchCard WriteTo");
 }
 public override string ReadFrom()
 {
 Console.WriteLine("PunchCard ReadFrom");
 string data = "";
 return (data);
 }
 public override void Close()
 {
 Console.WriteLine("PunchCard Close");
 }
}

In Example 3-3, the methods TestMediaABC and UseMedia show how any of the three media types can
be used polymorphically from within the UseMedia method.

Example 3-3. Using derived classes polymorphically

public static void TestMediaABC()
{
 Media x = new Magnetic();
 UseMedia(x);
 Console.WriteLine();
 x = new Optical();
 UseMedia(x);
 Console.WriteLine();
 x = new PunchCard();
 UseMedia(x);
}
private static void UseMedia(Media media)
{
 media.Init();
 media.WriteTo("text");
 media.ReadFrom();
 Console.WriteLine(media.Handle);
 media.Close();
 Console.WriteLine(media.ToString());
}

The output of these methods is shown here:

 Magnetic Init
 Magnetic Write
 Magnetic Read
 0
 Magnetic Close
 Magnetic
 Optical Init
 Optical Write
 Optical Read
 0
 Optical Close
 Optical
 PunchCard Init
 PunchCard Write
 PunchCard Read
 0
 PunchCard Close
 PunchCard

Discussion

Polymorphism through an abstract base class is a powerful tool. With this tool, you are able to create
a method (UseMedia in this solution) that accepts a parameter with a specific type that is known only
at runtime. Since the use of this parameter is similar for all objects that can be passed in to this
method, you do not have to worry about the specific class that is passed in; you need to know only
how the abstract base class is defined. It is through this abstract base class definition that you know
how to use the specific type.

There are several things to keep in mind when using an abstract base class:

Neither this class nor its abstract members can be declared as sealed; this would defeat
polymorphism.

The abstract class cannot be instantiated using the new operator, but a variable can be declared
as belonging to an abstract base class type.

All abstract members must be overridden in a derived class unless the derived class is also
abstract.

It is implied that an abstract method is also defined as virtual.

Only methods, properties, indexers, and events may be declared as abstract.

Abstract methods, properties, and indexers may not be declared as static or virtual.

If an abstract base class implements an interface, it must provide either an implementation for
the interface members or an abstract definition of the interface members. A combination of the
two may be applied as well.

An abstract base class can contain abstract and nonabstract members. It is not required to
contain any abstract members, but this omission may confuse those who read this code.

An abstract class may implement any number of interfaces and may also inherit from a single
class. As a note, abstract members may override virtual members in the nonabstract base
class.

A derived class can override abstract properties and must include at least one accessor method
(i.e., get or set). A property in a derived class that overrides an abstract property
implementing only a get or a set accessor must override that specific get or set accessor. If the
abstract property implements both a get and a set accessor, the overriding class property may
override one or both accessors.

A structure cannot implement polymorphism through an abstract base class/ structure. Instead,
a structure should consider implementing polymorphism through interfaces (see Recipe 3.16).

It is possible to use interfaces to implement polymorphism; this is discussed at length in Recipe 3.16.
There are two advantages to using an abstract base class over an interface:

Abstract base classes allow greater flexibility in versioning. An abstract base class can add a
nonabstract member without breaking existing derived classes; an interface cannot. You can
also add new abstract members to the class without breaking derived classes, as long as you
provide default implementations for them.

An abstract base class can contain both abstract members and nonabstract members. An
interface may contain only definitions of members with no implementation.

You should also consider using an abstract base class over an interface when a lot of disparate
members need to be overridden in the derived classes. For example, if you are implementing a set of
members that control searching or sorting of items, you should initially consider interfaces, since this
is a focused set of members that may be implemented over a wide range of unrelated classes. If you
are implementing a set of members that determines the base functionality for a complete type, such
as the Media type, you will probably want to use an abstract base class. See Recipe 3.16 for the
advantages of using interface polymorphism over abstract base classes.

There may be some advantages in fully implementing a base class, so that it becomes a concrete
class rather than an abstract one. This is especially the case when you are adding functionality to an
existing base class. Your implementations do not need to be elegant; they can do nothing at all, or
they can throw a NotImplementedException. The most important advantage implementing a base
class as a concrete class is that derived classes do not have to override all, or for that matter any,
base class members. (Of course, it makes no sense for derived classes not to implement at least one
member.) With abstract base classes, you may have a number of derived classes that provide do-
nothing implementations. By moving a do-nothing implementation into the base class, you save
writers of derived classes from having to implement them. Notice that the abstract Media class in this
recipe could be written as a concrete class (i.e., remove the abstract keyword and implementations
of its abstract methods). This will allow derived classes to ignore any members they aren't interested
in and focus on only the ones they need to override.

This, of course, is also the disadvantage of concrete base classes; derived classes can ignore
members that they should pay attention to. The compiler will not allow a derived class to ignore any
members declared as abstract.

Example 3-4 shows the abstract Media class from earlier in this recipe (see Example 3-1) rewritten as
a concrete class. All that is necessary is to remove the abstract keyword and add implementations to
all abstract methods. This allows you to create objects from the Media class. If you do not wish for
objects to be created from your base class (Media), you can declare it as abstract, even though all
its members are fully implemented.

In this case, Init and Close are left as do-nothing methods. WriteTo and ReadFrom tHRow a
NotImplementedException. This, in effect, requires derived classes to implement them, but it moves
this requirement from compile time to runtime.

Example 3-4. Implementing a concrete base class (Media)

public class Media
{
 public void Init()
 {
 }
 public void WriteTo(string data)
 {
 throw new NotImplementedException();
 }
 public string ReadFrom()
 {
 throw new NotImplementedException();
 }
 public void Close()
 {
 }
 private IntPtr mediaHandle = IntPtr.Zero;
 public IntPtr Handle
 {
 get {return(mediaHandle);}
 }
}

It is not necessary to change any of the derived classes or the driver methods (TestMediaABC and
UseMedia).

See Also

See Recipe 3.16; see section 10.1.1.1, "Abstract Classes," in the C# Language Specification.

Recipe 3.5. Making a Type Sortable

Problem

You have a data type that will be stored as elements in an array or an ArrayList. You would like to
use the Array.Sort and ArrayList.Sort methods to allow custom sorting of your data types in the
array. In addition, you may need to use this type in a SortedList collection.

Solution

Implement the IComparable interface. The Square class shown in Example 3-5 implements this
interface in such a way that the Array, ArrayList, and SortedList objects can sort and search an
array or collection of these Square objects.

Example 3-5. Making a type sortable by implementing IComparable

public class Square : IComparable
{
 public Square(){}
 public Square(int height, int width)
 {
 this.height = height;
 this.width = width;
 }
 private int height;
 private int width;
 public int Height
 {
 get{ return (height); }
 set{ height = value; }
 }
 public int Width
 {
 get{ return (width); }
 set{ width = value; }
 }

 public int CompareTo(object obj)
 {
 if (this.GetType() != obj.GetType())

 {
 throw (new ArgumentException(
 "Both objects being compared must be of type Square."));
 }
 else
 {
 Square square2 = (Square)obj;
 long area1 = this.Height * this.Width;
 long area2 = square2.Height * square2.Width;
 if (area1 == area2)
 {
 return (0);
 }
 else if (area1 > area2)
 {
 return (1);
 }
 else
 {
 return (-1);
 }
 }
 }
 public override string ToString()
 {
 return ("Height:" + height + " Width:" + width);
 }
}

Discussion

By implementing the IComparable interface on your class (or structure), you can take advantage of
the sorting routines of the Array, ArrayList, List<T>, and SortedList classes. The algorithms for
sorting are built into these classes; all you have to do is tell them how to sort your classes via the
code you implement in the IComparable.CompareTo method.

When an array of Square objects is passed to the Array.Sort static method, the array is sorted using
the IComparable interface of the Square objects. The same goes for the ArrayList.Sort method. The
Add method of the SortedList class uses this interface to sort the objects as they are being added to
the SortedList.

The Array.Sort and ArrayList.Sort methods use the QuickSort algorithm to
sort an array's elements.

IComparer is designed to solve the problem of allowing objects to be sorted based on different criteria

in different contexts. This interface also allows you to sort types that you did not write. If you also
wanted to sort the Square objects by height, you could create a new class called CompareHeight,
shown in Example 3-6, which would also implement the IComparer interface.

Example 3-6. Making a type sortable by implementing IComparer

public class CompareHeight : IComparer
{

 public int Compare(object obj1, object obj2)
 {
 if (!(obj1 is Square) || !(obj2 is Square))
 {
 throw (new ArgumentException(
 "Both parameters must be of type Square."));
 }
 else
 {
 Square square1 = (Square)obj1;
 Square square2 = (Square)obj2;
 if (square1.Height == square2.Height)
 {
 return (0);
 }
 else if (square1.Height > square2.Height)
 {
 return (1);
 }
 else
 {
 return (-1);
 }
 }
 }
}

This class is then passed in to the IComparer parameter of the Sort routine. Now you can specify
different ways to sort your Square objects.

For best performance, keep the CompareTo method short and efficient, since it
will be called multiple times by the Sort methods. For example, in sorting an
array with four items, the Compare method is called 10 times.

The TestSort method shown in Example 3-7 demonstrates how to use the Square and CompareHeight

classes with the Array, ArrayList, and SortedList classes.

Example 3-7. TestSort method

public static void TestSort()
{
 Square[] arrayOfSquares = new Square[4] {new Square(1,3),
 new Square(4,3),
 new Square(2,1),
 new Square(6,1)};
 ArrayList arrayListOfSquares = new ArrayList();
 arrayListOfSquares.Add(new Square(1,3));
 arrayListOfSquares.Add(new Square(4,3));
 arrayListOfSquares.Add(new Square(2,1));
 arrayListOfSquares.Add(new Square(6,1));
 IComparer HeightCompare = new CompareHeight();
 // Test an ARRAY.
 Console.WriteLine("ARRAY");
 Console.WriteLine("Original array");
 foreach (Square s in arrayOfSquares)
 {
 Console.WriteLine(s.ToString());
 }
 Console.WriteLine();
 Console.WriteLine("Sorted array using IComparer=HeightCompare");
 Array.Sort(arrayOfSquares, HeightCompare);
 foreach (Square s in arrayOfSquares)
 {
 Console.WriteLine(s.ToString());
 }
 Console.WriteLine();
 Console.WriteLine("Sorted array using IComparable");
 Array.Sort(arrayOfSquares);
 foreach (Square s in arrayOfSquares)
 {
 Console.WriteLine(s.ToString());
 }
 // Test an ARRAYLIST.
 Console.WriteLine();
 Console.WriteLine();
 Console.WriteLine("ARRAYLIST");
 foreach (Square s in arrayListOfSquares)
 {
 Console.WriteLine(s.ToString());
 }
 Console.WriteLine();
 Console.WriteLine("Sorted ArrayList using IComparer=HeightCompare");
 arrayListOfSquares.Sort(HeightCompare);
 foreach (Square s in arrayListOfSquares)

 {
 Console.WriteLine(s.ToString());
 }
 Console.WriteLine();
 Console.WriteLine("Sorted ArrayList using IComparable");
 arrayListOfSquares.Sort();
 foreach (Square s in arrayListOfSquares)
 {
 Console.WriteLine(s.ToString());
 }
 // Test a SORTEDLIST.
 SortedList SortedListOfSquares = new SortedList();
 SortedListOfSquares.Add(0, new Square(1,3));
 SortedListOfSquares.Add(2, new Square(4,3));
 SortedListOfSquares.Add(1, new Square(2,1));
 SortedListOfSquares.Add(3, new Square(6,1));
 Console.WriteLine();
 Console.WriteLine();
 Console.WriteLine("SORTEDLIST");
 foreach (DictionaryEntry s in SortedListOfSquares)
 {
 Console.WriteLine(s.Key + " : " + ((Square)s.Value).ToString());
 }
}

This code displays the following output:

 ARRAY
 Original array
 Height:1 Width:3
 Height:4 Width:3
 Height:2 Width:1
 Height:6 Width:1
 Sorted array using IComparer=HeightCompare
 Height:1 Width:3
 Height:2 Width:1
 Height:4 Width:3
 Height:6 Width:1
 Sorted array using IComparable
 Height:2 Width:1
 Height:1 Width:3
 Height:6 Width:1
 Height:4 Width:3
 ARRAYLIST
 Height:1 Width:3
 Height:4 Width:3
 Height:2 Width:1
 Height:6 Width:1

 Sorted ArrayList using IComparer=HeightCompare
 Height:1 Width:3
 Height:2 Width:1
 Height:4 Width:3
 Height:6 Width:1
 Sorted ArrayList using IComparable
 Height:2 Width:1
 Height:1 Width:3
 Height:6 Width:1
 Height:4 Width:3
 SORTEDLIST
 0 : Height:1 Width:3
 1 : Height:2 Width:1
 2 : Height:4 Width:3
 3 : Height:6 Width:1

See Also

See Recipe 3.6; see the "IComparable Interface" topic in the MSDN documentation.

Recipe 3.6. Making a Type Searchable

Problem

You have a data type that will be stored as elements in an array or an ArrayList . You would like to use
the Array. BinarySearch and ArrayList.BinarySearch methods to allow for custom searching of your
data types in the array.

Solution

Use the IComparable and IComparer interfaces. The Square class, from Recipe 3.5, implements the
IComparable interface in such a way that the Array, ArrayList , and SortedList objects can sort and
search an array or collection of Square objects.

Discussion

By implementing the IComparable interface on your class (or structure), you can take advantage of the
search routines of the Array, ArrayList, List<T> , and SortedList classes. The algorithms for
searching are built into these classes; all you have to do is tell them how to search your classes via the
code you implement in the IComparable.CompareTo method.

To implement the CompareTo method, see Recipe 3.5.

The Array, ArrayList , and List<T> classes provide a BinarySearch method to perform a search on the
elements in that array. The elements are compared against an object passed to the BinarySearch
method in the object parameter. The SortedList class does not have a BinarySearch method; instead,
it has the Contains and ContainsKey methods, which perform a binary search on the key contained in
the list. The ContainsValue method of the SortedList class performs a linear search when searching for
values. This linear search uses the Equals method of the elements in the SortedList collection to do its
work. The Compare and CompareTo methods do not have any effect on the operation of the linear search
performed in the SortedList class, but they do have an effect on binary searches.

To perform an accurate search using the BinarySearch methods of the Array and
ArrayList classes, you must first sort the Array or ArrayList using its Sort
method. In addition, if you pass an IComparer interface to the BinarySearch
method, you must also pass the same interface to the Sort method. Otherwise,
the BinarySearch method might not be able to find the object you are looking for.

The TestSort method shown in Example 3-8 demonstrates how to use the Square and CompareHeight
classes with the Array, ArrayList , and SortedList classes.

Example 3-8. Making a type searchable

public static void TestSort()
{
 Square[] arrayOfSquares = new Square[4] {new Square(1,3),
 new Square(4,3),
 new Square(2,1),
 new Square(6,1)};
 ArrayList arrayListOfSquares = new ArrayList();
 arrayListOfSquares.Add(new Square(1,3));
 arrayListOfSquares.Add(new Square(4,3));
 arrayListOfSquares.Add(new Square(2,1));
 arrayListOfSquares.Add(new Square(6,1));
 IComparer HeightCompare = new CompareHeight();
 // Test an ARRAY.
 Console.WriteLine("ARRAY");
 Console.WriteLine("Original array");
 foreach (Square s in arrayOfSquares)
 {
 Console.WriteLine(s.ToString());
 }
 Console.WriteLine();
 Console.WriteLine("Sorted array using IComparer=HeightCompare");
 Array.Sort(arrayOfSquares, HeightCompare);
 foreach (Square s in arrayOfSquares)
 {
 Console.WriteLine(s.ToString());
 }
 Console.WriteLine();
 Console.WriteLine("Search using IComparer=HeightCompare");
 int found = Array.BinarySearch(arrayOfSquares, new Square(1,3), HeightCompare);
 Console.WriteLine("found (1,3): " + found);
 Console.WriteLine();
 Console.WriteLine("Sorted array using IComparable");
 Array.Sort(arrayOfSquares);
 foreach (Square s in arrayOfSquares)
 {
 Console.WriteLine(s.ToString());
 }
 Console.WriteLine("Search using IComparable");
 found = Array.BinarySearch(arrayOfSquares,
 new Square(6,1), null); // Use IComparable.
 Console.WriteLine("found (6,1): " + found);
 // Test an ARRAYLIST.
 Console.WriteLine();
 Console.WriteLine();

 Console.WriteLine("ARRAYLIST");
 foreach (Square s in arrayListOfSquares)
 {
 Console.WriteLine(s.ToString());
 }

 Console.WriteLine();
 Console.WriteLine("Sorted ArrayList using IComparer=HeightCompare");
 arrayListOfSquares.Sort(HeightCompare);
 foreach (Square s in arrayListOfSquares)
 {
 Console.WriteLine(s.ToString());
 }
 Console.WriteLine();
 Console.WriteLine("Search using IComparer=HeightCompare");
 found =arrayListOfSquares.BinarySearch(new Square(1,3), HeightCompare);
 Console.WriteLine("found (1,3): " + found);
 Console.WriteLine();
 Console.WriteLine("Sorted ArrayList using IComparable");
 arrayListOfSquares.Sort();
 foreach (Square s in arrayListOfSquares)
 {
 Console.WriteLine(s.ToString());
 }
 Console.WriteLine();
 Console.WriteLine("Search using IComparable");
 found = arrayListOfSquares.BinarySearch(new Square(6,1), null);
 Console.WriteLine("found (6,1): " + found);
 // Test a SORTEDLIST.
 SortedList SortedListOfSquares = new SortedList();
 SortedListOfSquares.Add(0, new Square(1,3));
 SortedListOfSquares.Add(2, new Square(4,3));
 SortedListOfSquares.Add(1, new Square(2,1));
 SortedListOfSquares.Add(3, new Square(6,1));
 Console.WriteLine();
 Console.WriteLine();
 Console.WriteLine("SORTEDLIST");
 foreach (DictionaryEntry s in SortedListOfSquares)
 {
 Console.WriteLine(s.Key + " : " + ((Square)s.Value).ToString());
 }
 Console.WriteLine();
 bool foundBool = SortedListOfSquares.Contains(2);
 Console.WriteLine("SortedListOfSquares.Contains(2): " + foundBool);
 foundBool = SortedListOfSquares.ContainsKey(2);
 Console.WriteLine("SortedListOfSquares.ContainsKey(2): " + foundBool);
 // Does not use IComparer or IComparable
 // -- uses a linear search along with the Equals method, which has not been
 // overloaded; if the Square object were to be used as the key
 // rather than the value, a binary search would be performed when searching
 // for this Square object.
 Square value = new Square(6,1);
 foundBool = SortedListOfSquares.ContainsValue(value);
 Console.WriteLine
 ("SortedListOfSquares.ContainsValue(new Square(6,1)): " + foundBool);
}

This code displays the following:

 ARRAY
 Original array
 Height:1 Width:3
 Height:4 Width:3
 Height:2 Width:1
 Height:6 Width:1
 Sorted array using IComparer=HeightCompare
 Height:1 Width:3
 Height:2 Width:1
 Height:4 Width:3
 Height:6 Width:1
 Search using IComparer=HeightCompare
 found (1,3): 0
 Sorted array using IComparable
 Height:2 Width:1
 Height:1 Width:3
 Height:6 Width:1
 Height:4 Width:3
 Search using IComparable
 found (6,1): 2
 ARRAYLIST
 Height:1 Width:3
 Height:4 Width:3
 Height:2 Width:1
 Height:6 Width:1
 Sorted ArrayList using IComparer=HeightCompare
 Height:1 Width:3
 Height:2 Width:1
 Height:4 Width:3
 Height:6 Width:1
 Search using IComparer=HeightCompare
 found (1,3): 0
 Sorted ArrayList using IComparable
 Height:2 Width:1
 Height:1 Width:3
 Height:6 Width:1
 Height:4 Width:3
 Search using IComparable
 found (6,1): 2
 SORTEDLIST
 0 : Height:1 Width:3
 1 : Height:2 Width:1
 2 : Height:4 Width:3
 3 : Height:6 Width:1
 SortedListOfSquares.Contains(2): True
 SortedListOfSquares.ContainsKey(2): True
 SortedListOfSquares.ContainsValue(new Square(6,1)): False

See Also

See Recipe 3.5; see the "IComparable Interface" and "IComparer Interface" topics in the MSDN
documentation.

Recipe 3.7. Indirectly Overloading the +=, -=, /=, and *=
Operators

Problem

You need to control the handling of the +=, -=, /=, and *= operators within your data type;
unfortunately, these operators cannot be directly overloaded.

Solution

Overload these operators indirectly by overloading the +, -, /, and * operators, as demonstrated in
Example 3-9.

Example 3-9. Overloading the +, -, /, and * operators

public class Foo
{
 // Other class members…
 // Overloaded binary operators
 public static Foo operator +(Foo f1, Foo f2)
 {
 Foo result = new Foo();
 // Add f1 and f2 here…
 // place result of the addition into the result variable.
 return (result);
 }
 public static Foo operator +(int constant, Foo f1)
 {
 Foo result = new Foo();
 // Add the constant integer and f1 here…
 // place result of the addition into the result variable.
 return (result);
 }
 public static Foo operator +(Foo f1, int constant)
 {
 Foo result = new Foo();
 // Add the constant integer and f1 here…
 // place result of the addition into the result variable.
 return (result);

 }
 public static Foo operator -(Foo f1, Foo f2)
 {
 Foo result = new Foo();
 // Subtract f1 and f2 here…
 // place result of the subtraction into the result variable.
 return (result);
 }
 public static Foo operator -(int constant, Foo f1)
 {
 Foo result = new Foo();
 // Subtract the constant integer and f1 here…
 // place result of the subtraction into the result variable.
 return (result);
 }
 public static Foo operator -(Foo f1, int constant)
 {
 Foo result = new Foo();
 // Subtract the constant integer and f1 here…
 // place result of the subtraction into the result variable.
 return (result);
 }
 public static Foo operator *(Foo f1, Foo f2)
 {
 Foo result = new Foo();
 // Multiply f1 and f2 here…
 // place result of the multiplication into the result variable.
 return (result);
 }
 ypublic static Foo operator *(int multiplier, Foo f1)
 {
 Foo result = new Foo();
 // Multiply multiplier and f1 here…
 // place result of the multiplication into the result variable.
 return (result);
 }
 public static Foo operator *(Foo f1, int multiplier)
 {
 return (multiplier * f1);
 }
 public static Foo operator /(Foo f1, Foo f2)
 {
 Foo result = new Foo();
 // Divide f1 and f2 here…
 // place result of the division into the result variable.
 return (result);
 }
 public static Foo operator /(int numerator, Foo f1)
 {
 Foo result = new Foo();
 // Divide numerator and f1 here…
 // place result of the division into the result variable.

 return (result);
 }
 public static Foo operator /(Foo f1, int denominator)
 {
 return (1 / (denominator / f1));
 }
}

Discussion

While it is illegal to overload the +=, -=, /=, and *= operators directly, you can overload them
indirectly by overloading the +, -, /, and * operators. The +=, -=, /=, and *= operators use the
overloaded +, -, /, and * operators for their calculations.

The four operators +, -, /, and * are overloaded by the methods in the Solution section of this recipe.
You might notice that each operator is overloaded three times. This is intentional, since a user of
your object may attempt to add, subtract, multiply, or divide it by an integer value. The unknown
here is: which position will the integer constant be in? Will it be in the first parameter or the second?
The following code snippet shows how this might look for multiplication:

 Foo x = new Foo();
 Foo y = new Foo();
 y *= 100; // Uses: operator *(Foo f1, int multiplier)
 y = 100 * x; // Uses: operator *(int multiplier, Foo f1)
 y *= x; // Uses: operator *(Foo f1, Foo f2)

The same holds true for the other overloaded operators.

If these operators were being implemented in a class, you would first check whether any were set to
null. The following code for the overloaded addition operator has been modified to do this:

 public static Foo operator +(Foo f1, Foo f2)
 {
 if (f1 == null)
 {
 throw (new ArgumentNullException("f1"));
 }
 else if (f2 == null)
 {
 throw (new ArgumentNullException("f2"));
 }
 else
 {
 Foo result = new Foo();
 // Add f1 and f2 here…

 // place result of the addition into the result variable.
 return (result);
 }
 }

See Also

See the "Operator Overloading Usage Guidelines," "Overloadable Operators," and "Operator
Overloading Tutorial" topics in the MSDN documentation.

Recipe 3.8. Indirectly Overloading the &&, ||, and ?:
Operators

Problem

You need to control the handling of the &&, ||, and ?: operators within your data type;
unfortunately, these operators cannot be directly overloaded.

Solution

Overload these operators indirectly by overloading the &, |, true, and false operators, as shown in
Example 3-10.

Example 3-10. Overloading &, |, true, and false

public class ObjState
{
 public ObjState(int state)
 {
 this.state = state;
 }
 public int state = 0;
 public static ObjState operator &(ObjState obj1, ObjState obj2)
 {
 if (obj1.state >= 0 && obj2.state >= 0)
 return (new ObjState(1));
 else
 return (new ObjState(-1));
 }
 public static ObjState operator |(ObjState obj1, ObjState obj2)
 {
 if (obj1.state < 0 && obj2.state < 0)
 return (new ObjState(-1));
 else
 return (new ObjState(1));
 }
 public static bool operator true(ObjState obj)
 {
 if (obj.state >= 0)

 return (true);
 else
 return (false);
 }
 public static bool operator false(ObjState obj)
 {
 if (obj.state < 0)
 return (true);
 else
 return (false);
 }
 public override string ToString()
 {
 return (state.ToString());
 }
}

This technique gives you complete control over the operations of the &&, ||, and ?: operators.

Alternatively, you can simply add an implicit conversion to bool:

 public class ObjState
 {
 public ObjState(int state)
 {
 this.state = state;
 }
 public int state = 0;
 public static implicit operator bool(ObjState obj)
 {
 if (obj.state == 0)
 {
 throw new InvalidOperationException();
 }
 return (obj.state > 0);
 }
 }

This technique implements strict Boolean logic; the first technique (overriding the &&, ||, and ?:
operators) gives you more freedom to stray from implementing strict Boolean logic.

Discussion

While you cannot overload the &&, ||, and ?: operators directly, you can overload them indirectly by
overloading the &, |, true, and false operators. The &&, ||, and ?: operators then use the

overloaded &, |, true, and false operators for their calculations.

The && operator indirectly uses the false and & operators to perform a short-circuiting AND
operation. Initially, the false operator is invoked to determine whether the first object is equal to
false. If so, the righthand side of the expression is not evaluated and false is returned. If the false
operator returns a true, the & operator is invoked next to perform the ANDing operation on the two
objects. This initial test using the false operator enables the operator to short-circuit the operation.

The || operator works the same as the && operator, except that the initial test is done using the true
operator rather than the false operator.

The ?: operator requires the overloading of the TRue operator to be indirectly overloaded. Note that
this, in turn, requires the overloading of the false operator for symmetry. The ?: operator takes a
conditional expression as input and evaluates either its TRue or false expression. This operator can
be defined as follows:

 conditional-expression ? true-expression : false-expression

The ?: operator invokes the true operator to determine which expression of this operator should be
evaluated. Note that if an implicit conversion to bool exists, it will be used in preference to the true
operator.

When implementing these operators, you should first check to determine whether any parameters in
the overloaded operator methods were set to null. The code for the overloaded & operator has been
modified to do this:

 public static ObjState operator &(ObjState obj1, ObjState obj2)
 {
 if (obj1 == null || obj2 == null)
 {
 throw (new ArgumentNullException("Neither object may be null."));
 }
 if (obj1.state >= 0 && obj2.state >= 0)
 return (new ObjState(1));
 else
 return (new ObjState(-1));
 }

See Also

See the "Operator Overloading Usage Guidelines," "Overloadable Operators," and "Operator
Overloading Tutorial" topics in the MSDN documentation.

Recipe 3.9. Turning Bits On or Off

Problem

You have a numeric value or an enumeration that contains bit flags. You need a method to turn on
(set the bit to 1) or turn off (set the bit to 0) one or more of these bit flags. In addition, you also want
a method to flip one or more bit flag values; that is, change the bit(s) to their opposite value.

Solution

The following method turns one or more bits on using a bit flag passed in to the bitToTurnOn
parameter:

 public static int TurnBitOn(int value, int bitToTurnOn)
 {
 return (value | bitToTurnOn);
 }

The following method turns one or more bits off using a bit flag passed in to the bitToTurnOff
parameter:

 public static int TurnBitOff(int value, int bitToTurnOff)
 {
 return (value & ~bitToTurnOff);
 }

The following method flips a bit to its opposite value using a bit flag passed in to the bitToFlip
parameter:

 public static int FlipBit(int value, int bitToFlip)
 {
 return (value ^ bitToFlip);
 }

The following method turns one or more bits on using a numeric bit position value passed in to the
bitPosition parameter:

 public static int TurnBitPositionOn(int value, int bitPosition)
 {
 return (value | (1 << bitPosition));
 }

The following method turns one or more bits off using a numeric bit position value passed in to the
bitPosition parameter:

 public static int TurnBitPositionOff(int value, int bitPosition)
 {
 return (value & ~(1 << bitPosition));
 }

The following method flips a bit to its opposite value using a numeric bit position value passed in to
the bitPosition parameter:

 public static int FlipBitPosition(int value, int bitPosition)
 {
 return (value ^ (1 << bitPosition));
 }

Discussion

When a large number of flags are required, and particularly when combinations of flags can be set, it
becomes cumbersome and unwieldy to use Boolean variables. In this case, using the binary
representation of a number, you can assign each bit to indicate a specific Boolean value. Each
Boolean value is called a bit flag. For example, you have a number defined as a byte data type. This
number is comprised of eight binary bit values, which can be either a 1 or a 0. Supposing you assign
a color to each bit, your number would be defined as follows:

 byte colorValue = 0; // colorValue initialized to no color
 // colorValue Bit position
 // red 0 (least-significant bit)
 // green 1
 // blue 2
 // black 3
 // grey 4
 // silver 5

 // olive 6
 // teal 7 (most-significant bit)

By setting each bit to 0 or 1, you can define a color value for the colorValue variable. Unfortunately,
the colorValue variable does not take into account all colors. You can remedy this by allowing
multiple bits to be set to 1. This trick allows you to combine red (bit 0) and green (bit 1) to get the
color yellow; red (bit 0) and blue (bit 2) to get violet; or red, green, and blue to get white.

The colorValue bit mask is defined as a byte. This is because it is more
convenient to use unsigned data types for bit flag variables. The other unsigned
integers supported by C# are ushort, uint, and ulong. This makes it easier to
create the bit mask values to use with the bit flag variable. Simply put, you do
not have to worry about negative values of the data type when using unsigned
data types. Be aware, though, that the ushort, uint, and ulong types are not
CLS-compliant.

Now that you have your bit flags set up in the colorValue variable, you need a way to set the
individual bits to a 0 or 1, as well as a way to determine whether one or more bits (colors) are turned
on. To do this, you use a bit mask. A bit mask is a constant number, usually of the same type as the
target type containing the bit flags. This bit mask value will be ANDed, ORed, or XORed with the
number containing the bit flags to determine the state of each bit flag or to set each bit flag to a 0 or
1:

 [Flags]
 public enum ColorBitMask
 {
 NoColorBitMask = 0, //binary value == 00000000
 RedBitMask = 1, //binary value == 00000001
 GreenBitMask = 2, //binary value == 00000010
 BlueBitMask = 4, //binary value == 00000100
 BlackBitMask = 8, //binary value == 00001000
 GreyBitMask = 16, //binary value == 00010000
 SilverBitMask = 32, //binary value == 00100000
 OliveBitMask = 64, //binary value == 01000000
 TealBitMask = 128, //binary value == 10000000
 YellowBitMask = 3, //binary value == 00000011
 VioletBitMask = 5, //binary value == 00000101
 WhiteBitMask = 7, //binary value == 00000111
 }

One common use for the & operator is to set one or more bits in a bit flag value to 0. If you AND a
binary value with 1, you always obtain the original binary value. If, on the other hand, you AND a
binary value with 0, you always obtain 0. Knowing this, you can use the bit mask values to remove
various colors from the colorValue variable:

 ColorBitMask color = ColorBitMask.YellowBitMask;
 ColorBitMask newColor = color & ~ColorBitMask.RedBitMask;

This operation removes the RedBitMask from the color value. This value is then assigned to the
newColor variable. The newColor variable now contains the value 2 (00000010 in binary), which is equal
to the GreenBitMask value. Essentially, you removed the color red from the color yellow and ended up
with the color green, which is a constituent color of yellow.

The | operator can also be used to set one or more bits to 1. If you OR a binary value with 0, you
always obtain the original binary value. If, on the other hand, you OR a binary value with 1, you
always obtain 1. Using this knowledge, you can use the bit mask values to add various colors to the
color variable. For example:

 ColorBitMask color = ColorBitMask.RedBitMask;
 ColorBitMask newColor = color | ColorBitMask.GreenBitMask;

This operation ORs the GreenBitMask to the color value, which is currently set to the value
RedBitMask. This value is then assigned to the newColor variable. The newColor variable now contains
the value 3 (00000011 in binary); this value is equal to the YellowBitMask value. Essentially, you
added the color green to the color red and obtained the color yellow.

The ^ operator is often used to flip or invert one or more bits in a bit flag value. It returns a 1 only
when either bit is set to 1. If both bits are set to 1s or 0s, this operator returns a 0. This operation
provides a convenient method of flipping a bit:

 ColorBitMask color = ColorBitMask.RedBitMask;
 ColorBitMask newColor = color ^ ColorBitMask.RedBitMask;

The code shown here flips the least-significant bit (defined by the RedBitMask operation) to its
opposite value. So if the color were red, it would become 0, or no defined color, as shown here:

 00000001 == Color (red)

 ^ 00000001 == RedBitMask
 00000000

If you XOR this result a second time with the bit mask RedBitMask, you get your original color (red)
back again, as shown here:

 00000000 == Color (red)

 ^ 00000001 == RedBitMask

 00000001 == red

If this operation is performed on the color yellow, you can obtain the color other than red that makes
up this color. This operation is shown next along with the code.

 ColorBitMask color = ColorBitMask.YellowBitMask;
 ColorBitMask newColor = color ^ ColorBitMask.RedBitMask;
 00000011 == Color (yellow)

 ^ 00000001 == RedBitMask

 00000010 == green

Use the AND (&) operator to set one or more bits to 0. Use the OR (|) operator
to set one or more bits to 1. Use the XOR (^) operator to flip one or more bits
to their opposite values.

See Also

See Recipe 1.4; see the "C# Operators" topic in the MSDN documentation.

Recipe 3.10. Making Error-Free Expressions

Problem

A complex expression in your code is returning incorrect results. For example, if you wanted to find the
average area given two circles, you might write the following expression:

 double radius1 = 2;
 double radius2 = 4;
 double aveArea = .5 * Math.PI * Math.Pow(radius1, 2) + Math.PI *
 Math.Pow(radius2, 2);

However, the result is always incorrect.

Complex mathematical and Boolean equations in your code can easily become the source of bugs. You
need to write bug-free equations, while at the same time making them easier to read.

Solution

The solution is quite simple: use parentheses to explicitly define the order of operations that will take
place in your equation. To fix the expression presented in the Problem section, rewrite it as follows:

 double radius1 = 2;
 double radius2 = 4;
 double aveArea = .5 * (Math.PI * Math.Pow(radius1, 2) + Math.PI *
 Math.Pow(radius2, 2));

Notice the addition of the parentheses; these parentheses cause the area of the two circles to be
calculated and added together first. Then the total area is multiplied by .5 . This is the behavior you are
looking for. An additional benefit is that the expression can become easier to read as the parentheses
provide clear distinction of what part of the expression is to be evaluated first. This technique works
equally well with Boolean equations.

part of the expression is to be evaluated first. This technique works equally well with Boolean
equations.

Discussion

Parentheses are key to writing maintainable and bug-free equations. Not only is your intention clearly

spelled out, but you also override any operator precedence rules that you might not have taken into
account. In fact, the only way to override operator precedence is to use parentheses (you can use
temporary variables to hold partial results, which aids in readability, but can increase the size of the IL
code). Consider the following equation:

 int x = 1 * 2 - -50 / 4 + 220 << 1;
 Console.WriteLine("x = " + x);

The value 468 is displayed for this equation.

This is the same equation written with parentheses:

 int y = ((1 * 2) - ((-50) / 4) + 220) << 1;
 Console.WriteLine("y = " + y);

The same value (468) is also displayed for this equation. Notice how much easier it is to read and
understand how this equation works when parentheses are used. It is possible to get carried away with
the use of parentheses in an equation:

 int z = ((((1 * 2) - ((-50) / 4)) + 220) << (1));
 Console.WriteLine("z = " + z);

This equation also evaluates to 468 , but due to the overuse of parentheses, you can get lost
determining where one set of parentheses begins and where it ends. You should try to balance your
placement of parentheses in strategic locations to prevent oversaturating your equation with
parentheses.

Another place where you can get into trouble with operator precedence is when using a ternary
operator (?:) , defined as follows:

 boolean-expression ? true-case-expression : false-case-expression

Each type of expression used by this operator is defined as follows:

boolean-expression

This expression must evaluate to a Boolean value or to a value with a type that has an implicit
conversion to bool or one that has a true operator. Depending on the outcome of this
expression, either the true-case-expression or the false-case-expression will be executed.

true-case-expression

This expression is evaluated when the boolean-expression evaluates to TRue .

false-case-expression

This expression is evaluated when the boolean-expression evaluates to false .

Either the true-case-expression or the false-case-expression will be evaluated; never both.

The ternary operator is able to compact several lines of an if-else statement into a single expression
that can fit easily on a single line. This ternary statement is also usable inline with a statement or
another expression. The following code example shows the use of the ternary operator inline with an
expression:

 byte x = (byte)(8 + ((foo == 1) ? 4 : 2));

By examining the order of operator precedence, you can see that the == operator is evaluated first and
then the ternary operator. Depending on the result of the Boolean expression foo == 1 , the ternary
operator will produce either the value 4 or 2 . This value is then added to 8 and assigned to the variable
x .

This operator is considered to have right-associative properties, similar to the assignment operators.
Because of this, you can get into trouble using ternary expressions as expressions within other ternary
expressions. Consider the following code:

 // foo currently equals 1
 // Assume that all methods will always return a Boolean true, except for Method3,
 // which always returns a Boolean false.
 Console.WriteLine(Method1() ? Method2() : Method3() ? Method4() : Method5());

Which methods will be called? If you started evaluating this expression from the left, your expression
would essentially look like the following:

 Console.WriteLine((Method1() ? Method2() : Method3()) ? Method4() : Method5());

Notice the extra highlighted parentheses added to clarify how the expression will be evaluated in this
manner. The answer that the methods Method1, Method2 , and Method4 will be called is wrong. The
ternary operators are evaluated from right to left, not left to right, as are most other common
operators. The correct answer is that only Method1 and Method2 will be called. Extra highlighted
parentheses have been added to this expression, in order to clarify how it is evaluated:

 Console.WriteLine(Method1() ? Method2() :
 (Method3() ? Method4() : Method5()));

This technique will cause Method1 and Method2 to be called in that order. If any of these methods
produced side effects, the application might produce unexpected results.

If you must use nested ternary expressions, make liberal use of parentheses
around each ternary expression to clearly specify your intentions.

Recipe 3.11. Minimizing (Reducing) Your Boolean Logic

Problem

Many times a Boolean equation quickly becomes large, complex, and even unmanageable. You need
a way to manage this complexity while at the same time verifying that your logic works as designed.

Solution

To fix this situation, try applying the theorems shown in Table 3-1 to minimize these types of
equations.

Table 3-1. Boolean theorems

Theorem ID Theorem definition

T0 !(!x) == x

T1 x | x == x

T2 x | !x == true

T3 (DeMorgan's Theorem) !x | !y == !(x & y)

T4 x & x == x

T5 x & !x == false

T6 (DeMorgan's Theorem) !x & !y == !(x | y)

T7 (Commutative Law) x | y == y | x

T8 (Associative Law) (x | y) | z == x | (y | z)

T9 (Distributive Law) x & y | x & z == x & (y | z)

T10 x | x & y = x

T11 x & y | x & !y = x

T12 (x & y) | (!x & z) | (y & z) == (x & y) | (!x & z)

T13 (Commutative Law) x & y == y & x

T14 (Associative Law) (x & y) & z == x & (y & z)

Theorem ID Theorem definition

T15 (Distributive Law) (x | y) & (x | z) == x | (y & z)

T16 x & (x | y) = x

T17 (x | y) & (x | !y) = x

T18 (x | y) & (!x | z) & (y | z) == (x | y) & (!x | z)

T19 x | x | x | … | x == x

T20 !(x | x | x | … | x) == !x & !x & !x & … & !x

T21 x & x & x & … & x == x

T22 !(x & x & x & … & x) == !x | !x | !x | … | !x

T23 (x | y) & (w | z) == (x & w) | (x * z) | (y & w) | (y * z)

T24 (x & y) | (w & z) == (x | w) & (x | z) & (y | w) & (y | z)

In Table 3-1, assume that w, x, y, and z are all variables of type bool. The theorem IDs allow easy
identification of which theorems are being used in the Boolean equations that are being minimized in
the Discussion section.

Discussion

Simplifying your Boolean logic will benefit your code by making it less cluttered and making its logic
clearer and more readily understood. This simplification will lessen the number of potential locations
in your logic where bugs can hide and at the same time improve maintainability.

Let's walk through several examples to show how the process of minimizing your logic works. These
examples use the three Boolean variables X, Y, and Z. The names have been kept simple so that you
can concentrate on minimizing the logic and not have to worry about what the code is trying to do.

The first example uses only the X and Y Boolean variables:

 if (!X & !Y) {…}

From this if statement, you extract the following Boolean logic:

 !X & !Y

Using theorem T6, you can eliminate one operator from this equation:

T15 (Distributive Law) (x | y) & (x | z) == x | (y & z)

T16 x & (x | y) = x

T17 (x | y) & (x | !y) = x

T18 (x | y) & (!x | z) & (y | z) == (x | y) & (!x | z)

T19 x | x | x | … | x == x

T20 !(x | x | x | … | x) == !x & !x & !x & … & !x

T21 x & x & x & … & x == x

T22 !(x & x & x & … & x) == !x | !x | !x | … | !x

T23 (x | y) & (w | z) == (x & w) | (x * z) | (y & w) | (y * z)

T24 (x & y) | (w & z) == (x | w) & (x | z) & (y | w) & (y | z)

In Table 3-1, assume that w, x, y, and z are all variables of type bool. The theorem IDs allow easy
identification of which theorems are being used in the Boolean equations that are being minimized in
the Discussion section.

Discussion

Simplifying your Boolean logic will benefit your code by making it less cluttered and making its logic
clearer and more readily understood. This simplification will lessen the number of potential locations
in your logic where bugs can hide and at the same time improve maintainability.

Let's walk through several examples to show how the process of minimizing your logic works. These
examples use the three Boolean variables X, Y, and Z. The names have been kept simple so that you
can concentrate on minimizing the logic and not have to worry about what the code is trying to do.

The first example uses only the X and Y Boolean variables:

 if (!X & !Y) {…}

From this if statement, you extract the following Boolean logic:

 !X & !Y

Using theorem T6, you can eliminate one operator from this equation:

 !(X | Y)

Now this equation requires only two Boolean operators to be evaluated instead of three. By the way,
you might notice that this equation is a logical NOR operation.

The second example uses the X and Y Boolean variables in a seemingly complex equation:

 if ((!X & Y) | (X & !Y) | (X & Y)){…}

From this if statement, you extract the Boolean logic:

 (!X & Y) | (X & !Y) | (X & Y)

Using theorem T11, you can simplify the last two parenthesized expressions, yielding X, and obtain
the following:

 (!X & Y) | X

This equation is much simpler than the initial equation. In fact, you reduced the number of operators
from seven to three, which is greater than a 2:1 ratio.

Some equations might not seem as if they can be simplified very much, but looks can be deceiving.
Let's try to simplify the following equation:

 (!X & Y) | (X & !Y)

Using theorem T24, you can derive the following expression:

 (!X | X) & (!X | !Y) & (Y | X) & (Y | !Y)

Using theorem T2, you can remove the first and last parenthesized expressions:

 (!X | !Y) & (Y | X)

Finally, using theorem T3, you can minimize the equation once again to the following form:

 !(X & Y) & (Y | X)

You were able to remove only a single operator from this equation. This optimization might or might
not improve the performance and readability of your code, since it is such a minor change.

You may think that this expression is in its most reduced form. However, if you examine this
expression more closely, you may notice that it is the equation for the XOR operator. Knowing this,
you can simplify the equation to the following:

 X ^ Y

This technique really shines when you are faced with a large and complex Boolean expression, such
as the one shown here:

 (!X & !Y & !Z) | (!X & Y & Z) | (X & !Y & !Z) | (X & !Y & Z) |
 (X & Y & Z)

Using theorem T9, you get the following equation:

 (!X & ((!Y & !Z) | (Y & Z))) | (X & ((!Y & !Z) | (!Y & Z) |
 (Y & Z)))

Notice that the equation (!Y&!Z)|(Y&Z) is the equivalent of the NOT XOR operation on Y and Z. So
you can simplify this equation much further:

 (!X & !(Y ^ Z)) | (X & ((!Y & !Z) | (!Y & Z) | (Y & Z)))

Using theorem T9, once again, you get the following equation:

 (!X & !(Y ^ Z)) | (X & (!Y & (!Z | Z) | (Y & Z)))

Using theorem T2, you get the final equation:

 (!X & !(Y ^ Z)) | (X & (!Y | (Y & Z)))

This equation is much simpler than the original and requires much less processing to evaluate, as
well.

While it is unnecessary in most cases to commit all of these theorems to
memory, you should try to understand them all. In addition, memorizing some
of the simpler theorems can come in quite handy in many circumstances.

The theorems outlined in this recipe should be complete enough to allow you to play around with
minimizing your Boolean equations.

See Also

See the "C# Operators" topic in the MSDN documentation.

Recipe 3.12. Converting Between Simple Types in a
Language-Agnostic Manner

Problem

You need to convert between any two of the following types: bool, char, sbyte, byte, short,
ushort, int, uint, long, ulong, float, double, decimal, DateTime, and string. Different
languages sometimes handle specific conversions differently; you need a way to perform these
conversions in a consistent manner across all .NET languages. One situation in which this recipe is
needed is when VB.NET and C# components communicate within the same application.

Solution

Different languages sometimes handle casting of larger numeric types to smaller numeric types
differentlythese types of casts are called narrowing conversions. For example, consider the following
Visual Basic .NET (VB.NET) code, which casts a Single to an Integer:

 ' Visual Basic .NET Code:
 Dim initialValue As Single
 Dim finalValue As Integer

 initialValue = 13.499
 finalValue = CInt(initialValue)
 Console.WriteLine(finalValue.ToString())

 initialValue = 13.5
 finalValue = CInt(initialValue)
 Console.WriteLine(finalValue.ToString())

 initialValue = 13.501
 finalValue = CInt(initialValue)
 Console.WriteLine(finalValue.ToString())

This code outputs the following:

 13
 14
 14

Notice that the CInt cast in VB.NET uses the fractional portion of the number to round the resulting
number.

Now let's convert this code to C# using the explicit casting operator:

 // C# Code:
 float initialValue = 0;
 int finalValue = 0;

 initialValue = (float)13.499;
 finalValue = (int)initialValue;
 Console.WriteLine(finalValue.ToString());

 initialValue = (float)13.5;
 finalValue = (int)initialValue;
 Console.WriteLine(finalValue.ToString());

 initialValue = (float)13.501;
 finalValue = (int)initialValue;
 Console.WriteLine(finalValue.ToString());

This code outputs the following:

 13
 13
 13

Notice that the resulting value was not rounded. Instead, the C# casting operator simply truncates
the fractional portion of the number.

Consistently casting numeric types in any language can be done through the static methods on the
Convert class. The previous C# code can be converted to use the ToInt32 method:

 // C# Code:
 finalValue = Convert.ToInt32((float)13.449);
 Console.WriteLine(finalValue.ToString());

 finalValue = Convert.ToInt32((float)13.5);
 Console.WriteLine(finalValue.ToString());

 finalValue = Convert.ToInt32((float)13.501);
 Console.WriteLine(finalValue.ToString());

This code outputs the following:

 13
 14
 14

Discussion

All conversions performed using methods on the Convert class are considered to be in a checked
context in C#. VB.NET does not have the concept of a checked or unchecked context, so all
conversions are considered to be in a checked contextan unchecked context cannot be created in
VB.NET. An OverflowException will be thrown in a checked context when a narrowing conversion
results in a loss of information. This exception is never thrown in an unchecked context when a
narrowing conversion results in a loss of information.

The various conversion methods are listed in Table 3-2.

Table 3-2. Conversion methods on the Convert class

Method Use

ToBoolean Convert a type to a bool.

ToChar Convert a type to a char.

ToString Convert a type to a string.

ToDateTime Convert a type to a DateTime.

ToInt16 Convert a type to a short.

ToInt32 Convert a type to an int.

ToInt64 Convert a type to a long.

ToUInt16 Convert a type to a ushort.

ToUInt32 Convert a type to a uint.

ToUInt64 Convert a type to a ulong.

ToByte Convert a type to a byte.

ToSByte Convert a type to an sbyte.

ToSingle Convert a type to a float.

ToDecimal Convert a type to a decimal.

Method Use

ToDouble Convert a type to a double.

Converting between any of the data types listed in Table 3-2 is a simple matter. All of the listed
methods are static and exist on the Convert class. Converting one type to another is performed by
first choosing the correct method on the Convert class. This method will be named after the type you
are converting to (e.g., if you are converting to a char type, the method name would be ToChar).
Next, you need to pass the type that will be cast as the parameter to the Convert method. Finally, set
a variable of the resultant cast type equal to the return value of the Convert method. The following
code converts the value in the variable sourcedefined as a short that contains a number between 0
and 9to a char type. This char value is then returned by the Convert method and assigned to the
variable destination. The variable destination must be defined as a char:

 destination = Convert.ToChar(source);

Sometimes conversions will do nothing. Converting from one type to that same type will do nothing
except return a result that is equivalent to the source variable's value. Take, for example, using the
Convert.ToInt32 method to convert a source variable of type Int32 to a destination variable of type
Int32. This method takes the value obtained from the source variable and places it in the destination
variable.

Some conversions cause exceptions to occur because there is no clear way of converting between the
two types; these attempted conversions are listed in Table 3-3. Because some conversions might or
might not throw an exceptionsuch as converting from an sbyte to a byteit is good programming
practice to enclose the static conversion method within a TRy/catch block. The following code wraps a
conversion between numeric types in a try/catch block:

 try
 {
 finalValue = Convert.ToInt32(SomeFloat);
 }
 catch(OverflowException oe)
 {
 // Handle narrowing conversions that result in a loss
 // of information here.
 }
 catch(InvalidCastException ice)
 {
 // Handle casts that cannot be performed here.
 }

The following code wraps a conversion from a string type to an Int32 in a TRy/catch block:

ToDouble Convert a type to a double.

Converting between any of the data types listed in Table 3-2 is a simple matter. All of the listed
methods are static and exist on the Convert class. Converting one type to another is performed by
first choosing the correct method on the Convert class. This method will be named after the type you
are converting to (e.g., if you are converting to a char type, the method name would be ToChar).
Next, you need to pass the type that will be cast as the parameter to the Convert method. Finally, set
a variable of the resultant cast type equal to the return value of the Convert method. The following
code converts the value in the variable sourcedefined as a short that contains a number between 0
and 9to a char type. This char value is then returned by the Convert method and assigned to the
variable destination. The variable destination must be defined as a char:

 destination = Convert.ToChar(source);

Sometimes conversions will do nothing. Converting from one type to that same type will do nothing
except return a result that is equivalent to the source variable's value. Take, for example, using the
Convert.ToInt32 method to convert a source variable of type Int32 to a destination variable of type
Int32. This method takes the value obtained from the source variable and places it in the destination
variable.

Some conversions cause exceptions to occur because there is no clear way of converting between the
two types; these attempted conversions are listed in Table 3-3. Because some conversions might or
might not throw an exceptionsuch as converting from an sbyte to a byteit is good programming
practice to enclose the static conversion method within a TRy/catch block. The following code wraps a
conversion between numeric types in a try/catch block:

 try
 {
 finalValue = Convert.ToInt32(SomeFloat);
 }
 catch(OverflowException oe)
 {
 // Handle narrowing conversions that result in a loss
 // of information here.
 }
 catch(InvalidCastException ice)
 {
 // Handle casts that cannot be performed here.
 }

The following code wraps a conversion from a string type to an Int32 in a TRy/catch block:

 try
 {
 finalValue = Convert.ToInt32(SomeString);
 }
 catch(OverflowException oe)
 {
 // Handle narrowing conversions that result in a loss
 // of information here.
 }
 catch(ArgumentException ae)
 {
 // Handle nulls passed into the Convert method here.
 }
 catch(FormatException fe)
 {
 // Handle attempts to convert a string that does not contain
 // a value that can be converted to the destination type here.
 }
 catch(Exception e)
 {
 // Handle all other exceptions here.
 }

Table 3-3. Cases in which a source-to-destination-type conversion throws
an exception

Destination Source Exception type

bool
Char

DateTime

InvalidCastException

byte DateTime InvalidCastException

char

Bool

DateTime

decimal

double

float

InvalidCastException

DateTime

Bool

byte

sbyte

Destination Source Exception type

char

decimal

double

short

int

long

ushort

uint

ulong

float

InvalidCastException

decimal
Char

DateTime

InvalidCastException

double
Char

DateTime

InvalidCastException

short DateTime InvalidCastException

int DateTime InvalidCastException

long DateTime InvalidCastException

sbyte DateTime InvalidCastException

float
Char

DateTime

InvalidCastException

ushort DateTime InvalidCastException

uint DateTime InvalidCastException

ulong DateTime InvalidCastException

byte

sbyte

decimal

double

short

int

long

OverFlowException (if source is out of the range of
destination)

char

decimal

double

short

int

long

ushort

uint

ulong

float

InvalidCastException

decimal
Char

DateTime

InvalidCastException

double
Char

DateTime

InvalidCastException

short DateTime InvalidCastException

int DateTime InvalidCastException

long DateTime InvalidCastException

sbyte DateTime InvalidCastException

float
Char

DateTime

InvalidCastException

ushort DateTime InvalidCastException

uint DateTime InvalidCastException

ulong DateTime InvalidCastException

byte

sbyte

decimal

double

short

int

long

OverFlowException (if source is out of the range of
destination)

Destination Source Exception type

ushort

uint

ulong

float

sbyte

Byte

decimal

double

short

int

long

ushort

uint

ulong

float

OverFlowException (if source is out of the range of
destination)

short ushort
OverFlowException (if source is out of the range of
destination)

ushort short
OverFlowException (if source is out of the range of
destination)

int uint
OverFlowException (if source is out of the range of
destination)

uint

sbyte

short

int

OverFlowException (if source is out of the range of
destination)

long ulong
OverFlowException (if source is out of the range of
destination)

ulong

sbyte

short

int

long

OverFlowException (if source is out of the range of
destination)

Notice that the string type can be converted to any type, and that any type may be converted to a
string typeassuming that the source string is not null and conforms to the destination type's range
and format.

ushort

uint

ulong

float

sbyte

Byte

decimal

double

short

int

long

ushort

uint

ulong

float

OverFlowException (if source is out of the range of
destination)

short ushort
OverFlowException (if source is out of the range of
destination)

ushort short
OverFlowException (if source is out of the range of
destination)

int uint
OverFlowException (if source is out of the range of
destination)

uint

sbyte

short

int

OverFlowException (if source is out of the range of
destination)

long ulong
OverFlowException (if source is out of the range of
destination)

ulong

sbyte

short

int

long

OverFlowException (if source is out of the range of
destination)

Destination Source Exception type

Any type string

ArgumentException (if source string is null) or
FormatException (if source string represents an invalid value
for the destination type)

Notice that the string type can be converted to any type, and that any type may be converted to a
string typeassuming that the source string is not null and conforms to the destination type's range
and format.

The most insidious problems can occur when a larger type is converted to a smaller type in an
unchecked context; the potential exists for information to be lost. Code runs in an unchecked context
if the conversion is contained in an unchecked block or if the /checked compiler option is set to false
(by default, this compiler option is set to false in both debug and release builds). An example of code
contained in an unchecked block is as follows:

 short destination = 0;
 int source = Int32.MaxValue;
 unchecked(destination = (short)source);

or:

 unchecked
 {
 short destination = 0;
 int source = Int32.MaxValue;
 destination = (short)source;
 }

A checked context is when the conversion is contained in a checked block or if the /checked compiler
option is set to true. An example of code contained in a checked block is as follows:

 short destination = 0;
 int source = Int32.MaxValue;
 checked(destination =(short)source);

or:

 checked
 {
 short destination = 0;

Any type string

ArgumentException (if source string is null) or
FormatException (if source string represents an invalid value
for the destination type)

Notice that the string type can be converted to any type, and that any type may be converted to a
string typeassuming that the source string is not null and conforms to the destination type's range
and format.

The most insidious problems can occur when a larger type is converted to a smaller type in an
unchecked context; the potential exists for information to be lost. Code runs in an unchecked context
if the conversion is contained in an unchecked block or if the /checked compiler option is set to false
(by default, this compiler option is set to false in both debug and release builds). An example of code
contained in an unchecked block is as follows:

 short destination = 0;
 int source = Int32.MaxValue;
 unchecked(destination = (short)source);

or:

 unchecked
 {
 short destination = 0;
 int source = Int32.MaxValue;
 destination = (short)source;
 }

A checked context is when the conversion is contained in a checked block or if the /checked compiler
option is set to true. An example of code contained in a checked block is as follows:

 short destination = 0;
 int source = Int32.MaxValue;
 checked(destination =(short)source);

or:

 checked
 {
 short destination = 0;

 int source = Int32.MaxValue;
 destination = (short)source;
 }

This code throws an OverflowException exception if any loss of information would occur. This allows
the application to be notified of the overflow condition and to handle it properly.

The Convert method is always considered to operate in a checked context, even when no other type
of checked context wraps the code performing the conversion.

See Also

See the "checked Keyword," "unchecked Keyword," "Checked and Unchecked," and "Convert Class"
topics in the MSDN documentation.

Recipe 3.13. Determining When to Use the Cast Operator,
the as Operator, or the is Operator

Problem

You need to determine which operator is best in your situationthe cast (type) operator, the as

operator, or the is operator.

Solution

Use the information provided in the Discussion section to determine which operator is best to use.

Discussion

Use the cast operator when:

You are casting a reference type to a reference type.

You are casting a value type to a value type.

You are performing a boxing or unboxing conversion.

You are invoking a user-defined conversion. The is and as operators cannot handle this type of
cast.

Use the as operator when:

It is not acceptable for the InvalidCastException to be thrown. The as operator will instead
return a null if the cast cannot be performed.

You are casting a reference type to a reference type.

You are not casting a value type to a value type. The cast operator must be used in this case.

You are performing a boxing conversion.

You are not performing an unboxing conversion. The cast operator must be used in this case.

You are not invoking a user-defined conversion. The cast operator must be used in this case.

You are performing a cast to a type parameter T that can be only a reference type. This is
because a null may be returned after evaluating this expression.

Use the is operator when:

You need a fast method of determining whether a cast can be performed before the actual cast
is attempted.

You do not need to actually cast a variable from one data type to another; you just need to
determine if the variable can be cast to a specific type.

It is not acceptable for the InvalidCastException to be thrown.

You are casting a reference type to a reference type.

You are not casting a value type to a value type. The cast operator must be used in this case.

You are not invoking a user-defined conversion. Unlike the as operator, a compile-time error is
not displayed when using the is operator with a user-defined conversion. This is operator will
instead always return a false value, regardless of whether the cast can successfully be
performed.

See Also

See Recipes 3.14 and 3.15; see the "() Operator," "as Operator," and "is Operator" topics in the
MSDN documentation.

Recipe 3.14. Casting with the as Operator

Problem

Ordinarily, when you attempt a casting operation, the .NET Common Language Runtime generates an
InvalidCastException if the cast fails. Often, though, you cannot guarantee in advance that a cast
will succeed, but you also do not want the overhead of handling an InvalidCastException.

Solution

Use the as operator. The as operator attempts the casting operation, but if the cast fails, the
expression returns a null instead of throwing an exception. If the cast succeeds, the expression
returns the converted value. The code that follows shows how the as operator is used.

 public static void ConvertObj(Specific specificObj)
 {
 Base baseObj = specificObj as Base;
 if (baseObj == null)
 {
 // Cast failed.
 }
 else
 {
 // Cast was successful.
 }
 }

where the Specific type derives from the Base type:

 public class Base {}
 public class Specific : Base {}

In this code fragment, the as operator is used to attempt to cast the SpecificObj to the type Base.
The next lines contain an if-else statement that tests the variable baseObj to determine whether it is
equal to null. If it is equal to null, you should prevent any use of this variable, since it might cause a
NullReferenceException to be thrown.

Discussion

The as operator has the following syntax:

 expression as type

The expression and type are defined as follows:

expression

A reference type

type

The type to which to cast the object defined by expression

This operation returns expression cast to the type defined by type if the cast succeeds. If the cast

fails, a null is returned, and an InvalidCastException is not thrown. Because of this, you should
always check the result for null.

This operator does not work with user-defined conversions (both explicit and implicit). A user-defined
conversion method extends one type to allow it to be converted to another type. This is done by
adding a method, such as the following, to a class or structure:

 public struct MyPoint
 {
 public static explicit operator MyPoint(System.Drawing.Point pt)
 {
 // Convert a Point structure to a MyPoint structure type.
 return (new MyPoint());
 }
 }

This method allows a System.Drawing.Point structure to be cast to an object of type MyPoint. Due to
the use of the explicit keyword, the cast must be explicitly defined:

 System.Drawing.Point systemPt = new System.Drawing.Point(0, 0);
 MyPoint pt = (MyPoint)systemPt;

If you attempt to use the as operator in a user-defined conversion, the following compiler error is

shown:

 Cannot convert type 'MyPoint' to 'Point' via a built-in conversion

This type of conversion does not work with unboxing conversions, either. An unboxing conversion
converts a previously boxed value type to its original value type, such as with the following code:

 int x = 5;
 object obj = x; // Box x
 int originalX = obj as int; // Attempt to unbox obj into an integer.

If you attempt to use the as operator in an unboxing conversion, the following compiler error is
shown:

 The as operator must be used with a reference type ('int' is a value type)

This is illegal because as indicates that the cast cannot be performed by returning null, but there is
no such thing as a null value for an int.

The as operator cannot be used with a type parameter T when T could be a struct, for the same
reason as previously mentioned. The following code will not compile:

 public class TestAsOp<T>
 {
 public T ConvertSomething(object obj)
 {
 return (obj as T);
 }
 }

because T could be anything since it is not constrained. If you constrain T to be only a reference type
as shown here:

 public class TestAsOp<T>

 where T: class
 {
 public T ConvertSomething(object obj)
 {

 return (obj as T);
 }
 }

your code will compile successfully, since T cannot be a struct.

See Also

See Recipes 3.13 and Recipe 3.15; see the "() Operator," "as Operator," and "is Operator" topics in
the MSDN documentation.

Recipe 3.15. Determining a Variable's Type with the is
Operator

Problem

A method exists that creates an object from one of several types of classes. This object is then
returned as a generic object type. Based on the type of object that was initially created in the
method, you want to branch to different logic.

Solution

Use the is operator. This operator returns a Boolean true or false indicating whether the cast is
legal, but the cast never actually occurs.

Suppose you have four different point classes:

 public class Point2D {…}
 public class Point3D {…}
 public class ExPoint2D : Point2D {…}
 public class ExPoint3D : Point3D {…}

Next, you have a method that accepts an integer value and, based on this value, one of the four
specific point types is returned:

 public object CreatePoint(PointTypeEnum pointType)
 {
 switch (pointType)
 {
 case PointTypeEnum.Point2D:
 return (new Point2D());
 case PointTypeEnum.Point3D:
 return (new Point3D());
 case PointTypeEnum.ExPoint2D:
 return (new ExPoint2D());
 case PointTypeEnum.ExPoint3D:
 return (new ExPoint3D());
 default:
 return (null);
 }

 }

where the PointTypeEnum is defined as:

 public enum PointTypeEnum
 {
 Point2D, Point3D, ExPoint2D, ExPoint3D
 }

Finally, you have a method that calls the CreatePoint method. This method handles the point object
type returned from the CreatePoint method based on the actual point object returned:

 public void CreateAndHandlePoint()
 {
 // Create a new point object and return it.
 object retObj = CreatePoint(PointTypeEnum.Point2D);

 // Handle the point object based on its actual type.
 if (retObj is ExPoint2D)
 {
 Console.WriteLine("Use the ExPoint2D type");
 }
 else if (retObj is ExPoint3D)
 {
 Console.WriteLine("Use the ExPoint3D type");
 }
 else if (retObj is Point2D)
 {
 Console.WriteLine("Use the Point2D type");
 }
 else if (retObj is Point3D)
 {
 Console.WriteLine("Use the Point3D type");
 }
 else
 {
 Console.WriteLine("Invalid point type");
 }
 }

Notice that the tests for the ExPoint2D and ExPoint3D objects are performed before the tests for
Point2D and Point3D. This order will allow you to differentiate between base classes and their derived
classes (ExPoint2D derives from Point2D and ExPoint3D derives from Point3D). If you had reversed
these tests, the test for Point2D would evaluate to TRue for both the Point2D class and its derivatives

(ExPoint2D).

Discussion

The is operator is a fast and easy method of predetermining whether a cast will work. If the cast
fails, you have saved yourself the overhead of trying the cast and handling a thrown exception. If the
is operator determines that this cast can successfully be performed, all you need to do is perform the
cast.

The is operator is defined as follows:

 expression is type

The expression and type are defined as follows:

expression

A reference type

type

The type to which to cast the reference type defined by expression

This expression returns a Boolean value: TRue if the cast will succeed or false if the cast will fail. For
example:

 if (SpecificObj is Base)
 {
 // It is of type Base.
 }
 else
 {
 // Cannot cast SpecificObj to a Base type object.
 }

Never use the is operator with a user-defined conversion (either explicit or
implicit). The is operator always returns false when used with these types of
conversions, regardless of whether the cast can be performed.

This operator does not work with user-defined conversions (both explicit and implicit). Unlike the as

operator, a compile-time error will not be displayed; instead, the is operator will always return
false. This operator should never be used with user-defined conversions, since the result will always
be in question. Also, unlike the as operator, the is operator will work with unboxing conversions.

The following code determines whether an unboxing operation can be performed:

 // An int is passed in to this method and boxed.
 public void SomeMethod(object o)
 {
 if (o is int)
 {
 // o can be unboxed.
 // It is now possible to cast o to an int.
 int x = (int)o;
 }
 else
 {
 // Cannot unbox o.
 }
 }

This code first declares an integer variable x and boxes it into an object variable o. The is operator is
then used to determine whether o can be unboxed back into the integer variable x. This is the one
case in which it is absolutely necessary to use is if you want to avoid an exception. You can't use as
here because there is no such thing as a null int, so it cannot tell you if the unboxing fails.

See Also

See Recipes 3.13 and 3.14; see the "() Operator," "as Operator," and "is Operator" topics in the
MSDN documentation.

Recipe 3.16. Implementing Polymorphism with Interfaces

Problem

You need to implement polymorphic functionality on a set of existing classes. These classes already
inherit from a base class (other than Object), thus preventing the addition of polymorphic
functionality through an abstract or concrete base class.

In a second situation, you need to add polymorphic functionality to a structure. Abstract or concrete
classes cannot be used to add polymorphic functionality to a structure.

Solution

In these circumstances, as opposed to those explored in Recipe 3.4, implement polymorphism using
an interface instead of an abstract or concrete base class. The code shown here defines two different
classes that inherit from List<T>:

 public class InventoryItems<T> : List<T>
 {
 // …
 }

 public class Personnel<T> : List<T>
 {
 // …
 }

You want to add the ability to print from either of these two objects polymorphically. To do this,
create an interface called IPrint that defines a Print method to be implemented in a class:

 public interface IPrint
 {
 void Print();
 }

Implementing the IPrint interface on the InventoryItems<T> and Personnel<T> classes gives you the
following code:

 public class InventoryItems<T> : List<T>, IPrint
 {
 public void Print()
 {
 foreach (T obj in this)
 {
 Console.WriteLine("Inventory Item: " + obj);
 }
 }
 }

 public class Personnel<T> : List<T>, IPrint
 {
 public void Print()
 {
 foreach (T obj in this)
 {
 Console.WriteLine("Person: " + obj);
 }
 }
 }

The following two methods, TestIPrintInterface and CommonPrintMethod, show how any object that
implements the IPrint interface can be passed to the CommonPrintMethod polymorphically and
printed:

 public void TestIPrintInterface()
 {
 // Create an InventoryItems object and populate it.
 IPrint obj = new InventoryItems<string>();
 ((InventoryItems<string>)obj).Add("Item1");
 ((InventoryItems<string>)obj).Add("Item2");

 // Print this object.
 CommonPrintMethod(obj);

 Console.WriteLine();

 // Create a Personnel object and populate it.
 obj = new Personnel<string>();
 ((Personnel<string>)obj).Add("Person1");
 ((Personnel<string>)obj).Add("Person2");

 // Print this object.
 CommonPrintMethod(obj);
 }
 private void CommonPrintMethod(IPrint obj)
 {

 Console.WriteLine(obj.ToString());
 obj.Print();
 }

The output of these methods is shown here:

 CSharpRecipes.ClassAndStructs+InventoryItems`1[System.String]
 Inventory Item: Item1
 Inventory Item: Item2

 CSharpRecipes.ClassAndStructs+Personnel`1[System.String]
 Person: Person1
 Person: Person2

Discussion

The use of interfaces is found throughout the FCL. One example is the IComparer interface: this
interface requires a class to implement the Compare method, which compares two objects to
determine if one is greater than, less than, or equal to another object. This method is used by the
Array, ArrayList, and List<T> Sort and BinarySearch static methods to allow sorting and searching
to be performed on the elements contained in an array. For example, if an array contains objects
that implement a custom IComparer interface, the static Sort and BinarySearch methods will use this
interface to customize their sorting/searching of elements in that array.

Another example is found in the IEnumerable and IEnumerator interfaces. These interfaces let you
iterate over items in a container using the foreach loop. It does not matter what the contained items
are or what the containing object is. The foreach loop can simply use these interfaces regardless of
the type of objects that implement them.

In many cases, you will choose to implement polymorphism through abstract base classes, as
discussed in Recipe 3.4; however, there are some cases in which interfaces are superior. Interfaces
should be considered before abstract base classes in the following cases:

When several unrelated classes need to implement a common subset of their functionality
polymorphically. The Solution to this recipe demonstrates this concept.

If one or more of the classes already inherits from a base class, an interface may be added to
implement polymorphism. In the Solution for this recipe, for instance, the InventoryItem class
could have inherited from an existing Item class. This would make it impossible to use an
abstract base class. An interface can be added in this case to implement polymorphism.

If, in future versions of your data type, you will want to add new polymorphic functionality
without breaking the existing interface of your data type. Interface polymorphism provides
better versioning than abstract or concrete base classes. To add new polymorphic functionality,
implement a new interface containing this functionality on your existing data type.

When you need to implement polymorphism on value types.

Implementing polymorphism through interfaces works not only on reference types, but also with
value types. Value types cannot derive from any other type except ValueType; this prevents them
from overriding an abstract base class. You must instead use interfaces to implement polymorphism.
This can be shown by the following structure declarations:

 public struct InventoryItems<T> : List<T>, IPrint
 public struct Personnel<T> : List<T>, IPrint

These structures can act polymorphically on the IPrint interface.

These structures now can act polymorphically on the IPrint interface. When implementing an
interface on a structure, be aware that a boxing operation will be performed whenever the value is
cast to the interface type (in this case, the IPrint interface). The boxed object is a copy of the
original structure. This means that if you modify the boxed object, using a reference to the interface,
you will be modifying a copy of the original structure.

See Also

See Recipe 3.4; see the "interface Keyword" topic in the MSDN documentation.

Recipe 3.17. Calling the Same Method on Multiple Object
Types

Problem

You need to perform a particular action on a set of dissimilar objects contained within an array or
collection, preferably without having to know each individual object's type.

Solution

Use interfaces in a polymorphic manner. The following interface contains a single method, Sort,
which allows sorting to be performed on the object that implements this interface:

 public interface IMySort
 {
 void Sort();
 }

The next three classes implement the IMySort interface. These classes all share the same Sort
method, but each class implements it in a different way:

 public class CharContainer : IMySort
 {
 public void Sort()
 {
 // Do character type sorting here.

 Console.WriteLine("Characters sorted");
 }
 }

 public class NumberContainer : IMySort
 {
 public void Sort()
 {
 // Do numeric type sorting here.

 Console.WriteLine("Numbers sorted");

 }
 }
 public class ObjectContainer : IMySort
 {
 public void Sort()
 {
 // Do object type sorting here.

 Console.WriteLine("Objects sorted");
 }
 }

The SortAllObjects method accepts an array of objects:

 public void SortAllObjects(IMySort[] sortableObjects)
 {
 foreach (IMySort m in sortableObjects)
 {
 m.Sort();
 }
 }

If this method is called as follows:

 Obj.SortAllObjects(new IMySort[3] {new CharContainer(),
 new NumberContainer(),
 new ObjectContainer()});

the following is displayed:

 Characters sorted
 Numbers sorted
 Objects sorted

Discussion

The foreach loop is useful not only for iterating over individual elements in a collection or an array,
but also in iterating over a specific interface implemented by each element in a collection or array.
Using this technique, interface members may be used in a similar manner on each element, even if
the elements are unrelated object types. Consider the following array of objects:

 Object[] objs = new Object[6] {new CharContainer(),
 new NumberContainer(),
 new CharContainer(),
 new ObjectContainer(),
 new NumberContainer(),
 new ObjectContainer()};

This array contains several objects of differing types. The one thread of similarity that runs through
each type is the implementation of the IMySort interface, defined as follows:

 public interface IMySort
 {
 void Sort();
 }

Passing the Objects array in to the following method allows each Sort method to be called from each
object in the Objects array:

 public void SortAllObjects(object[] sortableObjects)
 {
 foreach (IMySort m in sortableObjects)
 {
 m.Sort();
 }
 }

The foreach loop in this method is able to treat each object in the sortableObjects array in the same
way because each object in the sortableObjects array is cast to its IMySort interface and used as
such.

If the foreach loop encounters a sortableObjects array that contains one or more objects that do not
implement the IMySort interface, an InvalidCastException will be thrown. To prevent an exception
from being thrown, while at the same time allowing the foreach loop to iterate over all elements in
the sortableObjects array, you can use the following modified code:

 public void SortAllObjects(object[] sortableObjects)
 {
 foreach (object o in sortableObjects)
 {
 IMySort sortObject = o as IMySort;
 if (sortObject!= null)
 {

 sortObject.Sort();
 }
 }
 }

This modified method will now test each element of the sortableObjects array to first determine
whether it can be cast to an IMySort interface. If it can be cast to this interface type, the variable
sortObject will not be null and the if statement will allow the Sort method on that object to be
called.

See Also

See the "interface Keyword," "Base Class Usage Guidelines," and "When to Use Interfaces" topics in
the MSDN documentation.

Recipe 3.18. Adding a Notification Callback Using an
Interface

Problem

You need a flexible, well-performing callback mechanism that does not make use of a delegate
because you need more than one callback method. So the relationship between the caller and the
callee is more complex than can easily be represented through the one method signature that you
get with a delegate.

Solution

Use an interface to provide callback methods. The INotificationCallbacks interface contains two
methods that will be used by a client as callback methods. The first method,
FinishedProcessingSubGroup, is called when an amount specified in the amount parameter is reached.
The second method, FinishedProcessingGroup, is called when all processing is complete:

 public interface INotificationCallbacks
 {
 void FinishedProcessingSubGroup(int amount);
 void FinishedProcessingGroup();
 }

The NotifyClient class shown in Example 3-11 implements the INotificationCallbacks interface.
This class contains the implementation details for each of the callback methods.

Example 3-11. Implementing the INotificationCallbacks interface

public class NotifyClient : INotificationCallbacks
{
 public void FinishedProcessingSubGroup(int amount)
 {
 Console.WriteLine("Finished processing " + amount + " items");
 }

 public void FinishedProcessingGroup()
 {
 Console.WriteLine("Processing complete");
 }
}

The Task class shown in Example 3-12 implements its callbacks through the NotifyClient object (see
Example 3-11). The Task class contains a field called notificationObj, which stores a reference to
the NotifyClient object that is passed to it either through construction or through the
AttachToCallback method. The UnAttachCallback method removes the NotifyClient reference from
this object. The ProcessSomething method invokes the callback methods.

Example 3-12. Implementing callbacks with the NotifyClient object

public class Task
{
 public Task(NotifyClient notifyClient)
 {
 notificationObj = notifyClient;
 }

 NotifyClient notificationObj = null;

 public void AttachToCallback(NotifyClient notifyClient)
 {
 notificationObj = notifyClient;
 }

 public void UnAttachCallback()
 {
 notificationObj = null;
 }

 public void ProcessSomething()
 {
 // This method could be any type of processing.

 for (int counter = 0; counter < 100; counter++)

 {
 if ((counter % 10) == 0)
 {
 if (notificationObj != null)
 {
 notificationObj.FinishedProcessingSubGroup(counter);
 }
 }
 }

 if (notificationObj != null)
 {
 notificationObj.FinishedProcessingGroup();
 }
 }
}

The CallBackThroughIFace method uses callback features of the Task class as follows:

 public void CallBackThroughIFace()
 {
 NotifyClient notificationObj = new NotifyClient();
 Task t = new Task(notificationObj);
 t.ProcessSomething();

 Console.WriteLine();

 t.UnAttachCallback();
 t.ProcessSomething();

 Console.WriteLine();

 t.AttachToCallback(notificationObj);
 t.ProcessSomething();

 Console.WriteLine();

 t.UnAttachCallback();
 t.ProcessSomething();
 }

This method displays the following:

 Finished processing 0 items
 Finished processing 10 items
 Finished processing 20 items

 Finished processing 30 items
 Finished processing 40 items
 Finished processing 50 items
 Finished processing 60 items
 Finished processing 70 items
 Finished processing 80 items
 Finished processing 90 items
 Processing complete

 Finished processing 0 items
 Finished processing 10 items
 Finished processing 20 items
 Finished processing 30 items
 Finished processing 40 items
 Finished processing 50 items
 Finished processing 60 items
 Finished processing 70 items
 Finished processing 80 items
 Finished processing 90 items
 Processing complete

The current Task class shown in Example 3-13 is designed to allow only a single notification client to
be used; in many cases, this would be a severe limitation. The Task class could be modified to handle
multiple callbacks, similar to a multicast delegate. The MultiTask class is a modification of the Task
class to do just this.

Example 3-13. Handling multiple callbacks

public class MultiTask
{
 public MultiTask(NotifyClient notifyClient)
 {
 notificationObjs.Add(notifyClient);
 }

 ArrayList notificationObjs = new ArrayList();

 public void AttachToCallback(NotifyClient notifyClient)
 {
 notificationObjs.Add(notifyClient);
 }

 public void UnAttachCallback(NotifyClient notifyClient)
 {
 notificationObjs.Remove(notifyClient);
 }

 public void UnAttachAllCallbacks()
 {
 notificationObjs.Clear();
 }

 public void ProcessSomething()
 {
 // This method could be any type of processing.

 for (int counter = 0; counter < 100; counter++)
 {
 if ((counter % 10) == 0)
 {
 foreach (NotifyClient callback in notificationObjs)
 {
 callback.FinishedProcessingSubGroup(counter);
 }
 }
 }

 foreach (NotifyClient callback in notificationObjs)
 {
 callback.FinishedProcessingGroup();
 }
 }
}

The MultiCallBackThroughIFace method uses callback features of the MultiTask class as follows:

 public void MultiCallBackThroughIFace()
 {
 NotifyClient notificationObj = new NotifyClient();
 MultiTask t = new MultiTask(notificationObj);
 t.ProcessSomething();

 Console.WriteLine();

 t.AttachToCallback(notificationObj);
 t.ProcessSomething();

 Console.WriteLine();

 t.UnAttachCallback(notificationObj);
 t.ProcessSomething();

 Console.WriteLine();

 t.UnAttachAllCallbacks();

 t.ProcessSomething();
 }

This method displays the following:

 Finished processing 0 items
 Finished processing 10 items
 Finished processing 20 items
 Finished processing 30 items
 Finished processing 40 items
 Finished processing 50 items
 Finished processing 60 items
 Finished processing 70 items
 Finished processing 80 items
 Finished processing 90 items
 Processing complete

 Finished processing 0 items
 Finished processing 0 items
 Finished processing 10 items
 Finished processing 10 items
 Finished processing 20 items
 Finished processing 20 items
 Finished processing 30 items
 Finished processing 30 items
 Finished processing 40 items
 Finished processing 40 items
 Finished processing 50 items
 Finished processing 50 items
 Finished processing 60 items
 Finished processing 60 items
 Finished processing 70 items
 Finished processing 70 items
 Finished processing 80 items
 Finished processing 80 items
 Finished processing 90 items
 Finished processing 90 items
 Processing complete
 Processing complete

 Finished processing 0 items
 Finished processing 10 items
 Finished processing 20 items
 Finished processing 30 items
 Finished processing 40 items
 Finished processing 50 items
 Finished processing 60 items
 Finished processing 70 items
 Finished processing 80 items

 Finished processing 90 items
 Processing complete

Another shortcoming exists with both the Task and MultiTask classes. What if you need several types
of client notification classes? For example, you already have the NotifyClient class. What if you add
a second class, NotifyClientType2, which also implements the INotificationCallbacks interface?
This new class is shown here:

 public class NotifyClientType2 : INotificationCallbacks
 {
 public void FinishedProcessingSubGroup(int amount)
 {
 Console.WriteLine("[Type2] Finished processing " + amount + " items");
 }

 public void FinishedProcessingGroup()
 {
 Console.WriteLine("[Type2] Processing complete");
 }
 }

The current code base cannot handle this new client notification type. To fix this problem, you can
replace all occurrences of the type NotifyClient with the interface type INotificationCallbacks. This
allows you to use any type of notification client with your Task and MultiTask objects. The
modifications to these classes are highlighted in Example 3-14.

Example 3-14. Using multiple notification clients

public class Task
{
 public Task(INotificationCallbacks notifyClient)
 {
 notificationObj = notifyClient;
 }

 INotificationCallbacks notificationObj = null;

 public void AttachToCallback(INotificationCallbacks notifyClient)
 {
 notificationObj = notifyClient;
 }

 …

}

public class MultiTask
{
 public MultiTask(INotificationCallbacks notifyClient)
 {
 notificationObjs.Add(notifyClient);
 }

 ArrayList notificationObjs = new ArrayList();

 public void AttachToCallback(INotificationCallbacks notifyClient)
 {
 notificationObjs.Add(notifyClient);
 }

 public void UnAttachCallback(INotificationCallbacks notifyClient)
 {
 notificationObjs.Remove(notifyClient);
 }

 …

 public void ProcessSomething()
 {
 // This method could be any type of processing.

 for (int counter = 0; counter < 100; counter++)
 {
 if ((counter % 10) == 0)
 {
 foreach (INotificationCallbacks callback in notificationObjs)
 {
 callback.FinishedProcessingSubGroup(counter);
 }
 }
 }

 foreach (INotificationCallbacks callback in notificationObjs)
 {
 callback.FinishedProcessingGroup();
 }
 }
}

Now you can use either of the client-notification classes interchangeably. This is shown in Example 3-
15 in the modified methods MultiCallBackThroughIFace and CallBackThroughIFace.

Example 3-15. Using client notification classes interchangeably

public void CallBackThroughIFace()
{
 INotificationCallbacks notificationObj = new NotifyClient();
 Task t = new Task(notificationObj);
 t.ProcessSomething();

 Console.WriteLine();

 t.UnAttachCallback();
 t.ProcessSomething();

 Console.WriteLine();

 INotificationCallbacks notificationObj2 = new NotifyClientType2();
 t.AttachToCallback(notificationObj2);
 t.ProcessSomething();

 Console.WriteLine();

 t.UnAttachCallback();
 t.ProcessSomething();
}

public void MultiCallBackThroughIFace()
{
 INotificationCallbacks notificationObj = new NotifyClient();
 MultiTask t = new MultiTask(notificationObj);
 t.ProcessSomething();

 Console.WriteLine();

 INotificationCallbacks notificationObj2 = new NotifyClientType2();
 t.AttachToCallback(notificationObj2);
 t.ProcessSomething();

 Console.WriteLine();

 t.UnAttachCallback(notificationObj);
 t.ProcessSomething();

 Console.WriteLine();

 t.UnAttachAllCallbacks();
 t.ProcessSomething();

}

The highlighted code has been modified from the original code.

Discussion

Using an interface mechanism for callbacks is a simple but effective alternative to using delegates.
The interface mechanism is only slightly faster than using a delegate since you are simply making a
call through an interface.

This interface mechanism requires a notification client (NotifyClient) that implements a callback
interface (INotificationCallbacks) to be created. This notification client is then passed to an object
that is required to call back to this client. This object is then able to store a reference to the
notification client and use it appropriately whenever its callback methods are used.

When using the callback methods on the notificationObj, you should test to determine whether the
notificationObj is null; if so, you should not use it or else a NullReferenceException will be thrown:

 if (notificationObj != null)
 {
 notificationObj.FinishedProcessingGroup();
 }

Interface callbacks cannot always be used in place of delegates. The following list indicates where to
use each type of callback:

Use a delegate if you require ease of coding over performance.

Use the interface callback mechanism if you need potentially complex callbacks. An example of
this could be adding an interface with a single callback method that will be used to call back into
an overloaded method. The number and types of parameters determine the method chosen.

You need to perform a number of operations, not just a single operation (e.g., calling method1 to
do some work, then calling method2 to do some more work, etc.).

See Also

See the "Interface Keyword," "Base Class Usage Guidelines," and "When to Use Interfaces" topics in
the MSDN documentation.

Recipe 3.19. Using Multiple Entry Points to Version an
Application

Problem

Some companies reuse the same duplicated, but slightly modified, application, with each version built
especially for a particular client or group of clients. Bug fixes as well as testing, adding, and modifying
code in each of these code bases can get very confusing as the number of duplicated applications
grows. You need a way of managing this increasing complexity.

Solution

Instead of copying the entire application to a different area, modifying the duplicated code, and
creating a special build script for it, you could compile the same application (with all modifications
included, of course) and use a different entry point based on the client. To do this, add a new class
with a new Main entry point method, one for each client or group of clients:

 public class ClientABC
 {
 public static void Main()
 {
 //Startup/Initialization code for client ABC
 }
 }
 public class ClientXYZ
 {
 public static void Main()
 {
 //Startup/Initialization code for client XYZ
 }
 }

The build scripts can be modified to build the same application using a different entry point that
matches up to one or more clients:

 csc /out:appaBC.exe *.cs /main:ClientABC
 csc /out:AppXYZ.exe *.cs /main:ClientXYZ

Discussion

It is very difficult to work with several slightly different copies of the same application. If a bug is
found and fixed in one application, it must be fixed in all of the copies as well. This can be a time-
consuming, error-prone, and arduous task. To make things easier on your coding team, consider
using multiple entry points into your application, one for each client or set of clients. Using this
technique, you can fix code in one place as opposed to fixing the same bug over multiple applications.

The /main compiler switch controls the class in which the compiler looks for a public static Main
method that it can use as an entry point. If the compiler finds a /main switch, the Main method at the
location specified in this switch is used as the entry point and all other Main methods in the
application are considered as regular methods and nonentry points.

You should note that only one Main enTRy point method is allowed per class. If two or more are found
in a single class, a compiler error will result. You can have entry points in both a nested class and its
parent class, as shown here:

 public class ClientABC
 {
 public static void Main()
 {
 //Startup/Initialization code for client ABC
 }

 public class ClientXYZ
 {
 public static void Main()
 {
 //Startup/Initialization code for client XYZ
 }
 }
 }

The /main compiler option would have to be modified in this case to the following:

 csc /out:appaBC.exe *.cs /main:ClientABC
 csc /out:AppXYZ.exe *.cs /main:ClientABC.Clientxyz

Also note that if classes ClientABC and ClientXYZ were nested in a namespacethe MyCompany
namespace, for instancethe namespace would also have to be added to this compiler switch, as
follows:

 csc /out:appaBC.exe *.cs /main:MyCompany.ClientABC
 csc /out:AppXYZ.exe *.cs /main:MyCompany.ClientABC.Clientxyz

The /main switch can be modified through the Visual Studio .NET Property Pages dialog box. Open
this dialog box, then click on the Application tab. On that tab you will see a Startup object drop-down
list. The fully qualified class name containing the Main method entry point can be entered in this
drop-down list.

See Also

See the "/main Compiler Option" and the "Main" topics in the MSDN documentation.

Recipe 3.20. Preventing the Creation of an Only Partially
Initialized Object

Problem

You need to force a client to use an overloaded constructor, which accepts parameters to fully
initialize the object, rather than a default constructor, which may not fully initialize the object. Often
a default constructor cannot fully initialize an object since it may not have the necessary information
to do it. Using a default constructor, the client is required to perform a multistep process; for
instance, create the object and then initialize its fields through various properties and/or methods.

Solution

By removing the default constructor and strictly using parameterized constructors, the client is forced
to provide the necessary initialization parameters during object creation. The following Log<T> class
will not initialize its logStream field to a StreamWriter object on construction:

 public class Log<T>
 where T: System.IO.TextWriter
 {
 private T logStream = null;

 public T LogStream
 {
 get {return (logStream);}
 set {logStream = value;}
 }

 // Use the LogStream field…
 public void Write(string text)
 {
 logStream.Write(text);
 }
 }

The C# compiler will automatically create a default constructor that calls the default constructor of its
base class, if you omit the constructor for a class. The following modified class will prevent the default
constructor from being created:

 public class Log<T>
 where T: System.IO.TextWriter
 {

 public Log(T logStream)
 {
 this.logStream = logStream;
 }

 private T logStream = null;

 public T LogStream
 {
 get {return (logStream);}
 set {logStream = value;}
 }

 // use the LogStream field…
 public void Write(string text)
 {
 logStream.Write(text);
 }
 }

When a client creates an object from this class, the client is forced to initialize the LogStream field.

Discussion

There is a small problem with not supplying a default constructor. If a class inherits from Log<T> and
does not supply a constructor of its own, the C# compiler will produce the rather cryptic error "No
overload for method 'Log' takes' '0' arguments." The following class produces this error:

 public class EnhancedLog<T> : Log<T>
 where T : System.IO.TextWriter
 {
 public EnhancedLog (T logStream)
 {
 // Initialize…
 }
 }

What this means is that Log<T> does not contain a default constructor. The C# compiler automatically
adds a call to the base class's default constructor, if you do not specify otherwise. Therefore, the
EnhancedLog<T> constructor contains an unseen call (this call can be seen using Ildasm) to the default

constructor of the Log<T> class.

This problem can be solved in one of several ways. First, you could simply add a protected default
constructor to the Log<T> class. This would prevent the creation of a Log<T> object using the default
constructor, but would allow classes inheriting from Log<T> to do so without problems. A second
method is to use the base keyword to direct the constructor to call a particular constructor in the
base class. The following EnhancedLog<T> class uses the base keyword to call the parameterized
constructor of the base Log<T> class, passing in a StreamWriter object:

 public class EnhancedLog<T> : Log<T>
 where T : System.IO.TextWriter
 {
 public EnhancedLog (T logStream) : base(logStream)
 {
 // Initialize…
 }
 }

A third way to solve this problem is to make the Log<T> class noninheritable by adding the sealed
keyword to the class declaration. While this prevents the problem of calling the default constructor, it
also prevents others from inheriting from and extending the Log<T> class. For many cases, this third
solution is not the best one.

Recipe 3.21. Returning Multiple Items from a Method

Problem

In many cases, a single return value for a method is not enough. You need a way to return more than
one item from a method.

Solution

Use the out keyword on parameters that will act as return parameters. The following method accepts
an inputShape parameter and calculates height, width , and depth from that value:

 public void ReturnDimensions(int inputShape,
 out int height,
 out int width,
 out int depth)
 {
 height = 0;
 width = 0;
 depth = 0;

 // Calculate height, width, and depth from the inputShape value.
 }

This method would be called in the following manner:

 // Declare output parameters.
 int height;
 int width;
 int depth;

 // Call method and return the height, width, and depth.
 Obj.ReturnDimensions(1, out height, out width, out depth);

Another method is to return a class or structure containing all the return values. The previous method
has been modified to return a structure instead of using out arguments:

 public Dimensions ReturnDimensions(int inputShape)

 {
 // The default ctor automatically defaults this structure's members to 0.
 Dimensions objDim = new Dimensions();

 // Calculate objDim.Height, objDim.Width, objDim.Depth from the inputShape value.

 return (objDim);
 }

where Dimensions is defined as follows:

 public struct Dimensions
 {
 int Height;
 int Width;
 int Depth;
 }

This method would now be called in this manner:

 // Call method and return the height, width, and depth.
 Dimensions objDim = obj.ReturnDimensions(1);

Discussion

Marking a parameter in a method signature with the out keyword indicates that this parameter will be
initialized and returned by this method. This trick is useful when a method is required to return more
than one value. A method can, at most, have only one return value, but through the use of the out
keyword, you can mark several parameters as a kind of return value.

To set up an out parameter, the parameter in the method signature is marked with the out keyword,
shown here:

 public void ReturnDimensions(int inputShape,
 out int height,
 out int width,
 out int depth)
 {
 …
 }

To call this method, you must also mark the calling method's arguments with the out keyword, shown
here:

 obj.ReturnDimensions(1, out height, out width, out depth);

The out arguments in this method call do not have to be initialized; they can simply be declared and
passed in to the ReturnDimensions method. Regardless of whether they are initialized before the
method call, they must be initialized before they are used within the ReturnDimensions method. Even if
they are not used through every path in the ReturnDimensions method, they still must be initialized.
That is why this method starts out with the following three lines of code:

 height = 0;
 width = 0;
 depth = 0;

You may be wondering why you couldn't use a ref parameter instead of the out parameter, as both
allow a method to change the value of an argument marked as such. The answer is that an out
parameter makes the code somewhat self-documenting. You know that when an out parameter is
encountered, this parameter is acting as a return value. In addition, an out parameter does not require
the extra work to be initialized before it is passed in to the method, which a ref parameter does.

The out parameter was originally designed for marshaling scenarios. An out
parameter does not have to be marshaled when the method is called; rather, it is
marshaled once when the method returns the data to the caller. Any other type
of call (by-value or by-reference using the ref keyword) requires that the value
be marshaled in both directions. Using the out keyword in marshaling scenarios
improves remoting performance.

Recipe 3.22. Parsing Command-Line Parameters

Problem

You require your applications to accept one or more command-line parameters in a standard format.
You need to access and parse the entire command line passed to your application.

Solution

Use the ParseCmdLine class shown in Example 3-16 to help with parsing command-line parameters.

Example 3-16. Parsing command-line parameters

using System;
using System.Diagnostics;
public class ParseCmdLine
{
 // All args are delimited by tab or space.
 // All double-quotes are removed except when escaped '\"'.
 // All single-quotes are left untouched.

 public ParseCmdLine() {}

 public virtual string ParseSwitch(string arg)
 {
 arg = arg.TrimStart(new char[2] {'/', '-'});

 return (arg);
 }

 public virtual void ParseSwitchColonArg(string arg, out string outSwitch,
 out string outArgument)
 {
 outSwitch = "";
 outArgument = "";

 try
 {
 // This is a switch or switch/argument pair.
 arg = arg.TrimStart(new char[2] {'/', '-'});

 if (arg.IndexOf(':') >= 0)
 {

 outSwitch = arg.Substring(0, arg.IndexOf(':'));
 outArgument = arg.Substring(arg.IndexOf(':') + 1);

 if (outArgument.Trim().Length <= 0)
 {
 throw (new ArgumentException(
 "Command-Line parameter error: switch " +
 arg +
 " must be followed by one or more arguments.", arg));
 }
 }
 else
 {
 throw (new ArgumentException(
 "Command-Line parameter error: argument " +
 arg +
 " must be in the form of a 'switch:argument}' pair.",
 arg));
 }
 }
 catch (ArgumentException ae)
 {
 // Re-throw the exception to be handled in the calling method.
 throw;
 }
 catch (Exception e)
 {
 // Wrap an ArgumentException around the exception thrown.
 throw (new ArgumentException("General command-Line parameter error",
 arg, e));
 }
 }

 public virtual void ParseSwitchColonArgs(string arg, out string outSwitch,
 out string[] outArguments)
 {
 outSwitch = "";
 outArguments = null;

 try
 {
 // This is a switch or switch/argument pair.
 arg = arg.TrimStart(new char[2] {'/', '-'});

 if (arg.IndexOf(':') >= 0)

 {
 outSwitch = arg.Substring(0, arg.IndexOf(':'));
 string Arguments = arg.Substring(arg.IndexOf(':') + 1);

 if (Arguments.Trim().Length <= 0)
 {

 throw (new ArgumentException(
 "Command-Line parameter error: switch " +
 arg +
 " must be followed by one or more arguments.", arg));
 }

 outArguments = Arguments.Split(new char[1] {';'});
 }
 else
 {
 throw (new ArgumentException(
 "Command-Line parameter error: argument " +
 arg +
 " must be in the form of a 'switch:argument{;argument}' pair.",
 arg));
 }
 }
 catch (Exception e)
 {
 // Wrap an ArgumentException around the exception thrown.
 throw ;
 }
 }

 public virtual void DisplayErrorMsg()
 {
 DisplayErrorMsg("");
 }

 public virtual void DisplayErrorMsg(string msg)
 {
 Console.WriteLine
 ("An error occurred while processing the command-line arguments:");
 Console.WriteLine(msg);
 Console.WriteLine();

 FileVersionInfo version =
 Process.GetCurrentProcess().MainModule.FileVersionInfo;
 if (Process.GetCurrentProcess().ProcessName.Trim().Length > 0)
 {
 Console.WriteLine(Process.GetCurrentProcess().ProcessName);
 }
 else
 {
 Console.WriteLine("Product Name: " + version.ProductName);
 }

 Console.WriteLine("Version " + version.FileVersion);
 Console.WriteLine("Copyright " + version.LegalCopyright);
 Console.WriteLine("TradeMarks " + version.LegalTrademarks);

 DisplayHelp();

 }

 public virtual void DisplayHelp()
 {
 Console.WriteLine("See help for command-line usage.");
 }
}

Discussion

Before command-line parameters can be parsed, a common format must first be decided upon. The
format for this recipe follows the command-line format for the Visual C# .NET language compiler. The
format used is defined as follows:

All command-line arguments are separated by one or more whitespace characters.

Each argument may start with either a - or / character, but not both. If it does not, that
argument is considered a literal, such as a filename.

Each argument that starts with either the - or / character may be divided up into a switch
followed by a colon followed by one or more arguments separated with the ; character. The
command-line parameter -sw:arg1;arg2;arg3 is divided up into a switch (sw) and three
arguments (arg1, arg2 , and arg3). Note that there should not be any spaces in the full
argument; otherwise, the runtime command-line parser will split up the argument into two or
more arguments.

Strings delineated with double quotes, such as "c:\test\file.log" will have their double quotes
stripped off. This is a function of the operating system interpreting the arguments passed in to
your application.

Single quotes are not stripped off.

To preserve double quotes, precede the double quote character with the \ escape sequence
character.

The \ character is handled as an escape sequence character only when followed by a double
quotein which case, only the double quote is displayed.

The ^ character is handled by the runtime command-line parser as a special character.

Fortunately, the runtime command-line parser (for Visual Studio .NET, this would be the CLR) handles
most of this before your application receives the individual parsed arguments.

The runtime command-line parser passes a string[] containing each parsed argument to the entry
point of your application. The entry point can take one of the following forms:

 public static void Main()
 public static int Main()

 public static void Main(string[] args)
 public static int Main(string[] args)

The first two accept no arguments, but the last two accept the array of parsed command-line
arguments. Note that the static Environment. CommandLine property will also return a string containing
the entire command line, and the static Environment. GetCommandLineArgs method will return an array
of strings containing the parsed command-line arguments. The individual arguments in this array can
then be passed to the various methods of the ParseCmdLine class. Example 3-17 shows how this can be
accomplished.

Example 3-17. Passing parameters to the command-line parser

[STAThread]
public static void Main(string[] args)
{

 // The application should be initialized here assuming no command-line
 // parameters were found.

 ParseCmdLine parse = new ParseCmdLine();

 try
 {
 // Create an array of all possible command-line parameters
 // and how to parse them.
 object[,] mySwitches = new object[2, 4] {
 {"file", "output", "trialmode", "debugoutput"},
 {ArgType.Simple, ArgType.Compound, ArgType.SimpleSwitch,
 ArgType.Complex}};
 // Loop through all command-line parameters.
 for (int counter = 0; counter < args.Length; counter++)
 {
 args[counter] = args[counter].TrimStart(new char[2] {'/', '-'});

 // Search for the correct ArgType and parse argument according to
 // this ArgType.
 for (int index = 0; index <= mySwitches.GetUpperBound(1); index++)
 {
 string theSwitch;
 string theArgument;
 string[] theArguments;

 if (args[counter].StartsWith((string)mySwitches[0, index]))
 {
 // Parse each argument into switch:arg1;arg2…
 switch ((ArgType)mySwitches[1, index])
 {
 case ArgType.Simple:

 theSwitch = args[counter];
 break;

 case ArgType.SimpleSwitch:
 theSwitch = parse.ParseSwitch(args[counter]);
 break;

 case ArgType.Compound:
 parse.ParseSwitchColonArg(args[counter],out theSwitch,
 out theArgument);
 break;

 case ArgType.Complex:
 parse.ParseSwitchColonArgs(args[counter],out theSwitch,
 out theArguments);
 break;

 default:
 throw (new ArgumentException(
 "Cmd-Line parameter error: ArgType enumeration " +
 mySwitches[1, index].ToString() +
 " not recognized."));
 }

 // Implement functionality to handle each parsed
 // command-line parameter.
 switch ((string)mySwitches[0, index])
 {
 case "file":
 // Handle this switch here…
 break;

 case "output":
 // Handle this switch here…
 break;

 case "trialmode":
 // Handle this switch and its argument here…
 break;

 case "debugoutput":
 // Handle this switch and its arguments here…
 break;

 default:
 throw (new ArgumentException(
 "Cmd-Line parameter error: Switch " +
 mySwitches[0, index].ToString() +
 " not recognized."));
 }
 }
 }

 }
 }
 catch (ArgumentException ae)
 {
 parse.DisplayErrorMsg(ae.ToString());
 return;
 }
 catch (Exception e)
 {
 // Handle other exceptions here…
 }
}

The ArgType enumeration is defined as follows:

 enum ArgType
 {
 Simple = 0, // A simple file name with no preceding '/' or '-' chars
 SimpleSwitch = 1, // A switch preceded by '/' or '-' chars
 Compound = 2, // A 'switch:argument' pair preceded by '/' or '-' chars
 Complex = 3 // A 'switch:argument{;argument}' pair with multiple args
 // preceded by '/' or '-' chars
 }

Passing in the following command-line arguments to this application:

 MyApp c:\input\infile.txt -output:d:\outfile.txt -trialmode
 /debugoutput:c:\test1.log;\\myserver\history\test2.log

results in the following parsed switches and arguments:

 Literal: c:\input\infile.txt

 Switch: output
 Argument: d:\outfile.txt
 Switch: trialmode

 Switch: debugoutput
 Arguments: c:\test1.log
 \\myserver\history\test2.log

If you input incorrectly formed command-line parameters, such as forgetting to add arguments to the
-output switch, you get the following output:

 An error has occurred while processing the command-line arguments:
 System.ArgumentException: Command-Line parameter error: argument output must be
 in the form of a 'switch:argument{;argument}' pair.
 Parameter name: output
 at Chapter_Code.ParseCmdLine.ParseSwitchColonArg(String arg,
 String& outSwitch, String& outArgument)
 in c:\book cs cookbook\code\chapter3.cs:line 238
 at Chapter_Code.Class1.Main(String[] args)
 in c:\book cs cookbook\code\main.cs:line 55

 CHAPTER_CODE.EXE
 Version 1.0.1009.12739
 Copyright
 TradeMarks
 See help for command-line usage.

This may be too much output to show to the user; for example, you might not want the entire
exception to be displayed. In addition, the last line in the message indicates that you should see the
help files for information on the correct command-line usage. It would be more useful to display the
correct command-line arguments and some brief information on their usage. To do this, you can
extend the ParseCmdLine class and make your own specialized class to use in your application. The
SpecializedParseCmdLine class in Example 3-18 shows how this is accomplished.

Example 3-18. Implementing a specialized command-line parser

public class SpecializedParseCmdLine : ParseCmdLine
{
 public SpecializedParseCmdLine() {}

 public override string ParseSwitch(string arg)
 {
 if (arg.IndexOf(':') >= 0)
 {
 throw (new ArgumentException("Command-Line parameter error: switch " +
 arg + " must not be followed by one or more arguments.", arg));
 }

 return (base.ParseSwitch(arg));
 }

 public virtual void DisplayErrorMsg()
 {

 DisplayErrorMsg("");
 }
 public virtual void DisplayErrorMsg(string msg)
 {
 Console.WriteLine(
 "An error has occurred while processing the command-line arguments:");
 Console.WriteLine();

 FileVersionInfo version =
 Process.GetCurrentProcess().MainModule.FileVersionInfo;
 if (Process.GetCurrentProcess().ProcessName.Trim().Length > 0)
 {
 Console.WriteLine(Process.GetCurrentProcess().ProcessName);
 }
 else
 {
 Console.WriteLine("Product Name: " + version.ProductName);
 }

 Console.WriteLine("Version " + version.FileVersion);
 Console.WriteLine("Copyright " + version.LegalCopyright);
 Console.WriteLine("TradeMarks " + version.LegalTrademarks);

 DisplayHelp();
 }
 public override void DisplayHelp()
 {
 // Display correct input args.
 base.DisplayHelp();

 Console.WriteLine("Chapter_Code [file | /output:projectfile | /trialmode |
 /debugoutput:file{;file}]");
 Console.WriteLine();
 Console.WriteLine("Available command-line switches:");
 Console.WriteLine("\tfile : The file to use as input.");
 Console.WriteLine("\toutput : The file to use as output.");
 Console.WriteLine("\ttrialmode : Turns on the trial mode, if present.");
 Console.WriteLine("\tdebugoutput : One or more files in which to dump
 debug information into.");
 }
}

This class overrides four methods of the ParseCmdLine class. The DisplayHelp method is overridden to
display the relevant information needed to correctly use the command-line parameters in your
application. The overloaded DisplayErrorMsg methods are overridden to prevent the lengthy exception
message from being displayed. Finally, the ParseSwitch method is overridden to add some more
preventive code that will disallow any arguments from being added to a switch that should not have
any arguments. By overriding other methods in the ParseCmdLine class, you can modify this class to
handle many other situations specific to your application.

See Also

See the "Main" and " Command-Line Arguments" topics in the MSDN documentation.

Recipe 3.23. Retrofitting a Class to Interoperate with COM

problem

An existing C# class needs to be usable by a COM object or will need to be usable sometime in the
future. You need to make your class work seamlessly with COM.

Solution

Microsoft has made COM interop quite easy. In fact, you really have to complete only two minor
steps to make your code visible to COM:

Set the Register for COM interop field in the project properties to true. This produces a type
library that can be used by a COM client.

1.

Use the Regasm.exe command-line tool to register the class. For example, to register the type
library for the ClassLibrary1.dll, you would do the following:

 regasm ClassLibrary1.dll /tlb:ClassLibrary1.tlb

2.

By default, this tool will make many decisions for you. For example, new GUIDs are created for your
classes and interfaces unless you specify a particular GUID to use. This can be a bad thing; it is
usually a good idea to explicitly specify which GUIDs your classes and interfaces are to use. To take
control of how your C# code is viewed and used from a COM client, you need to use a few attributes.
Table 3-4 contains a list of attributes and their descriptions that can be used to control these things.

Table 3-4. Attributes to control how a COM client views and uses your C#
code

Attribute name Description

GuidAttribute

Places a GUID on an assembly, class, struct, interface, enum, or
delegate. Prevents the Tlbimp (the type library converter tool, which
converts a COM type library into the equivalent metadata) from creating
a new GUID for this target.

Attribute name Description

ClassInterfaceAttribute

Defines the class interface type that will be applied to an assembly or
class. Valid interface types are:

AutoDispatch

An IDispatch interface will be exposed for this type. The interface
will support only late binding. This is the default.

AutoDual

The interface will support both early and late binding.

None

An interface will not be explicitly provided. Therefore, only late-
bound access is allowed through an IDispatch interface. Note that
this is when other explicit interfaces are not defined.

InterfaceTypeAttribute

Defines how an interface is exposed to COM clients. This attribute may
be used only on interfaces. Valid interface types are:

InterfaceIsDual

The interface will be exposed as a dual interface.

InterfaceIsIDispatch

The interface will be exposed as a dispinterface.

InterfaceIsIUnknown

The interface will be exposed as deriving from IUnknown.

If this attribute is not used, the interface will default to being exposed as
a dual interface.

ProgIdAttribute

Force the ProgId of a class to a defined string. An automatically
generated ProgId consists of the namespace and type name. If your
ProgId may exceed 39 characters (i.e., your namespace is equal to or
greater than 39 characters), you should use this attribute to manually
set a ProgId that is 39 characters or less. By default the ProgId is
generated from the full namespace and type name (e.g.,
Namespace1.Namespace2. TypeName).

Allows fine-grained control over which C# code is visible to a COM client.

ClassInterfaceAttribute

Defines the class interface type that will be applied to an assembly or
class. Valid interface types are:

AutoDispatch

An IDispatch interface will be exposed for this type. The interface
will support only late binding. This is the default.

AutoDual

The interface will support both early and late binding.

None

An interface will not be explicitly provided. Therefore, only late-
bound access is allowed through an IDispatch interface. Note that
this is when other explicit interfaces are not defined.

InterfaceTypeAttribute

Defines how an interface is exposed to COM clients. This attribute may
be used only on interfaces. Valid interface types are:

InterfaceIsDual

The interface will be exposed as a dual interface.

InterfaceIsIDispatch

The interface will be exposed as a dispinterface.

InterfaceIsIUnknown

The interface will be exposed as deriving from IUnknown.

If this attribute is not used, the interface will default to being exposed as
a dual interface.

ProgIdAttribute

Force the ProgId of a class to a defined string. An automatically
generated ProgId consists of the namespace and type name. If your
ProgId may exceed 39 characters (i.e., your namespace is equal to or
greater than 39 characters), you should use this attribute to manually
set a ProgId that is 39 characters or less. By default the ProgId is
generated from the full namespace and type name (e.g.,
Namespace1.Namespace2. TypeName).

Allows fine-grained control over which C# code is visible to a COM client.

Attribute name Description

ComVisibleAttribute

Allows fine-grained control over which C# code is visible to a COM client.
To limit the exposed types, set the ComVisibleAttribute to false at the
assembly level:

 [assembly: ComVisibleAttribute(false)]

and then set each type and/or member's visibility individually using the
following syntax:

 [ComVisibleAttribute(true)]
 public class Foo {…}

The ComVisibleAttribute was not specified by default in projects created
in Visual Studio 2003, but in Visual Studio 2005, the attribute is specified
as false in the AssemblyInfo.cs file. This hides all types in the assembly
from COM by default.

These attributes are used in conjunction with the previous two steps mentioned to create and register
the assembly's classes. Several other COM interop attributes exist in the FCL, but the ones
mentioned here provide the most basic control over how your assembly is viewed and used by COM
clients.

Discussion

The Foo class, defined within the Chapter_Code namespace, shows how these attributes are applied:

 using System;

 namespace Chapter_Code
 {
 public class Foo
 {
 public Foo() {}

 private int state = 100;
 public string PrintMe()
 {
 return("TEST SUCCESS");
 }

 public int ShowState()

ComVisibleAttribute

Allows fine-grained control over which C# code is visible to a COM client.
To limit the exposed types, set the ComVisibleAttribute to false at the
assembly level:

 [assembly: ComVisibleAttribute(false)]

and then set each type and/or member's visibility individually using the
following syntax:

 [ComVisibleAttribute(true)]
 public class Foo {…}

The ComVisibleAttribute was not specified by default in projects created
in Visual Studio 2003, but in Visual Studio 2005, the attribute is specified
as false in the AssemblyInfo.cs file. This hides all types in the assembly
from COM by default.

These attributes are used in conjunction with the previous two steps mentioned to create and register
the assembly's classes. Several other COM interop attributes exist in the FCL, but the ones
mentioned here provide the most basic control over how your assembly is viewed and used by COM
clients.

Discussion

The Foo class, defined within the Chapter_Code namespace, shows how these attributes are applied:

 using System;

 namespace Chapter_Code
 {
 public class Foo
 {
 public Foo() {}

 private int state = 100;
 public string PrintMe()
 {
 return("TEST SUCCESS");
 }

 public int ShowState()

 {
 return (state);
 }

 public void SetState(int newState)
 {
 state = newState;
 }
 }
 }

To allow the Foo type to be exposed to a COM client, you would first add an interface, IFoo,
describing the members of Foo that are to be exposed. Adding an interface in this manner is optional,
especially if you are exposing classes to scripting clients. However, it is recommended since COM is
interface-based and you will be able to explicitly control how it is exported. If the AutoDual interface
type is used with the ClassInterfaceAttribute, early-bound clients will not need this interface either.
Even though it is optional, it is still a good idea to use an interface in this manner.

Next, an unchanging GUID is added to the IFoo interface and the Foo class using the GuidAttribute.
The assembly.cs file contains a Guid attribute attached to the assembly with a new GUID. A ProgId is
also added to the Foo class. Finally, the class interface type is defined as an AutoDispatch interface,
using the ClassInterfaceAttribute. The new code is shown here with the changes highlighted:

 using System;
 using System.Runtime.InteropServices;

 namespace Chapter_Code
 {
 [GuidAttribute("1C6CD700-A37B-4295-9CC9-D7392FDD425D")]
 public interface IFoo
 {
 string PrintMe();
 int ShowState();
 void SetState(int newState);
 }

 [GuidAttribute("C09E2DD6-03EE-4fef-BB84-05D3422DD3D9")]
 [ClassInterfaceAttribute(ClassInterfaceType.AutoDispatch)]
 [ProgIdAttribute("Chapter_Code.Foo")]
 public class Foo : IFoo
 {
 public Foo() {}
 private int state = 100;

 public string PrintMe()
 {
 return("TEST SUCCESS");
 }

 public int ShowState()
 {
 return (state);
 }

 public void SetState(int newState)
 {
 state = newState;
 }
 }
 }

The code to use the exposed C# code from VB6 code using COM interop is shown here:

 Sub TestCOMInterop()
 'ClassLibrary1 was created using Regasm in the Solution section
 'of this recipe
 Dim x As New ClassLibrary1.Foo

 MsgBox ("Current State: " & x.ShowState())
 x.SetState (-1)
 MsgBox ("Current State: " & x.ShowState())
 MsgBox ("Print String: " & x.PrintMe())
 End Sub

The first Dim statement creates a new instance of the Foo type that is usable from the VB6 code. The
rest of the VB6 code exercises the exposed members of the Foo type.

There are some things to keep in mind when exposing C# types to COM clients:

Only public members or explicit interface member implementations can be exposed to COM
clients. Explicit interface member implementations are not public, but if the interface itself is
public, it may be seen by a COM client.

Constant fields are not exposed to COM clients.

You must provide a default constructor in your exposed C# type.

Parameterized constructors are not exposed to COM clients.

Static members are not exposed to COM clients.

Interop flattens the inheritance hierarchy so that your exposed type and its base class members
are all available to the COM client. For example, the methods ToString() and GetHashCode(),
defined in the base Object class, are also available to VB6 code:

 Sub TestCOMInterop()

 Dim x As New ClassLibrary1.Foo
 MsgBox (x.ToString())
 MsgBox (x.GetHashCode())
 End Sub

It is a good idea to explicitly state the GUIDs for any types exposed to COM clients, including
any exposed interfaces, through the use of the GuidAttribute. This prevents Tlbexp/Regasm
from creating new GUIDs every time your interface changes. A new GUID is created by the
Regasm tool every time you choose the Build Rebuild Solution or Build Rebuild
ProjectName menu item. These actions cause the date/time of the module (dll or exe), as well

as the version number for your assembly, to change which, in turn, can cause a different GUID
to be calculated. A new GUID will be calculated for a rebuilt assembly even if no code changes
within that assembly. Not explicitly adding a GUID to your exposed types will cause your
registry to greatly expand during the development stage as more new GUIDs are added to it.

It is also a good idea to limit the visibility of your types/members through judicial use of the
ComVisibleAttribute. This can prevent unauthorized use of specific types/members that could
possibly corrupt data or be used to create a security hole by malicious code.

Exposed types should implement an interface (for example, IFoo) that allows you to specify
exactly what members of that type are exposed to COM. If such an explicit interface is not
implemented, the compiler will default to exposing what it can of the type.

See Also

See the "Assembly Registration Tool (Regasm.exe)," "Type Library Exporter (Tlbexp.exe)," "Type
Library Importer (Tlbimp.exe)," and "Assembly to Type Library Conversion Summary" topics in the
MSDN documentation.

Recipe 3.24. Initializing a Constant Field at Runtime

problem

A field marked as const can be initialized only at compile time. You need to initialize a field to a valid
value at runtime, not at compile time. This field must then act as if it were a constant field for the
rest of the application's life.

Solution

You have two choices when declaring a constant value in your code. You can use a readonly field or a
const field. Each has its own strengths and weaknesses. However, if you need to initialize a constant
field at runtime, you must use a readonly field:

 public class Foo
 {
 public readonly int bar;

 public Foo() {}

 public Foo(int constInitValue)
 {
 bar = constInitValue;
 }

 // Rest of class…
 }

This is not possible using a const field. A const field can be initialized only at compile time:

 public class Foo
 {
 public const int bar; // This line causes a compile-time error.

 public Foo() {}

 public Foo(int constInitValue)
 {
 bar = constInitValue; // This line also causes a compile-time error.

 }
 // Rest of class…
 }

Discussion

A readonly field allows initialization to take place only in the constructor at runtime, whereas a const
field must be initialized at compile time. Therefore, implementing a readonly field is the only way to
allow a field that must be constant to be initialized at runtime.

There are only two ways to initialize a readonly field. The first is by adding an initializer to the field
itself:

 public readonly int bar = 100;

The second way is to initialize the readonly field through a constructor. This is demonstrated through
the code in the Solution to this recipe.

If you look at the following class:

 public class Foo
 {
 public readonly int x;
 public const int y = 1;

 public Foo() {}
 public Foo(int roInitValue)
 {
 x = roInitValue;
 }

 // Rest of class…
 }

You'll see it is compiled into the following IL:

 .class public auto ansi beforefieldinit Foo
 extends [mscorlib]System.Object
 {
 .field public static literal int32 y = int32(0x00000001) //<<-- const field
 .field public initonly int32 x //<<-- readonly field
 .method public hidebysig specialname rtspecialname

 instance void .ctor(int32 input) cil managed
 {
 // Code size 14 (0xe)
 .maxstack 8
 //001659: }
 //001660: }

 //001666: public class Foo
 //001667: {
 //001668: public readonly int x;
 //001669: public const int y = 1;
 //001670:
 //001671: public Foo(int roInitValue)
 IL_0000: ldarg.0
 IL_0001: call instance void [mscorlib]System.Object::.ctor()
 //001672: {
 //001673: x = input;
 IL_0006: ldarg.0
 IL_0007: ldarg.1
 IL_0008: stfld int32 Foo::x
 //001674 }
 IL_000d: ret
 } // End of method Foo::.ctor

 } // End of class Foo

Notice that a const field is compiled into a static field, and a readonly field is compiled into an
instance field. Therefore, you need only a class name to access a const field.

A common argument against using const fields is that they do not version as
well as readonly fields. If you rebuild a component that defines a const field
and the value of that const changes in a later version, any other components
that were built against the old version won't pick up the new value.

The following code shows how to use an instance readonly field:

 Foo obj1 = new Foo(100);
 Console.WriteLine(obj1.bar);

Those two lines compile into the following IL:

 IL_0013: ldc.i4 0xc8
 IL_0018: newobj instance void Foo::.ctor(int32)
 IL_001d: stloc.1

 IL_001e: ldloc.1
 IL_001f: ldfld int32 Foo::bar

Since the const field is already compiled into the application as a static member field, only one
simple IL instruction is needed to use this const field at any point in the application:

 IL_0029: ldc.i4.1

Notice that the compiler compiled away the const field and uses the value it was initialized to, which
is 1. This is faster than using a readonly field. However, const fields are inflexible as far as versioning
is concerned.

See Also

See the "const" and "readonly" keywords in the MSDN documentation.

Recipe 3.25. Writing Code That Is Compatible with the
Widest Range of Managed Languages

problem

You need to make sure your C# code will interoperate with all other managed languages that are
CLS-compliant consumers, such as VB.NET.

Solution

Mark the assembly with the CLSCompliantAttribute:

 [assembly: CLSCompliantAttribute(true)]

Discussion

By default, your C# assemblies created with VS.NET are not marked with the
CLSCompliantAttribute. This does not mean that the assembly will not work in the managed
environment. It means that this assembly may use elements that are not recognized by other
CLScompliant languages. For example, unsigned numeric types are not recognized by all managed
languages, but they can be used in the C# language. The problem occurs when C# returns an
unsigned data type, such as uint, through either a return value or a parameter to a calling
component in another language that does not recognize unsigned data typesVB.NET is one example.

CLS compliance is enforced only on types/members marked public or protected.
This makes sense because components written in other languages will be able
to use only the public or protected types/members of components written in
C#.

Marking your assembly as CLS-compliant means that any CLS-compliant language will be able to
seamlessly interoperate with your code; that is, it enables CLS compliance checking. This makes it
much easier on developers to catch problems before they manifest themselves, especially in an
environment in which multiple managed languages are being used on a single project. Marking your
entire assembly to be CLS-compliant is done with the following line of code:

 [assembly: CLSCompliantAttribute(true)]

Sometimes you just can't be 100 percent CLS compliant, but you don't want to have to throw away
the benefit of compiler checking for the 99.9 percent of your methods that are CLS compliant just so
you can expose one method that is not. To mark these types or members as not being CLS
compliant, use the following attribute:

 [CLSCompliantAttribute(false)]

By passing a value of false to this constructor's isCompliant parameter, you prevent any
type/member marked as such from causing compiler errors due to non-CLS-compliant code.

Many types/members in the FCL are not CLS compliant. This is not a problem
when using C# to interact with the FCL. However, this is a problem for other
languages. To solve this dilemma, the authors of the FCL usually included a
CLS-compliant type/member where possible to mirror the non-CLS-compliant
type/member.

The following is a list of some of the things that can be done to make code non-CLS-compliant when
using the C# language:

Two identifiers with the same name that differ only by case

Using unsigned data types (byte, ushort, uint, ulong)

Use of the UIntPtr type exposed through a public or protected member

Any public or protected member that exposes boxed value types

The use of operator overloading

An array of non-CLS-compliant types, such as unsigned data types

An enumeration type having a non-CLS-compliant underlying data type

See Also

See the "CLSCompliantAttribute Class" topic in the MSDN documentation.

Recipe 3.26. Building Cloneable Classes

problem

You need a method of performing a shallow cloning operation, a deep cloning operation, or both on a
data type that may also reference other types.

Solution

Shallow copying means that the copied object's fields will reference the same objects as the original
object. To allow shallow copying, add the following Clone method to your class:

 using System;
 using System.Collections;
 using System.Collections.Generic;

 public class ShallowClone : ICloneable
 {
 public int data = 1;
 public List<string> listData = new List<string>();
 public object objData = new object();

 public object Clone()
 {
 return (this.MemberwiseClone());
 }
 }

Deep copying or cloning means that the copied object's fields will reference new copies of the original
object's fields. This method of copying is more time-consuming than the shallow copy. To allow deep
copying, add the following Clone method to your class:

 using System;
 using System.Collections;
 using System.Collections.Generic;
 using System.Runtime.Serialization.Formatters.Binary;
 using System.IO;

 [Serializable]

 public class DeepClone : ICloneable
 {
 public int data = 1;
 public List<string> listData = new List<string>();
 public object objData = new object();

 public object Clone()
 {
 BinaryFormatter BF = new BinaryFormatter();
 MemoryStream memStream = new MemoryStream();
 BF.Serialize(memStream, this);
 memStream.Position = 0;

 return (BF.Deserialize(memStream));
 }
 }

Add an overloaded Clone method to your class to allow for deep or shallow copying. This method
allows you to decide at runtime how your object will be copied. The code might appear as follows:

 using System;
 using System.Collections;
 using System.Collections.Generic;
 using System.Runtime.Serialization.Formatters.Binary;
 using System.IO;

 [Serializable]
 public class MultiClone : ICloneable
 {
 public int data = 1;
 public List<string> listData = new List<string>();
 public object objData = new object();

 public object Clone(bool doDeepCopy)
 {
 if (doDeepCopy)
 {
 BinaryFormatter BF = new BinaryFormatter();
 MemoryStream memStream = new MemoryStream();

 BF.Serialize(memStream, this);
 memStream.Position = 0;

 return (BF.Deserialize(memStream));
 }
 else
 {
 return (this.MemberwiseClone());
 }

 }

 public object Clone()
 {
 return (Clone(false));
 }
 }

Discussion

Cloning is the ability to make an exact copy (a clone) of an instance of a type. Cloning may take one
of two forms: a shallow copy or a deep copy. Shallow copying is relatively easy. It involves copying
the object that the Clone method was called on.

The reference type fields in the original object are copied over, as are the value-type fields. This
means that if the original object contains a field of type StreamWriter, for instance, the cloned object
will point to this same instance of the original object's StreamWriter; a new object is not created.

There is no need to deal with static fields when performing a cloning
operation. There is only one memory location reserved for each static field per
class, per application domain. Besides, the cloned object will have access to the
same static fields as the original.

Support for shallow copying is implemented by the MemberwiseClone method of the Object class,
which serves as the base class for all .NET classes. So the following code allows a shallow copy to be
created and returned by the Clone method:

 public object Clone()
 {
 return (this.MemberwiseClone());
 }

Making a deep copy is the second way of cloning an object. A deep copy will make a copy of the
original object just as the shallow copy does. However, a deep copy will also make separate copies of
each reference type field in the original object. Therefore, if the original object contains a
StreamWriter type field, the cloned object will also contain a StreamWriter type field, but the cloned
object's StreamWriter field will point to a new StreamWriter object, not the original object's
StreamWriter object.

Support for deep copying is not automatically provided by the Clone method or the .NET Framework.
Instead, the following code illustrates an easy way of implementing a deep copy:

 BinaryFormatter BF = new BinaryFormatter();

 MemoryStream memStream = new MemoryStream();

 BF.Serialize(memStream, this);
 memStream.Flush();
 memStream.Position = 0;

 return (BF.Deserialize(memStream));

Basically, the original object is serialized out to a memory stream using binary serialization, then it is
deserialized into a new object, which is returned to the caller. Note that it is important to reposition
the memory stream pointer back to the start of the stream before calling the Deserialize method;
otherwise, an exception indicating that the serialized object contains no data will be thrown.

Performing a deep copy using object serialization allows the underlying object to be changed without
having to modify the code that performs the deep copy. If you performed the deep copy by hand,
you'd have to make a new instance of all the instance fields of the original object and copy them over
to the cloned object. This is a tedious chore in and of itself. If a change is made to the fields of the
object being cloned, the deep copy code must also change to reflect this modification. Using
serialization, you rely on the serializer to dynamically find and serialize all fields contained in the
object. If the object is modified, the serializer will still make a deep copy without any code
modifications.

One reason you might want to do a deep copy by hand is that the serialization technique presented in
this recipe works properly only when everything in your object is serializable. Of course, manual
cloning doesn't always help there eithersome objects are just inherently noncloneable. Suppose you
have a network management application in which an object represents a particular printer on your
network. What's it supposed to do when you clone it? Fax a purchase order for a new printer?

One problem inherent with deep copying is performing a deep copy on a nested data structure with
circular references. This recipe manages to make it possible to deal with circular references, although
it's a tricky problem. So, in fact, you don't need to avoid circular references if you are using this
recipe.

See Also

See the "ICloneable Interface" and "Object.MemberwiseClone Method" topics in the MSDN
documentation.

Recipe 3.27. Assuring an Object's Disposal

problem

You require a way to always have the Dispose method of an object called when that object's work is
done or it goes out of scope.

Solution

Use the using statement:

 using System;
 using System.IO;

 // …

 using(FileStream FS = new FileStream("Test.txt", FileMode.Create))
 {
 FS.WriteByte((byte)1);
 FS.WriteByte((byte)2);
 FS.WriteByte((byte)3);

 using(StreamWriter SW = new StreamWriter(FS))
 {
 SW.WriteLine("some text.");
 }
 }

Discussion

The using statement is very easy to use and saves you the hassle of writing extra code. If the
Solution had not used the using statement, it would look like this:

 FileStream FS = new FileStream("Test.txt", FileMode.Create);
 try
 {

 FS.WriteByte((byte)1);

 FS.WriteByte((byte)2);
 FS.WriteByte((byte)3);

 StreamWriter SW = new StreamWriter(FS);
 try
 {
 SW.WriteLine("some text.");
 }
 finally
 {
 if (SW != null)
 {
 ((IDisposable)SW).Dispose();
 }
 }
 }
 finally
 {
 if (FS != null)
 {
 ((IDisposable)FS).Dispose();
 }
 }

Several points to note about the using statement:

There is a using directive, such as

 using System.IO;

which should be differentiated from the using statement. This is potentially confusing to
developers first getting into this language.

The variable(s) defined in the using statement clause must all be of the same type, and they
must have an initializer. However, you are allowed multiple using statements in front of a single
code block, so this isn't a significant restriction.

Any variables defined in the using clause are considered read-only in the body of the using
statement. This prevents a developer from inadvertently switching the variable to refer to a
different object and causing problems when an attempt is made to dispose of the object that
the variable initially referenced.

The variable should not be declared outside of the using block and then initialized inside of the
using clause.

This last point is described by the following code:

 FileStream FS;
 using(FS = new FileStream("Test.txt", FileMode.Create))
 {
 FS.WriteByte((byte)1);
 FS.WriteByte((byte)2);
 FS.WriteByte((byte)3);

 using(StreamWriter SW = new StreamWriter(FS))
 {
 SW.WriteLine("some text.");
 }
 }

For this example code, you will not have a problem. But consider that the variable FS is usable
outside of the using block. Essentially, you could revisit this code and modify it as follows:

 FileStream FS;
 using(FS = new FileStream("Test.txt", FileMode.Create))
 {

 FS.WriteByte((byte)1);
 FS.WriteByte((byte)2);
 FS.WriteByte((byte)3);

 using(StreamWriter SW = new StreamWriter(FS))
 {
 SW.WriteLine("some text.");
 }
 }
 FS.WriteByte((byte)4);

This code compiles but throws an ObjectDisposedException on the last line of this code snippet
because the Dispose method has already been called on the FS object. The object has not yet been
collected at this point and still remains in memory in the disposed state.

See Also

See Recipes 3.29 and 3.31; see the "IDispose Interface," "Using foreach with Collections," and
"Implementing Finalize and Dispose to Clean up Unmanaged Resources" topics in the MSDN
documentation.

Recipe 3.28. Releasing a COM Object Through Managed
Code

problem

You need to release a COM object from managed code without forcing a garbage collection to occur.

Solution

Use the static ReleaseComObject method of the Marshal class:

 int newRefCount = System.Runtime.InteropServices.Marshal.ReleaseComObject(COMObj);

where COMObj is a reference to the runtime callable wrapper (RCW) of a COM object.

Discussion

If the COM object is holding on to resources that need to be released in a timely manner, you will
want to decrement the reference count on the COM object as soon as possible after you've finished
using the COM object and have set it to null. The garbage collector needs to run in order to collect
the unreferenced Runtime Callable Wrapper (RCW) around your COM object, thereby decrementing
the reference count on the COM object. Unfortunately, there is no guarantee that the garbage
collector will run in order to collect the RCW anytime in the near future.

To solve this problem, you could call GC.Collect yourself to try to free the RCW, but this might be
overkill. Instead, use the ReleaseComObject method to manually force the RCW to decrement its
reference count on the COM object without having to force a collection to occur.

The static ReleaseComObject method returns an int indicating the current reference count contained
in the RCW object after this method has finished decrementing its reference count. Remember that
this method decrements the reference count contained in the RCW, not the COM object's reference
count. When the RCW reference count goes to zero, it releases its COM object.

Care must be used when calling the ReleaseComObject method. Misuse of this method can cause a
COM object to be released by the RCW too early. Since the ReleaseComObject method decrements the
reference count in the RCW, you should call it no more than one time for every object that contains a
pointer to the RCW. Calling it multiple times might cause the RCW to release the COM object earlier
than expected. Any attempt to use a reference to an RCW that has had its reference count

decremented to zero results in a NullReferenceException exception. The RCW might not have been
collected yet, but its reference to the COM object has been terminated.

See Also

See Recipes 3.28 and 3.31; see the "Marshal.ReleaseComObject Method" topic in the MSDN
documentation.

Recipe 3.29. Creating an Object Cache

problem

Your application creates many objects that are expensive to create and/or have a large memory footprintfor
instance, objects that are populated with data from a database or a web service upon their creation. These
objects are used throughout a large portion of the application's lifetime. You need a way to not only enhance
the performance of these objectsand as a result, your applicationbut also to use memory more efficiently.

Solution

Create an object cache to keep these objects in memory as long as possible, without tying up valuable heap
space and possibly resources. Since cached objects may be reused at a later time, you also forego the
process of having to create similar objects many times.

You can reuse the ASP.NET cache that is located in the System.Web. Caching namespace, or you can build
your own lightweight caching mechanism. The See Also section at the end of this recipe provides several
Microsoft resources that show you how to use the ASP.NET cache to cache your own objects. However, the
ASP.NET cache is very complex and may have a nontrivial overhead associated with it, so using a lightweight
caching mechanism like the one shown here is a viable alternative.

The ObjCache<T,U> class shown in Example 3-19 represents a type that allows the caching of any type of
object defined by parameter type U with a key defined by parameter type T .

Example 3-19. Implementing a generic object cache

using System;
using System.Collections;
using System.Collections.Generic;

public class ObjCache<T, U>
 where U: new()
{
 // Constructors
 public ObjCache()
 {
 cache = new Dictionary<T, WeakReference>();
 }

 public ObjCache(int initialCapacity)
 {
 cache = new Dictionary<T, WeakReference>(initialCapacity);
 }

 // Fields
 private Dictionary<T, WeakReference> cache = null;

 // Methods
 public U this[T key]
 {
 get
 {
 if (!cache.ContainsKey(key) || !IsObjAlive(ref key))
 {
 this[key] = new U();
 }

 return ((U)((WeakReference)cache[key]).Target);
 }
 set
 {
 WeakReference WR = new WeakReference(value, false);
 }
 }

 public bool IsObjAlive(ref T key)
 {
 if (cache.ContainsKey(key))
 {
 return (((WeakReference)cache[key]).IsAlive);
 }
 else
 {
 return (false);
 }
 }

 public int AliveObjsInCache()
 {
 int count = 0;

 foreach (KeyValuePair<T, WeakReference> item in cache)
 {
 if (((WeakReference)item.Value).IsAlive)
 {
 count++;
 }
 }

 return (count);
 }

 public bool DoesKeyExist(T key)
 {
 return (cache.ContainsKey(key));
 }

 public bool DoesObjExist(WeakReference obj)
 {
 return (cache.ContainsValue(obj));
 }

 public int TotalCacheSlots()
 {
 return (cache.Count);
 }
}

The SomeComplexObj class can be replaced with any type of class you choose. For this
recipe, you will use this class, but for your code, you can change it to whatever class or
structure type you need.

The SomeComplexObj is defined here (realistically, this would be a much more complex object to create and
use; however, for the sake of brevity, this class is written as simply as possible):

 public class SomeComplexObj
 {
 public SomeComplexObj() {}

 private int idcode = -1;

 public int IDCode
 {
 set{idcode = value;}
 get{return (idcode);}
 }
 }

ObjCache<T,U> , the caching object used in this recipe, makes use of a Dictionary<T,WeakReference> object to
hold all cached objects. This Dictionary<T,WeakReference> allows for fast lookup when retrieving objects and
generally for fast insertion and removal times. The Dictionary<T,WeakReference> object used by this class is
defined as a private field and is initialized through its overloaded constructors.

Developers using this class will mainly be adding and retrieving objects from this object. The indexer
implements both the adding and retrieval mechanisms for this class. This method returns a cached object if
its key exists in the Dictionary<T,WeakReference> and the WeakReference object is considered to be alive. An
object that the WeakReference type refers to has not been garbage-collected. The WeakReference type can
remain alive long after the object to which it referred is gone. An indication of whether this WeakReference
object is alive is obtained through the read-only IsAlive property of the WeakReference object. This property
returns a bool indicating whether this object is alive (true) or not (false). When an object is not alive or
when its key does not exist in the Dictionary<T,WeakReference> , this method creates a new object with the

same key as the one passed in to the indexer and adds it to the Dictionary<T,WeakReference> .

The indexer also implements the mechanism to add objects to the cache. This method creates a
WeakReference object that will hold a weak reference to your object of type U . Each object of type U in the
cache is contained within a WeakReference object. This is the core of the caching mechanism used in this
recipe. A WeakReference that references an object (its target) allows that object to later be referenced. When
the target of the WeakReference object is also referenced by a strong (i.e., normal) reference, the garbage
collector cannot collect the target object. But if no references are made to the target stored in this
WeakReference object, the garbage collector can collect this object to make room in the managed heap for
new objects.

After creating the WeakReference object, the Dictionary<T,WeakReference> is searched for the same key of
type T that you want to add. If an object with that key exists, it is overwritten with the new object; otherwise,
the Add method of the Dictionary<T,WeakReference> class is called.

Quite a bit of extra work is required in the calling code to support a cache of heterogeneous objects. More
responsibility is placed on the user of this cache object, which can quickly lead to usability and maintenance
problems if not written correctly.

The code to exercise the ObjCache<T,U> class is shown in Example 3-20 .

Example 3-20. Using the ObjCache class

// Create the cache here.
static ObjCache<string, SomeComplexObj> OC = new ObjCache<string, SomeComplexObj>();

public void TestObjCache()
{
 OC["ID1"] = new SomeComplexObj();
 OC["ID2"] = new SomeComplexObj();
 OC["ID3"] = new SomeComplexObj();
 OC["ID4"] = new SomeComplexObj();
 OC["ID5"] = new SomeComplexObj();

 Console.WriteLine("\r\n--> Add 5 weak references");
 Console.WriteLine("OC.TotalCacheSlots = " + OC.TotalCacheSlots());
 Console.WriteLine("OC.AliveObjsInCache = " + OC.AliveObjsInCache());

 ////////////// BEGIN COLLECT //////////////
 GC.Collect();
 GC.WaitForPendingFinalizers();
 ////////////// END COLLECT //////////////

 Console.WriteLine("\r\n--> Collect all weak references");
 Console.WriteLine("OC.TotalCacheSlots = " + OC.TotalCacheSlots());
 Console.WriteLine("OC.AliveObjsInCache = " + OC.AliveObjsInCache());

 OC["ID1"] = new SomeComplexObj();
 ,ch03.10094 Page 194 Thursday, January 5, 2006 12:56 PM
 OC["ID2"] = new SomeComplexObj();

 OC["ID3"] = new SomeComplexObj();
 OC["ID4"] = new SomeComplexObj();
 OC["ID5"] = new SomeComplexObj();

 Console.WriteLine("\r\n--> Add 5 weak references");
 Console.WriteLine("OC.TotalCacheSlots = " + OC.TotalCacheSlots());
 Console.WriteLine("OC.AliveObjsInCache = " + OC.AliveObjsInCache());

 CreateObjLongMethod();
 Create135();
 CollectAll();
}
private void CreateObjLongMethod()
{
 Console.WriteLine("\r\n--> Obtain ID1");
 string id1 = "ID1";
 if (OC.IsObjAlive(ref id1))
 {

 SomeComplexObj SCOTemp = OC["ID1"];
 SCOTemp.IDCode = 100;
 Console.WriteLine("SCOTemp.IDCode = " + SCOTemp.IDCode);

 }
 else
 {

 Console.WriteLine("Object ID1 does not exist…Creating new ID1…");
 OC["ID1"] = new SomeComplexObj());

 SomeComplexObj SCOTemp = OC["ID1"];
 SCOTemp.IDCode = 101;
 Console.WriteLine("SCOTemp.IDCode = " + SCOTemp.IDCode);
 }
}
private void Create135()
{
 Console.WriteLine("\r\n--> Obtain ID1, ID3, ID5");
 SomeComplexObj SCO1 = OC["ID1"];
 SomeComplexObj SCO3 = OC["ID3"];
 SomeComplexObj SCO5 = OC["ID5"];
 SCO1.IDCode = 1000;
 SCO3.IDCode = 3000;
 SCO5.IDCode = 5000;

 ////////////// BEGIN COLLECT //////////////
 GC.Collect();
 GC.WaitForPendingFinalizers();
 ////////////// END COLLECT //////////////
 Console.WriteLine("\r\n--> Collect all weak references");
 Console.WriteLine("OC.TotalCacheSlots = " + OC.TotalCacheSlots());
 Console.WriteLine("OC.AliveObjsInCache = " + OC.AliveObjsInCache());

 Console.WriteLine("SCO1.IDCode = " + SCO1.IDCode);
 Console.WriteLine("SCO3.IDCode = " + SCO3.IDCode);
 Console.WriteLine("SCO5.IDCode = " + SCO5.IDCode);

 string id2 = "ID2";
 Console.WriteLine("\r\n--> Get ID2, which has been collected. ID2 Exists ==" +
 OC.IsObjAlive(ref id2));
 SomeComplexObj SCO2 = OC["ID2"];
 Console.WriteLine("ID2 has now been re-created. ID2 Exists == " + OC.IsObjAlive(ref
id2));
 Console.WriteLine("OC.AliveObjsInCache = " + OC.AliveObjsInCache());
 SCO2.IDCode = 2000;
 Console.WriteLine("SCO2.IDCode = " + SCO2.IDCode);

 ////////////// BEGIN COLLECT //////////////
 GC.Collect();
 GC.WaitForPendingFinalizers();
 ////////////// END COLLECT //////////////

 Console.WriteLine("\r\n--> Collect all weak references");
 Console.WriteLine("OC.TotalCacheSlots = " + OC.TotalCacheSlots());
 Console.WriteLine("OC.AliveObjsInCache = " + OC.AliveObjsInCache());
}

private void CollectAll()
{
 ////////////// BEGIN COLLECT //////////////
 GC.Collect();
 GC.WaitForPendingFinalizers();
 ////////////// END COLLECT //////////////

 Console.WriteLine("\r\n--> Collect all weak references");
 Console.WriteLine("OC.TotalCacheSlots = " + OC.TotalCacheSlots());
 Console.WriteLine("OC.AliveObjsInCache = " + OC.AliveObjsInCache());
}

The output of this test code is shown here:

 --> Add 5 weak references
 OC.TotalCacheSlots = 5
 OC.AliveObjsInCache = 5

 --> Collect all weak references
 OC.TotalCacheSlots = 5
 OC.AliveObjsInCache = 0

 --> Add 5 weak references
 OC.TotalCacheSlots = 5
 OC.AliveObjsInCache = 5

 --> Obtain ID1
 SCOTemp.IDCode = 100

 --> Obtain ID1, ID3, ID5

 --> Collect all weak references
 OC.TotalCacheSlots = 5
 OC.AliveObjsInCache = 3
 SCO1.IDCode = 1000
 SCO3.IDCode = 3000
 SCO5.IDCode = 5000

 --> Get ID2, which has been collected. ID2 Exists ==False
 ID2 has now been re-created. ID2 Exists == True
 OC.AliveObjsInCache = 4
 SCO2.IDCode = 2000

 --> Collect all weak references
 OC.TotalCacheSlots = 5
 OC.AliveObjsInCache = 4

 --> Collect all weak references
 OC.TotalCacheSlots = 5
 OC.AliveObjsInCache = 0

Discussion

Caching involves storing frequently used objects, particularly those that are expensive to create and re-
create, in memory for fast access. This technique is in contrast to recreating these objects through some
time-consuming mechanism (e.g., from data in a database or from a file on disk) every time they are needed.
By storing frequently used objects such as theseso that you do not have to create them nearly as muchyou
can further improve the performance of the application.

When deciding which types of items can be cached, you should look for objects that take a long time to create
and/or initialize. For example, if an object's creation involves one or more calls to a database, to a file on
disk, or to a network resource, it can be considered as a candidate for caching. In addition to selecting objects
with long creation times, these objects should also be frequently used by the application. Selection depends
on a combination of the frequency of use and the average time for which it is used in any given usage.
Objects that remain in use for a long time when they are retrieved from the cache may work better in this
cache than those that are frequently used but for only a very short period of time.

If you do not want to overwrite cached items having the same key as the object you are attempting to insert
into the cache, the set accessor of the indexer must be modified. The code for the set accessor could be
modified to this:

 public U this[T key]
 {
 get
 {
 if (!cache.ContainsKey(key) || !IsObjAlive(ref key))
 {
 this[key] = new U();
 }

 return ((U)((WeakReference)cache[key]).Target);
 }

 set
 {
 WeakReference WR = new WeakReference(value, false);

 if (cache.ContainsKey(key))
 {
 cache[key] = WR;
 }
 else
 {
 cache.Add(key, WR);
 }
 }
}

You could also add a mechanism to calculate the cache-hit ratio for this cache. The cache-hit ratio is the ratio
of hitsevery time an existing object is requested from the Dictionary<T,WeakReference> to the total number
of calls made to attempt a retrieval of an object. This can give you a good indication of how well your
ObjCache<T,U> is working. The code to add to this class to implement calculation of a cache-hit ratio is shown
highlighted in Example 3-21 .

Example 3-21. Calculating a cache-hit ratio

private float numberOfGets = 0;
private float numberOfHits = 0;

public float HitMissRatioPercent()
{
 if (numberOfGets == 0)
 {
 v return (0);
 }
 else
 {
 return ((numberOfHits / numberOfGets) * 100);

 }
}

public U this[T key]
{
 get
 {

 ++numberOfGets;

 if (!cache.ContainsKey(key) || !IsObjAlive(ref key))
 {
 this[key] = new U();
 }

 else
 {
 ++numberOfHits;
 }

 return ((U)((WeakReference)cache[key]).Target);
 }

 set
 {

 WeakReference WR = new WeakReference(value, false);

 if (cache.ContainsKey(key))
 {
 cache[key] = WR;
 }
 else
 {
 cache.Add(key, WR);
 }
 }
}

The numberOfGets field tracks the number of calls made to the get accessor of the indexer. The numberOfHits
field tracks the number of times that an object to be retrieved exists in the cache. The HitMissRatioPercent
method returns the numberOfHits divided by the numberOfGets as a percentage. The higher the percent, the
better your cache is operating (100 percent is equal to a hit every time the get accessor of the indexer is
called). A lower percentage indicates that this cache object is not working efficiently (zero percent is equal to
a miss every time the get accessor of the indexer is called). A very low percentage indicates that the cache
object may not be the correct solution to your problem or that you are not caching the correct object(s).

The WeakReference objects created for the ObjCache<T,U> class do not track objects after they are finalized.
This would add much more complexity than is needed by this class.

Remember, a caching scheme adds complexity to your application. The most a caching scheme can do for
your application is to enhance performance and possibly place less stress on memory resources. You should
consider this when deciding whether to implement a caching scheme such as the one in this recipe.

See Also

To use the built-in ASP.NET cache object independently of a web application, see the following topics in
MSDN:

" Caching Application Data"

"Adding Items to the Cache"

"Retrieving Values of Cached Items"

"Deleting Items from the Cache"

"Notifying an Application When an Item Is Deleted from the Cache"

"System.Web.Caching Namespace"

In addition, see the Datacache2 Sample under ".NET SamplesASP.NET Caching" in MSDN; see the sample
links to the Page Data Caching example in the ASP.NET QuickStart Tutorials.

Also see the "WeakReference Class" topic in the MSDN documentation.

Recipe 3.30. Rolling Back Object Changes

problem

You have an object that allows its state to be changed. However, you do not want these changes to
become permanent if other changes to the system cannot be made at the same time. In other words,
you want to be able to roll back the changes if any of a group of related changes fails.

Solution

Use the memento design pattern to allow your object to save its original state in order to roll back
changes.

The memento design pattern allows object state to be saved so that it can be restored in response to
a specific situation. The memento pattern is very useful for implementing undo/redo or
commit/rollback actions. This pattern usually has an originator objecta new or existing object that
needs to have an undo/redo or commit/ rollback style behavior associated with it. This originator
object's statethe values of its fieldswill be mirrored in a memento object, which is an object that can
store the state of an originator object. Another object that usually exists in this type of pattern is the
caretaker object. The caretaker is responsible for saving one or more memento objects, which can
then be used later to restore the state of an originator object.

The SomeDataOriginator class used in this recipe contains data that must be changed only if other
system changes occur. Its source code is shown in Example 3-22.

Example 3-22. An originator object

using System;
using System.Collections;
using System.Collections.Generic;

public class SomeDataOriginator
{
 public SomeDataOriginator() {}

 public SomeDataOriginator(int state, string id, string clsName)
 {
 this.state = state;
 this.id = id;
 this.clsName = clsName;

 }

 private int state = 1;
 private string id = "ID1001";
 private string clsName = "SomeDataOriginator";

 public string ClassName
 {
 get {return (clsName);}
 set {clsName = value;}
 }

 public string ID
 {
 get {return (id);}
 set {id = value;}
 }

 public void ChangeState(int newState)
 {
 state = newState;
 }

 public void Display()
 {
 Console.WriteLine("State: " + state);
 Console.WriteLine("Id: " + id);
 Console.WriteLine("clsName: " + clsName);
 }

 // Nested Memento class used to save outer class' state.
 public class Memento
 {
 public Memento(SomeDataOriginator data)
 {
 this.state = data.state;
 this.id = data.id;
 this.clsName = data.clsName;
 this.originator = data;
 }

 private SomeDataOriginator originator = null;
 private int state = 1;
 private string id = "ID1001";
 private string clsName = "SomeDataOriginator";

 internal void Rollback()
 {
 originator.clsName = this.clsName;
 originator.id = this.id;

 originator.state = this.state;
 }
 }
}

The MementoCareTaker<T> is the caretaker object, which saves a single state that the originator object
can roll back to. Its source code is:

 public class MementoCareTaker<T>
 where T : SomeDataOriginator.Memento
 {
 private T savedState = default(T);

 public T Memento
 {
 get {return (savedState);}
 set {savedState = value;}
 }
 }

MultiMementoCareTaker<T> is another caretaker object that can save multiple states to which the
originator object can roll back. Its source code is:

 public class MultiMementoCareTaker<T>
 where T : SomeDataOriginator.Memento
 {
 private List<T> savedState = new List<T>();

 public T this[int index]
 {
 get {return (savedState[index]);}
 set {savedState[index] = value;}
 }

 public void Add(T memento)
 {
 savedState.Add(memento);
 }

 public int Count
 {
 get {return (savedState.Count);}
 }
}

Discussion

This recipe makes use of two caretaker objects. The first, MementoCareTaker<T>, saves a single object
state that can later be used to roll an object back. The second, MultiMementoCareTaker<T>, uses a
List<T> object to save multiple object states, thereby allowing many levels of rollbacks to occur. You
can also think of MultiMementoCareTaker<T> as storing multiple levels of the undo/redo state.

The originator class, SomeDataOriginator, has the state, id, and clsName fields to store information.
One thing you have to add to the class, which will not affect how it behaves or how it is used, is a
nested Memento class. This nested class is used to store the state of its outer class. You use a nested
class so that it can access the private fields of the outer class. This allows the Memento object to get
copies of all the needed fields of the originator object without having to add special logic to the
originator allowing it to give this field information to the Memento object.

The Memento class contains only private fields that mirror the fields in the outer object that you want
to store. Note that you do not have to store all fields of an outer type, just the ones that you want to
roll back or undo. The Memento object also contains a constructor that accepts a SomeDataOriginator
object. The constructor saves the pointer to this object as well as its current state. There is also a
single method called Rollback. The Rollback method is central to restoring the state of the current
SomeDataOriginator object. This method uses the originator pointer to this object to set the
SomeDataOriginator object's fields back to the values contained in this instance of the Memento object.

The caretaker objects store any Memento objects created by the application. The application can then
specify which Memento objects to use to roll back an object's state. Remember that each Memento
object knows which originator object to roll back. Therefore, you need to tell the caretaker object
only to use a Memento object to roll back an object, and the Memento object takes care of the rest.

There is a potential problem with the caretaker objects that is easily remedied. The problem is that
the caretaker objects are not supposed to know anything about the Memento objects. The caretaker
objects in this recipe see only one method, the Rollback method, that is specific to the Memento
objects. So, for this recipe, this is not really a problem. However, if you decide to add more logic to
the Memento class, you need a way to shield it from the caretaker. You do not want another developer
to add code to the caretaker objects that may allow it to change the internal state of any Memento
objects they contain.

To the caretaker objects, each Memento object should simply be an object that contains the Rollback
method. To make the Memento objects appear this way to the caretaker objects, you can place an
interface on the Memento class. This interface is defined as follows:

 public interface IMemento
 {
 void Rollback();
 }

The Memento class is then modified as follows (changes are highlighted):

 public class Memento : IMemento
 {
 public void Rollback()
 {
 originator.clsName = this.clsName;
 originator.id = this.id;
 originator.state = this.state;
 }

 // The rest of this class does not change
 }

The caretaker classes are modified as follows (changes are highlighted):

 public class MementoCareTaker<T>
 where T: IMemento
 {
 private T savedState = default(T);

 internal T Memento
 {
 get {return (savedState);}
 set {savedState = value;}
 }
 }

 public class MultiMementoCareTaker<T>
 where T: IMemento
 {
 private List<T> savedState = new List<T>();

 public T this[int index]
 {
 get {return (savedState[index]);}
 set {savedState[index] = value;}
 }

 public void Add(T memento)
 {
 savedState.Add(memento);
 }

 public int Count
 {
 get {return (savedState.Count);}
 }
 }

Implementing the IMemento interface serves two purposes. First, it prevents the caretaker classes
from knowing anything about the internals of the Memento objects they contain. Second, it allows the
caretaker objects to handle any type of Memento object, so long as it implements the IMemento
interface.

The following code shows how the SomeDataOriginator, Memento, and caretaker objects are used. It
uses the MementoCareTaker<T> object to store a single state of the SomeDataOriginator object and
then rolls the changes back after the SomeDataOriginator object is modified:

 // Create an originator and default its internal state.
 SomeDataOriginator data = new SomeDataOriginator();
 Console.WriteLine("ORIGINAL");
 data.Display();

 // Create a caretaker object.
 MementoCareTaker<SomeDataOriginator.Memento> objState =
 new MementoCareTaker<SomeDataOriginator.Memento>();

 // Add a memento of the original originator object to the caretaker.
 objState.Memento = new SomeDataOriginator.Memento(data);

 // Change the originator's internal state.
 data.ChangeState(67);
 data.ID = "foo";
 data.ClassName = "bar";
 Console.WriteLine("NEW");
 data.Display();

 // Roll back the changes of the originator to its original state
 objState.Memento.Rollback();
 Console.WriteLine("ROLLEDBACK");
 data.Display();

This code outputs the following:

 ORIGINAL
 State: 1
 Id: ID1001
 ClsName: SomeDataOriginator
 NEW
 State: 67
 Id: foo
 ClsName: bar
 ROLLEDBACK
 State: 1
 Id: ID1001
 ClsName: SomeDataOriginator

The use of the MultiMementoCareTaker<T> object is very similar to the MementoCareTaker object, as
the following code shows:

 SomeDataOriginator Data = new SomeDataOriginator();
 Console.WriteLine("ORIGINAL");
 Data.Display();

 MultiMementoCareTaker<SomeDataOriginator.Memento> MultiObjState = new
 MultiMementoCareTaker<SomeDataOriginator.Memento>();
 MultiObjState.Add(new SomeDataOriginator.Memento(Data));

 Data.ChangeState(67);
 Data.ID = "foo";
 Data.ClassName = "bar";
 Console.WriteLine("NEW");
 Data.Display();
 MultiObjState.Add(new SomeDataOriginator.Memento(Data));

 Data.ChangeState(671);
 Data.ID = "foo1";
 Data.ClassName = "bar1";
 Console.WriteLine("NEW1");
 Data.Display();
 MultiObjState.Add(new SomeDataOriginator.Memento(Data));

 Data.ChangeState(672);
 Data.ID = "foo2";
 Data.ClassName = "bar2";
 Console.WriteLine("NEW2");
 Data.Display();
 MultiObjState.Add(new SomeDataOriginator.Memento(Data));

 Data.ChangeState(673);
 Data.ID = "foo3";
 Data.ClassName = "bar3";
 Console.WriteLine("NEW3");
 Data.Display();

 for (int Index = (MultiObjState.Count - 1); Index >= 0; Index--)
 {
 Console.WriteLine("\r\nROLLBACK(" + Index + ")");
 MultiObjState[Index].Rollback();
 Data.Display();
 }

This code outputs the following:

 ORIGINAL
 State: 1
 Id: ID1001
 ClsName: SomeDataOriginator
 NEW
 State: 67
 Id: foo
 ClsName: bar
 NEW1
 State: 671
 Id: foo1
 ClsName: bar1
 NEW2
 State: 672
 Id: foo2
 ClsName: bar2
 NEW3
 State: 673
 Id: foo3
 ClsName: bar3

 ROLLBACK(3)
 State: 672
 Id: foo2
 ClsName: bar2

 ROLLBACK(2)
 State: 671
 Id: foo1
 ClsName: bar1

 ROLLBACK(1)
 State: 67
 Id: foo
 ClsName: bar

 ROLLBACK(0)
 State: 1
 Id: ID1001
 ClsName: SomeDataOriginator

This code creates a SomeDataOriginator object and changes its state several times. At every state
change, a new Memento object is created to save the SomeDataOriginator object's state at that point
in time. At the end of this code, a for loop iterates over each Memento object stored in the
MultiMementoCareTaker<SomeDataOriginator. Memento> object, from the most recent to the earliest.
On each iteration of this loop, the Memento object is used to restore the state of the
SomeDataOriginator object.

Recipe 3.31. Disposing of Unmanaged Resources

problem

Your class references unmanaged resources such as some type of handle or manipulates a block of
memory or a file via P/Invoke methods or uses a COM object that requires some cleanup method to
be called before it is released. You need to make sure that the resources are released properly and in
a timely manner. In a garbage-collected environment, such as that used by the Common Language
Run-time (CLR), you cannot assume either will happen.

Solution

Implement the dispose design pattern, which is specific to .NET.

The class that contains a reference to the unmanaged resources is shown here as Foo. This object
contains references to a COM object called SomeCOMObj, a FileStream object called FStream, and an
ArrayList that may or may not contain references to unmanaged resources. The source code is
shown in Example 3-23.

Example 3-23. Foo: A class that contains references to unmanaged code

using System;
using System.Collections;
using System.IO;
using System.Runtime.InteropServices;

public class Foo : IDisposable
{
 [DllImport("Kernel32.dll", SetLastError = true)]
 private static extern IntPtr CreateSemaphore(IntPtr lpSemaphoreAttributes,
 int lInitialCount, int lMaximumCount, string lpName);

 [DllImport("Kernel32.dll", SetLastError = true)]
 private static extern bool ReleaseSemaphore(IntPtr hSemaphore,
 int lReleaseCount, out IntPtr lpPreviousCount);

 public Foo() {}

 // Replace SomeCOMObj with your COM object type.
 private SomeCOMObj comObj = new SomeCOMObj();

 private FileStream fileStream = new FileStream(@"c:\test.txt",
 FileMode.OpenOrCreate);
 private ArrayList aList = new ArrayList();
 private bool hasBeenDisposed = false;
 private IntPtr hSemaphore = IntPtr.Zero; // Unmanaged handle

 // Protect these members from being used on a disposed object.
 public void WriteToFile(string text)
 {
 if(hasBeenDisposed)
 {
 throw (new ObjectDisposedException(this.ToString(),
 "Object has been disposed"));
 }

 UnicodeEncoding enc = new UnicodeEncoding();
 fileStream.Write(enc.GetBytes(text), 0, text.Length);
 }
 public void UseCOMObj()
 {
 if(hasBeenDisposed)
 {
 throw (new ObjectDisposedException(this.ToString(),
 "Object has been disposed"));
 }

 Console.WriteLine("GUID: " + comObj.GetType().GUID);
 }

 public void AddToList(object obj)
 {
 if(hasBeenDisposed)
 {
 throw (new ObjectDisposedException(this.ToString(),
 "Object has been disposed"));
 }

 aList.Add(obj);
 }

 public void CreateSemaphore()
 {
 // Create unmanaged handle here.
 hSemaphore = CreateSemaphore(IntPtr.Zero, 5, 5, null);
 }

 // The Dispose methods
 public void Dispose()
 {
 Dispose(true);
 }

 protected virtual void Dispose(bool disposeManagedObjs)
 {
 if (!hasBeenDisposed)
 {
 try
 {
 if (disposeManagedObjs)
 {
 // Dispose all items in an array or ArrayList.
 foreach (object obj in aList)
 {
 IDisposable disposableObj = obj as IDisposable;
 if (disposableObj != null)
 {
 disposableObj.Dispose();
 }
 }
 // Dispose managed objects implementing IDisposable.
 fileStream.Close();

 // Reduce reference count on RCW.
 Marshal.ReleaseComObject(comObj);

 GC.SuppressFinalize(this);
 }
 // Release unmanaged handle here.
 IntPtr prevCnt = new IntPtr();
 ReleaseSemaphore(hSemaphore, 1, out prevCnt);
 }
 catch (Exception)
 {
 hasBeenDisposed = false;
 throw;
 }

 hasBeenDisposed = true;
 }
}

 // The destructor
 ~Foo()
 {
 Dispose(false);
 }
 // Optional Close method
 public void Close()
 {
 Dispose();
 }
}

The following class inherits from Foo:

 // Class inherits from an IDisposable class
 public class Bar : Foo
 {
 //…

 private bool hasBeenDisposed = false;

 protected override void Dispose(bool disposeManagedObjs)
 {
 if (!hasBeenDisposed)
 {
 try
 {
 if(disposeManagedObjs)
 {
 // Call Dispose/Close/Clear on any managed objects here…
 }

 // Release any unmanaged objects here…

 // Call base class' Dispose method.
 base.Dispose(disposeManagedObjs);
 }
 catch (Exception)
 {
 hasBeenDisposed = false;
 throw;
 }

 hasBeenDisposed = true;
 }
 }
 }

Whether this class directly contains any references to unmanaged resources, it should be disposed of
as shown in the code.

Discussion

The dispose design pattern allows any unmanaged resources held by an object to be cleaned up from
within the managed environment. This pattern is flexible enough to allow unmanaged resources held
by the disposable object to be cleaned up explicitly (by calling the Dispose method) or implicitly (by
waiting for the garbage collector to call the destructor). Finalizers are a safety net to clean up objects
when you forget to do it.

This design pattern should be used on any base class that has derived types
that hold unmanaged resources. This indicates to the inheritor that this design
pattern should be implemented in their derived class as well.

All the code that needs to be written for a disposable object is written within the class itself. First, all
disposable types must implement the IDisposable interface. This interface contains a single method,
Dispose, which accepts no parameters and returns void. The Dispose method is overloaded to accept
a Boolean flag indicating whether any managed objects referenced by this object should also be
disposed. If this parameter is true, managed objects referenced by this object will have their Dispose
method called, and unmanaged resources are released; otherwise, only unmanaged resources are
released.

The IDisposable.Dispose method will forward its call to the overloaded Dispose method that accepts
a Boolean flag. This flag will be set to true to allow all managed objects to attempt to dispose of
themselves as well as to release unmanaged resources held by this object.

The IDisposable interface is very important to implement. This interface allows the using statement
to take advantage of the dispose pattern. A using statement that operates on the Foo object is
written as follows:

 using (Foo f = new Foo())
 {
 f.WriteToFile("text");
 }

Always implement the IDisposable interface on types that contain resources
that need to be disposed or otherwise explicitly closed or released. This allows
the use of the using keyword and aids in self-documenting the type.

A foreach loop will also make use of the IDisposable interface, but in a slightly different manner.
After each iteration of this loop, the Dispose method is called via the enumerator type of the object
being enumerated. The foreach loop guarantees that it will call the IDisposable.Dispose method if
the object returned from the GetEnumerator method implements IDisposable.

The overloaded Dispose method that accepts a Boolean flag contains a static method call to
GC.SuppressFinalize to force the garbage collector to remove this object from the fqueue, or
finalization queue. The fqueue allows the garbage collector to run C# finalizers at a point after the
object has been freed. However, this ability comes at a price: it takes many garbage collection cycles
to completely collect an object with a destructor. If the object is placed on the fqueue in generation 0,
the object will have to wait until generation 1 is collected, which could be some time. The
GC.SuppressFinalize method removes the object from the fqueue, because it doesn't need specific
code run for the finalizer; the memory can just be released. Calling this static method from within the
Dispose method is critical to writing better performing classes.

Call the GC.SuppressFinalize method in the base class Dispose method when
the overload of the Dispose method is passed true. Doing so will allow your
object to be taken off of the finalization queue in the garbage collector allowing
for earlier collection. This will help prevent memory retention and will help your
application's performance.

A finalizer is also added to this class. The finalizer contains code to call the overloaded Dispose
method, passing in false as its only argument. Note that all cleanup code should exist within the
overloaded Dispose method that accepts a Boolean flag. All other methods should call this method to
perform any necessary cleanup. The destructor will pass a false value into the Dispose method to
prevent any managed objects from being disposed. Remember, the finalizers run in their own thread.
Attempting to dispose of objects that may have already been collected or are about to be collected
could have serious consequences for your code, such as resurrecting an object into an undefined
state. It is best to prevent any references to other objects while the destructor is running.

It is possible to add a Close or even a Clear method to your class to be called as well as the Dispose
method. Several classes in the FCL use a Close or Clear method to clean up unmanaged resources:

 FileStream.Close()
 StreamWriter.Close()
 TcpClient.Close()
 MessageQueue.Close()
 SymmetricAlgorithm.Clear()
 AsymmetricAlgorithm.Clear()
 CryptoAPITransform.Clear()
 CryptoStream.Clear()

Each of these classes also contains a Dispose method. The Clear method usually calls the Dispose
method directly. There is a problem with this design. The Clear method is used extensively
throughout the FCL for classes such as ArrayList, Hashtable, and other collection-type classes.
However, the Clear method of the collection classes performs a much different task: it clears the
collection of all its items. This Clear method has nothing to do with releasing unmanaged resources or
calling the Dispose method.

The overloaded Dispose method that accepts a Boolean flag will contain all of the logic to release
unmanaged resources from this object as well as possibly calling Dispose on types referenced by this
object. In addition to these two actions, this method can also reduce the reference count on any COM
objects that are referenced by this object. The static Marshal.ReleaseComObject method will
decrement the reference count by one on the COM object reference passed in to this method:

 Marshal.ReleaseComObject(comObj);

To force the reference count to go to zero, allowing the COM object to be released and its RCW to be
garbage collected, you could write the following code:

 while (Marshal.ReleaseComObject(comObj) > 0);

Take great care when forcing the reference count to zero in this manner. If another object is using
this COM object, the COM object will be released out from under this other object. This can easily
destabilize a system. For more information on using this method, see Recipe 3.28.

Any callable method/property/indexer (basically, any nonprivate method except for the Dispose and
Close methods and the constructor[s] and the destructor) should throw the ObjectDisposedException
exception if it is called after the object has been disposedthat is, after its Dispose method has been
called. A private field called hasBeenDisposed is used as a Boolean flag to indicate whether this object
has been disposed; a true confirms that it has been disposed. This flag is checked to determine
whether this object has been disposed at the beginning of every method/property/indexer. If it has
been disposed, the ObjectDisposedException is thrown. This prevents the use of an object after it has
been disposed and potentially placed in an unknown state.

Disposable objects should always check to see if they have been disposed in all
of their public methods, properties, and indexers. If a client attempts to use
your object after it has been disposed, an ObjectDisposedException should be
thrown. Note that a Dispose method can be called multiple times after this
object has been disposed without having any side effects (including the
throwing of ObjectDisposedExceptions) on the object.

Any classes inheriting from Foo need not implement the IDisposable interface; it is implied from the
base class. The inheriting class should implement the hasBeenDisposed Boolean flag field and use this
flag in any methods/properties/indexers to confirm that this object has been disposed. Finally, a
Dispose method is implemented that accepts a Boolean flag and overrides the same virtual method in
the base class. This Dispose method does not have to call the GC.SuppressFinalize(this) static
method; this is done in the base class's Dispose method.

The IDisposable.Dispose method should not be implemented in this class. When the Dispose method
is called on an object of type Bar, the Foo.Dispose method will be called. The Foo.Dispose method will
then call the overridden Bar.Dispose(bool) method, which, in turn, calls its base class Dispose(bool)
method, Foo.Dispose(bool). The base class's finalizer is also inherited by the Bar class.

All Dispose methods should call their base class's Dispose method.

If the client code fails to call the Dispose or Close method, the destructor will run and the
Dispose(bool) method will still be called, albeit at a later time. The finalizer is the object's last line of
defense for releasing unmanaged resources.

See Also

See Recipes 3.28 and 3.29; see the "Dispose Interface," "Using foreach with Collections," and
"Implementing Finalize and Dispose to Clean up Unmanaged Resources" topics in the MSDN
documentation.

Recipe 3.32. Determining Where Boxing and Unboxing
Occur

problem

You have a project consisting of some very complex code that is a performance bottleneck for the
entire application. You have been assigned to increase performance, but you do not know where to
start looking.

Solution

A great way to start looking for performance problems is to use a profiling tool to see whether boxing
is actually causing you any kind of problem in the first place. A profiler will show you exactly what
allocations are occurring and in what volume. There are several profilers on the market; some are
free and others are not.

If you have already established through profiling that boxing is definitely causing a problem but you
are still having trouble working out where it's occurring, then you can use the Ildasm disassembler
tool that is packaged with VS.NET. With Ildasm you can convert an entire project to its equivalent IL
code and then dump the IL to a text file. To do this, Ildasm has several command-line switches, one
of which is the /output switch. This switch is used as follows:

 ildasm Proj1.dll /output:Proj1.il

This command will disassemble the file Proj1.dll and then write the disassembled IL to the file
Proj1.il.

A second useful command-line switch is /source. This switch shows the original code (C#, VB.NET,
etc.) in which this DLL was written, as well as the IL that was compiled from each of these source
lines. Note that the DLL must be built with debugging enabled. This switch is used as follows:

 ildasm Proj1.dll /output:Proj1.il /source

We prefer the second method of invoking Ildasm, since the original source is included, preventing you
from getting lost in all of the IL code.

After running Ildasm from the command line, open the resulting IL code file into VS.NET or your

favorite editor. Inside the editor, do a text search for the words box and unbox. This will find all
occurrences of boxing and unboxing operations.

Using this information, you have pinpointed the problem areas. Now, you can turn your attention to
them to see if there is any way to prevent or minimize the boxing/unboxing operations.

Discussion

When a boxing or unboxing operation occurs in code, whether it was implicit or explicit, the IL
generated includes the box or unbox command. For example, the following C# code:

 int valType = 1;
 object boxedValType = valType;
 valType = (int)boxedValType;

compiles to the following IL code:

 //000883: int valType = 1;
 IL_0000: ldc.i4.1
 IL_0001: stloc.0
 //000884: object boxedValType = valType;
 IL_0002: ldloc.0
 IL_0003: box [mscorlib]System.Int32
 IL_0008: stloc.1
 //000898: int valType = (int) boxedValType;
 IL_0061: ldloc.1
 IL_0062: unbox [mscorlib]System.Int32
 IL_0067: ldind.i4

Notice the box and unbox commands in the previous IL code. IL makes it very apparent when a
boxing or unboxing operation occurs. You can use this to your advantage to find and hopefully
prevent a boxing operation from occurring.

The following can help prevent or eliminate boxing:

Use classes instead of structures. This usually involves simply changing the struct keyword to
class in the structure definition. This change can dramatically improve performance. However,
this change should be done in a very careful manner, as it can change the operation of the
application.

1.

If you are storing value types in a collection, switch to using a generic collection. The generic
collection can be instantiated for the specific value type that you will be storing in it. This allows
you to create a collection that is strongly typed for that specific value type. Not only will using a

2.

generic collection alleviate the boxing/unboxing issue, but it will also speed things up since there
are fewer casts to perform when adding, removing, and looking up values in this collection.

2.

Take care when implementing explicit interface members on structures. As the discussion
shows, this causes the structure to be boxed before the call to an interface member is made
through the interface. This reflects the fact that explicit implementation of a method on an
interface is accessible only from the interface type. This means that the structure must be cast
to that interface type before the explicitly declared methods of that interface type can be used.
An interface is a reference type and therefore causes the structure to be boxed when an explicit
interface method is accessed on that structure. However, in some cases this isn't true. For
example, the using statement issues an IL instruction to prevent boxing when calling the
Dispose methodassuming that an implicit interface implementation is used.

3.

Note that changes to a value type that exists in both boxed and unboxed form
occur independently of one another.

See Also

See the "Boxing Conversion" and "Unboxing Conversion" topics in the MSDN documentation.

Here is a list of some available profiling tools:

Allocation Profiler (free), which can be obtained in the UserSamples section of the web site
http://www.gotdotnet.com/community/usersamples/.

DevPartner Profiler Community Edition (free), which can be obtained at
http://www.compuware.com/products/devpartner/profiler/.

DevPartner Studio Professional Edition (purchase), which can be purchased at
http://www.compuware.com/products/devpartner/studio/. This package contains the code
profiler tool as well as many other tools that work with .NET and other .NET code. This package
also contains a memory analysis tool that can aid in debugging performance problems.

http://www.gotdotnet.com/community/usersamples/
http://www.compuware.com/products/devpartner/profiler/
http://www.compuware.com/products/devpartner/studio/

Chapter 4. Generics
Introduction

Recipe 4.1. Deciding When and Where to Use Generics

Recipe 4.2. Understanding Generic Types

Recipe 4.3. Getting the Type of a Generic Type

Recipe 4.4. Replacing the ArrayList with Its Generic Counterpart

Recipe 4.5. Replacing the Stack and Queue with Their Generic Counterparts

Recipe 4.6. Implementing a Linked List

Recipe 4.7. Creating a Value Type That Can Be Initialized to Null

Recipe 4.8. Reversing the Contents of a Sorted List

Recipe 4.9. Making Read-Only Collections the Generic Way

Recipe 4.10. Replacing the Hashtable with Its Generic Counterpart

Recipe 4.11. Using foreach with Generic Dictionary Types

Recipe 4.12. Constraining Type Arguments

Recipe 4.13. Initializing Generic Variables to Their Default Values

Introduction

A long-awaited feature, generics, is finally here with the advent of Version 2.0 of the C# compiler.
Generics is an extremely useful feature that allows you to write less, but more efficient, code. This
aspect of generics is detailed more in Recipe 4.1. With generics comes quite a bit of programming
power, but with that power comes the responsibility to use it correctly. If you are considering
converting your ArrayList, Queue, Stack, and Hashtable objects to use their generic counterparts,
consider reading Recipes 4.4, 4.5, and 4.10. As you will read, the conversion is not always simple and
easy, and there are reasons why you might not want to do this conversion at all.

Other recipes in this chapter deal with other generic classes contained in the .NET Version 2.0
Framework, such as Recipe 4.6. Still others deal with the operation of any generic type, such as
Recipes 4.2, 4.8, and 4.13.

Recipe 4.1. Deciding When and Where to Use Generics

Problem

You want to use generic types in a new project or convert nongeneric types in an existing project to
their generic equivalent. However, you do not really know why you would want to do this, and you do
not know which nongeneric types should be converted to be generic.

Solution

In deciding when and where to use generic types, you need to consider several things:

Will your type contain or be operating on various unspecified data types (e.g., a collection
type)? If so, creating a generic type will offer several benefits over creating a nongeneric type.
If your type will operate on only a single specific type, then you may not need to create a
generic type.

If your type will be operating on value types, so that boxing and unboxing operations will occur,
you should consider using generics to prevent the boxing and unboxing operations.

The stronger type checking associated with generics will aid in finding errors sooner (i.e., during
compile time as opposed to runtime), thus shortening your bug-fixing cycle.

Is your code suffering from "code bloat," with you writing multiple classes to handle different
data types on which they operate (e.g., a specialized ArrayList that stores only StreamReaders
and another that stores only StreamWriters)? It is easier to write the code once and have it just
work for each of the data types it operates on.

Generics allow for greater clarity of code. By eliminating code bloat and forcing stronger type
checking on your types, your code will be easier to read and understand.

Discussion

In most cases your code will benefit from using a generic type. Generics allow for more efficient code
reuse, faster performance, stronger type checking, and easier-to-read code.

See Also

See the "Generics Overview" and "Benefits of Generics" topics in the MSDN documentation.

Recipe 4.2. Understanding Generic Types

Problem

You need to understand how the .NET types work for generics and what differences there are from
regular .NET types.

Solution

A couple of quick experiments can show the differences between regular .NET types and generic .NET
types. When a regular .NET type is defined, it looks like the StandardClass type defined in Example
4-1.

Example 4-1. StandardClass: a regular .NET type

public class StandardClass
{
 // Static counter hangs off of the Type for
 // StandardClass.
 static int _count = 0;
 // Create an array of typed items.
 int _maxItemCount;
 object[] _items;
 int _currentItem = 0;

 // Constructor that increments static counter
 public StandardClass(int items)
 {
 _count++;
 _maxItemCount = items;
 _items = new object[_maxItemCount];
 }

 /// <summary>
 /// Add an item to the class whose type
 /// is unknown as only object can hold any type.
 /// </summary>
 /// <param name="item">item to add</param>
 /// <returns>the index of the item added</returns>
 public int AddItem(object item)

 {
 if (_currentItem < _maxItemCount)
 {
 _items[_currentItem] = item;
 return _currentItem++;
 }
 else
 throw new Exception("Item queue is full");
 }

 /// <summary>
 /// Get an item from the class.
 /// </summary>
 /// <param name="index">the index of the item to get</param>
 /// <returns>an item of type object</returns>
 public object GetItem(int index)
 {
 Debug.Assert(index < _maxItemCount);
 if (index >= _maxItemCount)
 throw new ArgumentOutOfRangeException("index");

 return _items[index];
 }

 /// <summary>
 /// The count of the items the class holds
 /// </summary>
 public int ItemCount
 {
 get { return _currentItem; }
 }
 /// <summary>
 /// ToString override to provide class detail
 /// </summary>
 /// <returns>formatted string with class details</returns>
 public override string ToString()
 {
 return "There are " + _count.ToString() +
 " instances of " + this.GetType().ToString() +
 " which contains " + _currentItem + " items of type " +
 _items.GetType().ToString() + "…";
 }
}

StandardClass has a static integer member variable, _count, which is incremented in the instance
constructor, and a ToString() override that prints out how many instances of StandardClass exist in
this appdomain. StandardClass also contains an array of objects(_items), the size of which is
determined by the item count passed in to the constructor. It implements methods to add and
retrieve items (AddItem, GetItem) and a read-only property to get the number of items in the array

(ItemCount).

The GenericClass<T> type is a generic .NET type with the same static integer _count field, the
instance constructor that counts the number of instantiations, and the overridden ToString()
method to tell you how many instances there are of this type. GenericClass<T> also has an _items
array, and methods corresponding to those in StandardClass, as you can see Example 4-2.

Example 4-2. GenericClass<T>: a generic .NET type

public class GenericClass<T>
{
 // Static counter hangs off of the
 // instantiated Type for
 // GenericClass.
 static int _count = 0;

 // Create an array of typed items.
 int _maxItemCount;
 T[] _items;
 int _currentItem = 0;

 // Constructor that increments static counter
 public GenericClass(int items)
 {
 _count++;
 _ _maxItemCount = items;
 _items = new T[_maxItemCount];
 }
 /// <summary>
 /// Add an item to the class whose type.
 /// is determined by the instantiating type.
 /// </summary>
 /// <param name="item">item to add</param>
 /// <returns>the zero-based index of the item added</returns>
 public int AddItem(T item)
 {
 if (_currentItem < _maxItemCount)
 {
 _items[_currentItem] = item;
 return _currentItem++;
 }
 else
 throw new Exception("Item queue is full");
 }

 /// <summary>
 /// Get an item from the class.
 /// </summary>
 /// <param name="index">the zero-based index of the item to get</param>

 /// <returns>an item of the instantiating type</returns>
 public T GetItem(int index)
 {
 Debug.Assert(index < _maxItemCount);
 if (index >= _maxItemCount)
 throw new ArgumentOutOfRangeException("index");
 return _items[index];
 }

 /// <summary>
 /// The count of the items the class holds
 /// </summary>
 public int ItemCount
 {
 get { return _currentItem; }
 }

 /// <summary>
 /// ToString override to provide class detail
 /// </summary>
 /// <returns>formatted string with class details</returns>
 public override string ToString()
 {
 return "There are " + _count.ToString() +
 " instances of " + this.GetType().ToString() +
 " which contains " + _currentItem + " items of type " +
 _items.GetType().ToString() + "…";
 }
}

Things start to get a little more different with GenericClass<T> when you look at the _items array
implementation. The _items array is declared as:

 T [] _items;

instead of:

 object [] _items;

The _items array uses the type parameter of the generic class (<T>) to determine what type of items
are allowed in the _items array. StandardClass uses object for the _items array type, which allows
any type to be stored in the array of items (since all types derive from object), while
GenericClass<T> provides type safety by allowing the type parameter to dictate what types of objects

are permitted.

The next difference is visible in the method declarations of AddItem and GetItem. AddItem now takes
a parameter of type T, whereas in StandardClass it took a parameter of type object. GetItem now
returns a value of type T, whereas in StandardClass it returned a value of type object. These
changes allow the methods in GenericClass<T> to use the instantiated type to store and retrieve the
items in the array instead of having to allow any object to be stored as in StandardClass.

 /// <summary>
 /// Add an item to the class whose type
 /// is determined by the instantiating type.
 /// </summary>
 /// <param name="item">item to add</param>
 /// <returns>the zero-based index of the item added</returns>
 public int AddItem(T item)
 {
 if (_currentItem < _maxItemCount)
 {
 _items[_currentItem] = item;
 return _currentItem++;
 }
 else
 throw new Exception("Item queue is full");
 }

 /// <summary>
 /// Get an item from the class.
 /// </summary>
 /// <param name="index">the zero-based index of the item to get</param>
 /// <returns>an item of the instantiating type</returns>
 public T GetItem(int index)
 {
 Debug.Assert(index < _maxItemCount);
 if (index >= _maxItemCount)
 throw new ArgumentOutOfRangeException("index");
 return _items[index];
 }

There are a few advantages this provides. First and foremost is the type safety provided by
GenericClass<T> for items in the array. It was possible to write code like this in StandardClass:

 // Regular class
 StandardClass C = new StandardClass(5);
 Console.WriteLine(C);

 string s1 = "s1";
 string s2 = "s2";
 string s3 = "s3";

 int i1 = 1;

 // Add to the standard class (as object).
 C.AddItem(s1);
 C.AddItem(s2);
 C.AddItem(s3);
 // Add an int to the string array, perfectly OK.
 C.AddItem(i1);

But GenericClass<T> will give a compiler error if you try the same thing:

 // Generic class
 GenericClass<string> gC = new GenericClass<string>(5);
 Console.WriteLine(gC);

 string s1 = "s1";
 string s2 = "s2";
 string s3 = "s3";
 int i1 = 1;

 // Add to the generic class (as string).
 gC.AddItem(s1);
 gC.AddItem(s2);
 gC.AddItem(s3);
 // Try to add an int to the string instance, denied by compiler.
 // error CS1503: Argument '1': cannot convert from 'int' to 'string'
 //GC.AddItem(i1);

Having the compiler prevent this before it can become the source of runtime bugs is a very good
thing.

It may not be immediately noticeable, but the integer is actually boxed when it is added to the object
array in StandardClass, as you can see in the IL for the call to GetItem on StandardClass:

 IL_0170: ldloc.2
 IL_0171: ldloc.s i1

 IL_0173: box [mscorlib]System.Int32
 IL_0178: callvirt instance int32
 CSharpRecipes.Generics/StandardClass::AddItem(object)

This boxing turns the int, which is a value type, into a reference type (object) for storage in the
array. This causes extra work to be done to store value types in the object array

There is a problem when you go to get an item back from the class in the StandardClass
implementation. Take a look at how StandardClass.GetItem retrieves an item:

 // Hold the retrieved string.
 string sHolder;

 // Have to cast or get error CS0266:
 // Cannot implicitly convert type 'object' to 'string'…
 sHolder = (string)C.GetItem(1);

Since the item returned by StandardClass.GetItem is of type object, it needs to be cast to a string
in order to get what you hope is a string for index 1. It may not be a stringall you know for sure is
that it's an objectbut you have to cast it to a more specific type coming out so you can assign it
properly. strings are a special case, since all objects can give a string representation of themselves,
but you can see how this would be a problem if the array held a double and the assignment was to a
bool.

These are both fixed by the GenericClass<T> implementation. The unboxing is addressed; no
unboxing is required, since the return type of GetItem is the instantiated type, and the compiler
enforces this by looking at the value being returned:

 // Hold the retrieved string.
 string sHolder;
 int iHolder;

 // No cast necessary
 sHolder = gC.GetItem(1);

 // Try to get a string into an int.
 // error CS0029: Cannot implicitly convert type 'string' to 'int'
 //iHolder = gC.GetItem(1);

In order to see one other difference between the two types, instantiate a few instances of each of
them like so:

 // Regular class
 StandardClass A = new StandardClass();
 Console.WriteLine(A);
 StandardClass B = new StandardClass();
 Console.WriteLine(B);
 StandardClass C = new StandardClass();
 Console.WriteLine(C);

 // generic class
 GenericClass<bool> gA = new GenericClass<bool>();

 Console.WriteLine(gA);
 GenericClass<int> gB = new GenericClass<int>();
 Console.WriteLine(gB);
 GenericClass<string> gC = new GenericClass<string>();
 Console.WriteLine(gC);
 GenericClass<string> gD = new GenericClass<string>();
 Console.WriteLine(gD);

The output from the preceding code shows this:

 There are 1 instances of CSharpRecipes.Generics+StandardClass which contains 0
 items of type System.Object[]…
 There are 2 instances of CSharpRecipes.Generics+StandardClass which contains 0
 items of type System.Object[]…
 There are 3 instances of CSharpRecipes.Generics+StandardClass which contains 0
 items of type System.Object[]…
 There are 1 instances of CSharpRecipes.Generics+GenericClass`1[System.Boolean]
 which contains 0 items of type System.Boolean[]…
 There are 1 instances of CSharpRecipes.Generics+GenericClass`1[System.Int32]
 which contains 0 items of type System.Int32[]…
 There are 1 instances of CSharpRecipes.Generics+GenericClass`1[System.String]
 which contains 0 items of type System.String[]…
 There are 2 instances of CSharpRecipes.Generics+GenericClass`1[System.String]
 which contains 0 items of type System.String[]…

Discussion

The type parameters in generics allow you to create type-safe code without knowing the final type
you will be working with. In many instances you want the types to have certain characteristics, in
which case you place constraints on the type (Recipe 4.12). Methods can also have generic type
parameters when the class itself does not; Recipe 4.9 shows an example.

Notice that while StandardClass has three instances, GenericClass has one instance in which it was
declared with <bool> as the type, one instance in which <int> was the type, and two instances in
which <string> was the declaring type. This means that, while there is one .NET Type object created
for each non-generic class, there is one .NET Type object for every type-specific instantiation of a
generic class.

StandardClass has three instances in the example code because StandardClass has only one type
that is maintained by the CLR. With generics, one type is maintained for each combination of the
class template and the type arguments passed when constructing a type instance. To make it more
clear, you get one .NET type for GenericClass<bool>, one .NET type for GenericClass<int>, and a
third .NET type for GenericClass<string>.

The internal static _count member helps to illustrate this point, as static members of a class are
actually connected to the type that the CLR hangs on to. The CLR creates any given only type once

and then maintains it until the appdomain unloads. This is why the output from the calls to ToString()
on these objects shows that the count is three for StandardClass (as there is truly only one of these)
and between one and two for the GenericClass<T> types.

See Also

See the "Generic Type Parameters" and "Generic Classes" topics in the MSDN documentation.

Recipe 4.3. Getting the Type of a Generic Type

Problem

You need to get the Type object for a generic type instance at runtime.

Solution

Provide the type parameters when using the typeof operator; or instantiate the generic type using
the type parameters, then use the GetType() method.

Given a regular type and a generic type like this:

 public class Simple
 {
 public Simple()
 {
 }
 }

 public class SimpleGeneric<T>
 {
 public SimpleGeneric()
 {
 }
 }

the type can be retrieved for the simple type at runtime using the typeof operator with just the name
of the simple type. For the generic type, the type parameter must be provided in the call to typeof.
However, the simple type instance and the generic type instance can both call GetType() in the same
manner.

 Simple s = new Simple();
 Type t = typeof(Simple);
 Type alsoT = s.GetType();

 // Provide a type parameter and you can get the
 // instantiated type.
 Type gtInt = typeof(SimpleGeneric<int>);

 Type gtBool = typeof(SimpleGeneric<bool>);
 Type gtString = typeof(SimpleGeneric<string>);

 // You can also use the regular old GetType call from an instance
 // as it has to be of an instance of the generic class.
 SimpleGeneric<int> sgI = new SimpleGeneric<int>();
 Type alsoGT = sgI.GetType();

Discussion

The type of the generic class cannot be retrieved directly because there is no type for a generic class
without a type parameter provided. (See Recipe 4.2 for more information.) Only instantiated generic
classes with a type parameter provided have a Type.

If you attempt to use the typeof operator with just the generic type definition and no type
parameters, you will get the following error:

 // This produces an error:
 //Error 26 Using the generic type 'CSharpRecipes.Generics.SimpleGeneric<T>'
 // requires '1' type arguments
 Type gt = typeof(SimpleGeneric);

See Also

See Recipe 4.2; see the "typeof" topic in the MSDN documentation.

Recipe 4.4. Replacing the ArrayList with Its Generic
Counterpart

Problem

You want to enhance the performance of your application as well as make the code easier to work
with by replacing all ArrayList objects with the generic version. This is imperative when you find that
structures or other value types are being stored in these data structures, resulting in
boxing/unboxing operations.

Solution

Replace all occurrences of the System.Collection.ArrayList class with the more efficient generic
System.Collections.Generic.List class.

Here is a simple example of using a System.Collections.ArrayList object:

 public static void UseNonGenericArrayList()
 {
 // Create and populate an ArrayList.
 ArrayList numbers = new ArrayList();
 numbers.Add(1); // Causes a boxing operation to occur
 numbers.Add(2); // Causes a boxing operation to occur

 // Display all integers in the ArrayList.
 // Causes an unboxing operation to occur on each iteration
 foreach (int i in numbers)
 {
 Console.WriteLine(i);
 }

 numbers.Clear();
 }

Here is that same code using a System.Collections.Generic.List object:

 public static void UseGenericList()
 {
 // Create and populate a List.

 List<int> numbers = new List<int>();
 numbers.Add(1);
 numbers.Add(2);

 // Display all integers in the ArrayList.
 foreach (int i in numbers)
 {
 Console.WriteLine(i);
 }

 numbers.Clear();
 }

Discussion

Since ArrayLists are used in almost all applications, it is a good place to start to enhance the
performance of your application. For simple implementations of the ArrayList in your application, this
substitution should be quite easy. However, there are some things to watch out for. For example, the
generic List class does not implement the ICloneable interface while the ArrayList class does.

Table 4-1 shows the equivalent members that are implemented in both classes.

Table 4-1. Equivalent members in the ArrayList and the generic List
classes

Members in the ArrayList class Equivalent members in the generic List class

Capacity property Capacity property

Count property Count property

IsFixedSize property ((IList)myList).IsFixedSize

IsReadOnly property ((IList)myList).IsReadOnly

IsSynchronized property ((IList)myList).IsSynchronized

Item property Item property

SyncRoot property ((IList)myList).SyncRoot

Adapter static method N/A

Add method Add method

AddRange method AddRange method

N/A AsReadOnly method

BinarySearch method BinarySearch method

Members in the ArrayList class Equivalent members in the generic List class

Clear method Clear method

Clone method Getrange(0, numbers.Count)

Contains method Contains method

N/A ConvertAll method

CopyTo method CopyTo method

N/A Exists method

N/A Find method

N/A FindAll method

N/A FindIndex method

N/A FindLast method

N/A FindLastIndex method

N/A ForEach method

FixedSize static method N/A

Getrange method Getrange method

IndexOf method IndexOf method

Insert method Insert method

InsertRange method InsertRange method

LastIndexOf method LastIndexOf method

ReadOnly static method AsReadOnly method

Remove method Remove method

N/A RemoveAll method

RemoveAt method RemoveAt method

RemoveRange method RemoveRange method

Repeat static method Use a for loop and the Add method

Reverse method Reverse method

SetRange method InsertRange method

Sort method Sort method

Synchronized static method lock(myList.SyncRoot) {…}

ToArray method ToArray method

N/A trimExcess method

TRimToSize method trimToSize method

Clear method Clear method

Clone method Getrange(0, numbers.Count)

Contains method Contains method

N/A ConvertAll method

CopyTo method CopyTo method

N/A Exists method

N/A Find method

N/A FindAll method

N/A FindIndex method

N/A FindLast method

N/A FindLastIndex method

N/A ForEach method

FixedSize static method N/A

Getrange method Getrange method

IndexOf method IndexOf method

Insert method Insert method

InsertRange method InsertRange method

LastIndexOf method LastIndexOf method

ReadOnly static method AsReadOnly method

Remove method Remove method

N/A RemoveAll method

RemoveAt method RemoveAt method

RemoveRange method RemoveRange method

Repeat static method Use a for loop and the Add method

Reverse method Reverse method

SetRange method InsertRange method

Sort method Sort method

Synchronized static method lock(myList.SyncRoot) {…}

ToArray method ToArray method

N/A trimExcess method

TRimToSize method trimToSize method

Members in the ArrayList class Equivalent members in the generic List class

N/A trueForAll method

In several cases within Table 4-1 there is not a one-to-one correlation between the members of an
ArrayList and the members of the generic List class. Starting with the properties, notice that only
the Capacity, Count, and Item properties are present in both classes. To make up for the missing
properties in the List class, you can perform a cast to an IList. The following code shows how to
use these casts to get at the missing properties.

 List<int> numbers = new List<int>();

 Console.WriteLine(((IList)numbers).IsReadOnly);
 Console.WriteLine(((IList)numbers).IsFixedSize);
 Console.WriteLine(((IList)numbers).IsSynchronized);
 Console.WriteLine(((IList)numbers).SyncRoot);

Note that due to the absence of code that returns a synchronized version of a generic List and the
absence of code that returns a fixed size generic List, the IsFixedSize and IsSynchronized
properties will always return false. The SyncRoot property will always return the same object on
which it is called. Essentially, this property returns the this pointer. Microsoft has decided to remove
the ability to create a synchronous wrapper from any of the generic collection classes. Instead, they
recommend using the lock keyword to lock the entire collection or another type of synchronization
object that suits your needs.

The ArrayList has several static methods to which there is no direct equivalent method in the generic
List class. To fix this you have to do a little work. The closest match for the static
ArrayList.ReadOnly method is the AsReadOnly instance method of the generic List class. This makes
for a fairly simple substitution.

The static ArrayList.Repeat method has no direct equivalent in the generic List class. So instead,
you can use the following generic method:

 public static void Repeat<T>(List<T> list, T obj, int count)
 {
 if (count < 0)
 {
 throw (new ArgumentException(
 "The count parameter must be greater or equal to zero."));
 }

 for (int index = 0; index < count; index++)
 {
 list.Add(obj);
 }
 }

N/A trueForAll method

In several cases within Table 4-1 there is not a one-to-one correlation between the members of an
ArrayList and the members of the generic List class. Starting with the properties, notice that only
the Capacity, Count, and Item properties are present in both classes. To make up for the missing
properties in the List class, you can perform a cast to an IList. The following code shows how to
use these casts to get at the missing properties.

 List<int> numbers = new List<int>();

 Console.WriteLine(((IList)numbers).IsReadOnly);
 Console.WriteLine(((IList)numbers).IsFixedSize);
 Console.WriteLine(((IList)numbers).IsSynchronized);
 Console.WriteLine(((IList)numbers).SyncRoot);

Note that due to the absence of code that returns a synchronized version of a generic List and the
absence of code that returns a fixed size generic List, the IsFixedSize and IsSynchronized
properties will always return false. The SyncRoot property will always return the same object on
which it is called. Essentially, this property returns the this pointer. Microsoft has decided to remove
the ability to create a synchronous wrapper from any of the generic collection classes. Instead, they
recommend using the lock keyword to lock the entire collection or another type of synchronization
object that suits your needs.

The ArrayList has several static methods to which there is no direct equivalent method in the generic
List class. To fix this you have to do a little work. The closest match for the static
ArrayList.ReadOnly method is the AsReadOnly instance method of the generic List class. This makes
for a fairly simple substitution.

The static ArrayList.Repeat method has no direct equivalent in the generic List class. So instead,
you can use the following generic method:

 public static void Repeat<T>(List<T> list, T obj, int count)
 {
 if (count < 0)
 {
 throw (new ArgumentException(
 "The count parameter must be greater or equal to zero."));
 }

 for (int index = 0; index < count; index++)
 {
 list.Add(obj);
 }
 }

This generic method takes three parameters:

list

The generic List object

obj

The object that will be added to the generic List object a specified number of times

count

The number of times to add the object contained in obj to the generic List object

Since the Clone method is also missing from the generic List class (due to the fact that this class
does not implement the ICloneable interface), you can instead use the Getrange method of the
generic List class.

 List<int> oldList = new List<int>();
 // Populate oldList…

 List<int> newList = oldList.GetRange(0, oldList.Count);

The GeTRange method performs a shallow copy (similar to the Clone method of the ArrayList) of a
range of elements in the List object. In this case the range of elements includes all elements.

The ArrayList has a default initial capacity of 16 elements, while the List<T>
has a default initial capacity of only 4 elements. This means that the List<T> will
have to be resized (and reallocated) 3 times by the time the 17th element is
added, whereas the ArrayList will have to be resized only one time. This
should be taken into account when evaluating the performance of your
application.

See Also

See the "System.Collections.ArrayList Class" and "System.Collections.Generic.List Class" topics in the
MSDN documentation.

Recipe 4.5. Replacing the Stack and Queue with Their
Generic Counterparts

Problem

You want to enhance the performance of your application as well as make the code easier to work
with by replacing all Stack and Queue objects with their generic versions. This is imperative when you
find that structures or other value types are being stored in these data structures, resulting in
boxing/unboxing operations.

Solution

Replace all occurrences of the System.Collections.Stack and System.Collection.Queue objects with
the System.Collections.Generic.Stack and System.Collection.Generic.Queue objects.

Here is a simple example of using a System.Collections.Queue object:

 public static void UseNonGenericQueue()
 {
 // Create a nongeneric Queue object.
 Queue numericQueue = new Queue();

 // Populate Queue (causing a boxing operation to occur).
 numericQueue.Enqueue(1);
 numericQueue.Enqueue(2);
 numericQueue.Enqueue(3);

 // De-populate Queue and display items (causing an unboxing operation to occur)
 Console.WriteLine(numericQueue.Dequeue());
 Console.WriteLine(numericQueue.Dequeue());
 Console.WriteLine(numericQueue.Dequeue().ToString());
 }

Here is that same code using a System.Collections. Generic.Queue object:

 public static void UseGenericQueue()
 {
 // Create a generic Queue object.
 Queue<int> numericQueue = new Queue<int>();

 // Populate Queue.

 numericQueue.Enqueue(1);
 numericQueue.Enqueue(2);
 numericQueue.Enqueue(3);

 // De-populate Queue and display items.
 Console.WriteLine(numericQueue.Dequeue());
 Console.WriteLine(numericQueue.Dequeue());
 Console.WriteLine(numericQueue.Dequeue());
 }

Here is a simple example of using a System.Collections.Stack object:

 public static void UseNonGenericStack()
 {
 // Create a nongeneric Stack object.
 Stack numericStack = new Stack();

 // Populate Stack (causing a boxing operation to occur).
 numericStack.Push(1);
 numericStack.Push(2);
 numericStack.Push(3);

 // De-populate Stack and display items (causing an unboxing operation to occur).
 Console.WriteLine(numericStack.Pop().ToString());
 Console.WriteLine(numericStack.Pop().ToString());
 Console.WriteLine(numericStack.Pop().ToString());
 }

Here is that same code using a System.Collections.Generic.Stack object:

 public static void UseGenericStack()
 {
 // Create a generic Stack object.
 Stack<int> numericStack = new Stack<int>();

 // Populate Stack.
 numericStack.Push(1);
 numericStack.Push(2);
 numericStack.Push(3);

 // De-populate Stack and display items.
 Console.WriteLine(numericStack.Pop().ToString());
 Console.WriteLine(numericStack.Pop().ToString());
 Console.WriteLine(numericStack.Pop().ToString());
 }

Discussion

On the surface, the generic and nongeneric Queue and Stack classes seem similar enough. However, it
is a very different story underneath the surface. The basic use of the generic Queue and Stack objects
are the same as with their nongeneric counterparts, except for the syntax used to instantiate the
objects. The generic form requires a type argument in order to create the type. The type argument in
this example is an int . This type argument indicates that this Queue or Stack object will be able to
contain only integer types, as well as any type that implicitly converts to an integer, such as a short :

 short s = 300;
 numericQueue.Enqueue(s); // OK, because of the implicit cast

However, a type that cannot be implicitly converted to an integer, such as a double , will cause a
compile-time error.

 double d = 300;
 numericQueue.Enqueue(d); // Error, no implicit case available
 numericQueue.Enqueue((int)d); // OK, because of the explicit cast

The nongeneric form does not require this type argument, because the nongeneric Queue and Stack
objects are allowed to contain only elements of type Object .

When choosing between a generic and nongeneric Queue or Stack , you need to decide whether or not
you wish to use a strongly typed Queue or Stack object (i.e., the generic Queue or Stack class) or a
weakly typed Queue or Stack object (i.e., the nongeneric Queue or Stack class). Choosing the generic
Queue or Stack class over its nongeneric form gives you many benefits including:

Type safety

Each element contained in the data structure is typed to one specific type. This means no more
casting of objects when they are added to or removed from the data structure. You cannot
store multiple disparate types within a single data structure; you always know what type is
stored within the data structure. Type checking is done at compile time rather than runtime.
This boils down to writing less code, achieving better performance, and making fewer errors.

Shortened development time

To make a type-safe data structure without using generics means having to subclass the
System.Collections.Queue or System.Collections.Stack class in order to create your own. This
is time-consuming and error-prone. Generics allow you to simply tell the Queue or Stack object
at compile time what type it is allowed to hold.

Performance

The generic Queue or Stack does not require a potentially time-consuming cast to occur when
adding and removing elements from it. In addition, no boxing operation occurs when adding a
value type to the Queue or Stack . Likewise, no unboxing operation occurs when removing a
value type from the Queue or Stack .

Easier-to-read code

Your code base will be much smaller since you will not have to subclass the nongeneric Queue or
Stack class to create your own strongly typed class. In addition, the type-safety features of
generic code will allow you to better understand what the purpose of the Queue or Stack class is
in your code.

A difference between the generic and nongeneric Queue and Stack classes, is the members
implemented within each class. The members that are implemented in the nongeneric Queue and
Stack classes, but not in the generic Queue and Stack class are listed here:

Clone method
IsSynchronized property
SyncRoot property
Synchronized method

The addition of the Clone method on the nongeneric Queue and Stack classes is due to the ICloneable
interface being implemented only on the nongeneric Queue and Stack classes. However, all other
interfaces implemented by the generic and nongeneric Queue and Stack classes are identical.

One way around the missing Clone method in the generic Queue and Stack classes is to use the
constructor that accepts an IEnumerable<T> type. Since this is one of the interfaces that the Queue and
Stack classes implement, it is easy to write. For the Queue object, the code is as follows:

 public static void CloneQueue()
 {
 // Create a generic Queue object.
 Queue<int> numericQueue = new Queue<int>();

 // Populate Queue.
 numericQueue.Enqueue(1);
 numericQueue.Enqueue(2);
 numericQueue.Enqueue(3);

 // Create a clone of the numericQueue.
 Queue<int> clonedNumericQueue = new Queue<int>(numericQueue);

 // This does a simple peek at the values not a dequeue.
 foreach (int i in clonedNumericQueue)
 {
 Console.WriteLine("foreach: " + i.ToString());
 }

 // De-populate Queue and display items.
 Console.WriteLine(clonedNumericQueue.Dequeue().ToString());
 Console.WriteLine(clonedNumericQueue.Dequeue().ToString());
 Console.WriteLine(clonedNumericQueue.Dequeue().ToString());
 }

The output for this method is shown here:

 foreach: 1
 foreach: 2
 foreach: 3
 1
 2
 3

For the Stack object, the code is as follows.

 public static void CloneStack()
 {
 // Create a generic Stack object.
 Stack<int> numericStack = new Stack<int>();

 // Populate Stack.
 numericStack.Push(1);
 numericStack.Push(2);
 numericStack.Push(3);

 // Clone the numericStack object.
 Stack<int> clonedNumericStack = new Stack<int>(numericStack);

 // This does a simple peek at the values not a pop.
 foreach (int i in clonedNumericStack)
 {
 Console.WriteLine("foreach: " + i.ToString());
 }

 // De-populate Stack and display items.
 Console.WriteLine(clonedNumericStack.Pop().ToString());
 Console.WriteLine(clonedNumericStack.Pop().ToString());
 Console.WriteLine(clonedNumericStack.Pop().ToString());
 }

The output for this method is shown here:

 foreach: 1
 foreach: 2
 foreach: 3
 1
 2
 3

This constructor creates a new instance of the Queue or Stack class containing the elements copied
from the IEnumerable<T> type.

See Also

See the "System.Collections.Stack Class," "System.Collections.Generic.Stack Class,"
"System.Collections.Queue Class," and "System.Collections.Generic.Queue Class" topics in the MSDN
documentation.

Recipe 4.6. Implementing a Linked List

Problem

You need a linked data structure that allows you to easily add and remove elements.

Solution

Use the generic LinkedList<T> class. The following method creates a LinkedList<T> class, adds
nodes to this linked list object, and then uses several methods to obtain information from nodes
within the linked list:

 public static void UseLinkedList()
 {
 // Create a new LinkedList object.
 LinkedList<TodoItem> todoList = new LinkedList<TodoItem>();

 // Create TodoItem objects to add to the linked list.
 TodoItem i1 = new TodoItem("paint door", "Should be done third");
 TodoItem i2 = new TodoItem("buy door", "Should be done first");
 TodoItem i3 = new TodoItem("assemble door", "Should be done second");
 TodoItem i4 = new TodoItem("hang door", "Should be done last");

 // Add the items.
 todoList.AddFirst(i1);
 todoList.AddFirst(i2);
 todoList.AddBefore(todoList.Find(i1), i3);
 todoList.AddAfter(todoList.Find(i1), i4);

 // Display all items.
 foreach (TodoItem tdi in todoList)
 {
 Console.WriteLine(tdi.Name + " : " + tdi.Comment);
 }

 // Display information from the second node in the linked list.
 Console.WriteLine("todoList.First.Next.Value.Name == " +
 todoList.First.Next.Value.Name);

 // Display information from the next to last node in the linked list.
 Console.WriteLine("todoList.Last.Previous.Value.Name == " +
 todoList.Last.Previous.Value.Name);

 }

The output for this method is shown here:

 buy door : Should be done first
 assemble door : Should be done second
 paint door : Should be done third
 hang door : Should be done last
 todoList.First.Value.Name == buy door
 todoList.First.Next.Value.Name == assemble door
 todoList.Last.Previous.Value.Name == paint door

This is the TodoItem class, which is a simple container for two strings _name and _comment.

 public class TodoItem
 {
 public TodoItem (string name, string comment)
 {
 _name = name;
 _comment = comment;
 }

 private string _name = "";
 private string _comment = "";

 public string Name
 {
 get {return (_name);}
 set {_name = value;}
 }

 public string Comment
 {
 get {return (_comment);}
 set {_comment = value;}
 }
 }

Discussion

The LinkedList<T> class in the .NET framework is considered a doubly linked list. This is because
each node in the linked list contains a pointer to both the previous node and the next node in the
linked list. Figure 4-1 shows what a doubly linked list looks like diagrammed on paper. Each node in

this diagram represents a single LinkedListNode<T> object.

Figure 4-1. Graphical representation of a doubly linked list with three
nodes

Notice that each node (i.e., the square boxes) contains a pointer to the next node (i.e., the arrows
pointing to the right) and a pointer to the previous node (i.e., the arrows pointing to the left) in the
linked list. In contrast, a singly linked list contains only pointers to the next node in the list. There is
no pointer to the previous node.

In the LinkedList<T> class, the previous node is always accessed through the Previous property and
the next node is always accessed through the Next property. The first node's Previous property in the
linked list always returns a null value. Likewise, the last node's Next property in the linked list always
returns a null value.

Each node (represented by the boxes in Figure 4-1) in the linked list is actually a generic
LinkedListNode<T> object. So a LinkedList<T> object is actually a collection of LinkedListNode<T>
objects. Each of these LinkedListNode<T> objects contains properties to access the next and previous
LinkedListNode<T> objects, as well as the object contained within it. The object contained in the
LinkedListNode<T> object is accessed through the Value property. In addition to these properties, a
LinkedListNode<T> object also contains a property called List, which allows access to the containing
LinkedList<T> object.

As far as performance is concerned, the List<T> class has benefits over using a LinkedList<T> class.
Adding and removing nodes within a List<T> is, in general, faster than the same operation using a
LinkedList<T> class. Comparing the List<T>. Add method to the Add* methods of the LinkedList<T>
class, the performance hit isn't due to the actual add operation, but due to the pressure that the
LinkedList<T> puts on the garbage collector. A List<T> stores its data essentially in one big array on
the managed heap, whereas the LinkedList<T> can potentially store its nodes all over the managed
heap. This forces the garbage collector to work that much harder to manage LinkedList<T> node
objects on the managed heap. Note that the List<T>.Insert* methods can be slower than adding a
node anywhere within a LinkedList<T> using one of its Add* methods. However, this is dependent on
where the object is inserted into the List<T>. An Insert method must shift all the elements within
the List<T> object, at the point where the new element is inserted, up by one position. If the new
element is inserted at or near the end of the List<T>, the overhead of shifting the existing elements
is negligible compared to the garbage collector overhead of managing the LinkedList<T> nodes
objects.

Another area where the List<T> can outperform the LinkedList<T> is when you're doing an indexed
access. With the List<T>, you can use the indexer to do an indexed lookup of the element at the
specified position. However, with a LinkedList<T> class, you do not have that luxury. With a
LinkedList<T> class, you must navigate the LinkedListNode<T> objects using the Previous and Next
properties on each LinkedListNode<T>, running through the list until you find the one at the specified

position.

A List<T> class also has performance benefits over a LinkedList<T> class when searching for an
element or node. The List<T>.BinarySearch method is faster at finding elements within a List<T>
object than its comparable methods within the LinkedList<T> class, namely the Contains, Find, and
FindLast methods. This is due to the fact that the LinkedList<T> methods perform a linear search
whereas the List<T>.BinarySearch method performs a binary search. In simple terms, a binary
search takes advantage of the fact that the elements within the List<T> are sorted. This entails
calling the Sort method before the BinarySearch (note that if any new elements are added, the Sort
method must again be called before the BinarySearch method). Using this, the binary search will
examine the middle element in the list and ask the question: is the object you're looking for greater
than the object at the current point in the list? If so, you know the target object is at an index
somewhere in the list above the current index. If not, the object is at an index somewhere in the list
below the current index. The binary search algorithm keeps asking this question until the object is
found. In contrast, a linear search starts at the first element in a list and determines if that object is
the one you are looking for. If not, the search continues to the next element in the list. This operation
keeps repeating until the object is found in the list.

See Also

See the "LinkedList<T> Class" topic in the MSDN documentation.

Recipe 4.7. Creating a Value Type That Can Be Initialized
to Null

Problem

You have a variable that is a numeric type, which will hold a numeric value obtained from a database.
The database may return this value as a null. You need a simple clean way to store this numeric
value, even if it is returned as a null.

Solution

Use a nullable value type. There are two ways of creating a nullable value type. The first way is to
use the ? type modifier:

 int? myDBInt = null;

The second way is to use the Nullable<T> generic type:

 Nullable<int> myDBInt = new Nullable<int>();

Discussion

Essentially both of the following statements are equivalent:

 int? myDBInt = null;
 Nullable<int> myDBInt = new Nullable<int>();

In both cases, myDBInt is considered a nullable type and is initialized to null. A nullable type
implements the INullableValue interface, which has two read-only property members, HasValue and
Value. The HasValue property returns false if the nullable type is set to null; otherwise it returns
true. If HasValue returns TRue, you can access the Value property, which contains the currently
stored value in the nullable data type. If HasValue returns false and you attempt to read the Value

property, you will get an InvalidOperationException tHRown. This is because the Value property is
undefined at this point.

In addition, testing the nullable type can be done in one of two ways. First, by using the HasValue
property as shown here:

 if (myDBInt.HasValue)
 Console.WriteLine("Has a value: " + myDBInt.Value);
 else
 Console.WriteLine("Does not have a value (NULL)");

and, second, by comparing it to null:

 if (myDBInt != null)
 Console.WriteLine("Has a value: " + myDBInt.Value);
 else
 Console.WriteLine("Does not have a value (NULL)");

Either method is acceptable.

When casting a nullable type to a non-nullable type, the cast operates as it would normally, except
when the nullable type is set to null. In this case, an InvalidOperationException is thrown. When
casting a non-nullable type to a nullable type, the cast operates as it would normally. No
InvalidOperationException will be thrown, as the non-nullable type can never be null.

The tricky thing to watch out for with nullable types is when comparisons are performed. For example
if the following code is executed:

 if (myTempDBInt < 100)
 Console.WriteLine("myTempDBInt < 100");
 else
 Console.WriteLine("myTempDBInt >= 100");

The text "myTempDBInt >= 100" is displayed, which is obviously incorrect. To fix this code, you have
to check if myTempDBInt is null. If it is not, you can execute the if statement in the previous code
block:

 if (myTempDBInt != null)
 {
 if (myTempDBInt < 100)
 Console.WriteLine("myTempDBInt < 100");
 else
 Console.WriteLine("myTempDBInt >= 100");

 }
 else
 {
 // Handle the null here.
 }

Another interesting thing about nullable types is that you can use them in expressions similar to
normal numeric types, for example:

 int? DBInt = 10;
 int Value = 2;
 int? Result = DBInt + Value; // Result == 12

The result of using a nullable type in an expression is a null if any nullable type is null. However, if
none of the nullable types is null, the operation is evaluated as it normally would be. If DBInt, for
example, is set to null, the value placed in Result will also be null.

See Also

See the "Nullable<T> Generic Class" and "Using Nullable Types" topics in the MSDN documentation.

Recipe 4.8. Reversing the Contents of a Sorted List

Problem

You want to be able to reverse the contents of a sorted list of items while also maintaining the ability to access
them in both array and list styles like SortedList and the generic SortedList<T> classes provide. Neither
SortedList nor SortedList<T> provides a direct way to accomplish this without reloading the list.

Solution

Use the ReversibleSortedList<TKey, TValue> class provided for you here. ReversibleSortedList<TKey, TValue>
is based on the original SortedList<TKey, TValue> class so that all of the same functionality is preserved, with
the additional bonus of being able to reverse the order of the list easily.

After instantiating a ReversibleSortedList<TKey, TValue> , the key of which is an int and the value of which is
a string , a series of unordered numbers and their text representations are inserted into the list. Those items
are then displayed.

 ReversibleSortedList<int, string> rsl = new ReversibleSortedList<int, string>();
 rsl.Add(2, "2");
 rsl.Add(5, "5");
 rsl.Add(3, "3");
 rsl.Add(1, "1");

 foreach (KeyValuePair<int, string> kvp in rsl)
 {
 Debug.WriteLine("\t" + kvp.Key + "\t" + kvp.Value);
 }

The output for the list is shown sorted in ascending order (the default):

 1 1
 2 2
 3 3
 5 5

Now the sort order is reversed by setting the SortDirection property of the ReversibleSortedList to
Descending . Then the Sort() method is called to resort the list in the new order. The results are then
displayed.

 // Switch sort directions.
 rsl.Comparer.SortDirection = ListSortDirection.Descending;

 // Re-sort the list.
 rsl.Sort();

 foreach (KeyValuePair<int, string> kvp in rsl)
 {
 Debug.WriteLine("\t" + kvp.Key + "\t" + kvp.Value);
 }

This time the output is in descending order:

 5 5
 3 3
 2 2
 1 1

When a new item is added to the list, it is added in the current sort order, but by quickly reversing the order
after adding all of the items, you keep the ordering of the list intact:

 rsl.Add(4, "4");

 foreach (KeyValuePair<int, string> kvp in rsl)
 {
 Debug.WriteLine("\t" + kvp.Key + "\t" + kvp.Value);
 }

 // Switch sort directions.
 rsl.Comparer.SortDirection = ListSortDirection.Ascending;

 // Re-sort the list.
 rsl.Sort();

 foreach (KeyValuePair<int, string> kvp in rsl)
 {
 Debug.WriteLine("\t" + kvp.Key + "\t" + kvp.Value);
 }

It can be seen that the output has both descending and ascending orders with the new item:

 5 5

 4 4
 3 3
 2 2
 1 1
 1 1
 2 2
 3 3
 4 4
 5 5

This is accomplished in the ReversibleSortedList<TKey, TValue> by a nested class called
SortDirectionComparer<T> that implements the IComparer<T> interface. This class can be seen in the Discussion
section where the ReversibleSortedList<TKey, TValue> is listed. A class that implements the IComparer<T>
interface can be taken as a parameter to the ReversibleSortedList<TKey, TValue> to override the default
sorting. Within that IComparer<T> implementation is the Compare method:

 public int Compare(T lhs, T rhs)
 {
 int compareResult =
 lhs.ToString().CompareTo(rhs.ToString());

 // If order is DESC, reverse this comparison.
 if (SortDirection == ListSortDirection.Descending)
 compareResult *= -1;
 return compareResult;
 }

The Compare method uses the SortDirection property of the SortDirectionComparer<T> to determine the
ordering of the items. This property is set on an internal instance of SortDirectionComparer<T> by the
ReversibleSortedList<TKey, TValue> class. This happens when its own SortDirection property is set in the
constructor shown here:

 public ReversibleSortedList()
 {
 this.keys = ReversibleSortedList<TKey, TValue>.emptyKeys;
 this.values = ReversibleSortedList<TKey, TValue>.emptyValues;
 this._size = 0;
 this._sortDirectionComparer = new SortDirectionComparer<TKey>();
 this._currentSortDirection = this._sortDirectionComparer.SortDirection;
 }

This allows it to reverse the sort order at any given time but does not take care of reordering the list for items
already in the list. To do that, the Reversible-SortedList<TKey, TValue> class adds a new Sort() method that
takes care of reordering the list like so:

 public void Sort()
 {
 // Check if we are already sorted the right way.
 if (this._currentSortDirection != this._sortDirectionComparer.SortDirection)
 {
 // Reverse the arrays as they were already sorted on insert.
 Array.Reverse(this.keys, 0, this._size);
 Array.Reverse(this.values, 0, this._size);
 // Set our current order.
 this._currentSortDirection = this._sortDirectionComparer.SortDirection;
 }
 }

Discussion

ReversibleSortedList<TKey, TValue> is shown in its entirety in Example 4-3 .

Example 4-3. ReversibleSortedList class

[Serializable, ComVisible(false), DebuggerDisplay("Count = {Count}")]
public class ReversibleSortedList<TKey, TValue>:
 IDictionary<TKey, TValue>, ICollection<KeyValuePair<TKey, TValue>>,
 IEnumerable<KeyValuePair<TKey, TValue>>,
 IDictionary, ICollection, IEnumerable
{
 #region SortDirectionComparer class definition
 public class SortDirectionComparer<T> : IComparer<T>
 {
 private System.ComponentModel.ListSortDirection _sortDir;

 public SortDirectionComparer()
 {
 _sortDir = ListSortDirection.Ascending;
 }

 public SortDirectionComparer(ListSortDirection sortDir)
 {
 _sortDir = sortDir;
 }

 public System.ComponentModel.ListSortDirection SortDirection
 {
 get { return _sortDir; }
 set { _sortDir = value; }
 }

 public int Compare(T lhs, T rhs)
 {
 int compareResult =
 lhs.ToString().CompareTo(rhs.ToString());

 // If order is DESC, reverse this comparison.
 if (SortDirection == ListSortDirection.Descending)
 compareResult *= -1;
 return compareResult;
 }
 }
 #endregion // SortDirectionComparer

 #region CTORS
 static ReversibleSortedList()
 {
 ReversibleSortedList<TKey, TValue>.emptyKeys = new TKey[0];
 ReversibleSortedList<TKey, TValue>.emptyValues = new TValue[0];
 }

 public ReversibleSortedList()
 {
 this.keys = ReversibleSortedList<TKey, TValue>.emptyKeys;
 this.values = ReversibleSortedList<TKey, TValue>.emptyValues;
 this._size = 0;
 this._sortDirectionComparer = new SortDirectionComparer<TKey>();
 this._currentSortDirection = this._sortDirectionComparer.SortDirection;
 }

 public ReversibleSortedList(SortDirectionComparer<TKey> comparer)
 : this()
 {
 if (comparer != null)
 {
 this._sortDirectionComparer = comparer;
 this._currentSortDirection = _sortDirectionComparer.SortDirection;
 }
 }

 public ReversibleSortedList(IDictionary<TKey, TValue> dictionary)
 : this(dictionary, (SortDirectionComparer<TKey>)null)
 {
 }

 public ReversibleSortedList(int capacity)
 {
 if (capacity < 0)
 {
 throw new ArgumentOutOfRangeException(
 "capacity", "Non-negative number required");
 }
 this.keys = new TKey[capacity];

 this.values = new TValue[capacity];
 this._sortDirectionComparer = new SortDirectionComparer<TKey>();
 this._currentSortDirection = _sortDirectionComparer.SortDirection;
 }

 public ReversibleSortedList(IDictionary<TKey, TValue> dictionary,
 SortDirectionComparer<TKey> comparer)
 : this((dictionary != null) ? dictionary.Count : 0, comparer)
 {
 if (dictionary == null)
 {
 throw new ArgumentNullException("dictionary");
 }
 dictionary.Keys.CopyTo(this.keys, 0);
 dictionary.Values.CopyTo(this.values, 0);
 Array.Sort<TKey, TValue>(this.keys, this.values,
 this._sortDirectionComparer);
 this._size = dictionary.Count;
 }

 public ReversibleSortedList(int capacity, SortDirectionComparer<TKey> comparer)
 : this(comparer)
 {
 this.Capacity = capacity;
 }
 #endregion //CTORS

 #region Public Methods
 public void Add(TKey key, TValue value)
 {
 if (key.Equals(null))
 {
 throw new ArgumentNullException("key");
 }
 int num1 = Array.BinarySearch<TKey>(this.keys, 0, this._size, key,
 this._sortDirectionComparer);
 if (num1 >= 0)
 {
 throw new ArgumentException("Attempting to add duplicate");
 }
 this.Insert(~num1, key, value);
 }

 public void Clear()
 {
 this.version++;
 Array.Clear(this.keys, 0, this._size);
 Array.Clear(this.values, 0, this._size);
 this._size = 0;
 }

 public bool ContainsKey(TKey key)

 {
 return (this.IndexOfKey(key) >= 0);
 }

 public bool ContainsValue(TValue value)
 {
 return (this.IndexOfValue(value) >= 0);
 }

 public IEnumerator<KeyValuePair<TKey, TValue>> GetEnumerator()
 {
 return new ReversibleSortedList<TKey, TValue>.Enumerator<TKey, TValue>(
 this);
 }
 public int IndexOfKey(TKey key)
 {

 if (key.Equals(null))
 {
 throw new ArgumentNullException("key");
 }
 int num1 = Array.BinarySearch<TKey>(this.keys, 0, this._size, key,
 this._sortDirectionComparer);
 if (num1 < 0)
 {
 return -1;
 }
 return num1;
 }

 public int IndexOfValue(TValue value)
 {
 return Array.IndexOf<TValue>(this.values, value, 0, this._size);
 }

 public bool Remove(TKey key)
 {
 int num1 = this.IndexOfKey(key);
 if (num1 >= 0)
 {
 this.RemoveAt(num1);
 }
 return (num1 >= 0);
 }

 public void RemoveAt(int index)
{
 if ((index < 0) || (index >= this._size))
 {
 throw new ArgumentOutOfRangeException("index", "Index out of range");
 }
 this._size--;

 if (index < this._size)
 {
 Array.Copy(this.keys, (int)(index + 1), this.keys, index,
 (int)(this._size - index));
 Array.Copy(this.values, (int)(index + 1), this.values, index,
 (int)(this._size - index));
 }
 this.keys[this._size] = default(TKey);
 this.values[this._size] = default(TValue);
 this.version++;
 }

 public void Sort()
 {
 // Check if we are already sorted the right way.
 if (this._currentSortDirection !=
 this._sortDirectionComparer.SortDirection)
 {
 // Reverse the arrays as they were already sorted on insert.
 Array.Reverse(this.keys, 0, this._size);
 Array.Reverse(this.values, 0, this._size);
 // Set our current order.
 this._currentSortDirection = this._sortDirectionComparer.SortDirection;
 }
 }

 public void TrimExcess()
 {
 int num1 = (int)(this.keys.Length * 0.9);
 if (this._size < num1)
 {
 this.Capacity = this._size;
 }
 }

 public bool TryGetValue(TKey key, out TValue value)
 {
 int num1 = this.IndexOfKey(key);
 if (num1 >= 0)
 {
 value = this.values[num1];
 return true;
 }
 value = default(TValue);
 return false;
 }

 #endregion // Public Methods

 #region Private Methods
 private void EnsureCapacity(int min)
 {

 int num1 = (this.keys.Length == 0) ? 4 : (this.keys.Length * 2);
 if (num1 < min)
 {
 num1 = min;
 }
 this.InternalSetCapacity(num1, false);
 }

 private TValue GetByIndex(int index)
 {
 if ((index < 0) || (index >= this._size))
 {
 throw new ArgumentOutOfRangeException("index", "Index out of range");
 }
 return this.values[index];
 }

 private TKey GetKey(int index)
 {
 if ((index < 0) || (index >= this._size))
 {
 throw new ArgumentOutOfRangeException("index", "Index out of range");
 }
 return this.keys[index];
 }

 private KeyList<TKey, TValue> GetKeyListHelper()
 {
 if (this.keyList == null)
 {
 this.keyList = new KeyList<TKey, TValue>(this);
 }
 return this.keyList;
 }

 private ValueList<TKey, TValue> GetValueListHelper()
 {
 if (this.valueList == null)
 {
 this.valueList = new ValueList<TKey, TValue>(this);
 }
 return this.valueList;
 }

 private void Insert(int index, TKey key, TValue value)
 {
 if (this._size == this.keys.Length)
 {
 this.EnsureCapacity(this._size + 1);
 }
 if (index < this._size)
 {

 Array.Copy(this.keys, index, this.keys, (int)(index + 1),
 (int)(this._size - index));
 Array.Copy(this.values, index, this.values, (int)(index + 1),
 (int)(this._size - index));
 }
 this.keys[index] = key;
 this.values[index] = value;
 this._size++;
 this.version++;
 }

 private void InternalSetCapacity(int value, bool updateVersion)
 {
 if (value != this.keys.Length)
 {
 if (value < this._size)
 {
 throw new ArgumentOutOfRangeException(
 "value", "Too small capacity");
 }
 if (value > 0)
 {
 TKey[] localArray1 = new TKey[value];
 TValue[] localArray2 = new TValue[value];
 if (this._size > 0)
 {
 Array.Copy(this.keys, 0, localArray1, 0, this._size);
 Array.Copy(this.values, 0, localArray2, 0, this._size);
 }
 this.keys = localArray1;
 this.values = localArray2;
 }
 else
 {
 this.keys = ReversibleSortedList<TKey, TValue>.emptyKeys;
 this.values = ReversibleSortedList<TKey, TValue>.emptyValues;
 }
 if (updateVersion)
 {
 this.version++;
 }
 }
 }

 private static bool IsCompatibleKey(object key)
 {
 if (key.Equals(null))
 {
 throw new ArgumentNullException("key");
 }
 return (key is TKey);
 }

 void ICollection<KeyValuePair<TKey, TValue>>.Add(
 KeyValuePair<TKey, TValue> keyValuePair)
 {
 this.Add(keyValuePair.Key, keyValuePair.Value);
 }

 bool ICollection<KeyValuePair<TKey, TValue>>.Contains(
 KeyValuePair<TKey, TValue> keyValuePair)
 {
 int num1 = this.IndexOfKey(keyValuePair.Key);
 if ((num1 >= 0) && EqualityComparer<TValue>.Default.Equals(
 this.values[num1],
 keyValuePair.
Value))
 {
 return true;
 }
 return false;
 }

 void ICollection<KeyValuePair<TKey, TValue>>.CopyTo(
 KeyValuePair<TKey,
TValue>[] array,
 int arrayIndex)
 {
 if (array == null)
 {
 throw new ArgumentNullException("array");
 }
 if ((arrayIndex < 0) || (arrayIndex > array.Length))
 {
 throw new ArgumentOutOfRangeException(
 "arrayIndex", "Need a non-negative number");
 }
 if ((array.Length - arrayIndex) < this.Count)
 {
 throw new ArgumentException("ArrayPlusOffTooSmall");
 }
 for (int num1 = 0; num1 < this.Count; num1++)
 {
 KeyValuePair<TKey, TValue> pair1;
 pair1 = new KeyValuePair<TKey, TValue>(
 this.keys[num1], this.values[num1]);
 array[arrayIndex + num1] = pair1;
 }
 }

 bool ICollection<KeyValuePair<TKey, TValue>>.Remove(
 KeyValuePair<TKey, TValue> keyValuePair)
 {
 int num1 = this.IndexOfKey(keyValuePair.Key);

 if ((num1 >= 0) && EqualityComparer<TValue>.Default.Equals(
 this.values[num1],
 keyValuePair.Value))
 {
 this.RemoveAt(num1);
 return true;
 }
 return false;
 }

 IEnumerator<KeyValuePair<TKey, TValue>>
 IEnumerable<KeyValuePair<TKey, TValue>>.GetEnumerator()
 {
 return new ReversibleSortedList<TKey, TValue>.Enumerator<TKey, TValue>(
 this);
 }

 void ICollection.CopyTo(Array array, int arrayIndex)
 {
 if (array == null)
 {
 throw new ArgumentNullException("array");
 }
 if (array.Rank != 1)
 {
 throw new ArgumentException(
 "MultiDimensional array copies are not supported");
 }
 if (array.GetLowerBound(0) != 0)
 {
 throw new ArgumentException("A non-zero lower bound was provided");
 }
 if ((arrayIndex < 0) || (arrayIndex > array.Length))
 {
 throw new ArgumentOutOfRangeException(
 "arrayIndex", "Need non negative number");
 }
 if ((array.Length - arrayIndex) < this.Count)
 {
 throw new ArgumentException("Array plus the offset is too small");
 }
 KeyValuePair<TKey, TValue>[] pairArray1 =
 array as KeyValuePair<TKey, TValue>[];
 if (pairArray1 != null)
 {
 for (int num1 = 0; num1 < this.Count; num1++)
 {
 pairArray1[num1 + arrayIndex] =
 new KeyValuePair<TKey, TValue>(this.keys[num1],
 this.values[num1]);
 }
 }

 else
 {
 object[] objArray1 = array as object[];
 if (objArray1 == null)
 {
 throw new ArgumentException("Invalid array type");
 }
 try
 {
 for (int num2 = 0; num2 < this.Count; num2++)
 {
 objArray1[num2 + arrayIndex] =
 new KeyValuePair<TKey, TValue>(this.keys[num2],
 this.values[num2]);
 }
 }
 catch (ArrayTypeMismatchException)
 {
 throw new ArgumentException("Invalid array type");
 }
 }
 }

 void IDictionary.Add(object key, object value)
 {
 ReversibleSortedList<TKey, TValue>.VerifyKey(key);
 ReversibleSortedList<TKey, TValue>.VerifyValueType(value);
 this.Add((TKey)key, (TValue)value);
 }

 bool IDictionary.Contains(object key)
 {
 if (ReversibleSortedList<TKey, TValue>.IsCompatibleKey(key))
 {
 return this.ContainsKey((TKey)key);
 }
 return false;
 }

 IDictionaryEnumerator IDictionary.GetEnumerator()
 {
 return new ReversibleSortedList<TKey, TValue>.Enumerator<TKey, TValue>(
 this);
 }

 void IDictionary.Remove(object key)
 {
 if (ReversibleSortedList<TKey, TValue>.IsCompatibleKey(key))
 {
 this.Remove((TKey)key);
 }
 }

 IEnumerator IEnumerable.GetEnumerator()
 {
 return new ReversibleSortedList<TKey, TValue>.Enumerator<TKey, TValue>(
 this);
 }

 private static void VerifyKey(object key)
 {
 if (key.Equals(null))
 {
 throw new ArgumentNullException("key");
 }
 if (!(key is TKey))
 {
 throw new ArgumentException(
 "Argument passed is of wrong type", "key");
 }
 }

 private static void VerifyValueType(object value)
 {
 if (!(value is TValue) && ((value != null) || typeof(TValue).IsValueType))
 {
 throw new ArgumentException(
 "Argument passed is of wrong type", "value");
 }
 }
 #endregion // Private methods

 #region Public Properties
 public int Capacity
 {
 get
 {
 return this.keys.Length;
 }
 set
 {
 this.InternalSetCapacity(value, true);
 }
 }

 public SortDirectionComparer<TKey> Comparer
 {
 get
 {
 return this._sortDirectionComparer;
 }
 }

 public int Count
 {
 get
 {
 return this._size;
 }
 }

 public TValue this[TKey key]
 {
 get
 {
 TValue local1;
 int num1 = this.IndexOfKey(key);
 if (num1 >= 0)
 {
 return this.values[num1];
 }
 else
 {
 //throw new KeyNotFoundException();
 local1 = default(TValue);
 return local1;
 }
 }
 set
 {
 if (key == null)
 {
 throw new ArgumentNullException("key");
 }
 int num1 = Array.BinarySearch<TKey>(this.keys, 0, this._size, key,
 this._sortDirectionComparer);
 if (num1 >= 0)
 {
 this.values[num1] = value;
 this.version++;
 }
 else
 {
 this.Insert(~num1, key, value);
 }
 }
 }

 public IList<TKey> Keys
 {
 get
 {
 return this.GetKeyListHelper();
 }
 }

 public IList<TValue> Values
 {
 get
 {
 return this.GetValueListHelper();
 }
 }
 #endregion // Public Properties

 #region Private Properties
 bool ICollection<KeyValuePair<TKey, TValue>>.IsReadOnly
 {
 get
 {
 return false;
 }
 }

 ICollection<TKey> IDictionary<TKey, TValue>.Keys
 {
 get
 {
 return this.GetKeyListHelper();
 }
 }

 ICollection<TValue> IDictionary<TKey, TValue>.Values
 {
 get
 {
 return this.GetValueListHelper();
 }
 }

 bool ICollection.IsSynchronized
 {
 get
 {
 return false;
 }
 }

 object ICollection.SyncRoot
 {
 get
 {
 return this;
 }
 }

 bool IDictionary.IsFixedSize

 {
 get
 {
 return false;
 }
 }

 bool IDictionary.IsReadOnly
 {
 get
 {
 return false;
 }
 }

 object IDictionary.this[object key]
 {
 get
 {
 if (ReversibleSortedList<TKey, TValue>.IsCompatibleKey(key))
 {
 int num1 = this.IndexOfKey((TKey)key);
 if (num1 >= 0)
 {
 return this.values[num1];
 }
 }
 return null;
 }
 set
 {
 ReversibleSortedList<TKey, TValue>.VerifyKey(key);
 ReversibleSortedList<TKey, TValue>.VerifyValueType(value);
 this[(TKey)key] = (TValue)value;
 }
 }

 ICollection IDictionary.Keys
 {
 get
 {
 return this.GetKeyListHelper();
 }
 }

 ICollection IDictionary.Values
 {
 get
 {
 return this.GetValueListHelper();
 }
 }

 #endregion // Private properties

 #region Fields
 private const int _defaultCapacity = 4;
 private int _size;
 //private IComparer<TKey> comparer;
 private static TKey[] emptyKeys;
 private static TValue[] emptyValues;
 private KeyList<TKey, TValue> keyList;
 private TKey[] keys;
 private ValueList<TKey, TValue> valueList;
 private TValue[] values;
 private int version;
 // Declare comparison object.
 private SortDirectionComparer<TKey> _sortDirectionComparer = null;
 // Default to ascending.
 private ListSortDirection _currentSortDirection = ListSortDirection.Descending;
 #endregion

 #region Nested Types

 #region Enumerator <K, V>
 [Serializable, StructLayout(LayoutKind.Sequential)]
 private struct Enumerator<K, V> : IEnumerator<KeyValuePair<K, V>>, IDisposable,
 IDictionaryEnumerator, IEnumerator
 {
 private ReversibleSortedList<K, V> _ReversibleSortedList;
 private K key;
 private V value;
 private int index;
 private int version;
 internal Enumerator(ReversibleSortedList<K, V> ReversibleSortedList)
 {
 this._ReversibleSortedList = ReversibleSortedList;
 this.index = 0;
 this.version = this._ReversibleSortedList.version;
 this.key = default(K);
 this.value = default(V);
 }
 public void Dispose()
 {
 this.index = 0;
 this.key = default(K);
 this.value = default(V);
 }
 object IDictionaryEnumerator.Key
 {
 get
 {
 if ((this.index == 0) ||
 (this.index == (this._ReversibleSortedList.Count + 1)))
 {

 throw new InvalidOperationException(
 "Enumeration operation cannot occur.");
 }
 return this.key;
 }
 }
 public bool MoveNext()
 {
 if (this.version != this._ReversibleSortedList.version)
 {
 throw new InvalidOperationException(
 "Enumeration failed version check");
 }
 if (this.index < this._ReversibleSortedList.Count)
 {
 this.key = this._ReversibleSortedList.keys[this.index];
 this.value = this._ReversibleSortedList.values[this.index];
 this.index++;
 return true;
 }
 this.index = this._ReversibleSortedList.Count + 1;
 this.key = default(K);
 this.value = default(V);
 return false;
 }
 DictionaryEntry IDictionaryEnumerator.Entry
 {
 get
 {
 if ((this.index == 0) ||
 (this.index == (this._ReversibleSortedList.Count + 1)))
 {
 throw new InvalidOperationException(
 "Enumeration operation cannot happen.");
 }
 return new DictionaryEntry(this.key, this.value);
 }
 }
 public KeyValuePair<K, V> Current
 {
 get
 {
 return new KeyValuePair<K, V>(this.key, this.value);
 }
 }
 object IEnumerator.Current
 {
 get
 {
 if ((this.index == 0) ||
 (this.index == (this._ReversibleSortedList.Count + 1)))
 {

 throw new InvalidOperationException(
 "Enumeration operation cannot occur");
 }
 return new DictionaryEntry(this.key, this.value);
 }
 }
 object IDictionaryEnumerator.Value
 {
 get
 {
 if ((this.index == 0) ||
 (this.index == (this._ReversibleSortedList.Count + 1)))
 {
 throw new InvalidOperationException(
 "Enumeration operation cannot occur");
 }
 return this.value;
 }
 }
 void IEnumerator.Reset()
 {
 if (this.version != this._ReversibleSortedList.version)
 {
 throw new InvalidOperationException(
 "Enumeration version check failed");
 }
 this.index = 0;
 this.key = default(K);
 this.value = default(V);
 }
 }
 #endregion // Enumerator <K, V>

 #region KeyList<K,V>
 [Serializable]
 private sealed class KeyList<K, V> : IList<K>, ICollection<K>,
 IEnumerable<K>, ICollection, IEnumerable
 {
 // Methods
 internal KeyList(ReversibleSortedList<K, V> dictionary)
 {
 this._dict = dictionary;
 }

 public void Add(K key)
 {
 throw new NotSupportedException("Add is unsupported");
 }

 public void Clear()
 {
 throw new NotSupportedException("Clear is unsupported");

 }

 public bool Contains(K key)
 {
 return this._dict.ContainsKey(key);
 }

 public void CopyTo(K[] array, int arrayIndex)
 {
 Array.Copy(this._dict.keys, 0, array, arrayIndex, this._dict.Count);
 }

 public IEnumerator<K> GetEnumerator()
 {
 return new
 ReversibleSortedList<K, V>.ReversibleSortedListKeyEnumerator(
 this._dict);
 }

 public int IndexOf(K key)
 {
 if (key == null)
 {
 throw new ArgumentNullException("key");
 }
 int num1 = Array.BinarySearch<K>(this._dict.keys, 0,
 this._dict.Count, key,
 this._dict._sortDirectionComparer);
 if (num1 >= 0)
 {
 return num1;
 }
 return -1;
 }

 public void Insert(int index, K value)
 {
 throw new NotSupportedException("Insert is unsupported");
 }

 public bool Remove(K key)
 {
 //throw new NotSupportedException("Remove is unsupported");
 return false;
 }

 public void RemoveAt(int index)
 {
 throw new NotSupportedException("RemoveAt is unsupported");
 }

 void ICollection.CopyTo(Array array, int arrayIndex)

 {
 if ((array != null) && (array.Rank != 1))
 {
 throw new ArgumentException(
 "MultiDimensional arrays are not unsupported");
 }
 try
 {
 Array.Copy(this._dict.keys, 0, array, arrayIndex,
 this._dict.Count);
 }
 catch (ArrayTypeMismatchException atme)
 {
 throw new ArgumentException("InvalidArrayType", atme);
 }
 }

 IEnumerator IEnumerable.GetEnumerator()
 {
 return new
 ReversibleSortedList<K, V>.ReversibleSortedListKeyEnumerator(
 this._dict);
 }

 // Properties
 public int Count
 {
 get
 {
 return this._dict._size;
 }
 }

 public bool IsReadOnly
 {
 get
 {
 return true;
 }
 }

 public K this[int index]
 {
 get
 {
 return this._dict.GetKey(index);
 }
 set
 {
 throw new NotSupportedException("Set is an unsupported operation");
 }
 }

 bool ICollection.IsSynchronized
 {
 get
 {
 return false;
 }
 }

 object ICollection.SyncRoot
 {
 get
 {
 return this._dict;
 }
 }

 // Fields
 private ReversibleSortedList<K, V> _dict;
 }
 #endregion // KeyList<K,V>

 #region ReversibleSortedListKeyEnumerator definition
 [Serializable]
 private sealed class ReversibleSortedListKeyEnumerator : IEnumerator<TKey>,
 IDisposable,
 IEnumerator
 {
 // Methods
 internal ReversibleSortedListKeyEnumerator(
 ReversibleSortedList<TKey, TValue> ReversibleSortedList)
 {
 this._ReversibleSortedList = ReversibleSortedList;
 this.version = ReversibleSortedList.version;
 }

 public void Dispose()
 {
 this.index = 0;
 this.currentKey = default(TKey);
 }

 public bool MoveNext()
 {
 if (this.version != this._ReversibleSortedList.version)
 {
 throw new InvalidOperationException(
 "Enumeration failed version check");
 }
 if (this.index < this._ReversibleSortedList.Count)
 {

 this.currentKey = this._ReversibleSortedList.keys[this.index];
 this.index++;
 return true;
 }
 this.index = this._ReversibleSortedList.Count + 1;
 this.currentKey = default(TKey);
 return false;
 }

 void IEnumerator.Reset()
 {
 if (this.version != this._ReversibleSortedList.version)
 {
 throw new InvalidOperationException(
 "Enumeration failed version check");
 }
 this.index = 0;
 this.currentKey = default(TKey);
 }

 // Properties
 public TKey Current
 {
 get
 {
 return this.currentKey;
 }
 }

 object IEnumerator.Current
 {
 get
 {
 if ((this.index == 0) || (this.index ==
 (this._ReversibleSortedList.Count + 1)))
 {
 throw new InvalidOperationException(
 "Enumeration operation could not occur");
 }
 return this.currentKey;
 }
 }

 // Fields
 private ReversibleSortedList<TKey, TValue> _ReversibleSortedList;
 private TKey currentKey;
 private int index;
 private int version;
 }
 #endregion //ReversibleSortedListKeyEnumerator definition

 #region ReversibleSortedListValueEnumerator definition
 [Serializable]
 private sealed class ReversibleSortedListValueEnumerator : IEnumerator<TValue>,
 IDisposable,
 IEnumerator
 {
 // Methods
 internal ReversibleSortedListValueEnumerator(
 ReversibleSortedList<TKey, TValue> ReversibleSortedList)
 {
 this._ReversibleSortedList = ReversibleSortedList;
 this.version = ReversibleSortedList.version;
 }

 public void Dispose()
 {
 this.index = 0;
 this.currentValue = default(TValue);
 }

 public bool MoveNext()
 {
 if (this.version != this._ReversibleSortedList.version)
 {
 throw new InvalidOperationException(
 "Enumeration failed version check");
 }
 if (this.index < this._ReversibleSortedList.Count)
 {
 this.currentValue = this._ReversibleSortedList.values[this.index];
 this.index++;
 return true;
 }
 this.index = this._ReversibleSortedList.Count + 1;
 this.currentValue = default(TValue);
 return false;
 }

 void IEnumerator.Reset()
 {
 if (this.version != this._ReversibleSortedList.version)
 {
 throw new InvalidOperationException(
 "Enumeration failed version check");
 }
 this.index = 0;
 this.currentValue = default(TValue);
 }

 // Properties

 public TValue Current
 {
 get
 {
 return this.currentValue;
 }
 }

 object IEnumerator.Current
 {
 get
 {
 if ((this.index == 0) || (this.index ==
 (this._ReversibleSortedList.Count + 1)))
 {
 throw new InvalidOperationException(
 "Enumeration operation could not occur");
 }
 return this.currentValue;
 }
 }

 // Fields
 private ReversibleSortedList<TKey, TValue> _ReversibleSortedList;
 private TValue currentValue;
 private int index;
 private int version;
 }
 #endregion //ReversibleSortedListValueEnumerator

 #region ValueList <K, V> definition
 [Serializable]
 private sealed class ValueList<K, V> : IList<V>, ICollection<V>,
 IEnumerable<V>, ICollection, IEnumerable
 {
 // Methods
 internal ValueList(ReversibleSortedList<K, V> dictionary)
 {
 this._dict = dictionary;
 }

 public void Add(V key)
 {
 throw new NotSupportedException("Add is not supported");
 }

 public void Clear()
 {
 throw new NotSupportedException("Clear is not supported");
 }

 public bool Contains(V value)
 {
 return this._dict.ContainsValue(value);
 }

 public void CopyTo(V[] array, int arrayIndex)
 {
 Array.Copy(this._dict.values, 0, array, arrayIndex, this._dict.Count);
 }

 public IEnumerator<V> GetEnumerator()
 {
 return new
 ReversibleSortedList<K, V>.ReversibleSortedListValueEnumerator(
 this._dict);
 }

 public int IndexOf(V value)
 {
 return Array.IndexOf<V>(this._dict.values, value, 0, this._dict.Count);
 }

 public void Insert(int index, V value)
 {
 throw new NotSupportedException("Insert is not supported");
 }

 public bool Remove(V value)
 {
 //throw new NotSupportedException("Remove is not supported");
 return false;
 }

 public void RemoveAt(int index)
 {
 throw new NotSupportedException("RemoveAt is not supported");
 }

 void ICollection.CopyTo(Array array, int arrayIndex)
 {
 if ((array != null) && (array.Rank != 1))
 {
 throw new ArgumentException(
 "MultiDimensional arrays not supported");
 }
 try
 {
 Array.Copy(this._dict.values, 0, array, arrayIndex,
 this._dict.Count);
 }
 catch (ArrayTypeMismatchException atme)
 {

 throw new ArgumentException("Invalid array type", atme);
 }
 }

 IEnumerator IEnumerable.GetEnumerator()
 {
 return new
 ReversibleSortedList<K, V>.ReversibleSortedListValueEnumerator(
 this._dict);
 }

 // Properties
 public int Count
 {
 get
 {
 return this._dict._size;
 }
 }

 public bool IsReadOnly
 {
 get
 {
 return true;
 }
 }

 public V this[int index]
 {
 get
 {
 return this._dict.GetByIndex(index);
 }
 set
 {
 throw new NotSupportedException("Set by indexer is not supported");
 }
 }

 bool ICollection.IsSynchronized
 {
 get
 {
 return false;
 }
 }

 object ICollection.SyncRoot
 {
 get

 {
 return this._dict;
 }
 }

 // Fields
 private ReversibleSortedList<K, V> _dict;
 }
 #endregion // ValueList <TKey, TValue> definition

 #endregion // Nested types
}

A SortedList blends array and list syntax to allow for accessing the data in either format, which can be a handy
thing to do. The data is accessible as key/value pairs or directly by index. Like the SortedList , the
ReversibleSortedList<T> will not allow duplicate keys to be added. In addition, values that are reference or
nullable types can be null , but keys cannot. The default capacity of a ReversibleSortedList<T> is 16, like the
current default capacity of the SortedList . The items can be iterated using a foreach loop, with KeyValuePair
being the type returned. While accessing elements of the ReversibleSortedList<T> , they may only be read
from. The usual iterator syntax prohibits updating or deleting elements of the list while reading, as it will
invalidate the iterator.

See Also

See Recipe 6.3; see the "SortedList," " Generic KeyValuePair Structure," and "Generic SortedList" topics in the
MSDN documentation.

Recipe 4.9. Making Read-Only Collections the Generic
Way

Problem

You have a collection of information that you want to expose from your class, but you don't want any
users modifying the collection.

Solution

Use the ReadOnlyCollection<T> wrapper to easily support collection classes that cannot be modified.
For example, a Lottery class that contained the winning lottery numbers should make the winning
numbers accessible, but not allow them to be changed:

 public class Lottery
 {
 // Make a list.
 List<int> _numbers = null;

 public Lottery()
 {
 // Make the internal list
 _numbers = new List<int>(5);
 // Add values
 _numbers.Add(17);
 _numbers.Add(21);
 _numbers.Add(32);
 _numbers.Add(44);
 _numbers.Add(58);
 }

 public ReadOnlyCollection<int> Results
 {
 // Return a wrapped copy of the results.
 get { return new ReadOnlyCollection<int>(_numbers); }
 }
 }

Lottery has an internal List<int> of winning numbers that it fills in the constructor. The interesting

part is that it also exposes a property called Results, which returns a ReadOnlyCollection typed as
<int> for seeing the winning numbers. Internally, a new ReadOnlyCollection wrapper is created to
hold the List<int> that has the numbers in it, and then this instance is returned for use by the user.

If users then attempt to set a value on the collection, they get a compile error:

 Lottery tryYourLuck = new Lottery();
 // Print out the results.
 for (int i = 0; i < tryYourLuck.Results.Count; i++)
 {
 Console.WriteLine("Lottery Number " + i + " is " + tryYourLuck.Results[i]);
 }

 // Change it so we win!
 tryYourLuck.Results[0]=29;

 //The above line gives // Error 26 // Property or indexer
 // 'System.Collections.ObjectModel.ReadOnlyCollection<int>.this[int]'
 // cannot be assigned to -- it is read only

Discussion

The main advantage ReadOnlyCollection provides is the flexibility to use it with any collection that
supports IList or IList<T> as an interface. ReadOnlyCollection can be used to wrap a regular array
like this:

 int [] items = new int[3];
 items[0]=0;
 items[1]=1;
 items[2]=2;
 new ReadOnlyCollection<int>(items);

This provides a way to standardize the read-only properties on classes to make it easier for
consumers of the class to recognize which properties are read-only simply by the return type.

See Also

See the "IList" and "Generic IList" topics in the MSDN documentation.

Recipe 4.10. Replacing the Hashtable with Its Generic
Counterpart

Problem

You want to enhance the performance of your application as well as make the code easier to work
with by replacing all Hashtable objects with the generic version. This is imperative when you find that
structures or other value types are being stored in these data structures, resulting in
boxing/unboxing operations.

Solution

Replace all occurrences of the System.Collections.Hashtable class with the faster generic
System.Collections.Generic.Dictionary class.

Here is a simple example of using a System.Collections.Hashtable object:

 public static void UseNonGenericHashtable()
 {
 // Create and populate a Hashtable.
 Hashtable numbers = new Hashtable();
 numbers.Add(1, "one"); // Causes a boxing operation to occur for the key
 numbers.Add(2, "two"); // Causes a boxing operation to occur for the key

 // Display all key/value pairs in the Hashtable.
 // Causes an unboxing operation to occur on each iteration for the key
 foreach (DictionaryEntry de in numbers)
 {
 Console.WriteLine("Key: " + de.Key + "\tValue: " + de.Value);
 }

 numbers.Clear();
 }

Here is that same code using a System.Collections.Generic.Dictionary<T,U> object:

 public static void UseGenericDictionary()
 {
 // Create and populate a Dictionary.

 Dictionary<int, string> numbers = new Dictionary<int, string>();
 numbers.Add(1, "one");
 numbers.Add(2, "two");

 // Display all key/value pairs in the Dictionary.
 foreach (KeyValuePair<int, string> kvp in numbers)
 {
 Console.WriteLine("Key: " + kvp.Key + "\tValue: " + kvp.Value);
 }

 numbers.Clear();
 }

Discussion

For simple implementations of the Hashtable in your application, this substitution should be quite
easy. However, there are some things to watch out for. For example, the generic Dictionary class
does not implement the ICloneable interface, while the Hashtable class does.

Table 4-2 shows the equivalent members that are implemented in both classes.

Table 4-2. Equivalent members in the Hashtable and the generic
Dictionary classes

Members in the Hashtable
class

Equivalent members in the generic Dictionary class

N/A Comparer property

Count property Count property

IsFixedSize property ((IDictionary)myDict).IsFixedSize

IsReadOnly property ((IDictionary)myDict).IsReadOnly

IsSynchronized property ((IDictionary)myDict).IsSynchronized

Item property Item property

Keys property Keys property

SyncRoot property ((IDictionary)myDict).SyncRoot

Values property Values property

Add method Add method

Clear method Clear method

Members in the Hashtable
class

Equivalent members in the generic Dictionary class

Clone method
Use overloaded constructor which accepts an IDictionary<T,U>

type

Contains method ContainsKey method

ContainsKey method ContainsKey method

ContainsValue method ContainsValue method

CopyTo method ((ICollection)myDict).CopyTo(arr,0)

Remove method Remove method

Synchronized static method lock(myDictionary.SyncRoot) {…}

N/A TRyGetValue method

In several cases within Table 4-2, there is not a one-to-one correlation between the members of a
Hashtable and the members of the generic Dictionary class. Starting with the properties, notice that
only the Count, Keys, Values, and Item properties are present in both classes. To make up for the
missing properties in the Dictionary class, you can perform a cast to an IDictionary. The following
code shows how to use these casts to get at the missing properties:

 Dictionary<int, string> numbers = new Dictionary<int, string>();

 Console.WriteLine(((IDictionary)numbers).IsReadOnly);
 Console.WriteLine(((IDictionary)numbers).IsFixedSize);
 Console.WriteLine(((IDictionary)numbers).IsSynchronized);
 Console.WriteLine(((IDictionary)numbers).SyncRoot);

Note that due to the absence of code to be able to return a synchronized version of a generic
Dictionary, the IsSynchronized property will always return false. The SyncRoot property will always
return the same object on which it is called. Essentially, this property returns the this pointer.
Microsoft has decided to remove the ability to create a synchronous wrapper from any of the generic
collection classes.

Instead, they recommend using the lock keyword to lock the entire collection or another type of
synchronization object that suits your needs.

Since the Clone method is also missing from the generic Dictionary class (due to the fact that this
class does not implement the ICloneable interface), you can instead use the overloaded constructor,
which accepts an IDictionary<T,U> type:

 // Create and populate a Dictionary.
 Dictionary<int, string> numbers = new Dictionary<int, string>();
 numbers.Add(1, "one");
 numbers.Add(2, "two");

Clone method
Use overloaded constructor which accepts an IDictionary<T,U>

type

Contains method ContainsKey method

ContainsKey method ContainsKey method

ContainsValue method ContainsValue method

CopyTo method ((ICollection)myDict).CopyTo(arr,0)

Remove method Remove method

Synchronized static method lock(myDictionary.SyncRoot) {…}

N/A TRyGetValue method

In several cases within Table 4-2, there is not a one-to-one correlation between the members of a
Hashtable and the members of the generic Dictionary class. Starting with the properties, notice that
only the Count, Keys, Values, and Item properties are present in both classes. To make up for the
missing properties in the Dictionary class, you can perform a cast to an IDictionary. The following
code shows how to use these casts to get at the missing properties:

 Dictionary<int, string> numbers = new Dictionary<int, string>();

 Console.WriteLine(((IDictionary)numbers).IsReadOnly);
 Console.WriteLine(((IDictionary)numbers).IsFixedSize);
 Console.WriteLine(((IDictionary)numbers).IsSynchronized);
 Console.WriteLine(((IDictionary)numbers).SyncRoot);

Note that due to the absence of code to be able to return a synchronized version of a generic
Dictionary, the IsSynchronized property will always return false. The SyncRoot property will always
return the same object on which it is called. Essentially, this property returns the this pointer.
Microsoft has decided to remove the ability to create a synchronous wrapper from any of the generic
collection classes.

Instead, they recommend using the lock keyword to lock the entire collection or another type of
synchronization object that suits your needs.

Since the Clone method is also missing from the generic Dictionary class (due to the fact that this
class does not implement the ICloneable interface), you can instead use the overloaded constructor,
which accepts an IDictionary<T,U> type:

 // Create and populate a Dictionary.
 Dictionary<int, string> numbers = new Dictionary<int, string>();
 numbers.Add(1, "one");
 numbers.Add(2, "two");

 // Display all key/value pairs in the original Dictionary.
 foreach (KeyValuePair<int, string> kvp in numbers)
 {
 Console.WriteLine("Original Key: " + kvp.Key + "\tValue: " + kvp.Value);
 }

 // Clone the Dictionary object.
 Dictionary<int, string> clonedNumbers = new Dictionary<int, string>(numbers);

 // Display all key/value pairs in the cloned Dictionary.
 foreach (KeyValuePair<int, string> kvp in numbers)
 {
 Console.WriteLine("Cloned Key: " + kvp.Key + "\tValue: " + kvp.Value);
 }

There are two more methods that are missing from the Dictionary class, the Contains and CopyTo
methods. The Contains method is easy to reproduce in the Dictionary class. In the Hashtable class,
the Contains method and the ContainsKey method both exhibit the same behavior, therefore you can
simply use the ContainsKey method of the Dictionary class to simulate the Contains method of the
Hashtable class:

 // Create and populate a Dictionary.
 Dictionary<int, string> numbers = new Dictionary<int, string>();
 numbers.Add(1, "one");
 numbers.Add(2, "two");

 Console.WriteLine("numbers.ContainsKey(1) == " + numbers.ContainsKey(1));
 Console.WriteLine("numbers.ContainsKey(3) == " + numbers.ContainsKey(3));

The CopyTo method is also easy to simulate in the Dictionary class, but it involves a little more work:

 // Create and populate a Dictionary.
 Dictionary<int, string> numbers = new Dictionary<int, string>();
 numbers.Add(1, "one");
 numbers.Add(2, "two");

 // Display all key/value pairs in the Dictionary.
 foreach (KeyValuePair<int, string> kvp in numbers)
 {
 Console.WriteLine("Key: " + kvp.Key + "\tValue: " + kvp.Value);
 }
 // Create object array to hold copied information from Dictionary object.
 KeyValuePair<int, string>[] objs = new KeyValuePair<int, string>[numbers.Count];

 // Calling CopyTo on a Dictionary

 // Copies all KeyValuePair objects in Dictionary object to objs[]
 ((IDictionary)numbers).CopyTo(objs, 0);

 // Display all key/value pairs in the objs[].
 foreach (KeyValuePair<int, string> kvp in objs)
 {
 Console.WriteLine("Key: " + kvp.Key + "\tValue: " + kvp.Value);
 }

Calling CopyTo on the Dictionary object involves setting up an array of KeyValuePair<T,U> objects,
which will end up holding all the KeyValuePair<T,U> objects within the Dictionary object after the
CopyTo method is called. Next, the numbers Dictionary object is cast to an IDictionary type so that
the CopyTo method may be called. Once the CopyTo method is called, the objs array will contain
copies of all the KeyValuePair<T,U> objects that are in the original numbers object. Note that iteration
of the objs array, using a foreach loop, is done in the same fashion as with the numbers object.

See Also

See the "System.Collections.Hashtable Class" and "System.Collections.Generic.Dictionary Class"
topics in the MSDN documentation.

Recipe 4.11. Using foreach with Generic Dictionary Types

Problem

You need to enumerate the elements within a type that implements System.
Collections.Generic.IDictionary, such as System.Collections.Generic.Dictionary or
System.Collections.Generic.SortedList.

Solution

The simplest way is to use the KeyValuePair structure in a foreach loop as shown here:

 // Create a Dictionary object and populate it.
 Dictionary<int, string> myStringDict = new Dictionary<int, string>();
 myStringDict.Add(1, "Foo");
 myStringDict.Add(2, "Bar");
 myStringDict.Add(3, "Baz");

 // Enumerate and display all key and value pairs.
 foreach (KeyValuePair<int, string> kvp in myStringDict)
 {
 Console.WriteLine("key " + kvp.Key);
 Console.WriteLine("Value " + kvp.Value);
 }

Discussion

The nongeneric System.Collections.Hashtable (the counterpart to the
System.Collections.Generic.Dictionary class), System.Collections.CollectionBase, and
System.Collections.SortedList classes support foreach using the DictionaryEntry type as shown
here:

 foreach (DictionaryEntry de in myDict)
 {
 Console.WriteLine("key " + de.Key);
 Console.WriteLine("Value " + de.Value);
 }

However, the Dictionary object supports the KeyValuePair<T,U> type when using a foreach loop.
This is due to the fact that the GetEnumerator method returns an IEnumerator, which in turn returns
KeyValuePair<T,U> types, not DictionaryEntry types.

The KeyValuePair<T,U> type is well suited to be used when enumerating the generic Dictionary class
with a foreach loop. The DictionaryEntry object contains key and value pairs as objects, whereas
the KeyValuePair<T,U> type contains key and value pairs as their original types, defined when
creating the Dictionary object. This boosts performance and can reduce the amount of code you
have to write, as you do not have to cast the key and value pairs to their original types.

See Also

See the "System.Collections.Generic.Dictionary Class," "System.Collections.Generic. SortedList
Class," and "System.Collections.Generic.KeyValuePair Structure" topics in the MSDN documentation.

Recipe 4.12. Constraining Type Arguments

Problem

Your generic type needs to be created with a type argument that must support the members of a
particular interface such as the IDisposable interface.

Solution

Use constraints to force the type arguments of a generic type to be of a type that implements one or
more particular interfaces:

 public class DisposableList<T> : IList<T>

 where T : IDisposable
 {
 private List<T> _items = new List<T>();

 // Private method that will dispose of items in the list
 private void Delete(T item)
 {
 item.Dispose();
 }

This DisposableList class allows only an object that implements IDisposable to be passed in as a
type argument to this class. The reason for this is that whenever an object is removed from a
DisposableList object, the Dispose method is always called on that object. This allows you to
transparently handle the management of any object stored within this DisposableList object.

The following code exercises a DisposableList object:

 public static void TestDisposableListCls()
 {
 DisposableList<StreamReader> dl = new DisposableList<StreamReader>();

 // Create a few test objects.
 StreamReader tr1 = new StreamReader("c:\\boot.ini");
 StreamReader tr2 = new StreamReader("c:\\autoexec.bat");
 StreamReader tr3 = new StreamReader("c:\\config.sys");

 // Add the test object to the DisposableList.
 dl.Add(tr1);
 dl.Insert(0, tr2);
 dl.Add(tr3);

 foreach(StreamReader sr in dl)
 {
 Console.WriteLine("sr.ReadLine() == " + sr.ReadLine());
 }

 // Call Dispose before any of the disposable objects are
 // removed from the DisposableList.
 dl.RemoveAt(0);
 dl.Remove(tr1);
 dl.Clear();
 }

Discussion

The where keyword is used to constrain a type parameter to accept only arguments that satisfy the
given constraint. For example, the DisposableList has the constraint that any type argument T must
implement the IDisposable interface:

 public class DisposableList<T> : IList<T>

 where T : IDisposable

This means that the following code will compile successfully:

 DisposableList<StreamReader> dl = new DisposableList<StreamReader>();

but the following code will not:

 DisposableList<string> dl = new DisposableList<string>();

This is because the string type does not implement the IDisposable interface, and the StreamReader
type does.

Other constraints on the type argument are allowed, in addition to requiring one or more specific
interfaces to be implemented. You can force a type argument to be inherited from a specific base

class, such as the Textreader class:

 public class DisposableList<T> : IList<T>

 where T : System.IO.TextReader, IDisposable

You can also determine if the type argument is narrowed down to only value types or only reference
types. The following class declaration is constrained to using only value types:

 public class DisposableList<T> : IList<T>

 where T : struct

This class declaration is constrained to only reference types:

 public class DisposableList<T> : IList<T>

 where T : class

In addition, you can also require any type argument to implement a public default constructor:

 public class DisposableList<T> : IList<T>

 where T : IDisposable, new()

Using constraints allows you to write generic types that accept a narrower set of available type
arguments. If the IDisposable constraint is omitted in the solution for this recipe, a compile-time
error will occur. This is because not all of the types that can be used as the type argument for the
DisposableList class will implement the IDisposable interface. If you skip this compile-time check, a
DisposableList object may contain objects that do not have a public no-argument Dispose method.
In this case, a runtime exception will occur. Generics and constraints in particular force strict type
checking of the class-type arguments and allow you to catch these problems at compile time rather
than at runtime.

See Also

See the "where Keyword" topic in the MSDN documentation.

Recipe 4.13. Initializing Generic Variables to Their Default
Values

Problem

You have a generic class that contains a variable of the same type as the type parameter defined by
the class itself. Upon construction of your generic object, you want that variable to be initialized to its
default value.

Solution

Simply use the default keyword to initialize that variable to its default value:

 public class DefaultValueExample<T>
 {

 T data = default(T);

 public bool IsDefaultData()
 {

 T temp = default(T);

 if (temp.Equals(data))
 {
 return (true);
 }
 else
 {
 return (false);
 }
 }

 public void SetData(T val)
 {
 data = val;
 }
 }

The code to use this class is shown here:

 public static void ShowSettingFieldsToDefaults()
 {
 DefaultValueExample<int> dv = new DefaultValueExample<int>();

 // Check if the data is set to its default value; true is returned.
 bool isDefault = dv.IsDefaultData();
 Console.WriteLine("Initial data: " + isDefault);

 // Set data.
 dv.SetData(100);
 // Check again, this time a false is returned.
 isDefault = dv.IsDefaultData();
 Console.WriteLine("Set data: " + isDefault);
 }

The first call to IsDefaultData returns TRue, while the second returns false. The output is shown
here:

 Initial data: True
 Set data: False

Discussion

When initializing a variable of the same type parameter as the generic class, you cannot just set that
variable to null. What if the type parameter is a value type such as an int or char? This will not
work since value types cannot be null. You may be thinking that a nullable type such as long? or
Nullable<long> can be set to null (see Recipe 4.7 for more on nullable types). However, the
compiler has no way of knowing what type argument the user will use to construct the type.

The default keyword allows you to tell the compiler that at compile time the default value of this
variable should be used. If the type argument supplied is a numeric value (e.g., int, long, decimal),
then the default value is zero. If the type argument supplied is a reference type, then the default
value is null. If the type argument supplied is a struct, then the default value of the struct is
determined by initializing each member field of the struct to zero for numeric types or null for
reference types.

See Also

See Recipe 4.7; see the "default Keyword in Generic Code" topic in the MSDN documentation.

Chapter 5. Collections

Introduction

Collections are groups of items; in .NET, collections contain objects (including boxed value types).
Each object contained in a collection is called an element. Some collections contain a straightforward
list of elements, while others (dictionaries) contain a list of key and value pairs. The following
collection types consist of a straightforward list of elements:

 System.Collections.ArrayList
 System.Collections.BitArray
 System.Collections.Queue
 System.Collections.Stack
 System.Collections.Generic.LinkedList<T>
 System.Collections.Generic.List<T>
 System.Collections.Generic.Queue<T>
 System.Collections.Generic.Stack<T>

The following collection types are dictionaries:

 System.Collections.Hashtable
 System.Collections.SortedList
 System.Collections.Generic.Dictionary<T,U>
 System.Collections.Generic.SortedList<T,U>

These collection classes are organized under the System.Collections and the
System.Collections.Generic namespaces. In addition to these namespaces, another namespace
called System.Collections.Specialized contains a few more useful collection classes. These classes
might not be as well known as the previous classes, so here is a short explanation of the collection
classes under the System.Collections.Specialized namespace:

ListDictionary

This class operates very similarly to the Hashtable. However, this class beats out the Hashtable
on performance when it contains 10 or fewer elements.

HybridDictionary

This class consists of two internal collections, the ListDictionary and the Hashtable. Only one
of these classes is used at any one time. The ListDictionary is used while the collection

contains 10 or fewer elements, and then a switch is made to use a Hashtable when the
collection grows beyond 10 elements. This switch is made transparently to the developer. Once
the Hashtable is used, this collection cannot revert to using the ListDictionary even if the
elements number 10 or fewer. Also note that, when using strings as the key, this class
supports both case-sensitive (with respect to the invariant culture)and case-insensitive string
searches through setting a Boolean value in the constructor.

CollectionsUtil

This class contains two static methods: one to create a case-insensitive Hashtable and another
to create a case-insensitive SortedList. When you directly create a Hashtable and SortedList
object, you always create a case-sensitive Hashtable or SortedList, unless you use one of the
constructors that take an IComparer and pass CaseInsensitiveComparer.Default to it.

NameValueCollection

This collection consists of key and value pairs, which are both of type String. The interesting
thing about this collection is that it can store multiple string values with a single key. The
multiple string values are comma-delimited. The String.Split method is useful when breaking
up multiple strings in a value.

StringCollection

This collection is a simple list containing string elements. This list accepts null elements as well
as duplicate strings. This list is case-sensitive.

StringDictionary

This is a Hashtable that stores both the key and value as strings. Keys are converted to all-
lowercase letters before being added to the Hashtable, allowing for case-insensitive
comparisons. Keys cannot be null, but values may be set to null.

The C# compiler also supports a fixed-size array. Arrays of any type may be created using the
following syntax:

 int[] foo = new int[2];
 T[] bar = new T[2];

where foo is an integer array containing exactly two elements and bar is an array of unknown type T.

Arrays come in several styles as well: multidimensional, jagged, and even multidimensional jagged.
Multidimensional arrays are defined as shown here:

 int[,] foo = new int[2,3]; // A 2-dimensional array
 // containing 6 elements

 int[,,] bar = new int[2,3,4]; // A 3-dimensional array
 // containing 24 elements

A two-dimensional array is usually described as a table with rows and columns. The foo array would
be described as a table of two rows, each containing three columns of elements. A three-dimensional
array can be described as a cube with layers of tables. The bar array could be described as four
layers of two rows, each containing three columns of elements.

Jagged arrays are arrays of arrays. If you picture a jagged array as a one-dimensional array with
each element in that array containing another one-dimensional array, it could have a different
number of elements in each row. A jagged array is defined as follows:

 int[][] baz = new int[2][] {new int[2], new int[3]};

The baz array consists of a one-dimensional array containing two elements. Each of these elements
consists of another array, the first array having two elements and the second array having three.

The rest of this chapter contains recipes dealing with arrays and the various collection types.

Recipe 5.1. Swapping Two Elements in an Array

Problem

You want an efficient method to swap two elements that exist within a single array.

Solution

Use the generic SwapElementsInArray<T> method:

 public static void SwapElementsInArray<T>(T[] theArray, int index1, int index2)
 {
 if (index1 >= theArray.Length ||
 index2 >= theArray.Length ||
 index1 < 0 || index2 < 0)
 {
 throw(new ArgumentOutOfRangeException(
 "index passed in to this method is out of bounds.")); }
 else
 {
 T tempHolder = theArray[index1];
 theArray[index1] = theArray[index2];
 theArray[index2] = tempHolder;
 }
 }

Discussion

There is no specific method in the .NET Framework that allows you to swap only two specific
elements within an array. The SwapElementsInArray method presented in this recipe allows for only
two specified elements of an array (specified in the index1 and index2 arguments to this method).

The following code uses the SwapElementsInArray<T> method to swap the zeroth and fourth elements
in an array of integers:

 public static void TestSwapArrayElements()
 {
 int[] someArray = new int[5] {1,2,3,4,5};

 for (int counter = 0; counter < someArray.Length; counter++)
 {
 Console.WriteLine("Element " + counter + " = " + someArray[counter]);
 }

 SwapElementsInArray(someArray, 0, 4);

 for (int counter = 0; counter < someArray.Length; counter++)
 {
 Console.WriteLine("Element " + counter + " = " + someArray[counter]);
 }
 }

This code produces the following output:

 Element 0 = 1 The original array
 Element 1 = 2
 Element 2 = 3
 Element 3 = 4
 Element 4 = 5

 Element 0 = 5 The array with elements swapped
 Element 1 = 2
 Element 2 = 3
 Element 3 = 4
 Element 4 = 1

Recipe 5.2. Reversing an Array Quickly

Problem

You want an efficient method to reverse the order of elements within an array.

Solution

You can use the static Reverse method, as in this snippet of code:

 int[] someArray = new int[5] {1,2,3,4,5};
 Array.Reverse(someArray);

or you can write your own reversal method:

 public static void DoReversal<T>(T[] theArray)
 {
 T tempHolder = default(T);

 if (theArray.Length > 0)
 {
 for (int counter = 0; counter < (theArray.Length / 2); counter++)
 {
 tempHolder = theArray[counter];
 theArray[counter] = theArray[theArray.Length - counter - 1];
 theArray[theArray.Length - counter - 1] = tempHolder;
 }
 }
 else
 {
 Trace.WriteLine("Nothing to reverse");
 }
 }

While there is more code to write, the benefit of the DoReversal<T> method is that it is about twice as
fast as the Array.Reverse method. In addition, you can tailor the DoReversal<T> method to a specific
situation. For example, the DoReversal<T> method accepts a value type array (int), whereas the

Array.Reverse method accepts only a reference type (System.Array). This means that a boxing
operation will occur for the int value types. The DoReversal<T> method removes any boxing
operations.

Discussion

The following TestArrayReversal method creates a test array of five integers and displays the
elements in their initial order. Next, the DoReversal<T> method is called to reverse the elements in
the array. After this method returns, the array is then displayed a second time as a reversed array:

 public static void TestArrayReversal()
 {
 int[] someArray = new int[5] {1,2,3,4,5};

 for (int counter = 0; counter < someArray.Length; counter++)
 {
 Console.WriteLine("Element " + counter + " = " + someArray[counter]);
 }

 DoReversal(someArray);

 for (int counter = 0; counter < someArray.Length; counter++)
 {
 Console.WriteLine("Element " + counter + " = " + someArray[counter]);
 }
 }

This code displays the following:

 Element 0 = 1 The original array
 Element 1 = 2
 Element 2 = 3
 Element 3 = 4
 Element 4 = 5

 Element 0 = 5 The reversed array
 Element 1 = 4
 Element 2 = 3
 Element 3 = 2
 Element 4 = 1

Reversing the elements in an array is a fairly common routine. The algorithm here swaps elements in
the array until it is fully reversed. The DoReversal<T> method accepts a single parameter, theArray,

which is a pointer to the first element in the array that is to be reversed.

The array is actually reversed inside of the for loop. The for loop counts from zero (the first element
in the array) to a value equal to the array's length divided by two:

 for (int counter = 0; counter < (theArray.Length / 2); counter++)

Note that this is integer division, so if the array length is an odd number, the remainder is discarded.
Since your array length is five, the for loop counts from zero to one.

Inside of the loop are three lines of code:

 tempHolder = theArray[counter];
 theArray[counter] = theArray[theArray.Length - counter - 1];
 theArray[theArray.Length - counter - 1] = tempHolder;

These three lines swap the first half of the array with the second half. As the for loop counts from
zero, these three lines swap the first and last elements in the array. The loop increments the counter
by one, allowing the second element and the next to last element to be swapped. This continues until
all elements in the array have been swapped.

There is one element in the array that cannot be swapped; this is the middle element of an array
with an odd number for the length. For example, in this code, there are five elements in the array.
The third element should not be swapped. Put another way, all of the other elements pivot on this
third element when they are swapped. This does not occur when the length of the array is an even
number.

By dividing the array length by two, you can compensate for even or odd array elements. Since you
get back an integer number from this division, you can easily skip over the middle element in an
array with an odd length.

See Also

See Recipes 5.3 and 5.4; see the "Array.Reverse Method" topic in the MSDN documentation.

Recipe 5.3. Reversing a Two-Dimensional Array

Problem

You need to reverse each row in a two-dimensional array. The Array.Reverse method does not
support this operation.

Solution

Use the following Reverse2DimArray<T> method:

 public static void Reverse2DimArray<T>(T[,] theArray)
 {
 for (int rowIndex = 0; rowIndex <= (theArray.GetUpperBound(0)); rowIndex++)
 {
 for (int colIndex = 0;
 colIndex <= (theArray.GetUpperBound(1) / 2);
 colIndex++)
 {
 T tempHolder = theArray[rowIndex, colIndex];
 theArray[rowIndex, colIndex] =
 theArray[rowIndex, theArray.GetUpperBound(1) - colIndex];
 theArray[rowIndex, theArray.GetUpperBound(1) -colIndex] = tempHolder;
 }
 }
 }

Discussion

The following TestReverse2DimArray method shows how the Reverse2DimArray<T> method is used:

 public static void TestReverse2DimArray()
 {
 int[,] someArray =
 new int[5,3] {{1,2,3},{4,5,6},{7,8,9},{10,11,12},{13,14,15}};
 // Display the original array.
 foreach (int i in someArray)
 {

 Console.WriteLine(i);
 }
 Console.WriteLine();

 Reverse2DimArray(someArray);

 // Display the reversed array.
 foreach (int i in someArray)
 {
 Console.WriteLine(i);
 }
 }

This method displays the following:

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15

 3 Note that each row of 3 elements are reversed
 2
 1
 6 This is the start of the next row
 5
 4
 9
 8
 7
 12
 11
 10
 15
 14
 13

The Reverse2DimArray<T> method uses the same logic presented in the previous recipe to reverse the
array; however, a nested for loop is used instead of a single for loop. The outer for loop iterates
over each row of the array (there are five rows in the someArray array). The inner for loop is used to
iterate over each column of the array (there are three columns in the someArray array). The reverse
logic is then applied to the elements handled by the inner for loop, which allows each row in the
array to be reversed.

See Also

See Recipes 5.2 and 5.4.

Recipe 5.4. Reversing a Jagged Array

Problem

The Array.Reverse method does not provide a way to reverse each subarray in a jagged array. You
need this functionality.

Solution

Use the ReverseJaggedArray<T> method:

 public static void ReverseJaggedArray<T>(T[][] theArray)
 {
 for (int rowIndex = 0; rowIndex <= (theArray.GetUpperBound(0)); rowIndex++)
 {
 for (int colIndex = 0;
 colIndex <= (theArray[rowIndex].GetUpperBound(0) / 2);
 colIndex++)
 {
 T tempHolder = theArray[rowIndex][colIndex];
 theArray[rowIndex][colIndex] =
 theArray[rowIndex][theArray[rowIndex].GetUpperBound(0) -
 colIndex];
 theArray[rowIndex][theArray[rowIndex].GetUpperBound(0) - colIndex] =
 tempHolder;
 }
 }
 }

Discussion

The following TestReverseJaggedArray method shows how the ReverseJaggedArray<T> method is
used:

 public static void TestReverseJaggedArray()
 {
 int[][] someArray =
 new int[][] {new int[3] {1,2,3}, new int[6]{10,11,12,13,14,15}};

 // Display the original array.
 for (int rowIndex = 0; rowIndex < someArray.Length; rowIndex++)
 {
 for (int colIndex = 0; colIndex < someArray[rowIndex].Length; colIndex++)
 {
 Console.WriteLine(someArray[rowIndex][colIndex]);
 }
 }
 Console.WriteLine();

 ReverseJaggedArray(someArray);

 // Display the reversed array.
 for (int rowIndex = 0; rowIndex < someArray.Length; rowIndex++)
 {
 for (int colIndex = 0; colIndex < someArray[rowIndex].Length; colIndex++)
 {
 Console.WriteLine(someArray[rowIndex][colIndex]);
 }
 }
 }

This method displays the following:

 1
 2
 3
 10
 11
 12
 13
 14
 15

 3 The first reversed subarray
 2
 1
 15 The second reversed subarray
 14
 13
 12
 11
 10

The logic used to reverse each subarray of a jagged array is very similar to the reversal logic
discussed in the previous recipe. The ReverseJaggedArray<T> method uses the same basic logic
presented in Recipe 5.2 to reverse each element in the array; however, a nested for loop is used

instead of a single for loop. The outer for loop iterates over each element of the first dimensioned
array of the jagged array (there are two elements in this array). The inner for loop is used to iterate
over each element contained within the second dimensioned array of the jagged array. The reverse
logic is then applied to the elements handled by the inner for loop. This allows each array contained
by the first dimensioned array in the jagged array to be reversed.

See Also

See Recipes 5.2 and 5.3.

Recipe 5.5. Writing a More Flexible StackTrace Class

Problem

You have a StackTrace object that contains a listing of stack frames. You need to iterate through
these stack frames as if you were using a Collection -type object.

Solution

Wrap the public interface of a StackTrace object to look like a Collection -type object. The
StackTraceList class shown in Example 5-1 implements this design pattern.

Example 5-1. Writing a More Flexible StackTrace Class

using System;
using System.Collections;
using System.Diagnostics;
using System.Reflection;
using System.Text;
using System.Threading;

public class StackTraceList : StackTrace, IList
{
 public StackTraceList() : base()
 {
 InitInternalFrameArray();
 }

 public StackTraceList(bool needFileInfo) : base(needFileInfo)
 {
 InitInternalFrameArray();
 }

 public StackTraceList(Exception e) : base(e)
 {
 InitInternalFrameArray();
 }

 public StackTraceList(int skipFrames) : base(skipFrames)
 {
 InitInternalFrameArray();
 }

 public StackTraceList(StackFrame frame) : base(frame)
 {
 InitInternalFrameArray();
 }

 public StackTraceList(Exception e, bool needFileInfo) : base(e, needFileInfo)
 {
 InitInternalFrameArray();
 }

 public StackTraceList(Exception e, int skipFrames) : base(e, skipFrames)
 {
 InitInternalFrameArray();
 }

 public StackTraceList(int skipFrames, bool needFileInfo) :
 base(skipFrames, needFileInfo)
 {
 InitInternalFrameArray();
 }

 public StackTraceList(Thread targetThread, bool needFileInfo) :
 base(targetThread, needFileInfo)

 {
 InitInternalFrameArray();
 }

 public StackTraceList(Exception e, int skipFrames, bool needFileInfo) :
 base(e, skipFrames, needFileInfo)
 {
 InitInternalFrameArray();
 }

 private StackFrame[] internalFrameArray = null;

 private void InitInternalFrameArray()
 {
 internalFrameArray = new StackFrame[base.FrameCount];

 for (int counter = 0; counter < base.FrameCount; counter++)
 {
 internalFrameArray[counter] = base.GetFrame(counter);
 }
 }

 public string GetFrameAsString(int index)
 {
 StringBuilder str = new StringBuilder("\tat ");
 str.Append(GetFrame(index).GetMethod().DeclaringType.FullName);
 str.Append(".");
 str.Append(GetFrame(index).GetMethod().Name);

 str.Append("(");
 foreach (ParameterInfo PI in GetFrame(index).GetMethod().GetParameters())
 {
 str.Append(PI.ParameterType.Name);
 if (PI.Position <
 (GetFrame(index).GetMethod().GetParameters().Length - 1))
 {
 str.Append(", ");
 }
 }
 str.Append(")");

 return (str.ToString());
 }

 // IList properties/methods
 public bool IsFixedSize
 {
 get {return (internalFrameArray.IsFixedSize);}
 }

 public bool IsReadOnly
 {
 get {return (true);}

 }

 // Note that this indexer must return an object to comply
 // with the IList interface for this indexer.
 public object this[int index]
 {
 get {return (internalFrameArray[index]);}
 set {throw (new NotSupportedException(
 "The set indexer method is not supported on this object."));}
 }

 public int Add(object value)
 {
 return (((IList)internalFrameArray).Add(value));
 }

 public void Insert(int index, object value)
 {
 ((IList)internalFrameArray).Insert(index, value);
 }

 public void Remove(object value)
 {
 ((IList)internalFrameArray).Remove(value);
 }

 public void RemoveAt(int index)

 {
 ((IList)internalFrameArray).RemoveAt(index);
 }

 public void Clear()
 {
 // Throw an exception here to prevent the loss of data.
 throw (new NotSupportedException(
 "The Clear method is not supported on this object."));
 }

 public bool Contains(object value)
 {
 return (((IList)internalFrameArray).Contains(value));
 }

 public int IndexOf(object value)
 {
 return (((IList)internalFrameArray).IndexOf(value));
 }

 // IEnumerable method
 public IEnumerator GetEnumerator()
 {
 return (internalFrameArray.GetEnumerator());

 }

 // ICollection properties/methods
 public int Count
 {
 get {return (internalFrameArray.Length);}
 }

 public bool IsSynchronized
 {
 get {return (internalFrameArray.IsSynchronized);}
 }

 public object SyncRoot
 {
 get {return (internalFrameArray.SyncRoot);}
 }

 public void CopyTo(Array array, int index)
 {
 internalFrameArray.CopyTo(array, index);
 }
}

Discussion

This recipe uses the System.Diagnostics. StackTrace object to obtain a list of stack frames, which it
then provides to the user. The StackTrace class provides a convenient way to obtain a stack trace, an
exception object, or a specific thread from the current point in code. Unfortunately, the StackTrace
provides only a very simplified way to get at each stack frame. It would be much better if the
StackTrace object operated like a collection. To make this happen, you can create an intermediate
object called StackTraceList that inherits from StackTrace and implements the ICloneable, IList,
ICollection , and IEnumerable interfaces.

The constructors for the StackTraceList class mimic the StackTrace constructors. Each
StackTraceList constructor passes its work along to the base class using the base keyword:

 public StackTraceList() : base()

Each StackTraceList constructor contains a call to the private method, Init-InternalFrameArray .
This private method copies all of the individual StackFrame objects from the base StackTrace object
into a private field of type StackFrame[] called internalFrameArray . The StackTraceList uses the
internalFrameArray field as a convenient storage mechanism for each individual StackFrame object; in
addition, you get a free implementation of the IEnumerator interface. It also makes it easier to make
the StackTraceList class look and feel more like an array than a StackTrace object.

Another useful method added to the StackTraceList class is the public GetFrameAsString method.
This method accepts an index of a specific StackFrame object in the internalFrameArray field. From
this StackFrame object, it constructs a string similar to the string output for each StackFrame .

The methods implemented from the IList, ICollection , and IEnumerable interfaces forward their
calls on to the internalFrameArray field, which implements the same interfacesthrowing the
NotSupportedException for most of these interface methods.

The StackTrace object can now be used as if it were a collection, through the intermediate
StackTraceList object. To obtain a StackTraceList object for the current point in code, use the
following code:

 StackTraceList arrStackTrace = new StackTraceList();

To display a portion or all of the stack trace, use the following code:

 // Display the first stack frame.
 Console.WriteLine(arrStackTrace[0].ToString());

 // Display all stack frames.
 foreach (StackFrame SF in arrStackTrace)
 {

 Console.WriteLine("stackframe: " + SF.ToString());
 }

To obtain a StackTraceList object from a thrown exception, use the following code:

 …
 catch (Exception e)
 {
 StackTraceList EST = new StackTraceList(e, true);

 Console.WriteLine("TOSTRING: " + Environment.NewLine + EST.ToString());
 foreach (StackFrame SF in EST)
 {
 Console.WriteLine(SF.ToString());
 }
 }

To copy the StackFrame objects to a new array, use the following code:

 StackFrame[] myNewArray = new StackFrame[arrStackTrace.Count];
 arrStackTrace.CopyTo(myNewArray, 0);

You will notice that the first StackFrame object in the stack trace contains something like the
following:

 at AdapterPattern.StackTraceList..ctor()

This is actually the constructor call to the StackTraceList object. This information is usually not
necessary to display and can be removed quite easily. When creating the StackTraceList object, pass
in an integer one as an argument to the constructor. This will force the first stack frame (the one
containing the call to the StackTraceList constructor) to be discarded:

 StackTraceList arrStackTrace = new StackTraceList(1);

You should note that the Add, Insert, Remove , and RemoveAt methods on the IList interface of an
Array type throw the NotSupportedException , because an array is fixed in length and these methods
will alter the length of the array.

See Also

See the " StackTrace Class" and " IList Interface" topics in the MSDN documentation. Also see the
"Adapter Design Pattern" chapter in Design Patterns (Addison-Wesley).

Recipe 5.6. Determining the Number of Times an Item
Appears in a List<T>

Problem

You need the number of occurrences of one type of object contained in a List<T>. The List<T>
contains methods, such as Contains and BinarySearch to find a single item. Unfortunately, these
methods cannot find all duplicated items at one timeessentially, there is no count all functionality. If
you want to find multiple items, you need to implement your own routine.

Solution

Use the ListEx<T> generic class shown in Example 5-2, which inherits from the List<T> class in order
to extend its functionality. Two methodsCountAll and BinarySearchCountAllare added to return the
number of times a particular object appears in a sorted and an unsorted List<T>.

Example 5-2. Determining the number of times an item appears in a List
<T>

using System;
using System.Collections;
using System.Collections.Generic;

public class ListEx<T> : List<T>
{
 // Count the number of times an item appears in this
 // unsorted or sorted List<T>
 public int CountAll(T searchValue)
 {
 int foundCounter = 0;

 for (int index = 0; index < this.Count; index++)
 {
 if (this[index].Equals(searchValue))
 {
 foundCounter++;

 }
 }

 return (foundCounter);
 }

 // Count the number of times an item appears in this sorted List<T<.
 public int BinarySearchCountAll(T searchValue)
 {
 // Search for first item.
 int center = this.BinarySearch(searchValue);
 int left = center;
 while (left < 0 && this[left-1].Equals(searchValue))
 {
 left -= 1;
 }

 int right = center;
 while (right < (this.Count 1) && this[right+1].Equals(searchValue))
 {
 right += 1;
 }

 return (right left) + 1;
 }
}

Discussion

The CountAll method accepts a search value (searchValue)of type object. This method then
proceeds to count the number of times the search value appears in the ListEx<T> class. This method
may be used when the ListEx<T> is sorted or unsorted. If the ListEx<T> is sorted (a ListEx<T> is
sorted by calling the Sort method), the BinarySearchCountAll method can be used to increase the
efficiency of the searching. This is done by making use of the BinarySearch method on the ListEx<T>
class, which is much faster than iterating through the entire ListEx<T>x. This is especially true as the
ListEx<T> grows in size.

The following code exercises these two new methods of the ListEx<T> class:

 class Test
 {
 static void Main()
 {
 ListEx<int> arrayExt = new ListEx<int>();
 arrayExt.Add(-2);
 arrayExt.Add(-2);
 arrayExt.Add(-1);
 arrayExt.Add(-1);
 arrayExt.Add(1);
 arrayExt.Add(2);

 arrayExt.Add(2);
 arrayExt.Add(2);
 arrayExt.Add(2);
 arrayExt.Add(3);
 arrayExt.Add(100);
 arrayExt.Add(4);
 arrayExt.Add(5);

 Console.WriteLine("--CONTAINS TOTAL--");
 int count = arrayExt.CountAll(2);
 Console.WriteLine("Count2: " + count);

 count = arrayExt.CountAll(3);
 Console.WriteLine("Count3: " + count);

 count = arrayExt.CountAll(1);
 Console.WriteLine("Count1: " + count);

 Console.WriteLine("\r\n--BINARY SEARCH COUNT ALL--");
 arrayExt.Sort();
 count = arrayExt.BinarySearchCountAll(2);
 Console.WriteLine("Count2: " + count);

 count = arrayExt.BinarySearchCountAll(3);
 Console.WriteLine("Count3: " + count);

 count = arrayExt.BinarySearchCountAll(1);
 Console.WriteLine("Count1: " + count);
 }
 }

This code outputs the following:

 --CONTAINS TOTAL--
 Count2: 4
 Count3: 1
 Count1: 1

 --BINARY SEARCH COUNT ALL--
 Count2: 4
 Count3: 1
 Count1: 1

The CountAll method uses a sequential search that is performed in a for loop. A linear search must
be used since the List<T> is not sorted. The if statement determines whether each element in the
List<T> is equal to the search criterion (searchValue).If the element is found to be a match, the
counter (foundCounter)is incremented by one. This counter is returned by this method to indicate the

number of items matching the search criteria in the List<T>.

The BinarySearchCountAll method implements a binary search to locate an item matching the search
criteria (searchValue)in the List<T>. If one is found, a while loop is used to find the very first
matching item in the sorted List<T>, and the position of that element is recorded in the left
variable. A second while loop is used to find the very last matching item, and the position of this
element is recorded in the right variable. The value in the left variable is subtracted from the value
in the right variable and then one is added to this result in order to get the total number of matches.

Recipe 5.7 contains a variation of this recipe that returns the actual items found, rather than a count.

See Also

See Recipe 5.7; see the "ArrayList Class" topic in the MSDN documentation.

Recipe 5.7. Retrieving All Instances of a Specific Item in a
List<T>

Problem

You need to retrieve every object contained in a List<T> that matches a search criterion. The List<T>
contains the BinarySearch method to find a single itemessentially, there is no find all functionality. If
you want to find all items duplicated in a List<T>, you must write your own routine.

Solution

Use the ListEx<T> class shown in Example 5-3, which inherits from the List<T> class in order to
extend its functionality. Two methodsGetAll and BinarySearchGetAllare added to return an array of
all the matching objects found in this sorted or unsorted List<T>.

Example 5-3. Retrieving all instances of a specific item in a List<T>

using System;
using System.Collections;
using System.Collections.Generic;

public class ListEx<T> : List<T>
{
 // The method to retrieve all matching objects in a
 // sorted or unsorted ListEx<T>
 public T[] GetAll(T searchValue)
 {
 List<T> foundItem = new List<T>();

 for (int index = 0; index < this.Count; index++)
 {
 if (this[index].Equals(searchValue))
 {
 foundItem.Add(this[index]);

 }
 }

 return (foundItem.ToArray());

 }

 // The method to retrieve all matching objects in a sorted ListEx<T>
 public T[] BinarySearchGetAll(T searchValue)
 {
 bool done = false;
 List<T> RetObjs = new List<T>();

 // Search for first item.
 int center = this.BinarySearch(searchValue);
 if (center > 0)
 {
 RetObjs.Add(this[center]);

 int left = center;
 while (left > 0 && this[left - 1].Equals(searchValue))
 {
 left -= 1;
 RetObjs.Add(this[left]);
 }

 int right = center;
 while (right < (this.Count - 1) &&
 this[right + 1].Equals(searchValue))
 {
 right += 1;
 RetObjs.Add(this[right]);
 }
 }

 return (RetObjs.ToArray());
 }
}

Discussion

The GetAll and BinarySearchGetAll methods used in this recipe are very similar to those used in
Recipe 5.6. The main difference is that these methods return the actual items found in an object
array instead of a count of the number of times an item was found. The main thing to keep in mind
when choosing a method is whether you are going to be searching a List<T> that is sorted. Choose
the GetAll method to obtain an array of all found items from an unsorted List<T>, and choose the
BinarySearchGetAll method to get all items in a sorted List<T>.

The following code exercises these two new methods of the ListEx<T> class:

 class Test
 {

 static void Main()
 {
 ListEx<int> arrayExt = new ListEx<int>();
 arrayExt.Add(-1);
 arrayExt.Add(-1);
 arrayExt.Add(1);
 arrayExt.Add(2);
 arrayExt.Add(2);
 arrayExt.Add(2);
 arrayExt.Add(2);
 arrayExt.Add(3);
 arrayExt.Add(100);
 arrayExt.Add(4);
 arrayExt.Add(5);

 Console.WriteLine("--GET All--");
 int[] objects = arrayExt.GetAll(2);
 foreach (object o in objects)
 {
 Console.WriteLine("obj2: " + o);
 }

 Console.WriteLine();
 objects = arrayExt.GetAll(-2);
 foreach (object o in objects)
 {
 Console.WriteLine("obj-2: " + o);
 }

 Console.WriteLine();
 objects = arrayExt.GetAll(5);
 foreach (object o in objects)
 {
 Console.WriteLine("obj5: " + o);
 }

 Console.WriteLine("\r\n--BINARY SEARCH GET ALL--");
 arrayExt.Sort();
 objects = arrayExt.BinarySearchGetAll(-2);
 foreach (object o in objects)
 {
 Console.WriteLine("obj-2: " + o);
 }

 Console.WriteLine();
 objects = arrayExt.BinarySearchGetAll(2);
 foreach (object o in objects)
 {
 Console.WriteLine("obj2: " + o);
 }

 Console.WriteLine();

 objects = arrayExt.BinarySearchGetAll(5);
 foreach (object o in objects)

 {
 Console.WriteLine("obj5: " + o);
 }
 }
 }

This code outputs the following:

 --GET All--
 obj2: 2
 obj2: 2
 obj2: 2
 obj2: 2

 obj5: 5

 --BINARY SEARCH GET ALL--

 obj2: 2
 obj2: 2
 obj2: 2
 obj2: 2

 obj5: 5

The BinarySearchGetAll method is faster than the GetAll method, especially if the array has already
been sorted. If a BinarySearch is used on an unsorted List<T>, it is highly likely that the results
returned by the search will be incorrect.

See Also

See Recipe 5.6; see the "List<T> Class" topic in the MSDN documentation.

Recipe 5.8. Inserting and Removing Items from an Array

Problem

You need the ability to insert and remove items from a standard System.Array type. When an item is
inserted, it should not overwrite the item where it is being inserted; instead, it should be inserted
between the element at that index and the previous index. When an item is removed, the void left by
the element should be closed by shifting the other elements in the array. However, the Array type
has no usable method to perform these operations.

Solution

If possible, switch to a List<T> instead. If this is not possible (for example, if you're not in control of
the code that creates the Array or ArrayList in the first place), use the approach shown in the
following class. Two methods insert and remove items from the array. The InsertIntoArray method
will insert an item into the array without overwriting any data that already exists in the array. The
RemoveFromArray will remove an element from the array:

 using System;

 public class ArrayUtilities
 {
 public void InsertIntoArray(Array target,
 object value, int index)
 {
 if (index < target.GetLowerBound(0) ||
 index > target.GetUpperBound(0))
 {
 throw (new ArgumentOutOfRangeException("index", index,
 "Array index out of bounds."));
 }
 else
 {
 Array.Copy(target, index, target, index + 1,
 target.Length - index - 1);
 }

 target.SetValue(value, index);
 }

 public void RemoveFromArray(Array target, int index)
 {

 if (index < target.GetLowerBound(0) ||
 index > target.GetUpperBound(0))
 {
 throw (new ArgumentOutOfRangeException("index", index,
 "Array index out of bounds."));
 }
 else if (index < target.GetUpperBound(0))
 {
 Array.Copy(target, index + 1, target, index,
 target.Length - index - 1);
 }

 target.SetValue(null, target.GetUpperBound(0));
 }
 }

Discussion

The InsertIntoArray and RemoveFromArray methods make use of the Array.Copy static method to
perform their operations. Initially, both methods test to see whether an item is being added or
removed within the bounds of the array target. If the item passes this test, the Array.Copy method is
used to shift items around to either make room for an element to be inserted or to overwrite an
element being removed from the array.

The RemoveFromArray method accepts two parameters. target is the array from which an element is
to be removed; the second parameter, index, is the zero-based position of the element to be

removed in the array. Elements at and above the inserted element are shifted down by one. The last
element in the array is set to the default value for the array type.

The InsertIntoArray method accepts three parameters. The first parameter, target, is the array that
is to have an element added; value is the element to be added; and index is the zero-based position
at which value is to be added. Elements at and above the inserted element are shifted up by one.

The last element in the array is discarded.

The following code illustrates the use of the InsertIntoArray and RemoveFromArray methods:

 class CTest
 {
 static void Main()
 {
 ArrayUtilities arrlib = new ArrayUtilities ();
 string[] numbers = {"one", "two", "four", "five", "six"} ;

 arrlib.InsertIntoArray(numbers, "three", 2);
 foreach (string number in numbers)
 {
 Console.WriteLine(number);
 }

 Console.WriteLine();
 arrlib.RemoveFromArray(numbers, 2);
 foreach (string number in numbers)
 {
 Console.WriteLine(number);
 }
 }
 }

This code displays the following:

 one
 two
 three
 four
 five

 one
 two
 four
 five

See Also

See the "Array Class" and "List<T> Class" topics in the MSDN documentation.

Recipe 5.9. Keeping Your List<T> Sorted

Problem

You will be using the BinarySearch method of the List<T> to periodically search the List<T> for
specific elements. The addition, modification, and removal of elements will be interleaved with the
searches. The BinarySearch method, however, presupposes a sorted array; if the List<T> is not
sorted, the BinarySearch method will possibly return incorrect results. You do not want to have to
remember to always call the List<T>.Sort method before calling the List<T>.BinarySearch method,
not to mention incurring all the overhead associated with this call. You need a way of keeping the
List<T> sorted without always having to call the List<T>.Sort method.

Solution

The following SortedList generic class enhances the adding and modifying of elements within a
List<T>. These methods keep the array sorted when items are added to it and modified. Note that a
DeleteSorted method is not required since deleting an item does not disturb the sorted order of the
remaining items:

 using System;
 using System.Collections;
 using System.Collections.Generic;

 public class SortedList<T> : List<T>
 {
 public void AddSorted(T item)
 {
 int position = this.BinarySearch(item);
 if (position < 0)
 {
 // This bit of code will be described in detail later.
 position = ~position;
 }

 this.Insert(position, item);
 }

 public void ModifySorted(T item, int index)
 {
 this.RemoveAt(index);

 int position = this.BinarySearch(item);

 if (position < 0)
 {
 position = ~position;
 }

 this.Insert(position, item);
 }
 }

Discussion

Instead of calling List<T>.Add directly to add elements, use the AddSorted method to add elements
while at the same time keeping the List<T> sorted. The AddSorted method accepts a generic type (T)
to add to the sorted list.

Likewise, instead of using the List<T> indexer directly to modify elements, use the ModifySorted
method to modify elements while at the same time keeping the List<T> sorted. Call this method,
passing in the generic type T to replace the existing object (item), and the index of the object to
modify (index).

The following code exercises the SortedList<T> class:

 class CTest
 {
 static void Main()
 {
 // Create a SortedList and populate it with
 // randomly chosen numbers.
 SortedList<int> sortedAL = new SortedList<int>();
 sortedAL.AddSorted(200);
 sortedAL.AddSorted(20);
 sortedAL.AddSorted(2);
 sortedAL.AddSorted(7);
 sortedAL.AddSorted(10);
 sortedAL.AddSorted(0);
 sortedAL.AddSorted(100);
 sortedAL.AddSorted(-20);
 sortedAL.AddSorted(56);
 sortedAL.AddSorted(55);
 sortedAL.AddSorted(57);
 sortedAL.AddSorted(200);
 sortedAL.AddSorted(-2);
 sortedAL.AddSorted(-20);
 sortedAL.AddSorted(55);
 sortedAL.AddSorted(55);

 // Display it.
 foreach (int i in sortedAL)

 {
 Console.WriteLine(i);
 }

 // Now modify a value at a particular index.
 sortedAL.ModifySorted(0, 5);
 sortedAL.ModifySorted(1, 10);
 sortedAL.ModifySorted(2, 11);
 sortedAL.ModifySorted(3, 7);
 sortedAL.ModifySorted(4, 2);
 sortedAL.ModifySorted(2, 4);
 sortedAL.ModifySorted(15, 0);
 sortedAL.ModifySorted(0, 15);
 sortedAL.ModifySorted(223, 15);

 // Display it.
 Console.WriteLine();
 foreach (int i in sortedAL)
 {
 Console.WriteLine(i);
 }
 }
 }

This method automatically places the new item in the List<T> while keeping its sort order; this is
done without having to explicitly call List<T>.Sort. The reason this works is because the AddSorted
method first calls the BinarySearch method and passes it the object to be added to the ArrayList.
The BinarySearch method will either return the index where it found an identical item or a negative
number that you can use to determine where the item that you are looking for should be located. If
the BinarySearch method returns a positive number, you can use the List<T>. Insert method to
insert the new element at that location, keeping the sort order within the List<T>. If the
BinarySearch method returns a negative number, you can use the bitwise complement operator ~ to
determine where the item should have been located, had it existed in the sorted list. Using this
number, you can use the List<T>.Insert method to add the item to the correct location in the sorted
list while keeping the correct sort order.

You can remove an element from the sorted list without disturbing the sort order, but modifying an
element's value in the List<T> most likely will cause the sorted list to become unsorted. The
ModifySorted method alleviates this problem. This method works similarly to the AddSorted method,
except that it will initially remove the element from the List<T> and then insert the new element into
the correct location.

See Also

See the "List<T> Class" topic in the MSDN documentation.

Recipe 5.10. Sorting a Dictionary's Keys and/or Values

Problem

You want to sort the keys and/or values contained in a Hashtable in order to display the entire
Hashtable to the user, sorted in either ascending or descending order.

Solution

Use the Keys and Values properties of a Dictionary<T,U> object to obtain an ICollection of its key
and value objects. The methods shown here return a List<T> of objects containing the keys or values
of a Dictionary<T,U>:

 using System;
 using System.Collections;

 using System.Collections.Generic;

 public static List<T> GetKeys<T,U>(Dictionary<T,U> table)
 {
 return (new List<T>(table.Keys));
 }

The method shown here returns a List<U> of objects containing the values in a Dictionary<T,U>:

 using System;
 using System.Collections;
 using System.Collections.Generic;

 public static List<U> GetValues<T,U>(Dictionary<T,U> table)
 {
 return (new List<U>(table.Values));
 }

The following code creates a Dictionary<T,U> object and displays it sorted in ascending and
descending order:

 public static void TestSortKeyValues()
 {
 // Define a Dictionary<T,U> object.
 Dictionary<string, string> hash = new Dictionary<string, string>();
 hash.Add(2, "two");
 hash.Add(1, "one");
 hash.Add(5, "five");
 hash.Add(4, "four");
 hash.Add(3, "three");

 // Get all the keys in the Dictionary<T,U> and sort them.
 List<string> keys = GetKeys(hash);
 keys.Sort();

 // Display sorted list.
 foreach (object obj in keys)
 Console.WriteLine("Key: " + obj + " Value: " + hash[obj]);

 // Reverse the sorted list.
 Console.WriteLine();
 keys.Reverse();

 // Display reversed list.
 foreach (object obj in keys)
 Console.WriteLine("Key: " + obj + " Value: " + hash[obj]);
 Console.WriteLine();
 Console.WriteLine();

 // Get all the values in the Dictionary<T,U> and sort them.
 List<string> values = GetValues(hash);
 values.Sort();

 // Display sorted list.
 foreach (string obj in values)
 Console.WriteLine("Value: " + obj);

 // Reverse the sorted value list.
 Console.WriteLine();
 values.Reverse();

 // Display sorted list.
 foreach (string obj in values)
 Console.WriteLine("Value: " + obj);}

The key/value pairs are displayed as shown:

 Key: 1 Value: one
 Key: 2 Value: two
 Key: 3 Value: three

 Key: 4 Value: four
 Key: 5 Value: five

 Key: 5 Value: five
 Key: 4 Value: four
 Key: 3 Value: three
 Key: 2 Value: two
 Key: 1 Value: one

 Value: five Notice that the values are sorted alphabetically
 Value: four
 Value: one
 Value: three
 Value: two

 Value: two
 Value: three
 Value: one
 Value: four
 Value: five

Discussion

The Dictionary<T,U> object exposes two useful properties for obtaining a collection of its keys or
values. The Keys property returns an ICollection containing all the keys currently in the
Dictionary<T,U>. The Values property returns the same for all values currently contained in the
Dictionary<T,U>.

The GetKeys method uses the Keys property. Once the ICollection of keys is returned through this
property, a new List<T> is created to hold the keys. This List<T> is then returned to the caller. The
GetValues method works in a similar manner except that it uses the Values property.

The GetValues method uses the Values property. Once the ICollection of values is returned through
this property, a new List<U> is created of the same size to hold the values. This List<U> is then
returned to the caller.

The ICollection object returned from either the Keys or Values property of a Dictionary<T,U> object
contains direct references to the key and value collections within the Dictionary<T,U>. This means
that if the keys and/or values change in a Dictionary<T,U>, the key and value collections will be
altered accordingly.

See Also

See the "Dictionary<T,U> Class" and "List<T> Class" topics in the MSDN documentation.

Recipe 5.11. Creating a Dictionary with Max and Min Value
Boundaries

Problem

You need to use a generic Dictionary object in your project that stores only numeric data in its value
(the key can be of any type)between a set maximum and minimum value.

Solution

Create a class with accessors and methods that enforce these boundaries. The class shown in
Example 5-4 , MaxMinValueDictionary , allows only integers that fall between a maximum and
minimum value to be stored.

Example 5-4. Creating a dictionary with max and min value boundaries

using System;
using System.Collections;
using System.Collections.Generic;
using System.Runtime.Serialization;

[Serializable]
public class MaxMinValueDictionary<T>
{
 protected Dictionary<T,int> internalDictionary = null;

 public MaxMinValueDictionary(int minValue, int maxValue)
 {
 this.minValue = minValue;
 this.maxValue = maxValue;
 internalDictionary = new Dictionary<T,int>();
 }

 protected int minValue = int.MinValue;
 protected int maxValue = int.MaxValue;

 public int Count
 {
 get { return (internalDictionary.Count); }
 }

 public Dictionary<T,int>.KeyCollection Keys
 {
 get { return (internalDictionary.Keys); }
 }

 public Dictionary<T,int>.ValueCollection Values
 {
 get { return (internalDictionary.Values); }
 }

 public int this[T key]
 {
 get
 {
 return (internalDictionary[key]);
 }
 set
 {
 if (value >= minValue && value <= maxValue)
 {
 internalDictionary[key] = value;
 }
 else
 {
 throw (new ArgumentOutOfRangeException("value", value,
 "Value must be within the range " + minValue + " to " + maxValue));
 }
 }
 }

 public void Add(T key, int value)
 {
 if (value >= minValue && value <= maxValue)
 {
 internalDictionary.Add(key, value);
 }
 else
 {
 throw (new ArgumentOutOfRangeException("value", value,
 "Value must be within the range " + minValue + " to " + maxValue));
 }
 }

 public bool ContainsKey(T key)
 {

 return (internalDictionary.ContainsKey(key));
 }

 public bool ContainsValue(int value)
 {
 return (internalDictionary.ContainsValue(value));

 }

 public override bool Equals(object obj)
 {
 return (internalDictionary.Equals(obj));
 }

 public IEnumerator GetEnumerator()
 {
 return (internalDictionary.GetEnumerator());
 }

 public override int GetHashCode()
 {
 return (internalDictionary.GetHashCode());
 }

 public void GetObjectData(SerializationInfo info, StreamingContext context)
 {
 internalDictionary.GetObjectData(info, context);
 }

 public void OnDeserialization (object sender)
 {
 internalDictionary.OnDeserialization(sender);
 }

 public override string ToString()
 {
 return (internalDictionary.ToString());
 }

 public bool TryGetValue(T key, out int value)
 {
 return (internalDictionary.TryGetValue(key, out value));
 }

 public void Remove(T key)
 {
 internalDictionary.Remove(key);
 }

 public void Clear()
 {
 internalDictionary.Clear();
 }
}

Discussion

The MaxMinValueDictionary class wraps the Dictionary<T,U> class so it can restrict the range of
allowed values. The overloaded constructor for the MaxMinValueDictionary class is defined here:

 public MaxMinValueDictionary(int minValue, int maxValue)

This constructor allows the range of values to be set. Its parameters are:

minValue

The smallest integer value that can be added as a value in a key/value pair

maxValue

The largest integer value that can be added as a value in a key/value pair

The overridden indexer has both get and set . The get returns the value that matches the provided
key . The set checks the value parameter to determine whether it is within the boundaries of the

minValue and maxValue fields before it is set.

The Add method accepts an integer for its value parameter and performs the same tests as the set

accessor on the indexer. If the test passes, the integer is added to the MaxMinValueDictionary .

To modify the MaxMinValueDictionary<T> class to accept numeric values other than an integer, simply
change all instances of the int value parameter to another numeric type, such as a double or a long .
Anytime you see Dictionary<T,int> , you will need to change the int type to the numeric type of
your choosing. In addition, the minValue and maxValue fields will need to be changed to that type, as
will the parameters to the constructor and the return type of the indexer.

See Also

See the "Hashtable Class" topic in the MSDN documentation.

Recipe 5.12. Displaying an Array's Data as a Delimited
String

Problem

You have an array or type that implements ICollection, and you wish to display or store it as a
string delimited by commas or some other delimiting character. This ability will allow you to easily
save data stored in an array to a text file as delimited text.

Solution

The ConvertCollectionToDelStr method will accept any object that implements the ICollection
interface. This collection object's contents are converted into a delimited string:

 public static string ConvertCollectionToDelStr(ICollection theCollection,
 char delimiter)
 {
 StringBuilder delimitedData = new StringBuilder();

 foreach (string strData in theCollection)
 {
 if (strData.IndexOf(delimiter) >= 0)
 {
 throw (new ArgumentException(
 "Cannot have a delimiter character in an element of the array.",
 "theCollection"));
 }

 delimitedData.Append(strData).Append(delimiter);
 }

 // Return the constructed string minus the final
 // appended delimiter char.
 return (delimitedData.ToString().TrimEnd(delimiter));
 }

Discussion

The following TestDisplayDataAsDelStr method shows how to use the Convert-CollectionToDelStr
method to convert an array of strings to a delimited string:

 public static void TestDisplayDataAsDelStr()
 {
 string[] numbers = {"one", "two", "three", "four", "five", "six"} ;

 string delimitedStr = ConvertCollectionToDelStr(numbers, ',');
 Console.WriteLine(delimitedStr);
 }

This code creates a delimited string of all the elements in the array and displays it as follows:

 one,two,three,four,five,six

Of course, instead of a comma as the delimiter, you could also have used a semicolon, dash, or any
other character. The delimiter type was made a char because it is best to use only a single delimiting
character if you are going to use the String.Split method to restore the delimited string to an array
of substrings. String.Split works only with delimiters that consist of one character.

See Also

See the "ICollection Interface" topic in the MSDN documentation.

Recipe 5.13. Storing Snapshots of Lists in an Array

Problem

You have an ArrayList, Queue, or Stack object and you want to take a snapshot of its current state.
(Note that this recipe also works for any other data type that implements the ICollection interface.)

Solution

Use the CopyTo method declared in the ICollection interface. The following method,
TakeSnapshotOfList, accepts any type that implements the ICollection interface and takes a
snapshot of the entire object's contents. This snapshot is returned as an object array:

 public static T[] TakeSnapshotOfList<T>(ICollection theList)
 {
 T[] snapshot = new T[theList.Count];
 theList.CopyTo(snapshot, 0);
 return (snapshot);
 }

Discussion

The following method creates a Queue<int> object, enqueues some data, and then takes a snapshot
of it:

 public static void TestListSnapshot()
 {
 Queue<int> someQueue = new Queue<int>();
 someQueue.Enqueue(1);
 someQueue.Enqueue(2);
 someQueue.Enqueue(3);

 int[] queueSnapshot = TakeSnapshotOfList<int>(someQueue);
 }

The TakeSnapshotOfList<T> is useful when you want to record the state of an object that implements

the ICollection interface. This "snapshot" can be compared to the original list later on to determine
what, if anything, has changed in the list. Multiple snapshots can be taken at various points in an
application's run to show the state of the list or lists over time.

The TakeSnapshotOfList<T> method could easily be used as a logging/debugging tool for developers.
Take, for example, a List<T> that is being corrupted at some point in the application. You can take
snapshots of the List<T> at various points in the application using the TakeSnapshotOfList<T>
method and then compare the snapshots to narrow down the list of possible places where the
List<T> is being corrupted.

See Also

See the "ICollection Interface" and "Array Class" topics in the MSDN documentation.

Recipe 5.14. Persisting a Collection Between Application
Sessions

Problem

You have a collection such as an ArrayList, List<T>, Hashtable, or Dictionary<T,U> in which you
are storing application information. You can use this information to tailor the application's
environment to the last known settings (e.g., window size, window placement, currently displayed
toolbars). You can also use it to allow the user to start the application at the same point where it was
last shut down. In other words, if the user is editing an invoice and needs to shut down the computer
for the night, the application will know exactly which invoice to initially display when the application is
started next time.

Solution

Serialize the object(s) to and from a file:

 public static void SaveObj<T>(T obj, string dataFile)
 {
 FileStream FS = File.Create(dataFile);
 BinaryFormatter binSerializer = new BinaryFormatter();
 binSerializer.Serialize(FS, obj);
 FS.Close();
 }

 public static T RestoreObj<T>(string dataFile)
 {
 FileStream FS = File.OpenRead(dataFile);
 BinaryFormatter binSerializer = new BinaryFormatter();
 T obj = (T)binSerializer.Deserialize(FS);
 FS.Close();

 return (obj);
 }

Discussion

The dataFile parameter accepts a string value to use as a filename. The SaveObj<T> method accepts

an object and attempts to serialize it to a file. Conversely, the RestoreObj<T> method removes the
serialized object from the file created in the SaveObj<T> method.

The TestSerialization utility shown in Example 5-5 demonstrates how to use these methods to
serialize a Hashtable object and a List<int> object (note that this will work for any type that is
marked with the SerializableAttribute).

Example 5-5. Persisting a collection between application sessions

public static void TestSerialization()
{
 // Create a Hashtable object to save/restore to/from a file.
 Hashtable HT = new Hashtable();
 HT.Add(0, "Zero");
 HT.Add(1, "One");
 HT.Add(2, "Two");

 // Display this object's contents and save it to a file.
 foreach (DictionaryEntry DE in HT)
 Console.WriteLine(DE.Key + " : " + DE.Value);
 SaveObj(HT);

 // Restore this object from the same file and display its contents.
 Hashtable HTNew = new Hashtable();
 HTNew = (Hashtable)RestoreObj();
 foreach (DictionaryEntry DE in HTNew)
 Console.WriteLine(DE.Key + " : " + DE.Value);

 // Create a List<int> object to save/restore to/from a file.
 Console.WriteLine();
 List<int> test = new List<int>();
 test.Add(1);
 test.Add(2);

 // Display this object's contents and save it to a file.
 foreach (int i in test)
 Console.WriteLine(i.ToString());
 SaveObj<List<int>>(test, "TEST.DATA");

 // Restore this object from the same file and display its contents.
 List<int> testNew = new List<int>();
 testNew = RestoreObj<List<int>>("TEST.DATA");
 foreach (int i in testNew)
 Console.WriteLine(i.ToString());
}

If you serialize your objects to disk at specific points in your application, you can then deserialize

them and return to a known state, for instance, in the event of an unintended shutdown.

If you rely on serialized objects to store persistent information, you need to
figure out what you are going to do when you deploy a new version of the
application. You should plan ahead with either a strategy for making sure the
types you serialize don't get changed or a technique for dealing with changes.
Otherwise you are going to have big problems when you deploy an update.

See Also

See the "ArrayList Class," "Hashtable Class," "List<T> Class," "Dictionary<T,U> Class," "File Class,"
and "BinaryFormatter Class" topics in the MSDN documentation.

Recipe 5.15. Testing Every Element in an Array or List<T>

Problem

You need an easy way to test every element in an Array or List<T>. The results of this test should
indicate that the test passed for all elements in the collection or it failed for at least one element in
the collection.

Solution

Use the TrueForAll method as shown here:

 // Create a List of strings.
 List<string> strings = new List<string>();
 strings.Add("one");
 strings.Add(null);
 strings.Add("three");
 strings.Add("four");

 // Determine if there are no null values in the List.

 string str = strings.TrueForAll(delegate(string val)
 {
 if (val == null)
 return false;
 else
 return true;
 }).ToString();

 // Display the results.
 Console.WriteLine(str);

Discussion

The addition of the trueForAll method on the Array and List<T> classes allows you to easily set up
tests for all elements in these collections. The code in the Solution for this recipe tests all elements to
determine if any are null. You could just as easily set up tests to determine…

If any numeric elements are above a specified maximum value

If any numeric elements are below a specified minimum value

If any string elements contain a specified set of characters

If any data objects have all of their fields filled in

…as well as any others you may come up with.

The TRueForAll method accepts a generic delegate Predicate<T> called match and returns a Boolean
value:

 public bool TrueForAll(Predicate<T> match)

The match parameter determines whether or not a true or false should be returned by the
trueForAll method.

The trueForAll method basically consists of a loop that iterates over each element in the collection.
Within this loop, a call to the match delegate is invoked. If this delegate returns true, the processing
continues on to the next element in the collection. If this delegate returns false, processing stops
and a false is returned by the trueForAll method. When the trueForAll method is finished iterating
over all the elements of the collection and the match delegate has not returned a false value for any
element, the trueForAll method returns a true.

See Also

See the "Array Class," "List<T> Class," and "TrueForAll Method" topics in the MSDN documentation.

Recipe 5.16. Performing an Action on Each Element in an
Array or List<T>

Problem

You need an easy way to iterate over all the elements in an Array or List<T>, performing an
operation on each element as you go.

Solution

Use the ForEach method of the Array or List<T> classes:

 // Create and populate a List of Data objects.
 List<Data> numbers = new List<Data>();
 numbers.Add(new Data(1));
 numbers.Add(new Data(2));
 numbers.Add(new Data(3));
 numbers.Add(new Data(4));

 // Display them.
 foreach (Data d in numbers)
 Console.WriteLine(d.val);

 // Add 2 to all Data.val integer values.

 numbers.ForEach(delegate(Data obj)
 {
 obj.val += 2;
 });

 // Display them.
 foreach (Data d in numbers)
 Console.WriteLine(d.val);

 // Total val integer values in all Data objects in the List.
 int total = 0;

 numbers.ForEach(delegate(Data obj)
 {
 total += obj.val;
 });

 // Display total.
 Console.WriteLine("Total: " + total);

This code outputs the following:

 1
 2
 3
 4
 3
 4
 5
 6
 Total: 18

The Data class is defined as follows:

 public class Data
 {
 public Data(int v)
 {
 val = v;
 }

 public int val = 0;
 }

Discussion

The ForEach method of the Array and List<T> collections allows you to easily perform an action on
every element within these collections. This is accomplished through the use of the Action<T>
delegate, which is passed in as a parameter to the ForEach method:

 public void ForEach (Action<T> action)

The action parameter is a delegate of type Action<T> that contains the code that will be invoked for
each element of the collection.

The ForEach method basically consists of a loop that iterates over each element in the collection.
Within this loop, a call to the action delegate is invoked. Processing continues on to each element in

the collection until the last element is finished processing. When this occurs, the ForEach method is
finished and returns to the calling method.

This recipe uses the ForEach method of a List<T> object in two different ways. The first is to actually
modify the values of each element of the List<T> object:

 // Add 2 to all Data.val integer values.
 numbers.ForEach(delegate(Data obj)
 {
 obj.val += 2;
 });

This call to ForEach will iterate over each Data element within the numbers List<Data> object. On
every iteration, the value val contained in the current Data object obj has its value incremented by
two.

The second way is to collect a total of all the values val contained in each Data object obj in the
numbers List<Data> object:

 // Total val integer values in all Data objects in the List.
 int total = 0;
 numbers.ForEach(delegate(Data obj)
 {
 total += obj.val;
 });

This code uses the total variable to build a running total of the values contained in each element. In
this instance you do not modify any values in any of the Data objects; instead, you examine each
Data object and record information about its value.

See Also

See the "Array Class," "List<T> Class," and "ForEach Method" topics in the MSDN documentation.

Recipe 5.17. Creating a Read-Only Array or List<T>

Problem

You need a way to create a read-only Array or List<T>, where the Array or List<T> itself is read-
only.

Solution

Use the AsReadOnly method of the Array or List<T> class as shown here:

 // Create and populate a List of strings.
 List<string> strings = new List<string>();
 strings.Add("1");
 strings.Add("2");
 strings.Add("3");
 strings.Add("4");

 // Create a read-only strings List.

 IList<string> readOnlyStrings = strings.AsReadOnly();

 // Display them.
 foreach (string s in readOnlyStrings)
 Console.WriteLine(s);

Discussion

The AsReadOnly method accepts no parameters and returns a read-only wrapper around the
collection on which it is called. For example, the following statement:

 IList<string> readOnlyStrings = strings.AsReadOnly();

returns a read-only IList<string> type from the original strings List<string> type. This read-only
readOnlyStrings variable behaves similarly to the original strings object, except that you cannot

add, modify, or delete elements from this object. If you attempt one of these actions, a
System.NotSupportedException will be thrown along with the message "Collection is read-only". Any
of the following lines of code will cause this exception to be thrown:

 readOnlyStrings.Add("5");
 readOnlyStrings.Remove("1");
 readOnlyStrings[0] = "1.1";

While you cannot modify the data within the readOnlyStrings object, you can point this object to
refer to a different object of type IList<string>, for example:

 readOnlyStrings = new List<string>();

On the other hand, if you add, modify, or delete elements from the original strings object, the
changes will be reflected in the new readOnlyStrings object. For example, the following code creates
a List<string>, populates it, and then creates a read-only object readOnlyStrings from this original
List<string> object. Next, the readOnlyStrings object elements are displayed; the original
List<string> object is modified and then the readOnlyStrings object elements are again displayed.
Notice that they have changed.

 // Create and populate a List of strings.
 List<string> strings = new List<string>();
 strings.Add("1");
 strings.Add("2");
 strings.Add("3");
 strings.Add("4");

 // Create a read-only strings List.
 IList<string> readOnlyStrings = strings.AsReadOnly();

 // Display them.
 foreach (string s in readOnlyStrings)
 Console.WriteLine(s);

 // Change the value in the original array.
 strings[0] = "one";

 strings[1] = null;

 // Display them again.
 Console.WriteLine();
 foreach (string s in readOnlyStrings)
 Console.WriteLine(s);

This code outputs the following:

 1
 2
 3
 4

 one

 The null value
 3
 4

For an alternate method to making read-only collections, see Recipe 4.9.

See Also

See the "Array Class," "List<T> Class," "IList<T> Interface," and "AsReadOnly Method" topics in the
MSDN documentation.

Chapter 6. Iterators and Partial Types

Introduction

Two of the four main new features in C# 2.0 are iterators and partial types. Iterators allow for a block
of code to yield an ordered sequence of values. Partial types allow for different parts of classes to be
placed in different locations.

Iterators are a mechanism whereby a class can enumerate data using the foreach loop construct.
However, iterators are much more flexible than this. You can easily generate a sequence of data
returned by the enumerator; it does not have to be hardcoded up front. For example, you could
easily write an enumerator that generates the Fibonacci sequence on demand. Another flexible
feature of iterators is that you do not have to set a limit on the number of values returned by the
iterator, so in this example you could choose when to stop producing the Fibonacci sequence.

Previous versions of the .NET Framework required you to perform several steps to allow the foreach
construct to operate on your type. First, you had to implement the IEnumerable interface on your
type, then you had to implement the IEnumerator interface on another type. This second type
performed the actual work to enable foreach functionality. The methods MoveNext and Reset, along
with the Current property, then had to be written by hand inside this type.

Iterators allow you to hand the work of writing this class off to the C# compiler. With Version 2.0 of
the C# compiler, the ability for a type to be used by a foreach loop requires much less work. Now
you need to add only an iterator to your type. An iterator is a member within your type (e.g., a
method, an operator overload, or the get accessor of a property) that returns either a
System.Collections.IEnumerator, a System.Collections.Generic.IEnumerator<T>, a
System.Collections.IEnumerable, or a System.Collections.Generic.IEnumerable<T> and that
contains at least one yield statement. This simplicity allows you to more easily write types that can
be used by foreach loops.

Partial types allow the developer to split pieces of a type across several areas where the type is
defined. The type can be in multiple files, multiple areas in the same file, or a combination of the two.
Declaring a type as partial is an indicator to the C# compiler that this type may not be fully
represented in this location and that it cannot be fully compiled until the other parts are found or the
end of the list of modules to compile is found. Partial types are purely a compiler-implemented
feature with no impact to the underlying Microsoft Intermediate Language that is generated for the
class. The main examples of using partial types are in the Visual Studio IDE, where the designer uses
them to keep designer-generated code separate from UI logic the developer creates, and in the
DataSet creation code, which is based on an XML Schema Definition of the data. Even though partial
types are only a compiler-level feature, you can use them to your advantage in a few situations that
are pointed out in Recipes 6.10 and 6.11.

Recipe 6.1. Implementing Nested foreach Functionality in
a Class

Problem

You need a class that contains a list of objects; each of these objects in turn contains a list of objects.
You want to use a nested foreach loop to iterate through all objects in both the outer and inner arrays
in the following manner:

 foreach (SubGroup sg in group)
 {
 foreach (Item i in sg)
 {
 // Operate on Item objects contained in the innermost object collection sg,
 // which in turn is contained in another outer collection called group.
 }
 }

Solution

Implement the IEnumerable interface on the class. The Group class shown in Example 6-1 contains a
List of SubGroup objects; each SubGroup object contains a List of Item objects. Implement
IEnumerable on the top-level class (Group) and on each of the objects returned (SubGroup) by this
top-level enumeration.

Example 6-1. Implementing for each functionality in a class

using System;
using System.Collections;

//--
// The top-level class
//--
public class Group : IEnumerable
{
 //CONSTRUCTORS
 public Group() {}

 //FIELDS

 private List<SubGroup> innerArray = new List<SubGroup>();

 //PROPERTIES
 public int Count
 {
 get{return(innerArray.Count);}
 }

 //METHODS
 public void AddGroup(string name)
 {
 SubGroup subGroup = new SubGroup(name);
 innerArray.Add(subGroup);
 }

 public SubGroup GetGroup(int setIndex)
 {
 return(innerArray[setIndex]);
 }

 IEnumerator IEnumerable.GetEnumerator()
 {
 for (int index = 0; index < Count; index++)
 {
 yield return (innerArray[index]);
 }
 }
}

//--
// The inner class
//--
public class SubGroup : IEnumerable
{
 //CONSTRUCTORS
 public SubGroup() {}

 public SubGroup(string name)
 {
 subGroupName = name;
 }

 //FIELDS
 private string subGroupName = "";
 private List<Item> itemArray = new List<Item>();

 //PROPERTIES
 public string SubGroupName
 {
 get{return(subGroupName);}
 }

 public int Count
 {
 get{return(itemArray.Count);}
 }

 //METHODS
 public void AddItem(string name, int location)
 {
 Item itm = new Item(name, location);
 itemArray.Add(itm);
 }

 public Item GetSubGroup(int index)
 {
 return(itemArray[index]);
 }

 IEnumerator IEnumerable.GetEnumerator()
 {
 for (int index = 0; index < Count; index++)
 {
 yield return (itemArray[index]);
 }
 }
}

//--
// The lowest-level class
//--
public class Item
{
 //CONSTRUCTOR
 public Item(string name, int location)
 {
 itemName = name;
 itemLocation = location;
 }

 private string itemName = "";
 private int itemLocation = 0;

 public string ItemName
 {
 get {return(itemName);}
 set {itemName = value;}
 }

 public int ItemLocation
 {
 get {return(itemLocation);}
 set {itemLocation = value;}
 }

}

Discussion

Building functionality into a class to allow it to be iterated over using the foreach loop is much easier
now that iterators are available in Version 2.0 of the C# language. In previous versions of the .NET
Framework, you not only had to implement the IEnumerable interface on the type that you wanted to
make enumerable, but you also had to implement the IEnumerator interface on a nested class. The
methods MoveNext and Reset along with the property Current then had to be written by hand in this
nested class. Iterators allow you to hand the work of writing this nested class off to the C# compiler.

The ability for a class to be used by the foreach loop requires the inclusion of an iterator. An iterator
can be a method, an operator overload, or the get accessor of a property that returns either a
System.Collections.IEnumerator , a System.Collections . Generic.IEnumerator<T> , a
System.Collections.IEnumerable , or a System.Collections . Generic.IEnumerable<T> and that
contains at least one yield statement.

Here are two examples of iterator members implemented using the GetEnumerator method:

 IEnumerator IEnumerable.GetEnumerator()
 {
 for (int index = 0; index < Count; index++)
 {
 yield return (someArray[index]);
 }
 }
 IEnumerator<T> IEnumerable<T>.GetEnumerator()
 {
 for (int index = 0; index < Count; index++)
 {
 yield return (someArray[index]);
 }
 }

The code for this recipe is divided among three classes. The top-level class is the Group class, which
contains a List of SubGroup objects. The SubGroup object also contains a List , but this List contains
Item objects. To enumerate their contained lists, both the Group and SubGroup implement the
IEnumerable interface. They therefore contain a GetEnumerator iterator method, which returns an
IEnumerator . The class structure looks like this:

 Group (Implements IEnumerable)

 SubGroup (Implements IEnumerable)

 Item

By examining the Group class, you can see how classes usable by a foreach loop are constructed. This
class contains:

A simple List , which will be iterated over by the class's enumerator.

A property, Count , that returns the number of elements in the List .

An iterator method, GetEnumerator , which is defined by the IEnumerable interface. This method
yields a specific value on each iteration of the foreach loop.

A method, AddGroup , which adds a SubGroup object to the List .

A method, GetGroup , which returns a SubGroup object in the List .

To create the SubGroup class, you follow the same pattern as with the Group classexcept the SubGroup
class contains a List of Item objects.

The final class is the Item class. This class is the lowest level of this structure and contains data. It
has been grouped within the SubGroup objects, all of which are contained in the Group object. There is
nothing out of the ordinary with this class; it simply contains data and the means to set and retrieve
this data.

Using these classes is quite simple. The following method shows how to create a Group object that
contains multiple SubGroup objects, which in turn contain multiple Item objects:

 public void CreateNestedObjects()
 {
 Group topLevelGroup = new Group();

 // Create two groups under the TopLevelSet object.
 topLevelGroup.AddGroup("sg1");
 topLevelGroup.AddGroup("sg2");

 // For each SubGroup object in the topLevelGroup object add two Item objects.
 foreach (SubGroup SG in topLevelGroup)
 {
 SG.AddItem("item1", 100);
 SG.AddItem("item2", 200);
 }
 }

The CreateNestedObjects method first creates a topLevelGroup object of the Group class, then creates
two SubGroups within it called sg1 and sg2 . Each of these SubGroup objects in turn is filled with two
Item objects called item1 and item2 .

The next method shows how to read all of the Item objects contained within the Group object that was
created in the CreateNestedObjects method:

 public void ReadNestedObjects(Set topLevelGroup)
 {
 Console.WriteLine("topLevelGroup.Count: " + topLevelGroup.Count);

 // Outer foreach to iterate over all SubGroup objects
 // in the topLevelGroup object
 foreach (SubGroup SG in topLevelGroup)
 {
 Console.WriteLine("\tSG.SubGroupName: " + SG.SubGroupName);
 Console.WriteLine("\tSG.Count: " + SG.Count);

 // Inner foreach to iterate over all Item objects
 // in the current SubGroup object
 foreach (Item i in SG)
 {
 Console.WriteLine("\t\ti.ItemName: " + i.ItemName);
 Console.WriteLine("\t\ti.ItemLocation: " + i.ItemLocation);
 }
 }
 }

This method displays the following:

 topLevelGroup.Count: 2
 SG.SubGroupName: sg1
 SG.Count: 2
 I.ItemName: item1
 I.ItemLocation: 100
 I.ItemName: item2
 I.ItemLocation: 200
 SG.SubGroupName: sg2
 SG.Count: 2
 I.ItemName: item1
 I.ItemLocation: 100
 I.ItemName: item2
 I.ItemLocation: 200

As you see here, the outer foreach loop is used to iterate over all SubGroup objects that are stored in
the top-level Group object. The inner foreach loop is used to iterate over all Item objects that are
stored in the current SubGroup object.

See Also

See the " Iterators," "yield," "IEnumerator Interface," and "IEnumerable Interface" topics in the
MSDN documentation.

Recipe 6.2. Creating Custom Enumerators

Problem

You need to add foreach support to a class, but the normal way of adding an iterator (i.e,
implementing IEnumerable on a type and returning a reference to this IEnumerable from a member
function) is not flexible enough. Instead of simply iterating from the first element to the last, you also
need to iterate from the last to the first, and you need to be able to step over, or skip, a predefined
number of elements on each iteration. You want to make all of these types of iterators available to
your class.

Solution

The Container<T> class shown in Example 6-2 acts as a container for a private List<T> called
internalList. Container is implemented so you can use it in a foreach loop to iterate through the
private internalList.

Example 6-2. Creating custom iterators

public class Container<T>
{
 public Container() {}

 private List<T> internalList = new List<T>();

 public List<T> List
 {
 set {internalList = value;}
 }

 // This iterator iterates over each element from first to last.
 public IEnumerator<T> GetEnumerator()
 {
 for (int index = 0; index < internalList.Count; index++)
 {
 yield return (internalList[index]);
 }
 }

 // This iterator iterates over each element from last to first.

 public IEnumerable<T> ReverseOrder
 {
 get
 {
 for (int index = internalList.Count - 1; index >= 0; index--)
 {
 yield return (internalList[index]);
 }
 }
 }

 // This iterator iterates over each element from first to last stepping
 // over a predefined number of elements.
 public IEnumerable<T> ForwardOrderStep(int step)
 {
 for (int index = 0; index < internalList.Count; index += step)
 {
 yield return (internalList[index]);
 }
 }

 // This iterator iterates over each element from last to first stepping
 // over a predefined number of elements.
 public IEnumerable<T> ReverseOrderStep(int step)
 {
 for (int index = internalList.Count - 1; index >= 0; index -= step)
 {
 yield return (internalList[index]);
 }
 }
}

Discussion

Iterators provide an easy method of moving from item to item within an object using the familiar
foreach loop construct. The object can be an array, a collection, or some other type of container. This
is similar to using a for loop to manually iterate over each item contained in an array. In fact, an
iterator can be set up to use a for loop, or any other looping construct for that matter, as the
mechanism for yielding each item in the object. In fact, you do not even have to use a looping
construct. The following code is perfectly valid:

 public static IEnumerable<int> GetValues()
 {
 yield return 10;
 yield return 20;
 yield return 30;
 yield return 100;
 }

With the foreach loop, you do not have to worry about moving the current element pointer to the
beginning of the list or even about incrementing this pointer as you move through the list. In
addition, you do not have to watch for the end of the list, since you cannot go beyond the bounds of
the list. The best part about the foreach loop and iterators is that you do not have to know how to
access the list of elements within its containerindeed, you do not even have to have access to the list
of elements; the iterator member(s) implemented on the container do this for you.

The Container class contains a private List of items called internalList. There are four iterator
members within this class:

 GetEnumerator
 ReverseOrder
 ForwardOrderStep
 ReverseOrderStep

The GetEnumerator method is implemented to return an IEnumerable<T>. This method iterates over
each element in the internalList from the first to the last element. This iterator, similar to the
others, uses a for loop to yield each element in the internalList.

The ReverseOrder property implements an iterator in its get accessor (set accessors cannot be
iterators). This iterator is very similar in design to the GetEnumerator method, except that the for
loop works on the internalList in the reverse direction. Notice that even though this iterator is
implemented as a property, there is no reason why it cannot be implemented as a method that takes
no parameters.

The last two iterators, ForwardOrderStep and ReverseOrderStep, are similar in design to
GetEnumerator and ReverseOrder, respectively. The main difference (besides the fact that
ReverseOrder is a property) is that the for loop uses the step parameter to skip over the specified
number of items in the internalList. Notice also that only the GetEnumerator method must return an
IEnumerator<T> interface; the other three iterators must return IEnumerable<T> interfaces.

Using each of these iterators is extremely simple. To iterate over each element in the Container
object from first to last, use the following code:

 Container<int> cntnr = new Container<int>();
 //…Add data to cntnr here …
 foreach (int i in cntnr)
 {
 Console.WriteLine(i);
 }

To iterate over each element in the Container object from last to first, use the following code:

 Container<int> cntnr = new Container<int>();
 //…Add data to cntnr here …
 foreach (int i in cntnr.ReverseOrder)
 {
 Console.WriteLine(i);
 }

To iterate over each element in the Container object from first to last while skipping every other
element, use the following code:

 Container<int> cntnr = new Container<int>();
 //…Add data to cntnr here …
 foreach (int i in cntnr.ForwardOrderStep(2))
 {
 Console.WriteLine(i);
 }

To iterate over each element in the Container object from last to first while skipping to every third
element, use the following code:

 Container<int> cntnr = new Container<int>();
 //…Add data to cntnr here …
 foreach (int i in cntnr.ReverseOrderStep(3))
 {
 Console.WriteLine(i);
 }

In each of the last two examples, the iterator method accepts an integer value, step, that determines
how many items will be skipped.

See Also

See the "Iterators," "yield," "IEnumerator Interface," and "IEnumerable Interface" topics in the MSDN
documentation.

Recipe 6.3. Creating an Iterator on a Generic Type

Problem

You want elements contained in your generic type to be enumerated using the foreach statement.

Solution

Add an iterator to your generic type, as shown here:

 public class ShoppingList<T>
 {
 public ShoppingList() {}

 private List<T> _items = new List<T>();

 public void AddItem(T item)
 {
 _items.Add(item);
 }

 // Iterator
 public IEnumerator<T> GetEnumerator()
 {
 for (int index = 0; index < _items.Count; index++)
 {
 yield return (_items[index]);
 }
 }
 }

The following code creates a new ShoppingList<T> object and fills it with strings; it then proceeds to
use a foreach loop to enumerate and display each string:

 public static void TestShoppingCart()
 {
 // Create ShoppingList object and fill it with data.
 ShoppingList<string> scart = new ShoppingList<string>();
 scart.AddItem("item1");

 scart.AddItem("item2");
 scart.AddItem("item3");
 scart.AddItem("item4");
 scart.AddItem("item5");
 scart.AddItem("item6");

 // Display all data in ShoppingCart object.
 foreach(string s in scart)
 {
 Console.WriteLine(s);
 }
 }

Discussion

Adding an iterator to a type is fairly straightforward. You simply add a GetEnumerator method that
accepts no arguments and returns an IEnumerator<T> type. In addition to this, the enumerator must
have public accessibility. The GetNext method on the object returned by this GetEnumerator method is
called by the foreach loop to determine what object is returned on every iteration.

The code that you write inside of the GetEnumerator method is what actually does the work of
determining the next object to be returned by the foreach loop. This is accomplished through the use
of the yield return statement. For example, in this recipe you simply use a for loop to iterate over
each item in the _items List<T> and display each item in turn from the first to the last.

This is all the work that the developer has to do; the rest is performed by the C# compiler. The
compiler takes this code and from it creates a class that is nested within the ShoppingList<T> class,
which contains a simple state machine. This state machine is based on the code within the
GetEnumerator method.

Notice that the IEnumerable<T> interface was not explicitly implemented on the ShoppingList<T>
class. It is optional for you to explicitly implement this interface. Whether you choose to implement
this interface or not, the final behavior of the ShoppingList<T> class iterator is the same.

If you choose to implement the IEnumerator<T> interface on the ShoppingList<T> class, the code will
change to look like this:

 public class ShoppingList<T> : IEnumerable<T>
 {
 public ShoppingList() {}

 private List<T> _items = new List<T>();

 public void AddItem(T item)
 {
 _items.Add(item);
 }

 // Iterator
 IEnumerator<T> IEnumerable<T>.GetEnumerator()
 {
 for (int index = 0; index < _items.Count; index++)
 {
 yield return (_items[index]);
 }
 }

 IEnumerator IEnumerable.GetEnumerator()
 {
 for (int index = 0; index < _items.Count; index++)
 {
 yield return (_items[index]);
 }
 }
 }

This makes it more apparent that this class supports enumeration. You can also specify a concrete
type in place of T in IEnumerable<T>, such as IEnumerable<string>, if you wish that class to
enumerate values only of type string. Regardless of the method you choose, the operation of the
iterator and the foreach loop is identical.

See Also

See the "Iterators," "IEnumerator Interface," and "IEnumerable Interface" topics in the MSDN
documentation.

Recipe 6.4. Creating an Iterator on a Non-generic Type

Problem

You want elements contained in your non-generic type to be enumerated using the foreach
statement.

Solution

Add an iterator to your non-generic type, as shown here:

 public class NGShoppingList
 {
 public NGShoppingList() {}

 private List<string> _items = new List<string>();

 public void AddItem(string item)
 {
 _items.Add(item);
 }

 public IEnumerator<string> GetEnumerator()
 {
 for (int index = 0; index < _items.Count; index++)
 {
 yield return (_items[index]);
 }
 }
 }

The following code creates a new NGShoppingList object and fills it with strings; it then proceeds to
use a foreach loop to enumerate and display each string:

 public static void TestShoppingCart()
 {
 // Create NGShoppingList object and fill it with data.
 NGShoppingList scart = new NGShoppingList();
 scart.AddItem("item1");

 scart.AddItem("item2");
 scart.AddItem("item3");
 scart.AddItem("item4");
 scart.AddItem("item5");
 scart.AddItem("item6");

 // Display all data in NGShoppingCart object.
 foreach(string s in scart)
 {
 Console.WriteLine(s);
 }
 }

Discussion

Adding an iterator to a type is fairly straightforward. You simply add a GetEnumerator method that
accepts no arguments and returns an IEnumerator<string> type. In addition to this, the enumerator
must have public accessibility. This GetEnumerator method is called by the foreach loop to determine
what object is returned by this loop on every iteration.

The code that you write inside of the GetEnumerator method is what actually does the work of
determining the next object to be returned by the foreach loop. This is accomplished through the use
of the yield return statement. For example, in this recipe you simply use a for loop to iterate over
each item in the _items List<string> and display each item in turn from the first to the last.

This is all the work that the developer has to do; the rest is performed by the C# compiler. The
compiler takes this code and from it creates a class that is nested within the NGShoppingList class,
which contains a simple state machine. This state machine is based on the code within the
GetEnumerator method.

Notice that the IEnumerable interface was not explicitly implemented on the NGShoppingList class. It
is optional for you to explicitly implement this interface. Whether you choose to implement this
interface or not, the final behavior of the NGShoppingList class iterator is the same.

If you choose to implement the IEnumerator interface on the NGShoppingList class, the class
declaration will change to look like this:

 public class NGShoppingList : IEnumerable

Regardless of the method you choose, the operation of the iterator and the foreach loop is identical.

See Also

See the "Iterators," "IEnumerator Interface," and "IEnumerable Interface" topics in the MSDN
documentation.

Recipe 6.5. Creating Iterators That Accept Parameters

Problem

You need to add a new iterator that accepts parameters to a type in order for the iterator to do special
processing during the looping operation.

Solution

Add a method that is public , returns an IEnumerable , and uses the yield return statement, as shown in
Example 6-3 .

Example 6-3. Creating iterators that accept parameters

public class Foo
{
 private List<string> _items = new List<string>();

 public void AddItem(string item)
 {
 _items.Add(item);
 }

 public IEnumerator GetEnumerator()
 {
 for (int index = 0; index < _items.Count; index++)
 {
 yield return (_items[index]);
 }
 }

 // An iterator that accepts a starting index and an ending index to iterate over
 public IEnumerable GetRange(int start, int end)
 {
 if (start < 0)
 {
 throw (new IndexOutOfRangeException
 ("the start index cannot be less than zero."));
 }

 if (end < start)
 {
 throw (new IndexOutOfRangeException(

 "the end index cannot be less than the start parameter."));
 }

 if (end >= _items.Count)
 {
 throw (new IndexOutOfRangeException(
 "the end index cannot be greater than or equal to the length of the list."));
 }

 for (int index = start; (index < _items.Count) && (index <= end); index++)
 {
 yield return (_items[index]);
 }
 }
}

Discussion

Adding a default iterator to a type via the GetEnumerator method is easy and straightforward. However, this
forces you to give up some flexibility. For example, using the GetEnumerator method prevents you from
passing in any parameters. If you can pass in parameters, you can more easily control the way the foreach
loop iterates over the items in this type.

The GetRange iterator accepts both a starting and ending index value. These values indicate the index value at
which to start iterating (start) and the index value at which the iterations will cease (end). The following
code shows how this iterator is used:

 public static void TestIteratorMethod()
 {
 //Create Foo object and fill it with data.
 Foo f = new Foo();
 f.AddItem("item1");
 f.AddItem("item2");
 f.AddItem("item3");
 f.AddItem("item4");
 f.AddItem("item5");
 f.AddItem("item6");

 // Display all data in Foo object.
 foreach (string s in f.GetRange(3, 4))
 {
 Console.WriteLine(s);
 }
 }

This code displays the following:

 item4
 item5

which are the string elements at the third and fourth index in the _items list in the object.

Two out-of-bounds situations can occur. The first is when the end parameter is set to a value that is past the
end of the _items list. The following code shows this:

 foreach (string s in f.GetRange(0, 50))
 {
 Console.WriteLine(s);
 }

This foreach loop will display all items in the _items list. This is because you have set up the for loop in the
GeTRange iterator method to handle this situation. The for loop's conditional expression is shown here:

 for (int index = start; (index < _items.Count) && (index <= end); index++)

The for loop will stop looping either when the index loop counter is greater than the end parameter or when it
goes past the end of the _items list. Another out-of-bounds situation is when the start parameter is less than
the initial index in the _items list, which is zero. The following code starts iterating at a negative start index:

 foreach (string s in f.GetRange(-3, 5))
 {
 Console.WriteLine(s);
 }

This causes an IndexOutOfRangeException to be thrown.

See Also

See the " Iterators," "IEnumerator Interface," and "IEnumerable Interface" topics in the MSDN
documentation.

Recipe 6.6. Adding Multiple Iterators on a Single Type

Problem

You need to add an iterator to a type that already implements the GetEnumerator iterator method;
however, the iterators that you need to add are simple enough that they do not require parameters
to be passed in to them as in Recipe 6.5. for example, the existing GetEnumerator iterator yields all
elements in a forward-only order, but you also need to add an iterator that yields all elements in
reverse order, an iterator that yields only the first half of the elements, and one that yields only the
second half of the elements.

Solution

To add simple iterators that do not require parameters to be passed in to them, you can add
properties with a get accessor. The get accessor must return an IEnumerable type and make use of
the yield return statement. Example 6-4 shows one way to implement the solution.

Example 6-4. Adding multiple iterators that do not require parameters on
a single type

public class SimpleListIterator
{
 private List<string> _items = new List<string>();

 public void AddItem(string item)
 {
 _items.Add(item);
 }

 public IEnumerator GetEnumerator()
 {
 for (int index = 0; index < _items.Count; index++)
 {
 yield return (_items[index]);
 }
 }

 // Additional iterators implemented as property get accessors
 public IEnumerable ReverseOrder
 {

 get
 {
 for (int index = _items.Count - 1; index >= 0; index--)
 {
 yield return (_items[index]);
 }
 }
 }

 public IEnumerable FirstHalf
 {
 get
 {
 for (int index = 0; index < (_items.Count / 2); index++)
 {
 yield return (_items[index]);
 }
 }
 }

 public IEnumerable SecondHalf
 {
 get
 {
 for (int index = (_items.Count / 2); index < _items.Count; index++)
 {
 yield return (_items[index]);
 }
 }
 }
}

Discussion

The SimpleListIterator class contains the typical GetEnumerator iterator method that yields all items
in the _items list. In addition to this iterator method, the class contains three additional iterators:
ReverseOrder, FirstHalf, and SecondHalf. The ReverseOrder iterator simply yields the elements in
the _items list in reverse-index order, whereas the GetEnumerator method yields all elements in
forward-index order. This is accomplished by setting up a for loop to start at either the zeroth
element, for the GetEnumerator iterator method, or at the last element, as with the ReverseOrder
iterator property.

The FirstHalf iterator property starts at the zeroth index of the _items list and yields all elements in
the list up to the middle index. At this point iteration stops. The SecondHalf iterator property starts
where the FirstHalf iterator property left off and continues yielding elements of the _items list until
the end of this list.

The following code shows how the GetEnumerator iterator method is used, as well as the three
iterator properties:

 public static void TestIteratorProperties()
 {
 //Create SimpleListIterator object and fill it with data.
 SimpleListIterator b = new SimpleListIterator();
 b.AddItem("item1");
 b.AddItem("item2");
 b.AddItem("item3");
 b.AddItem("item4");
 b.AddItem("item5");
 b.AddItem("item6");
 b.AddItem("item7");

 // Display all data in SimpleListIterator object.
 Console.WriteLine("\r\nGetEnumerator iterator");
 foreach (string s in b)
 {
 Console.WriteLine(s);
 }

 Console.WriteLine("\r\nReverseOrder iterator");
 foreach (string s in b.ReverseOrder)
 {
 Console.WriteLine(s);
 }

 Console.WriteLine("\r\nFirstHalf iterator");
 foreach (string s in b.FirstHalf)
 {
 Console.WriteLine(s);
 }

 Console.WriteLine("\r\nSecondHalf iterator");
 foreach (string s in b.SecondHalf)
 {
 Console.WriteLine(s);
 }
 }

This code produces the following output:

 GetEnumerator iterator
 item1
 item2
 item3
 item4
 item5
 item6

 item7

 ReverseOrder iterator
 item7
 item6
 item5
 item4
 item3
 item2
 item1

 FirstHalf iterator
 item1
 item2
 item3

 SecondHalf iterator
 item4
 item5
 item6
 item7

Notice that when using the GetEnumerator iterator, the foreach loop is set up as a typical foreach
loop. However, when one of the iterator properties is used, the foreach loop is set up slightly
differently. In this case, the iterator property's get accessor is actually called.

 foreach (string s in b.ReverseOrder)

The iterator property returns an IEnumerable, which in turn is used by the foreach loop to obtain an
IEnumerator.

See Also

See the "Iterators," "IEnumerator Interface," and "IEnumerable Interface" topics in the MSDN
documentation.

Recipe 6.7. Implementing Iterators as Overloaded Operators

Problem

You need the ability to iterate over two or more collections and enumerate all elements in each set using a
foreach loop construct. In addition to this, you also want to be able to iterate over the unique elements in
each set and the duplicate elements in each set.

Solution

Create overloaded operators that act as iterators. The following code shows how to set up an iterator on
an overloaded + operator:

 public static IEnumerable<T> operator +(IEnumerable<T> lhs, IEnumerable<T> rhs)
 {
 foreach (T t in lhs)
 {
 yield return (t);
 }

 foreach (T t in rhs)
 {
 yield return (t);
 }
 }

We will use the previous code example in creating a Set class, shown in Example 6-5 , which makes use of
the familiar GetEnumerator iterator method, but also overloads the + , | , and & operators for use as
iterators.

Example 6-5. Implementing iterators as overloaded operators (+ , | , and &)

public class Set<T>
{
 private List<T> _items = new List<T>();

 public void AddItem(T name)
 {
 if (!_items.Contains(name))

 _items.Add(name);
 else
 throw (new ArgumentException("This value can only be added to a set once.",
 "name"));
 }

 public int Count
 {
 get {return (_items.Count);}
 }

 public T this[int index]
 {
 get {return (_items[index]);}
 set {_items[index] = value;}
 }

 public void AddRange(Set<T> original)
 {
 foreach(T t in original)
 {
 AddItem(t);
 }
 }

 public bool Contains(T t)
 {
 if (_items.Contains(t))
 return (true);
 else
 return (false);
 }

 // Iterators

 public IEnumerator<T> GetEnumerator()
 {
 for (int index = 0; index < _items.Count; index++)
 {
 yield return (_items[index]);
 }
 }

 public static IEnumerable<T> operator +(Set<T> lhs, Set<T> rhs)
 {
 for (int index = 0; index < lhs.Count; index++)
 {
 yield return (lhs[index]);
 }

 for (int index = 0; index < rhs.Count; index++)
 {

 yield return (rhs[index]);
 }
 }

 public static IEnumerable<T> operator +(IEnumerable<T> lhs, Set<T> rhs)
 {
 foreach (T t in lhs)
 {
 yield return (t);
 }

 for (int index = 0; index < rhs.Count; index++)
 {
 yield return (rhs[index]);
 }
 }

 public static IEnumerable<T> operator +(Set<T> lhs, IEnumerable<T> rhs)
 {
 foreach (T t in rhs)
 {
 yield return (t);
 }

 for (int index = 0; index < lhs.Count; index++)
 {
 yield return (lhs[index]);
 }
 }

 public static IEnumerable<T> operator |(Set<T> lhs, Set<T> rhs)
 {
 // Strip out duplicates from lhs Set object.
 Set<T> tempSet = new Set<T>();
 for (int index = 0; index < lhs.Count; index++)
 {
 if (!tempSet.Contains(lhs[index]))
 {
 tempSet.AddItem(lhs[index]);
 }
 }

 for (int index = 0; index < tempSet.Count; index++)
 {
 yield return (tempSet[index]);
 }

 for (int index = 0; index < rhs.Count; index++)
 {
 if (!tempSet.Contains(rhs[index]))
 {
 yield return (rhs[index]);

 }
 }
 }

 public static IEnumerable<T> operator |(IEnumerable<T> lhs, Set<T> rhs)
 {
 // Strip out duplicates from lhs Set object.
 Set<T> tempSet = new Set<T>();
 foreach (T t in lhs)
 {
 if (!tempSet.Contains(t))
 {
 tempSet.AddItem(t);
 }
 }

 for (int index = 0; index < tempSet.Count; index++)
 {
 yield return (tempSet[index]);
 }

 for (int index = 0; index < rhs.Count; index++)
 {
 if (!tempSet.Contains(rhs[index]))
 {
 yield return (rhs[index]);
 }
 }
 }

 public static IEnumerable<T> operator |(Set<T> lhs, IEnumerable<T> rhs)
 {
 // Strip out duplicates from lhs Set object.
 Set<T> tempSet = new Set<T>();
 foreach (T t in lhs)
 {
 if (!tempSet.Contains(t))
 {
 tempSet.AddItem(t);
 }
 }

 for (int index = 0; index < tempSet.Count; index++)
 {
 yield return (tempSet[index]);
 }

 foreach (T t in rhs)
 {
 if (!tempSet.Contains(t))
 {
 yield return (t);

 }
 }
 }

 public static IEnumerable<T> operator &(Set<T> lhs, Set<T> rhs)
 {
 // Strip out duplicates from lhs Set object.
 Set<T> tempSet = new Set<T>();
 for (int index = 0; index < lhs.Count; index++)
 {
 if (!tempSet.Contains(lhs[index]))
 {
 tempSet.AddItem(lhs[index]);
 }
 }

 for (int index = 0; index < tempSet.Count; index++)
 {
 if (rhs.Contains(tempSet[index]))
 {
 yield return (tempSet[index]);
 }
 }
 }

 public static IEnumerable<T> operator &(IEnumerable<T> lhs, Set<T> rhs)
 {
 // Strip out duplicates from lhs Set object.
 Set<T> tempSet = new Set<T>();
 foreach (T t in lhs)
 {
 if (!tempSet.Contains(t))
 {
 tempSet.AddItem(t);
 }
 }

 for (int index = 0; index < tempSet.Count; index++)
 {
 if (rhs.Contains(tempSet[index]))
 {
 yield return (tempSet[index]);
 }
 }
 }

 public static IEnumerable<T> operator &(Set<T> lhs, IEnumerable<T> rhs)
 {
 // Strip out duplicates from lhs Set object.
 Set<T> tempSet = new Set<T>();
 for (int index = 0; index < lhs.Count; index++)
 {

 if (!tempSet.Contains(lhs[index]))
 {
 tempSet.AddItem(lhs[index]);
 }
 }

 foreach (T t in rhs)
 {
 if (tempSet.Contains(t))
 {
 yield return (t);
 }
 }
 }
}

The following code makes use of the overloaded operator iterators in Example 6-5 :

 public static void TestOperatorIterator()
 {
 //Create a Set<string> object and fill it with data.
 Set<string> set1 = new Set<string>();
 set1.AddItem("item1");
 set1.AddItem("item11");
 set1.AddItem("item2");
 set1.AddItem("item2");
 set1.AddItem("item3");
 set1.AddItem("XYZ");

 //Create a second Set<string> object and fill it with data.
 Set<string> set2 = new Set<string>();
 set2.AddItem("item30");
 set2.AddItem("item11");
 set2.AddItem("item11");
 set2.AddItem("item2");
 set2.AddItem("item12");
 set2.AddItem("item1");

 // Display all data in both set objects.
 Console.WriteLine("\r\nDisplay all data in both sets");
 foreach (string s in (set1 + set2))
 {
 Console.WriteLine(s);
 }

 // Display all unique data in both set objects.
 Console.WriteLine("\r\nDisplay only unique data in both sets");
 foreach (string s in (set1 | set2))

 {
 Console.WriteLine(s);
 }

 // Display all duplicate data in both set objects.
 Console.WriteLine("\r\nDisplay only duplicate data in both sets");
 foreach (string s in (set1 & set2))
 {
 Console.WriteLine(s);
 }
 }

This code produces the following output:

 Display all data in both sets
 item1
 item11
 item2
 item2
 item3
 XYZ
 item30
 item11
 item11
 item2
 item12
 item1

 Display only unique data in both sets
 item1
 item11
 item2
 item3
 XYZ
 item30
 item12

 Display only duplicate data in both sets
 item1
 item11
 item2

Discussion

In addition to allowing methods and property get accessors to be iterator methods, operator overloads
can also be made into iterator methods. To become an iterator method, the operator overload method

simply has to return a System.Collections.IEnumerable or a System.Collections.Generic.IEnumerable<T>
type and implement the yield return statement.

The + operator is overloaded to yield every element of each Set object, both the lhs and rhs Set objects.
From the foreach loop's perspective, this effectively allows the loop to iterate over every Set object that is
added together as if it were one big Set object. The foreach loop is able to make use of this overloaded
operator since the return value of this method is an IEnumerable<T> type. Therefore, a simple foreach loop
can be set up as follows to return all elements of two Set objects:

 foreach (string s in (set1 + set2))

The | operator is overloaded to return only unique items from both Set objects in the expression. It does
this by first creating a temporary Set object (tempSet), which contains all values of the lhs Set object
after the duplicate values have been stripped out of it. Once this is completed, all of the tempSet object
elements are yielded. Finally, the rhs Set object is examined for any elements that are not already
contained within the tempSet object. All of the unique values from the rhs are also yielded.

The & operator is overloaded to return only the items from the lhs Set object that are duplicated in the
rhs Set object. It does this by first creatinga temporary Set object (tempSet), which contains all values of
the lhs Set object after the duplicate values have been stripped out of it. Once this is completed, the rhs
Set object is examined for any duplicate elements that are contained within the tempSet Set object. If a
duplicate is found, that element is yielded.

This code works fine if we are constructing foreach loops that contain only one of these operators in the
expression. For example, this works fine:

 foreach (string s in (set1 + set2))

However, the following code will cause problems:

 foreach (string s in (set1 + set2 + set3))

The reason for this is that the expression is evaluated as ((set1 + set2) + set3). Therefore the result of
the inner equation is an IEnumerable<T> , which is then added to set3 . In order for this equation to work,
we also need to overload the + operator to accept a Set<T> object and an IEnumerable<T> object as shown
here:

 public static IEnumerable<T> operator +(Set<T> lhs, IEnumerable<T> rhs) (…)
 public static IEnumerable<T> operator +(IEnumerable<T> lhs, Set<T> rhs) (…)

These two extra overloads will allow more complex equations to be evaluated properly for foreach
statements.

See Also

See the " Iterators," "IEnumerator Interface," and "IEnumerable Interface" topics in the MSDN
documentation.

Recipe 6.8. Forcing an Iterator to Stop Iterating

Problem

You have a requirement that if an iterator encounters malformed or out-of-bounds data that the
iterations are to stop immediately.

Solution

It is possible to throw an exception from an iterator, which terminates the iterator and the foreach
loop. However, there is a more performance-friendly technique. You can use the yield break
statement within your iterator:

 public class Foo
 {
 private List<T> _items = new List<T>();

 public IEnumerator GetEnumerator()
 {
 for (int index = 0; index < _items.Count; index++)
 {
 if (/*perform some test on the data here*/)
 {
 // There was a problem with the data, stop.

 yield break;
 }
 else
 {
 // The data was fine, continue.
 yield return (_items[index]);
 }
 }
 }
 }

Discussion

It is possible to stop iterations using a throw statement to throw an exception. However, you cannot

place a catch block within an iterator body to handle the thrown exception. The TRy/catch block must
be around the foreach loop as shown here:

 Foo test = new Foo();
 // Add elements to the test class…

 try
 {
 foreach (object o in test) {…}
 }
 catch (Exception e)
 {
 // Handle exception from iterator method here…
 Console.WriteLine("In outer finally block");
 }

When an exception occurs inside the foreach block, the following string will be displayed:

 In outer finally block

For more on how iterators deal with exceptions, see Recipe 6.9.

Another way of terminating an iterator, and thus terminating the foreach loop, is to use the yield
break statement. This statement has the same effect as simply exiting from the function. This yield
break statement can be used only within an iterator block. This means any method, property get
accessor, or operator overload member that is set up as an iterator (i.e., is public and returns an
IEnumerable or IEnumerable<T> type).

See Also

See Recipe 6.9; see the "Iterators," "yield," "IEnumerator Interface," and "IEnumerable Interface"
topics in the MSDN documentation.

Recipe 6.9. Dealing with Finally Blocks and Iterators

Problem

You have added a try/finally block to your iterator and you notice that the finally block is not
being executed when you think it should.

Solution

Wrap a try block around the iteration code in the GetEnumerator iterator with a finally block
following this try block:

 public class StringSet
 {
 private List<string> _items = new List<string>();

 public void AddString(string str)
 {
 _items.Add(str);
 }

 public IEnumerator GetEnumerator()
 {

 try
 {
 for (int index = 0; index < _items.Count; index++)
 {
 yield return (_items[index]);
 }
 }
 finally
 {
 Console.WriteLine("In iterator finally block");
 }
 }
 }

The foreach code that calls this iterator looks like this:

 // Create a new StringSet object.
 StringSet strSet = new StringSet();

 // Store string data in the strSet object…

 // Use the GetEnumerator iterator.
 foreach (string s in strSet)
 {
 Console.WriteLine(s);
 }

When this code is run, the following output is displayed:

 String data1
 String data2

 …
 String dataN
 In iterator finally block

Move the try/finally block around the yield return statement within the iterator. The new iterator
code will look like this:

 public IEnumerator GetEnumerator()
 {
 for (int index = 0; index < _items.Count; index++)
 {

 try
 {
 yield return (_items[index]);

 }
 finally
 {
 Console.WriteLine("In iterator finally block");
 }
 }
 }

When this code is run, the following output is displayed:

 String data1

 In foreach finally block
 String data2
 In foreach finally block
 …
 String dataN
 In foreach finally block
 In iterator finally block

Discussion

You may have thought that the output would display the "In iterator finally block" string after
displaying each item in the strSet object. However, this is not the way that finally blocks are
handled in iterators. If you had a normal function that was structured in exactly the same way (but
did something other than a yield return inside the loop), you wouldn't expect the finally block to
run once per iteration. You'd expect it to run once. Iterators go out of their way to preserve these
semantics. All finally blocks inside the iterator member body are called only after the iterations are
complete, code execution leaves the foreach loop (such as when a break, return, or tHRow
statement is encountered), or when a yield break statement is executed, effectively terminating the
iterator.

To see how iterators deal with catch and finally blocks (note that there can be no catch blocks
inside of an iterator member body), consider the following code:

 public static void TestFinallyAndIterators()
 {
 // Create a StringSet object and fill it with data.
 StringSet strSet = new StringSet();
 strSet.AddString("item1");
 strSet.AddString("item2");

 // Display all data in StringSet object.
 try
 {
 foreach (string s in strSet)
 {
 try
 {
 Console.WriteLine(s);
 }
 catch (Exception)
 {
 Console.WriteLine("In foreach catch block");
 }
 finally
 {
 Console.WriteLine("In foreach finally block");
 }
 }

 }
 catch (Exception)
 {
 Console.WriteLine("In outer catch block");
 }
 finally
 {
 Console.WriteLine("In outer finally block");
 }
 }

Assuming that your original StringSet.GetEnumerator method is used (i.e., the one that contained
the try/finally block), you will see the following behaviors.

If no exception occurs, you see this:

 item1
 In foreach finally block
 item2
 In foreach finally block
 In iterator finally block
 In outer finally block

We see that the finally block that is within the foreach loop is executed on each iteration. However,
the finally block within the iterator is executed only after all iterations are finished. Also notice that
the iterator's finally block is executed before the finally block that wraps the foreach loop.

If an exception occurs in the iterator itself, during processing of the second element, the following is
displayed:

 item1
 In foreach finally block

 (Exception occurs here…)
 In iterator finally block
 In outer catch block
 In outer finally block

Notice that immediately after the exception is thrown, the finally block within the iterator is
executed. This can be useful if you need to clean up only after an exception occurs. If no exception
happens, then the finally block is not executed. After the iterator's finally block executes, the
exception is caught by the catch block outside the foreach loop. At this point, the exception could be
handled or rethrown. Once this catch block is finished processing, the outer finally block is

executed. Notice that the catch block within the foreach loop was never given the opportunity to
handle the exception. This is due to the fact that the corresponding try block does not contain a call
to the iterator.

If an exception occurs in the foreach loop, during processing of the second element, the following is
displayed:

 item1
 In foreach finally block

 (Exception occurs here…)
 In foreach catch block
 In foreach finally block
 In iterator finally block
 In outer finally block

Notice in this situation that the catch and finally blocks within the foreach loop are executed first,
then the iterator's finally block. Lastly, the outer finally block is executed.

Understanding the way catch and finally blocks operate inside iterators will allow you to add catch
and finally blocks in the correct location. If you need a finally block to execute once, immediately
after the iterations are finished, add this finally block to the iterator method. If, however, you want
the finally block to execute on each iteration, you need to place the finally block within the
foreach loop body.

If you need to catch iterator exceptions immediately after they occur, you should consider wrapping
the foreach loop in a TRy/catch block. Any TRy/catch block within the foreach loop body will miss
exceptions thrown from the iterator.

See Also

See the "Iterators," "yield," "IEnumerator Interface," and "IEnumerable Interface" topics in the MSDN
documentation.

Recipe 6.10. Organizing Your Interface Implementations

Problem

You have a class that implements an interface with many methods. These methods support only the
interface functionality and don't necessarily relate well to the other code in your class. You would like
to keep the interface implementation code separate from the main class code.

Solution

Use partial classes to separate the interface implementation code into a separate file. For example,
you have a class called TriValue that takes three decimal values and performs some operations on
them, like getting the average, the sum, and the product. This code is currently in a file called
TriValue.cs, which contains:

 public partial class TriValue
 {
 decimal first;
 decimal second;
 decimal third;

 public TriValue(decimal val1, decimal val2,decimal val3)
 {
 this.first = val1;
 this.second = val2;
 this.third = val3;
 }

 public TypeCode GetTypeCode()
 {
 return TypeCode.Object;
 }

 public decimal GetAverage()
 {
 return (GetSum() / 3);
 }
 public decimal GetSum()
 {
 return first + second + third;
 }

 public decimal GetProduct()
 {
 return first * second * third;
 }
 }

Now you want to add support for the IConvertible interface to the triValue class so that it can be
converted to other data types. We could just add all 16 method implementations to the class definition
in TriValue.cs and hide the code using a #region statement. Instead, you can now use the partial
keyword on the triValue class and store the IConvertible implementation code in a separate file.
Once a class begins to be defined in multiple files, it is important to have a naming convention for
those files, so that it is easy to find implementation code and for other developers to understand
where to put new code when it is added to this class. We will use the [BaseClass].[Interface].cs
naming convention here. This will give you a new file called TriValue.IConvertible.cs that contains the
IConvertible interface implementation code, shown in Example 6-6.

Example 6-6. Using partial classes to organize your interface
implementations

/// Partial class that implements IConvertible
public partial class TriValue : IConvertible
{
 bool IConvertible.ToBoolean(IFormatProvider provider)
 {
 if (GetAverage() > 0)
 return true;
 else
 return false;
 }

 byte IConvertible.ToByte(IFormatProvider provider)
 {
 return Convert.ToByte(GetAverage());
 }

 char IConvertible.ToChar(IFormatProvider provider)
 {
 decimal val = GetAverage();
 if (val > char.MaxValue)
 val = char.MaxValue;
 if (val < char.MinValue)
 val = char.MinValue;
 return Convert.ToChar((ulong)val);
 }

 DateTime IConvertible.ToDateTime(IFormatProvider provider)
 {

 return Convert.ToDateTime(GetAverage());
 }

 decimal IConvertible.ToDecimal(IFormatProvider provider)
 {
 return GetAverage();
 }

 double IConvertible.ToDouble(IFormatProvider provider)
 {
 return Convert.ToDouble(GetAverage());
 }

 short IConvertible.ToInt16(IFormatProvider provider)
 {
 return Convert.ToInt16(GetAverage());
 }

 int IConvertible.ToInt32(IFormatProvider provider)
 {
 return Convert.ToInt32(GetAverage());
 }

 long IConvertible.ToInt64(IFormatProvider provider)
 {
 return Convert.ToInt64(GetAverage());
 }

 sbyte IConvertible.ToSByte(IFormatProvider provider)
 {
 return Convert.ToSByte(GetAverage());
 }

 float IConvertible.ToSingle(IFormatProvider provider)
 {
 return Convert.ToSingle(GetAverage());
 }

 string IConvertible.ToString(IFormatProvider provider)
 {
 return string.Format("({0},{1},{2})",
 first.ToString(),second.ToString(),third.ToString());
 }

 object IConvertible.ToType(Type conversionType, IFormatProvider provider)
 {
 return Convert.ChangeType(GetAverage(), conversionType);
 }

 ushort IConvertible.ToUInt16(IFormatProvider provider)
 {
 return Convert.ToUInt16(GetAverage());

 }

 uint IConvertible.ToUInt32(IFormatProvider provider)
 {
 return Convert.ToUInt32(GetAverage());
 }

 ulong IConvertible.ToUInt64(IFormatProvider provider)
 {
 return Convert.ToUInt64(GetAverage());
 }
}

Now you have the interface implemented and your original class definition is still straightforward. For
classes that implement many interfaces, this approach will allow for a more tightly organized
implementation.

Discussion

It should be noted that there is no Microsoft intermediate language (MSIL) indicator that these are
partial classes if you look at your class in Ildasm or Reflector. It will look just like a normal class by
the time it gets to MSIL. Intellisense handles the merge as well. Since partial types are a language
trick, they cannot span assemblies, as the class needs to be resolved by the compiler. Partial types
can be declared in the same file as well as in separate files, but still must be in the same namespace
so the compiler can resolve it before generating the MSIL.

You can use the partial type support for classes, nested classes, structures, and interfaces, but you
cannot have a partial enum definition. Partial types can declare support for different interfaces per
partial type. However, single inheritance is still in force and must be the same or omitted from the
secondary partial type. You can see that in the Solution the partial triValue class definition in
TriValue.cs you created does not specify the inheritance from IConvertible, only the one in
TriValue.IConvertible.cs does.

The previous TriValue class can be exercised with the following code:

 class Program
 {
 static void Main(string[] args)
 {
 TriValue tv = new TriValue(3, 4, 5);
 Console.WriteLine("Average: {0}",tv.GetAverage());
 Console.WriteLine("Sum: {0}", tv.GetSum());
 Console.WriteLine("Product: {0}", tv.GetProduct());
 Console.WriteLine("Boolean: {0}", Convert.ToBoolean(tv));
 Console.WriteLine("Byte: {0}", Convert.ToByte(tv));
 Console.WriteLine("Char: {0}", Convert.ToChar(tv));
 Console.WriteLine("Decimal: {0}", Convert.ToDecimal(tv));

 Console.WriteLine("Double: {0}", Convert.ToDouble(tv));
 Console.WriteLine("Int16: {0}", Convert.ToInt16(tv));
 Console.WriteLine("Int32: {0}", Convert.ToInt32(tv));
 Console.WriteLine("Int64: {0}", Convert.ToInt64(tv));
 Console.WriteLine("SByte: {0}", Convert.ToSByte(tv));
 Console.WriteLine("Single: {0}", Convert.ToSingle(tv));
 Console.WriteLine("String: {0}", Convert.ToString(tv));
 Console.WriteLine("Type: {0}", Convert. GetTypeCode(tv));
 Console.WriteLine("UInt16: {0}", Convert.ToUInt16(tv));
 Console.WriteLine("UInt32: {0}", Convert.ToUInt32(tv));
 Console.WriteLine("UInt64: {0}", Convert.ToUInt64(tv));
 }
 }

The preceding code produces the following output:

 Average: 4
 Sum: 12
 Product: 60
 Boolean: True
 Byte: 4
 Char: _
 Decimal: 4
 Double: 4
 Int16: 4
 Int32: 4
 Int64: 4
 SByte: 4
 Single: 4
 String: (3,4,5)
 Type: Object
 UInt16: 4
 UInt32: 4
 UInt64: 4

See Also

See the "Partial Class Definitions" and "partial Keyword" topics in the MSDN documentation.

Recipe 6.11. Generating Code That Is No Longer in Your
Main Code Paths

Problem

Occasionally as a developer you run into a situation in which it would be handy to be able to
regenerate your class based on a set of data that can change. You need to be able to do this without
destroying all of the logic you have already created or causing yourself a painful merge between an
old and a new class file.

Solution

Write a utility that can regenerate the code that is dependent on external data and keep the
generated code in a separate file that defines a partial class. To demonstrate this, we have created a
Visual Studio 2005 add-in called PartialClassAddin in the sample code that will allow you to enter a
class name and then select which attributes to apply to the class. This is a standard add-in generated
by selecting the add-in template from the project wizard. Its main dialog box is shown in Figure 6-1.

Figure 6-1. Attributed Class Wizard from partial class add-in

Enter a class name MyNewClass, select the System.CLSCompliantAttribute and the
System.SerializeableAttribute from the list, and click the OK button. This generates the
MyNewClass_Attributes.cs file with the following in it:

 // Using directives
 using System;

 namespace NamespaceForMyNewClass
 {
 #region Attributes
 [System.CLSCompliant(true)]
 [System.Serializable()]
 #endregion // Attributes

 public partial class MyNewClass
 {
 public MyNewClass()
 {
 }

 }
 }

By making MyNewClass a partial class, you can add this generated file to your project and replace it
when the class attributes need to be updated, while you store your main logic in another file (perhaps
MyNewClass.cs) with a partial MyNewClass definition:

 // Using directives
 using System;
 using System.Diagnostics;

 namespace NamespaceForMyNewClass
 {
 public partial class MyNewClass : BaseClass
 {
 public DoSomeWork ()
 {
 for(int i=0;i<10;i++)
 {
 Debug.WriteLine(i);
 }
 }
 }

 // Declare base class…
 public BaseClass
 {
 public BaseClass()
 {
 }
 }
 }

Notice that in the file you hold the logic in (MyNewClass.cs as shown before), the class can declare its
inheritance from BaseClass as well as define some functionality (DoSomeWork method).

Discussion

Generating code is not something to do lightly. But in certain circumstances building a tool can save
you a lot of time over the course of maintaining a project. Partial classes provide a nice way to
separate your mainstream code from the "noise" that changes only in response to external pieces.
Windows Forms and Windows Forms controls are both now declared as partial, as are the DataSets
generated from an XSD schema to help facilitate the generated code model.

This add-in was created using the Visual Studio 2005 add-in wizard, and the project has the form

added to it. The form loads all types derived from System.Attribute to populate the listbox, then uses
reflection to figure out the parameters. Once the code has been built, run the project from the
debugger. When VS2005 comes up, you can access the Tools menu and the PartialClassAddin menu
item to get to this wizard. You can unregister this add-in by going to the Tools menu in VS2005 and
selecting the Add-In Manager option. The Add-In Manager dialog is shown in Figure 6-2.

Figure 6-2. Visual Studio 2005 Add-In Manager

Uncheck the PartialClassAddin to remove this from your main environment.

See Also

See the "Partial Class Definitions," "Creating Automation Objects," and "Attribute" topics in the MSDN
documentation.

Chapter 7. Exception Handling

Introduction

This chapter contains recipes covering the exception-handling mechanism, including the try, catch,
and finally blocks. Along with these recipes are others covering the mechanisms used to throw
exceptions manually from within your code. The final types of recipes include those dealing with the
Exception classes and their uses, as well as subclassing them to create new types of exceptions.

Often the design and implementation of exception handling is performed later in the development
cycle. But with the power and complexities of C# exception handling, you need to plan and even
implement your exception-handling scheme much earlier. Doing so will increase the reliability and
robustness of your code while minimizing the impact of adding exception handling after most or all of
the application is coded.

Exception handling in C# is very flexible. It allows you to choose a fine-or coarse-grained approach to
error handling and any level between. This means that you can add exception handling around any
individual line of code (the fine-grained approach) or around a method that calls many other methods
(the coarse-grained approach), or you can use a mix of the two, with mainly a coarse-grained
approach and a more fine-grained approach in specific critical areas of the code. When using a fine-
grained approach, you can intercept specific exceptions that might be thrown from just a few lines of
code. The following method sets an object's property to a numeric value using fine-grained exception
handling:

 protected void SetValue(object value)
 {
 try
 {
 myObj.Property1 = value;
 }
 catch (Exception e)
 {
 // Handle potential exceptions arising from this call here.
 }
 }

Consequently, this approach can add a lot of extra baggage to your code if used throughout your
application. This fine-grained approach to exception handling should be used when you have a single
line or just a few lines of code and you need to handle that exception in a specific manner. If you do
not have specific handling for errors at that level, you should let the exception bubble up the stack.
For example, using the previous SetValue method, you may have to inform the user that an
exception occurred and provide a chance to try the action again. If a method exists on myObj that
needs to be called whenever an exception is thrown by one of its methods, you should make sure
that this method is called at the appropriate time.

Coarse-grained exception handling is quite the opposite; it uses fewer try/catch or

try/catch/finally blocks. One example would be to place a try/catch block around all of the code in
every public method in an application or component. Doing this allows exceptions to be handled at
the highest level in your code. If an exception is thrown at any location in your code, it will be
bubbled up the call stack until a catch block is found that can handle it. If try/catch blocks are
placed on all public methods, then all exceptions will be bubbled up to these methods and handled.
This allows for much less exception-handling code to be written, but your ability to handle specific
exceptions that may occur in particular areas of your code is diminished. You must determine how
best to add exception-handling code to your application. This means applying the right balance of
fine- and coarse-grained exception handling in your application.

C# allows catch blocks to be written without any parameters. An example of this is shown here:

 public void CallCOMMethod()
 {
 try
 {
 // Call a method on a COM object.
 myCOMObj.Method1();
 }
 catch
 {
 // Handle potential exceptions arising from this call here.
 }
 }

The catch with no parameters is a holdover from C++, where exception objects did not have to be
derived from the Exception class. Writing a catch clause in this manner in C++ allows any type of
object thrown as an exception to be caught. However, in C#, only objects derived from the Exception
base class may be thrown as an exception. Using the catch block with no parameters allows all
exceptions to be caught, but you lose the ability to view the exception and its information. A catch
block written in this manner:

 catch
 {
 // NOT Able to write the following line of code
 //Console.WriteLine(e.ToString);
 }

is equivalent to this:

 catch (Exception e)
 {
 // Able to write the following line of code
 Console.WriteLine(e.ToString);
 }

except that the Exception object can now be accessed.

If you are catching an exception that was thrown from C++, it may not have
originally derived from System.Exception, as C++ can throw integers, strings,
and custom exception classes as exceptions. Similarly, the Win32 API function
RaiseError allows for raising an exception as well, but ultimately all of these
types are mapped by the CLR back to an instance of a class derived from
System.Exception.

Avoid writing a catch block without any parameters. Doing so will prevent you from accessing the
actual Exception object that was thrown.

When catching exceptions in a catch block, you should determine up front when exceptions need to
be rethrown, when exceptions need to be wrapped in an outer exception and thrown, and when
exceptions should be handled immediately and not rethrown.

Wrapping an exception in an outer exception is a good practice when the original exception would not
make sense to the caller. When wrapping an exception in an outer exception, you need to determine
what exception is most appropriate to wrap the caught exception. As a rule of thumb, the wrapping
exception should always aid in tracking down the original problem by not obscuring the original
exception with an unrelated or vague wrapping exception.

Another useful practice when catching exceptions is to provide catch blocks to handle specific
exceptions in your code. When using specific catch blocks, consider adding a generic catch block that
handles all other exceptions (Exception). This will ensure that all other exceptions are handled at
some point in your code. Also, remember that base class exceptionswhen used in a catch blockcatch
not only that type but also all of its subclasses.

The following code uses specific catch blocks to handle different exceptions in the appropriate
manner:

 public void CallCOMMethod()
 {
 try
 {
 // Call a method on a COM object.
 myCOMObj.Method1();
 }
 catch (System.Runtime.InteropServices.ExternalException exte)
 {
 // Handle potential COM exceptions arising from this call here.
 }
 catch (InvalidOperationException ae)
 {
 // Handle any potential method calls to the COM object which are
 // not valid in its current state.
 }

 }

In this code, ExternalException and its derivatives are handled differently than
InvalidOperationException and its derivatives. If any other types of exceptions are thrown from the
myCOMObj.Method1, they are not handled here, but are bubbled up until a valid catch block is found. If
no valid catch block is found, the exception is considered unhandled and the application terminates.

At times, cleanup code must be executed regardless of whether an exception is thrown. Any object
must be placed in a stable known state when an exception is thrown. In these situations when code
must be executed, use a finally block. The following code has been modified (see boldface lines) to
use a finally block:

 public void CallCOMMethod()
 {
 try
 {
 // Call a method on a COM object.
 myCOMObj.Method1();
 }
 catch (System.Runtime.InteropServices.ExternalException exte)
 {
 // Handle potential COM exceptions arising from this call here.
 }
 finally
 {
 // Clean up and free any resources here.
 // For example, there could be a method on myCOMObj to allow us to clean
 // up after using the Method1 method.
 }
 }

The finally block will always execute, no matter what happens in the try and catch blocks. The
finally block executes even if a return, break, or continue statement is executed in the TRy or
catch blocks or if a goto is used to jump out of the exception handler. This allows for a reliable
method of cleaning up after the TRy (and possibly catch) block code executes. The finally block is
also very useful for final resource cleanup when no catch blocks are specified. This pattern would be
used if the code being written can't handle exceptions from calls it is making but wants to make sure
that resources it uses are cleaned up properly before moving up the stack. The following example
makes sure that the SqlConnection and SqlCommand are cleaned up properly in the finally block:

 public void RunCommand(string connection, string command)
 {
 SqlConnection sqlConn = null;
 SqlCommand sqlComm = null;

 try

 {
 sqlConn = new SqlConnection(connection);
 sqlComm = new SqlCommand(command, sqlConn);
 sqlConn.Open();
 sqlComm.ExecuteNonQuery();
 }
 finally
 {
 if (null != sqlComm);
 sqlComm.Dispose();
 if (null != sqlConn)
 sqlConn.Dispose();
 }
 }

When determining how to structure exception handling in your application or component, consider
doing the following:

Use a single try-catch or try-catch-finally exception handler at locations higher up in your
code. These exception handlers can be considered coarse-grained.

Code farther down the call stack should contain try-finally exception handlers. These
exception handlers can be considered fine-grained.

The fine-grained try-finally exception handlers allow for better control over cleaning up after an
exception occurs. The exception is then bubbled up to the coarser-grained try-catch or try-catch-
finally exception handler. This technique allows for a more centralized scheme of exception handling
and minimizes the code that you have to write to handle exceptions.

To improve performance, you should handle the case when an exception could be thrown, rather
than catch the exception after it is thrown, if you know the code will be run in a single-threaded
environment. If the code will run on multiple threads, there is still the potential that the initial check
could succeed but the object value change (perhaps to null) in another thread before the actions
following the check can be taken.

For example, in a single-threaded environment, if a method has a good chance of returning a null
value, you should test the returned value for null before that value is used, as opposed to using a
TRy-catch block and allowing the NullReferenceException to be thrown. Remember that throwing an
exception has a negative impact on performance, whereas exception-handling code has a minimal
impact on performance, as long as an exception is not thrown.

To illustrate this, here is a method that uses exception-handling code to process the
NullReferenceException:

 public void SomeMethod()
 {
 try
 {
 Stream s = GetAnyAvailableStream();

 Console.WriteLine("This stream has a length of " + s.Length);
 }
 catch (Exception e)
 {
 // Handle a null stream here.
 }
 }

Here is the method implemented to use an if-else conditional instead:

 public void SomeMethod()
 {
 Stream s = GetAnyAvailableStream();

 if (s != null)
 {
 Console.WriteLine("This stream has a length of " + s.Length);
 }
 else
 {
 // Handle a null stream here.
 }
 }

Additionally, you should also make sure that this stream is closed by using the finally block in the
following manner:

 public void SomeMethod()
 {
 Stream s = null;
 try
 {
 s = GetAnyAvailableStream();

 if (s != null)
 {
 Console.WriteLine("This stream has a length of " + s.Length);
 }
 else
 {
 // Handle a null stream here.
 }
 }
 finally
 {
 if (s != null)

 {
 s.Close();
 }
 }
 }

The finally block contains the method call that will close the stream, ensuring that there is no data
loss.

Consider throwing exceptions instead of returning error codes. With well-placed exception-handling
code, you should not have to rely on methods that return error codes such as a Boolean TRue-false
to correctly handle errors, which makes for much cleaner code. Another benefit is that you do not
have to look up any values for the error codes to understand the code. However, the biggest
advantage is that when an exceptional situation arises, you cannot just ignore it as you can with
error codes.

This technique is especially useful when writing a managed C# component that is called by one or
more COM objects. Throwing an exception is much cleaner and easier to read than returning an
hrESULT. The managed wrapper that the runtime creates for your managed object will convert the
hrESULT to the nearest equivalent managed exception type.

Throw specific exceptions, not general ones. For example, throw an ArgumentNullException instead of
an ArgumentException, which is the base class of ArgumentNullException. THRowing an
ArgumentException just tells you that there was a problem with a parameter value to a method.
Throwing an ArgumentNullException tells you more specifically what the problem with the parameter
really is. Another potential problem is that a more general exception may not be caught if the catcher
of the exception is looking for a more specific type derived from the thrown exception.

The FCL provides several exception types that you will find very useful to throw in your own code.
Many of these exceptions are listed here with a definition of where and when they should be thrown:

Throw an InvalidOperationException in a property, indexer, or method when it is called with
the object in an inappropriate state. This state could be caused by calling an indexer on an
object that has not yet been initialized or calling methods out of sequence.

Throw ArgumentException if invalid parameters are passed into a method, property, or indexer.
The ArgumentNullException, ArgumentOutOfRangeException, and InvalidEnumArgumentException
are three subclasses of the ArgumentException class. It is more appropriate to throw one of
these subclassed exceptions since they are more indicative of the root cause of the problem.
The ArgumentNullException indicates that a parameter was passed in as null and that this
parameter cannot be null under any circumstance. The ArgumentOutOfRangeException indicates
that an argument was passed in that was outside of a valid acceptable range. This exception is
used mainly with numeric values. The InvalidEnumArgumentException indicates that an
enumeration value was passed in that does not exist in that enumeration type.

Throw a FormatException when an invalid formatting parameter is passed in as a parameter to
a method. This technique is mainly used when overriding/over-loading methods such as
ToString that can accept formatting strings, as well as in the parse methods on the various
numeric types.

Throw ObjectDisposedException when a property, indexer, or method is called on an object that
has already been disposed.

Many exceptions that derive from the SystemException class, such as NullReferenceException,
ExecutionEngineException, StackOverflowException, OutOfMemoryException, and
IndexOutOfRangeException are thrown only by the CLR and should not be explicitly thrown with
the tHRow keyword in your code.

Recipe 7.1. Verifying Critical Parameters

Problem

You have a method, property, or indexer that requires the correct value or set of values to be passed
in to it (e.g., cannot be null , must be within a numeric range or a set of numeric ranges, the
enumeration value must be a valid value in the enumeration). If an incorrect value is passed in to the
method, it must inform the application and handle the invalid value gracefully.

Solution

The parameters passed in to a public method should always be tested for correctness before they are
used; however, it may be more appropriate to use Debug.Assert or even to use no tests when
checking parameters to nonpublic methods. If one or more fail the test, an ArgumentException , or
one of its derivatives, should be thrown to ensure that the application is notified that critical data has
possibly been corrupted. (Note that an IndexOutOfRangeException could instead be thrown from
within an indexer.)

When a numeric parameter that is out of a specified range is passed, the
ArgumentOutOfRangeException should be thrown. The following code checks whether the
numberOfItems parameter is greater than an upper bound of 100 :

 public static void TestParams(int numberOfItems, object myObject, Language language)
 {
 Debug.Assert(numberOfItems <= 100);
 if (numberOfItems > 100)
 {
 throw (new ArgumentOutOfRangeException("numberOfItems", numberOfItems,
 "The number of items has exceeded the defined limits."));
 }

 //…trailing code
 }

Many parameters passed to methods may produce strange results when they are null . To prevent
this from happening, test the parameters. If any of them is null , throw the ArgumentNullException .

The following code checks the myObject object variable to see whether it is null :

 public static void TestParams(int numberOfItems, object myObject, Language language)
 {
 //… previous code

 Debug.Assert(myObject != null);
 if (myObject == null
 {
 throw (new ArgumentNullException("myObject",
 "The object passed may not be null."));
 }

 //…trailing code
 }

If a method accepts an enumeration value, a caller may pass a numeric value in lieu of an
enumeration value of the parameter's type. This is dangerous since the caller can easily pass in a
number that does not exist in the enumeration. To prevent this problem, test for the specific
enumeration values that are allowed for the enumeration-type parameter using a switch statement to
list the values. There is a static IsDefined method on the Enum class, which you should avoid.
IsDefined uses reflection internally, thereby incurring a performance penalty, and does not handle
versioning of the enumeration well. Consider if the value MgdCpp (for managed C++) is added to the
Languages enum in the next version of your software. If you use IsDefined to check the argument
here, it will allow MgdCpp as a valid value as it is defined in the enumeration, even though the code for
which you are validating the parameter is not designed to handle it. By being specific with the switch
statement, the MgdCpp value will be rejected, and the code will not try to run in an invalid context. If
the parameter contains a bad value (falls through to the default case in the switch), throw the
InvalidEnumArgumentException . The following code shows how to test for a bad enumeration value:

 public static void TestParams(int numberOfItems, object myObject, Language language)
 {
 //… previous code

 switch (language)
 {
 // All valid types for the enum listed here.
 // This means only the ones we specify are valid
 // not any enum value for this enum.
 // NOTE: All and VB6 enum types are not valid for this method….
 case Language.CSharp:
 case Language.Other:
 case Language.VBNET:
 break;
 default:
 Debug.Assert(false, language +
 " is not a valid enumeration value to pass.");
 throw (new
 System.ComponentModel.InvalidEnumArgumentException("language",
 (int)language, typeof(Language)));
 break;
 }

 //…trailing code

 }

Discussion

Testing parameters in this way does not have to be done on every method. Instead, you should test
the parameters that are passed in to all public methods of public classes and throw an exception only
if they are in error. For nonpublic methods, you can add Debug.Assert statements to test these
parameters.

Being in control of the code within your assembly makes it much easier for you to know which valid
parameters, their ranges, and so on, you need to pass. Someone who is unfamiliar with your
assembly has a much higher chance of passing in bad arguments to the parameters in the assembly's
public interface. Therefore, you should guard against other developers passing bad parameters to
methods in your assembly by having both a Debug.Assert statement checking the condition and code
to handle the problem if the condition is not met at runtime. The Assert will help developers figure
out what is going wrong faster, and the handling code will protect you when running.

The more general exceptions, such as ArgumentException , were designed this way, so that the more
specific exceptions, such as ArgumentNullException , can be wrapped with the more general
exceptions, such as ArgumentException . This specificity gives a much clearer picture of how and
where the exception occurred.

See Also

See the "ArgumentException Class" topic in the MSDN documentation.

Recipe 7.2. Knowing When to Catch and Rethrow
Exceptions

Problem

You want to establish when it is appropriate to catch and rethrow an exception.

Solution

It is appropriate if you have a section of code where you want to perform some action if an exception
occurs, but not perform any actions to actually handle the exception. In order to get the exception so
that you can perform the initial action on it, establish a catch block to catch the exception. Then once
the action has been performed, rethrow the exception from the catch block in which the original
exception was handled. Use the throw keyword, followed by a semicolon, to rethrow an exception:

 try
 {
 Console.WriteLine("In inner try");
 int z2 = 9999999;
 checked{z2 *= 999999999;}
 }
 catch(DivideByZeroException dbze)
 {
 // Record the fact that the divide-by-zero exception occurred.
 EventLog.WriteEntry("MyApplication", dbze.Message, EventLogEntryType.Error);
 throw;
 }

Here, you create an EventLog entry that records the occurrence of a divide-by-zero exception. Then
the exception is propagated up the call stack by the throw statement.

Discussion

Establishing a catch block for an exception is essentially saying that you want to do something about
that exceptional case. If you do not rethrow the exception, or create a new exception to wrap the
original exception and throw it, the expectation is that you have handled the condition that caused
the exception and that the program can continue normal operation. By choosing to rethrow the
exception, you are indicating that there is still an issue to be dealt with and that you are counting on

code farther up the stack to handle the condition. If you need to perform an action based on a
thrown exception and need to allow the exception to continue after your code executes, then
rethrowing is the mechanism to handle this. If both of those conditions are not met, don't rethrow
the exception; just handle it or remove the catch block.

Remember that throwing exceptions is expensive. Try not to needlessly throw
and rethrow exceptions since this might bog down your application.

Recipe 7.3. Identifying Exceptions and Their Usage

Problem

There are many exceptions to choose from in the FCL. You need an easily accessible list of these
exceptions that indicates when and where to use them. By throwing exceptions in a consistent
manner (e.g., throwing an ArgumentNullException when an an argument is null), you and others on
your team will be able to debug problems more easily.

Solution

Use the list of exceptions and their definitions in Table 7-1 to determine which exception to employ
when throwing or catching exceptions.

Discussion

Table 7-1. The built-in exception types

Exception name Derives from Description

System.ApplicationException Exception

Thrown when a
nonfatal
application error
occurs.

System.ArgumentNullException ArgumentException

Thrown when a
parameter value
for a method is
null and null is
not allowed.

System.ArgumentOutOfRangeException ArgumentException

Thrown when a
parameter value
for a method is
out of the range
of expected
values.

Exception name Derives from Description

System.ArrayTypeMismatchException SystemException

Thrown when an
incompatible data
type is assigned
to an element in
an array.

System.Runtime.InteropServices.COMException ExternalException

Thrown when an
unknown HRESULT
is returned from a
COM object.

System.Configuration.ConfigurationException SystemException

Thrown when an
invalid
configuration
setting is
encountered.

System.Reflection.CustomAttributeFormatException FormatException

Thrown when a
custom attribute
format is
incorrect.

System.IO.DirectoryNotFoundException IOException

Thrown when a
file or directory
cannot be found.

System.Exception Object

Base class of all
exceptions; you
should always
throw a more
derived exception.

System.FormatException SystemException

Thrown when a
string is not in the
expected format.

System.IndexOutOfRangeException SystemException

Thrown when you
attempt to access
an array element
with an index
value outside the
valid range for
that array.

System.Configuration.Install.InstallException SystemException

Thrown during
software
installation when
an error is
encountered
during uninstall,
committing of
data, or rolling
back of data.

System.ArrayTypeMismatchException SystemException

Thrown when an
incompatible data
type is assigned
to an element in
an array.

System.Runtime.InteropServices.COMException ExternalException

Thrown when an
unknown HRESULT
is returned from a
COM object.

System.Configuration.ConfigurationException SystemException

Thrown when an
invalid
configuration
setting is
encountered.

System.Reflection.CustomAttributeFormatException FormatException

Thrown when a
custom attribute
format is
incorrect.

System.IO.DirectoryNotFoundException IOException

Thrown when a
file or directory
cannot be found.

System.Exception Object

Base class of all
exceptions; you
should always
throw a more
derived exception.

System.FormatException SystemException

Thrown when a
string is not in the
expected format.

System.IndexOutOfRangeException SystemException

Thrown when you
attempt to access
an array element
with an index
value outside the
valid range for
that array.

System.Configuration.Install.InstallException SystemException

Thrown during
software
installation when
an error is
encountered
during uninstall,
committing of
data, or rolling
back of data.

Exception name Derives from Description

System.ComponentModel.InvalidEnumArgumentException ArgumentException

Thrown when an
invalid
enumeration
value is passed to
a method.

System.InvalidOperationException SystemException

Thrown when a
method is called
while the object it
resides in is in a
state that makes
it illegal to call
this method.

System.IO.IOException SystemException

Thrown when a
general I/O
exception occurs;
you should throw
a more derived
exception.

System.MemberAccessException SystemException

Thrown when a
general error
occurs while using
a class member;
you should throw
a more derived
exception.

System.MethodAccessException MemberAccessException

Thrown when a
general error
occurs while using
a method
member.

System.NotFiniteNumberException ArithmeticException

Thrown when a
double or single
data type is
expected to have
a finite number
and instead it
contains NaN,
+infinity, or -
infinity.

System.NotImplementedException SystemException

Thrown when a
member is
accessed that is
not yet
implemented.

System.ComponentModel.InvalidEnumArgumentException ArgumentException

Thrown when an
invalid
enumeration
value is passed to
a method.

System.InvalidOperationException SystemException

Thrown when a
method is called
while the object it
resides in is in a
state that makes
it illegal to call
this method.

System.IO.IOException SystemException

Thrown when a
general I/O
exception occurs;
you should throw
a more derived
exception.

System.MemberAccessException SystemException

Thrown when a
general error
occurs while using
a class member;
you should throw
a more derived
exception.

System.MethodAccessException MemberAccessException

Thrown when a
general error
occurs while using
a method
member.

System.NotFiniteNumberException ArithmeticException

Thrown when a
double or single
data type is
expected to have
a finite number
and instead it
contains NaN,
+infinity, or -
infinity.

System.NotImplementedException SystemException

Thrown when a
member is
accessed that is
not yet
implemented.

Exception name Derives from Description

System.NotSupportedException SystemException

Thrown when a
member is
accessed that is
not supported.

System.NullReferenceException SystemException

Thrown when a
reference set to
null is used.

System.ObjectDisposedException
InvalidOperation-

Exception

Thrown when a
disposed object is
accessed.

System.ServiceProcess.TimeoutException SystemException
Thrown when a
service times out.

System.ComponentModel.WarningException SystemException

Thrown when a
warning message
needs to be
displayed. This
exception does
not imply a
serious failure of
the application or
system.

System.Net.WebException
InvalidOperation-

Exception

Thrown when a
pluggable protocol
causes an error.

System.Xml.XmlException SystemException

Thrown due to a
general error in
the XML.

See Also

See the "Exception Class" topic in the MSDN documentation; also see the classes that derive from the
Exception class.

System.NotSupportedException SystemException

Thrown when a
member is
accessed that is
not supported.

System.NullReferenceException SystemException

Thrown when a
reference set to
null is used.

System.ObjectDisposedException
InvalidOperation-

Exception

Thrown when a
disposed object is
accessed.

System.ServiceProcess.TimeoutException SystemException
Thrown when a
service times out.

System.ComponentModel.WarningException SystemException

Thrown when a
warning message
needs to be
displayed. This
exception does
not imply a
serious failure of
the application or
system.

System.Net.WebException
InvalidOperation-

Exception

Thrown when a
pluggable protocol
causes an error.

System.Xml.XmlException SystemException

Thrown due to a
general error in
the XML.

See Also

See the "Exception Class" topic in the MSDN documentation; also see the classes that derive from the
Exception class.

Recipe 7.4. Handling Derived Exceptions Individually

Problem

You have an exception hierarchy that consists of a base exception class and multiple derived
exception classes. At some point in your code, you want to handle only one or two of these derived
exceptions in a specific manner. All other derived exceptions should be handled in a more generic
manner. You need a clean way to indicate that certain exceptions in an exception class hierarchy
should be handled differently from the rest.

Solution

The exception handlers for C# allow for multiple catch clauses to be implemented. Each of these
catch clauses can take a single parametera type derived from the Exception class. An exception
handler that uses multiple catch clauses is shown here:

 try
 {
 int d = 0;
 int z = 1/d;
 }
 catch(DivideByZeroException dbze)
 {
 Console.WriteLine("A divide by zero exception occurred. Error message == "
 + dbze.Message);
 }
 catch(OverflowException ofe)
 {
 Console.WriteLine("An Overflow occurred. Error message == " + ofe.Message);
 }
 catch(Exception e)
 {
 Console.WriteLine("Another type of error occurred. Error message == "
 + e.Message);
 }

This code produces the following output:

 A divide by zero exception occurred. Error message == Attempted to divide by zero.

Discussion

Notice the exception types that each catch clause handles in this TRy-catch block. These specific
exception types will be handled on an individual basis within their own catch block. Suppose the try
block looks like this:

 try
 {
 int z2 = 9999999;
 checked{z2 *= 999999999;}
 }

You will get the following message:

 An Overflow occurred. Error message == Arithmetic operation resulted in an overflow.

Now, since the OverflowException is being thrown, it is handled in a totally different catch block.

You could do the same thing in a single catch block using an if-else statement. An example of this is
shown here:

 catch(Exception e)
 {
 if (e is OverflowException)
 Console.WriteLine("An Overflow occurred. Error message == " + e.Message);
 else if (e is DivideByZeroException)
 Console.WriteLine("A divide by zero exception occurred. Error message == " +
 e.Message);
 else
 Console.WriteLine("Another type of error occurred. Error message == " +
 e.Message);
 }

The if-else statements are used to check the type of this exception and then execute the
appropriate code. This structure has two flaws. The first is that the compiler does not check whether
the exceptions are listed in the correct order in the if-else statements. If a derived exception class is
placed in the if-else conditional structure after the exception class that it inherits from (Arthimetic
Exception), then the derived exception class will never be checked. Consider the following modified
catch clause:

 try

 {
 int d = 0;
 int z = 1/d;
 }
 catch(Exception e)
 {
 if (e is ArithmeticException)
 Console.WriteLine("The base class exception was chosen.");
 else if (e is OverflowException)
 Console.WriteLine("An Overflow occurred. Error message == " + e.Message);
 else if (e is DivideByZeroException)
 Console.WriteLine("A divide by zero exception occurred. Error message == " +
 e.Message);
 else
 Console.WriteLine("Another type of error occurred. Error message == " +
 e.Message);
 }

This code produces the following output:

 The base class exception was chosen.

Even though the DivideByZeroException was thrown, the ArithmeticException is always found first,
as the DivideByZeroException and OverflowException both have the ArithmeticException class as
their base class.

The second flaw is one of appearance. Using multiple catch clauses is much easier to read thanks to
its natural and consistent structure. This is the way the language should be used, and, therefore, this
is what many developers are going to look for.

Other developers reading your code may find it more natural to read the multiple catch classes rather
than the single catch clause with a decision structure inside of it. There is one case in which you
might consider using the single catch clause with the decision structure: when large amounts of code
would have to be duplicated in each catch clause and there is no way to put the duplicated code in a
finally clause after the TRy-catch block. Even this scenario offers the alternative of structuring the
code in a nested TRy-catch fashion like this:

 try
 {
 try
 {
 …code here…
 }
 catch
 {
 …put the code that is common to handling all exceptions here throw;

 }
 }
 catch (ExceptionTypeA a)
 {
 … do specific exception A handling here
 }
 catch (ExceptionTypeB b)
 {
 … do specific exception B handling here
 }

See Also

See the "Error Raising and Handling Guidelines" topic in the MSDN documentation.

Recipe 7.5. Assuring Exceptions Are Not Lost When
Using Finally Blocks

Problem

You have multiple nested try-catch, try-finally, and try-catch-finally blocks. If a catch block
attempts to throw an exception, it is possible that the thrown exception will get discarded and that a
new and unexpected exception will be caught by an outer exception handler. You want to prevent this
situation from occurring.

Solution

Add an inner try-catch block in the finally block of the outer exception handler:

 private void PreventLossOfException()
 {
 try
 {
 //…
 }
 catch(Exception e)
 {
 Console.WriteLine("Error message == " + e.Message);
 throw;
 }
 finally
 {
 try
 {
 //…
 }
 catch(Exception e)
 {
 Console.WriteLine(@"An unexpected error occurred in the finally block.
 Error message == " + e.Message);
 }
 }
 }

This block will prevent the original exception from being lost.

Discussion

Consider what would happen if an error were thrown from the inner finally block contained in the
ThrowException method, as is instigated by the code shown in Example 7-1.

Example 7-1. Throwing an error from the inner finally block of the
ThrowExceptionMethod

private void ThrowException()
{
 try
 {
 Console.WriteLine("In inner try");
 int z2 = 9999999;
 checked{z2 *= 999999999;}
 }
 catch(OverflowException ofe)
 {
 Console.WriteLine("An Overflow occurred. Error message == " +
 ofe.Message);
 throw;
 }
 catch(Exception e)
 {
 Console.WriteLine("Another type of error occurred. " +
 "Error message == " + e.Message);
 throw;
 }
 finally
 {
 try
 {
 Console.WriteLine("In inner finally");
 throw(new Exception("Oops"));
 }
 catch(Exception e)
 {
 Console.WriteLine(@"An error occurred in the finally block. " +
 "Error message == " + e.Message);
 }
 }
}
public void PreventLossOfException()
{
 try

 {
 Console.WriteLine("In outer try");
 ThrowException();
 }
 catch(Exception e)
 {
 Console.WriteLine("In outer catch. ReThrown error == " + e.Message);
 }
 finally
 {
 Console.WriteLine("In outer finally");
 }
}

the following output would be displayed:

 In outer try
 In inner try
 An Overflow occurred. Error message == Arithmetic operation resulted in an
 overflow.
 In inner finally
 In outer catch. ReThrown error == Oops
 In outer finally

If you modify the inner finally block to handle its own errors (changes are highlighted), similarly to
the following code:

 public void PreventLossOfException()
 {
 try
 {
 Console.WriteLine("In outer try");
 ThrowException();
 }
 catch(Exception e)
 {
 Console.WriteLine("In outer catch. ReThrown error == " + e.Message);
 }
 finally
 {
 Console.WriteLine("In outer finally");
 }
 }

you will get the following output:

 In outer try
 In inner try
 An Overflow occurred. Error message == Arithmetic operation resulted in an
 overflow.
 In inner finally
 An error occurred in the finally block. Error message == Oops
 In outer catch. ReThrown error == Arithmetic operation resulted in an overflow.
 In outer finally

By handling exceptions within the inner finally block, you assure that the correct rethrown
exception bubbles up to the outer exception handler.

When writing a finally block, consider placing a separate try-catch around
the code.

See Also

See the "Error Raising and Handling Guidelines" topic and the "throw," "try," "catch," and "finally"
keywords in the MSDN documentation.

Recipe 7.6. Handling Exceptions Thrown from Methods
Invoked via Reflection

Problem

Using reflection, you invoke a method that generates an exception. You want to obtain the real exception
object and its information in order to diagnose and fix the problem.

Solution

The real exception and its information can be obtained through the InnerException property of the
TargetInvocationException that is thrown by MethodInfo.Invoke .

Discussion

The following example shows how an exception that occurs within a method invoked via reflection is
handled. The Reflect class contains a ReflectionException method that invokes the static TestInvoke
method using the reflection classes as shown in Example 7-2 .

Example 7-2. Obtaining information on an exception invoked by a method
accessed through reflection

using System;
using System.Reflection;

public class Reflect
{
 public void ReflectionException()
 {
 Type reflectedClass = typeof(Reflect);
 try
 {
 MethodInfo methodToInvoke = reflectedClass.GetMethod("TestInvoke");
 if (methodToInvoke != null)
 {
 object oInvoke = methodToInvoke.Invoke(null, null);
 }
 }
 catch(TargetInvocationException e)
 {
 Console.WriteLine("MESSAGE: " + e.Message);

 Console.WriteLine("SOURCE: " + e.Source);
 Console.WriteLine("TARGET: " + e.TargetSite);
 Console.WriteLine("STACK: " + e.StackTrace + "\r\n");

 if(e.InnerException != null)
 {
 Console.WriteLine();
 Console.WriteLine("\t**** INNEREXCEPTION START ****");
 Console.WriteLine("\tINNEREXCEPTION MESSAGE: " +
 e.InnerException.Message);
 Console.WriteLine("\tINNEREXCEPTION SOURCE: " +
 e.InnerException.Source);
 Console.WriteLine("\tINNEREXCEPTION STACK: " +
 e.InnerException.StackTrace);
 Console.WriteLine("\tINNEREXCEPTION TARGETSITE: " +
 e.InnerException.TargetSite);
 Console.WriteLine("\t**** INNEREXCEPTION END ****");
 }
 Console.WriteLine();

 // Shows fusion log when assembly cannot be located
 Console.WriteLine(e.ToString());
 }
 }

 // Method to invoke via reflection
 public static void TestInvoke()
 {
 throw (new Exception("Thrown from invoked method."));
 }
}

This code displays the following text:

 MESSAGE: Exception has been thrown by the target of an invocation.
 SOURCE: mscorlib
 TARGET: System.Object _InvokeMethodFast(System.Object, System.Object[], System.
 SignatureStruct ByRef, System.Reflection.MethodAttributes, System.RuntimeTypeHandle)
 STACK: at System.RuntimeMethodHandle._InvokeMethodFast(Object target, Object[]
 arguments, SignatureStruct& sig, MethodAttributes methodAttributes, RuntimeTypeHandle
typeOwner)

 at System.RuntimeMethodHandle.InvokeMethodFast(Object target, Object[] arguments,
 SignatureStruct sig, MethodAttributes methodAttributes, RuntimeTypeHandle typeOwner)
 at System.Reflection.RuntimeMethodInfo.Invoke(Object obj, BindingFlags invokeAttr,
 Binder binder, Object[] parameters, CultureInfo culture, Boolean
 skipVisibilityChecks)
 at System.Reflection.RuntimeMethodInfo.Invoke(Object obj, BindingFlags invokeAttr,

 Binder binder, Object[] parameters, CultureInfo culture)
 at System.Reflection.MethodBase.Invoke(Object obj, Object[] parameters)
 at CSharpRecipes.ExceptionHandling.ReflectionException() in

 C:\C#Cookbook2\CSharpRecipes\07_ExceptionHandling.cs:line 195

 **** INNEREXCEPTION START ****
 INNEREXCEPTION MESSAGE: Thrown from invoked method.
 INNEREXCEPTION SOURCE: CSharpRecipes
 INNEREXCEPTION STACK: at CSharpRecipes.ExceptionHandling.TestInvoke() in
 C:\C#Cookbook2\CSharpRecipes\07_ExceptionHandling.cs:line 226
 INNEREXCEPTION TARGETSITE: Void TestInvoke()
 **** INNEREXCEPTION END ****

When the methodToInvoke.Invoke method is called, the TestInvoke method is called. It throws an
exception. The outer exception is the TargetInvocationException ; this is the generic exception thrown
when a method invoked through reflection throws an exception. The CLR automatically wraps the original
exception thrown by the invoked method inside of the TargetInvocationException object's InnerException
property. In this case, the exception thrown by the invoked method is of type System.Exception . This
exception is shown after the section that begins with the text **** INNEREXCEPTION START ****.

In addition to this text, the code also calls e.ToString to print out the exception text. The text output from
ToString is:

 System.Reflection.TargetInvocationException: Exception has been thrown by the target
 of an invocation. ---> System.Exception: Thrown from invoked method.
 at ClassLibrary1.Reflect.TestInvoke() in
 C:\BOOK CS CookBook\Code\Test.cs:line 49
 at ClassLibrary1.Reflect.TestInvoke() in
 C:\BOOK CS CookBook\Code\Test.cs:line 49
 --- End of inner exception stack trace --
 at System.Reflection.RuntimeMethodInfo.InternalInvoke(Object obj, BindingFlags
 invokeAttr, Binder binder, Object[] parameters, CultureInfo culture, Boolean
 isBinderDefault, Assembly caller, Boolean verifyAccess)
 at System.Reflection.RuntimeMethodInfo.InternalInvoke(Object obj, BindingFlags
 invokeAttr, Binder binder, Object[] parameters, CultureInfo culture, Boolean
 verifyAccess)
 at System.Reflection.RuntimeMethodInfo.Invoke(Object obj, BindingFlags invokeAttr,
 Binder binder, Object[] parameters, CultureInfo culture)
 at System.Reflection.MethodBase.Invoke(Object obj, Object[] parameters)
 atReflect.ReflectionException() in c:\book cs cookbook
 \code\test.cs:line 22

Using the ToString method is a quick and simple way of displaying the most relevant outer exception
information along with the most relevant information for each inner exception.

See Also

See the "Type Class" and "MethodInfo Class" topics in the MSDN documentation.

Recipe 7.7. Debugging Problems When Loading an
Assembly

Problem

You want to use a reflection-based technique, such as the static Assembly. LoadFrom method, to load
an assembly. If this method fails, you want to collect as much useful information as you can as to
why the assembly failed to load.

Solution

Either call the ToString method on the exception object or use the FusionLog property on
BadImageFormatException, FileLoadException , or FileNotFoundException . When an exception
occurs while using a file, the exception contains extra information that is taken from the fusion log. To
see this in action, run the following code:

 public static void LoadMissingDLL()
 {
 // Load the DLL.
 try
 {
 Assembly reflectedAssembly = Assembly.LoadFrom("BadFileName.dll");
 }
 catch (FileNotFoundException fnf)
 {
 // This displays the fusion log information only.
 Console.WriteLine(fnf.FusionLog);
 }
 catch (Exception e) // Note that you would use one catch block or the other,
 // not both.
 // This displays the exception information along
 // with any fusion log information.
 Console.WriteLine(e.ToString());
 }
 }

Discussion

Use this technique to debug problems when loading an assembly from a file. When using the ToString
method of the Exception object, notice the bottom part of the error message that starts with "Fusion

log follows." This is the section that can provide some clue as to why the reflection APIs could not find
your assembly. If you want just the fusion information, you can use the FusionLog property of one of
the aforementioned exception objects. The Assembly Binding Log Viewer (fuslogvw.exe) is another
place where the load failure information can be retrieved. In order for this log to be filled, the
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\ Fusion|ForceLog and LogFailures entries should be
specified as type DWORD with a value of 1 for each entry. Without these entries, the log will not record
failure information, and it will only be available from the FusionLog property.

See Also

See the "BadImageFormatException Class," "FileLoadException Class," and "File-NotFoundException
Class" topics in the MSDN documentation.

Recipe 7.8. Mapping Back and Forth Between Managed
Exceptions and HRESULTs

Problem

You need a reference table that maps each managed exception to its COM hrESULT counterpart. This
mapping will allow you to determine the relative mapping between managed exceptions and COM
hrESULTs in unmanaged code.

Solution

There can be multiple managed exceptions for a given hrESULT. Every managed exception maps to an
hrESULT. Table 7-2 lists the managed exception classes and their equivalent hrESULT values. Use this
table to determine what type of managed exception to use when throwing an exception back to
unmanaged code, as well as what type of exception object to use when handling returned
COM/COM+ hrESULT values. When there are multiple managed exceptions for a single HRESULT, use
the one that most closely matches the condition being represented in managed code. The
Marshal.ThrowExceptionForHR method will also create and throw the correctly mapped managed
exception given an hrESULT, while Marshal.GetHRForException will determine the proper hrESULT
given a managed exception.

Table 7-2. Mapping between managed exceptions and HRESULTs

.NET exception class name HRESULT name(hex value of HRESULT)

AccessException COR_E_MEMBERACCESS (0x8013151A)

AmbiguousMatchException COR_E_AMBIGUOUSMATCH (0X80138000211D)

appdomainUnloadedException MSEE_E_APPDOMAINUNLOADED (0x80131015)

ApplicationException COR_E_APPLICATION (0x80131600)

ArgumentException COR_E_ARGUMENT (0x80070057)

ArgumentNullException E_POINTER (0x80004003)

ArgumentOutOfRangeException COR_E_ARGUMENTOUTOFRANGE (0x80131502)

ArithmeticException COR_E_ARITHMETIC (0x80070216)

ArrayTypeMismatchException COR_E_ARRAYTYPEMISMATCH (0x80131503)

.NET exception class name HRESULT name(hex value of HRESULT)

BadImageFormatException COR_E_BADIMAGEFORMAT (0x8007000B)

CannotUnloadappdomainException COR_E_CANNOTUNLOADAPPDOMAIN (0x80131015)

COMException Any other hrESULT defaults to this .Net Exception

ContextMarshalException COR_E_CONTEXTMARSHAL (0x80090020)

CryptographicException NTE_FAIL (0x80004001)

CryptographicUnexpectedOperationException CORSEC_E_CRYPTO_UNEX_OPER (0x80131431)

CustomAttributeFormatException COR_E_FORMAT (0x80131537)

DirectoryNotFoundException
COR_E_DIRECTORYNOTFOUND (0x80070003)

STG_E_PATHNOTFOUND (0x80030003)

DivideByZeroException COR_E_DIVIDEBYZERO (0x80020012)

DllNotFoundException COR_E_DLLNOTFOUND (0x80131524)

DuplicateWaitObjectException COR_E_DUPLICATEWAITOBJECT (0x80131529)

EndOfStreamException COR_E_ENDOFSTREAM (0x801338)

EntryPointNotFoundException COR_E_TYPELOAD (0x80131522)

Exception COR_E_EXCEPTION (0x80131500)

ExecutionEngineException COR_E_EXECUTIONENGINE (0x80131506)

ExternalException E_FAIL (0x80004005)

FieldAccessException COR_E_FIELDACCESS (0x80131507)

FileLoadException COR_E_FILELOAD (0x80131621 or 0x80131018)

FileNotFoundException COR_E_FILENOTFOUND (0x80070002)

FormatException COR_E_FORMAT (0x80131537)

IndexOutOfRangeException COR_E_INDEXOUTOFRANGE (0x80131508)

InvalidCastException COR_E_INVALIDCAST (0x80004002)

InvalidComObjectException COR_E_INVALIDCOMOBJECT (0x80131527)

InvalidFilterCriteriaException COR_E_INVALIDFILTERCRITERIA (0x80131601)

InvalidOleVariantTypeException COR_E_INVALIDOLEVARIANTTYPE (0x80131531)

InvalidOperationException COR_E_INVALIDOPERATION (0x80131509)

InvalidProgramException COR_E_INVALIDPROGRAM (0x8013153A)

IOException COR_E_IO (0x80131620)

IsolatedStorageException ISS_E_ISOSTORE (0x80131450)

MarshalDirectiveException COR_E_MARSHALDIRECTIVE (0x80131535)

MethodAccessException COR_E_METHODACCESS (0x80131510)

BadImageFormatException COR_E_BADIMAGEFORMAT (0x8007000B)

CannotUnloadappdomainException COR_E_CANNOTUNLOADAPPDOMAIN (0x80131015)

COMException Any other hrESULT defaults to this .Net Exception

ContextMarshalException COR_E_CONTEXTMARSHAL (0x80090020)

CryptographicException NTE_FAIL (0x80004001)

CryptographicUnexpectedOperationException CORSEC_E_CRYPTO_UNEX_OPER (0x80131431)

CustomAttributeFormatException COR_E_FORMAT (0x80131537)

DirectoryNotFoundException
COR_E_DIRECTORYNOTFOUND (0x80070003)

STG_E_PATHNOTFOUND (0x80030003)

DivideByZeroException COR_E_DIVIDEBYZERO (0x80020012)

DllNotFoundException COR_E_DLLNOTFOUND (0x80131524)

DuplicateWaitObjectException COR_E_DUPLICATEWAITOBJECT (0x80131529)

EndOfStreamException COR_E_ENDOFSTREAM (0x801338)

EntryPointNotFoundException COR_E_TYPELOAD (0x80131522)

Exception COR_E_EXCEPTION (0x80131500)

ExecutionEngineException COR_E_EXECUTIONENGINE (0x80131506)

ExternalException E_FAIL (0x80004005)

FieldAccessException COR_E_FIELDACCESS (0x80131507)

FileLoadException COR_E_FILELOAD (0x80131621 or 0x80131018)

FileNotFoundException COR_E_FILENOTFOUND (0x80070002)

FormatException COR_E_FORMAT (0x80131537)

IndexOutOfRangeException COR_E_INDEXOUTOFRANGE (0x80131508)

InvalidCastException COR_E_INVALIDCAST (0x80004002)

InvalidComObjectException COR_E_INVALIDCOMOBJECT (0x80131527)

InvalidFilterCriteriaException COR_E_INVALIDFILTERCRITERIA (0x80131601)

InvalidOleVariantTypeException COR_E_INVALIDOLEVARIANTTYPE (0x80131531)

InvalidOperationException COR_E_INVALIDOPERATION (0x80131509)

InvalidProgramException COR_E_INVALIDPROGRAM (0x8013153A)

IOException COR_E_IO (0x80131620)

IsolatedStorageException ISS_E_ISOSTORE (0x80131450)

MarshalDirectiveException COR_E_MARSHALDIRECTIVE (0x80131535)

MethodAccessException COR_E_METHODACCESS (0x80131510)

.NET exception class name HRESULT name(hex value of HRESULT)

MissingFieldException COR_E_MISSINGFIELD (0x80131511)

MissingManifestResourceException COR_E_MISSINGMANIFESTRESOURCE (0x80131532)

MissingMemberException COR_E_MISSINGMEMBER (0x80131512)

MissingMethodException COR_E_MISSINGMETHOD (0x80131513)

MulticastNotSupportedException COR_E_MULTICASTNOTSUPPORTED (0x80131514)

NotFiniteNumberException COR_E_NOTFINITENUMBER (0x80131528)

NotImplementedException E_NOTIMPL (0x80004001)

NotSupportedException COR_E_NOTSUPPORTED (0x80131515)

NullReferenceException COR_E_NULLREFERENCE (0x80004003)

OutOfMemoryException COR_E_OUTOFMEMORY (0x8007000E)

OverflowException COR_E_OVERFLOW (0x80131516)

PathTooLongException COR_E_PATHTOOLONG (0x8013206)

PlatformNotSupportedException COR_E_PLATFORMNOTSUPPORTED (0x80131539)

PolicyException CORSEC_E_POLICY_EXCEPTION

RankException COR_E_RANK (0x80131517)

ReflectionTypeLoadException COR_E_REFLECTIONTYPELOAD (0x80131602)

RemotingException COR_E_REMOTING (0x8013150B)

RemotingTimeoutException COR_E_REMOTING (0x8013150B)

SafeArrayTypeMismatchException COR_E_SAFEARRAYTYPEMISMATCH (0x80131533)

SafeArrayRankMismatchException COR_E_SAFEARRAYRANKMISMATCH (0x80131538)

SecurityException COR_E_SECURITY (0x8013150A)

SEHException E_FAIL (0x80004005)

SerializationException COR_E_SERIALIZATION (0x8013150C)

ServerException COR_E_SERVER (0x8013150E)

StackOverflowException COR_E_STACKOVERFLOW (0x800703E9)

SUDSGeneratorException COR_E_EXCEPTION (0x80131500)

SUDSParserException COR_E_EXCEPTION (0x80131500)

SynchronizationLockException COR_E_SYNCHRONIZATIONLOCK (0x80131518)

SystemException COR_E_SYSTEM (0x80131501)

TargetException COR_E_TARGET

TargetInvocationException COR_E_TARGETINVOCATION (0x80131604)

TargetParameterCountException COR_E_TARGETPARAMCOUNT (0x80138002)

MissingFieldException COR_E_MISSINGFIELD (0x80131511)

MissingManifestResourceException COR_E_MISSINGMANIFESTRESOURCE (0x80131532)

MissingMemberException COR_E_MISSINGMEMBER (0x80131512)

MissingMethodException COR_E_MISSINGMETHOD (0x80131513)

MulticastNotSupportedException COR_E_MULTICASTNOTSUPPORTED (0x80131514)

NotFiniteNumberException COR_E_NOTFINITENUMBER (0x80131528)

NotImplementedException E_NOTIMPL (0x80004001)

NotSupportedException COR_E_NOTSUPPORTED (0x80131515)

NullReferenceException COR_E_NULLREFERENCE (0x80004003)

OutOfMemoryException COR_E_OUTOFMEMORY (0x8007000E)

OverflowException COR_E_OVERFLOW (0x80131516)

PathTooLongException COR_E_PATHTOOLONG (0x8013206)

PlatformNotSupportedException COR_E_PLATFORMNOTSUPPORTED (0x80131539)

PolicyException CORSEC_E_POLICY_EXCEPTION

RankException COR_E_RANK (0x80131517)

ReflectionTypeLoadException COR_E_REFLECTIONTYPELOAD (0x80131602)

RemotingException COR_E_REMOTING (0x8013150B)

RemotingTimeoutException COR_E_REMOTING (0x8013150B)

SafeArrayTypeMismatchException COR_E_SAFEARRAYTYPEMISMATCH (0x80131533)

SafeArrayRankMismatchException COR_E_SAFEARRAYRANKMISMATCH (0x80131538)

SecurityException COR_E_SECURITY (0x8013150A)

SEHException E_FAIL (0x80004005)

SerializationException COR_E_SERIALIZATION (0x8013150C)

ServerException COR_E_SERVER (0x8013150E)

StackOverflowException COR_E_STACKOVERFLOW (0x800703E9)

SUDSGeneratorException COR_E_EXCEPTION (0x80131500)

SUDSParserException COR_E_EXCEPTION (0x80131500)

SynchronizationLockException COR_E_SYNCHRONIZATIONLOCK (0x80131518)

SystemException COR_E_SYSTEM (0x80131501)

TargetException COR_E_TARGET

TargetInvocationException COR_E_TARGETINVOCATION (0x80131604)

TargetParameterCountException COR_E_TARGETPARAMCOUNT (0x80138002)

.NET exception class name HRESULT name(hex value of HRESULT)

ThreadAbortException COR_E_THREADABORTED (0x80131530)

ThreadInterruptedException COR_E_THREADINTERRUPTED (0x80131519)

ThreadStateException COR_E_THREADSTATE (0x80131520)

ThreadStopException COR_E_THREADSTOP

TypeInitializationException COR_E_TYPEINITIALIZATION (0x80131534)

TypeLoadException COR_E_TYPELOAD (0x80131522)

TypeUnloadedException COR_E_TYPEUNLOADED (0x80131013)

UnauthorizedAccessException COR_E_UNAUTHORIZEDACCESS (0x80070005)

VerificationException COR_E_VERIFICATION

WeakReferenceException COR_E_WEAKREFERENCE

Discussion

Handling exceptions generated by COM/COM+ components involves the following two steps:

Handle any specific exceptions to which the .NET Common Language Runtime maps the
COM/COM+ HRESULTs you're interested in. The table in the Solution section lists the managed
exceptions and the standard HRESULT values returned by COM/COM+ objects to which they are
mapped.

Handle any user-defined exceptions that are unique to a specific COM/COM+ component by
trapping the COMException exception. The COMException class reflects COM/COM+ hrESULTs that
have no mapping to managed exceptions.

The following code fragment illustrates this handling of COM/COM+ exceptions:

 try
 {
 CallCOMMethod();
 }
 catch (UnauthorizedAccessException uae)
 {
 // Handle COM/COM+ access exceptions here.
 }
 catch (System.Runtime.InteropServices.COMException ce)
 {
 // Handle user-defined COM/COM+ exceptions here.
 }
 catch (Exception e)
 {
 // Handle all other exceptions here.

ThreadAbortException COR_E_THREADABORTED (0x80131530)

ThreadInterruptedException COR_E_THREADINTERRUPTED (0x80131519)

ThreadStateException COR_E_THREADSTATE (0x80131520)

ThreadStopException COR_E_THREADSTOP

TypeInitializationException COR_E_TYPEINITIALIZATION (0x80131534)

TypeLoadException COR_E_TYPELOAD (0x80131522)

TypeUnloadedException COR_E_TYPEUNLOADED (0x80131013)

UnauthorizedAccessException COR_E_UNAUTHORIZEDACCESS (0x80070005)

VerificationException COR_E_VERIFICATION

WeakReferenceException COR_E_WEAKREFERENCE

Discussion

Handling exceptions generated by COM/COM+ components involves the following two steps:

Handle any specific exceptions to which the .NET Common Language Runtime maps the
COM/COM+ HRESULTs you're interested in. The table in the Solution section lists the managed
exceptions and the standard HRESULT values returned by COM/COM+ objects to which they are
mapped.

Handle any user-defined exceptions that are unique to a specific COM/COM+ component by
trapping the COMException exception. The COMException class reflects COM/COM+ hrESULTs that
have no mapping to managed exceptions.

The following code fragment illustrates this handling of COM/COM+ exceptions:

 try
 {
 CallCOMMethod();
 }
 catch (UnauthorizedAccessException uae)
 {
 // Handle COM/COM+ access exceptions here.
 }
 catch (System.Runtime.InteropServices.COMException ce)
 {
 // Handle user-defined COM/COM+ exceptions here.
 }
 catch (Exception e)
 {
 // Handle all other exceptions here.

 }

See Recipe 7.9 for more information on handling user-defined HRESULTs.

See Also

See Recipe 7.9; see the "Error Raising and Handling Guidelines," "HRESULTs and Exceptions," and
"Handling COM Interop Exceptions" topics in the MSDN documentation.

Recipe 7.9. Handling User-Defined HRESULTs

Problem

A COM object can return a user-defined hrESULT or an hrESULT that has no mapping to a managed
exception type. You wish to handle these returned hrESULTs in a more specific manner.

Solution

The following code fragment illustrates the handling of user-defined COM/COM+ exceptions:

 try
 {
 CallCOMMethod();
 }
 catch (System.Runtime.InteropServices.COMException ce)
 {
 switch ((uint)ce.ErrorCode)
 {
 case 0x80042000:
 // Handle specific user-defined COM/COM+ exception here.
 break;
 case 0x80042001:
 // Handle specific user-defined COM/COM+ exception here.
 break;
 default:
 // Handle any other specific user-defined COM/COM+
 // exceptions here.
 break;
 }
 }
 catch (Exception e)
 {
 // Handle all other exceptions here.
 }

Discussion

Handle any user-defined exceptions that are unique to a specific COM/COM+ component by trapping

the COMException exception. This class reflects COM/COM+ hrESULTs that have no mapping to
managed exceptions.

The COMException has a property, ErrorCode, in addition to those properties in the base Exception
class. This property contains the HRESULT value that the COM/COM+ object returned. Another
difference between COMException and Exception is that the InnerException property of a
COMException object will always be null.

See Also

See the "Error Raising and Handling Guidelines" and "Handling COM Interop Exceptions" topics in the
MSDN documentation.

Recipe 7.10. Preventing Unhandled Exceptions

Problem

You need to make absolutely sure that every exception thrown by your application is handled and that
no exception is bubbled up past the outermost exception handler. Hackers often use these types of
exceptions to aid in their analysis of the vulnerabilities of a web application for instance.

Solution

Place try-catch or try-catch-finally blocks in strategic places in your application. In addition, use
the exception event handler as a final line of defense against unhandled exceptions.

Discussion

If an exception occurs and is not handled, it will cause your application to shut down prematurely.
This can leave data in an unstable state, possibly requiring manual interventionmeaning that you
could be spending a long night cleaning up the data by hand. To minimize the damage, you can place
exception handlers in strategic locations throughout your code.

The most obvious location to place exception-handling code is inside of the Main method. The Main
method is the entry point to executables (files with an .exe extension). Therefore, if any exceptions
occur inside your executable, the CLR starts looking for an exception handler, starting at the location
where the exception occurred. If none is found, the CLR walks the stack until one is found; each
method on the stack is examined in turn to determine whether an exception handler exists. If no
exception handlers are found in the final method in the stack, the exception is considered unhandled
and the application is terminated. In an executable, this final method is the Main method.

In addition to or in place of using try-catch or try-catch-finally blocks at the entry point of your
application, you can use the exception event handler to capture unhandled exceptions. Note that
Windows Forms applications provide their own unhandled exception trap around exception handlers.
To see how to deal with this in a Win-Forms application, review Recipe 7.20. There are two steps to
setting up an exception event handler. The first is to create the actual event handler. This is done as
follows:

 static void LastChanceHandler(object sender, UnhandledExceptionEventArgs args)
 {
 try
 {
 Exception e = (Exception) args.ExceptionObject;

 Console.WriteLine("Unhandled exception == " + e.ToString());
 if (args.IsTerminating)
 {

 Console.WriteLine("The application is terminating");
 }
 else
 {
 Console.WriteLine("The application is not terminating");
 }
 }
 catch(Exception e)
 {
 Console.WriteLine("Unhandled exception in unhandled exception handler == " +
 e.ToString());
 }
 finally
 {
 // Add other exception logging or cleanup code here.
 }
 }

Next, you should add code to your application to wire up this event handler. The code to wire up the
event handler should be executed as close to the start of the application as possible. For example, by
placing this code in the Main method:

 public static void Main()
 {
 appdomain.CurrentDomain.UnhandledException +=
 new UnhandledExceptionEventHandler(LastChanceHandler);

 //…
 }

you are assured of being able to clean up after any unhandled exception.

The exception event handler takes two parameters. The first is the sender object, which is the
appdomain object that threw the exception. The second argument is an UnhandledExceptionEventArgs
object. This object contains all the relevant information on the unhandled exception. Using this object,
you can obtain the actual exception object that was thrown as well as a Boolean flag that indicates
whether the application will terminate.

Exception event handlers are a great help when used in multithreaded code. In the 1.x versions of the
Framework, if an unhandled exception were thrown in a thread other than the main thread, that
thread would abort. However, only the worker thread, and not the application as a whole, would
terminate. But you were not clearly notified when the CLR aborted this thread, which could cause
some interesting debugging problems. In Version 2.0 of the Framework, any unhandled exception will
now propagate and cause the application to terminate. However, when an exception event handler is
used, you can be notified of any unhandled exceptions that occur in any worker thread and that cause
it to abort.

The exception event handler captures unhandled exceptions for only the primary application domain.
Any application domains created from the primary application domain do not fire this event for
unhandled exceptions. These secondary appdomains must be registered with as well for the
UnhandledException event individually to receive their exception events. Note that if the exception is
thrown on the main thread, the system will bring up an error dialog before running the exception
event handler.

See Also

See the "Error Raising and Handling Guidelines" and "UnhandledException-EventHandler Delegate"
topics in the MSDN documentation.

Recipe 7.11. Getting Exception Information

Problem

There are several different methods of getting exception information. You need to choose the best one to
use.

Solution

The .NET platform supports several mechanisms for displaying exception information, depending on the
specific type of information that you want to show. The easiest method is to use the ToString method of
the thrown exception object, usually in the catch block of an exception handler:

 catch(Exception e)
 {
 Console.WriteLine(e.ToString());
 }

Another mechanism is to manually display the individual properties of the exception and iterate through
each inner exception, if any exist. The default Exception . ToString method will iterate over the inner
exceptions as well, so if you want to make sure you get all of that information, you need to roll over them
when examining the properties directly. For example, the custom method shown in Example 7-3 is called
from a catch block. It takes a single exception object as a parameter and proceeds to display its
information, including information on all inner exceptions and the exception data block.

Example 7-3. Displaying exception information, including information on all
inner exceptions and the exception data block

public static int exceptionLevel = 0;
public static void DisplayException(Exception e)
{
 // Increment exception level.
 exceptionLevel++;
 // Make spacer for level.
 string indent = new string('\t',exceptionLevel-1);
 // Write out exception level data.
 Console.WriteLine(indent + "*** Exception Level {0} " +
 "***************************************", exceptionLevel);
 Console.WriteLine(indent + "ExceptionType: " + e.GetType().Name. ToString());
 Console.WriteLine(indent + "HelpLine: " + e.HelpLink);
 Console.WriteLine(indent + "Message: " + e.Message);
 Console.WriteLine(indent + "Source: " + e.Source);
 Console.WriteLine(indent + "StackTrace: " + e.StackTrace);
 Console.WriteLine(indent + "TargetSite: " + e.TargetSite);
 Console.WriteLine(indent + "Data:");
 foreach (DictionaryEntry de in e.Data)
 {
 Console.WriteLine(indent + "\t{0} : {1}",de.Key,de.Value);
 }

 // Get the inner exception for this exception.
 Exception ie = e.InnerException;

 // Print out the inner exceptions recursively.
 while(ie != null)
 {
 DisplayException(ie);
 // Check to see if we are doing the inner exceptions.
 if(exceptionLevel>1)
 ie = ie.InnerException;
 else // back to main level
 ie = null;
 }
 // Decrement exception level.
 exceptionLevel--;
}

Discussion

A typical exception object of type Exception displays the following information if its ToString method is
called:

 System.Exception: Exception of type System.Exception was thrown.
 at Chapter_Code.Chapter7.TestSpecializedException() in c:\book cs cookbook\code\

 test.cs:line 286

Three pieces of information are shown here:

The exception type (Exception in this case) followed by a colon

The string contained in the exception's Message property

The string contained in the exception's StackTrace property

The great thing about the ToString method is that information about any exception contained in the
InnerException property is automatically displayed as well. The following text shows the output of an
exception that wraps an inner exception:

 System.Exception: Exception of type System.Exception was thrown.
 ---> System.Exception: The Inner Exception
 at Chapter_Code.Chapter7.TestSpecializedException()
 in c:\book cs cookbook\code\
 test.cs:line 306
 --- End of inner exception stack trace ---
 at Chapter_Code.Chapter7.TestSpecializedException()
 in c:\book cs cookbook\code\
 test.cs:line 310

The same three pieces of information are displayed for each exception. The output is broken down into the
following format:

 Outer exception type: Outer exception Message property
 ---> Inner Exception type: Inner exception Message property
 Inner Exception StackTrace property
 --- End of inner exception stack trace ---
 Outer exception StackTrace property

If the inner exception contains an exception object in its InnerException property, that exception is
displayed as well. In fact, information for all inner exceptions is displayed in this format.

Calling the ToString method is a quick, useful way of getting the most pertinent information out of the
exception and displaying it in a formatted string. However, not all of the exception's information is
displayed. There might be a need to display the HelpLine or Source properties of the exception. In fact, if
this is a user-defined exception, there could be custom fields that need to be displayed or captured in an
error log. Also, you might not like the default formatting that the ToString method offers, or you may
want to see the information in the Data collection of items. In these cases, consider writing your own
method to display the exception's information based on the DisplayException method shown in the
Solution.

To illustrate the custom method presented in the Solution section (the DisplayException method),
consider the following code, which throws an exception wrapping two inner exceptions:

 Exception InnerInner = new Exception("The InnerInner Exception.");
 InnerInner.Data.Add("Key1 for InnerInner", "Value1 for InnerInner");

 ArgumentException Inner = new ArgumentException("The Inner Exception.", InnerInner);
 Inner.Data.Add("Key1 for Inner", "Value1 for Inner");
 NullReferenceException se = new NullReferenceException("A Test Message.", Inner);
 se.HelpLink = "MyComponent.hlp";
 se.Source = "MyComponent";
 se.Data.Add("Key1 for Outer", "Value1 for Outer");
 se.Data.Add("Key2 for Outer", "Value2 for Outer");
 se.Data.Add("Key3 for Outer", "Value3 for Outer");

 try
 {
 throw (se);
 }
 catch(Exception e)
 {
 DisplayException(e);
 }

If this code were executed, DisplayException would display the following:

 *** Exception Level 1 ***************************************
 ExceptionType: NullReferenceException
 HelpLine: MyComponent.hlp
 Message: A Test Message.
 Source: MyComponent
 StackTrace: at CSharpRecipes.ExceptionHandling.TestDisplayException() in C:\PRJ32\
 Book_2_0\C#Cookbook2\Code\CSharpRecipes\07_ExceptionHandling.cs:line 371
 TargetSite: Void TestDisplayException()
 Data:
 Key1 for Outer : Value1 for Outer
 Key2 for Outer : Value2 for Outer
 Key3 for Outer : Value3 for Outer
 *** Exception Level 2 ***************************************
 ExceptionType: ArgumentException
 HelpLine:
 Message: The Inner Exception.
 Source:
 StackTrace:
 TargetSite:
 Data:
 Key1 for Inner : Value1 for Inner

 *** Exception Level 3 ***************************************
 ExceptionType: Exception
 HelpLine:
 Message: The InnerInner Exception.
 Source:
 StackTrace:
 TargetSite:
 Data:
 Key1 for InnerInner : Value1 for InnerInner

The outermost exception is displayed first, followed by all of its properties. Next, each inner exception is
displayed in a similar manner.

The while loop of the DisplayException method is used to iterate through each inner exception until the
innermost exception is reached. The indent variable is used to create the staggered display of inner
exception information based on the level of the exception.

See Also

See the "Error Raising and Handling Guidelines" and "Exception Class" topics in the MSDN documentation.

Recipe 7.12. Getting to the Root of a Problem Quickly

Problem

A thrown and caught exception can contain one or more inner exceptions. The innermost exception
usually indicates the origin of the problem. You want to be able to view the original thrown exception
and skip all of the outer exceptions and to view the initial problem.

Solution

The GetBaseException instance method of the Exception class displays information on only the
innermost (original) exception; no other exception information is displayed. This method accepts no
parameters and returns the innermost exception. For example:

 Console.WriteLine(e.GetBaseException().ToString());

Discussion

Calling the GetBaseException().ToString() method on an exception object that contains an inner
exception produces the same error information as if the ToString method were called directly on the
inner exception. However, if the exception object does not contain an inner expression, the
information on the provided exception object is displayed. For the following code:

 Exception innerInner = new Exception("The innerInner Exception.");
 ArgumentException inner = new ArgumentException("The inner Exception.", innerInner);
 NullReferenceException se = new NullReferenceException("A Test Message.", inner);

 try
 {
 throw (se);
 }
 catch(Exception e)
 {
 Console.WriteLine(e.GetBaseException().ToString());
 }

something similar to this would be displayed:

 System.Exception: The innerInner Exception.
 at Chapter_Code.EH.MyMethod() in c:\book cs cookbook\code\test.cs:line 286

Notice that no exception other than the innerInner exception is displayed. This useful technique gets
to the root of the problem while filtering out all of the other outer exceptions that you are not
interested in.

See Also

See the "Error Raising and Handling Guidelines" and " Exception Class" topics in the MSDN
documentation.

Recipe 7.13. Creating a New Exception Type

Problem

None of the built-in exceptions in the .NET Framework provide the implementation details that you require for
an exception that you need to throw. You need to create your own exception class that operates seamlessly
with your application, as well as other applications. Whenever an application receives this new exception, it can
inform the user that a specific error occurred in a specific component. This report will greatly reduce the time
required to debug the problem.

Solution

Create your own exception class. To illustrate, let's create a custom exception class, RemoteComponentException
, that will inform a client application that an error has occurred in a remote server assembly.

Discussion

The exception hierarchy starts with the Exception class; from this are derived two classes:
ApplicationException and SystemException . The SystemException class and any classes derived from it are
reserved for the developers of the FCL. Most of the common exceptions, such as the NullReferenceException
or the OverflowException , are derived from SystemException . The FCL developers created the
ApplicationException class for other developers using the .NET languages to derive their own exceptions from.
This partitioning allows for a clear distinction between user-defined exceptions and the built-in system
exceptions. However, Microsoft now recommends deriving directly from Exception , rather than
ApplicationException . Nothing actively prevents you from deriving a class from either SystemException or
ApplicationException . But it is better to be consistent and use the convention of always deriving from the
Exception class for userdefined exceptions.

You should follow the naming convention for exceptions when determining the name of your exception. The
convention is very simple. Whatever you decide on for the exception's name, add the word Exception to the
end of the name (e.g., use UnknownException as the exception name instead of just Unknown). Every user-
defined exception should include at least three constructors, described next. This is not a requirement, but it
makes your exception classes operate similarly to every other exception class in the FCL and minimizes the
learning curve for other developers using your new exception. These three constructors are:

The default constructor

This constructor takes no arguments and simply calls the base class's default constructor.

A constructor with a parameter that accepts a message string

This message string overwrites the default contents of the Message field of this exception. Like the default

constructor, this constructor also calls the base class's constructor, which also accepts a message string
as its only parameter.

A constructor that accepts a message string and an inner exception as parameters

The object contained in the innerException parameter is added to the InnerException property of this

exception object. Like the other two constructors, this constructor calls the base class's constructor of
the same signature.

If this exception will be caught in unmanaged code, such as a COM object, you can also set the hrESULT value
for this exception. An exception caught in unmanaged code becomes an hrESULT value. If the exception does
not alter the hrESULT value, it defaults to the hrESULT of the base class exception, which, in the case of a user-
defined exception object that inherits from ApplicationException , is COR_E_ APPLICATION (0x80131600) . To
change the default hrESULT value, simply set the value of this field in the constructor. The following code
demonstrates this technique:

 public class RemoteComponentException : Exception
 {
 public RemoteComponentException() : base()
 {
 HResult = 0x80040321;
 }

 public RemoteComponentException(string message) : base(message)
 {
 HResult = 0x80040321;
 }

 public RemoteComponentException(string message, Exception innerException)
 : base(message, innerException)
 {
 HResult = 0x80040321;
 }
 }

Now the hresult that the COM object will see is the value 0x80040321 . See Table 7-2 in Recipe 7.8 for more
information on the mapping of hrESULT values to their equivalent managed exception classes.

It is usually a good idea to override the Message property in order to incorporate any
new fields into the exception's message text. Always remember to include the base
class's message text along with any additional text you add to this property.

Fields and their accessors should be created to hold data specific to the exception. Since this exception will be
thrown as a result of an error that occurs in a remote server assembly, you will add a private field to contain
the name of the server or service. In addition, you will add a public read-only property to access this field.
Since you're adding this new field, you should add two constructors that accept an extra parameter used to set

the value of the serverName field.

If necessary, override any base class members whose behavior is inherited by the custom exception class. For
example, since you have added a new field, you need to determine whether it will need to be added to the
default contents of the Message field for this exception. If it does, you must override the Message property.

 public override string Message
 {
 get
 {
 if (this.ServerName.Length == 0)
 return (base.Message + Environment.NewLine +
 "An unnamed server has encountered an error.");
 else
 return (base.Message + Environment.NewLine +
 "The server " + this.ServerName +
 " has encountered an error.");
 }
 }

Notice that the Message property in the base class is displayed on the first line and your additional text is
displayed on the next line. This organization takes into account that a user might modify the message that will
appear in the Message property by using one of the overloaded constructors that takes a message string as a
parameter.

In certain cases (such as remoting), your exception object should be serializable and deserializable. This
involves performing the following two additional steps:

Add the Serializable attribute to the class definition. This attribute specifies that this class can be
serialized or deserialized. A SerializationException is thrown if this attribute does not exist on this class
and an attempt is made to serialize this class.

1.

The class should implement the ISerializable interface if you want control over how serialization and
deserialization are performed, and it should provide an implementation for its single member,
GetObjectData . Here you implement it because the base class implements it, which means that you have
no choice but to reimplement it if you want the fields you added (e.g., serverName) to get serialized.

2.

 // Used during serialization to capture information about extra fields
 public override void GetObjectData(SerializationInfo exceptionInfo,
 StreamingContext exceptionContext)
 {
 base.GetObjectData(exceptionInfo, exceptionContext);
 exceptionInfo.AddValue("ServerName", this.ServerName);
 }

In addition, a new overridden constructor is needed that accepts information to deserialize this object:

 // Serialization ctor
 public RemoteComponentException(SerializationInfo exceptionInfo,
 StreamingContext exceptionContext)
 : base(exceptionInfo, exceptionContext)
 {
 this.serverName = exceptionInfo.GetString("ServerName");
 }

Even though it is not required, you should make all user-defined exception classes
serializable and deserializable. That way, the exceptions can be propagated properly
over remoting and appdomain boundaries.

At this point, the RemoteComponentException class contains everything you need for a complete user-defined
exception class. You could stop at this point, but let's continue a bit farther and override some default
functionality that deals with the hash code, equality, and inequality.

Overriding the GetHashCode method

Since you have overridden the Equals method, you should override the GetHashCode method, which overrides
the hash code generation algorithm:

 // GetHashCode
 public override int GetHashCode()
 {
 return (ServerName.GetHashCode());
 }

Overriding the == and != operators

When overriding the Equals method, both the == and != operators should be overloaded as well. Notice that
both operators ultimately use the Equals method to determine equality. Therefore, they are simple to write.

 // == operator
 public static bool operator ==(RemoteComponentException v1,
 RemoteComponentException v2)
 {
 return (v1.Equals(v2));
 }

 // != operator
 public static bool operator !=(RemoteComponentException v1,
 RemoteComponentException v2)
 {
 return (!(v1 == v2));
 }

As a final note, it is generally a good idea to place all user-defined exceptions in a separate assembly, which
allows for easier reuse of these exceptions in other applications and, more importantly, allows other application
domains and remotely executing code to both throw and handle these exceptions correctly no matter where
they are thrown. The assembly that holds these exceptions should be signed with a strong name and added to
the Global Assembly Cache (GAC), so that any code that uses or handles these exceptions can find the
assembly that defines them. See Recipe 17.10 for more information on how to do this.

If you are sure that the exceptions being defined won't ever be thrown or handled outside of your assembly,
then you can leave the exception definitions there. But if for some reason an exception that you throw finds its
way out of your assembly, the code that ultimately catches it will not be able to resolve it.

The complete source code for the RemoteComponentException class is shown in Example 7-4 .

Example 7-4. RemoteComponentException class

using System;
using System.IO;
using System.Runtime.Serialization;
using System.Runtime.Serialization.Formatters.Binary;

[SerializableAttribute]
public class RemoteComponentException :
 Exception, ISerializable
{
 // New exception field
 private string serverName = "";

 // Normal exception ctors
 public RemoteComponentException() : base()
 {
 }

 public RemoteComponentException(string message) : base(message)
 {
 }

 public RemoteComponentException(string message,
 Exception innerException)
 : base(message, innerException)
 {
 }

 // Exception ctors that accept the new ServerName parameter
 public RemoteComponentException(string message,
 string serverName) : base(message)
 {
 this.serverName = serverName;
 }

 public RemoteComponentException(string message,
 Exception innerException, string serverName)
 : base(message, innerException)
 {
 this.serverName = serverName;
 }

 // Serialization ctor
 public RemoteComponentException(SerializationInfo exceptionInfo,
 StreamingContext exceptionContext)
 : base(exceptionInfo, exceptionContext)
 {
 this.serverName = exceptionInfo.GetString("ServerName");
 }

 // Read-only property
 public string ServerName
 {
 get{return (serverName.Trim());}
 }

 public override string Message
 {
 get
 {
 if (this.ServerName.Length == 0)
 return (base.Message + Environment.NewLine +
 "An unnamed server has encountered an error.");
 else
 return (base.Message + Environment.NewLine +
 "The server " + this.ServerName +
 " has encountered an error.");
 }
 }

 // Overridden methods
 // ToString method
 public override string ToString()
 {
 string errorString = "An error has occured in a server " +
 "component of this client.";
 errorString += Environment.NewLine + "Server Name: " +
 this.ServerName;
 if (this.InnerException == null)

 {
 errorString += Environment.NewLine +
 "Server component failed to provide an " +
 "underlying exception!";
 }
 else
 {
 string indent = "\t";
 Exception ie = this;
 while(ie.InnerException != null)
 {
 ie = ie.InnerException;
 errorString += Environment.NewLine + indent +
 "inner exception type thrown by server component: " +
 ie.GetType().Name.ToString();
 errorString += Environment.NewLine + indent + "Message: "
 + ie.Message;
 errorString += Environment.NewLine + indent +
 "StackTrace: " + ie.StackTrace;

 indent += "\t";
 }
 }
 errorString += Environment.NewLine + "StackTrace of client " +
 "component: " + this.StackTrace;
 return (errorString);
 }

 // Call base.ToString method.
 public string ToBaseString()
 {
 return (base.ToString());
 }

 // GetHashCode
 public override int GetHashCode()
 {
 return (ServerName.GetHashCode());
 }

 // Equals
 public override bool Equals(object obj)
 {
 bool isEqual = false;
 if (obj == null || (this.GetType() != obj.GetType()))
 {
 isEqual = false;
 }
 else
 {
 RemoteComponentException se = (RemoteComponentException)obj;
 if ((this.ServerName.Length == 0)

 && (se.ServerName.Length == 0))
 isEqual = false;
 else
 isEqual = (this.ServerName == se.ServerName);
 }

 return (isEqual);
 }

 // == operator
 public static bool operator ==(RemoteComponentException v1,
 RemoteComponentException v2)
 {
 return (v1.Equals(v2));
 }

 // != operator
 public static bool operator !=(RemoteComponentException v1,
 RemoteComponentException v2)
 {
 return (!(v1 == v2));
 }

 // Used during serialization to capture information about extra fields
 public override void GetObjectData(SerializationInfo exceptionInfo,
 StreamingContext exceptionContext)
 {
 base.GetObjectData(exceptionInfo, exceptionContext);
 exceptionInfo.AddValue("ServerName", this.ServerName);
 }
}

The code to test the RemoteComponentException class is shown in Example 7-5 .

Example 7-5. Testing the RemoteComponentException class

public void TestSpecializedException()
{
 // Generic inner exception used to test the
 // RemoteComponentException's inner exception.
 Exception inner = new Exception("The inner Exception");

 // Test each ctor.
 Console.WriteLine(Environment.NewLine + Environment.NewLine +
 "TEST EACH CTOR");
 RemoteComponentException se1 = new RemoteComponentException ();
 RemoteComponentException se2 =

 new RemoteComponentException ("A Test Message for se2");
 RemoteComponentException se3 =
 new RemoteComponentException ("A Test Message for se3", inner);
 RemoteComponentException se4 =
 new RemoteComponentException ("A Test Message for se4",
 "MyServer");
 RemoteComponentException se5 =
 new RemoteComponentException ("A Test Message for se5", inner,
 "MyServer");

 // Test new ServerName property.
 Console.WriteLine(Environment.NewLine +
 "TEST NEW SERVERNAME PROPERTY");
 Console.WriteLine("se1.ServerName == " + se1.ServerName);
 Console.WriteLine("se2.ServerName == " + se2.ServerName);
 Console.WriteLine("se3.ServerName == " + se3.ServerName);
 Console.WriteLine("se4.ServerName == " + se4.ServerName);
 Console.WriteLine("se5.ServerName == " + se5.ServerName);

 // Test overridden Message property.
 Console.WriteLine(Environment.NewLine +
 "TEST -OVERRIDDEN- MESSAGE PROPERTY");
 Console.WriteLine("se1.Message == " + se1.Message);
 Console.WriteLine("se2.Message == " + se2.Message);
 Console.WriteLine("se3.Message == " + se3.Message);
 Console.WriteLine("se4.Message == " + se4.Message);
 Console.WriteLine("se5.Message == " + se5.Message);

 // Test -overridden- ToString method.
 Console.WriteLine(Environment.NewLine +
 "TEST -OVERRIDDEN- TOSTRING METHOD");
 Console.WriteLine("se1.ToString() == " + se1.ToString());
 Console.WriteLine("se2.ToString() == " + se2.ToString());
 Console.WriteLine("se3.ToString() == " + se3.ToString());
 Console.WriteLine("se4.ToString() == " + se4.ToString());
 Console.WriteLine("se5.ToString() == " + se5.ToString());

 // Test ToBaseString method.
 Console.WriteLine(Environment.NewLine +
 "TEST TOBASESTRING METHOD");
 Console.WriteLine("se1.ToBaseString() == " + se1.ToBaseString());
 Console.WriteLine("se2.ToBaseString() == " + se2.ToBaseString());
 Console.WriteLine("se3.ToBaseString() == " + se3.ToBaseString());
 Console.WriteLine("se4.ToBaseString() == " + se4.ToBaseString());
 Console.WriteLine("se5.ToBaseString() == " + se5.ToBaseString());

 // Test -overridden- == operator.
 Console.WriteLine(Environment.NewLine +
 "TEST -OVERRIDDEN- == OPERATOR");
 Console.WriteLine("se1 == se1 == " + (se1 == se1));
 Console.WriteLine("se2 == se1 == " + (se2 == se1));
 Console.WriteLine("se3 == se1 == " + (se3 == se1));

 Console.WriteLine("se4 == se1 == " + (se4 == se1));
 Console.WriteLine("se5 == se1 == " + (se5 == se1));
 Console.WriteLine("se5 == se4 == " + (se5 == se4));

 // Test -overridden- != operator.
 Console.WriteLine(Environment.NewLine +
 "TEST -OVERRIDDEN- != OPERATOR");
 Console.WriteLine("se1 != se1 == " + (se1 != se1));
 Console.WriteLine("se2 != se1 == " + (se2 != se1));
 Console.WriteLine("se3 != se1 == " + (se3 != se1));
 Console.WriteLine("se4 != se1 == " + (se4 != se1));
 Console.WriteLine("se5 != se1 == " + (se5 != se1));
 Console.WriteLine("se5 != se4 == " + (se5 != se4));

 // Test -overridden- GetBaseException method.
 Console.WriteLine(Environment.NewLine +
 "TEST -OVERRIDDEN- GETBASEEXCEPTION METHOD");
 Console.WriteLine("se1.GetBaseException() == " + se1.GetBaseException());
 Console.WriteLine("se2.GetBaseException() == " + se2.GetBaseException());
 Console.WriteLine("se3.GetBaseException() == " + se3.GetBaseException());
 Console.WriteLine("se4.GetBaseException() == " + se4.GetBaseException());
 Console.WriteLine("se5.GetBaseException() == " + se5.GetBaseException());

 // Test -overridden- GetHashCode method.
 Console.WriteLine(Environment.NewLine +
 "TEST -OVERRIDDEN- GETHASHCODE METHOD");
 Console.WriteLine("se1.GetHashCode() == " + se1.GetHashCode());
 Console.WriteLine("se2.GetHashCode() == " + se2.GetHashCode());
 Console.WriteLine("se3.GetHashCode() == " + se3.GetHashCode());
 Console.WriteLine("se4.GetHashCode() == " + se4.GetHashCode());
 Console.WriteLine("se5.GetHashCode() == " + se5.GetHashCode());

 // Test serialization.
 Console.WriteLine(Environment.NewLine +
 "TEST SERIALIZATION/DESERIALIZATION");
 BinaryFormatter binaryWrite = new BinaryFormatter();
 Stream ObjectFile = File.Create("se1.object");
 binaryWrite.Serialize(ObjectFile, se1);
 ObjectFile.Close();
 ObjectFile = File.Create("se2.object");
 binaryWrite.Serialize(ObjectFile, se2);
 ObjectFile.Close();
 ObjectFile = File.Create("se3.object");
 binaryWrite.Serialize(ObjectFile, se3);
 ObjectFile.Close();
 ObjectFile = File.Create("se4.object");
 binaryWrite.Serialize(ObjectFile, se4);
 ObjectFile.Close();
 ObjectFile = File.Create("se5.object");
 binaryWrite.Serialize(ObjectFile, se5);
 ObjectFile.Close();

 BinaryFormatter binaryRead = new BinaryFormatter();
 ObjectFile = File.OpenRead("se1.object");
 object Data = binaryRead.Deserialize(ObjectFile);
 Console.WriteLine("----------" + Environment.NewLine + Data);
 ObjectFile.Close();
 ObjectFile = File.OpenRead("se2.object");
 Data = binaryRead.Deserialize(ObjectFile);
 Console.WriteLine("----------" + Environment.NewLine + Data);
 ObjectFile.Close();
 ObjectFile = File.OpenRead("se3.object");
 Data = binaryRead.Deserialize(ObjectFile);
 Console.WriteLine("----------" + Environment.NewLine + Data);
 ObjectFile.Close();
 ObjectFile = File.OpenRead("se4.object");
 Data = binaryRead.Deserialize(ObjectFile);
 Console.WriteLine("----------" + Environment.NewLine + Data);
 ObjectFile.Close();
 ObjectFile = File.OpenRead("se5.object");
 Data = binaryRead.Deserialize(ObjectFile);
 Console.WriteLine("----------" + Environment.NewLine +
 Data + Environment.NewLine + "----------");
 ObjectFile.Close();

 Console.WriteLine(Environment.NewLine + "END TEST" + Environment.NewLine);
}

The output from Example 7-5 is presented in Example 7-6 .

Example 7-6. Output displayed by the RemoteComponentException class

TEST EACH CTOR

TEST NEW SERVERNAME PROPERTY
se1.ServerName ==
se2.ServerName ==
se3.ServerName ==
se4.ServerName == MyServer
se5.ServerName == MyServer

TEST -OVERRIDDEN- MESSAGE PROPERTY
se1.Message == Error in the application.
An unnamed server has encountered an error.
se2.Message == A Test Message for se2
An unnamed server has encountered an error.
se3.Message == A Test Message for se3
An unnamed server has encountered an error.
se4.Message == A Test Message for se4

The server MyServer has encountered an error.
se5.Message == A Test Message for se5
The server MyServer has encountered an error.
TEST -OVERRIDDEN- TOSTRING METHOD
se1.ToString() == An error has occurred in a server component of this client.
Server Name:
Server component failed to notify of the underlying exception!
StackTrace of client component:
se2.ToString() == An error has occured in a server component of this client.
Server Name:
Server component failed to notify of the underlying exception!
StackTrace of client component:
se3.ToString() == An error has occurred in a server component of this client.
Server Name:
 Inner exception type thrown by server component: Exception
 Message: The Inner Exception
 StackTrace:
StackTrace of client component:
se4.ToString() == An error has occured in a server component of this client.
Server Name: MyServer
Server component failed to notify of the underlying exception!
StackTrace of client component:
se5.ToString() == An error has occurred in a server component of this client.
Server Name: MyServer
 Inner exception type thrown by server component: Exception
 Message: The Inner Exception
 StackTrace:
StackTrace of client component:

TEST TOBASESTRING METHOD
se1.ToBaseString() == CSharpRecipes.ExceptionHandling+RemoteComponentException: Error in
the application.
An unnamed server has encountered an error.
se2.ToBaseString() == CSharpRecipes.ExceptionHandling+RemoteComponentException: A Test
Message for se2
An unnamed server has encountered an error.
se3.ToBaseString() == CSharpRecipes.ExceptionHandling+RemoteComponentException: A Test
Message for se3
An unnamed server has encountered an error. ---> System.Exception: The Inner Exception
 --- End of inner exception stack trace ---
se4.ToBaseString() == CSharpRecipes.ExceptionHandling+RemoteComponentException: A Test
Message for se4
The server MyServer has encountered an error.
se5.ToBaseString() == CSharpRecipes.ExceptionHandling+RemoteComponentException: A Test
Message for se5
The server MyServer has encountered an error. ---> System.Exception: The Inner Exception
 --- End of inner exception stack trace ---

TEST -OVERRIDDEN- == OPERATOR
se1 == se1 == False
se2 == se1 == False
se3 == se1 == False

se4 == se1 == False
se5 == se1 == False
se5 == se4 == True
TEST -OVERRIDDEN- != OPERATOR
se1 != se1 == True
se2 != se1 == True
se3 != se1 == True
se4 != se1 == True
se5 != se1 == True
se5 != se4 == False

TEST -OVERRIDDEN- GETBASEEXCEPTION METHOD
se1.GetBaseException() == An error has occurred in a server component of this client.
Server Name:
Server component failed to notify of the underlying exception!
StackTrace of client component:
se2.GetBaseException() == An error has occurred in a server component of this client.
Server Name:
Server component failed to notify of the underlying exception!
StackTrace of client component:
se3.GetBaseException() == System.Exception: The Inner Exception
se4.GetBaseException() == An error has occurred in a server component of this client.
Server Name: MyServer
Server component failed to notify of the underlying exception!
StackTrace of client component:
se5.GetBaseException() == System.Exception: The Inner Exception

TEST -OVERRIDDEN- GETHASHCODE METHOD
se1.GetHashCode() == 757602046
se2.GetHashCode() == 757602046
se3.GetHashCode() == 757602046
se4.GetHashCode() == -1303092675
se5.GetHashCode() == -1303092675

TEST SERIALIZATION/DESERIALIZATION

An error has occurred in a server component of this client.
Server Name:
Server component failed to notify of the underlying exception!
StackTrace of client component:

An error has occurred in a server component of this client.
Server Name:
Server component failed to notify of the underlying exception!
StackTrace of client component:

An error has occurred in a server component of this client.
Server Name:
 Inner exception type thrown by server component: Exception
 Message: The Inner Exception
 StackTrace:
StackTrace of client component:

An error has occurred in a server component of this client.
Server Name: MyServer
Server component failed to notify of the underlying exception!
StackTrace of client component:

An error has occurred in a server component of this client.
Server Name: MyServer
 Inner exception type thrown by server component: Exception
 Message: The Inner Exception
 StackTrace:
StackTrace of client component:

END TEST

See Also

See Recipe 17.10; see the "Using User-Defined Exceptions" and "Exception Class" topics in the MSDN
documentation.

Recipe 7.14. Obtaining a Stack Trace

Problem

You need a view of what the stack looks like at any particular point in your application. However, you do
not have an exception object from which to obtain this stack trace.

Solution

Use the following line of code to obtain a stack trace at any point in your application:

 string currentStackTrace = System.Environment.StackTrace;

The variable currentStackTrace now contains the stack trace at the location where this line of code was
executed.

Discussion

A good use of the Solution is tracking down stack overflow problems. You can obtain the current stack
trace at various points in your application and then calculate the stack depth. This depth calculation can
then be logged to determine when and why the stack is overflowing or potential trouble spots where the
stack may grow very large.

It is very easy to obtain a stack trace using the System.Environment.StackTrace property. Unfortunately,
this stack trace also lists three methods defined in the System. Environment class that are called when
you use the Environment.StackTrace property. The returned stack trace, using this method, will look
something like following:

 at System.Environment.GetStackTrace(Exception e)
 at System.Environment.GetStackTrace(Exception e)
 at System.Environment.get_StackTrace()
 at Chapter_Code.Class1.ObtainingStackTrace() in c:\book cs cookbook\test.cs:line 260
 at Chapter_Code.Class1.Main(String[] args) in c:\book cs cookbook\main.cs:line 78

The first three items in the stack trace are method calls that you are not interested in. To fix this, you
can write the following method to find and remove these items from the stack trace:

 public static string GetStackTraceInfo(string currentStackTrace)

 {
 string firstStackTraceCall = "System.Environment.get_StackTrace()";
 int posOfStackTraceCall = currentStackTrace.IndexOf(firstStackTraceCall);
 return (currentStackTrace.Substring(posOfStackTraceCall +
 firstStackTraceCall.Length));
 }

This method is called using the following line of code:

 string stackTraceInfo = GetStackTraceInfo(System.Environment.StackTrace);

The second line in the GetStackTraceInfo method creates and initializes a string variable to the first
called StackTrace methodwhich is actually a call to the get portion of the StackTrace property. This
variable is used in the third line to obtain its starting position in the complete stack trace string. The final
line of code grabs the end of the complete stack trace string, starting at the ending of the first called
StackTrace method. The FinalStackTrace variable now contains the following string:

 at Chapter_Code.Class1.ObtainingStackTrace() in c:\book cs cookbook\test.cs:line 260
 at Chapter_Code.Class1.Main(String[] args) in c:\book cs cookbook\main.cs:line 78

This is the current stack trace at the point in the code where the Environment.StackTrace method was
called.

Now that you have a stack trace of your code, you can calculate the stack depth at the point where you
call Environment.StackTrace . The following code uses a regular expression to determine the depth of a
stack trace:

 using System;
 using System.Text.RegularExpressions;

 public static int GetStackTraceDepth(string currentStackTrace)
 {
 string firstStackTraceCall = "System.Environment.get_StackTrace()";
 int posOfStackTraceCall = currentStackTrace.IndexOf(firstStackTraceCall);
 string finalStackTrace = currentStackTrace.Substring(posOfStackTraceCall +
 firstStackTraceCall.Length);

 MatchCollection methodCallMatches = Regex.Matches(finalStackTrace,
 @"\sat\s.*(\sin\s.*\:line\s\d*)?");
 return (methodCallMatches.Count);
 }

This regular expression captures every method call in the stack trace string. Note that, if the correct
symbols are located for your assembly, the stack trace might look like this:

 at Chapter_Code.Class1.ObtainingStackTrace() in c:\book cs cookbook\test.cs:line 260
 at Chapter_Code.Class1.Main(String[] args) in c:\book cs cookbook\main.cs:line 78

However, if the correct symbols cannot be found, the stack trace string will look similar to the following:

 at Chapter_Code.Class1.ObtainingStackTrace()
 at Chapter_Code.Class1.Main(String[] args)

The file and line numbers are not displayed in this case, and the regular expression must take this into
account.

To get a count of the stack depth, use the Count property of the MatchCollection object to give the total
number of method calls in the stack. In addition, you can obtain each individual method call as an
independent string by iterating through the MatchCollection object. The code to do this is:

 Console.WriteLine("-------------");
 foreach(Match m in MethodCallMatches)
 {
 Console.WriteLine(m.Value + System.Environment.NewLine + "-------------");
 }

This code will display the following:

 at Chapter_Code.Class1.ObtainingStackTrace() in
 c:\book cs cookbook\test.cs:line 260

 at Chapter_Code.Class1.Main(String[] args) in
 c:\book cs cookbook\main.cs:line 78

Each method and its information are contained within a Match object within the MatchCollection object.

The Environment.StackTrace method can be useful as a debugging tool. You can see at various points in
your application which methods have been called and their calling order. This can come in very handy
when creating and debugging an application that uses recursion. In addition, you can also keep track of
the stack depth by using the Environment.StackTrace property.

See Also

See the "Environment.StackTrace Property" topic in the MSDN documentation.

Recipe 7.15. Breaking on a First-Chance Exception

Problem

You need to fix a problem with your code that is throwing an exception. Unfortunately, an exception
handler is trapping the exception, and you are having a tough time pinpointing where and when the
exception is being thrown.

Forcing the application to break on an exception before the application has a chance to handle it is
very useful in situations in which you need to step through the code at the point where the exception
is first being thrown. If this exception were thrown and not handled by your application, the debugger
would intervene and break on the line of code that caused the unhandled exception. In this case, you
can see the context in which the exception was thrown. However, if an exception handler is active
when the exception is thrown, the exception handler will handle it and continue on, preventing you
from being able to see the context at the point where the exception was thrown. This is the default
behavior for all exceptions.

Solution

Select Debug Exceptions within Visual Studio 2005 to display the Exceptions dialog box (see
Figure 7-1). Select the exception from the tree that you want to modify and then click on the
checkbox in the Thrown column in the list view. Click the OK button and then run your application.
Any time the application throws a System.ArgumentOutOfRangeException, the debugger will break on
that line of code before your application has a chance to handle it.

Figure 7-1. The Exceptions dialog box

Using the Exceptions dialog box, you can target specific exceptions or sets of exceptions for which
you wish to alter the default behavior. This dialog has three main sections. The first is the TreeView
control, which contains the list of categorized exceptions. Using this TreeView, you can choose one or
more exceptions or groups of exceptions whose behavior you wish to modify.

The next section on this dialog is the column Thrown in the list next to the Tree-View. This column
contains a checkbox for each exception that will enable the debugger to break when that type of
exception is first thrown. At this stage, the exception is considered a first-chance exception. Checking
the checkbox in the Thrown column forces the debugger to intervene when a first-chance exception
of the type chosen in the TreeView control is thrown. Unchecking the checkbox allows the application
to attempt to handle the first-chance exception.

This dialog contains two helpful buttons, Find and Find Next, to allow you to search for an exception
rather than dig into the TreeView control and search for it on your own. In addition, three other
buttonsReset All, Add, and Deleteare used to reset to the original state and to add and remove user-
defined exceptions, respectively. For example, you can create your own exception, as you did in
Recipe 7.13, and add this exception to the TreeView list. You must add any managed exception such
as this to the TreeView node entitled Common Language Runtime Exceptions. This setting tells the
debugger that this is a managed exception and should be handled as such.

To add a user-defined exception to the TreeView, click the Add button. The dialog box shown in
Figure 7-2 appears.

Figure 7-2. Adding a user-defined exception to the TreeView

Type the name of the exceptionexactly as its class name is spelled with the full namespace
scopinginto the Name field of this dialog box. Do not append any other information to this name,
such as the namespace it resides in or a class name that it is nested within. Doing so will cause the
debugger to fail to see this exception when it is thrown. Clicking the OK button places this exception
into the TreeView under the Common Language Runtime Exceptions node. The Exceptions dialog box
will look something like the one in Figure 7-3 after you add this user-defined exception.

The Delete button deletes any selected user-defined exception that you added to the TreeView. The
Reset All button deletes any and all user-defined exceptions that have been added to the TreeView.
Check the Thrown column to have the debugger stop when that exception type is thrown.

Figure 7-3. The Exceptions dialog box after adding a user-defined
exception to the TreeView

See Also

See the "Exception Handling (Debugging)" topic in the MSDN documentation.

Recipe 7.16. Preventing the Nefarious
TypeInitializationException

Problem

Problems can occur when initializing a class's or a structure's static fields. Some of these problems
are serious enough to raise a TypeInitializationException exception. Unfortunately, this exception
can be hard to track down and can potentially shut down your application. You want to prevent this
from occurring.

Solution

To demonstrate how to handle a TypeInitializationException , take the following example that
initializes static fields to a value, null , or does not initialize them at all (not initializing is not
recommended, of course), as is the case with the following class:

 public class TestInit
 {
 public static object one;
 public static string two = one.ToString();
 }

You should consider rewriting the class to include a static constructor that performs the initialization
of the static fields. This will aid in the debugging of your static fields:

 public class TestInit
 {
 static TestInit()
 {
 try
 {
 one = null;
 two = one.ToString();
 }
 catch (Exception e)
 {
 Console.WriteLine("CAUGHT EXCEPTION IN .CCTOR: " + e.ToString());
 }
 }

 public static object one;
 public static string two;
 }

Discussion

To see this exception in action, run the following method:

 public static void Main()
 {
 // Causes TypeInitializationException
 TestInit c = new TestInit();

 // Replacing this method's code with the following line
 // will produce similar results.
 //TestInit.one.ToString();
 }

This code creates an instance of the TestInit class. You are assured that any static fields of the class
will be initialized before this class is created, and any static constructors on the TestInit class will be
called as well. The TestInit class is written as follows:

 public class TestInit
 {
 public static object one = null;
 public static string two = one.ToString();
 }

As you can see, a NullReferenceException should be thrown on the second static field, since it is
trying to call ToString on an object set to null . If run from the development environment, you will
see the exception dialog pop up. The exception dialog shown is depicted in Figure 7-4 . The application
is blocked until shut down manually through the IDE.

Figure 7-4. An unhandled TypeInitializationException dialog

However, if this executable is run from outside the development environment, the message box
shown in Figure 7-5 is displayed and the application can either be shut down or debugged.

Figure 7-5. An unhandled runtime exception

Now, let's wrap a try-catch block around the Main method, as shown here:

 public static void Main()
 {
 try
 {
 // Causes TypeInitializationException
 TestInit c = new TestInit();
 }
 catch(Exception e)
 {

 Console.WriteLine("CAUGHT EXCEPTION IN CREATING METHOD: " + e.ToString());
 }
 }

When this code is run inside the development environment, the TypeInitializationException is
caught by the new exception handler that you added to the Main method. The text displayed by the
exception handler is shown here:

 CAUGHT EXCEPTION IN CREATING METHOD: System.TypeInitializationException: The type
 initializer for 'TestInit' threw an exception. ---> System.NullReferenceException:
 Object reference not set to an instance of an object.
 at CSharpRecipes.ExceptionHandling.TestInit..cctor() in C:\Book_2_0\Code\
 CSharpRecipes\07_ExceptionHandling.cs:line 729
 --- End of inner exception stack trace ---
 at CSharpRecipes.ExceptionHandling.TestInit..ctor()
 at CSharpRecipes.ExceptionHandling.TestTypeInitFailure() in C:\ \Book_2_0\Code\
 CSharpRecipes\07_ExceptionHandling.cs:line 708

The TypeInitializationException wraps the NullReferenceException that was the original exception
thrown. The runtime provides the TypeInitializationException wrapper automatically.

A third method of trapping this exception is to use the exception event handler. This exception event
handler is described in detail in Recipe 7.10. When only this exception handler is employed with no
supporting try-catch or try-catch-finally blocks, the following events occur when running the
executable in the development environment:

The exception dialog shown in Figure 7-4 is displayed.1.

The event exception handler intercepts the exception before the application is terminated. When
the executable is run standalone, the message box in Figure 7-5 is displayed first. Then, the
event exception handler intercepts the exception, and, finally, the application is terminated.

2.

The second method seems to work best; use TRy-catch blocks at a minimum around code that will
potentially cause static fields to initialize.

There is a way to eliminate the TypeInitializationException from the picture. You can simply
initialize your class's or structure's static fields within the appropriate static constructor(s), first
presented in the Solution section of this recipe and shown again here:

 public class TestInit
 {

 static TestInit()
 {
 try

 {
 one = null;
 two = one.ToString();
 }
 catch (Exception e)
 {
 Console.WriteLine("CAUGHT EXCEPTION IN .CCTOR: " + e.ToString());
 }
 }

 public static object one;
 public static string two;
 }

When this code is executed, the catch block captures the real exception and there is no fear of the
application shutting down. The text displayed by the catch block is as follows:

 CAUGHT EXCEPTION IN .CCTOR: System.NullReferenceException: Object reference not set
 to an instance of an object.
 at Chapter_Code.TestInit..cctor() in c:\book cs cookbook\code\test.cs:line 191

This is much cleaner and more elegant than the other solutions. In addition, tracking down the source
of the bug is much easier. As a note, this exception now operates in the same manner regardless of
whether the application is being run in the development environment.

See Also

See the "Error Raising and Handling Guidelines" and " TypeInitializationException Class" topics in the
MSDN documentation.

Recipe 7.17. Handling Exceptions Thrown from an
Asynchronous Delegate

Problem

When using a delegate asynchronously, you want to be notified if the delegate has thrown any
exceptions.

Solution

Wrap the EndInvoke method of the delegate in a try/catch block:

 using System;
 using System.Threading;

 public class AsyncAction
 {
 public void PollAsyncDelegate()
 {
 // Create the async delegate to call Method1 and call its BeginInvoke method.
 AsyncInvoke MI = new AsyncInvoke(TestAsyncInvoke.Method1);
 IAsyncResult AR = MI.BeginInvoke(null, null);

 // Poll until the async delegate is finished.
 while (!AR.IsCompleted)
 {
 System.Threading.Thread.Sleep(100);
 Console.Write('.');
 }
 Console.WriteLine("Finished Polling");

 // Call the EndInvoke method of the async delegate.

 try
 {
 int RetVal = MI.EndInvoke(AR);
 Console.WriteLine("RetVal: " + RetVal);
 }
 catch (Exception e)
 {
 Console.WriteLine(e.ToString());
 }
 }

 }

The following code defines the AsyncInvoke delegate and the asynchronously invoked static method
TestAsyncInvoke.Method1 :

 public delegate int AsyncInvoke();

 public class TestAsyncInvoke
 {
 public static int Method1()
 {
 throw (new Exception("Method1")); // Simulate an exception being thrown.
 }
 }

Discussion

If the code in the PollAsyncDelegate method did not contain a call to the delegate's EndInvoke method,
the exception thrown in Method1 either would simply be discarded and never caught or, if the application
had the top, level exception handlers wired up (Recipes 7.10 and 7.20) it would be caught. If EndInvoke is
called, then this exception would occur when EndInvoke is called and could be caught there. This behavior
is by design; for all unhandled exceptions that occur within the thread, the thread immediately returns to
the thread pool and the exception is lost.

If a method that was called asynchronously through a delegate throws an exception, the only way to trap
that exception is to include a call to the delegate's EndInvoke method and wrap this call in an exception
handler. The EndInvoke method must be called to retrieve the results of the asynchronous delegate; in
fact, the EndInvoke method must be called even if there are no results. These results can be obtained
through a return value or any ref or out parameters of the delegate.

See Also

For more on calling delegates asynchronously, see Recipe 9.4.

For information about wiring up top-level exception handlers in your application, see Recipes 7.10 and
7.20.

Recipe 7.18. Giving Exceptions the Extra Info They Need
with Exception.Data

Problem

You want to send some additional information along with an exception.

Solution

Use the Data property on the System.Exception object to store key-value pairs of information
relevant to the exception.

For example, say there is a System.ArgumentException being thrown from a section of code and you
want to include the underlying cause and the length of time it took. The code would add two key-
value pairs to the Exception.Data property by specifying the key in the indexer and then assigning
the value.

In the example that follows, the Data for the irritable exception uses "Cause" and "Length" for its
keys. Once the items have been set in the Data collection, the exception can be thrown and caught,
and more data can be added in subsequent catch blocks for as many levels of exception handling as
the exception is allowed to traverse.

 try
 {
 try
 {
 try
 {
 try
 {
 ArgumentException irritable =
 new ArgumentException("I'm irritable!");
 irritable.Data["Cause"]="Computer crashed";
 irritable.Data["Length"]=10;
 throw irritable;
 }
 catch (Exception e)
 {
 // See if I can help…
 if(e.Data.Contains("Cause"))
 e.Data["Cause"]="Fixed computer";
 throw;

 }
 }
 catch (Exception e)
 {
 e.Data["Comment"]="Always grumpy you are";
 throw;
 }
 }
 catch (Exception e)
 {
 e.Data["Reassurance"]="Error Handled";
 throw;
 }
 }

The final catch block can then iterate over the Exception.Data collection and display all of the
supporting data that has been gathered in the Data collection since the initial exception was thrown:

 catch (Exception e)
 {
 Console.WriteLine("Exception supporting data:");
 foreach(DictionaryEntry de in e.Data)
 {
 Console.WriteLine("\t{0} : {1}",de.Key,de.Value);
 }
 }

Discussion

Exception.Data is an object that supports the IDictionary interface. This allows you to:

Add and remove name-value pairs

Clear the contents

Search the collection to see if it contains a certain key

Get an IDictionaryEnumerator for rolling over the collection items

Index into the collection using the key

Access an ICollection of all of the keys and all of the values separately

It is a very handy thing to be able to tack on code-specific data to the system exceptions, as it
provides the ability to give a more complete picture of what happened in the code when the error
occurred. The more information available to the poor soul (probably yourself) who is trying to figure

out why the exception was thrown in the first place, the better the chance of it being fixed. Do
yourself and your team a favor and give a little bit of extra information when throwing exceptions;
you won't be sorry you did.

See Also

See the "Exception.Data Property" topic in the MSDN documentation.

Recipe 7.19. Looking at Exceptions in a New Way Using
Visualizers

Problem

You want to see all of the exception data laid out differently from Visual Studio's presentation, as your
exceptions usually have multiple inner exceptions showing the root cause.

Solution

Create a debugger visualizer by deriving a class from Microsoft.VisualStudio. DebuggerVisualizers.
DialogDebuggerVisualizer that can be plugged in to Visual Studio for all exception types. The easiest way to
create one of these is to create a class library project and then add a class that derives from
DialogDebuggerVisualizer . You will create the ExceptionVisualizer to show exceptions with a focus on
getting right to the inner exception information. The ExceptionDisplay class is implemented as the
presentation for the ExceptionVisualizer .

First, add a reference to the Microsoft.VisualStudio.DebuggerVisualizers namespace in the class library
project that was created. Now add the using directive like this:

 using Microsoft.VisualStudio.DebuggerVisualizers;

Next declare the ExceptionVisualizer class. The only method you must implement is Show , which passes in
the IDialogVisualizerService and IVisualizerObjectProvider interfaces. To get the exception object that the
visualizer is being asked to display, call the GetObject method on the IVisualizerObjectProvider interface and
cast it to System.Exception . This exception is assigned to a WinForm called ExceptionDisplay by setting the
CurrentException property. ExceptionDisplay is the display piece of the visualizer and will be described in
detail shortly. The second method provided here is the TestShowVisualizer method. This is simply a test
method to make it easier to develop the visualizer. It is rather challenging to develop the visualizer while
running inside of Visual Studio (and the target program); by implementing this test method, you can create a
simple test application to feed the exception directly to the visualizer through the use of the
VisualizerDevelopmentHost . The VisualizerDevelopmentHost class allows you to "sandbox" your visualizer
outside of Visual Studio while still providing it with the interfaces it expects from Visual Studio for data that can
be provided to the host. TestShowVisualizer takes in an exception object and sets up the host, then calls
ShowVisualizer to invoke the visualizer code with the given exception object:

 namespace ExceptionalVisualizer
 {
 public class ExceptionVisualizer : DialogDebuggerVisualizer
 {
 override protected void Show(IDialogVisualizerService windowService,

 IVisualizerObjectProvider objectProvider)
 {
 ExceptionDisplay display = new ExceptionDisplay();
 display.CurrentException = (Exception)objectProvider.GetObject();
 display.ShowDialog();
 }

 public static void TestShowVisualizer(object exception)
 {
 VisualizerDevelopmentHost visualizerHost =
 new VisualizerDevelopmentHost(exception,
 typeof(ExceptionVisualizer));
 visualizerHost.ShowVisualizer();
 }
 }
 }

ExceptionDisplay is a Windows Form that allows for displaying an exception in a more tabular format that shows
very quickly the inner exception information, as shown in Figure 7-6 . The code for the ExceptionDisplay is
found in the sample code in the ExceptionDisplay.cs file.

Figure 7-6. ExceptionDisplay window showing exception details

The context menu provides access to the Message Box shown in Figure 7-7 when you right-click on one of the
exception types. It allows you to see the call stack for the exception.

Figure 7-7. Call stack display information from ExceptionDisplay

Or the exception data can be copied to the clipboard, as shown in Figure 7-8 .

Figure 7-8. Result from copying exception data to the clipboard

The clipboard data appears in XML format, as shown in Example 7-7 .

Example 7-7. Exception data in XML format

<ApplicationException_0>
 <Message>Problems calling level 1</Message>
 <Source>TestVisualizer</Source>
 <StackTrace> at TestVisualizer.MainClass.StartExceptionChain() in C:\PRJ32\Book_2_0\
TestCode\TestVisualizer\Main.cs:line 30
 at TestVisualizer.MainClass.Main(String[] args) in C:\PRJ32\Book_2_0\TestCode\
TestVisualizer\Main.cs:line 13</StackTrace>
 <HelpLink />
 <TargetSite />
 <Data />
 <InnerExceptions>
 <InvalidOperationException_1>
 <InnerMessage>Problems calling level 2</InnerMessage>
 <InnerSource>TestVisualizer</InnerSource>
 <InnerStackTrace> at TestVisualizer.MainClass.CallLevel1() in C:\PRJ32\Book_2_0\
TestCode\TestVisualizer\Main.cs:line 42
 at TestVisualizer.MainClass.StartExceptionChain() in C:\PRJ32\Book_2_0\TestCode\
TestVisualizer\Main.cs:line 26</InnerStackTrace>
 <InnerHelpLink />
 <InnerTargetSite />
 <InnerData />
 <NotSupportedException_2>
 <InnerMessage>Level 2 calls are not supported</InnerMessage>
 <InnerSource>TestVisualizer</InnerSource>
 <InnerStackTrace> at TestVisualizer.MainClass.CallLevel2() in C:\PRJ32\Book_2_
0\TestCode\TestVisualizer\Main.cs:line 48
 at TestVisualizer.MainClass.CallLevel1() in C:\PRJ32\Book_2_0\TestCode\TestVisualizer\
Main.cs:line 38</InnerStackTrace>
 <InnerHelpLink />
 <InnerTargetSite />

 <InnerData />
 </NotSupportedException_2>
 </InvalidOperationException_1>
 </InnerExceptions>
</ApplicationException_0>

The other important part of setting up the visualizer infrastructure is that the class library needs to display the
System.Diagnostics. DebuggerVisualizerAttribute for each object type it is going to support. To support
System. Exception , the following attribute is necessary:

 [assembly: System.Diagnostics.DebuggerVisualizer(
 typeof(ExceptionalVisualizer.ExceptionVisualizer),
 typeof(VisualizerObjectSource),
 Target = typeof(System.Exception),
 Description = "Exception Visualizer")]

The DebuggerVisualizerAttribute can have the properties listed in Table 7-3 .

Table 7-3. DebuggerVisualizerAttribute properties

Property Description

Description Description of the visualizer

Target
The target type for the visualizer to be available for when the attribute is
applied at the assembly level

TargetTypeName
Specifies the fully qualified type name when the attribute is applied at the
assembly level

VisualizerObjectSourceTypeName The fully qualified type name of the visualizer object

VisualizerTypeName The fully qualified name of the visualizer type

Once the Visualizer is built, it needs to be deployed to one or both of the following locations:

Visual Studio Install Directory>\Common7\Packages\Debugger\Visualizers (for all users)

My Documents>\Visual Studio\Visualizers (for the current user)

This is where Visual Studio 2005 looks for the visualizers on debugging startup so that they can be loaded into
the processes. The visualizer is accessed through a magnifying glass icon when the mouse hovers over an
exception object in the debugger, as shown in Figure 7-9 . Select the down arrow and choose the type of
visualizer to use. These type names are taken from the Description property of the
DebuggerVisualizerAttribute .

Figure 7-9. DebuggerVisualizer selection window in Visual Studio

Discussion

There is one big gotcha when building a debugger visualizer. If you pick a common base type (like
System.Exception) and register the visualizer for that base type, you get only the base type occurrences. For
System.Exception this means that the ExceptionVisualizer would be brought up only in the visualizer list for
System.Exception exceptions. This being less than ideal for a more general purpose viewer such as we're
creating here, there is a bit more automation code to help create the attributes to place on the
ExceptionVisualizer .

Since the DebuggerVisualizerAttribute is at assembly scope, it is possible to have a separate C# file (*.cs)
that holds nothing but the attributes for the exception types that the ExceptionVisualizer should support. To
create this file with all of the exception types in the framework, the code enumerates the assemblies in the
current framework directory and creates a DebuggerVisualizerAttribute for each type with System.Exception
as the base class. To do this, a bit of code from Recipes 13.8, 20.4, and 20.6 is borrowed to get the exception
types as shown in GetExceptionTypes in Example 7-8 , which returns a List<Type> .

Example 7-8. GetExceptionTypes class

public static List<Type> GetExceptionTypes()
{
 // Init our list
 List<Type> exceptionTypes = new List<Type>(100);
 List<string> typeFullNames = new List<string>(100);

 // Get the System.Exception type to reflect on.
 Type type = Type.GetType("System.Exception");
 // Get the framework directory (20.5).
 string frameworkDir = GetCurrentFrameworkPath();
 string[] asmFiles = Directory.GetFiles(frameworkDir, "*.dll",
 SearchOption.AllDirectories);
 foreach (string asmFile in asmFiles)
 {
 // Check the current module for subclasses of System.Exception.
 List<Type> subClasses = null;
 try
 {
 // Get the subclasses in this assembly for System.Exception
 // from Recipe 13.8.
 subClasses = GetSubClasses(asmFile, type);
 }
 catch (FileLoadException)
 {

 // Might not be a .NET assembly so skip it
 continue;
 }

 // Write out the subclasses for this type.
 if (subClasses.Count > 0)
 {
 // Store the new types from this assembly.
 foreach (Type t in subClasses)
 {
 if (!exceptionTypes.Contains(t))
 {
 // Skip crt exceptions.
 if ((t.FullName.IndexOf("<CrtImplementationDetails>") == -1)&&
 (t.FullName.IndexOf("com.") == -1))
 {
 // Some types have different AQNs but same FullName.
 // Filter them out.
 if (!typeFullNames.Contains(t.FullName))
 {
 // No nested exception classes as they are
 // usually private
 if (!t.FullName.Contains("+"))
 {
 typeFullNames.Add(t.FullName);

 // Just work on public exceptions.
 if ((t.Attributes & TypeAttributes.Public) != 0)
 exceptionTypes.Add(t);
 }
 }
 }
 }
 }
 }
 }
 return exceptionTypes;
}

Once you have the list of exceptions, then you can crank out the attributes in the C# file by rolling over the
types and calling the WriteDebuggerVisualizerAttribute method for each exception we want the
ExceptionVisualizer to support:

 static void Main(string[] args)
 {
 try
 {
 // Get all of the exception types.

 List<Type> exceptionTypes = GetExceptionTypes();
 List<Assembly> assembliesReferenced = new List<Assembly>(100);

 FileStream fs =
 new FileStream(@"..\..\..\ExceptionSupport.cs",
 FileMode.OpenOrCreate, FileAccess.Write);
 StreamWriter writer = new StreamWriter(fs);

 // Add the initial using statement.
 writer.WriteLine("// Generated on " + DateTime.Now.ToString("F") +
 " by ExceptionSupportCreator");
 writer.WriteLine("using Microsoft.VisualStudio.DebuggerVisualizers;");
 writer.WriteLine("");
 foreach (Type t in exceptionTypes)
 {
 if (!ignoreAssemblies.Contains(t.Assembly.FullName))
 {
 if (!assembliesReferenced.Contains(t.Assembly))
 {
 writer.WriteLine("//Adding for assembly " +
 t.Assembly.FullName);
 assembliesReferenced.Add(t.Assembly);
 }
 WriteDebuggerVisualizerAttribute(t, writer);
 }
 }
 writer.WriteLine("");
 writer.WriteLine("");
 writer.WriteLine("// Add references for these assemblies");
 foreach (Assembly assm in assembliesReferenced)
 {
 writer.WriteLine("// {0}", assm.FullName);
 }
 writer.Flush();
 writer.Close();
 }
 catch (Exception ex)
 {
 Console.WriteLine(ex.ToString());
 }
 }

The WriteDebuggerVisualizerAttribute method is shown here:

 public static void WriteDebuggerVisualizerAttribute(Type t, StreamWriter writer)
 {
 // Write out the debugger visualizer attrib for this exception type
 writer.WriteLine("");
 writer.WriteLine("[assembly: System.Diagnostics.DebuggerVisualizer(");

 writer.WriteLine("typeof(ExceptionalVisualizer.ExceptionVisualizer),");
 writer.WriteLine("typeof(VisualizerObjectSource),");
 writer.WriteLine("Target = typeof(" + t.FullName + "),");
 writer.WriteLine("Description = \"Exception Visualizer\")]");
 writer.WriteLine("");
 }

Once the ExceptionSupport.cs file is created, it is built into the class library containing the visualizer, and then
the visualizer will support all of the various exception types. In order for this to compile correctly, the
references to the framework assemblies with the exceptions must be added.

See Also

See Recipes 13.8, 20.4, and 20.6; see the "DebuggerVisualizerAttribute" topic in the MSDN documentation.

Recipe 7.20. Dealing with Unhandled Exceptions in
WinForms Applications

Problem

You have a WinForms-based application in which you want to catch and log any unhandled
exceptions on any thread.

Solution

You need to hook up handlers for both the System.Windows.Forms.Application. ThreadException
event and the System.appdomain.UnhandledException event. Both of these events need to be hooked
up, as the WinForms support in the Framework does a lot of exception trapping itself. It exposes the
System.Windows.Forms.Application.ThreadException event to allow you to get any unhandled
exceptions that happen on the UI thread that the WinForms and their events are running on. In spite
of its deceptive name, the System.Windows.Forms.Application.ThreadException event handler will
not catch unhandled exceptions on worker threads constructed by the program or from ThreadPool
threads. In order to catch all of those possible routes for unhandled exceptions in a WinForms
application, you need to hook up a handler for the System.appdomain.UnhandledException event that
does catch those (but not the UI thread ones that
System.Windows.Forms.Application.ThreadException does).

To hook up the necessary event handlers to catch all of your unhandled exceptions in a WinForms
application, add the following code to the Main function in your application:

 static void Main()
 {
 // Adds the event handler to catch any exceptions that happen
 // in the main UI thread.
 Application.ThreadException +=
 new ThreadExceptionEventHandler(OnThreadException);

 // Add the event handler for all threads in the appdomain except
 // for the main UI thread.
 appdomain.CurrentDomain.UnhandledException +=
 new UnhandledExceptionEventHandler(CurrentDomain_UnhandledException);

 Application.EnableVisualStyles();
 Application.Run(new Form1());
 }

The System.appdomain.UnhandledException event handler is hooked up to the current appdomain by
using the appdomain.CurrentDomain property, which gives access to the current appdomain. The
ThreadException handler for the application is accessed through the Application.ThreadException
property.

The event handler code is established in the CurrentDomain_UnhandledException and
OnThreadException handler methods. See Recipe 7.10 for more information on the
UnhandledExceptionEventHandler. The ThreadExceptionEventHandler is passed the sender object and
a ThreadExceptionEventArgs object. THReadExceptionEventArgs has an Exception property that
contains the unhandled exception from the WinForms UI thread.

 // Handles the exception event for all other threads
 static void CurrentDomain_UnhandledException(object sender,
 UnhandledExceptionEventArgs e)
 {
 // Just show the exception details.
 MessageBox.Show("CurrentDomain_UnhandledException: " +
 e.ExceptionObject.ToString());
 }

 // Handles the exception event from a UI thread
 static void OnThreadException(object sender, ThreadExceptionEventArgs t)
 {
 // Just show the exception details.
 MessageBox.Show("OnThreadException: " + t.Exception.ToString());
 }

Discussion

Exceptions are the primary way to convey errors in .NET, so when you build an application it is
imperative that there be a final line of defense against unhandled exceptions. An unhandled exception
will crash the program (even if it looks a bit nicer in .NET); this is not the impression you wish to
make on your customers. It would have been nice to have one event to hook up to for all unhandled
exceptions. The appdomain.UnhandledException event comes pretty close to that, but having to do
handle one extra event isn't the end of the world either. In coding event handlers for both
appdomain.UnhandledException and Application.ThreadException, you can easily call a single handler
that writes the exception information to the event log, the debug stream, or custom trace logs or
even sends you an email with the information. The possibilities are limited only by how you want to
handle errors that can happen to any program given enough exposure.

See Also

See Recipe 7.10; see the "Error Raising and Handling Guidelines," "Thread-ExceptionEventHandler
Delegate," and "UnhandledExceptionEventHandler Delegate" topics in the MSDN documentation.

Chapter 8. Diagnostics

Introduction

The FCL contains many classes to obtain diagnostic information about your application, as well as the
environment it is running in. In fact, there are so many classes that a namespace,
System.Diagnostics, was created to contain all of them. This chapter contains recipes for
instrumenting your application with debug/trace information, obtaining process information, using the
built-in event log, and taking advantage of performance counters.

Debugging (using the Debug class) is turned on by default in debug builds only, and tracing (using the
trace class) is turned on by default in both debug and release builds. These defaults allow you to ship
your application instrumented with tracing code using the trace class. You ship your code with tracing
compiled in but turned off in the configuration so that the tracing code is not called (for performance
reasons) unless it is a server-side application (where the value of the instrumentation may outweigh
the performance hit). If a problem that you cannot re-create on your development computer occurs
on a production machine, you can enable tracing and allow the tracing information to be dumped to a
file. This file can be inspected to help pinpoint the real problem. This usage is discussed at length in
Recipes 8.1 and 8.2.

Since both the Debug and trace classes contain the same members with the same names, they can
be interchanged in your code by renaming Debug to trace and vice versa. Most of the recipes in this
chapter use the trace class; you can modify those recipes so that they use the Debug class by
replacing each trace with Debug in the code.

Recipe 8.1. Controlling Tracing Output in Production
Code

Problem

Mysterious bugs often appear at the client's site, even after the application is thoroughly tested. Most
of the time these bugs are difficult, if not impossible, to reproduce on your development machine.
Knowing this, you want an application with built-in instrumentation that's off by default but can easily
be turned on when you need it.

Solution

Use the trace class for any tracing code that you might need to turn on after your application has
been deployed. To turn on tracing at a client's site, provide the client with an application
configuration file such as this one:

 <?xml version="1.0" encoding="utf-8" ?>
 <configuration>
 <system.diagnostics>
 <switches>
 <add name="DatabaseSwitch" value="4"/>
 <!-- 4 == TraceLevel.Verbose -->
 </switches>

 <trace autoflush = "true" indentsize = "2">
 <listeners>
 <add name = "MyListener"
 type = "System.Diagnostics.TextWriterTraceListener"
 initializeData = " MyFileName.log"/>
 </listeners>
 </trace>
 </system.diagnostics>
 </configuration>

Discussion

Allowing tracing code to be enabled and used at a client site can be extremely useful when debugging
problems in release code. This technique is even more useful when the problem cannot easily be

reproduced in-house. For this reason, it isin some casesa wise practice to use the trace class instead
of the Debug class when adding tracing code to your application.

To control the trace output at a client site, you can use an XML config file. This XML file must have
the same base name as the executable that is to use these switches, followed by an extension of
.exe.config. For example, if the executable name were Accounting.exe, the configuration file would
be named Accounting.exe.config. This file should be placed in the same directory as the executable
Accounting.exe.

The application configuration file always consists of the following two outer elements for diagnostic
information:

 <configuration>
 <system.diagnostics>
 …
 </system.diagnostics>
 </configuration>

(The configuration element may contain other child elements besides the system.diagnostics
element.)

Within these elements, the switches and Trace elements may be added. These two elements contain
information specific to switches and listeners. If your code contains a traceSwitch (as shown in the
next example) or BooleanSwitch objector any other type derived from the Switch classyou can
control this object's trace-level setting through the <switches> element in the configuration file:

 private static TraceSwitch ts = new TraceSwitch("DatabaseSwitch",
 "Only allow database transactions to be logged");

The listeners element shown in the Solution adds a new traceListener-derived object to the
listeners collection. Learn more about TRaceListener in Recipe 8.2. Any trace or Debug statements
will use this new listener.

The switches element of the Solution can contain the three elements defined here:

<clear/>

Clears any previously added switch. In the world of ASP.NET, where web.config files are
nested, this can be useful to clear settings that are inherited from previous configuration files.

<add name="Switch_Name" value="Number"/>

Adds new switch initialization information to be used at runtime. The name attribute defines the
name of the switch that is used in your code. The value attribute is set to a number that turns

the switch either on or off, in the case of a BooleanSwitch class, or defines the switch level
(e.g., the amount of output you wish to receive), in the case of a traceSwitch class. To turn on
a BooleanSwitch, use a nonzero value (negative numbers work here, too); to turn it off, use
zero.

<remove name="Switch_Name"/>

Removes switch initialization information at runtime. The name attribute defines the name of
the switch that is used in your code.

Immediately after the switches tags in the Solution are the TRace tags, although the ordering of
these tags is up to you. The TRace tags can contain the following two optional attributes:

autoflush = true|false

Indicates whether the listener automatically flushes its buffer after every write (true) or not
(false)

indentsize = "4"

Specifies the number of indent characters to use when indenting the output

Within the trace tags are the listeners tags, which, in turn, can contain any of the following defined
tags:

<clear/>

Clears any previously added listeners. This tag also removes the DefaultTraceListener from
the listeners collection.

<add name= "Listener_Name" type="Listener_Fully_Scoped_Type_Name"
initializeData="String_Passed_Into_CTOR"/>

Adds a new listener to any trace and Debug classes used in your application. The name attribute
defines the name of the listener that is used in your code. The type attribute is set to the
listener's class name. The optional initializeData attribute allows a string to be passed in to
the constructor of this listener. If you are using a custom listener, you will need to include a
constructor that accepts a string as the only argument to prevent an exception from being
thrown.

<remove name = "MyListener"/>

Removes a listener at runtime. The name attribute defines the name of the listener to be
removed. This could be useful if another configuration file, such as he machine.config file, has
already added a listener or if any listeners were created through your application's code. If
more than one listener is added, the output will be written out twiceonce for each listener.

Regardless of whether your code defines trACE and/or DEBUG, the code will attempt to access this file
for switch initialization information if a class derived from Switch is instantiated. The Switch class is
discussed in Recipe 8.3. If you wish to prevent this behavior, place any code that instantiates a switch
class inside of a method decorated with the ConditionalAttribute attribute:

 public class Traceable
 {
 BooleanSwitch DBSwitch = null;
 BooleanSwitch UISwitch = null;
 BooleanSwitch exceptionSwitch = null;

 [System.Diagnostics.ConditionalAttribute("TRACE")]
 public void EnableTracing()
 {

 DBSwitch = new BooleanSwitch("DatabaseSwitch",
 "Switch for database tracing");
 UISwitch = new BooleanSwitch("UISwitch",
 "Switch for user interface tracing");
 exceptionSwitch = new BooleanSwitch("ExceptionSwitch",
 "Switch for tracing thrown exceptions");
 }
 }

The ConditionalAttribute attribute prevents your application from calling the EnableTracing method
when trACE is undefined and thereby keeps the switches from being used.

In addition to the application configuration file (MyApp.exe.config), a machine.config file is also
located in the directory <Common Language Runtime install path>\CONFIG\. The configuration tags
and all of their containing elements may be placed in this file as well. However, doing so will enable
these switches and listeners on a machinewide level. This can cause applications that define their own
listeners to behave strangely, especially if the listeners are duplicated. Additionally, the application
will look for configuration information in the application configuration file first and the machine.config
file second.

The application configuration file and the machine configuration file are both case-sensitive. Be sure
that your tag names and their attributes are in the correct case. However, the string assigned to the
name attribute does not seem to be case-sensitive, while other strings assigned to attributes are.

See Also

See the "Trace and Debug Settings Schema" topic in the MSDN documentation.

Recipe 8.2. Providing Fine-Grained Control over
Debugging/Tracing Output

Problem

Your application consists of multiple components. You need, at specific times, to turn on debug/trace
output for a select few components, while leaving all other debug/trace output turned off. In addition,
you need control over the type and amount of information that is produced by the trace/Debug
statements.

Solution

Use the BooleanSwitch class with an application configuration file (*.config). The following method
creates three switches for your application: one that controls tracing for database calls, one that
controls tracing for UI components, and one that controls tracing for any exceptions that are thrown
by the application:

 public class Traceable
 {
 BooleanSwitch DBSwitch = null;
 BooleanSwitch UISwitch = null;
 BooleanSwitch exceptionSwitch = null;

 [System.Diagnostics.ConditionalAttribute("TRACE")]
 public void EnableTracing()
 {

 DBSwitch = new BooleanSwitch("DatabaseSwitch",
 "Switch for database tracing");
 Console.WriteLine("DBSwitch Enabled = " + DBSwitch.Enabled);

 UISwitch = new BooleanSwitch("UISwitch",
 "Switch for user interface tracing");
 Console.WriteLine("UISwitch Enabled = " + UISwitch.Enabled);

 exceptionSwitch = new BooleanSwitch("ExceptionSwitch",
 "Switch for tracing thrown exceptions");
 Console.WriteLine("ExceptionSwitch Enabled = " + exceptionSwitch.Enabled);
 }
 }

After creating each switch, the Enabled property is displayed, indicating whether the switch is on or
off.

Creating these switches without an application configuration file results in every switch being
disabled. To control what state each switch is set to, use an application configuration file, shown
here:

 <?xml version="1.0" encoding="utf-8" ?>
 <configuration>
 <system.diagnostics>
 <switches>
 <clear/>
 <add name="DatabaseSwitch" value="1" />
 <add name="UISwitch" value="0" />
 <add name="ExceptionSwitch" value="0" />
 </switches>
 </system.diagnostics>
 </configuration>

The TraceSwitch class can also be used with an application configuration file (AppName.exe.config).
The following method creates a new TRaceSwitch object with a level assigned by the application
configuration file:

 public class Traceable
 {
 TraceSwitch DBFilterSwitch = null;
 TraceSwitch UIFilterSwitch = null;
 TraceSwitch exceptionFilterSwitch = null;

 public void SetTracingFilter()
 {
 DBFilterSwitch = new TraceSwitch("DatabaseFilter",
 "Filter database output");
 Console.WriteLine("DBFilterSwitch Level = " + DBFilterSwitch.Level);

 UIFilterSwitch = new TraceSwitch("UIFilter",
 "Filter user interface output");
 Console.WriteLine("UIFilterSwitch Level = " + UIFilterSwitch.Level);

 exceptionFilterSwitch = new TraceSwitch("ExceptionFilter",
 "Filter exception output");
 Console.WriteLine("exceptionFilterSwitch Level = "
 + exceptionFilterSwitch.Level);
 }
 }

After creating each filter switch, the Level property is displayed to indicate the switch's level.

Creating these switches at this point results in every switch's level being set to zero. To turn them
on, use an application configuration file, shown here:

 <?xml version="1.0" encoding="utf-8" ?>
 <configuration>
 <system.diagnostics>
 <switches>
 <clear/>
 <add name="DatabaseFilter" value="4" />
 <add name="UIFilter" value="0" />
 <add name="ExceptionFilter" value="1" />
 </switches>
 </system.diagnostics>
 </configuration>

This XML file contains a nested tag called switches. This tag defines switch names and sets a value
indicating the level of the switch. The traceSwitch class accepts the five predefined trace levels
shown in Table 8-1. The level of the traceSwitch can be set through code, but that defeats the
flexibility of using a configuration file.

Table 8-1. The TraceSwitch class's tracing levels

Level name Value Default

Off 0 Yes

Error 1 No

Warning 2 No

Info 3 No

Verbose 4 No

For more information on the application configuration file, see Recipe 8.1.

Discussion

Turning tracing on or off involves the BooleanSwitch class. When the BooleanSwitch is created, it
attempts to locate a switch with the same name as the displayName parameter in either the

machine.config or application configuration file. If it cannot locate this name in either file,

BooleanSwitch.Enabled is set to false.

The application configuration file for a WinForms-or Console-based application is an XML file named
with the assembly's name followed by .exe.config. An ASP.NET-based web application can have
multiple web.config files (one in each directory of the application). An application will automatically
use the configuration file(s) that is (are) appropriate; however, the top-level configuration file must
be in the same main directory as the application. Notice the switches tag nested inside the system.
diagnostics element. This tag allows switches to be added and their values set. For Boolean
switches, a zero turns the switch off, and any other positive or negative number turns it on. The
Enabled property of the BooleanSwitch can be set through code or by setting the value in the config
file.

This XML file must have the same name as the executable using these switches, followed by .config.
For example, if the executable name were Accounting.exe, the configuration file would be named
Accounting.exe.config. This file should be placed in the same directory as the executable
Accounting.exe. For more information on this file, see Recipe 8.1.

The application configuration file can also set trace and debug output levels in this same switches
tag. These levels identify the scope of the output, for example, if the output will contain only warnings,
only errors, only informational messages, or some combination thereof. The level specified is the
maximum trace level for the switch so it includes all levels below it up through that level. Of course,
this is only an example; you may define your own levels as well. For more information on controlling
these output levels, see Recipe 8.3.

The TraceSwitch class operates similarly to the BooleanSwitch class, except that the traceSwitch
class encapsulates the available levels that control the type and amount of debug/trace output. The
BooleanSwitch class is simply an on/off switch used to enable or disable debugging/tracing.

When the traceSwitch is created, it attempts to locate a switch with the same name as the
displayName parameter in either the machine.config or application configuration files. If it cannot

locate this name in either file, the traceSwitch.Level property is set to zero.

The application configuration file can also enable or disable trace and debug output in this same
switches tag. For more information on this topic, see Recipe 8.1.

See Also

See Recipes 8.1 and 8.3; see the "BooleanSwitch Class" and "trace and debug Settings Schema"
topics in the MSDN documentation.

Recipe 8.3. Creating Your Own Custom Switch Class

Problem

The BooleanSwitch and traceSwitch classes defined in the FCL may not always have the required
flexibility or fine-grained control that you need. You want to create a switch class that provides more
control and flexibility. For example, you might want to create a class that allows you to set more
precise trace levels than those supported by the traceSwitch class, which are:

 TraceError
 TraceWarning
 TraceInfo
 TraceVerbose

However, you need a finer-grained set of levels, such as those shown in Table 8-2.

Table 8-2. A set of custom trace levels

Disable MinorError

Note MediumError

Warning CriticalError

Solution

You can create your own switch class that inherits from System.Diagnostics.Switch and provides the
level of control that you need. For example, creating a class that allows you to set more precise trace
levels than those supported by the traceSwitch class involves the following steps:

Define a set of enumerated values that represent the levels to be supported by your switch
class. The following definition implements the levels listed in Table 8-2:

 public enum AppSpecificSwitchLevel
 {

1.

 Disable = 0,
 Note = 1,
 Warning = 2,
 MinorError = 3,
 MediumError = 4,
 CriticalError = 5
 }

Define a class, such as AppSpecificSwitch (shown in Example 8-1), that inherits from
System.Diagnostics.Switch and sets your own levels.

Example 8-1. AppSpecificSwitch, a custom switch class

public class AppSpecificSwitch : Switch
{
 protected AppSpecificSwitchLevel level = 0;

 public AppSpecificSwitch(string displayName, string description)
 : base(displayName, description)
{
 Level = (AppSpecificSwitchLevel)base.SwitchSetting;
}

// Read/write Level property
public AppSpecificSwitchLevel Level
{

 get
 {
 return level;
 }
 set
 {
 if (value < AppSpecificSwitchLevel.Disable)
 {
 level = AppSpecificSwitchLevel.Disable;
 }
 else if (value > AppSpecificSwitchLevel.CriticalError)
 {
 level = AppSpecificSwitchLevel.CriticalError;
 }
 else
 {
 level = value;
 }
 }
}

2.

// Read-only properties for the AppSpecificSwitchLevel enum
public bool Disable
{
 get
 {
 if (level <= AppSpecificSwitchLevel.Disable)
 {
 return (true);
 }
 else
 {

 return (false);
 }
 }
}

public bool Note
{
 get
 {

 if (level <= AppSpecificSwitchLevel.Note)
 {
 return (true);
 }
 else
 {
 return (false);
 }
 }
}

public bool Warning
{
 get
 {
 if (level <= AppSpecificSwitchLevel.Warning)
 {
 return (true);
 }
 else
 {
 return (false);
 }
 }
 }

 public bool MinorError
 {
 get

 {
 if (level <= AppSpecificSwitchLevel.MinorError)
 {
 return (true);
 }
 else
 {
 return (false);
 }
 }
 }

 public bool MediumError
 {
 get
 {
 if (level <= AppSpecificSwitchLevel.MediumError)
 {
 return (true);
 }
 else
 {
 return (false);
 }
 }
 }

 public bool CriticalError
 {
 get
 {
 if (level <= AppSpecificSwitchLevel.CriticalError)
 {
 return (true);
 }
 else
 {
 return (false);
 }
 }
 }
}

In code, you can instantiate this custom class by invoking its constructor:

 AppSpecificSwitch appSwitch = new AppSpecificSwitch("MyApplication",
 "My Application Specific Switch");

3.

4.

Set the switch in the application configuration file. For example, the following configuration file
sets the level of your custom switch to AppSpecificSwitchLevel.CriticalLevel:

 <?xml version="1.0" encoding="utf-8" ?>
 <configuration>
 <system.diagnostics>
 <switches>
 <add name="MyApplication" value="5" />
 </switches>
 </system.diagnostics>
 </configuration>

4.

More information on configuration files can be found in Recipes 8.1 and 8.2.

Discussion

The BooleanSwitch and traceSwitch classes defined in the FCL might not always have the flexibility
that you need. In these cases, you can create a class that inherits from the Switch classthe abstract
base class of all switch type classes.

The critical part of creating a custom switch class is the constructor. The constructor must call its
base class constructor using the :base() syntax. If this syntax is omitted, a compiler error will
appear, indicating that there is no default constructor to call on the base class Switch. You might
notice that the Switch class contains a single public constructor that accepts two string parameters.
This is designed so that you must use this constructor when building an object of this type or any
type derived from it. Calling the base class's constructor also allows the application configuration file
to be searched, if one exists, for any initialization value for this switch object.

You can circumvent the configuration file search by writing the constructor as follows:

 public AppSpecificSwitch(string displayName, string description)
 : base("", description)
 {
 this.Level = (AppSpecificSwitchLevel)base.SwitchSetting;
 }

The other item of interest in this constructor is the one line of code in its body. This line of code grabs
the level information acquired from the application configuration file and sets this inherited class's
Level property to this value. This line is required because the base class is the one that receives the
initialization information from a configuration file, not the inherited class.

This class contains several other properties. The first is the Level property, which gets and sets the
current level of this object. The levels are defined in the AppSpecificSwitchLevel enumeration. This
class also contains a read-only property for each element in the AppSpecificSwitchLevel

enumeration. These can be used to query this object to determine whether its various levels are set.

See Also

See Recipes 8.1 and 8.2; see the "Switch Class" and "Trace and debug Settings Schema" topics in the
MSDN documentation.

Recipe 8.4. Compiling Blocks of Code Conditionally

Problem

Specific blocks of code will be used only in a certain build configuration for your application. These
blocks of code should not be compiled into other builds of the application. You need a way to
conditionally compile specific blocks of code based on the type of build.

Solution

There are two devices for allowing or preventing code from being compiled. The first is to use the C#
preprocessor directives. The available preprocessor directives are:

 #define
 #undef
 #if
 #elif
 #else
 #endif

The #define and #undef preprocessor directives define and undefine symbols. These symbols are then
used by the #if and #elif preprocessor directives to determine whether the blocks of code they
wrap are to be compiled. While it is possible to use this device, it is more likely that the second one
(discussed next) would be used to support multiple build configurations.

The second device for allowing or preventing code from being compiled is to use the
ConditionalAttribute attribute. This allows a method to be compiled based on a defined symbol. This
attribute specifies a method as conditionally compiled in the following manner:

 #define TRACE

 …
 [ConditionalAttribute("TRACE")]
 public void TraceHelp(string message)
 {
 …
 }

The traceHelp method is compiled only when the TRACE preprocessing identifier is defined.

Discussion

The ConditionalAttribute attribute can be used only on methods. It prevents them from being
compiled and called at runtime when the preprocessor identifier passed to the ConditionalAttribute
constructor is undefined. Properties, indexers, and other members cannot have this attribute.

Another limitation of this attribute is that it can be placed only on a method that returns void. This
makes sense, since code that invokes this method doesn't expect a return value and will run
successfully whether or not the method is invoked. For example, in the code:

 int retValue = Car.GetModelNumber();

if the GetModelNumber method is not compiled, then this code will not be able to function correctly.

Along these same lines, a method marked as override cannot be marked with the
ConditionalAttribute attribute. However, the virtual method that a method overrides may be
marked with the ConditionalAttribute attribute. If the virtual method is marked with this attribute,
all methods overriding it are compiled and called based on whether the virtual method is compiled. In
other words, the overriding methods are implicitly marked with the same ConditionalAttribute
attribute as the virtual method. While this is an interesting side effect of marking the base virtual
method, it could cause confusion among developers debugging assemblies that override this method.
If they are not familiar with this, the method may simply appear to be missing for them in certain
builds depending on what the conditional attribute is specified as. As such, it is not recommended
that you do this in practice.

#define and #undef apply only to preprocessor identifiers within a file scope, whereas the /define:
compiler option defines preprocessor identifiers for all files in a project. #define and #undef also take
precedence over the /define: compiler option. For instance, if the project's /define: compiler option
defined TRACE, and one of the files that project contains has the code:

 #undef TRACE

then trACE will be defined for all files except the one containing the #undef TRACE directive.

To set the project's /define: compiler option in Visual Studio .NET, right-click on the project name in
the Solution Explorer tool window, then click the Properties menu item. This step will display the
Property Pages dialog box for this project. Next, click the Configuration Properties node in the tree on
the left side of this dialog box. In the control to the right of this tree, find the line entitled Conditional
Compilation Constants. On this line, you may add or remove any preprocessor identifiers that you
want.

The #if and #elif directives determine what code within a member is to be compiled. For example:

 public void MyMethod()
 {
 #if (TRACE)
 Method1();
 #elif (DEBUG)
 Method2();
 #else
 Method3();
 #endif
 }

MyMethod will call Method1 when trACE is defined, Method2 if trACE is undefined and DEBUG is defined,
and Method3 if both trACE and DEBUG are undefined.

See Also

See the "C# Preprocessor Directives" and "ConditionalAttribute Class" topics in the MSDN
documentation.

Recipe 8.5. Determining Whether a Process Has Stopped
Responding

Problem

You need to watch one or more processes to determine whether the user interface has stopped
responding to the system. This functionality is similar to the column in the TaskManager that displays
the text Responding or Not Responding, depending on the state of the application.

Solution

Use the method and enumeration shown in Example 8-2 to determine whether a process has stopped
responding.

Example 8-2. Determining whether a process has stopped responding

public static ProcessRespondingState IsProcessResponding(Process process)
{
 if (process.MainWindowHandle == IntPtr.Zero)
 {
 Trace.WriteLine("{0} does not have a MainWindowHandle",
 process.ProcessName);
 return ProcessRespondingState.Unknown;
 }
 else
 {
 // This process has a MainWindowHandle.
 if (!process.Responding)
 {
 Trace.WriteLine("{0} is not responding.",process.ProcessName);
 return ProcessRespondingState.NotResponding;
 }
 else
 {
 Trace.WriteLine("{0} is responding.",process.ProcessName);
 return ProcessRespondingState.Responding;
 }
 }
}

public enum ProcessRespondingState
{
 Responding,
 NotResponding,
 Unknown
}

Discussion

The IsProcessResponding method accepts a single parameter, process, identifying a process. The
Responding property is then called on the Process object represented by the process parameter. This

property returns a ProcessRespondingState enumeration value to indicate that a process is currently
responding (Responding), that it is not currently responding (NotResponding), or that response cannot
be determined for this process as there is no main window handle (Unknown)…

The Responding property always returns true if the process in question does not have a
MainWindowHandle. Processes such as Idle, spoolsv, Rundll32, and svchost do not have a main window
handle and therefore the Responding property always returns true for them. To weed out these
processes, you can use the MainWindowHandle property of the Process class, which returns the handle
of the main window for a process. If this property returns zero, the process has no main window.

To determine whether all processes on a machine are responding, you can call the
IsProcessResponding method as follows:

MyObject.ProcessRespondingState state;
foreach (Process proc in Process.GetProcesses())
{
 state = MyObject.IsProcessResponding(proc);
 if (state == MyObject.ProcessRespondingState.NotResponding)
 {
 Console.WriteLine("{0} is not responding.",proc.ProcessName);
 }
}

This code snippet iterates over all processes currently running on your system. The static
GetProcesses method of the Process class takes no parameters and returns an array of Process
objects with information for all processes running on your system. Each Process object is then passed
in to your IsProcessResponding method to determine whether it is responding. Other static methods
on the Process class that retrieve Process objects are GetProcessById, GetCurrentProcess, and
GetProcessesByName.

See Also

See the "Process Class" topic in the MSDN documentation.

Recipe 8.6. Using Event Logs in Your Application

Problem

You need to add the ability for your application to log events that occur in your application, such as
startup, shutdown, critical errors, and even security breaches. Along with reading and writing to a log,
you need the ability to create, clear, close, and remove logs from the event log.

Your application might need to keep track of several logs at one time. For example, your application
might use a custom log to track specific events, such as startup and shutdown, as they occur in your
application. To supplement the custom log, your application could make use of the security log already
built into the event log system to read/write security events that occur in your application.

Support for multiple logs comes in handy when one log needs to be created and maintained on the local
computer and another duplicate log needs to be created and maintained on a remote machine. This
remote machine might contain logs of all running instances of your application on each user's machine.
An administrator could use these logs to quickly find any problems that occur or discover if security is
breached in your application. In fact, an application could be run in the background on the remote
administrative machine that watches for specific log entries to be written to this log from any user's
machine. Recipe 8.9 uses an event mechanism to watch for entries written to an event log and could
easily be used to enhance this recipe.

Solution

Use the event log built into the Microsoft Windows operating system to record specific events that
occur infrequently. The AppEvents class shown in Example 8-3 contains all the methods needed to
create and use an event log in your application.

Example 8-3. Creating and using an event log

using System;
using System.Diagnostics;

public class AppEvents
{
 // Constructors
 public AppEvents(string logName) :
 this(logName, Process.GetCurrentProcess().ProcessName, ".") {}

 public AppEvents(string logName, string source) : this(logName, source, ".") {}

 public AppEvents(string logName, string source, string machineName)
 {

 this.logName = logName;
 this.source = source;
 this.machineName = machineName;

 if (!EventLog.SourceExists(source, machineName))
 {
 EventSourceCreationData sourceData =
 new EventSourceCreationData(source, logName);
 sourceData.MachineName = machineName;

 EventLog.CreateEventSource(sourceData);
 }

 log = new EventLog(logName, machineName, source);
 log.EnableRaisingEvents = true;
 }

 // Fields
 private EventLog log = null;
 private string source = "";
 private string logName = "";
 private string machineName = ".";

 // Properties
 public string Name
 {
 get{return (logName);}
 }

 public string SourceName
 {
 get{return (source);}
 }

 public string Machine
 {
 get{return (machineName);}
 }

 // Methods
 public void WriteToLog(string message, EventLogEntryType type,
 CategoryType category, EventIDType eventID)
 {
 if (log == null)
 {
 throw (new ArgumentNullException("log",
 "This Event Log has not been opened or has been closed."));
 }

 log.WriteEntry(message, type, (int)eventID, (short)category);
 }

 public void WriteToLog(string message, EventLogEntryType type,
 CategoryType category, EventIDType eventID, byte[] rawData)
 {
 if (log == null)
 {
 throw (new ArgumentNullException("log",
 "This Event Log has not been opened or has been closed."));
 }

 log.WriteEntry(message, type, (int)eventID, (short)category, rawData);
 }

 public EventLogEntryCollection GetEntries()
 {
 if (log == null)
 {
 throw (new ArgumentNullException("log",
 "This Event Log has not been opened or has been closed."));
 }

 return (log.Entries);
 }

 public void ClearLog()
 {
 if (log == null)
 {
 throw (new ArgumentNullException("log",
 "This Event Log has not been opened or has been closed."));
 }

 log.Clear();
 }

 public void CloseLog()
 {
 if (log == null)
 {
 throw (new ArgumentNullException("log",
 "This Event Log has not been opened or has been closed."));
 }
 log.Close();
 log = null;
 }

 public void DeleteLog()
 {
 if (EventLog.SourceExists(source, machineName))
 {
 EventLog.DeleteEventSource(source, machineName);
 }

 if (logName != "Application" &&
 logName != "Security" &&
 logName != "System")
 {
 if (EventLog.Exists(logName, machineName))
 {
 EventLog.Delete(logName, machineName);
 }
 }

 if (log != null)
 {
 log.Close();
 log = null;
 }
 }
}

The EventIDType and CategoryType enumerations used in this class are defined as follows:

 public enum EventIDType
 {
 NA = 0,
 Read = 1,
 Write = 2,
 ExceptionThrown = 3,
 BufferOverflowCondition = 4,
 SecurityFailure = 5,
 SecurityPotentiallyCompromised = 6
 }

 public enum CategoryType : short
 {
 None = 0,
 WriteToDB = 1,
 ReadFromDB = 2,
 WriteToFile = 3,
 ReadFromFile = 4,
 AppStartUp = 5,
 AppShutDown = 6,
 UserInput = 7
 }

Discussion

The AppEvents class created for this recipe provides applications with an easy-to-use interface for
creating, using, and deleting single or multiple event logs in your application. Support for multiple logs
comes in handy when one log needs to be created and maintained on the local computer and another
duplicate log needs to be created and maintained on a remote machine. This remote machine might
contain logs of all running instances of your application on each user's machine. An administrator could
use these logs to quickly discover if any problems occur or security is breached in your application. In
fact, an application could be run in the background on the remote administrative machine that watches
for specific log entries to be written to this log from any user's machine. Recipe 8.9 uses an event
mechanism to watch for entries written to an event log and could easily be used to enhance this recipe.

The methods of the AppEvents class are described as follows:

WriteToLog

This method is overloaded to allow an entry to be written to the event log with or without a byte
array containing raw data.

GetEntries

Returns all the event log entries for this event log in an EventLogEntryCollection .

ClearLog

Removes all the event log entries from this event log.

CloseLog

Closes this event log, preventing further interaction with it.

DeleteLog

Deletes this event log and the associated event log source.

An AppEvents object can be added to an array or collection containing other AppEvents objects; each
AppEvents object corresponds to a particular event log. The following code creates two AppEvents
classes and adds them to a ListDictionary collection:

 public void CreateMultipleLogs()
 {
 AppEvents AppEventLog = new AppEvents("AppLog", "AppLocal");
 AppEvents GlobalEventLog = new AppEvents("System", "AppGlobal");

 ListDictionary LogList = new ListDictionary();
 LogList.Add(AppEventLog.Name, AppEventLog);
 LogList.Add(GlobalEventLog.Name, GlobalEventLog);
 }

To write to either of these two logs, obtain the AppEvents object by name from the ListDictionary
object, cast the resultant object type to an AppEvents type, and call the WriteToLog method:

 ((AppEvents)LogList[AppEventLog.Name]).WriteToLog("App startup",
 EventLogEntryType.Information, CategoryType.AppStartUp,
 EventIDType.ExceptionThrown);

 ((AppEvents)LogList[GlobalEventLog.Name]).WriteToLog("App startup security check",
 EventLogEntryType.Information, CategoryType.AppStartUp,
 EventIDType.BufferOverflowCondition);

Containing all AppEvents objects in a ListDictionary object allows you to easily iterate over all the
AppEvents that your application has instantiated. Using a foreach loop, you can write a single message
to both a local and a remote event log:

 foreach (DictionaryEntry Log in LogList)
 {
 ((AppEvents)Log.Value).WriteToLog("App startup",
 EventLogEntryType.FailureAudit,
 CategoryType.AppStartUp, EventIDType.SecurityFailure);
 }

To delete each log in the logList object, you can use the following foreach loop:

 foreach (DictionaryEntry Log in LogList)
 {
 ((AppEvents)Log.Value).DeleteLog();
 }
 LogList.Clear();

You should be aware of several key points. The first concerns a small problem with constructing
multiple AppEvents classes. If you create two AppEvents objects and pass in the same source string to
the AppEvents constructor, an exception will be thrown. Consider the following code, which instantiates
two AppEvents objects with the same source string:

 AppEvents appEventLog = new AppEvents("AppLog", "AppLocal");
 AppEvents globalEventLog = new AppEvents("Application", " AppLocal");

The objects are instantiated without errors, but when the WriteToLog method is called on the
globalEventLog object, the following exception is thrown:

 An unhandled exception of type 'System.ArgumentException' occurred in system.dll.

 Additional information: The source 'AppLocal' is not registered in log 'Application'.
 (It is registered in log 'AppLog'.) " The Source and Log properties must be matched,
 or you may set Log to the empty string, and it will automatically be matched to the
 Source property.

This exception occurs because the WriteToLog method internally calls the WriteEntry method of the
EventLog object. The WriteEntry method internally checks to see whether the specified source is
registered to the log you are attempting to write to. In this case, the AppLocal source was registered to
the first log it was assigned tothe AppLog log. The second attempt to register this same source to
another log, Application , failed silently. You do not know that this attempt failed until you try to use
the WriteEntry method of the EventLog object.

Another key point about the AppEvents class is the following code, placed at the beginning of each
method (except for the DeleteLog method):

 if (log == null)
 {
 throw (new ArgumentNullException("log",
 "This Event Log has not been opened or has been closed."));
 }

This code checks to see whether the private member variable log is a null reference. If so, an
ArgumentException is thrown, informing the user of this class that a problem occurred with the creation
of the EventLog object. The DeleteLog method does not check the log variable for null since it deletes
the event log source and the event log itself. The EventLog object is not involved in this process except
at the end of this method, where the log is closed and set to null , if it is not already null . Regardless
of the state of the log variable, the source and event log should be deleted in this method.

The DeleteLog method makes a critical choice when determining whether to delete a log. The following
code prevents the application, security, and system event logs from being deleted from your system:

 if (logName != "Application" &&
 logName != "Security" &&
 logName != "System")
 {
 if (EventLog.Exists(logName, machineName))
 {
 EventLog.Delete(logName, machineName);
 }
 }

If any of these logs is deleted, so are the sources registered with the particular log. Once the log is
deleted, it is permanent; believe us, it is not fun to try and re-create the log and its sources without a
backup.

As a last note, the EventIDType and CategoryType enumerations are designed mainly to log security-
type breaches as well as potential attacks on the security of your application. Using these event IDs
and categories, the administrator can more easily track down potential security threats and do
postmortem analysis after security is breached. These enumerations can easily be modified or replaced
with your own to allow you to track different events that occur as a result of your application running.

You should minimize the number of entries written to the event log from your
application. The reason for this is that writing to the event log causes a
performance hit. Writing too much information to the event log can noticeably
slow your application. Pickand choose the entries you write to the event log
wisely.

See Also

See Recipe 8.9; see the "EventLog Class" topic in the MSDN documentation.

Recipe 8.7. Changing the Maximum Size of a Custom
Event Log

Problem

Custom event logs are created with a default maximum size of 512K. For some applications, this
default may be too small or even too large. You need a way of programmatically modifying this size.
If you are a system administrator, you might need to write a utility to modify this value.

Solution

There is no direct way to modify the maximum size of an event log. However, the following method
makes use of the registry to circumvent this limitation:

 using System;
 using Microsoft.Win32;

 public void SetCustomLogMaxSize(string logName, int maxSize)
 {
 RegistryKey key = Registry.LocalMachine.OpenSubKey
 (@"SYSTEM\CurrentControlSet\Services\Eventlog\" + logName, true);
 if (key == null)
 {
 Console.WriteLine(
 "Registry key for this Event Log does not exist.");
 }
 else
 {
 key.SetValue("MaxSize", maxSize);
 Registry.LocalMachine.Close();
 }
 }

Discussion

The FCL classes devoted to making use of the event log contain most of the functionality that a
developer will ever need. Yet there are some small items that are not directly accessible using the
event log API in the FCL. One of these is the manipulation of the maximum size of an event log. Event

logs are initialized to a maximum size of 512K, after which the event log entries are overwritten by
default.

There are cases in which an application may produce many or very few entries in an event log. In
these cases, it would be nice to manipulate the maximum size of an event log so that memory is
used most efficiently and critical entries are not lost or overwritten because the event log fills up too
fast.

It is possible to set the maximum size of an event log manually through the Event Viewer application.
Unfortunately, you might not always have access to the machine to do this. In addition, this is a
tedious and time-consuming process. You can programmatically set the maximum size by changing
the value of a registry entry. If an event log were named MyLog, the properties of this log would
reside in the following registry location:

 HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Eventlog\MyLog

This location contains several value entries containing properties of this event log. The value entry
you are interested in is MaxSize. Using the static methods of the Registry class, you can add or
modify this value to one of your choosing with code like the following:

 Microsoft.Win32.RegistryKey lm = Registry.LocalMachine;
 Microsoft.Win32.RegistryKey logKey = lm.OpenSubKey(
 @"SYSTEM\CurrentControlSet\Services\Eventlog\RegistryLog", true);
 logKey.SetValue("MaxSize", (int) 1024);
 logKey.Close;

To access this registry value, you first call the RegistryKey.OpenSubKey method. This method returns
a RegistryKey object, which in this case represents the key containing the MaxSize value entry. The
SetValue method of the RegistryKey object is called next to change the value of the MaxSize enTRy.
If this value entry does not exist, it is created with the desired value. This information is then flushed
to the registry and the RegistryKey class is closed. Both of these actions are performed though the
Close method on the RegistryKey class.

While it is possible to adjust this registry value programmatically, in most instances, only highly
privileged accounts would have the security access necessary for this code to run successfully, such
as when the application is being installed or in a utility run by an administrator. This should not be
attempted as part of normal application operations since it does require such a high level of access.

See Also

See the "Registry.LocalMachine Field" and "RegistryKey.Open Method" topics in the MSDN
documentation.

Recipe 8.8. Searching Event Log Entries

Problem

Your application might have added many entries to the event log. To perform an analysis of how the
application operated, how many errors were encountered, and so on, you need to be able to perform
a search through all of the entries in an event log. Unfortunately, there are no good built-in search
mechanisms for event logs.

Solution

You will eventually have to sift through all the entries your application writes to an event log in order
to find the entries that allow you to perhaps fix a bug or improve your application's security system.
Unfortunately, there are no good search mechanisms for event logs. This recipe contains an
EventLogSearch class, to which you'll add static methods allowing you to search for entries in an event
log based on various criteria. In addition, this search mechanism allows complex searches involving
multiple criteria to be performed on an event log at one time. The code for the EventSearchLog class is
shown in Example 8-4 .

Example 8-4. EventSearchLog class

using System;
using System.Collections;
using System.Diagnostics;

public sealed class EventLogSearch
{
 private EventLogSearch() {} // Prevent this class from being instantiated.

 public static EventLogEntry[] FindTimeGeneratedAtOrBefore(
 IEnumerable logEntries, DateTime timeGeneratedQuery)
 {
 ArrayList entries = new ArrayList();

 foreach (EventLogEntry logEntry in logEntries)
 {
 if (logEntry.TimeGenerated <= timeGeneratedQuery)
 {
 entries.Add(logEntry);
 }
 }

 EventLogEntry[] entriesArray = new EventLogEntry[entries.Count];

 entries.CopyTo(entriesArray);
 return (entriesArray);
 }

 public static EventLogEntry[] FindTimeGeneratedAtOrAfter(
 IEnumerable logEntries, DateTime timeGeneratedQuery)
 {
 ArrayList entries = new ArrayList();

 foreach (EventLogEntry logEntry in logEntries)
 {
 if (logEntry.TimeGenerated >= timeGeneratedQuery)
 {
 entries.Add(logEntry);
 }
 }

 EventLogEntry[] entriesArray = new EventLogEntry[entries.Count];
 entries.CopyTo(entriesArray);
 return (entriesArray);
 }
}

Discussion

Other searchable criteria can be added to this class by following the same coding pattern for each
search method. For instance, the following example shows how to add a search method to find all
entries that contain a particular username:

 public static EventLogEntry[] FindUserName(IEnumerable logEntries,
 string userNameQuery)
 {
 ArrayList entries = new ArrayList();

 foreach (EventLogEntry logEntry in logEntries)
 {
 if (logEntry.UserName == userNameQuery)
 {
 entries.Add(logEntry);
 }
 }

 EventLogEntry[] entriesArray = new EventLogEntry[entries.Count];
 entries.CopyTo(entriesArray);
 return (entriesArray);
 }

The methods shown in Table 8-3 list other search methods that could be included in this class and
describe which property of the event log entries they search on. (All of these methods are
implemented on the code for this book, which can be found at
http://www.oreilly.com/catalog/csharpckbk2 .)

Table 8-3. Other possible search methods

Search method name Entry property searched

FindCategory (overloaded to accept a string type category

name)
Category == CategoryNameQuery

FindCategory (overloaded to accept a short type category

number)

Category ==

CategoryNumberQuery

FindEntryType EntryType == EntryTypeQuery

FindInstanceID InstanceID == InstanceIDQuery

FindMachineName
MachineName ==

MachineNameQuery

FindMessage Message == Message.Query

FindSource Source == SourceQuery

The FindCategory method can be overloaded to search on either the category name or category
number.

The following method makes use of the EventLogSearch methods to find and display entries that are
marked as Error log entries:

 public void FindAnEntryInEventLog()
 {
 EventLog Log = new EventLog("System");

 EventLogEntry[] Entries = EventLogSearch.FindEntryType(Log.Entries,
 EventLogEntryType.Error);

 foreach (EventLogEntry Entry in Entries)
 {
 Console.WriteLine("Message: " + Entry.Message);
 Console.WriteLine("InstanceId: " + Entry.InstanceId);
 Console.WriteLine("Category: " + Entry.Category);
 Console.WriteLine("EntryType: " + Entry.EntryType.ToString());
 Console.WriteLine("Source: " + Entry.Source);
 }
 }

http://www.oreilly.com/catalog/csharpckbk2

The following method finds and displays entries generated at or after 8/3/2003, marked as Error type
logs, and containing an event ID of 7000 :

 public void FindAnEntryInEventLog()
 {
 EventLog Log = new EventLog("System");

 EventLogEntry[] Entries = EventLogSearch.FindTimeGeneratedAtOrAfter(Log.Entries,
 DateTime.Parse("8/3/2003"));
 Entries = EventLogSearch.FindEntryType(Entries, EventLogEntryType.Error);
 Entries = EventLogSearch.FindInstanceId(Entries, 7000);

 foreach (EventLogEntry Entry in Entries)
 {
 Console.WriteLine("Message: " + Entry.Message);
 Console.WriteLine("InstanceId: " + Entry.InstanceId);
 Console.WriteLine("Category: " + Entry.Category);
 Console.WriteLine("EntryType: " + Entry.EntryType.ToString());
 Console.WriteLine("Source: " + Entry.Source);
 }
 }

Note that this search mechanism can search within only one event log at a time.

To illustrate how searching works, let's assume that you are using the FindInstanceID method to
search on the InstanceID . Initially, you would call the FindInstanceID search method, passing in a
collection that implements the IEnumerable interface, such as the EventLogEntryCollection collection
(that contains all entries in that event log) or an array of EventLogEntry objects. The
EventLogEntryCollection is returned by the EnTRies property of the EventLog class. The
FindInstanceID method will return an array of EventLogEntry objects that match the search criteria
(the value passed in to the second argument of the FindInstanceID method).

The real power of this searching method design is that the initial search on the
EventLogEntryCollection returns an array of EventLogEntry objects. This EventLogEntry array may
then be passed back into another search method to be searched again, effectively narrowing down
the search query. For example, the EventLogEntry array returned from the FindInstanceID method
may be passed into another search method such as the FindEntryType method to narrow down the
search to all entries that are a specific entry type (informational, error, etc.).

See Also

See the " EventLog Class" and "EventLogEntry Class" topics in the MSDN documentation.

Recipe 8.9. Watching the Event Log for a Specific Entry

Problem

You may have multiple applications that write to a single event log. For each of these applications,
you want a monitoring application to watch for one or more specific log entries to be written to the
event log. For example, you might want to watch for a log entry that indicates that an application
encountered a critical error or shut down unexpectedly. These log entries should be reported in real
time.

Solution

Monitoring an event log for a specific entry requires the following steps:

Create the following method to set up the event handler to handle event log writes:

 public void WatchForAppEvent(EventLog log)
 {
 log.EnableRaisingEvents = true;
 // Hook up the System.Diagnostics.EntryWrittenEventHandler.
 log.EntryWritten += new EntryWrittenEventHandler(OnEntryWritten);
 }

1.

Create the event handler to examine the log entries and determine whether further action is to
be performed. For example:

 public static void OnEntryWritten(object source,
 EntryWrittenEventArgs entryArg)
 {
 if (entryArg.Entry.EntryType == EventLogEntryType.Error)
 {
 Console.WriteLine(entryArg.Entry.Message);
 Console.WriteLine(entryArg.Entry.Category);
 Console.WriteLine(entryArg.Entry.EntryType.ToString());
 // Do further actions here as necessary…
 }
 }

2.

Discussion

This recipe revolves around the EntryWrittenEventHandler delegate, which calls backa method
whenever any new entry is written to the event log. The EntryWrittenEventHandler delegate accepts
two arguments: a source of type object and an entryArg of type EntryWrittenEventArgs. The
entryArg parameter is the most interesting of the two. It contains a property called EnTRy that

returns an EventLogEntry object. This EventLogEntry object contains all the information you need
concerning the entry that was written to the event log.

This event log that you are watching is passed as the WatchForAppEvent method's log parameter.

This method performs two actions. First, it sets log's EnableRaisingEvents property to true. If this
property were set to false, no events would be raised for this event log when an entry is written to
it. The second action this method performs is to add the OnEntryWritten callback method to the list
of event handlers for this event log.

To prevent this delegate from calling the OnEntryWritten callback method, you can set the
EnableRaisingEvents property to false, effectively turning off the delegate.

Note that the Entry object passed to the entryArg parameter of the OnEntryWritten callbackmethod
is read-only, so the entry cannot be modified before it is written to the event log.

See Also

See the "Handling the EntryWritten Event" and "EventLog.EntryWritten Event" topics in the MSDN
documentation.

Recipe 8.10. Finding All Sources Belonging to a Specific
Event Log

Problem

You need to determine which sources are attached to a particular event log before the log is
examined and/or deleted. A source is a component or application that has registered itself to a
particular event log as a source of events.

Solution

Use the following method to extract all of the source names registered to a log (pass the log's name
in as the logName argument):

 public static List<string> FindSourceNamesFromLog(string logName)
 {
 List<string> sourceNamesList = new List<string>();

 // Get the registry key for the specific log.
 RegistryKey keyLog = Registry.LocalMachine.OpenSubKey
 (@"SYSTEM\CurrentControlSet\Services\Eventlog\" + logName);
 if (keyLog != null && keyLog.SubKeyCount>0)
 {
 // Get the sources from the log key.
 string[] sourceNames = keyLog.GetSubKeyNames();

 // Set capacity for the list.
 sourceNamesList.Capacity = keyLog.SubKeyCount;

 // Add all of the sources into the list.
 sourceNamesList.AddRange(sourceNames);
 }

 // Return the list.
 return sourceNamesList;
 }

To obtain a listing of all logs and their registered sources, use the following method:

 public static Hashtable FindSourceNamesFromAllLogs()
 {
 // Make a hashtable to store the logs and their sources.
 Hashtable logsAndSources = new Hashtable();

 // Get a list of all logs on the box.
 string[] eventLogNames = Registry.LocalMachine.OpenSubKey
 (@"SYSTEM\CurrentControlSet\Services\Eventlog").GetSubKeyNames();

 foreach (string log in eventLogNames)
 {
 // Get all the source names for this log.
 List<string> sourceNamesList = FindSourceNamesFromLog(log)

 // Add the source name list with the log name
 // as the key to the hashtable.
 logsAndSources.Add(log, sourceNamesList);
 }

 return logsAndSources;
 }

This method returns a Hashtable with the log name as the key and a List<string> of source names
as the Hashtable's value. The information in the Hashtable of List<string>s can be accessed using
the following code:

 foreach (DictionaryEntry DE in logsAndSources)
 {
 Console.WriteLine("Log: " + DE.Key); // Display the log.
 foreach (string source in ((List<string>)DE.Value))
 {
 // Display all sources for this log.
 Console.WriteLine("\tSource: " + source);
 }
 }

Discussion

This recipe is similar to Recipe 8.7 in that you need to find information concerning an event log that
can be obtained only through the registry. If you need to find the sources associated with a log called
MyLog, you would look up all of the subkeys contained in the following location:

 HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Eventlog\MyLog\

If MyLog were associated with two sources called AppSource and MonitorSource, the following keys
would exist under the MyLog key:

 \AppSource
 \MonitorSource

The full registry path for both keys would be:

 HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Eventlog\MyLog\AppSource
 HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Eventlog\MyLog\MonitorSource

This recipe makes use of the Registry and RegistryKey classes to look up the subkeys under the
event log's key in the registry. See Recipe 8.7 for more information dealing with opening registry
keys using the Registry and RegistryKey classes.

The read-only SubKeyCount property and GetSubKeyNames method of the RegistryKey class are used to
obtain the number of subkeys that reside under a particular key and a string array containing their
names.

The FindSourceNamesFromLog method uses the GetSubKeyNames method to obtain a list of event logs
from the EventLog registry key. It then searches these log names until the log name passed to this
method through the logName parameter is found. Once the correct log is found, its

subkeysrepresenting all of the sources tied to that logare saved to the sourceNamesList array. This
array is then passed back to the caller.

See Also

See Recipe 8.7; see the "Registry.LocalMachine Field" and "RegistryKey.Open Method" topics in the
MSDN documentation.

Recipe 8.11. Implementing a Simple Performance Counter

Problem

You need to use a performance counter to trackapplication-specific information. The simpler
performance counters find, for example, the change in a counter value between successive samplings
or just count the number of times an action occurs. Other, more complex counters exist but are not
dealt with in this recipe. For example, a custom counter could be built to keep track of the number of
database transactions, the number of failed network connections to a server, or even the number of
users connecting to your web service per minute.

Solution

Create a simple performance counter that finds, for example, the change in a counter value between
successive samplings or that just counts the number of times an action occurs. Use the following
method (CreateSimpleCounter) to create a simple custom counter:

 public PerformanceCounter CreateSimpleCounter(string counterName, string counterHelp,
 System.Diagnostics.PerformanceCounterType counterType, string categoryName,
 string categoryHelp)
 {
 CounterCreationDataCollection counterCollection =
 new CounterCreationDataCollection();

 // Create the custom counter object and add it to the collection of counters.
 CounterCreationData counter = new CounterCreationData(counterName, counterHelp,
 counterType);
 counterCollection.Add(counter);

 // Create category.
 if (PerformanceCounterCategory.Exists(categoryName))
 {
 PerformanceCounterCategory.Delete(categoryName);
 }

 PerformanceCounterCategory appCategory =
 PerformanceCounterCategory.Create(categoryName, categoryHelp,
 PerformanceCounterCategoryType.SingleInstance, counterCollection);
 // Create the counter and initialize it.
 PerformanceCounter appCounter =
 new PerformanceCounter(categoryName, counterName, false);

 appCounter.RawValue = 0;

 return (appCounter);
 }

Discussion

The first action this method takes is to create the CounterCreationDataCollection object and
CounterCreationData object. The CounterCreationData object is created using the counterName,
counterHelp , and countertype parameters passed to the CreateSimpleCounter method. The

CounterCreationData object is then added to the counterCollection .

The ASPNET user account, as well as many other user accounts by default,
prevent performance counters from being read. You can either increase the
permissions allowed for these accounts or use impersonation with an account
that has access to enable this functionality. However, this then becomes a
deployment requirement of your application. Decreasing security for the ASPNET
account or other user accounts may very well be frowned upon by IT folks
deploying your application.

If categoryName a string containing the name of the category that is passed as a parameter to the

methodis not registered on the system, a new category is created from a PerformanceCounterCategory
object. If one is registered, it is deleted and created anew. Finally, the actual performance counter is
created from a PerformanceCounter object. This object is initialized to zero and returned by the
method. PerformanceCounterCategory takes a PerformanceCounterCategoryType as a parameter. The
possible settings are shown in Table 8-4 .

Table 8-4. PerformanceCounterCategoryType enumeration values

Name Description

MultiInstance There can be multiple instances of the performance counter.

SingleInstance There can be only one instance of the performance counter.

Unknown Instance functionality for this performance counter is unknown.

The CreateSimpleCounter method returns a PerformanceCounter object that will be used by an
application. The application can perform several actions on a PerformanceCounter object. An application
can increment or decrement it using one of these three methods:

 long value = appCounter.Increment();
 long value = appCounter.Decrement();
 long value = appCounter.IncrementBy(i);

 // Additionally, a negative number may be passed to the

 // IncrementBy method to mimic a DecrementBy method
 // (which is not included in this class). For example:
 long value = appCounter.IncrementBy(-i);

The first two methods accept no parameters, while the third accepts a long containing the number by
which to increment the counter. All three methods return a long type indicating the new value of the
counter.

In addition to incrementing or decrementing this counter, you can also take samples of the counter at
various points in the application. A sample is a snapshot of the counter and all of its values at a
particular instance in time. A sample may be taken using the following line of code:

 CounterSample counterSampleValue = appCounter.NextSample();

The NextSample method accepts no parameters and returns a CounterSample structure.

At another point in the application, a counter can be sampled again, and both samples can be passed
in to the static Calculate method on the CounterSample class. These actions may be performed on a
single line of code as follows:

 float calculatedSample = CounterSample.Calculate(counterSampleValue,
 appCounter.NextSample());

The calculated sample calculatedSample may be stored for future analysis.

The simpler performance counters already available in the .NET Framework are:

CounterDelta32/CounterDelta64

Determines the difference (or change) in value between two samplings of this counter. The
CounterDelta64 counter can hold larger values than CounterDelta32 .

CounterTimer

Calculates the percentage of the CounterTimer value change over the CounterTimer time change.
Tracks the average active time for a resource as a percentage of the total sample time.

CounterTimerInverse

Calculates the inverse of the CounterTimer counter. Tracks the average inactive time for a
resource as a percentage of the total sample time.

CountPerTimeInterval32/CountPerTimeInterval64

Calculates the number of items waiting within a queue to a resource over the time elapsed.
These counters give the delta of the queue length for the last two sample intervals divided by the
interval duration.

ElapsedTime

Calculates the difference in time between when this counter recorded the start of an event and
the current time, measured in seconds.

NumberOfItems32/NumberOfItems64

These counters return their value in decimal format. The NumberOfItems64 counter can hold larger
values than NumberOfItems32 . This counter does not need to be passed to the static Calculate
method of the CounterSample class; there are no values that must be calculated. Instead, use
the RawValue property of the PerformanceCounter object (i.e., in this recipe, the
appCounter.RawValue property would be used).

NumberOfItemsHEX32/NumberOfItemsHEX64

These counters return their value in hexadecimal format. The NumberOfItemsHEX64 counter can
hold larger values than NumberOfItemsHEX32 . This counter does not need to be passed to the
static Calculate method of the CounterSample class; there are no values that must be calculated.
Instead, use the RawValue property of the PerformanceCounter object (i.e., in this recipe, the
appCounter.RawValue property would be used).

RateOfCountsPerSecond32/RateOfCountsPerSecond64

Calculates the RateOfCountsPerSecond* value change over the RateOfCountsPerSecond* time
change, measured in seconds. The RateOfCountsPerSecond64 counter can hold larger values than
the RateOfCountsPerSecond32 counter.

Timer100Ns

Percentage counter showing the active component time as a percentage of the total elapsed time
of the sample interval measured in 100 nanoseconds (ns) units. Processor\ % User Time is an
example of this type of counter.

Timer100nsInverse

Percentage-based counter showing the average active percentage of time tracked during the
sample interval. Processor\ % Processor Time is one example of this type of counter.

See Also

See Recipe 8.12; see the "PerformanceCounter Class," "PerformanceCounterType Enumeration,"
"PerformanceCounterCategory Class," "ASP.NET Impersonation," and "Monitoring Performance
Thresholds" topics in the MSDN documentation.

Recipe 8.12. Implementing Performance Counters That
Require a Base Counter

Problem

You need to use some of the more advanced performance counters to accurately track information
about your application. The performance counters exist as two counters used together. The first
counter is the main counter, which is divided by the second counter, called the base counter.
Essentially, the first counter is the numerator and the second counter is the denominator; the custom
counter reports the result of this division operation. The main counter is used in tandem with its base
counter type to calculate, for example, the average amount of time it takes for an action (e.g.,
connecting to a server) to complete or the average number of actions that occur during a single
process (e.g., database timeouts).

Solution

Create a complex performance counter, which is used in tandem with the base counter type to
calculate, for example, the average amount of time it takes for an action to complete or the average
number of actions that occur during a single process. Use the CreateComplexCounter method shown
in Example 8-5 to create a complex custom counter.

Example 8-5. Creating a complex counter

public void CreateComplexCounter(string counterName, string counterHelp,
 PerformanceCounterType counterType, string baseCounterName,
 string baseCounterHelp, PerformanceCounterType baseCounterType,
 string categoryName, string categoryHelp,
 out PerformanceCounter appCounter,
 out PerformanceCounter appBaseCounter)
{
 CounterCreationDataCollection counterCollection =
 new CounterCreationDataCollection();

 // Create the custom counter object and its base counter object
 // and add them to the collection of counters (they must be
 // added successively).
 CounterCreationData counter = new CounterCreationData(counterName,
 counterHelp, counterType);
 counterCollection.Add(counter);

 CounterCreationData BaseCounter =
 new CounterCreationData(baseCounterName,
 baseCounterHelp, baseCounterType);
 counterCollection.Add(BaseCounter);

 // Create category.
 if (PerformanceCounterCategory.Exists(categoryName))
 {
 PerformanceCounterCategory.Delete(categoryName);
 }

 PerformanceCounterCategory appCategory =
 PerformanceCounterCategory.Create(categoryName, categoryHelp,
 PerformanceCounterCategoryType.SingleInstance,
 counterCollection);

 // Create the counter and initialize it.
 PerformanceCounter newappcounter =
 new PerformanceCounter(categoryName, counterName, false);
 PerformanceCounter newappbaseCounter =
 new PerformanceCounter(categoryName, baseCounterName, false);

 newappcounter.RawValue = 0;
 newappbaseCounter.RawValue = 0;

 appCounter = newappcounter;
 appBaseCounter = newappbaseCounter;
}

Discussion

The CreateComplexCounter method returns two PerformanceCounter objects as out parameters; one
is the counter, the other is the base counter. These two counters are used in tandem; the base
counter controls some aspect of the denominator in the calculation relating these two counters. Since
the value of the appCounter parameter, returned from this method, depends on the value in the
appBaseCounter parameter, we are considering these types of counters as complex counters.

The ASPNET user account, as well as many other user accounts by default,
prevent performance counters from being read. You can either increase the
permissions allowed for these accounts or use impersonation with an account
that has access to enable this functionality. However, this then becomes a
deployment requirement of your application. Decreasing security for the ASPNET
account or other user accounts may very well be frowned upon by IT folks
deploying your application.

This method operates similarly to the CreateSimpleCounter method described in Recipe 8.11. The one
major difference is that two CounterCreationData objects are created and added to the

CounterCreationDataCollection object. This first CounterCreationData object is the main counter
used in the calculation for this counter. The second is the base counter, used in the denominator of
the calculation for this counter. These counters must be added, in order, to the
CounterCreationDataCollection object. In addition, the counter defined by the counterName
parameter must be added before the counter defined by the baseCounterName parameter.

The application can perform several actions on these PerformanceCounter objects. An application can
increment or decrement a PerformanceCounter object using one of these three methods:

 long value = newappcounter.Increment();
 long value = newappcounter.Decrement();
 long value = newappcounter.IncrementBy(i);

 long value = newappbaseCounter.Increment();
 long value = newappbaseCounter.Decrement();
 long value = newappbaseCounter.IncrementBy(i);

 // Additionally, a negative number may be passed in to the IncrementBy method
 // to mimic a DecrementBy method (which is not included in this class).
 long value = newappcounter.IncrementBy(-i);
 long value = newappbaseCounter.IncrementBy(-i);

The first two methods accept no parameters, while the third accepts a long containing the number by
which to increment the counter. All three methods return a long type indicating the new value of the
counter.

In addition to incrementing or decrementing these counters, you can also take samples of these
counters at various points in the application. A sample is a snapshot of the counter and all of its
values at a particular instance in time. A sample may be taken using the following lines of code:

 CounterSample counterSampleValue = newappcounter.NextSample();
 CounterSample counterSampleBaseValue = newappbaseCounter.NextSample();

The NextSample method accepts no parameters and returns a CounterSample object.

At another point in the application, a counter may be sampled again, and the samples can be passed
in to the static Calculate method on the CounterSample class. These actions may be performed in a
single line of code as follows:

 float calculatedSample = CounterSample.Calculate(counterSampleValue,
 newappcounter.NextSample());

Note that you need to pass only the newappcounter samples; the newappbaseCounter samples are

handled for you. The calculated sample calculatedSample may be stored for future analysis. See
Recipe 8.11 for a definition of the Calculate method.

The complex performance counters defined in the .NET Framework are defined here:

AverageCount64

Calculates the AverageTimer64 value change over the AverageBase value change. This counter
uses AverageBase as its base counter type.

AverageTimer32

Calculates the AverageTimer32 value change over the number of ticks per second, all over the
AverageBase value change. This counter uses AverageBase as its base counter type.

CounterMultiTimer

Calculates the percentage of CounterMultiTimer value change over the CounterMultiTimer time
change divided by CounterMultiBase. This counter uses CounterMultiBase as its base counter
type.

CounterMultiTimerInverse

A percentage counter that shows the active time of one or more components as a percentage
of the total time of the sample interval. These counters are known as inverse multitimer
counters, as multitimers monitor multiple component instances (like a volume or processor),
and inverse counters measure nonactive time and derive active time from that measure.
Measures time in system ticks.

CounterMultiTimer100Ns

Measures active time of one or more components in 100ns increments.

CounterMultiTimer100NsInverse

Measures active time of one or more components in 100ns increments by tracking the
nonactive time and deriving the active time from that (inverse timer).

RawFraction

Calculates a percentage of the RawFraction counter value over the RawBase counter value. This
counter uses RawBase as its base counter type.

SampleCounter

Calculates the SampleCounter value change over the corresponding SampleBase value change
per second. This counter uses SampleBase as its base counter type.

SampleFraction

Calculates the percentage of SampleCounter value change over the SampleBase value change.
This counter uses SampleBase as its base counter type.

See Also

See Recipe 8.11; see the "PerformanceCounter Class," "PerformanceCounterType Enumeration,"
"PerformanceCounterCategory Class," "ASP.NET Impersonation," and "Monitoring Performance
Thresholds" topics in the MSDN documentation.

Recipe 8.13. Enabling and Disabling Complex Tracing
Code

Problem

You have an object that contains complex tracing/debugging code. In fact, there is so much
tracing/debugging code that to turn it all on would create an extremely large amount of output. You
want to be able to generate objects at runtime that contain all of the tracing/debugging code, only a
specific portion of this tracing/debugging code, or no tracing/debugging code. The amount of tracing
code generated could depend on the state of the application or the environment in which it is
running. The tracing code needs to be generated during object creation.

Solution

Use the traceFactory class shown in Example 8-6, which implements the factory design pattern to
allow creation of an object that either generates tracing information or does not.

Example 8-6. TraceFactory class

#define TRACE
#define TRACE_INSTANTIATION
#define TRACE_BEHAVIOR

using System.Diagnostics;

public class TraceFactory
{
 public TraceFactory() {}

 public Foo CreateObj()
 {
 Foo obj = null;

 #if (TRACE)
 #if (TRACE_INSTANTIATION)
 obj = new BarTraceInst();
 #elif (TRACE_BEHAVIOR)
 obj = new BarTraceBehavior();
 #else

 obj = new Bar();
 #endif
 #else
 obj = new Bar();
 #endif

 return (obj);
 }
}

The class hierarchy for the Bar, BarTraceInst, and BarTraceBehavior classes is shown
next. The BarTraceInst class contains only the constructor tracing code, the
BarTraceBehavior class contains tracing code only within specific methods, and the Bar
class contains no tracing code:

 public abstract class Foo
 {
 public virtual void SomeBehavior()
 {
 //…
 }
 }

 public class Bar : Foo
 {
 public Bar() {}

 public override void SomeBehavior()
 {
 base.SomeBehavior();
 }
 }

 public class BarTraceInst : Foo
 {
 public BarTraceInst()
 {
 Trace.WriteLine("BarTraceInst object instantiated");
 }

 public override void SomeBehavior()
 {
 base.SomeBehavior();
 }
 }

 public class BarTraceBehavior : Foo
 {
 public BarTraceBehavior() {}

 public override void SomeBehavior()
 {
 Trace.WriteLine("SomeBehavior called");
 base.SomeBehavior();
 }
 }

Discussion

The factory design pattern is designed to abstract away the creation of objects within a system. This
pattern allows code to create objects of a particular type by using an intermediate object called a
factory. In its simplest form, a factory pattern consists of some client code that uses a factory object
to create and return a specific type of object. The factory pattern allows changes to be made in the
way objects are created, independent of the client code. This design prevents code changes to the
way an object is constructed from permeating throughout the client code.

Consider that you could have a class that contained numerous lines of tracing code. If you ran this
code to obtain the trace output, you would be inundated with reams of information. This setup is hard
to manage and even harder to read to pinpoint problems in your code. One solution to this problem is
to use a factory to create an object based on the type of tracing code you wish to output.

To do this, create an abstract base class called Foo that contains all of the base behavior. The Foo
class is subclassed to create the Bar, BarTraceInst, and BarTraceBehavior classes. The Bar class
contains no tracing code, the BarTraceInst class contains tracing code only in its constructor (and
potentially in its destructor), and the BarTraceBehavior class contains tracing code only in specific
methods. (The class hierarchy provided in the Solution section is much simpler than classes that you
would create; this allows you to focus more on the design pattern and less on the class hierarchy
from which the factory creates classes.)

A TraceFactory class that will act as your factory to create objects inheriting from the abstract Foo
class is created. The traceFactory class contains a single public method called CreateObj. This
method attempts to instantiate an object that inherits from Foo based on the preprocessor symbols
defined in your application. If the following line of code exists:

 #define TRACE_BEHAVIOR

the BarTraceBehavior class is created. If this line exists:

 #define TRACE_INSTANTIATION

the BarTraceInst class is created. If neither of these exists, the Bar class is created. Once the correct
class is created, it is returned to the caller. The caller never needs to know which exact object is

instantiated, only that it is of type Foo. This allows you to add even more classes to handle varying
types and amounts of tracing code.

To instantiate a traceFactory class, use the following code:

 TraceFactory factory = new TraceFactory();

Using this factory object, you can create a new object of type Foo:

 Foo obj = factory.CreateObj();
 Console.WriteLine(obj.ToString());
 obj.SomeBehavior();

Now you can use the Foo object without regard to the trace output that it will produce. To create and
use a different Foo object, all you have to do is define a different preprocessor symbol that controls
which subclass of Foo is created.

See Also

See the "C# Preprocessor Directives" and "ConditionalAttribute Class" topics in the MSDN
documentation.

Recipe 8.14. Capturing Standard Output for a Process

Problem

You need to be able to capture standard output for a process you are launching.

Solution

Use the RedirectStandardOutput property of the Process.StartInfo class to capture the output from
the process. By redirecting the standard output stream of the process, you read it when the process
terminates. UseShellExecute is a property on the ProcessInfo class that tells the runtime whether or
not to use the Windows shell to start the process or not. By default, it is turned on (true) and the
shell runs the program, which means that the output cannot be redirected. This needs to be set to off
and then the redirection can occur. The UseShellExecute property is set to false to ensure this is not
started using the Windows shell for your purposes here.

In this example, a Process object for cmd.exe is set up with arguments to perform a directory listing,
and then the output is redirected. A logfile is created to hold the resulting output and the
Process.Start method is called.

 // See 12.21 for more info on redirection…
 Process application = new Process();
 // Run the command shell.
 application.StartInfo.FileName = @"cmd.exe";

 // Get a directory listing from the current directory.
 application.StartInfo.Arguments = @"/Cdir " + Environment.CurrentDirectory;
 Console.WriteLine("Running cmd.exe with arguments: {0}",
 application.StartInfo.Arguments);

 // Redirect standard output so we can read it.
 application.StartInfo.RedirectStandardOutput = true;
 application.StartInfo.UseShellExecute = false;

 // Create a logfile to hold the results in the current EXE directory.
 using (StreamWriter logger = new StreamWriter("cmdoutput.log"))
 {
 // Start it up.
 application.Start();

Once the process is started, the StandardOutput stream can be accessed and a reference to it held.
The code then reads in the information from the output stream while the application runs and writes
it to the logfile that was set up previously. Once the application finishes, the logfile is closed.

 // Get stdout.
 StreamReader output = application.StandardOutput;

 // Dump the output stream while the app runs.
 do
 {
 using (output)
 {
 char[] info = null;
 while (output.Peek() >= 0)
 {
 info = new char[4096];
 output.Read(info, 0, info.Length);
 // Write to the logger.
 logger.Write(info, 0, info.Length);
 }
 }
 }
 while (!application.HasExited);
}

// Close the process object.
application.Close();

cmdoutput.log holds information similar to the following output:

 Volume in drive C has no label.
 Volume Serial Number is DDDD-FFFF

 Directory of C:\C#Cookbook2\Code\CSharpRecipes\bin\Debug

 08/28/2005 12:25 PM <DIR> .
 08/28/2005 12:25 PM <DIR> ..
 08/28/2005 12:25 PM 0 cmdoutput.log
 08/15/2005 09:46 PM 489,269 CSharpCookbook.zip
 08/28/2005 12:24 PM 450,560 CSharpRecipes.exe
 08/28/2005 12:24 PM 1,031,680 CSharpRecipes.pdb
 07/22/2005 08:28 AM 5,120 CSharpRecipes.vshost.exe
 04/12/2005 10:15 PM 432 CSharpRecipes.vshost.xml
 05/10/2005 10:14 PM 998 CSharpRecipes.vshost.xsd
 03/29/2005 10:27 AM 432 CSharpRecipes.xml
 05/10/2005 10:14 PM 998 CSharpRecipes.xsd
 03/29/2005 10:27 AM 155 data.txt
 04/12/2005 10:15 PM 134 HT.data

 12/10/2003 10:11 PM 12,288 REGEX_Test.dll
 08/20/2005 09:27 PM 16,384 SampleClassLibrary.dll
 08/20/2005 09:27 PM 11,776 SampleClassLibrary.pdb
 08/02/2005 08:56 PM 483 se1.object
 08/02/2005 08:56 PM 480 se2.object
 08/02/2005 08:56 PM 767 se3.object
 08/02/2005 08:56 PM 488 se4.object
 08/02/2005 08:56 PM 775 se5.object
 04/12/2005 10:15 PM 1,369 TEST.DATA
 04/12/2005 10:14 PM 327 TestBinSerXML.txt
 21 File(s) 2,024,915 bytes
 2 Dir(s) 98,005,683,712 bytes free

Discussion

Redirecting standard output is a common task that can sometimes be of great use for tasks like
automated build scenarios or test harnesses. While not quite as easy as simply placing > after the
command line for a process at the command prompt, this approach is more flexible, as the stream
output can be reformatted as XML or HTML for posting to a web site. This also provides the
opportunity to send the data to multiple locations at once, which the simple command-line redirect
function as provided by Windows is incapable of.

Waiting to read from the stream until the application has finished ensures that there will be no
deadlock issues. If the stream is accessed synchronously before this time, then the possibility exists
for the parent to block the child. At a minimum, the child will wait until the parent has finished
reading from the stream before it continues writing to it. So by postponing the read until the end, you
allow the child to have less performance degradation at the cost of some additional time at the end.

See Also

See Recipe 12.21; see the "ProcessStartInfo.RedirectStandardOutput Property" and
"ProcessStartInfo.UseShellExecute Property" topics in the MSDN documentation.

Recipe 8.15. Creating Custom Debugging Displays for
Your Classes

Problem

You have a set of classes that are used in your application. You would like to see at a glance in the
debugger what a particular instance of the class holds. The default debugger display doesn't show
any useful information for your class today.

Solution

Add a DebuggerDisplayAttribute to your class to make the debugger show you something you
consider useful about your class. For example, if you had a Citizen class that held the honorific and
name information, you could add a DebuggerDisplayAttribute like this one:

 [DebuggerDisplay("Citizen Full Name = {_honorific}{_first}{_middle}{_last}")]
 public class Citizen
 {
 private string _honorific;
 private string _first;
 private string _middle;
 private string _last;

 public Citizen(string honorific, string first, string middle, string last)
 {
 _honorific = honorific;
 _first = first;
 _middle = middle;
 _last = last;
 }
 }

Now when instances of the Citizen class are instantiated, the debugger will show the information the
way the DebuggerDisplayAttribute on the class directs it to. To see this, instantiate two Citizens,
Mrs. Alice G. Jones and Mr. Robert Frederick Jones like this:

 Citizen mrsJones = new Citizen("Mrs.","Alice","G.","Jones");
 Citizen mrJones = new Citizen("Mr.", "Robert", "Frederick", "Jones");

When this code is run under the debugger, the custom display is used, as shown in Figure 8-1.

Figure 8-1. Debugger display controlled by DebuggerDisplayAttribute

Discussion

It is nice to be able to see the pertinent information for classes you write quickly. But the more
powerful part of this feature is the ability for your team members to quickly understand what this
class instance holds. The this pointer is accessible from the DebuggerDisplayAttribute declaration,
but any properties accessed using the this pointer will not evaluate the property attributes before
processing. Essentially, if you access a property on the current object instance as part of constructing
the display string, if that property has attributes, they will not be processed, and therefore you may
not get the value you thought you would. If you have custom ToString() overrides in place already,
the debugger will use these as the DebuggerDisplayAttribute without your specifying it, provided the
correct option is enabled under Tools\ Options\Debugging as shown in Figure 8-2.

See Also

See the "Using DebuggerDisplayAttribute" and "DebuggerDisplayAttribute" topics in the MSDN
documentation.

Figure 8-2. Setting the debugger to call ToString() for object display

Recipe 8.16. Determining Current appdomain Settings
Information

Problem

You want to know about the current settings for the appdomain your code is executing in to help in
debugging various issues with assembly loading, authorization issues, and startup problems.

Solution

Examine the properties of the appdomain.CurrentDomain.SetupInformation class to see the activation
settings, the security information for the appdomain , associated file paths like code base and
configuration files, assembly binding and policy settings, and load optimization and shadow copy
settings. Get the appdomainSetup object with the current appdomain settings information like this:

 appdomainSetup info = appdomain.CurrentDomain.SetupInformation;

Now the ActivationArguments can be examined to find out things like the code base and full name of
the appdomain as well as the corresponding ActivationData and ActivationContext information:

 Console.WriteLine("Current appdomain Properties:");
 if (info.ActivationArguments != null)
 {
 if (info.ActivationArguments.ApplicationIdentity != null)
 {
 Console.WriteLine("\tappdomain CodeBase: {0}",
 info.ActivationArguments.ApplicationIdentity.CodeBase);
 Console.WriteLine("\tappdomain Full Name: {0}",
 info.ActivationArguments.ApplicationIdentity.FullName);
 }
 foreach (string data in info.ActivationArguments.ActivationData)
 {
 Console.WriteLine("\tActivation Data: {0}", data);
 }
 if (info.ActivationArguments.ActivationContext != null)
 {
 Console.WriteLine("\tappdomain Identity: {0}",
 info.ActivationArguments.ActivationContext.Identity);
 }
 }

The current values for the application base and name are available from their respective properties:

 Console.WriteLine("\tCurrent Application Base: {0}",
 info.ApplicationBase);
 Console.WriteLine("\tCurrent Application Name: {0}",
 info.ApplicationName);

To look at the security information for the application, see if the ApplicationTrust property of the
appdomainSetup object is available. If it is, the identity full name, code base, granted permission set,
and level of trust are available.

 if (info.ApplicationTrust != null)
 {
 Console.WriteLine("\tSecurity Info for the Application:");
 Console.WriteLine("\t\tApplication Identity CodeBase: {0}",
 info.ApplicationTrust.ApplicationIdentity.CodeBase);
 Console.WriteLine("\t\tApplication Identity FullName: {0}",
 info.ApplicationTrust.ApplicationIdentity.FullName);
 Console.WriteLine("\t\tDefaultGrantSet: {0}",
 info.ApplicationTrust.DefaultGrantSet.ToXml());
 Console.WriteLine("\t\tIs the application trusted to run: {0}",
 info.ApplicationTrust.IsApplicationTrustedToRun);
 }

Some of the more general properties of the appdomain , like the shadow copy path, the path to the
configuration file, and the path to the license file, are also available directly from the appdomainSetup
object:

 Console.WriteLine("\tApplication Shadow Copy Path : {0}",
 info.CachePath);
 Console.WriteLine("\tConfig File : {0}",
 info.ConfigurationFile);
 Console.WriteLine("\tThe license file for this appdomain is located here: {0}",
 info.LicenseFile);

Information about the assembly- loading constraints for the appdomain is also available, such as if the
appdomain should probe the appbase or private bin path for assemblies when loading and what those
paths are. It can be determined if the appdomain is allowing binding redirection, if it is allowing code to
be downloaded, if it uses a publisher policy, and where dynamically generated assemblies are stored
by looking at the DisallowBindingRedirects, DisallowCodeDownload, DisallowPublisherPolicy , and
DynamicBase properties, respectively.

 Console.WriteLine("\tAssembly loading parameters:");
 Console.WriteLine("\t\tIs probing allowed in appbase and private bin path? : {0}",
 !info.DisallowApplicationBaseProbing);
 Console.WriteLine("\t\tPrivate Bin Path: {0}",
 info.PrivateBinPath);
 if (info.PrivateBinPathProbe != null)
 {
 if (info.PrivateBinPathProbe.Length > 0)
 Console.WriteLine("\t\tExclude appbase from search path");
 else
 Console.WriteLine("\t\tInclude appbase in search path");
 }

 Console.WriteLine("\t\tIs binding redirection allowed?: {0}",
 !info.DisallowBindingRedirects);
 Console.WriteLine("\t\tIs code downloading allowed : {0}",
 !info.DisallowCodeDownload);
 Console.WriteLine("\t\tIs publisher policy used? : {0}",
 !info.DisallowPublisherPolicy);
 Console.WriteLine("\t\tDynamically generated files are stored at: {0}",
 info.DynamicBase);

Finally, the loader optimization and shadow copy information can be retrieved from the
LoaderOptimization, ShadowCopyDirectories , and ShadowCopyFiles properties:

 Console.WriteLine("\t\tLoader optimization: {0}",
 info.LoaderOptimization.ToString());
 Console.WriteLine("\t\tShadow Copy Dirs: {0}",
 info.ShadowCopyDirectories);
 Console.WriteLine("\t\tShadow Copy Files: {0}",
 info.ShadowCopyFiles);

Discussion

The Common Language Runtime is a very flexible and configurable environment, which is a good
thing in most cases. But when debugging, it can be helpful to see the actual runtime settings that the
program is dealing with, instead of trying to piece them together from multiple configuration files and
policy settings. The appdomainSetup type provides a wealth of information about where the appdomain
is storing things, what access it has been given, and where it is looking for assemblies. Debugging
assembly-load problems can be frustrating at best, and having an extra arrow in your quiver to figure
out what is happening will help with faster bug resolution.

See Also

See the "appdomainSetup class," "appdomainSetup.ApplicationTrust Property," and
"appdomainSetup.ActivationArguments Property" topics in the MSDN documentation.

Recipe 8.17. Boosting the Priority of a Process
Programmatically

Problem

You want a specific program to run at a higher priority than most of the other processes on the
machine to help it complete a time-critical task.

Solution

Use the ProcessStartInfo and Process classes to launch the program and then adjust it to a higher
priority like this:

 // Run recursive dir operation on the c:\ drive
 ProcessStartInfo psi = new ProcessStartInfo("cmd.exe","/C\"dir c:\\ /S\"");
 // Don't show the window.
 psi.CreateNoWindow = true;
 // Start the process.
 Process p = Process.Start(psi);
 // Raise the process priority to AboveNormal.
 p.PriorityClass = ProcessPriorityClass.AboveNormal;

Discussion

The Process.PriorityClass property takes one of the ProcessPriorityClass enumeration values to
indicate what priority the process should have. The enumeration values and descriptions are listed in
Table 8-5.

Table 8-5. ProcessPriorityClass enumeration values

Name Description

Idle Run only when the system is idle. Preempted by any action.

BelowNormal
Will run with a light load on the CPU but will be preempted by any normal or higher
process.

Name Description

Normal This is the default priority processes run at.

AboveNormal A boost in scheduling priority from a normal process.

High
Used for time-critical tasks. Use carefully as it can eat most of the processor time and
starve other applications.

RealTime
The highest possible priority. This should be used only when the process being altered
is the only task that needs to occur on the machine.

Setting the priority above AboveNormal should be done in only very specialized situations for short
durations of time, as it can starve other processes on the machine. The operating system uses the
priority level to determine scheduling for the processors, and if one process is set to a higher priority
for a long time, the processes with lesser priority may never finish.

See Also

See the "Process Class," "ProcessStartInfo Class," and "ProcessPriorityClass Enumeration" topics in
the MSDN documentation.

Normal This is the default priority processes run at.

AboveNormal A boost in scheduling priority from a normal process.

High
Used for time-critical tasks. Use carefully as it can eat most of the processor time and
starve other applications.

RealTime
The highest possible priority. This should be used only when the process being altered
is the only task that needs to occur on the machine.

Setting the priority above AboveNormal should be done in only very specialized situations for short
durations of time, as it can starve other processes on the machine. The operating system uses the
priority level to determine scheduling for the processors, and if one process is set to a higher priority
for a long time, the processes with lesser priority may never finish.

See Also

See the "Process Class," "ProcessStartInfo Class," and "ProcessPriorityClass Enumeration" topics in
the MSDN documentation.

Recipe 8.18. Looking at Your Runtime Environment and
Seeing What You Can Do About It

Problem

You want a way to easily gather information about the environment your program is running under to
assist in troubleshooting customer issues.

Solution

Write a utility function that can gather this information for the process using the System.Environment
class members. To view and manipulate the environment variables, use the GetEnvironmentVariables,
GetEnvironmentVariable , and SetEnvironmentVariable methods:

 Console.WriteLine("Current environment settings:");
 foreach (DictionaryEntry de in Environment.GetEnvironmentVariables())
 {
 Console.WriteLine("\t\tEnvironment Variable {0}: Value {1}", de.Key, de.Value);
 }
 Console.WriteLine("\tSetting environment variable MYENVVAR to {0}", "FOO");
 Environment.SetEnvironmentVariable("MYENVVAR", "FOO");
 Console.WriteLine("\tGetting Environment Variable MYENVVAR: Value {0}", Environment.
 GetEnvironmentVariable("MYENVVAR"));

The command-line parameters, current working directory, and system directory are available from the
CommandLine, CurrentDirectory , and SystemDirectory properties, respectively:

 Console.WriteLine("\tCommand Line: {0}",Environment.CommandLine);
 Console.WriteLine("\tCurrent Directory: {0}",Environment.CurrentDirectory);
 Console.WriteLine("\tSystem Directory: {0}",Environment.SystemDirectory);

For machine-specific information, the machine name (MachineName), operating system version
(OSVersion), and number of processors (ProcessorCount) are easily accessed:

 Console.WriteLine("\tMachine NetBIOS Name: {0}",Environment.MachineName);
 Console.WriteLine("\tOS Version Information: {0}",Environment.OSVersion.
 VersionString);
 Console.WriteLine("\tNumber of processors: {0}",Environment.ProcessorCount);

To see the current call stack, use the StackTrace property:

 Console.WriteLine("\tCurrent Stack Trace: {0}",Environment.StackTrace);

For information about the current user and thread, the UserDomainName, UserInteractive , and
UserName properties do the job:

 Console.WriteLine("\tCurrent User Domain Name: {0}",Environment.UserDomainName);
 Console.WriteLine("\tIs this an interactive user process?: {0}",Environment.
 UserInteractive);
 Thread.CurrentThread.Name = "Main thread";
 Console.WriteLine("\tUser who started Thread ({0}): {1}",Thread.CurrentThread.Name,
 Environment.UserName);

Finally, the CLR version and amount of physical memory being used by the process are available in the
Version and WorkingSet properties:

 Console.WriteLine("\tCLR Version this code is running in: {0}",Environment.Version);
 Console.WriteLine("\tAmount of physical memory used by this working set: {0}",
 Environment.WorkingSet);

Discussion

Adding code to your programs for troubleshooting potential customer issues may seem like a hassle
when you are coding, but it can be a lifesaver when you get that call on Friday morning that threatens
to ruin your weekend. Having additional information about the environment the customer is running
your code in can lead to the discovery of bad settings, interaction conflicts with other third-party
software, or the uncovering of the source of the issue itself. System.Environment has a lot of valuable
information that is worth making available for your support folks; they will thank you for it.

See Also

See the "System.Environment Class" topic in the MSDN documentation.

Chapter 9. Delegates, Events, and
Anonymous Methods

Introduction

Delegates contain all that is needed to allow a method, with a specific signature and return type, to
be invoked by your code. A delegate can be passed to methods and a reference to it can be stored in
a structure or class. A delegate is used when, at design time, you do not know which method you
need to call and the information to determine this is available only at runtime.

Another scenario is when the code calling a method is being developed independently of the code that
will supply the method to be called. The classic example is a Windows Forms control. If you create a
control, you are unlikely to know what method should be called in the application when the control
raises an event, so you must provide a delegate to allow the application to hook up a handler to the
event. When other developers use your control, they will typically decide when they are adding the
control (through the designer or programmatically) and which method should be called to handle the
event published by the control. (For example, it's common to connect a Button's click handler to a
delegate at design time.)

Anonymous methods are delegates without the full delegate syntax. They are a feature of the C#
compiler and not a CLR type. An anonymous method is ultimately created as a delegate instance by
the compiler, but the syntax for declaring an anonymous method can be more concise than declaring
a regular delegate. Anonymous methods also permit you to capture variables in the same scope and
use programming techniques such as closures and functors (explained later in this chapter).

This chapter's recipes make use of delegates, events, and anonymous methods. Among other topics,
these recipes cover:

Handling each method invoked in a multicast delegate separately

Synchronous delegate invocation versus asynchronous delegate invocation

Enhancing an existing class with events

Various uses of anonymous methods, closures, and functors

If you are not familiar with delegates, events, or anonymous methods, you should read the MSDN
documentation on these topics. There are also good tutorials and example code showing you how to
set up and use them in a basic fashion.

Recipe 9.1. Controlling When and If a Delegate Fires
Within a Multicast Delegate

Problem

You have combined multiple delegates to create a multicast delegate. When this multicast delegate is
fired, each delegate within it is fired in turn. You need to exert more control over such things as the
order in which each delegate is fired, firing only a subset of delegates, or firing each delegate based
on the success or failure of previous delegates.

Solution

Use the GetInvocationList method to obtain an array of Delegate objects. Next, iterate over this
array using a for (or foreach if order is irrelevant) loop. You can then invoke each Delegate object in
the array individually and optionally retrieve its return value.

In .NET, all delegate types support multicastthat is, any delegate instance can invoke multiple
methods each time it is itself invoked if it has been set up to do so. In this recipe, we use the term
multicast to describe a delegate that has been set up to invoke multiple methods. The following
delegate defines the MyDelegate delegate type:

 public delegate int MyDelegate();

The following method creates a multicast delegate called allInstances and then uses
GetInvocationList to allow each delegate to be fired individually, in reverse order:

 public static void InvokeInReverse()
 {
 MyDelegate myDelegateInstance1 = new MyDelegate(TestInvoke.Method1);
 MyDelegate myDelegateInstance2 = new MyDelegate(TestInvoke.Method2);
 MyDelegate myDelegateInstance3 = new MyDelegate(TestInvoke.Method3);

 MyDelegate allInstances =
 myDelegateInstance1 +
 myDelegateInstance2 +
 myDelegateInstance3;

 Console.WriteLine("Fire delegates in reverse");
 Delegate[] delegateList = allInstances.GetInvocationList();

 for (int counter = delegateList.Length - 1; counter >= 0; counter--)
 {
 ((MyDelegate)delegateList[counter])();
 }
 }

As the following methods demonstrate by firing every other delegate, you don't have to invoke all of
the delegates in the list. Note that, in this example, the multicast delegate is constructed in one
method (InvokeEveryOtherSetup) and used in another method (InvokeEveryOtherImpl). You might be
wondering what would happen if the MyDelegate parameter passed to InvokeEveryOtherImpl were a
unicast delegate and you called GetInvocationList on it. Have no fear: GetInvocationList will
happily give you a list of one delegate instance:

 public static void InvokeEveryOtherSetup()
 {
 MyDelegate myDelegateInstance1 = new MyDelegate(TestInvoke.Method1);
 MyDelegate myDelegateInstance2 = new MyDelegate(TestInvoke.Method2);
 MyDelegate myDelegateInstance3 = new MyDelegate(TestInvoke.Method3);

 MyDelegate allInstances =
 myDelegateInstance1 +
 myDelegateInstance2 +
 myDelegateInstance3;

 InvokeEveryOtherImpl(allInstances);
 }

 public static void InvokeEveryOtherImpl(MyDelegate delegateInstance)
 {
 Delegate[] delegateList = delegateInstance.GetInvocationList();

 // See if there are any delegates hooked up.
 if (delegateList.Length > 0)
 {
 Console.WriteLine("Invoke every other delegate");
 for (int counter = 0; counter < delegateList.Length; counter += 2)
 {
 // Invoke the delegate.
 int retVal = ((MyDelegate)delegateList[counter])();
 }
 }
 }

The following class contains each of the methods that will be called by the MyDelegate multicast
delegate allInstances:

 public class TestInvoke
 {
 public static int Method1()
 {
 Console.WriteLine("Invoked Method1");
 return (1);
 }

 public static int Method2()
 {
 Console.WriteLine("Invoked Method2");
 return (2);
 }

 public static int Method3()
 {
 Console.WriteLine("Invoked Method3");
 return (3);
 }
 }

The following delegate defines the MyDelegate delegate:

 public delegate bool MyDelegateTF();

It is also possible to decide whether to continue firing delegates in the list based on the return value
of the currently firing delegate. The following method fires each delegate, stopping only when a
delegate returns a false value:

 public static void InvokeWithTest()
 {
 MyDelegateTF myDelegateInstanceTF1 =
 new MyDelegateTF(TestInvokeTF.Method1);
 MyDelegateTF myDelegateInstanceTF2 =
 new MyDelegateTF(TestInvokeTF.Method2);
 MyDelegateTF myDelegateInstanceTF3 =
 new MyDelegateTF(TestInvokeTF.Method3);

 MyDelegateTF allInstancesTF =
 myDelegateInstanceTF1 +
 myDelegateInstanceTF2 +
 myDelegateInstanceTF3;

 Console.WriteLine(
 "Invoke individually (Call based on previous return value):");
 foreach (MyDelegateTF instance in allInstancesTF.GetInvocationList())

 {
 // This break is not required; it is an optimization to prevent the
 // loop from continuing to execute.
 if (!instance())
 break;
 }
 }

The following class contains each of the methods that will be called by the MyDelegateTF multicast
delegate allInstancesTF:

 public class TestInvokeTF
 {
 public static bool Method1()
 {
 Console.WriteLine("Invoked Method1");
 return (true);
 }

 public static bool Method2()
 {
 Console.WriteLine("Invoked Method2");
 return (false);
 }

 public static bool Method3()
 {
 Console.WriteLine("Invoked Method3");
 return (true);
 }
 }

Discussion

A delegate, when called, will invoke all delegates stored within its invocation list. These delegates are
usually invoked sequentially from the first to the last one added. With the use of the
GetInvocationList method of the MulticastDelegate class, you can obtain each delegate in the
invocation list of a multicast delegate. This method accepts no parameters and returns an array of
Delegate objects that corresponds to the invocation list of the delegate on which this method was
called. The returned Delegate array contains the delegates of the invocation list in the order in which
they would normally be called; that is, the zeroth element in the Delegate array contains the
Delegate object that is normally called first.

This application of the GetInvocationList method gives you the ability to control exactly when and
how the delegates in a multicast delegate are invoked and allows you to prevent the continued
invocation of delegates when one delegate fails. This ability is important if each delegate is

manipulating data and one of the delegates fails in its duties but does not throw an exception. If one
delegate fails in its duties and the remaining delegates rely on all previous delegates to succeed, you
must quit invoking delegates at the point of failure. Note that an exception will force the invocation of
delegates to cease, but throwing an exception is an expensive process. This recipe handles a delegate
failure more efficiently and also provides more flexibility in dealing with these errors. For example,
you can write logic to specify which delegates are to be invoked, based on the performance of
previously invoked delegates.

See Also

See Recipes 9.2 and 9.3; see the "Delegate Class" and "Delegate.GetInvocationList Method" topics in
the MSDN documentation.

Recipe 9.2. Obtaining Return Values from Each Delegate
in a Multicast Delegate

Problem

You have added multiple delegates to a single multicast delegate. Each of these individual delegates
returns a value that is required by your application. Ordinarily, the values returned by individual
delegates in a multicast delegate are lostall except the value from the last delegate to fire, the return
value of which is returned to the calling application. You need to be able to access the return value of
each delegate that is fired in the multicast delegate.

Solution

Use the GetInvocationList method as in Recipe 9.1. This method returns each individual delegate
from a multicast delegate. In doing so, you can invoke each delegate individually and get its return
value. The following method creates a multicast delegate called All and then uses GetInvocationList
to fire each delegate individually. After firing each delegate, the return value is captured:

 public static void TestIndividualInvokesRetVal()
 {
 MyDelegate myDelegateInstance1 = new MyDelegate(TestInvoke.Method1);
 MyDelegate myDelegateInstance2 = new MyDelegate(TestInvoke.Method2);
 MyDelegate myDelegateInstance3 = new MyDelegate(TestInvoke.Method3);

 MyDelegate allInstances =
 myDelegateInstance1 +
 myDelegateInstance2 +
 myDelegateInstance3;

 Console.WriteLine("Invoke individually (Obtain each return value):");
 foreach (MyDelegate instance in allInstances.GetInvocationList())
 {
 int retVal = instance();
 Console.WriteLine("\tOutput: " + retVal);
 }
 }

The following delegate defines the MyDelegate delegate type:

 public delegate int MyDelegate();

The following class contains each of the methods that will be called by the MyDelegate multicast
delegate instances:

 public class TestInvoke
 {
 public static int Method1()
 {
 Console.WriteLine("Invoked Method1");
 return (1);
 }

 public static int Method2()
 {
 Console.WriteLine("Invoked Method2");
 return (2);
 }
 public static int Method3()
 {
 Console.WriteLine("Invoked Method3");
 return (3);
 }
 }

Discussion

One quirk with multicast delegates is that if any or all delegates within its invocation list return a
value, only the value of the last invoked delegate is returned; all others are lost. This loss can
become annoying, or worse, if your code requires these return values. Consider a case in which the
allInstances delegate was invoked normally, as in the following code:

 retVal = allInstances();
 Console.WriteLine(retVal);

The value 3 would be displayed since Method3 was the last method invoked by the allInstances
delegate. None of the other return values would be captured.

By using the GetInvocationList method of the MulticastDelegate class, you can get around this
limitation. This method returns an array of Delegate objects that can each be invoked separately.
Note that this method does not invoke each delegate; it simply returns an array of them to the caller.
By invoking each delegate separately, you can retrieve each return value from each fired delegate.
(More information on the GetInvocationList method is presented in Recipe 9.1.)

Note that any out or ref parameters will also be lost when a multicast delegate is invoked. This
recipe allows you to obtain the out and/or ref parameters of each invoked delegate within the
multicast delegate.

However, you still need to be aware that any unhandled exceptions emanating from one of these
invoked delegates will be bubbled up to the method TestIndividualInvokesRetVal, presented in this
recipe. To better handle this situation, see Recipe 9.3.

See Also

See Recipes 9.1 and 9.3; see the "Delegate Class" and "Delegate.GetInvocationList Method" topics in
the MSDN documentation.

Recipe 9.3. Handling Exceptions Individually for Each
Delegate in a Multicast Delegate

Problem

You have added multiple delegates to a single multicast delegate. Each of these individual delegates
must be invoked, regardless of whether an unhandled exception is thrown within one of the
delegates. But once a delegate in a multicast delegate throws an unhandled exception, no more
delegates are fired. You need a way to trap unhandled exceptions within each individual delegate
while still allowing the rest of the delegates to fire.

Solution

Use the GetInvocationList method as shown in Recipe 9.1. This method returns each individual
delegate from a multicast delegate and, by doing so, allows you to invoke each delegate within the
try block of an exception handler.

The following delegate defines the MyDelegate delegate type:

 public delegate int MyDelegate();

The method shown in Example 9-1 creates a multicast delegate called allInstances and then uses
GetInvocationList to retrieve each delegate individually. Each delegate is then fired within the try
block of an exception handler.

Example 9-1. Handling exceptions individually for each delegate in a
multicast delegate

public static void TestIndividualInvokesExceptions()
{
 MyDelegate myDelegateInstance1 = new MyDelegate(TestInvoke.Method1);
 MyDelegate myDelegateInstance2 = new MyDelegate(TestInvoke.Method2);
 MyDelegate myDelegateInstance3 = new MyDelegate(TestInvoke.Method3);

 MyDelegate allInstances =
 myDelegateInstance1 +

 myDelegateInstance2 +
 myDelegateInstance3;

 Console.WriteLine("Invoke individually (handle exceptions):");

 // Create an instance of a wrapper exception to hold any exceptions
 // encountered during the invocations of the delegate instances.
 MyExceptionHolderException holderEx = new MyExceptionHolderException();

 foreach (MyDelegate instance in allInstances.GetInvocationList())
 {
 try
 {
 int retVal = instance();
 Console.WriteLine("\tOutput: " + retVal);
 }
 catch (SecurityException se)
 {
 // Stop everything; malicious code may be attempting to
 // access privileged data.

 // Create an EventLog instance and assign its source.
 EventLog myLog = new EventLog();
 myLog.Source = "MyApplicationSource";
 // Write an entry to the event log.
 myLog.WriteEntry("Security Failure in MyApplication! " +
 se.ToString(),
 EventLogEntryType.Error);
 // Rethrow the exception to stop things since it was a
 // security failure.
 throw;
 }
 catch (Exception e)
 {
 // Display (or log) the exception and continue.
 Console.WriteLine(e.ToString());
 // Add this exception to the exception holder.
 holderEx.Add(e);
 }
 }
 // If we caught any exceptions along the way, throw our
 // wrapper exception with all of them in it.
 if (holderEx.Exceptions.Count > 0)
 throw holderEx;
}

The MyExceptionHolderException class is able to have multiple exceptions added to it. It exposes a
List<Exception> tHRough the Exceptions property, as shown in Example 9-2.

Example 9-2. MyExceptionHolderException class

public class MyExceptionHolderException : Exception
{
 private List<Exception> _exceptions = null;

 public MyExceptionHolderException()
 {
 _exceptions = new List<Exception>();
 }

 public List<Exception> Exceptions
 {
 get { return _exceptions; }
 }

 public void Add(Exception ex)
 {
 if (ex == null)
 throw new ArgumentNullException("ex");

 _exceptions.Add(ex);
 }

 public void AddRange(Exception [] exceptions)
 {
 if (exceptions == null)
 throw new ArgumentNullException("ex");

 _exceptions.AddRange(exceptions);
 }
 }

The following class contains each of the methods that will be called by the MyDelegate multicast
delegate instances:

 public class TestInvoke
 {
 public static int Method1()
 {
 Console.WriteLine("Invoked Method1");
 return (1);
 }

 public static int Method2()
 {

 Console.WriteLine("Invoked Method2");
 return (2);
 }

 public static int Method3()
 {
 // Simulate an exception being thrown.
 throw (new Exception("Method3"));
 Console.WriteLine("Invoked Method3");
 return (3);
 }
 }

Discussion

If an exception occurs in a delegate that is invoked from within a multicast delegate and that
exception is unhandled, any remaining delegates are not invoked. This is the expected behavior of a
multicast delegate. However, in some circumstances, you'd like to be able to handle exceptions
thrown from individual delegates and then determine at that point whether to continue invoking the
remaining delegates.

In the TestIndividualInvokesExceptions method of this recipe, if an exception SecurityException is
caught, it is logged to the event log and the exception is rethrown. However, if another type of
Exception object is thrown, you just display or log it and continue invoking delegates. This strategy
allows for as fine-grained handling of exceptions as you need. Note that, if you rethrow an exception,
the exception will be bubbled up to the next enclosing exception handler. If the next outer exception
handler is outside of the loop used to iterate through each delegate object returned by the
GetInvocationList method, any remaining delegates will not be invoked. One way to deal with this is
to store all of the exceptions that occur during delegate processing, then wrap all of the exceptions
encountered during processing in a custom exception. After processing completes, throw the custom
exception. See the MyExceptionHoldingException class in the Solution.

By adding a finally block to this try-catch block, you can be assured that code within this finally
block is executed after every delegate returns. This technique is useful if you want to interleave code
between calls to delegates, such as code to clean up objects that are not needed or code to verify
that each delegate left the data it touched in a stable state.

See Also

See Recipes 9.1 and 9.2; see the "Delegate Class" and "Delegate.GetInvocationList Method" topics in
the MSDN documentation.

Recipe 9.4. Converting Delegate Invocation from
Synchronous to Asynchronous

Problem

You have determined that one or more delegates invoked synchronously within your application are
taking a long time to execute. This delay is making the user interface less responsive to the user. The
invocation of these delegates should be converted from synchronous to asynchronous mode.

Solution

A typical synchronous delegate type and supporting code that invokes the delegate are shown here:

 public delegate void SyncDelegateTypeSimple();

 // The class and method that are invoked through the SyncDelegateTypeSimple delegate
 public class TestSyncDelegateTypeSimple
 {
 public static void Method1()
 {
 Console.WriteLine("Invoked Method1");
 }
 }

The code to use this delegate is:

 public static void TestSimpleSyncDelegate()
 {
 SyncDelegateTypeSimple sdtsInstance =
 new SyncDelegateTypeSimple(TestSyncDelegateTypeSimple.Method1);
 sdtsInstance();
 }

This delegate can be called asynchronously on a thread obtained from the thread pool by modifying
the code as follows:

 public static void TestSimpleAsyncDelegate()
 {

 AsyncCallback callBack = new AsyncCallback(DelegateSimpleCallback);

 SyncDelegateTypeSimple sdtsInstance =
 new SyncDelegateTypeSimple(TestSyncDelegateTypeSimple.Method1);

 IAsyncResult asyncResult =
 sdtsInstance.BeginInvoke(callBack, null);

 Console.WriteLine("WORKING…");
 }

 // The callback that gets called when TestSyncDelegateTypeSimple.Method1
 // is finished processing
 private static void DelegateSimpleCallback(IAsyncResult iResult)
 {
 AsyncResult result = (AsyncResult)iResult;
 SyncDelegateTypeSimple sdtsInstance =
 (SyncDelegateTypeSimple)result.AsyncDelegate;

 sdtsInstance.EndInvoke(result);
 Console.WriteLine("Simple callback run");
 }

AsyncResult can be found in the System.Runtime.Remoting.Messaging
namespace in mscorlib .

Of course you might also want to change the TestSyncDelegateTypeSimple class name to
TestAsyncDelegateTypeSimple and the SyncDelegateTypeSimple delegate name to
AsyncDelegateTypeSimple just to be consistent with your naming.

The previous example shows how to call a delegate that accepts no parameters and returns void .
The next example shows a synchronous delegate that accepts parameters and returns an integer:

 public delegate int SyncDelegateType(string message);

 public class TestSyncDelegateType
 {
 public static int Method1(string message)
 {
 Console.WriteLine("Invoked Method1 with message: " + message);
 return (1);
 }
 }

The code to use this delegate is:

 public static void TestComplexSyncDelegate()
 {
 SyncDelegateType sdtInstance =
 new SyncDelegateType(TestSyncDelegateType.Method1);

 int retVal = sdtInstance("Synchronous call");

 Console.WriteLine("Sync: " + retVal);
 }

The synchronous invocation of the delegate can be converted to asynchronous invocation in the
following manner:

 public static void TestCallbackAsyncDelegate()
 {
 AsyncCallback callBack =
 new AsyncCallback(DelegateCallback);

 SyncDelegateType sdtInstance =
 new SyncDelegateType(TestSyncDelegateType.Method1);

 IAsyncResult asyncResult =
 sdtInstance.BeginInvoke("Asynchronous call", callBack, null);

 Console.WriteLine("WORKING…");
 }

 // The callback that gets called when TestSyncDelegateType.Method1
 // is finished processing
 private static void DelegateCallback(IAsyncResult iResult)
 {
 AsyncResult result = (AsyncResult)iResult;
 SyncDelegateType sdtInstance =
 (SyncDelegateType)result.AsyncDelegate;

 int retVal = sdtInstance.EndInvoke(result);
 Console.WriteLine("retVal (Callback): " + retVal);
 }

Discussion

Converting the invocation of a delegate from being synchronous to asynchronous is not an overly
complicated procedure. You need to add calls to both BeginInvoke and EndInvoke on the delegate that

is being called synchronously. A callback method, DelegateCallback , is added, which gets called when
the delegate is finished. This callback method then calls the EndInvoke method on the delegate
invoked using BeginInvoke .

You must always call EndInvoke when invoking delegates asynchronously, even
when the delegate returns void, to ensure proper cleanup of resources in the
CLR.

The notification callback method specified in the callback parameter accepts a single parameter of

type IAsyncResult . This parameter can be cast to an AsyncResult type and used to set up the call to
the EndInvoke method. If you want to handle any exceptions thrown by the asynchronous delegate in
the notification callback, wrap the EndInvoke method in a try/catch exception handler.

See Also

See the "Delegate Class" and " Asynchronous Delegates" topics in the MSDN documentation.

Recipe 9.5. Wrapping Sealed Classes to Add Events

Problem

Through the use of inheritance, adding events to a nonsealed class is fairly easy. For example,
inheritance is used to add events to a Hashtable object. However, adding events to a sealed class,
such as System.IO.DirectoryInfo, requires a technique other than inheritance.

Solution

To add events to a sealed class, such as the DirectoryInfo class, wrap it using another class, such as
the DirectoryInfoNotify class defined in Example 9-3.

You can use the FileSystemWatcher class (see Recipes 12.23 and 12.24) to
monitor the filesystem changes asynchronously due to activity outside of your
program, or you can use the DirectoryInfoNotify class defined here to monitor
your program's activity when using the filesystem.

Example 9-3. Adding events to a sealed class

using System;
using System.IO;

public class DirectoryInfoNotify
{
 public DirectoryInfoNotify(string path)
 {
 internalDirInfo = new DirectoryInfo(path);
 }

 private DirectoryInfo internalDirInfo = null;
 public event EventHandler AfterCreate;
 public event EventHandler AfterCreateSubDir;
 public event EventHandler AfterDelete;
 public event EventHandler AfterMoveTo;
 protected virtual void OnAfterCreate()
 {
 EventHandler afterCreate = AfterCreate;
 if (afterCreate!= null)

 {
 afterCreate (this, new EventArgs());
 }
 }

 protected virtual void OnAfterCreateSubDir()
 {
 EventHandler afterCreateSubDir = AfterCreateSubDir;
 if (afterCreateSubDir != null)
 {
 afterCreateSubDir(this, new EventArgs());
 }
 }

 protected virtual void OnAfterDelete()
 {
 EventHandler afterDelete = AfterDelete;
 if (afterDelete != null)
 {
 afterDelete(this, new EventArgs());
 }
 }

 protected virtual void OnAfterMoveTo()
 {
 EventHandler afterMoveTo = AfterMoveTo;
 if (afterMoveTo != null)
 {
 afterMoveTo(this, new EventArgs());
 }
 }

 // Event firing members
 public void Create()
 {
 internalDirInfo.Create();
 OnAfterCreate();
 }

 public DirectoryInfoNotify CreateSubdirectory(string path)
 {
 DirectoryInfo subDirInfo = internalDirInfo.CreateSubdirectory(path);
 OnAfterCreateSubDir();

 return (new DirectoryInfoNotify(subDirInfo.FullName));
 }

 public void Delete(bool recursive)
 {
 internalDirInfo.Delete(recursive);
 OnAfterDelete();
 }

 public void Delete()
 {
 internalDirInfo.Delete();
 OnAfterDelete();
 }

 public void MoveTo(string destDirName)
 {
 internalDirInfo.MoveTo(destDirName);
 OnAfterMoveTo();
 }

 // Nonevent firing members
 public string FullName
 {
 get {return (internalDirInfo.FullName);}
 }
 public string Name
 {
 get {return (internalDirInfo.Name);}
 }
 public DirectoryInfoNotify Parent
 {
 get {return (new DirectoryInfoNotify(internalDirInfo.Parent.FullName));}
 }
 public DirectoryInfoNotify Root
 {
 get {return (new DirectoryInfoNotify(internalDirInfo.Root.FullName));}
 }

 public override string ToString()
 {
 return (internalDirInfo.ToString());
 }
}

The DirectoryInfoObserver class, shown in Example 9-4, allows you to register any
DirectoryInfoNotify objects with it. This registration process allows the DirectoryInfoObserver class
to listen for any events to be raised in the registered DirectoryInfoNotify object(s). The only events
that are raised by the DirectoryInfoNotify object are after a modification has been made to the
directory structure using a DirectoryInfoNotify object that has been registered with a
DirectoryInfoObserver object.

Example 9-4. DirectoryInfoObserver class

public class DirectoryInfoObserver
{
 public DirectoryInfoObserver() {}

 public void Register(DirectoryInfoNotify dirInfo)
 {
 dirInfo.AfterCreate += new EventHandler(AfterCreateListener);
 dirInfo.AfterCreateSubDir +=
 new EventHandler(AfterCreateSubDirListener);
 dirInfo.AfterMoveTo += new EventHandler(AfterMoveToListener);
 dirInfo.AfterDelete += new EventHandler(AfterDeleteListener);
 }

 public void UnRegister(DirectoryInfoNotify dirInfo)
 {
 dirInfo.AfterCreate -= new EventHandler(AfterCreateListener);
 dirInfo.AfterCreateSubDir -=
 new EventHandler(AfterCreateSubDirListener);
 dirInfo.AfterMoveTo -= new EventHandler(AfterMoveToListener);
 dirInfo.AfterDelete -= new EventHandler(AfterDeleteListener);
 }

 public void AfterCreateListener(object sender, EventArgs e)
 {
 Console.WriteLine("Notified after creation of directory--sender: " +
 ((DirectoryInfoNotify)sender).FullName);
 }

 public void AfterCreateSubDirListener(object sender, EventArgs e)
 {
 Console.WriteLine("Notified after creation of SUB-directory--sender: " +
 ((DirectoryInfoNotify)sender).FullName);
 }

 public void AfterMoveToListener(object sender, EventArgs e)
 {
 Console.WriteLine("Notified of directory move--sender: " +
 ((DirectoryInfoNotify)sender).FullName);
 }

 public void AfterDeleteListener(object sender, EventArgs e)
 {
 Console.WriteLine("Notified of directory deletion--sender: " +
 ((DirectoryInfoNotify)sender).FullName);
 }
}

Discussion

Wrapping is a very useful technique with many different applications (proxies, facades, etc.).
However, if you use it, all classes in your application have to use the wrapped version of the class, or
your wrapper code will not execute for cases when the sealed class is used directly.

In some situations this technique might be useful even when a class is not sealed. For example, if
you want to raise notifications when methods that have not been declared as virtual are called,
you'll need this technique to wrap those methods and supply the notifications. So even if
DirectoryInfo were not sealed, you would still need this technique because you can't override its
Delete, Create, and other methods. And hiding them with the new keyword is unreliable because
someone might use your object through a reference of type DirectoryInfo instead of type
DirectoryInfoNotify, in which case the original methods and not your new methods will be used. So
the delegation approach presented here is the only reliable technique when methods in the base class
are not virtual methods, regardless of whether the base class is sealed.

The TestDirectoryInfoObserver method shown in Example 9-5 creates two DirectoryInfoObserver
objects along with two DirectoryInfoNotify objects, and then it proceeds to create a directory,
C:\testdir, and a subdirectory under C:\testdir called new.

Example 9-5. TestDirectoryInfoObserver method

public void TestDirectoryInfoObserver()
{
 // Create two observer objects.
 DirectoryInfoObserver observer1 = new DirectoryInfoObserver();
 DirectoryInfoObserver observer2 = new DirectoryInfoObserver();

 // Create a notification object for the directory c:\testdir.
 DirectoryInfoNotify dirInfo = new DirectoryInfoNotify(@"c:\testdir");

 // Register the notification object under both observers.
 observer1.Register(dirInfo);
 observer2.Register(dirInfo);

 // Create the directory c:\testdir.
 dirInfo.Create();

 // Have the first observer watch the new subdirectory as well.
 DirectoryInfoNotify subDirInfo = dirInfo.CreateSubdirectory("new");
 observer1.Register(subDirInfo);

 // Delete the subdirectory first and then the parent directory.
 subDirInfo.Delete(true);
 dirInfo.Delete(false);

 // Unregister notification objects with their observers.
 observer2.UnRegister(dirInfo);
 observer1.UnRegister(dirInfo);

}

This code outputs the following:

 Notified after creation of directory--sender: c:\testdir
 Notified after creation of directory--sender: c:\testdir
 Notified after creation of SUB-directory--sender: c:\testdir
 Notified after creation of SUB-directory--sender: c:\testdir
 Notified of directory deletion--sender: c:\testdir\new
 Notified of directory deletion--sender: c:\testdir
 Notified of directory deletion--sender: c:\testdir

Rather than using inheritance to override members of a sealed class (i.e., the DirectoryInfo class),
the sealed class is wrapped by a notification class (i.e., the DirectoryInfoNotify class).

The main drawback to wrapping a sealed class is that each method available in the underlying
DirectoryInfo class might have to be implemented in the outer DirectoryInfoNotify class, which
can be tedious if the underlying class has many visible members. The good news is that if you know
you will not be using a subset of the wrapped class's members, you do not have to wrap each of
those members. Simply do not make them visible from your outer class, which is what you have done
in the DirectoryInfoNotify class. Only the methods you intend to use are implemented on the
DirectoryInfoNotify class. If more methods on the DirectoryInfo class will later be used from the
DirectoryInfoNotify class, they can be added with minimal effort.

For a DirectoryInfoNotify object to wrap a DirectoryInfo object, the DirectoryInfoNotify object
must have an internal reference to the wrapped DirectoryInfo object. This reference is in the form of
the internalDirInfo field. Essentially, this field allows all wrapped methods to forward their calls to
the underlying DirectoryInfo object. For example, the Delete method of a DirectoryInfoNotify
object forwards its call to the underlying DirectoryInfo object as follows:

 public void Delete()
 {
 // Forward the call.
 internalDirInfo.Delete();

 // Raise an event.
 OnAfterDelete();
 }

You should make sure that the method signatures are the same on the outer class as they are on the
wrapped class. This convention will make it much more intuitive and transparent for another
developer to use. You could also make it completely different to differentiate the wrapper from the
contained class. The key is not to have it look very similar to the contained class but with slight
differences, as that would be the most confusing for your consumers.

There is one method, CreateSubdirectory, that requires further explanation:

 public DirectoryInfoNotify CreateSubdirectory(string path)
 {
 DirectoryInfo subDirInfo = internalDirInfo.CreateSubdirectory(path);
 OnAfterCreateSubDir();

 return (new DirectoryInfoNotify(subDirInfo.FullName));
 }

This method is unique since it returns a DirectoryInfo object in the wrapped class. However, if you
also returned a DirectoryInfo object from this outer method, you might confuse the developer
attempting to use the DirectoryInfoNotify class. If a developer is using the DirectoryInfoNotify
class, she will expect that class to also return objects of the same type from the appropriate
members rather than returning the type of the wrapped class.

To fix this problem and make the DirectoryInfoNotify class more consistent, a DirectoryInfoNotify
object is returned from the CreateSubdirectory method. The code that receives this
DirectoryInfoNotify object might then register it with any available DirectoryInfoObserver
object(s). This technique is shown here:

 // Create a DirectoryInfoObserver object and a DirectoryInfoNotify object.
 DirectoryInfoObserver observer = new DirectoryInfoObserver();
 DirectoryInfoNotify dirInfo = new DirectoryInfoNotify(@"c:\testdir");

 // Register the DirectoryInfoNotify object with the DirectoryInfoObserver object.
 observer.Register(dirInfo);

 // Create the c:\testdir directory and then create a subdirectory within that
 // directory; this will return a new DirectoryInfoNotify object, which is
 // registered with the same DirectoryInfoObserver object as the dirInfo object.
 dirInfo.Create();
 DirectoryInfoNotify subDirInfo = dirInfo.CreateSubdirectory("new");
 observer.Register(subDirInfo);

 // Delete this subdirectory.
 subDirInfo.Delete(true);

 // Clean up.
 observer.UnRegister(dirInfo);

The observer object will be notified of the following events in this order:

When the dirInfo.Create method is called1.

2.

1.

When the dirInfo.CreateSubdirectory method is called2.

When the subDirInfo.Delete method is called3.

If the second observer.Register method were not called, the third event (subDirInfo.Delete) would
not be caught by the observer object.

The DirectoryInfoObserver class contains methods that listen for events on any
DirectoryInfoNotify objects that are registered with it. The XxxListener methods are called

whenever their respective event is raised on a registered DirectoryInfoNotify object. Within these
XxxListener methods, you can place any code that you wish to execute whenever a particular event

is raised.

These XxxListener methods accept a sender object parameter, which is a reference to the
DirectoryInfoNotify object that raised the event. This sender object can be cast to a

DirectoryInfoNotify object and its members may be called if needed. This parameter allows you to
gather information and take action based on the object that raised the event.

The second parameter to the XxxListener methods is of type EventArgs, which is a rather useless

class for your purposes. Recipe 9.6 shows a way to use a class derived from the EventArgs class to
pass information from the object that raised the event to the XxxListener method on the observer

object and then back to the object that raised the event.

See Also

See Recipe 9.6; see the "Event Keyword" and "Handling and Raising Events" topics in the MSDN
documentation.

Recipe 9.6. Passing Specialized Parameters to and from
an Event

Problem

You have implemented Recipe 9.5, but you want to allow an event listener to cancel an action that
raised a particular event. For example, if a class attempts to create a new directory, you want to be
able to verify that the directory is being created in the correct location. If the directory is not being
created in the correct location (perhaps an insecure location), you want to be able to prevent the
directory's creation.

Solution

Use a class derived from EventArgs as the second parameter to the event handler. In this example,
you use CancelEventArgs, a class defined in the .NET Framework Class Library. The Solution for
Recipe 9.5 has been modified to include an event that is raised before the Create method of the
DirectoryInfoNotify object actually creates a new path. An object of type CancelEventArgs is passed
to this new event to allow any listeners of this event to cancel the Create method action. The
modified class is shown in Example 9-6 with the modifications highlighted.

Example 9-6. Passing specialized parameters to and from an event

using System;
using System.ComponentModel;
using System.IO;

public class DirectoryInfoNotify
{
 public DirectoryInfoNotify(string path)
 {
 internalDirInfo = new DirectoryInfo(path);
 }

 private DirectoryInfo internalDirInfo = null;
 public event CancelEventHandler BeforeCreate;
 public event EventHandler AfterCreate;
 public event EventHandler AfterCreateSubDir;
 public event EventHandler AfterDelete;
 public event EventHandler AfterMoveTo;

 protected virtual void OnBeforeCreate(CancelEventArgs e)
 {
 CancelEventHandler beforeCreate = BeforeCreate;
 if (beforeCreate != null)
 {
 beforeCreate (this, e);
 }
 }

 protected virtual void OnAfterCreate()
 {
 EventHandler afterCreate = AfterCreate;
 if (afterCreate!= null)
 {
 afterCreate (this, new EventArgs());
 }
 }

 protected virtual void OnAfterCreateSubDir()
 {
 EventHandler afterCreateSubDir = AfterCreateSubDir;
 if (afterCreateSubDir != null)
 {
 afterCreateSubDir(this, new EventArgs());
 }
 }

 protected virtual void OnAfterDelete()
 {
 EventHandler afterDelete = AfterDelete;
 if (afterDelete != null)
 {
 afterDelete(this, new EventArgs());
 }
 }

 protected virtual void OnAfterMoveTo()
 {
 EventHandler afterMoveTo = AfterMoveTo;
 if (afterMoveTo != null)
 {
 afterMoveTo(this, new EventArgs());
 }
 }

 // Event firing members
 public void Create()
 {
 CancelEventArgs args = new CancelEventArgs(false);
 OnBeforeCreate(args);

 if (!args.Cancel)
 {
 internalDirInfo.Create();
 OnAfterCreate();
 }
 }

 public DirectoryInfoNotify CreateSubdirectory(string path)
 {
 DirectoryInfo subDirInfo = internalDirInfo.CreateSubdirectory(path);
 OnAfterCreateSubDir();

 return (new DirectoryInfoNotify(subDirInfo.FullName));
 }

 public void Delete(bool recursive)
 {
 internalDirInfo.Delete(recursive);
 OnAfterDelete();
 }

 public void Delete()
 {
 internalDirInfo.Delete();
 OnAfterDelete();
 }

 public void MoveTo(string destDirName)
 {
 internalDirInfo.MoveTo(destDirName);
 OnAfterMoveTo();
 }

 // Nonevent firing members
 public virtual string FullName
 {
 get {return (internalDirInfo.FullName);}
 }
 public string Name
 {
 get {return (internalDirInfo.Name);}
 }
 public DirectoryInfoNotify Parent
 {
 get {return (new DirectoryInfoNotify(internalDirInfo.Parent.FullName));}
 }
 public DirectoryInfoNotify Root
 {
 get {return (new DirectoryInfoNotify(internalDirInfo.Root.FullName));}
 }

 public override string ToString()

 {
 return (internalDirInfo.ToString());
 }
}

The DirectoryInfoObserver class contains each of the event listeners and is shown in Example 9-7
with the modifications highlighted.

Example 9-7. Modified DirectoryInfoOberver class

public class DirectoryInfoObserver
{
 public DirectoryInfoObserver() {}

 public void Register(DirectoryInfoNotify dirInfo)
 {

 dirInfo.BeforeCreate += new CancelEventHandler(BeforeCreateListener);
 dirInfo.AfterCreate += new EventHandler(AfterCreateListener);
 dirInfo.AfterCreateSubDir +=
 new EventHandler(AfterCreateSubDirListener);
 dirInfo.AfterMoveTo += new EventHandler(AfterMoveToListener);
 dirInfo.AfterDelete += new EventHandler(AfterDeleteListener);
 }

 public void UnRegister(DirectoryInfoNotify dirInfo)
 {

 dirInfo.BeforeCreate -= new CancelEventHandler(BeforeCreateListener);
 dirInfo.AfterCreate -= new EventHandler(AfterCreateListener);
 dirInfo.AfterCreateSubDir -=
 new EventHandler(AfterCreateSubDirListener);
 dirInfo.AfterMoveTo -= new EventHandler(AfterMoveToListener);
 dirInfo.AfterDelete -= new EventHandler(AfterDeleteListener);
 }

 public void BeforeCreateListener(object sender, CancelEventArgs e)
 {
 if (!e.Cancel)
 {
 if (!((DirectoryInfoNotify)sender).Root.FullName.Equals(@"d:\"))
 {
 e.Cancel = true;
 }
 else
 {

 Console.WriteLine(
 "Notified BEFORE creation of directory--sender: " +
 ((DirectoryInfoNotify)sender).FullName);
 }
 }
 }

 public void AfterCreateListener(object sender, EventArgs e)
 {
 Console.WriteLine("Notified after creation of directory--sender: " +
 ((DirectoryInfoNotify)sender).FullName);
 }

 public void AfterCreateSubDirListener(object sender, EventArgs e)
 {
 Console.WriteLine("Notified after creation of SUB-directory--sender: " +
 ((DirectoryInfoNotify)sender).FullName);
 }

 public void AfterMoveToListener(object sender, EventArgs e)
 {
 Console.WriteLine("Notified of directory move--sender: " +
 ((DirectoryInfoNotify)sender).FullName);
 }

 public void AfterDeleteListener(object sender, EventArgs e)
 {
 Console.WriteLine("Notified of directory deletion--sender: " +
 ((DirectoryInfoNotify)sender).FullName);
 }
}

Discussion

The code for the modified DirectoryInfoNotify class contains a new event called BeforeCreate,
which is raised from the OnBeforeCreate method. The OnBeforeCreate method is initially called by the
Create method immediately before calling the Create method of the wrapped DirectoryInfo object.
This setup allows the event listener for the BeforeCreate event to decide whether the directory
creation operation should be canceled.

The DirectoryInfoObserver class contains a new method, BeforeCreateListener, which listens for the
BeforeCreate event. In addition, the Register and UnRegister methods of this class contain logic to
add/remove this event to/from the list of events that will be listened for on any registered
DirectoryInfoNotify objects.

The OnBeforeCreate method of the DirectoryInfoNotify class is passed a parameter of a type called
CancelEventArgs, which exists in the .NET FCL. This type derives from EventArgs and contains one
useful property, called Cancel. This property will be used by the BeforeCreateListener method of the
DirectoryInfoObserver class to determine whether the Create method should be canceled before it

has a chance to create a new directory.

The CancelEventArgs object will be created in a DirectoryInfoNotify object, and when the
BeforeCreate event is raised, the CancelEventArgs object will be passed to the BeforeCreateListener
method on the DirectoryInfoObserver object. This method will then determine whether the creation
of the directory should proceed or be canceled. The determination is made by comparing the root
drive of the directory to see if it is anything but the D:\ drive; if so, the operation is canceled. This
prevents any registered DirectoryInfoNotify objects from creating a directory on any drive other
than the D:\ drive.

If multiple DirectoryInfoObserver objects are listening to the BeforeCreate event and one of those
observer objects decides to cancel the operation, the entire operation is canceled unless you take
some action to prevent this, as shown in Recipe 9.1.

The same CancelEventArgs object is referenced by each observer as well as each object that raised
the event. This allows you to read the value of the Cancel property on the returned CancelEventArgs
object in the Create method of the DirectoryInfoNotify object. If this property returns true, the
operation cannot proceed; otherwise, the operation is permitted.

You are not confined to merely passing EventArgs objects or any of its subclasses found in the FCL;
you can subclass the EventArgs class to create a specialized EventArgs type. This would be beneficial
if the object passed in to the sender parameter of the event does not include all of the information
that the XxxListener methods will need. For example, you could create the following specialized

EventArgs class:

 public class UserEventArgs : EventArgs
 {
 public UserEventArgs(string userName)
 {
 this.userName = userName;
 }

 private string userName = "";

 public string UserName
 {
 get {return (userName);}
 }
 }

This class passes the name of the logged-on user to the XxxListener methods to allow them to

determine whether the operation should continue based on that user's privileges. This is just one
example of creating a specialized EventArgs class. You can create others to pass in whatever
information your listeners need.

See Also

See Recipe 9.5; see the "Event Keyword," "EventHandler Delegate," and "Handling and Raising

Events" topics in the MSDN documentation.

Recipe 9.7. An Advanced Interface Search Mechanism

Problem

You are searching for an interface using the Type class. However, complex interface searches are not
available through the GetInterface and GetInterfaces methods of a Type object. The GetInterface
method searches for an interface only by name (using a case-sensitive or case-insensitive search),
and the GetInterfaces method returns an array of all the interfaces implemented on a particular
type. You want a more focused searching mechanism that might involve searching for interfaces that
define a method with a specific signature or implemented interfaces that are loaded from the GAC.
You need more flexible and more advanced searching for interfaces that does not involve creating
your own interface search engine. This capability might be used for applications like a code generator
or reverse engineering tool.

Solution

The FindInterfaces method of a Type object can be used along with a callback to perform complex
searches of interfaces on a type. The method shown in Example 9-8 will call a custom interface
searching method, SearchInterfacesOfType.

Example 9-8. Performing complex searches of interfaces on a type

using System;
using System.Reflection;

public class SearchType
{
 public void FindSpecificInterfaces()
 {
 Type[] types = new Type[3] {Type.GetType("System.ICloneable"),
 Type.GetType("System.Collections.ICollection"),
 Type.GetType("System.IappdomainSetup")};
 Type[] interfaces = SearchInterfacesOfType(Type.GetType(
 "System.Collections.ArrayList"), types);

 if (interfaces.Length > 0)
 {
 Console.WriteLine("Matches found:");
 for(int counter =0; counter < interfaces.Length; counter++)
 {

 Console.WriteLine("\tIFace Name: " +
 interfaces[counter].ToString());
 Console.WriteLine("\tIFace Base Type: " +
 interfaces[counter].BaseType);
 foreach (object attr in
 interfaces[counter].GetCustomAttributes(false))
 {
 Console.WriteLine("\t\tIFace attr: " + attr.ToString());
 }
 }
 }
 else
 {
 Console.WriteLine("\t\tNo matches found");
 }
 }

 public static Type[] SearchInterfacesOfType(Type searchedType,
 Type[] interfaceNames)
 {
 TypeFilter filter = new TypeFilter(InterfaceFilterCallback);
 Type[] interfaces = searchedType.FindInterfaces(filter, interfaceNames);

 return (interfaces);
 }

 public static bool InterfaceFilterCallback(Type type, object criteria)
 {
 foreach (Type interfaceName in (Type[])criteria)
 {
 if (type.IsInstanceOfType(interfaceName))
 {
 return (true);
 }
 }

 return (false);
 }

The FindSpecificInterfaces method searches for any of the three interface types contained in the
Names array that are implemented by the System.Collections.ArrayList type.

The SearchInterfacesOfType method accepts a type (searchedType) on which to search for interfaces
and an array of types (interfaceNames) that contains criteria for the search. For this method, the

criterion is a Type array of interfaces. This method then calls the FindInterfaces method on the
searchedType parameter, passing in a delegate and the Type array criteria of interfaces. (The

delegate will be invoked for each interface found.) This method then returns an array of interface
types that match the criterion.

The TypeFilter delegate, filter, defines the IfaceFilterCallback method to be called for each

interface found on the searchedType object. The real power of this search mechanism lies in the

IfaceFilterCallback callback method.

This callback searches for each of the interface types in the criteria array that is implemented by
the searchedType parameter of the SearchInterfacesOfType method.

Discussion

The FindInterfaces method of a Type object makes use of the TypeFilter delegate, which is passed
to the filter parameter. This delegate is supplied by the FCL and allows an extra layer of filtering (of

any type that you want) to occur. This delegate returns a Boolean value, where true indicates that
the ifaceType object passed to this delegate should be included in the Type array that the
FindInterfaces method returns; false indicates that this ifaceType object should not be included.

The FindInterfaces method will take into account all interfaces implemented by
the type being searched as well as all of its base types when performing a
search. In addition, if any of the interfaces implemented by any of these types
also implements one or more interfaces, those interfaces are included in the
search.

There are many ways to use this TypeFilter delegate to search for interfaces implemented on a
typehere are just a few other searches that can be performed:

A filter to search for all implemented interfaces that are defined within a particular namespace
(in this case, the System.Collections namespace):

 public bool IfaceFilterCallback(Type type, object criteria)
 {
 return (type.Namespace == "System.Collections");
 }

A filter to search for all implemented interfaces that contain a method called Add, which returns
an Int32 value:

 public bool IfaceFilterCallback(Type type, object criteria)
 {
 MethodInfo mi = type.GetMethod("Add");
 if (mi != null &&
 mi.ReturnType == Type.GetType("System.Int32"))
 {
 return (true);
 }
 else
 {
 return (false);
 }

 }

A filter to search for all implemented interfaces that are loaded from the GAC:

 public bool IfaceFilterCallback(Type type, object criteria)
 {
 if (type.Assembly.GlobalAssemblyCache)
 {
 return (true);
 }
 else
 {
 return (false);
 }
 }

A filter to search for all implemented interfaces that are defined within an assembly with the
version number 1.0.3300.0:

 public bool IfaceFilterCallback(Type type, object criteria)
 {
 if (type.Assembly.FullName.IndexOf("Version=1.0.3300.0") >= 0)
 {
 return (true);
 }
 else
 {
 return (false);
 }
 }

See Also

See Recipe 9.8; see the "Delegate Class" and "Type.FindInterfaces Method" topics in the MSDN
documentation.

Recipe 9.8. An Advanced Member Search Mechanism

Problem

You are searching for a member within a type using the Type class. However, complex member
searches are not available through the GetMember and GetMembers methods of a Type object. The
GetMember method searches for a member name only within a type limited by the set of BindingFlags
used, and the GetMembers method searches for all members limited by the set of BindingFlags used.
BindingFlags is an enumeration of various member types that can be searched. The BindingFlags
related to this recipe are defined here:

DeclaredOnly

Include members declared at the same level of the Type's hierarchy in the search. No inherited
members.

Default

Use no binding flags.

FlattenHierarchy

Include all static members in the inheritance hierarchy in the search (do not include static
members of nested types in the search).

IgnoreCase

Perform a case-insensitive search.

Instance

Include instance members in the search.

NonPublic

Include nonpublic members in the search.

Public

Include public members in the search.

Static

Include static members in the search.

You need to create more flexible and advanced searches for members that do not involve creating
your own member search engine, such as a code generation tool that uses preexisting assemblies as
an input might need.

Solution

The FindMembers method of a Type object can be used, along with a callback, to create your own
complex searches. The TestSearchMembers method shown in Example 9-9 will call your custom
member-searching method, SearchMembers.

Example 9-9. Performing advanced member searches on a type

using System;
using System.Reflection;

public class SearchType
{
 public void TestSearchMembers()
 {
 MemberInfo[] members = SearchMembersByReturnType(this.GetType(),
 Type.GetType("System.Int32"));
 if (members.Length > 0)
 {
 Console.WriteLine("Matches found:");

 // Display information for each match.
 for(int counter = 0; counter < members.Length; counter++)
 {
 Console.WriteLine("\tMember Name: " +
 members[counter].ToString());
 Console.WriteLine("\tMember Type: " +
 members[counter].MemberType);
 foreach (object attr in
 members[counter].GetCustomAttributes(false))
 {
 Console.WriteLine("\t\tMember attr: " +
 attr.ToString());
 }
 }
 }
 else

 {
 Console.WriteLine("\t\tNo matches found");
 }
}

public MemberInfo[] SearchMembersByReturnType(Type searchedType,
 Type returnType)
{
 // Delegate that compares the member's return type
 // against the returnType parameter.
 MemberFilter filterCallback = new MemberFilter(ReturnTypeFilter);

 MemberInfo[] members = searchedType.FindMembers(MemberTypes.All,
 BindingFlags.Instance | BindingFlags.Public |
 BindingFlags.NonPublic | BindingFlags.Static,
 filterCallback,
 returnType);

 return (members);
}

private bool ReturnTypeFilter(MemberInfo member, object criteria)
{
 // Obtain the return type of either a method or property.
 Type returnType = null;
 if (member is MethodInfo)
 returnType = ((MethodInfo)member).ReturnType;
 else if (member is PropertyInfo)
 returnType = ((PropertyInfo)member).PropertyType;
 else
 return (false);

 // Match return type
 if (returnType == ((Type)criteria))
 return (true);
 else
 return (false);
}

This method will search for any member in the current type that has a return value of System.Int32.

The SearchMembersByReturnType method accepts a Type object in which to search and a string
representation of the full name of a return type. This method simply calls the FindMembers method of
the searchType object passed to it. Notice that the returnType parameter is passed to the

FindMembers method as the last parameter.

The MemberFilter delegate, filterCallback, defines the ReturnTypeFilter method to be called for
each member that meets the specified criteria of the FindMembers method (i.e., MemberTypes.All,
BindingFlags.Instance, BindingFlags.Public, Binding-Flags.NonPublic, and
BindingFlags.Static). The real power of this search mechanism lies in the ReturnTypeFilter callback

method.

This callback method casts the member parameter to the correct member type (i.e., MethodInfo or
PropertyInfo), obtains the return type, and compares that return type to the one passed in to the
returnType parameter of the SearchMembersByReturnType method. A return value of TRue indicates

that the return types matched; a false indicates they did not match.

Discussion

Most complex member searches can be made easier through the use of the FindMembers method of a
Type object. This method returns an array of MemberInfo objects that contain all members that match
the memberType, bindingAttr, and filterCriteria parameters.

This method makes use of the MemberFilter delegate, which is passed in to the filter parameter.

This delegate is supplied by the FCL and allows an extra layer of member filtering to occur. This
filtering can be anything you want. This delegate returns a Boolean value, where true indicates that
the member object passed in to this delegate should be included in the MemberInfo array that the
FindMembers method returns, and false indicates that this member object should not be included.

There are many ways to use this MemberFilter delegate to search for members within a type. Here
are just a few other items that can be searched for:

A filter callback to search for fields marked as const:

 private bool ReturnTypeFilter(MemberInfo member, object criteria)
 {
 if (member is FieldInfo)
 {
 if (((FieldInfo)member).IsLiteral)
 {
 return (true);
 }
 else
 {
 return (false);
 }
 }

 return (false);
 }

A filter callback to search for fields marked as readonly:

 private bool ReturnTypeFilter(MemberInfo member, object criteria)
 {
 if (member is FieldInfo)
 {

 if (((FieldInfo)member).IsInitOnly)
 {
 return (true);
 }
 else
 {
 return (false);
 }
 }

 return (false);
 }

A filter to search for a read-only property:

 private bool ReturnTypeFilter(MemberInfo member, object criteria)
 {
 if (member is PropertyInfo)
 {
 if (((PropertyInfo)member).CanRead && !((PropertyInfo)member).CanWrite)
 {
 return (true);
 }
 else
 {
 return (false);
 }
 }

 return (false);
 }

A filter to search for any methods that contain out parameters:

 private bool ReturnTypeFilter(MemberInfo member, object criteria)
 {
 if (member is MethodInfo)
 {
 ParameterInfo[] params = ((MethodInfo)member).GetParameters();
 foreach (ParameterInfo param in params)
 {
 if (param.IsOut)
 {
 return (true);
 }
 }

 return (false);

 }

 return (false);
 }

A filter to search for any members that are marked with the System.ObsoleteAttribute
attribute:

 private bool ReturnTypeFilter(MemberInfo member, object criteria)
 {
 object[] attrs = member.GetCustomAttributes(false);
 foreach (object attr in attrs)
 {
 if (attr.ToString().Equals("System.ObsoleteAttribute"))
 {
 return (true);
 }
 }

 return (false);
 }

See Also

See Recipe 9.7; see the "Delegate Class" and "Type.FindMembers Method" topics in the MSDN
documentation.

Recipe 9.9. Observing Additions and Modifications to a
Hashtable

Problem

You have multiple objects that need to observe modifications to a Hashtable. When an item is added
or modified in the Hashtable, each of these observer objects should be able to vote to allow or
disallow the action. In order for an action to be allowed to complete, all observer objects must vote to
allow the action. If even one observer object votes to disallow the action, the action is prevented.

Solution

Use the HashtableObserver class implemented in Example 9-11 to observe additions and
modifications to the ObservableHashtable class (shown in Example 9-10) object that is registered
with this object. The ObservableHashtable class is an extension of the regular Hashtable class and
allows itself to be observed by the HashtableObserver class.

Example 9-10. ObservableHashtable class

public class ObservableHashtable : Hashtable
{
 public event HashtableEventHandler BeforeAddItem;
 public event HashtableEventHandler AfterAddItem;
 public event HashtableEventHandler BeforeChangeItem;
 public event HashtableEventHandler AfterChangeItem;

 protected virtual bool OnBeforeAdd(HashtableEventArgs e)
 {
 HashtableEventHandler beforeAddItem = BeforeAddItem;
 if (beforeAddItem != null)
 {
 beforeAddItem(this, e);
 return (e.KeepChanges);
 }

 return (true);
 }

 protected virtual void OnAfterAdd(HashtableEventArgs e)

 {
 HashtableEventHandler afterAddItem = AfterAddItem;
 if (afterAddItem != null)
 {
 afterAddItem(this, e);
 }
 }

 protected virtual bool OnBeforeChange(HashtableEventArgs e)
 {
 HashtableEventHandler beforeChangeItem = BeforeChangeItem;
 if (beforeChangeItem != null)
 {
 beforeChangeItem(this, e);
 return (e.KeepChanges);
 }

 return (true);
 }

 protected virtual void OnAfterChange(HashtableEventArgs e)
 {
 HashtableEventHandler afterChangeItem = AfterChangeItem;
 if (afterChangeItem != null)
 {
 afterChangeItem(this, e);
 }
 }

 public override void Add(object key, object value)
 {
 HashtableEventArgs hashArgs =
 new HashtableEventArgs(key, value);
 if(OnBeforeAdd(hashArgs))
 {
 base.Add(key, value);
 }
 else
 {
 Debug.WriteLine("Addition of key/value cannot be performed");
 }

 OnAfterAdd(hashArgs);
 }

 public override object this[object key]
 {
 get
 {
 return (base[key]);
 }
 set

 {
 // See if this key is there to be changed; if not, add it.
 if (base.ContainsKey(key))
 {
 HashtableEventArgs hashArgs = new HashtableEventArgs(key, value);
 if (OnBeforeChange(hashArgs))
 {
 base[key] = value;
 }
 else
 {
 Debug.WriteLine("Change of value cannot be performed");
 }

 OnAfterChange(hashArgs);
 }
 else
 {
 Debug.WriteLine("Item did not exist, adding");
 Add(key, value);
 }
 }
 }
}

The HashtableEventHandler is defined as follows:

 [Serializable]
 public delegate void HashtableEventHandler(object sender,
 HashtableEventArgs args);

Example 9-11 shows the code for the HashtableObserver class.

Example 9-11. HashtableObserver class

// The observer object that will observe a registered
// ObservableHashtable object
public class HashtableObserver
{
 public HashtableObserver() {}

 // Set up delegate/events for approving an addition or change.
 public delegate bool Approval(HashtableEventArgs args);
 public event Approval ApproveAdd;

 public event Approval ApproveChange;

 public void Register(ObservableHashtable hashtable)
 {
 // Hook up to the ObservableHashTable instance events.
 hashtable.BeforeAddItem +=
 new HashtableEventHandler(BeforeAddListener);
 hashtable.AfterAddItem +=
 new HashtableEventHandler(AfterAddListener);
 hashtable.BeforeChangeItem +=
 new HashtableEventHandler(BeforeChangeListener);
 hashtable.AfterChangeItem +=
 new HashtableEventHandler(AfterChangeListener);
 }

 public void Unregister(ObservableHashtable hashtable)
 {
 // Unhook from the ObservableHashTable instance events.
 hashtable.BeforeAddItem -=
 new HashtableEventHandler(BeforeAddListener);
 hashtable.AfterAddItem -=
 new HashtableEventHandler(AfterAddListener);
 hashtable.BeforeChangeItem -=
 new HashtableEventHandler(BeforeChangeListener);
 hashtable.AfterChangeItem -=
 new HashtableEventHandler(AfterChangeListener);
 }

 private void CheckApproval(Approval approval,
 HashtableEventArgs args)
 {
 // Check everyone who wants to approve.
 foreach (Approval approvalInstance in approval.GetInvocationList())
 {
 if (!approvalInstance(args))
 {
 // If any of the concerned parties
 // refuse, then no add. Adds by default.
 args.KeepChanges = false;
 break;
 }
 }
 }
 public void BeforeAddListener(object sender, HashtableEventArgs args)
 {
 // See if anyone is hooked up for approval.
 Approve approveAdd = ApproveAdd;
 if (approveAdd != null)
 {
 CheckApproval(approveAdd, args);
 }

 Debug.WriteLine("[NOTIFY] Before Add…: Add Approval = " +
 args.KeepChanges.ToString());
 }

 public void AfterAddListener(object sender, HashtableEventArgs args)
 {
 Debug.WriteLine("[NOTIFY] …After Add: Item approved for adding: " +
 args.KeepChanges.ToString());
 }

 public void BeforeChangeListener(object sender, HashtableEventArgs args)
 {
 // See if anyone is hooked up for approval.
 Approve approveChange = ApproveChange;
 if (approveChange != null)
 {
 CheckApproval(approveChange, args);
 }

 Debug.WriteLine("[NOTIFY] Before Change…: Change Approval = " +
 args.KeepChanges.ToString());
 }

 public void AfterChangeListener(object sender, HashtableEventArgs args)
 {
 Debug.WriteLine("[NOTIFY] …After Change: Item approved for change: " +
 args.KeepChanges.ToString());
 }
}

The HashtableEventArgs class is a specialization of the EventArgs class, which provides the Hashtable
key and value being added or modified to the HashtableObserver object, as well as a Boolean
property, KeepChanges. This flag indicates whether the addition or modification in the
ObservableHashtable object will succeed or be rolled back. The source code for the
HashtableEventArgs class is:

 // Event arguments for ObservableHashtable
 public class HashtableEventArgs : EventArgs
 {
 public HashtableEventArgs(object key, object value)
 {
 this.key = key;
 this.value = value;
 }

 private object key = null;
 private object value = null;
 private bool keepChanges = true;

 public bool KeepChanges
 {
 get {return (keepChanges);}
 set {keepChanges = value;}
 }

 public object Key
 {
 get {return (key);}
 }

 public object Value
 {
 get {return (value);}
 }
 }

Discussion

The observer design pattern allows one or more observer objects to act as spectators over one or
more subjects. Not only do the observer objects act as spectators, but they can also induce change in
the subjects. According to this pattern, any subject is allowed to register itself with one or more
observer objects. Once this is done, the subject can operate as it normally does. The key feature is
that the subject doesn't have to know what it is being observed bythis allows the coupling between
subjects and observers to be minimized. The observer object(s) will then be notified of any changes
in state to the subjects. When the subject's state changes, the observer object(s) can change the
state of other objects in the system to bring them into line with changes that were made to the
subject(s). In addition, the observer could even make changes or refuse changes to the subject(s)
themselves.

The observer pattern is best implemented with events in C#. The event object provides a built-in way
of implementing the observer design pattern. This recipe implements this pattern on a Hashtable.
The Hashtable object must raise events for any listening observer objects to handle. But the
Hashtable class found in the FCL does not raise any events. In order to make a Hashtable raise
events at specific times, you must derive a new class, ObservableHashtable, from the Hashtable
class. This ObservableHashtable class overrides the Add and indexer members of the base Hashtable.
In addition, four events (BeforeAddItem, AfterAddItem, BeforeChangeItem, and AfterChangeItem)
are created; they will be raised before and after items are added or modified in the
ObservableHashtable object. To raise these events, the following four methods are created, one to
raise each event:

The OnBeforeAdd method raises the BeforeAddItem event.

The OnAfterAdd method raises the AfterAddItem event.

The OnBeforeChange method raises the BeforeChangeItem event.

The OnAfterChange method raises the AfterChangeItem event.

The Add method calls the OnBeforeAdd method, which then raises the event to any listening observer
objects. The OnBeforeAdd method is called before the base.Add methodwhich adds the key/value pair
to the Hashtableis called. After the key/ value pair has been added, the OnAfterAdd method is called.
This operation is similar to the indexer set method.

The Onxxx methods that raise the events in the ObservableHashtable class are

marked as protected virtual to allow classes to subclass this class and
implement their own method of dealing with the events. Note that this
statement is not applicable to sealed classes. In those cases, you can simply
make the methods public.

The HashtableEventArgs class contains three private fields defined as follows:

key

The key that is to be added to the Hashtable.

value

The value that is to be added to the Hashtable.

keepChanges

A flag indicating whether the key/value pair should be added to the Hashtable. true indicates
that this pair should be added to the Hashtable.

The keepChanges field is used by the observer to determine whether an add or change operation
should proceed. This flag is discussed further when you look at the HashtableObserver observer
object.

The HashtableObserver is the observer object that watches any ObservableHashtable objects it is told
about. Any ObservableHashtable object can be passed to the HashtableObserver.Register method in
order to be observed. This method accepts an ObservableHashtable object (hashtable) as its only
parameter. This method then hooks up the event handlers in the HashtableObserver object to the
events that can be raised by the ObservableHashtable object passed in through the hashtable
parameter. Therefore, the following events and event handlers are bound together:

The ObservableHashtable.BeforeAddItem event is bound to the
HashtableObserver.BeforeAddListener event handler.

The ObservableHashtable.AfterAddItem event is bound to the
HashtableObserver.AfterAddListener event handler.

The ObservableHashtable.BeforeChangeItem event is bound to the
HashtableObserver.BeforeChangeListener event handler.

The ObservableHashtable.AfterChangeItem event is bound to the
HashtableObserver.AfterChangeListener event handler.

The BeforeAddListener and BeforeChangeListener methods watch for additions and changes to the
key/value pairs of the watched ObservableHashtable object(s). Since you have an event firing before
and after an addition or modification occurs, you can determine whether the addition or change
should occur.

Two events are published by the HashtableObserver to allow for an external entity to approve or deny
the addition or changing of a hashtable entry. These events are named ApproveAdd and
ApproveChange, respectively, and are of delegate type Approval as shown below.

 public delegate bool Approval(HashtableEventArgs args);

This is where the keepChanges field of the HashtableEventArgs object comes into play. If an external
source wants to block the addition or change, it can simply return false from its event handler
implementation of the appropriate Approve* event.

The HashtableObserver object will set this flag according to whether it determines that the action
should proceed or be prematurely terminated. The HashtableEventArgs object is passed back to the
OnBeforeAdd and OnBeforeChange methods. These methods then return the value of the KeepChanges
property to either the calling Add method or indexer. The Add method or indexer then uses this flag to
determine whether the base Hashtable object should be updated.

The code in Example 9-12 shows how to instantiate ObservableHashtables and HashtableObservers,
and how to register, set up approval, use, and unregister them.

Example 9-12. Using the ObservableHashTable and HashTableObserver
classes

public static void TestObserverPattern()
{
 // Create three observable hashtable instances.
 ObservableHashtable oh1 = new ObservableHashtable();
 ObservableHashtable oh2 = new ObservableHashtable();
 ObservableHashtable oh3 = new ObservableHashtable();

 // Create an observer for the three subject objects.
 HashtableObserver observer = new HashtableObserver();

 // Register the three subjects with the observer.
 observer.Register(oh1);
 observer.Register(oh2);
 observer.Register(oh3);

 // Hook up the approval events for adding or changing.

 observer.ApproveAdd +=
 new HashtableObserver.Approval(SeekApproval);
 observer.ApproveChange +=
 new HashtableObserver.Approval(SeekApproval);

 // Use the observable instances.
 oh1.Add(1,"one");
 oh2.Add(2,"two");
 oh3.Add(3,"three");

 // Unregister the observable instances.
 observer.Unregister(oh3);
 observer.Unregister(oh2);
 observer.Unregister(oh1);
 }

 public static bool SeekApproval(HashtableEventArgs args)
 {
 // Allow only strings of no more than 3 characters in
 // our hashtable.
 string value = (string)args.Value;
 if (value.Length <= 3)
 return true;
 return false;
 }

Note that if the ObservableHashtables are used without registering them, no events will be raised.
Since no events are raised, the observer cannot do its job, and values may be added to the
unregistered subjects that are out of bounds for the application.

When using the observer design pattern in this fashion, keep in mind that fine-grained events, such
as the ones in this recipe, could possibly drag down performance, so profile your code. If you have
many subjects raising many events, your application could fail to meet performance expectations. If
this occurs, you need to either minimize the number of actions that cause events to be raised or
remove some events.

See Also

See the "Event Keyword," "EventHandler Delegate," "EventArgs Class," and "Handling and Raising
Events" topics in the MSDN documentation.

Recipe 9.10. Using the Windows Keyboard Hook

Problem

You need to watch and respond to specific user keyboard input, and, based on the input, you want to
perform one or more actions. For example, pressing the Windows key and the E key at the same
time launches Windows Explorer. You would like to add other Windows key combinations for your
own applications. In addition, you could prevent the user from using specific keys (such as the
Windows key) from within your application.

Solution

The Windows Forms application shown in Example 9-13 uses the WH_KEYBOARD Windows hook.

Example 9-13. Using the Windows keyboard hook

using System;
using System.Windows.Forms;
using System.Runtime.InteropServices;

namespace WindowsApplication2
{
 public class Form1 : System.Windows.Forms.Form
 {
 // Required designer variable
 private System.ComponentModel.Container components = null;

 private System.Windows.Forms.Button button1;
 private System.Windows.Forms.Button button2;
 private System.Windows.Forms.TextBox textBox1;

 public Form1()
 {
 // Required for Windows Form Designer support
 InitializeComponent();
 }

 protected override void Dispose(bool disposing)
 {
 if(disposing)

 {
 if (components != null)
 {
 components.Dispose();
 }
 }
 base.Dispose(disposing);
 }

 #region Windows Form Designer generated code
 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.button1 = new System.Windows.Forms.Button();
 this.button2 = new System.Windows.Forms.Button();
 this.textBox1 = new System.Windows.Forms.TextBox();
 this.SuspendLayout();
 //
 // button1
 //
 this.button1.Name = "button1";
 this.button1.TabIndex = 0;
 this.button1.Text = "Start";
 this.button1.Click +=
 new System.EventHandler(this.button1_Click);
 //
 // button2
 //
 this.button2.Location = new System.Drawing.Point(0, 48);
 this.button2.Name = "button2";
 this.button2.TabIndex = 1;
 this.button2.Text = "End";
 this.button2.Click +=
 new System.EventHandler(this.button2_Click);
 //
 // textBox1
 //
 this.textBox1.Location = new System.Drawing.Point(80, 0);
 this.textBox1.Multiline = true;
 this.textBox1.Name = "textBox1";
 this.textBox1.ScrollBars =
 System.Windows.Forms.ScrollBars.Vertical;
 this.textBox1.Size = new System.Drawing.Size(752, 504);
 this.textBox1.TabIndex = 2;
 this.textBox1.Text = "";
 this.textBox1.WordWrap = false;
 //
 // Form1
 //

 this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);
 this.ClientSize = new System.Drawing.Size(832, 509);
 this.Controls.AddRange(new System.Windows.Forms.Control[] {
 this.textBox1,
 this.button2,
 this.button1});
 this.Name = "Form1";
 this.Text = "Form1";
 this.ResumeLayout(false);
 }
 #endregion

 [STAThread]
 static void Main()
 {
 Application.Run(new Form1());
 }

 // Declare Windows API calls used to access Windows hooks
 [DllImport("user32.dll")]

 public static extern int SetWindowsHookEx(int hookType,
 HookProc callback,
 int instance,
 int threadID);
 [DllImport("user32.dll")]
 public static extern int CallNextHookEx(int hookHandle, int code,
 int wparam, int lparam);
 [DllImport("user32.dll")]
 public static extern bool UnhookWindowsHookEx(int hookHandle);
 [DllImport("user32.dll")]
 public static extern int GetKeyState(int vKey);

 // Fields, constants, and structures used by the keyboard hook.
 int hookHandle = 0;
 HookProc cb = null;

 public const int WH_KEYBOARD = 2;

 public const int HC_ACTION = 0;
 public const int HC_NOREMOVE = 3;

 public const int VK_CONTROL = 0x11;
 public const int VK_LWIN = 0x5B;
 public const int VK_RWIN = 0x5C;
 public const int VK_APPS = 0x5D;
 public const int VK_LSHIFT = 0xA0;
 public const int VK_RSHIFT = 0xA1;
 public const int VK_LCONTROL = 0xA2;
 public const int VK_RCONTROL = 0xA3;
 public const int VK_LMENU = 0xA4;
 public const int VK_RMENU = 0xA5;

 public const int VK_BROWSER_BACK = 0xA6;
 public const int VK_BROWSER_FORWARD = 0xA7;
 public const int VK_BROWSER_REFRESH = 0xA8;
 public const int VK_BROWSER_STOP = 0xA9;
 public const int VK_BROWSER_SEARCH = 0xAA;
 public const int VK_VOLUME_MUTE = 0xAD;
 public const int VK_VOLUME_DOWN = 0xAE;
 public const int VK_VOLUME_UP = 0xAF;
 public const int VK_MEDIA_NEXT_TRACK = 0xB0;
 public const int VK_MEDIA_PREV_TRACK = 0xB1;
 public const int VK_MEDIA_STOP = 0xB2;
 public const int VK_MEDIA_PLAY_PAUSE = 0xB3;
 public const int KF_UP = 0x8000;
 public const long KB_TRANSITION_FLAG = 0x80000000;
 public const int VK_W = 0x57;

 // Keyboard hook delegate
 public delegate int HookProc(int code, int wparam, int lparam);
 public int Proc(int code, int wparam, int lparam)
 {
 if (code == HC_ACTION)
 {
 switch (wparam)
 {
 case VK_BROWSER_BACK:
 // Handle Back keyboard button here.
 textBox1.Text += "Browser Back key caught" +
 Environment.NewLine;
 break;
 case VK_BROWSER_FORWARD:
 // Handle Forward keyboard button here.
 textBox1.Text += "Browser Forward key caught" +
 Environment.NewLine;
 break;
 case VK_BROWSER_REFRESH:
 // Handle Refresh keyboard button here.
 textBox1.Text += "Browser Refresh key caught" +
 Environment.NewLine;
 break;
 case VK_BROWSER_STOP:
 // Handle Stop keyboard button here.
 textBox1.Text += "Browser Stop key caught" +
 Environment.NewLine;
 break;
 case VK_BROWSER_SEARCH:
 // Handle Search keyboard button here.
 textBox1.Text += "Browser Search key caught" +
 Environment.NewLine;
 break;
 case VK_VOLUME_MUTE:
 // Handle Mute keyboard button here.
 textBox1.Text += "Volume Mute key caught" +

 Environment.NewLine;
 break;
 case VK_VOLUME_DOWN:
 // Handle Volume - keyboard button here.
 textBox1.Text += "Volume Down key caught" +
 Environment.NewLine;
 break;
 case VK_VOLUME_UP:
 // Handle Volume + keyboard button here.
 textBox1.Text += "Volume Up key caught" +
 Environment.NewLine;
 break;
 case VK_MEDIA_NEXT_TRACK:
 // Handle Next Track keyboard button here.
 textBox1.Text += "Media Next Track key caught" +
 Environment.NewLine;
 break;
 case VK_MEDIA_PREV_TRACK:
 // Handle Previous Track keyboard button here.
 textBox1.Text += "Media Previous Track key caught" +
 Environment.NewLine;
 break;
 case VK_MEDIA_STOP:
 // Handle Stop keyboard button here.
 textBox1.Text += "Media Stop key caught" +
 Environment.NewLine;
 break;
 case VK_MEDIA_PLAY_PAUSE:
 // Handle Play keyboard button here.
 textBox1.Text += "Media Play/Pause key caught" +
 Environment.NewLine;
 break;
 }
 }
 return (CallNextHookEx(hookHandle, code, wparam, lparam));
 }

 // Click event handlers for button1 and button2.
 private void button1_Click(object sender, System.EventArgs e)
 {
 // Set the keyboard hook.
 if (hookHandle == 0)
 {
 cb = new HookProc(Proc);
 hookHandle = SetWindowsHookEx(WH_KEYBOARD, cb, 0,
 appdomain.GetCurrentThreadId());
 }
 else
 {
 textBox1.Text += "Hook already set" + Environment.NewLine;
 }
 textBox1.Text += "Start: " + hookHandle + Environment.NewLine;

 }

 private void button2_Click(object sender, System.EventArgs e)
 {
 // Unhook the keyboard hook.
 textBox1.Text += "End: " + UnhookWindowsHookEx(hookHandle) +
 Environment.NewLine;
 hookHandle = 0;
 }
 }
}

Discussion

The hooks provided by the Windows operating system allow for very powerful code to be written with
a minimum of work. The hook used in this recipe is the WH_KEYBOARD hook, which watches messages
that are generated by the keyboard.

The WH_KEYBOARD hook allows keyboard messages to be watched or discarded. To discard a keyboard
message, return a 1 from the Proc hook callback method. The HookProc delegate is used as the
method to which the keyboard hook calls back whenever a keyboard message is received. This hook
does not allow the message to be modified.

To use a hook, as the code in the Solution section shows, you first need to declare the following three
Windows API functions:

SetWindowsHookEx

This API creates the hook specified by the first parameter and attaches it to the callback
method specified in the second parameter. The return value of this function is the handle to the
newly created hook. This handle needs to be stored so that it can later be used to remove the
hook.

CallNextHookEx

This API calls the next hook in the hook chain if SetWindowsHookEx has been called multiple
times for a single type of hook. The return value is dependent on the type of hook that is
installed.

UnhookWindowsHookEx

This API removes the callback to the hook specified by the hook handle passed as its only
parameter. This hook handle is returned by the SetWindowHookEx function.

Once these functions are declared, the next step is to declare the delegate for the hook callback
method. This hook callback method is automatically invoked whenever a keyboard message is sent.

The return value of both the delegate and callback methods is the return value of the CallNextHookEx
API method.

The keyboard hook used in this recipe will intercept only messages that are sent to the message
queue of the thread on which the hook is installed. The thread on which to install the hook is passed
as the fourth argument of the SetWindowsHookEx API method. For this recipe, the current thread is
passed as an argument using the static appdomain.GetCurrentThreadId method. Therefore, if you
have a multithreaded application and you want each thread to intercept messages sent by the
keyboard, you will have to call SetWindowsHookEx on each thread to set up the WH_KEYBOARD hook.

The keyboard hook can also be used to capture keys pressed in combination. For example, if the
Windows Menu key is pressed along with the V key, a keyboard hook callback procedure can be
implemented to capture this action:

 // Hook callback method
 public int Proc(int code, int wparam, int lparam)
 {
 if (code == HC_ACTION)
 {
 // Check the state of the Window's keyboard Pop-Up Menu key.
 int state = GetKeyState(VK_APPS);

 // Is the Menu key already down?
 if ((state & KF_UP) == KF_UP)
 {
 // Is the key up?
 if ((lparam & KB_TRANSITION_FLAG) == KB_TRANSITION_FLAG)
 {
 // Is this the V key?
 if (wparam == VK_V)
 {
 // Handle AppMenu-v key combination here…
 textBox1.Text += "AppMenu-v action caught" +
 Environment.NewLine;
 }
 }
 }
 }
 return (CallNextHookEx(hookHandle, code, wparam, lparam));
 }

This callback gets the state of the Menu key and determines whether it is depressed ((state &
KF_UP) ==KF_UP). If it is depressed, the V key is checked to see if it is being released ((lparam &
KB_TRANSITION_FLAG) == KB_TRANSITION_FLAG). If these conditions are true, a message is displayed.
(Of course, you could add your own code here to do something more interesting.)

See Also

See Recipe 9.11; see Subclassing & Hooking with Visual Basic (O'Reilly); and see the "Delegate
Class" and "Hooks" topics in the MSDN documentation.

Recipe 9.11. Tracking and Responding to the Mouse

Problem

Many new mice have more than just a left and right button. Nowadays, mice come with several
additional buttons and a mouse wheel. You need to allow your application to take advantage of these
new mice features. Additionally, you might need to know the mouse's current location on a particular
window, whether it is on the client area of the window (where your menus, toolbars, and controls are
placed in the window), whether it is on the nonclient area of the window (window border, titlebar,
close button, etc.), or the x and y coordinates of the mouse pointer.

Solution

Use the mouse events that are built into the System.Windows.Forms.Form class.

Discussion

Seven mouse events exist in the System.Windows.Forms.Form class. These are, in the order in which
they occur:

MouseEnter

MouseMove

MouseHover, MouseDown, or MouseWheel

MouseUp (if MouseDown was the previously raised event)

MouseLeave

Most of these events accept a MouseEventArgs object that contains all the information about the
mouse when the event is raised. The MouseEventArgs class contains the following data:

Which button the user is acting on

The number of times the mouse button was clicked

The direction and speed of the mouse wheel

The x and y coordinates of the mouse pointer

Your code can make use of any one or more of these events on the Form class along with the
MouseEventArgs object.

See Also

See the "Form Class," "MouseEventArgs Class," "Control.MouseDown Event," "Con-trol.MouseEnter
Event," "Control.MouseHover Event," "Control.MouseLeave Event," "Control.MouseMove Event,"
"Control.MouseWheel Event," "Control.MouseUp Event," and "Control.MouseMove Event" topics in the
MSDN documentation.

Recipe 9.12. Using Anonymous Methods

Problem

There is a new feature in C# 2.0 called anonymous methods. While anonymous methods can be
viewed as syntactic sugar for making delegate calls less difficult, you want to understand all of the
different ways that they can be used to help you in your daily programming chores as well as
understand the ramifications of those uses.

Solution

Anonymous methods can be implemented and used in a variety of ways:

Using return values and parameters

Written inline or through delegate inference (explained shortly)

Using generic type parameters

Let's start with the original way to use delegates. First you would declare a delegate type, DoWork in
this case, and then you would create an instance of it (as shown here in the WorkItOut method).
Declaring the instance of the delegate requires that you specify a method to execute when the
delegate is invoked, and here the DoWorkMethodImpl method has been connected. The delegate is
fired and the text is written to the console via the DoWorkMethodImpl method.

 // Declare delegate.
 class OldWay
 {
 // Declare delegate.
 delegate int DoWork(string work);

 // Have a method to create an instance of and call the delegate.
 public void WorkItOut()
 {
 // Create instance.
 DoWork dw = new DoWork(DoWorkMethodImpl);
 // Invoke delegate
 int i = dw("DoWorkMethodImpl1");
 }

 // Have a method that the delegate is tied to with a matching signature
 // so that it is invoked when the delegate is called.

 public int DoWorkMethodImpl(string s)
 {
 Console.WriteLine(s);
 return s.GetHashCode();
 }
 }

Anonymous methods allow you to set up code to run when a delegate is invoked but there does not
need to be a formal method declaration that is given to the delegate. For example, you could have
written the preceding code using an anonymous method like this:

 class NewWay
 {
 // Declare delegate.
 delegate int DoWork(string work);

 // Have a method to create an instance of and call the delegate.
 public void WorkItOut()
 {
 // Declare instance.
 DoWork dw = delegate(string s)
 {
 Console.WriteLine(s);
 return s.GetHashCode();
 };
 // Invoke delegate.
 int i = dw("DoWorkMethodImpl1");
 }
 }

Notice that instead of having a method called DoWorkMethodImpl, you use the delegate keyword to
directly assign the code from that method inline to the DoWork delegate. The assignment looks like
this:

 DoWork dw = delegate(string s)
 {
 Console.WriteLine(s);
 return s.GetHashCode();
 };

You also provide the parameter required by the DoWork delegate (string) and your code returns an
int (s.GetHashCode()) as the delegate requires. When setting up an anonymous method, the code
must match the delegate signature or you will get a compiler error.

There is yet another way you can set up the delegate using anonymous methods and that is through
the magic of delegate inference. Delegate inference allows you to assign the method name directly to
the delegate instance without having to write the code for creating a new delegate object. Under the
covers, C# actually writes the IL for creating the delegate object, but you don't have to do it
explicitly here. Using delegate inference instead of writing out new delegate() everywhere helps to
unclutter the code involved in the usage of delegates, as shown here:

 class DirectAssignmentWay
 {
 // Declare delegate.
 delegate int DoWork(string work);

 // Have a method to create an instance of and call the delegate.
 public void WorkItOut()
 {
 // Declare instance and assign method.
 DoWork dw = DoWorkMethodImpl;
 // invoke delegate
 int i = dw("DoWorkMethodImpl1");
 }
 // Have a method that the delegate is tied to with a matching signature
 // so that it is invoked when the delegate is called.
 public int DoWorkMethodImpl(string s)
 {
 Console.WriteLine(s);
 return s.GetHashCode();
 }
 }

Notice that all that is assigned to the DoWork delegate instance dw is the method name
DoWorkMethodImpl. There is no "new DoWork(DoWorkMethodImpl)" call as there was in older C# code.

Remember, the underlying delegate wrapper does not go away, delegate
inference just simplifies the syntax a bit by hiding some of it.

Alternatively, you can also set up anonymous methods that take generic type parameters to enable
working with generic delegates as you do here in the GenericWay class:

 class GenericWay
 {
 // Declare generic delegate.
 delegate T DoGenericWork<T>(T t);

 // Have a method to create two instances of and call the delegates.
 public void WorkItOut()

 {
 DoGenericWork<string> dwString = delegate(string s)
 {
 Console.WriteLine(s);
 return s;
 };

 // Invoke string delegate.
 string retStr = dwString("DoWorkMethodImpl1");

 DoGenericWork<int> dwInt = delegate(int i)
 {
 Console.WriteLine(i);
 return i;
 };

 // Invoke int delegate.
 int j = dwInt(5);
 }
 }

The DoGenericWork delegate is defined with one type parameter, T, which is used to specify the type
of the returned value as well as the single parameter passed. Setting up the delegate this way allows
the WorkItOut method to create two instances of DoGenericWork, one using string and the other
using int as the type.

Discussion

One of the most useful things about anonymous methods is the concept of outer variables. The
official definition of outer variables is that they are any local variable, value parameter, or parameter
array with a scope that contains the anonymous method.

What does this mean? It means that, inside of the code of the anonymous method, you can touch
variables outside of the scope of that method. There is a concept of "capturing" the variables that
occurs when an anonymous method actually makes reference to one of the outer variables. In the
following example, the count variable is captured and incremented by the anonymous method. The
count variable is not part of the original scope of the anonymous method but part of the outer scope.
It is incremented and then the incremented value is returned and totaled.

 delegate int Count();

 int count = 0;
 int total = 0;
 Count countUp = delegate { return count++; };
 for(int i=0;i<10;i++)
 {
 total += countUp();

 }
 Debug.WriteLine("Total = " + total);

What capturing actually does is extend the lifetime of the outer variable to coincide with the lifetime
of the underlying delegate instance that represents the anonymous method. This should encourage
you to be careful about what you touch from inside an anonymous method. You could be causing
things to hang around a lot longer than you originally planned on. The garbage collector won't get a
chance to clean up those outer variables until later once they are used in the anonymous method.
Capturing outer variables has another garbage-collector effect: when locals or value parameters are
captured, they are no longer considered to be fixed but are now movable, so any unsafe code must
now fix that variable before use by using the fixed keyword.

Outer variables can affect how the compiler generates the internal IL for the anonymous method. If
the anonymous method uses outer variables, it is generated as a nested class, rather than as
another private method of the class it is declared in, as it otherwise would be. If the outer method is
a static, then the anonymous method can access only static variables, as the nested class will also be
generated as a static.

A few last things to remember about anonymous methods:

They can't use break, goto, or continue to jump from the anonymous method to a target
outside the anonymous method block.

No unsafe code can be executed inside of an anonymous method.

See Also

See the "Anonymous Methods" topic in the MSDN documentation.

Recipe 9.13. Set up Event Handlers Without the Mess

Problem

In versions of the .NET Framework previous to 2.0, the System.EventHandler delegate could be used
on events in which the arguments were always of type System.EventArgs. This was great if you really
didn't care about any data that went along with an event. But as you are all fine programmers and
can see the possibilities of passing data along with the event, you had to set up a delegate and an
event for every event you wanted. Example 9-14 demonstrates an old newspaper class that sends
news to subscribers using the pre-.NET 2.0 event and event-handling methodology.

Example 9-14. Using pre-.NET 2.0 event and event-handling methods

class IWannaKnowThen
{
 // Show the client talking to the newspaper class.
 public static void TryMe()
 {
 // Make a newspaper class.
 OldNewsPaper DailyPaperFlash = new OldNewsPaper();

 // Hook up the news event to our handler (StaleNews).
 DailyPaperFlash.NewsEvent +=
 new OldNewsPaper.NewsEventHandler(StaleNews);

 // Send news.
 DailyPaperFlash.TransmitNews("Patriots win first super bowl!");
 DailyPaperFlash.TransmitNews("W takes office amongst recount.");
 DailyPaperFlash.TransmitNews("VS2003 is sooo passe");

 }

 // Write out news to debug stream
 private static void StaleNews(object src, OldNewsEventArgs nea)
 {
 System.Diagnostics.Debug.WriteLine(nea.LatestNews);
 }
}

// EventArgs derived class to hold our news data
public class OldNewsEventArgs : EventArgs
{

 private string _latestNews;

 public OldNewsEventArgs(string latestNews)
 {
 _latestNews = latestNews;
 }
 public string LatestNews
 {
 get { return _latestNews; }
 }
}

// OldNewsPaper class
public class OldNewsPaper
{
 // Allow clients to get the news.
 public delegate void NewsEventHandler(Object sender, OldNewsEventArgs nea);
 public event NewsEventHandler NewsEvent;

 // Provide nice wrapper for sending news to clients.
 public void TransmitNews(string news)
 {
 NewsEventHandler newsEvent = NewsEvent;
 if (newsEvent != null)
 newsEvent(this, new OldNewsEventArgs(news));
 }
}

This code sets up an event that will report the news to subscribers as it comes in. It passes them the
news data as an argument of type OldNewsEventArgs that has a LatestNews property.

As you can see from this example, whenever you had to set up multiple event handlers, it became an
exercise in copy-and-paste and changing the event argument class type over and over again. It
would be nice to not have to define lots of delegates and events just to change the event arguments,
as all events (and corresponding handlers) are supposed to look like this:

 void [EventHandler](object sender, [EventArgs] args)
 {
 // Do something about this event firing.
 }

Solution

EventHandler<T> takes a type parameter that represents the type of the System.EventArgs derived
class to use in your event handlers. The beauty of this is that you no longer have to keep creating a
delegate and an event for every event you wish to publish from your class. Even better, the

Framework has to have only one event delegate instead of one for every event that passes custom
data! Using the example shown in the Problem section, you can now rewrite the declaration of the
event handler like this:

 // Old way
 public delegate void NewsEventHandler(Object sender, OldNewsEventArgs nea);
 public event NewsEventHandler NewsEvent;

 // New way
 public event EventHandler<OldNewsEventArgs> NewsEvent;

Now you set up the nice wrapper function to allow the user to easily trigger the event:

 // Old way
 public void TransmitNews(string news)
 {
 // Copy to a temporary variable to be thread-safe.
 NewsEventHandler newsEvent = NewsEvent;
 if (newsEvent != null)
 newsEvent(this, new NewsEventArgs(news));
 }

 // New way
 public void TransmitNews(string news)
 {
 // Copy to a temporary variable to be thread-safe.
 EventHandler<OldNewsEventArgs> oldNews = NewsEvent;
 if (oldNews != null)
 oldNews(this, new OldNewsEventArgs(news));
 }

The client can then hook up to the OldNewsPaper class like this:

 // Old way
 class IWannaKnowThen
 {
 // Show the client talking to the newspaper class.
 public static void TryMe()
 {
 // Make a newspaper class.
 OldNewsPaper DailyPaperFlash = new OldNewsPaper();

 // Hook up the news event to our handler (StaleNews).
 DailyPaperFlash.NewsEvent +=
 new OldNewsPaper.NewsEventHandler(StaleNews);

 // Send news.
 DailyPaperFlash.TransmitNews("Patriots win first super bowl!");
 DailyPaperFlash.TransmitNews("W takes office amongst recount.");
 DailyPaperFlash.TransmitNews("VS2003 is sooo passe");
 }

 // Write out news to debug stream.
 private static void StaleNews(object src, OldNewsEventArgs nea)
 {
 System.Diagnostics.Debug.WriteLine(nea.LatestNews);
 }
 }

 // New way
 class IWannaKnowNow
 {
 public static void TryMe()
 {
 // Make a newspaper class.
 OldNewsPaper DailyPaperFlash = new OldNewsPaper();

 // Hook up the news event to our handler (BreakingNews).
 DailyPaperFlash.NewsEvent +=
 new EventHandler<OldNewsEventArgs>(BreakingNews);

 // Send news.
 DailyPaperFlash.TransmitNews("Patriots win again!");
 DailyPaperFlash.TransmitNews("4 more years for W.");
 DailyPaperFlash.TransmitNews("VS2005 & .NET 2.0 Rocks LA");
 }

 private static void BreakingNews(object src, NewsEventArgs nea)
 {
 System.Diagnostics.Debug.WriteLine(nea.LatestNews);
 }
 }

Discussion

The main benefit of using the generic EventHandler instead of System.EventHandler is that you write
less code. Being able to declare a generic delegate allows you to have one delegate definition for
multiple types. Why is this interesting, you might ask? Previously, when a delegate or event was
declared by a class that wanted to publish information and allow multiple client classes to subscribe
to it, if any data were to be passed along to the client classes, the convention was that a new class
that derived from System.EventArgs had to be created. Then the class would be instantiated, filled
with the data, and passed to the client. If the publishing class had only one event to notify people of,
this wasn't too bad. If the publishing class had a lot of events, say like a class derived from a
UserControl, there would have to be a separate class derived from System.EventArgs and a separate

event defined for every event that needed different data passed to it. Now with a generic delegate,
you can simply declare one delegate/event for each list of parameters you deal with, then declare the
type-specific events you need. Since events are supposed to have this signature:

 void eventname(object sender, System.EventArgs args)

the kind folks at Microsoft gave you System.EventHandler<T> to deal with the case of most events. If
your code does have events defined that have more than two parameters, there would need to be a
new delegate created to be the base of those events. Since most events do not have more than two
parameters, this is a bit nonstandard but not out of the question.

See Also

See Recipes 9.5, 9.6, and 9.9; see the "Generic EventHandler" and "System. EventHandler" topics in
the MSDN documentation.

Recipe 9.14. Using Different Parameter Modifiers in
Anonymous Methods

Problem

You know you can pass parameters to anonymous methods but you need to figure out what
parameter modifiers are valid with anonymous methods.

Solution

Anonymous methods can use out and ref parameter modifiers but not the params modifier in their
parameter list. However, this does not prevent the creation of delegates with any of these modifiers
as shown here:

 // Declare out delegate.
 delegate int DoOutWork(out string work);

 // Declare ref delegate.
 delegate int DoRefWork(ref string work);

 // Declare params delegate.
 delegate int DoParamsWork(params string[] workItems);

Even though the DoParamsWork delegate is defined with the params keyword on the parameter, it can
still be used as a type for an anonymous method, as you'll see in a bit. To use the DoOutWork
delegate, create an anonymous method inline using the out keyword and assign it to the DoOutWork
delegate instance. Inside the anonymous method body, the out variable s is assigned a value first (as
it doesn't have one by definition as an out parameter), writes it to the console, and returns the string
hash code.

 // Declare instance and assign method.
 DoOutWork dow = delegate(out string s)
 {
 s = "WorkFinished";
 Console.WriteLine(s);
 return s.GetHashCode();
 };

To run the anonymous method code, invoke the delegate with an out parameter and then print out
the result to the console:

 // Invoke delegate.
 string work;
 int i = dow(out work);
 Console.WriteLine(work);

To use the ref parameter modifier in an anonymous method, you create an inline method to hook up
to the DoRefWork delegate with a ref parameter. In the method, you show you can write the original
value out, reassign the value, and get the hash code of the new value:

 // Declare instance and assign method.
 DoRefWork drw = delegate(ref string s)
 {
 Console.WriteLine(s);
 s = "WorkFinished";
 return s.GetHashCode();
 };

To run the anonymous method, you assign a value to the string work and then pass it as a ref
parameter to the DoRefWork delegate that is instantiated. Upon return from the delegate call, you
write out the new value for the work string:

 // Invoke delegate.
 work = "WorkStarted";
 i = drw(ref work);
 Console.WriteLine(work);

Even though it is possible to declare a delegate with the params modifier, you cannot hook up the
delegate using an anonymous method with the params keyword in the parameter list. You get the
CS1670 "params is not valid in this context" compiler error on the DoParamsWork line.

 // "params is not valid in this context"
 //DoParamsWork dpw = delegate(params object[] workItems)
 //{
 // foreach (object o in workItems)
 // {
 // Console.WriteLine(o.ToString());
 // }

 // return o.GetHashCode();
 //};

You can, however, omit the params keyword and still call the delegate as shown here:

 // All we have to do is omit the params keyword.
 DoParamsWork dpw = delegate(string[] workItems)
 {
 foreach (object o in workItems)
 {
 Console.WriteLine(o.ToString());
 }
 return workItems.GetHashCode();
 };

Notice that although you've removed the params keyword from the anonymous method, this doesn't
stop you from using the same syntax. The params keyword is present on the delegate type, so you
can invoke it thusly:

 int i = dpw("Hello", "42", "bar");

So this illustrates that you can bind an anonymous method to a delegate declared using params, and
once you've done that, you can call it passing in any number of parameters you like just as you'd
expect.

Discussion

Anonymous methods cannot access the ref or out parameters of an outer scope. This means any out
or ref variables that were defined as part of the containing method are off-limits for use inside the
body of the anonymous method.

 // Declare delegate.
 delegate int DoWork(string work);

 public void TestOut(out string outStr)
 {
 // Declare instance.
 DoWork dw = delegate(string s)
 {
 Console.WriteLine(s);
 // Causes error CS1628:

 // "Cannot use ref or out parameter 'outStr' inside an
 // anonymous method block"
 //outStr = s;
 return s.GetHashCode();
 };
 // Invoke delegate.
 int i = dw("DoWorkMethodImpl1");
 }

 public void TestRef(ref string refStr)
 {
 // Declare instance.
 DoWork dw = delegate(string s)
 {
 Console.WriteLine(s);
 // Causes error CS1628:
 // "Cannot use ref or out parameter 'refStr' inside an
 // anonymous method block"
 // refStr = s;
 return s.GetHashCode();
 };
 // Invoke delegate
 int i = dw("DoWorkMethodImpl1");
 }

Interestingly enough, anonymous methods can access outer variables with the params modifier.

 // Declare delegate.
 delegate int DoWork(string work);

 public void TestParams(params string[] items)
 {
 // Declare instance.
 DoWork dw = delegate(string s)
 {
 Console.WriteLine(s);
 foreach (string item in items)
 {
 Console.WriteLine(item);
 }
 return s.GetHashCode();
 };
 // Invoke delegate.
 int i = dw("DoWorkMethodImpl1");
 }

Since the params modifier is there for the benefit of the calling site (so the compiler knows to make

this a method call that supports variable-length argument lists) and since anonymous methods are
never called directly (always called via a delegate), then it makes no sense for an anonymous
method to be decorated with something there for the benefit of the calling sitethere is no calling site.
This is why it doesn't matter that you can't use the params keyword on an anonymous method. For
anonymous methods, the calling site is always calling through the delegate, so what matters is
whether that delegate has the params keyword or not.

See Also

See Recipe 9.12; see the "CS1670," "CS1628," "out," "ref," "params," and "System.
ParamArrayAttribute" topics in the MSDN documentation.

Recipe 9.15. Using Closures in C#

Problem

You want to associate a small amount of state with some behavior without going to the trouble of
building a new class.

Solution

Use anonymous methods to implement closures. Closures can be defined as functions that capture
the state of the environment that is in scope where they are declared. Put more simply, they are
current state plus some behavior that can read and modify that state. Anonymous methods have the
capacity to capture external variables and extend their lifetime, which makes closures possible in C#
now.

To show an example of this, you will build a quick reporting system that tracks sales personnel and
their revenue production versus commissions. The closure behavior is that you can build one bit of
code that does the commission calculations per quarter and works on every salesperson.

First, you have to define your sales personnel:

 class SalesWeasel
 {
 …
 #region Private members
 private string _name;
 private decimal _annualQuota;
 private decimal _commissionRate;
 private decimal _commission = 0m;
 private decimal _totalCommission = 0m;
 #endregion // Private members
 …
 }

Sales personnel have a name, an annual quota, a commission rate for sales, and some storage for
holding a quarterly commission and a total commission. Now that you have something to work with,
let's write a bit of code to do the work of calculating the commissions:

 delegate void CalculateEarnings(SalesWeasel weasel);

 static CalculateEarnings GetEarningsCalculator(decimal quarterlySales,
 decimal bonusRate,
 int weaselCount)
 {
 return delegate(SalesWeasel weasel)
 {
 // Assume all weasels contributed equally to quarterly revenue.
 decimal weaselSalesPortion = quarterlySales / weaselCount;
 // Figure out the weasel's quota for the quarter.
 decimal quarterlyQuota = (weasel.AnnualQuota / 4);
 // Did he make quota for the quarter?
 if (quarterlySales < quarterlyQuota)
 {
 // Didn't make quota, no commission
 weasel.Commission = 0;
 }
 // Check for bonus-level performance (200% of quota).
 else if (quarterlySales > (quarterlyQuota * 2.0m))
 {
 decimal baseCommission = quarterlyQuota *
 weasel.CommissionRate;
 weasel.Commission = (baseCommission +
 ((quarterlySales - quarterlyQuota) *
 (weasel.CommissionRate * (1 + bonusRate))));
 }
 else // Just regular commission
 {
 weasel.Commission = weasel.CommissionRate * quarterlySales;
 }
 };
 }

You've declared the delegate type as CalculateEarnings, and it takes a SalesWeasel. You have a
factory method to construct an instance of this delegate for you called GetEarningsCalculator, which
creates an anonymous method to do the calculation of the SalesWeasel's commission and returns a
CalculateEarnings instantiation.

To get set up, you have to create your SalesWeasels:

 // Set up the sales weasels…
 SalesWeasel[] weasels = new SalesWeasel[3];
 weasels[0] = new SalesWeasel("Chas",100000m, 0.10m);
 weasels[1] = new SalesWeasel("Ray",200000m, 0.025m);
 weasels[2] = new SalesWeasel("Biff",50000m, 0.001m);

Then set up earnings calculators based on quarterly earnings:

 decimal q1Earnings = 65000m;
 decimal q2Earnings = 20000m;
 decimal q3Earnings = 37000m;
 decimal q4Earnings = 110000m;

 // Set up earnings calculators for each quarter.
 CalculateEarnings eCalcQ1 =
 GetEarningsCalculator(q1Earnings, 0.10m, weasels.Length);
 CalculateEarnings eCalcQ2 =
 GetEarningsCalculator(q2Earnings, 0.10m, weasels.Length);
 CalculateEarnings eCalcQ3 =
 GetEarningsCalculator(q3Earnings, 0.10m, weasels.Length);
 CalculateEarnings eCalcQ4 =
 GetEarningsCalculator(q4Earnings, 0.15m, weasels.Length);

And finally run the numbers for each quarter for all SalesWeasels:

 // Figure out Q1.
 WriteQuarterlyReport("Q1", q1Earnings, eCalcQ1, weasels);
 // Figure out Q2.
 WriteQuarterlyReport("Q2", q2Earnings, eCalcQ2, weasels);
 // Figure out Q3.
 WriteQuarterlyReport("Q3", q3Earnings, eCalcQ3, weasels);
 // Figure out Q4.
 WriteQuarterlyReport("Q4", q4Earnings, eCalcQ4, weasels);

WriteQuarterlyReport invokes the CalculateEarnings anonymous method implementation (eCalc) for
every SalesWeasel and modifies the state to assign quarterly commission values based on the
commission rates for each one:

 static void WriteQuarterlyReport(string quarter,
 decimal quarterlySales,
 CalculateEarnings eCalc,
 SalesWeasel[] weasels)
 {
 Console.WriteLine("{0} Sales Earnings on Quarterly Sales of {1}:",
 quarter, quarterlySales.ToString("C"));
 foreach (SalesWeasel weasel in weasels)
 {
 // Calc commission
 eCalc(weasel);
 // Report
 Console.WriteLine(" SalesWeasel {0} made a commission of : {1}",

 weasel.Name, weasel.Commission.ToString("C"));
 }

 }

You can finally generate the annual report from this data, which will tell the executives which sales
personnel are worth keeping by calling WriteCommissionReport:

 decimal annualEarnings = q1Earnings + q2Earnings +
 q3Earnings + q4Earnings;
 // Let's see who is worth keeping…
 WriteCommissionReport(annualEarnings,weasels);

WriteCommissionReport checks the revenue earned by the individual sales personnel against their
commission, and if their commission is more than 20 percent of the revenue they generated, you
recommend action be taken:

 static void WriteCommissionReport(decimal annualEarnings,
 SalesWeasel[] weasels)

 {
 decimal revenueProduced = ((annualEarnings) / weasels.Length);
 Console.WriteLine("");
 Console.WriteLine("Annual Earnings were {0}",
 annualEarnings.ToString("C"));
 Console.WriteLine("");
 foreach(SalesWeasel weasel in weasels)
 {
 Console.WriteLine(" Paid {0} {1} to produce {2}",
 weasel.Name,
 weasel.TotalCommission.ToString("C"),
 revenueProduced.ToString("C"));

 // If his commission is more than 20% of what he produced
 // can him.
 if ((revenueProduced * 0.2m) < weasel.TotalCommission)
 {
 Console.WriteLine(" FIRE {0}!",weasel.Name);
 }
 }
 }

The output for your revenue and commission tracking program is listed here for your enjoyment:

 Q1 Sales Earnings on Quarterly Sales of $65,000.00:
 SalesWeasel Chas made a commission of : $6,900.00

 SalesWeasel Ray made a commission of : $1,625.00
 SalesWeasel Biff made a commission of : $70.25
 Q2 Sales Earnings on Quarterly Sales of $20,000.00:
 SalesWeasel Chas made a commission of : $0.00
 SalesWeasel Ray made a commission of : $0.00
 SalesWeasel Biff made a commission of : $20.00
 Q3 Sales Earnings on Quarterly Sales of $37,000.00:
 SalesWeasel Chas made a commission of : $3,700.00
 SalesWeasel Ray made a commission of : $0.00
 SalesWeasel Biff made a commission of : $39.45
 Q4 Sales Earnings on Quarterly Sales of $110,000.00:
 SalesWeasel Chas made a commission of : $12,275.00
 SalesWeasel Ray made a commission of : $2,975.00
 SalesWeasel Biff made a commission of : $124.63

 Annual Earnings were $232,000.00

 Paid Chas $22,875.00 to produce $77,333.33
 FIRE Chas!
 Paid Ray $4,600.00 to produce $77,333.33
 Paid Biff $254.33 to produce $77,333.33

Discussion

One of the best ways we've heard of to describe closures in C# is to think of an object as a set of
methods associated with data and to think of a closure as a set of data associated with a function. If
you need to have several different operations on the same data, an object approach may make more
sense. These are two different angles on the same problem, and the type of problem you are solving
will help you decide which is the right approach. It just depends on your inclination as to which way to
go. There are times when 100 percent pure object-oriented programming can get tedious and
unnecessary, and closures are a nice way to solve some of those problems. The SalesWeasel
commission example presented here is a demonstration of what you can do with closures. It could
have been done without them, but at the expense of writing more class and method code.

Closures have been defined as stated earlier, but there is a stricter definition that essentially implies
that the behavior associated with the state should not be able to modify the state in order to be a
true closure. We tend to agree more with the first definition as it defines what a closure should be,
not how it should be implemented, which seems too restrictive. Whether you choose to think of this
as a neat side feature of anonymous methods or you feel it is worthy of being called a closure, it is
another programming trick for your toolbox and should not be dismissed.

See Also

See Recipe 9.12; see the "Anonymous Methods" topic in the MSDN documentation.

Recipe 9.16. Performing Multiple Operations on a List
Using Functors

Problem

You want to be able to perform multiple operations on an entire collection of objects at once, while
keeping the operations functionally segmented.

Solution

Use a functor (or function object as it is also known) as the vehicle for transforming the collection. A
functor is any object that can be called as a function. Examples of this are a function, a function
pointer, or even an object that defines operator () for us C/C++ converts.

Needing to perform multiple operations on a collection is a reasonably common thing in software.
Let's say that you have a stock portfolio with a bunch of stocks in it. Your StockPortfolio class would
have a List of Stock objects. It would be able to be created with an initial capacity, and it would have
the ability to add stocks.

 public class StockPortfolio
 {
 List<Stock> _stocks;

 public StockPortfolio(int capacity)
 {
 _stocks = new List<Stock>(capacity);
 }

 public void AddStock(string ticker, double gainLoss)
 {
 _stocks.Add(new Stock(ticker, gainLoss));
 }

 More methods down here…
 }

The Stock class is rather simple. You just need a ticker symbol for the stock and its percentage of
gain or loss:

 public class Stock
 {
 string _tickerSymbol;
 double _gainLoss;

 public Stock(string ticker, double gainLoss)
 {
 _tickerSymbol = ticker;
 _gainLoss = gainLoss;
 }

 public double GainLoss {get { return _gainLoss; } }
 public string Ticker {get { return _tickerSymbol; }}
 }

To use this StockPortfolio, you add a few stocks to it with gain/loss percentages and print out your
starting portfolio. Once you have the portfolio, you want to get a list of the three best performing
stocks, so you can cash in by selling them, and print out your portfolio again.

 StockPortfolio tech = new StockPortfolio(10);
 tech.AddStock("OU81", -10.5);
 tech.AddStock("C#4VR", 2.0);
 tech.AddStock("PCKD", 12.3);
 tech.AddStock("BTML", 0.5);
 tech.AddStock("NOVB", -35.2);
 tech.AddStock("MGDCD", 15.7);
 tech.AddStock("GNRCS", 4.0);
 tech.AddStock("FNCTR", 9.16);
 tech.AddStock("ANYMS", 9.12);
 tech.AddStock("PCLS", 6.11);

 tech.PrintPortfolio("Starting Portfolio");
 // Cash in by selling the best performers.
 List<Stock> best = tech.GetBestPerformers(3);
 tech.SellStocks(best);
 tech.PrintPortfolio("After Selling Best 3 Performers");

So far nothing terribly interesting is happening. Let's take a look at how you figured out what the
three best performers were by looking at the internals of the GetBestPerformers method:

 public List<Stock> GetWorstPerformers(int bottomNumber)
 {
 int foundItems = 0;

 // Sort the stocks by performance using a binary functor.
 _stocks.Sort(delegate(Stock lhs, Stock rhs)

 {
 // Reverse parameters to sort highest to lowest.
 return Comparer<double>.Default.Compare(rhs.GainLoss, lhs.GainLoss);
 });

 // Return stock that match criteria using a unary functor.
 return _stocks.FindAll(delegate(Stock s)
 {
 // If we have accepted no more than how many were asked for
 // then keep accepting.
 if (foundItems < bottomNumber)
 {
 string result = "gain";
 if (s.GainLoss < 0)
 result = "loss";
 Console.WriteLine(
 string.Format("Best stock added ({0}) with {1} of {2}%",
 s.Ticker, result, System.Math.Abs(s.GainLoss)));
 // Increment count.
 foundItems++;
 return true;
 }
 else // Have all we need
 return false;
 });
 }

The first thing you do is make sure the list is sorted so that the best performing stocks are at the
front of the list by calling the Sort method on List<T>. One of the overloads of the Sort method is
defined to take a Comparison<T> which is defined like this:

 public delegate int Comparison<T>(T x, T y)

You create the Comparison you need by using the Comparer<T> class passing a double as the argument
and using the default comparison method, while passing the gain/ loss percentage for each stock as it
is iterated over by the Sort function. The stocks being compared (rhs, lhs) are reversed to place the
best performing stocks at the front of the list:

 return Comparer<double>.Default.Compare(rhs.GainLoss, lhs.GainLoss);

Your comparison tells Sort which object should be placed ahead of the other. This is a simple callback
from Sort that allows you to control the algorithm to determine sort order. You wrapped this up in an
anonymous method by using the delegate keyword and now you have your Comparison delegate that
the Sort function needs.

Now that your list is sorted, you use the FindAll function from List<T>, which takes a Predicate<T>
as the parameter. Again you use the delegate keyword to create an anonymous method to
determine if the item FindAll passes to the anonymous method should be returned in the list that
FindAll is building. In your functor, you take the first n items in the list (n is the total number of
stocks performing the best) represented by bottomNumber, and once you have taken that many, you
return false to FindAll so that no more items are returned.

GetBestPerformers returns a List<Stock> full of the three best performers. As they are making
money, it is time to cash in and sell them. For your purposes, selling is simply removing them from
the list of stocks in StockPortfolio. To accomplish this, you use yet another functor to iterate over
the list of stocks handed to the SellStocks function (the list of worst-performing ones in your case)
and then remove that stock from the internal list that the StockPortfolio class maintains:

 public void SellStocks(List<Stock> stocks)
 {
 stocks.ForEach(delegate(Stock s)
 {
 _stocks.Remove(s);
 });
 }

Discussion

Functors come in a few different flavors that are known as a generator (a function with no
parameters), a unary function (a function with one parameter), and a binary function (a function with
two parameters). Before you ask, yes, you could keep going, but the STL (Standard Template Library
from C++) didn't bother so we won't either at this point. If the functor happens to return a Boolean
value, then it gets an even more special naming convention: a unary function that returns a Boolean
is called a predicate, and a binary function with a Boolean return is called a binary predicate. You will
now notice in the Framework that there are both Predicate<T> and BinaryPredicate<T> delegates
defined to facilitate these uses of functors.

The List<T> and System.Array classes have been enhanced in the 2.0 version of the .NET Framework
to take predicates (Predicate<T>, BinaryPredicate<T>), actions (Action<T>), comparisons
(Comparison<T>), and converters (Converter<T,U>). This allows these collections to be operated on in
a much more general way than was previously possible and brings some of the richness of the C++
STL to C#.

Thinking in terms of functors can be a bit of a challenge at first, but once you put a bit of time into it,
you can start to see powerful possibilities open up before you. Any code you can write once, debug
once, and use many times is a useful thing, and functors can help you get to that place.

See Also

See the "System.Collections.Generic.List<T>" and "System.Array" topics in the MSDN
documentation.

Chapter 10. Regular Expressions

Introduction

The .NET Framework Class Library includes the System.Text.RegularExpressions namespace, which
is devoted to creating, executing, and obtaining results from regular expressions executed against a
string.

Regular expressions take the form of a pattern that can be matched to zero or more characters
within a string. The simplest of these patterns, such as .* (match anything and everything) and [A-
Za-z] (match any letter) are easy to learn, but more advanced patterns can be difficult to learn and
even more difficult to implement correctly. Learning and understanding regular expressions can take
considerable time and effort, but the work will pay off.

Regular expression patterns can take a simple formsuch as a single word or characteror a much more
complex pattern. The more complex patterns can recognize and match such things as the year
portion of a date, all of the <SCRIPT> tags in an ASP page, or a phrase in a sentence that varies with
each use. The .NET regular expression classes provide a very flexible and powerful way to do such
things as recognize text, replace text within a string, and split up text into individual sections based
on one or more complex delimiters.

Despite the complexity of regular expression patterns, the regular expression classes in the FCL are
easy to use in your applications. Executing a regular expression consists of the following steps:

Create an instance of a Regex object that contains the regular expression pattern along with any
options for executing that pattern.

1.

Retrieve a reference to an instance of a Match object by calling the Match instance method if you
want only the first match found. Or retrieve a reference to an instance of the MatchesCollection
object by calling the Matches instance method if you want more than just the first match found.
If, however, you want to know only whether the input string was a match and do not need the
extra details on the nature of the match, you can use the Regex.IsMatch method.

2.

If you've called the Matches method to retrieve a MatchCollection object, iterate over the
MatchCollection using a foreach loop. Each iteration will allow access to every Match object that
the regular expression produced.

3.

Recipe 10.1. Enumerating Matches

Problem

You need to find one or more substrings corresponding to a particular pattern within a string. You
need to be able to inform the searching code to return either all matching substrings or only the
matching substrings that are unique within the set of all matched strings.

Solution

Call the FindSubstrings method shown in Example 10-1, which executes a regular expression and
obtains all matching text. This method returns either all matching results or only the unique matches;
this behavior is controlled by the findAllUnique parameter. Note that if the findAllUnique parameter
is set to true, the unique matches are returned sorted alphabetically.

Example 10-1. FindSubstrings method

using System;
using System.Collections;
using System.Text.RegularExpressions;

public static Match[] FindSubstrings(string source, string matchPattern,
 bool findAllUnique)
{
 SortedList uniqueMatches = new SortedList();
 Match[] retArray = null;

 Regex RE = new Regex(matchPattern, RegexOptions.Multiline);
 MatchCollection theMatches = RE.Matches(source);

 if (findAllUnique)
 {
 for (int counter = 0; counter < theMatches.Count; counter++)
 {
 if (!uniqueMatches.ContainsKey(theMatches[counter].Value))
 {

 uniqueMatches.Add(theMatches[counter].Value,
 theMatches[counter]);
 }

 }
 retArray = new Match[uniqueMatches.Count];
 uniqueMatches.Values.CopyTo(retArray, 0);
 }
 else
 {
 retArray = new Match[theMatches.Count];
 theMatches.CopyTo(retArray, 0);
 }

 return (retArray);

}

The TestFindSubstrings method shown in Example 10-2 searches for any tags in an XML string; it
does this by searching for a block of text that begins with the < character and ends with the >
character.

This method first displays all unique tag matches present in the XML string and then displays all tag
matches within the string.

Example 10-2. The TestFindSubstrings method

public static void TestFindSubstrings()
{
 string matchPattern = "<.*>";

 string source = @"<?xml version='1.0' encoding='UTF-8'?>
 <!-- My comment -->
 <![CDATA[<escaped> <><chars>>>>>]]>
 <Window ID='Main'>
 <Control ID='TextBox'>
 <Property Top='0' Left='0' Text='BLANK'/>
 </Control>
 <Control ID='Label'>
 <Property Top='0' Left='0' Caption='Enter Name Here'/>
 </Control>
 <Control ID='Label'>
 <Property Top='0' Left='0' Caption='Enter Name Here'/>
 </Control>
 </Window>";
 Console.WriteLine("UNIQUE MATCHES");
 Match[] x1 = FindSubstrings(source, matchPattern, true);
 foreach(Match m in x1)
 {
 Console.WriteLine(m.Value);
 }

 Console.WriteLine();
 Console.WriteLine("ALL MATCHES");
 Match[] x2 = FindSubstrings(source, matchPattern, false);
 foreach(Match m in x2)
 {
 Console.WriteLine(m.Value);
 }
}

The following text will be displayed:

 UNIQUE MATCHES
 <!-- My comment -->
 <![CDATA[<escaped> <><chars>>>>>]]>
 </Control>
 </Window>
 <?xml version="1.0\" encoding=\"UTF-8\"?>
 <Control ID="Label">
 <Control ID="TextBox">
 <Property Top="0" Left="0" Caption="Enter Name Here"/>
 <Property Top="0" Left="0" Text="BLANK"/>
 <Window ID="Main">

 ALL MATCHES
 <?xml version="1.0\" encoding=\"UTF-8\"?>
 <!-- my comment -->
 <![CDATA[<escaped> <><chars>>>>>]]>
 <Window ID="Main">
 <Control ID="TextBox">
 <Property Top="0" Left="0" Text="BLANK"/>
 </Control>
 <Control ID="Label">
 <Property Top="0" Left="0" Caption="Enter Name Here"/>
 </Control>
 <Control ID="Label">
 <Property Top="0" Left="0" Caption="Enter Name Here"/>
 </Control>
 </Window>

Discussion

As you can see, the regular expression classes in the FCL are quite easy to use. The first step is to
create an instance of the Regex object that contains the regular expression pattern, along with any
options for running this pattern. The second step is to get a reference to an instance of the Match
object, if you need only the first found match, or a MatchCollection object, if you need more than

just the first found match. To get a reference to this object, the two instance methods Match and
Matches can be called from the Regex object that was created in the first step. The Match method
returns a single match object (Match) and Matches returns a collection of match objects
(MatchCollection).

The FindSubstrings method returns an array of Match objects that can be used by the calling code.
You may have noticed that the unique elements are returned sorted, and the nonunique elements are
not sorted. A SortedList, which is used by the FindSubstrings method to store unique strings that
match the regular expression pattern, automatically sorts its items when they are added.

The regular expression used in the TestFindSubstrings method is very simplistic and will work in
mostbut not allconditions. For example, if two tags are on the same line, as shown here:

 <tagData></tagData>

the regular expression will catch the entire line, not each tag separately. You could change the
regular expression from <.*> to <[^>]*> to match only up to the closing > ([^>]* matches
everything that is not a >). However, this will fail in the CDATA section, matching
<![CDATA[<escaped>, <>, and <chars> instead of <![CDATA[<escaped><> <chars>>>>>]]>. The more
complicated @"(<!\[CDATA.*>|<[^>]*>)" will match either <!\[CDATA.*> (a greedy match for
everything within the CDATA section) or <[^>]*>, described previously.

See Also

See the ".NET Framework Regular Expressions" and "SortedList Class" topics in the MSDN
documentation.

Recipe 10.2. Extracting Groups from a MatchCollection

Problem

You have a regular expression that contains one or more named groups, such as the following:

 \\\\(?<TheServer>\w*)\\(?<TheService>\w*)\\

where the named group TheServer will match any server name within a UNC string, and TheService
will match any service name within a UNC string.

You need to store the groups that are returned by this regular expression in a keyed collection (such
as a Dictionary<string, Group>) in which the key is the group name.

Solution

The ExtractGroupings method shown in Example 10-3 obtains a set of Group objects keyed by their
matching group name.

Example 10-3. ExtractGroupings method

using System;
using System.Collections;
using System.Collections.Generics;
using System.Text.RegularExpressions;

public static List<Dictionary<string, Group>> ExtractGroupings(string source,
 string matchPattern,
 bool wantInitialMatch)
{
 List<Dictionary<string, Group>> keyedMatches =
 new List<Dictionary<string, Group>>();
 int startingElement = 1;
 if (wantInitialMatch)
 {
 startingElement = 0;
 }

 Regex RE = new Regex(matchPattern, RegexOptions.Multiline);
 MatchCollection theMatches = RE.Matches(source);

 foreach(Match m in theMatches)
 {
 Dictionary<string, Group> groupings = new Dictionary<string, Group>();

 for (int counter = startingElement; counter < m.Groups.Count; counter++)
 {
 // If we had just returned the MatchCollection directly, the
 // GroupNameFromNumber method would not be available to use.
 groupings.Add(RE.GroupNameFromNumber(counter), m.Groups[counter]);
 }

 keyedMatches.Add(groupings);
 }

 return (keyedMatches);
}

The ExtractGroupings method can be used in the following manner to extract named groups and
organize them by name:

 public static void TestExtractGroupings()
 {
 string source = @"Path = ""\\MyServer\MyService\MyPath;
 \\MyServer2\MyService2\MyPath2\""";
 string matchPattern = @"\\\\(?<TheServer>\w*)\\(?<TheService>\w*)\\";

 foreach (Dictionary<string, Group> grouping in
 ExtractGroupings(source, matchPattern, true))
 {
 foreach (KeyValuePair kvp in grouping)
 Console.WriteLine("Key / Value = " + kvp.Key + " / " + kvp.Value);
 Console.WriteLine("");
 }
 }

This test method creates a source string and a regular expression pattern in the MatchPattern
variable. The two groupings in this regular expression are highlighted here:

 string matchPattern = @"\\\\(?<TheServer>\w*)\\(?<TheService>\w*)\\";

The names for these two groups are: TheServer and TheService. Text that matches either of these
groupings can be accessed through these group names.

The source and matchPattern variables are passed in to the ExTRactGroupings method, along with a
Boolean value, which is discussed shortly. This method returns a List<T>; containing
Dictionary<string,Group> objects. These Dictionary<string,Group> objects contain the matches for
each of the named groups in the regular expression, keyed by their group name.

This test method, TestExtractGroupings, returns the following:

 Key / Value = 0 / \\MyServer\MyService\
 Key / Value = TheService / MyService
 Key / Value = TheServer / MyServer

 Key / Value = 0 / \\MyServer2\MyService2\
 Key / Value = TheService / MyService2
 Key / Value = TheServer / MyServer2

If the last parameter to the ExtractGroupings method were to be changed to false, the following
output would result:

 Key / Value = TheService / MyService
 Key / Value = TheServer / MyServer

 Key / Value = TheService / MyService2
 Key / Value = TheServer / MyServer2

The only difference between these two outputs are that the first grouping is not displayed when the
last parameter to ExtractGroupings is changed to false. The first grouping is always the complete
match of the regular expression.

Discussion

Groups within a regular expression can be defined in one of two ways. The first way is to add
parentheses around the subpattern that you wish to define as a grouping. This type of grouping is
sometimes labeled as unnamed. This grouping can later be easily extracted from the final text in
each Match object returned by running the regular expression. The regular expression for this recipe
could be modified, as follows, to use a simple unnamed group:

 string matchPattern = @"\\\\(\w*)\\(\w*)\\";

After running the regular expression, you can access these groups using a numeric integer value

starting with 1.

The second way to define a group within a regular expression is to use one or more named groups. A
named group is defined by adding parentheses around the subpattern that you wish to define as a
grouping and, additionally, adding a name to each grouping, using the following syntax:

 (?<Name>\w*)

The Name portion of this syntaxis the name you specify for this group. After executing this regular
expression, you can access this group by the name Name.

To access each group, you must first use a loop to iterate each Match object in the MatchCollection.
For each Match object, you access the GroupCollection's indexer, using the following unnamed
syntax:

 string group1 = m.Groups[1].Value;
 string group2 = m.Groups[2].Value;

or the following named syntax where m is the Match object:

 string group1 = m.Groups["Group1_Name"].Value;

 string group2 = m.Groups["Group2_Name"].Value;

If the Match method was used to return a single Match object instead of the MatchCollection, use the
following syntax to access each group:

 // Unnamed syntax
 string group1 = theMatch.Groups[1].Value;
 string group2 = theMatch.Groups[2].Value;

 // Named syntax

 string group1 = theMatch.Groups["Group1_Name"].Value;

 string group2 = theMatch.Groups["Group2_Name"].Value;

where theMatch is the Match object returned by the Match method.

See Also

See the ".NET Framework Regular Expressions" and "Hashtable Class" topics in the MSDN
documentation.

Recipe 10.3. Verifying the Syntax of a Regular Expression

Problem

You have constructed a regular expression dynamically, either from your code or based on user
input. You need to test the validity of this regular expression's syntax before you actually use it.

Solution

Use the VerifyRegEx method shown in Example 10-4 to test the validity of a regular expression's
syntax.

Example 10-4. VerifyRegEx method

using System;
using System.Text.RegularExpressions;

public static bool VerifyRegEx(string testPattern)
{
 bool isValid = true;
 if ((testPattern != null) && (testPattern.Trim().Length > 0))
 {
 try
 {
 Regex.Match("", testPattern);
 }
 catch (ArgumentException)
 {
 // BAD PATTERN: syntax error
 isValid = false;
 }
 }
 else
 {
 //BAD PATTERN: pattern is null or blank
 isValid = false;
 }

 return (isValid);
}

To use this method, pass it the regular expression that you wish to verify:

 public static void TestUserInputRegEx(string regEx)
 {
 if (VerifyRegEx(regEx))
 Console.WriteLine("This is a valid regular expression.");
 else
 Console.WriteLine("This is not a valid regular expression.");
 }

Discussion

The VerifyRegEx method calls the static Regex.Match method, which is useful for running regular
expressions on the fly against a string. The static Regex.Match method returns a single Match object.
By using this static method to run a regular expression against a string (in this case a blank string),
you can determine whether the regular expression is invalid by watching for a thrown exception. The
Regex.Match method will throw an ArgumentException if the regular expression is not syntactically
correct. The Message property of this exception contains the reason the regular expression failed to
run, and the ParamName property contains the regular expression passed to the Match method. Both of
these properties are read-only.

Before testing the regular expression with the static Match method, the regular expression is tested to
see if it is null or blank. A null regular expression string returns an ArgumentNullException when
passed in to the Match method. On the other hand, if a blank regular expression is passed in to the
Match method, no exception is thrown (as long as a valid string is also passed to the first parameter
of the Match method).

Recipe 10.4. Quickly Finding Only the Last Match in a
String

Problem

You need to find the last pattern match in a string, but you do not want the overhead of finding all
matches in a string and having to move to the last match in the collection of matches.

Solution

using the RegexOptions.RightToLeft option, the match starts at the end of the string and proceeds
toward the beginning. The first found match is the last match in the string. You supply the
RegexOptions.RightToLeft constant as an argument to the Match method. The instance Match
method can be used as follows:

 Regex RE = new Regex(Pattern, RegexOptions.RightToLeft);

 Match theMatch = RE.Match(Source);

or use the static Regex.Match method:

 Match theMatch = Regex.Match(Source, Pattern, RegexOptions.RightToLeft);

where Pattern is the regular expression pattern and Source is the string against which to run the

pattern.

Discussion

The RegexOptions.RightToLeft regular expression option will force the regular expression engine to
start searching for a pattern starting with the end of the string and proceeding backward toward the
beginning of the string. The first match encountered will be the match closest to the end of the
stringin other words, the last match in the string.

See Also

See the ".NET Framework Regular Expressions" topic in the MSDN documentation.

Recipe 10.5. Replacing Characters or Words in a String

Problem

You are given a string in which a complex pattern of characters needs to be replaced with a new
string.

Solution

Using the Replace instance method on the Regex class allows for easy replacement of text within a
string. The overloaded Replace methods shown in Example 10-5 accept a source string that contains
characters or words to be replaced, a matchPattern to match the replaceable text in the source
parameter, and a replaceStr string to replace the text matched by matchPattern. In addition two
parameters, count and startPos, control the number of replacements allowed and where the
replacements start from in the source string, respectively.

Example 10-5. Overloaded Replace methods

using System;
using System.Text.RegularExpressions;

public class RegexUtils
{
 public static string ReplaceStrWithChar(string source, char matchPattern,
 string replaceStr)
 {
 return (ReplaceStrWithStr(source, matchPattern.ToString(),
 replaceStr, -1, 0));
 }

 public static string ReplaceStrWithChar(string source, char matchPattern,
 string replaceStr, int count)
 {
 return (ReplaceStrWithStr(source, matchPattern.ToString(),
 replaceStr, count, 0));
 }

 public static string ReplaceStrWithChar(string source, char matchPattern,
 string replaceStr, int count, int startPos)
 {

 return (ReplaceStrWithStr(source, matchPattern.ToString(),
 replaceStr, count, startPos));
 }

 public static string ReplaceStrWithStr(string source, string matchPattern,
 string replaceStr)
 {
 return (ReplaceStrWithStr(source, matchPattern, replaceStr, -1, 0));
 }

 public static string ReplaceStrWithStr(string source, string matchPattern,
 string replaceStr, int count)
 {
 return (ReplaceStrWithStr(source, matchPattern, replaceStr, count, 0));
 }

 public static string ReplaceStrWithStr(string source, string matchPattern,
 string replaceStr, int count, int startPos)

 {
 Regex RE = new Regex(matchPattern);
 string newString = RE.Replace(source, replaceStr, count, startPos);

 return (newString);
 }
}

To use the overloaded Replace methods to replace the word "FOO" with the word "BAR" in a sentence,
you could write the following:

 public static void TestReplace()
 {
 string source = "Replace the FOO in this text block of text FOO.";
 string matchPattern = "FOO";
 string replaceStr = "BAR";

 Console.WriteLine(Replace(source, matchPattern, replaceStr));
 Console.WriteLine(Replace(source, matchPattern, replaceStr, -1));
 Console.WriteLine(Replace(source, matchPattern, replaceStr, -1, 0));
 Console.WriteLine(Replace(source, matchPattern, replaceStr, 1));
 Console.WriteLine(Replace(source, matchPattern, replaceStr, 1, 0));
 Console.WriteLine(Replace(source, matchPattern, replaceStr, 1));
 Console.WriteLine(Replace(source, matchPattern, replaceStr, 1, 20));

 Console.WriteLine(Replace(source, matchPattern, replaceStr, -1, 0));
 Console.WriteLine(Replace(source, matchPattern, replaceStr, 1, 0));
 Console.WriteLine(Replace(source, matchPattern, replaceStr, 1, 20));
 }

which would produce the following output:

 Replace the BAR in this text block of text BAR.
 Replace the BAR in this text block of text BAR.
 Replace the BAR in this text block of text BAR.
 Replace the BAR in this text block of text FOO.
 Replace the BAR in this text block of text FOO.
 Replace the BAR in this text block of text FOO.
 Replace the FOO in this text block of text BAR.
 Replace the BAR in this text block of text BAR.
 Replace the BAR in this text block of text FOO.
 Replace the FOO in this text block of text BAR.

This code looks for the word "FOO", and each time this pattern is found, the string "BAR" is substituted
for the matched string ("FOO").

Discussion

Using the overloaded instance Replace method on the Regex class, you can easily substitute a string
for a pattern in a second string each time that pattern is found. Several overloads of this method
provide even more flexibility in determining where to replace matches and how many matches will be
replaced.

An overloaded static Replace method is also provided on the Regex class. This method is somewhat
different than its instance method counterpart. This static Replace method does not allow for the
flexibility of a startPos or a count parameter. In lieu of these parameters, an options parameter is
used. This parameter allows for modification of the RegexOptions options. If you require that the

regular expression options (RegexOptions) be controllable, rather than using the less flexible static
Regex.Replace method, you can modify the overloaded Replace methods as shown in Example 10-6.

Example 10-6. Modifying overloaded Replace methods to accept a
RegexOptions parameter

public class RegexUtils
{

 // Constant to provide a default set of options for the regular expression

 const RegexOptions defaultOptions = RegexOptions.IgnorePatternWhitespace |
 RegexOptions.Multiline;

 public static string ReplaceStrWithChar(string source, char matchPattern,

 string replaceStr)
 {
 return (ReplaceStrWithStr(source, matchPattern.ToString(), replaceStr,
-1, 0,

 defaultOptions));
 }

 public static string ReplaceStrWithChar(string source, char matchPattern,
 string replaceStr, int count)
 {
 return (ReplaceStrWithStr(source, matchPattern.ToString(), replaceStr,
 count, 0, defaultOptions));
 }

 public static string ReplaceStrWithChar(string source, char matchPattern,
 string replaceStr, int count, int startPos)
 {
 return (ReplaceStrWithStr(source, matchPattern.ToString(), replaceStr,
 count, startPos, defaultOptions));
 }
 public static string ReplaceStrWithChar(string source, char matchPattern,
 string replaceStr, int count, int startPos,
 RegexOptions options)

 {
 return (ReplaceStrWithStr(source, matchPattern.ToString(), replaceStr,
 count, startPos, options));
 }
 public static string ReplaceStrWithStr(string source, string matchPattern,
 string replaceStr)
 {
 return (ReplaceStrWithStr(source, matchPattern, replaceStr, -1, 0,

 defaultOptions));
 }

 public static string ReplaceStrWithStr(string source, string matchPattern,
 string replaceStr, int count)
 {
 return (ReplaceStrWithStr(source, matchPattern, replaceStr, count, 0,

 defaultOptions));
 }

 public static string ReplaceStrWithStr(string source, string matchPattern,
 string replaceStr, int count, int startPos)
 {
 return (ReplaceStrWithStr(source, matchPattern, replaceStr, count,
 startPos, defaultOptions));
 }

 public static string ReplaceStrWithStr(string source, string matchPattern,
 string replaceStr, int count, int startPos,

 RegexOptions options)
 {
 Regex RE = new Regex(matchPattern, options);
 string newString = RE.Replace(source, replaceStr, count, startPos);

 return (newString);
 }
}

An options parameter of type RegexOptions has been added to the end of the last method's
parameter list. This Replace method uses this options parameter to define how the Regex object will

use the regular expression. Note also that a constant defaultOptions of type RegexOptions has been
defined to provide a uniform way to represent the default set of options in each overloaded method.

See Also

See the ".NET Framework Regular Expressions" topic in the MSDN documentation.

Recipe 10.6. Augmenting the Basic String Replacement
Function

Problem

You need to replace character patterns within the target string with a new string. However, in this
case, each replacement operation has a unique set of conditions that must be satisfied in order to
allow the replacement to occur. Consider, for example, that you receive a string containing
information and you need to make global modifications that will depend on a specific criterion.

Solution

Use the overloaded instance Replace method shown in Example 10-7 that accepts a MatchEvaluator
delegate along with its other parameters. The MatchEvaluator delegate is a callback method that
overrides the default behavior of the Replace method.

Example 10-7. Overloaded Replace method that accepts a MatchEvaluator
delegate

using System;
using System.Text.RegularExpressions;

public static string MatchHandler(Match theMatch)
{
 // Handle all ControlID_ entries.
 if (theMatch.Value.StartsWith("ControlID_"))
 {
 long controlValue = 0;

 // Obtain the numeric value of the Top attribute.
 Match topAttribiteMatch = Regex.Match(theMatch.Value, "Top=([-]*\\d*)");
 if (topAttribiteMatch.Success)
 {

 if (topAttribiteMatch.Groups[1].Value.Trim().Equals(""))
 {
 // If blank, set to zero.
 return (theMatch.Value.Replace(
 topAttribiteMatch.Groups[0].Value.Trim(),

 "Top=0"));
 }
 else if (topAttribiteMatch.Groups[1].Value.Trim().StartsWith("-"))
 {
 // If only a negative sign (syntax error), set to zero.
 return (theMatch.Value.Replace(
 topAttribiteMatch.Groups[0].Value.Trim(), "Top=0"));
 }
 else
 {
 // We have a valid number.
 // Convert the matched string to a numeric value.
 controlValue = long.Parse(topAttribiteMatch.Groups[1].Value,
 System.Globalization.NumberStyles.Any);

 // If the Top attribute is out of the specified range,
 // set it to zero.
 if (controlValue < 0 || controlValue > 5000)
 {
 return (theMatch.Value.Replace(
 topAttribiteMatch.Groups[0].Value.Trim(),
 "Top=0"));
 }
 }
 }
 }
}

The callback method for the Replace method is shown here:

 public static void ComplexReplace(string matchPattern, string source)
 {
 MatchEvaluator replaceCallback = new MatchEvaluator(MatchHandler);
 Regex RE = new Regex(matchPattern, RegexOptions.Multiline);
 string newString = RE.Replace(source, replaceCallback);

 Console.WriteLine("Replaced String = " + newString);
 }

To use this callback method with the static Replace method, modify the previous ComplexReplace
method as follows:

 public void ComplexReplace(string matchPattern, string source)
 {
 MatchEvaluator replaceCallback = new MatchEvaluator(MatchHandler);

 string newString = Regex.Replace(source, matchPattern,
 replaceCallback);
 Console.WriteLine("Replaced String = " + newString);
 }

where source is the original string to run the replace operation against, and matchPattern is the
regular expression pattern to match in the source string.

If the ComplexReplace method is called from the following code:

 public static void TestComplexReplace()
 {
 string matchPattern = "(ControlID_.*)";
 string source = @"WindowID=Main
 ControlID_TextBox1 Top=-100 Left=0 Text=BLANK
 ControlID_Label1 Top=9999990 Left=0 Caption=Enter Name Here
 ControlID_Label2 Top= Left=0 Caption=Enter Name Here";

 ComplexReplace(matchPattern, source);
 }

only the Top attributes of the ControlID_* lines are changed from their original values to 0.

The result of this replace action will change the Top attribute value of a ControlID_* line to zero if it is
less than zero or greater than 5000. Any other tag that contains a Top attribute will remain
unchanged. The following three lines of the source string will be changed from:

 ControlID_TextBox1 Top=-100 Left=0 Text=BLANK
 ControlID_Label1 Top=9999990 Left=0 Caption=Enter Name Here
 ControlID_Label2 Top= Left=0 Caption=Enter Name Here";

to:

 ControlID_TextBox1 Top=0 Left=0 Text=BLANK
 ControlID_Label1 Top=0 Left=0 Caption=Enter Name Here
 ControlID_Label2 Top=0 Left=0 Caption=Enter Name Here";

Discussion

The MatchEvaluator delegate, which is automatically invoked when it is supplied as a parameter to

the Regex class's Replace method, allows for custom replacement of each string that conforms to the
regular expression pattern.

If the current Match object is operating on a ControlID_* line with a Top attribute that is out of the
specified range, the code within the MatchHandler callback method returns a new modified string.
Otherwise, the currently matched string is returned unchanged. This ability allows you to override the
default Replace functionality by replacing only that part of the source string that meets certain
criteria. The code within this callback method gives you some idea of what can be accomplished using
this replacement technique.

To make use of this callback method, you need a way to call it from the ComplexReplace method.
First, a variable of type System.Text.RegularExpressions. MatchEvaluator is created. This variable
(replaceCallback) is the delegate that is used to call the MatchHandler method:

 MatchEvaluator replaceCallback = new MatchEvaluator(MatchHandler);

Finally, the Replace method is called with the reference to the MatchEvaluator delegate passed in as
a parameter:

 string newString = RE.Replace(source, replaceCallback);

See Also

See the ".NET Framework Regular Expressions" topic in the MSDN documentation.

Recipe 10.7. Implementing a Better Tokenizer

Problem

A simple method of tokenizingor breaking up a string into its discrete elements was presented in
Recipe 2.6. However, this is not powerful enough to handle all your string-tokenizing needs. You need
a tokenizeralso referred to as a lexerthat can split up a string based on a well-defined set of
characters.

Solution

Using the Split method of the Regex class, you can use a regular expression to indicate the types of
tokens and separators that you are interested in gathering. This technique works especially well with
equations, since the tokens of an equation are well defined. For example, the code:

 using System;
 using System.Text.RegularExpressions;

 public static string[] Tokenize(string equation)
 {
 Regex RE = new Regex(@"([\+\-*\(\)\^\\])");
 return (RE.Split(equation));
 }

will divide up a string according to the regular expression specified in the Regex constructor. In other
words, the string passed in to the Tokenize method will be divided up based on the delimiters +, -, *,
(,), ^, and \. The following method will call the Tokenize method to tokenize the equation (y -
3)(3111*x^21 + x + 320):

 public void TestTokenize()
 {
 foreach(string token in Tokenize("(y - 3)(3111*x^21 + x + 320)"))
 Console.WriteLine("String token = " + token.Trim());
 }

which displays the following output:

 string token =
 String token = (
 String token = y
 String token = -
 String token = 3
 String token =)
 String token =
 String token = (
 String token = 3111
 String token = *
 String token = x
 String token = ^
 String token = 21
 String token = +
 String token = x
 String token = +
 String token = 320
 String token =)
 String token =

Notice that each individual operator, parenthesis, and number has been broken out into its own
separate token.

Discussion

The tokenizer created in Recipe 2.6 would be useful in specific controlled circumstances. However, in
real-world projects, you do not always have the luxury of being able to control the set of inputs to
your code. By making use of regular expressions, you can take the original tokenizer and make it
flexible enough to allow it to be applied to any type or style of input you desire.

The key method used here is the Split instance method of the Regex class. The return value of this
method is a string array with elements that include each individual token of the source stringthe
equation, in this case.

Notice that the static method allows RegexOptions enumeration values to be used, while the instance
method allows for a starting position to be defined and a maximum number of matches to occur. This
may have some bearing on whether you choose the static or instance method.

See Also

See Recipe 2.6; see the ".NET Framework Regular Expressions" topic in the MSDN documentation.

Recipe 10.8. Compiling Regular Expressions

Problem

You have a handful of regular expressions to execute as quickly as possible over many different
strings. Performance is of the utmost importance.

Solution

The best way to do this task is to use compiled regular expressions. However, there are some
drawbacks to using this technique, which we will examine.

There are two ways to compile regular expressions. The easiest way is to use the
RegexOptions.Compiled enumeration value in the Options parameter of the static Match or Matches
methods on the Regex class:

 Match theMatch = Regex.Match(source, pattern, RegexOptions.Compiled);

 MatchCollection theMatches = Regex.Matches(source, pattern, RegexOptions.Compiled);

If more than a few expressions will be compiled and/or the expressions need to be shared across
applications, consider precompiling all of these expressions into their own assembly. Do this by using
the static CompileToAssembly method on the Regex class. The following method accepts an assembly
name and compiles two simple regular expressions into this assembly:

 public static void CreateRegExDLL(string assmName)
 {
 RegexCompilationInfo[] RE = new RegexCompilationInfo[2]
 {new RegexCompilationInfo("PATTERN", RegexOptions.Compiled,
 "CompiledPATTERN", "Chapter_Code", true),
 new RegexCompilationInfo("NAME", RegexOptions.Compiled,
 "CompiledNAME", "Chapter_Code", true)};

 System.Reflection.AssemblyName aName =
 new System.Reflection.AssemblyName();
 aName.Name = assmName;

 Regex.CompileToAssembly(RE, aName);
 }

Now that the expressions are compiled to an assembly, the assembly can be added as a reference to
your project and used as follows:

 Chapter_Code.CompiledNAME CN = new Chapter_Code.CompiledNAME();
 Match mName = CN.Match("Get the NAME from this text.");
 Console.WriteLine("mName.Value = " + mName.Value);

This code displays the following text:

 mName.Value = NAME

Note that this code can be used as part of your build process. The resulting assembly can then be
shipped with your application.

Discussion

Compiling regular expressions allows the expression to run faster. To understand how, you need to
examine the process that an expression goes through as it is run against a string. If an expression is
not compiled, the regular expression engine converts the expression to a series of internal codes that
are recognized by the regular expression engine; it is not converted to MSIL. As the expression runs
against a string, the engine interprets the series of internal codes. This can be a slow process,
especially as the source string becomes very large and the expression becomes much more complex.

There is a class of scenarios for which performance of uncompiled regex is unacceptable, but for
which compiled regex performs acceptably. To mitigate this performance problem, you can compile
the expression so that it gets converted directly to a series of MSIL instructions, which performs the
pattern matching for the specific regular expression. Once the Just-In-Time (JIT) compiler is run on
this MSIL, the instructions are converted to machine code. This allows for an extremely fast execution
of the pattern against a string.

There are two drawbacks to using the RegexOptions.Compiled enumerated value to compile regular
expressions. The first is that the first time an expression is used with the Compiled flag, it performs
very slowly, due to the compilation process. Fortunately, this is a one-time expense since every
unique expression is compiled only once. The second drawback is that an in-memory assembly gets
generated to contain the IL, which can never be unloaded. An assembly can never be unloaded from
an appdomain. The garbage collector cannot remove it from memory. If large numbers of expressions
are compiled, the amount of heap resources that will be used up and not released will be large. So
use this technique wisely.

Compiling regular expressions into their own assembly immediately gives you two benefits. First,
precompiled expressions do not require any extra time to be compiled while your application is
running. Second, they are in their own assembly and therefore can be used by other applications.

Consider precompiling regular expressions and placing them in their own
assembly rather than using the RegexOptions.Compiled flag.

To compile one or more expressions into an assembly, the static CompileToAssembly method of the
Regex class must be used. To use this method, a RegexCompilationInfoarray must be created and
filled with RegexCompilationInfo objects. The next step is to create the assembly in which the
expression will live. An instance of the AssemblyName class is created using the default constructor.
Next, this assembly is given a name (do not include the .dll file extension in the name; it is added
automatically). Finally, the CompileToAssembly method can be called with the RegexCompilationInfo
array and the AssemblyName object supplied as arguments.

In our example, this assembly is placed in the same directory that the
executable was launched from.

See Also

See the ".NET Framework Regular Expressions" and "AssemblyName Class" topics in the MSDN
documentation.

Recipe 10.9. Counting Lines of Text

Problem

You need to count lines of text within a string or within a file.

Solution

Use the LineCount method shown in Example 10-8 to read in the entire file and count the number of
line feeds.

Example 10-8. LineCount method

using System;
using System.Text.RegularExpressions;
using System.IO;

public static long LineCount(string source, bool isFileName)
{
 if (source != null)
 {
 string text = source;

 if (isFileName)
 {
 using (FileStream FS = new FileStream(source, FileMode.Open,
 FileAccess.Read, FileShare.Read))
 {
 using (StreamReader SR = new StreamReader(FS))
 {

 text = SR.ReadToEnd();
 }
 }
 }

 Regex RE = new Regex("\n", RegexOptions.Multiline);
 MatchCollection theMatches = RE.Matches(text);

 if (isFileName)

 {

 return (theMatches.Count);
 }
 else
 {

 return (theMatches.Count) + 1;
 }
 }
 else
 {

 // Handle a null source here.
 return (0);
 }
}

LineCount2, a better performing alternate version of this method uses the StreamReader.ReadLine
method to count lines in a file and a regular expression to count lines in a string, as shown in
Example 10-9.

Example 10-9. LineCount2 method

public static long LineCount2(string source, bool isFileName)
{
 if (source != null)
 {
 string text = source;
 long numOfLines = 0;

 if (isFileName)
 {
 using (FileStream FS = new FileStream(source, FileMode.Open,
 FileAccess.Read, FileShare.Read))
 {

 using (StreamReader SR = new StreamReader(FS))
 {

 while (text != null)
 {
 text = SR.ReadLine();

 if (text != null)
 {
 ++numOfLines;

 }
 }
 }
 }

 return (numOfLines);

 }
 else
 {

 Regex RE = new Regex("\n", RegexOptions.Multiline);
 MatchCollection theMatches = RE.Matches(text);

 return (theMatches.Count + 1);
 }
 }
 else
 {

 // Handle a null source here.
 return (0);
 }
}

The following method counts the lines within a specified text file and a specified string:

 public static void TestLineCount()
 {
 // Count the lines within the file TestFile.txt.
 LineCount(@"C:\TestFile.txt", true);

 // Count the lines within a string.
 // Notice that the \r\n characters start a new line
 // as well as just the \n character.
 LineCount("Line1\r\nLine2\r\nLine3\nLine4", false);

 }

Discussion

Every line ends with a special character. For Windows files, the line-terminating characters are a
carriage return followed by a line-feed. This sequence of characters is described by the regular
expression pattern \r\n. Unix files terminate their lines with just the line-feed character (\n). The
regular expression "\n" is the lowest common denominator for both sets of line-terminating

characters. Consequently, this method runs a regular expression that looks for the pattern "\n" in a
string or file.

Macintosh files usually end with a carriage-return character (\r). To count the
number of lines in this type of file, the regular expression should be changed to
the following in the constructor of the Regex object:

 Regex RE = new Regex("\r", RegexOptions.Multiline);

Simply running this regular expression against a string returns the number of lines minus one
because the last line does not have a line-terminating character. To account for this, one is added to
the final count of line feeds in the string.

The LineCount method accepts two parameters. The first is a string that either contains the actual
text that will have its lines counted or the path and name of a text file whose lines are to be counted.
The second parameter, isFileName, determines whether the first parameter (source) is a string or a
file path. If this parameter is TRue, the source parameter is a file path; otherwise, it is simply a
string.

See Also

See the ".NET Framework Regular Expressions," "FileStream Class," and "Stream-Reader Class"
topics in the MSDN documentation.

Recipe 10.10. Returning the Entire Line in Which a Match
Is Found

Problem

You have a string or file that contains multiple lines. When a specific character pattern is found on a
line, you want to return the entire line, not just the matched text.

Solution

Use the StreamReader.ReadLine method to obtain each line in a file in which to run a regular
expression against, as shown in Example 10-10 .

Example 10-10. Returning the entire line in which a match is found

public static List<string> GetLines(string source, string pattern, bool isFileName)
{
 string text = source;
 List<string> matchedLines = new List<string>();

 // If this is a file, get the entire file's text.
 if (isFileName)
 {
 using (FileStream FS = new FileStream(source, FileMode.Open,
 FileAccess.Read, FileShare.Read))
 {
 using (StreamReader SR = new StreamReader(FS))
 {
 Regex RE = new Regex(pattern, RegexOptions.Multiline);
 while (text != null)
 {
 text = SR.ReadLine();

 if (text != null)
 {
 // Run the regex on each line in the string.
 MatchCollection theMatches = RE.Matches(text);

 if (theMatches.Count > 0)
 {

 // Get the line if a match was found.

 matchedLines.Add(text);
 }
 }
 }
 }
 }
 }
 else
 {
 // Run the regex once on the entire string.
 Regex RE = new Regex(pattern, RegexOptions.Multiline);
 MatchCollection theMatches = RE.Matches(text);

 // Use these vars to remember the last line added to matchedLines
 // so that we do not add duplicate lines.
 int lastLineStartPos = -1;
 int lastLineEndPos = -1;

 // Get the line for each match.
 foreach (Match m in theMatches)
 {

 int lineStartPos = GetBeginningOfLine(text, m.Index);
 int lineEndPos = GetEndOfLine(text, (m.Index + m.Length - 1));

 // If this is not a duplicate line, add it.
 if (lastLineStartPos != lineStartPos &&
 lastLineEndPos != lineEndPos)
 {
 string line = text.Substring(lineStartPos,
 lineEndPos - lineStartPos);
 matchedLines.Add(line);

 // Reset line positions.
 lastLineStartPos = lineStartPos;
 lastLineEndPos = lineEndPos;
 }
 }
 }
 return (matchedLines);
}

public static int GetBeginningOfLine(string text, int startPointOfMatch)
{
 if (startPointOfMatch > 0)
 {
 --startPointOfMatch;
 }

 if (startPointOfMatch >= 0 && startPointOfMatch < text.Length)
 {
 // Move to the left until the first '\n char is found.

 for (int index = startPointOfMatch; index >= 0; index--)
 {

 if (text[index] == '\n')
 {
 return (index + 1);
 }
 }

 return (0);
 }

 return (startPointOfMatch);
}

public static int GetEndOfLine(string text, int endPointOfMatch)
{
 if (endPointOfMatch >= 0 && endPointOfMatch < text.Length)
 {
 // Move to the right until the first '\n char is found.
 for (int index = endPointOfMatch; index < text.Length; index++)
 {

 if (text[index] == '\n')
 {
 return (index);
 }
 }

 return (text.Length);
 }

 return (endPointOfMatch);
}

The following method shows how to call the GetLines method with either a filename or a string:

 public static void TestGetLine()
 {
 // Get each line within the file TestFile.txt as a separate string.
 Console.WriteLine();
 List<string> lines = GetLines(@"C:\TestFile.txt", "\n", true);
 foreach (string s in lines)
 Console.WriteLine("MatchedLine: " + s);

 // Get the lines matching the text "Line" within the given string.
 Console.WriteLine();
 lines = GetLines("Line1\r\nLine2\r\nLine3\nLine4", "Line", false);

 foreach (string s in lines)
 Console.WriteLine("MatchedLine: " + s);
 }

Discussion

The GetLines method accepts three parameters:

source

The string or filename in which to search for a pattern

pattern

The regular expression pattern to apply to the source string

isFileName

Pass in true if the source is a filename or false if source is a string

This method returns a List<string> of strings that contains each line in which the regular expression
match was found.

The GetLines method can obtain the lines on which matches occur, within a string or a file. When
running a regular expression against a file with a name that is passed in to the source parameter
(when isFileName equals true) in the GetLines method, the file is opened and read line by line. The

regular expression is run against each line and, if a match is found, that line is stored in the
matchedLines List<string> . Using the ReadLine method of the StreamReader object saves you from
having to determine where each line starts and ends. Determining where a line starts and ends in a
string requires some work, as you shall see.

Running the regular expression against a string passed in to the source parameter (when isFileName

equals false) in the GetLines method produces a MatchCollection . Each Match object in this
collection is used to obtain the line on which it is located in the source string. The line is obtained by
starting at the position of the first character of the match in the source string and moving one

character to the left until either an '\n ' character is found or the beginning of the source string is
found (this code is found in the GetBeginningOfLine method). This gives you the beginning of the line,
which is placed in the variable LineStartPos . Next, the end of the line is found by starting at the last
character of the match in the source string and moving to the right until either an '\n ' character is
found or the end of the source string is found (this code is found in the GetEndOfLine method). This

ending position is placed in the LineEndPos variable. All of the text between the LineStartPos and
LineEndPos will be the line in which the match is found. Each of these lines is added to the
matchedLines List<string> and returned to the caller.

Something interesting you can do with the GetLines method is to pass in the string "\n " in the
pattern parameter of this method. This trick will effectively return each line of the string or file as a

string in the List<string> .

Note that if more than one match is found on a line, each matching line will be added to the
List<string> .

See Also

See the ".NET Framework Regular Expressions," "FileStream Class," and "Stream-Reader Class"
topics in the MSDN documentation.

Recipe 10.11. Finding a Particular Occurrence of a Match

Problem

You need to find a specific occurrence of a match within a string. For example, you want to find the
third occurrence of a word or the second occurrence of a social security number. In addition, you
may need to find every third occurrence of a word in a string.

Solution

To find a particular occurrence of a match in a string, simply subscript the array returned from
Regex.Matches:

 public static Match FindOccurrenceOf(string source, string pattern,
 int occurrence)
 {
 if (occurrence < 1)
 {
 throw (new ArgumentException("Cannot be less than 1",
 "occurrence"));
 }

 // Make occurrence zero-based.
 --occurrence;

 // Run the regex once on the source string.
 Regex RE = new Regex(pattern, RegexOptions.Multiline);
 MatchCollection theMatches = RE.Matches(source);

 if (occurrence >= theMatches.Count)
 {
 return (null);
 }
 else
 {
 return (theMatches[occurrence]);
 }
 }

To find each particular occurrence of a match in a string, build a List<Match> on the fly:

public static List<Match> FindEachOccurrenceOf(string source, string pattern,
 int occurrence)
{
 List<Match> occurrences = new List<Match>();

 // Run the regex once on the source string.
 Regex RE = new Regex(pattern, RegexOptions.Multiline);
 MatchCollection theMatches = RE.Matches(source);

 for (int index = (occurrence - 1); index < theMatches.Count; index
+= occurrence)
 {
 occurrences.Add(theMatches[index]);
 }

 return (occurrences);
}

The following method shows how to invoke the two previous methods:

 public static void TestOccurrencesOf()
 {
 Match matchResult = FindOccurrenceOf
 ("one two three one two three one two three one"
 + " two three one two three one two three", "two", 2);
 if (matchResult != null)
 Console.WriteLine(matchResult.ToString() + "\t" + matchResult.Index);

 Console.WriteLine();
 List<Match> results = FindEachOccurrenceOf
 ("one one two three one two three one "
 + " two three one two three", "one", 2);
 foreach (Match m in results)
 Console.WriteLine(m.ToString() + "\t" + m.Index);
 }

Discussion

This recipe contains two similar but distinct methods. The first method, FindOccurrenceOf, returns a
particular occurrence of a regular expression match. The occurrence you want to find is passed in to
this method via the occurrence parameter. If the particular occurrence of the match does not existfor
example, you ask to find the second occurrence, but only one occurrence existsa null is returned
from this method. Because of this, you should check that the returned object of this method is not
null before using that object. If the particular occurrence exists, the Match object that holds the
match information for that occurrence is returned.

The second method in this recipe, FindEachOccurrenceOf, works similarly to the FindOccurrenceOf
method, except that it continues to find a particular occurrence of a regular expression match until
the end of the string is reached. For example, if you ask to find the second occurrence, this method
would return a List<Match> of zero or more Match objects. The Match objects would correspond to the
second, fourth, sixth, and eighth occurrences of a match and so on until the end of the string is
reached.

See Also

See the ".NET Framework Regular Expressions" and "ArrayList Class" topics in the MSDN
documentation.

Recipe 10.12. Using Common Patterns

Problem

You need a quick list from which to choose regular expression patterns that match standard items.
These standard items could be a social security number, a zip code, a word containing only characters,
an alphanumeric word, an email address, a URL, dates, or one of many other possible items used
throughout business applications.

These patterns can be useful in making sure that a user has input the correct data and that it is well
formed. These patterns can also be used as an extra security measure to keep hackers from attempting
to break your code by entering strange or malformed input (e.g., SQL injection or cross-site-scripting
attacks). Note that these regular expressions are not a silver bullet that will stop all attacks on your
system; rather, they are an added layer of defense.

Solution

Match only alphanumeric characters along with the characters -, +, ., and any whitespace:

 ^([\w\.+-]|\s)*$

Be careful using the - character within a character classa regular expression
enclosed within [and]. That character is also used to specify a range of
characters, as in a-z for a through z inclusive. If you want to use a literal -
character, either escape it with \ or put it at the end of the expression, as
shown in the previous and next examples.

Match only alphanumeric characters along with the characters -, +, ., and any whitespace, with the
stipulation that there is at least one of these characters and no more than 10 of these characters:

 ^([\w\.+-]|\s){1,10}$

Match a person's name, up to 55 characters:

 ^[a-zA-Z\'\-\s]{1,55}$

Match a positive or negative integer:

 ^((\+|-)\d)?\d*$

Match a date in the form ##/##/#### where the day and month can be a one- or two-digit value
and year can either be a two- or four-digit value:

 ^\d{1,2}\/\d{1,2}\/\d{2,4}$

Match a time to be entered with an optional am or pm extension (note that this regular expression
also handles military time):

 ^\d{1,2}:\d{2}\s?([ap]m)?$

Verify if the input is a social security number of the form ###-##-####:

 ^\d{3}-\d{2}-\d{4}$

Match an IPv4 address:

 ^([0-2]?[0-5]?[0-5]\.){3}[0-2]?[0-5]?[0-5]$

Verify that an email address is in the form name@address where address is not an IP address:

 ^[A-Za-z0-9_\-\.]+@(([A-Za-z0-9\-])+\.)+([A-Za-z\-])+$

Verify that an email address is in the form name@address where address is an IP address:

 ^[A-Za-z0-9_\-\.]+@([0-2]?[0-5]?[0-5]\.){3}[0-2]?[0-5]?[0-5]$

Match or verify a URL that uses either the HTTP, HTTPS, or FTP protocol. Note that this regular
expression will not match relative URLs.

 ^(http|https|ftp)\://[a-zA-Z0-9\-\.]+\.[a-zA-Z]{2,3}(:[a-zA-Z0-9]*)?/?([a-zA-Z0-
 9\-\._\?\,\'/\\\+&%\$#\=~])*$

Match only a dollar amount with the optional $ and + or -preceding characters (note that any
number of decimal places may be added):

 ^\$?[+-]?[\d,]*(\.\d*)?$

This is similar to the previous regular expression except that no more than two decimal places are
allowed:

 ^\$?[+-]?[\d,]*\.?\d{0,2}$

Match a credit card number to be entered as four sets of four digits separated with a space, -, or
no character at all:

 ^((\d{4}[-]?){3}\d{4})$

Match a zip code to be entered as five digits with an optional four-digit extension:

 ^\d{5}(-\d{4})?$

Match a North American phone number with an optional area code and an optional - character to
be used in the phone number and no extension:

 ^(\(?[0-9]{3}\)?)?\-?[0-9]{3}\-?[0-9]{4}$

Match a phone number similar to the previous regular expression but allow an optional five-digit
extension prefixed with either ext or extension :

 ^(\(?[0-9]{3}\)?)?\-?[0-9]{3}\-?[0-9]{4}(\s*ext(ension)?[0-9]{5})?$

Match a full path beginning with the drive letter and optionally match a filename with a three-
character extension (note that no .. characters signifying to move up the directory hierarchy are
allowed, nor is a directory name with a . followed by an extension):

 ^[a-zA-Z]:[\\/]([_a-zA-Z0-9]+[\\/]?)*([_a-zA-Z0-9]+\.[_a-zA-Z0-9]{0,3})?$

Verify if the input password string matches some specific rules for entering a password (i.e., the

password is between 6 and 25 characters in length and contains alphanumeric characters):

 ^(?=.*\d)(?=.*[a-z])(?=.*[A-Z]).{6,25}$

Determine if any malicious characters were input by the user. Note that this regular expression will
not prevent all malicious input, and it also prevents some valid input, such as last names that
contain a single quote.

 ^([^\)\(\<\>\"\'\%\&\+\;][(-{2})])*$

Discussion

Regular expressions are effective at finding specific information, and they have a wide range of uses.
Many applications use them to locate specific information within a larger range of text, as well as to filter
out bad input. The filtering action is very useful in tightening the security of an application and
preventing an attacker from attempting to use carefully formed input to gain access to a machine on the
Internet or a local network. By using a regular expression to allow only good input to be passed to the
application, you can reduce the likelihood of many types of attacks, such as SQL injection or cross-site-
scripting.

The regular expressions presented in this recipe provide only a minute cross-section of what can be
accomplished with them. By taking these expressions and manipulating parts of them, you can easily
modify them to work with your application. Take, for example, the following expression, which allows
only between 1 and 10 alphanumeric characters, along with a few symbols as input:

 ^([\w\.+-]|\s){1,10}$

By changing the {1,10 } part of the regular expression to {0,200 }, this expression will now match a
blank entry or an entry of the specified symbols up to and including 200 characters.

Note the use of the ^ character at the beginning of the expression and the $ character at the end of the
expression. These characters start the match at the beginning of the text and match all the way to the
end of the text. Adding these characters forces the regular expression to match the entire string or none
of it. By removing these characters, you can search for specific text within a larger block of text. For
example, the following regular expression matches only a string containing nothing but a U.S. zip code
(there can be no leading or trailing spaces):

 ^\d{5}(-\d{4})?$

This version matches only a zip code with leading or trailing spaces (notice the addition of the \s* to the
start and end of the expression):

 ^\s*\d{5}(-\d{4})?\s*$

However, this modified expression matches a zip code found anywhere within a string (including a string
containing just a zip code):

 \d{5}(-\d{4})?

Use the regular expressions in this recipe and modify them to suit your needs.

See Also

Two good books that cover regular expressions are Regular Expression Pocket Reference and Mastering
Regular Expressions , Second Edition (both from O'Reilly).

Recipe 10.13. Documenting Your Regular Expressions

Problem

You have one or more complex regular expressions that may exist in a file outside of your code. You
need a way to place comments within the regular expression itself. These comments will aid others in
being able to read and maintain your regular expressions later on.

Solution

Add comments to the regular expression using the # comment character:

 string matchPattern = @"\\\\ # Find this: \\
 (?<TheServer>\w*) # Server name
 \\ # Find this: \
 (?<TheService>\w*)\\ # Service name";

When using this expression in a Regex object, the RegexOptions.Ignore-PatternWhitespace
enumeration value must be added to the options parameter of the Regex object constructor:

 Regex RE = new Regex(matchPattern,
 RegexOptions.Multiline | RegexOptions.IgnorePatternWhitespace);
 MatchCollection theMatches = RE.Matches("The source text goes here…");

or add C#-style comments outside of the regular expression string:

 string matchPattern = @"\\\\" + // Find this: \\
 @"(?<TheServer>\w*)" + // Server name
 @"\\" + // Find this: \
 @"(?<TheService>\w*)\\"; // Service name

Discussion

With large and complex regular expressions, it is desirable to break up the expression into
manageable pieces and to identify what each piece does. For example, the regular expression in the
Solution section will pull the server and service pieces out of a UNC string. By breaking up the regular
expression onto separate lines and adding comments to each line, you have allowed other developers
(who might not be familiar with regular expressions) to more quickly and easily read and maintain
your regular expression.

Typically, you would use the string concatenation and C#-style commenting to comment a regular
expression string. However, if you are retrieving the regular expression from an external source,
such as a text file, regular expressionstyle commenting (#) is the type to use.

With simpler regular expressions, you can get away with adding a C# comment outside of the regular
expression string to indicate what it does. But adding comments to the regular expression itself
greatly aids in understanding it.

Recipe 10.14. Using Built-in Regular Expressions to Parse
ASP. NET Pages

Problem

You need to build a tool that parses ASP.NET pages in order to extract specific bits of information.
This tool could possibly be used to detect whether specific meta tags are being used or if there are
any comments that could expose information useful to a hacker.

Solution

Use the classes in the System.Web.RegularExpressions namespace. In this recipe you will focus on
mapping out the start and end tags on a page, as shown in Example 10-11 .

In order to make use of any of the classes in the
System.Web.RegularExpressions namespace, you need to manually import the
System.Web.RegularExpressions.dll file into your project.

Example 10-11. Parsing a web page

public static void ASPNETStartEndTagParsing(string html)
{
 int index = 0;
 while (index < html.Length)
 {
 Match m = null;

 // Display the start tag.
 TagRegex aspTag = new TagRegex();
 m = aspTag.Match(html, index);
 if (m.Success)
 {
 index = m.Index + m.Length;
 Console.WriteLine("ASP.NET Start Tag");
 Console.WriteLine(m.Value);
 continue;
 }

 // Display the end tag.
 EndTagRegex aspEndTag = new EndTagRegex();

 m = aspEndTag.Match(html, index);
 if (m.Success)
 {
 index = m.Index + m.Length;
 Console.WriteLine("ASP.NET End Tag");
 Console.WriteLine(m.Value);
 continue;
 }
 index++;
 }
}

When the ASPNETStartEndTagParsing method is called in the following manner:

 public static void TestASPNETParsing()
 {
 string testHTML = "<%-- Comment --%> <%@ Page Language=\"CS\" " +
 "AutoEventWireup=\"false\" CodeFile=\"Default.aspx.cs\" " +
 "Inherits=\"Default_aspx\" %>" +
 "<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.1//EN\" " +
 "\"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd\">" +
 "<html xmlns=\"http://www.w3.org/1999/xhtml\"> " +
 "<head runat=\"server\"> " +
 "<title>Untitled Page</title> " +
 "</head><body><form id=\"form1\" runat=\"server\"><div> " +
 "<asp:Login ID=\"Login1\" runat=\"server\"></asp:Login>" +
 "</div></form></body></html>";
 ASPNETStartEndTagParsing(testHTML);
}

The following is displayed:

 ASP.NET Start Tag
 <html xmlns="http:
 //www.w3.org/1999/xhtml">
 ASP.NET Start Tag
 <head runat="server">
 ASP.NET Start Tag
 <title>
 ASP.NET End Tag
 </title>
 ASP.NET End Tag
 </head>
 ASP.NET Start Tag
 <body>
 ASP.NET Start Tag

 <form id="form1" runat="server">
 ASP.NET Start Tag
 <div>
 ASP.NET Start Tag
 <asp:Login ID="Login1" runat="server">
 ASP.NET End Tag
 </asp:Login>
 ASP.NET End Tag
 </div>
 ASP.NET End Tag
 </form>
 ASP.NET End Tag
 </body>
 ASP.NET End Tag
 </html>

Discussion

There are 15 classes within the System.Web.RegularExpressions namespace that give you the ability
to parse existing aspx pages and HTML pages as well as other types of web pages. You can even
parse XML to some extent. Each of these classes inherits from the
System.Text.RegularExpressions.Regex class. What makes these classes unique is that each contains
one regular expression that allows them to parse different aspects of a web page. For example, the
CommentRegex class contains the following regular expressions:

 \G<%--(([^-]*)-)*?-%>

which look for a comment within a web page in the following format:

 <%-- this is a comment -->

Table 10-1 lists each class and its associated regular expression along with its description.

Table 10-1. Descriptions of the System.Web.RegularExpressions classes

Class name Regular expression Description

AspCodeRegex \G<%(?!@)(?<code>.*?)%>
Parses a code block of the
form <% code %> .

Class name Regular expression Description

AspExprRegex \G<%\s*?=(?<code>.*?)?%>
Parses an expression block of
the form <%=expression %> .

CommentRegex \G<%--(([^-]*)-)*?-%>
Parses a comment of the form
<%-- comment--%> .

DatabindExprRegex \G<%#(?<code>.*?)?%>

Parses a data binding
expression of the form <%#
expressions %> .

DataBindRegex \G\s*<%\s*?#(?<code>.*?)?%>\s*\z
Parses a data binding of the
form <%#expressions %> .

DirectiveRegex

\G<%\s*@(\s*(?<attrname>\w[\w:]*(?

=\W))(\s*(?<equal>=)\s*"(?

<attrval>[^"]*)"|\s*(?<equal>=)\s*'(?

<attrval>[^']*)'|\s*(?<equal>=)\s*(?

<attrval>[^\s%>]*)|(?<equal>)(?

<attrval>\s*?)))*\s*?%>

Parses a directive of the form
<%@directive %> .

EndTagRegex \G</(?<tagname>[\w:\.]+)\s*>
Parses an end tag of the form
</tagname> .

GTRegex [^%]>

Parses a greater-than
character that is not part of a
tag.

IncludeRegex
\G<!--\s*#(?i:include)\s*(?

<pathtype>[\w]+)\s*=\s*["']?(?

<filename>[^\"']*?)["']?\s*-->

Parses an #include directive
of the form .

LTRegex <[^%]
Parses a less-than character
that is not part of a tag.

RunatServerRegex runat\W*server
Parses the runat attribute of
the form runat="server" .

ServerTagsRegex <%(?![#$])(([^%]*)%)*?>
Parses server tags of the form
<% data %> .

SimpleDirectiveRegex

<%\s*@(\s*(?<attrname>\w[\w:]*(?

=\W))(\s*(?<equal>=)\s*"(?

<attrval>[^"]*)"|\s*(?<equal>=)\s*'(?

<attrval>[^']*)'|\s*(?<equal>=)\s*(?

<attrval>[^\s%>]*)|(?<equal>)(?

<attrval>\s*?)))*\s*?%>

Parses a directive of the form
<%@directive %> . Note that
the only difference between
this regex and the one used
by the DirectiveRegex is the
lack of the \G , which forces
the next match to start where
the last match ended.

TagRegex

\G<(?<tagname>[\w:\.]+)(\s+(?

<attrname>\w[-\w:]*)(\s*=\s*"(?

<attrval>[^"]*)"|\s*=\s*'(?

<attrval>[^']*)'|\s*=\s*(?<attrval><%#.*?

%>)|\s*=\s*(?!'|")(?<attrval>[^\s=/>]*)(?

!'|")|(?<attrval>\s*?)))*\s*(?<empty>/)?>

Parses a beginning tag of the
form <tagname> or
<asp:tagname> , including any
attributes and their values.

AspExprRegex \G<%\s*?=(?<code>.*?)?%>
Parses an expression block of
the form <%=expression %> .

CommentRegex \G<%--(([^-]*)-)*?-%>
Parses a comment of the form
<%-- comment--%> .

DatabindExprRegex \G<%#(?<code>.*?)?%>

Parses a data binding
expression of the form <%#
expressions %> .

DataBindRegex \G\s*<%\s*?#(?<code>.*?)?%>\s*\z
Parses a data binding of the
form <%#expressions %> .

DirectiveRegex

\G<%\s*@(\s*(?<attrname>\w[\w:]*(?

=\W))(\s*(?<equal>=)\s*"(?

<attrval>[^"]*)"|\s*(?<equal>=)\s*'(?

<attrval>[^']*)'|\s*(?<equal>=)\s*(?

<attrval>[^\s%>]*)|(?<equal>)(?

<attrval>\s*?)))*\s*?%>

Parses a directive of the form
<%@directive %> .

EndTagRegex \G</(?<tagname>[\w:\.]+)\s*>
Parses an end tag of the form
</tagname> .

GTRegex [^%]>

Parses a greater-than
character that is not part of a
tag.

IncludeRegex
\G<!--\s*#(?i:include)\s*(?

<pathtype>[\w]+)\s*=\s*["']?(?

<filename>[^\"']*?)["']?\s*-->

Parses an #include directive
of the form .

LTRegex <[^%]
Parses a less-than character
that is not part of a tag.

RunatServerRegex runat\W*server
Parses the runat attribute of
the form runat="server" .

ServerTagsRegex <%(?![#$])(([^%]*)%)*?>
Parses server tags of the form
<% data %> .

SimpleDirectiveRegex

<%\s*@(\s*(?<attrname>\w[\w:]*(?

=\W))(\s*(?<equal>=)\s*"(?

<attrval>[^"]*)"|\s*(?<equal>=)\s*'(?

<attrval>[^']*)'|\s*(?<equal>=)\s*(?

<attrval>[^\s%>]*)|(?<equal>)(?

<attrval>\s*?)))*\s*?%>

Parses a directive of the form
<%@directive %> . Note that
the only difference between
this regex and the one used
by the DirectiveRegex is the
lack of the \G , which forces
the next match to start where
the last match ended.

TagRegex

\G<(?<tagname>[\w:\.]+)(\s+(?

<attrname>\w[-\w:]*)(\s*=\s*"(?

<attrval>[^"]*)"|\s*=\s*'(?

<attrval>[^']*)'|\s*=\s*(?<attrval><%#.*?

%>)|\s*=\s*(?!'|")(?<attrval>[^\s=/>]*)(?

!'|")|(?<attrval>\s*?)))*\s*(?<empty>/)?>

Parses a beginning tag of the
form <tagname> or
<asp:tagname> , including any
attributes and their values.

Class name Regular expression Description

TextRegex \G[^<]+

Can be used to parse the text
between two tags. Use
TagRegex to find the ending of
a beginning tag and then use
this class to find any text
between it and the next tag.

You will notice that some of these classes are designed to operate on the matches of another class.
For example the RunatServerRegex class can determine if a particular tag is written to be executed on
the server or not. The following code displays all start tags and whether or not they are written to be
executed on the server:

 public static void ASPNETStartTagParsing(string html)
 {
 int index = 0;
 while (index < html.Length)
 {
 Match m = null;

 // Display the start tag and whether it contains a runat="server" attribute.
 TagRegex aspTag = new TagRegex();
 m = aspTag.Match(html, index);
 if (m.Success)
 {

 index = m.Index + m.Length;
 Console.WriteLine("ASP.NET Start Tag");
 Console.WriteLine(m.Value);

 RunatServerRegex aspRunAt = new RunatServerRegex();
 Match mInner = aspRunAt.Match(m.Value, 0);
 if (mInner.Success)
 {
 Console.WriteLine("\tASP.NET RunAt");
 Console.WriteLine("\t" + mInner.Value);
 }

 continue;

 }

 index++;
 }
 }

Nesting these ASP.NET parsing classes in this manner will allow you to tear apart a web page quite

TextRegex \G[^<]+

Can be used to parse the text
between two tags. Use
TagRegex to find the ending of
a beginning tag and then use
this class to find any text
between it and the next tag.

You will notice that some of these classes are designed to operate on the matches of another class.
For example the RunatServerRegex class can determine if a particular tag is written to be executed on
the server or not. The following code displays all start tags and whether or not they are written to be
executed on the server:

 public static void ASPNETStartTagParsing(string html)
 {
 int index = 0;
 while (index < html.Length)
 {
 Match m = null;

 // Display the start tag and whether it contains a runat="server" attribute.
 TagRegex aspTag = new TagRegex();
 m = aspTag.Match(html, index);
 if (m.Success)
 {

 index = m.Index + m.Length;
 Console.WriteLine("ASP.NET Start Tag");
 Console.WriteLine(m.Value);

 RunatServerRegex aspRunAt = new RunatServerRegex();
 Match mInner = aspRunAt.Match(m.Value, 0);
 if (mInner.Success)
 {
 Console.WriteLine("\tASP.NET RunAt");
 Console.WriteLine("\t" + mInner.Value);
 }

 continue;

 }

 index++;
 }
 }

Nesting these ASP.NET parsing classes in this manner will allow you to tear apart a web page quite

easily.

Chapter 11. Data Structures and
Algorithms

Introduction

Recipe 11.1. Creating a Hash Code for a Data Type

Recipe 11.2. Creating a Priority Queue

Recipe 11.3. Creating a Double Queue

Recipe 11.4. Determining Where Characters or Strings Do Not Balance

Recipe 11.5. Creating a One-to-Many Map (MultiMap)

Recipe 11.6. Creating a Binary Tree

Recipe 11.7. Creating an n-ary Tree

Recipe 11.8. Creating a Set Object

Introduction

In this chapter, you will look at certain data structures and algorithms that are not available for you in
the FCL through Version 2.0. Examples are provided for algorithms like hash-code creation and string
balancing. The FCL does not support every data structure you might need, so this chapter provides
solutions for priority and double queues, binary and n-ary trees, sets, and a multimap, as well as
many other things.

Recipe 11.1. Creating a Hash Code for a Data Type

Problem

You have created a class or structure that will be used as a key in a Hashtable or Dictionary<T,U>.
You need to overload the GetHashCode method in order to return a good distribution of hash values
(the Discussion section defines a good distribution of hash values). You also need to choose the best
hash-code algorithm to use in the GetHashCode method of your object.

Solution

The following procedures implement hash-code algorithms and can be used to override the
GetHashCode method. Included in the discussion of each method are the pros and cons of using it, as
well as why you would want to use one instead of another.

In addition, it is desirable, for performance reasons, to use the return value of the GetHashCode
method to determine whether the data contained within two objects is equal. Calling GetHashCode to
return a hash value of two objects and comparing their hash values can be faster than calling the
default implementation of Equals on the Object type, which individually tests the equality of all
pertinent data within two objects. In fact, some developers even opt to compare hash-code values
returned from GetHashCode within their overloaded Equals method. Using a custom implementation of
the Equals method in this fashion is faster than the default implementation of the Object.Equals
method.

The simple hash

This hash accepts a variable number of integer values and XORs each value to obtain a hash code.
This simple algorithm has a good chance of producing an adequate distribution and good
performance. Remember to profile and measure it to confirm that it works as well for your particular
data set. It fails when you need to integrate values greater in size than an integer. Its code is:

 public int SimpleHash(params int[] values)
 {
 int hashCode = 0;
 if (values != null)
 {
 foreach (int val in values)
 {
 hashCode ^= val;
 }

 }

 return (hashCode);
 }

The folding hash

This hash allows you to integrate the long data type into a hash algorithm. It takes the upper 32 bits
of the long value and folds them over the lower 32 bits of this value. The actual process of folding the
two values is implemented by XORing them and using the result. Once again, this is a good
performing algorithm with good distribution properties, but, again, it fails when you need to go
beyond the long data type. A sample implementation is:

 public int FoldingHash(params long[] values)
 {
 int hashCode = 0;
 if (values != null)
 {
 int tempLowerVal = 0;
 int tempUpperVal = 0;
 foreach (long val in values)
 {
 tempLowerVal = (int)(val & 0x000000007FFFFFFF);
 tempUpperVal = (int)((val >> 32) & 0xFFFFFFFF);
 hashCode^= tempLowerVal ^ tempUpperVal;
 }
 }

 return (hashCode);
 }

The contained object cache

This hash obtains the hash codes from a variable number of object types. The only types that should
be passed in to this method are reference-type fields contained within your object. This method XORs
all the values returned by the GetHashCode method of each object. Its source code is:

 public int ContainedObjHash(params object[] values)
 {
 int hashCode = 0;
 if (values != null)
 {
 foreach (object val in values)
 {

 hashCode ^= val.GetHashCode();
 }
 }

 return (hashCode);
 }

The CryptoHash method

Potentially the best method of obtaining a hash value for an object is to use the hashing classes built
in to the FCL. The CryptoHash method returns a hash value for some input using the MACTripleDES
class. This method returns a very good distribution for the hash value, although you may pay for it in
performance. If you do not require a near-perfect hash value and are looking for an excellent
distribution, consider using this approach to calculate a hash value:

 private readonly byte[] Key = new byte[16] {1,122,3,11,65,7,9,45,42,98,
 77,34,99,45,167,211};

 public int CryptoHash(string strValue)
 {
 int hashCode = 0;
 if (strValue != null)
 {
 byte[] encodedUnHashedString =
 Encoding.Unicode.GetBytes(strValue);

 // Replace the following key with your own
 // key value.
 MACTripleDES hashingObj = new MACTripleDES(Key);
 byte[] code =
 hashingObj.ComputeHash(encodedUnHashedString);

 // Use the BitConverter class to take the
 // first 4 bytes, fold them over the last 4 bytes
 // and use them as an int for the hash code.
 int hashCodeStart = BitConverter.ToInt32(code, 0);
 int hashCodeEnd = BitConverter.ToInt32(code, 4);
 hashCode = hashCodeStart ^ hashCodeEnd;
 }

 return (hashCode);
 }

The CryptoHash method using a nonstring

This method shows how other, nonstring data types can be used with the built-in hashing classes to
obtain a hash code. This method converts a numeric value to a string and then to a byte array. The
array is then used to create the hash value using the SHA256Managed class. Finally, the first four values
in the byte array are concatenated together to obtain a hash code. The code is:

 private readonly byte[] Key = new byte[16] {1,122,3,11,65,7,9,45,42,98,
 77,34,99,45,167,211};

 public int CryptoHash(long longValue)
 {
 int hashCode = 0;
 byte[] encodedUnHashedString =
 Encoding.Unicode.GetBytes(longValue.ToString());

 MACTripleDES hashingObj = new MACTripleDES(Key);
 byte[] code = hashingObj.ComputeHash(encodedUnHashedString);

 // Use the BitConverter class to take the
 // first 4 bytes, fold them over the last 4 bytes
 // and use them as an int for the hash code.
 int hashCodeStart = BitConverter.ToInt32(code, 0);
 int hashCodeEnd = BitConverter.ToInt32(code, 4);

 hashCode = hashCodeStart ^ hashCodeEnd;

 return (hashCode);
 }

The shift and add hash

This method uses each character in the input string, strValue, to determine a hash value. This
algorithm produces a good distribution of hash codes even when it is fed similar strings. However, it
will break down when long strings that end with the same characters are passed. While this may not
happen many times with your applications, it is something to be aware of. If performance is critical,
this is an excellent method to use. Its code is:

 public int ShiftAndAddHash (string strValue)
 {
 int hashCode = 0;
 long workHashCode = 0;

 if (strValue != null)
 {
 for (int counter=0; counter<strValue.Length; counter++)
 {
 workHashCode = (workHashCode << (counter % 4)) +
 (int)strValue[counter];

 }
 workHashCode = workHashCode % (127);
 }
 hashCode = (int)workHashCode;

 return (hashCode);
 }

The calculated hash

This method is a rather widely accepted method of creating a good hash value that accepts several
different data types and uses a different algorithm to compute the hash value for each. It calculates
the hash code as follows:

It assigns an arbitrary odd primary number to the HashCode variable. This variable will
eventually contain the final hash code. Good primary numbers to use are 3, 5, 7, 11, 13, 17,
19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, or 67. Obviously, others exist beyond this set, but
this should give you a good starting point.

For numeric types equal to or less than the size of an int and char data types, it multiplies the
current HashCode by the primary number selected and then adds to this value the value of the
numeric type cast to an integer.

For numeric types greater than the size of an int, it multiplies the current HashCode by the
primary number selected and then adds to this the folded version of this numeric value. (For
more information on folding, see "The folding hash" method earlier in this recipe.)

For char, floating-point, or decimal data types, it multiplies the current HashCode by the primary
number selected, casts the numeric value to an integer, and then uses the folding method to
calculate its value.

For bool data types, it multiplies the current HashCode by the primary number selected and then
adds a 1 for true and 0 for false (you can reverse this behavior if you wish).

For object data types, it multiplies the current HashCode by the primary number selected and
then adds the return value of GetHashCode called on this object. If an object is set to null, use
the value 0 in your calculations.

For an array or collection, it determines the contained type(s) and uses each element of the
array or collection to calculate the hash value, as follows (in the case of an integer array named
MyArray):

 foreach (int element in myArray)
{
 hashCode = (hashCode * 31) + element;
}

This algorithm will produce a good distributed hash code for your object and has the added benefit of
being able to employ any data type. This is a high-performing algorithm for simple, moderately
complex, and even many complex objects. However, for extremely complex objectsones that contain
many large arrays, large Hashtables, or other objects that use a slower hash-code algorithmthis
algorithm will start performing badly. In this extreme case, you may want to consider switching to
another hash-code algorithm to speed performance or simply paring down the amount of fields used
in the calculation. Be careful if you choose this second method to increase performance; you could
inadvertently cause the algorithm to produce similar values for differing objects. The code for the
calculated hash method is:

 public int CalcHash(short someShort, int someInt, long someLong,
 float someFloat, object someObject)
 {
 int hashCode = 7;
 hashCode = hashCode * 31 + (int)someShort;
 hashCode = hashCode * 31 + someInt;
 hashCode = hashCode * 31 +
 (int)(someLong ^ (someLong >> 32));
 long someFloatToLong = (long)someFloat;
 hashCode = hashCode * 31 +
 (int)(someFloatToLong ^ (someFloatToLong >> 32));

 if (someObject != null)
 {
 hashCode = hashCode * 31 +
 someObject.GetHashCode();
 }

 return (hashCode);
 }

The string-concatenation hash

This technique converts its input into a string and then uses that string's GetHashCode method to
automatically generate a hash code for an object. It accepts an integer array, but you can substitute
any type that can be converted into a string. You can also use several different types of arguments
as input to this method. This method iterates through each integer in the array passed as an
argument to the method. The ToString method is called on each value to return a string. The
ToString method of an int data type returns the value contained in that int. Each string value is
appended to the string variable HashString. Finally, the GetHashCode method is called on the
HashString variable to return a suitable hash code.

This method is simple and efficient, but it does not work well with objects that have not overridden
the ToString method to return something other than their data type. It may be best to simply call
the GetHashCode method on each of these objects individually. You should use your own judgment
and the rules found in this recipe to make your decision.

 public int ConcatStringGetHashCode(int[] someIntArray)
 {
 int hashCode = 0;
 StringBuilder hashString = new StringBuilder();

 if (someIntArray != null)
 {
 foreach (int i in someIntArray)
 {
 hashString.Append(i.ToString() + "^");
 }
 }
 hashCode = hashString.GetHashCode();

 return (hashCode);
 }

The following using directives must be added to any file containing this code:

 using System;
 using System.Text;
 using System.Security.Cryptography;

Discussion

The GetHashCode method is called when you are using an instance of this class as the key in a
Hashtable or Dictionary<T,U> object. Whenever your object is added to a Hashtable or
Dictionary<T,U> as a key, its GetHashCode method is. A hash code is also obtained from your object
when a search is performed for it in the Hashtable or Dictionary<T,U>.

The following class implements the SimpleHash algorithm for the overloaded GetHashCode method:

 public class SimpleClass
 {
 private int x = 0;
 private int y = 0;

 public override int GetHashCode()
 {
 return(SimpleHash(x, y));
 }

 private static int SimpleHash(params int[] values)
 {
 int hashCode = 0;

 if (values != null)
 {
 foreach (int val in values)
 {
 hashCode ^= val;
 }
 }
 return (hashCode);
 }
 }

This class can then be used as a key in a Hashtable or Dictionary<T,U> in code like the following:

 SimpleClass simpleClass = new SimpleClass();

 Hashtable hashTable = new Hashtable();
 hashTable.Add(simpleClass, 100);

 Dictionary<SimpleClass, int> dict = new Dictionary<SimpleClass, int>();
 dict.Add(simpleClass, 100);

There are several rules for writing a good GetHashCode method and a good hash-code algorithm:

This method should return the same value for two different objects that have value equality.
Value equality means that two objects contain the same data.

The hash algorithm should return a good distribution of values for the best performance in a
Hashtable or Dictionary<T,U>. A good distribution of values means that the hash values
returned by the GetHashCode method are usually different for objects of the same type, unless
those objects have value equality. Note that objects containing very similar data should also
return a unique hash value. This distribution allows the Hashtable or Dictionary<T,U> to work
more efficiently and thus perform better.

This method should not throw an exception.

Both the Equals method and GetHashCode method should be overridden together.

The GetHashCode method should compute the hash code using the exact set of variables that the
overridden Equals method uses when calculating equality.

The hash algorithm should be as fast as possible to speed up the process of adding and
searching for keys in a Hashtable or Dictionary<T,U>.

Use the GetHashCode values of any contained objects when calculating the hash code of the
parent object.

Use the GetHashCode values of all elements of an array when calculating the array's hash code.

The System.Int32, System.UInt32, and System.IntPtr data types in the FCL use an additional hash-
code algorithm not covered in the Solution section. Basically, these data types return the value that
they contain as a hash code. Most likely, your objects will not be so simple as to contain a single
numeric value, but if they are, this method works extremely well.

You may also want to combine specific algorithms to suit your purposes. For instance, if your object
contains one or more string types and one or more long data types, you can combine the
ContainedObjHash method and the FoldingHash method to create a hash value for your object. The
return values from each method can either be added or XORed together.

Once an object is in use as a key in a Hashtable or Dictionary<T,U>, it should never return a
different value for the hash code. Originally, it was documented that hash codes must be immutable,
as the authors of Hashtable or Dictionary<T,U> thought that this should be dealt with by whoever
writes GetHashCode. It doesn't take much thought to realize that for mutable types, if you require
both that the hash code never changes and that Equals represents the equality of the mutable
objects and that if a.Equals(b), then a.GetHashCode() == b.GetHashCode(), then the only possible
implementation of GetHashCode is one that returns the same integer constant for all values.

The GetHashCode method is called when you are using this object as the key in a Hashtable or
Dictionary<T,U> object. Whenever your object is added to a Hashtable or Dictionary<T,U> as a key,
the GetHashCode method is called on your object to obtain a hash code. This hash code must not
change while your object is a key in the Hashtable or Dictionary<T,U>. If it does, the Hashtable or
Dictionary<T,U> will not be able to find your object.

See Also

See the "GetHashCode Method," "Dictionary<T,U> Class," and "Hashtable Class" topics in the MSDN
documentation.

Recipe 11.2. Creating a Priority Queue

Problem

You need a data structure that operates similarly to a Queue but that returns objects based on a
specific order. When objects are added to this queue, they are located in the queue according to their
priority. When objects are retrieved from the queue, the queue simply returns the highest or lowest
priority element based on which one you ask for.

Solution

Create a generic priority queue that orders items as they are added to the queue and returns items
based on their priority. The PriorityQueue<T> class of Example 11-1 shows how this can be
accomplished.

Example 11-1. Generic PriorityQueue class

using System;
using System.Collections;
using System.Collections.Generic;
public class PriorityQueue<T> : IEnumerable<T>, ICloneable
{
 public PriorityQueue(){}
 public PriorityQueue(IComparer<T> icomparer)
 {
 specialComparer = icomparer;
 }

 protected List<T> internalQueue = new List<T>();
 protected IComparer<T> specialComparer = null;

 public int Count
 {
 get {return (internalQueue.Count);}
 }

 public void Clear()
 {
 internalQueue.Clear();
 }

 public object Clone()
 {
 // Make a new PQ and give it the same comparer.
 PriorityQueue<T> newPQ = new PriorityQueue<T>(specialComparer);
 newPQ.CopyTo(internalQueue.ToArray(),0);
 return newPQ;
 }

 public int IndexOf(T item)
 {
 return (internalQueue.IndexOf(item));
 }

 public bool Contains(T item)
 {
 return (internalQueue.Contains(item));
 }

 public int BinarySearch(T item)
 {
 return (internalQueue.BinarySearch(item, specialComparer));
 }

 public bool Contains(T item, IComparer<T> specialComparer)
 {
 return (internalQueue.BinarySearch(item, specialComparer) >= 0);
 }

 public void CopyTo(T[] array, int index)
 {
 internalQueue.CopyTo(array, index);
 }

 public virtual T[] ToArray()
 {
 return (internalQueue.ToArray());
 }

 public virtual void TrimToSizeTrimExcess()
 {
 internalQueue.TrimExcess();
 }

 public void Enqueue(T item)
 {
 internalQueue.Add(item);
 internalQueue.Sort(specialComparer);
 }

 public T DequeueSmallest()
 {
 T item = internalQueue[0];

 internalQueue.RemoveAt(0);

 return (item);
 }

 public T DequeueLargest()
 {
 T item = internalQueue[internalQueue.Count - 1];
 internalQueue.RemoveAt(internalQueue.Count - 1);

 return (item);
 }

 public T PeekSmallest()
 {
 return (internalQueue[0]);
 }

 public T PeekLargest()
 {
 return (internalQueue[internalQueue.Count - 1]);
 }

 public IEnumerator GetEnumerator()
 {
 return (internalQueue.GetEnumerator());
 }

 IEnumerator<T> System.Collections.Generic.IEnumerable<T>.GetEnumerator()
 {
 return (internalQueue.GetEnumerator());
 }
}

For example, perhaps your application or component needs to send packets of data of differing sizes
across a network. The algorithm for sending these packets of data states that the smallest (or
perhaps the largest) packets will be sent before the larger (or smaller) ones. An analogous
programming problem involves queuing up specific jobs to be run. Each job could be run based on its
type, order, or size.

This priority queue is designed so that itemsin this case, string valuesmay be added in any order; but
when they are removed from the head or tail of the queue, they are dequeued in a specific order. The
IComparer<T> type object, a specialComparer that is passed in through the constructor of this object,
determines this order. The queued string objects are stored internally in a field called internalQueue
of type List<T> . This was the simplest way to construct this type of queue, since a List<T> has most
of the functionality built into it that we wanted to implement for this type of queue.

Many of the methods of this class delegate to the internalQueue in order to perform their duties.
These types of methods include Count, Clear, TrimExcess , and many others. Some of the more
important methods of the PriorityQueue<T> class are Enqueue, DequeueSmallest, DequeueLargest,

PeekSmallest , and PeekLargest .

The Enqueue method accepts a type T as an argument and adds it to the end of the internalQueue .
Next, this List<T> is sorted according to the specialComparer object. If the specialComparer object is
null , the comparison defaults to the IComparer of the string object. By sorting the List<T> after each
item is added, you do not have to perform a sort before every search, dequeue, and peek method. A
small performance hit will occur when an item is added, but this is a one-time-only penalty. Keep in
mind that when items are removed from the head or tail of this queue, the internal List<T> does not
have to be resorted.

There are two dequeue methods: DequeueSmallest and DequeueLargest . These methods remove
items from the head (index equals 0) of the internalQueue and from the tail (index equals
internalQueue.Count -1) , respectively. Before returning the string, these methods will remove that
string from the queue. The PeekSmallest and PeekLargest methods work in a similar manner, except
that they do not remove the string from the queue.

Two other methods of interest are the overloaded Contains methods. The only real difference
between these two methods is that one of the Contains methods uses the IComparer interface of the
string object, whereas the other overloaded Contains method uses the specialComparer interface
when searching for a string in the internalQueue , if one is provided.

The PriorityQueue<T> class members are listed in Table 11-1 .

Table 11-1. PriorityQueue class members

Member Description

Count property
Returns an int indicating the number of items in the queue. Calls the
internalQueue. Count method.

Clear method Removes all items from the queue. Calls the internalQueue method.

Clone method Returns a copy of the PriorityQueue<T> object.

IndexOf method

Returns the zero-based index of the queue item that contains a particular search
string. Its syntax is:

 IndexOf(T item)

where item is the string to be found in the queue. Calls the internalQueue

method.

Contains method

Returns a bool indicating whether a particular search string is found in the
queue. Its syntax is:

 Contains(T item)

Member Description

where item is the string to be found in the queue. Calls theinternalQueue

method.

BinarySearch

method

Returns the zero-based index of the queue item that contains a particular search
type T. Its syntax is:

BinarySearch(T item)

where item is the type T to be found in the queue. The comparison of item with

the type T found in the queue is handled by the IComparer<T> implementation, if
one was passed as an argument to one of the overloads of the PriorityQueue<T>
class constructor. Calls the internalQueue method.

Contains method

Returns a bool indicating whether a particular search type T is found in the
queue. Its syntax is:

 Contains(T item, IComparer<T> specialComparer)

where item is the string to be found in the queue. The comparison of item with

the strings found in the queue is handled by the IComparer<T> implementation, if
one was passed as an argument to one of the overloads of the PriorityQueue<T>
class constructor. Calls the internalQueue method.

CopyTo method

Copies the queue items to a one-dimensional array starting at a particular
position in the queue. Its syntax is:

 CopyTo(T[] array, int arrayIndex)

where array is the array to receive the copy of the queue items and arrayIndex

is the position in the queue from which to begin copying items. Calls the
internalQueue method.

ToArray method
Copies the items in the queue to an object array. Calls the internalQueue
method.

trimExcess

method

Sets the capacity of the queue to the current count of its items. If the
trimExcess method is called when no items are in the queue, its capacity is set
to a default value. Calls the internalQueue method.

where item is the string to be found in the queue. Calls theinternalQueue

method.

BinarySearch

method

Returns the zero-based index of the queue item that contains a particular search
type T. Its syntax is:

BinarySearch(T item)

where item is the type T to be found in the queue. The comparison of item with

the type T found in the queue is handled by the IComparer<T> implementation, if
one was passed as an argument to one of the overloads of the PriorityQueue<T>
class constructor. Calls the internalQueue method.

Contains method

Returns a bool indicating whether a particular search type T is found in the
queue. Its syntax is:

 Contains(T item, IComparer<T> specialComparer)

where item is the string to be found in the queue. The comparison of item with

the strings found in the queue is handled by the IComparer<T> implementation, if
one was passed as an argument to one of the overloads of the PriorityQueue<T>
class constructor. Calls the internalQueue method.

CopyTo method

Copies the queue items to a one-dimensional array starting at a particular
position in the queue. Its syntax is:

 CopyTo(T[] array, int arrayIndex)

where array is the array to receive the copy of the queue items and arrayIndex

is the position in the queue from which to begin copying items. Calls the
internalQueue method.

ToArray method
Copies the items in the queue to an object array. Calls the internalQueue
method.

trimExcess

method

Sets the capacity of the queue to the current count of its items. If the
trimExcess method is called when no items are in the queue, its capacity is set
to a default value. Calls the internalQueue method.

Member Description

Enqueue method

Adds an item to the queue. It then sorts the queue based on either the default
sort behavior of each item or the IComparer<T> implementation passed as an
argument to one of the PriorityQueue<T> class constructors. Its syntax is:

 Enqueue(T item)

where item is the type T to be added to the queue.

DequeueLargest

method
Returns and removes the item at the tail of the queue (i.e., the last item in the
queue).

DequeueSmallest

method
Returns and removes the item at the head of the queue (i.e., the first item in the
queue).

PeekSmallest

method
Returns the item at the head of the queue (i.e., the first item in the queue).

PeekLargest

method
Returns the item at the tail of the queue (i.e., the last item in the queue).

GetEnumerator

method
Returns an enumerator that allows iteration of the items in the queue. Calls the
internalQueue method.

The PriorityQueue<T> can be instantiated and filled with strings using code like the Test class shown
in Example 11-2 .

Example 11-2. Testing the PriorityQueue class

class Test
{
 static void Main()
 {
 // Create ArrayList of messages.
 List<string> msgs = new List<string>();
 msgs.Add("foo");
 msgs.Add("This is a longer message.");
 msgs.Add("bar");
 msgs.Add(@"Message with odd characters
 !@#$%^&*()_+=-0987654321~|}{[]\\;:?/>.<,");
 msgs.Add(@"<
 >");
 msgs.Add("<text>one</text><text>two</text><text>three</text>" +
 "<text>four</text>");
 msgs.Add("");
 msgs.Add("1234567890");

Enqueue method

Adds an item to the queue. It then sorts the queue based on either the default
sort behavior of each item or the IComparer<T> implementation passed as an
argument to one of the PriorityQueue<T> class constructors. Its syntax is:

 Enqueue(T item)

where item is the type T to be added to the queue.

DequeueLargest

method
Returns and removes the item at the tail of the queue (i.e., the last item in the
queue).

DequeueSmallest

method
Returns and removes the item at the head of the queue (i.e., the first item in the
queue).

PeekSmallest

method
Returns the item at the head of the queue (i.e., the first item in the queue).

PeekLargest

method
Returns the item at the tail of the queue (i.e., the last item in the queue).

GetEnumerator

method
Returns an enumerator that allows iteration of the items in the queue. Calls the
internalQueue method.

The PriorityQueue<T> can be instantiated and filled with strings using code like the Test class shown
in Example 11-2 .

Example 11-2. Testing the PriorityQueue class

class Test
{
 static void Main()
 {
 // Create ArrayList of messages.
 List<string> msgs = new List<string>();
 msgs.Add("foo");
 msgs.Add("This is a longer message.");
 msgs.Add("bar");
 msgs.Add(@"Message with odd characters
 !@#$%^&*()_+=-0987654321~|}{[]\\;:?/>.<,");
 msgs.Add(@"<
 >");
 msgs.Add("<text>one</text><text>two</text><text>three</text>" +
 "<text>four</text>");
 msgs.Add("");
 msgs.Add("1234567890");

 // Create a Priority Queue with the appropriate comparer.
 // The comparer is created from the CompareLen type
 // defined in the Discussion section.
 CompareLen<string> comparer = new CompareLen<string>();
 PriorityQueue<string> pqueue = new PriorityQueue<string>(comparer);

 // Add all messages from the List to the priority queue.
 foreach (string msg in msgs)
 {

 pqueue.Enqueue(msg);
 }

 // Display messages in the queue in order of priority.
 foreach (string msg in pqueue)
 {
 Console.WriteLine("Msg: " + msg);
 }
 Console.WriteLine("pqueue.IndexOf('bar') == " + pqueue.IndexOf("bar"));
 Console.WriteLine("pqueue.IndexOf('_bar_') == " + pqueue.IndexOf("_bar_"));

 Console.WriteLine("pqueue.Contains('bar') == " + pqueue.Contains("bar"));
 Console.WriteLine("pqueue.Contains('_bar_') == " +
 pqueue.Contains("_bar_"));

 Console.WriteLine("pqueue.BinarySearch('bar') == " +
 pqueue.BinarySearch("bar"));
 Console.WriteLine("pqueue.BinarySearch('_bar_') == " +
 pqueue.BinarySearch("_bar_"));

 // Dequeue messages starting with the smallest.
 int currCount = pqueue.Count;
 for (int index = 0; index < currCount; index++)
 {

 // In order to dequeue messages starting with the largest, uncomment
 // the following line and comment the following lines that
 // dequeue starting with the smallest message.
 //Console.WriteLine("pqueue.DequeueLargest(): " +
 // pqueue.DequeueLargest().ToString());

 Console.WriteLine("pqueue.DequeueSmallest(): " +
 pqueue.DequeueSmallest().ToString());
 }
 }
}

The output of this method is shown here:

 Msg:
 Msg: foo
 Msg: bar
 Msg: 1234567890
 Msg: This is a longer message.
 Msg: <text>one</text><text>two</text><text>three</text><text>four</text>
 Msg: Message with odd characters
 !@#$%^&*()_+=-0987654321~|}{[]\\;:?/>.<,
 Msg: <

 >
 pqueue.IndexOf('bar') == 2
 pqueue.IndexOf('_bar_') == -1
 pqueue.Contains('bar') == True
 pqueue.Contains('_bar_') == False
 pqueue.BinarySearch('bar') == 1
 pqueue.BinarySearch('_bar_') == -4
 pqueue.DequeueSmallest():
 pqueue.DequeueSmallest(): foo
 pqueue.DequeueSmallest(): bar
 pqueue.DequeueSmallest(): 1234567890
 pqueue.DequeueSmallest(): This is a longer message.
 pqueue.DequeueSmallest(): <text>one</text><text>two</text><text>three
 </text><text>four</text>
 pqueue.DequeueSmallest(): Message with odd characters
 !@#$%^&*()_+=-0987654321~|}{[]\\;:?/>.<,
 pqueue.DequeueSmallest(): < >

A List<T> of string messages is created that will be used to fill the queue. A new CompareLen
IComparer<T> type object is created and passed in to the constructor of the PriorityQueue<T> . If you
did not pass in this IComparer<T> object, the output would be much different: instead of items being
retrieved from the queue based on length, they would be retrieved based on their alphabetical order.
(The IComparer<T> interface is covered in detail in the Discussion section.) Finally, a foreach loop is
used to enqueue all messages into the PriorityQueue<T> object.

At this point, the PriorityQueue<T> object can be used in a manner similar to the Queue<T> class
contained in the FCL, except for the ability to remove items from both the head and tail of the queue.

Discussion

You can instantiate the PriorityQueue<T> class with or without a special comparer object. The special
comparer object used in this recipe is defined in Example 11-3 .

Example 11-3. Special CompareLen comparer class

public class CompareLen<T> : IComparer<T>

 where T: IComparable<T>
{
 public int Compare(T obj1, T obj2)
 {
 int result = 0;
 if (typeof(T) == typeof(string))
 {
 result = CompareStrings(obj1 as string, obj2 as string);
 }
 else
 {

 // Default to the object type's comparison algorithm.
 result = Comparer<T>.Default.Compare(obj1, obj2);
 }
 return (result);
 }

 private int CompareStrings(string str1, string str2)
 {
 if (str1 == null || str2 == null)
 {
 throw(new ArgumentNullException(
 "The strings being compared may not be null."));
 }

 if (str1.Length == str2.Length)
 {
 return (0);
 }
 else if (str1.Length > str2.Length)
 {
 return (1);
 }
 else
 {
 return (-1);
 }
 }

 public bool Equals(T item1, T item2)
 {
 if (item1 == null || item2 == null)
 {
 throw(new ArgumentNullException(
 "The objects being compared may not be null."));
 }

 return (item1.Equals(item2));
 }

 public int GetHashCode(T obj)

 {
 if (obj == null)
 {
 throw(new ArgumentNullException(
 "The obj parameter may not be null."));
 }

 return (obj.GetHashCode());
 }
}

This special comparer is required because you want to prioritize the elements in the queue by size.
The default string IComparer<string> interface compares strings alphabetically. Implementing the
IComparer<T> interface requires that you implement a single method, Compare , with the following
signature:

int Compare(T x, T y);

where x and y are the objects being compared. When implementing custom Compare methods, the
method is to return 0 if x equals y , less than 0 if x is less than y , and greater than 0 if x is greater
than y . This method is called automatically by the .NET runtime whenever the custom IComparer<T>

implementation is used.

See Also

See the "List<T> Class," "IEnumerable Interface," "ICloneable Interface," "IComparer<T> Interface,"
and "IComparable<T> Interface" topics in the MSDN documentation.

Recipe 11.3. Creating a Double Queue

Problem

You need a queue object in which you can explicitly control the adding and removing of objects to either
the head (top) or tail (bottom), also known as a double queue.

Solution

A queue that allows explicit removal of items from the head and the tail is called a double queue .

Example 11-4 shows one way you can implement a double queue.

Example 11-4. DblQueue class

using System;
using System.Collections;
using System.Collections.Generic;

[Serializable]
public class DblQueue<T> : ICollection<T>, ICloneable
{
 public DblQueue()
 {
 internalList = new List<T>();
 }

 public DblQueue(ICollection<T> coll)
 {
 internalList = new List<T>(coll);
 }

 protected List<T> internalList = null;

 public virtual int Count
 {
 get {return (internalList.Count);}
 }

 public virtual bool IsSynchronized
 {
 get {return (false);}
 }

 public virtual object SyncRoot
 {
 get {return (this);}
 }
 public virtual void Clear()
 {
 internalList.Clear();
 }

 public object Clone()
 {
 // Make a new DblQueue.
 DblQueue<T> newDQ = new DblQueue<T>();
 newDQ.CopyTo(internalList.ToArray(), 0);
 return newDQ;
 }

 public virtual bool Contains(T obj)
 {
 return (internalList.Contains(obj));
 }

 public virtual void CopyTo(Array array, int index)
 {
 for (int cntr = 0; cntr < internalList.Count; cntr++)
 {
 array.SetValue((object)internalList[cntr], cntr);
 }
 }

 public virtual T DequeueHead()
 {
 T retObj = internalList[0];
 internalList.RemoveAt(0);
 return (retObj);
 }

 public virtual T DequeueTail()
 {
 T retObj = internalList[internalList.Count - 1];
 internalList.RemoveAt(internalList.Count - 1);
 return (retObj);
 }

 public virtual void EnqueueHead(T obj)
 {
 internalList.Insert(0, obj);
 }

 public virtual void EnqueueTail(T obj)
 {
 internalList.Add(obj);

 }

 public virtual T PeekHead()
 {
 return (internalList[0]);
 }

 public virtual T PeekTail()
 {
 return (internalList[internalList.Count - 1]);
 }

 public virtual IEnumerator GetEnumerator()
 {
 return (internalList.GetEnumerator());
 }

 public virtual T[] ToArray()
 {
 return (internalList.ToArray());
 }

 public virtual void TrimExcess()
 {
 internalList.TrimExcess();
 }

 void System.Collections.Generic.ICollection<T>.Add(T item)
 {
 throw (new NotSupportedException(
 "Use the EnqueueHead or EnqueueTail methods."));
 }

 void System.Collections.Generic.ICollection<T>.CopyTo(T[] item, int index)
 {
 for (int cntr = index; cntr < internalList.Count; cntr++)
 {
 item[cntr - index] = internalList[cntr];
 }
 }

 bool System.Collections.Generic.ICollection<T>.Remove(T item)
 {
 throw (new NotSupportedException(
 "Use the DequeueHead or DequeueTail methods."));
 }

 bool System.Collections.Generic.ICollection<T>.IsReadOnly
 {
 get {throw (new NotSupportedException("Not Supported."));}
 }

 IEnumerator<T> System.Collections.Generic.IEnumerable<T>.GetEnumerator()
 {
 return (internalList.GetEnumerator());
 }
}

The double queue class created for this recipe was developed in a fashion similar to the
PriorityQueue<T> in Recipe 11.2. It exposes most of the List<T> members through wrapper methods.
For instance, the DblQueue<T>.Count and DblQueue<T>.Clear methods, among others, simply delegate
their calls to the List<T> .Count and List<T>.Clear methods, respectively.

The methods defined in Table 11-2 are of particular interest to constructing a double queue.

Table 11-2. Members of the DblQueue class

Member Description

Count

property
Returns an int indicating the number of items in the queue.

Clear method Removes all items from the queue.

Clone method Returns a copy of the DblQueue<T> object.

Contains

method

Returns a bool indicating whether the queue contains a particular search object. Its
syntax is:

 Contains(T obj)

where obj is the object to be found in the queue.

CopyTo

method

Copies a range of items from this queue into an array. Its syntax is:

 CopyTo(Array array, int index)

where array is the array into which the queue will be copied and index is the index in

the queue at which to start copying items. The head of the queue is at index 0 .

DequeueHead

method

Removes and returns the object at the head (i.e., position 0) of the queue. This
method makes use of the indexer and RemoveAt methods of the internal List<T> to
return the first (zeroth) element in the List<T> . Its syntax is:

 DequeueHead()

Member Description

DequeueTail

method

Removes and returns the object at the tail (i.e., position (List<T>.Count -1) of the
queue. This method makes use of the indexer and RemoveAt methods of the internal
List<T> to return the last element in the List<T> . Its syntax is:

 DequeueTail()

EnqueueHead

method

Accepts an object type to add to the head of the queue. This method makes use of the
Insert method of the internal List<T> to add an element to the start (zeroth position)
in the List<T> . Its syntax is:

 EnqueueHead(T obj)

where obj is the object to add to the head of the queue.

EnqueueTail

method

Accepts an object type to add to the tail of the queue. This method makes use of the
Add method of the internal List<T> to add an element to the end of the List<T> . Its
syntax is:

 EnqueueTail(T obj)

where obj is the object to add to the tail of the queue.

PeekHead

method

Returns, but does not remove, the object at the head of the queue. This method
makes use of the indexer of the internal List<T> to obtain the first (zeroth) element in
the List<T> . Its syntax is:

 PeekHead()

PeekTail

method

Returns, but does not remove, the object at the tail of the queue. This method makes
use of the indexer of the internal List<T> to obtain the last element in the List<T> .
Its syntax is:

 PeekTail>()

Returns the entire queue as an object array. Its syntax is:

DequeueTail

method

Removes and returns the object at the tail (i.e., position (List<T>.Count -1) of the
queue. This method makes use of the indexer and RemoveAt methods of the internal
List<T> to return the last element in the List<T> . Its syntax is:

 DequeueTail()

EnqueueHead

method

Accepts an object type to add to the head of the queue. This method makes use of the
Insert method of the internal List<T> to add an element to the start (zeroth position)
in the List<T> . Its syntax is:

 EnqueueHead(T obj)

where obj is the object to add to the head of the queue.

EnqueueTail

method

Accepts an object type to add to the tail of the queue. This method makes use of the
Add method of the internal List<T> to add an element to the end of the List<T> . Its
syntax is:

 EnqueueTail(T obj)

where obj is the object to add to the tail of the queue.

PeekHead

method

Returns, but does not remove, the object at the head of the queue. This method
makes use of the indexer of the internal List<T> to obtain the first (zeroth) element in
the List<T> . Its syntax is:

 PeekHead()

PeekTail

method

Returns, but does not remove, the object at the tail of the queue. This method makes
use of the indexer of the internal List<T> to obtain the last element in the List<T> .
Its syntax is:

 PeekTail>()

Returns the entire queue as an object array. Its syntax is:

Member Description

ToArray

method

 ToArray()

The first element in the object array (index 0) is the item at the head object in the
queue and the last element in the array is the tail object in the queue.

trimExcess

method

Sets the capacity of the queue to the number of elements currently in the queue. Its
syntax is:

 TrimExcess()

The code in Example 11-5 exercises the DblQueue<T> class.

Example 11-5. Testing the DblQueue class

class Test
{
 static void Main()
 {
 DblQueue<int> dqueue = new DblQueue<int>();

 // Count should be zero.
 Console.WriteLine("dqueue.Count: " + dqueue.Count);
 try
 {
 // Attempt to remove an item from an empty queue.
 object o = dqueue.DequeueHead();
 }
 catch (Exception e)
 {
 Console.WriteLine("THIS EXCEPTION IS ON PURPOSE!");
 Console.WriteLine(e.ToString());
 Console.WriteLine("THIS EXCEPTION IS ON PURPOSE!")
 }

 // Add items to queue.
 dqueue.EnqueueHead(1);
 dqueue.EnqueueTail(2);
 dqueue.EnqueueHead(0);
 dqueue.EnqueueTail(3);

 dqueue.TrimExcess();

ToArray

method

 ToArray()

The first element in the object array (index 0) is the item at the head object in the
queue and the last element in the array is the tail object in the queue.

trimExcess

method

Sets the capacity of the queue to the number of elements currently in the queue. Its
syntax is:

 TrimExcess()

The code in Example 11-5 exercises the DblQueue<T> class.

Example 11-5. Testing the DblQueue class

class Test
{
 static void Main()
 {
 DblQueue<int> dqueue = new DblQueue<int>();

 // Count should be zero.
 Console.WriteLine("dqueue.Count: " + dqueue.Count);
 try
 {
 // Attempt to remove an item from an empty queue.
 object o = dqueue.DequeueHead();
 }
 catch (Exception e)
 {
 Console.WriteLine("THIS EXCEPTION IS ON PURPOSE!");
 Console.WriteLine(e.ToString());
 Console.WriteLine("THIS EXCEPTION IS ON PURPOSE!")
 }

 // Add items to queue.
 dqueue.EnqueueHead(1);
 dqueue.EnqueueTail(2);
 dqueue.EnqueueHead(0);
 dqueue.EnqueueTail(3);

 dqueue.TrimExcess();

 // Display all items in original queue.
 foreach (int i in dqueue)
 {
 Console.WriteLine("Queued Item: " + i.ToString());
 }
 // Find these items in original queue.
 Console.WriteLine("dqueue.Contains(1): " + dqueue.Contains(1));
 Console.WriteLine("dqueue.Contains(10): " + dqueue.Contains(10));

 // Peek at head and tail values without removing them.
 Console.WriteLine("dqueue.PeekHead(): " + dqueue.PeekHead().ToString());
 Console.WriteLine("dqueue.PeekTail(): " + dqueue.PeekTail().ToString());

 // Copy this queue to an array.
 Array arr = Array.CreateInstance(typeof(object), dqueue.Count);
 dqueue.CopyTo(arr, 0);
 foreach (object o in arr)
 {
 Console.WriteLine("Queued Item (CopyTo): " + o.ToString());
 }

 // Remove one item from the queue's head and two items from the tail.
 Console.WriteLine("dqueue.DequeueHead(): " + dqueue.DequeueHead());
 Console.WriteLine("dqueue.DequeueTail(): " + dqueue.DequeueTail());
 Console.WriteLine("dqueue.DequeueTail(): " + dqueue.DequeueTail());

 // Display the count of items and the items themselves.
 Console.WriteLine("dqueue.Count: " + dqueue.Count);
 foreach (int i in dqueue)
 {
 Console.WriteLine("Queued Item: " + i.ToString());
 }
 }
}

The output for this method is shown here:

 dqueue.Count: 0
 THIS EXCEPTION IS ON PURPOSE!
 System.ArgumentOutOfRangeException: Index was out of range. Must be non-negative and
 less than the size of the collection.
 Parameter name: index
 at System.ThrowHelper.ThrowArgumentOutOfRangeException(ExceptionArgument argument,
 ExceptionResource resource)
 at System.ThrowHelper.ThrowArgumentOutOfRangeException()
 at System.Collections.Generic.List`1.get_Item(Int32 index)
 at CSharpRecipes.DataStructsAndAlgorithms.DblQueue`1.DequeueHead() in C:\Documents
 and Settings\Admin\Desktop\CSharp Recipes 2nd Edition\Code\CSharpRecipes\11_

 DataStructsAndAlgorithms.cs:line 570
 at CSharpRecipes.DataStructsAndAlgorithms.CreatingAMoreVersatileQueue() in C:\
 Documents and Settings\Admin\Desktop\CSharp Recipes 2nd Edition\Code\CSharpRecipes\
 11_DataStructsAndAlgorithms.cs:line 456
 THIS EXCEPTION IS ON PURPOSE!
 Queued Item: 0
 Queued Item: 1
 Queued Item: 2
 Queued Item: 3
 dqueue.Contains(1): True
 dqueue.Contains(10): False
 dqueue.PeekHead(): 0
 dqueue.PeekTail(): 3
 Queued Item (CopyTo): 0
 Queued Item (CopyTo): 1
 Queued Item (CopyTo): 2
 Queued Item (CopyTo): 3
 dqueue.DequeueHead(): 0
 dqueue.DequeueTail(): 3
 dqueue.DequeueTail(): 2
 dqueue.Count: 1
 Queued Item: 1

Discussion

The DblQueue<T> class implements the same three interfaces as the Queue<T> class found in the
System.Collections.Generic namespace of the FCL. These are the ICollection, IEnumerable , and
ICloneable interfaces. The IEnumerable interface forces the DblQueue<T> to implement the
GetEnumerator method. The implementation of the DblQueue<T>.GetEnumerator method returns the
IEnumerator object for the internal List<T> , used to store the queued items.

The ICollection interface forces three properties and a method to be implemented by the DblQueue<T>
class. The IsSynchronized property returns false , and the SyncRoot method returns the DblQueue<T>
object on which it was called. These synchronization properties and methods will be discussed at length
in Recipes 4.4, 4.10, and 18.2.

The ICollection interface also forces the Count property and the CopyTo method to be implemented by
the DblQueue<T> class. Both of these delegate to the corresponding List<T> property and method for
their implementations.

The Enqueue and Dequeue methods of the Queue<T> class found in the FCL operate in only one direction,
enqueuing to the tail and dequeuing from the head of the queue. The DblQueue<T> class allows these
operations to be performed on both the head and tail of a queue. The DblQueue<T> class has the
flexibility of being used as a first-in, first-out (FIFO) queue, which is similar in operation to the Queue<T>
class, or of being used as a first-in, last-out (FILO) stack, which is similar in operation to the Stack<T>
class. In fact, with a DblQueue<T> , you can start off using it as a FIFO queue and then change in
midstream to using it as a FILO stack. This can be done without having to do anything special, such as
creating a new class.

See Also

See the "List<T> Class," "IEnumerable Interface," "ICloneable Interface," and "ICollection Interface"
topics in the MSDN documentation.

Recipe 11.4. Determining Where Characters or Strings Do
Not Balance

Problem

It is not uncommon to accidentally create strings that contain unbalanced parentheses. For example,
a user might enter the following equation in your calculator application:

 (((a) + (b)) + c * d

This equation contains four (characters while matching them with only three) characters. You
cannot solve this equation, since the user did not supply the fourth) character. Likewise, if a user
enters a regular expression, you might want to do a simple check to see that all the (, {, [, and <
characters match up to every other), },], and > character.

In addition to determining whether the characters/strings/tags match, you should know where the
unbalanced character/string/tag exists in the string.

Solution

Use the various Check methods of the Balance class shown in Example 11-6 to determine whether
and where the character/string is unbalanced.

Example 11-6. Balance class with overloaded Check methods

using System;
using System.Collections;

public class Balance
{

 public Balance() {}

 private Stack<int> bookMarks = new Stack<int>();

 public int Check(string source, char openChar, char closeChar)
 {

 return (Check(source.ToCharArray(), openChar, closeChar));
 }

 public int Check(char[] source, char openChar, char closeChar)
 {
 bookMarks.Clear();

 for (int index = 0; index < source.Length; index++)
 {
 if (source[index] == openChar)
 {
 bookMarks.Push(index);
 }
 else if (source[index] == closeChar)
 {
 if (bookMarks.Count <= 0)
 {
 return (index);
 }
 else
 {
 bookMarks.Pop();
 }
 }
 }

 if (bookMarks.Count > 0)
 {
 return ((int)bookMarks.Pop());
 }
 else
 {
 return (-1);
 }
 }

 public int Check(string source, string openChars, string closeChars)
 {
 return (Check(source.ToCharArray(), openChars.ToCharArray(),
 closeChars.ToCharArray()));
 }

 public int Check(char[] source, char[] openChars, char[] closeChars)
 {
 bookMarks.Clear();

 for (int index = 0; index < source.Length; index++)
 {
 if (source[index] == openChars[0])
 {
 if (CompareArrays(source, openChars, index))
 {

 bookMarks.Push(index);
 }
 }

 if (source[index] == closeChars[0])
 {
 if (CompareArrays(source, closeChars, index))
 {
 if (bookMarks.Count <= 0)
 {
 return (index);
 }
 else
 {
 bookMarks.Pop();
 }
 }
 }
 }

 if (bookMarks.Count > 0)
 {
 return ((int)bookMarks.Pop());
 }
 else
 {
 return (-1);
 }
 }

 public bool CompareArrays(char[] source, char[] targetChars, int startPos)
 {
 bool isEqual = true;

 for (int index = 0; index < targetChars.Length; index++)
 {
 if (targetChars[index] != source[startPos + index])
 {
 isEqual = false;
 break;
 }
 }

 return (isEqual);
 }
}

The Check method determines whether there is one closing element for every opening element. There
are four overloaded Check methods, and each takes three parameters of varying types. These

methods return an integer indicating where the offending character is located or a negative number if
each openChar has a matching closeChar.

The code to exercise the Balance class is shown in Example 11-7.

Example 11-7. Testing the Balance class

class Test
{
 static void Main()
 {
 Balance balanceUtil = new Balance();

 // A string with an unbalanced } char. This unbalanced char is the final
 // } char in the string
 string unbalanced = @"{namespace Unbalanced
 {
 public class Tipsy
 {
 public Tipsy()
 {
 }}}}}
 ";

 // Use the various overloaded Check methods
 // to check for unbalanced } chars.
 Console.WriteLine("Balance {}: " +

 balanceUtil.Check(unbalanced, '{', '}'));
 Console.WriteLine("Balance {}: " +
 balanceUtil.Check(unbalanced.ToCharArray(), '{', '}'));
 }
}

This code produces the following output:

 Balance {}: 268
 Balance {}: 268

where a -1 means that the items are balanced and a number greater than -1 indicates the character
position that contains the unbalanced character.

Discussion

Determining whether characters have a matching character is actually quite easy when a Stack<T>
object is used. A stack works on a FILO principle. The first item added to a stack is always the last
one to be removed; conversely, the last item added to a stack is always the first removed.

To see how the stack is used in matching characters, let's see how you'd use it to handle the
following equation:

((a + (b)) + c) * d

The algorithm works like this: you iterate through all characters in the equation, then any time you
come upon a left or right parenthesis, you push or pop an item from the stack. If you see a left
parenthesis, you know to push it onto the stack. If you see a right parenthesis, you know to pop a
left parenthesis from the stack. In fact, the left parenthesis that was popped off the stack is the
matching left parenthesis to the current right parenthesis. If all parentheses are balanced, the stack
will be empty after iterating through all characters in the equation. If the stack is not empty, the top
left parenthesis on the stack is the one that does not have a matching right parenthesis. If there are
two or more items in the stack, there is more than one unbalanced parenthesis in the equation.

For the previous equation, starting at the lefthand side, you push one left parenthesis on the stack
and then immediately push a second one. You consume the a and + characters and then come upon a
third left parenthesis; your stack now contains three left parentheses. You consume the b character
and come upon two right parentheses in a row. For each right parenthesis, you will pop one matching
left parenthesis off the stack. Your stack now contains only one left parenthesis. You consume the +
and c characters and come upon the last right parenthesis in the equation. You pop the final left
parenthesis off the stack and then check the rest of the equation for any other parentheses. Since
the stack is empty and you are at the end of the equation, you know that each left parenthesis has a
matching right parenthesis.

For the Check methods in this recipe, the location in the string where each left parenthesis is located
is pushed onto the stack. This allows you to immediately locate the offending parenthesis.

See Also

See the "Stack<T> Class" topic in the MSDN documentation.

Recipe 11.5. Creating a One-to-Many Map (MultiMap)

Problem

A Hashtable or a Dictionary<T,U> can map only a single key to a single value, but you need to map a
key to one or more values. In addition, it may also be possible to map a key to null.

Solution

Use a Dictionary<T,U> with values that are a List<U>. This structure allows you to add multiple
values (in the List<U>) for each key of the Dictionary<T,U>. The MultiMap<T,U> class shown in
Example 11-8, which is used in practically the same manner as a Dictionary<T,U> class, does this.

Example 11-8. MultiMap class

using System;
using System Collections;
using System.Collections.Generic;

public class MultiMap<TKey, UValue> : IDictionary<TKey, IList<UValue>>
{
 private Dictionary<TKey, IList<UValue>> map =
 new Dictionary<TKey, IList<UValue>>();

 public IList<UValue> this[TKey key]
 {
 get {return (map[key]);}
 set {map[key] = value;}
 }

 public void Add(TKey key, UValue item)
 {
 AddSingleMap(key, item);
 }

 public void Add(TKey key, IList<UValue> items)
 {
 foreach (UValue val in items)
 AddSingleMap(key, val);
 }

 public void Add(KeyValuePair<TKey, IList<UValue>> keyValuePair)
 {
 foreach (UValue val in keyValuePair.Value)
 AddSingleMap(keyValuePair.Key, val);
 }

 public void Clear()
 {
 map.Clear();
 }

 public int Count
 {
 get {return (map.Count);}
 }

 public bool IsReadOnly
 {
 get {throw(new NotSupportedException(
 "This operation is not supported."));}
 }

 public bool Contains(TKey key)
 {
 return (map.ContainsKey(key));
 }

 public bool Contains(KeyValuePair<TKey, IList<UValue>> keyValuePair)
 {
 return (map.ContainsKey(keyValuePair.Key) &&
 map.ContainsValue(keyValuePair.Value));
 }

 public bool ContainsKey (TKey key)
 {
 return (map.ContainsKey(key));
 }

 public bool ContainsValue(UValue item)
 {
 if (item == null)
 {
 foreach (KeyValuePair<TKey, IList<UValue>> kvp in map)
 {
 if (((List<UValue>)kvp.Value).Count == 0)
 {
 return (true);
 }
 }

 return (false);
 }

 else
 {
 foreach (KeyValuePair<TKey, IList<UValue>> kvp in map)
 {
 if (((List<UValue>)kvp.Value).Contains(item))
 {
 return (true);
 }
 }

 return (false);
 }
 }

 IEnumerator<KeyValuePair<TKey, IList<UValue>>> IEnumerable<KeyValuePair<TKey,
 IList<UValue>>>.GetEnumerator()
 {
 return (map.GetEnumerator());
 }

 IEnumerator System.Collections.IEnumerable.GetEnumerator()
 {
 return (map.GetEnumerator());
 }

 public bool Remove(TKey key)
 {
 return (RemoveSingleMap(key));
 }

 public bool Remove(KeyValuePair<TKey, IList<UValue>> keyValuePair)
 {
 return (Remove(keyValuePair.Key));
 }

 protected virtual void AddSingleMap(TKey key, UValue item)
 {
 // Search for key in map Hashtable.
 if (map.ContainsKey(key))
 {
 // Add value to List in map.
 List<UValue> values = (List<UValue>)map[key];

 // Add this value to this existing key.
 values.Add(item);
 }
 else
 {
 if (item == null)
 {
 // Create new key and mapping to an empty List.
 map.Add(key, new List<UValue>());

 }
 else
 {
 List<UValue> values = new List<UValue>();
 values.Add(item);

 // Create new key and mapping to its value.
 map.Add(key, values);
 }
 }
 }

 protected virtual bool RemoveSingleMap(TKey key)
 {
 if (this.ContainsKey(key))
 {
 // Remove the key from KeysTable.
 return (map.Remove(key));
 }
 else
 {
 throw (new ArgumentOutOfRangeException("key", key,
 "This key does not exists in the map."));
 }
 }

 public bool TryGetValue(TKey key, out UValue item)
 {
 throw (new NotSupportedException(
 "This operation is not supported, use " +
 "TryGetValue(TKey, out IList<UValue>) instead."));
 }

 public bool TryGetValue(TKey key, out IList<UValue> items)
 {
 return (map.TryGetValue(key, out items));
 }
 public ICollection<TKey> Keys
 {
 get { return (map.Keys); }
 }

 public ICollection<IList<UValue>> Values
 {
 get { return (map.Values); }
 }

 public void CopyTo(TKey[] arr, int index)
 {
 int cntr = 0;
 foreach (KeyValuePair<TKey, IList<UValue>> keyValuePair in map)
 {

 arr[cntr + index] = keyValuePair.Key;
 cntr++;
 }
 }

 public void CopyTo(KeyValuePair<TKey, IList<UValue>>[] arr, int index)
 {
 CopyTo(arr, index);
 }
}

The methods defined in Table 11-3 are of particular interest to using a MultiMap<T,U> object.

Table 11-3. Members of the MultiMap class

Member Description

Indexer

The get accessor obtains a List<U> of all values that are associated with a key.
The set accessor adds an entire List<U> of values to a key. Its syntax is:

public List<U> this[T key]

where key is the key to be added to the MultiMap<T,U> through the set

accessor, or it is the key with values that you want to retrieve via the get
accessor.

Add method

Adds a key to the Dictionary<T,List<U>> and its associated value. Its syntax is:

Add(T key, T value)

where key is the key to be added to the MultiMap<T,U> and value is the value to

add to the internal List<U> of the private map field.

Clear method Removes all items from the MultiMap<T,U> object.

Count method Returns a count of all keys in the MultiMap<T,U> object.

Clone method Returns a deep copy of the MultiMap<T,U> object.

Returns a bool indicating whether the MultiMap<T,U> contains a particular value
as its key. Its syntax is:

Member Description

ContainsKey

method ContainsKey(T key)

where key is the key to be found in the MultiMap<T,U>.

ContainsValue

method

Returns a bool indicating whether the MultiMap<T,U> contains a particular value.
Its syntax is:

ContainsValue(T value)

where value is the object to be found in the MultiMap<T,U>.

Remove method

Removes a key from the MultiMap<T,U> and all its referent values in the internal
map Dictionary<T, List<U>>. Its syntax is:

Remove(T key)

where key is the key to be removed.

Items may be added to a MultiMap<T,U> object by running the code shown in Example 11-9.

Example 11-9. Testing the MultiMap class

public static void TestMultiMap()
{
 string s = "foo";

 // Create and populate a MultiMap object.
 MultiMap<int, string> myMap = new MultiMap<int, string>();
 myMap.Add(0, "zero");
 myMap.Add(1, "one");
 myMap.Add(2, "two");
 myMap.Add(3, "three");
 myMap.Add(3, "duplicate three");
 myMap.Add(3, "duplicate three");
 myMap.Add(4, "null");

ContainsKey

method ContainsKey(T key)

where key is the key to be found in the MultiMap<T,U>.

ContainsValue

method

Returns a bool indicating whether the MultiMap<T,U> contains a particular value.
Its syntax is:

ContainsValue(T value)

where value is the object to be found in the MultiMap<T,U>.

Remove method

Removes a key from the MultiMap<T,U> and all its referent values in the internal
map Dictionary<T, List<U>>. Its syntax is:

Remove(T key)

where key is the key to be removed.

Items may be added to a MultiMap<T,U> object by running the code shown in Example 11-9.

Example 11-9. Testing the MultiMap class

public static void TestMultiMap()
{
 string s = "foo";

 // Create and populate a MultiMap object.
 MultiMap<int, string> myMap = new MultiMap<int, string>();
 myMap.Add(0, "zero");
 myMap.Add(1, "one");
 myMap.Add(2, "two");
 myMap.Add(3, "three");
 myMap.Add(3, "duplicate three");
 myMap.Add(3, "duplicate three");
 myMap.Add(4, "null");

 myMap.Add(5, s);
 myMap.Add(6, s);

 // Display contents.
 foreach (KeyValuePair<int, List<string>> entry in myMap)
 {

 Console.Write("Key: " + entry.Key.ToString() + "\tValue: ");
 foreach (string str in myMap[entry.Key])
 {
 Console.Write(str + " : ");
 }
 Console.WriteLine();
 }

 // Obtain values through the indexer.
 Console.WriteLine();
 Console.WriteLine("((ArrayList) myMap[3])[0]: " + myMap[3][0]);
 Console.WriteLine("((ArrayList) myMap[3])[1]: " + myMap[3][1]);

 // Add items to MultiMap using a List.
 List<string> testArray = new List<string>();
 testArray.Add("BAR");
 testArray.Add("BAZ");
 myMap[10] = testArray;
 myMap[10] = testArray;

 // Remove items from MultiMap.
 myMap.Remove(0);
 myMap.Remove(1);

 // Display MultiMap.
 Console.WriteLine();
 Console.WriteLine("myMap.Count: " + myMap.Count);
 foreach (KeyValuePair<int, List<string>> entry in myMap)
{
 Console.Write("entry.Key: " + entry.Key.ToString() +
 "\tentry.Value(s): ");
 foreach (string str in myMap[entry.Key])
 {
 if (str == null)
 {
 Console.Write("null : ");
 }
 else
 {
 Console.Write(str + " : ");
 }
 }
 Console.WriteLine();
 }

 // Determine if the map contains the key or the value.
 Console.WriteLine();
 Console.WriteLine("myMap.ContainsKey(2): " + myMap.ContainsKey(2));
 Console.WriteLine("myMap.ContainsValue(two): " +
 myMap.ContainsValue("two"));

 Console.WriteLine("Contains Key 2: " + myMap.ContainsKey(2));
 Console.WriteLine("Contains Key 12: " + myMap.ContainsKey(12));

 Console.WriteLine("Contains Value two: " + myMap.ContainsValue("two"));
 Console.WriteLine("Contains Value BAR: " + myMap.ContainsValue("BAR"));

 // Clear all items from MultiMap.
 myMap.Clear();
}

This code displays the following:

 Key: 0 Value: zero :
 Key: 1 Value: one :
 Key: 2 Value: two :
 Key: 3 Value: three : duplicate three : duplicate three :
 Key: 4 Value:
 Key: 5 Value: foo :
 Key: 6 Value: foo :

 ((ArrayList) myMap[3])[0]: three
 ((ArrayList) myMap[3])[1]: duplicate three

 myMap.Count: 6
 entry.Key: 2 entry.Value(s): two :
 entry.Key: 3 entry.Value(s): three : duplicate three : duplicate three :
 entry.Key: 4 entry.Value(s):
 entry.Key: 5 entry.Value(s): foo :
 entry.Key: 6 entry.Value(s): foo :
 entry.Key: 10 entry.Value(s): BAR : BAZ :

 myMap.ContainsKey(2): True
 myMap.ContainsValue(two): True
 Contains Key 2: True
 Contains Key 12: False
 Contains Value two: True
 Contains Value BAR: True

Discussion

A one-to-many map, or multimap, allows one object, a key, to be associated, or mapped, to zero or
more objects. The MultiMap<T,U> class presented here operates similarly to a Dictionary<T,U>. The
MultiMap<T,U> class contains a Dictionary<T, List<U>> field called map that contains the actual
mapping of keys to values. Several of the MultiMap<T,U> methods are delegated to the methods on
the map Dictionary<T, List<U>> object.

A Dictionary<T,U> operates on a one-to-one principle: only one key may be associated with one
value at any time. However, if you need to associate multiple values with a single key, you must use
the approach used by the MultiMap<T,U> class. The private map field associates a key with a single
List<U> of values, which allows multiple mappings of values to a single key and mappings of a single
value to multiple keys. As an added feature, a key can also be mapped to a null value.

Here's what happens when key-value pairs are added to a MultiMap<t,U> object:

The MultiMap<T,U>.Add method is called with a key and value provided as parameters.1.

The Add method checks to see whether key exists in the map Dictionary<T, List<U>> object.2.

If key does not exist, it is added as a key in the map Dictionary<T, List<U>> object. This key is
associated with a new List<U> as the value associated with key in this Hashtable.

3.

If the key does exist, the key is looked up in the map Dictionary<T, List<U>> object and the
value is added to the key's List<U>.

4.

To remove a key using the Remove method, the key and List<U> pair are removed from the map
Dictionary<T, List<U>>. This allows removal of all values associated with a single key. The
MultiMap<T,U>.Remove method calls the RemoveSingleMap method, which encapsulates this behavior.
Removal of key "0", and all values mapped to this key, is performed with the following code:

 myMap.Remove(1);

To remove all keys and their associated values, use the MultiMap<T,U>.Clear method. This method
removes all items from the map Dictionary<T, List<U>>.

The other major member of the MultiMap<T,U> class needing discussion is its indexer. The indexer
returns the List<U> of values for a particular key through its get accessor. The set accessor simply
adds the List<U> provided to a single key. This code creates an array of values and attempts to map
them to key "5" in the myMap object:

 List<string> testArray = new List<string>();
 testArray.Add("BAR");
 testArray.Add("BAZ");
 myMap["5"] = testArray;

The following code makes use of the get accessor to access each value associated with key "3":

 Console.WriteLine(myMap[3][0]);
 Console.WriteLine(myMap[3][1]);
 Console.WriteLine(myMap[3][2]);

This looks somewhat similar to using a jagged array. The first indexer ([3] in the preceding
examples) is used to pull the List<U> from the map Dictionary<T, List<U>>, and the second indexer
is used to obtain the value in the List<U>. This code displays the following:

 three
 duplicate three
 duplicate three

This MultiMap<T,U> class also allows the use of the foreach loop to enumerate its key-value pairs.
The following code displays each key-value pair in the MyMap object:

 foreach (KeyValuePair<int, List<string>> entry in myMap)
 {
 Console.Write("Key: " + entry.Key.ToString() + "\tValue: ");
 foreach (string str in myMap[entry.Key])
 {
 Console.Write(str + " : ");
 }
 Console.WriteLine();
 }

The outer foreach loop is used to retrieve all the keys and the inner foreach loop is used to display
each value mapped to a particular key. This code displays the following for the initial MyMap object:

 Key: 0 Value: zero :
 Key: 1 Value: one :
 Key: 2 Value: two :
 Key: 3 Value: three : duplicate three : duplicate three :
 Key: 4 Value:
 Key: 5 Value: foo :
 Key: 6 Value: foo :

Two methods that allow searching of the MultiMap<T,U> object are ContainsKey and ContainsValue.
The ContainsKey method searches for the specified key in the map Dictionary<T, List<U>>. The
ContainsValue method searches for the specified value in a List<U> in the map Dictionary<T,
List<U>>. Both methods return true if the key-value was found or false otherwise:

 Console.WriteLine("Contains Key 2: " + myMap.ContainsKey(2));
 Console.WriteLine("Contains Key 12: " + myMap.ContainsKey(12));

 Console.WriteLine("Contains Value two: " + myMap.ContainsValue("two"));
 Console.WriteLine("Contains Value BAR: " + myMap.ContainsValue("BAR"));

Note that the ContainsKey and ContainsValue methods are both case-sensitive.

See Also

See the "List<T> Class," "Dictionary<T,U> Class," and "IEnumerator Interface" topics in the MSDN
documentation.

Recipe 11.6. Creating a Binary Tree

Problem

You need to store information in a tree structure, where the left node is less than its parent node and
the right node is greater than or equal to (in cases in which the tree can contain duplicates) its
parent. The stored information must be easily inserted into the tree, removed from the tree, and
found within the tree.

Solution

To implement a binary tree of the type described in the Problem statement, each node must be an
object that inherits from the IComparable<T> interface. This means that every node that wishes to be
included in the binary tree must implement the CompareTo method. This method will allow one node to
determine whether it is less than, greater than, or equal to another node.

Use the BinaryTree<T> class shown in Example 11-10 , which contains all of the nodes in a binary tree
and lets you traverse it.

Example 11-10. Generic BinaryTree class

using System;
using System.Collections;
using System.Collections.Generic;

public class BinaryTree<T> : IEnumerable<T>
 where T: IComparable<T>
{
 public BinaryTree() {}

 public BinaryTree(T value)
 {
 BinaryTreeNode<T> node = new BinaryTreeNode<T>(value);
 root = node;
 counter = 1;
 }

 protected int counter = 0; // Number of nodes in tree
 protected BinaryTreeNode<T> root = null; // Pointer to root node in this tree

 public void AddNode(T value)

 {
 BinaryTreeNode<T> node = new BinaryTreeNode<T>(value);
 ++counter;

 if (root == null)
 {
 root = node;
 }
 else
 {
 root.AddNode(node);
 }
 }

 public BinaryTreeNode<T> SearchDepthFirst(T value)
 {
 return (root.DepthFirstSearch(value));
 }

 public void Print()
 {
 root.PrintDepthFirst();
 }

 public BinaryTreeNode<T> Root
 {
 get {return (root);}
 }

 public int Count
 {
 get {return (counter);}
 }
 IEnumerator<T> System.Collections.Generic.IEnumerable<T>.GetEnumerator()
 {
 List<T> nodes = new List<T>();

 nodes = root.IterateDepthFirst();
 nodes.Add(root.Value);

 foreach (T t in nodes)
 yield return (t);
 }

 IEnumerator System.Collections.IEnumerable.GetEnumerator()
 {
 throw (new NotSupportedException("This operation is not " +
 "supported use the GetEnumerator() that returns an IEnumerator<T>."));
 }
}

The BinaryTreeNode<T> shown in Example 11-11 encapsulates the data and behavior of a single node
in the binary tree.

Example 11-11. Generic BinaryTreeNode class

public class BinaryTreeNode<T>
 where T: IComparable<T>
{
 public BinaryTreeNode() {}

 public BinaryTreeNode(T value)
 {
 nodeValue = value;
 }

 protected T nodeValue = default(T);
 protected BinaryTreeNode<T> leftNode = null; // leftNode.nodeValue < Value
 protected BinaryTreeNode<T> rightNode = null; // rightNode.nodeValue >= Value

 public int Children
 {
 get
 {
 int currCount = 0;
 if (leftNode != null)
 {
 ++currCount;
 currCount += leftNode.Children();
 }

 if (rightNode != null)
 {
 ++currCount;
 currCount += rightNode.Children();
 }

 return (currCount);
 }
 }

 public BinaryTreeNode<T> Left
 {
 get {return (leftNode);}
 }

 public BinaryTreeNode<T> Right
 {
 get {return (rightNode);}

 }

 public T Value
 {
 get {return (nodeValue);}
 }

 public void AddNode(BinaryTreeNode<T> node)
 {
 if (node.nodeValue.CompareTo(nodeValue) < 0)
 {
 if (leftNode == null)
 {
 leftNode = node;
 }
 else
 {
 leftNode.AddNode(node);
 }
 }
 else if (node.nodeValue.CompareTo(nodeValue) >= 0)
 {
 if (rightNode == null)
 {
 rightNode = node;
 }
 else
 {
 rightNode.AddNode(node);
 }
 }
 }
 public bool AddUniqueNode(BinaryTreeNode<T> node)
 {
 bool isUnique = true;
 if (node.nodeValue.CompareTo(nodeValue) < 0)
 {
 if (leftNode == null)
 {
 leftNode = node;
 }
 else
 {
 leftNode.AddNode(node);
 }
 }
 else if (node.nodeValue.CompareTo(nodeValue) > 0)
 {
 if (rightNode == null)
 {
 rightNode = node;
 }

 else
 {
 rightNode.AddNode(node);
 }
 }
 else //node.nodeValue.CompareTo(nodeValue) = 0
 {
 isUnique = false;
 // Could throw exception here as well…
 }
 return (isUnique);
 }
 public BinaryTreeNode<T> DepthFirstSearch(T targetObj)
 {
 // NOTE: foo.CompareTo(bar) == -1 --> (foo < bar)
 BinaryTreeNode<T> retObj = null;
 int comparisonResult = targetObj.CompareTo(nodeValue);
 if (comparisonResult == 0)
 {
 retObj = this;
 }
 else if (comparisonResult > 0)
 {
 if (rightNode != null)
 {
 retObj = rightNode.DepthFirstSearch(targetObj);
 }
 }
 else if (comparisonResult < 0)
 {
 if (leftNode != null)
 {
 retObj = leftNode.DepthFirstSearch(targetObj);
 }
 }
 return (retObj);
 }
 public void PrintDepthFirst()
 {
 if (leftNode != null)
 {
 leftNode.PrintDepthFirst();
 }
 Console.WriteLine(this.nodeValue.ToString());
 if (leftNode != null)
 {
 Console.WriteLine("\tContains Left: " +
 leftNode.nodeValue.ToString());
 }
 else
 {
 Console.WriteLine("\tContains Left: NULL");

 }
 if (rightNode != null)
 {
 Console.WriteLine("\tContains Right: " +
 rightNode.nodeValue.ToString());
 }
 else
 {
 Console.WriteLine("\tContains Right: NULL");
 }
 if (rightNode != null)
 {
 rightNode.PrintDepthFirst();
 }
 }
 public List<T> IterateDepthFirst()
 {
 List<T> tempList = new List<T>();
 if (leftNode != null)
 {
 tempList.AddRange(leftNode.IterateDepthFirst());
 }
 if (leftNode != null)
 {
 tempList.Add(leftNode.nodeValue);
 }
 if (rightNode != null)
 {
 tempList.Add(rightNode.nodeValue);
 }
 if (rightNode != null)
 {
 tempList.AddRange(rightNode.IterateDepthFirst());
 }
 return (tempList);
 }
 public void RemoveLeftNode()
 {
 leftNode = null;
 }
 public void RemoveRightNode()
 {
 rightNode = null;
 }
}

The methods defined in Table 11-4 are of particular interest to using a BinaryTree<T> object.

Table 11-4. Members of the BinaryTree<T> class

Member Description

Overloaded

constructor

This constructor creates a BinaryTree<T> object with a root node. Its syntax
is:

 BinaryTree(T value)

where value is the root node for the tree. Note that this tree may not be

flattened.

AddNode method

Adds a node to the tree. Its syntax is:

 AddNode(T value, int id)

where value is the object to be added and id is the node index. Use this

method if the tree will be flattened.

AddNode method

Adds a node to the tree. Its syntax is:

 AddNode(T value)

where value is the object to be added. Use this method if the tree will not be

flattened.

SearchDepthFirst

method

Searches for and returns a BinaryTreeNode<T> object in the tree, if one
exists. This method searches the depth of the tree first. Its syntax is:

 SearchDepthFirst(T value)

where value is the object to be found in the tree.

Print method

Displays the tree in depth-first format. Its syntax is:

 Print()

Member Description

Root property

Returns the BinaryTreeNode<T> object that is the root of the tree. Its syntax
is:

 Root

treeSize property

A read-only property that gets the number of nodes in the tree. Its syntax is:

 int TreeSize {get;}

The methods defined in Table 11-5 are of particular interest to using a BinaryTreeNode<T> object.

Table 11-5. Members of the BinaryTreeNode<T> class

Member Description

Overloaded

constructor

This constructor creates a BinaryTreeNode<T> object. Its syntax is:

 BinaryTreeNode(T value)

where value is the object contained in this node, which will be used to

compare to its parent.

NumOfChildren

property

A read-only property to retrieve the number of children below this node. Its
syntax is:

 int NumOfChildren {get;}

A read-only property to retrieve the left child node below this node. Its syntax
is:

Root property

Returns the BinaryTreeNode<T> object that is the root of the tree. Its syntax
is:

 Root

treeSize property

A read-only property that gets the number of nodes in the tree. Its syntax is:

 int TreeSize {get;}

The methods defined in Table 11-5 are of particular interest to using a BinaryTreeNode<T> object.

Table 11-5. Members of the BinaryTreeNode<T> class

Member Description

Overloaded

constructor

This constructor creates a BinaryTreeNode<T> object. Its syntax is:

 BinaryTreeNode(T value)

where value is the object contained in this node, which will be used to

compare to its parent.

NumOfChildren

property

A read-only property to retrieve the number of children below this node. Its
syntax is:

 int NumOfChildren {get;}

A read-only property to retrieve the left child node below this node. Its syntax
is:

Member Description

Left property

 BinaryTreeNode<T> Left {get;}

Right property

A read-only property to retrieve the right child node below this node. Its
syntax is:

 BinaryTreeNode<T> Right {get;}

Children method

Retrieves the number of child nodes below this node. Its syntax is:

 Children()

GetValue method

Returns the IComparable<T> object that this node contains. Its syntax is:

 GetValue()

AddNode method

Adds a new node recursively to either the left or right side. Its syntax is:

 AddNode(BinaryTreeNode<T> node)

where node is the node to be added. Duplicate nodes may be added using this

method.

AddUniqueNode

method

Adds a new node recursively to either the left side or the right side. Its syntax
is:

 AddUniqueNode(BinaryTreeNode<T> node)

where node is the node to be added. Duplicate nodes may not be added using

this method. A Boolean value is returned: true indicates a successful

Left property

 BinaryTreeNode<T> Left {get;}

Right property

A read-only property to retrieve the right child node below this node. Its
syntax is:

 BinaryTreeNode<T> Right {get;}

Children method

Retrieves the number of child nodes below this node. Its syntax is:

 Children()

GetValue method

Returns the IComparable<T> object that this node contains. Its syntax is:

 GetValue()

AddNode method

Adds a new node recursively to either the left or right side. Its syntax is:

 AddNode(BinaryTreeNode<T> node)

where node is the node to be added. Duplicate nodes may be added using this

method.

AddUniqueNode

method

Adds a new node recursively to either the left side or the right side. Its syntax
is:

 AddUniqueNode(BinaryTreeNode<T> node)

where node is the node to be added. Duplicate nodes may not be added using

this method. A Boolean value is returned: true indicates a successful

Member Description this method. A Boolean value is returned: true indicates a successful
operation; false indicates an attempt to add a duplicate node.

DepthFirstSearch

method

Searches for and returns a BinaryTreeNode<T> object in the tree, if one exists.
This method searches the depth of the tree first. Its syntax is:

 DepthFirstSearch(T targetObj)

where targetObj is the object to be found in the tree.

PrintDepthFirst

method

Displays the tree in depth-first format. Its syntax is:

 PrintDepthFirst()

RemoveLeftNode

method

Removes the left node and any child nodes of this node. Its syntax is:

 RemoveLeftNode()

RemoveRightNode

method

Removes the right node and any child nodes of this node. Its syntax is:

 RemoveRightNode()

The code in Example 11-12 illustrates the use of the BinaryTree<T> and BinaryTreeNode<T> classes
when creating and using a binary tree.

Example 11-12. Using the BinaryTree and Binary TreeNode classes

this method. A Boolean value is returned: true indicates a successful
operation; false indicates an attempt to add a duplicate node.

DepthFirstSearch

method

Searches for and returns a BinaryTreeNode<T> object in the tree, if one exists.
This method searches the depth of the tree first. Its syntax is:

 DepthFirstSearch(T targetObj)

where targetObj is the object to be found in the tree.

PrintDepthFirst

method

Displays the tree in depth-first format. Its syntax is:

 PrintDepthFirst()

RemoveLeftNode

method

Removes the left node and any child nodes of this node. Its syntax is:

 RemoveLeftNode()

RemoveRightNode

method

Removes the right node and any child nodes of this node. Its syntax is:

 RemoveRightNode()

The code in Example 11-12 illustrates the use of the BinaryTree<T> and BinaryTreeNode<T> classes
when creating and using a binary tree.

Example 11-12. Using the BinaryTree and Binary TreeNode classes

public static void TestBinaryTree()
{
 BinaryTree<string> tree = new BinaryTree<string>("d");
 tree.AddNode("a");
 tree.AddNode("b");
 tree.AddNode("f");
 tree.AddNode("e");
 tree.AddNode("c");
 tree.AddNode("g");

 tree.Print();
 tree.Print();

 Console.WriteLine("tree.TreeSize: " + tree.Count);
 Console.WriteLine("tree.Root.DepthFirstSearch(b).Children: " +
 tree.Root.DepthFirstSearch("b").Children);
 Console.WriteLine("tree.Root.DepthFirstSearch(a).Children: " +
 tree.Root.DepthFirstSearch("a").Children);
 Console.WriteLine("tree.Root.DepthFirstSearch(g).Children: " +
 tree.Root.DepthFirstSearch("g").Children);

 Console.WriteLine("tree.SearchDepthFirst(a): " +
 tree.SearchDepthFirst("a").Value);
 Console.WriteLine("tree.SearchDepthFirst(b): " +
 tree.SearchDepthFirst("b").Value);
 Console.WriteLine("tree.SearchDepthFirst(c): " +
 tree.SearchDepthFirst("c").Value);
 Console.WriteLine("tree.SearchDepthFirst(d): " +
 tree.SearchDepthFirst("d").Value);
 Console.WriteLine("tree.SearchDepthFirst(e): " +
 tree.SearchDepthFirst("e").Value);
 Console.WriteLine("tree.SearchDepthFirst(f): " +
 tree.SearchDepthFirst("f").Value);

 tree.Root.RemoveLeftNode();
 tree.Print();

 tree.Root.RemoveRightNode();
 tree.Print();
}

The output for this method is shown here:

 a
 Contains Left: NULL
 Contains Right: b
 b

 Contains Left: NULL
 Contains Right: c
 c
 Contains Left: NULL
 Contains Right: NULL
 d
 Contains Left: a
 Contains Right: f
 e
 Contains Left: NULL
 Contains Right: NULL
 f
 Contains Left: e
 Contains Right: g
 g
 Contains Left: NULL
 Contains Right: NULL
 a
 Contains Left: NULL
 Contains Right: b
 b
 Contains Left: NULL
 Contains Right: c
 c
 Contains Left: NULL
 Contains Right: NULL
 d
 Contains Left: a
 Contains Right: f
 e
 Contains Left: NULL
 Contains Right: NULL
 f
 Contains Left: e
 Contains Right: g
 g
 Contains Left: NULL
 Contains Right: NULL
 tree.TreeSize: 7
 tree.Root.DepthFirstSearch(a).Children: 1
 tree.Root.DepthFirstSearch(a).Children: 2
 tree.Root.DepthFirstSearch(g).Children: 0
 tree.SearchDepthFirst(a): a
 tree.SearchDepthFirst(b): b
 tree.SearchDepthFirst(c): c
 tree.SearchDepthFirst(d): d
 tree.SearchDepthFirst(e): e
 tree.SearchDepthFirst(f): f
 d
 Contains Left: NULL
 Contains Right: f
 e

 Contains Left: NULL
 Contains Right: NULL
 f
 Contains Left: e
 Contains Right: g
 g
 Contains Left: NULL
 Contains Right: NULL
 d
 Contains Left: NULL
 Contains Right: NULL

Discussion

Trees are data structures in which each node has exactly one parent and possibly many children. The
root of the tree is a single node that branches out into one or more child nodes. A node is the part of
the tree structure that contains data and contains the branches (or in more concrete terms,
references) to its children node(s).

A tree can be used for many things, such as to represent a management hierarchy with the president
of the company at the root node and the various vice presidents as child nodes of the president. The
vice presidents may have managers as child nodes, and so on. A tree can be used to make decisions,
where each node of the tree contains a question, and the answer given depends on which branch is
taken to a child node. The tree described in this recipe is called a binary tree . A binary tree can have
zero, one, or two child nodes for every node in the tree. A binary tree node can never have more
than two child nodes; this is where this type of tree gets its name. (There are other types of trees.
For instance, the n -ary tree can have zero to n nodes for each node in the tree. This type of tree is
defined in Recipe 11.7.)

A binary tree is very useful for storing objects and then efficiently searching for those objects. The
following algorithm is used to store objects in a binary tree:

Start at the root node.1.

Is this node free?

If yes, add the object to this node, and you are done.a.

If no, continue.b.

2.

Is the object to be added to the tree less than (less than is determined by the
IComparable<T>.CompareTo method of the node being added) the current node?

If yes, follow the branch to the node on the left side of the current node, and go to step 2.a.

b.

3.

a.

If no, follow the branch to the node of the right side of the current node, and go to step 2.b.

Basically, this algorithm states that the node to the left of the current node contains an object or
value less than the current node, and the node to the right of the current node contains an object or
value greater than (or equal to, if the binary tree can contain duplicates) the current node.

Searching for an object in a tree is easy. Just start at the root and ask yourself, "Is the object I am
searching for less than the current node's object?" If it is, follow the left branch to the next node in
the tree. If it is not, check the current node to determine whether it contains the object you are
searching for. If this is still not the correct object, continue down the right branch to the next node.
When you get to the next node, start the process over again.

The binary tree used in this recipe is made up of two classes. The BinaryTree<T> class is not a part of
the actual tree; rather, it acts as a starting point from which you can create a tree, add nodes to it,
search the tree for items, and retrieve the root node to perform other actions.

The second class, BinaryTreeNode<T> , is the heart of the binary tree and represents a single node in
the tree. This class contains all the members that are required to create and work with a binary tree.

The BinaryTreeNode<T> class contains a protected field, nodeValue , that contains an object
implementing the IComparable<T> interface. This structure allows you to perform searches and add
nodes in the correct location in the tree. The CompareTo method of the IComparable<T> interface is
used in searching and adding methods to determine whether you need to follow the left or right
branch. See the AddNode, AddUniqueNode , and DepthFirstSearch methodsdiscussed in the following
paragraphsto see this in action.

There are two methods to add nodes to the tree, AddNode and AddUniqueNode . The AddNode method
allows duplicates to be introduced to the tree, whereas the AddUniqueNode allows only unique nodes to
be added.

The DepthFirstSearch method allows the tree to be searched by first checking the current node to
see whether it contains the value searched for; if not, recursion is used to check the left or the right
node. If no matching value is found in any node, this method returns null .

It is interesting to note that even though the BinaryTree<T> class is provided to create and manage
the tree of BinaryTreeNode<T> objects, you can merely use the BinaryTreeNode<T> class as long as
you keep track of the root node yourself. The code shown in Example 11-13 creates and manages the
tree without the use of the BinaryTree<T> class.

Example 11-13. Creating and managing a binary tree without using the
BinaryTree class

public static void TestManagedTreeWithNoBinaryTreeClass()
{
 // Create the root node.
 BinaryTreeNode<string> topLevel = new BinaryTreeNode<string>("d");

 // Create all nodes that will be added to the tree.
 BinaryTreeNode<string> one = new BinaryTreeNode<string>("b");
 BinaryTreeNode<string> two = new BinaryTreeNode<string>("c");
 BinaryTreeNode<string> three = new BinaryTreeNode<string>("a");

 BinaryTreeNode<string> four = new BinaryTreeNode<string>("e");
 BinaryTreeNode<string> five = new BinaryTreeNode<string>("f");
 BinaryTreeNode<string> six = new BinaryTreeNode<string>("g");

 // Add nodes to tree through the root.
 topLevel.AddNode(three);
 topLevel.AddNode(one);
 topLevel.AddNode(five);
 topLevel.AddNode(four);
 topLevel.AddNode(two);
 topLevel.AddNode(six);

 // Print the tree starting at the root node.
 topLevel.PrintDepthFirst();

 // Print the tree starting at node 'Three'.
 three.PrintDepthFirst();

 // Display the number of child nodes of various nodes in the tree.
 Console.WriteLine("topLevel.Children: " + topLevel.Children);
 Console.WriteLine("one.Children: " + one.Children);
 Console.WriteLine("three.Children: " + three.Children);
 Console.WriteLine("six.Children: " + six.Children);

 // Search the tree using the depth-first searching method.
 Console.WriteLine("topLevel.DepthFirstSearch(a): " +
 topLevel.DepthFirstSearch("a").Value.ToString());
 Console.WriteLine("topLevel.DepthFirstSearch(b): " +
 topLevel.DepthFirstSearch("b").Value.ToString());
 Console.WriteLine("topLevel.DepthFirstSearch(c): " +
 topLevel.DepthFirstSearch("c").Value.ToString());
 Console.WriteLine("topLevel.DepthFirstSearch(d): " +
 topLevel.DepthFirstSearch("d").Value.ToString());
 Console.WriteLine("topLevel.DepthFirstSearch(e): " +
 topLevel.DepthFirstSearch("e").Value.ToString());
 Console.WriteLine("topLevel.DepthFirstSearch(f): " +
 topLevel.DepthFirstSearch("f").Value.ToString());

 // Remove the left child node from the root node and display the entire tree.
 topLevel.RemoveLeftNode();
 topLevel.PrintDepthFirst();

 // Remove all nodes from the tree except for the root and display the tree.
 topLevel.RemoveRightNode();
 topLevel.PrintDepthFirst();
}

The output for this method is shown here:

 a
 Contains Left: NULL
 Contains Right: b
 b
 Contains Left: NULL
 Contains Right: c
 c
 Contains Left: NULL
 Contains Right: NULL
 d
 Contains Left: a
 Contains Right: f
 e
 Contains Left: NULL
 Contains Right: NULL
 f
 Contains Left: e
 Contains Right: g
 g
 Contains Left: NULL
 Contains Right: NULL
 a
 Contains Left: NULL
 Contains Right: b
 b
 Contains Left: NULL
 Contains Right: c
 c
 Contains Left: NULL
 Contains Right: NULL
 topLevel.Children: 6
 one.Children: 1
 three.Children: 2
 six.Children: 0
 topLevel.DepthFirstSearch(a): a
 topLevel.DepthFirstSearch(b): b
 topLevel.DepthFirstSearch(c): c
 topLevel.DepthFirstSearch(d): d
 topLevel.DepthFirstSearch(e): e
 topLevel.DepthFirstSearch(f): f
 d
 Contains Left: NULL
 Contains Right: f
 e
 Contains Left: NULL
 Contains Right: NULL
 f
 Contains Left: e
 Contains Right: g
 g
 Contains Left: NULL
 Contains Right: NULL

 d
 Contains Left: NULL
 Contains Right: NULL

See Also

See the "Queue Class" and "IComparable<T> Interface" topics in the MSDN documentation.

Recipe 11.7. Creating an n-ary Tree

Problem

You need a tree that can store a number of child nodes in each of its nodes. A binary tree will work if
each node needs to have only two children, but in this case each node needs to have a fixed number
of child nodes greater than two.

Solution

Use the Ntree<T> class shown in Example 11-14 to create the root node for the n-ary tree.

Example 11-14. Generic NTree class

using System;
using System.Collections;
using System.Collections.Generic;

public class NTree<T> : IEnumerable<T>
 where T : IComparable<T>
{
 public NTree()
 {
 maxChildren = int.MaxValue;
 }
 public NTree(int maxNumChildren)
 {
 maxChildren = maxNumChildren;
 }

 // The root node of the tree
 protected NTreeNode<T> root = null;
 // The maximum number of child nodes that a parent node may contain
 protected int maxChildren = 0;

 public void AddRoot(NTreeNode<T> node)
 {
 root = node;
 }

 public NTreeNode<T> GetRoot()
 {
 return (root);
 }

 public int MaxChildren
 {
 get {return (maxChildren);}
 }

 IEnumerator<T> System.Collections.Generic.IEnumerable<T>.GetEnumerator()
 {
 List<T> nodes = new List<T>();

 nodes = GetRoot().IterateDepthFirst();
 nodes.Add(GetRoot().Value());

 foreach (T t in nodes)
 yield return (t);
 }

 IEnumerator System.Collections.IEnumerable.GetEnumerator()
 {
 throw (new NotSupportedException("This operation is not " +
"supported use the GetEnumerator() that returns an IEnumerator<T>."));
 }
}

The methods defined in Table 11-6 are of particular interest to using an Ntree<T> object.

Table 11-6. Members of the NTree<T> class

Member Description

Overloaded

constructor

This constructor creates an Ntree<T> object. Its syntax is:

 NTree(int maxNumChildren)

where maxNumChildren is the maximum number of children that one node may

have at any time.

A read-only property to retrieve the maximum number of children any node
may have. Its syntax is:

Member Description

MaxChildren

property int MaxChildren {get;}

The value this property returns is set in the constructor.

AddRoot method

Adds a node to the tree. Its syntax is:

 AddRoot(NTreeNodeFactory<T>.NTreeNode<U> node)

where node is the node to be added as a child to the current node.

Getroot method

Returns the root node of this tree. Its syntax is:

 GetRoot()

The NtreeNodeFactory<T> class is used to create nodes for the n-ary tree. These nodes are defined in
the class NtreeNode<U>, which is nested inside of the NtreeNodeFactory<T> class. You are not able to
create an NtreeNode<U> without the use of this factory class, as shown in Example 11-15.

Example 11-15. Using the class to create the nodes for an n-ary tree

public class NTreeNodeFactory<T>
 where T : IComparable<T>
{
 public NTreeNodeFactory(NTree<T> root)
 {
 maxChildren = root.MaxChildren;
 }

 private int maxChildren = 0;

 public int MaxChildren
 {
 get {return (maxChildren);}
 }

MaxChildren

property int MaxChildren {get;}

The value this property returns is set in the constructor.

AddRoot method

Adds a node to the tree. Its syntax is:

 AddRoot(NTreeNodeFactory<T>.NTreeNode<U> node)

where node is the node to be added as a child to the current node.

Getroot method

Returns the root node of this tree. Its syntax is:

 GetRoot()

The NtreeNodeFactory<T> class is used to create nodes for the n-ary tree. These nodes are defined in
the class NtreeNode<U>, which is nested inside of the NtreeNodeFactory<T> class. You are not able to
create an NtreeNode<U> without the use of this factory class, as shown in Example 11-15.

Example 11-15. Using the class to create the nodes for an n-ary tree

public class NTreeNodeFactory<T>
 where T : IComparable<T>
{
 public NTreeNodeFactory(NTree<T> root)
 {
 maxChildren = root.MaxChildren;
 }

 private int maxChildren = 0;

 public int MaxChildren
 {
 get {return (maxChildren);}
 }

 public NTreeNode<T> CreateNode(T value)
 {
 return (new NTreeNode<T>(value, maxChildren));
 }
}

// Node class
public class NTreeNode<U>
 where U : IComparable<U>
{
 public NTreeNode(U value, int maxChildren)
 {
 if (value != null)
 {
 nodeValue = value;
 }

 childNodes = new NTreeNode<U>[maxChildren];
 }

 protected U nodeValue = default(U);
 protected NTreeNode<U>[] childNodes = null;

 public int CountChildren
 {
 get
 {
 int currCount = 0;

 for (int index = 0; index <= childNodes.GetUpperBound(0); index++)
 {
 if (childNodes[index] != null)
 {
 ++currCount;
 currCount += childNodes[index].CountChildren;
 }
 }

 return (currCount);
 }
 }

 public int CountImmediateChildren
 {
 get
 {

 int currCount = 0;

 for (int index = 0; index <= childNodes.GetUpperBound(0); index++)
 {

 if (childNodes[index] != null)
 {
 ++currCount;
 }
 }

 return (currCount);
 }
 }

 public NTreeNode<U>[] Children
 {
 get {return (childNodes);}
 }

 public NTreeNode<U> GetChild(int index)
 {
 return (childNodes[index]);
 }

 public U Value()
 {
 return (nodeValue);
 }

 public void AddNode(NTreeNode<U> node)
 {
 int numOfNonNullNodes = CountImmediateChildren;
 if (numOfNonNullNodes < childNodes.Length)
 {

 childNodes[numOfNonNullNodes] = node;
 }
 else
 {
 throw (new Exception("Cannot add more children to this node."));
 }
 }
 public NTreeNode<U> DepthFirstSearch(U targetObj)
 {
 NTreeNode<U> retObj = default(NTreeNode<U>);

 if (targetObj.CompareTo(nodeValue) == 0)
 {
 retObj = this;
 }
 else
 {
 for (int index=0; index<=childNodes.GetUpperBound(0); index++)
 {
 if (childNodes[index] != null)
 {

 retObj = childNodes[index].DepthFirstSearch(targetObj);
 if (retObj != null)
 {
 break;
 }
 }
 }
 }

 return (retObj);
 }
 public NTreeNode<U> BreadthFirstSearch(U targetObj)
 {
 Queue<NTreeNode<U>> row = new Queue<NTreeNode<U>>();
 row.Enqueue(this);

 while (row.Count > 0)
 {
 // Get next node in queue.
 NTreeNode<U> currentNode = row.Dequeue();

 // Is this the node we are looking for?
 if (targetObj.CompareTo(currentNode.nodeValue) == 0)
 {
 return (currentNode);
 }
 for (int index = 0;
 index < currentNode.CountImmediateChildren;
 index++)
 {
 if (currentNode.Children[index] != null)
 {
 row.Enqueue(currentNode.Children[index]);
 }
 }
 }

 return (null);
 }
 public void PrintDepthFirst()
 {
 Console.WriteLine("this: " + nodeValue.ToString());

 for (int index = 0; index < childNodes.Length; index++)
 {
 if (childNodes[index] != null)
 {
 Console.WriteLine("\tchildNodes[" + index + "]: " +
 childNodes[index].nodeValue.ToString());
 }
 else
 {

 Console.WriteLine("\tchildNodes[" + index + "]: NULL");
 }
 }

 for (int index = 0; index < childNodes.Length; index++)
 {
 if (childNodes[index] != null)
 {
 childNodes[index].PrintDepthFirst();
 }
 }
 }

 public List<U> IterateDepthFirst()
 {
 List<U> tempList = new List<U>();

 for (int index = 0; index < childNodes.Length; index++)
 {
 if (childNodes[index] != null)
 {
 tempList.Add(childNodes[index].nodeValue);
 }
 }

 for (int index = 0; index < childNodes.Length; index++)
 {
 if (childNodes[index] != null)
 {
 tempList.AddRange(childNodes[index].IterateDepthFirst());
 }
 }

 return (tempList);
 }
 public void RemoveNode(int index)
 {
 // Remove node from array and compact the array.
 if (index < childNodes.GetLowerBound(0) ||
 index > childNodes.GetUpperBound(0))
 {
 throw (new ArgumentOutOfRangeException("index", index,
 "Array index out of bounds."));
 }
 else if (index < childNodes.GetUpperBound(0))
 {
 Array.Copy(childNodes, index + 1, childNodes, index,
 childNodes.Length - index - 1);
 }
 childNodes.SetValue(null, childNodes.GetUpperBound(0));
 }
}

The methods defined in Table 11-7 are of particular interest to using an NtreeNodeFactory<T> object.

Table 11-7. Members of the NTreeNodeFactory<T> class

Member Description

Constructor

Creates a new NTReeNodeFactory<T> object that will create NTReeNode<U> objects
with the same number of MaxChildren that the Ntree<T> object passed in supports.
Its syntax is:

 NTreeNodeFactory(NTree<T> root)

where root is an Ntree<T> object.

MaxChildren

property

Read-only property that returns the maximum number of children that the
Ntree<T> object supports. Its syntax is:

 int MaxChildren {get;}

CreateNode

method

Overloaded. Returns a new NTReeNode object. Its syntax is:

 CreateNode()

 CreateNode(IComparable value)

where value is the IComparable object this new node object will contain.

The methods defined in Table 11-8 are of particular interest to using the nested NtreeNode<U> object.

Table 11-8. Members of the NTreeNode<U> class

Member Description

Constructor

Creates a new NtreeNode<U> object from the NtreeNodeFactory<T> object
passed in to it. Its syntax is:

 NTreeNode(T value, int maxChildren)

where value is an IComparable<T> object and maxChildren is the total

number of children allowed by this node.

NumOfChildren property

Read-only property that returns the total number of children below this
node. Its syntax is:

 int NumOfChildren {get;}

Children property

Read-only property that returns all of the non-null child-node objects in
an array that the current node contains. Its syntax is:

 NTreeNode<U>[] Children {get;}

CountChildren property

Recursively counts the number of non-null child nodes below the
current node and returns this value as an integer. Its syntax is:

 CountChildren

CountImmediateChildren

property

Counts only the non-null child nodes contained in the current node. Its
syntax is:

 CountImmediateChildren

Uses an index to return the NtreeNode<U> contained by the current node.
Its syntax is:

Member Description

GetChild method GetChild(int index)

where index is the array index where the child object is stored.

Value method

Returns an object of type T that the current node contains. Its syntax is:

 Value()

AddNode method

Adds a new child node to the current node. Its syntax is:

 AddNode(NTreeNode<U> node)

where node is the child node to be added.

DepthFirstSearch

method

Attempts to locate an NTReeNode<U> by the IComparable<T> object that it
contains. An NtreeNode<U> is returned if the IComparable<T> object is
located or a null if it is not. Its syntax is:

 DepthFirstSearch(IComparable<T> targetObj)

where targetObj is the IComparable<T> object to locate in the tree. Note

that this search starts with the current node, which may or may not be
the root of the tree. The tree traversal is done in a depth-first manner.

BreadthFirstSearch

method

Attempts to locate an NTReeNode<U> by the IComparable<T> object that it
contains. An NTReeNode<U> is returned if the IComparable<T> object is
located or a null if it is not. Its syntax is:

 BreadthFirstSearch(IComparable<T> targetObj)

where targetObj is the IComparable<T> object to locate in the tree. Note

that this search starts with the current node, which may or may not be
the root of the tree. The tree traversal is done in a breadth-first manner.

GetChild method GetChild(int index)

where index is the array index where the child object is stored.

Value method

Returns an object of type T that the current node contains. Its syntax is:

 Value()

AddNode method

Adds a new child node to the current node. Its syntax is:

 AddNode(NTreeNode<U> node)

where node is the child node to be added.

DepthFirstSearch

method

Attempts to locate an NTReeNode<U> by the IComparable<T> object that it
contains. An NtreeNode<U> is returned if the IComparable<T> object is
located or a null if it is not. Its syntax is:

 DepthFirstSearch(IComparable<T> targetObj)

where targetObj is the IComparable<T> object to locate in the tree. Note

that this search starts with the current node, which may or may not be
the root of the tree. The tree traversal is done in a depth-first manner.

BreadthFirstSearch

method

Attempts to locate an NTReeNode<U> by the IComparable<T> object that it
contains. An NTReeNode<U> is returned if the IComparable<T> object is
located or a null if it is not. Its syntax is:

 BreadthFirstSearch(IComparable<T> targetObj)

where targetObj is the IComparable<T> object to locate in the tree. Note

that this search starts with the current node, which may or may not be
the root of the tree. The tree traversal is done in a breadth-first manner.

Member Description

PrintDepthFirst method

Displays the tree structure on the console window starting with the
current node. Its syntax is:

 PrintDepthFirst()

This method uses recursion to display each node in the tree.

RemoveNode method

Removes the child node at the specified index on the current node. Its

syntax is:

 RemoveNode(int index)

where index is the array index where the child object is stored. Note

that when a node is removed, all of its children nodes are removed as
well.

The code shown in Example 11-16 illustrates the use of the Ntree<T>, Ntree-NodeFactory<T>, and
NtreeNode<U> classes to create and manipulate an n-ary tree.

Example 11-16. Using the NTree<T>, NTreeNodeFactory<T>, and
NTreeNode<U> classes

public static void TestNTree()
{
 NTree<string> topLevel = new NTree<string>(3);
 NTreeNodeFactory<string> nodeFactory =
 new NTreeNodeFactory<string>(topLevel);

 NTreeNode<string> one = nodeFactory.CreateNode("One");
 NTreeNode<string> two = nodeFactory.CreateNode("Two");
 NTreeNode<string> three = nodeFactory.CreateNode("Three");
 NTreeNode<string> four = nodeFactory.CreateNode("Four");
 NTreeNode<string> five = nodeFactory.CreateNode("Five");
 NTreeNode<string> six = nodeFactory.CreateNode("Six");
 NTreeNode<string> seven = nodeFactory.CreateNode("Seven");
 NTreeNode<string> eight = nodeFactory.CreateNode("Eight");
 NTreeNode<string> nine = nodeFactory.CreateNode("Nine");

PrintDepthFirst method

Displays the tree structure on the console window starting with the
current node. Its syntax is:

 PrintDepthFirst()

This method uses recursion to display each node in the tree.

RemoveNode method

Removes the child node at the specified index on the current node. Its

syntax is:

 RemoveNode(int index)

where index is the array index where the child object is stored. Note

that when a node is removed, all of its children nodes are removed as
well.

The code shown in Example 11-16 illustrates the use of the Ntree<T>, Ntree-NodeFactory<T>, and
NtreeNode<U> classes to create and manipulate an n-ary tree.

Example 11-16. Using the NTree<T>, NTreeNodeFactory<T>, and
NTreeNode<U> classes

public static void TestNTree()
{
 NTree<string> topLevel = new NTree<string>(3);
 NTreeNodeFactory<string> nodeFactory =
 new NTreeNodeFactory<string>(topLevel);

 NTreeNode<string> one = nodeFactory.CreateNode("One");
 NTreeNode<string> two = nodeFactory.CreateNode("Two");
 NTreeNode<string> three = nodeFactory.CreateNode("Three");
 NTreeNode<string> four = nodeFactory.CreateNode("Four");
 NTreeNode<string> five = nodeFactory.CreateNode("Five");
 NTreeNode<string> six = nodeFactory.CreateNode("Six");
 NTreeNode<string> seven = nodeFactory.CreateNode("Seven");
 NTreeNode<string> eight = nodeFactory.CreateNode("Eight");
 NTreeNode<string> nine = nodeFactory.CreateNode("Nine");

 topLevel.AddRoot(one);
 Console.WriteLine("topLevel.GetRoot().CountChildren: " +
 topLevel.GetRoot().CountChildren);

 topLevel.GetRoot().AddNode(two);
 topLevel.GetRoot().AddNode(three);
 topLevel.GetRoot().AddNode(four);

 topLevel.GetRoot().Children[0].AddNode(five);
 topLevel.GetRoot().Children[0].AddNode(eight);
 topLevel.GetRoot().Children[0].AddNode(nine);
 topLevel.GetRoot().Children[1].AddNode(six);
 topLevel.GetRoot().Children[1].Children[0].AddNode(seven);

 Console.WriteLine("Display Entire tree:");
 topLevel.GetRoot().PrintDepthFirst();

 Console.WriteLine("Display tree from node [two]:");
 topLevel.GetRoot().Children[0].PrintDepthFirst();

 Console.WriteLine("Depth First Search:");
 Console.WriteLine("topLevel.DepthFirstSearch(One): " +
 topLevel.GetRoot().DepthFirstSearch("One").Value().ToString());
 Console.WriteLine("topLevel.DepthFirstSearch(Two): " +
 topLevel.GetRoot().DepthFirstSearch("Two").Value().ToString());
 Console.WriteLine("topLevel.DepthFirstSearch(Three): " +
 topLevel.GetRoot().DepthFirstSearch("Three").Value().ToString());
 Console.WriteLine("topLevel.DepthFirstSearch(Four): " +
 topLevel.GetRoot().DepthFirstSearch("Four").Value().ToString());
 Console.WriteLine("topLevel.DepthFirstSearch(Five): " +
 topLevel.GetRoot().DepthFirstSearch("Five").Value().ToString());

 Console.WriteLine("\r\n\r\nBreadth First Search:");
 Console.WriteLine("topLevel.BreadthFirstSearch(One): " +
 topLevel.GetRoot().BreadthFirstSearch("One").Value().ToString());
 Console.WriteLine("topLevel.BreadthFirstSearch(Two): " +
 topLevel.GetRoot().BreadthFirstSearch("Two").Value().ToString());
 Console.WriteLine("topLevel.BreadthFirstSearch(Three): " +
 topLevel.GetRoot().BreadthFirstSearch("Three").Value().ToString());
 Console.WriteLine("topLevel.BreadthFirstSearch(Four): " +
 topLevel.GetRoot().BreadthFirstSearch("Four").Value().ToString());
}

The output for this method is shown here:

 topLevel.GetRoot().CountChildren: 0
 Display Entire tree:
 this: One

 childNodes[0]: Two
 childNodes[1]: Three
 childNodes[2]: Four
 this: Two
 childNodes[0]: Five
 childNodes[1]: Eight
 childNodes[2]: Nine
 this: Five
 childNodes[0]: NULL
 childNodes[1]: NULL
 childNodes[2]: NULL
 this: Eight
 childNodes[0]: NULL
 childNodes[1]: NULL
 childNodes[2]: NULL
 this: Nine
 childNodes[0]: NULL
 childNodes[1]: NULL
 childNodes[2]: NULL
 this: Three
 childNodes[0]: Six
 childNodes[1]: NULL
 childNodes[2]: NULL
 this: Six
 childNodes[0]: Seven
 childNodes[1]: NULL
 childNodes[2]: NULL
 this: Seven
 childNodes[0]: NULL
 childNodes[1]: NULL
 childNodes[2]: NULL
 this: Four
 childNodes[0]: NULL
 childNodes[1]: NULL
 childNodes[2]: NULL
 Display tree from node [two]:
 this: Two
 childNodes[0]: Five
 childNodes[1]: Eight
 childNodes[2]: Nine
 this: Five
 childNodes[0]: NULL
 childNodes[1]: NULL
 childNodes[2]: NULL
 this: Eight
 childNodes[0]: NULL
 childNodes[1]: NULL
 childNodes[2]: NULL
 this: Nine
 childNodes[0]: NULL
 childNodes[1]: NULL
 childNodes[2]: NULL

 Depth First Search:
 topLevel.DepthFirstSearch(One): One
 topLevel.DepthFirstSearch(Two): Two
 topLevel.DepthFirstSearch(Three): Three
 topLevel.DepthFirstSearch(Four): Four
 topLevel.DepthFirstSearch(Five): Five

 Breadth First Search:
 topLevel.BreadthFirstSearch(One): One
 topLevel.BreadthFirstSearch(Two): Two
 topLevel.BreadthFirstSearch(Three): Three
 topLevel.BreadthFirstSearch(Four): Four

Discussion

An n-ary tree is one that has no limitation on the number of children each parent node may contain.
This is in contrast to the binary tree in Recipe 11.6, in which each parent node may contain only two
children nodes.

Ntree<T> is a simple class that contains only a constructor and three public methods. Through this
object, you can create an n-ary tree, set the root node, and obtain the root node in order to navigate
and manipulate the tree. An Ntree<T> object that can contain at most three children is created in the
following manner:

 NTree<string> topLevel = new NTree<string>(3);

An Ntree<T> object that can contain at most int.MaxValue children, which allows greater flexibility, is
created in the following manner:

 NTree<string> topLevel = new NTree<string>();

The real work is done in the NTReeNodeFactory<T> object and the NtreeNode<U> object, which is
nested in the NtreeNodeFactory<T> class. The NtreeNodeFactory<T> class is an object factory that
facilitates the construction of all NtreeNode<U> objects. When the factory object is created, the
NTRee<T> object is passed in to the constructor, as shown here:

 NTreeNodeFactory<string> nodeFactory = new NTreeNodeFactory<string>(topLevel);

Therefore, when the factory object is created, it knows the maximum number of children that a
parent node may have. The factory object provides a public method, CreateNode, that allows for the

creation of an NtreeNode<U> object. If an IComparable<T> type object is passed into this method, the
IComparable<T> object will be contained within this new node in the nodeValue field. If a null is
passed in, the new NtreeNode<U> object will contain the object U with it initialized using the default
keyword. The String object can be passed in to this parameter with no modifications. Node creation
is performed in the following manner:

 NTreeNode<string> one = nodeFactory.CreateNode("One");
 NTreeNode<string> two = nodeFactory.CreateNode("Two");
 NTreeNode<string> three = nodeFactory.CreateNode("Three");
 NTreeNode<string> four = nodeFactory.CreateNode("Four");
 NTreeNode<string> five = nodeFactory.CreateNode("Five");
 NTreeNode<string> six = nodeFactory.CreateNode("Six");

 NTreeNode<string> seven = nodeFactory.CreateNode("Seven");
 NTreeNode<string> eight = nodeFactory.CreateNode("Eight");
 NTreeNode<string> nine = nodeFactory.CreateNode("Nine");

The NTReeNode<U> class is nested within the factory class; it is not supposed to be used directly to
create a node object. Instead, the factory will create a node object and return it to the caller.
NtreeNode<U> has one constructor that accepts two parameters: value, which is an object of type U
used to store an object implementing the IComparable<T> interface; and an integer value,
maxChildren, which is used to define the total number of child nodes allowed. It is the nodeValue field
that you use when you are searching the tree for a particular item.

Adding a root node to the TopLevel NTree<T> object is performed using the AddRoot method of the
Ntree<T> object:

 topLevel.AddRoot(one);

Each NtreeNode<U> object contains a field called childNodes. This field is an array containing all child
nodes attached to this parent node object. The maximum number of childrenobtained from the
factory classprovides this number, which is used to create the fixed-size array. This array is initialized
in the constructor of the NtreeNode<U> object.

The following code shows how to add nodes to this tree:

 // Add nodes to root.
 topLevel.GetRoot().AddNode(two);
 topLevel.GetRoot().AddNode(three);
 topLevel.GetRoot().AddNode(four);

 // Add node to the first node Two of the root.
 topLevel.GetRoot().Children[0].AddNode(five);

 // Add node to the previous node added, node five.

 topLevel.GetRoot().BreadthFirstSearch("Five").AddNode(six);

The searching method BreadthFirstSearch is constructed similarly to the way the same method was
constructed for the binary tree in Recipe 11.6. The DepthFirstSearch method is constructed a little
differently from the same method in the binary tree. This method uses recursion to search the tree,
but it uses a for loop to iterate over the array of child nodes, searching each one in turn. In addition,
the current node is checked first to determine whether it matches the targetObj parameter to this
method. This is a better performing design, as opposed to moving this test to the end of the method.

If the RemoveNode method is successful, the array containing all child nodes of the current node is
compacted to prevent fragmentation, which allows nodes to be added later in a much simpler
manner. The AddNode method only has to add the child node to the end of this array as opposed to
searching the array for an open element. The following code shows how to remove a node:

 // Remove all nodes below node 'Two'.
 // Nodes 'Five' and 'Six' are removed.
 topLevel.GetRoot().BreadthFirstSearch("Two").RemoveNode(0);

 // Remove node 'Three' from the root node.
 topLevel.GetRoot().RemoveNode(1);

See Also

See the "Queue<T> Class" and "IComparable Interface" topics in the MSDN documentation.

Recipe 11.8. Creating a Set Object

Problem

You need an object that contains a group of unordered objects. This object must be able to be
compared to other objects containing sets of data. In addition, the two must be able to have the
following actions performed on them:

Union of the items contained by the two objects containing sets of data

Intersection of the items contained by the two objects containing sets of data

Difference of the items contained by the two objects containing sets of data

Solution

Create a Set<T> object, the code for which is shown in Example 11-17 .

Example 11-17. Set class

using System;
using System.Collections;
using System.Collections.Generic;
using System.Text;

public class Set<T> : IEnumerable<T>
{
 private List<T> internalSet = new List<T>();
 public int Count
 {
 get {return (internalSet.Count);}
 }
 public T this[int index]
 {
 get
 {
 return (internalSet[index]);
 }
 set
 {
 if (internalSet.Contains(value))
 {
 throw (new ArgumentException(

 "Duplicate object cannot be added to this set.", "index"));
 }
 else
 {
 internalSet[index] = value;
 }
 }
 }
 public void Add(T obj)
 {
 if (internalSet.Contains(obj))
 {
 throw (new ArgumentException(
 "Duplicate object cannot be added to this set.", "obj"));
 }
 else
 {
 internalSet.Add(obj);
 }
 }
 public void Remove(T obj)
 {
 if (!internalSet.Contains(obj))
 {
 throw (new ArgumentException("Object cannot be removed from " +
 "this set because it does not exist in this set.", "obj"));
 }
 else
 {
 internalSet.Remove(obj);
 }
 }
 public void RemoveAt(int index)
 {
 internalSet.RemoveAt(index);
 }
 public bool Contains(T obj)
 {
 return (internalSet.Contains(obj));
 }
 public static Set<T> operator |(Set<T> lhs, Set<T> rhs)
 {
 return (lhs.UnionOf(rhs));
 }
 public Set<T> UnionOf(Set<T> set)
 {
 Set<T> unionSet = new Set<T>();
 Set<T> sourceSet = null;
 Set<T> mergeSet = null;

 if (set.Count > this.Count) // An optimization
 {

 sourceSet = set;
 mergeSet = this;
 }
 else
 {
 sourceSet = this;
 mergeSet = set;
 }
 // Initialize unionSet with the entire SourceSet.
 for (int index = 0; index < sourceSet.Count; index++)
 {
 unionSet.Add(sourceSet.internalSet[index]);
 }

 // mergeSet OR sourceSet
 for (int index = 0; index < mergeSet.Count; index++)
 {
 if (!sourceSet.Contains(mergeSet.internalSet[index]))
 {
 unionSet.Add(mergeSet.internalSet[index]);
 }
 }

 return (unionSet);
 }
 public static Set<T> operator &(Set<T> lhs, Set<T> rhs)
 {
 return (lhs.IntersectionOf(rhs));
 }
 public Set<T> IntersectionOf(Set<T> set)
 {
 Set<T> intersectionSet = new Set<T>();
 Set<T> sourceSet = null;
 Set<T> mergeSet = null;

 if (set.Count > this.Count) // An optimization
 {
 sourceSet = set;
 mergeSet = this;
 }
 else
 {
 sourceSet = this;
 mergeSet = set;
 }

 // mergeSet AND sourceSet
 for (int index = 0; index < mergeSet.Count; index++)
 {
 if (sourceSet.Contains(mergeSet.internalSet[index]))
 {
 intersectionSet.Add(mergeSet.internalSet[index]);

 }
 }

 return (intersectionSet);
 }
 public static Set<T> operator ^(Set<T> lhs, Set<T> rhs)
 {
 return (lhs.DifferenceOf(rhs));
 }
 public Set<T> DifferenceOf(Set<T> set)
 {
 Set<T> differenceSet = new Set<T>();

 // mergeSet XOR sourceSet

 for (int index = 0; index < set.Count; index++)
 {
 if (!this.Contains(set.internalSet[index]))
 {
 differenceSet.Add(set.internalSet[index]);
 }
 }
 for (int index = 0; index < this.Count; index++)
 {
 if (!set.Contains(internalSet[index]))
 {
 differenceSet.Add(internalSet[index]);
 }
 }
 return (differenceSet);
 }

 public static bool operator ==(Set<T> lhs, Set<T> rhs)
 {
 return (lhs.Equals(rhs));
 }
 public static bool operator !=(Set<T> lhs, Set<T> rhs)
 {
 return (!lhs.Equals(rhs));
 }
 public override bool Equals(object obj)
 {
 bool isEquals = false;

 if (obj != null)
 {
 if (obj is Set<T>)
 {
 if (this.Count == ((Set<T>)obj).Count)
 {
 if (this.IsSubsetOf((Set<T>)obj) &&
 ((Set<T>)obj).IsSubsetOf(this))

 {
 isEquals = true;
 }
 }
 }
 }
 return (isEquals);
 }
 public override int GetHashCode()
 {
 return (internalSet.GetHashCode());
 }
 public bool IsSubsetOf(Set<T> set)
 {
 for (int index = 0; index < this.Count; index++)
 {
 if (!set.Contains(internalSet[index]))
 {
 return (false);
 }
 }
 return (true);
 }
 public bool IsSupersetOf(Set<T> set)
 {
 for (int index = 0; index < set.Count; index++)
 {
 if (!this.Contains(set.internalSet[index]))
 {
 return (false);
 }
 }
 return (true);
 }
 public string DisplaySet()
 {
 if (this.Count == 0)
 {
 return ("{}");
 }
 else
 {
 StringBuilder displayStr = new StringBuilder("{ ");

 for (int index = 0; index < (this.Count - 1); index++)
 {
 displayStr.Append(internalSet[index]);
 displayStr.Append(", ");
 }
 displayStr.Append(internalSet[internalSet.Count - 1]);
 displayStr.Append(" }");

 return (displayStr.ToString());
 }
 }
 public IEnumerator GetEnumerator()
 {
 for (int cntr = 0; cntr < internalSet.Count; cntr++)
 {
 yield return (internalSet[cntr]);
 }
 }
 IEnumerator<T> IEnumerable<T>.GetEnumerator()
 {
 for (int cntr = 0; cntr < internalSet.Count; cntr++)
 {
 yield return (internalSet[cntr]);
 }
 }
}

The methods defined in Table 11-9 are of particular interest to using a Set<T> object.

Table 11-9. Members of the Set<T> class

Member Description

Count property

Read-only property to return the number of objects within this Set<T> object.
Its syntax is:

 int Count {get;}

Indexer

Allows the Set<T> object to operate in a manner similar to an array. Its syntax
is:

 this[int index] {get; set;}

Add method

Add a new object to the current Set<T> object. Its syntax is:

 Add(T obj)

Member Description

where obj is the object of type T to add to this Set.

Remove method

Removes an existing object from the current Set<T> object. Its syntax is:

 Remove(T obj)

where obj is the object of type T to remove from this Set.

RemoveAt method

Removes an existing object from the current Set<T> object using an index. Its
syntax is:

 Add(int index)

where index is the index where the object to be removed is stored.

Contains method

Returns a Boolean indicating whether the object passed in exists within this
Set<T> object. If a true is returned, the object exists; otherwise, it does not.
Its syntax is:

 Contains(T obj)

where obj is the object of type T to be searched for.

UnionOf method

Performs a union operation on the current Set<T> object and a second Set<T>
object. A new Set<T> object is returned containing the union of these two
Set<T> objects. Its syntax is:

 UnionOf(Set<T> set)

where set is the second Set<T> object.

Overloaded |
operator

This operator delegates its work to the UnionOf method.

Performs an intersection operation on the current Set<T> object and a second

where obj is the object of type T to add to this Set.

Remove method

Removes an existing object from the current Set<T> object. Its syntax is:

 Remove(T obj)

where obj is the object of type T to remove from this Set.

RemoveAt method

Removes an existing object from the current Set<T> object using an index. Its
syntax is:

 Add(int index)

where index is the index where the object to be removed is stored.

Contains method

Returns a Boolean indicating whether the object passed in exists within this
Set<T> object. If a true is returned, the object exists; otherwise, it does not.
Its syntax is:

 Contains(T obj)

where obj is the object of type T to be searched for.

UnionOf method

Performs a union operation on the current Set<T> object and a second Set<T>
object. A new Set<T> object is returned containing the union of these two
Set<T> objects. Its syntax is:

 UnionOf(Set<T> set)

where set is the second Set<T> object.

Overloaded |
operator

This operator delegates its work to the UnionOf method.

Performs an intersection operation on the current Set<T> object and a second

Member Description

IntersectionOf

method

Performs an intersection operation on the current Set<T> object and a second
Set<T> object. A new Set<T> object is returned containing the intersection of
these two Set<T> objects. Its syntax is:

 IntersectionOf(Set<T> set)

where set is the second Set<T> object.

Overloaded &
operator

This operator delegates its work to the IntersectionOf method.

DifferenceOf

method

Performs a difference operation on the current Set<T> object and a second
Set<T> object. A new Set<T> object is returned containing the difference of
these two Set<T> objects. Its syntax is:

 DifferenceOf(Set<T> set)

where set is the second Set<T> object.

Overloaded ̂
operator

This operator delegates its work to the DifferenceOf method.

Overloaded Equals
method

Returns a Boolean indicating whether a second Set<T> object is equal to the
current Set<T> object. Its syntax is:

 Equals(object obj)

where obj is the second Set<T> object.

Overloaded ==
operator

This operator delegates its work to the Equals method.

Overloaded !=
operator

This operator delegates its work to the Equals method. However, this operator
takes the inverse of the Boolean returned from the Equals method and returns
this new value.

Overridden
GetHashCode

method

Returns the hash code of the internal List<T> used to hold the objects
contained in this Set<T> object. Its syntax is:

 GetHashCode()

IntersectionOf

method

Performs an intersection operation on the current Set<T> object and a second
Set<T> object. A new Set<T> object is returned containing the intersection of
these two Set<T> objects. Its syntax is:

 IntersectionOf(Set<T> set)

where set is the second Set<T> object.

Overloaded &
operator

This operator delegates its work to the IntersectionOf method.

DifferenceOf

method

Performs a difference operation on the current Set<T> object and a second
Set<T> object. A new Set<T> object is returned containing the difference of
these two Set<T> objects. Its syntax is:

 DifferenceOf(Set<T> set)

where set is the second Set<T> object.

Overloaded ̂
operator

This operator delegates its work to the DifferenceOf method.

Overloaded Equals
method

Returns a Boolean indicating whether a second Set<T> object is equal to the
current Set<T> object. Its syntax is:

 Equals(object obj)

where obj is the second Set<T> object.

Overloaded ==
operator

This operator delegates its work to the Equals method.

Overloaded !=
operator

This operator delegates its work to the Equals method. However, this operator
takes the inverse of the Boolean returned from the Equals method and returns
this new value.

Overridden
GetHashCode

method

Returns the hash code of the internal List<T> used to hold the objects
contained in this Set<T> object. Its syntax is:

 GetHashCode()

Member Description

IsSubsetOf method

Returns a Boolean indicating whether the current Set<T> object is a subset of
a second Set<T> object. Its syntax is:

 IsSubsetOf(Set<T> set)

where set is the second Set<T> object.

IsSupersetOf

method

Returns a Boolean indicating whether the current Set<T> object is a superset
of a second Set<T> object. Its syntax is:

 IsSupersetOf(Set<T> set)

where set is the second Set<T> object.

DisplaySet method

Displays all objects within the current Set<T> object in the following format:

 {Obj1, Obj2, Obj3, …}

Its syntax is:

 DisplaySet()

Example 11-18 . Using the Set <T> class

Example 11-18. Using the Set <T> class

public static void TestSet()
{
 Set<int> set1 = new Set<int>();
 Set<int> set2 = new Set<int>();
 Set<int> set3 = new Set<int>();

IsSubsetOf method

Returns a Boolean indicating whether the current Set<T> object is a subset of
a second Set<T> object. Its syntax is:

 IsSubsetOf(Set<T> set)

where set is the second Set<T> object.

IsSupersetOf

method

Returns a Boolean indicating whether the current Set<T> object is a superset
of a second Set<T> object. Its syntax is:

 IsSupersetOf(Set<T> set)

where set is the second Set<T> object.

DisplaySet method

Displays all objects within the current Set<T> object in the following format:

 {Obj1, Obj2, Obj3, …}

Its syntax is:

 DisplaySet()

Example 11-18 . Using the Set <T> class

Example 11-18. Using the Set <T> class

public static void TestSet()
{
 Set<int> set1 = new Set<int>();
 Set<int> set2 = new Set<int>();
 Set<int> set3 = new Set<int>();

 set1.Add(1);
 set1.Add(2);
 set1.Add(3);
 set1.Add(4);
 set1.Add(5);
 set1.Add(6);

 set2.Add(-10);
 set2.Add(2);
 set2.Add(40);

 set3.Add(3);
 set3.Add(6);

 foreach (int o in set2)
 {
 Console.WriteLine(o.ToString());
 }
 Console.WriteLine("set1.Contains(2): " + set1.Contains(2));
 Console.WriteLine("set1.Contains(0): " + set1.Contains(0));

 Console.WriteLine("\r\nset1.Count: " + set1.Count);
 Console.WriteLine();
 Console.WriteLine("set1.DisplaySet: " + set1.DisplaySet());
 Console.WriteLine("set2.DisplaySet: " + set2.DisplaySet());
 Console.WriteLine("set3.DisplaySet: " + set3.DisplaySet());
 Console.WriteLine();

 Console.WriteLine("set1.UnionOf(set2): " +
 set1.UnionOf(set2).DisplaySet());
 Console.WriteLine("set1.IntersectionOf(set2): " +
 set1.IntersectionOf(set2).DisplaySet());
 Console.WriteLine("set1.DifferenceOf(set2): " +
 set1. DifferenceOf(set2).DisplaySet());
 Console.WriteLine("set1 | set2: " + (set1 | set2).DisplaySet());
 Console.WriteLine("set1 & set2: " + (set1 & set2).DisplaySet());
 Console.WriteLine("set1 ^ set2: " + (set1 ^ set2).DisplaySet());
 Console.WriteLine("set1.Equals(set2): " + set1.Equals(set2));
 Console.WriteLine("set1 == set2: " + (set1 == set2));
 Console.WriteLine("set1 != set2: " + (set1 != set2));
 Console.WriteLine("set1.IsSubsetOf(set2): " + set1.IsSubsetOf(set2));
 Console.WriteLine("set1.IsSupersetOf(set2): " + set1.IsSupersetOf(set2));
 Console.WriteLine();
 Console.WriteLine("set2.UnionOf(set1): " +
 set2.UnionOf(set1).DisplaySet());
 Console.WriteLine("set2.IntersectionOf(set1): "+
 set2.IntersectionOf(set1).DisplaySet());
 Console.WriteLine("set2.DifferenceOf(set1): " +
 set2.DifferenceOf(set1).DisplaySet());
 Console.WriteLine("set2.Equals(set1): " + set2.Equals(set1));
 Console.WriteLine("set2 == set1): " + (set2 == set1));

 Console.WriteLine("set2 != set1): " + (set2 != set1));
 Console.WriteLine("set2.IsSubsetOf(set1): " + set2.IsSubsetOf(set1));
 Console.WriteLine("set2.IsSupersetOf(set1): " + set2.IsSupersetOf(set1));
 Console.WriteLine();
 Console.WriteLine("set3.UnionOf(set1): " +
 set3.UnionOf(set1).DisplaySet());
 Console.WriteLine("set3.IntersectionOf(set1): " +
 set3.IntersectionOf(set1).DisplaySet());
 Console.WriteLine("set3.DifferenceOf(set1): " +
 set3.DifferenceOf(set1).DisplaySet());
 Console.WriteLine("set3.Equals(set1): " + set3.Equals(set1));
 Console.WriteLine("set3 == set1: " + (set3 == set1));
 Console.WriteLine("set3 != set1: " + (set3 != set1));
 Console.WriteLine("set3.IsSubsetOf(set1): " + set3.IsSubsetOf(set1));
 Console.WriteLine("set3.IsSupersetOf(set1): " + set3.IsSupersetOf(set1));
 Console.WriteLine("set1.IsSubsetOf(set3): " + set1.IsSubsetOf(set3));
 Console.WriteLine("set1.IsSupersetOf(set3): " + set1.IsSupersetOf(set3));
 Console.WriteLine();
 Console.WriteLine("set3.UnionOf(set2): " +
 set3.UnionOf(set2).DisplaySet());
 Console.WriteLine("set3.IntersectionOf(set2): " +
 set3.IntersectionOf(set2).DisplaySet());
 Console.WriteLine("set3.DifferenceOf(set2): " +
 set3.DifferenceOf(set2).DisplaySet());
 Console.WriteLine("set3 | set2: " + (set3 | set2).DisplaySet());
 Console.WriteLine("set3 & set2: " + (set3 & set2).DisplaySet());
 Console.WriteLine("set3 ^ set2: " + (set3 ^ set2).DisplaySet());
 Console.WriteLine("set3.Equals(set2): " + set3.Equals(set2));
 Console.WriteLine("set3 == set2: " + (set3 == set2));
 Console.WriteLine("set3 != set2: " + (set3 != set2));
 Console.WriteLine("set3.IsSubsetOf(set2): " + set3.IsSubsetOf(set2));
 Console.WriteLine("set3.IsSupersetOf(set2): " + set3.IsSupersetOf(set2));
 Console.WriteLine();
 Console.WriteLine("set3.Equals(set3): " + set3.Equals(set3));
 Console.WriteLine("set3 == set3: " + (set3 == set3));
 Console.WriteLine("set3 != set3: " + (set3 != set3));
 Console.WriteLine("set3.IsSubsetOf(set3): " + set3.IsSubsetOf(set3));
 Console.WriteLine("set3.IsSupersetOf(set3): " + set3.IsSupersetOf(set3));
 Console.WriteLine("set1[1]: " + set1[1].ToString());
 set1[1] = 100;

 set1.RemoveAt(1);
 set1.RemoveAt(2);
 Console.WriteLine("set1: " + set1.DisplaySet());
}

The output for this method is shown here:

 -10
 2
 40
 set1.Contains(2): True
 set1.Contains(0): False

 set1.Count: 6

 set1.DisplaySet: { 1, 2, 3, 4, 5, 6 }
 set2.DisplaySet: { -10, 2, 40 }
 set3.DisplaySet: { 3, 6 }
 set1.UnionOf(set2): { 1, 2, 3, 4, 5, 6, -10, 40 }
 set1.IntersectionOf(set2): { 2 }

 set1.DifferenceOf(set2): { -10, 40, 1, 3, 4, 5, 6 }
 set1 | set2: { 1, 2, 3, 4, 5, 6, -10, 40 }
 set1 & set2: { 2 }
 set1 ^ set2: { -10, 40, 1, 3, 4, 5, 6 }
 set1.Equals(set2): False
 set1 == set2: False
 set1 != set2: True
 set1.IsSubsetOf(set2): False
 set1.IsSupersetOf(set2): False

 set2.UnionOf(set1): { 1, 2, 3, 4, 5, 6, -10, 40 }
 set2.IntersectionOf(set1): { 2 }
 set2.DifferenceOf(set1): { 1, 3, 4, 5, 6, -10, 40 }
 set2.Equals(set1): False
 set2 == set1): False
 set2 != set1): True
 set2.IsSubsetOf(set1): False
 set2.IsSupersetOf(set1): False

 set3.UnionOf(set1): { 1, 2, 3, 4, 5, 6 }
 set3.IntersectionOf(set1): { 3, 6 }
 set3.DifferenceOf(set1): { 1, 2, 4, 5 }
 set3.Equals(set1): False
 set3 == set1: False
 set3 != set1: True
 set3.IsSubsetOf(set1): True
 set3.IsSupersetOf(set1): False
 set1.IsSubsetOf(set3): False
 set1.IsSupersetOf(set3): True

 set3.UnionOf(set2): { -10, 2, 40, 3, 6 }
 set3.IntersectionOf(set2): {}
 set3.DifferenceOf(set2): { -10, 2, 40, 3, 6 }
 set3 | set2: { -10, 2, 40, 3, 6 }
 set3 & set2: {}
 set3 ^ set2: { -10, 2, 40, 3, 6 }
 set3.Equals(set2): False
 set3 == set2: False

 set3 != set2: True
 set3.IsSubsetOf(set2): False
 set3.IsSupersetOf(set2): False

 set3.Equals(set3): True
 set3 == set3: True
 set3 != set3: False
 set3.IsSubsetOf(set3): True
 set3.IsSupersetOf(set3): True
 set1[1]: 2
 set1: { 1, 3, 5, 6 }

Discussion

Sets are containers that hold a group of homogeneous object types. Various mathematical operations
can be performed on sets, including the following:

Union

(A B)

Combines all elements of set A and set B into a resulting Set<T> object. If an object exists in
both sets, the resulting unioned Set<T> object contains only one of those elements, not both.

Intersection

(A B)

Combines all elements of set A and set B that are common to both A and B into a resulting
Set<T> object. If an object exists in one set and not the other, the element is not added to the
intersectioned Set<T> object.

Difference

(A-B)

Combines all elements of set A , except for the elements that are also members of set B , into a
resulting Set<T> object. If an object exists in both sets A and B , it is not added to the final
differenced Set<T> object. The difference is equivalent to taking the union of both sets and the
intersection of both sets and then removing all elements in the unioned set that exist in the
intersectioned set.

Subset

(A B)

Returns TRue if all elements of set A are contained in a second set B ; otherwise, it returns false
. Set B may contain elements not found in A .

Superset

(A B)

Returns true if all elements of set A are contained in a second set B ; otherwise, it returns false
. Set A may contain elements not found in B .

Equivalence

(A == B)

Returns true if both Set<T> objects contain the same number of elements and the same value

for each element; otherwise, it returns false . This is equivalent to stating that (A B) and (B

 A). Nonequivalence is defined by the != operator. Note that the .NET Equals method can be
used to test for equivalence.

The Set<T> class wraps a List<T> (internalSet), which contains all elements of that set. Many of the
methods exposed by the Set<T> class are delegated to the internalSet List<T> . Of these wrapped
methods, the Add method requires some discussion. This method prevents a duplicate object from
being added to the Set<T> object. This is a property of setsno set may contain duplicate elements at
any time.

Calling the Contains method of the internalSet List<T> , to determine whether the new object is
already contained in this Set<T> object, performs this check. This check is also performed in the set
accessor of the indexer.

The following code creates and populates two Set<T> objects:

 Set<int> set1 = new Set<int>();
 Set<int> set2 = new Set<int>();

 set1.Add(1);
 set1.Add(2);
 set1.Add(3);
 set1.Add(4);
 set1.Add(5);
 set1.Add(6);

 set2.Add(-10);
 set2.Add(2);
 set2.Add(40);

The union operation can be performed in one of two ways. The first is to use the UnionOf method and
pass in a Set<T> with which to union this Set<T> . The Set<T> class also overrides the | operator to

provide this same functionality. Notice that the OR operator is shorthand for the union operation.
Essentially, the resulting set contains elements that exist in either of the two Set<T> objects or both
Set<T> objects. The following code shows how both of these operations are performed:

 Set<int> resultingUnionSet = set1.UnionOf(set2);
 resultingUnionSet = set1 | set2;

The intersection operation is set up similarly to the union operation. There are two ways to perform
an intersection between two Set<T> objects: the first is to use the IntersectionOf method; the
second is to use the overloaded & operator. Once again, notice that the logic of the AND operator is
the same as the intersection operation. Essentially, an element must be in both Set<T> A and Set<T>
B in order for it to be placed in the resulting Set<T> object. The following code demonstrates the
intersection operation:

 Set<int> resultingIntersectSet = set1.IntersectionOf(set2);
 resultingIntersectSet = set1 & set2;

The difference operation is performed either through the overloaded ^ operator or the DifferenceOf
method. Notice that the XOR operation is similar to taking the difference of two sets. Essentially, only
elements in either set, but not both, are placed in the resulting set. The following code demonstrates
the difference operation:

 Set<int> resultingDiffSet = set1.DifferenceOf(set2);
 resultingDiffSet = set1 ^ set2;

The subset operation is performed only through a single method called IsSubsetOf . The superset
operation is also performed using a single method called IsSupersetOf . The following code
demonstrates these two operations:

 bool isSubset = set1.IsSubsetOf(set2);
 bool isSuperset = set1.IsSupersetOf(set2);

The equivalence operation is performed using either the overloaded == operator or the Equals
method. Since the == operator was overloaded, the != operator must also be overloaded. The !=
operator returns the inverse of the == operator or Equals method. The following code demonstrates
these three operations:

 bool isEqual = set1.Equals(set2);
 isEqual = set1 == set2;

 bool isNotEqual = set1 != set2;

See Also

See the "List<T> Class," "Overloadable Operators," and "Operator Overloading Tutorial" topics in the
MSDN documentation.

Chapter 12. Filesystem I/O

Introduction

Recipe 12.1. Creating, Copying, Moving, or Deleting a File

Recipe 12.2. Manipulating File Attributes

Recipe 12.3. Renaming a File

Recipe 12.4. Determining Whether a File Exists

Recipe 12.5. Choosing a Method of Opening a File or Stream for Reading and/or Writing

Recipe 12.6. Accessing Part of a File Randomly

Recipe 12.7. Outputting a Platform-Independent EOL Character

Recipe 12.8. Creating, Writing to, and Reading from a File

Recipe 12.9. Determining Whether a Directory Exists

Recipe 12.10. Creating, Copying, Moving, or Deleting a Directory

Recipe 12.11. Manipulating Directory Attributes

Recipe 12.12. Renaming a Directory

Recipe 12.13. Searching for Directories or Files Using Wildcards

Recipe 12.14. Obtaining the Directory Tree

Recipe 12.15. Parsing a Path

Recipe 12.16. Parsing Paths in Environment Variables

Recipe 12.17. Verifying a Path

Recipe 12.18. Using a Temporary File in Your Application

Recipe 12.19. Opening a File Stream with Just a File Handle

Recipe 12.20. Writing to Multiple Output Files at One Time

Recipe 12.21. Launching and Interacting with Console Utilities

Recipe 12.22. Locking Subsections of a File

Recipe 12.23. Watching the Filesystem for Specific Changes to One or More Files or Directories

Recipe 12.24. Waiting for an Action to Occur in the Filesystem

Recipe 12.25. Comparing Version Information of Two Executable Modules

Recipe 12.26. Querying Information for All Drives on a System

Recipe 12.27. Encrypting/Decrypting an Existing File

Recipe 12.28. Compressing and Decompressing Your Files

Introduction

This chapter deals with the filesystem in four distinct ways. The first set of recipes looks at typical file
interactions like:

Creation

Reading and writing

Deletion

Attributes

Encoding methods for character data

Selecting the correct way (based on usage) to access files via streams

The second set looks at directory-or folder-based programming tasks such as file creation as well as
renaming, deleting, and determining attributes. The third set deals with the parsing of paths and the
use of temporary files and paths. The fourth set deals with more advanced topics in filesystem I/O,
such as:

Asynchronous reads and writes

Monitoring for certain filesystem actions

Version information in files

Using P/Invoke to perform file I/O

The file-interactions section comes first since it sets the stage for many of the recipes in the
temporary file and advanced sections. This is fundamental knowledge that will help you understand
the other file I/O recipes and how to modify them for your purposes. The various file and directory
I/O techniques are used throughout the more advanced examples to help show a couple of different
ways to approach the problems you will encounter working with filesystem I/O.

Unless otherwise specified, you need the following using statements in any program that uses
snippets or methods from this chapter:

 using System;
 using System.IO;

Recipe 12.1. Creating, Copying, Moving, or Deleting a File

Problem

You need to create a new file, copy an existing file, move an existing file, or delete a file.

Solution

The System.IO namespace contains two classes to perform these actions: the File and FileInfo
classes. The File class contains only static methods, while the FileInfo class contains only instance
methods.

File's static Create method returns an instance of the FileStream class, which you can use to read
from or write to the newly created file. For example, the following code uses the static Create method
of the File class to create a new file:

 FileStream fileStream = null;
 if (!File.Exists(@"c:\delete\test\test.txt"))
 {
 using(fileStream = File.Create(@"c:\delete\test\test.txt"))
 {
 // Use the fileStream var here…
 }
 }

The Create instance method of the FileInfo class takes no parameters. You should supply the path
with a filename as the only parameter to the FileInfo class constructor. The method returns an
instance of the FileStream class that you can use to read from or write to the newly created file. For
example, the following code uses the Create instance method of the FileInfo class to create a new
file:

 FileInfo fileInfo = null;
 FileStream fileStream = null;
 if (!File.Exists (@"c:\delete\test\test.txt"))
 {
 fileInfo = new FileInfo(@"c:\delete\test\test.txt");
 using(fileStream = fileInfo.Create())
 {
 // Use the fileStream var here…

 }
 }

You can copy a file using the overloaded static File.Copy method that returns void. The third
parameter of one of the overrides for this function allows you to pass true or false depending upon
whether you want to overwrite an existing destination file, as shown in the following code, which uses
the static Copy method of the File class to copy a file:

 if (File.Exists(@"c:\delete\test\test.txt"))
 {
 File.Copy(@"c:\delete\test\test.txt ",
 Path.Combine(Directory.GetCurrentDirectory(), @"\test.txt"),
 true);
 }

The overloaded CopyTo instance method returns a FileInfo object that represents the newly copied
file. This method can also take a Boolean in one of the overrides to signify your intent to overwrite an
existing file. For example, the following code uses the CopyTo instance method of the FileInfo class
to copy a file:

 FileInfo fileInfo = new FileInfo(@"c:\delete\test\test.txt");
 fileInfo.CopyTo(@"c:\test.txt", true);

You can move a file using the static Move method of the File class, which returns void. For example,
the following code uses the static Move method to move a file after checking for its existence:

 if (!File.Exists(Path.Combine(Directory.GetCurrentDirectory(),
 @"\test.txt")))
 {
 File.Move(@"c:\delete\test\test.txt",
 Path.Combine(Directory.GetCurrentDirectory(), @"\test.txt"));
 }

The MoveTo instance method is the way to move a file using the FileInfo class. For example, the
following code moves a file using the MoveTo instance method of the FileInfo class after checking for
the file's existence:

 FileInfo fileInfo = new FileInfo(@"c:\delete\test\test.txt");
 if (!File.Exists(@"c:\test.txt"))
 {

 fileInfo.MoveTo(@"c:\test.txt");
 }

You can delete a file using the static Delete method of the File class that returns void. For example,
the following code uses the static Delete method to delete a file:

 if (File.Exists(Path.Combine(Directory.GetCurrentDirectory(),
 @"\test.txt")))
 {
 File.Delete(Path.Combine(Directory.GetCurrentDirectory(),
 @"\test.txt"));
 }

The Delete instance method on the FileInfo class takes no parameters and returns void. For
example, the following code uses the Delete instance method of the FileInfo class to delete a file:

 if(File.Exists(@"c:\delete\test\test.txt"))
 {
 FileInfo fileInfo = new FileInfo(@"c:\delete\test\test.txt");
 fileInfo.Delete();
 }

Discussion

Whether you choose to call the static or instance file-operation methods depends on what you are
trying to accomplish. If you need a quick way of creating, moving, copying, or deleting a file, consider
using the static methods. If you will be performing multiple operations on a file, such as creating,
moving, and changing its attributes, you should consider the instance methods of the FileInfo class.
Another consideration is that static methods on a class do not require an object to be created on the
managed heap and subsequently destroyed by the garbage collector. Instance methods require an
object to be created before the methods can be called. If you are trying to minimize the number of
objects the garbage collector has to manage, consider using static methods.

A few items to note when using the file functions:

If the directory doesn't exist, the method won't create it and you'll get an exception. See how to
check whether a directory exists in Recipe 12.4.

If no path is provided, the file will land in the current working directory. If the user does not
have permission to write to the current working directory (as with a normal user writing to the
Program Files directory), this will result in an UnauthorizedAccessException.

If a relative path is provided (for example, C:\dir1\dir2\..\..\file.txt), it will be evaluated

properly.

If an absolute path is provided, the method will succeed as expected.

When creating a new file, you should first determine whether that file already exists. The default
creation behavior of the file classes is either to overwrite the existing file silently or, if the file is read-
only, to throw an exception. The File and FileInfo classes both contain a method, Exists, to test
for a file's existence. Once it is determined that the file does not exist, we can create it using either
the static or instance Create methods. Note that this does leave a small window open between the
time you checked and the time that the creation starts, so it is not a replacement for proper
exception and error handling of the Create call.

See Also

See the "File Class" and "FileInfo Class" topics in the MSDN documentation.

Recipe 12.2. Manipulating File Attributes

Problem

You need to display or manipulate a file's attributes or timestamps.

Solution

To display a file's timestamps, you can use either the static methods of the File class or the instance
properties of the FileInfo class. The static methods are GetCreationTime, GetLastAccessTime, and
GetLastWriteTime. Each has a single parameter, the path and name of the file for which timestamp
information is to be returned, and returns a DateTime value containing the relevant timestamp. For
example:

 public static void DisplayFileAttr(string path)
 {
 Console.WriteLine(File.GetCreationTime(path));
 Console.WriteLine(File.GetLastAccessTime(path));
 Console.WriteLine(File.GetLastWriteTime(path));
 }

The instance properties of the FileInfo class are CreationTime, LastAccessTime, and LastWriteTime.
Each returns a DateTime value containing the respective timestamp of the file represented by the
FileInfo object. The following code illustrates their use:

 public static void DisplayFileAttr(string path)
 {
 FileInfo fileInfo = new FileInfo(path);

 Console.WriteLine(fileInfo.CreationTime);
 Console.WriteLine(fileInfo.LastAccessTime);
 Console.WriteLine(fileInfo.LastWriteTime);
 }

Using an instance of the FileInfo class is preferable to using the equivalent methods on the static
File class (i.e., File.GetCreationTime, File.GetLastAccessTime, and File.GetLastWriteTime) as far
as performance is concerned. This is because of the extra time it takes for the underlying

implementation of the static methods to get information about the file handle each time a static
method is called, as opposed to one time for the FileInfo instance object, which already holds this
file handle information.

To modify a file's timestamps, you can use either the static methods of the File class or the instance
properties of the FileInfo class. The static methods are SetCreationTime, SetLastAccessTime, and
SetLastWriteTime. All of them take the path and name of the file for which the timestamp is to be
modified as the first parameter and a DateTime value containing the new timestamp as the second,
and each returns void. For example:

 public static void ModifyFileAttr(string path)
 {
 File.SetCreationTime(path, DateTime.Parse(@"May 10, 2003"));
 File.SetLastAccessTime(path, DateTime.Parse(@"May 10, 2003"));
 File.SetLastWriteTime(path, DateTime.Parse(@"May 10, 2003"));
 }

The instance properties are the same as the properties used to display timestamp information:
CreationTime, LastAccessTime, or LastWriteTime. To set the timestamp, assign a value of type
DateTime to the relevant timestamp property. For example:

 public static void ModifyFileAttr(string path)
 {
 FileInfo fileInfo = new FileInfo(path);
 DateTime dt = new DateTime(2001,2,8);
 fileInfo.CreationTime = dt;
 fileInfo.LastAccessTime = dt;
 fileInfo.LastWriteTime = dt;
 }

To display or modify a file's attributes, use the instance Attributes property. The property's value is
a bit mask consisting of one or more members of the FileAttributes enumeration. For example, the
following code:

 public static void ViewModifyFileAttr(string path)
 {
 if (File.Exists(path))
 {
 FileInfo fileInfo = new FileInfo(path);

 // Display this file's attributes.
 Console.WriteLine(fileInfo.Attributes);

 // Display whether this file is hidden.
 Console.WriteLine("Is file hidden? = {0}",

 ((fileInfo.Attributes & FileAttributes.Hidden) == FileAttributes.Hidden));

 // Modify this file's attributes.
 fileInfo.Attributes |= FileAttributes.Hidden;
 }
 }

Discussion

One of the easier methods of creating a DateTime object is to use the static DateTime.Parse method.
This method accepts a string defining a particular date and is converted to a DateTime object.

In addition to timestamp information, a file's attributes may also be obtained and modified. This is
accomplished through the use of the public instance Attributes property found on a FileInfo object.
This property returns or modifies a FileAttributes enumeration. The FileAttributes enumeration is
made up of bit flags that can be turned on or off through the use of the bitwise operators &, |, or ^.

Table 12-1 lists each of the flags in the FileAttributes enumeration.

Table 12-1. FileAttributes enumeration values

Member name Description

Archive Represents the file's archive status that marks the file for backup or removal.

Compressed Indicates that the file is compressed.

Device This option is reserved for future use.

Directory Indicates that this is a directory.

Encrypted

Indicates that a file or directory is encrypted. In the case of a file, its contents
are encrypted. In the case of a directory, newly created files will be encrypted
by default.

Hidden Indicates a hidden file.

Normal
Indicates that the file has no other attributes; as such, this attribute cannot be
used in combination with others.

NotContentIndexed Indicates that the file is excluded from the content index service.

Offline Indicates that the state of the file is offline and its contents will be unavailable.

ReadOnly Indicates that the file is read-only.

ReparsePoint Indicates a reparse point, a block of data associated with a directory or file.

SparseFile
Indicates a sparse file, which may take up less space on the filesystem than its
reported size because zeros in the file are not actually allocated on-disk.

Member name Description

System Indicates that the file is a system file.

Temporary Indicates a temporary file. It may reside entirely in memory.

In many cases, more than one of these flags can be set at one time, but see the description for the
Normal flag, which must be used alone.

See Also

See the "File Class," "FileInfo Class," and "FileAttributes Enumeration" topics in the MSDN
documentation.

System Indicates that the file is a system file.

Temporary Indicates a temporary file. It may reside entirely in memory.

In many cases, more than one of these flags can be set at one time, but see the description for the
Normal flag, which must be used alone.

See Also

See the "File Class," "FileInfo Class," and "FileAttributes Enumeration" topics in the MSDN
documentation.

Recipe 12.3. Renaming a File

Problem

You need to rename a file.

Solution

With all of the bells and whistles hanging off the .NET Framework, you would figure that renaming a
file is easy. Unfortunately, there is no specific rename method that can be used to rename a file.
Instead, you can use the static Move method of the File class or the instance MoveTo method of the
FileInfo class. The static File.Move method can be used to rename a file in the following manner:

 public static void RenameFile(string originalName, string newName)
 {
 File.Move(originalName, newName);
 }

This code has the effect of renaming the originalName file to newName.

The FileInfo.MoveTo instance method can also be used to rename a file in the following manner:

 public static void RenameFile(FileInfo originalFile, string newName)
 {
 originalFile.MoveTo(newName);
 }

Discussion

The Move and MoveTo methods allow a file to be moved to a different location, but they can also be
used to rename files. For example, you could use RenameFile to rename a file from foo.txt to bar.dat:

 RenameFile("foo.txt","bar.dat");

You could also use fully qualified paths to rename them:

 RenameFile("c:\mydir\foo.txt","c:\mydir\bar.dat");

See Also

See the "File Class" and "FileInfo Class" topics in the MSDN documentation.

Recipe 12.4. Determining Whether a File Exists

Problem

You need to determine whether a file exists prior to creating or performing an action on that file.

Solution

Use the static Exists method of the File class to determine whether a file currently exists:

 if (File.Exists(@"c:\delete\test\test.txt"))
 {
 // Operate on that file here.
 }

Discussion

Determining whether a file exists is often critical to your code. If a file exists and you try to create it
using one of the file-creation methods, one of three things will happen: the existing file will be
overwritten, an exception will be thrown if the file is read-only, or an exception will be thrown
indicating that the state of the filesystem is not what you think it is. There is a small window between
the Exists call and the actions you take where another process could change the filesystem, so you
should be prepared for that with proper exception handling.

See Also

See the "File Class" topic in the MSDN documentation.

Recipe 12.5. Choosing a Method of Opening a File or
Stream for Reading and/or Writing

Problem

When you are first learning the .NET Frameworkand even for some time afterthe proper way to read
to, write from, or otherwise interact with files can be unclear because the framework provides so
many different ways of attacking this problem. How should you determine which approach fits your
scenario?

Solution

Use file streams to perform various file functions. There are five basic types of built-in file-stream
manipulation classes that you can use to read from and/or write to a file stream:

FileStream

For the most fine-grained control, use FileStream for file manipulation since it provides the most
low-level access to the file, and, therefore, the most complex actions become available. Some of
these actions are reading and writing files in both synchronous and asynchronous fashions and
methods to lock and unlock part or all of a file, seek a particular position in a file, or even read
the file as a stream of either characters or bytes.

StreamReader

This type is derived from the abstract base class Textreader . The StreamReader class is
designed for reading character or string input from a file. This class contains methods to read
single characters, blocks of characters, lines of characters, or even the whole file into a single
string variable.

StreamWriter

This class derives from the TextWriter class. It is designed for writing character or string output
to a file. This class contains methods to write single characters or lines of characters.

BinaryReader

This type is derived from the Object class, as is the BinaryWriter class. It is designed for
reading primitive data typesincluding byte or char datafrom a file. This class contains methods
to read any of the simple types (int, long, float , etc.), including char arrays and byte arrays.

BinaryWriter

This type derives from the Object class. It is designed for writing primitive data typesincluding
byte or char datato a file. This class contains methods to write any of the primitive types (int,
long, float , etc.), including char arrays and byte arrays.

There are other stream readers and writers (XmlTextReader/Writer, StringReader/Writer) that can
also perform file-stream functions, but at a higher level. This recipe is meant to give you a more
fundamental approach to file operations.

Example 12-1 shows a few ways of using the various built-in streams.

Example 12-1. Using built-in .NET streams

// Create a temp file to work with.
string tempFile = Path.GetTempFileName();

// FileStream
// Open the file.

using (FileStream fileStream = File.Open(tempFile,FileMode.Append))
{
 string text = "Hello World ";
 byte [] bytes = Encoding.ASCII.GetBytes(text.ToCharArray());

 // Write to the file.
 fileStream.Write(bytes,0,bytes.Length);
}

// StreamReader
using (StreamReader streamReader = new StreamReader(tempFile))
{
 char[] chars = new char[64];
 // Read a block of characters.
 streamReader.Read(chars,0,64);
 string charsFound = new string(chars);
 Console.WriteLine("Chars in stream {0}",charsFound);
}

// StreamWriter
StreamWriter streamWriter = null;
// Open for append.
streamWriter = new StreamWriter(tempFile,true);
// Append some text.
streamWriter.WriteLine(", It's the StreamWriter!");

// BinaryWriter

long pos = 0;
int twentyFive = 25;

// Start up the binaryWriter with the base stream from the streamWriter
// since it is open.
using (BinaryWriter binaryWriter = new BinaryWriter(streamWriter.BaseStream))
{
 // Move to end.
 pos = binaryWriter.Seek(0, SeekOrigin.End);
 // Write out 25.
 binaryWriter.Write(twentyFive);
}
// Cannot call Close on the streamWriter since the
// using stmt on the binaryWriter causes the binaryWriter.Dispose
// method to be called, which in turn calls Dispose on the internal
// reference to the streamWriter object that was passed in to the
// binaryWriter's constructor.

// BinaryReader
Using (StreamReader streamReader2 = new StreamReader(tempFile))
{
 using (BinaryReader binaryReader = new BinaryReader(streamReader2.BaseStream))
 {
 //long pos = 0;
 //int twentyFive = 25;

 // Advance the stream to the number we stored.
 for(long i=0;i<pos;i++)
 binaryReader.ReadByte();
 // Read our number (should be 25).
 int num = binaryReader.ReadInt32();
 // Is this the same number…?
 if(num == twentyFive)
 Console.WriteLine("Successfully read 25 back from stream");
 else
 Console.WriteLine("Failed to successfully read 25 back from stream");
 }
}

Discussion

There are many different ways to create a stream. First, we will examine the FileStream class,
referring to useful recipes that will help create objects of this type. We will then look at the
StreamWriter and StreamReader classes, followed by the BinaryWriter and BinaryReader classes.

The most straightforward method of creating an object is to use the new keyword. The FileStream
class has several overloaded class constructors that enable creating a new FileStream from scratch.
The FileStream's constructor enables a new FileStream object to be created from either a filename or

a file handle. See Recipe 12.19.

The FileStream constructor can also accept a FileMode, FileAccess , and/or FileShare enumeration
value. These enumeration values are defined in Tables 12-2 , 12-3 , and 12-4 , respectively.

Table 12-2. FileMode enumeration values

Value
name

Definition Specifics

Append

Opens an existing file and
prepares it to be written to,
starting at the end of the file.
If the file does not exist, a
new zero-length file is
created.

This value can be used only in tandem with the
FileAccess.Write enumeration value; otherwise, an
ArgumentException is thrown.

Create

Creates a new file. If the
specified file exists, it is
truncated.

If you do not wish to lose data, consider employing the
CreateNew enumeration value instead. This value can be
used only in tandem with the FileAccess.Write or
FileAccess.ReadWrite enumeration values; otherwise,
an ArgumentException is thrown.

CreateNew Creates a new file.

An IOException is thrown if the file already exists. This
prevents accidental data loss. This value can be used
only in tandem with the FileAccess.Write or
FileAccess.ReadWrite enumeration values; otherwise,
an ArgumentException is thrown.

Open Opens an existing file.
A FileNotFoundException is thrown if the file does not
exist. Use OpenOrCreate if it is possible that the file
might not already exist.

OpenCreate

Opens a file if it exists or
creates a new one if it does
not exist.

Consider using Open if you expect the file to always
exist before it is opened. An ArgumentException is not
thrown if this enumeration value is used in tandem with
the FileAccess.Read enumeration value.

truncate

Opens an existing file and
deletes all information in that
file.

A FileNotFoundException is thrown if the file does not
exist. This value can be used in tandem with the
FileAccess.Write or FileAccess.ReadWrite
enumeration values; otherwise, an ArgumentException
is thrown.

Table 12-3. FileAccess enumeration values

Value
name

Definition

Read Allows data to only be read from a file.

ReadWrite
Allows data to be read from and written to a file. Same as FileAccess.Read
|FileAccess.Write .

Write Allows data to only be written to a file.

Table 12-3. FileShare enumeration values

Value
name

Definition

Inheritable Allows the file handle to be inherited by a child process.

None The file cannot be accessed (read from or written to) or deleted by any other process.

Read
The file cannot be written to or deleted by this or any other process. It can be read
from.

ReadWrite

The file can be read from or written to by this or any other process. The file still cannot
be deleted while it is being shared in this mode. Same as using FileShare.Read |
FileShare.Write .

Write
The file cannot be read from or deleted by this or any other process. It can be written
to.

In addition to these enumerations that define how a file is opened, the FileStream constructor allows
you to define whether this stream will be opened in a synchronous or asynchronous manner. This is
the only classof the ones discussed in this chapterthat allows a file to be opened in an asynchronous
manner.

The FileStream class also has methods for seeking to a point within a file stream, as well as locking or
unlocking a portion or an entire file; locking will prevent other processes or threads from modifying the
file. The other stream types discussed in this chapter do not have the ability to lock or unlock portions
or an entire file. This locking/unlocking functionality cannot even be accessed through the BaseStream
property of any of these types. Seeking within a file can be done directly using the BinaryReader or
BinaryWriter classes. The StreamReader and StreamWriter classes cannot directly access the seek
functionality. However, by using the BaseStream property of either the StreamReader or StreamWriter
classes, the base stream's seek functionality can be used.

FileStreams can also be created using the static methods of the File class. Table 12-5 shows these
methods, along with their equivalent FileStream object constructor parameters.

Table 12-4. Static methods of the File class and their equivalent FileStream
constructor calls

Static methods in File class Equivalent FileStream constructor call

FileStream fileStream

=File.Create("File.txt") ;

FileStream fileStream = new FileStream("File.txt",

FileMode.Create, FileAccess.ReadWrite,

FileShare.None);

FileStream fileStream

=File.Open("File.txt");
FileStream fileStream = new FileStream("File.txt");

FileStream fileStream

=File.OpenRead("File.txt");

FileStream fileStream = new FileStream("File.txt",

FileMode.Open, FileAccess.Read, FileShare.Read);

FileStream fileStream

=File.OpenWrite("File.txt");

FileStream fileStream = new FileStream("File.txt",

FileMode.OpenOrCreate, FileAccess.Write,

FileShare.None);

The File. Open method is overloaded to accept FileMode, FileAccess , and FileShare enumeration
values. The FileStream constructor is also overloaded to accept these same parameters.

The File class has a complementary class called FileInfo that contains similar methods, but these
methods are instance, not static, methods. Table 12-6 shows the FileInfo methods, which are similar
to the File static methods, along with their equivalent FileStream object constructor parameters.

Table 12-5. Instance methods of the FileInfo class and equivalent
FileStream constructor calls

Instance methods in FileInfo class Equivalent FileStream constructor call

FileInfo fileInfo =new
FileInfo("File.txt");

FileStream fileStream = new FileStream("File.txt",
FileMode.Create, FileAccess.ReadWrite, FileShare.None);

FileStream fileStream =fileInfo.Create(
);

FileInfo fileInfo = new
FileInfo("File.txt");

FileStream fileStream = new FileStream("File.txt");

FileStream fileStream =
fileInfo.Open(FileMode.open);

FileInfo fileInfo = new
FileInfo("File.txt");

FileStream fileStream = new FileStream("File.txt",
FileMode.Open, FileAccess.Read, FileShare.Read);

FileStream fileStream = fileInfo.
OpenRead();

FileInfo fileInfo = new
FileInfo("File.txt");

FileStream fileStream = new FileStream("File.txt",
FileMode.OpenOrCreate, FileAccess.Write, FileShare.None);

FileStream fileStream = fileInfo.
OpenWrite();

The FileInfo.Open instance method is overloaded to accept FileMode, FileAccess , and FileShare
enumeration values.

The StreamReader and StreamWriter objects can be created using their overloaded constructors. These
overloaded constructors accept as parameters either a file path and name or a FileStream object.
Therefore, we can use any of the previously mentioned ways of creating a FileStream object in the
construction of either a StreamReader or StreamWriter object.

In addition, we can use three of the static methods in the File class or three of the instance methods
in the FileInfo class to create a StreamReader or StreamWriter object. Table 12-7 describes the static
methods of the File class used to create StreamReader and StreamWriter objects and their equivalent
StreamReader and StreamWriter object constructor parameters.

Table 12-6. Static methods of the File class and their equivalent
StreamReader/StreamWriter constructor calls

Static methods in File class
Equivalent StreamReader/StreamWriter

constructor calls

StreamReader streamReader = File.

OpenText("File.txt");

StreamReader streamReader = new

StreamReader("File.txt");

StreamWriter streamWriter =

File.AppendText("File.txt");

StreamWriter streamWriter = new

StreamWriter("File.txt", true);

StreamWriter streamWriter =

File.CreateText("File.txt");

StreamWriter streamWriter = new

StreamWriter("File.txt", false);

Table 12-8 describes the instance methods of the FileInfo class used to create StreamReader and
StreamWriter objects and their equivalent StreamReader and StreamWriter object constructor
parameters.

Table 12-7. Instance methods of the FileInfo class and their equivalent
StreamReader/StreamWriter constructor calls

Instance methods in FileInfo class
Equivalent StreamReader/StreamWriter

constructor calls

FileInfo fileInfo = new

FileInfo("File.txt");

StreamReader streamReader = new

StreamReader("File.txt");

StreamReader streamReader = fileInfo.

OpenText();

FileInfo fileInfo = new

FileInfo("File.txt");

StreamWriter streamWriter = new

StreamWriter("File.txt", true);

StreamWriter streamWriter =

fileInfo.AppendText();

The methods of the File and FileInfo classes do not return BinaryReader and BinaryWriter classes;
therefore, we rely on their constructors to create these types of objects. The overloaded BinaryReader
and BinaryWriter class constructors accept only a Stream object; they do not accept a filename.

To create a BinaryReader or BinaryWriter object, we first need to create a Stream -type object. Since
Stream is an abstract class, we need to create one of its derived classes, such as the FileStream class.
Any of the prior ways of creating a FileStream object may be employed as a parameter in the
constructor of either a BinaryReader or BinaryWriter . The following code creates both a BinaryReader
and a BinaryWriter object from a single FileStream object:

 fileStream = File.Create("filename.file");
 BinaryWriter binaryWriter1 = new BinaryWriter(fileStream);
 BinaryReader binaryReader1 = new BinaryReader(fileStream);

There are many different ways of combining the techniques discussed in this recipe to create and open
files. For example, if you require file locking and/or asynchronous file processing, you will need a
FileStream object. If you are dealing with text streams in memory and on disk, perhaps StreamReader
and StreamWriter might be a better choice. Finally, if you are dealing with binary data or mixed binary
and text data in different encodings, you should consider BinaryReader and BinaryWriter .

See Also

See Recipe 12.19; see the "FileStream Class," "StreamReader Class," "StreamWriter Class,"
"BinaryReader," and "BinaryWriter" topics in the MSDN documentation.

Recipe 12.6. Accessing Part of a File Randomly

Problem

When reading a file, you sometimes need to move from the current position in a file to a position
some number of characters before or after the current position, including to the beginning or the end
of a file. After moving to this point, you can add, modify, or read the information at this new point in
the file.

Solution

To move around in a stream, use the Seek method. The following method writes the string contained
in the variables theFirstLine and theSecondLine to a file in this same order. The stream is then
flushed to the file on disk:

 public static void CreateFile(string theFirstLine, int theSecondLine)
 {
 using (FileStream fileStream = new FileStream("data.txt",
 FileMode.Create,
 FileAccess.ReadWrite,
 FileShare.None))
 {
 using (StreamWriter streamWriter = new StreamWriter(fileStream))
 {
 streamWriter.WriteLine(theFirstLine);
 streamWriter.WriteLine(theSecondLine);
 streamWriter.Flush();
 }
 }
 }

If the following code is used to call this method:

 CreateFile("This is the first line.", 1020304050);

the resulting data.txt file will contain the following text:

 This is the first line.
 1020304050

The ModifyFile method, shown in Example 12-2, uses the Seek method to reposition the current file
position at the end of the first line. A new line of text is then added between the first and second lines
of text in the file. Finally, the Seek method is used to place the current position pointer in the file to
the end, and a final line of text is written to this file.

Example 12-2. ModifyFile method

public static void ModifyFile(int theSecondLine)
{
 // Open the file for read/write.
 using (FileStream fileStream =
 File.Open("data.txt",
 FileMode.Open,
 FileAccess.ReadWrite,
 FileShare.None))
 {
 Using (StreamWriter streamWriter = new StreamWriter(fileStream))
 {
 // Backup over the newline.
 int offset = streamWriter.NewLine.Length;
 // Backup over the second line.
 offset += (theSecondLine.ToString().Length);
 // Make negative.
 offset = -offset;
 // Move file pointer to just after first line.
 streamWriter.BaseStream.Seek(offset, SeekOrigin.End);

 StringBuilder stringBuilder
 = new StringBuilder("This line added by seeking ");
 stringBuilder.AppendFormat(
 "{0} chars from the end of this file.",offset);

 streamWriter.WriteLine(stringBuilder);
 streamWriter.Flush();

 streamWriter.BaseStream.Seek(0, SeekOrigin.End);
 streamWriter.WriteLine("This is the last line" +
 ", added by seeking to the end of the file.");
 }
 }
}

If the following code is used to call this method:

 ModifyFile(1020304050);

the resulting data.txt file will contain the following text:

 This is the first line.
 This line added by seeking -12 chars from the end of this file.
 This is the last line, added by seeking to the end of the file.

The next method, ReadFile, reads the file that we just created. First, the current position pointer in
the file is moved to the end of the first line (this line contains the string in the variable theFirstLine).
The ReadToEnd method is invoked reading the rest of the file (the second and third lines in the file)
and the results are displayed:

 public static void ReadFile(string theFirstLine)
 {
 using (StreamReader streamReader = new StreamReader("data.txt"))
 {
 streamReader.BaseStream.Seek(
 theFirstLine.Length + Environment.NewLine.Length, SeekOrigin.Begin);
 Console.WriteLine(streamReader.ReadToEnd());
 }
 }

The following text is displayed:

 This line added by seeking -12 chars from the end of this file.
 This is the last line, added by seeking to the end of the file.

If you are wondering where the line of text that reads:

 1020304050

is located, it was overwritten when we did the first Seek while writing data to this file.

Discussion

File seeking is the placement of the pointer to the current location in an opened file anywhere
betweenand includingthe beginning and ending bytes of a file. Seeking is performed through the use
of the Seek method.

This method returns the new location of the file pointer in the file.

Seeking is performed in one of three ways: as an offset from the beginning of the file, as an offset
from the end of the file, or as an offset from the current location in the file, as shown here:

 public static void MoveInFile(int offsetValue)
 {
 Using (FileStream fileStream =
 File.Open("data.txt",
 FileMode.Open,
 FileAccess.ReadWrite,
 FileShare.None));
 {
 Using (StreamWriter streamWriter = new StreamWriter(fileStream))
 {
 // Move from the beginning of the file.
 streamWriter.BaseStream.Seek(offsetValue, SeekOrigin.Begin);

 // Move from the end of the file.
 streamWriter.BaseStream.Seek(offsetValue, SeekOrigin.End);

 // Move from the current file pointer location in the file.
 streamWriter.BaseStream.Seek(offsetValue, SeekOrigin.Current);
 }
 }
 }

offsetValue may be any positive or negative number as long as it does not attempt to force the file
pointer before the beginning of the file or after the end. The SeekOrigin.Begin enumeration value
starts the offset at the beginning of the file; likewise, the SeekOrigin.End value starts the offset at
the end of the file. The SeekOrigin.Current value starts the offset at the current location of the file
pointer. You must take extra care not to force the file pointer to a point before the start of the file
when using the seek method with a negative offset, since this action could move the file pointer
before the beginning of the file. If you think about it logically, you should be giving positive values
when specifying SeekOrigin.Begin and negative values when specifying SeekOrigin.End; any value
makes sense for SeekOrigin.Current, so long as it doesn't cause the pointer to roll past the
beginning of the file. To prevent an IOException from being thrown in this circumstance, you can test
for this condition in the manner shown in Example 12-3.

Example 12-3. Testing for the beginning or end of a file

long offsetValue = -20;
using (FileStream fileStream =
 File.Open("data.txt",
 FileMode.Open,
 FileAccess.ReadWrite,
 FileShare.None))

{
 Using (StreamWriter streamWriter = new StreamWriter(fileStream))
 {
 if ((offsetValue + streamWriter.BaseStream.Position) >= 0)
 {
 streamWriter.BaseStream.Seek(offsetValue, SeekOrigin.Current);
 }
 else
 {
 Console.WriteLine("Cannot seek outside of the file.");
 }
 if ((offsetValue + streamWriter.BaseStream.Length) >= 0)
 {
 streamWriter.BaseStream.Seek(offsetValue, SeekOrigin.End);
 }
 else
 {
 Console.WriteLine("Cannot seek outside of the file.");
 }
 if (offsetValue >= 0)
 {
 streamWriter.BaseStream.Seek(offsetValue, SeekOrigin.Begin);
 }
 else
 {
 Console.WriteLine("Cannot seek outside of the file.");
 }
 }
}

To seek to the beginning of a file, use the following code:

 streamWriter.BaseStream.Seek(0, SeekOrigin.Begin);

To seek to the end of a file, use the following code:

 streamWriter.BaseStream.Seek(0, SeekOrigin.End);

In these calls, the SeekOrigin enumeration value sets the file pointer to the beginning or end of a file.
The offset, which is zero, does not force the file pointer to move. With this in mind, realize that using
zero as an offset to SeekOrigin.Current is pointless because you don't move the pointer at all, and
you are killing clock cycles to no effect.

See Also

See the "FileStream Class," "StreamReader Class," "StreamWriter Class," "BinaryReader Class,"
"BinaryWriter Class," and "SeekOrigin Enumeration" topics in the MSDN documentation.

Recipe 12.7. Outputting a Platform-Independent EOL
Character

Problem

Your application will run on more than one platform. Each platform uses a different end-of-line (EOL)
character. You want your code to output the correct EOL character without having to write code to
handle the EOL character specially for each platform.

Solution

The .NET Framework provides the Environment.NewLine constant, which represents a newline on the
given platform. This is the newline string used by all of the framework provided WriteLine methods
internally (including Console, Debug, and trace).

There are a few different scenarios in which this could be useful:

Formatting a block of text with newlines embedded within it:

 // Remember to use Environment.NewLine on every block of text
 // we format where we want platform-correct newlines inside of.
 string line;
 line = String.Format("FirstLine {0} SecondLine {0} ThirdLine {0}",
 Environment.NewLine);
 // Get a temp file to work with.
 string file = Path.GetTempFileName();
 using (FileStream stream = File.Create(file))
 {
 byte[] bytes = Encoding.Unicode.GetBytes(line);
 stream.Write(bytes,0,bytes.Length);
 }

 // Remove the file (good line to set a breakpoint to check out the file
 // we created).
 File.Delete(file);

You need to use a different newline character than the default one used by StreamWriter (which
happens to be Environment.NewLine). You can set the newline that a StreamWriter will use once

1.

so that all WriteLines performed by the StreamWriter use that newline instead of having to
manually do it each time:

 // Set up a text writer and tell it to use a certain newline
 // string.
 // Get a new temp file.
 file = Path.GetTempFileName();
 line = "Double spaced line";
 using (StreamWriter streamWriter = new StreamWriter(file))
 {
 // Make this always write out double lines.
 streamWriter.NewLine = Environment.NewLine + Environment.NewLine;
 // WriteLine on this stream will automatically use the newly specified
 // newline sequence (double newline in our case).
 streamWriter.WriteLine(line);
 streamWriter.WriteLine(line);
 streamWriter.WriteLine(line);
 }

 // Remove the file (good line to set a breakpoint to check out the file
 // we created).
 File.Delete(file);

1.

Normal WriteLine calls:

 // Just use any of the normal WriteLine methods as they use the
 // Environment.NewLine by default.
 line = "Default line";
 Console.WriteLine(line);

2.

Discussion

Environment.NewLine allows you to have peace of mind, whether the platform is using \n or \r\n as
the newline or possibly something else. Your code will be doing things the right way for each
platform.

One word of caution here: if you are interoperating with a non-Windows operating system via SOAP
and Web Services, the Environment.NewLine defined here might not be accurate for a stream you
send to or receive from that other operating system. Of course, if you are doing Web Services,
newlines aren't your biggest concern.

See Also

See the "Environment Class" topic in the MSDN documentation.

Recipe 12.8. Creating, Writing to, and Reading from a File

Problem

You need to create a filepossibly for logging information to or for storing temporary informationand then
write information to it. You also need to be able to read the information that you wrote to this file.

Solution

To create, write to, and read from a logfile, we will use the FileStream and its reader and writer classes.
For example, we will create methods to allow construction, reading to, and writing from a logfile. To create
a logfile, you can use the following code:

 FileStream fileStream = new FileStream(logFileName,
 FileMode.Append,
 FileAccess.Write,
 FileShare.None);

To write text to this file, you can create a StreamWriter object wrapper around the previously created
FileStream object (fileStream). You can then use the WriteLine method of the StreamWriter object. The
following code writes three lines to the file: a string, followed by an integer, followed by a second string:

 public static void WriteToLog(string logFileName, string data)
 {
 using (FileStream fileStream = new FileStream(logFileName,
 FileMode.Append,
 FileAccess.Write,
 FileShare.None))
 {
 using (StreamWriter streamWriter = new StreamWriter(fileStream))
 {
 streamWriter.WriteLine(data);
 }
 }
 }

Now that the file has been created and data has been written to it, you can read the data from this file. To
read text from a file, create a StreamReader object wrapper around the file. If the code has not closed the
FileStream object (fileStream), it can use that object in place of the filename used to create the

StreamReader . To read the entire file in as a single string, use the ReadToEnd method:

 public static string ReadAllLog(string logFileName)
 {
 if (!File.Exists(logFileName))
 {
 throw (new FileNotFoundException(
 "logfile cannot be read since it does not exist.", logFileName));
 }
 string contents = "";

 using (FileStream fileStream = new FileStream(logFileName,
 FileMode.Open,
 FileAccess.Read,
 FileShare.None))
 {
 using (StreamReader streamReader = new StreamReader(fileStream))
 {
 contents = streamReader.ReadToEnd();
 }
 }

 return contents;
 }

If you need to read the lines in one by one, use the Peek method, as shown in ReadLogPeeking or the
ReadLine method, as shown in ReadLogByLines , both of which appear in Example 12-4 .

Example 12-4. ReadLogPeeking and ReadLogByLines methods

public static void ReadLogPeeking(string logFileName)
{
 if (!File.Exists(logFileName))
 {
 throw (new FileNotFoundException(
 "logfile cannot be read since it does not exist.", logFileName));
 }

 using (FileStream fileStream = new FileStream(logFileName,
 FileMode.Open,
 FileAccess.Read,
 FileShare.None))
 {
 Console.WriteLine("Reading file stream peeking at next line:");
 using (StreamReader streamReader = new StreamReader(fileStream))
 {
 while (streamReader.Peek() != -1)

 {
 Console.WriteLine(streamReader.ReadLine());
 }
 }
 }
}

or:

 public static void ReadLogByLines(string logFileName)
 {
 if (!File.Exists(logFileName))
 {
 throw (new FileNotFoundException(
 "Logfile cannot be read since it does not exist.", logFileName)); }

 using (FileStream fileStream = new FileStream(logFileName,
 FileMode.Open,
 FileAccess.Read,
 FileShare.None))
 {
 Console.WriteLine("Reading file stream as lines:");
 using (StreamReader streamReader = new StreamReader(fileStream))
 {
 string text = streamReader.ReadLine();
 while (text != null)
 {
 Console.WriteLine(text);
 text = streamReader.ReadLine();
 }
 }
 }
}

If you need to read in each character of the file as a byte value, use the Read method, which returns a byte
value:

public static void ReadAllLogAsBytes(string logFileName)
{
if (!File.Exists(logFileName))
{
throw (new FileNotFoundException(
"Logfile cannot be read since it does not exist.", logFileName)); }

 using (FileStream fileStream = new FileStream(logFileName,
 FileMode.Open,

 FileAccess.Read,
 FileShare.None))
 {
 Console.WriteLine("Reading file stream as bytes:");
 using (StreamReader streamReader = new StreamReader(fileStream))
 {
 while (streamReader.Peek() != -1)
 {
 Console.Write(streamReader.Read());
 }
 }
 }
}

This method displays numeric byte values instead of the characters that they represent. For example, if
the logfile contained the following text:

 This is the first line.
 100
 This is the third line.

it would be displayed by the ReadAllLogAsBytes method as follows:

 841041051153210511532116104101321021051141151163210810
 511010146131049484813108410410511532105115321161041013
 211610410511410032108105110101461310

If you need to read in the file by chunks, create and fill a buffer of an arbitrary length based on your
performance needs. This buffer can then be displayed or manipulated as needed:

 public static void ReadAllBufferedLog(string logFileName)
 {
 if (!File.Exists(logFileName))
 {
 throw (new FileNotFoundException(
 "Logfile cannot be read since it does not exist.", logFileName));
 }

 using (FileStream fileStream = new FileStream(logFileName,
 FileMode.Open,
 FileAccess.Read,
 FileShare.None))
 {

 Console.WriteLine("Reading file stream as buffers of bytes:"); using
 (StreamReader streamReader = new StreamReader(fileStream))
 {
 while (streamReader.Peek() != -1)
 {
 char[] buffer = new char[10];
 int bufferFillSize = streamReader.Read(buffer, 0, 10);
 foreach (char c in buffer)
 {
 Console.Write(c);
 }
 Console.WriteLine(bufferFillSize);
 }
 }
 }
 }

This method displays the logfile's characters in 10-character chunks, followed by the number of characters
actually read. For example, if the logfile contained the following text:

 This is the first line.
 100
 This is the third line.

it would be displayed by the ReadAllBufferedLog method as follows:

 This is th10
 e first li10
 ne.
 100
 10
 This is th10
 e third li10
 ne.
 5

Notice that at the end of every 10th character (the buffer is a char array of size 10), the number of
characters read in is displayed. During the last read performed, only five characters were left to read from
the file. In this case, a 5 is displayed at the end of the text, indicating that the buffer was not completely
filled.

Discussion

There are many mechanisms for recording state information about applications, other than creating a file
full of the information. One example of this type of mechanism is the Windows Event Log, where
informational, security, and error states can be logged during an application's progress. One of the primary
reasons for creating a log is to assist in troubleshooting or to debug your code in the field. If you are
shipping code without some sort of debugging mechanism for your support staff (or possibly for you in a
small company), we suggest you consider adding some logging support. Any developer who has spent a
late night debugging a problem on a QA machine or, worse yet, at a customer site, can tell you the value
of a log of the program's actions.

If you are writing character information to a file, the simplest method is to use the Write and WriteLine
methods of the StreamWriter class to write data to the file. These two methods are overloaded to handle
any of the primitive values (except for the byte data type), as well as character arrays. These methods
are also overloaded to handle various formatting techniques discussed in Recipe 2.16. All of this information
is written to the file as character text, not as the underlying primitive type.

If you need to write byte data to a file, consider using the Write and WriteByte methods of the FileStream
class. These methods are designed to write byte values to a file. The WriteByte method accepts a single
byte value and writes it to the file, after which the pointer to the current position in the file is advanced to
the next location after this byte . The Write method accepts an array of bytes that can be written to the
file, after which the pointer to the current position in the file is advanced to the next location after this
array of bytes. The Write method can also choose a range of bytes in the array to write to the file.

The Write method of the BinaryWriter class is overloaded in a similar fashion to the Write method of the
StreamWriter class. The main difference is that the BinaryWriter class's Write method does not allow
formatting. This forces the BinaryReader to read the information written by the BinaryWriter as its
underlying type, not as a character or a byte . See Recipe 12.5 for an example of the BinaryReader and
BinaryWriter classes in action.

Once we have the data written to the file, we can read it back out. The first concern when reading data
from a file is to not go past the end of the file. The StreamReader class provides a Peek method that
looksbut does not retrievethe next character in the file. If the end of the file has been reached, a -1 is
returned. Likewise, the Read method of this class also returns a -1 if it has reached the end of the file. The
Peek and Read methods can be used in the following manner to make sure that you do not go past the end
of the file:

 using (StreamReader streamReader = new StreamReader("data.txt"))
 {
 while (streamReader.Peek() != -1)
 {
 Console.WriteLine(streamReader.ReadLine());
 }
 }

or:

 using (StreamReader streamReader = new StreamReader("data.txt"))
 {
 int nextChar = streamReader.Read();
 while (nextChar > -1)

 {
 Console.WriteLine((char)nextChar);
 nextChar = streamReader.Read();
 }
 }

The main differences between the Read and Peek methods are that the Read method actually retrieves the
next character and increments the pointer to the current position in the file by one character, and the Read
method is overloaded to return an array of characters instead of just one. If you use the Read method that
returns a buffer of characters and the buffer is larger than the file, the extra elements in the buffer array
are untouched.

The StreamReader also contains a method to read an entire line up to and including the newline character.
This method is called ReadLine . This method returns a null if it goes past the end of the file. The ReadLine
method can be used in the following manner to make sure that you do not go past the end of the file:

 using (StreamReader streamReader = new StreamReader("data.txt"))
 {
 string text = streamReader.ReadLine();
 while (text != null)
 {
 Console.WriteLine(text);
 text = streamReader.ReadLine();
 }
 }

If you simply need to read the whole file in at one time, use the ReadToEnd method to read the entire file
into a string. If the current position in the file is moved to a point other than the beginning of the file, the
ReadToEnd method returns a string of characters starting at that position in the file and ending at the end
of the file.

The FileStream class contains two methods, Read and ReadByte , which read one or more bytes of the file.
The Read method reads a byte value from the file and casts that byte to an int before returning the value.
If you are explicitly expecting a byte value, consider casting the return type to a byte :

 FileStream fileStream = new FileStream("data.txt", FileMode.Open);
 byte retVal = (byte) fileStream.ReadByte();

However, if retVal is being used to determine whether the end of the file has been reached (i.e., retVal==-
1 or retVal==0xffffffff in hexadecimal), you will run into problems. When the return value of ReadByte is
cast to a byte , a -1 is cast to 0xff , which is not equal to -1 but is equal to 255 (the byte data type is not
signed). If you are going to cast this return type to a byte value, you cannot use this value to determine
whether you are at the end of the file. You must instead rely on the Length Property. The following code
block shows the use of the return value of the ReadByte method to determine when we are at the end of

the file:

 using (FileStream fileStream = new FileStream("data.txt", FileMode.Open))
 {
 int retByte = fileStream.ReadByte();
 while (retByte != -1)
 {
 Console.WriteLine((byte)retByte);
 retByte = fileStream.ReadByte();
 }
 }

This code block shows the use of the Length property to determine when to stop reading the file:

 using (FileStream fileStream = new FileStream("data.txt", FileMode.Open))
 {
 long currPosition = 0;
 while (currPosition < fileStream.Length)
 {
 Console.WriteLine((byte) fileStream.ReadByte());
 currPosition++;
 }
 }

The BinaryReader class contains several methods for reading specific primitive types, including character
arrays and byte arrays. These methods can be used to read specific data types from a file. All of these
methods, except for the Read method, indicate that the end of the file has been reached by throwing the
EndOfStreamException . The Read method will return a -1 if it is trying to read past the end of the file. This
class contains a PeekChar method that is very similar to the Peek method in the StreamReader class. The
PeekChar method is used as follows:

 using (FileStream fileStream = new FileStream("data.txt", FileMode.Open))
 {
 BinaryReader binaryReader = new BinaryReader(fileStream);
 while (binaryReader.PeekChar() != -1)
 {
 Console.WriteLine(binaryReader.ReadChar());
 }
 }

In this code, the PeekChar method is used to determine when to stop reading values in the file. This will
prevent a costly EndOfStreamException from being thrown by the ReadChar method if it tries to read past
the end of the file.

See Also

See the " FileStream Class," "StreamReader Class," "StreamWriter Class," " BinaryReader Class," and
"BinaryWriter Class" topics in the MSDN documentation.

Recipe 12.9. Determining Whether a Directory Exists

Problem

You need to determine whether a directory exists prior to creating or performing an action on that
directory.

Solution

Use the static Exists method on the Directory class to determine whether a directory currently
exists:

 if (Directory.Exists(@"c:\delete\test"))
 {
 // Operate on that directory here
 }

Discussion

If you try to delete a directory that no longer exists, a System.IO.DirectoryNotFoundException will be
thrown. This can be handled by catching the exception and reporting the failure accordingly for your
application.

This method returns a bool indicating whether the directory was found (true) or not (false).

See Also

See the "Directory Class" topic in the MSDN documentation.

Recipe 12.10. Creating, Copying, Moving, or Deleting a
Directory

Problem

You need to create a new directory, move an existing directory, or delete a directory.

Solution

The System.IO namespace contains two classes to perform these actions: the Directory and
DirectoryInfo classes. The Directory class contains only static methods, while the DirectoryInfo
class contains only instance methods.

To create a directory, you can use the static CreateDirectory method of the Directory class. The
return value for this method is an instance of the DirectoryInfo class. This class can be used to
invoke instance methods on the newly created directory. For example:

 DirectoryInfo dirInfo = null;
 if (!Directory.Exists(@"c:\delete\test"))
 {
 dirInfo = Directory.CreateDirectory(@"c:\delete\test");
 }

You can also use the instance Create method of the DirectoryInfo classa method that takes no
parameters and returns void. For example:

 DirectoryInfo dirInfo = null;
 if (!Directory.Exists(@"c:\delete\test"))
 {
 dirInfo = new DirectoryInfo(@"c:\delete\test");
 dirInfo.Create();
 }

To move a directory, you can use the static Move method of the Directory class, which returns void.
For example:

 if (!Directory.Exists(@"c:\MovedDir"))
 {
 Directory.Move(@"c:\delete", @"c:\MovedDir");
 }

You can also use the instance MoveTo method of the DirectoryInfo class, which returns void. For
example:

 DirectoryInfo dirInfo = null;
 if (!Directory.Exists(@"c:\MovedDir"))
 {
 dirInfo = new DirectoryInfo(@"c:\delete\test");
 dirInfo.MoveTo(@"c:\MovedDir");
 }

To delete a directory, you can use the static Delete method of the Directory class, which returns
void. There are two overloads for this method: one that will attempt to delete just the directory and
one that you can pass a Boolean value to tell it to delete recursively. If you elect to delete the
directory recursively, all subdirectories and files will be deleted as well. If you do not use the
recursive flag, the Delete method will throw an exception if you attempt to delete a directory that has
either files or subdirectories still in it:

 if (Directory.Exists(@"c:\MovedDir"))
 {
 Directory.Delete(@"c:\MovedDir", true);
 }

You can also use the instance Delete method of the DirectoryInfo class, which returns a void. For
example:

 DirectoryInfo dirInfo = null;
 if (Directory.Exists(@"c:\MovedDir"))
 {
 dirInfo = new DirectoryInfo(@"c:\delete\test");
 // This will delete all subdirectories and the files therein.
 dirInfo.Delete(true);
 }

Discussion

Creating, moving, and deleting are the basic operations that you can perform on directories. It makes
sense that there are specific methods to address each of these operations. In fact, there are two
methods to perform each of these actions: one static and one instance method.

Which method you choose depends on what you are trying to accomplish. If you need a quick way of
creating, moving, or deleting a directory, use the static methods since you don't incur the overhead
of instantiating an object before performing the operation. If you will be performing multiple
operations on a directory, you should use instance methods. Another consideration is that static
methods on a class do not require an object to be created on the managed heap. Instance methods
require an object to be created before the methods can be called. If you are trying to minimize the
number of objects the garbage collector has to manage, consider using static methods.

Before creating a new directory, you should first determine whether that directory already exists. If
you attempt to create a directory that already exists, an IOException is thrown. The Directory class
contains a static method, Exists, to perform this operation (note that there are no instance classes
to do this).

To move a directory, you must first determine whether the destination directory exists. If it does
exist, the move operation will fail and throw an exception.

To delete a directory, you must first determine whether it exists. If it does not exist, the delete
operation will fail and throw an exception.

See Also

See the "Directory Class" and "DirectoryInfo Class" topics in the MSDN documentation.

Recipe 12.11. Manipulating Directory Attributes

Problem

You need to display or manipulate a directory's attributes or timestamps.

Solution

To display a directory's timestamps, you can use either the set of static methods from the Directory
object or the set of instance properties from the DirectoryInfo object. The static methods are
GetCreationTime, GetLastAccessTime, or GetLastWriteTime. For example:

 public static void DisplayDirAttr(string path)
 {
 Console.WriteLine(Directory.GetCreationTime(path));
 Console.WriteLine(Directory.GetLastAccessTime(path));
 Console.WriteLine(Directory.GetLastWriteTime(path));
 }

In each case, path is the path to the directory with a timestamp you wish to retrieve, and the method

returns a DateTime value containing the relevant timestamp. The instance properties are
CreationTime, LastAccessTime, or LastWriteTime. For example:

 public static void DisplayDirAttr(string path)
 {
 DirectoryInfo dirInfo = Directory.CreateDirectory(path);

 Console.WriteLine(dirInfo.CreationTime);
 Console.WriteLine(dirInfo.LastAccessTime);
 Console.WriteLine(dirInfo.LastWriteTime);
 }

Each property returns a DateTime value containing the timestamp from the directory represented by
the DirInfo object. It should be noted that the static counterparts to these properties (i.e., the
Directory.GetCreationTime, Directory.GetLastAccessTime, and Directory.GetLastWriteTime
methods) perform slower than the instance properties of the DirectoryInfo class. This is because of
the extra time it takes for the underlying implementation of the static methods to get information

about the file handle each time a static method is called, as opposed to one time for the
DirectoryInfo instance object, which already holds this file handle information.

To modify a directory's timestamps, you can use either the static methods of the Directory class or
the instance properties of the DirectoryInfo class. The static methods are SetCreationTime,
SetLastAccessTime, or SetLastWriteTime. For example:

 public static void ModifyDirAttr(string path)
 {
 DateTime dt = new DateTime(2003,5,10);
 Directory.SetCreationTime(path, dt);
 Directory.SetLastAccessTime(path, dt);
 Directory.SetLastWriteTime(path, dt);
 }

Each method has two parameters: the first is the path to the directory with a timestamp that is to be
set, and the second is a DateTime value containing the new timestamp. Each method returns void.
The instance properties, all of which are of type DateTime, are CreationTime, LastAccessTime, and
LastWriteTime. For example:

 public static void ModifyDirAttr(string path)
 {
 DirectoryInfo dirInfo = Directory.CreateDirectory(path);

 DateTime dt = new DateTime(2001,2,8);
 dirInfo.CreationTime = dt;
 dirInfo.LastAccessTime = dt;
 dirInfo.LastWriteTime = dt;
 }

To display or modify a directory's attributes, use the instance property Attributes:

 public static void ViewModifyDirAttr(string path, FileAttributes fileAttributes)
 {
 DirectoryInfo dirInfo = new DirectoryInfo(@"C:\SomeDir");
 // Display this directory's attributes.
 Console.WriteLine(dirInfo.Attributes);

 // Display whether this directory is hidden.
 Console.WriteLine("Is directory hidden? = " +
 ((dirInfo.Attributes & FileAttributes.Hidden) == FileAttributes.Hidden));

 // Modify this directory's attributes.
 dirInfo.Attributes |= fileAttributes;
 // Display whether this directory is hidden.

 Console.WriteLine("Is directory hidden? = " +
 ((dirInfo.Attributes & FileAttributes.Hidden) == FileAttributes.Hidden));
 }

The output of this code is shown here:

 Directory
 Is directory hidden? = False
 Is directory hidden? = True

Discussion

There are three distinct timestamps associated with any directory. These timestamps are its creation
time, its last access time, and its last write time.

In addition to timestamp information, a directory's attributes may also be obtained and modified. This
is accomplished through the use of the public instance Attributes property found on a DirectoryInfo
object. This property returns the FileAttributes enumeration value (see Table 12-9). The
FileAttributes enumeration is made up of bit flags that can be turned on or off through the use of
the bitwise operators &, |, or ^.

Table 12-8. Definitions of each bit flag in the FileAttributes enumeration

Flag name Definition

Archive
Typically, backup applications will use this to indicate the archive status of the
file.

Compress The current directory uses compression.

Directory The current item is a directory.

Encrypted The current directory is encrypted.

Hidden The current directory is hidden.

Normal
The current directory has no other attributes set. When this attribute is set, no
others can be set.

NotContentIndexed The current directory is not being indexed by the indexing service.

Offline
The current directory is offline, and its contents are not accessible unless it is
online.

ReadOnly The current directory is read-only.

Flag name Definition

ReparsePoint The current directory contains a reparse point.

SparseFile The current directory contains large files consisting mostly of zeros.

System The current directory is used by the system.

Temporary The current directory is classified as a temporary directory.

In many cases, more than one of these flags may be set at one time. The Normal flag is the
exception; when this flag is set, no other flag may be set.

See Also

See the "Directory Class," "DirectoryInfo Class," and "FileAttributes Enumeration" topics in the MSDN
documentation.

ReparsePoint The current directory contains a reparse point.

SparseFile The current directory contains large files consisting mostly of zeros.

System The current directory is used by the system.

Temporary The current directory is classified as a temporary directory.

In many cases, more than one of these flags may be set at one time. The Normal flag is the
exception; when this flag is set, no other flag may be set.

See Also

See the "Directory Class," "DirectoryInfo Class," and "FileAttributes Enumeration" topics in the MSDN
documentation.

Recipe 12.12. Renaming a Directory

Problem

You need to rename a directory.

Solution

Unfortunately, there is no specific rename method that can be used to rename a directory. However,
you can use the instance MoveTo method of the DirectoryInfo class or the static Move method of the
Directory class instead. The static Move method can be used to rename a directory in the following
manner:

 public static void DemonstrateRenameDir(string originalName, string newName)
 {
 try
 {
 Directory.CreateDirectory(originalName);
 // "Rename" it.
 Directory.Move(originalName, newName);

 }
 catch(IOException ioe)
 {
 // Most likely given the directory exists or isn't empty
 Console.WriteLine(ioe.ToString());
 }
 catch(Exception e)
 {
 // Catch any other exceptions.
 Console.WriteLine(e.ToString());
 }
 }

This code creates a directory using the originalName parameter and renames it to the value supplied
in the newName parameter.

The instance MoveTo method of the DirectoryInfo class can also be used to rename a directory in the
following manner:

 public static void DemonstrateRenameDir (string originalName, string newName)
 {
 try
 {
 DirectoryInfo dirInfo = new DirectoryInfo(originalName);
 // Create the dir.
 dirInfo.Create();
 // "Rename" it.
 dirInfo.MoveTo(newName);
 }
 catch(IOException ioe)
 {
 // Most likely because the directory exists or isn't empty
 Console.WriteLine(ioe.ToString());
 }
 catch(Exception e)
 {
 // Catch any other exceptions.
 Console.WriteLine(e.ToString());
 }
 }

This code creates a directory using the originalName parameter and renames it to the value supplied
in the newName parameter.

Discussion

The Move and MoveTo methods allow a directory to be moved to a different location. However, when
the path remains unchanged up to the directory that will have its name changed, the Move methods
act as Rename methods.

See Also

See the "Directory Class" and "DirectoryInfo Class" topics in the MSDN documentation.

Recipe 12.13. Searching for Directories or Files Using
Wildcards

Problem

You are attempting to find one or more specific files or directories that might or might not exist within
the current filesystem. The search might need to use wildcard characters in order to widen the
search, for example, searching for all user-mode dump files in a filesystem. These files have a .dmp
extension.

Solution

There are several methods of obtaining this information. The first three methods return a string array
containing the full path of each item. The next three methods return an object that encapsulates a
directory, a file, or both.

The static GetFileSystemEntries method on the Directory class returns a string array containing the
names of all files and directories within a single directory, for example:

 public static void DisplayFilesDirs(string path)
 {
 string[] items = Directory.GetFileSystemEntries(path);
 foreach (string item in items)
 {
 Console.WriteLine(item);
 }
 }

The static Getdirectories method on the Directory class returns a string array containing the names
of all directories within a single directory. The following method, DisplayDirs, shows how you might
use it:

 public static void DisplayDirs(string path)
 {
 string[] items = Directory.GetDirectories(path);
 foreach (string item in items)
 {
 Console.WriteLine(item);
 }

 }

The static GetFiles method on the Directory class returns a string array containing the names of all
files within a single directory. The following method is very similar to DisplayDirs, but calls
Directory.GetFiles instead of Directory.GetDirectories:

 public static void DisplayFiles(string path)
 {
 string[] items = Directory.GetFiles(path);
 foreach (string item in items)
 {
 Console.WriteLine(item);
 }
 }

These next three methods return an object instead of simply a string. The GetFileSystemInfos
method of the DirectoryInfo object returns a strongly typed array of FileSystemInfo objects (that
is, of DirectoryInfo and FileInfo objects) representing the directories and files within a single
directory. The following example calls the GetFileSystemInfos method to retrieve an array of
FileSystemInfo objects representing all the items in a particular directory and then lists the Name
property of each item to the console window:

 public static void DisplayFilesDirs(string path)
 {
 DirectoryInfo mainDir = new DirectoryInfo(path);
 FileSystemInfo[] items = mainDir.GetFileSystemInfos();
 foreach (FileSystemInfo item in items)
 {
 if (item is DirectoryInfo)
 {
 Console.WriteLine("DIRECTORY: " + ((DirectoryInfo)item).Name);
 }
 else if (item is FileInfo)
 {
 Console.WriteLine("FILE: " + item.Name);
 }
 else
 {
 Console.WriteLine("Unknown");
 }
 }
 }

The output for this code is shown here:

 DIRECTORY: MyNestedTempDir
 DIRECTORY: MyNestedTempDirPattern
 FILE: MyTempFile.PDB
 FILE: MyTempFile.TXT

The Getdirectories instance method of the DirectoryInfo object returns an array of DirectoryInfo
objects representing only subdirectories in a single directory. For example, the following code calls
the Getdirectories method to retrieve an array of DirectoryInfo objects, then displays the Name
property of each object to the console window:

 public static void DisplayDirs(string path)
 {
 DirectoryInfo mainDir = new DirectoryInfo(path);
 DirectoryInfo[] items = mainDir.GetDirectories();
 foreach (DirectoryInfo item in items)
 {
 Console.WriteLine("DIRECTORY: " + ((DirectoryInfo)item).Name);
 }
 }

The GetFiles instance method of the DirectoryInfo object returns an array of FileInfo objects
representing only the files in a single directory. For example, the following code calls the GetFiles
method to retrieve an array of FileInfo objects, then it displays the Name property of each object to
the console window:

 public static void DisplayFiles(string path)
 {
 DirectoryInfo mainDir = new DirectoryInfo(path);
 FileInfo[] items = mainDir.GetFiles();
 foreach (FileInfo item in items)
 {
 Console.WriteLine("FILE: " + item.Name);
 }
 }

The static GetFileSystemEntries method on the Directory class returns all files and directories in a
single directory that match pattern:

 public static void DisplayFilesDirs(string path, string pattern)
 {
 string[] items = Directory.GetFileSystemEntries(path, pattern);
 foreach (string item in items)

 {
 Console.WriteLine(item);
 }
 }

The static GeTDirectories method on the Directory class returns only those directories in a single
directory that match pattern:

 public static void DisplayDirs(string path, string pattern)
 {
 string[] items = Directory.GetDirectories(path, pattern);
 foreach (string item in items)
 {
 Console.WriteLine(item);
 }
 }

The static GetFiles method on the Directory class returns only those files in a single directory that
match pattern:

 public static void DisplayFiles(string path, string pattern)
 {
 string[] items = Directory.GetFiles(path, pattern);
 foreach (string item in items)
 {
 Console.WriteLine(item);
 }
 }

These next three methods return an object instead of simply a string. The first instance method is
GetFileSystemInfos, which returns both directories and files in a single directory that match pattern:

 public static void DisplayFilesDirs(string path, string pattern)
 {
 DirectoryInfo mainDir = new DirectoryInfo(path);
 FileSystemInfo[] items = mainDir.GetFileSystemInfos(pattern);
 foreach (FileSystemInfo item in items)
 {
 if (item is DirectoryInfo)
 {
 Console.WriteLine("DIRECTORY: " + ((DirectoryInfo)item).Name);
 }
 else if (item is FileInfo)

 {
 Console.WriteLine("FILE: " + item.Name);
 }
 else
 {
 Console.WriteLine("Unknown");
 }
 }
 }

The GetDirectories instance method returns only directories (contained in the DirectoryInfo object)
in a single directory that match pattern:

 public static void DisplayDirs(string path, string pattern)
 {
 DirectoryInfo mainDir = new DirectoryInfo(@"C:\TEMP ");
 DirectoryInfo[] items = mainDir.GetDirectories(pattern);
 foreach (DirectoryInfo item in items)
 {
 Console.WriteLine("DIRECTORY: " + ((DirectoryInfo)item).Name);
 }
 }

The GetFiles instance method returns only file information (contained in the FileInfo object) in a
single directory that matches pattern:

 public static void DisplayFiles(string path, string pattern)
 {
 DirectoryInfo mainDir = new DirectoryInfo(@"C:\TEMP ");
 FileInfo[] items = mainDir.GetFiles(pattern);
 foreach (FileInfo item in items)
 {
 Console.WriteLine("FILE: " + item.Name);
 }
 }

Discussion

If you need just an array of strings containing paths to both directories and files, you can use the
static method Directory.GetFileSystemEntries. The string array returned does not include any
information about whether an individual element is a directory or a file. Each string element contains
the entire path to either a directory or file contained within the specified path.

To quickly and easily distinguish between directories and files, use the Directory.GetDirectories and
Directory.GetFiles static methods. These methods return arrays of directory names and filenames.
These methods return an array of string objects. Each element contains the full path to the directory
or file.

Returning a string is fine if you do not need any other information about the directory or file returned
to you or if you are going to need more information for only one of the files returned. It is more
efficient to use the static methods to get the list of filenames and just retrieve the FileInfo for the
ones you need than to have all of the FileInfos constructed for the directory, as the instance
methods will do. If you are going to have to access attributes, lengths, or times on every one of the
files, you should consider using the instance methods described here.

The instance method GetFileSystemInfos returns an array of strongly typed FileSystemInfo objects.
(The FileSystemInfo object is the base class to the DirectoryInfo and FileInfo objects.) Therefore,
you can test whether the returned type is a DirectoryInfo or FileInfo object using the is or as
keywords. Once you know what subclass this object really is, you can cast it to that type and begin
using it.

To get only DirectoryInfo objects, use the overloaded GeTDirectories instance method. To get only
FileInfo objects, use the overloaded GetFiles instance method. These methods return an array of
DirectoryInfo and FileInfo objects, respectively; each element of which encapsulates a directory or
file.

See Also

See the "DirectoryInfo Class," "FileInfo Class," and "FileSystemInfo Class" topics in the MSDN
documentation.

Recipe 12.14. Obtaining the Directory Tree

Problem

You need to get a directory tree, potentially including filenames, extending from any point in the
directory hierarchy. In addition, each directory or file returned must be in the form of an object
encapsulating that item. This will allow you to perform operations on the returned objects, such as
deleting the file, renaming the file, or examining/changing its attributes. Finally, you potentially need
the ability to search for a specific subset of these items based on a pattern, such as finding only files
with the .pdb extension.

Solution

By placing a call to the GetFileSystemInfos instance method in a recursive method, you can iterate
down the directory hierarchy from any starting point and get all files and directories:

 public static void GetAllDirFilesRecurse(string dir)
 {
 DirectoryInfo mainDir = new DirectoryInfo(dir);
 FileSystemInfo[] items = mainDir.GetFileSystemInfos();
 foreach (FileSystemInfo item in items)
 {
 if (item is DirectoryInfo)
 {
 Console.WriteLine("DIRECTORY: " + ((DirectoryInfo)item).FullName);
 GetAllDirFilesRecurse(((DirectoryInfo)item).FullName);
 }
 if (item is FileInfo)
 {
 Console.WriteLine("FILE: " + ((FileInfo)item).FullName);
 }
 else
 {
 Console.WriteLine("Unknown");
 }
 }
 }

It isn't necessarily true that you have to use recursion to retrieve information about all files and
directories. The following recursive method uses a case-insensitive comparison to obtain a listing of

all files with the extension of .pdb that exist in directories that begin with Chapter 1:

 public static void GetAllFilesInPatternRecurse(string dir)
 {
 DirectoryInfo mainDir = new DirectoryInfo(dir);
 FileSystemInfo[] items = mainDir.GetFileSystemInfos(" Chapter 1*");
 foreach (FileSystemInfo item in items)
 {
 if (item is DirectoryInfo)
 {
 GetAllFilesInPatternRecurse(((DirectoryInfo)item).FullName);
 }
 if (item is FileInfo)
 {
 FileInfo fileInfo = item as FileInfo;
 if(fileInfo.Extension.ToUpper().CompareTo(".PDB")==0)
 Console.WriteLine("FILE: " + (fileInfo.FullName));
 }
 }
}

Discussion

To obtain a tree representation of a directory and the files it contains, you can use a simple recursive
method. This recursive method first creates a DirectoryInfo object that begins in the directory with
which you wish to start creating a hierarchy; in the first code example in the Solution section, this
directory is represented by the mainDir object.

Next, it can call the GetFileSystemInfos method on the mainDir object to obtain both DirectoryInfo
and FileInfo objects representing the files and directories in that initial folder. Alternatively, it could
call both the GetFiles and GetDirectories methods on the mainDir object; the latter two methods
return string arrays containing the paths and names of files and directories.

Simply calling the GetFileSystemInfos method is easy enough, but you need to cast the returned
FileSystemInfo objects to their correct subtype, which is either a DirectoryInfo or a FileInfo
object. Once cast to the correct type, you can perform operations on that object.

The final step is to add a recursive method call every time you find a DirectoryInfo object. This
((DirectoryInfo)item).FullName string is then passed as an argument to this same function, making
it the starting directory for the new function call. This continues on until every directory under the
initial directory has been returned along with its contents.

See Also

See the "DirectoryInfo Class," "FileInfo Class," and "FileSystemInfo Class" topics in the MSDN
documentation.

Recipe 12.15. Parsing a Path

Problem

You need to separate the constituent parts of a path and place them into separate variables.

Solution

Use the static methods of the Path class:

 public static void ParsePath(string path)
 {
 string root = Path.GetPathRoot(path);
 string dirName = Path.GetDirectoryName(path);
 string fullFileName = Path.GetFileName(path);
 string fileExt = Path.GetExtension(path);
 string fileNameWithoutExt = Path.GetFileNameWithoutExtension(path);
 StringBuilder format = new StringBuilder();
 format.Append("ParsePath of {0} breaks up into the following pieces:" +
 Environment.NewLine + "\tRoot: {1}" +
 Environment.NewLine + "\t");
 format.Append("Directory Name: {2}" +
 Environment.NewLine + "\tFull File Name: {3}" +
 Environment.NewLine + "\t");
 format.Append("File Extension: {4}" +
 Environment.NewLine + "\tFile Name Without Extension: {5}" +
 Environment.NewLine + "");
 Console.WriteLine(format.ToString(),path,root,dirName,
 fullFileName,fileExt,fileNameWithoutExt);
 }

If the string @C:\test\tempfile.txt is passed to this method, the output looks like this:

 ParsePath of C:\test\tempfile.txt breaks up into the following pieces:
 Root: C:\
 Directory Name: C:\test
 Full File Name: tempfile.txt
 File Extension: .txt
 File Name Without Extension: tempfile

Discussion

The Path class contains methods that can be used to parse a given path. Using these classes is much
easier and less error-prone than writing path-and filename-parsing code. There are five main
methods used to parse a path: GetPathRoot, GetDirectoryName, GetFileName, GetExtension, and
GetFileNameWithoutExtension. Each has a single parameter, path, which represents the path to be

parsed:

GetPathRoot

This method returns the root directory of the path. If no root is provided in the path, such as
when a relative path is used, this method returns an empty string, not null.

GetDirectoryName

This method returns the complete path for the directory that the file is in.

GetFileName

This method returns the filename, including the file extension. If no filename is provided in the
path, this method returns an empty string, not null.

GetExtension

This method returns the file's extension. If no extension is provided for the file or no file exists
in the path, this method returns an empty string, not null.

GetFileNameWithoutExtension

This method returns the root filename without the file extension.

Be aware that these methods do not actually determine whether the drives, directories, or even files
exist on the system that runs these methods. These methods are string parsers and if you pass one
of them a string in some strange format (such as \\ZY:\foo), it will try to do what it can with it
anyway:

 ParsePath of \\ZY:\foo breaks up into the following pieces:
 Root: \\ZY:\foo
 Directory Name:
 Full File Name: foo
 File Extension:
 File Name Without Extension: foo

These methods will, however, throw an exception if illegal characters are found in the path.

To determine whether files or directories exist, use the static Directory.Exists or File.Exists
method.

See Also

See the "Path Class" topic in the MSDN documentation.

Recipe 12.16. Parsing Paths in Environment Variables

Problem

You need to parse multiple paths contained in environment variables, such as PATH or Include.

Solution

You can use the Path.PathSeparator field or the ; character to extract individual paths from an
environment variable with a value that consists of multiple paths and place them in an array. Then
you can use a foreach loop to iterate over each individual path in the PATH environment variable and
parse each path. This process is illustrated by the ParsePathEnvironmentVariable method:

 public static void ParsePathEnvironmentVariable()
 {
 string originalPathEnv = Environment.GetEnvironmentVariable("PATH");
 string[] paths = originalPathEnv.Split(new char[1] {Path.PathSeparator});
 foreach (string s in paths)
 {
 string pathEnv = Environment.ExpandEnvironmentVariables(s);
 Console.WriteLine("Path = " + pathEnv);
 if(pathEnv.Length > 0)
 {
 Console.WriteLine("Individual Path = " + pathEnv);
 }
 else
 {
 Console.WriteLine("Skipping blank environment path details " +
 " as it causes exceptions…");
 }
 }
 }

If the PATH environment variable contains the following:

 PATH=Path=C:\WINDOWS\system32;C:\WINDOWS

then the output of the ParsePathEnvironmentVariable method is as follows:

 Individual Path = C:\WINDOWS\system32
 Individual Path = C:\WINDOWS

Discussion

When working with environment variables in particular, there are a number of cases in which several
paths may be concatenated and you need to parse each one individually. To distinguish each
individual path from the others, Microsoft Windows uses the semicolon character. (Other operating
systems might use a different character; Unix, Linux, and Mac OS X use a colon.) To make sure that
we always use the correct path-separation character, the Path class contains a public static field
called PathSeparator. This field contains the character used to separate paths in the current platform.
This field is marked as read-only, so it cannot be modified.

To obtain each individual path contained in a single string, use the Split instance method from the
String class. This method accepts a param array of character values that are used to break apart the
string instance. These individual strings containing the paths are returned in a string array. Then we
simply use the foreach loop construct to iterate over each string in this string array and use the
static method ExpandEnvironmentVariables of the Environment class to operate on each individual
path string. This static method ensures that any environment variables such as %SystemDrive% are
converted to their equivalent value, in this case C:.

See Also

See the "Path Class" and "Environment Class" topics in the MSDN documentation.

Recipe 12.17. Verifying a Path

Problem

You have a pathpossibly entered by the userand you need to verify that it has no illegal characters
and that a filename and extension have been provided.

Solution

We use several of the static fields and methods in the Path class. We begin by writing a method called
CheckUserEnteredPath , as shown in Example 12-5 . It accepts a string containing a path entered by
the user and a Boolean value to decide whether we want to find all illegal characters or just the
occurrence of any illegal character. Just finding any illegal character is much faster if you don't care
which illegal characters are present. This method first calls another method, either
FindAnyIllegalChars or FindAllIllegalChars , each of which are described later in the Solution. If
there are no illegal characters in this path, it is then checked for the presence of a filename and
extension.

Example 12-5. CheckUserEnteredPath method

public static bool CheckUserEnteredPath(string path, bool any)
{
 try
 {
 Console.WriteLine("Checking path {0}",path);

 // Verify that the path parameter is not null.
 if (path == null)
 {
 throw (new ArgumentNullException("path",
 "The path passed in cannot be null"));
 }

 bool illegal = false;
 List<char> invalidChars = new List<char>();

 // Two ways to do the search, one more expensive than the other…
 if(any == true)
 illegal = FindAnyIllegalChars(path); // Cheap
 else
 invalidChars = FindAllIllegalChars(path); // Expensive

 if (!illegal && invalidChars.Count == 0)

 {
 // Now make sure the path is not an empty string
 // and its filename has an extension.
 if (Path.GetFileName(path).Length == 0)
 {
 Console.WriteLine("A file name must be entered");
 }
 else if (!Path.HasExtension(path))
 {
 Console.WriteLine("The file name must have an extension");
 }
 else
 {
 Console.WriteLine("Path is correct");
 return (true);
 }
 }
 else if (invalidChars.Count > 0)
 {
 foreach(char c in invalidChars)
 Console.WriteLine(c);
 }
 }
 catch(Exception e)
 {
 Console.WriteLine(e.ToString());
 }
 return (false);
}

The FindAllIllegalChars method, which is shown in Example 12-6 and which is called by the
CheckUserEnteredPath method, accepts a string containing a path. This path is checked for illegal
characters by using the IndexOfAny method on the string class. The IndexOfAny method finds the first
occurrence of one of the characters supplied to it in the string being examined. This method uses the
Path.InvalidPathChars static field to determine if any illegal characters exist in this path.

Example 12-6. FindAllIllegalChars method

private static List<char> FindAllIllegalChars(string path)
{
 // Get directory portion of the path.
 string dirName = path;
 string fullFileName = "";
 int pos = path.LastIndexOf(Path.DirectorySeparatorChar);
 if (pos >= 0)
 {
 dirName = path.Substring(0, pos);

 // Get filename portion of the path.
 if (pos >= 0 && (pos + 1) < path.Length)
 fullFileName = path.Substring(pos + 1);
 }

 int invalidCharPos = 0;
 bool endOfPath = false;
 List<char> invalidChars = new List<char>();

 // Find any characters in the directory that are illegal.
 while (!endOfPath)
 {
 invalidCharPos = dirName.IndexOfAny(Path.GetInvalidPathChars(),
 invalidCharPos++);
 if (invalidCharPos == -1)
 {
 endOfPath = true;
 }
 else
 {
 Console.WriteLine(
 "Invalid char {0} found at position {1} in directory path.",
 dirName[invalidCharPos], invalidCharPos);

 invalidChars.Add(dirName[invalidCharPos]);

 if (invalidCharPos >= dirName.Length - 1)
 {
 endOfPath = true;
 }
 else
 {
 invalidCharPos++;
 }
 }
 }

 bool endOfFileName = false;
 invalidCharPos = 0;

 // Find any characters in the filename that are illegal.
 while (!endOfFileName)
 {
 invalidCharPos = fullFileName.IndexOfAny(Path.GetInvalidFileNameChars(),
 invalidCharPos++);
 if (invalidCharPos == -1)
 {
 endOfFileName = true;
 }
 else
 {
 Console.WriteLine(

 "Invalid char {0} found at position {1} in file name.",
 fullFileName[invalidCharPos], invalidCharPos);

 invalidChars.Add(fullFileName[invalidCharPos]);

 if (invalidCharPos >= fullFileName.Length - 1)
 {
 endOfFileName = true;
 }
 else
 {
 invalidCharPos++;
 }
 }
 }

 return (invalidChars);
}

Notice that we did not use the Path.GetDirectoryName and Path.GetFileName methods to parse the
directory and filename, respectively, from the entire path string. If we did use these methods on a
path string containing invalid characters, they would throw an exception too early in the processing.

The FindAnyIllegalChars method shown in Example 12-7 , which is also called by the
CheckUserEnteredPath method, accepts a string containing a user-entered path. This path is checked
for the existence of any illegal characters by using the IndexOfAny method on the string class. If the
IndexOfAny method finds anything, we have an illegal path and we return false .

Example 12-7. FindAnyIllegalChars method

private static bool FindAnyIllegalChars(string path)
{
 // Get directory portion of the path.
 string dirName = path;
 string fullFileName = "";
 int pos = path.LastIndexOf(Path.DirectorySeparatorChar);
 if (pos >= 0)
 {
 dirName = path.Substring(0, pos);

 // Get filename portion of the path.
 if (pos >= 0 && (pos + 1) < path.Length)
 fullFileName = path.Substring(pos + 1);
 }

 // Find any characters in the directory that are illegal.
 int invalidCharPos = dirName.IndexOfAny(Path.GetInvalidPathChars());
 if (invalidCharPos == -1)

 {

 // Find any characters in the filename that are illegal.
 invalidCharPos = fullFileName.IndexOfAny(Path.GetInvalidFileNameChars());
 if (invalidCharPos == -1)
 {
 return (false);
 }
 else
 {
 Console.WriteLine(
 "Invalid char {0} found at position {1} in filename.",
 fullFileName[invalidCharPos], invalidCharPos);
 return (true);
 }
 }
 else
 {
 Console.WriteLine(
 "Invalid char {0} found at position {1} in directory path.",
 dirName[invalidCharPos], invalidCharPos);
 return (true);
 }
}

Discussion

This recipe provides a way of screening a path for invalid characters before it can be used in your
application. This recipe does not verify that the directory or path exists; use the Directory.Exists or
File.Exists methods to perform this verification.

The CheckUserEnteredPath method starts by calling the FindAnyIllegalChars or FindAllIllegalChars
methods and passing the chosen one a path string. The path is validated against the set of characters
supplied by both the Path.GetInvalidPathChars and the Path.GetInvalidFileNameChars static
methods. These methods return character arrays that contain all of the invalid characters that could
be entered into a path or filename string, respectively.

The CheckUserEnteredPath and FindAnyIllegalChars methods return true if there are illegal
characters found. FindAnyIllegalChars prints information to the console for only the first one found,
whereas FindAllIllegalChars returns a List<char> containing all illegal characters found.

See Also

See the "String Class" and "Path Class" topics in the MSDN documentation.

Recipe 12.18. Using a Temporary File in Your Application

Problem

You need a temporary file in which to store information. This file will exist only as long as the process
that created it remains running.

Solution

Use the static GetTempPath and GetTempFileName methods on the Path class. To create the temporary
file in the directory set as the temporary directory and get the full path to it, use the following line of
code:

 string tempFilePathWithFileName = Path.GetTempFileName();

Before the application terminates, you should delete this temporary file. The following line of code
deletes this file:

 File.Delete(tempFilePathWithFileName);

The GetTempFileName method creates the temporary file and returns the path, including the name of
the file and its extension. To create and obtain just the path without the filename, use the following
line of code:

 string tempFilePathWithoutFileName = Path.GetTempPath();

Discussion

You should use a temporary file whenever you need to store information temporarily for later
retrieval. The one thing you must remember is to delete this temporary file before the application
that created it is terminated. If it is not deleted, it will remain in the user's temporary directory until
the user manually deletes it.

The Path class provides two methods for working with temporary files. The first is the static
GetTempPath method, which returns the path to the temporary directory. The temporary directory is
found by searching the TMP, then the TEMP, then the USERPROFILE environment variables, and finally
the Windows directory.

The second static method, GetTempFileName, will automatically generate a temporary filename, create
a zero-length file in the user's temporary directory, and return a string containing this filename and
its path.

See Also

See the "Directory Class," "File Class," and "Path Class" topics in the MSDN documentation.

Recipe 12.19. Opening a File Stream with Just a File
Handle

Problem

When interoperating with unmanaged code, you encounter a situation in which you are provided a file
handle and no other information. This file handle must be used to open its corresponding file.

Solution

In order to use an unmanaged file handle to access a file, use the FileStream class. The unmanaged
file handle could have been generated using P/Invoke to open a file and get the file handle. The code
would then use a FileStream object for writing data, then flush and close the unmanaged file handle.
This setup is illustrated by the UsingAnUnmanagedFileHandle method shown in Example 12-8.

Example 12-8. UsingAnUnmanagedFileHandle method

public static void UsingAnUnmanagedFileHandle()
{
 IntPtr hFile = IntPtr.Zero;
 // Create a file using unmanaged code.
 hFile = FileInteropFunctions.CreateFile("data.txt",
 FileInteropFunctions.GENERIC_WRITE,
 0,
 IntPtr.Zero,
 FileInteropFunctions.CREATE_ALWAYS,
 0,
 0);

 if(hFile.ToInt64() > 0)
 {
 // Write to the file using managed code.
 // Wrap our file handle in a safe handle wrapper object.
 Microsoft.Win32.SafeHandles.SafeFileHandle safeHFile =
 new Microsoft.Win32.SafeHandles.SafeFileHandle(hFile, true);

 // Open a FileStream object using the passed in safe file handle.
 using (FileStream fileStream =
 new FileStream(safeHFile, FileAccess.ReadWrite))

 {
 // Flush before we start to clear any pending unmanaged actions.
 fileStream.Flush();
 // Operate on file here…
 string line = "Managed code wrote this line!";
 // Write to the file.
 byte[] bytes = Encoding.ASCII.GetBytes(line);
 fileStream.Write(bytes,0,bytes.Length);
 }

 // Remove the file.
 File.Delete("data.txt");
 }
}

In the UsingAnUnmanagedFileHandle method, we wrap the file handle in a SafeFileHandle object and
pass it as the first parameter, in a FileStream. Once we have the file stream, we use its capabilities
to write to the file handle. We get the bytes from a string in ASCII-encoding format and call Write on
the file stream, as shown here:

 byte[] bytes = Encoding.ASCII.GetBytes(line);
 fileStream.Write(bytes,0,bytes.Length);

In order to perform the unmanaged functions of creating, flushing, and closing the file handle, we
have wrapped the unmanaged Win32 API functions for these functions in the FileInteropFunctions
class shown in Example 12-9. The DllImport attribute says that these functions are being used from
kernel32.dll and the SetLastError attribute is set to true, so that we can see if anything went wrong.
A few of the #defines used with file creation have been brought over from unmanaged code for
readability.

Example 12-9. FileInteropFunctions class

class FileInteropFunctions
{
 public const uint GENERIC_READ = (0x80000000);
 public const uint GENERIC_WRITE = (0x40000000);
 public const uint GENERIC_EXECUTE = (0x20000000);
 public const uint GENERIC_ALL = (0x10000000);

 public const uint CREATE_NEW = 1;
 public const uint CREATE_ALWAYS = 2;
 public const uint OPEN_EXISTING = 3;
 public const uint OPEN_ALWAYS = 4;
 public const uint TRUNCATE_EXISTING = 5;

 [DllImport("kernel32.dll", SetLastError=true)]
 public static extern bool CloseHandle(IntPtr hObject);

 [DllImport("kernel32.dll", SetLastError=true)]
 public static extern IntPtr CreateFile(
 String lpFileName, // Filename
 uint dwDesiredAccess, // Access mode
 uint dwShareMode, // Share mode
 IntPtr attr, // Security Descriptor
 uint dwCreationDisposition, // How to create
 uint dwFlagsAndAttributes, // File attributes
 uint hTemplateFile); // Handle to template file

 [DllImport("kernel32.dll", SetLastError=true)]
 public static extern bool FlushFileBuffers(IntPtr hFile);
}

Discussion

You can open a file using one of the overloaded constructors of the FileStream class and passing a
file handle into it. The FileStream constructors in Version 2.0 of the .NET Framework have been
enhanced to accept a Microsoft.Win32.SafeHandles. SafeFileHandle object instead of an IntPtr for
the file handle. The SafeFileHandle wraps the IntPtr file handle and allows the system to handle the
releasing of this file handle automatically. To automatically release this wrapped file handle, you must
pass true as the second argument to the SafeFileHandle constructor. Microsoft recommends letting
the system handle the releasing of this wrapped file handle.

Keep your code short when opening a file using a file handle. Call the FileStream. Close method as
soon as possible or use the using statement as in the Solution for this recipe. One reason for this
recommendation is that another object might also have this file open, and operating on that file
through both FileStream objects can corrupt the data in the file.

See Also

See the "DllImport Attribute," "File Class," and "FileStream Class" topics in the MSDN documentation.

Recipe 12.20. Writing to Multiple Output Files at One
Time

Problem

Any output that is written to one file must also be written to at least one other file. Essentially, you
want to end up with at least the original file and a duplicate file.

Solution

Create a class called MultiWriter with the ability to write to multiple files from a single WriteLine call.

To create a set of files, just pass the file paths you would like to use to the constructor like this:

 // Create a list of three filenames.
 string[] names = new string[3];
 for (int i=0;i<3;i++)
 {
 names[i] = Path.GetTempFileName();
 }
 MultiWriter multi = new MultiWriter(names);

Next, perform the writes and close the instance:

 multi.WriteLine("First Line");
 multi.WriteLine("Second Line");
 multi.WriteLine("Third Line");
 multi.Close();

Example 12-10 is the implementation of the MultiWriter class.

Example 12-10. MultiWriter class

class MultiWriter : IDisposable

{
 FileStream[] _streams;
 string [] _names;
 int _streamCount = 0;
 bool _disposed = false;

 public MultiWriter(string[] fileNames)
 {
 try
 {
 // Copy the names.
 _names = (string[])fileNames.Clone();
 // Set the number of streams.
 _streamCount = fileNames.Length;
 // Make the stream array.
 _streams = new FileStream[_streamCount];
 for(int i = 0; i < _streams.Length; i++)
 {
 // Create this file stream.
 _streams[i] = new FileStream(_names[i],
 FileMode.Create,
 FileAccess.ReadWrite,
 FileShare.None);
 }
 }
 catch(IOException ioe)
 {
 Console.WriteLine(ioe.ToString());
 }
 }

 public void WriteLine(string text)
 {
 // Add a newline.
 text += Environment.NewLine;
 // Get the bytes in unicode format…
 byte[] bytes = Encoding.ASCII.GetBytes(text);
 // Roll over the streams.
 for(int i = 0; i < _streams.Length; i++)
 {
 // Write the text.
 _streams[i].Write(bytes,0,bytes.Length);
 }
 }

 public void Close()
 {
 Dispose();
 }

 public void Dispose()
 {

 Dispose(true);
 // Prevent refinalizing.
 GC.SuppressFinalize(this);
 }

 protected void Dispose(bool disposing)
 {
 try
 {

 // Only close out once.
 if(_disposed == false && disposing == true)
 {
 // Close each stream.
 for(int i=0;i<_streams.Length;i++)
 {
 _streams[i].Close();
 }

 // Indicate we have done this already.
 _disposed = true;
 }
 }
 catch(IOException ioe)
 {
 Console.WriteLine(ioe);
 }
 }

 ~MultiWriter()
 {
 Dispose(false);
 }
}

Discussion

MultiWriter implements the IDisposable interface, which helps the users remember to close the files
this will create. Ultimately, if the user forgets to call Close (a thin wrapper around Dispose for
semantic convenience), the finalizer (~MultiWriter) will call Dispose anyway and close the files when
the garbage collector finalizes the instance. Note that in the public Dispose method, we call the
protected Dispose method, which closes the file streams we created internally and calls the GC.
SuppressFinalize method. This is an optimization to keep the garbage collector from having to call
our finalizer.

See Also

See the "FileStream Class," "GC Class," and "IDisposable Interface" topics in the MSDN
documentation.

Recipe 12.21. Launching and Interacting with Console
Utilities

Problem

You have an application that you need to automate and that takes input only from the standard input
stream. You need to drive this application via the commands it will take over the standard input
stream.

Solution

Say we needed to drive the cmd.exe application to display the current time with the TIME /T
command (it is possible to just run this command from the command line, but this way we can
demonstrate an alternative method to drive an application that responds to standard input). The way
to do this is to launch a process that is looking for input on the standard input stream. This is
accomplished via the Process class StartInfo property, which is an instance of a ProcessStartInfo
class. The Process.Start method will launch a new process, but the StartInfo property controls
many of the details of what sort of environment that process executes in.

First, make sure that the StartInfo.RedirectStandardInput property is set to true. This setting
notifies the process that it should read from standard input. Then set the StartInfo.UseShellExecute
property to false, because if you were to let the shell launch the process for you, it would prevent
you from redirecting standard input.

Once this is done, launch the process and write to its standard input stream as shown in Example 12-
11.

Example 12-11. RunProcessToReadStdIn method

public static void RunProcessToReadStdIn()
{
 Process application = new Process();
 // Run the command shell.
 application.StartInfo.FileName = @"cmd.exe";

 // Turn on standard extensions.
 application.StartInfo.Arguments = "/E:ON";

 application.StartInfo.RedirectStandardInput = true;

 application.StartInfo.UseShellExecute = false;

 // Start it up.
 application.Start();

 // Get stdin.
 StreamWriter input = application.StandardInput;
 // Run the command to display the time.
 input.WriteLine("TIME /T");

 // Stop the application we launched.
 input.WriteLine("exit");
}

Discussion

Once the input has been redirected, you can write into the standard input stream of the process by
reading the Process.StandardInput property, which returns a StreamWriter. Once you have that, you
can send things to the process via WriteLine calls, as shown earlier.

In order to use StandardInput, you have to specify true for the StartInfo property's
RedirectStandardInput property. Otherwise, reading the StandardInput property throws an
exception.

When UseShellExecute is false, you can use Process only to create executable processes. Normally
the Process class can be used to perform operations on the file, like printing a Microsoft Word
document. Another difference when UseShellExecute is set to false is that the working directory is
not used to find the executable, so you should be mindful to pass a full path or have the executable
on your PATH environment variable.

See Also

See the "Process Class," "ProcessStartInfo Class," "RedirectStandardInput Property," and
"UseShellExecute Property" topics in the MSDN documentation.

Recipe 12.22. Locking Subsections of a File

Problem

You need to read or write data from or to a section of a file, and you want to make sure that no other
processes or threads can access, modify, or delete the file until you have finished with it.

Solution

Locking out other processes from accessing your file while you are using it is accomplished through
the Lock method of the FileStream class. The following code creates a file from the fileName

parameter and writes two lines to it. The entire file is then locked using the Lock method. While the
file is locked, the code goes off and does some other processing; when this code returns, the file is
closed, thereby unlocking it:

 public static void CreateLockedFile(string fileName)
 {
 using (FileStream fileStream = new FileStream(fileName,
 FileMode.Create,
 FileAccess.ReadWrite,
 FileShare.ReadWrite))

 {
 using (StreamWriter streamWriter = new StreamWriter(fileStream))
 {
 streamWriter.WriteLine("The First Line");
 streamWriter.WriteLine("The Second Line");
 streamWriter.Flush();

 // Lock all of the file.
 fileStream.Lock(0, fileStream.Length);

 // Do some lengthy processing here…
 Thread.Sleep(1000);

 // Make sure we unlock the file.
 // If a process terminates with part of a file locked or closes a file
 // that has outstanding locks, the behavior is undefined which is MS
 // speak for bad things….
 fileStream.Unlock(0, fileStream.Length);

 streamWriter.WriteLine("The Third Line");

 }
 }
 }

Discussion

If a file is opened within your application and the FileShare parameter of the FileStream.Open call is
set to FileShare.ReadWrite or FileShare.Write, other code in your application can view or alter the
contents of the file while you are using it. To handle file access with more granularity, use the Lock
method of the FileStream object to prevent other code from overwriting all or a portion of your file.
Once you are done with the locked portion of your file, you can call the Unlock method on the
FileStream object to allow other code in your application to write data to that portion of the file.

To lock an entire file, use the following syntax:

 fileStream.Lock(0, fileStream.Length);

To lock a portion of a file, use the following syntax:

 fileStream.Lock(4, fileStream.Length - 4);

This line of code locks the entire file except for the first four characters. Note that you can lock an
entire file and still open it multiple times, as well as write to it.

If another thread is accessing this file, it is possible to see an IOException thrown during the call to
either the Write, Flush, or Close methods. For example, the following code is prone to such an
exception:

 public static void CreateLockedFile(string fileName)
 {

 using (FileStream fileStream = new FileStream(fileName,
 FileMode.Create,
 FileAccess.ReadWrite,
 FileShare.ReadWrite))

 {
 using (StreamWriter streamWriter = new StreamWriter(fileStream))
 {
 streamWriter.WriteLine("The First Line");
 streamWriter.WriteLine("The Second Line");
 streamWriter.Flush();

 // Lock all of the file.
 fileStream.Lock(0, fileStream.Length);

 using (StreamWriter streamWriter2 = new StreamWriter(
 new FileStream(fileName,
 FileMode.Open,
 FileAccess.Write,
 FileShare.ReadWrite)))
 {
 streamWriter2.Write("foo ");
 try
 {
 streamWriter2.Close(); // --> Exception occurs here!
 }
 catch
 {
 Console.WriteLine(
 "The streamWriter2.Close call generated an exception.");
 }
 streamWriter.WriteLine("The Third Line");
 }
 }
 }
 }

This code produces the following output:

 The streamWriter2.Close call generated an exception.

Even though streamWriter2, the second StreamWriter object, writes to a locked file, it is when the
streamWriter2.Close method is executed that the IOException is thrown.

If the code for this recipe were rewritten as follows:

 public static void CreateLockedFile(string fileName)
 {
 using (FileStream fileStream = new FileStream(fileName,
 FileMode.Create,

 FileAccess.ReadWrite,
 FileShare.ReadWrite))

 {
 using (StreamWriter streamWriter = new StreamWriter(fileStream))
 {
 streamWriter.WriteLine("The First Line");

 streamWriter.WriteLine("The Second Line");
 streamWriter.Flush();

 // Lock all of the file.
 fileStream.Lock(0, fileStream.Length);

 // Try to access the locked file…
 using (StreamWriter streamWriter2 = new StreamWriter(
 new FileStream(fileName,
 FileMode.Open,
 FileAccess.Write,
 FileShare.ReadWrite)))
 {
 streamWriter2.Write("foo");
 fileStream.Unlock(0, fileStream.Length);
 streamWriter2.Flush();
 }
 }
 }
 }

no exception is thrown. This is due to the fact that the code closed the FileStream object that initially
locked the entire file. This action also freed all of the locks on the file that this FileStream object was
holding onto. Since the streamWriter2. Write("Foo") method had written Foo to the stream's buffer
(but had not flushed it), the string Foo was still waiting to be flushed and written to the actual file.
Keep this situation in mind when interleaving the opening, locking, and closing of streams. Mistakes
in code sometimes manifest themselves a while after they are written. This leads to some bugs that
are more difficult to track down, so tread carefully when using file locking.

See Also

See the "StreamWriter Class" and "FileStream Class" topics in the MSDN documentation.

Recipe 12.23. Watching the Filesystem for Specific
Changes to One or More Files or Directories

Problem

You want to be notified when a file and/or directory is created, modified, or deleted. In addition, you
might need to be notified of any of these actions for a group of files and/or directories. This can aid in
alerting your application when a file, such as a logfile, grows to a certain size, after which it must be
truncated.

Solution

To be notified when an action takes place in the filesystem, you need to employ the
FileSystemWatcher class. The TestWatcher method shown in Example 12-12 sets up a
FileSystemWatcher object to watch the entire C:\ drive for any changes. The changes are limited to
any file with the extension .txt. At the end of this method, the events are wired up for each one of
the changes listed in the NotifyFilter property.

Example 12-12. Using the FileSystemWatcher class

public static void TestWatcher()
{
 using (FileSystemWatcher fsw = new FileSystemWatcher())
 {
 fsw.Path = @"c:\";
 fsw.Filter = @"*.txt";
 fsw.IncludeSubdirectories = true;

 fsw.NotifyFilter = NotifyFilters.FileName |
 NotifyFilters.Attributes |
 NotifyFilters.LastAccess |
 NotifyFilters.LastWrite |
 NotifyFilters.Security |
 NotifyFilters.Size |
 NotifyFilters.CreationTime|
 NotifyFilters.DirectoryName;

 fsw.Changed += new FileSystemEventHandler(OnChanged);
 fsw.Created += new FileSystemEventHandler(OnCreated);

 fsw.Deleted += new FileSystemEventHandler(OnDeleted);
 fsw.Renamed += new RenamedEventHandler(OnRenamed);
 fsw.Error += new ErrorEventHandler(OnError);

 fsw.EnableRaisingEvents = true;

 string file = @"c:\myfile.txt";
 string newfile = @"c:\mynewfile.txt";

 using (FileStream stream = File.Create(file))
 {
 // Use stream var…
 byte[] bytes = new byte[5] {32,33,34,35,36};
 stream.Write(bytes, 0, bytes.Length);
 }

 using (FileStream stream = File.Create(newfile))
 {
 // Use stream var…
 byte[] bytes = new byte[5] {32,33,34,35,36};
 stream.Write(bytes, 0, bytes.Length);
 }

 File.Delete(file);
 File.Delete(newfile);

 // Wait to allow the event handlers to catch up
 // to the events raised by the filesystem.
 Thread.Sleep(1000);
 }
}

The following code implements the event handlers to handle the events raised by the
FileSystemWatcher object, which we created and initialized in the TestWatcher method:

 public static void OnChanged(object source, FileSystemEventArgs e)
 {
 Console.WriteLine("File " + e.FullPath + " --> " + e.ChangeType);
 }

 public static void OnDeleted(object source, FileSystemEventArgs e)
 {
 Console.WriteLine("File " + e.FullPath + " --> " + e.ChangeType);
 }

 public static void OnCreated(object source, FileSystemEventArgs e)
 {
 Console.WriteLine("File " + e.FullPath + " --> " + e.ChangeType);

 }

 public static void OnRenamed(object source, RenamedEventArgs e)
 {
 Console.WriteLine("File " + e.OldFullPath + " (renamed to)--> " + e.FullPath);
 }

 public static void OnError(object source, ErrorEventArgs e)
 {
 Console.WriteLine("Error " + e.ToString());
 }

The output of the TestWatcher method is shown here:

 File c:\myfile.txt --> Created
 File c:\myfile.txt --> Changed
 File c:\mynewfile.txt --> Created
 File c:\mynewfile.txt --> Changed
 File c:\myfile.txt --> Deleted

Discussion

Watching for changes in the filesystem centers around the FileSystemWatcher class. This class can
watch for filesystem changes on the local machine, a networked drive, and even a remote machine.
The limitations of watching files on a remote machine are that the watching machine must be running
versions of Windows starting from Windows NT 4.0 through 2000, XP, Server 2003, and Windows
Vista. The one caveat for Windows NT 4.0 is that a Windows NT 4.0 machine cannot watch another
remote Windows NT 4.0 machine.

The FileSystemWatcher object cannot watch directories or files on a CD or DVD drive (including
rewritables) in the current versions of the Framework. This limitation might be revisited in a future
version. This object does watch files regardless of whether their hidden property is set.

To start watching a filesystem, we need to create an instance of the FileSystem-Watcher class. After
creating the FileSystemWatcher object, we can set its properties in order to focus our efforts in
watching a filesystem. Table 12-10 examines the various properties that can be set on this object.

Table 12-9. Properties that can be set on the FileSystemWatcher object

Property name Description

Path

A path to a directory to watch. The following are some examples of valid
values for this property:

 @"C:\temp"
 @"C:\Program Files"
 @"C:\Progra~1"
 @"..\..\temp"
 @"\\MyServer\temp"
 @"."
 @""

Note that if a directory is specified, changes to it, such as deleting it or
changing its attributes, are not watched. Only changes within the directory
are watched. Assigning an empty string forces the current directory to be
watched.

IncludeSubdirectories
Set to true to monitor all subdirectories as well, or false to watch only the
specified directory.

Filter

Specifies a specific subset of files to watch. The following are some
examples of valid values for this property:

 // Watch only .exe files
 @"*.exe"
 // Watch all files
 @"*"
 // Watch all files
 @""
 // Watch all files beginning // with the letter 'a'
 @"a*"
 // Watch all files with the // name "test" and // having a
 three-letter // extension starting // with the letter 'd'
 @"test.d??"

NotifyFilter

One or more NotifyFilters enumeration values. This enumeration is
marked with the FlagsAttribute, so each enumeration value can be ORed
together using the | operator. By default, this property is set to FileName,
DirectoryName, and LastWrite. The members of the NotifyFilters
enumeration are shown in Table 12-11.

EnableRaisingEvents

When this property is set to true, the FileSystemWatcherobject starts
watching the filesystem. To stop this object from watching the filesystem,
set this property to false.

Property name Description

InternalBufferSize

The internal buffer size in bytes for this object. It is used to store
information about the raised filesystem events. This buffer defaults in size
to 8192 bytes. See additional information about this property next.

The NotifyFilters enumeration values in Table 12-11 determine which events the FileSystemWatcher
object watches. For example, the OnChanged event can be raised when any of the following
NotifyFilters enumeration values are passed to the NotifyFilter property:

 NotifyFilters.Attributes
 NotifyFilters.Size
 NotifyFilters.LastAccess
 NotifyFilters.LastWrite
 NotifyFilters.Security
 NotifyFilters.CreationTime

Table 12-10. NotifyFilters enumeration value definitions

Enumeration name Description

Attributes Watches for changes to a file or directory's attributes.

CreationTime Watches for changes to a file or directory's creation time.

DirectoryName Watches for changes to a directory's name.

FileName Watches for changes to a file's name.

LastAccess Watches for changes to a file or directory's last-accessed property.

LastWrite Watches for changes to a file or directory's last-written-to property.

Security Watches for changes to a file or directory's security settings.

Size Watches for changes to a file or directory's size.

The OnRenamed event can be raised when any of the following NotifyFilters enumeration values are
passed to the NotifyFilter property:

 NotifyFilters.DirectoryName
 NotifyFilters.FileName

The OnCreated and OnDeleted events can be raised when any of the following NotifyFilters

InternalBufferSize

The internal buffer size in bytes for this object. It is used to store
information about the raised filesystem events. This buffer defaults in size
to 8192 bytes. See additional information about this property next.

The NotifyFilters enumeration values in Table 12-11 determine which events the FileSystemWatcher
object watches. For example, the OnChanged event can be raised when any of the following
NotifyFilters enumeration values are passed to the NotifyFilter property:

 NotifyFilters.Attributes
 NotifyFilters.Size
 NotifyFilters.LastAccess
 NotifyFilters.LastWrite
 NotifyFilters.Security
 NotifyFilters.CreationTime

Table 12-10. NotifyFilters enumeration value definitions

Enumeration name Description

Attributes Watches for changes to a file or directory's attributes.

CreationTime Watches for changes to a file or directory's creation time.

DirectoryName Watches for changes to a directory's name.

FileName Watches for changes to a file's name.

LastAccess Watches for changes to a file or directory's last-accessed property.

LastWrite Watches for changes to a file or directory's last-written-to property.

Security Watches for changes to a file or directory's security settings.

Size Watches for changes to a file or directory's size.

The OnRenamed event can be raised when any of the following NotifyFilters enumeration values are
passed to the NotifyFilter property:

 NotifyFilters.DirectoryName
 NotifyFilters.FileName

The OnCreated and OnDeleted events can be raised when any of the following NotifyFilters

enumeration values are passed to the NotifyFilter property:

 NotifyFilters.DirectoryName
 NotifyFilters.FileName

There are times when the FileSystemWatcher object cannot handle the number of raised events
coming from the filesystem. In this case, the Error event is raised, informing you that the buffer has
overflowed and specific events may have been lost. To reduce the likelihood of this problem, we can
limit the number of raised events by minimizing the number of events watched for in the
NotifyFilter property. Limiting the filter on the Filter property, however, will not affect the number
of raised events. To decrease the number of raised events further, you can set the
IncludeSubdirectories property to false. You might also consider increasing the InternalBufferSize
property. To estimate what size to increase this buffer to, Microsoft provides the following tips:

A 4k-byte buffer can keep track of changes for about 80 files in a directory.

Every event consumes 16 bytes of buffer space.

In addition to these 16 bytes, the filename is stored as Unicode characters.

If you are using Windows 2000, consider increasing/decreasing the buffer size by a multiple of
4k bytes. This is the same size as a default memory page.

If you do not know your operating system's page size, use the following code to increase the
FileSystemWatcher's buffer size:

 FileSystemWatcher fsw = new FileSystemWatcher();

 fsw.InternalBufferSize *= Multiplier;

where Multiplier is an integer used to increase the size of the buffer. This makes the most

efficient use of the buffer space.

You should increase the InternalBufferSize only as a last resort. This is an expensive operation,
because the buffer space is created in nonpaged memory. Nonpaged memory is memory available to
the process that will always be in physical memory. It is a limited resource and is shared across all
processes on the machine, so it is possible to affect the operation of other processes using this pool if
too much is requested.

In many cases, a single action performed by the user produces many filesystem events. Creating a
text file on the desktop yields the following changes:

 File c:\documents and settings\administrator\ntuser.dat.log --> Changed
 File c:\documents and settings\administrator\ntuser.dat.log --> Changed
 File c:\documents and settings\administrator\ntuser.dat.log --> Changed
 File c:\documents and settings\administrator\ntuser.dat.log --> Changed
 File c:\documents and settings\administrator\ntuser.dat.log --> Changed

 File c:\documents and settings\administrator\ntuser.dat.log --> Changed
 File c:\documents and settings\administrator\ntuser.dat.log --> Changed
 File c:\documents and settings\administrator\ntuser.dat.log --> Changed
 File c:\documents and settings\administrator\ntuser.dat --> Changed
 File c:\documents and settings\administrator\ntuser.dat --> Changed
 File c:\documents and settings\administrator\ntuser.dat --> Changed
 File c:\documents and settings\administrator\ntuser.dat --> Changed
 File c:\documents and settings\administrator\ntuser.dat.log --> Changed
 File c:\winnt\system32\config\software.log --> Changed
 File c:\winnt\system32\config\software.log --> Changed
 File c:\winnt\system32\config\software.log --> Changed
 File c:\winnt\system32\config\software --> Changed
 File c:\winnt\system32\config\software --> Changed
 File c:\winnt\system32\config\software --> Changed
 File c:\winnt\system32\config\software --> Changed
 File c:\winnt\system32\config\software.log --> Changed
 File c:\documents and settings\administrator\desktop\newdoc.txt Created

Much of this work is simply registry access. Not until the end of this listing is the text file actually
created.

Another example of multiple filesystem events firing for a single action is when this newly created
text file is opened by double-clicking on it. The following events are raised by this action:

 File c:\winnt\system32\notepad.exe --> Changed
 File c:\winnt\system32\notepad.exe --> Changed
 File c:\documents and settings\administrator\recent\newdoc.txt.lnk --> Deleted
 File c:\documents and settings\administrator\recent\newdoc.txt.lnk --> Created
 File c:\documents and settings\administrator\recent\newdoc.txt.lnk --> Changed
 File c:\winnt\system32\config\software.log --> Changed
 File c:\winnt\system32\shell32.dll --> Changed
 File c:\winnt\system32\shell32.dll --> Changed

Of course, your results may vary, especially if another application accesses the registry or another
file while the text file is being opened. Even more events may be raised if a background process or
service, such as a virus checker, is accessing the filesystem.

See Also

See the "FileSystemWatcher Class" and "NotifyFilters Enumeration" topics in the MSDN
documentation.

Recipe 12.24. Waiting for an Action to Occur in the
Filesystem

Problem

You need to be notified when a particular event occurs in the filesystem, such as the renaming of a
file or directory, the increasing or decreasing of the size of a file, the user deleting a file or directory,
the creation of a file or directory, or even the changing of a file or directory's attribute(s). However,
this notification must occur synchronously. In other words, the application cannot continue unless a
specific action occurs to a file or directory.

Solution

The WaitForChanged method of the FileSystemWatcher class can be called to wait synchronously for
an event notification. This is illustrated by the WaitForZipCreation method shown in Example 12-13,
which waits for an actionmore specifically, the action of creating the Backup.zip file somewhere on
the C:\ driveto be performed before proceeding on to the next line of code, which is the WriteLine
statement. Finally, we spin off a thread from the ThreadPool to execute the PauseAndCreateFile
method, which does the actual work of creating the file. By doing this in a background thread, we
allow the FileSystemWatcher to detect the file creation.

Example 12-13. WaitForZipCreation method

public void WaitForZipCreation(string path, string fileName)
{
 FileSystemWatcher fsw = null;
 try
 {
 using (fsw = new FileSystemWatcher())
 {
 string [] data = new string[] {path,fileName};
 fsw.Path = path; fsw.Filter = fileName;
 fsw.NotifyFilter = NotifyFilters.LastAccess | NotifyFilters.LastWrite
 | NotifyFilters.FileName | NotifyFilters.DirectoryName;

 // Run the code to generate the file we are looking for.
 // Normally you wouldn't do this as another source is creating
 // this file.
 if(ThreadPool.QueueUserWorkItem(new WaitCallback(PauseAndCreateFile),

 data))
 {
 // Block waiting for change.
 WaitForChangedResult result =
 fsw.WaitForChanged(WatcherChangeTypes.Created);
 Console.WriteLine("{0} created at {1}.",result.Name,path);
 }
 }
 }
 catch(Exception e)
 {
 Console.WriteLine(e.ToString());
 throw;
 }
 // Clean it up.
 File.Delete(fileName);
}

The code for PauseAndCreateFile is listed here. It is in the form of a WaitCallback to be used as an
argument to QueueUserWorkItem on the ThreadPool class. QueueUserWorkItem will run
PauseAndCreateFile on a thread from the .NET thread pool:

 void PauseAndCreateFile(Object stateInfo)
 {
 try
 {
 string[] data = (string[])stateInfo;
 // Wait a sec…
 Thread.Sleep(1000);
 // Create a file in the temp directory.
 string path = data[0];
 string file = path + data[1];
 Console.WriteLine("Creating {0} in PauseAndCreateFile…",file);
 using (FileStream fileStream = File.Create(file))
 {
 // Use fileStream var…
 }
 }
 catch(Exception e)
 {
 Console.WriteLine(e.ToString());
 throw;
 }
 }

Discussion

The WaitForChanged method returns a WaitForChangedResult structure that contains the properties
listed in Table 12-12.

Table 12-11. WaitForChangedResult properties

Property Description

ChangeType
Lists the type of change that occurred. This change is returned as a
WatcherChangeTypes enumeration. The values of this enumeration can possibly be
ORed together.

Name
Holds the name of the file or directory that was changed. If the file or directory was
renamed, this property returns the changed name. Its value is set to null if the
operation method call times out.

OldName
The original name of the modified file or directory. If this file or directory was not
renamed, this property will return the same value as the Name property. Its value is
set to null if the operation method call times out.

TimedOut
Holds a Boolean indicating whether the WaitForChangedmethod timed out (true) or not
(false).

The way we are currently making the WaitForChanged call could possibly block indefinitely. To prevent
you from hanging forever on the WaitForChanged call, you can specify a timeout value of 3 seconds as
follows:

 WaitForChangedResult result =
 fsw.WaitForChanged(WatcherChangeTypes.Created, 3000);

See Also

See the "FileSystemWatcher Class," "NotifyFilters Enumeration," and "Wait-ForChangedResult
Structure" topics in the MSDN documentation.

Recipe 12.25. Comparing Version Information of Two
Executable Modules

Problem

You need to programmatically compare the version information of two executable modules. An
executable module is a file that contains executable code such as an .exe or .dll file. The ability to
compare the version information of two executable modules can be very useful to an application in
situations such as:

Trying to determine if it has all of the "right" pieces present to execute

Deciding on an assembly to dynamically load through reflection

Looking for the newest version of a file or .dll from many files spread out in the local filesystem
or on a network

Solution

Use the CompareFileVersions method to compare executable module version information. This
method accepts two filenames, including their paths, as parameters. The version information of each
module is retrieved and compared. This file returns a FileComparison enumeration, defined as
follows:

 public enum FileComparison
 {
 Same = 0,
 Newer = 1, // File1 is newer than File2
 Older = 2, // File1 is older than File2
 Error = 3
 }

The code for the CompareFileVersions method is shown in Example 12-14.

Example 12-14. CompareFileVersions method

public static FileComparison CompareFileVersions(string file1, string file2)
{
 FileComparison retValue = FileComparison.Error;
 // Do both files exist?
 if (!File.Exists(file1))
 {
 Console.WriteLine(file1 + " does not exist");
 }
 else if (!File.Exists(file2))
 {
 Console.WriteLine(file2 + " does not exist");
 }
 else
 {
 // Get the version information.
 FileVersionInfo file1Version = FileVersionInfo.GetVersionInfo(file1);
 FileVersionInfo file2Version = FileVersionInfo.GetVersionInfo(file2);

 // Check major.
 if (file1Version.FileMajorPart > file2Version.FileMajorPart)
 {
 Console.WriteLine(file1 + " is a newer version");
 retValue = FileComparison.Newer;
 }
 else if (file1Version.FileMajorPart < file2Version.FileMajorPart)
 {
 Console.WriteLine(file2 + " is a newer version");
 retValue = FileComparison.Older;
 }
 else // Major version is equal, check next…
 {
 // Check minor.
 if (file1Version.FileMinorPart > file2Version.FileMinorPart)
 {
 Console.WriteLine(file1 + " is a newer version");
 retValue = FileComparison.Newer;
 }
 else if (file1Version.FileMinorPart < file2Version.FileMinorPart)
 {
 Console.WriteLine(file2 + " is a newer version");
 retValue = FileComparison.Older;
 }
 else // Minor version is equal, check next…
 {
 // Check build.
 if (file1Version.FileBuildPart > file2Version.FileBuildPart)
 {
 Console.WriteLine(file1 + " is a newer version");
 retValue = FileComparison.Newer;
 }
 else if (file1Version.FileBuildPart < file2Version.FileBuildPart)
 {

 Console.WriteLine(file2 + " is a newer version");
 retValue = FileComparison.Older;
 }
 else // Build version is equal, check next…
 {
 // Check private.
 if (file1Version.FilePrivatePart >
 file2Version.FilePrivatePart)
 {
 Console.WriteLine(file1 + " is a newer version");
 retValue = FileComparison.Newer;
 }
 else if (file1Version.FilePrivatePart <
 file2Version.FilePrivatePart)
 {
 Console.WriteLine(file2 + " is a newer version");
 retValue = FileComparison.Older;
 }
 else
 {
 // Identical versions
 Console.WriteLine("The files have the same version");
 retValue = FileComparison.Same;
 }
 }
 }
 }
 }
 return retValue;
}

Discussion

Not all executable modules have version information. If you load a module with no version
information using the FileVersionInfo class, you will not provoke an exception, nor will you get null
back for the object reference. Instead, you will get a valid FileVersionInfo object with all data
members in their initial state (which is null for .NET objects).

Assemblies actually have two sets of version information: the version information available in the
assembly manifest and the PE (Portable Executable) file version information. FileVersionInfo reads
the assembly manifest version information.

The first action this method takes is to determine whether the two files passed in to the file1 and
file2 parameters actually exist. If so, the static GetVersionInfo method of the FileVersionInfo class

is called to get version information for the two files.

The CompareFileVersions method attempts to compare each portion of the file's version number
using the following properties of the FileVersionInfo object returned by GetVersionInfo:

FileMajorPart

The first 2 bytes of the version number

FileMinorPart

The second 2 bytes of the version number

FileBuildPart

The third 2 bytes of the version number

FilePrivatePart

The final 2 bytes of the version number

The full version number is comprised of these four parts, making up an 8-byte number representing
the file's version number.

The CompareFileVersions method first compares the FileMajorPart version information of the two
files. If these are equal, the FileMinorPart version information of the two files is compared. This
continues through the FileBuildPart and finally the FilePrivatePart version information values. If
all four parts are equal, the files are considered to have the same version number. If either file is
found to have a higher number than the other file, it is considered to be the latest version.

See Also

See the "FileVersionInfo Class" topic in the MSDN documentation.

Recipe 12.26. Querying Information for All Drives on a
System

Problem

Your application needs to know if a drive (HDD, CD drive, DVD drive, etc.) is available and ready to
be written to and/or read from. Additionally, it would be nice to know if you have enough available
free space on the drive to write information to.

Solution

Use the various properties in the DriveInfo class as shown here:

 public static void DisplayAllDriveInfo()
 {
 foreach (DriveInfo drive in DriveInfo.GetDrives())
 {
 if (drive.IsReady)
 {
 Console.WriteLine("Drive " + drive.Name + " is ready.");
 Console.WriteLine("AvailableFreeSpace: " + drive.AvailableFreeSpace);
 Console.WriteLine("DriveFormat: " + drive.DriveFormat);
 Console.WriteLine("DriveType: " + drive.DriveType);
 Console.WriteLine("Name: " + drive.Name);
 Console.WriteLine("RootDirectory.FullName: " +
 drive.RootDirectory.FullName);
 Console.WriteLine("TotalFreeSpace: " + drive.TotalFreeSpace);
 Console.WriteLine("TotalSize: " + drive.TotalSize);
 Console.WriteLine("VolumeLabel: " + drive.VolumeLabel);
 }
 else
 {
 Console.WriteLine("Drive " + drive.Name + " is not ready.");
 }
 }
}

This code will display something like the following, though of course each system is different and the
results will vary:

 Drive C:\ is ready.
 AvailableFreeSpace: 143210795008
 DriveFormat: NTFS
 DriveType: Fixed
 Name: C:\
 RootDirectory.FullName: C:\
 TotalFreeSpace: 143210795008
 TotalSize: 159989886976
 VolumeLabel: Vol1

 Drive D:\ is ready.
 AvailableFreeSpace: 0
 DriveFormat: UDF
 DriveType: CDRom
 Name: D:\
 RootDirectory.FullName: D:\
 TotalFreeSpace: 0
 TotalSize: 3305965568
 VolumeLabel: Vol2

 Drive E:\ is ready.
 AvailableFreeSpace: 4649025536
 DriveFormat: UDF
 DriveType: CDRom
 Name: E:\
 RootDirectory.FullName: E:\
 TotalFreeSpace: 4649025536
 TotalSize: 4691197952
 VolumeLabel: Vol3

 Drive F:\ is not ready.

Of particular interest are the IsReady and AvailableFreeSpace properties. The IsReady property
determines if the drive is ready to be queried, written to, or read from. The AvailableFreeSpace
property returns the free space on that drive in bytes.

Discussion

The DriveInfo class has been added to the .NET Framework to allow you to easily query information
on one particular drive or on all drives in the system. To query the information from a single drive
you would use the code in Example 12-15.

Example 12-15. Getting information from a specific drive

DriveInfo drive = new DriveInfo("D");
if (drive.IsReady)
 Console.WriteLine("The space available on the D:\\ drive: " +
 drive.AvailableFreeSpace);
else
 Console.WriteLine("Drive D:\\ is not ready.");

Notice that only the drive letter is passed in to the Driveinfo constructor. This drive letter can be
either uppercase or lowercaseit does not matter. The next thing you will notice with the code in
Example 12-15 and the code in the Solution to this recipe is that the IsReady property is always
tested for true before either using the drive or querying its properties. If we did not test this property
for true and for some reason the drive was not ready (e.g., a CD was not in the drive at that time), a
System.IO.IOException would be returned stating that "The device is not ready." To prevent this
exception from being thrown (since it is an expensive operation), simply test the IsReady property to
determine if it is true or not.

For the Solution to this recipe, the DriveInfo constructor was not used. Instead, the static GeTDrives
method of the DriveInfo class was used to return an array of DriveInfo objects. Each DriveInfo
object in this array corresponds to one drive on the current system.

The DriveType property of the DriveInfo class returns an enumeration value from the DriveType
enumeration (yes, they have the same name, unfortunately). This enumeration value identifies what
type of drive the current DriveInfo object represents. Table 12-13 identifies the various values of the
DriveType enumeration.

Table 12-12. DriveType enumeration values

Enum value Description

CDRom This can be a CD-ROM, CD writer, DVD-ROM, or DVD writer drive.

Fixed
This is the fixed drive such as an HDD. Note that USB HDDs fall into this
category.

Network A network drive.

NoRootDirectory No root directory was found on this drive.

Ram A RAM disk.

Removable A removable storage device.

Unknown Some other type of drive than those listed here.

In the DriveInfo class there are two very similar properties, AvailableFreeSpace and
TotalFreeSpace. Each of these properties will return the same value in most cases. However,
AvailableFreeSpace also takes into account any disk-quota information for a particular drive. Disk-

quota information can be found by right-clicking a drive in Windows Explorer and selecting the
Properties pop-up menu item. This displays the Properties page for this drive. On this Properties
page, click on the Quota tab to view the quota information for that drive. If the Enable Quota
Management checkbox is unchecked, then disk-quota management is disabled, and both the
AvailableFreeSpace and TotalFreeSpace properties should be equal.

See Also

See the "DriveInfo Class" topic in the MSDN documentation.

Recipe 12.27. Encrypting/Decrypting an Existing File

Problem

You need a simple way to encrypt an existing file on the filesystem so that only the account used to
encrypt the file can decrypt it.

Solution

Use the Decrypt and Encrypt methods of the File class:

 public static void EncryptFile(string fileName)
 {
 File.Encrypt(fileName);
 }

 public static void DecryptFile(string fileName)
 {
 File.Decrypt(fileName);
 }

Discussion

Both the Encrypt and Decrypt methods of the File class accept a single parameter, a file path/name,
and return a void. The filename parameter must be a valid path and name. The result of calling the
Encrypt method is an encrypted file that can be unencrypted only by the user who encrypted it in the
first place. Calling the Decrypt method decrypts the file.

The Encrypt method is a wrapper around the EncryptFile method in the unmanaged Advapi32.dll,
and the Decrypt method is a wrapper around the DecryptFile method, also in Advapi32.dll. These
underlying methods require exclusive access to the file that is being encrypted/decrypted. This means
that no other process may be currently accessing this file when the Encrypt/Decrypt methods are
called. Also be aware that the filesystem must be NTFS or a NotSupportedException will be thrown by
the Encrypt/Decrypt method. If the operating system is not Microsoft Windows NT or later, a
PlatformNotSupportedException will be thrown and the operation will fail.

Note that before encrypting or decrypting a file, the method will first determine if the file is
compressed. If so, the file is decompressed before the encryption/decryption operation can proceed.
If you are encrypting/decrypting many compressed files (or files on a compressed disk) you should

be aware that this will take more time than if the files are uncompressed.

See Also

See the "File Class" topic in the MSDN documentation.

Recipe 12.28. Compressing and Decompressing Your
Files

Problem

You need a way to compress the data you write to a file using one of the stream-based classes. In
addition, you need a way to decompress the data from this compressed file when you read it back in.

Solution

Use the System.IO.Compression.DeflateStream or the System.IO.Compression. GZipStream classes to
read and write compressed data to a file. The CompressFile, DeCompressFile, and DeCompress
methods shown in Example 12-16 demonstrate how to use these classes to compress and expand
data on the fly.

Example 12-16. The CompressFile, DeCompressFile, and DeCompress
methods

public static void CompressFile(Stream strm, byte[] data,
 CompressionType compressionType)
{
 // Determine how to compress the file.
 Stream deflate = null;
 if (compressionType == CompressionType.Deflate)
 {
 using (deflate = new DeflateStream(strm, CompressionMode.Compress))
 {
 // Write compressed data to the file.
 deflate.Write(data, 0, data.Length);
 }
 }
 else
 {
 using (deflate = new GZipStream(strm, CompressionMode.Compress))
 {
 // Write compressed data to the file.
 deflate.Write(data, 0, data.Length);
 }
 }

}

public static byte[] DeCompressFile(Stream strm,
 CompressionType compressionType)
{
 // Determine how to decompress the file.
 Stream reInflate = null;

 if (compressionType == CompressionType.Deflate)
 {
 using (reInflate = new DeflateStream(strm, CompressionMode.Decompress))
 {
 return (Decompress(reInflate));
 }
 }
 else
 {
 using (reInflate = new GZipStream(strm, CompressionMode.Decompress))
 {
 return (Decompress(reInflate));
 }
 }
}

public static byte[] Decompress(Stream reInflate)
{
 List<byte> data = new List<byte>();
 int retVal = 0;

 // Read all data in and uncompress it.
 while (retVal >= 0)
 {
 retVal = reInflate.ReadByte();
 if (retVal != -1)
 data.Add((byte)retVal);
 }

 return (data.ToArray());
}

The CompressionType enumeration is defined as follows:

 public enum CompressionType
 {
 Deflate,
 GZip
 }

Discussion

The CompressFile method accepts a Stream object, data in the form of a byte array, and a
CompressionType enumeration value indicating which type of compression algorithm to use (Deflate or
GZip). This method produces a file containing the compressed data.

The DeCompressFile method accepts a Stream object and a CompressionType enumeration value
indicating which type of decompression algorithm to use (Deflate or GZip). This method calls the
Decompress method, which reads from a compressed file and places the data, uncompressed and in
the form of bytes, into a generic List<byte> collection object. This collection object is then converted
to a byte[] and returned with the data to the calling method.

The TestCompressNewFile method shown in Example 12-17 exercises the CompressFile and
DeCompressFile methods defined in the Solution section of this recipe. It also uses another method,
NormalFile (shown first), that creates an uncompressed file to show how the file sizes differ.

Example 12-17. Using the CompressFile and DecompressFile methods

// Method to write out an uncompressed file to compare sizes
public static void NormalFile(Stream strm, byte[] data)
{

 BinaryWriter normal = new BinaryWriter(strm);
 normal.Write(data);
 normal.Close();
}

public static void TestCompressNewFile()
{
 byte[] data = new byte[10000000];
 for (int i = 0; i < 10000000; i++)
 data[i] = 254;

 using (FileStream fs = new FileStream(@"C:\NewNormalFile.txt",
 FileMode.OpenOrCreate, FileAccess.ReadWrite, FileShare.None))
 NormalFile(fs, data);

 using (FileStream fs = new FileStream(@"C:\NewCompressedFile.txt",
 FileMode.OpenOrCreate, FileAccess.ReadWrite, FileShare.None))
 CompressFile(fs, data, CompressionType.Deflate);

 using (FileStream fs = new FileStream(@"C:\NewCompressedFile.txt",
 FileMode.OpenOrCreate, FileAccess.ReadWrite, FileShare.None))
 {
 byte[] retData = DeCompressFile(fs, CompressionType.Deflate);
 Console.WriteLine("Deflated file bytes count == " + retData.Length);

 }

 using (FileStream fs = new FileStream(@"C:\NewGZCompressedFile.txt",
 FileMode.OpenOrCreate, FileAccess.ReadWrite, FileShare.None))
 CompressFile(fs, data, CompressionType.GZip);

 using (FileStream fs = new FileStream(@"C:\NewGzCompressedFile.txt",
 FileMode.OpenOrCreate, FileAccess.ReadWrite, FileShare.None))
 {
 byte[] retData = DeCompressFile(fs, CompressionType.GZip);
 Console.WriteLine("GZipped file bytes count == " + retData.Length);
 }
}

When this test code is run, we get three files with different sizes. The first file, NewNormalFile.txt, is
10,000,000 bytes in size. The NewCompressedFile.txt file is 85,095 bytes. The final file,
NewGzCompressedFile.txt file is 85,113 bytes. As you can see, there is not much difference between
the sizes for the files compressed with the DeflateStream class and the GZipStream class. The reason
for this is that both compression classes use the same compression/decompression algorithm (i.e.,
the lossless Deflate algorithm as described in the RFC 1951: Deflate 1.3 specification).

You may be wondering why you would pick one class over the other if they use the same algorithm.
There is one good reason; the GZipStream class adds a CRC check to the file to determine if it has
been corrupted. If the file has been corrupted, an InvalidDataException is thrown with the statement
"The CRC in GZip footer does not match the CRC calculated from the decompressed data." By
catching this exception, you can determine if your data is corrupted.

See Also

See the "DeflateStream Class" and "GZipStream" topics in the MSDN documentation.

Chapter 13. Reflection

Introduction

Recipe 13.1. Listing Referenced Assemblies

Recipe 13.2. Listing Exported Types

Recipe 13.3. Finding Overridden Methods

Recipe 13.4. Finding Members in an Assembly

Recipe 13.5. Finding Members Within an Interface

Recipe 13.6. Determining and Obtaining Nested Types Within an Assembly

Recipe 13.7. Displaying the Inheritance Hierarchy for a Type

Recipe 13.8. Finding the Subclasses of a Type

Recipe 13.9. Finding All Serializable Types Within an Assembly

Recipe 13.10. Filtering Output When Obtaining Members

Recipe 13.11. Dynamically Invoking Members

Recipe 13.12. Providing Guidance to Obfuscators

Recipe 13.13. Determining if a Type or Method Is Generic

Recipe 13.14. Reading Manifest Resources Programmatically

Recipe 13.15. Accessing Local Variable Information

Recipe 13.16. Creating a Generic Type

Introduction

Reflection is the mechanism provided by the .NET Framework to allow you to inspect how a program
is constructed. Using reflection, you can obtain information such as the name of an assembly and
what other assemblies a given assembly imports. You can even dynamically call methods on a type in
a given assembly. Reflection also allows you to create code dynamically and compile it to an in-
memory assembly or to build a symbol table of type entries in an assembly.

Reflection is a very powerful feature of the Framework and, as such, is guarded by the runtime. The
ReflectionPermission must be granted to assemblies that are going to access the protected or
private members of a type. If you are going to access only the public members of a public type, you
will not need to be granted the ReflectionPermission. Code Access Security has only two permission
sets that give all reflection access by default: FullTrust and Everything. The LocalIntranet
permission set allows for the ReflectionEmit privilege that allows for emitting metadata and creating
assemblies or the MemberAccess privilege for performing dynamic invocation of methods on types in
assemblies.

In this chapter, you will see how you can use reflection to dynamically invoke members on types,
figure out all of the assemblies a given assembly is dependent on, and inspect assemblies for
different types of information. Reflection is a great way to understand how things are put together in
.NET; this chapter provides a starting point.

Recipe 13.1. Listing Referenced Assemblies

Problem

You need to determine each assembly imported by a particular assembly. This information can show you
if this assembly is using one or more of your assemblies or if your assembly is using another specific
assembly.

Solution

Use the Assembly.GetReferencedAssemblies method, as shown in Example 13-1 , to obtain the imported
assemblies of an assembly.

Example 13-1. Using the Assembly.GetReferencedAssemblies method

using System;
using System.Reflection;
using System.Collections.Specialized;
public static string[] BuildDependentAssemblyList(string path,
 List<string> assemblies)
{
 // Maintain a list of assemblies the original one needs.
 if (assemblies == null)
 assemblies = new List<string>();

 // Have we already seen this one?
 if (assemblies.Contains(path) == true)
 return (new string[0]);
 Assembly asm = null;
 // Look for common path delimiters in the string
 // to see if it is a name or a path.
 if ((path.IndexOf(Path.DirectorySeparatorChar, 0, path.Length) != -1) ||
 (path.IndexOf(Path.AltDirectorySeparatorChar, 0, path.Length) != -1))
 {
 // Load the assembly from a path.
 asm = Assembly.ReflectionOnlyLoadFrom(path);
 }
 else
 {
 // Try as assembly name.
 asm = Assembly.ReflectionOnlyLoad(path);
 }

 // Add the assembly to the list.
 if (asm != null)
 {
 assemblies.Add(path);
 }
 // Get the referenced assemblies.
 AssemblyName[] imports = asm.GetReferencedAssemblies();

 // Iterate.
 foreach (AssemblyName asmName in imports)
 {
 // Now recursively call this assembly to get the new modules
 // it references.
 BuildDependentAssemblyList(asmName.FullName, assemblies);
 }

 string[] temp = new string[assemblies.Count];
 assemblies.CopyTo(temp, 0);
 return (temp);
}

This code returns a string[] containing the original assembly, all imported assemblies, and the
dependent assemblies of the imported assemblies.

If you ran this method against the assembly C:\CSharpRecipes\bin\Debug\CSharpRecipes.exe , you'd get
the following dependency tree:

 C:\CSharpRecipes\bin\Debug\CSharpRecipes.exe

 mscorlib, Version=2.0.3600.0, Culture=neutral, PublicKeyToken=b77a5c561934e089

 System, Version=2.0.3600.0, Culture=neutral, PublicKeyToken=b77a5c561934e089

 System.Configuration, Version=2.0.3600.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a

 System.Xml, Version=2.0.3600.0, Culture=neutral, PublicKeyToken=b77a5c561934e089

 System.Security, Version=2.0.3600.0, Culture=neutral, PublicKeyToken=b03f5f7f11d50a3a

 System.Web.RegularExpressions, Version=2.0.3600.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a

 System.Runtime.Serialization.Formatters.Soap, Version=2.0.3600.0, Culture=neutral,
 PublicKeyToken=b03f5f7f11d50a3a

Discussion

Obtaining the imported types in an assembly is useful in determining what assemblies another assembly
is using. This knowledge can greatly aid in learning to use a new assembly. This method can also help
determine dependencies between assemblies for shipping purposes.

The GetreferencedAssemblies method of the System. Reflection.Assembly class obtains a list of all the
imported assemblies. This method accepts no parameters and returns an array of AssemblyName objects
instead of an array of Types . The AssemblyName type is made up of members that allow access to the
information about an assembly, such as the name, version, culture information, public/private key pairs,
and other data.

Note that this method does not account for assemblies loaded using the Assembly. ReflectionOnlyLoad*
methods, as it is inspecting for only compile-time references.

When loading assemblies for inspection using reflection, you should use the
ReflectionOnlyLoad* methods. These methods do not allow you to execute code
from the loaded assembly.

See Also

See the "Assembly Class" topic in the MSDN documentation.

Recipe 13.2. Listing Exported Types

Problem

You need to obtain all the exported types of an assembly. This information allows you to see what
types are usable from outside of this assembly.

Solution

Use Assembly.GetExportedTypes to obtain the exported types of an assembly:

 using System;
 using System.Reflection;

 public static void ListExportedTypes(string path)
 {
 // Load the assembly.
 Assembly asm = Assembly. ReflectionOnlyLoadFrom(path);
 Console.WriteLine("Assembly: {0} imports:",path);
 // Get the exported types.
 Type[] types = asm.GetExportedTypes();
 foreach (Type t in types)
 {
 Console.WriteLine ("\tExported Type: {0}",t.FullName);
 }
 }

The previous example will display all exported, or public, types:

 Assembly: C:\C#Cookbook\CSharpRecipes.exe imports:
 Exported Type: CSharpRecipes.ClassAndStructs
 Exported Type: CSharpRecipes.Line
 Exported Type: CSharpRecipes.Square
 Exported Type: CSharpRecipes.CompareHeight
 Exported Type: CSharpRecipes.Foo
 Exported Type: CSharpRecipes.ObjState

Discussion

Obtaining the exported types in an assembly is useful when determining the public interface to that
assembly. This ability can greatly aid in learning to use a new assembly or can aid the developer of
that assembly in determining all access points to the assembly to verify that they are adequately
secure from malicious code. To get these exported types, use the GetExportedTypes method on the
System.Reflection.Assembly type. The exported types consist of all of the types that are publicly
accessible from outside of the assembly. A type may have public accessibility but not be accessible
from outside of the assembly. Take, for example, the following code:

 public class Outer
 {
 public class Inner {}
 private class SecretInner {}
 }

The exported types are Outer and Outer.Inner; the type SecretInner is not exposed to the world
outside of this assembly. If you change the Outer accessibility from public to private, you now have
no types accessible to the outside worldthe Inner class access level is downgraded because of the
private on the Outer class.

See Also

See the "Assembly Class" topic in the MSDN documentation.

Recipe 13.3. Finding Overridden Methods

Problem

You have an inheritance hierarchy that is several levels deep and has many virtual and overridden
methods. You need a list of the base class method(s) that are overridden by methods within a
derived class.

Solution

Use the MethodInfo.GetBaseDefinition method to determine which method is overridden in what
base class. The overloaded FindMethodOverrides method shown in Example 13-2 examines all of the
public instance methods in a class and displays which methods override their respective base class
methods. This method also determines which base class the overridden method is in. This overloaded
method accepts an assembly path and name along with a type name in which to find overriding
methods. Note that the typeName parameter must be the fully qualified type name (i.e., the complete

namespace hierarchy, followed by any containing classes, followed by the type name you are
querying).

Example 13-2. Overloaded FindMethodOverrides methods

public class ReflectionUtils
{
 public static void FindMethodOverrides(string asmPath, string typeName)
 {
 Assembly asm = Assembly.ReflectionOnlyLoadFrom(asmPath);
 Type type = asm.GetType(typeName);
 FindMethodOverrides(type);
 }

 public static void FindMethodOverrides(Type type)
 {
 Console.WriteLine("---[" + type.FullName + "]---");

 // Get the methods defined by this type.
 MethodInfo[] methods = type.GetMethods(BindingFlags.Instance |
 BindingFlags.NonPublic | BindingFlags.Public |
 BindingFlags.DeclaredOnly);
 foreach (MethodInfo method in methods)
 {

 Console.WriteLine("Current Method: " + method.ToString());
 // Get the base method.
 MethodInfo baseDef = method.GetBaseDefinition();
 if (baseDef != method)
 {
 Console.WriteLine("Base Type FullName: " +
 baseDef.DeclaringType.FullName);
 Console.WriteLine("Base Method: " + baseDef.ToString());
 // List the types of this method.
 Type[] paramTypes = new Type[method.GetParameters().Length];
 int counter = 0;
 foreach (ParameterInfo param in method.GetParameters())
 {
 paramTypes[counter] = param.ParameterType;
 Console.WriteLine("\tParam {0}: {1}",
 param.Name,param.ParameterType.ToString());
 counter++;
 }
 }
 Console.WriteLine();
 }
 }
}

The second overloaded method allows you to determine whether a particular method overrides a
method in its base class. It accepts the same two arguments as the first overloaded method, along
with the full method name and an array of Type objects representing its parameter types:

 public class ReflectionUtils
 {
 public static void FindMethodOverrides(string asmPath, string typeName,
 string methodName, Type[] paramTypes)
 {
 Console.WriteLine("For [Type] Method: [" + typeName + "] " + methodName);

 Assembly asm = Assembly.ReflectionOnlyLoadFrom(asmPath);
 Type type = asm.GetType(typeName,true,true);
 MethodInfo method = type.GetMethod(methodName, paramTypes);
 FindMethodOverrides(method, paramTypes);
 }
 public static void FindMethodOverrides(MethodInfo method,
 Type[] paramTypes)
 {
 if (method != null)
 {
 MethodInfo baseDef = method.GetBaseDefinition();
 if (baseDef != method)
 {

 Console.WriteLine("Base Type FullName: " +
 baseDef.DeclaringType.FullName);
 Console.WriteLine("Base Method: " + baseDef.ToString());
 foreach (ParameterInfo param in baseDef.GetParameters())
 {
 // List the params so we can see which one we got.
 Console.WriteLine("\tParam {0}: {1}",
 param.Name,param.ParameterType.ToString());
 }
 // We found the one we were looking for.
 Console.WriteLine("Found Match!");
 }
 Console.WriteLine();
 }
 }

The following code shows how to use each of these overloaded methods:

 public static void FindOverriddenMethods()
 {
 Process current = Process.GetCurrentProcess();
 // Get the path of the current module.
 string path = current.MainModule.FileName;

 // Try the easier one.
 ReflectionUtils.FindMethodOverrides.
 (path,"CSharpRecipes.ReflectionUtils+DerivedOverrides");

 // Try the signature FindMethodOverrides.
 ReflectionUtils.FindMethodOverrides(path,
 "CSharpRecipes.ReflectionUtils+DerivedOverrides",
 "Foo",
 new Type[3] {typeof(long), typeof(double), typeof(byte[])});
 }

The output of this method, using the BaseOverrides and DerivedOverrides classes defined afterward,
is shown here:

 ---[CSharpRecipes.ReflectionUtils+DerivedOverrides]---
 Current Method: Void Foo(System.String, Int32)
 Base Type FullName: CSharpRecipes.ReflectionUtils+BaseOverrides
 Base Method: Void Foo(System.String, Int32)
 Param str: System.String
 Param i: System.Int32

 Current Method: Void Foo(Int64, Double, Byte[])

 Base Type FullName: CSharpRecipes.ReflectionUtils+BaseOverrides
 Base Method: Void Foo(Int64, Double, Byte[])
 Param l: System.Int64
 Param d: System.Double
 Param bytes: System.Byte[]

 For [Type] Method: [CSharpRecipes.ReflectionUtils+DerivedOverrides] Foo
 Base Type FullName: CSharpRecipes.ReflectionUtils+BaseOverrides
 Base Method: Void Foo(Int64, Double, Byte[])
 Param l: System.Int64
 Param d: System.Double
 Param bytes: System.Byte[]
 Found Match!

In the usage code, you get the path to the test code assembly (CSharpRecipes.exe) via the Process
class. You then use that to find a class that has been defined in the ReflectionUtils class, called
DerivedOverrides. DerivedOverrides derives from BaseOverrides, and they are both shown here:

 public abstract class BaseOverrides
 {
 public abstract void Foo(string str, int i);
 public abstract void Foo(long l, double d, byte[] bytes);
 }

 public class DerivedOverrides : BaseOverrides
 {
 public override void Foo(string str, int i)
 {
 }

 public override void Foo(long l, double d, byte[] bytes)
 {
 }
 }

The first method passes in only the assembly path and the fully qualified type name. This method
returns every overridden method for each method that it finds in the Reflection.DerivedOverrides
type. If you want to display all overriding methods and their corresponding overridden methods, you
can remove the BindingFlags. DeclaredOnly binding enumeration from the GetMethods method call:

 MethodInfo[] methods = asmType.GetMethods(BindingFlags.Instance |
 BindingFlags.NonPublic | BindingFlags.Public);

This change now produces the following output using the same classes, BaseOverrides and

DerivedOverrides:

 ---[CSharpRecipes.ReflectionUtils+DerivedOverrides]---
 Current Method: Void Foo(System.String, Int32)
 Base Type FullName: CSharpRecipes.ReflectionUtils+BaseOverrides
 Base Method: Void Foo(System.String, Int32)
 Param str: System.String
 Param i: System.Int32

 Current Method: Void Foo(Int64, Double, Byte[])
 Base Type FullName: CSharpRecipes.ReflectionUtils+BaseOverrides
 Base Method: Void Foo(Int64, Double, Byte[])
 Param l: System.Int64
 Param d: System.Double
 Param bytes: System.Byte[]

 Current Method: System.Type GetType()

 Current Method: System.Object MemberwiseClone()

 Current Method: System.String ToString()
 Base Type FullName: System.Object
 Base Method: System.String ToString()

 Current Method: Boolean Equals(System.Object)
 Base Type FullName: System.Object
 Base Method: Boolean Equals(System.Object)
 Param obj: System.Object

 Current Method: Int32 GetHashCode()
 Base Type FullName: System.Object
 Base Method: Int32 GetHashCode()

 Current Method: Void Finalize()
 Base Type FullName: System.Object
 Base Method: Void Finalize()

 For [Type] Method: [CSharpRecipes.ReflectionUtils+DerivedOverrides] Foo
 Base Type FullName: CSharpRecipes.ReflectionUtils+BaseOverrides
 Base Method: Void Foo(Int64, Double, Byte[])
 Param l: System.Int64
 Param d: System.Double
 Param bytes: System.Byte[]
 Found Match!

The second method passes in the assembly path, the fully qualified type name, a method name, and
the parameters for this method to find the override that specifically matches the signature based on
the parameters. In this case, the parameter types of method Foo are long, double, and byte[]. This
method displays the method that CSharpRecipes.ReflectionUtils+DerivedOverrides.Foo overrides.

The + in the type name represents a nested class.

Discussion

Determining which methods override their base class methods would be a tedious chore if it were not
for the GetBaseDefinition method of the System.Reflection.MethodInfo type. This method takes no
parameters and returns a MethodInfo object that corresponds to the overridden method in the base
class. If this method is used on a MethodInfo object representing a method that is not being
overriddenas is the case with a virtual or abstract methodGetBaseDefinition returns the original
MethodInfo object.

The code for the FindMethodOverrides methods first loads the assembly using the asmPath parameter
and then gets the type that is specified by the typeName parameter.

Once the type is located, its Type object's GetMethod or GetMethods method is called. GetMethod is
used when both the method name and its parameter array are passed in to FindMethodOverrides;
otherwise, GetMethods is used. If the method is correctly located and its MethodInfo object obtained,
the GetBaseDefinition method is called on that MethodInfo object to get the first overridden method
in the nearest base class in the inheritance hierarchy. This MethodInfo type is compared to the
MethodInfo type that the GetBaseDefinition method was called on. If these two objects are the
same, it means that there were no overridden methods in any base classes; therefore, nothing is
displayed. This code will display only the overridden methods; if no methods are overridden, then
nothing is displayed.

See Also

See Recipe 13.10; see the "Process Class," "Assembly Class," "MethodInfo Class," and
"ParameterInfo Class" topics in the MSDN documentation.

Recipe 13.4. Finding Members in an Assembly

Problem

You need to find one or more members of types in an assembly with a specific name or containing
part of a name. This partial name could be, for example, any member starting with the letter A or the
string "Test."

Solution

Use the Type.GetMember method, which returns all members that match a specified criteria:

 public static void FindMemberInAssembly(string asmPath, string memberName)
 {
 Assembly asm = Assembly.LoadFrom(asmPath);
 foreach(Type type in asm.GetTypes())
 {
 // Check for static ones first.
 MemberInfo[] members = type.GetMember(memberName, MemberTypes.All,
 BindingFlags.Public | BindingFlags.NonPublic |
 BindingFlags.Static | BindingFlags.Instance);

 foreach (MemberInfo member in members)
 {
 Console.WriteLine("Found " + member.MemberType + ": " +
 member.ToString() + " IN " +
 member.DeclaringType.FullName);
 }
 }
 }

The memberName argument can contain the wildcard character * to indicate any character or

characters. So to find all methods starting with the string "Test", pass the string "Test*" to the
memberName parameter. Note that the memberName argument is case-sensitive, but the asmPath

argument is not. If you'd like to do a case-insensitive search for members, add the
BindingFlags.IgnoreCase flag to the other BindingFlags in the call to Type.GetMember.

Discussion

The GetMember method of the System.Type class is useful for finding one or more methods within a
type. This method returns an array of MemberInfo objects that describe any members that match the
given parameters.

The * character may be used as a wildcard character only at the end of the
name parameter string. If placed anywhere else in the string, it will not be

treated as a wildcard character. In addition, it may be the only character in the
name parameter; if this is so, all members are returned. No other wildcard

characters, such as ?, are supported.

Once you obtain an array of MemberInfo objects, you need to examine what kind of members they
are. To do this, the MemberInfo class contains a MemberType property that returns a
System.Reflection.MemberTypes enumeration value. This can be any of the values defined in Table
13-1, except for the All value.

Table 13-1. MemberTypes enumeration values

Enumeration value Definition

All All member types

Constructor A constructor member

Custom A custom member type

Event An event member

Field A field member

Method A method member

NestedType A nested type

Property A property member

TypeInfo A type member that represents a TypeInfo member

See Also

See Recipe 13.10; see the "Assembly Class," "BindingFlags Enumeration," and "MemberInfo Class"
topics in the MSDN documentation.

Recipe 13.5. Finding Members Within an Interface

Problem

You need to find one or more members with a specific name, or a part of a name, that belong to an
interface.

Solution

Use the same technique outlined in Recipe 13.4, but filter out all types except interfaces. The first
overloaded version of the FindIFaceMemberInAssembly method finds a member specified by the
memberName parameter in all interfaces contained in an assembly. Its source code is:

 public static void FindIFaceMemberInAssembly(string asmPath, string memberName)
 {
 // Delegates to the overloaded FindIFaceMemberInAssembly method
 // passing in a wildcard character as the interfaceName param.
 FindIFaceMemberInAssembly(asmPath, memberName, "*");
 }

The second overloaded version of the FindIFaceMemberInAssembly method finds a member in the
interface specified by the interfaceName parameter. Its source code is:

 public static void FindIFaceMemberInAssembly(string asmPath, string memberName,
 string interfaceName)
 {
 Assembly asm = Assembly.LoadFrom(asmPath);
 foreach(Type type in asm.GetTypes())
 {
 if (type.IsInterface &&
 (type.Name.Equals(interfaceName) ||
 interfaceName.Equals("*")))
 {
 MemberInfo[] members = type.GetMember(memberName, MemberTypes.All,
 BindingFlags.Instance | BindingFlags.NonPublic |
 BindingFlags.Public | BindingFlags.Static |
 BindingFlags.IgnoreCase);

 if (members.Length > 0)

 {
 foreach(MemberInfo iface in members)
 {
 Console.WriteLine("Found member {0}.{1}",
 type.ToString(),iface.ToString());
 }
 }
 }
 }
 }

Discussion

The FindIFaceMemberInAssembly method operates very similarly to the FindMemberInAssembly method
of Recipe 13.4. The main difference between this recipe and the one in Recipe 13.4 is that this method
uses the IsInterface property of the System.Type class to determine whether this type is an
interface. If this property returns TRue, the type is an interface; otherwise, it is a noninterface type.

This recipe also makes use of the GetMember method of the System.Type class. This name may contain
an * wildcard character at the end of the string only. If the * wildcard character is the only character
in the name parameter, all members are returned.

If you'd like to do a case-sensitive search, you can omit the BindingFlags.IgnoreCase flag from the
call to Type.GetMember.

See Also

See Recipes 13.4 and 13.10; see the "Assembly Class," "BindingFlags Enumeration," and
"MemberInfo Class" topics in the MSDN documentation.

Recipe 13.6. Determining and Obtaining Nested Types
Within an Assembly

Problem

You need to determine which types have nested types contained within them in your assembly.
Determining the nested types allows you to programmatically examine various aspects of some
design patterns. Various design patterns may specify that a type will contain another type; for
example, the Decorator and State design patterns make use of object containment.

Solution

Use the DisplayNestedTypes method to iterate through all types in your assembly and list all of their
nested types. Its code is:

 public static void DisplayNestedTypes(string asmPath)
 {
 bool output = false;
 string line;
 Assembly asm = Assembly.LoadFrom(asmPath);
 foreach(Type type in asm.GetTypes())
 {
 line = type.FullName + " Contains:\n" ;
 output = false;

 // Get all nested types.
 Type[] nestedTypes = type.GetNestedTypes(
 BindingFlags.Public |
 BindingFlags.NonPublic);

 // Roll over the nested types.
 foreach (Type t in nestedTypes)
 {
 line += " " + t.FullName + "\n";
 output = true;
 }

 if (output)
 Console.WriteLine(line);
 }
 }

Discussion

The DisplayNestedTypes method uses an outer foreach loop to iterate over all types in the assembly
specified by the asmPath parameter. Within this loop the GetNestedTypes method of the Type class is
called to obtain the nested types of the type specified in the type variable.

Usually the dot operator is used to delimit namespaces and types; however, nested types are
somewhat special. Nested types are set apart from other types by the + operator in their fully
qualified name when dealing with them in the reflection APIs. By passing this fully qualified name in
to the static GetType methods, the actual type that it represents can be acquired.

These methods return a Type object that represents the type identified by the typeName parameter.

Calling Type.GetType to retrieve a type defined in a dynamic assembly (one that
is created using the types defined in the System.Reflection. Emit namespace)
returns a null if that assembly has not already been persisted to disk. Typically
you would use the static Assembly.GetType method on the dynamic assembly's
Assembly object.

See Also

See Recipe 13.10; see the "Assembly Class" and "BindingFlags Enumeration" topics in the MSDN
documentation.

Recipe 13.7. Displaying the Inheritance Hierarchy for a
Type

Problem

You need to determine all of the base types that make up a specific type. Essentially, you need to
determine the inheritance hierarchy of a type starting with the base (least derived) type and ending
with the specified (most derived) type.

Solution

Use the DisplayInheritanceChain method to display the entire inheritance hierarchy for all types
existing in an assembly specified by the asmPath parameter. Its source code is:

 public static void DisplayInheritanceChain(string asmPath)
 {
 Assembly asm = Assembly.LoadFrom(asmPath);
 foreach(Type type in asm.GetTypes())
 {
 DisplayInheritanceChain(type);
 }
 }

 public static void DisplayInheritanceChain(Type type)
 {
 // Recurse over all base types.
 Console.WriteLine ("Derived Type: " + type.FullName);
 Console.WriteLine ("Base Type List: " + GetBaseTypeList(type));
 Console.WriteLine ();
 }

DisplayInheritanceChain, in turn, calls GetBaseTypeList, a private method that uses recursion to get
all base types. Its source code is:

 private static string GetBaseTypeList(Type type)
 {
 if (type != null)
 {

 // Recursive method call
 string baseTypeName = GetBaseTypeList(type.BaseType);
 if (baseTypeName.Length <= 0)
 {
 return (type.Name);
 }
 else
 {
 return (baseTypeName + "<-" + type.Name);
 }
 }
 else
 {
 return ("");
 }
 }

If you want to obtain only the inheritance hierarchy of a specific type as a string, use the following
DisplayInheritanceChain overload:

 public static void DisplayInheritanceChain(string asmPath, string baseType)
 {
 Assembly asm = Assembly.LoadFrom(asmPath);
 DisplayInheritanceChain(asm, baseType);
 }

 public static void DisplayInheritanceChain(Assembly asm, string baseType)
 {
 string typeHierarchy = GetBaseTypeList(asm.GetType(baseType));
 Console.WriteLine(typeHierarchy);
 }

To display the inheritance hierarchy of all types within an assembly, use the first instance of the
DisplayInheritanceChain method call. To obtain the inheritance hierarchy of a single type as a
string, use the second instance of the DisplayInheritanceChain method call. In this instance, you are
looking for the type hierarchy of the CSharpRecipes.ReflectionUtils+DerivedOverrides nested class:

 public static void DisplayInheritanceHierarchyType()
 {
 Process current = Process.GetCurrentProcess();
 // Get the path of the current module.
 string asmPath = current.MainModule.FileName;
 // A specific type
 DisplayInheritanceChain(asmPath,
 "CSharpRecipes.ReflectionUtils+DerivedOverrides");
 // All types in the assembly

 DisplayInheritanceChain(asmPath);
 }

These methods result in output like the following:

 Derived Type: CSharpRecipes.Reflection
 Base Type List: Object<-Reflection
 Derived Type: CSharpRecipes.ReflectionUtils+BaseOverrides
 Base Type List: Object<-BaseOverrides

 Derived Type: CSharpRecipes.ReflectionUtils+DerivedOverrides
 Base Type List: Object<-BaseOverrides <-DerivedOverrides

This output shows that when looking at the Reflection class in the CSharpRecipes namespace, its
base-type list (or inheritance hierarchy) starts with Object (like all types in .NET). The nested class
BaseOverrides also shows a base-type list starting with Object. The nested class DerivedOverrides
shows a more interesting base-type list, where DerivedOverrides derives from BaseOverrides, which
derives from Object.

Discussion

Unfortunately, no property of the Type class exists to obtain the inheritance hierarchy of a type. The
DisplayInheritanceChain methods in this recipe allow you to obtain the inheritance hierarchy of a
type. All that is required is the path to an assembly and the name of the type with the inheritance
hierarchy that is to be obtained. The DisplayInheritanceChain method requires only an assembly
path since it displays the inheritance hierarchy for all types within that assembly.

The core code of this recipe exists in the GetBaseTypeList method. This is a recursive method that
walks each inherited type until it finds the ultimate base classwhich is always the object class. Once
it arrives at this ultimate base class, it returns to its caller. Each time the method returns to its caller,
the next base class in the inheritance hierarchy is added to the string until the final GetBaseTypeList
method returns the completed string.

See Also

See the "Assembly Class" and "Type.BaseType Method" topics in the MSDN documentation.

Recipe 13.8. Finding the Subclasses of a Type

Problem

You have a type and you need to find out whether it is subclassed anywhere in an assembly.

Solution

Use the Type.IsSubclassOf method to test all types within a given assembly, which determines
whether each type is a subclass of the type specified in the argument to IsSubClassOf:

 public static Type[] GetSubClasses(string asmPath, Type baseClassType)
 {
 Assembly asm = Assembly.LoadFrom(asmPath);
 return (GetSubClasses(asm, baseClassType));
 }

 public static Type[] GetSubClasses(Assembly asm, Type baseClassType)
 {
 List<Type> subClasses = new List<Type>();

 foreach(Type type in asm.GetTypes())
 {
 if (type.IsSubclassOf(baseClassType))
 {
 subClasses.Add(type);
 }
 }

 return (subClasses.ToArray());
 }

The GetSubClasses method accepts an assembly path string and a second string containing a fully
qualified base class name. This method returns a Type[] of Types representing the subclasses of the
type passed to the baseClass parameter.

Discussion

The IsSubclassOf method on the Type class allows you to determine whether the current type is a
subclass of the type passed in to this method.

The following code shows how to use this method:

 public static void FindSubClassOfType()
 {
 Assembly asm = Assembly.GetExecutingAssembly();
 Type type = Type.GetType("CSharpRecipes.ReflectionUtils+BaseOverrides");
 Type[] subClasses = GetSubClasses(asm,type);

 // Write out the subclasses for this type.
 if(subClasses.Length > 0)
 {
 Console.WriteLine("{0} is subclassed by:",type.FullName);
 foreach(Type t in subClasses)
 {
 Console.WriteLine("\t{0}",t.FullName);
 }
 }
 }

First you get the assembly path from the current process, and then you set up use of
CSharpRecipes.ReflectionUtils+BaseOverrides as the type to test for subclasses. You call
GetSubClasses, and it returns a Type[] that you use to produce the following output:

 CSharpRecipes.ReflectionUtils+BaseOverrides is subclassed by:
 CSharpRecipes.ReflectionUtils+DerivedOverrides

See Also

See the "Assembly Class" and "Type Class" topics in the MSDN documentation.

Recipe 13.9. Finding All Serializable Types Within an
Assembly

Problem

You need to find all the serializable types within an assembly.

Solution

Instead of testing the implemented interfaces and attributes on every type, you can query the
Type.IsSerialized property to determine whether it is marked as serializable, as the following
method does:

 public static Type[] GetSerializableTypes(Assembly asm)
 {
 List<Type> serializableTypes = new List<Type>();

 // Look at all types in the assembly.
 foreach(Type type in asm.GetTypes())
 {
 if (type.IsSerializable)
 {
 // Add the name of the serializable type.
 serializableTypes.Add(type);
 }
 }

 return (serializableTypes.ToArray());
 }

The GetSerializableTypes method accepts an Assembly through its asm parameter. This assembly is
searched for any serializable types, and their full names (including namespaces) are returned in a
Type[].

In order to use this method to display the serializable types in an assembly, run the following code:

 public static void FindSerializable()
 {
 Assembly asm = Assembly.GetExecutingAssembly();

 Type[] serializable = GetSerializableTypes(asm);
 // Write out the serializable types in the assembly.
 if(serializable.Length > 0)
 {
 Console.WriteLine("{0} has serializable types:",asm.Location);
 foreach (Type t in serializable)
 {
 Console.WriteLine("\t{0}", t.FullName);
 }
 }
 }

The output of this method is shown here:

 C:\CSharp Recipes 2nd Edition\Code\CSharpRecipes\bin\Debug\CSharpRecipes.exe has
 serializable types:
 CSharpRecipes.ExceptionHandling+RemoteComponentException
 CSharpRecipes.DelegatesEventsAnonymousMethods+HashtableEventHandler
 CSharpRecipes.Collections+MaxMinSizeDictionary`2
 CSharpRecipes.Collections+MaxMinValueHashtable
 CSharpRecipes.DataStructsAndAlgorithms+DblQueue`1
 CSharpRecipes.ClassAndStructs+DeepClone
 CSharpRecipes.ClassAndStructs+MultiClone
 CSharpRecipes.ClassAndStructs+Serializer`1

Discussion

A type may be marked as serializable using the SerializableAttribute attribute. Testing for the
SerializableAttribute attribute on a type can turn into a fair amount of work. This is because the
SerializableAttribute is a magic attribute that the C# compiler actually strips off your code at
compile time. Using ildasm you will see that this custom attribute just isn't therenormally you see a
.custom enTRy for each custom attribute, but not with SerializableAttribute. The C# compiler
removes it, and instead sets a flag in the metadata of the class. In source code, it looks like a custom
attribute, but it compiles into one of a small set of attributes that gets a special representation in
metadata. That's why it gets special treatment in the reflection APIs. Fortunately, you do not have to
do all of this work. The IsSerializable property on the Type class returns a true if the current type is
marked as serializable with the SerializableAttribute; otherwise, this property returns false.

See Also

See the "Assembly Class" and "TypeAttributes Enumeration" in the MSDN documentation.

Recipe 13.10. Filtering Output When Obtaining Members

Problem

You want to get information about one or more members, but you want to retrieve only a subset of
members. For example, you need to obtain only the static constructor of a type, or you need to
obtain only the noninherited nonpublic fields of a type.

Solution

Use the BindingFlags enumeration together with the appropriate Type.Getxxx methods to find out
about the type, as in the code shown here in Example 13-3.

Example 13-3. Filtering members

public static void FilteringOutputObtainingMembers()
{
 Type reflection = typeof(Reflection);
 ConstructorInfo[] constructors =
 reflection.GetConstructors(BindingFlags.Public |
 BindingFlags.NonPublic |
 BindingFlags.Instance |
 BindingFlags.Static);

 Console.WriteLine("Looking for All Constructors");
 foreach(ConstructorInfo c in constructors)
 {
 Console.WriteLine("\tFound Constructor {0}",c.Name);
 }

 constructors =
 reflection.GetConstructors(BindingFlags.Public |
 BindingFlags.Instance);
 Console.WriteLine("Looking for Public Instance Constructors");
 foreach(ConstructorInfo c in constructors)
 {
 Console.WriteLine("\tFound Constructor {0}",c.Name);
 }

 constructors =

 reflection.GetConstructors(BindingFlags.NonPublic |
 BindingFlags.Instance |
 BindingFlags.Static);
 Console.WriteLine("Looking for NonPublic Constructors");
 foreach(ConstructorInfo c in constructors)
 {
 Console.WriteLine("\tFound Constructor {0}",c.Name);
 }

 FieldInfo[] fields =
 reflection.GetFields(BindingFlags.Static |
 BindingFlags.Public);
 Console.WriteLine("Looking for Public, Static Fields");
 foreach(FieldInfo f in fields)
 {
 Console.WriteLine("\tFound Field {0}",f.Name);
 }

 fields =
 reflection.GetFields(BindingFlags.Public |
 BindingFlags.Static |
 BindingFlags.Instance);
 Console.WriteLine("Looking for Public Fields");
 foreach(FieldInfo f in fields)
 {
 Console.WriteLine("\tFound Field {0}",f.Name);
 }

 fields =
 reflection.GetFields(BindingFlags.NonPublic |
 BindingFlags.Static);
 Console.WriteLine("Looking for NonPublic, Static Fields");
 foreach(FieldInfo f in fields)
 {
 Console.WriteLine("\tFound Field {0}",f.Name);
 }
}

This example examines the CSharpRecipes.Reflection type for constructors and fields. The
constructors and fields are listed here:

 #region Fields
 int i = 0;
 public int pi = 0;
 static int si = 0;
 public static int psi = 0;
 object o = null;
 public object po = null;

 static object so = null;
 public static object pso = null;
 #endregion

 #region Constructors
 static Reflection()
 {
 si++;
 psi = 0;
 so = new Object();
 pso = new Object();
 }

 Reflection()
 {
 i = 0;
 pi = 0;
 o = new Object();
 po = new Object();
 }

 public Reflection(int index)
 {
 i = index;
 pi = index;
 o = new Object();
 po = new Object();
 }
 #endregion

The output this generates is listed here:

 Looking for All Constructors
 Found Constructor .cctor
 Found Constructor .ctor
 Found Constructor .ctor
 Looking for Public Instance Constructors
 Found Constructor .ctor
 Looking for NonPublic Constructors
 Found Constructor .cctor
 Found Constructor .ctor
 Looking for Public, Static Fields
 Found Field psi
 Found Field pso
 Looking for Public Fields
 Found Field pi
 Found Field po
 Found Field psi
 Found Field pso

 Looking for NonPublic, Static Fields
 Found Field si
 Found Field so

Discussion

The following methods of the Type object accept a BindingFlags enumerator to filter output:

 Type.GetConstructor
 Type.GetConstructors
 Type.GetMethod
 Type.GetMethods
 Type.GetField
 Type.GetFields
 Type.GetProperty
 Type.GetProperties
 Type.Event
 Type.Events
 Type.GetMember
 Type.GetMembers
 Type.FindMembers

The following are also methods that accept a BindingFlags enumerator to filter members and types
to invoke or instantiate:

 Type.InvokeMember
 Type.CreateInstance

BindingFlags allows the list of members on which these methods operate to be expanded or limited.
For example, if the BindingFlags.Public flag is passed to the Type.GetFields method, only public
fields are returned. If both the BindingFlags. Public and BindingFlags.NonPublic flags are passed to
the Type.GetFields method, the list of fields is expanded to include the protected, internal, protected
internal, and private fields of a type. Table 13-2 lists and describes each flag in the BindingFlags
enumeration.

Table 13-2. Relevant binding flag definitions

Flag name Definition

IgnoreCase Case sensitivity is turned off.

Flag name Definition

Instance Include all instance members when obtaining members of a type.

NonPublic Include all nonpublic members when obtaining members of a type.

Public Include all public members when obtaining members of a type.

Static Include all static members when obtaining members of a type.

Be aware that to examine or invoke nonpublic members, your assembly must have the correct
reflection permissions. The reflection permission flags, and what PermissionSets they are included in
by default, are listed in Table 13-3.

Table 13-3. Reflection permission flags

Permission
flag

Description
Permission sets
including these

rights

AllFlags
TypeInformation, MemberAccess, and ReflectionEmit are
set.

FullTrust,

Everything

MemberAccess

Invocation of operations on all type members is allowed.
If this flag is not set, only invocation of operations on
visible type members is allowed.

FullTrust,

Everything

NoFlags No reflection is allowed on types that are not visible. All permission sets

ReflectionEmit Use of System.Reflection.Emit is allowed.
FullTrust,

Everything,

LocalIntranet

TypeInformation
Reflection is allowed on members of a type that is not
visible.

FullTrust,

Everything

One other item to note is that when supplying a BindingFlags set of flags for one of the Get*
methods, you must always pass either BindingFlags.Instance or BindingFlags. Static in order to
get any results back. If you pass just BindingFlags.Public, for example, you will not find any results.
You need to pass BindingFlags.Public | BindingFlags.Instance to get public instance results.

See Also

See the "BindingFlags Enumeration," "Type Class," "ConstructorInfo Class," and "FieldInfo Class"
topics in the MSDN documentation.

Instance Include all instance members when obtaining members of a type.

NonPublic Include all nonpublic members when obtaining members of a type.

Public Include all public members when obtaining members of a type.

Static Include all static members when obtaining members of a type.

Be aware that to examine or invoke nonpublic members, your assembly must have the correct
reflection permissions. The reflection permission flags, and what PermissionSets they are included in
by default, are listed in Table 13-3.

Table 13-3. Reflection permission flags

Permission
flag

Description
Permission sets
including these

rights

AllFlags
TypeInformation, MemberAccess, and ReflectionEmit are
set.

FullTrust,

Everything

MemberAccess

Invocation of operations on all type members is allowed.
If this flag is not set, only invocation of operations on
visible type members is allowed.

FullTrust,

Everything

NoFlags No reflection is allowed on types that are not visible. All permission sets

ReflectionEmit Use of System.Reflection.Emit is allowed.
FullTrust,

Everything,

LocalIntranet

TypeInformation
Reflection is allowed on members of a type that is not
visible.

FullTrust,

Everything

One other item to note is that when supplying a BindingFlags set of flags for one of the Get*
methods, you must always pass either BindingFlags.Instance or BindingFlags. Static in order to
get any results back. If you pass just BindingFlags.Public, for example, you will not find any results.
You need to pass BindingFlags.Public | BindingFlags.Instance to get public instance results.

See Also

See the "BindingFlags Enumeration," "Type Class," "ConstructorInfo Class," and "FieldInfo Class"
topics in the MSDN documentation.

Recipe 13.11. Dynamically Invoking Members

Problem

You have a list of method names that you wish to invoke dynamically within your application. As your
code executes, it will pull names off this list and attempt to invoke these methods. This technique
might be useful to create a test harness for components that reads in the methods to execute from
an XML file and executes them with the given parameters.

Solution

The TestDynamicInvocation method shown in Example 13-4 calls the DynamicInvocation method,
which opens the XML configuration file, reads out the test information, and executes each test
method dynamically.

Example 13-4. Invoking members dynamically

public static void TestExecuteTests()
{
 ExecuteTests(@"..\..\SampleClassLibrary\SampleClassLibraryTests.xml",
 @"SampleClassLibrary.dll");
}

public static void ExecuteTests(string xmlFile, string path)
{
 // Read in the methods to run from the XML file.
 XmlDocument doc = new XmlDocument();
 doc.Load(xmlFile);

 // Get the tests to run.
 XmlNodeList nodes = doc.SelectNodes(@"Tests/Test");

 // Run each test method.
 foreach(XmlNode node in nodes)
 {
 // Get the name of the type from the className attribute on Test.
 string typeName = node.Attributes.GetNamedItem("className").Value;

 // Get the name of the method from the methodName attribute on Test.
 string methodName = node.Attributes.GetNamedItem("methodName").Value;

 // Get all the parameter types.
 int index = 0;
 object[] parameters = new object[node.ChildNodes.Count];
 foreach(XmlNode n in node.ChildNodes)
 {
 parameters[index] = n.InnerText;
 index++;
 }
 object obj = InvokeMethod(path, typeName, methodName,
 node.ChildNodes.Count, parameters);
 // Print out the return.
 Console.WriteLine("\tReturned object: " + obj);
 Console.WriteLine("\tReturned object: " + obj.GetType().FullName);
 }
}

The XML document in which the test method information is contained looks like this:

 <?xml version="1.0" encoding="utf-8" ?>
 <Tests>
 <Test className='SampleClassLibrary.SampleClass' methodName='TestMethod1'>
 <Parameter>Running TestMethod1</Parameter>
 </Test>
 <Test className='SampleClassLibrary.SampleClass' methodName='TestMethod2'>
 <Parameter>Running TestMethod2</Parameter>
 <Parameter>27</Parameter>
 </Test>
 </Tests>

InvokeMethod, shown in Example 13-5,dynamically invokes the method that is passed to it using the
information contained in the XmlNode. The parameter's types are determined by examining the
ParameterInfo items on the MethodInfo, and then the values provided are converted to the actual
type from a string via the Convert. ChangeType method. Finally, the return value of the invoked
method is returned by this method.

Example 13-5. InvokeMethod method

public static object InvokeMethod(string asmPath, string typeName,
 string methodName, int paramCount,
 object[] parameters)
{
 // Load the assembly.
 Assembly asm = Assembly.LoadFrom(asmPath);

 // Create the actual type.
 Type dynClassType = asm.GetType(typeName, true, false);

 // Create an instance of this type and verify that it exists
 object dynObj = Activator.CreateInstance(dynClassType);
 if (dynObj != null)
 {
 // Verify that the method exists and get its MethodInfo obj.
 MethodInfo invokedMethod = dynClassType.GetMethod(methodName);
 if (invokedMethod != null)
 {
 // Create the parameter list for the dynamically invoked methods.
 int index = 0;
 // For each parameter, add it to the list.
 foreach (object parameter in parameters)
 {
 // Get the type of the parameter.
 Type paramType =
 invokedMethod.GetParameters()[index].ParameterType;
 // Change the value to that type and assign it.
 parameters[index] =
 Convert.ChangeType(parameter, paramType);
 index++;
 }

 // Invoke the method with the parameters.
 object retObj = invokedMethod.Invoke(dynObj, parameters);
 // Return the returned object.
 return (retObj);

 }
 }

 return (null);
}

These are the dynamically invoked methods located on the SampleClass type in the
SampleClassLibrary assembly:

 public bool TestMethod1(string text)

 {
 Console.WriteLine(text);
 return (true);
 }
 public bool TestMethod2(string text, int n)
 {
 Console.WriteLine(text + " invoked with {0}",n);
 return (true);
 }

The output from these methods looks like this:

 Running TestMethod1
 Returned object: True
 Returned object: System.Boolean
 Running TestMethod2 invoked with 27
 Returned object: True
 Returned object: System.Boolean

Discussion

Reflection gives you the ability to dynamically invoke both static and instance methods within a type
in either the same assembly or in a different one. This can be a very powerful tool to allow your code
to determine at runtime which method to call. This determination can be based on an assembly
name, a type name, or a method name, though the assembly name is not required if the method
exists in the same assembly as the invoking code, if you already have the Assembly object, or if you
have a Type object for the class the method is on.

This technique may seem similar to delegates since both can dynamically determine at runtime which
method is to be called. Delegates, on the whole, require you to know signatures of methods you
might call at runtime, whereas with reflection, you can invoke methods when you have no idea of the
signature, providing a much looser binding. More dynamic invocation can be achieved with Delegate.
DynamicInvoke, but this is more of a reflection-based method than the traditional delegate invocation.

The InvokeMethod method shown in the Solution section contains all the code required to dynamically
invoke a method. This code first loads the assembly using its assembly name (passed in through the
asmPath parameter). Next, it gets the Type object for the class containing the method to invoke (the

class name is gotten from the Test element's className attribute). The method name is then
retrieved (from the Test element's methodName attribute). Once you have all of the information from
the Test element, an instance of the Type object is created, and you then invoke the specified
method on this created instance:

First, the static Activator.CreateInstance method is called to actually create an instance of the
Type object contained in the local variable dynClassType. The method returns an object
reference to the instance of type that was created or throws an exception if the object cannot

be created.

Once you have successfully obtained the instance of this class, the MethodInfo object of the
method to be invoked is acquired through a call to GetMethod on the Type object.

The instance of the object created with the CreateInstance method is then passed as the first
parameter to the MethodInfo.Invoke method. This method returns an object containing the return
value of the invoked method. This object is then returned by InvokeMethod. The second parameter to
MethodInfo.Invoke is an object array containing any parameters to be passed to this method. This
array is constructed based on the number of Parameter elements under each Test element in the
XML. You then look at the ParameterInfo of each parameter (gotten from MethodInfo.GetParameters(
)) and use the Convert.ChangeType method to coerce the string value from the XML to the proper
type.

The ExecuteTests method finally displays each returned object value and its type. Note that there is
no extra logic required to return different return values from the invoked methods since they are all
returned as an object, unlike passing differing arguments to the invoked methods.

See Also

See the "Activator Class," "MethodInfo Class," "Convert.ChangeType Method," and "ParameterInfo
Class" topics in the MSDN documentation.

Recipe 13.12. Providing Guidance to Obfuscators

Problem

You need to configure Dotfuscator (or another type of compatible obfuscator utility) to operate
independently on a number of assemblies, but you do not want to manually have to create a
configuration file for each unique assembly configuration.

Solution

Use the ObfuscateAssembly and/or Obfuscation attributes in the System.Reflection namespace. The
ObfuscateAssembly attribute can be used to indicate how to obfuscate the entire assembly:

 [assembly: ObfuscateAssembly(true)]

Use the Obfuscation attribute on an assembly, on a type, or on the members of a type to gain a fine-
grained control over what is obfuscated and what is not:

 // Obfuscate this class and all of its members.
 [Obfuscation(ApplyToMembers = true, Exclude = false)]
 public class ObfuscatedCls() {…}

You can use this attribute at the assembly level, but you lose the ability to indicate whether or not
this assembly is public or private, which affects how the obfuscator will handle the types and
members of those types in the assembly. It is better to use the ObfuscateAssembly attribute at the
assembly level and indicate whether or not this is a public or private assembly in its constructor. The
Obfuscation attribute can then be used to tweak how the obfuscator utility will handle individual
types and members of the assembly.

When using these attributes, you will typically want to add the ObfuscateAssembly attribute to each
assembly that will be obfuscated. Next, you will want to add any Obfuscation attributes to indicate
which types and/or members will be excluded from obfuscation.

Discussion

The true value that is passed in to the ObfuscateAssembly attribute's constructor indicates that this

assembly is a private assembly, one that will be used by a single application only. Setting this option
to TRue indicates to the Dotfuscator utility to do the following:

Everything is renamed except for methods that override methods that exist outside this
assembly.

Property and event metadata is removed.

Pruning rules for the professional version:

Included classes, methods, and fields are not removed.
Methods that act as entry points to your .exe or .dll are not removed.
Classes, members, and fields that will not be renamed will also not be removed.
Unreachable classes, fields, and methods are removed.

Setting this value to false indicates to the Dotfuscator utility to do the following:

Public outer and nested class names are not modified.

Public, protected, and internal protected member names of public classes are not modified.

No virtual methods are modified.

No property and event metadata is modified.

Pruning rules for the professional version:

Public classes are never removed.
Public, protected, and internal protected fields of public classes are not removed.
Public, protected, and internal protected methods of public classes are not removed.
Entry points and their called methods are not removed.

You can force the ObfuscateAssembly attribute to not be removed after obfuscation occurs by setting
a named parameter StripAfterObfuscation to false (by default it is set to TRue):

 [assembly: ObfuscateAssembly(true, StripAfterObfuscation=false)]

Typically you want to set this parameter to false only when this attribute is applied to a .dll that will
be obfuscated as part of an application that uses this .dll.

The ApplyToMembers named parameter on the Obfuscation attribute indicates whether or not this
attribute is also applied to the members within this type. The following code will obfuscate the
ObfuscatedCls class and all of its members.

 [Obfuscation(ApplyToMembers = true, Exclude = false)]
 public class ObfuscatedCls() {…}

However, you can place this same attribute on a member of the ObfuscatedCls class with the Exclude
named parameter set to true to override the outer Obfuscation attribute.

You should be aware that by applying these attributes you are only providing configuration
information to the obfuscator utility. These attributes will not actually obfuscate your assembly.

If you are using Dotfuscator, you need to allow it to use these attributes by
setting the Honor Obfuscation Attributes button to enabled.

See Also

See the "ObfuscationAssemblyAttribute Class," "ObfuscationAttribute Class," and "Declarative
Obfuscation" topics in the MSDN documentation.

Recipe 13.13. Determining if a Type or Method Is Generic

Problem

You need to test a type and/or a method to determine whether it is generic.

Solution

Use the IsGenericType method of the Type class and the IsGenericMethod method of the MethodInfo
class:

 public static bool IsGenericType(Type type)
 {
 return (type.IsGenericType);
 }

 public static bool IsGenericMethod(MethodInfo mi)
 {
 return (mi.IsGenericMethod);
 }

Discussion

The IsGenericType method examines objects and the IsGenericMethod method examines methods.
These methods will return a true indicating that this object or method accepts type arguments and
false indicating that it does not. One or more type arguments indicate that this type is a generic
type.

To call these methods, use code like the following:

 Assembly asm = Assembly.GetExecutingAssembly();
 // Get the type.
 Type t = typeof(CSharpRecipes.DataStructsAndAlgorithms.PriorityQueue<int>);

 bool genericType = IsGenericType(t);

 bool genericMethod = false;
 foreach (MethodInfo mi in t.GetMethods())

 genericMethod = IsGenericMethod(mi);

This code first obtains an Assembly object for the currently executing assembly. Next, the Type object
is obtained using the typeof method. For this method call, you pass in a fully qualified name of an
object to this method. In this case you pass in
CSharpRecipes.DataStructsAndAlgorithms.PriorityQueue<int>. Notice at the end is the string <int>.
This indicates that this type is a generic type with a single type parameter of type int. In other
words, this type is defined as follows:

 public class PriorityQueue<T> {…}

If this type were defined with two type parameters, it would look like this:

 public class PriorityQueue<T, U> {…}

and its fully qualified name would be CSharpRecipes.DataStructsAndAlgorithms. PriorityQueue<int,
int>.

This Type object tt is then passed into the IsGenericType method and the return value is true
indicating that this type is indeed generic.

Next, you collect all the MethodInfo objects for this type t using the GetMethods method of the Type t
object. Each MethodInfo object is passed into the IsGenericMethod method to determine if it is
generic or not.

See Also

See the "Type.HasGenericArguments Method" and "MethodInfo.HasGenericArguments Method" topics
in the MSDN documentation.

Recipe 13.14. Reading Manifest Resources
Programmatically

Problem

You need to obtain information about manifest resources.

Solution

Use the GetManifestResourceInfo and GetManifestResourceNames methods of the Assembly class:

 public static void DisplayManifestResourceInfo(string asmPath)
 {
 Assembly asm = Assembly.LoadFrom(asmPath);

 foreach (string resName in asm.GetManifestResourceNames())
 {
 Console.WriteLine("Resource Name: " + resName);

 ManifestResourceInfo mri = asm.GetManifestResourceInfo(resName);
 Console.WriteLine("\rFileName: " + mri.FileName);
 Console.WriteLine("\rResourceLocation: " + mri.ResourceLocation);
 if (mri.ReferencedAssembly != null)
 Console.WriteLine("\rReferencedAssembly: " +
 mri.ReferencedAssembly.FullName);
 }
 }

Discussion

To obtain a ManifestResourceInfo object or objects, you must first call the GetManifestResourceNames
method on an Assembly object. This method returns an array of string objects, which contain the
resource name. This resource name is then passed in to the GetManifestResourceInfo method to
obtain the ManifestResourceInfo object. The ManifestResourceInfo object is what contains all the
information about the manifest resource.

The ManifestResourceInfo.FileName property returns a fully qualified string describing the file that
contains the manifest resource. This property will return an empty string if the resource is embedded

in the same assembly on which the GetManifestResourceInfo was called.

The ManifestResourceInfo.ResourceLocation property returns all the ResourceLocation flags for this
resource. These flags can be one or a combination of three values described in Table 13-4.

Table 13-4. ResourceLocation enumeration flags

Enumeration value Definition

ContainedInAnotherAssembly This resource exists in a separate assembly.

ContainedInManifestFile This resource exists in the manifest file.

Embedded
This resource is an embedded resource, as opposed to a linked
resource from a separate assembly.

The final property of use in the ManifestResourceInfo class is the ReferencedAssembly property. This
property returns an Assembly object that contains the resource. This property returns null when the
resource is embedded in the assembly on which this property was called.

See Also

See the "GetManifestResourceInfo Method" and "GetManifestResourceNames Method" topics in the
MSDN documentation.

Recipe 13.15. Accessing Local Variable Information

Problem

You are building a tool that examines code and you need to get access to the local variables within a
method.

Solution

Use the LocalVariables property on the MethodBody class to return an IList of LocalVariableInfo
objects, each of which describes a local variable within the method:

 public static IList<LocalVariableInfo> GetLocalVars(string asmPath,
 string typeName, string methodName)
 {
 Assembly asm = Assembly.LoadFrom(asmPath);
 Type asmType = asm.GetType(typeName);
 MethodInfo mi = asmType.GetMethod(methodName);
 MethodBody mb = mi.GetMethodBody();

 IList<LocalVariableInfo> vars = mb.LocalVariables;

 // Display information about each local variable.
 foreach (LocalVariableInfo lvi in vars)
 {
 Console.WriteLine("IsPinned: " + lvi.IsPinned);
 Console.WriteLine("LocalIndex: " + lvi.LocalIndex);
 Console.WriteLine("LocalType.Module: " + lvi.LocalType.Module);
 Console.WriteLine("LocalType.FullName: " + lvi.LocalType.FullName);
 Console.WriteLine("ToString(): " + lvi.ToString());
 }

 return (vars);
 }

The GetLocalVars method can be called using the following code:

 public static void TestGetLocalVars()
 {

 Process current = Process.GetCurrentProcess();

 // Get the path of the current module.
 string path = current.MainModule.FileName;

 // Get all local var info for the CSharpRecipes. Reflection.GetLocalVars method.
 System.Collections.ObjectModel.ReadOnlyCollection<LocalVariableInfo> vars =
 (System.Collections.ObjectModel.ReadOnlyCollection<LocalVariableInfo>)
 GetLocalVars(path, "CSharpRecipes.Reflection", "GetLocalVars");
 }

The output of this method is shown here:

 IsPinned: False
 LocalIndex: 0
 LocalType.Module: CommonLanguageRuntimeLibrary
 LocalType.FullName: System.Reflection.Assembly
 ToString(): System.Reflection.Assembly (0)
 IsPinned: False
 LocalIndex: 1
 LocalType.Module: CommonLanguageRuntimeLibrary
 LocalType.FullName: System.Type
 ToString(): System.Type (1)
 IsPinned: False
 LocalIndex: 2
 LocalType.Module: CommonLanguageRuntimeLibrary
 LocalType.FullName: System.Reflection.MethodInfo
 ToString(): System.Reflection.MethodInfo (2)
 IsPinned: False
 LocalIndex: 3
 LocalType.Module: CommonLanguageRuntimeLibrary
 LocalType.FullName: System.Reflection.MethodBody
 ToString(): System.Reflection.MethodBody (3)
 IsPinned: False
 LocalIndex: 4
 LocalType.Module: CommonLanguageRuntimeLibrary
 LocalType.FullName: System.Collections.ObjectModel.ReadOnlyCollection`1[[System.
 Reflection.LocalVariableInfo, mscorlib, Version=2.0.0.0, Culture=neutral, Public
 KeyToken=b77a5c561934e089]]
 ToString(): System.Collections.ObjectModel.ReadOnlyCollection`1[System.Reflectio
 n.LocalVariableInfo] (4)

The LocalVariableInfo objects for each local variable found in the CSharpRecipes.
Reflection.GetLocalVars method will be returned in the vars IList collection.

Discussion

The LocalVariables property can give you a good amount of information about variables within a
method. The LocalVariables property returns an IList<LocalVariableInfo> collection. Each
LocalVariableInfo object contains the information described in Table 13-5.

Table 13-5. LocalVariableInfo information

Member Definition

IsPinned
Returns a bool indicating if the object that this variable refers to is pinned in memory
(TRue) or not (false)

LocalIndex Returns the index of this variable within this method's body

LocalType Returns a Type object that describes the type of this variable

ToString
Returns the LocalType.FullName, a space, and then the LocalIndex value surrounded
by parentheses

See Also

See the "MethodInfo Class," "MethodBody Class," "ReadOnlyCollection<T> Class," and
"LocalVariableInfo Class" topics in the MSDN documentation.

Recipe 13.16. Creating a Generic Type

Problem

You want to create a generic type using only the reflection APIs.

Solution

You create a generic type similarly to how a nongeneric type is created; however, there is an extra
step of creating the type arguments you want to use in creating this generic type and binding these
type arguments to the generic type's type parameters at construction. To do this, you will use a new
method added to the Type class called BindGenericParameters:

 public static void CreateMultiMap(Assembly asm)
 {
 // Get the type we want to construct.
 Type typeToConstruct = asm.GetType(
 "CSharpRecipes.DataStructsAndAlgorithms+MultiMap`2");
 // Get the type arguments we want to construct our type with.
 Type[] typeArguments = new Type[2] {Type.GetType("System.Int32"),
 Type.GetType("System.String")};
 // Bind these type arguments to our generic type.
 Type newType = typeToConstruct.MakeGenericType(typeArguments);
 // Construct our type.
 DataStructsAndAlgorithms.MultiMap<int, string> mm = (
 DataStructsAndAlgorithms.MultiMap<int,
 string>)Activator.CreateInstance(newType);

 // Test our newly constructed type.
 Console.WriteLine("Count == " + mm.Count);
 mm.Add(1, "test1");
 Console.WriteLine("Count == " + mm.Count);
 }

The code to test the CreateMultiMap method is shown here:

 public static void TestCreateMultiMap()
 {
 Assembly asm = Assembly.LoadFrom("C:\\CSharp Recipes 2nd Edition" +

 "\\Code\\CSharpRecipes\\bin\\Debug\\CSharpRecipes.exe");
 CreateMultiMap(asm);
 }

The output of this method is shown here:

 Count == 0
 Count == 1

Discussion

Type parameters are defined on a class and indicate that any type is allowed to be substituted for
this type parameter (unless of course there are constraints placed on this type parameter using the
where keyword). For example, the following class has two type parameters, T and U:

 public class Foo<T, U> {…}

Of course you do not have to use T and U; you can instead use another letter or even a full name
such as TypeParam1 and TypeParam2.

A type argument is defined as the actual type that will be substituted for the type parameter. In the
previously defined class Foo, you can replace type parameter T with the type argument int and type
parameter U with the type argument string.

The BindGenericParameters method allows you to substitute type parameters with actual type
arguments. This method accepts a single Type array parameter. This Type array consists of each type
argument that will be substituted for each type parameter of the generic type. These type arguments
must be added to this Type array in the same order as they are defined on the class. For example,
the Foo class defines type parameters T and U, in that order. The Type array that you define contains
an int type and a string type, in that order. This means that the type parameter T will be
substituted for the type argument int and U will be replaced with a string type. The
BindGenericParameters method returns a Type object of the type you specified along with the type
arguments.

See Also

See the "Type.BindGenericParameters method" topic in the MSDN documentation.

Chapter 14. Web

Introduction

Recipe 14.1. Converting an IP Address to a Hostname

Recipe 14.2. Converting a Hostname to an IP Address

Recipe 14.3. Parsing a URI

Recipe 14.4. Forming and Validating an Absolute Uri

Recipe 14.5. Handling Web Server Errors

Recipe 14.6. Communicating with a Web Server

Recipe 14.7. Going Through a Proxy

Recipe 14.8. Obtaining the HTML from a URL

Recipe 14.9. Using the New Web Browser Control

Recipe 14.10. Tying Database Tables to the Cache

Recipe 14.11. Caching Data with Multiple Dependencies

Recipe 14.12. Prebuilding an ASP.NET Web Site Programmatically

Recipe 14.13. Escaping and Unescaping Data for the Web

Recipe 14.14. Using the UriBuilder Class

Recipe 14.15. Inspect and Change Your Web Application Configuration

Recipe 14.16. Working with HTML

Recipe 14.17. Using Cached Results When Working with HTTP for Faster Performance

Recipe 14.18. Checking out a Web Server's Custom Error Pages

Recipe 14.19. Determining the Application Mappings for ASP.NET Set Up on IIS

Introduction

The World Wide Web has worked its way into every nook and cranny of what most .NET developers
encounter when building their solutions today. Web services are on the rise, and ASP.NET is one of
the main players in the web application space. Because of the general needs to deal with HTML and
TCP/IP name resolution and because uniform resource indicators and uniform resource locators are
being used for more and more purposes, developers need tools to help them concentrate on building
the best web-interactive applications they can. This chapter is dedicated to taking care of some of the
grunge that comes along with programming when the Web is involved. This is not an ASP.NET
tutorial chapter but rather some functionality that developers can use in both ASP.NET and other C#-
based applications. For more on ASP.NET, see the ASP.NET Cookbook and Programming ASP.NET,
Second Edition (both from O'Reilly).

Recipe 14.1. Converting an IP Address to a Hostname

Problem

You have an IP address that you need to resolve into a hostname.

Solution

Use the Dns.GetHostEntry method to get the hostname for an IP address. In the following code, an IP
address is resolved, and the hostname is accessible from the HostName property of the IPHostEntry:

 using System;
 using System.Net;

 //…
 // Use the Dns class to resolve the address.
 IPHostEntry iphost = Dns.GetHostEntry("127.0.0.1");

 // HostName property holds the hostname.
 string hostName = iphost.HostName;

 // Print out name.
 Console.WriteLine(hostName);

Discussion

The System.Net.Dns class is provided for simple DNS resolution functionality. The GetHostEntry
method returns an IPHostEntry that can be used to access the hostname via the HostName property.
If the entry cannot be resolved, the IPHostEntry will have a HostName that has a string representation
of the IP address that was passed in (assuming it is a valid IP address). If the first member of the
AddressList ([0]) is accessed and the IPAddress.ScopeId property is checked for these entries, it will
throw a SocketException.

See Also

See the "DNS Class" and "IPHostEntry Class" topics in the MSDN documentation.

Recipe 14.2. Converting a Hostname to an IP Address

Problem

You have a string representation of a host (such as www.oreilly.com), and you need to obtain the IP
address from this hostname.

Solution

Use the Dns.GetHostEntry method to get the IP addresses. In the following code, a hostname is
provided to the GetHostEntry method, which returns an IPHostEntry from which a string of addresses
can be constructed. If the hostname does not resolve, a SocketException stating "No such host is
known" is thrown.

 using System;
 using System.Net;
 using System.Text;

 // …

 public static string HostName2IP(string hostname)
 {
 // Resolve the hostname into an iphost entry using the Dns class.
 IPHostEntry iphost = System.Net.Dns.GetHostEntry(hostname);
 // Get all of the possible IP addresses for this hostname.
 IPAddress[] addresses = iphost.AddressList;
 // Make a text representation of the list.

 StringBuilder addressList = new StringBuilder();
 // Get each IP address.
 foreach(IPAddress address in addresses)
 {
 // Append it to the list.
 addressList.AppendFormat("IP Address: {0};", address.ToString());
 }
 return addressList.ToString();
 }

 // …

 // Writes "IP Address: 208.201.239.37;IP Address: 208.201.239.36;"
 Console.WriteLine(HostName2IP("www.oreilly.com"));

Discussion

An IPHostEntry can associate multiple IP addresses with a single hostname via the AddressList
property. AddressList is an array of IPAddress objects, each of which holds a single IP address. Once
the IPHostEntry is resolved, the AddressList can be looped over using foreach to create a string that
shows all of the IP addresses for the given hostname. If the entry cannot be resolved, a
SocketException is thrown.

See Also

See the "DNS Class," "IPHostEntry Class," and "IPAddress" topics in the MSDN documentation.

Recipe 14.3. Parsing a URI

Problem

You need to split a uniform resource identifier (URI) into its constituent parts.

Solution

Construct a System.Net.Uri object and pass the URI to the constructor. This class constructor parses
out the constituent parts of the URI and allows access to them via the Uri properties. You can then
display the URI pieces individually, as shown in Example 14-1 .

Example 14-1. ParseURI method

public static void ParseUri(string uriString)
{
 try
 {
 // Use just one of the constructors for the System.Net.Uri class.
 // This will parse it for us.
 Uri uri = new Uri(uriString);
 // Look at the information we can get at now…
 StringBuilder uriParts = new StringBuilder();
 uriParts.AppendFormat("AbsoluteURI: {0}{1}",
 uri.AbsoluteUri,Environment.NewLine);
 uriParts.AppendFormat("AbsolutePath: {0}{1}",
 uri.AbsolutePath,Environment.NewLine);
 uriParts.AppendFormat("Scheme: {0}{1}",
 uri.Scheme,Environment.NewLine);
 uriParts.AppendFormat("UserInfo: {0}{1}",
 uri.UserInfo,Environment.NewLine);
 uriParts.AppendFormat("Authority: {0}{1}",
 uri.Authority,Environment.NewLine);
 uriParts.AppendFormat("DnsSafeHost: {0}{1}",
 uri.DnsSafeHost,Environment.NewLine);
 uriParts.AppendFormat("Host: {0}{1}",
 uri.Host,Environment.NewLine);
 uriParts.AppendFormat("HostNameType: {0}{1}",
 uri.HostNameType.ToString(),Environment.NewLine);
 uriParts.AppendFormat("Port: {0}{1}",uri.Port,Environment.NewLine);
 uriParts.AppendFormat("Path: {0}{1}",uri.LocalPath,Environment.NewLine);
 uriParts.AppendFormat("QueryString: {0}{1}",uri.Query,Environment.NewLine);
 uriParts.AppendFormat("Path and QueryString: {0}{1}",

 uri.PathAndQuery,Environment.NewLine);
 uriParts.AppendFormat("Fragment: {0}{1}",uri.Fragment,Environment.NewLine);
 uriParts.AppendFormat("Original String: {0}{1}",
 uri.OriginalString,Environment.NewLine);
 uriParts.AppendFormat("Segments: {0}",Environment.NewLine);
 for (int i = 0; i < uri.Segments.Length; i++)
 uriParts.AppendFormat(" Segment {0}:{1}{2}",
 i, uri.Segments[i], Environment.NewLine);

 // GetComponents can be used to get commonly used combinations
 // of URI information.
 uriParts.AppendFormat("GetComponents for specialized combinations: {0}",
 Environment.NewLine);
 uriParts.AppendFormat("Host and Port (unescaped): {0}{1}",
 uri.GetComponents(UriComponents.HostAndPort,
 UriFormat.Unescaped),Environment.NewLine);
 UriParts.AppendFormat("HttpRequestUrl (unescaped): {0}{1}",
 uri.GetComponents(UriComponents.HttpRequestUrl,
 UriFormat.Unescaped),Environment.NewLine);
 UriParts.AppendFormat("HttpRequestUrl (escaped): {0}{1}",
 uri.GetComponents(UriComponents.HttpRequestUrl,
 UriFormat.UriEscaped),Environment.NewLine);
 UriParts.AppendFormat("HttpRequestUrl (safeunescaped): {0}{1}",
 uri.GetComponents(UriComponents.HttpRequestUrl,
 UriFormat.SafeUnescaped),Environment.NewLine);
 UriParts.AppendFormat("Scheme And Server (unescaped): {0}{1}",
 uri.GetComponents(UriComponents.SchemeAndServer,
 UriFormat.Unescaped),Environment.NewLine);
 UriParts.AppendFormat("SerializationInfo String (unescaped): {0}{1}",
 uri.GetComponents(UriComponents.SerializationInfoString,
 UriFormat.Unescaped),Environment.NewLine);
 UriParts.AppendFormat("StrongAuthority (unescaped): {0}{1}",
 uri.GetComponents(UriComponents.StrongAuthority,
 UriFormat.Unescaped),Environment.NewLine);
 UriParts.AppendFormat("StrongPort (unescaped): {0}{1}",
 uri.GetComponents(UriComponents.StrongPort,
 UriFormat.Unescaped),Environment.NewLine);

 // Write out our summary.
 Console.WriteLine(UriParts.ToString());
 }
 catch(ArgumentNullException e)
 {
 // UriString is a null reference (Nothing in Visual Basic).
 Console.WriteLine("Uri string object is a null reference: {0}",e);
 }
 catch(UriFormatException e)
 {
 Console.WriteLine("Uri formatting error: {0}",e); }
 }
}

Discussion

The Solution code uses the Uri class to do the heavy lifting. The constructor for the Uri class can throw
two types of exceptions: an ArgumentNullException and a UriFormatException . The
ArgumentNullException is thrown when the uri argument passed is null . The UriFormatException is
thrown when the uri argument passed is of an incorrect or indeterminate format. Here are the error
conditions that can throw a UriFormatException :

An empty Uri was passed in.

The scheme specified in the Uri is not correctly formed. See CheckSchemeName .

The URI passed in contains too many slashes.

The password specified in the passed-in URI is invalid.

The hostname specified in the passed-in URI is invalid.

The filename specified in the passed-in URI is invalid.

The username specified in the passed-in URI is invalid.

The host or authority name specified in the passed-in URI cannot be terminated by backslashes.

The port number specified in the passed-in URI is invalid or cannot be parsed.

The length of the passed-in URI exceeds 65,534 characters.

The length of the scheme specified in the passed-in URI exceeds 1023 characters.

There is an invalid character sequence in the passed-in URI.

There is no actual validation that occurs for the username, host or authority
name, password or port number to insure that they exist or are correct. The
validation is simply that they are in the correct format according to the URI
specification (RFC 2396).

System.Net.Uri provides methods to compare URIs, parse URIs, and combine URIs. It is all you should
ever need for URI manipulation and is used by other classes in the Framework when a URI is called for.
The syntax for the pieces of a URI is this:

 [scheme]://[user]:[password]@[host/authority]:[port]/[path];[params]?
 [query string]#[fragment]

If you pass the following URI to ParseUri :

http://user:password@localhost:8080/www.abc.com/home.htm?item=1233#stuff

it will display the following items:

 AbsoluteURI: http://user:password@localhost:8080/www.abc.com/home%20page.htm?
 item=1233#stuff
 AbsolutePath: /www.abc.com/home%20page.htm
 Scheme: http
 UserInfo: user:password
 Authority: localhost:8080
 DnsSafeHost: localhost
 Host: localhost
 HostNameType: Dns
 Port: 8080
 Path: /www.abc.com/home page.htm
 QueryString: ?item=1233
 Path and QueryString: /www.abc.com/home%20page.htm?item=1233
 Fragment: #stuff
 Original String: http://user:password@localhost:8080/www.abc.com/home%20page.htm?
 item=1233#stuff
 Segments:
 Segment 0: /
 Segment 1: www.abc.com/
 Segment 2: home%20page.htm
 GetComponents for specialized combinations:
 Host and Port (unescaped): localhost:8080
 HttpRequestUrl (unescaped): http://localhost:8080/www.abc.com/home page.htm?
 item=1233
 HttpRequestUrl (escaped): http://localhost:8080/www.abc.com/home%20page.htm?
 item=1233
 HttpRequestUrl (safeunescaped): http://localhost:8080/www.abc.com/home page.htm?
 item=1233
 Scheme And Server (unescaped): http://localhost:8080
 SerializationInfo String (unescaped): http://user:password@localhost:8080/
 www.abc.com/home page.htm?item=1233#stuff
 StrongAuthority (unescaped): user:password@localhost:8080
 StrongPort (unescaped): 8080

See Also

See the "Uri Class," "ArgumentNullException Class," and " UriFormatException Class" topics in the
MSDN documentation.

http://user:password@localhost:8080/www.abc.com/home.htm?item=1233#stuff

Recipe 14.4. Forming and Validating an Absolute Uri

Problem

You have a base URI of the form http://www.oreilly.com and a relative URI of the form
hello%20world.htm; you want to form an absolute URI from them and ensure it is correctly formed.

Solution

Use the Uri class to combine a base URI and a relative URI via a constructor overload that takes the
base and relative paths and then use the functions on the Uri class to validate it, as shown in
Example 14-2.

Example 14-2. CreateAndVerifyAbsoluteUri method

public static Uri CreateAndVerifyAbsoluteUri(string uriBaseString,
 string uriRelativeString)
{
 try
 {
 // Make the base URI.
 Uri baseUri = new Uri(uriBaseString,UriKind.Absolute);
 // Make the relative URI.
 Uri relativeUri = new Uri(uriRelativeString, UriKind.Relative);
 // Create the full URI by combining the base and relative.
 Uri absoluteUri = new Uri(baseUri, relativeUri);

 // Verify we did make an absolute URI.
 if(absoluteUri.IsAbsoluteUri==false)
 throw new UriFormatException(
 "Could not form absolute Uri from " +
 baseUri.OriginalString + " and " +
 relativeUri.OriginalString);

 // Make sure our original base URI is a base URI for the new
 // absolute URI.
 if(baseUri.IsBaseOf(absoluteUri)==false)
 throw new UriFormatException(
 "Base Uri was invalid for newly formed Absolute Uri: " +
 baseUri.OriginalString + " and " +

http://www.oreilly.com

 absoluteUri.OriginalString);
 // Get the relative URI from the difference between the base
 // and the absolute URIs.
 Uri relCheckUri = baseUri.MakeRelativeUri(absoluteUri);
 // This new relative URI should equal our previous URI.
 if(relCheckUri != relativeUri)
 throw new UriFormatException(
 "Could not make equivalent relative Uri from new " +
 "Absolute Uri: " +
 relCheckUri.OriginalString + " and " +
 absoluteUri.OriginalString);

 Uri newAbsoluteUri = new Uri(baseUri, relCheckUri);
 // Check that the new and the original match.
 if(Uri.Compare(absoluteUri, newAbsoluteUri,
 UriComponents.AbsoluteUri, UriFormat.Unescaped,
 StringComparison.InvariantCulture) != 0)
 {
 throw new UriFormatException(
 "New Absolute Uri did not equal originally formed " +
 "Absolute Uri: " +
 baseUri.OriginalString + " and " +
 absoluteUri.OriginalString);
 }

 // It's OK, send it.
 return absoluteUri;
 }
 catch (ArgumentNullException e)
 {
 // uriString is a null reference (Nothing in Visual Basic).
 Console.WriteLine("URI string object is a null reference: {0}", e);
 }
 catch (UriFormatException e)
 {
 Console.WriteLine("URI formatting error: {0}", e);
 }
 return null;
}

// …

Uri myUri = CreateAndVerifyAbsoluteUri("http://www.oreilly.com",
 "hello%20world.htm");

// Displays http://www.oreilly.com/hello world.htm.
Console.WriteLine(myUri.AbsoluteUri);

Discussion

The System.Net.Uri class has a constructor overload that allows you to create a URI from a base Uri
and a relative Uri. This creates the absolute URI and places it in the Uri.AbsoluteUri property. If
there are two strings for the base path and relative path, escaping/unescaping can also be controlled
through another overload of the Uri constructor that takes a UriKind as the last parameter
(UriKind), but care needs to be taken here: if you unescape the Uri, it will put the URI into a form
more readable by a human but no longer usable as a URI (this is because any spaces that were
escaped as %20 will now be considered whitespace).

Here are the error conditions that can cause a UriFormatException to be thrown when using the Uri
constructor that takes a string for the path and a UriKind to control escaping:

The passed string contains a relative URI, and the UriKind is Absolute.

The passed string contains an absolute URI, and the UriKind is Relative.

There are various ways that URI creation can fail. A URI might fail the IsAbsoluteUri check if the
authority is not provided as part of the base URI. The IsBaseOf method on a URI might fail if the
current URI is not identical to the internal base URI, given that all items after the last slash are
ignored on the full URI.

See Also

See the "Uri Class" topic in the MSDN documentation.

Recipe 14.5. Handling Web Server Errors

Problem

You have obtained a response from a web server and you want to make sure that there were no
errors in processing the initial request, such as failing to connect, being redirected, timing out, or
failing to validate a certificate. You don't want to have to monitor for all of the different response
codes available.

Solution

Check the StatusCode property of the HttpWebResponse class to determine what category of status
this StatusCode falls into, and return an enumeration value (ResponseCategories) representing the
category. This technique will allow you to use a broader approach to dealing with response codes.

 public static ResponseCategories VerifyResponse(HttpWebResponse httpResponse)
 {
 // Just in case there are more success codes defined in the future
 // by HttpStatusCode, we will check here for the "success" ranges
 // instead of using the HttpStatusCode enum as it overloads some
 // values.
 int statusCode = (int)httpResponse.StatusCode;
 if((statusCode >= 100)&& (statusCode <= 199))
 {
 return ResponseCategories.Informational;
 }
 else if((statusCode >= 200)&& (statusCode <= 299))
 {
 return ResponseCategories.Success;
 }
 else if((statusCode >= 300)&& (statusCode <= 399))
 {
 return ResponseCategories.Redirected;
 }
 else if((statusCode >= 400)&& (statusCode <= 499))
 {
 return ResponseCategories.ClientError;
 }
 else if((statusCode >= 500)&& (statusCode <= 599))
 {
 return ResponseCategories.ServerError;
 }

 return ResponseCategories.Unknown;
 }

The ResponseCategories enumeration is defined like this:

 public enum ResponseCategories
 {
 Unknown = 0, // Unknown code (< 100 or > 599)
 Informational = 1, // Informational codes (100 >= 199)
 Success = 2, // Success codes (200 >= 299)
 Redirected = 3, // Redirection code (300 >= 399)
 ClientError = 4, // Client error code (400 >= 499)
 ServerError = 5 // Server error code (500 >= 599)
 }

Discussion

There are five different categories of status codes on an HTTP response, as shown in Table 14-1.

Table 14-1. Categories of HTTP response status codes

Category Available range HttpStatusCode defined range

Informational 100-199 100-101

Successful 200-299 200-206

Redirection 300-399 300-307

Client Error 400-499 400-417

Server Error 500-599 500-505

Each of the status codes defined by Microsoft in the .NET Framework is assigned an enumeration
value in the HttpStatusCode enumeration. These status codes reflect what can happen when a
request is submitted. The web server is free to return a status code in the available range, even if it is
not currently defined for most commercial web servers. The defined status codes are listed in RFC
2616Section 10 for HTTP/1.1.

You are trying to figure out the broad category of the status of the request. You achieve this by
inspecting the HttpResponse.StatusCode property, comparing it to the defined status code ranges for
HTTP, and returning the appropriate ResponseCategories value.

When dealing with HttpStatusCode, you will notice that there are certain HttpStatusCode flags that

map to the same status code value. An example of this is HttpStatusCode.Ambiguous and
HttpStatusCode.MultipleChoices, which both map to HTTP status code 300. If you try to use both of
these in a switch statement on the HttpStatusCode, you will get the following error because the C#
compiler cannot tell the difference:

 error CS0152: The label 'case 300:' already occurs in this switch statement.

See Also

See HTTP: The Definitive Guide (O'Reilly); see the "HttpStatusCode Enumeration" topic in the MSDN
documentation; and see HTTP/1.1 RFC 2616Section 10 Status Codes:
http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Recipe 14.6. Communicating with a Web Server

Problem

You want to send a request to a web server in the form of a GET or POST request. After you send the
request to a web server, you want to get the results of that request (the response) from the web
server.

Solution

Use the HttpWebRequest class in conjunction with the WebRequest class to create and send a request
to a server.

Take the Uri of the resource, the method to use in the request (GET or POST), and the data to send
(only for POST requests), and use this information to create an HttpWebRequest, as shown in Example
14-3.

Example 14-3. Communicating with a web server

using System.Net;
using System.IO;
using System.Text;

// …
// GET overload
public static HttpWebRequest GenerateHttpWebRequest(string UriString)
{
 // Get a Uri object.
 Uri Uri = new Uri(UriString);
 // Create the initial request.
 HttpWebRequest httpRequest = (HttpWebRequest)WebRequest.Create(Uri);
 // Return the request.
 return httpRequest;
}

// POST overload
public static HttpWebRequest GenerateHttpWebRequest(string UriString,
 string postData,
 string contentType)
{

 // Get a Uri object.
 Uri Uri = new Uri(UriString);
 // Create the initial request.
 HttpWebRequest httpRequest = (HttpWebRequest)WebRequest.Create(Uri);

 // Get the bytes for the request; should be pre-escaped.
 byte[] bytes = Encoding.UTF8.GetBytes(postData);

 // Set the content type of the data being posted.
 httpRequest.ContentType = contentType;
 //"application/x-www-form-urlencoded"; for forms

 // Set the content length of the string being posted.
 httpRequest.ContentLength = postData.Length;

 // Get the request stream and write the post data in.
 using (Stream requestStream = httpRequest.GetRequestStream())
 {
 requestStream.Write(bytes, 0, bytes.Length);
 }
 // Return the request.
 return httpRequest;
}

Once you have an HttpWebRequest, you send the request and get the response using the Getresponse
method. It takes the newly created HttpWebRequest as input and returns an HttpWebResponse. The
following example performs a GET for the index.aspx page from the http://localhost/mysite web site:

 HttpWebRequest request =

 GenerateHttpWebRequest(http://localhost/mysite/index.aspx);

 using(HttpWebResponse response = (HttpWebResponse) request.GetResponse())
 {
 // This next line uses VerifyResponse from Recipe 14.5.
 if(VerifyResponse(response)==ResponseCategories.Success)
 {
 Console.WriteLine("Request succeeded");
 }
 }

You generate the HttpWebRequest, send it and get the HttpWebResponse, then check the success using
the VerifyResponse method from Recipe 14.5.

Discussion

http://localhost/mysite
http://localhost/mysite/index.aspx

The WebRequest and WebResponse classes encapsulate all of the functionality to perform basic web
communications. HttpWebRequest and HttpWebResponse are derived from these classes and provide
the HTTP-specific support.

At the most fundamental level, to perform an HTTP-based web transaction, you use the Create
method on the WebRequest class to get a WebRequest that can be cast to an HttpWebRequest (so long
as the scheme is http:// or https://). This HttpWebRequest is then submitted to the web server in
question when the GetResponse method is called, and it returns an HttpWebResponse that can then be
inspected for the response data.

See Also

See the "WebRequest Class," "WebResponse Class," "HttpWebRequest Class," and
"HttpWebResponse Class" topics in the MSDN documentation.

https://

Recipe 14.7. Going Through a Proxy

Problem

Many companies have a web proxy that allows employees to access the Internet, while at the same
time preventing outsiders from accessing the company's internal network. The problem is that to
create an application that accesses the Internet from within your company, you must first connect to
your proxy and then send information through it, rather than directly out to an Internet web server.

Solution

In order to get an HttpWebRequest successfully through a specific proxy server, you need to set up a
WebProxy object with the settings to validate your specific request to a given proxy. Since this
function is generic for any request, you can create the AddProxyInfoToRequest method:

 public static HttpWebRequest AddProxyInfoToRequest(HttpWebRequest httpRequest,
 string proxyUri,
 string proxyID,
 string proxyPwd,
 string proxyDomain)
 {
 if(httpRequest != null)
 {
 // Create the proxy object.
 WebProxy proxyInfo = new WebProxy();
 // Add the address of the proxy server to use.
 proxyInfo.Address = new Uri(proxyUri);
 // Tell it to bypass the proxy server for local addresses.
 proxyInfo.BypassProxyOnLocal = true;
 // Add any credential information to present to the proxy server.
 proxyInfo.Credentials = new NetworkCredential(proxyID,
 proxyPwd,
 proxyDomain);
 // Assign the proxy information to the request.
 httpRequest.Proxy = proxyInfo;
 }
 // Return the request.
 return httpRequest;
 }

If all requests are going to go through the same proxy, in the 1.x versions of the Framework, you
used the static Select method on the GlobalProxySelection class to set up the proxy settings for all
WebRequests. In Version 2.0, the WebRequest.Default-WebProxy property should be used:

 Uri proxyUri = new Uri("http://webproxy:80");
 WebRequest.DefaultWebProxy = new WebProxy(proxyURI);

 // Old v1.x way of doing this…
 //GlobalProxySelection.Select = new WebProxy(proxyURI);

Discussion

AddProxyInfoToRequest takes the URI of the proxy and creates a Uri object, which is used to
construct the WebProxy object. The WebProxy object is set to bypass the proxy for local addresses and
then the credential information is used to create a NetworkCredential object. The NetworkCredential
object represents the authentication information necessary for the request to succeed at this proxy
and is assigned to the WebProxy.Credentials property. Once the WebProxy object is completed, it is
assigned to the Proxy property of the HttpWebRequest and the request is ready to be submitted.

See Also

See the "WebProxy Class," "NetworkCredential Class," and "HttpWebRequest Class" topics in the
MSDN documentation.

Recipe 14.8. Obtaining the HTML from a URL

Problem

You need to get the HTML returned from a web server in order to examine it for items of interest. For
example, you could examine the returned HTML for links to other pages or for headlines from a news
site.

Solution

You can use the methods for web communication that were set up in Recipes 14.5 and 14.6 to make
the HTTP request and verify the response; then, you can get at the HTML via the ResponseStream
property of the HttpWebResponse object:

 public static string GetHtmlFromUrl(string url)
 {
 if (string.IsNullOrEmpty(url))
 throw new ArgumentNullException("url","Parameter is null or empty");

 string html = "";
 HttpWebRequest request = GenerateHttpWebRequest(url);
 using(HttpWebResponse response = (HttpWebResponse)request.GetResponse())
 {
 if (VerifyResponse(response) == ResponseCategories.Success)
 {
 // Get the response stream.
 Stream responseStream = response.GetResponseStream();
 // Use a stream reader that understands UTF8.
 using(StreamReader reader =
 new StreamReader(responseStream, Encoding.UTF8))
 {
 html = reader.ReadToEnd();
 }
 }
 }
 return html;
 }

Discussion

The GetHtmlFromUrl method gets a web page using the GenerateHttpWebRequest and Getresponse
methods, verifies the response using the VerifyResponse method, and then, once it has a valid
response, starts looking for the HTML that was returned.

The GeTResponseStream method on the HttpWebResponse provides access to the body of the message
that was returned in a System.IO.Stream object. In order to read the data, instantiate a StreamReader
with the response stream and the UTF8 property of the Encoding class to allow for the UTF8-encoded
text data to be read correctly from the stream. Then call the StreamReader's ReadToEnd method,
which puts all of the content in the string variable called html, and return it.

See Also

See the "HttpWebResponse.GetResponseStream Method," "Stream Class," and "StringBuilder Class"
topics in the MSDN documentation.

Recipe 14.9. Using the New Web Browser Control

Problem

You need to display HTML-based content in a WinForms-based application.

Solution

Use the System.Windows.Forms.WebBrowser class to embed web browser functionality into your
application. The Cheapo-Browser seen in Figure 14-1 shows some of the capabilities of this control.

Figure 14-1. The web browser control

While this is not a production quality user interface, it is called Cheapo-Browser for a reason. It can
be used to select a web address, display the content, navigate forward and backward, cancel the
request, go to the home page, add HTML directly to the control, print the HTML or save it, and finally
enable or disable the context menu inside of the browser window. The WebBrowser control is capable
of much more, but this recipe is meant to give you a flavor of what is possible. It would be well worth
exploring its capabilities further to see what other needs it might fill.

When you add your HTML (<h1>Hey you added some HTML!</h1>), it is displayed as shown in Figure
14-2.

Figure 14-2. Adding HTML to the Cheapo-Browser

The code to accomplish this is rather simple:

 this._webBrowser.Document.Body.InnerHtml = "<h1>Hey you added some HTML!</h1>";

The navigation to a web page is equally trivial:

 Uri uri = new Uri(this._txtAddress.Text);
 this._webBrowser.Navigate(uri);

The nice thing about the navigation is the Navigated event that can be subscribed so you are notified
when the navigation has completed. This allows code to spin this off in a thread and then come back
to it once it is fully loaded. The event provides a WebBrowserNavigatedEventArgs class that has a Url
property to tell the URL of the document that has been navigated to.

 private void _webBrowser_Navigated(object sender, WebBrowserNavigatedEventArgs e)
 {
 // Update with where we ended up in case of redirection
 // from the original Uri.
 this._txtAddress.Text = e.Url.ToString();
 // Set up the buttons if we can go back or forth.
 this._btnBack.Enabled = this._webBrowser.CanGoBack;
 this._btnForward.Enabled = this._webBrowser.CanGoForward;
 }

Discussion

In the 1.x versions of the .NET Framework, embedding a web browser in your WinForms application
was much more difficult and error-prone. With the advent of the 2.0 Framework, there is finally a
.NET-based web browser control. You no longer have to struggle with some of the COM interop issues
that could arise while trying to hook up to browser events. This is a good opportunity to make the
line between your desktop and web applications blur even further and use the power of a rich client
combined with web flexibility.

See Also

See the "WebBrowser Class" topic in the MSDN documentation.

Recipe 14.10. Tying Database Tables to the Cache

Problem

You want to cache datasets you create from a database to help the performance of your ASP.NET
application, but you want changes to the data in the database to be reflected in your pages.

Solution

Use the SqlCacheDependency class to expire data in the cache when the underlying database data
changes. A SqlCacheDependency sets up a relationship with the database so that, if the data changes,
the item in the cache that has this dependency is released from the cache, and the code that
established the item can fetch the values from the database again.

To demonstrate this, a SqlCacheDependency object is created for the Authors table in the pubs
database in Microsoft SQL Server using the CreateSqlCacheDependency method. The pubs database is
a sample database that ships with SQL Server 2000.

 public SqlCacheDependency CreateSqlCacheDependency(string connStr)
 {
 // Make a dependency on the authors database table so that
 // if it changes, the cached data will also be disposed of.

 // Make sure we are enabled for notifications for the db.
 // Note that the parameter has to be the actual connection
 // string NOT the connection string NAME from web.config.
 SqlCacheDependencyAdmin.EnableNotifications(connStr);

 // Make sure we are enabled for notifications for the table.
 SqlCacheDependencyAdmin.EnableTableForNotifications(connStr, "Authors");

 // This is case-sensitive so make sure the first entry
 // matches the entry in the web.config file exactly.
 // The first parameter here must be the connection string
 // NAME not the connection string itself…
 return new SqlCacheDependency("pubs", "Authors");
 }

The SqlCacheDependencyAdmin class is responsible for talking to SQL Server to set up the necessary
infrastructure (triggers and the like for SQL Server 2000, Cache Sync for SQL Server 2005) for the

SqlCacheDependency to fire correctly. The SqlCacheDependency has a section in the application's
web.config file under configuration/system.web/caching defining the parameters that the dependency
operates under. There are timeout settings for the polling time (for SQL Server 2000 as SQL Server
2005 doesn't poll) and the connection time, as well as a link to the connection string to use via its
name. This connection string can be found in the web.config file in the
configuration/connectionStrings section. The two entries are shown here:

 <caching>
 <sqlCacheDependency enabled="True" pollTime="60000">
 <databases>
 <add name="pubs" connectionStringName="LocalPubs" pollTime="9000000" />
 </databases>
 </sqlCacheDependency>
 </caching>

 <connectionStrings>
 <add name="LocalPubs" connectionString="Server=(local);Integrated
 Security=True;Database=pubs;Persist Security Info=True"
 providerName="System.Data.SqlClient"/>
 </connectionStrings>

Discussion

The main scenario for using SqlDependencyCache is for data that is read frequently but changes very
infrequently. The data should be reasonably static as there is overhead associated with keeping the
cache in sync with the database table. While the SqlDependencyCache is for use with Microsoft SQL
Server, it is just a derived implementation of a CacheDependency class. CacheDependency-based classes
could be written for any other database provider, but surprisingly (or perhaps not so) Microsoft SQL
Server is the only database with one provided.

When using the SqlCacheDependency class, the first thing to do is insure that Notifications have been
enabled for both the database and the table being monitored for changes. If either of these
notifications is not enabled for the database and/or table, a
DatabaseNotEnabledForNotificationException will be thrown when constructing the
SqlCacheDependency. A SqlCacheDependency can also be created directly from a SqlCommand object.

See Also

See Recipe 14.11; see the "SqlCacheDependency," "SqlCacheDependencyAdmin," and
"CacheDependency" topics in the MSDN documentation.

Recipe 14.11. Caching Data with Multiple Dependencies

Problem

A dataset you are using in an ASP.NET page is comprised of data from multiple data sources. You
want to use caching for performance, but only one dependency object can be added with the cache
item.

Solution

Use the AggregateCacheDependency class to tie multiple cache dependencies together.
AggregateCacheDependency has an Add method that takes an array of CacheDependency objects. This
lets you write code that takes ordinary CacheDependency, SqlCacheDependency, and even custom
CacheDependency objects, and the cached item is removed when any of these dependencies changes.

For example, suppose that data for an author tracking system was being pulled from an XML file with
royalty information and from a database for the author addresses and contact information. This data
is combined into a single DataSet that is used by the ASP.NET code to produce a web page of author
information. To make sure that the page gets a DataSet quickly, it is put in the cache once it is
created.

First a CacheDependency is created for the XML file with the royalty information:

 // Make a dependency on the author royalties file
 // so if someone updates it, the cached data will
 // be disposed of.
 string file = this.Server.MapPath("author_royalties.xml");
 CacheDependency fileDep = new CacheDependency(file);

Next a SqlCacheDependency is created for the pubs database and the Authors table using the method
from Recipe 14.10:

 // Use our method from 14.10 to make a SqlCacheDependency.
 SqlCacheDependency sqlDep = CreateSqlCacheDependency(connStr);

Then a DataSet reference is created and the code looks in the cache for it. If there is no DataSet
already cached for this, a new DataSet is created and filled from the database, then populated from

the XML file:

 // Set up data table to get.
 DataSet authorInfo = null;

 // Look for the pubs key in the cache.
 // If it isn't there, create it with a dependency
 // on a SQL Server table using the SqlCacheDependency class.
 // The "this" pointer refers to a Page class for a web page and
 // it accesses the System.Web.UI.Page.Cache property.
 if (this.Cache["authorInfo"] == null)
 {
 // The data wasn't there so go get it and put it in the cache.
 authorInfo = new DataSet("AuthorInfo");
 using (SqlConnection sqlConn = new SqlConnection(connStr))
 {
 using (SqlDataAdapter adapter =
 new SqlDataAdapter("SELECT * FROM AUTHORS", sqlConn))
 {
 adapter.Fill(authorInfo);

 // Now add the royalty info.
 authorInfo.ReadXml(file, XmlReadMode.InferSchema);

Finally, an AggregateCacheDependency is created for the DataSet from the CacheDependency (fileDep)
and the SqlCacheDependency (sqlDep). The DataSet is added to the cache with the
AggregateCacheDependency (aggDep) and the cache takes care of managing the DataSet from this
point forward. If a DataSet is in the cache already and the dependencies have not been triggered, the
DataSet from the cache is returned.

 // Make the aggregate dependency so that if either the
 // db or file changes, we toss this out of the cache.
 AggregateCacheDependency aggDep = new AggregateCacheDependency();
 // Add the two dependencies to the aggregate.
 aggDep.Add(new CacheDependency[] { sqlDep, fileDep });

 // Add author info dataset to cache with the aggregate
 // dependency so that if either changes the cache will refetch.
 this.Cache.Insert("authorInfo", authorInfo, aggDep);
 }
 }
 }
 else
 {
 authorInfo = (DataSet)this.Cache["authorInfo"];
 }

Discussion

The AggregateCacheDependency class is new in the 2.0 Framework, and it is a welcome addition to an
already strong caching arsenal for the ASP.NET cache. Almost the same effect could be accomplished
in the 1.x Frameworks by adding a cache entry for each dependency, but then the data is being
stored twice as well. AggregateCacheDependency allows for the user to specify more clearly what the
dependencies are for a given item being cached. By not having to have a one-to-one ratio of
dependencies to cache items anymore, the cache can be even leaner and perform better.

See Also

See Recipe 14.10; see the "AggregateCacheDependency Class," "CacheDependency Class,"
"SqlCacheDependency Class," and "DataSet" topics in the MSDN documentation.

Recipe 14.12. Prebuilding an ASP.NET Web Site
Programmatically

Problem

You want to prebuild your web site to avoid compilation delays and to avoid the hosting scenario in
which source code needs to be on the server.

Solution

Use the ClientBuildManager to prebuild your web site into an assembly. In order to prebuild the web
site, you must specify:

The virtual directory for the web application

The physical path to the web application directory

The location where you want to build the web application

Flags that help control the compilation

To prebuild the web application in the sample code for the book, first retrieve the directory where the
web application is located, then provide a virtual directory name and a location for the web application
to build to:

 // Get the path to the web app shipping with this code…
 string cscbWebPath = GetWebAppPath();

 // Make sure we have a web path.
 if(cscbWebPath.Length>0)
 {
 string appVirtualDir = @"CSCBWeb";
 string appPhysicalSourceDir = cscbWebPath;

 // Make the target an adjacent directory as it cannot be in the same tree
 // or the build manager screams…
 string appPhysicalTargetDir = Path.GetDirectoryName(cscbWebPath) + @"\BuildCSCB";

Next, set up the flags for the compile using the PrecompilationFlags enumeration. The
PrecompilationFlags values are listed in Table 14-2 .

Table 14-2. PrecompilationFlags enumeration values

Flag value Purpose

AllowPartiallyTrustedCallers Add the APTC attribute to the built assembly.

Clean Remove any existing compiled image.

CodeAnalysis Build for code analysis.

Default Use the default compile options.

DelaySign DelaySign the assembly.

FixedNames
Assembly generated with fixed names for pages. No batch
compilation is performed, just individual compilation.

ForceDebug Ensure that the assembly is compiled for Debug.

OverwriteTarget The target assembly should be overwritten if it exists.

Updateable Insure the assembly is updateable.

To build a debug image and make sure it is created successfully if the compilation is good, the
ForceDebug and OverwriteTarget flags are used:

 PrecompilationFlags flags = PrecompilationFlags.ForceDebug |
 PrecompilationFlags.OverwriteTarget;

The PrecompilationFlags are then stored in a new instance of the ClientBuildManagerParameter class,
and the ClientBuildManager is created with the parameters that have been set up for it. To accomplish
the prebuild, the PrecompileApplication method is called. Notice that there is an instance of a class
called MyClientBuildManagerCallback that is passed to the PrecompileApplication method.

 ClientBuildManagerParameter cbmp = new ClientBuildManagerParameter();
 cbmp.PrecompilationFlags = flags;

 ClientBuildManager cbm =
 new ClientBuildManager(appVirtualDir,
 appPhysicalSourceDir,
 appPhysicalTargetDir,
 cbmp);
 MyClientBuildManagerCallback myCallback = new MyClientBuildManagerCallback();
 cbm.PrecompileApplication(myCallback);
 }

The MyClientBuildManagerCallback class is derived from the ClientBuildManagerCallback class and

allows the code to receive notifications during the compilation of the web application. Compiler errors,
parsing errors, and progress notifications are all available. In the MyClientBuildManagerCallback class,
they are all implemented to write to the debug stream and the console.

 public class MyClientBuildManagerCallback : ClientBuildManagerCallback
 {
 public MyClientBuildManagerCallback()
 : base()
 {
 }

 public override void ReportCompilerError(CompilerError error)
 {
 string msg = "Report Compiler Error: " + error.ToString();
 Debug.WriteLine(msg);
 Console.WriteLine(msg);
 }

 public override void ReportParseError(ParserError error)
 {
 string msg = "Report Parse Error: " + error.ToString();
 Debug.WriteLine(msg);
 Console.WriteLine(msg);
 }

 public override void ReportProgress(string message)
 {
 string msg = "Report Progress: " + message;
 Debug.WriteLine(msg);
 Console.WriteLine(msg);
 }
 }

The output from a successful compilation of the CSCB web site looks like this:

 Report Progress: Building directory '/CSCBWeb/App_Data'.
 Report Progress: Building directory '/CSCBWeb/Role_Database'.
 Report Progress: Building directory '/CSCBWeb'.

Discussion

ClientBuildManager is actually a thin wrapper around the BuildManager class, which does most of the
heavy lifting of the compilation. ClientBuildManager makes it more straightforward to ensure that all
the important parts of the web application are addressed, while BuildManager gives a bit more fine-
grained control. The ClientBuildManager also allows for subscribing to appdomain notification events

such as start, shutdown, and unload, allowing for error handling in the event that the appdomain is
going away during a prebuild.

To prebuild applications in ASP.NET 2.0 without resorting to the ClientBuildManager , an HTTP request
can be posted to the web site in the format of http://server/webapp/precompile.axd . The
precompile.axd "document" triggers an ASP.NET HttpHandler for this that will prebuild the web site for
you. This is handled by the aspnet_compiler.exe module that essentially wraps the ClientBuildManager
functionality.

See Also

See the "ClientBuildManager," " ClientBuildManagerParameters," "BuildManager," and "ASP.NET Web
Site Precompilation" topics in the MSDN documentation.

http://server/webapp/precompile.axd

Recipe 14.13. Escaping and Unescaping Data for the Web

Problem

You need to transform data for use in web operations from escaped to unescaped format or vice
versa for proper transmission. This escaping and unescaping should follow the format outlined in RFC
2396Uniform Resource Identifiers (URI): Generic Syntax.

Solution

Use the Uri class static methods for escaping and unescaping data and Uris.

To escape data, use the static Uri.EscapeDataString method as shown here:

 string data = "<H1>My html</H1>";
 Console.WriteLine("Original Data: {0}",data);
 Console.WriteLine();
 // public static string EscapeDataString(string stringToEscape);
 string escapedData = Uri.EscapeDataString(data);
 Console.WriteLine("escaped Data: {0}",escapedData);
 Console.WriteLine();

 // Output from above code is
 //
 // Original Data: <H1>My html</H1>
 //
 // Escaped Data: %3CH1%3EMy%20html%3C%2FH1%3E

To unescape the data, use the static Uri.UnescapeDataString method:

 // public static string UnescapeDataString(string stringToUnescape);
 string unescapedData = Uri.UnescapeDataString(escapedData);
 Console.WriteLine("unescaped Data: {0}",data);
 Console.WriteLine();

 // Output from above code is
 //
 // Unescaped Data: <H1>My html</H1>

To escape a Uri, use the static Uri.EscapeUriString method:

 string UriString = "http://user:password@localhost:8080/www.abc.com/" +
 "home page.htm?item=1233;html=<h1>Heading</h1>#stuff";
 Console.WriteLine("Original Uri string: {0}",UriString);
 Console.WriteLine();

 // public static string EscapeUriString(string stringToEscape);
 string escapedUriString = Uri.EscapeUriString(UriString);
 Console.WriteLine("Escaped Uri string: {0}",escapedUriString);
 Console.WriteLine();
 // Output from above code is
 //
 //Original Uri string:
 http://user:password@localhost:8080/www.abc.com/home
 //page.htm?item=1233;html=<h1>Heading</h1>#stuff
 //
 //Escaped Uri string:
 //http://user:password@localhost:8080/www.abc.com/home%20page.
 //htm?item=1233;
 //html=%3Ch1%3EHeading%3C/h1%3E#stuff

In case you are wondering why escaping a Uri has its own method (EscapeUriString), take a look at
what the escaped Uri looks like if you use Uri.EscapeDataString and Uri.UnescapeDataString on it:

 // Why not just use EscapeDataString to escape a Uri? It's not picky enough…
 string escapedUriData = Uri.EscapeDataString(UriString);
 Console.WriteLine("Escaped Uri data: {0}",escapedUriData);
 Console.WriteLine();

 Console.WriteLine(Uri.UnescapeDataString(escapedUriString));

 // Output from above code is
 //
 //
 //Escaped Uri data:
 //http%3A%2F%2Fuser%3Apassword%40localhost%3A8080%2Fwww.abc.
 //com%2Fhome%20page.htm
 //%3Fitem%3D1233%3Bhtml%3D%3Ch1%3EHeading%3C%2Fh1%3E%23stuff
 //
 //http://user:password@localhost:8080/www.abc.com/home
 //page.htm?item=1233;html=<h1>Heading</h1>#stuff

Notice that the :, /, :, @, and ? characters get escaped when they shouldn't, which is why you use

http://user:password@localhost:8080/www.abc.com/home

the EscapeUriString method for Uris.

Discussion

EscapeUriString assumes that there are no escape sequences already present in the string being
escaped. The escaping follows the convention set down in RFC 2396 for converting all reserved
characters and characters with a value greater than 128 to their hexadecimal format.

In section 2.2 of RFC 2396, it states that the reserved characters are:

 ;|/| ? |:| @ | & | = | + | $ | ,

The EscapeUriString method is useful when creating a System.Uri object to ensure that the Uri is
escaped correctly.

See Also

See the "EscapeUriString Method," "EscapeUriData Method," and "Unescape-DataString Method"
topics in the MSDN documentation.

Recipe 14.14. Using the UriBuilder Class

Problem

You want to avoid making URI syntax errors when creating a URI.

Solution

Use the UriBuilder class to add each piece without worrying about syntax or placement in the string.

Building a URI programmatically can be challenging to do correctly in all instances. Using the UriBuilder
can help to simplify it. For instance, if you needed to assemble an HTTP Uri that looked like this:

http://user:password@localhost:8080/www.abc.com/homepagehtm?
item=1233;html=<h1>Heading</h1>#stuff

you would need to understand the layout of the HTTP Uri , which is this:

 [scheme]://[user]:[password]@[host/authority]:[port]/[path];[params]?[query

 string]#[fragment]

It is very possible that information could come in that has only some of these pieces, or all of the pieces
might be present. The UriBuilder allows the code to set properties for each of the components of the URI.
This is great except for one small glitch. Every time you set the Query property, the UriBuilder class
appends a ? to the front of the query string information. This means if code is written in this manner:

 UriBuilder ub = new UriBuilder();
 ub.Query = "item=1233";
 ub.Query += "html-<h1>heading</h1>";

the resulting query string looks like this with two question marks:

 ??item=1233;html=<h1>heading</h1>

To correct this sad state of affairs, use the UriBuilderFix which overloads the Query property and deals
with this in a more reasonable manner. UriBuilderFix is a light wrapper for UriBuilder that cleans up the

http://user:password@localhost:8080/www.abc.com/homepagehtm?

Query property behavior.

 public class UriBuilderFix : UriBuilder
 {
 public UriBuilderFix() : base()
 {
 }
 public new string Query
 {
 get
 {
 return base.Query;
 }
 set
 {
 if (!string.IsNullOrEmpty(value))
 {
 if (value[0] == '?')
 // Trim off the leading ? as the underlying
 // UriBuilder class will add one to the
 // query string. Also prepend ; for additional items.
 base.Query = value.Substring(1);
 else
 base.Query = value;
 }
 else
 base.Query = string.Empty;
 }
 }
 }

The UriBuilderFix is used just like the UriBuilder , except you now get the expected output from adding
to the query string:

 UriBuilderFix ubf = new
 UriBuilderFix();
 ubf.Scheme = "http";
 ubf.UserName = "user";
 ubf.Password = "password";
 ubf.Host = "localhost";
 ubf.Port = 8080;
 ubf.Path = "www.abc.com/home page.htm";

 //The Query property contains any query information included in the Uri.
 //Query information is separated from the path information by a question mark (?) and //
 //continues to the end of the Uri. The query information returned includes the /////
 //leading question mark.
 //The query information is escaped according to RFC 2396.

 //Setting the Query property to null or to System.String.Empty clears the property.
 //Note: Do not append a string directly to this property.
 //Instead retrieve the property value as a string, remove the leading question mark,
 //append the new query string, and set the property with the combined string.

 ubf.Query = "item=1233";
 ubf.Query += ";html=<h1>heading</h1>";

 ubf.Fragment = "stuff";

 Console.WriteLine("Absolute Composed Uri: " + ubf.Uri.AbsoluteUri);
 Console.WriteLine("Composed Uri: " + ubf.ToString());

This example produces the following output:

 Absolute Composed Uri: http://user:password@localhost:8080/www.abc.com/home%20page.
 htm?item=1233;html=%3Ch1%3Eheading%3C/h1%3E

 Composed Uri:
 http://user:password@localhost:8080/www.abc.com/home%20page.htm?item=1233;html=
 %3Ch1%3Eheading%3C/h1%3E

Discussion

Even without the addition of the Query behavior in BetterUriBuilder, UriBuilder is a great way to build
up Uris without resorting to assembling the whole string yourself. Once the construction of the Uri is
complete, get the Uri object from the UriBuilder. Uri property to use it.

See Also

See Recipes 14.3 and 14.4; see the " UriBuilder Class" and "Uri Class" topics in the MSDN documentation.

http://user:password@localhost:8080/www.abc.com/home%20page.htm?item=1233;html=

Recipe 14.15. Inspect and Change Your Web Application
Configuration

Problem

You want to be able to modify some settings in your web application configuration file from within a
web page.

Solution

Use the System.Configuration.WebConfigurationManager and System.Configuration.Configuration
classes to access elements of your web application's configuration settings.

First get a Configuration object for the configuration settings by calling the OpenWebConfiguration
method on the WebConfigurationManager:

 System.Configuration.Configuration cfg =
 WebConfigurationManager.OpenWebConfiguration(@"/CSCBWeb");

Now use the Configuration object to get a specific section of the settings. The following code
retrieves the SqlCacheDependencySection of the configuration:

 // Get the sqlCacheDependencySection.
 SqlCacheDependencySection sqlCacheDep = (SqlCacheDependencySection)cfg.GetSection(
 "system.web/caching/sqlCacheDependency");

The SqlCacheDependencySection allows for creating a new SqlCacheDependencyDatabase and adding it
to the configuration, then saving the new configuration:

 // Create a database entry for the sql cache.
 SqlCacheDependencyDatabase sqlCacheDb = new
 SqlCacheDependencyDatabase("pubs","LocalPubs",9000000);
 // Add our database entry for the caching.
 sqlCacheDep.Databases.Add(sqlCacheDb);
 // Enable it.
 sqlCacheDep.Enabled = true;

 // Poll once a minute.
 sqlCacheDep.PollTime = 60000;
 // Save our new settings to the cfg file.
 cfg.Save(ConfigurationSaveMode.Modified);

This creates the following section in the web.config file for the application:

 <sqlCacheDependency enabled="True" pollTime="60000">
 <databases>
 <add name="pubs" connectionStringName="LocalPubs" pollTime="9000000" />
 </databases>
 </sqlCacheDependency>

Now the application is configured to allow a SqlCacheDependency to be created.

Discussion

This may seem like a lot of work at first. It would be pretty easy to rip through the web.config file
using an XmlTextReader/Writer combination or an XmlDocument. But that would get the settings in
only that web.config file, not all of the other web.config files that merge with the application-level one
to make up the true configuration. The WebConfigurationManager allows for accessing the current
settings at runtime, not just the static ones on disk in the multiple files.

One of the results of changing the configuration of a web application
programmatically is that it can result in the restart of the application domain for
the application. This can cause performance issues on your server. The other
major area to consider is security. If the page that executes this code is not
secured properly, the application/server hosting the page could be open to
attack.

When the configuration is modified during the processing of the web page, the changes are not
immediately reflected in the current configuration, as the page needs to finish processing before the
configuration can be updated. In the earlier case in which a SqlCacheDependency is configured, the
attempt to immediately construct the SqlCacheDependency object will throw an exception stating that
the application is not configured to do this. To get around this, you can do the configuration setting
work, then redirect back to the same page with a parameter in the query string that bypasses this
setup code and moves right into the code that uses the new configuration (the creation of the
SqlCacheDependency in this case):

 // If the initial request.
 if (Request.QueryString.Count == 0)
 {

 // Add the sqlCache database entry
 // to web.config.
 TestConfig();
 // Now redirect to ourselves adding a query string.
 // We do this so that the change we made to
 // web.config gets picked up for the code in
 // CreateSqlCacheDependency and SetupCacheDependencies.
 // as it depends on that configuration being present.

 // If you just create the entry and call the setup
 // code in the same page instance, the internal
 // configuration stuff doesn't refresh and you get
 // an exception when the code can't find the sqlCache
 // section it needs.
 Response.Redirect(Request.RawUrl + "?run=1");
 }
 else
 {
 // Run 14.10.
 CreateSqlCacheDependency();
 // Run 14.11.
 SetupCacheDependencies();
 }

See Also

See Recipes 14.10 and 14.11; see the "WebConfigurationManager Class" and "System.Configuration
Namespace" topics in the MSDN documentation.

Recipe 14.16. Working with HTML

Problem

You need to parse some HTML to get certain values from it, but you don't want to write all of the
HTML parsing logic yourself.

Solution

Use the Microsoft.MSHTML Primary Interop Assembly wrapper and let the Internet Explorer parsing
engine do the work. The first thing that has to happen is to establish a reference to the MSHTML
control, which is located in the Program Files\Microsoft.NET\Primary Interop Assemblies directory in
the Microsoft.mshtml.dll assembly. Once this reference has been made, just use the mshtml
namespace like so:

 using mshtml;

Now that the code is set up properly, you can use the MSHTML control to do your HTML parsing. First
declare an instance of the HTMLDocument class, then declare an instance of the IHTMLDocument2
interface and fill a string with some HTML to parse:

 HTMLDocument htmlDoc = new HTMLDocument();
 IHTMLDocument2 iHtmlDoc2 = null;

 string html =
 "<!DOCTYPE html PUBLIC \"-//W3C//DTD XHTML 1.1//EN\"" +
 "\"http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd\">" +
 "<html xmlns=\"http://www.w3.org/1999/xhtml\" >" +
 "<head><title>Test Page</title></head>" +
 "<body><form method=\"post\" action=\"Default.aspx\" id=\"form1\">" +
 "<div><input id=\"Text1\" type=\"text\" />" +
 "<input id=\"Checkbox1\" type=\"checkbox\" />" +
 "<input id=\"Radio1\" type=\"radio\" />" +
 "<select id=\"Select1\">" +
 "<option selected=\"selected\"></option></select>" +
 "<input name=\"TextBox1\" type=\"text\" id=\"TextBox1\" />" +
 "</div></form></body></html>";

The IHTMLDocument2 interface reference is set by casting the HTMLDocument to the IHTMLDocument2
interface. Then the design mode is turned on so that any script that is embedded in the HTML does
not execute while the HTML loads and is parsed. Place the HTML into the iHtmlDoc2 using the write
method and close it to finish loading the HTML:

 // Get the IHTMLDocument2 interface.
 iHtmlDoc2 = (IHTMLDocument2)htmlDoc;

 // Put the document in design mode so we don't execute scripts
 // while loading.
 iHtmlDoc2.designMode = "On";

 // Have to put some HTML in the DOM before using it.
 iHtmlDoc2.write(html);

 // Close it.
 iHtmlDoc2.close();

Now that the HTML is loaded and parsed, look for items of interest in it. Do this by casting the
iHtmlDoc2 interface to the HTMLDocumentClass, then look at each IHTMLElement in the
IHTMLElementCollection exposed by the all property on the body property for the
HTMLDocumentClass.

Roll over each of the IHTMLElements and check against the various type classes for various HTML
elements like form, input, text areas, and more as shown in Example 14-4.

Example 14-4. Parsing HTML

//Roll over every element in the HTML.
foreach (IHTMLElement htmlElem in (IHTMLElementCollection)iHtmlDoc2.body.all)
{
 // Note: every time we do the is and as, it does a COM call to the
 // MSHTML object. This can be rather expensive so you would want to cache
 // the results elsewhere once you have them, not just keep calling
 // properties on it as those end up making a round-trip as well.
 if (htmlElem is HTMLAnchorElementClass)
 {
 HTMLAnchorElementClass anchor = htmlElem as HTMLAnchorElementClass;
 if (anchor != null)
 Console.WriteLine("Anchor element found: " + anchor.href);
 }
 else if (htmlElem is HTMLFormElementClass)
 {
 HTMLFormElementClass form = htmlElem as HTMLFormElementClass;
 if (form != null)
 Console.WriteLine("Form element found: " + form.id);

 }
 else if (htmlElem is HTMLGenericElementClass)
 {
 HTMLGenericElementClass genElem = htmlElem as HTMLGenericElementClass;
 if (genElem != null)
 Console.WriteLine("Input Element found: " + genElem.scopeName +
 "." + genElem.tagName);
 }
 else if (htmlElem is HTMLInputElementClass)
 {
 HTMLInputElementClass input = htmlElem as HTMLInputElementClass;
 if (input != null)
 Console.WriteLine("Input Element found: " + input.id);
 }
 else if (htmlElem is HTMLTextAreaElementClass)
 {
 HTMLTextAreaElementClass text = htmlElem as HTMLTextAreaElementClass;
 if (text != null)
 Console.WriteLine("Text Area Element found: " + text.name);
 }
}

This code will have the following output:

 Form element found: form1
 Input Element found: Text1
 Input Element found: Checkbox1
 Input Element found: Radio1
 Input Element found: TextBox1

Discussion

There are many ways that HTML can be parsed: regular expressions, straight text parsing, or even
third-party product offerings. The MSHTML parser is free and prevalent but it is COM-based. Being
COM-based in a .NET world carries a price tag of having to have all calls go through the COM interop
layer and have items marshaled back and forth. MSHTML can be made to perform decently in many
situations, but this is not a solution for high-end HTML parsing due to the overhead that will be
incurred each time the COM interop layer is traversed. This should be considered a client-side
operation only. The overhead would quickly degrade performance in a server-side scenario like an
HttpHandler or in a high-traffic web page.

That being said, if you are looking for a quick way to parse HTML in your application and it is not a
potential performance hotspot, this method will do quite nicely. Like many other things in .NET, if you
know what you are using it for and the scope of the work it will do, many alternatives become
acceptable.

See Also

See the "IHtmlDocument2 Interface" and "MSHTML" topics in the MSDN documentation.

Recipe 14.17. Using Cached Results When Working with
HTTP for Faster Performance

Problem

You are looking for a way to speed up code that reaches out to the Web via HTTP for content.

Solution

Use the RequestCachePolicy class to determine how your HttpWebRequests react in the presence of a
caching entity. RequestCachePolicy has seven levels defined by the RequestCacheLevel enumeration,
as shown in Table 14-3.

Table 14-3. RequestCacheLevel enumeration values

Flag value Purpose

BypassCache Get content only directly from the server (default setting in .NET).

CacheIfAvailable
Accept the requested item from any cache between the request and the server
of the content.

CacheOnly
Accept the request to be fulfilled from only the local cache; throws a
WebException if not found in the cache.

Default

Accept content from intermediate caches or from the server directly, subject to
the current cache policy and content age (recommended level for most apps
even though it is not the default setting).

NoCacheNoStore
Content will not be accepted from caches nor added to any. Equivalent to the
HTTP no-cache directive.

Reload Get content directly from the server but store response in the cache.

Revalidate
Check the content timestamp on the server against the cache and take the most
recent one.

The RequestCachePolicy is set up using the CacheIfAvailable RequestCacheLevel so that the request
will always take the "closest" content to enhance retrieval speed. If Default is used, the request is
still subject to the underlying cache policy of the system, and that can prevent the use of
intermediate caches.

To assign the cache policy, set the CachePolicy property on the HttpWebRequest to the newly created
RequestCachePolicy. Once the policy is in place, get the response. The HttpWebResponse object has a
property called IsFromCache that tells if the response came from a cache.

 string html = "";
 string url = "http://www.oreilly.com";

 // Set up the request (Recipe 14.6 has GenerateHttpWebRequest).
 HttpWebRequest request = GenerateHttpWebRequest(url);

 // Make a cache policy to use cached results if available.
 // The default is to bypass the cache in machine.config.
 RequestCachePolicy rcpCheckCache =
 new RequestCachePolicy(RequestCacheLevel.CacheIfAvailable);

 // Assign the new policy to the request.
 request.CachePolicy = rcpCheckCache;

 // Execute the request.
 HttpWebResponse response = null;
 try
 {
 response = (HttpWebResponse)request.GetResponse();
 }
 catch (WebException we)
 {
 Console.WriteLine(we.ToString());
 }

 // Check if we hit the cache.
 if(response.IsFromCache==false)
 {
 Console.WriteLine("Didn't hit the cache");
 }

Discussion

The default request cache policy for an appdomain can be set by using the
HttpWebRequest.DefaultCachePolicy property. The CachePolicy property shown in the solution sets
the policy for a particular request.

The default caching policy is specified in the machine.config file in the system.net/requestCaching
element as shown here:

 <requestCaching defaultPolicyLevel="BypassCache" isPrivateCache="true"
 unspecifiedMaximumAge="1.00:00:00" >

See Also

See the "RequestCachePolicy Class," "RequestCacheLevel Enumeration," and "Default-CachePolicy
Property" topics in the MSDN documentation.

Recipe 14.18. Checking out a Web Server's Custom Error Pages

Problem

You have an application that needs to know what custom error pages are set up for the various HTTP error
return codes on a given IIS server.

Solution

Use the System.DirectoryServices.DirectoryEntry class to talk to the Internet Information Server (IIS)
metabase to find out which custom error pages are set up. The metabase holds the configuration information
for the web server. DirectoryEntry uses the Active Directory IIS service provider to communicate with the
metabase by specifying the "IIS " scheme in the constructor for the DirectoryEntry .

 // This is a case-sensitive entry in the metabase.
 // You'd think it was misspelled but you would be mistaken…
 const string WebServerSchema = "IIsWebServer";

 // Set up to talk to the local IIS server.
 string server = "localhost";

 // Create a dictionary entry for the IIS server with a fake
 // user and password. Credentials would have to be provided
 // if you are running as a regular user.
 using (DirectoryEntry w3svc =
 new DirectoryEntry(
 string.Format("IIS://{0}/w3svc", server),
 "Domain/UserCode", "Password"))
 {

Once the connection is established, the web server schema entry is specified to show where the IIS settings
are kept (IIsWebServer). The DirectoryEntry has a property that allows access to its children (Children) and
the SchemaClassName is checked for each entry to see if it is in the web server settings section. Once the web
server settings are found, the web root node is located, and from there the HttpErrors property is retrieved.
HttpErrors is a comma-delimited string that indicates the HTTP error code, the HTTP suberror code, the
message type, and the path to the HTML file to serve when this error occurs. Using the Split method to break
this into a string array allows the code to access the individual values and write them out. The code for carrying
out these operations is shown in Example 14-5 .

Example 14-5. Finding custom error pages

 // Can't talk to the metabase for some reason: bail.
 if (w3svc != null)
 {
 foreach (DirectoryEntry site in w3svc.Children)
 {
 if (site != null)
 {
 using (site)
 {
 // Check all web servers on this box.
 if (site.SchemaClassName == WebServerSchema)
 {
 // Get the metabase entry for this server.
 string metabaseDir =
 string.Format("/w3svc/{0}/ROOT", site.Name);

 if (site.Children != null)
 {
 // Find the root directory for each server.
 foreach (DirectoryEntry root in site.Children)
 {
 using (root)
 {
 // Did we find the root dir for this site?
 if (root != null &&
 root.Name.Equals("ROOT",
 StringComparison.OrdinalIgnoreCase))
 {
 // Get the HttpErrors.
 if (root.Properties.Contains(" HttpErrors") ==
true)
 {
 // Write them out.
 PropertyValueCollection httpErrors =
root.Properties["HttpErrors"];
 if (httpErrors != null)
 {
 for (int i = 0; i < httpErrors.Count; i++)
 {
//400,*,FILE,C:\WINDOWS\help\iisHelp\common\400.htm
 string[] errorParts = httpErrors[i].
ToString().Split(',');
 Console.WriteLine("Error Mapping
Entry:");
 Console.WriteLine("\tHTTP error code:
{0}", errorParts[0]);
 Console.WriteLine("\tHTTP sub-error
code: {0}", errorParts[1]);
 Console.WriteLine("\tMessage Type:
{0}", errorParts[2]);
 Console.WriteLine("\tPath to error
HTML file: {0}", errorParts[3]);

 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
// End using initial DirectoryEntry.

At this point, an application could cache these settings for mapping its own error results, or it could
dynamically modify the error pages to provide customized content. The important thing to take away is that
the settings information for the web server is readily available to all applications with a bit of coding.

Discussion

System.DirectoryServices.DirectoryEntry is usually used for Active Directory programming, but it is able to
use any of the providers that are available for Active Directory as well. This approach allows code to examine
the IIS metabase for both the older style IIS 5.x metabases as well as the newer IIS 6.0 metabase that ships
with Windows Server 2003.I

See Also

See Recipe 14.19; see the " HttpErrors [IIS]," "IIS Metabase Properties," and "DirectoryEntry Class" topics in
the MSDN documentation.

Recipe 14.19. Determining the Application Mappings for
ASP.NET Set Up on IIS

Problem

You want to determine what application mappings are set up on a given web server for ASP.NET.

Solution

Use the System.DirectoryServices.DirectoryEntry class to examine the IIS metabase for the application
mappings (also known as extension mappings) for the given web server. This is accomplished by creating a
DirectoryEntry that talks to the IIS service provider for Active Directory and using it to locate the web server
root node. The root node contains a ScriptMaps property that holds all extension mappings for the web
server. Filter out the set of items that are redirected to the aspnet_isapi.dll (this ISAPI is the connector
between IIS and the ASP.NET worker process) and the list of ASP.NET application mappings is created. The
code for carrying out these operations is shown in Example 14-6 .

Example 14-6. Determining the application settings for ASP.NET on a given web
server

// This is a case-sensitive entry in the metabase.
// You'd think it was misspelled but you would be mistaken…
const string WebServerSchema = "IIsWebServer";

// Set up to talk to the local IIS server.
string server = "localhost";

// Create a dictionary entry for the IIS server with a fake
// user and password. Credentials would have to be provided
// if you are running as a regular user.
using (DirectoryEntry w3svc =
 new DirectoryEntry(string.Format("IIS://{0}/w3svc", server),
 "Domain/UserCode", "Password"))
{
 // Can't talk to the metabase for some reason: bail.
 if (w3svc != null)
 {
 foreach (DirectoryEntry site in w3svc.Children)
 {
 using (site)
 {
 if (site != null)

 {
 // Check all web servers on this box.
 if (site.SchemaClassName == WebServerSchema)
 {
 // Get the metabase entry for this server.
 string metabaseDir =
 string.Format("/w3svc/{0}/ROOT", site.Name);

 if (site.Children != null)
 {
 // Find the root directory for each server.
 foreach (DirectoryEntry root in site.Children)
 {
 using (root)
 {
 // Did we find the root dir for this site?
 if (root != null &&
 root.Name.Equals("ROOT", StringComparison.OrdinalIgnoreCase))
 {
 // Get the application mappings in the ScriptMaps property.
 if (root.Properties.Contains("ScriptMaps") == true)
 {
 // Write them out.
 PropertyValueCollection scriptMaps = root.Properties["ScriptMaps"];
 if (scriptMaps != null)
 {
 for (int i = 0; i < scriptMaps.Count; i++)
 {
 //.aspx,
 //C:\WINDOWS\Microsoft.NET\Framework\v2.0.50110\aspnet_isapi.
 dll
 //,1,GET,HEAD,POST,DEBUG
 string[] mappingParts = scriptMaps[i].ToString().Split(',');

 // The ASP.NET redirector is implemented in the
 // aspnet_isapi.dll file so any extensions mapped to it
 // will be processed by ASP.NET.
 if (mappingParts[1].ToUpper().IndexOf("ASPNET_ISAPI") != -1)
 {
 // Write out details for the ASP.NET mappings.
 Console.WriteLine("Extension Mappings:");
 Console.WriteLine("\tMapped Extension: {0}",
 mappingParts[0]);
 Console.WriteLine("\tHandler: {0}", mappingParts[1]);
 for (int j = 3; j < mappingParts.Length; j++)
 Console.WriteLine("\tHTTP VERB: {0}", mappingParts[j]);
 }
 else
 {
 // Write out those unmapped items.
 Console.WriteLine("Skipping {0} as it is not processed by
 ASP.NET",

 mappingParts[0]);
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
 }
}

Discussion

The metabase in IIS contains many properties of interest to web application developers, and it is easily
explored using the MetaEdit tool available from Microsoft (search on support knowledge base article 232068).
MetaEdit is like RegEdit for the IIS metabase and allows for easy exploration of the settings in IIS. As with
RegEdit, much harm can be done while editing, so care should be taken when performing any modifications.
All web and virtual directory settings are located in the appropriate web site folder on the server.

See Also

See Recipe 14.18; see the "ScriptMaps [IIS]" and "IIS Metabase Properties" topics in the MSDN
documentation.

Chapter 15. XML

Introduction

Recipe 15.1. Reading and Accessing XML Data in Document Order

Recipe 15.2. Reading XML on the Web

Recipe 15.3. Querying the Contents of an XML Document

Recipe 15.4. Validating XML

Recipe 15.5. Creating an XML Document Programmatically

Recipe 15.6. Detecting Changes to an XML Document

Recipe 15.7. Handling Invalid Characters in an XML String

Recipe 15.8. Transforming XML

Recipe 15.9. Tearing Apart an XML Document

Recipe 15.10. Putting Together an XML Document

Recipe 15.11. Validating Modified XML Documents Without Reloading

Recipe 15.12. Extending XSLT Transformations

Recipe 15.13. Getting Your Schema in Bulk from Existing XML Files

Recipe 15.14. Passing Parameters to XSLT Transformations

Introduction

Extensible Markup Language (XML) is a simple, portable, and flexible way to represent data in a
structured format. XML is used in a myriad of ways, from acting as the foundation of web-based
messaging protocols such as SOAP, to being one of the more popular ways to store configuration
data (such as the web.config, machine.config, or security.config files in the .NET Framework).
Microsoft recognized the usefulness of XML to developers and has done a nice job of giving you
choices concerning the trade-offs involved. Sometimes you want to simply run though an XML
document looking for a value in a read-only cursorlike fashion, and other times you need to be able
to randomly access various pieces of the document. Microsoft provides classes like XmlReader and
XmlWriter for lighter access and XmlDocument for full Document Object Model (DOM) processing
support. In the 1.x versions of the Framework, the XmlTextReader, XmlTextWriter, and
XmlValidatingReader classes were provided as concrete instances to be used. Microsoft is now
recommending using the factory methods on the XmlReader and XmlWriter classes, in conjunction
with the XmlReaderSettings and XmlWriterSettings classes to work with XML.

It is likely that you will be dealing with XML in .NET to one degree or another. So this chapter
explores some of the uses for XML and XML-based technologies such as XPath and XSLT. It also
explores topics such as XML validation and transformation of XML to HTML.

Recipe 15.1. Reading and Accessing XML Data in
Document Order

Problem

You need to read in all the elements of an XML document and obtain information about each element,
such as its name and attributes.

Solution

Create an XmlReader and use its Read method to process the document as shown in Example 15-1.

Example 15-1. Reading an XML document

using System;
using System.Xml;

// …

public static void Indent(int level)
{
 for (int i = 0; i < level; i++)
 Console.Write(" ");
}

public static void AccessXML()
{
 string xmlFragment = "<?xml version='1.0'?>" +
 "<!-- My sample XML -->" +
 "<?pi myProcessingInstruction?>" +
 "<Root>" +
 "<Node1 nodeId='1'>First Node</Node1>" +
 "<Node2 nodeId='2'>Second Node</Node2>" +
 "<Node3 nodeId='3'>Third Node</Node3>" +
 "</Root>";

 byte[] bytes = Encoding.UTF8.GetBytes(xmlFragment);
 using (MemoryStream memStream = new MemoryStream(bytes))
 {

 XmlReaderSettings settings = new XmlReaderSettings();
 // Check for any illegal characters in the XML.
 settings.CheckCharacters = true;

 using (XmlReader reader = XmlReader.Create(memStream, settings))
 {
 int level = 0;
 while (reader.Read())
 {
 switch (reader.NodeType)
 {
 case XmlNodeType.CDATA:
 Indent(level);
 Console.WriteLine("CDATA: {0}", reader.Value);
 break;
 case XmlNodeType.Comment:
 Indent(level);
 Console.WriteLine("COMMENT: {0}", reader.Value);
 break;
 case XmlNodeType.DocumentType:
 Indent(level);
 Console.WriteLine("DOCTYPE: {0}={1}",
 reader.Name, reader.Value);
 break;
 case XmlNodeType.Element:
 Indent(level);
 Console.WriteLine("ELEMENT: {0}", reader.Name);
 level++;
 while (reader.MoveToNextAttribute())
 {
 Indent(level);
 Console.WriteLine("ATTRIBUTE: {0}='{1}'",
 reader.Name, reader.Value);
 }
 break;
 case XmlNodeType.EndElement:
 level--;
 break;
 case XmlNodeType.EntityReference:
 Indent(level);
 Console.WriteLine("ENTITY: {0}", reader.Name);
 break;
 case XmlNodeType.ProcessingInstruction:
 Indent(level);
 Console.WriteLine("INSTRUCTION: {0}={1}",
 reader.Name, reader.Value);
 break;
 case XmlNodeType.Text:
 Indent(level);
 Console.WriteLine("TEXT: {0}", reader.Value);
 break;
 case XmlNodeType.XmlDeclaration:

 Indent(level);
 Console.WriteLine("DECLARATION: {0}={1}",
 reader.Name, reader.Value);
 break;
 }
 }
 }
 }
}

This code dumps the XML document in a hierarchical format:

 DECLARATION: xml=version='1.0'
 COMMENT: My sample XML
 INSTRUCTION: pi=myProcessingInstruction
 ELEMENT: Root
 ELEMENT: Node1
 ATTRIBUTE: nodeId='1'
 TEXT: First Node
 ELEMENT: Node2
 ATTRIBUTE: nodeId='2'
 TEXT: Second Node
 ELEMENT: Node3
 ATTRIBUTE: nodeId='3'
 TEXT: Third Node

Discussion

Reading existing XML and identifying different node types is one of the fundamental actions that you
will need to perform when dealing with XML. The code in the Solution creates an XmlReader from a
string (it could also have used a stream), then iterates over the nodes while re-creating the
formatted XML for output to the console window.

The Solution shows creating a MemoryStream from an XML fragment in a string like this:

 string xmlFragment = "<?xml version='1.0'?>" +
 "<!-- My sample XML -->" +
 "<?pi myProcessingInstruction?>" +
 "<Root>" +
 "<Node1 nodeId='1'>First Node</Node1>" +
 "<Node2 nodeId='2'>Second Node</Node2>" +
 "<Node3 nodeId='3'>Third Node</Node3>" +
 "</Root>";

 byte[] bytes = Encoding.UTF8.GetBytes(xmlFragment);

 MemoryStream memStream = new MemoryStream(bytes);

Once the MemoryStream has been established, the settings for the XmlReader need to be set up on an
XmlReaderSettings object instance. These settings tell the XmlReader to check for any illegal
characters in the XML fragment:

 XmlReaderSettings settings = new XmlReaderSettings();
 // Check for any illegal characters in the XML.
 settings.CheckCharacters = true;

The while loop iterates over the XML by reading one node at a time and examining the NodeType
property of the current node that the reader is on to determine what type of XML node it is:

 while (reader.Read())
 {
 switch (reader.NodeType)
 {

The NodeType property is an XmlNodeType enumeration value that specifies the types of XML nodes
that can be present. The XmlNodeType enumeration values are shown in Table 15-1.

Table 15-1. The XmlNodeType enumeration values

Name Description

Attribute An attribute node of an element.

CDATA
A marker for sections of text to escape that would usually be treated as
markup.

Comment
A comment in the XML:

<!my comment -->.

Document The root of the XML document tree.

DocumentFragment Document fragment node.

DocumentType The document type declaration.

Element
An element tag:

<myelement>.

Name Description

EndElement
An end element tag:

</myelement>.

EndEntity Returned at the end of an entity after calling ResolveEntity.

Entity Entity declaration.

EntityReference A reference to an entity.

None This is the node returned if Read has not yet been called on the XmlReader.

Notation A notation in the DTD (document type definition).

ProcessingInstruction
The processing instruction:

<?pi myProcessingInstruction?>.

SignificantWhitespace
Whitespace when mixed content model is used or when whitespace is
being preserved.

Text Text content for a node.

Whitespace The whitespace between markup entries.

XmlDeclaration
The first node in the document that cannot have children:

<?xml version='1.0'?>.

See Also

See the "XmlReader Class," "XmlNodeType Enumeration," and "MemoryStream Class" topics in the
MSDN documentation.

EndElement
An end element tag:

</myelement>.

EndEntity Returned at the end of an entity after calling ResolveEntity.

Entity Entity declaration.

EntityReference A reference to an entity.

None This is the node returned if Read has not yet been called on the XmlReader.

Notation A notation in the DTD (document type definition).

ProcessingInstruction
The processing instruction:

<?pi myProcessingInstruction?>.

SignificantWhitespace
Whitespace when mixed content model is used or when whitespace is
being preserved.

Text Text content for a node.

Whitespace The whitespace between markup entries.

XmlDeclaration
The first node in the document that cannot have children:

<?xml version='1.0'?>.

See Also

See the "XmlReader Class," "XmlNodeType Enumeration," and "MemoryStream Class" topics in the
MSDN documentation.

Recipe 15.2. Reading XML on the Web

Problem

Given a URL that points to an XML document, you need to grab the XML.

Solution

Use the XmlReader constructor that takes a URL as a parameter:

 string url = "http://localhost/xml/sample.xml";
 using (XmlReader reader = XmlReader.Create(url))
 {
 while (reader.Read())
 {
 switch (reader.NodeType)
 {
 case XmlNodeType.Element:
 Console.Write("<{0}>", reader.Name);
 break;
 }
 }
 }

Discussion

Using the XmlReader.Create method with a URI is a quick way to access XML documents that are
stored remotely without writing all of the connectivity code. This uses an instance of the
XmlUrlResolver class to check the URI passed in and then opens a stream to the XML document
indicated by the URI. To specify settings on the reader, there is a second overload of Create that also
takes an XmlReaderSettings instance to facilitate this.

The sample.xml file being referenced in this code is set up in a virtual directory named xml on the
local system. The code retrieves the sample.xml file from the web server and displays all of the
elements in the XML.

sample.xml contains the following XML data:

 <?xml version='1.0'?>

 <!-- My sample XML -->
 <?pi myProcessingInstruction?>
 <Root>
 <Node1 nodeId='1'>First Node</Node1>
 <Node2 nodeId='2'>Second Node</Node2>
 <Node3 nodeId='3'>Third Node</Node3>
 <Node4><![CDATA[<>\&']]></Node4>
 </Root>

See Also

See the "XmlReader Class" topic in the MSDN documentation.

Recipe 15.3. Querying the Contents of an XML Document

Problem

You have a large and complex XML document and you need to find various pieces of information, such
as all the information contained within a specific element and having a particular attribute setting. You
want to query the XML structure without having to iterate through all the nodes in the XML document
and search for a particular item by hand.

Solution

To query a database, you normally use SQL. To query an XML document, you currently use XPath or
with SQL Server 2005 possibly XQuery (as .NET 2.0 does not support it as part of the Base Class Library
[BCL.NET]). In .NET, this means using the System.Xml.XPath namespace and classes like XPathDocument
, XPathNavigator , and XPathNodeIterator .

In the following example, you use these classes to select nodes from an XML document that holds
members from the board game Clue (or Cluedo, as it is known abroad) and their various roles. You
want to be able to select the married female participants who were witnesses to the crime. In order to
do this, pass an XPath expression to query the XML dataset as shown in Example 15-2 .

Example 15-2. Querying an XML document

public static void QueryXML()
{
 string xmlFragment = "<?xml version='1.0'?>" +
 "<Clue>" +
 "<Participant type='Perpetrator'>Professor Plum</Participant>" +
 "<Participant type='Witness'>Colonel Mustard</Participant>" +
 "<Participant type='Witness'>Mrs. White</Participant>" +
 "<Participant type='Witness'>Mrs. Peacock</Participant>" +
 "<Participant type='Witness'>Mr. Green</Participant>" +
 "</Clue>";

 using (StringReader reader = new StringReader(xmlFragment))
 {
 // Instantiate an XPathDocument using the StringReader.
 XPathDocument xpathDoc = new XPathDocument(reader);

 // Get the navigator.
 XPathNavigator xpathNav = xpathDoc.CreateNavigator();

 // Get up the query looking for the married female participants

 // who were witnesses.
 string xpathQuery =
 "/Clue/Participant[attribute::type='Witness'][contains(text(),'Mrs.')]";
 XPathExpression xpathExpr = xpathNav.Compile(xpathQuery);

 // Get the nodeset from the compiled expression.
 XPathNodeIterator xpathIter = xpathNav.Select(xpathExpr);

 // Write out the nodes found (Mrs. White and Mrs.Peacock in this instance).
 while (xpathIter.MoveNext())
 {
 Console.WriteLine(xpathIter.Current.Value);
 }
 }
}

This outputs the following:

 Mrs. White
 Mrs. Peacock

Discussion

XPath is a very versatile language for performing queries on XML-based data. In order to accomplish
this goal, you first create an XML fragment that looks like this:

 <?xml version='1.0'?>
 <Clue>
 <Participant type='Perpetrator'>Professor Plum</Participant>
 <Participant type='Witness'>Colonel Mustard</Participant>
 <Participant type='Witness'>Mrs. White</Participant>
 <Participant type='Witness'>Mrs. Peacock</Participant>
 <Participant type='Witness'>Mr. Green</Participant>
 </Clue>;

You then load this fragment into a StringReader , then construct an XPathDocument to allow you to
create an XPathNavigator . This lets you use XPath syntax to query the XML document shown in the
preceding listing. The XPathDocument instance wraps the MemoryStream so you can use XPath to locate
nodes (as well as perform XSLT transforms directly), and the XPathNavigator gets the set of nodes
selected by the XPath expression.

 byte[] bytes = Encoding.UTF8.GetBytes(xmlFragment);

 MemoryStream memStream = new MemoryStream(bytes);

 // Instantiate an XPathDocument using the MemoryStream.
 XPathDocument xpathDoc = new XPathDocument(memStream);

 // Get the navigator.
 XPathNavigator xpathNav = xpathDoc.CreateNavigator();

Now you have to determine the XPath -based query to get all of the married female participants who
were witnesses. This is set up in the xpathQuery string like this:

 // Get up the query looking for the married female participants
 // who were witnesses.
 string xpathQuery =
 "/Clue/Participant[attribute::type='Witness'][contains(text(),'Mrs.')]";

To help you grasp what is going on here, let's look at the syntax:

/Clue/Participant says "Get all of the Participants under the root-level node Clue."

Participant[attribute::type='Witness'] says "Select only Participants with an attribute called
type with a value of Witness."

Participant[contains(text(),'Mrs.')] says " Select only Participants with a value that contains
'Mrs.'"

Put them all together and you get all of the married female participants who were witnesses.

Once you have an XPathNavigator , call the Select method on it, passing the XPath- based query to
select the nodes you are looking for. These are returned via the XPathNodeIterator . You use the
XPathNodeIterator to write out the names of the participants you found and close the MemoryStream .

See Also

See the " XPathDocument Class," " XPathNavigator Enumeration," and "XPathNode-Iterator Class"
topics in the MSDN documentation.

Recipe 15.4. Validating XML

Problem

You are accepting an XML document created by another source and you want to verify that it conforms
to a specific schema. This schema may be in the form of an XML schema (XSD or XML XDR);
alternatively, you want the flexibility to use a document type definition (DTD) to validate the XML.

Solution

Use the XmlReaderSettings to create an XmlReader that can validate XML documents against any
descriptor document, such as an XSD, a DTD, or an XDR, as shown in Example 15-3 .

Example 15-3. Validating XML

public static void ValidateXml()
{
 // Create XSD schema collection with book.xsd.
 XmlReaderSettings settings = new XmlReaderSettings();
 // Wire up handler to get any validation errors.
 settings.ValidationEventHandler += settings_ValidationEventHandler;

 // Set the validation type to schema.
 settings.ValidationType = ValidationType.Schema;

 // Add book.xsd.
 settings.Schemas.Add(null, XmlReader.Create(@"..\..\Book.xsd"));
 // Make sure we added.
 if (settings.Schemas.Count > 0)
 {
 // Open the bookbad.xml file.
 using (XmlReader reader = XmlReader.Create(@"..\..\BookBad.xml", settings))
 {
 // Replace validReader with reader for the whole loop.
 while (reader.Read())
 {
 if (reader.NodeType == XmlNodeType.Element)
 {
 Console.Write("<{0}", reader.Name);
 while (reader.MoveToNextAttribute())
 {
 Console.Write(" {0}='{1}'", reader.Name,
 reader.Value);

 }
 Console.Write(">");
 }
 else if (reader.NodeType == XmlNodeType.Text)
 {
 Console.Write(reader.Value);
 }
 else if (reader.NodeType == XmlNodeType.EndElement)
 {
 Console.WriteLine("</{0}>", reader.Name);
 }
 }
 }
 }
}

private static void settings_ValidationEventHandler(object sender,
 ValidationEventArgs e)
{
 Console.WriteLine("Validation Error Message: {0}", e.Message);
 Console.WriteLine("Validation Error Severity: {0}", e.Severity);
 if (e.Exception != null)
 {
 Console.WriteLine("Validation Error Line Number: {0}",
 e.Exception.LineNumber);
 Console.WriteLine("Validation Error Line Position: {0}",
 e.Exception.LinePosition);
 Console.WriteLine("Validation Error Source: {0}",
 e.Exception.Source);
 Console.WriteLine("Validation Error Source Schema: {0}",
 e.Exception.SourceSchemaObject);
 Console.WriteLine("Validation Error Source Uri: {0}",
 e.Exception.SourceUri);
 Console.WriteLine("Validation Error thrown from: {0}",
 e.Exception.TargetSite);
 Console.WriteLine("Validation Error callstack: {0}",
 e.Exception.StackTrace);
 }
}

Discussion

The Solution illustrates how to use the XmlReader to validate the book. xml document against a
book.xsd XSD definition file. DTDs were the original way to specify the structure of an XML document,
but it has become more common to use XSD since it reached W3C Recommendation status in May
2001. XDR was a predecessor of XSD provided by Microsoft, and, while it might be encountered in
existing systems, it should not be used for new development.

The first thing to do is create an XmlReader to hold your XSD (book.xsd). Add it to the XmlSchemaSet

(Schemas property) on the XmlReaderSettings object settings :

 // Wire up handler to get any validation errors.
 settings.ValidationEventHandler += settings_ValidationEventHandler;

 // Set the validation type to schema.
 settings.ValidationType = ValidationType.Schema;

 // Add book.xsd.
 settings.Schemas.Add(null, XmlReader.Create(@"..\..\Book.xsd"));

The preceding code also hooks up the schema-collection event handler for validation errors to the
settings_ValidationEventHandler function. It also sets the ValidationType to Schema . Setting
XmlReaderSettings.ValidationType to ValidationType. Schema tells the XmlReader to perform XML
Schema validation.

To perform DTD validation, use a DTD and ValidationType.DTD , and to perform
XDR validation, use an XDR schema and ValidationType.XDR .

The settings_ValidationEventHandler function then examines the ValidationEventArgs object passed
when a validation error occurs and writes the pertinent information to the console:

 private static void settings_ValidationEventHandler(object sender,
 ValidationEventArgs e)
 {
 Console.WriteLine("Validation Error Message: {0}", e.Message);
 Console.WriteLine("Validation Error Severity: {0}", e.Severity);
 if (e.Exception != null)
 {
 Console.WriteLine("Validation Error Line Number: {0}",
 e.Exception.LineNumber);
 Console.WriteLine("Validation Error Line Position: {0}",
 e.Exception.LinePosition);
 Console.WriteLine("Validation Error Source: {0}",
 e.Exception.Source);
 Console.WriteLine("Validation Error Source Schema: {0}",
 e.Exception.SourceSchemaObject);
 Console.WriteLine("Validation Error Source Uri: {0}",
 e.Exception.SourceUri);
 Console.WriteLine("Validation Error thrown from: {0}",
 e.Exception.TargetSite);
 Console.WriteLine("Validation Error callstack: {0}",
 e.Exception.StackTrace);
 }
 }

Once you have the schema collection, create an XmlReader to load the BookBad. xml file:

 // Open the book.xml file.
 using(XmlReader reader = XmlReader.Create(@"..\..\BookBad.xml", settings))

You then proceed to roll over the XML document and write out the elements and attributes:

 // Read all nodes and print out.
 while (reader.Read())
 {
 if(reader.NodeType == XmlNodeType.Element)
 {
 Console.Write("<{0}", reader.Name);
 while (reader.MoveToNextAttribute())
 {
 Console.Write(" {0}='{1}'", reader.Name,
 reader.Value);
 }
 Console.Write(">");
 }
 else if (reader.NodeType == XmlNodeType.Text)
 {
 Console.Write(reader.Value);
 }
 else if (reader.NodeType == XmlNodeType.EndElement)
 {
 Console.WriteLine("</{0}>", reader.Name);
 }
 }

The BookBad.xml file contains the following:

 <?xml version="1.0" encoding="utf-8"?>
 <Book xmlns="http://tempuri.org/Book.xsd" name="C# Cookbook">
 <Chapter>File System IO</Chapter>
 <Chapter>Security</Chapter>
 <Chapter>Data Structures and Algorithms</Chapter>
 <Chapter>Reflection</Chapter>
 <Chapter>Threading and Synchronization</Chapter>
 <Chapter>Numbers and Enumerations</Chapter>
 <BadElement>I don't belong here</BadElement>
 <Chapter>Strings and Characters</Chapter>

 <Chapter>Classes And Structures</Chapter>
 <Chapter>Collections</Chapter>
 <Chapter>XML</Chapter>
 <Chapter>Delegates, Events, and Anonymous Methods</Chapter>
 <Chapter>Diagnostics</Chapter>
 <Chapter>Toolbox</Chapter>
 <Chapter>Unsafe Code</Chapter>
 <Chapter>Regular Expressions</Chapter>
 <Chapter>Generics</Chapter>
 <Chapter>Iterators and Partial Types</Chapter>
 <Chapter>Exception Handling</Chapter>
 <Chapter>Web</Chapter>
 <Chapter>Networking</Chapter>
 </Book>

The book.xsd file contains the following:

 <?xml version="1.0" ?>
 <xs:schema id="NewDataSet" targetNamespace="http://tempuri.org/Book.xsd"
 xmlns:mstns="http://tempuri.org/Book.xsd"
 xmlns="http://tempuri.org/Book.xsd"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:msdata="urn:schemas-microsoft-com:xml-msdata"
 attributeFormDefault="qualified" elementFormDefault="qualified">
 <xs:element name="Book">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Chapter" nillable="true"
 minOccurs="0" maxOccurs="unbounded">
 <xs:complexType>
 <xs:simpleContent
 msdata:ColumnName="Chapter_Text" msdata:Ordinal="0">
 <xs:extension base="xs:string">
 </xs:extension>
 </xs:simpleContent>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 <xs:attribute name="name" form="unqualified" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 </xs:schema>

When this is run, the following output is generated, showing the validation failure occurring on
BadElement :

 <Book xmlns='http://tempuri.org/Book.xsd' name='C# Cookbook'><Chapter>File System
 IO</Chapter>
 <Chapter>Security</Chapter>
 <Chapter>Data Structures and Algorithms</Chapter>
 <Chapter>Reflection</Chapter>
 <Chapter>Threading and Synchronization</Chapter>
 <Chapter>Numbers and Enumerations</Chapter>
 Validation Error Message: The element 'Book' in namespace 'http://tempuri.org/Book.
 xsd' has invalid child element 'BadElement' in namespace 'http://tempuri.org/Book.
 xsd'. List of possible elements expected: 'Chapter' in namespace 'http://tempuri.org/
 Book.xsd'.
 Validation Error Severity: Error
 Validation Error Line Number: 9
 Validation Error Line Position: 6
 Validation Error Source:
 Validation Error Source Schema:
 Validation Error Source Uri: file:///C:/PRJ32/Book_2_0/C%23Cookbook2/Code/
 CSharpRecipes/BookBad.xml
 Validation Error thrown from:
 Validation Error callstack:
 <BadElement>I don't belong here</BadElement>
 <Chapter>Strings and Characters</Chapter>
 <Chapter>Classes And Structures</Chapter>
 <Chapter>Collections</Chapter>
 <Chapter>XML</Chapter>
 <Chapter>Delegates, Events, and Anonymous Methods</Chapter>
 <Chapter>Diagnostics</Chapter>
 <Chapter>Toolbox</Chapter>
 <Chapter>Unsafe Code</Chapter>
 <Chapter>Regular Expressions</Chapter>
 <Chapter>Generics</Chapter>
 <Chapter>Iterators and Partial Types</Chapter>
 <Chapter>Exception Handling</Chapter>
 <Chapter>Web</Chapter>
 <Chapter>Networking</Chapter>
 </Book>

See Also

See the "XmlReader Class," "XmlSchemaSet Class," "ValidationEventHandler Class," "ValidationType
Enumeration," and "XmlReaderSettings Class" topics in the MSDN documentation.

Recipe 15.5. Creating an XML Document Programmatically

Problem

You have data that you want to put into a more structured form, such as an XML document.

Solution

Suppose you have the information shown in Table 15-2 for an address book that you want to turn into
XML.

Table 15-2. Sample address book data

Name Phone

Tim 999-888-0000

Newman 666-666-6666

Harold 777-555-3333

Use the XmlWriter to create XML for this table:

 XmlWriterSettings settings = new XmlWriterSettings();
 settings.Indent = true;
 using (XmlWriter writer = XmlWriter.Create(Console.Out, settings))
 {
 writer.WriteStartElement("AddressBook");
 writer.WriteStartElement("Contact");
 writer.WriteAttributeString("name", "Tim");
 writer.WriteAttributeString("phone", "999-888-0000");
 writer.WriteEndElement();
 writer.WriteStartElement("Contact");
 writer.WriteAttributeString("name", "Newman");
 writer.WriteAttributeString("phone", "666-666-6666");
 writer.WriteEndElement();
 writer.WriteStartElement("Contact");
 writer.WriteAttributeString("name", "Harold");
 writer.WriteAttributeString("phone", "777-555-3333");
 writer.WriteEndElement();
 writer.WriteEndElement();
 }

This method will give you output like this:

 <AddressBook>
 <Contact name="Tim" phone="999-888-0000" />
 <Contact name="Newman" phone="666-666-6666" />
 <Contact name="Harold" phone="777-555-3333" />
 </AddressBook>

Or you can use the XmlDocument class to programmatically construct the XML:

 public static void CreateXml()
 {
 // Start by making an XmlDocument.
 XmlDocument xmlDoc = new XmlDocument();
 // Create a root node for the document.
 XmlElement addrBook = xmlDoc.CreateElement("AddressBook");
 xmlDoc.AppendChild(addrBook);
 // Create the Tim contact.
 XmlElement contact = xmlDoc.CreateElement("Contact");
 contact.SetAttribute("name","Tim");
 contact.SetAttribute("phone","999-888-0000");
 addrBook.AppendChild(contact);
 // Create the Newman contact.
 contact = xmlDoc.CreateElement("Contact");
 contact.SetAttribute("name","Newman");
 contact.SetAttribute("phone","666-666-6666");
 addrBook.AppendChild(contact);
 // Create the Harold contact.
 contact = xmlDoc.CreateElement("Contact");
 contact.SetAttribute("name","Harold");
 contact.SetAttribute("phone","777-555-3333");
 addrBook.AppendChild(contact);
 // Display XML.
 Console.WriteLine("Generated XML:\r\n{0}",addrBook.OuterXml);
 Console.WriteLine();
 }

This method gives the output like this:

 Generated XML:
 <AddressBook><Contact name="Tim" phone="999-888-0000" /><Contact name="Newman"
 phone="666-666-6666" /><Contact name="Harold" phone="777-555-3333" /></AddressBook>

Both methods produce the same XML, but the first method is formatted with indents.

Discussion

Now that you have seen two ways to do this, the question arises: "Which one to use?" The
XmlDocument uses the traditional DOM method of interacting with XML, while the XmlReader/XmlWriter
combination deals with XML in a stream. If you are dealing with larger documents, you are probably
better off using the XmlReader/XmlWriter combination than the XmlDocument . The XmlReader/XmlWriter
combination is the better-performing of the two when you do not need the whole document in
memory. If you need the power of being able to traverse back over what you have written already or
write items out of order, use XmlDocument .

XmlDocument is the class that implements the DOM model for XML processing in the .NET Framework.
The DOM holds all of the nodes in the XML in memory at the same time, which enables tree traversal
both forward and backward. DOM also allows for a writable interface to the whole XML document,
which other XML classes do not provide in .NET. XmlDocument allows you to manipulate any aspect of
the XML tree. It is also eligible to be used for XSLT transformations via the XslCompiledTransform
class, through its support of the IXPathNavigable interface. It allows you to run XPath queries against
the document without having to create an XPathDocument first.

See Also

See the "XmlDocument Class," "XML Document Object Model (DOM)," " XslCompiledTransform Class,"
and " IXPathNavigable Interface" topics in the MSDN documentation.

Recipe 15.6. Detecting Changes to an XML Document

Problem

You need to inform one or more classes or components that a node in an XML document has been
inserted or removed or had its value changed.

Solution

In order to track changes to an active XML document, subscribe to the events published by the
XmlDocument class. XmlDocument publishes events for node creation, insertion, and removal for both
the pre- and post-conditions of these actions.

Example 15-4 shows a number of event handlers defined in the same scope as the DetectXMLChanges
method, but they could just as easily be callbacks to functions on other classes that are interested in
the manipulation of the live XML document.

DetectXMLChanges loads an XML fragment you define in the method; wires up the event handlers for
the node events; adds, changes, and removes some nodes to trigger the events; then writes out the
resulting XML.

Example 15-4. Detecting changes to an XML document

public static void DetectXmlChanges()
{
 string xmlFragment = "<?xml version='1.0'?>" +
 "<!-- My sample XML -->" +
 "<?pi myProcessingInstruction?>" +
 "<Root>" +
 "<Node1 nodeId='1'>First Node</Node1>" +
 "<Node2 nodeId='2'>Second Node</Node2>" +
 "<Node3 nodeId='3'>Third Node</Node3>" +
 @"<Node4><![CDATA[<>\&']]></Node4>" +
 "</Root>";

 XmlDocument doc = new XmlDocument();
 doc.LoadXml(xmlFragment);

 //Create the event handlers.
 doc.NodeChanging += new XmlNodeChangedEventHandler(NodeChangingEvent);
 doc.NodeChanged += new XmlNodeChangedEventHandler(NodeChangedEvent);

 doc.NodeInserting += new XmlNodeChangedEventHandler(NodeInsertingEvent);
 doc.NodeInserted += new XmlNodeChangedEventHandler(NodeInsertedEvent);
 doc.NodeRemoving += new XmlNodeChangedEventHandler(NodeRemovingEvent);
 doc.NodeRemoved += new XmlNodeChangedEventHandler(NodeRemovedEvent);

 // Add a new element node.
 XmlElement elem = doc.CreateElement("Node5");
 XmlText text = doc.CreateTextNode("Fifth Element");
 doc.DocumentElement.AppendChild(elem);
 doc.DocumentElement.LastChild.AppendChild(text);

 // Change the first node.
 doc.DocumentElement.FirstChild.InnerText = "1st Node";

 // Remove the fourth node.
 XmlNodeList nodes = doc.DocumentElement.ChildNodes;
 foreach(XmlNode node in nodes)
 {

 if(node.Name == "Node4")
 {
 doc.DocumentElement.RemoveChild(node);
 break;
 }
 }

 // Write out the new xml.
 Console.WriteLine(doc.OuterXml);
}

Example 15-5 shows the event handlers from the XmlDocument, along with one formatting method,
WriteNodeInfo. This method takes an action string and gets the name and value of the node being
manipulated. All of the event handlers invoke this formatting method, passing the corresponding
action string.

Example 15-5. XMLDocument event handlers and WtiteNodeInfo method

private static void WriteNodeInfo(string action, XmlNode node)
{
 if (node.Value != null)
 {
 Console.WriteLine("Element: <{0}> {1} with value {2}",
 node.Name,action,node.Value);
 }
 else
 Console.WriteLine("Element: <{0}> {1} with null value",
 node.Name,action);
}

public static void NodeChangingEvent(object source, XmlNodeChangedEventArgs e)
{
 WriteNodeInfo("changing",e.Node);
}

public static void NodeChangedEvent(object source, XmlNodeChangedEventArgs e)
{
 WriteNodeInfo("changed",e.Node);
}

public static void NodeInsertingEvent(object source, XmlNodeChangedEventArgs e)
{
 WriteNodeInfo("inserting",e.Node);
}

public static void NodeInsertedEvent(object source, XmlNodeChangedEventArgs e)
{
 WriteNodeInfo("inserted",e.Node);
}

public static void NodeRemovingEvent(object source, XmlNodeChangedEventArgs e)
{
 WriteNodeInfo("removing",e.Node);
}

public static void NodeRemovedEvent(object source, XmlNodeChangedEventArgs e)
{
 WriteNodeInfo("removed",e.Node);
}

The DetectXmlChanges method results in the following output:

 Element: <Node5> inserting with null value
 Element: <Node5> inserted with null value
 Element: <#text> inserting with value Fifth Element

 Element: <#text> inserted with value Fifth Element
 Element: <#text> changing with value First Node
 Element: <#text> changed with value 1st Node
 Element: <Node4> removing with null value
 Element: <Node4> removed with null value
 <?xml version="1.0"?><!-- My sample XML --><?pi myProcessingInstruction?><Root><
 Node1 nodeId="1">1st Node</Node1><Node2 nodeId="2">Second Node</Node2><Node3 nod
 eId="3">Third Node</Node3><Node5>Fifth Elementy/Node5></Root>

Discussion

With an XmlDocument, you can traverse both forward and backward in the XML stream, as well as use
XPath navigation to find nodes. If you are just reading XML and not modifying it, and you have no
need for traversing backward through the nodes, you should avoid using XmlDocument, since
XmlReader is faster for reading and XmlWriter is faster for writing (both have less overhead than
XmlDocument). The .NET Framework team did a nice job of giving XML processing flexibility, but if you
use a class with more functionality than you need, you will pay the resulting performance penalty.

See Also

See the "XmlDocument Class" and "XmlNodeChangedEventHandler Class" topics in the MSDN
documentation.

Recipe 15.7. Handling Invalid Characters in an XML String

Problem

You are creating an XML string. Before adding a tag containing a text element, you want to check it to
determine whether the string contains any of the following invalid characters:

 <
 >
 "
 '
 &

If any of these characters are encountered, you want them to be replaced with their escaped form:

 <
 >
 "
 '
 &

Solution

There are different ways to accomplish this, depending on which XML-creation approach you are using.
If you are using XmlWriter , the WriteCData , WriteString , WriteAttributeString , WriteValue , and
WriteElementString methods take care of this for you. If you are using XmlDocument and XmlElements ,
the XmlElement. InnerText method will handle these characters.

The two ways to handle this using an XmlWriter work like this. The WriteCData method will wrap the
invalid character text in a CDATA section, as shown in the creation of the InvalidChars1 element in the
example that follows. The other method, using XmlWriter , is to use the WriteElementString method
that will automatically escape the text for you, as shown while creating the InvalidChars2 element.

 // Set up a string with our invalid chars.
 string invalidChars = @"<>\&'";
 XmlWriterSettings settings = new XmlWriterSettings();
 settings.Indent = true;
 using (XmlWriter writer = XmlWriter.Create(Console.Out, settings))

 {
 writer.WriteStartElement("Root");
 writer.WriteStartElement("InvalidChars1");
 writer.WriteCData(invalidChars);
 writer.WriteEndElement();
 writer.WriteElementString("InvalidChars2", invalidChars);
 writer.WriteEndElement();
 }

The output from this is:

 <?xml version="1.0" encoding="IBM437"?>
 <Root>
 <InvalidChars1><![CDATA[<>\&']]></InvalidChars1>
 <InvalidChars2><>\&'</InvalidChars2>
 </Root>

There are two ways you can handle this problem with XmlDocument and XmlElement . The first way is to
surround the text you are adding to the XML element with a CDATA section and add it to the InnerXML
property of the XmlElement :

 // Set up a string with our invalid chars.
 string invalidChars = @"<>\&'";
 XmlElement invalidElement1 = xmlDoc.CreateElement("InvalidChars1");
 invalidElement1.AppendChild(xmlDoc.CreateCDataSection(invalidChars));

The second way is to let the XmlElement class escape the data for you by assigning the text directly to
the InnerText property like this:

 // Set up a string with our invalid chars.
 string invalidChars = @"<>\&'";
 XmlElement invalidElement2 = xmlDoc.CreateElement("InvalidChars2");
 invalidElement2.InnerText = invalidChars;

The whole XmlDocument is created with these XmlElements in this code:

 public static void HandlingInvalidChars()
 {
 // Set up a string with our invalid chars.
 string invalidChars = @"<>\&'";

 XmlDocument xmlDoc = new XmlDocument();
 // Create a root node for the document.
 XmlElement root = xmlDoc.CreateElement("Root");
 xmlDoc.AppendChild(root);

 // Create the first invalid character node.
 XmlElement invalidElement1 = xmlDoc.CreateElement("InvalidChars1");
 // Wrap the invalid chars in a CDATA section and use the
 // InnerXML property to assign the value as it doesn't
 // escape the values, just passes in the text provided.
 invalidElement1.InnerXml = "<![CDATA[" + invalidChars + "]]>";
 // Append the element to the root node.
 root.AppendChild(invalidElement1);

 // Create the second invalid character node.
 XmlElement invalidElement2 = xmlDoc.CreateElement("InvalidChars2");
 // Add the invalid chars directly using the InnerText
 // property to assign the value as it will automatically
 // escape the values.
 invalidElement2.InnerText = invalidChars;
 // Append the element to the root node.
 root.AppendChild(invalidElement2);

 Console.WriteLine("Generated XML with Invalid Chars:\r\n{0}",xmlDoc.OuterXml);
 Console.WriteLine();
 }

The XML created by this procedure (and output to the console) looks like this:

 Generated XML with Invalid Chars:
 <Root><InvalidChars1><![CDATA[<>\&']]></InvalidChars1><InvalidChars2><>\
 &'</InvalidChars2></Root>

Discussion

The CDATA node allows you to represent the items in the text section as character data, not as escaped
XML, for ease of entry. Normally these characters would need to be in their escaped format (< for <
and so on), but the CDATA section allows you to enter them as regular text.

When the CDATA tag is used in conjunction with the InnerXml property of the XmlElement class, you can
submit characters that would normally need to be escaped first. The XmlElement class also has an
InnerText property that will automatically escape any markup found in the string assigned. This allows
you to add these characters without having to worry about them.

See Also

See the "XmlDocument Class," "XmlWriter Class," " XmlElement Class," and " CDATA Sections" topics
in the MSDN documentation.

Recipe 15.8. Transforming XML

Problem

You have a raw XML document that you need to convert into a more readable format. For example,
you have personnel data that is stored as an XML document and you need to display it on a web page
or place it in a comma-delimited text file for legacy system integration. Unfortunately, not everyone
wants to sort through reams of XML all day; they would rather read the data as a formatted list or
within a grid with defined columns and rows. You need a method of transposing the XML data into a
more readable form as well as into the comma-delimited format.

Solution

The solution for this is to use an XSLT stylesheet to transform the XML into another format using the
XslCompiledTransform class. In the example code, you transform some personnel data from a
fictitious business stored in Personnel.xml. First, load the stylesheet for generating HTML output, then
perform the transformation to HTML via XSLT using the PersonnelHTML.xsl stylesheet. After that,
transform the data to comma-delimited format using the PersonnelCSV.xsl stylesheet:

 public static void TransformXML()
 {
 // Create a resolver with default credentials.
 XmlUrlResolver resolver = new XmlUrlResolver();
 resolver.Credentials = System.Net.CredentialCache.DefaultCredentials;

 // Transform the personnel.xml file to html.
 XslCompiledTransform transform = new XslCompiledTransform();
 XsltSettings settings = new XsltSettings();
 // Disable both of these (the default) for security reasons.
 settings.EnableDocumentFunction = false;
 settings.EnableScript = false;
 // Load up the stylesheet.
 transform.Load(@"..\..\PersonnelHTML.xsl",settings,resolver);
 // Perform the transformation.
 transform.Transform(@"..\..\Personnel.xml",@"..\..\Personnel.html");

 // Or transform the Personnel.xml file to comma-delimited format.

 // Load up the stylesheet.
 transform.Load(@"..\..\PersonnelCSV.xsl",settings,resolver);
 // Perform the transformation.

 transform.Transform(@"..\..\Personnel.xml",
 @"..\..\Personnel.csv");
 }

The Personnel.xml file contains the following items:

 <?xml version="1.0" encoding="utf-8"?>
 <Personnel>
 <Employee name="Bob" title="Customer Service" companyYears="1"/>
 <Employee name="Alice" title="Manager" companyYears="12"/>
 <Employee name="Chas" title="Salesman" companyYears="3"/>
 <Employee name="Rutherford" title="CEO" companyYears="27"/>
 </Personnel>

The PersonnelHTML.xsl stylesheet looks like this:

 <?xml version="1.0" encoding="UTF-8"?>
 <xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xsl:template match="/">
 <html>
 <head />
 <body title="Personnel">
 <xsl:for-each select="Personnel">
 <p>
 <xsl:for-each select="Employee">
 <xsl:if test="position()=1">
 <table border="1">
 <thead>
 <tr>
 <td>Employee Name</td>
 <td>Employee Title</td>
 <td>Years with Company</td>
 </tr>
 </thead>
 <tbody>
 <xsl:for-each select="../Employee">
 <tr>
 <td>
 <xsl:for-each select="@name">
 <xsl:value-of select="." />
 </xsl:for-each>
 </td>
 <td>
 <xsl:for-each select="@title">

 <xsl:value-of select="." />
 </xsl:for-each>
 </td>
 <td>
 <xsl:for-each select="@companyYears">
 <xsl:value-of select="." />
 </xsl:for-each>
 </td>
 </tr>
 </xsl:for-each>
 </tbody>
 </table>
 </xsl:if>
 </xsl:for-each>
 </p>
 </xsl:for-each>
 </body>
 </html>
 </xsl:template>
 </xsl:stylesheet>

To generate the HTML screen in Figure 15-1, use the PersonnelHTML.xsl stylesheet and the
Personnel.xml file.

Figure 15-1. Personnel HTML table generated from Personnel.xml

Here is the HTML source:

 <html xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <head>
 <META http-equiv="Content-Type" content="text/html; charset=utf-8">
 </head>
 <body title="Personnel">
 <p>
 <table border="1">
 <thead>
 <tr>

 <td>Employee Name</td>
 <td>Employee Title</td>
 <td>Years with Company</td>
 </tr>
 </thead>
 <tbody>
 <tr>
 <td>Bob</td>
 <td>Customer Service</td>
 <td>1</td>
 </tr>
 <tr>
 <td>Alice</td>
 <td>Manager</td>
 <td>12</td>
 </tr>
 <tr>
 <td>Chas</td>
 <td>Salesman</td>
 <td>3</td>
 </tr>
 <tr>
 <td>Rutherford</td>
 <td>CEO</td>
 <td>27</td>
 </tr>
 </tbody>
 </table>
 </p>
 </body>
 </html>

To generate comma-delimited output, use PersonnelCSV.xsl and Personnel.xml; the stylesheet is
shown here:

 <?xml version="1.0" encoding="UTF-8"?>
 <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <xsl:output method="text" encoding="UTF-8"/>
 <xsl:template match="/">
 <xsl:for-each select="Personnel">
 <xsl:for-each select="Employee">
 <xsl:for-each select="@name">
 <xsl:value-of select="." />
 </xsl:for-each>,<xsl:for-each select="@title">
 <xsl:value-of select="." />
 </xsl:for-each>,<xsl:for-each select="@companyYears">
 <xsl:value-of select="." />
 </xsl:for-each>

 <xsl:text> 
</xsl:text>
 </xsl:for-each>
 </xsl:for-each>
 </xsl:template>
 </xsl:stylesheet>

The output from the PersonnelCSV.xsl stylesheet is shown here:

 Bob,Customer Service,1
 Alice,Manager,12
 Chas,Salesman,3
 Rutherford,CEO,27

Discussion

There are many overrides for the XslCompiledTransform.Transform method. Since XmlResolver is an
abstract class, you need to use either the XmlUrlResolver or the XmlSecureResolver or pass null as
the XmlResolver-typed argument. The XmlUrlResolver will resolve URLs to external resources, such
as schema files, using the FILE, HTTP, and HTTPS protocols. The XmlSecureResolver restricts the
resources that you can access by requiring you to pass in evidence, which helps prevent cross-
domain redirection in XML. If you are accepting XML from the Internet, it could easily have a
redirection to a site where malicious XML would be waiting to be downloaded and executed if you
were not using the XmlSecureResolver. If you pass null for the XmlResolver, you are saying you do
not want to resolve any external resources. Microsoft has declared the null option to be obsolete,
and it shouldn't be used anyway since you should always use some type of XmlResolver.

XSLT is a very powerful technology that allows you to transform XML into just about any format you
can think of, but it can be frustrating at times. The simple need of a carriage return/line feed
combination in the XSLT output was such a trial that we were able to find more than 20 different
message board requests for help on how to do this! After looking at the W3C spec for XSLT, we found
you could do this using the xsl:text element like this:

 <xsl:text> 
</xsl:text>

The  stands for a hexadecimal 13, or a carriage return, and the
 stands for a hexadecimal
10, or a line feed. This is output at the end of each employee's data from the XML.

See Also

See the "XslCompiledTransform Class," "XmlResolver Class," "XmlUrlResolver Class,"
"XmlSecureResolver Class," and "xsl:text" topics in the MSDN documentation.

Recipe 15.9. Tearing Apart an XML Document

Problem

You have an XML document that needs to be broken apart into multiple parts. Each part can then be
sent to a different destination (possibly a web service) to be processed individually. This solution is
useful when you have a large document, such as an invoice, in XML form. For example, with an
invoice, you would want to tear off the billing information and send this to Accounting, while sending
the shipping information to Shipping, and then send the invoice items to Fulfillment to be processed.

Solution

In order to separate the invoice items, load an XmlDocument with the invoice XML from the
Invoice.xml file shown in Example 15-6.

Example 15-6. Invoice.xml

<?xml version="1.0" encoding="UTF-8"?>
<Invoice invoiceDate='2003-10-05' invoiceNumber='INV-01'>
 <shipInfo>
 <name>Beerly Standing</name>
 <attn>Receiving</attn>
 <street>47 South Street</street>
 <city>Intox</city>
 <state>NH</state>
 </shipInfo>
 <billInfo>
 <name>Beerly Standing</name>
 <attn>Accounting</attn>
 <street>98 North Street</street>
 <city>Intox</city>
 <state>NH</state>
 </billInfo>
 <Items>
 <item partNum="98745">
 <productName>Brown Eyed Stout</productName>
 <quantity>12</quantity>
 <price>23.99</price>
 <shipDate>2003-12-20</shipDate>
 </item>

 <item partNum="34987">
 <productName>Diamond Pearl Lager</productName>
 <quantity>22</quantity>
 <price>35.98</price>
 <shipDate>2003-12-20</shipDate>
 </item>
 <item partNum="AK254">
 <productName>Job Site Ale</productName>
 <quantity>50</quantity>
 <price>12.56</price>
 <shipDate>2003-11-12</shipDate>
 </item>
 </Items>
</Invoice>

The code to tear this invoice apart and send the various information pieces to their respective
departments is shown in Example 15-7.

Example 15-7. Tearing apart an XML document (Invoice.xml)

public static void ProcessInvoice()
{
 XmlDocument xmlDoc = new XmlDocument();
 // Pick up invoice from deposited directory.
 xmlDoc.Load(@"..\..\Invoice.xml");
 // Get the Invoice element node.
 XmlNode Invoice = xmlDoc.SelectSingleNode("/Invoice");

 // Get the invoice date attribute.
 XmlAttribute invDate =
 (XmlAttribute)Invoice.Attributes.GetNamedItem("invoiceDate");
 // Get the invoice number attribute.
 XmlAttribute invNum =
 (XmlAttribute)Invoice.Attributes.GetNamedItem("invoiceNumber");

 // Process the billing information to Accounting.
 WriteInformation(@"..\..\BillingEnvelope.xml",
 "BillingEnvelope",
 invDate, invNum, xmlDoc,
 "/Invoice/billInfo");

 // Process the shipping information to Shipping.
 WriteInformation(@"..\..\ShippingEnvelope.xml",
 "ShippingEnvelope",
 invDate, invNum, xmlDoc,
 "/Invoice/shipInfo");

 // Process the item information to Fulfillment.
 WriteInformation(@"..\..\FulfillmentEnvelope.xml",
 "FulfillmentEnvelope",
 invDate, invNum, xmlDoc,
 "/Invoice/Items/item");

 // Now send the data to the web services …
}

private static void WriteInformation(string path,
 string rootNode,
 XmlAttribute invDate,
 XmlAttribute invNum,
 XmlDocument xmlDoc,
 string nodePath)
{
 XmlWriterSettings settings = new XmlWriterSettings();
 settings.Indent = true;
 using (XmlWriter writer =
 XmlWriter.Create(path, settings))
 {
 writer.WriteStartDocument();
 writer.WriteStartElement(rootNode);
 writer.WriteAttributeString(invDate.Name, invDate.Value);
 writer.WriteAttributeString(invNum.Name, invNum.Value);
 XmlNodeList nodeList = xmlDoc.SelectNodes(nodePath);
 // Add the billing information to the envelope.
 foreach (XmlNode node in nodeList)
 {
 writer.WriteRaw(node.OuterXml);
 }
 writer.WriteEndElement();
 writer.WriteEndDocument();
 }
}

The "envelopes" containing the various pieces of XML data for the web services are listed below.

BillingEnvelope XML

 <BillingEnvelope invoiceDate="2003-10-05" invoiceNumber="INV-01">
 <billInfo>
 <name>Beerly Standing</name>
 <attn>Accounting</attn>
 <street>98 North Street</street>
 <city>Intox</city>
 <state>NH</state>

 </billInfo>
 </BillingEnvelope>

ShippingEnvelope XML

 <ShippingEnvelope invoiceDate="2003-10-05" invoiceNumber="INV-01">
 <shipInfo>
 <name>Beerly Standing</name>
 <attn>Receiving</attn>
 <street>47 South Street</street>
 <city>Intox</city>
 <state>NH</statey>
 </shipInfo>
 </ShippingEnvelope>

FulfillmentEnvelope XML

 <FulfillmentEnvelope invoiceDate="2003-10-05" invoiceNumber="INV-01">
 <item partNum="98745">
 <productName>Brown Eyed Stout</productName>
 <quantity>12</quantity>
 <price>23.99</price>
 <shipDate>2003-12-20</shipDate>
 </item>
 <item partNum="34987">
 <productName>Diamond Pearl Lager</productName>
 <quantity>22</quantity>
 <price>35.98</price>
 <shipDate>2003-12-20</shipDate>
 </item>
 <item partNum="AK254">
 <productName>Job Site Ale</productName>
 <quantity>50</quantity>
 <price>12.56</price>
 <shipDate>2003-11-12</shipDate>
 </item>
 </FulfillmentEnvelope>

Discussion

In order to tear apart the invoice, you need to establish what pieces go to which departments. The

breakdown of this is that each of the envelopes gets the invoice date and invoice number from the
main invoice to give context to the information in the envelope. The billInfo element and children
go to the BillingEnvelope, the shipInfo element and children go to the ShippingEnvelope, and the
item elements go to the FulfillmentEnvelope. Once these envelopes are constructed, they are sent
to the web services for each department to perform its function for this invoice.

In the example program from the Solution, you first load the Invoice.xml file and get the attributes
you are going to give to each of the envelopes:

 XmlDocument xmlDoc = new XmlDocument();
 // Pick up invoice from deposited directory.
 xmlDoc.Load(@"..\..\Invoice.xml");
 // Get the Invoice element node.
 XmlNode Invoice = xmlDoc.SelectSingleNode("/Invoice");

 // Get the invoice date attribute.
 XmlAttribute invDate =
 (XmlAttribute)Invoice.Attributes.GetNamedItem("invoiceDate");
 // Get the invoice number attribute.
 XmlAttribute invNum =
 (XmlAttribute)Invoice.Attributes.GetNamedItem("invoiceNumber");

Then you establish each envelope with the sections of the invoice that matter to the respective
functions (the BillingEnvelope is handled by Accounting, the ShippingEnvelope is handled by
Shipping, and the FulfillmentEnvelope is handled by Fulfillment) by calling the WriteInformation
method, starting with the BillingEnvelope:

 // Process the billing information to Accounting.
 WriteInformation(@"..\..\BillingEnvelope.xml",
 "BillingEnvelope",
 invDate, invNum, xmlDoc,
 "/Invoice/billInfo");

Then the ShippingEnvelope is created:

 // Process the shipping information to Shipping.
 WriteInformation(@"..\..\ShippingEnvelope.xml",
 "ShippingEnvelope",
 invDate, invNum, xmlDoc,
 "/Invoice/shipInfo");

Finally, the FulfillmentEnvelope is created:

 // Process the item information to Fulfillment.
 WriteInformation(@"..\..\FulfillmentEnvelope.xml",
 "FulfillmentEnvelope",
 invDate, invNum, xmlDoc,
 "/Invoice/Items/item");

At this point, each of the envelopes can be posted to the respective web services interfaces.

When you append the attributes from the Invoice to the envelopes, you call the
XmlNode.Clone method on the XmlAttributes. This is done so that each of the
elements has its own separate copy. If you do not do this, then the attribute
will appear only on the last element it is assigned to.

See Also

See the "XmlDocument Class," "XmlElement Class," and "XmlAttribute Class" topics in the MSDN
documentation.

Recipe 15.10. Putting Together an XML Document

Problem

You have various pieces of a document in XML form that need to be put together to form a single XML
documentthe opposite of what was done in Recipe 15.9. In this case, you have received various pieces of
an invoice in XML form. For example, one department sent the shipping information as an XML document,
one sent the billing information in XML, and another sent invoice line items, also as an XML document. You
need a way to put these XML pieces together to form a single XML invoice document.

Solution

In order to reconstitute the original invoice, you need to reverse the process used to create the pieces of
the invoice using multiple XmlDocuments . There are three parts being sent back to you to help in re-
forming the original invoice XML: BillingEnvelope.xml , ShippingEnvelope.xml , and Fulfillment.xml .

These are listed below:

BillingEnvelope XML

 <BillingEnvelope invoiceDate="2003-10-05" invoiceNumber="INV-01">
 <billInfo>
 <name>Beerly Standing</name>
 <attn>Accounting</attn>
 <street>98 North Street</street>
 <city>Intox</city>
 <state>NH</state>
 </billInfo>
 </BillingEnvelope>

ShippingEnvelope XML

 <ShippingEnvelope invoiceDate="2003-10-05" invoiceNumber="INV-01">
 <shipInfo>
 <name>Beerly Standing</name>
 <attn>Receiving</attn>
 <street>47 South Street</street>
 <city>Intox</city>
 <state>NH</state>
 </shipInfo>

 </ShippingEnvelope>

FulfillmentEnvelope XML

 <FulfillmentEnvelope invoiceDate="2003-10-05" invoiceNumber="INV-01">
 <item partNum="98745">
 <productName>Brown Eyed Stout</productName>
 <quantity>12</quantity>
 <price>23.99</price>
 <shipDate>2003-12-20</shipDate>
 </item>
 <item partNum="34987">
 <productName>Diamond Pearl Lager</productName>
 <quantity>22</quantity>
 <price>35.98</price>
 <shipDate>2003-12-20</shipDate>
 </item>
 <item partNum="AK254">
 <productName>Job Site Ale</productName>
 <quantity>50</quantity>
 <price>12.56</price>
 <shipDate>2003-11-12</shipDate>
 </item>
 </FulfillmentEnvelope>

To put these back together as a single invoice, reverse the process you went through to break it apart,
while inferring the invoice date and invoice number from the BillingEnvelope to help reestablish the
invoice, as shown in Example 15-8 .

Example 15-8. Reconstructing an XML document

public static void ReceiveInvoice()
{
 XmlDocument invoice = new XmlDocument();
 XmlDocument billing = new XmlDocument();
 XmlDocument shipping = new XmlDocument();
 XmlDocument fulfillment = new XmlDocument();

 // Get up root invoice node.
 XmlElement invoiceElement = invoice.CreateElement("Invoice");
 invoice.AppendChild(invoiceElement);

 // Load the billing.
 billing.Load(@"..\..\BillingEnvelope.xml");

 // Get the invoice date attribute.
 XmlAttribute invDate = (XmlAttribute)
 billing.DocumentElement.Attributes.GetNamedItem("invoiceDate");
 // Get the invoice number attribute.
 XmlAttribute invNum = (XmlAttribute)
 billing.DocumentElement.Attributes.GetNamedItem("invoiceNumber");
 // Set up the invoice with this info.
 invoice.DocumentElement.Attributes.SetNamedItem(invDate.Clone());
 invoice.DocumentElement.Attributes.SetNamedItem(invNum.Clone());
 // Add the billInfo back in.
 XmlNodeList billList = billing.SelectNodes("/BillingEnvelope/billInfo");
 foreach(XmlNode billInfo in billList)
 {
 invoice.DocumentElement.AppendChild(invoice.ImportNode(billInfo,true));
 }

 // Load the shipping.
 shipping.Load(@"..\..\ShippingEnvelope.xml");
 // Add the shipInfo back in.
 XmlNodeList shipList = shipping.SelectNodes("/ShippingEnvelope/shipInfo");
 foreach(XmlNode shipInfo in shipList)
 {
 invoice.DocumentElement.AppendChild(invoice.ImportNode(shipInfo,true));
 }

 // Load the items.
 fulfillment.Load(@"..\..\FulfillmentEnvelope.xml");

 // Create an Items element in the Invoice to add these under.
 XmlElement items = invoice.CreateElement("Items");

 // Add the items back in under Items.
 XmlNodeList itemList = fulfillment.SelectNodes("/FulfillmentEnvelope/item");
 foreach(XmlNode item in itemList)
 {
 items.AppendChild(invoice.ImportNode(item,true));
 }

 // Add it in.
 invoice.DocumentElement.AppendChild(items.Clone());

 // Display Invoice XML.
 Console.WriteLine("Invoice:\r\n{0}",invoice.OuterXml);

 // Save our reconstitued invoice.
 invoice.Save(@"..\..\ReceivedInvoice.xml");
}

The code reconstitutes the invoice and saves it as ReceivedInvoice.xml , the contents of which are shown

here:

 <Invoice invoiceDate="2003-10-05" invoiceNumber="INV-01"><billInfo><name>Beerly
 Standing</name><attn>Accounting</attn><street>98 North Street</street><city>Intox</
 city><state>NH</state></billInfo><shipInfo><name>Beerly Standing</name><attn>
 Receiving</attn><street>47 South Street</street><city>Intox</city><state>NH</state></
 shipInfo><Items><item partNum="98745"><productName>Brown Eyed Stout</productName>
 <quantity>12</quantity><price>23.99</price><shipDate>2003-12-20</shipDate></item>
 <item partNum="34987"><productName>Diamond Pearl Lager</productName><quantity>22</
 quantity><price>35.98</price><shipDate>2003-12-20</shipDate></item><item
 partNum="AK254"><productName>Job Site Ale</productName><quantity>50</quantity><price>
 12.56</price><shipDate>2003-11-12</shipDate></item></Items></Invoice>

Discussion

In the Solution code, the first step is to create a set of XmlDocuments for the Invoice, BillingEnvelope,
ShippingEnvelope , and FulfillmentEnvelope . Then you create the new root Invoice element in the
invoice XmlDocument :

 XmlDocument invoice = new XmlDocument();
 XmlDocument billing = new XmlDocument();
 XmlDocument shipping = new XmlDocument();
 XmlDocument fulfillment = new XmlDocument();

 // Set up root invoice node.
 XmlElement invoiceElement = invoice.CreateElement("Invoice");
 invoice.AppendChild(invoiceElement);

Next, you process the BillingEnvelope , taking the invoice date and number from it and adding it to the
Invoice . Then you add the billing information back in to the invoice:

 // Load the billing.
 billing.Load(@"..\..\BillingEnvelope.xml");
 // Get the invoice date attribute.
 XmlAttribute invDate = (XmlAttribute)
 billing.DocumentElement.Attributes.GetNamedItem("invoiceDate");
 // Get the invoice number attribute.
 XmlAttribute invNum = (XmlAttribute)
 billing.DocumentElement.Attributes.GetNamedItem("invoiceNumber");
 // Set up the invoice with this info.
 invoice.DocumentElement.Attributes.SetNamedItem(invDate.Clone());
 invoice.DocumentElement.Attributes.SetNamedItem(invNum.Clone());
 // Add the billInfo back in.
 XmlNodeList billList = billing.SelectNodes("/BillingEnvelope/billInfo");

 foreach(XmlNode billInfo in billList)
 {
 invoice.DocumentElement.AppendChild(invoice.ImportNode(billInfo,true));
 }

The ShippingEnvelope came next:

 // Load the shipping.
 shipping.Load(@"..\..\ShippingEnvelope.xml");
 // Add the shipInfo back in.
 XmlNodeList shipList = shipping.SelectNodes("/ShippingEnvelope/shipInfo");
 foreach(XmlNode shipInfo in shipList)
 {
 invoice.DocumentElement.AppendChild(invoice.ImportNode(shipInfo,true));
 }

And finally, the items from the FulfillmentEnvelope were placed back under an Items element under the
main Invoice element:

 // Load the items.
 fulfillment.Load(@"..\..\FulfillmentEnvelope.xml");

 // Create an Items element in the Invoice to add these under
 XmlElement items = invoice.CreateElement("Items");

 // Add the items back in under Items.
 XmlNodeList itemList = fulfillment.SelectNodes("/FulfillmentEnvelope/item");
 foreach(XmlNode item in itemList)
 {
 items.AppendChild(invoice.ImportNode(item,true));
 }

 // Add it in.
 invoice.DocumentElement.AppendChild(items.Clone());

One item to be aware of when dealing with multiple XmlDocuments is that when you take a node from one
XmlDocument , you cannot just append it as a child to a node in a different XmlDocument because the node
has the context of the original XmlDocument . If you try to do this, you will get the following exception
message:

 The node to be inserted is from a different document context.

To fix this, use the XmlDocument.ImportNode method, which will make a copy (deep or shallow) of the node
you are bringing over to the new XmlDocument . For instance, when you add the shipping information like
so:

 invoice.DocumentElement.AppendChild(invoice.ImportNode(shipInfo,true));

this line takes the shipInfo node, clones it deeply, then appends it to the main invoice node.

See Also

See the "XmlDocument Class," "XmlElement Class," and "XmlAttribute Class" topics in the MSDN
documentation.

Recipe 15.11. Validating Modified XML Documents
Without Reloading

Problem

You are using the XmlDocument to modify an XML document loaded in memory. Once the document
has been modified, the modifications need to be verified and schema defaults need to be enforced.

Solution

Use the XmlDocument.Validate method to perform the validation and apply schema defaults and type
information.

Create an XmlSchemaSet with the XML Schema document (book.xsd) and an XmlReader, and point the
Schemas property of the XmlDocument to it:

 string xmlFile = @"..\..\Book.xml";
 string xsdFile = @"..\..\Book.xsd";

 // Create the schema set.
 XmlSchemaSet schemaSet = new XmlSchemaSet();
 // Add the new schema with the target namespace
 // (could add all the schema at once here if there are multiple).
 schemaSet.Add("http://tempuri.org/Book.xsd", XmlReader.Create(xsdFile));

 // Load up the XML file.
 XmlDocument xmlDoc = new XmlDocument();
 // Add the schema.
 xmlDoc.Schemas = schemaSet;

Load the book.xml file into the XmlDocument, set up a ValidationEventHandler to catch any errors,
then call Validate with the event handler to validate book.xml against the book.xsd schema:

 // Validate after load.
 xmlDoc.Load(xmlFile);
 ValidationEventHandler eventHandler = ValidationEventHandler_15_11;
 xmlDoc.Validate(eventHandler);

Add a new element node that is not in the schema into the XmlDocument and then call Validate again
with the event handler to revalidate the changed XmlDocument. If the document triggers any
validation events, then bValidXml is set to false by the ValidationEventHandler.

 // Set the initial check for validity to true at the class level.
 static bool bValidXml = true;

 // Add in a new node that is not in the schema.
 // Since we have already validated, no callbacks fire during the add…
 XmlNode newNode = xmlDoc.CreateElement("BogusElement");
 newNode.InnerText = "Totally";
 // Add the new element.
 xmlDoc.DocumentElement.AppendChild(newNode);
 // Now we will do validation of the new stuff we added.
 xmlDoc.Validate(eventHandler);

 if (bValidXml == true)
 {
 Console.WriteLine("Successfully validated modified XML");
 }
 else
 {
 Console.WriteLine("Modified XML did not validate successfully");
 }

The ValidationEventHandler looks like the one from Recipe 15.4:

 private static void ValidationEventHandler_15_11(object sender,
 ValidationEventArgs e)
 {
 // We got called so this isn't valid.
 bValidXml = false;
 Console.WriteLine("Validation Error Message: {0}", e.Message);
 Console.WriteLine("Validation Error Severity: {0}", e.Severity);
 if (e.Exception != null)
 {
 Console.WriteLine("Validation Error Line Number: {0}",
 e.Exception.LineNumber);
 Console.WriteLine("Validation Error Line Position: {0}",
 e.Exception.LinePosition);
 Console.WriteLine("Validation Error Source: {0}",
 e.Exception.Source);
 Console.WriteLine("Validation Error Source Schema: {0}",
 e.Exception.SourceSchemaObject);
 Console.WriteLine("Validation Error Source Uri: {0}",
 e.Exception.SourceUri);

 Console.WriteLine("Validation Error thrown from: {0}",
 e.Exception.TargetSite);
 Console.WriteLine("Validation Error callstack: {0}",
 e.Exception.StackTrace);
 }
 }

Discussion

There is an override to the XmlDocument.Validate method that allows you to pass a specific XmlNode
to validate. If the XmlDocument is large, this override to Validate should be used:

 public void Validate(
 ValidationEventHandler validationEventHandler,
 XmlNode nodeToValidate
);

One other approach to this problem is to instantiate an instance of the XmlNodeReader with the
XmlDocument and then create an XmlReader with validation settings as shown in Recipe 15.4. This
would allow for continual validation while the reader navigated through the underlying XML.

The output from running the code is listed here:

 Validation Error Message: The element 'Book' in namespace 'http://tempuri.org/Book.
 xsd' has invalid child element 'BogusElement'. List of possible elements expected:
 'Chapter' in namespace 'http://tempuri.org/Book.xsd'.
 Validation Error Severity: Error
 Validation Error Line Number: 0
 Validation Error Line Position: 0
 Validation Error Source:
 Validation Error Source Schema:
 Validation Error Source Uri: file:///C:/PRJ32/Book_2_0/C%23Cookbook2/Code/
 CSharpRecipes/Book.xml
 Validation Error thrown from:
 Validation Error callstack:
 Modified XML did not validate successfully

Notice that the BogusElement element that you added was not part of the schema for the Book
element so you got a validation error along with the information about where the error occurred.
Finally, you got a report that the modified XML did not validate correctly.

See Also

See Recipe 15.4 and the "XmlDocument.Validate" topic in the MSDN documentation.

Recipe 15.12. Extending XSLT Transformations

Problem

You want to perform operations that are outside the scope of XSLT to include data in the transformed
result.

Solution

Add an extension object to the transformation that can perform the operations necessary based on
the node it is passed. This can be accomplished by using the XsltArgumentList.AddExtensionObject
method. This object you've created (XslExtensionObject) can then be accessed in the XSLT and a
method called on it to return the data you want included in the final transformed result:

 string xmlFile = @"..\..\publications.xml";
 string xslt = @"..\..\publications.xsl";

 //Create the XslTransform and load the stylesheet.
 // This is not XslCompiledTransform because it gives a different empty node.
 //Create the XslCompiledTransform and load the stylesheet.
 XslCompiledTransform transform = new XslCompiledTransform();
 transform.Load(xslt);

 // Load the XML.
 XPathDocument xPathDoc = new XPathDocument(xmlFile);

 // Make up the args for the stylesheet with the extension object.
 XsltArgumentList xslArg = new XsltArgumentList();
 // Create our custom extension object.
 XSLExtensionObject xslExt = new XSLExtensionObject();
 xslArg.AddExtensionObject("urn:xslext", xslExt);

 // Send output to the console and do the transformation.
 using (XmlWriter writer = XmlWriter.Create(Console.Out))
 {
 transform.Transform(xPathDoc, xslArg, writer);
 }

Note that when the extension object is added to the XsltArgumentList, it supplies a namespace of
urn:xslext. This namespace is used in the XSLT stylesheet to reference the object. The

XSLExtensionObject is defined here:

 // Our extension object to help with functionality
 public class XslExtensionObject
 {
 public XPathNodeIterator GetErrata(XPathNodeIterator nodeChapter)
 {
 try
 {
 // In here we could go do other lookup calls
 // (XML, database, web service) to get information to
 // add back in to the transformation result.
 string errata =
 string.Format("<Errata>{0} has {1} errata</Errata>",
 nodeChapter.Current.Value, nodeChapter.Current.Value.Length);
 XmlDocument xDoc = new XmlDocument();
 xDoc.LoadXml(errata);
 XPathNavigator xPathNav = xDoc.CreateNavigator();
 xPathNav.MoveToChild(XPathNodeType.Element);
 XPathNodeIterator iter = xPathNav.Select(".");
 return iter;
 }
 catch (Exception e)
 {
 // Eat the exception, as we were unable to use the extension.
 // So just return the original iterator.
 return nodeChapter;
 }
 }
 }

The GetErrata method is called during the execution of the XSLT stylesheet to provide data in
XPathNodeIterator format to the transformation. The xmlns:xslext namespace is declared as
urn:xslext, which matches the namespace value you passed as an argument to the transformation.
In the processing of the Book template for each Chapter, an xsl:value-of is called with the select
criteria containing a call to the xslext:GetErrata method. The stylesheet makes the call as shown
here:

 <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xslext="urn:xslext">
 <xsl:template match="/">
 <xsl:element name="PublishedWorks">
 <xsl:apply-templates/>
 </xsl:element>
 </xsl:template>
 <xsl:template match="Book">
 <Book>
 <xsl:attribute name ="name">

 <xsl:value-of select="@name"/>
 </xsl:attribute>
 <xsl:for-each select="Chapter">
 <Chapter>
 <xsl:value-of select="xslext:GetErrata(/)"/>
 </Chapter>
 </xsl:for-each>
 </Book>
 </xsl:template>
 </xsl:stylesheet>

Discussion

The ability to call custom code from inside of an XSLT stylesheet is a very powerful one, but one that
should be used cautiously. Adding code like this into stylesheets usually renders them less useful in
other environments. If the stylesheet never has to be used to transform XML in another parser, this
can be a good way to offload work that is either difficult or impossible to accomplish in regular XSLT
syntax.

The sample data used in the Solution is presented here:

 <?xml version="1.0" encoding="utf-8"?>
 <Publications>
 <Book name="Subclassing and Hooking with Visual Basic">
 <Chapter>Introduction</Chapter>
 <Chapter>Windows System-Specific Information</Chapter>
 <Chapter>The Basics of Subclassing and Hooks</Chapter>
 <Chapter>Subclassing and Superclassing</Chapter>
 <Chapter>Subclassing the Windows Common Dialog Boxes</Chapter>
 <Chapter>ActiveX Controls and Subclassing</Chapter>
 <Chapter>Superclassing</Chapter>
 <Chapter>Debugging Techniques for Subclassing</Chapter>
 <Chapter>WH_CALLWNDPROC</Chapter>
 <Chapter>WH_CALLWNDPROCRET</Chapter>
 <Chapter>WH_GETMESSAGE</Chapter>
 <Chapter>WH_KEYBOARD and WH_KEYBOARD_LL</Chapter>
 <Chapter>WH_MOUSE and WH_MOUSE_LL</Chapter>
 <Chapter>WH_FOREGROUNDIDLE</Chapter>
 <Chapter>WH_MSGFILTER</Chapter>
 <Chapter>WH_SYSMSGFILTER</Chapter>
 <Chapter>WH_SHELL</Chapter>
 <Chapter>WH_CBT</Chapter>
 <Chapter>WH_JOURNALRECORD</Chapter>
 <Chapter>WH_JOURNALPLAYBACK</Chapter>
 <Chapter>WH_DEBUG</Chapter>
 <Chapter>Subclassing .NET WinForms</Chapter>
 <Chapter>Implementing Hooks in VB.NET</Chapter>
 </Book>

 <Book name="C# Cookbook">
 <Chapter>Numbers</Chapter>
 <Chapter>Strings and Characters</Chapter>
 <Chapter>Classes And Structures</Chapter>
 <Chapter>Enums</Chapter>
 <Chapter>Exception Handling</Chapter>
 <Chapter>Diagnostics</Chapter>
 <Chapter>Delegates and Events</Chapter>
 <Chapter>Regular Expressions</Chapter>
 <Chapter>Collections</Chapter>
 <Chapter>Data Structures and Algorithms</Chapter>
 <Chapter>File System IO</Chapter>
 <Chapter>Reflection</Chapter>
 <Chapter>Networking</Chapter>
 <Chapter>Security</Chapter>
 <Chapter>Threading</Chapter>
 <Chapter>Unsafe Code</Chapter>
 <Chapter>XML</Chapter>
 </Book>
 <Book name="C# Cookbook 2.0">
 <Chapter>Numbers and Enumerations</Chapter>
 <Chapter>Strings and Characters</Chapter>
 <Chapter>Classes And Structures</Chapter>
 <Chapter>Generics</Chapter>
 <Chapter>Collections</Chapter>
 <Chapter>Iterators and Partial Types</Chapter>
 <Chapter>Exception Handling</Chapter>
 <Chapter>Diagnostics</Chapter>
 <Chapter>Delegates, Events, and Anonymous Methods</Chapter>
 <Chapter>Regular Expressions</Chapter>
 <Chapter>Data Structures and Algorithms</Chapter>
 <Chapter>File System IO</Chapter>
 <Chapter>Reflection</Chapter>
 <Chapter>Web</Chapter>
 <Chapter>XML</Chapter>
 <Chapter>Networking</Chapter>
 <Chapter>Security</Chapter>
 <Chapter>Threading and Synchronization</Chapter>
 <Chapter>Unsafe Code</Chapter>
 <Chapter>Toolbox</Chapter>
 </Book>
 </Publications>

See Also

See the "XsltArgumentList Class" topic in the MSDN documentation.

Recipe 15.13. Getting Your Schema in Bulk from Existing
XML Files

Problem

You have come on to a new project in which XML was used for data transmission, but the programmers
who came before you didn't use an XSD for one reason or another. You need to generate beginning
schema files for each of the XML examples.

Solution

Use the XmlSchemaInference class to infer schema from the XML samples. The
GenerateSchemaForDirectory function in Example 15-9 enumerates all of the XML files in a given
directory and processes each of them using the XmlSchemaInference. InferSchema method. Once the
schemas have been determined, it rolls over the collection and saves out each schema to an XSD file
using a FileStream .

Example 15-9. Generating an XML Schema

public static void GenerateSchemaForDirectory(string dir)
{
 // Make sure the directory exists.
 if (Directory.Exists(dir))
 {
 // Get the files in the directory.
 string[] files = Directory.GetFiles(dir, "*.xml");
 foreach (string file in files)
 {
 // Set up a reader for the file.
 using (XmlReader reader = XmlReader.Create(file))
 {
 XmlSchemaSet schemaSet = new XmlSchemaSet();
 XmlSchemaInference schemaInference =
 new XmlSchemaInference();

 // Get the schema.
 schemaSet = schemaInference.InferSchema(reader);

 string schemaPath = "";
 foreach (XmlSchema schema in schemaSet.Schemas())
 {
 // Make schema file path.

 schemaPath = Path.GetDirectoryName(file) + @"\" +
 Path.GetFileNameWithoutExtension(file) + ".xsd";
 using (FileStream fs =
 new FileStream(schemaPath, FileMode.OpenOrCreate))
 {
 schema.Write(fs);
 }
 }
 }
 }
 }
}

The GenerateSchemaForDirectory method can be called like this:

 // Get the directory two levels up from where we are running.
 DirectoryInfo di = new DirectoryInfo(@"..\..");
 string dir = di.FullName;
 // Generate the schema.
 GenerateSchemaForDirectory(dir);

Discussion

Having an XSD for the XML files in an application allows for a number of things:

Validation of XML presented to the system1.

Documentation of the semantics of the data2.

Programmatic discovery of the data structure through XML reading methods3.

Using the GenerateSchemaForDirectory method can jump-start the process of developing schema for
your XML, but each schema should be reviewed by the team member responsible for producing the
XML. This will help to ensure that the rules as stated in the schema are correct and also to make sure
that additional items like schema default values and other relationships are added. Any relationships
that were not present in the example XML files would be missed by the schema generator.

See Also

See the "XmlSchemaInference Class" and "XML Schemas (XSD) Reference" topics in the MSDN
documentation.

Recipe 15.14. Passing Parameters to XSLT
Transformations

Problem

You need to use XSLT to produce information that has a few data items that could change between
transformations and you don't want to have a separate XSLT stylesheet for each variation.

Solution

Use the XsltArgumentList class to pass arguments to the XSLT transformation. This technique allows
the program to generate an object for the stylesheet to access (such as a dynamic string) and use
while it transforms the given XML file. The storeTitle and pageDate arguments are passed in to the
transformation in the following example. The storeTitle is for the title of the comic store and
pageDate is the date the report is run for. These are added using the AddParam method of the
XsltArgumentList object instance args.

 XsltArgumentList args = new XsltArgumentList();
 args.AddParam("storeTitle", "", "Hero Comics Inventory");
 args.AddParam("pageDate", "", DateTime.Now.ToString("F"));

 // Create a resolver with default credentials.
 XmlUrlResolver resolver = new XmlUrlResolver();
 resolver.Credentials = System.Net.CredentialCache.DefaultCredentials;

The XsltSettings class allows changing the behavior of the transformation. If you use the
XsltSettings.Default instance, the transformation will be done without allowing scripting or the use
of the document() XSLT function, as they can be security risks. If the stylesheet is from a trusted
source, you can just create an XsltSettings object and use it, but it is better to be safe. Further
changes to the code could open it up to use with untrusted XSLT stylesheets.

 XslCompiledTransform transform = new XslCompiledTransform();
 // Load up the stylesheet.
 transform.Load(@"..\..\ParameterExample.xslt", XsltSettings.Default, resolver);

 // Perform the transformation.
 FileStream fs = null;
 using (fs = new FileStream(@"..\..\ParameterExample.htm",

 FileMode.OpenOrCreate, FileAccess.Write))
 {
 transform.Transform(@"..\..\ParameterExample.xml", args, fs);
 }

To show the different parameters in action, now you change storeTitle and pageDate again and run
the transformation again:

 // Now change the parameters and reprocess.
 args = new XsltArgumentList();
 args.AddParam("storeTitle", "", "Fabulous Adventures Inventory");
 args.AddParam("pageDate", "", DateTime.Now.ToString("D"));
 using (fs = new FileStream(@"..\..\ParameterExample2.htm",
 FileMode.OpenOrCreate, FileAccess.Write))
 {
 transform.Transform(@"..\..\ParameterExample.xml", args, fs);
 }

The ParameterExample.xml file contains the following:

 <?xml version="1.0" encoding="utf-8" ?>
 <ParameterExample>
 <ComicBook name="The Amazing Spider-Man" edition="1"/>
 <ComicBook name="The Uncanny X-Men" edition="2"/>
 <ComicBook name="Superman" edition="3"/>
 <ComicBook name="Batman" edition="4"/>
 <ComicBook name="The Fantastic Four" edition="5"/>
 </ParameterExample>

The ParameterExample.xslt file contains the following:

 <?xml version="1.0" encoding="UTF-8" ?>
 <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:output method="html" indent="yes" />
 <xsl:param name="storeTitle"/>
 <xsl:param name="pageDate"/>

 <xsl:template match="ParameterExample">
 <html>
 <head/>
 <body>
 <h3><xsl:text>Brought to you by </xsl:text>
 <xsl:value-of select="$storeTitle"/>

 <xsl:text> on </xsl:text>
 <xsl:value-of select="$pageDate"/>
 <xsl:text> 
</xsl:text>
 </h3>

 <table border="2">
 <thead>
 <tr>
 <td>
 Heroes
 </td>
 <td>
 Edition
 </td>
 </tr>
 </thead>
 <tbody>
 <xsl:apply-templates/>
 </tbody>
 </table>
 </body>
 </html>
 </xsl:template>

 <xsl:template match="ComicBook">
 <tr>
 <td>
 <xsl:value-of select="@name"/>
 </td>
 <td>
 <xsl:value-of select="@edition"/>
 </td>
 </tr>
 </xsl:template>
 </xsl:stylesheet>

The output from the first transformation to ParameterExample.htm is shown in Figure 15-2.

Figure 15-2. Output from the first set of parameters

Output from the second transformation to ParameterExample2.htm is shown in Figure 15-3.

Figure 15-3. Output from the second set of parameters

Discussion

The ability to pass information to the XSLT stylesheet allows a much greater degree of flexibility when
designing reports or user interfaces via XSLT transformations. This capability can help customize the
output based on just about any criteria you can think of, as the data being passed in is totally
controlled by your program. Once you get the hang of using parameters with XSLT, a whole new level
of customization becomes possible. As an added bonus, it is portable between environments (.NET,
Xalan, etc.).

See Also

See the "XsltArgumentList Class" and "XsltSettings Class" topics in the MSDN documentation.

Chapter 16. Networking

Introduction

.NET provides many classes to help make network programming easier than many environments that
preceded it. There is a great deal of functionality to assist you with tasks like:

Building network-aware applications

Downloading files via FTP

Sending and receiving HTTP requests

Getting a higher degree of control using TCP/IP and sockets directly

In the areas in which Microsoft has not provided managed classes to access networking functionality
(such as named pipes or some of the methods exposed by the WinInet API for Internet connection
settings), there is always P/Invoke so you can code to the Win32 API; you'll explore this in this
chapter. With all of the functionality at your disposal in the System.Net namespaces, you can write
network utilities very quickly. Let's take a closer look at just a few of the things this section of .NET
provides you access to.

Recipe 16.1. Writing a TCP Server

Problem

You need to create a server that listens on a port for incoming requests from a TCP client. These
client requests can then be processed at the server, and any responses can be sent back to the
client. Recipe 16.2 shows how to write a TCP client to interact with this server.

Solution

Use the MyTcpServer class created here to listen on a TCP-based endpoint for requests arriving on a
given port:

 class MyTcpServer
 {
 #region Private Members
 private TcpListener _listener = null;
 private IPAddress _address;
 private int _port;
 private bool _listening = false;
 #endregion

 #region CTORs

 public MyTcpServer(IPAddress address, int port)
 {
 _port = port;
 _address = address;
 }
 #endregion // CTORs

The TCPServer class has two properties:

Address, an IPAddress

Port, an int

These return the current address and port on which the server is listening and the listening state:

 #region Properties
 public IPAddress Address
 {
 get { return _address; }
 }

 public int Port
 {
 get { return _port; }
 }

 public bool Listening
 {
 get { return _listening; }
 }
 #endregion

The Listen method tells the MyTcpServer class to start listening on the specified address and port
combination. You create and start a TcpListener, then call its AcceptTcpClient method to wait for a
client request to arrive. Once the client connects, a request is sent to the thread pool to service the
client and that runs the ProcessClient method.

The listener shuts down after serving the client:

 #region Public Methods
 public void Listen()
 {
 try
 {
 lock (_syncRoot)
 {
 _listener = new TcpListener(_address, _port);

 // Fire up the server
 _listener.Start();

 // Set _listening bit
 _listening = true;
 }

 // Enter the _listening loop
 do
 {
 Trace.Write("Looking for someone to talk to… ");

 // Wait for connection
 TcpClient newClient = _listener.AcceptTcpClient();
 Trace.WriteLine("Connected to new client");

 // Queue a request to take care of the client
 ThreadPool.QueueUserWorkItem(new WaitCallback(ProcessClient),
 newClient);
 }
 while (_listening);
 }
 catch (SocketException se)
 {
 Trace.WriteLine("SocketException: " + se.ToString());
 }
 finally
 {
 // Shut it down
 StopListening();
 }
 }

The StopListening method is called to stop the TCPServer from listening for requests:

 public void StopListening()
 {
 if (_listening)
 {
 lock (_syncRoot)
 {
 // Set listening bit
 _listening = false;
 // Shut it down.
 _listener.Stop();
 }
 }
 }
 #endregion

The ProcessClient method shown in Example 16-1 executes on a thread-pool thread to serve a
connected client. It gets the NetworkStream from the client using the TcpClient.GetStream method,
then reads the whole request. After sending back a response, it shuts down the client connection.

Example 16-1. ProcessClient method

#region Private Methods
private void ProcessClient(object client)
{
 TcpClient newClient = (TcpClient)client;

 try
 {
 // Buffer for reading data
 byte[] bytes = new byte[1024];
 StringBuilder clientData = new StringBuilder();

 // Get the stream to talk to the client over
 using (NetworkStream ns = newClient.GetStream())
 {

 // Set initial read timeout to 1 minute to allow for connection
 ns.ReadTimeout = 60000;
 // Loop to receive all the data sent by the client
 int bytesRead = 0;
 do
 {
 // Read the data
 try
 {
 bytesRead = ns.Read(bytes, 0, bytes.Length);
 if (bytesRead > 0)
 {
 // Translate data bytes to an ASCII string and append.
 clientData.Append(
 Encoding.ASCII.GetString(bytes, 0, bytesRead));
 // Decrease read timeout to 1 second now
 // that data is coming in.
 ns.ReadTimeout = 1000;
 }
 }
 catch (IOException ioe)
 {
 // Read timed out; all data has been retrieved
 Trace.WriteLine("Read timed out: " + ioe.ToString());
 bytesRead = 0;
 }
 }
 while (bytesRead > 0);

 Trace.WriteLine("Client says: " + clientData.ToString());

 // Thank them for their input.
 bytes = Encoding.ASCII.GetBytes("Thanks call again!");

 // Send back a response
 ns.Write(bytes, 0, bytes.Length);
 }
 }
 finally
 {
 // Stop talking to client
 if(newClient != null)

 newClient.Close();
 }
}
#endregion
}

A simple server that listens for clients until the Escape key is pressed might look like the following
code:

 class Program
 {
 static MyTcpServer server = null;
 static void Main(string[] args)
 {
 // Run the server on a different thread
 ThreadPool.QueueUserWorkItem(RunServer);

 Console.WriteLine("Press Esc to stop the server…");
 ConsoleKeyInfo cki;
 while(true)
 {

 cki = Console.ReadKey();
 if (cki.Key == ConsoleKey.Escape)
 break;
 }
 }

 static void RunServer(object stateInfo)
 {
 // Fire it up
 server = new MyTcpServer(IPAddress.Loopback,55555);
 server.Listen();
 }
 }

When talking to the MyTcpClient class in Recipe 16.2, the output for the server looks like this:

 Press Esc to stop the server…
 Looking for someone to talk to… Connected to new client
 Looking for someone to talk to… Client says: Just wanted to say hi
 Connected to new client
 Looking for someone to talk to… Client says: Just wanted to say hi again
 Connected to new client
 Looking for someone to talk to… Client says: Are you ignoring me?
 Connected to new client

 Looking for someone to talk to… Connected to new client
 Looking for someone to talk to… Client says: I'll not be ignored! (round 0)
 Client says: I'll not be ignored! (round 1)
 Connected to new client
 Looking for someone to talk to… Connected to new client
 Looking for someone to talk to… Client says: I'll not be ignored! (round 2)
 Client says: I'll not be ignored! (round 3)
 Connected to new client
 Looking for someone to talk to… Client says: I'll not be ignored! (round 4)
 Connected to new client
 Looking for someone to talk to… Client says: I'll not be ignored! (round 5)
 Connected to new client
 Looking for someone to talk to… Client says: I'll not be ignored! (round 6)
 Connected to new client
 Looking for someone to talk to… Client says: I'll not be ignored! (round 7)
 Connected to new client
 Looking for someone to talk to… Client says: I'll not be ignored! (round 8)
 [more output follows…]

Discussion

The Transmission Control Protocol (TCP) is the protocol used by the majority of traffic on the Internet
today. TCP is responsible for the correct delivery of data packets from one endpoint to another. It
uses the Internet Protocol (IP) to make the delivery. IP handles getting the packets from node to
node; TCP detects when packets are not correct, are missing, or are sent out of order, and it
arranges for missing or damaged packets to be resent. The TCPServer class is a basic server
mechanism for dealing with requests that come from clients over TCP.

MyTcpServer takes the IP address and port passed in then in the Listen method and creates a
TcpListener on that IPAddress and port. Once created, the TcpListener.Start. method is called to
start up the server. The blocking AcceptTcpClient method is called to listen for requests from TCP-
based clients. Once the client connects, the ProcessClient method is executed. In this method, the
server reads request data from the client and returns a brief acknowledgment. The server
disconnects from the client by calling NetworkStream.Close and TcpClient.Close. The server stops
listening when the StopListening method is called. StopListening takes the server offline by calling
TcpListener.Stop.

See Also

See the "IPAddress Class," "TcpListener Class," and "TcpClient Class" topics in the MSDN
documentation.

Recipe 16.2. Writing a TCP Client

Problem

You want to interact with a TCP-based server.

Solution

Use the MyTcpClient class shown in Example 16-2 to connect to and converse with a TCP-based server by
passing the address and port of the server to talk to, using the System.Net.TcpClient class. This example
will talk to the server from Recipe 16.1.

Example 16-2. MyTcpClient class

class MyTcpClient
{

 private TcpClient _client = null;
 private IPAddress _address;
 private int _port;
 private IPEndPoint _endPoint = null;

 public MyTcpClient(IPAddress address, int port)
 {
 _address = address;
 _port = port;
 _endPoint = new IPEndPoint(_address, _port);
 }

 public void ConnectToServer(string msg)
 {
 try
 {
 _client = new TcpClient();
 _client.Connect(_endPoint);

 // Get the bytes to send for the message
 byte[] bytes = Encoding.ASCII.GetBytes(msg);
 // Get the stream to talk to the server on
 using (NetworkStream ns = _client.GetStream())
 {
 // Send message

 Trace.WriteLine("Sending message to server: " + msg);
 ns.Write(bytes, 0, bytes.Length);
 // Get the response
 // Buffer to store the response bytes
 bytes = new byte[1024];

 // Display the response
 int bytesRead = ns.Read(bytes, 0, bytes.Length);
 string serverResponse = Encoding.ASCII.GetString(bytes, 0, bytesRead);
 Trace.WriteLine("Server said: " + serverResponse);
 }
 }
 catch (SocketException se)
 {
 Trace.WriteLine("There was an error talking to the server: " +
 se.ToString());
 }
 finally
 {
 // Close everything
 if(_client != null)
 _client.Close();
 }
 }
}

To use the MyTcpClient in a program, you can simply create an instance of it and call ConnectToServer to
send a request. In this program, you first make three calls to the server to test the basic mechanism. Next,
you enter a loop to really pound on it and make sure you force it over the default ThreadPool limit. This
verifies that the server's mechanism for handling multiple requests is sound.

 static void Main(string[] args)
 {

 MakeClientCallToServer("Just wanted to say hi");
 MakeClientCallToServer("Just wanted to say hi again");
 MakeClientCallToServer("Are you ignoring me?");

 // Now send a bunch of messages…
 string msg;
 for (int i = 0; i < 100; i++)
 {
 msg = string.Format("I'll not be ignored! (round {0})", i);
 ThreadPool.QueueUserWorkItem(new WaitCallback(MakeClientCallToServer), msg);
 }

 Console.WriteLine("\n Press any key to continue… (if you can find it…)");
 Console.Read();

 }

 static void MakeClientCallToServer(object objMsg)
 {
 string msg = (string)objMsg;
 MyTcpClient client = new MyTcpClient(IPAddress.Loopback,55555);
 client.ConnectToServer(msg);
 }

The output on the client side for this exchange of messages is:

 Sending message to server: Just wanted to say hi
 Server said: Thanks call again!
 Sending message to server: Just wanted to say hi again
 Server said: Thanks call again!
 Sending message to server: Are you ignoring me?
 Server said: Thanks call again!
 Press any key to continue… (if you can find it…)
 Sending message to server: I'll not be ignored! (round 0)
 Sending message to server: I'll not be ignored! (round 1)
 Server said: Thanks call again!
 Server said: Thanks call again!
 Sending message to server: I'll not be ignored! (round 2)
 Server said: Thanks call again!
 Sending message to server: I'll not be ignored! (round 3)
 Sending message to server: I'll not be ignored! (round 4)
 Server said: Thanks call again!
 Server said: Thanks call again!
 Sending message to server: I'll not be ignored! (round 5)
 Sending message to server: I'll not be ignored! (round 6)
 Server said: Thanks call again!
 Server said: Thanks call again!
 Sending message to server: I'll not be ignored! (round 7)
 Sending message to server: I'll not be ignored! (round 8)
 Server said: Thanks call again!
 [more output follows…]

Discussion

MyTcpClient.ConnectToServer is designed to send one message, get the response, display it as a string,
then close the connection. To accomplish this, it creates a System.Net.TcpClient and connects to the server
by calling the TcpClient.Connect method. Connect targets the server using an IPEndPoint built from the
address and port that you passed to the MyTcpClient constructor.

MyTcpClient.ConnectToServer then gets the bytes for the string using the Encoding. ASCII.GetBytes
method. Once it has the bytes to send, it gets the NetworkStream from the underlying

System.Net.TcpClient by calling its GetStream method, then sends the message using the TcpClient.
Write method.

In order to receive the response from the server, the blocking TcpClient. Read method is called. Once Read
returns, the bytes are decoded to get the string that contains the response from the server. The
connections are then closed and the client ends.

See Also

See the "TcpClient Class," "NetworkStream Class," and "Encoding.ASCII Property" topics in the MSDN
documentation.

Recipe 16.3. Simulating Form Execution

Problem

You need to send a collection of name-value pairs to simulate a form being executed on a browser to a
location identified by a URL.

Solution

Use the System.Net. WebClient class to send a set of name-value pairs to the web server using the
UploadValues method. This class enables you to masquerade as the browser executing a form by setting up
the name-value pairs with the input data. The input field ID is the name, and the value to use in the field is
the value:

 using System;
 using System.Net;
 using System.Text;
 using System.Collections.Specialized;

 Uri uri = new Uri("http://localhost/FormSim/WebForm1.aspx");
 WebClient client = new WebClient();

 // Create a series of name-value pairs to send
 NameValueCollection collection = new NameValueCollection();

 // Add necessary parameter-value pairs to the name-value container
 collection.Add("Identity","foo@bar.com");
 collection.Add("Item","Books");
 collection.Add("Quantity","5");
 Console.WriteLine("Uploading name/value pairs to URI {0} …", uri.AbsoluteUri);

 // Upload the NameValueCollection
 byte[] responseArray =
 client.UploadValues(uri.AbsoluteUri,"POST",collection);
 // Decode and display the response
 Console.WriteLine("\nResponse received was {0}",
 Encoding.ASCII.GetString(responseArray));

The webform1.aspx page, which receives and processes this data, looks like this:

 <%@ Page language="c#" Codebehind="WebForm1.aspx.cs" AutoEventWireup="false"

 Inherits="FormSim.WebForm1" %>
 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >
 <HTML>
 <HEAD>
 <title>WebForm1</title>
 <meta name="GENERATOR" Content="Microsoft Visual Studio .NET 7.1">
 <meta name="CODE_LANGUAGE" Content="C#">
 <meta name="vs_defaultClientScript" content="JavaScript">
 <meta name="vs_targetSchema"
 content="http://schemas.microsoft.com/intellisense/ie5">
 </HEAD>
 <body MS_POSITIONING="GridLayout">
 <form id="Form1" method="post" runat="server">
 <asp:TextBox id="Identity" style="Z-INDEX: 101; LEFT: 194px;
 POSITION: absolute; TOP: 52px" runat="server"></asp:TextBox>
 <asp:TextBox id="Item" style="Z-INDEX: 102; LEFT: 193px;
 POSITION: absolute; TOP: 93px" runat="server"></asp:TextBox>
 <asp:TextBox id="Quantity" style="Z-INDEX: 103; LEFT: 193px;
 POSITION: absolute; TOP: 132px"
 runat="server"></asp:TextBox>
 <asp:Button id="Button1" style="Z-INDEX: 104; LEFT: 203px;
 POSITION: absolute; TOP: 183px"
 runat="server" Text="Submit"></asp:Button>
 <asp:Label id="Label1" style="Z-INDEX: 105; LEFT: 58px;
 POSITION: absolute; TOP: 54px" runat="server"
 Width="122px" Height="24px">Identity:</asp:Label>
 <asp:Label id="Label2" style="Z-INDEX: 106; LEFT: 57px;
 POSITION: absolute; TOP: 94px" runat="server"
 Width="128px" Height="25px">Item:</asp:Label>
 <asp:Label id="Label3" style="Z-INDEX: 107; LEFT: 57px;
 POSITION: absolute; TOP: 135px" runat="server"
 Width="124px" Height="20px">Quantity:</asp:Label>
 </form>
 </body>
 </HTML>

The webform1.aspx code-behind looks like this. The added code is highlighted.

 using System;
 using System.Collections;
 using System.ComponentModel;
 using System.Data;
 using System.Drawing;
 using System.Web;
 using System.Web.SessionState;
 using System.Web.UI;
 using System.Web.UI.WebControls;
 using System.Web.UI.HtmlControls;

 namespace FormSim
 {
 /// <summary>
 /// Summary description for WebForm1
 /// </summary<
 public class WebForm1 : System.Web.UI.Page
 {
 protected System.Web.UI.WebControls.Button Button1;
 protected System.Web.UI.WebControls.TextBox Item;
 protected System.Web.UI.WebControls.Label Label1;
 protected System.Web.UI.WebControls.Label Label2;
 protected System.Web.UI.WebControls.Label Label3;
 protected System.Web.UI.WebControls.TextBox Identity;
 protected System.Web.UI.WebControls.TextBox Quantity;

 private void Page_Load(object sender, System.EventArgs e)
 {
 // Put user code to initialize the page here.
 }

 #region Web Form Designer generated code
 override protected void OnInit(EventArgs e)
 {
 //
 // CODEGEN: This call is required by the ASP.NET Web Form Designer
 //
 InitializeComponent();
 base.OnInit(e);
 }

 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor
 /// </summary>
 private void InitializeComponent()
 {
 this.Button1.Click +=
 new System.EventHandler(this.Button1_Click);
 this.Load += new System.EventHandler(this.Page_Load);
 }
 #endregion

 private void Button1_Click(object sender, System.EventArgs e)
 {
 string response = "Thanks for the order!
";

 response += "Identity: " + Request.Form["Identity"] + "
";

 response += "Item: " + Request.Form["Item"] + "
";
 response += "Quantity: " + Request.Form["Quantity"] + "
";
 Response.Write(response);
 }

 }
 }

The output from the form execution looks like this:

 Uploading name-value pairs to URI http://localhost/FormSim/WebForm1.aspx …
 Response received was
 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >
 <HTML>
 <HEAD>
 <title>WebForm1</title>
 <meta name="GENERATOR" Content="Microsoft Visual Studio .NET 7.1">
 <meta name="CODE_LANGUAGE" Content="C#">
 <meta name="vs_defaultClientScript" content="JavaScript">
 <meta name="vs_targetSchema"
 content="http://schemas.microsoft.com/intellisense/ie5">
 </HEAD>
 <body MS_POSITIONING="GridLayout">
 <form name="Form1" method="post" action="WebForm1.aspx" id="Form1">
 <input type="hidden" name="__VIEWSTATE"
 value="dDwtMTI3ODA2MzE3NDs7PqEOy03ljfXs5tGC+P86H0bF9IMA" />

 <input name="Identity" type="text" id="Identity" style="Z-INDEX: 101;
 LEFT: 194px; POSITION: absolute; TOP: 52px" />
 <input name="Item" type="text" id="Item" style="Z-INDEX: 102; LEFT:
 193px; POSITION: absolute; TOP: 93px" />
 <input name="Quantity" type="text" id="Quantity" style="Z-INDEX: 103;
 LEFT: 193px; POSITION: absolute; TOP: 132px" />
 <input type="submit" name="Button1" value="Submit" id="Button1" style="Z-
 INDEX: 104; LEFT: 203px; POSITION: absolute; TOP: 183px" />
 <span id="Label1" style="Z-INDEX: 105; LEFT: 58px; POSITION: absolute;
 TOP: 54px">Identity:
 <span id="Label2" style="Z-INDEX: 106; LEFT: 57px; POSITION: absolute;
 TOP: 94px">Item:
 <span id="Label3" style="Z-INDEX: 107; LEFT: 57px; POSITION: absolute;
 TOP: 135px">Quantity:
 </form>
 </body>
 </HTML>

Discussion

The WebClient class makes it easy to upload form data to a web server in the common format of a set of
name-value pairs. You can see this technique in the call to UploadValues that takes an absolute URI (
http://localhost/FormSim/WebForm1.aspx), the HTTP method to use (POST), and the

http://localhost/FormSim/WebForm1.aspx �
http://localhost/FormSim/WebForm1.aspx

NameValueCollection you created (collection). The NameValueCollection is populated with the data for
each of the fields on the form by calling its Add method, passing the id of the input field as the name and
the value to put in the field as the value. In this example, you fill in the Identity field with foo@bar.com ,
the Item field with Book , and the Quantity field with 5 . You then print out the resulting response from the
POST to the console window.

See Also

See the "WebClient Class" topic in the MSDN documentation.

Recipe 16.4. Downloading Data from a Server

Problem

You need to download data from a location specified by a URL; this data can be either an array of bytes or
a file.

Solution

Use the WebClient. DownloadData method to download data from a URL:

 string uri = "http://localhost/mysite/index.aspx";

 // Make a client
 using (WebClient client = new WebClient())
 {

 // Get the contents of the file
 Console.WriteLine("Downloading {0} " + uri);
 // Download the page and store the bytes
 byte[] bytes;
 try
 {

 bytes = client.DownloadData(uri);

 }
 catch (WebException we)
 {
 Console.WriteLine(we.ToString());
 return;
 }
 // Write the content out
 string page = Encoding.ASCII.GetString(bytes);
 Console.WriteLine(page);
 }

This will produce the following output:

 Downloading {0} http://localhost/mysite/index.aspx

 <!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >
 <HTML>
 <HEAD>
 <title>WebForm1</title>
 <meta name="GENERATOR" Content="Microsoft Visual Studio .NET 7.1">
 <meta name="CODE_LANGUAGE" Content="C#">
 <meta name="vs_defaultClientScript" content="JavaScript">
 <meta name="vs_targetSchema"
 content="http://schemas.microsoft.com/intellisense/ie5">
 </HEAD>
 <body MS_POSITIONING="GridLayout">
 <form name="Form1" method="post" action="index.aspx" id="Form1">
 <input type="hidden" name="__VIEWSTATE"
 value="dDwyMDQwNjUzNDY2Ozs+kS9hguYm9369sybDqmIow0AvxBg=" />
 <span id="Label1" style="Z-INDEX: 101; LEFT: 142px; POSITION: absolute;
 TOP: 164px">This is index.aspx!
 </form>
 </body>
 </HTML>

You can also download data to a file using DownloadFile :

 // Make a client
 using (WebClient client = new WebClient())
 {
 // Go get the file
 Console.WriteLine("Retrieving file from {0}…\r\n", uri);
 // Get file and put it in a temp file
 string tempFile = Path.GetTempFileName();
 client.DownloadFile(uri,tempFile);
 Console.WriteLine("Downloaded {0} to {1}",uri,tempFile);
 }

This will produce the following output:

 Retrieving file from http://localhost/mysite/index.aspx…

 Downloaded http://localhost/mysite/index.aspx to C:\Documents and Settings\[user]\
 Local Settings\Temp\tmp17C.tmp

Discussion

WebClient simplifies downloading of files and bytes in files, as these are common tasks when dealing with

the Web. The more traditional stream-based method for downloading can also be accessed via the OpenRead
method on the WebClient .

See Also

See the "WebClient Class" topic in the MSDN documentation.

Recipe 16.5. Using Named Pipes to Communicate

Problem

You need a way to use named pipes to communicate with another application across the network.

Solution

Create a P/Invoke wrapper class for the named-pipe APIs in Kernel32.dll . You can then create a managed client
and managed server class to work with named pipes.

Example 16-3 shows the named-pipe interop wrappers in a class called NamedPipeInterop .

Example 16-3. NamedPipeInterop class

namespace NamedPipes
{
 /// <summary>
 /// Imported named-pipe entry points for P/Invoke into native code
 /// </summary>
 public class NamedPipeInterop
 {
 // #defines related to named-pipe processing
 public const int PIPE_ACCESS_OUTBOUND = 0x00000002;
 public const int PIPE_ACCESS_DUPLEX = 0x00000003;
 public const int PIPE_ACCESS_INBOUND = 0x00000001;

 public const int PIPE_WAIT = 0x00000000;
 public const int PIPE_NOWAIT = 0x00000001;
 public const int PIPE_READMODE_BYTE = 0x00000000;
 public const int PIPE_READMODE_MESSAGE = 0x00000002;
 public const int PIPE_TYPE_BYTE = 0x00000000;
 public const int PIPE_TYPE_MESSAGE = 0x00000004;

 public const int PIPE_CLIENT_END = 0x00000000;
 public const int PIPE_SERVER_END = 0x00000001;

 public const int PIPE_UNLIMITED_INSTANCES = 255;

 public const uint NMPWAIT_WAIT_FOREVER = 0xffffffff;
 public const uint NMPWAIT_NOWAIT = 0x00000001;
 public const uint NMPWAIT_USE_DEFAULT_WAIT = 0x00000000;

 public const uint GENERIC_READ = (0x80000000);
 public const uint GENERIC_WRITE = (0x40000000);
 public const uint GENERIC_EXECUTE = (0x20000000);
 public const uint GENERIC_ALL = (0x10000000);

 public const int CREATE_NEW = 1;
 public const int CREATE_ALWAYS = 2;
 public const int OPEN_EXISTING = 3;
 public const int OPEN_ALWAYS = 4;
 public const int TRUNCATE_EXISTING = 5;

 public static IntPtr INVALID_HANDLE_VALUE = (IntPtr)(-1);
 public const int ERROR_PIPE_BUSY = 231;
 public const int ERROR_NO_DATA = 232;
 public const int ERROR_PIPE_NOT_CONNECTED = 233;
 public const int ERROR_MORE_DATA = 234;
 public const int ERROR_PIPE_CONNECTED = 535;
 public const int ERROR_PIPE_LISTENING = 536;

 [DllImport("kernel32.dll", SetLastError = true)]
 public static extern bool CallNamedPipe(
 string lpNamedPipeName,
 byte[] lpInBuffer,
 uint nInBufferSize,
 byte[] lpOutBuffer,
 uint nOutBufferSize,
 byte[] lpBytesRead,
 uint nTimeOut);

 [DllImport("kernel32.dll", SetLastError = true)]
 public static extern bool CloseHandle(SafeFileHandle hObject);

 [DllImport("kernel32.dll", SetLastError = true)]
 public static extern bool ConnectNamedPipe(
 SafeFileHandle hNamedPipe,// Handle to named pipe
 IntPtr lpOverlapped // Overlapped structure
);

 [DllImport("kernel32.dll", SetLastError = true)]
 public static extern SafeFileHandle CreateNamedPipe(
 String lpName, // Pipe name
 uint dwOpenMode, // Pipe open mode
 uint dwPipeMode, // Pipe-specific modes
 uint nMaxInstances, // Maximum number of instances
 uint nOutBufferSize, // Output buffer size
 uint nInBufferSize, // Input buffer size
 uint nDefaultTimeOut, // Time-out interval
 //SecurityAttributes attr
 IntPtr pipeSecurityDescriptor // Security descriptor
);

 [DllImport("kernel32.dll", SetLastError = true)]

 public static extern SafeFileHandle CreatePipe(
 SafeFileHandle hReadPipe,
 SafeFileHandle hWritePipe,
 IntPtr lpPipeAttributes,
 uint nSize);

 [DllImport("kernel32.dll", SetLastError = true)]
 public static extern SafeFileHandle CreateFile(
 String lpFileName,// File name
 uint dwDesiredAccess,// Access mode
 uint dwShareMode,// Share mode
 IntPtr attr, // Security descriptor
 uint dwCreationDisposition, // How to create
 uint dwFlagsAndAttributes, // File attributes
 uint hTemplateFile);// Handle to template file

 [DllImport("kernel32.dll", SetLastError = true)]
 public static extern bool DisconnectNamedPipe(SafeFileHandle hNamedPipe);

 [DllImport("kernel32.dll", SetLastError = true)]
 public static extern bool FlushFileBuffers(SafeFileHandle hFile);

 [DllImport("kernel32.dll", SetLastError = true)]
 public static extern bool GetNamedPipeHandleState(
 SafeFileHandle hNamedPipe,
 IntPtr lpState,
 IntPtr lpCurInstances,
 IntPtr lpMaxCollectionCount,
 IntPtr lpCollectDataTimeout,
 string lpUserName,
 uint nMaxUserNameSize);

 [DllImport("KERNEL32.DLL", SetLastError = true)]
 public static extern bool GetNamedPipeInfo(
 SafeFileHandle hNamedPipe,
 out uint lpFlags,
 out uint lpOutBufferSize,
 out uint lpInBufferSize,
 out uint lpMaxInstances);

 [DllImport("KERNEL32.DLL", SetLastError = true)]
 public static extern bool PeekNamedPipe(
 SafeFileHandle hNamedPipe,
 byte[] lpBuffer,
 uint nBufferSize,
 byte[] lpBytesRead,
 out uint lpTotalBytesAvail,
 out uint lpBytesLeftThisMessage);

 [DllImport("KERNEL32.DLL", SetLastError = true)]
 public static extern bool SetNamedPipeHandleState(
 SafeFileHandle hNamedPipe,

 ref int lpMode,
 IntPtr lpMaxCollectionCount,
 IntPtr lpCollectDataTimeout);

 [DllImport("KERNEL32.DLL", SetLastError = true)]
 public static extern bool TransactNamedPipe(
 SafeFileHandle hNamedPipe,
 byte[] lpInBuffer,
 uint nInBufferSize,
 [Out] byte[] lpOutBuffer,
 uint nOutBufferSize,
 IntPtr lpBytesRead,
 IntPtr lpOverlapped);

 [DllImport("kernel32.dll", SetLastError = true)]
 public static extern bool WaitNamedPipe(
 string name,
 uint timeout);

 [DllImport("kernel32.dll", SetLastError = true)]
 public static extern bool ReadFile(
 SafeFileHandle hFile, // Handle to file
 byte[] lpBuffer, // Data buffer
 uint nNumberOfBytesToRead, // Number of bytes to read
 byte[] lpNumberOfBytesRead, // Number of bytes read
 uint lpOverlapped // Overlapped buffer
);

 [DllImport("kernel32.dll", SetLastError = true)]
 public static extern bool WriteFile(
 SafeFileHandle hFile, // Handle to file
 byte[] lpBuffer, // Data buffer
 uint nNumberOfBytesToWrite, // Number of bytes to write
 byte[] lpNumberOfBytesWritten, // Number of bytes written
 uint lpOverlapped // Overlapped buffer
);
 }

Now, using the interop wrappers, you can create a named-pipe client class named NamedPipeClient , as shown
in Example 16-4 .

Example 16-4. NamedPipeClient class

using System;
using System.Collections.Generic;
using System.Text;
using System.Runtime.InteropServices;

using System.Diagnostics;
using System.ComponentModel;
using System.IO;
using System.Threading;
using Microsoft.Win32.SafeHandles;

namespace NamedPipes
{
 /// <summary>
 /// NamedPipeClient - An implementation of a synchronous, message-based,
 /// named pipe client
 ///
 /// </summary>
 public class NamedPipeClient : IDisposable
 {
 #region Private Members
 /// <summary>
 /// The full name of the pipe being connected to
 /// </summary>
 private string _pipeName = "";

 /// <summary>
 /// The pipe handle once connected
 /// </summary>
 private SafeFileHandle _handle =
 new SafeFileHandle(NamedPipeInterop.INVALID_HANDLE_VALUE,true);
 /// <summary>
 /// Default response buffer size (1K)
 /// </summary>
 private int _responseBufferSize = 1024;

 /// <summary>
 /// Track if dispose has been called
 /// </summary>
 private bool disposed = false;

 /// <summary>
 /// Timeout for the retry after first failed connect
 /// </summary>
 private int _retryTimeout = 20000;

 /// <summary>
 /// Number of times to retry connecting
 /// </summary>
 private int _retryConnect = 5;
 #endregion

 #region Construction / Cleanup
 /// <summary>
 /// CTOR
 /// </summary>
 /// <param name="pipeName">name of the pipe</param>

 public NamedPipeClient(string pipeName)
 {
 _pipeName = pipeName;
 Trace.WriteLine("NamedPipeClient using pipe name of " + _pipeName);
 }

 /// <summary>
 /// Finalizer
 /// </summary>
 ~NamedPipeClient()
 {
 Dispose(false);
 }

 public void Dispose()
 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }

 private void Dispose(bool disposing)
 {
 // Check to see if Dispose has already been called.
 if (!this.disposed)
 {
 ClosePipe();
 }
 disposed = true;
 }

 private void ClosePipe()
 {
 if (!_handle.IsInvalid)
 {
 _handle.Close();
 }
 }

 /// <summary>
 /// Close - because it is more intuitive than Dispose…
 /// </summary>
 public void Close()
 {
 ClosePipe();
 }
 #endregion

 #region Properties
 /// <summary>
 /// ResponseBufferSize Property - the size used to create response buffers
 /// for messages written using WriteMessage
 /// </summary>

 public int ResponseBufferSize
 {
 get
 {
 return _responseBufferSize;
 }
 set
 {
 _responseBufferSize = value;
 }
 }

 /// <summary>
 /// The number of milliseconds to wait when attempting to retry a connection
 /// </summary>
 public int RetryConnectCount
 {
 get
 {
 return _retryConnect;
 }
 set
 {
 _retryConnect = value;
 }
 }
 /// <summary>
 /// The number of milliseconds to wait when attempting to retry a connection
 /// </summary>
 public int RetryConnectTimeout
 {
 get
 {
 return _retryTimeout;
 }
 set
 {
 _retryTimeout = value;
 }
 }
 #endregion

 #region Public Methods
 /// <summary>
 /// Connect - connect to an existing pipe
 /// </summary>
 /// <returns>true if connected</returns>
 public void Connect()
 {
 if (!_handle.IsInvalid)
 throw new InvalidOperationException("Pipe is already connected!");

 string errMsg = "";
 int errCode = 0;
 int retryAttempts = _retryConnect;
 // Keep trying to connect
 while (retryAttempts > 0)
 {
 // Mark off one attempt
 retryAttempts--;

 // Connect to existing pipe
 _handle = NamedPipeInterop.CreateFile(_pipeName,
 NamedPipeInterop.GENERIC_READ |
 NamedPipeInterop.GENERIC_WRITE,
 0,
 IntPtr.Zero,
 NamedPipeInterop.OPEN_EXISTING,
 0,
 0);

 // Check to see if we connected
 if (!_handle.IsInvalid)
 break;

 // The pipe could not be opened as all instances are busy.
 // Any other error we bail for.
 errCode = Marshal.GetLastWin32Error();
 if (errCode !=
 NamedPipeInterop.ERROR_PIPE_BUSY)
 {
 errMsg = string.Format("Could not open pipe {0} with error {1}"
pipeName,errCode);
 Trace.WriteLine(errMsg);
 throw new Win32Exception(errCode, errMsg);
 }
 // If it was busy, see if we can wait it out
 else if (!NamedPipeInterop.WaitNamedPipe(_pipeName, (uint)_retryTimeout))
 {
 errCode = Marshal.GetLastWin32Error();
 errMsg =
 string.Format("Wait for pipe {0} timed out after {1} milliseconds
with error code {2}.",
 _pipeName, _retryTimeout,errCode);
 Trace.WriteLine(errMsg);
 throw new Win32Exception(errCode, errMsg);
 }
 }
 // Indicate connection in debug
 Trace.WriteLine("Connected to pipe: " + _pipeName);

 // The pipe connected; change to message-read mode
 bool success = false;
 int mode = (int)NamedPipeInterop.PIPE_READMODE_MESSAGE;

 // Set to message mode
 success = NamedPipeInterop.SetNamedPipeHandleState(
 _handle, // Pipe handle
 ref mode, // New pipe mode
 IntPtr.Zero, // Don't set maximum bytes
 IntPtr.Zero); // Don't set maximum time

 // Currently implemented for just synchronous, message-based pipes
 // so bail if we couldn't set the client up properly
 if (false == success)
 {
 errCode = Marshal.GetLastWin32Error();
 errMsg =
 string.Format("Could not change pipe mode to message with error code
 {0}",
 errCode);
 Trace.WriteLine(errMsg);
 Dispose();
 throw new Win32Exception(errCode, errMsg);
 }
 }

 /// <summary>
 /// WriteMessage - write an array of bytes and return the response from the
 /// server
 /// </summary>
 /// <param name="buffer">bytes to write</param>
 /// <param name="bytesToWrite">number of bytes to write</param>
 /// <returns>true if written successfully</returns>
 public MemoryStream WriteMessage(byte[] buffer, // the write buffer
 uint bytesToWrite) // Number of bytes in the write buffer
 // Message responses
 {
 // Buffer to get the number of bytes read/written back
 byte[] _numReadWritten = new byte[4];
 MemoryStream responseStream = null;

 bool success = false;
 // Write the byte buffer to the pipe
 success = NamedPipeInterop.WriteFile(_handle,
 buffer,
 bytesToWrite,
 _numReadWritten,
 0);

 if (success)
 {
 byte[] responseBuffer = new byte[_responseBufferSize];
 responseStream = new MemoryStream(_responseBufferSize);
 {
 do

 {
 // Read the response from the pipe.
 success = NamedPipeInterop.ReadFile(
 _handle, // Pipe handle
 responseBuffer, // Buffer to receive reply
 (uint)_responseBufferSize,// Size of buffer
 _numReadWritten, // Number of bytes read
 0); // Not overlapped

 // Failed, not just more data to come
 if (!success && Marshal.GetLastWin32Error() != NamedPipeInterop
 ERROR_MORE_DATA)
 break;

 // Concat response to stream
 responseStream.Write(responseBuffer,
 0,
 responseBuffer.Length);
 } while (!success);
 }
 }
 return responseStream;
 }
 #endregion
 }
}

Then you need to create a server class for testing, which you can call NamedPipeServer , as shown in Example
16-5 .

Example 16-5. NamedPipeServer class

using System;
using System.Collections.Generic;
using System.Text;
using System.Runtime.InteropServices;
using System.Diagnostics;
using System.ComponentModel;
using System.IO;
using System.Threading;
using Microsoft.Win32.SafeHandles;

namespace NamedPipes
{
 /// <summary>
 /// NamedPipeServer - An implementation of a synchronous, message-based,
 /// named-pipe server

 ///
 /// </summary>
 public class NamedPipeServer : IDisposable
 {
 #region Private Members
 /// <summary>
 /// The pipe handle
 /// </summary>
 private SafeFileHandle _handle = new SafeFileHandle(NamedPipeInterop.
INVALID_HANDLE_VALUE, true);
 /// <summary>
 /// The name of the pipe
 /// </summary>
 private string _pipeName = "";

 /// <summary>
 /// Default size of message buffer to read
 /// </summary>
 private int _receiveBufferSize = 1024;

 /// <summary>
 /// Track if dispose has been called
 /// </summary>
 private bool disposed = false;

 /// <summary>
 /// PIPE_SERVER_BUFFER_SIZE set to 8192 by default
 /// </summary>
 private const int PIPE_SERVER_BUFFER_SIZE = 8192;
 #endregion

 #region Construction / Cleanup
 /// <summary>
 /// CTOR
 /// </summary>
 /// <param name="pipeBaseName">the base name of the pipe</param>
 /// <param name="msgReceivedDelegate">delegate to be notified when
 /// a message is received</param>
 public NamedPipeServer(string pipeBaseName)
 {
 // Assemble the pipe name
 _pipeName = "\\\\.\\PIPE\\" + pipeBaseName;
 Trace.WriteLine("NamedPipeServer using pipe name " + _pipeName);
 }

 /// <summary>
 /// Finalizer
 /// </summary>
 ~NamedPipeServer()
 {
 Dispose(false);
 }

 public void Dispose()
 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }

 private void Dispose(bool disposing)
 {
 // Check to see if Dispose has already been called.
 if (!this.disposed)
 {
 ClosePipe();
 }
 disposed = true;
 }

 private void ClosePipe()
 {
 Trace.WriteLine("NamedPipeServer closing pipe");

 if (!_handle.IsInvalid)
 {
 _handle.Close();
 }
 }
 /// <summary>
 /// Close - because it is more intuitive than Dispose…
 /// </summary>
 public void Close()
 {
 ClosePipe();
 }
 #endregion

 #region Properties
 /// <summary>
 /// PipeName
 /// </summary>
 /// <returns>the composed pipe name</returns>
 public string PipeName
 {
 get
 {
 return _pipeName;
 }
 }

 /// <summary>
 /// ReceiveBufferSize Property - the size used to create receive buffers
 /// for messages received using WaitForMessage
 /// </summary>

 public int ReceiveBufferSize
 {
 get
 {
 return _receiveBufferSize;
 }
 set
 {
 _receiveBufferSize = value;
 }
 }
 #endregion

 #region Public Methods
 /// <summary>
 /// CreatePipe - create the named pipe
 /// </summary>
 /// <returns>true is pipe created</returns>
 public bool CreatePipe()
 {
 // Make a named pipe in message mode
 _handle = NamedPipeInterop.CreateNamedPipe(_pipeName,
 NamedPipeInterop.PIPE_ACCESS_DUPLEX,
 NamedPipeInterop.PIPE_TYPE_MESSAGE | NamedPipeInterop.PIPE_READMODE_
 MESSAGE |
 NamedPipeInterop.PIPE_WAIT,
 NamedPipeInterop.PIPE_UNLIMITED_INSTANCES,
 PIPE_SERVER_BUFFER_SIZE,
 PIPE_SERVER_BUFFER_SIZE,
 NamedPipeInterop.NMPWAIT_WAIT_FOREVER,
 IntPtr.Zero);
 // Make sure we got a good one
 if (_handle.IsInvalid)
 {
 Debug.WriteLine("Could not create the pipe (" +
 _pipeName + ") - os returned " +
 Marshal.GetLastWin32Error());

 return false;
 }
 return true;
 }

 /// <summary>
 /// WaitForClientConnect - wait for a client to connect to this pipe
 /// </summary>
 /// <returns>true if connected, false if timed out</returns>
 public bool WaitForClientConnect()
 {
 // Wait for someone to talk to us.
 return NamedPipeInterop.ConnectNamedPipe(_handle, IntPtr.Zero);
 }

 /// <summary>
 /// WaitForMessage - have the server wait for a message
 /// </summary>
 /// <returns>a non-null MessageStream if it got a message, null if timed
 out or error
 /// </returns>
 public MemoryStream WaitForMessage()
 {
 bool fullyRead = false;
 string errMsg = "";
 int errCode = 0;
 // They want to talk to us, read their messages and write
 // replies
 MemoryStream receiveStream = new MemoryStream();
 byte[] buffer = new byte[_receiveBufferSize];
 byte[] _numReadWritten = new byte[4];

 // Need to read the whole message and put it in one message
 // byte buffer
 do
 {

 // Read the response from the pipe
 if (!NamedPipeInterop.ReadFile(
 _handle, // Pipe handle
 buffer, // Buffer to receive reply
 (uint)_receiveBufferSize, // Size of buffer
 _numReadWritten, // Number of bytes read
 0)) // Not overlapped
 {
 // Failed, not just more data to come
 errCode = Marshal.GetLastWin32Error();
 if (errCode != NamedPipeInterop.ERROR_MORE_DATA)
 break;
 else
 {
 errMsg = string.Format("Could not read from pipe with error {0}",
errCode);
 Trace.WriteLine(errMsg);
 throw new Win32Exception(errCode, errMsg);
 }
 }
 else
 {
 // We succeeded and no more data is coming
 fullyRead = true;
 }
 // Concat the message bytes to the stream
 receiveStream.Write(buffer, 0, buffer.Length);

 } while (!fullyRead);

 if (receiveStream.Length > 0)
 {
 // Now set up response with a polite response using the same
 // Unicode string protocol
 string reply = "Thanks for the message!";
 byte[] msgBytes = Encoding.Unicode.GetBytes(reply);

 uint len = (uint)msgBytes.Length;
 // Write the response message provided
 // by the delegate
 if (!NamedPipeInterop.WriteFile(_handle,
 msgBytes,
 len,
 _numReadWritten,
 0))
 {

 errCode = Marshal.GetLastWin32Error();
 errMsg = string.Format("Could not write response with error {0}",
errCode);
 Trace.WriteLine(errMsg);
 throw new Win32Exception(errCode, errMsg);
 }
 // Return the message we received.
 return receiveStream;
 }
 else // Didn't receive anything
 return null;
 }
 #endregion
 }
}

In order to use the NamedPipeClient class, you need some code like that shown in Example 16-6 .

Example 16-6. Using the NamedPipeClient class

using System;
using System.Collections.Generic;
using System.Text;
using System.IO;
using System.Diagnostics;

namespace NamedPipes
{
 class NamedPipeClientConsole
 {

 static void Main(string[] args)
 {
 // Client test code - commented out as it should go in a separate
 // console test app

 // Create our pipe client
 NamedPipeClient _pc =
 new NamedPipeClient("\\\\.\\PIPE\\mypipe");

 if (_pc != null)
 {
 using (_pc)
 {
 // Connect to the server
 _pc.Connect();
 // Set up a dummy message
 string testString = "This is my message!";

 // Turn it into a byte array
 byte[] writebuffer = Encoding.Unicode.GetBytes(testString);
 uint len = Convert.ToUInt32(writebuffer.Length);

 // Write the message ten times
 for (int i = 0; i < 10; i++)
 {
 MemoryStream response = _pc.WriteMessage(writebuffer, len);
 if (response == null)
 {
 Debug.Assert(false,
 "Failed to write message!");
 }
 else
 {
 WriteMessageResponse(response);
 }
 }
 }
 }
 Console.WriteLine("Press Enter to exit…");
 Console.ReadLine();
 }

 static void WriteMessageResponse(MemoryStream responseStream)
 {
 string response =
 Encoding.Unicode.GetString(responseStream.ToArray());
 Console.WriteLine("Received response: {0}", response);
 }
 }
}

Then, to set up a server for the client to talk to, you use the NamedPipeServer class as shown in Example 16-7 .

Example 16-7. Setting up a server for the client

using System;
using System Collections.Generic;
using System.Text;
using System.IO;
using System.ComponentModel;

namespace NamedPipes
{
 class NamedPipeServerConsole
 {
 static void Main(string[] args)
 {
 // Server test code - commented out as it should go in a separate
 // console test app as shown in the book

 // Create pipe server
 using (NamedPipeServer _ps =
 new NamedPipeServer("mypipe"))
 {

 // Create pipe
 if (_ps.CreatePipe())
 {
 // I get the name of the pipe here just to show you can
 // Normally we would then have to get this name to the client
 // so it knows the name of the pipe to open but hey, I wrote
 // the client to so for now I'm just hardcoding it in the
 // client so we can ignore it
 string pipeName = _ps.PipeName;

 // Wait for clients to connect
 if (_ps.WaitForClientConnect())
 {
 // Process messages until the read fails
 // (client goes away…)
 bool success = true;
 while (success)
 {
 try
 {
 // Wait for a message from the client
 MemoryStream messageStream = _ps.WaitForMessage();
 if (messageStream != null)
 {
 // Get the bytes of the message from the stream

 byte[] msgBytes = messageStream.ToArray();
 string messageText;

 // I know in the client I used a Unicode encoding
 // for the string to turn it into a series of bytes
 // for transmission so just reverse that
 messageText = Encoding.Unicode.GetString(msgBytes);

 // Write out our string message from the client
 Console.WriteLine(messageText);
 } else
 success = false;
 }
 catch (Win32Exception)
 {
 success = false;
 }
 }
 }
 }
 }
 // Make our server hang around so you can see the messages sent
 Console.WriteLine("Press Enter to exit…");
 Console.ReadLine();
 }
 }
}

Discussion

Named pipes are a mechanism to allow interprocess or intermachine communications in Windows. The .NET
Framework currently has not provided managed access to named pipes, so the first thing you need to do is to
wrap the functions in Kernel32.dll for direct access from managed code in your NamedPipesInterop class.

Once you have this foundation, you can then build a client for using named pipes to talk to a server, as in the
NamedPipeClient class. The methods on NamedPipeClient are listed in Table 16-1 with a description for each.

Table 16-1. NamedPipeClient methods

Method Description

Close Close method, which calls the Dispose method.

Connect Connects to a named-pipe server.

Dispose
Dispose method for the named-pipe client so that the pipe handle is not held any longer
than necessary.

Method Description

NamedPipeClient Constructor for the named-pipe client.

~NamedPipeClient Finalizer for the named-pipe client. This makes sure the pipe handle is closed.

WriteMessage Writes a message to the connected server.

You then create the NamedPipeServer class to be able to have something for the NamedPipeClient to connect to.
The methods on the NamedPipeServer are listed in Table 16-2 with a description for each as well.

Table 16-2. NamedPipeServer methods

Method Description

Close
Close method that calls the Dispose method. Many developers use Close , so it is
provided for completeness.

CreatePipe Creates a listener pipe on the server.

Dispose
Dispose method for the named-pipe server so that pipe handles are not held any
longer than necessary.

NamedPipeServer Constructor for the named-pipe server.

~NamedPipeServer Finalizer for the named-pipe server. This makes sure the pipe handle is closed.

PipeName Returns the composed pipe name.

WaitForClientConnect Wait on the pipe handle for a client to talk to.

WaitForMessage Have the server wait for a message from the client.

Finally, you create some code to use NamedPipeClient and NamedPipeServer . The interaction between these two
goes like this:

The server process is started; it fires up a NamedPipeServer , calls CreatePipe to make a pipe, then calls
WaitForClientConnect to wait for the NamedPipeClient to connect:

 using (NamedPipeServer _ps =
 new NamedPipeServer("mypipe"))
 {
 // Create pipe
 if (_ps.CreatePipe())
 {
 // Wait for clients to connect
 if (_ps.WaitForClientConnect())
 {

1.

2.

NamedPipeClient Constructor for the named-pipe client.

~NamedPipeClient Finalizer for the named-pipe client. This makes sure the pipe handle is closed.

WriteMessage Writes a message to the connected server.

You then create the NamedPipeServer class to be able to have something for the NamedPipeClient to connect to.
The methods on the NamedPipeServer are listed in Table 16-2 with a description for each as well.

Table 16-2. NamedPipeServer methods

Method Description

Close
Close method that calls the Dispose method. Many developers use Close , so it is
provided for completeness.

CreatePipe Creates a listener pipe on the server.

Dispose
Dispose method for the named-pipe server so that pipe handles are not held any
longer than necessary.

NamedPipeServer Constructor for the named-pipe server.

~NamedPipeServer Finalizer for the named-pipe server. This makes sure the pipe handle is closed.

PipeName Returns the composed pipe name.

WaitForClientConnect Wait on the pipe handle for a client to talk to.

WaitForMessage Have the server wait for a message from the client.

Finally, you create some code to use NamedPipeClient and NamedPipeServer . The interaction between these two
goes like this:

The server process is started; it fires up a NamedPipeServer , calls CreatePipe to make a pipe, then calls
WaitForClientConnect to wait for the NamedPipeClient to connect:

 using (NamedPipeServer _ps =
 new NamedPipeServer("mypipe"))
 {
 // Create pipe
 if (_ps.CreatePipe())
 {
 // Wait for clients to connect
 if (_ps.WaitForClientConnect())
 {

1.

2.

The client process is created; it fires up a NamedPipeClient , calls Connect , and connects to the server
process:

 // Create our pipe client
 NamedPipeClient _pc =
 new NamedPipeClient("\\\\.\\PIPE\\mypipe");

 if (_pc != null)
 {
 using (_pc)
 {
 // Connect to the server
 _pc.Connect();

2.

The server process sees the connection from the client and then calls WaitForMessage in a loop.
WaitForMessage starts reading the pipe, which blocks until a message is written to the pipe by the client.

 // Process messages until the read fails
 // (client goes away…)
 bool success = true;
 while (success)
 {
 try
 {
 // Wait for a message from the client
 MemoryStream messageStream = _ps.WaitForMessage();

 // More processing code in here…
 }
 catch (Win32Exception)
 {
 success = false;
 }
 }

3.

The client process then writes a number of messages to the server process using WriteMessage :

 // Set up a dummy message
 string testString = "This is my message!";
 // Turn it into a byte array
 byte[] writebuffer = Encoding.Unicode.GetBytes(testString);
 uint len = Convert.ToUInt32(writebuffer.Length);

 // Write the message ten times

4.

 for (int i = 0; i < 10; i++)
 {
 MemoryStream response = _pc.WriteMessage(writebuffer, len);
 if (response == null)
 {
 Debug.Assert(false,
 "Failed to write message!");
 }
 else
 {
 WriteMessageResponse(response);
 }
 }

In WaitForMessage , shown in Example 16-8 , the server process sees the message, processes it, writes a
response to the client, returns a MemoryStream with the received message in it, then goes back to waiting.

Example 16-8. WaitForMessage method

public MemoryStream WaitForMessage()
{
 bool fullyRead = false;
 string errMsg = "";
 int errCode = 0;
 // They want to talk to us, read their messages and write
 // replies
 MemoryStream receiveStream = new MemoryStream();
 byte[] buffer = new byte[_receiveBufferSize];
 byte[] _numReadWritten = new byte[4];

 // Need to read the whole message and put it in one message
 // byte buffer
 do
 {
 // Read the response from the pipe
 if (!NamedPipeInterop.ReadFile(
 _handle, // Pipe handle
 buffer, // Buffer to receive reply
 (uint)_receiveBufferSize, // Size of buffer
 _numReadWritten, // Number of bytes read
 0)) // Not overlapped
 {
 // Failed, not just more data to come
 errCode = Marshal.GetLastWin32Error();
 if (errCode != NamedPipeInterop.ERROR_MORE_DATA)
 break;
 else
 {

5.

 errMsg = string.Format("Could not read from pipe with error {0}",
errCode);
 Trace.WriteLine(errMsg);
 throw new Win32Exception(errCode, errMsg);
 }
 }
 else
 {
 // We succeeded and no more data is coming
 fullyRead = true;
 }
 // Concat the message bytes to the stream
 receiveStream.Write(buffer, 0, buffer.Length);

 } while (!fullyRead);

 if (receiveStream.Length > 0)
 {
 // Now set up response with a polite response using the same
 // Unicode string protocol
 string reply = "Thanks for the message!";
 byte[] msgBytes = Encoding.Unicode.GetBytes(reply);

 uint len = (uint)msgBytes.Length;
 // Write the response message provided
 // by the delegate
 if (!NamedPipeInterop.WriteFile(_handle,
 msgBytes,
 len,
 _numReadWritten,
 0))
 {
 errCode = Marshal.GetLastWin32Error();
 errMsg = string.Format("Could not write response with error {0}",
 errCode);
 Trace.WriteLine(errMsg);
 throw new Win32Exception(errCode, errMsg);
 }

 // Return the message we received
 return receiveStream;
 }
 else // Didn't receive anything
 return null;
}

When the client process receives the response from the server, it returns a MemoryStream with the response
for processing. If the message sending is complete, the NamedPipeClient goes out of the scope of the using
statement and closes (thereby closing the connection on the client side) and then waits to go away when
the user presses Enter.

6.

 // Write a message and get a response stream
 MemoryStream response = _pc.WriteMessage(writebuffer, len);
 if (response == null)
 {
 Debug.Assert(false,
 "Failed to write message!");
 } else
 {
 // Process response message to console
 WriteMessageResponse(response);
 }

 static void WriteMessageResponse(MemoryStream responseStream)
 {
 string response =
 Encoding.Unicode.GetString(responseStream.ToArray());
 Console.WriteLine("Received response: {0}", response);
 }

The server process notes that the client has closed the pipe connection via the failed
NamedPipesInterop.ReadFile call in WaitForMessage . It calls Close to clean up, then waits for the user to
press Enter to terminate the process.

7.

The client output looks like this:

 Received response: Thanks for the message!
 Received response: Thanks for the message!
 Received response: Thanks for the message!
 Received response: Thanks for the message!
 Received response: Thanks for the message!
 Received response: Thanks for the message!
 Received response: Thanks for the message!
 Received response: Thanks for the message!
 Received response: Thanks for the message!
 Received response: Thanks for the message!
 Press Enter to exit…

The server output looks like this:

 This is my message!
 This is my message!
 This is my message!
 This is my message!
 This is my message!

 This is my message!
 This is my message!
 This is my message!
 This is my message!
 This is my message!
 Press Enter to exit…

See Also

See the " Named Pipes," "DllImport Attribute," "IDisposable Interface," and "GC. SuppressFinalize Method"
topics in the MSDN documentation.

Recipe 16.6. Pinging Programmatically

Problem

You want to check a computer's availability on the network.

Solution

Use the System.Net.NetworkInformation.Ping class to determine if a machine is available. In the
TestPing method, an instance of the Ping class is created. A ping request is sent to www.oreilly.com
using the Send method. The Send method is synchronous and returns a PingReply that can be examined
for the result of the ping. You perform the second ping request asynchronously using the SendAsync
method, after hooking up to the Ping class for the PingCompleted event.

 public static void TestPing()
 {
 System.Net.NetworkInformation.Ping pinger =
 new System.Net.NetworkInformation.Ping();
 PingReply reply = pinger.Send("www.oreilly.com");
 DisplayPingReplyInfo(reply);

 pinger.PingCompleted += new PingCompletedEventHandler(pinger_PingCompleted);
 pinger.SendAsync("www.oreilly.com", "oreilly ping");
 }

The DisplayPingReplyInfo method shows some of the more common items you want to know from a
ping, such as the RoundtripTime and the Status of the reply. These can be accessed from those
properties on the PingReply .

 private static void DisplayPingReplyInfo(PingReply reply)
 {
 Console.WriteLine("Results from pinging " + reply.Address);
 Console.WriteLine("\tFragmentation allowed?: {0}", !reply.Options.DontFragment);
 Console.WriteLine("\tTime to live: {0}", reply.Options.Ttl);
 Console.WriteLine("\tRoundtrip took: {0}", reply.RoundtripTime);
 Console.WriteLine("\tStatus: {0}", reply.Status.ToString());
 }

The event handler for the PingCompleted event is the pinger_PingCompleted method. This event handler

follows the usual EventHandler convention of the sender object and event arguments. The argument
type for this event is PingCompletedEventArgs . The PingReply can be accessed in the Reply property of
the event arguments. If the ping was canceled or an exception was thrown, that information can be
accessed via the Cancelled and Error properties.

 private static void pinger_PingCompleted(object sender, PingCompletedEventArgs e)
 {
 PingReply reply = e.Reply;
 DisplayPingReplyInfo(reply);

 if(e.Cancelled)
 {
 Console.WriteLine("Ping for " + e.UserState.ToString() + " was cancelled");
 }
 else if (e.Error != null)
 {
 Console.WriteLine("Exception thrown during ping: {0}", e.Error.ToString());
 }
 }

The output from DisplayPingReplyInfo looks like this:

 Results from pinging 208.201.239.37
 Fragmentation allowed?: True
 Time to live: 39
 Roundtrip took: 103
 Status: Success

Discussion

Ping uses an Internet Control Message Protocol (ICMP) echo request message as defined in RFC 792. If
a computer is not reached successfully by the ping request, it does not necessarily mean that the
computer is unreachable. Many factors can prevent a ping from succeeding aside from the machine
being offline. Network topology, firewalls, packet filters, and proxy servers all can interrupt the normal
flow of a ping request. By default, the Windows Firewall installed with Windows XP Service Pack 2
disables ICMP traffic, so if you are having difficulty pinging a machine running XP, check the firewall
settings on that machine.

See Also

See the "Ping Class," "PingReply Class," and "PingCompleted Event" topics in the MSDN documentation.

Recipe 16.7. Send SMTP Mail Using the SMTP Service

Problem

You want to be able to send email via SMTP from your program, but you don't want to learn the
SMTP protocol and hand-code a class to implement it.

Solution

Use the System.Net.Mail namespace, which contains classes to take care of the harder parts of
constructing an SMTP-based email message. The System.Net.Mail.MailMessage class encapsulates
constructing an SMTP-based message, and the System.Net.Mail.SmtpClient class provides the
sending mechanism for sending the message to an SMTP server. SmtpClient does depend on there
being an SMTP server set up somewhere for it to relay messages through. Attachments are added by
creating instances of System.Net.Mail.Attachment and providing the path to the file as well as the
media type.

 // Send a message with attachments
 string from = "hilyard@comcast.net";
 string to = "hilyard@comcast.net";
 MailMessage attachmentMessage = new MailMessage(from, to);
 attachmentMessage.Subject = "Hi there!";
 attachmentMessage.Body = "Check out this cool code!";
 // Many systems filter out HTML mail that is relayed
 attachmentMessage.IsBodyHtml = false;
 // Set up the attachment
 string pathToCode = @"..\..\16_Networking.cs";
 Attachment attachment =
 new Attachment(pathToCode,
 MediaTypeNames.Application.Octet);
 attachmentMessage.Attachments.Add(attachment);

To send a simple email with no attachments, call the System.Net.Mail.MailMessage constructor with
just the to, from, subject, and body information. This version of the MailMessage constructor simply
fills in those items and then you can pass it to SmtpClient.Send to send it along.

 // Bounce this off the local SMTP service. The local SMTP service needs to
 // have relaying set up to go through a real email server…
 // This could also set up to go against an SMTP server available to

 // you on the network
 SmtpClient client = new SmtpClient("localhost");
 client.Send(attachmentMessage);

 // Or just send text
 MailMessage textMessage = new MailMessage("hilyard@comcast.net",
 "hilyard@comcast.net",
 "Me again",
 "You need therapy, talking to yourself is one thing but " +
 "writing code to send email is a whole other thing…");
 client.Send(textMessage);

Discussion

SMTP stands for the Simple Mail Transfer Protocol, defined in RFC 821. To take advantage of the
support for SMTP mail in the .NET Framework using the System. Net.Mail.SmtpClient class, an SMTP
server must be specified to relay the messages through. Since Windows 2000, the operating system
has come with an SMTP server that can be installed as part of IIS. In the Solution, the SmtpClient
takes advantage of this by specifying "localhost" for the server to connect to, which indicates the
local machine is the SMTP relay server. Setting up the SMTP service may not be possible in your
network environment and you may need to use the SmtpClient class to set up credentials to connect
to the SMTP server on the network directly.

To set up SMTP relaying after installing the SMTP service via Add/Remove Windows Components in
the Control Panel, open the Internet Information Services applet and right-click on the Default SMTP
Virtual Server entry. Next, choose Properties. When you select the Delivery tab, you will see the
dialog shown in Figure 16-1.

Figure 16-1. Configuring SMTP relaying

Now click the Advanced button to display the Advanced Delivery dialog that you will use to set the
relay parameters, as shown in Figure 16-2.

Supply your domain name and the SMTP address for a valid SMTP host, then email away. Once you
have the SMTP service set up, you should configure it to respond to requests from only the local
machine, or you could become a target for spammers. To do this, go to the Access tab of the Default
SMTP Virtual Server Properties dialog, shown in Figure 16-3, and select Connection.

Then once you have selected Connection, select the "Only from the list below" option in the
Connection dialog, shown in Figure 16-4, and click the Add button to add an IP address.

Figure 16-2. SMTP relaying, Advanced Delivery options

Finally, enter the IP address 127.0.0.1 to give access to only this machine, as shown in Figure 16-5.

You list will now look like Figure 16-6.

See Also

See the "Using SMTP for Outgoing Messages," "SmtpMail Class," "MailMessage Class," and
"MailAttachment Class" topics in the MSDN documentation.

Recipe 16.8. Check out Your Network Connectivity

Problem

You need to determine the characteristics of the network adapters currently on the machine.

Solution

Use the DisplayNICInfo method shown in Example 16-9 to display all of the characteristics of the
currently existing network adapters using the System.Net.NetworkInformation . NetworkInterface
class. Calling the GetAllNetworkInterfaces method will get the list of current adapters as
NetworkInterface instances. Information such as the adapter ID, MAC address, status, and NIC type
is available on the NetworkInterface class.

Figure 16-3. Setting the SMTP server properties

Figure 16-4. Allowing an IP address to access the SMTP server

Figure 16-5. Allowing access to local machine (IP address 127.0.0.1)

Figure 16-6. Local machine granted access to SMTP server

To see all of the IP information for an adapter, call the GetIPProperties method on the
NetworkAdapter instance and pass the IPInterfaceProperties collection to the
DisplayInterfaceProperties method (implemented shortly).

Example 16-9. DisplayNICInfo method

private static void DisplayNICInfo()
{
 //Display current network adapter states
 NetworkInterface[] adapters = NetworkInterface.GetAllNetworkInterfaces();
 Console.WriteLine("Network Adapter Information:");
 foreach (NetworkInterface n in adapters)
 {
 Console.WriteLine("\tId: {0}", n.Id);
 Console.WriteLine("\tPhysical (MAC) Address: {0}",
 n.GetPhysicalAddress().ToString());
 Console.WriteLine("\tDescription: {0}", n.Description);
 Console.WriteLine("\tName: {0}", n.Name);
 Console.WriteLine("\tOperationalStatus: {0}",
 n.OperationalStatus.ToString());
 Console.WriteLine("\tInterface type: {0}",
 n.NetworkInterfaceType.ToString());
 Console.WriteLine("\tSpeed: {0}", n.Speed);
 IPInterfaceProperties ipProps = n.GetIPProperties();
 DisplayInterfaceProperties(ipProps);

 }
 Console.WriteLine("");
}

The DisplayInterfaceProperties method shown in Example 16-10 breaks down and displays all of the
IP configuration information, such as DHCP and WINS addresses, gateway and DNS addresses,
assigned IP addresses for the adapter, as well as multicast and unicast information.

Example 16-10. DisplayInterfaceProperties method

private static void DisplayInterfaceProperties(IPInterfaceProperties props)
{
 Console.WriteLine("\t\tDns Suffix : {0}", props.DnsSuffix);
 Console.WriteLine("\t\tAnycast Addresses:");
 foreach (IPAddressInformation ipInfo in props.AnycastAddresses)
 {
 Console.WriteLine("\t\t\t{0}", ipInfo.Address.ToString());
 Console.WriteLine("\t\t\tIsDnsEligible: {0}", ipInfo.IsDnsEligible);
 Console.WriteLine("\t\t\tIsTransient: {0}", ipInfo.IsTransient);
 }

 Console.WriteLine("\t\tDHCP Server Addresses:");
 foreach (IPAddress ipAddr in props.DhcpServerAddresses)
 {
 Console.WriteLine("\t\t\t{0}", ipAddr.ToString());
 }

 Console.WriteLine("\t\tDNS Addresses:");
 foreach (IPAddress ipAddr in props.DnsAddresses)
 {
 Console.WriteLine("\t\t\t{0}", ipAddr.ToString());
 }

 Console.WriteLine("\t\tGateway Addresses:");
 foreach (GatewayIPAddressInformation gatewayIPInfo in props.GatewayAddresses)
 {
 Console.WriteLine("\t\t\t{0}", gatewayIPInfo.Address.ToString());
 }

 Console.WriteLine("\t\tUnicast Addresses:");
 foreach (UnicastIPAddressInformation uniIPInfo in props.UnicastAddresses)
 {
 Console.WriteLine("\t\t\tAddress: {0}",
 uniIPInfo.Address.ToString());
 Console.WriteLine("\t\t\tPreferred Lifetime: {0}",
 uniIPInfo.AddressPreferredLifetime);
 Console.WriteLine("\t\t\tValid Lifetime: {0}",

 uniIPInfo.AddressValidLifetime);
 Console.WriteLine("\t\t\tDHCP Lease Lifetime: {0}",
 uniIPInfo.DhcpLeaseLifetime);
 Console.WriteLine("\t\t\tPrefix Origin: {0}",
 uniIPInfo.PrefixOrigin.ToString());
 Console.WriteLine("\t\t\tSuffix Origin: {0}",
 uniIPInfo.SuffixOrigin.ToString());
 }

 Console.WriteLine("\t\tMulticast Addresses:");
 foreach (MulticastIPAddressInformation multiIPInfo in props.MulticastAddresses)
 {
 Console.WriteLine("\t\t\tAddress: {0}", multiIPInfo.Address.ToString());
 Console.WriteLine("\t\t\tPreferred Lifetime: {0}",
 multiIPInfo.AddressPreferredLifetime);
 Console.WriteLine("\t\t\tValid Lifetime: {0}",
 multiIPInfo.AddressValidLifetime);
 Console.WriteLine("\t\t\tDHCP Lease Lifetime: {0}",
 multiIPInfo.DhcpLeaseLifetime);
 Console.WriteLine("\t\t\tPrefix Origin: {0}",
 multiIPInfo.PrefixOrigin.ToString());
 Console.WriteLine("\t\t\tSuffix Origin: {0}",
 multiIPInfo.SuffixOrigin.ToString());
 }

 Console.WriteLine("\t\tWINS Server Addresses:");
 foreach (IPAddress ipAddr in props.WinsServersAddresses)
 {
 Console.WriteLine("\t\t\t{0}", ipAddr.ToString());
 }
 Console.WriteLine("");

}

The .NET runtime also provides event notifications when the network address changes for an adapter
or the network availability state changes, through the NetworkChange . NetworkAddressChanged and
NetworkChange.NetworkAvailabilityChanged events. In the TestNetInfo method, you hook up for
these events, then handle them in the NetworkChange_NetworkAddressChanged and
NetworkChange_NetworkAvailabilityChanged methods. When the availability event fires, the
NetworkAvailabilityEventArgs object can be accessed to see if the network is available through the
IsAvailable property. The network address event does not supply information about what address
changed, so you simply call DisplayNICInfo again.

 public static void TestNetInfo()
 {
 // Hook up for network events
 NetworkChange.NetworkAddressChanged += new
 NetworkAddressChangedEventHandler(NetworkChange_NetworkAddressChanged);

 NetworkChange.NetworkAvailabilityChanged += new
 NetworkAvailabilityChangedEventHandler(NetworkChange_NetworkAvailabilityChanged);

 DisplayNICInfo();
 }

 static void NetworkChange_NetworkAddressChanged(object sender, EventArgs e)
 {
 // A network address changed; redisplay the info
 Console.WriteLine("*** NEW NETWORK INFORMATION IS AVAILABLE *** ");
 DisplayNICInfo();
 }

 static void NetworkChange_NetworkAvailabilityChanged(object sender,
 NetworkAvailabilityEventArgs e)
 {
 if(e.IsAvailable)
 Console.WriteLine("Network is now available");
 else
 Console.WriteLine("Network is no longer available");
 }

The output is shown here:

 Network Adapter Information:
 Id: {XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}
 Physical (MAC) Address: XXXXXXXXXXXX
 Description: Broadcom NetXtreme 57xx Gigabit Controller - Packet Scheduler
 Miniport
 Name: Local Area Connection
 OperationalStatus: Up
 Interface type: Ethernet
 Speed: 100000000
 Dns Suffix :
 Anycast Addresses:
 DHCP Server Addresses:
 255.0.0.1
 DNS Addresses:
 255.0.0.1
 Gateway Addresses:
 255.0.0.1
 Unicast Addresses:
 Address: 255.0.0.101
 Preferred Lifetime: 52434
 Valid Lifetime: 52434
 DHCP Lease Lifetime: 52434
 Prefix Origin: Dhcp
 Suffix Origin: OriginDhcp
 Multicast Addresses:

 Address: 224.0.0.1
 Preferred Lifetime: 0
 Valid Lifetime: 0
 DHCP Lease Lifetime: 24
 Prefix Origin: 48
 Suffix Origin: WellKnown
 Address: 255.255.255.250
 Preferred Lifetime: 0
 Valid Lifetime: 0
 DHCP Lease Lifetime: 24
 Prefix Origin: Other
 Suffix Origin: WellKnown
 WINS Server Addresses:
 0.0.0.0
 0.0.0.0

 Id: MS TCP Loopback interface
 Physical (MAC) Address:
 Description: MS TCP Loopback interface
 Name: MS TCP Loopback interface
 OperationalStatus: Up
 Interface type: Loopback
 Speed: 10000000
 Dns Suffix :
 Anycast Addresses:
 DHCP Server Addresses:
 DNS Addresses:
 Gateway Addresses:
 Unicast Addresses:
 Address: 127.0.0.1
 Preferred Lifetime: 3170812643
 Valid Lifetime: 3170812643
 DHCP Lease Lifetime: 3170812643
 Prefix Origin: Manual
 Suffix Origin: Manual
 Multicast Addresses:
 Address: 224.0.0.1
 Preferred Lifetime: 0
 Valid Lifetime: 0
 DHCP Lease Lifetime: 7733284
 Prefix Origin: 110
 Suffix Origin: WellKnown
 WINS Server Addresses:

Discussion

Knowing the configuration of the network you are running on can come in handy when attempting to
troubleshoot connectivity issues. Being able to get an event notification when connectivity is lost or an
adapter changes its IP address is a great benefit, as it allows you to write code that can recover

gracefully and instruct the user what has happened. However you want to use it, there is a lot of
valuable information provided in the NetworkInformation namespace that can make life a bit better
for developers working in a connected environment.

See Also

See the "System.Net.NetworkInformation Namespace," "Network Interface Class," and
"IPInterfaceProperties Class" topics in the MSDN documentation.

Recipe 16.9. Use Sockets to Scan the Ports on a Machine

Problem

You want to determine the open ports on a machine to see where the security risks are.

Solution

Use the CheapoPortScanner class constructed for your use; its code is shown in Example 16-11 .
CheapoPortScanner uses the Socket class to attempt to open a socket and connect to an address on a given
port. The OpenPortFound event is available for a callback when an open port is found in the range supplied to
the CheapoPortScanner constructor or in the default range (1 to 65535). By default, CheapoPortScanner will
scan the local machine.

Example 16-11. CheapoPortScanner class

class CheapoPortScanner
{
 #region Private consts and members
 const int PORT_MIN_VALUE = 1;
 const int PORT_MAX_VALUE = 65535;

 private int _minPort = PORT_MIN_VALUE;
 private int _maxPort = PORT_MAX_VALUE;
 private List<int> _openPorts = null;
 private List<int> _closedPorts = null;
 private string _host = "127.0.0.1"; // localhost
 #endregion

 #region Event
 public class OpenPortEventArgs : EventArgs
 {
 int _portNum;
 public OpenPortEventArgs(int portNum) : base()
 {
 _portNum = portNum;
 }

 public int PortNum
 {
 get { return _portNum; }
 }
 }

 public delegate void OpenPortFoundEventHandler(object sender, OpenPortEventArgs args);
 public event OpenPortFoundEventHandler OpenPortFound;
 #endregion // Event

 #region CTORs & Init code
 public CheapoPortScanner()
 {
 // Defaults are already set for ports and localhost
 SetupLists();
 }

 public CheapoPortScanner(string host, int minPort, int maxPort)
 {
 if (minPort > maxPort)
 throw new
 ArgumentException("Min port cannot be greater than max port");
 if (minPort < PORT_MIN_VALUE || minPort > PORT_MAX_VALUE)
 throw new ArgumentOutOfRangeException("Min port cannot be less than "+
 PORT_MIN_VALUE + " or greater than " + PORT_MAX_VALUE);
 if (maxPort < PORT_MIN_VALUE || maxPort > PORT_MAX_VALUE)
 throw new ArgumentOutOfRangeException("Max port cannot be less than "+
 PORT_MIN_VALUE + " or greater than " + PORT_MAX_VALUE);

 _host = host;
 _minPort = minPort;
 _maxPort = maxPort;
 SetupLists();
 }

 private void SetupLists()
 {
 // Set up lists with capacity to hold half of range
 // Since we can't know how many ports are going to be open,
 // we compromise and allocate enough for half

 // rangeCount is max - min + 1
 int rangeCount = (_maxPort - _minPort) + 1;

 // If there are an odd number, bump by one to get one extra slot.
 if (rangeCount % 2 != 0)
 rangeCount += 1;

 // Reserve half the ports in the range for each
 _openPorts = new List<int>(rangeCount / 2);
 _closedPorts = new List<int>(rangeCount / 2);
 }
 #endregion // CTORs & Init code

There are two properties on CheapoPortScanner that bear mentioning. The OpenPorts and ClosedPorts

properties return a ReadOnlyCollection of type int that is a list of the ports that are open and closed,
respectively. Their code is shown in Example 16-12 .

Example 16-12. OpenPorts and ClosedPorts properties

#region Properties

public ReadOnlyCollection<int> OpenPorts
{
 get { return new ReadOnlyCollection<int>(_openPorts); }
}

public ReadOnlyCollection<int> ClosedPorts
{
 get { return new ReadOnlyCollection<int>(_closedPorts); }
}
#endregion // Properties

#region Private Methods
private void CheckPort(int port)
{
 if (IsPortOpen(port))
 {
 // If we got here it is open
 _openPorts.Add(port);

 // Notify anyone paying attention
 OpenPortFoundEventHandler openPortFound = OpenPortFound;
 if (openPortFound != null)
 openPortFound(this, new OpenPortEventArgs(port));
 }
 else
 {
 // Server doesn't have that port open
 _closedPorts.Add(port);
 }
}

private bool IsPortOpen(int port)
{
 Socket sock = null;
 try
 {
 // Make a TCP-based socket
 sock = new Socket(AddressFamily.InterNetwork,
 SocketType.Stream,
 ProtocolType.Tcp);
 // Connect
 sock.Connect(_host, port);

 return true;
 }
 catch (SocketException se)
 {
 if (se.SocketErrorCode == SocketError.ConnectionRefused)
 {
 return false;
 }
 else
 {
 // An error occurred when attempting to access the socket
 Debug.WriteLine(se.ToString());
 Console.WriteLine(se.ToString());
 }
 }
 finally
 {
 if (sock != null)
 {
 if (sock.Connected)
 sock.Disconnect(false);
 sock.Close();
 }
 }
 return false;
}
#endregion

The trigger method for the CheapoPortScanner is Scan . Scan will check all of the ports in the range specified in
the constructor. The ReportToConsole method will dump the pertinent information about the last scan to the
console output stream:

 #region Public Methods
 public void Scan()
 {
 for (int port = _minPort; port <= _maxPort; port++)
 {
 CheckPort(port);
 }
 }

 public void ReportToConsole()
 {
 Console.WriteLine("Port Scan for host at {0}:", _host.ToString());
 Console.WriteLine("\tStarting Port: {0}; Ending Port: {1}",
 _minPort, _maxPort);
 Console.WriteLine("\tOpen ports:");

 foreach (int port in _openPorts)
 {
 Console.WriteLine("\t\tPort {0}", port);
 }
 Console.WriteLine("\tClosed ports:");
 foreach (int port in _closedPorts)
 {
 Console.WriteLine("\t\tPort {0}", port);
 }
 }

 #endregion // Public Methods
}

The PortScan method demonstrates how to use CheapoPortScanner by scanning ports 130 on the local
machine. It first subscribes to the OpenPortFound event. The handler method for this event,
cps_OpenPortFound , writes out the number of any port found open. Next, PortScan calls the Scan method.
Finally, it calls ReportToConsole to show the full results of the scan, including the closed ports as well as the
open ones.

 public static void PortScan ()
 {
 // Do a specific range
 Console.WriteLine("Checking ports 1-30 on localhost…");
 CheapoPortScanner cps = new CheapoPortScanner("127.0.0.1",1,30);
 cps.OpenPortFound +=
 new CheapoPortScanner.OpenPortFoundEventHandler(cps_OpenPortFound);
 cps.Scan();
 Console.WriteLine("Found {0} ports open and {1} ports closed",
 cps.OpenPorts.Count, cps.ClosedPorts.Count);

 // Do the local machine, whole port range 1-65535
 cps = new CheapoPortScanner();
 cps.Scan();
 cps.ReportToConsole();
 }

 static void cps_OpenPortFound(object sender, CheapoPortScanner.OpenPortEventArgs
 args)
 {
 Console.WriteLine("OpenPortFound reported port {0} was open",args.PPortNumP);
 }

The output for the port scanner as shown appears here:

 Checking ports 1-30 on localhost…

 OpenPortFound reported port 22 was open
 OpenPortFound reported port 26 was open
 Found 2 ports open and 28 ports closed

Discussion

Open ports on a machine are significant because they indicate the presence of a program listening on those
ports. Hackers look for "open" ports as ways to enter your systems without permission. CheapoPortScanner is
an admittedly rudimentary mechanism for checking for open ports, but it demonstrates the principle well
enough to provide a good starting point.

If you run this on a corporate network, you may quickly get a visit from your network
administrator, as you may set off alarms in some intrusion-detection systems. Be
judicious in your use of this code.

See Also

See the "Socket Class" and " Sockets" topics in the MSDN documentation.

Recipe 16.10. Use the Current Internet Connection
Settings

Problem

Your program wants to use the current Internet connection settings without forcing the user to add
them to your application manually.

Solution

Read the current Internet connectivity settings with the InternetSettingsReader class provided for
you in Example 16-13 . InternetSettingsReader calls some methods of the WinINet API via P/Invoke
to retrieve current Internet connection information. The majority of the work is done in setting up the
structures that WinINet uses and then marshaling the structure pointers correctly to retrieve the
values.

Example 16-13. InternetSettingsReader class

public class InternetSettingsReader
{
 #region WinInet structures
 [StructLayout(LayoutKind.Sequential, CharSet = CharSet.Auto)]
 public struct InternetPerConnOptionList
 {
 public int dwSize; // size of the INTERNET_PER_CONN_OPTION_LIST struct
 public IntPtr szConnection; // Connection name to set/query options
 public int dwOptionCount; // Number of options to set/query
 public int dwOptionError; // On error, which option failed
 public IntPtr options;
 };

 [StructLayout(LayoutKind.Sequential, CharSet = CharSet.Auto)]
 public struct InternetConnectionOption
 {
 static readonly int Size;
 public PerConnOption m_Option;
 public InternetConnectionOptionValue m_Value;
 static InternetConnectionOption()
 {
 InternetConnectionOption.Size =
 Marshal.SizeOf(typeof(InternetConnectionOption));
 }

 // Nested Types
 [StructLayout(LayoutKind.Explicit)]
 public struct InternetConnectionOptionValue
 {
 // Fields
 [FieldOffset(0)]
 public System.Runtime.InteropServices.ComTypes.FILETIME m_FileTime;
 [FieldOffset(0)]
 public int m_Int;
 [FieldOffset(0)]
 public IntPtr m_StringPtr;
 }
 }
 #endregion

 #region WinInet enums
 // Options used in INTERNET_PER_CONN_OPTON struct
 //
 public enum PerConnOption
 {
 // Sets or retrieves the connection type. The Value member will contain one
 // or more of the values from PerConnFlags
 INTERNET_PER_CONN_FLAGS = 1,
 // Sets or retrieves a string containing the proxy servers
 INTERNET_PER_CONN_PROXY_SERVER = 2,
 // Sets or retrieves a string containing the URLs that do not use the
 // proxy server
 INTERNET_PER_CONN_PROXY_BYPASS = 3,
 // Sets or retrieves a string containing the URL to the automatic
 // configuration script
 INTERNET_PER_CONN_AUTOCONFIG_URL = 4,
 }

 //
 // PER_CONN_FLAGS
 //
 [Flags]
 public enum PerConnFlags
 {
 PROXY_TYPE_DIRECT = 0x00000001, // Direct to net
 PROXY_TYPE_PROXY = 0x00000002, // Via named proxy
 PROXY_TYPE_AUTO_PROXY_URL = 0x00000004, // Autoproxy URL
 PROXY_TYPE_AUTO_DETECT = 0x00000008 // Use autoproxy detection
 }

 #region P/Invoke defs
 [DllImport("WinInet.dll", EntryPoint = "InternetQueryOption",
 SetLastError = true)]

 public static extern bool InternetQueryOption(
 IntPtr hInternet,
 int dwOption,

 ref InternetPerConnOptionList optionsList,
 ref int bufferLength
);
 #endregion

 #region Private Members
 string _proxyAddr = "";
 int _proxyPort = -1;
 bool _bypassLocal = false;
 string _autoConfigAddr = "";
 string[] _proxyExceptions = null;
 PerConnFlags _flags;
 #endregion

 #region CTOR
 public InternetSettingsReader()
 {
 }
 #endregion

Each of the properties of InternetSettingsReader shown in Example 16-14 call into the
GetInternetConnectionOption method, which returns an InternetConnectionOption . The
InternetConnectionOption structure holds all of the pertinent data for the value being returned, and
that value is then retrieved based on what type of value was asked for by the specific properties.

Example 16-14. InternetSettingsReader properties

#region Properties
public string ProxyAddr
{
 get
 {
 InternetConnectionOption ico =
 GetInternetConnectionOption(
 PerConnOption.INTERNET_PER_CONN_PROXY_SERVER);
 // Parse out the addr and port
 string proxyInfo = Marshal.PtrToStringUni(
 ico.m_Value.m_StringPtr);
 ParseProxyInfo(proxyInfo);
 return _proxyAddr;
 }
}
public int ProxyPort
{
 get
 {
 InternetConnectionOption ico =

 GetInternetConnectionOption(
 PerConnOption.INTERNET_PER_CONN_PROXY_SERVER);
 // Parse out the addr and port
 string proxyInfo = Marshal.PtrToStringUni(
 ico.m_Value.m_StringPtr);
 ParseProxyInfo(proxyInfo);
 return _proxyPort;
 }
}
public bool BypassLocalAddresses
{
 get
 {
 InternetConnectionOption ico =
 GetInternetConnectionOption(
 PerConnOption.INTERNET_PER_CONN_PROXY_BYPASS);
 // Bypass is listed as <local> in the exceptions list
 string exceptions =
 Marshal.PtrToStringUni(ico.m_Value.m_StringPtr);

 if (exceptions.IndexOf("<local>") != -1)
 _bypassLocal = true;
 else
 _bypassLocal = false;
 return _bypassLocal;
 }
}
public string AutoConfigurationAddr
{
 get
 {
 InternetConnectionOption ico =
 GetInternetConnectionOption(
 PerConnOption.INTERNET_PER_CONN_AUTOCONFIG_URL);
 // Get these straight
 _autoConfigAddr =
 Marshal.PtrToStringUni(ico.m_Value.m_StringPtr);
 if (_autoConfigAddr == null)
 _autoConfigAddr = "";
 return _autoConfigAddr;
 }
}
public string[] ProxyExceptions
{
 get
 {
 InternetConnectionOption ico =
 GetInternetConnectionOption(
 PerConnOption.INTERNET_PER_CONN_PROXY_BYPASS);
 // Exceptions are separated by semicolon
 string exceptions =
 Marshal.PtrToStringUni(ico.m_Value.m_StringPtr);

 if (!string.IsNullOrEmpty(exceptions))
 {
 _proxyExceptions = exceptions.Split(';');
 }
 return _proxyExceptions;
 }
}
public PerConnFlags ConnectionType
{
 get
 {
 InternetConnectionOption ico =
 GetInternetConnectionOption(
 PerConnOption.INTERNET_PER_CONN_FLAGS);
 _flags = (PerConnFlags)ico.m_Value.m_Int;

 return _flags;
 }
}

#endregion
private void ParseProxyInfo(string proxyInfo)
{
 if(!string.IsNullOrEmpty(proxyInfo))
 {
 string [] parts = proxyInfo.Split(':');
 if (parts.Length == 2)
 {
 _proxyAddr = parts[0];
 try
 {
 _proxyPort = Convert.ToInt32(parts[1]);
 }
 catch (FormatException)
 {
 // No port
 _proxyPort = -1;
 }
 }
 else
 {
 _proxyAddr = parts[0];
 _proxyPort = -1;
 }
 }
}

The GetInternetConnectionOption method shown in Example 16-15 does the heavy lifting as far as
communicating with WinINet . First an InternetPerConnOptionList is created as well as an

InternetConnectionOption structure to hold the returned value. The InternetConnectionOption
structure is then pinned so that the garbage collector does not move the structure in memory and the
PerConnOption value is assigned to determine what Internet option to retrieve. The
InternetPerConnOptionList is initialized to hold the option values and then the WinINet function
IntrenetQueryOption is called. The InternetConnectionOption is filled using the Marshal.
PtrToStructure method and returned with the value.

Example 16-15. GetInternetConnectionOption method

private InternetConnectionOption GetInternetConnectionOption(PerConnOption pco)
{
 // Allocate the list and option
 InternetPerConnOptionList perConnOptList = new InternetPerConnOptionList();
 InternetConnectionOption ico = new InternetConnectionOption();
 // Pin the option structure
 GCHandle gch = GCHandle.Alloc(ico, GCHandleType.Pinned);
 // Initialize the option for the data we want
 ico.m_Option = pco;
 //Initialize the option list for the default connection or LAN
 int listSize = Marshal.SizeOf(perConnOptList);
 perConnOptList.dwSize = listSize;
 perConnOptList.szConnection = IntPtr.Zero;
 perConnOptList.dwOptionCount = 1;
 perConnOptList.dwOptionError = 0;
 // Figure out sizes and offsets
 int icoSize = Marshal.SizeOf(ico);
 int optionTotalSize = icoSize;
 // Alloc enough memory for the option
 perConnOptList.options =
 Marshal.AllocCoTaskMem(icoSize);

 long icoOffset = (long)perConnOptList.options + (long)icoSize;
 // Make pointer from the structure
 IntPtr optionListPtr = perConnOptList.options;
 Marshal.StructureToPtr(ico, optionListPtr, false);

 // Make the query
 if (InternetQueryOption(
 IntPtr.Zero,
 75, //(int)InternetOption.INTERNET_OPTION_PER_CONNECTION_OPTION,
 ref perConnOptList,
 ref listSize) == true)
 {
 // Retrieve the value.
 ico =
(InternetConnectionOption)Marshal.PtrToStructure(perConnOptList.options,
 typeof(InternetConnectionOption));
 }
 // Free the COM memory
 Marshal.FreeCoTaskMem(perConnOptList.options);

 // Unpin the structs
 gch.Free();

 return ico;
}

Using the InternetSettingsReader is demonstrated in the GetInternetSettings method shown in
Example 16-16 . The proxy information is retrieved and displayed to the console here, but could easily
be stored in another program for use as proxy information when connecting. See Recipe 14.7 for
details on setting up the proxy information for a WebRequest .

Example 16-16. Using the InternetSettingsReader

public static void GetInternetSettings()
{
 InternetSettingsReader isr = new InternetSettingsReader();
 Console.WriteLine("Current Proxy Address: {0}",isr.ProxyAddr);
 Console.WriteLine("Current Proxy Port: {0}",isr.ProxyPort);
 Console.WriteLine("Current ByPass Local Address setting: {0}",
 isr.BypassLocalAddresses);
 Console.WriteLine("Exception addresses for proxy (bypass):");
 if(isr.ProxyExceptions != null)
 {
 foreach(string addr in isr.ProxyExceptions)
 {
 Console.WriteLine("\t{0}",addr);
 }
 }
 Console.WriteLine("Proxy connection type: {0}",isr.ConnectionType.ToString());
}

Output for the Solution:

 Current Proxy Address: CORPORATEPROXY
 Current Proxy Port: 8080
 Current ByPass Local Address setting: True
 Exception addresses for proxy (bypass):
 corporate.com
 <local>
 Proxy connection type: PROXY_TYPE_DIRECT, PROXY_TYPE_PROXY

Discussion

The WinInet Windows Internet (WinInet) API is the unmanaged API for interacting with the FTP, HTTP,
and Gopher protocols. This API can be used fill in where managed code leaves off, such as with the
Internet configuration settings shown in the Solution. It can also be used for downloading files,
working with cookies, and participating in Gopher sessions. You need to understand that WinInet is
meant to be a client-side API and is not suited for server-side or service applications; issues could
arise in your application from improper usage.

There is a huge amount of information available to the C# programmer directly through the
FCLFramework class FCLibrary , but at times you still need to roll up your sleeves and talk to the Win32
API. Even in situations in which restricted privileges are the norm, it is not always out of bounds to
create a small assembly that needs enhanced access to do P/Invoke. It can have its access locked
down so as not to become a risk to the system.

See Also

See the "InternetQueryOption Function [WinInet]" topic in the MSDN documentation.

Recipe 16.11. Download a File Using FTP

Problem

You want to programmatically download files using the File Transfer Protocol (FTP).

Solution

Use the System.Net.FtpWebRequest class to download the files. FtpWebRequests are created from the
WebRequest class Create method by specifying the URI for the FTP download. In the example that
follows, the source code from the first edition of the C# Cookbook is the target for the download. A
FileStream is opened for the target and then is wrapped by a BinaryWriter. A BinaryReader is
created with the response stream from the FtpWebRequest. Then the stream is read and the target is
written until the entire file has been downloaded. This series of operations is demonstrated in
Example 16-17.

Example 16-17. Using the System.Net.FtpWebRequest class

// Go get the same code from edition 1
FtpWebRequest request =
 (FtpWebRequest)WebRequest.Create(
 "ftp://ftp.oreilly.com/pub/examples/csharpckbk/CSharpCookbook.zip");

request.Credentials = new NetworkCredential("anonymous", "hilyard@oreilly.com");
using (FtpWebResponse response = (FtpWebResponse)request.GetResponse())
{
 Stream data = response.GetResponseStream();
 string targetPath = "CSharpCookbook.zip";
 if (File.Exists(targetPath))
 File.Delete(targetPath);

 byte[] byteBuffer = new byte[4096];
 using (FileStream output = new FileStream(targetPath, FileMode.CreateNew))
 {
 int bytesRead = 0;
 do
 {
 bytesRead = data.Read(byteBuffer, 0, byteBuffer.Length);
 if (bytesRead > 0)
 {

 output.Write(byteBuffer, 0, bytesRead);
 }
 }
 while (bytesRead > 0);
 }
}

Discussion

The File Transfer Protocol (FTP) is defined in RFC 959 and is one of the main ways files are distributed
over the Internet. The port number for FTP is usually 21. Happily, you don't have to really know much
about how FTP works in order to use it. This could be useful to your applications in automatic
download of information from a dedicated FTP site or in providing automatic update capabilities.

See Also

See the "FtpWebRequest Class," "FtpWebResponse Class," "WebRequest Class," and "WebResponse
Class" topics in the MSDN documentation.

Chapter 17. Security

Introduction

Recipe 17.1. Controlling Access to Types in a Local Assembly

Recipe 17.2. Encrypting/Decrypting a String

Recipe 17.3. Encrypting and Decrypting a File

Recipe 17.4. Cleaning up Cryptography Information

Recipe 17.5. Verifying that a String Remains Uncorrupted Following Transmission

Recipe 17.6. Wrapping a String Hash for Ease of Use

Recipe 17.7. A Better Random Number Generator

Recipe 17.8. Storing Data Securely

Recipe 17.9. Making a Security Assert Safe

Recipe 17.10. Preventing Malicious Modifications to an Assembly

Recipe 17.11. Verifying That an Assembly Has Been Granted Specific Permissions

Recipe 17.12. Minimizing the Attack Surface of an Assembly

Recipe 17.13. Obtaining Security/Audit Information

Recipe 17.14. Granting/Revoking Access to a File or Registry Key

Recipe 17.15. Protecting String Data with Secure Strings

Recipe 17.16. Securing Stream Data

Recipe 17.17. Encrypting web.config Information

Recipe 17.18. Obtaining the Full Reason a SecurityException Was Thrown

Recipe 17.19. Achieving Secure Unicode Encoding

Recipe 17.20. Obtaining a Safer File Handle

Introduction

There are many ways to secure different parts of your application. The security of running code in
.NET revolves around the concept of Code Access Security (CAS). CAS determines the
trustworthiness of an assembly based upon its origin and the characteristics of the assembly itself,
such as its hash value. For example, code installed locally on the machine is more trusted than code
downloaded from the Internet. The runtime will also validate an assembly's metadata and type safety
before that code is allowed to run.

There are many ways to write secure code and protect data using the .NET Framework. In this
chapter, we explore such things as controlling access to types, encryption and decryption, random
numbers, securely storing data, and using programmatic and declarative security.

Recipe 17.1. Controlling Access to Types in a Local
Assembly

Problem

You have an existing class that contains sensitive data and you do not want clients to have direct
access to any objects of this class. Instead, you want an intermediary object to talk to the clients and
to allow access to sensitive data based on the client's credentials. What's more, you would also like to
have specific queries and modifications to the sensitive data tracked, so that if an attacker manages
to access the object, you will have a log of what the attacker was attempting to do.

Solution

Use the proxy design pattern to allow clients to talk directly to a proxy object. This proxy object will
act as gatekeeper to the class that contains the sensitive data. To keep malicious users from
accessing the class itself, make it private, which will at least keep code without the
ReflectionPermissionFlag.TypeInformation access (which is currently given only in fully trusted code
scenarios like executing code interactively on a local machine) from getting at it.

The namespaces we will be using are:

 using System;
 using System.IO;
 using System.Security;
 using System.Security.Permissions;
 using System.Security.Principal;

Let's start this design by creating an interface, shown in Example 17-1, that will be common to both
the proxy objects and the object that contains sensitive data.

Example 17-1. ICompanyData interface

internal interface ICompanyData
{
 string AdminUserName
 {
 get;
 set;
 }

 string AdminPwd
 {
 get;
 set;
 }

 string CEOPhoneNumExt
 {
 get;
 set;
 }

 void RefreshData();
 void SaveNewData();
}

The CompanyData class shown in Example 17-2 is the underlying object that is "expensive" to create.

Example 17-2. CompanyData class

internal class CompanyData : ICompanyData
{
 public CompanyData()
 {
 Console.WriteLine("[CONCRETE] CompanyData Created");
 // Perform expensive initialization here.
 }
 private string adminUserName = "admin";
 private string adminPwd = "password";
 private string ceoPhoneNumExt = "0000";

 public string AdminUserName
 {
 get {return (adminUserName);}
 set {adminUserName = value;}
 }

 public string AdminPwd
 {
 get {return (adminPwd);}
 set {adminPwd = value;}
 }

 public string CEOPhoneNumExt
 {
 get {return (ceoPhoneNumExt);}
 set {ceoPhoneNumExt = value;}
 }

 public void RefreshData()
 {
 Console.WriteLine("[CONCRETE] Data Refreshed");
 }

 public void SaveNewData()
 {
 Console.WriteLine("[CONCRETE] Data Saved");
 }
}

The code shown in Example 17-3 for the security proxy class checks the caller's permissions to
determine whether the CompanyData object should be created and its methods or properties called.

Example 17-3. CompanyDataSecProxy security proxy class

public class CompanyDataSecProxy : ICompanyData
{
 public CompanyDataSecProxy()
 {
 Console.WriteLine("[SECPROXY] Created");

 // Must set principal policy first.
 appdomain.CurrentDomain.SetPrincipalPolicy(PrincipalPolicy.
 WindowsPrincipal);
 }

 private ICompanyData coData = null;
 private PrincipalPermission admPerm =
 new PrincipalPermission(null, @"BUILTIN\Administrators", true);
 private PrincipalPermission guestPerm =
 new PrincipalPermission(null, @"BUILTIN\Guest", true);
 private PrincipalPermission powerPerm =
 new PrincipalPermission(null, @"BUILTIN\PowerUser", true);
 private PrincipalPermission userPerm =

 new PrincipalPermission(null, @"BUILTIN\User", true);

 public string AdminUserName
 {
 get
 {
 string userName = "";
 try
 {
 admPerm.Demand();
 Startup();
 userName = coData.AdminUserName;
 }
 catch(SecurityException e)
 {
 Console.WriteLine("AdminUserName_get failed! {0}",e.ToString());
 }
 return (userName);
 }
 set
 {
 try
 {
 admPerm.Demand();
 Startup();
 coData.AdminUserName = value;
 }
 catch(SecurityException e)
 {
 Console.WriteLine("AdminUserName_set failed! {0}",e.ToString());
 }
 }
 }

 public string AdminPwd
 {
 get
 {
 string pwd = "";
 try
 {
 admPerm.Demand();
 Startup();
 pwd = coData.AdminPwd;
 }
 catch(SecurityException e)
 {
 Console.WriteLine("AdminPwd_get Failed! {0}",e.ToString());
 }

 return (pwd);
 }

 set
 {
 try
 {
 admPerm.Demand();
 Startup();
 coData.AdminPwd = value;
 }
 catch(SecurityException e)
 {
 Console.WriteLine("AdminPwd_set Failed! {0}",e.ToString());
 }
 }
 }

 public string CEOPhoneNumExt
 {
 get
 {
 string ceoPhoneNum = "";
 try
 {
 admPerm.Union(powerPerm).Demand();
 Startup();
 ceoPhoneNum = coData.CEOPhoneNumExt;
 }
 catch(SecurityException e)
 {
 Console.WriteLine("CEOPhoneNum_set Failed! {0}",e.ToString());
 }
 return (ceoPhoneNum);
 }
 set
 {
 try
 {
 admPerm.Demand();
 Startup();
 coData.CEOPhoneNumExt = value;
 }
 catch(SecurityException e)
 {
 Console.WriteLine("CEOPhoneNum_set Failed! {0}",e.ToString());
 }
 }
 }
 public void RefreshData()
 {
 try
 {
 admPerm.Union(powerPerm.Union(userPerm)). Demand();
 Startup();

 Console.WriteLine("[SECPROXY] Data Refreshed");
 coData.RefreshData();
 }
 catch(SecurityException e)
 {
 Console.WriteLine("RefreshData Failed! {0}",e.ToString());
 }
 }

 public void SaveNewData()
 {
 try
 {
 admPerm.Union(powerPerm).Demand();
 Startup();
 Console.WriteLine("[SECPROXY] Data Saved");
 coData.SaveNewData();
 }
 catch(SecurityException e)
 {
 Console.WriteLine("SaveNewData Failed! {0}",e.ToString());
 }
 }

 // DO NOT forget to use [#define DOTRACE] to control the tracing proxy.
 private void Startup()
 {
 if (coData == null)
 {
#if (DOTRACE)
 coData = new CompanyDataTraceProxy();
#else
 coData = new CompanyData();
#endif
 Console.WriteLine("[SECPROXY] Refresh Data");
 coData.RefreshData();
 }
 }
}

When creating the PrincipalPermissions as part of the object construction, you are using string
representations of the built-in objects ("BUILTIN\Administrators") to set up the principal role.
However, the names of these objects may be different depending on the locale the code runs under.
It would be appropriate to use the WindowsAccountType.Administrator enumeration value to ease
localization since this value is defined to represent the administrator role as well. We used text here
to clarify what was being done and also to access the PowerUsers role, which is not available through
the WindowsAccountType enumeration.

If the call to the CompanyData object passes through the CompanyDataSecProxy, then the user has

permissions to access the underlying data. Any access to this data may be logged so the
administrator can check for any attempt to hack the CompanyData object. The code shown in Example
17-4 is the tracing proxy used to log access to the various method and property access points in the
CompanyData object (note that the CompanyDataSecProxy contains the code to turn this proxy object on
or off).

Example 17-4. CompanyDataTraceProxy tracing proxy class

public class CompanyDataTraceProxy : ICompanyData
{
 public CompanyDataTraceProxy()
 {
 Console.WriteLine("[TRACEPROXY] Created");
 string path = Path.GetTempPath() + @"\CompanyAccessTraceFile.txt";
 fileStream = new FileStream(path, FileMode.Append,
 FileAccess.Write, FileShare.None);
 traceWriter = new StreamWriter(fileStream);
 coData = new CompanyData();
 }

 private ICompanyData coData = null;
 private FileStream fileStream = null;
 private StreamWriter traceWriter = null;

 public string AdminPwd
 {
 get
 {
 traceWriter.WriteLine("AdminPwd read by user.");
 traceWriter.Flush();
 return (coData.AdminPwd);
 }
 set
 {
 traceWriter.WriteLine("AdminPwd written by user.");
 traceWriter.Flush();
 coData.AdminPwd = value;
 }
 }

 public string AdminUserName
 {
 get
 {
 traceWriter.WriteLine("AdminUserName read by user.");
 traceWriter.Flush();
 return (coData.AdminUserName);
 }
 set

 {
 traceWriter.WriteLine("AdminUserName written by user.");
 traceWriter.Flush();
 coData.AdminUserName = value;
 }
 }

 public string CEOPhoneNumExt
 {
 get
 {
 traceWriter.WriteLine("CEOPhoneNumExt read by user.");
 traceWriter.Flush();
 return (coData.CEOPhoneNumExt);
 }
 set
 {
 traceWriter.WriteLine("CEOPhoneNumExt written by user.");
 traceWriter.Flush();
 coData.CEOPhoneNumExt = value;
 }
 }

 public void RefreshData()
 {
 Console.WriteLine("[TRACEPROXY] Refresh Data");
 coData.RefreshData();
 }

 public void SaveNewData()
 {
 Console.WriteLine("[TRACEPROXY] Save Data");
 coData.SaveNewData();
 }
}

The proxy is used in the following manner:

 // Create the security proxy here.
 CompanyDataSecProxy companyDataSecProxy = new CompanyDataSecProxy();

 // Read some data.
 Console.WriteLine("CEOPhoneNumExt: " + companyDataSecProxy.CEOPhoneNumExt);

 // Write some data.
 companyDataSecProxy.AdminPwd = "asdf";
 companyDataSecProxy.AdminUserName = "asdf";

 // Save and refresh this data.
 companyDataSecProxy.SaveNewData();
 companyDataSecProxy.RefreshData();

Note that as long as the CompanyData object was accessible, you could have also written this to access
the object directly:

 // Instantiate the CompanyData object directly without a proxy.
 CompanyData companyData = new CompanyData();

 // Read some data.
 Console.WriteLine("CEOPhoneNumExt: " + companyData.CEOPhoneNumExt);

 // Write some data.
 companyData.AdminPwd = "asdf";
 companyData.AdminUserName = "asdf";

 // Save and refresh this data.
 companyData.SaveNewData();
 companyData.RefreshData();

If these two blocks of code are run, the same fundamental actions occur: data is read, data is
written, and data is updated/refreshed. This shows you that your proxy objects are set up correctly
and function as they should.

Discussion

The proxy design pattern is useful for several tasks. The most notablein COM, COM+, and .NET
remotingis for marshaling data across boundaries such as appdomains or even across a network. To
the client, a proxy looks and acts exactly the same as its underlying object; fundamentally, the proxy
object is just a wrapper around the object.

A proxy can test the security and/or identity permissions of the caller before the underlying object is
created or accessed. Proxy objects can also be chained together to form several layers around an
underlying object. Each proxy can be added or removed depending on the circumstances.

For the proxy object to look and act the same as its underlying object, both should implement the
same interface. The implementation in this recipe uses an ICompanyData interface on both the proxies
(CompanyDataSecProxy and CompanyDataTraceProxy) and the underlying object (CompanyData). If more
proxies are created, they, too, need to implement this interface.

The CompanyData class represents an expensive object to create. In addition, this class contains a
mixture of sensitive and nonsensitive data that requires permission checks to be made before the
data is accessed. For this recipe, the CompanyData class simply contains a group of properties to
access company data and two methods for updating and refreshing this data. You can replace this
class with one of your own and create a corresponding interface that both the class and its proxies

implement.

The CompanyDataSecProxy object is the object that a client must interact with. This object is
responsible for determining whether the client has the correct privileges to access the method or
property that it is calling. The get accessor of the AdminUserName property shows the structure of the
code throughout most of this class:

 public string AdminUserName
 {
 get
 {
 string userName = "";
 try
 {
 admPerm.Demand();
 Startup();
 userName = coData.AdminUserName;
 }
 catch(SecurityException e)
 {
 Console.WriteLine("AdminUserName_get Failed!: {0}",e.ToString());
 }
 return (userName);
 }
 set
 {
 try
 {
 admPerm.Demand();
 Startup();
 coData.AdminUserName = value;
 }
 catch(SecurityException e)
 {
 Console.WriteLine("AdminUserName_set Failed! {0}",e.ToString());
 }
 }
 }

Initially, a single permission (AdmPerm) is demanded. If this demand fails, a SecurityException, which
is handled by the catch clause, is thrown. (Other exceptions will be handed back to the caller.) If the
Demand succeeds, the Startup method is called. It is in charge of instantiating either the next proxy
object in the chain (CompanyDataTraceProxy) or the underlying CompanyData object. The choice
depends on whether the DOTRACE preprocessor symbol has been defined. You may use a different
technique, such as a registry key to turn tracing on or off, if you wish.

This proxy class uses the private field coData to hold a reference to an ICompanyData type, which can
be either a CompanyDataTraceProxy or the CompanyData object. This reference allows you to chain
several proxies together.

The CompanyDataTraceProxy simply logs any access to the CompanyData object's information to a text
file. Since this proxy will not attempt to prevent a client from accessing the CompanyData object, the
CompanyData object is created and explicitly called in each property and method of this object.

See Also

See Design Patterns (Addison-Wesley).

Recipe 17.2. Encrypting/Decrypting a String

Problem

You have a string you want to be able to encrypt and decryptperhaps a password or software
keywhich will be stored in some form accessible by users, such as in a file, the registry, or even a
field, that may be open to attack from malicious code.

Solution

Encrypting the string will prevent users from being able to read and decipher the information. The
CryptoString class shown in Example 17-5 contains two static methods to encrypt and decrypt a
string and two static properties to retrieve the generated key and inititialization vector (IVa random
number used as a starting point to encrypt data) after encryption has occurred.

Example 17-5. CryptoString class

using System;
using System.Security.Cryptography;

public sealed class CryptoString
{
 private CryptoString() {}

 private static byte[] savedKey = null;
 private static byte[] savedIV = null;

 public static byte[] Key
 {
 get { return savedKey; }
 set { savedKey = value; }
 }

 public static byte[] IV
 {
 get { return savedIV; }
 set { savedIV = value; }
 }

 private static void RdGenerateSecretKey(RijndaelManaged rdProvider)

 {
 if (savedKey == null)
 {
 rdProvider.KeySize = 256;
 rdProvider.GenerateKey();
 savedKey = rdProvider.Key;
 }
 }

 private static void RdGenerateSecretInitVector(RijndaelManaged rdProvider)
 {
 if (savedIV == null)
 {
 rdProvider.GenerateIV();
 savedIV = rdProvider.IV;
 }
 }

 public static string Encrypt(string originalStr)
 {
 // Encode data string to be stored in memory.
 byte[] originalStrAsBytes = Encoding.ASCII.GetBytes(originalStr);
 byte[] originalBytes = {};

 // Create MemoryStream to contain output.
 using (MemoryStream memStream = new
 MemoryStream(originalStrAsBytes.Length))
 {
 using (RijndaelManaged rijndael = new RijndaelManaged())
 {
 // Generate and save secret key and init vector.
 RdGenerateSecretKey(rijndael);
 RdGenerateSecretInitVector(rijndael);

 if (savedKey == null || savedIV == null)
 {
 throw (new NullReferenceException(
 "savedKey and savedIV must be non-null."));
 }

 // Create encryptor and stream objects.
 using (ICryptoTransform rdTransform =
 rijndael.CreateEncryptor((byte[])savedKey.
 Clone(),(byte[])savedIV.Clone()))
 {
 using (CryptoStream cryptoStream = new CryptoStream(memStream,
 rdTransform, CryptoStreamMode.Write))
 {
 // Write encrypted data to the MemoryStream.
 cryptoStream.Write(originalStrAsBytes, 0,
 originalStrAsBytes.Length);
 cryptoStream.FlushFinalBlock();

 originalBytes = memStream.ToArray();
 }
 }
 }
 }
 // Convert encrypted string.
 string encryptedStr = Convert.ToBase64String(originalBytes);
 return (encryptedStr);
 }

 public static string Decrypt(string encryptedStr)
 {
 // Unconvert encrypted string.
 byte[] encryptedStrAsBytes = Convert.FromBase64String(encryptedStr);
 byte[] initialText = new Byte[encryptedStrAsBytes.Length];

 using (RijndaelManaged rijndael = new RijndaelManaged())
 {
 using (MemoryStream memStream = new MemoryStream(encryptedStrAsBytes))
 {
 if (savedKey == null || savedIV == null)
 {
 throw (new NullReferenceException(
 "savedKey and savedIV must be non-null."));
 }

 // Create decryptor, and stream objects.
 using (ICryptoTransform rdTransform =
 rijndael.CreateDecryptor((byte[])savedKey.
 Clone(),(byte[])savedIV.Clone()))
 {
 using (CryptoStream cryptoStream = new CryptoStream(memStream,
 rdTransform, CryptoStreamMode.Read))
 {
 // Read in decrypted string as a byte[].
 cryptoStream.Read(initialText, 0, initialText.Length);
 }
 }
 }
 }

 // Convert byte[] to string.
 string decryptedStr = Encoding.ASCII.GetString(initialText);
 return (decryptedStr);
 }
}

Discussion

The CryptoString class contains only static members, except for the private instance constructor,
which prevents anyone from directly creating an object from this class.

This class uses the Rijndael algorithm to encrypt and decrypt a string. This algorithm is found in the
System.Security.Cryptography.RijndaelManaged class. This algorithm requires a secret key and an
initialization vector; both are byte arrays. A random secret key can be generated for you by calling
the GenerateKey method on the RijndaelManaged class. This method accepts no parameters and
returns void. The generated key is placed in the Key property of the RijndaelManaged class. The
GenerateIV method generates a random initialization vector and places this vector in the IV property
of the RijndaelManaged class.

The byte array values in the Key and IV properties must be stored for later use and not modified. This
is due to the nature of private-key encryption classes, such as RijndaelManaged. The Key and IV
values must be used by both the encryption and decryption routines to successfully encrypt and
decrypt data.

The SavedKey and SavedIV private static fields contain the secret key and initialization vector,
respectively. The secret key is used by both the encryption and decryption methods to encrypt and
decrypt data. This is why there are public properties for these values, so they can be stored
somewhere secure for later use. This means that any strings encrypted by this object must be
decrypted by this object. The initialization vector is used to prevent anyone from attempting to
decipher the secret key.

Two methods in the CryptoString class, RdGenerateSecretKey and RdGenerateSecretInitVector, are
used to generate a secret key and initialization vector when none exists. The RdGenerateSecretKey
method generates the secret key, which is placed in the SavedKey field. Likewise, the
RdGenerateSecretInitVector generates the initialization vector, which is placed in the SavedIV field.
There is only one key and one IV generated for this class. This enables the encryption and decryption
routines to have access to the same key and IV information at all times.

The Encrypt and Decrypt methods of the CryptoString class do the actual work of encrypting and
decrypting a string. The Encrypt method accepts a string that you want to encrypt and returns an
encrypted string. The following code calls this method and passes in a string to be encrypted:

 string encryptedString = CryptoString.Encrypt("MyPassword");
 Console.WriteLine("encryptedString: {0}", encryptedString);
 // Get the key and IV used so you can decrypt it later.
 byte [] key = CryptoString.Key;
 byte [] IV = CryptoString.IV;

Once the string is encrypted, the key and IV are stored for later decryption. This method displays:

 encryptedString: Ah4vkmVKpwMYRT97Q8cVgQ==

Note that your output may differ since you will be using a different key and IV value. The following
code sets the key and IV used to encrypt the string, then calls the Decrypt method to decrypt the

previously encrypted string:

 CryptoString.Key = key;
 CryptoString.IV = IV;
 string decryptedString = CryptoString.Decrypt(encryptedString);
 Console.WriteLine("decryptedString: {0}", decryptedString);

This method displays:

 decryptedString: MyPassword

There does not seem to be any problem with using escape sequences such as \r, \n, \r\n, or \t in
the string to be encrypted. In addition, using a quoted string literal, with or without escaped
characters, works without a problem:

 @"MyPassword"

See Also

See Recipe 17.3; see the "System.Cryptography Namespace," "MemoryStream Class,"
"ICryptoTransform Interface," and "RijndaelManaged Class" topics in the MSDN documentation.

Recipe 17.3. Encrypting and Decrypting a File

Problem

You have sensitive information that must be encrypted before it is written to a file that might be in a
nonsecure area. This information must also be decrypted before it is read back in to the application.

Solution

Use multiple cryptography providers and write the data to a file in encrypted format. This is
accomplished in the following class, which has a constructor that expects an instance of the
System.Security.Cryptography.SymmetricAlgorithm class and a path for the file. The
SymmetricAlgorithm class is an abstract base class for all cryptographic providers in .NET, so you can
be reasonably assured that this class could be extended to cover all of them. This example
implements support for TripleDES and Rijndael. It is easily be extended for Data Encryption Standard
(DES) and RC2, which are also provided by the Framework.

The following namespaces are needed for this solution:

 using System;
 using System.Text;
 using System.IO;
 using System.Security.Cryptography;

The class SecretFile (implemented in this recipe) can be used for TripleDES as shown:

 // Use TripleDES.
 using (TripleDESCryptoServiceProvider tdes = new TripleDESCryptoServiceProvider())
 {
 SecretFile secretTDESFile = new SecretFile(tdes,"tdestext.secret");

 string encrypt = "My TDES Secret Data!";
 Console.WriteLine("Writing secret data: {0}",encrypt);
 secretTDESFile.SaveSensitiveData(encrypt);
 // Save for storage to read file.
 byte [] key = secretTDESFile.Key;
 byte [] IV = secretTDESFile.IV;

 string decrypt = secretTDESFile.ReadSensitiveData();
 Console.WriteLine("Read secret data: {0}",decrypt);
 }

To use SecretFile with Rijndael, just substitute the provider in the constructor like this:

 // Use Rijndael.
 using (RijndaelManaged rdProvider = new RijndaelManaged())
 {
 SecretFile secretRDFile = new SecretFile(rdProvider,"rdtext.secret");

 string encrypt = "My Rijndael Secret Data!";

 Console.WriteLine("Writing secret data: {0}",encrypt);
 secretRDFile.SaveSensitiveData(encrypt);
 // Save for storage to read file.
 byte [] key = secretRDFile.Key;
 byte [] IV = secretRDFile.IV;

 string decrypt = secretRDFile.ReadSensitiveData();
 Console.WriteLine("Read secret data: {0}",decrypt);
 }

Example 17-6 shows the implementation of SecretFile .

Example 17-6. SecretFile class

public class SecretFile
{
 private byte[] savedKey = null;
 private byte[] savedIV = null;
 private SymmetricAlgorithm symmetricAlgorithm;
 string path;

 public byte[] Key
 {
 get { return savedKey; }
 set { savedKey = value; }
 }

 public byte[] IV
 {
 get { return savedIV; }
 set { savedIV = value; }
 }

 public SecretFile(SymmetricAlgorithm algorithm, string fileName)
 {
 symmetricAlgorithm = algorithm;

 path = fileName;
 }

 public void SaveSensitiveData(string sensitiveData)
 {
 // Encode data string to be stored in encrypted file.
 byte[] encodedData = Encoding.Unicode.GetBytes(sensitiveData);

 // Create FileStream and crypto service provider objects.
 using (FileStream fileStream = new FileStream(path,
 FileMode.Create,
 FileAccess.Write))
 {
 // Generate and save secret key and init vector.
 GenerateSecretKey();
 GenerateSecretInitVector();

 // Create crypto transform and stream objects.
 using (ICryptoTransform transform =
 symmetricAlgorithm.CreateEncryptor(savedKey,
 savedIV))
 {
 using (CryptoStream cryptoStream =
 new CryptoStream(fileStream, transform, CryptoStreamMode.Write))
 {
 // Write encrypted data to the file.
 cryptoStream.Write(encodedData, 0, encodedData.Length);
 }
 }
 }
 }

 public string ReadSensitiveData()
 {
 string decrypted = "";

 // Create file stream to read encrypted file back.
 using (FileStream fileStream = new FileStream(path,
 FileMode.Open,
 FileAccess.Read))
 {
 // Print out the contents of the encrypted file.
 using (BinaryReader binReader = new BinaryReader(fileStream))
 {
 Console.WriteLine("---------- Encrypted Data ---------");
 int count = (Convert.ToInt32(binReader.BaseStream.Length));
 byte [] bytes = binReader.ReadBytes(count);
 char [] array = Encoding.Unicode.GetChars(bytes);
 string encdata = new string(array);
 Console.WriteLine(encdata);
 Console.WriteLine("---------- Encrypted Data ---------\r\n");

 // Reset the file stream.
 fileStream.Seek(0,SeekOrigin.Begin);

 // Create decryptor.
 using (ICryptoTransform transform =
 symmetricAlgorithm.CreateDecryptor(savedKey, savedIV))
 {
 using (CryptoStream cryptoStream = new CryptoStream(fileStream,
 transform,
 CryptoStreamMode.Read))
 {
 // Print out the contents of the decrypted file.
 StreamReader srDecrypted = new StreamReader(cryptoStream,
 new UnicodeEncoding());
 Console.WriteLine("---------- Decrypted Data ---------");
 decrypted = srDecrypted.ReadToEnd();
 Console.WriteLine(decrypted);
 Console.WriteLine("---------- Decrypted Data ---------");
 }
 }
 }
 }

 return decrypted;
 }

 private void GenerateSecretKey()
 {
 if (null != (symmetricAlgorithm as TripleDESCryptoServiceProvider))
 {
 TripleDESCryptoServiceProvider tdes;
 tdes = symmetricAlgorithm as TripleDESCryptoServiceProvider;
 tdes.KeySize = 192; // Maximum key size
 tdes.GenerateKey();
 savedKey = tdes.Key;
 }
 else if (null != (symmetricAlgorithm as RijndaelManaged))
 {
 RijndaelManaged rdProvider;
 rdProvider = symmetricAlgorithm as RijndaelManaged;
 rdProvider.KeySize = 256; // Maximum key size
 rdProvider.GenerateKey();
 savedKey = rdProvider.Key;
 }
 }

 private void GenerateSecretInitVector()
 {
 if (null != (symmetricAlgorithm as TripleDESCryptoServiceProvider))
 {
 TripleDESCryptoServiceProvider tdes;
 tdes = symmetricAlgorithm as TripleDESCryptoServiceProvider;

 tdes.GenerateIV();
 savedIV = tdes.IV;
 }
 else if (null != (symmetricAlgorithm as RijndaelManaged))
 {
 RijndaelManaged rdProvider;
 rdProvider = symmetricAlgorithm as RijndaelManaged;
 rdProvider.GenerateIV();
 savedIV = rdProvider.IV;
 }
 }

If the SaveSensitiveData method is used to save the following text to a file:

 This is a test
 This is sensitive data!

the ReadSensitiveData method will display the following information from this same file:

 ---------- Encrypted Data --------
 ??
 ---------- Encrypted Data --------

 ---------- Decrypted Data ---------
 This is a test
 This is sensitive data!
 ---------- Decrypted Data ---------

Discussion

Encrypting data is essential to many applications, especially ones that store information in easily
accessible locations. Once data is encrypted, a decryption scheme is required to restore the data back
to an unencrypted form without losing any information. The same underlying algorithms can be used
to authenticate the source of a file or message.

The encryption schemes used in this recipe are TripleDES and Rijndael. The reasons for using Triple
DES are:

TripleDES employs symmetric encryption, meaning that a single private key is used to encrypt
and decrypt data. This process allows much faster encryption and decryption, especially as the
streams of data become larger.

TripleDES encryption is much harder to crack than the older DES encryption.

If you wish to use another type of encryption, this recipe can be easily converted using any
provider derived from the SymmetricAlgorithm class.

The main drawback to TripleDES is that both the sender and receiver must use the same key and
initialization vector (IV) in order to encrypt and decrypt the data successfully. If you wish to have an
even more secure encryption scheme, use the Rijndael scheme. This type of encryption scheme is
highly regarded as a solid encryption scheme, since it is fast and can use larger key sizes than
TripleDES. However, it is still a symmetric cryptosystem, which means that it relies on shared secrets.
Use an asymmetric cryptosystem, such as RSA or DSA, for a cryptosystem that uses shared public
keys with private keys that are never shared between parties.

See Also

See the "SymmetricAlgorithm Class," "TripleDESCryptoServiceProvider Class," and "RijndaelManaged
Class" topics in the MSDN documentation.

Recipe 17.4. Cleaning up Cryptography Information

Problem

You will be using the cryptography classes in the FCL to encrypt and/or decrypt data. In doing so,
you want to make sure that no data (e.g., seed values or keys) is left in memory for longer than you
are using the cryptography classes. Hackers can sometimes find this information in memory and use
it to break your encryption or, worse, to break your encryption, modify the data, and then reencrypt
the data and pass it on to your application.

Solution

In order to clear out the key and initialization vector (or seed), you need to call the Clear method on
whichever SymmetricAlgorithm- or AsymmetricAlgorithm-derived class you are using. Clear
reinitializes the Key and IV properties, preventing them from being found in memory. This is done
after saving the key and IV so that you can decrypt later. Example 17-7 encodes a string, then cleans
up immediately afterward to provide the smallest window possible for potential attackers.

Example 17-7. Cleaning up cryptography information

using System;
using System.Text;
using System.IO;
using System.Security.Cryptography;

string originalStr = "SuperSecret information";
// Encode data string to be stored in memory.
byte[] originalStrAsBytes = Encoding.ASCII.GetBytes(originalStr);

// Create MemoryStream to contain output.
MemoryStream memStream = new MemoryStream(originalStrAsBytes.Length);
RijndaelManaged rijndael = new RijndaelManaged();

// Generate secret key and init vector.
rijndael.KeySize = 256;
rijndael.GenerateKey();
rijndael.GenerateIV();

// Save the key and IV for later decryption.
byte [] key = rijndael.Key;

byte [] IV = rijndael.IV;

// Create encryptor, and stream objects.
ICryptoTransform transform = rijndael.CreateEncryptor(rijndael.Key,
 rijndael.IV);
CryptoStream cryptoStream = new CryptoStream(memStream, transform,
 CryptoStreamMode.Write);

// Write encrypted data to the MemoryStream.
cryptoStream.Write(originalStrAsBytes, 0, originalStrAsBytes.Length);
cryptoStream.FlushFinalBlock();

// Release all resources as soon as we are done with them
// to prevent retaining any information in memory.
memStream.Close();
cryptoStream.Close();
transform.Dispose();
// This clear statement regens both the key and the init vector so that
// what is left in memory is no longer the values you used to encrypt with.
rijndael.Clear();

You can also make your life a little easier by taking advantage of the using statement, instead of
having to remember to manually call each of the Close methods individually. This code block shows
how to use the using statement:

 public static void CleanUpCryptoWithUsing()
 {
 string originalStr = "SuperSecret information";
 // Encode data string to be stored in memory.
 byte[] originalStrAsBytes = Encoding.ASCII.GetBytes(originalStr);
 byte[] originalBytes = { };

 // Create MemoryStream to contain output.
 using (MemoryStream memStream = new MemoryStream(originalStrAsBytes.Length))
 {
 using (RijndaelManaged rijndael = new RijndaelManaged())
 {
 // Generate secret key and init vector.
 rijndael.KeySize = 256;
 rijndael.GenerateKey();
 rijndael.GenerateIV();
 // Save off the key and IV for later decryption.
 byte[] key = rijndael.Key;
 byte[] IV = rijndael.IV;

 // Create encryptor, and stream objects.
 using (ICryptoTransform transform =
 rijndael.CreateEncryptor(rijndael.Key, rijndael.IV))

 {
 using (CryptoStream cryptoStream = new
 CryptoStream(memStream, transform,
 CryptoStreamMode.Write))
 {
 // Write encrypted data to the MemoryStream.
 cryptoStream.Write(originalStrAsBytes, 0,
 originalStrAsBytes.Length);
 cryptoStream.FlushFinalBlock();
 }
 }
 }
 }
 }

Discussion

To make sure your data is safe, you need to close the MemoryStream and CryptoStream objects as
soon as possible, as well as calling Dispose on the ICryptoTransform implementation to clear out any
resources used in this encryption. The using statement makes this process much easier, makes your
code easier to read, and leads to fewer programming mistakes.

See Also

See the "SymmetricAlgorithm.Clear Method" and "AsymmetricAlgorithm.Clear Method" topics in the
MSDN documentation.

Recipe 17.5. Verifying that a String Remains Uncorrupted
Following Transmission

Problem

You have some text that will be sent across a network to another machine for processing. It is critical for
you to verify that this text remains intact and unmodified when it arrives at its destination.

Solution

Calculate a hash value from the string and append it to the string before it is sent to its destination. Once
the destination receives the string, it can remove the hash value and determine whether the string is the
same one that was initially sent. The CreateStringHash method takes a string as input, adds a hash
value to the end of it, and returns the new string, as shown in Example 17-8 .

Example 17-8. Verifying that a string remains uncorrupted following
transmission

public class HashOps
{
 // The number 44 is the exact length of the base64 representation
 // of the hash value, which was appended to the string.
 private const int HASH_LENGTH = 44;

 public static string CreateStringHash(string unHashedString)
 {
 byte[] encodedUnHashedString = Encoding.Unicode.GetBytes(unHashedString);
 string stringWithHash = "";

 using (SHA256Managed hashingObj = new SHA256Managed())
 {
 byte[] hashCode = hashingObj.ComputeHash(encodedUnHashedString);

 string hashBase64 = Convert.ToBase64String(hashCode);
 stringWithHash = unHashedString + hashBase64;
 }

 return (stringWithHash);
 }

 public static bool TestReceivedStringHash(string stringWithHash,
 out string originalStr)
 {
 // Code to quickly test the handling of a tampered string.
 //stringWithHash = stringWithHash.Replace('a', 'b');

 if (stringWithHash.Length <= HASH_LENGTH)
 {
 originalStr = null;
 return (true);
 }

 string hashCodeString =
 stringWithHash.Substring(stringWithHash.Length - HASH_LENGTH);
 string unHashedString =
 stringWithHash.Substring(0, stringWithHash.Length - HASH_LENGTH);

 byte[] hashCode = Convert.FromBase64String(hashCodeString);

 byte[] encodedUnHashedString = Encoding.Unicode.GetBytes(unHashedString);

 bool hasBeenTamperedWith = false;
 using (SHA256Managed hashingObj = new SHA256Managed())
 {
 byte[] receivedHashCode = hashingObj.ComputeHash(encodedUnHashedString);
 for (int counter = 0; counter < receivedHashCode.Length; counter++)
 {
 if (receivedHashCode[counter] != hashCode[counter])
 {
 hasBeenTamperedWith = true;
 break;
 }
 }

 if (!hasBeenTamperedWith)
 {
 originalStr = unHashedString;
 }
 else
 {
 originalStr = null;
 }
 }

 return (hasBeenTamperedWith);
 }
}

The TestReceivedStringHash method is called by the code that receives a string with a hash value

appended. This method removes the hash value, calculates a new hash value for the string, and checks
to see whether both hash values match. If they match, both strings are exactly the same, and the
method returns false . If they don't match, the string has been tampered with, and the method returns
true .

Since the CreateStringHash and TestReceivedStringHash methods are static members of a class named
HashOps , you can call these methods with code like the following:

 public static void VerifyNonStringCorruption()
 {
 string testString = "This is the string that we'll be testing.";
 string unhashedString;
 string hashedString = HashOps.CreateStringHash(testString);

 bool result = HashOps.TestReceivedStringHash(hashedString, out unhashedString);
 Console.WriteLine(result);
 if (!result)
 Console.WriteLine("The string sent is: " + unhashedString);
 else
 Console.WriteLine("The string: " + unhashedString +
 " has become corrupted.");
 }

The output of this method is shown here when the string is uncorrupted:

 False
 The string sent is: This is the string that we'll be testing.

The output of this method is shown here when the string is corrupted:

 False
 The string: This is the string that we'll #$%^(&&*2 be testing.
 has become corrupted.

Discussion

You can use a hash, checksum, or cyclic redundancy check (CRC) to calculate a value based on a
message. This value is then used at the destination to determine whether the message has been
modified during transmission between the source and destination.

This recipe uses a hash value as a reliable method of determining whether a string has been modified.
The hash value for this recipe is calculated using the SHA256Managed class. This hash value is 256 bits in

size and produces greatly differing results when calculated from strings that are very similar, but not
exactly the same. In fact, if a single letter is removed or even capitalized, the resulting hash value will
change.

By appending this value to the string, both the string and hash values can be sent to their destination.
The destination then removes the hash value and calculates a hash value of its own based on the
received string. These two hash values are then compared. If they are equal, the strings are exactly the
same. If they are not equal, you can be sure that somewhere between the source and destination, the
string was corrupted. This technique is great for verifying that transmission succeeded without errors,
but it does not guarantee against malicious tampering. To protect against malicious tampering, use an
asymmetric algorithm: sign the string with a private key and verify the signature with a public key.

The CreateStringHash method first converts the unhashed string into a byte array using the GetBytes
method of the UnicodeEncoding class. This byte array is then passed to the ComputeHash method of the
SHA256Managed class.

Once the hash value is calculated, the byte array containing the hash code is converted to a string
containing base64 digits, using the Convert.ToBase64String method. This method accepts a byte array,
converts it to a string of base64 digits, and returns that string. The reason for doing this is to convert all
unsigned integers in the byte array to values that can be represented in a string data type. The last thing
that this method does is to append the hash value to the end of the string and return the newly hashed
string.

The TestReceivedStringHash method accepts a hashed string and an out parameter that will return the
unhashed string. This method returns a Boolean ; as previously mentioned, true indicates that the string
has been modified, false indicates that the string is unmodified.

This method first removes the hash value from the end of the StringWithHash variable. Next, a new hash
is calculated using the string portion of the StringWithHash variable. These two hash values are
compared. If they are the same, the string has been received, unmodified. Note that if you change the
hashing algorithm used, you must change it in both this method and the CreateStringHash method. You
must also change the HASH_LENGTH constant in the TestReceivedStringHash method to an appropriate
size for the new hashing algorithm. This number is the exact length of the base64 representation of the
hash value, which was appended to the string.

See Also

See the "SHA256Managed Class," "Convert.ToBase64String Method," and "Convert. FromBase64String
Method" topics in the MSDN documentation.

Recipe 17.6. Wrapping a String Hash for Ease of Use

Problem

You need to create a class to isolate other developers on your team from the details of adding a hash
to a string, as well as the details of using the hash to verify if the string has been modified or
corrupted.

Solution

The following classes decorate the StringWriter and StringReader classes to handle a hash added to
its contained string. The WriterDecorator and StringWriterHash classes allow the StringWriter class
to be decorated with extra functionality to add a hash value to the StringWriter's internal string.
Note that the CreateStringHash method that creates the hash value is defined in Recipe 17.5.

The code for the WriterDecorator abstract base class is shown in Example 17-9.

Example 17-9. WriterDecorator class

using System;
using System.Text;
using System.IO;

[Serializable]

public abstract class WriterDecorator : TextWriter
{
 public WriterDecorator() {}

 public WriterDecorator(StringWriter stringWriter)
 {
 internalStringWriter = stringWriter;
 }
 protected bool isHashed = false;
 protected StringWriter internalStringWriter = null;

 public void SetWriter(StringWriter stringWriter)
 {
 internalStringWriter = stringWriter;
 }

}

The StringWriterHash class shown in Example 17-10 is a concrete implementation of the
WriterDecorator class.

Example 17-10. StringWriterHash class

[Serializable]
public class StringWriterHash : WriterDecorator
{
 public StringWriterHash() : base() {}

 public StringWriterHash(StringWriter stringWriter) : base(stringWriter)
 {
 }

 public override Encoding Encoding
 {
 get {return (internalStringWriter.Encoding);}
 }

 public override void Close()
 {
 internalStringWriter.Close();
 base.Dispose(true); // Completes the cleanup.
 }

 public override void Flush()
 {
 internalStringWriter.Flush();
 base.Flush();
 }

 public virtual StringBuilder GetStringBuilder()
 {
 return (internalStringWriter.GetStringBuilder());
 }

 public override string ToString()
 {
 return (internalStringWriter.ToString());
 }

 public void WriteHash()
 {
 int originalStrLen = internalStringWriter.GetStringBuilder().Length;

 // Call hash generator here for whole string.
 string hashedString = HashOps.CreateStringHash(this.ToString());
 internalStringWriter.Write(hashedString.Substring(originalStrLen));

 isHashed = true;
 }

 public override void Write(char value)
 {
 if (isHashed)
 {
 throw (new Exception("A hash has already been added to this string"+
 ", it cannot be modified."));
 }
 else
 {
 internalStringWriter.Write(value);
 }
 }

 public override void Write(string value)
 {
 if (isHashed)
 {
 throw (new Exception("A hash has already been added to this string"+
 ", it cannot be modified."));
 }
 else
 {
 internalStringWriter.Write(value);
 }
 }

 public override void Write(char[] buffer, int index, int count)
 {
 if (isHashed)
 {
 throw (new Exception("A hash has already been added to this string"+
 ", it cannot be modified."));
 }
 else
 {
 internalStringWriter.Write(buffer, index, count);
 }
 }

 protected override void Dispose(bool disposing)
 {
 base.Dispose(disposing);
 }
}

The ReaderDecorator and StringReaderHash classes shown in Examples 17-11 and 17-12 allow the
StringReader class to be decorated with extra functionality to handle the verification of a string's
hash value. Note that the TestReceivedStringHash method that verifies the hash value is defined in
Recipe 17.5.

Example 17-11. ReaderDecorator class

[Serializable]
public abstract class ReaderDecorator : TextReader
{
 public ReaderDecorator() {}

 public ReaderDecorator(StringReader stringReader)
 {
 internalStringReader = stringReader;
 }

 protected StringReader internalStringReader = null;

 public void SetReader(StringReader stringReader)
 {
 internalStringReader = stringReader;
 }
}

StringReaderHash, shown in Example 17-12, is the concrete implementation of the ReaderDecorator
class.

Example 17-12. StringReaderHash class

[Serializable]
public class StringReaderHash : ReaderDecorator
{
 public StringReaderHash() : base() {}

 public StringReaderHash(StringReader stringReader) : base(stringReader)
 {
 }

 public override void Close()
 {

 internalStringReader.Close();
 base.Dispose(true); // Completes the cleanup.
 }

 public string ReadToEndHash()
 {
 string hashStr = internalStringReader.ReadToEnd();
 string originalStr = "";
 // Call hash reader here.
 bool isInvalid = HashOps.TestReceivedStringHash(hashStr,
 out originalStr);

 if (isInvalid)
 {
 throw (new Exception("This string has failed its hash check."));
 }

 return (originalStr);
 }

 public override int Read()
 {
 return (internalStringReader.Read());
 }

 public override int Read(char[] buffer, int index, int count)
 {
 return (internalStringReader.Read(buffer, index, count));
 }

 public override string ReadLine()
 {
 return (internalStringReader.ReadLine());
 }

 public override string ReadToEnd()
 {
 return (internalStringReader.ReadToEnd());
 }

 protected override void Dispose(bool disposing)
 {
 base.Dispose(disposing);
 }
}

The following code creates a StringWriter object (stringWriter) and decorates it with a
StringWriterHash object:

 StringWriter stringWriter = new StringWriter(new StringBuilder("Initial Text"));
 StringWriterHash stringWriterHash = new StringWriterHash();
 stringWriterHash.SetWriter(stringWriter);
 stringWriterHash.Write("-Extra Text-");
 stringWriterHash.WriteHash();
 Console.WriteLine("stringWriterHash.ToString(): " + stringWriterHash.ToString());

The string "Initial Text" is added to the StringWriter on initialization, and later the string "-Extra
Text-" is added. Next, the WriteHash method is called to add a hash value to the end of the complete
string. Notice that if the code attempts to write more text to the StringWriterHash object after the
WriteHash method has been called, an exception will be thrown. The string cannot be modified once
the hash has been calculated and added.

The following code takes a StringReader object (stringReader) that was initialized with the string and
hash produced by the previous code and decorates it with a StringReaderHash object:

 StringReader stringReader = new StringReader(stringWriterHash.ToString());
 StringReaderHash stringReaderHash = new StringReaderHash();
 stringReaderHash.SetReader(stringReader);
 Console.WriteLine("stringReaderHash.ReadToEndHash(): " +
 stringReaderHash.ReadToEndHash());

If the original string is modified after the hash is added, the ReadToEndHash method throws an
exception.

Discussion

The decorator design pattern provides the ability to modify individual objects without having to
modify or subclass the object's class. This allows for the creation of both decorated and undecorated
objects. The implementation of a decorator pattern is sometimes hard to understand at first. An
abstract decorator class is created that inherits from the same base class as the class you will
decorate. In the case of this recipe, you will decorate the StringReader/StringWriter classes to allow
a hash to be calculated and used. The StringReader class inherits from Textreader, and the
StringWriter class inherits from TextWriter. Knowing this, you create two abstract decorator
classes: ReaderDecorator, which inherits from Textreader, and WriterDecorator, which inherits from
TextWriter.

The abstract decorator classes contain two constructors, a private field named
internalStreamReader\internalStreamWriter and a method named SetReader\SetWriter. Basically,
the field stores a reference to the contained StringReader or StringWriter object that is being
decorated. This field can be set through either a constructor or the SetReader\SetWriter method. The
interesting thing about this pattern is that each of the decorator objects must also contain an
instance of the class that they decorate. The StringReaderHash class contains a StringReader object
in its internalStreamReader field, and the StringWriterHash class contains a StringWriter object in
its internalStreamWriter field.

A concrete decorator class that inherits from the abstract decorator classes is created. The
StringReaderHash class inherits from ReaderDecorator, while the StringWriterHash inherits from
WriterDecorator. This pattern allows you the flexibility to add concrete decorator classes without
having to touch the existing code.

Most of the methods in the StringReaderHash and StringWriterHash classes simply act as wrappers
to the internalStreamReader or internalStreamWriter objects, respectively. The method that actually
decorates the StringReader object with a hash is the StringReaderHash.ReadToEndHash method, and
the method that actually decorates the StringWriter object is StringWriterHash.WriteHash. These
two methods allow the hash to be attached to a string and later used to determine whether the string
contents have changed.

The attractiveness of the decorator pattern is that you can add any number of concrete decorator
classes that derive from either ReaderDecorator or WriterDecorator. If you need to use a different
hashing algorithm, or even a quick and dirty hash algorithm, you can subclass the ReaderDecorator
or WriterDecorator classes and add functionality to use these new algorithms. Now you have more
choices of how to decorate these classes.

See Also

See the "StringWriter Class" and "StringReader Class" topics in the MSDN documentation.

Recipe 17.7. A Better Random Number Generator

Problem

You need a random number with which to generate items such as a sequence of session keys. The
random number must be as unpredictable as possible so that the likelihood of predicting the sequence
of keys is as low as possible.

Solution

Use the class System.Security.Cryptography.RNGCryptoServiceProvider .

The RNGCryptoServiceProvider is used to populate a random byte array using the GetBytes method that
is then printed out as a string in the following example:

 public static void BetterRandomString()
 {
 // Create a stronger hash code using RNGCryptoServiceProvider.
 byte[] random = new byte[64];
 RNGCryptoServiceProvider rng = new RNGCryptoServiceProvider();
 // Populate with random bytes.
 rng.GetBytes(random);

 // Convert random bytes to string.
 string randomBase64 = Convert.ToBase64String(random);
 // Display.
 Console.WriteLine("Random string: {0} ",randomBase64);
 }

The output of this method is shown here:

 Random string:
 xDNitrreUpMmlO7Opd6AFvMC8VIG9+sAGfyvdZr2lEY1M3n2v3Ap4JIkYfJWW+sZaJjJMxj475VlVQFoRKvF
 g==

Discussion

Random provides methods like Next , NextBytes , and Nextdouble to generate random information for

integers, arrays of bytes, and doubles, respectively. These methods can produce a moderate level of
unpredictability, but to truly generate a more unpredictable random series, you need to use the
RNGCryptoServiceProvider .

RNGCryptoServiceProvider can be customized to use any of the underlying Win32 Crypto API providers.
You pass a CspParameters class in the constructor to determine exactly which provider is responsible for
generating the random byte sequence. CspParameters allows you to customize items such as the key
container name, the provider type code, the provider name, and the key number used.

The GetBytes method populates the entire length of the byte array with random bytes.

See Also

See the "RNGCryptoServiceProvider Class," "CspParameters Class," and "Cryptographic Provider Types"
topics in the MSDN documentation.

Recipe 17.8. Storing Data Securely

Problem

You need to store settings data about individual users for use by your application and keep this data
isolated from other instances of your application run by different users.

Solution

You can use isolated storage to establish per-user data stores for your application data and then use
hashed values for critical data.

To illustrate how to do this for settings data, you create the following UserSettings class.
UserSettings holds only two pieces of information: the user identity (current WindowsIdentity) and
the password for your application. The user identity is accessed via the User property, and the
password is accessed via the Password property. Note that the password field is created the first time
and is stored as a salted hashed value to keep it secure. The combination of the isolated storage and
the hashing of the password value helps to strengthen the security of the password by using the
defense in depth principle. The settings data is held in XML that is stored in the isolated storage scope
and accessed via an XmlDocument instance.

This solution uses the following namespaces:

 using System;
 using System.IO;
 using System.IO.IsolatedStorage;
 using System.Xml;
 using System.Text;
 using System.Diagnostics;
 using System.Security.Principal;
 using System.Security.Cryptography;

The UserSettings class is shown in Example 17-13.

Example 17-13. UserSettings class

// Class to hold user settings

public class UserSettings
{
 isoFileStream = null;
 XmlDocument settingsDoc = null;
 const string storageName = "SettingsStorage.xml";

 // Constructor
 public UserSettings(string password)
 {
 // Get the isolated storage.
 using (IsolatedStorageFile isoStorageFile =
 IsolatedStorageFile.GetUserStoreForDomain())
 {
 // Create an internal DOM for settings.
 settingsDoc = new XmlDocument();
 // If no settings, create default.
 if(isoStorageFile.GetFileNames(storageName).Length == 0)
 {
 using (IsolatedStorageFileStream isoFileStream =
 new IsolatedStorageFileStream(storageName,
 FileMode.Create,
 isoStorageFile))
 {
 using (XmlTextWriter writer = new
 XmlTextWriter(isoFileStream,Encoding.UTF8))
 {
 writer.WriteStartDocument();
 writer.WriteStartElement("Settings");
 writer.WriteStartElement("User");
 // Get current user.
 WindowsIdentity user = WindowsIdentity.GetCurrent();
 writer.WriteString(user.Name);
 writer.WriteEndElement();
 writer.WriteStartElement("Password");

 // Pass null to CreateHashedPassword as the salt
 // to establish one
 // CreateHashedPassword appears shortly
 string hashedPassword =
 CreateHashedPassword(password,null);
 writer.WriteString(hashedPassword);
 writer.WriteEndElement();
 writer.WriteEndElement();
 writer.WriteEndDocument();
 Console.WriteLine("Creating settings for " + user.Name);
 }
 }
 }

 // Set up access to settings store.
 using (IsolatedStorageFileStream isoFileStream =
 new IsolatedStorageFileStream(storageName,

 FileMode.Open,
 isoStorageFile))
 {
 // Load settings from isolated filestream
 settingsDoc.Load(isoFileStream);
 Console.WriteLine("Loaded settings for " + User);
 }
 }
 }

The User property provides access to the WindowsIdentity of the user that this set of settings belongs
to:

 // User property
 public string User
 {
 get
 {
 XmlNode userNode = settingsDoc.SelectSingleNode("Settings/User");
 if(userNode != null)
 {
 return userNode.InnerText;
 }
 return "";
 }
 }

The Password property gets the salted and hashed password value from the XML store and, when
updating the password, takes the plain text of the password and creates the salted and hashed
version, which is then stored:

 // Password property
 public string Password
 {
 get
 {
 XmlNode pwdNode =
 settingsDoc.SelectSingleNode("Settings/Password");
 if(pwdNode != null)
 {
 return pwdNode.InnerText;
 }
 return "";
 }
 set
 {

 XmlNode pwdNode =
 settingsDoc.SelectSingleNode("Settings/Password");

 string hashedPassword = CreateHashedPassword(value,null);
 if(pwdNode != null)
 {
 pwdNode.InnerText = hashedPassword;
 }
 else
 {
 XmlNode settingsNode =
 settingsDoc.SelectSingleNode("Settings");
 XmlElement pwdElem =
 settingsDoc.CreateElement("Password");
 pwdElem.InnerText=hashedPassword;
 settingsNode.AppendChild(pwdElem);
 }
 }
 }

The CreateHashedPassword method creates the salted and hashed password. The password parameter
is the plain text of the password; the existingSalt parameter is the salt to use when creating the
salted and hashed version. If no salt exists, such as the first time a password is stored, existingSalt
should be passed as null, and a random salt will be generated.

Once you have the salt, it is combined with the plain text password and hashed using the
SHA512Managed class. The salt value is then appended to the end of the hashed value and returned.
The salt is appended so that when you attempt to validate the password, you know what salt was
used to create the hashed value. The entire value is then base64-encoded and returned:

 // Make a hashed password.
 private string CreateHashedPassword(string password,
 byte[] existingSalt)
 {
 byte [] salt = null;
 if(existingSalt == null)
 {
 // Make a salt of random size.
 // Create a stronger hash code using RNGCryptoServiceProvider.
 byte[] random = new byte[1];
 RNGCryptoServiceProvider rngSize = new RNGCryptoServiceProvider();
 // Populate with random bytes.
 rngSize.GetBytes(random);
 // Convert random bytes to string.
 int size = Convert.ToInt32(random);

 // Create salt array.
 salt = new byte[size];

 // Use the better random number generator to get
 // bytes for the salt.
 RNGCryptoServiceProvider rngSalt =
 new RNGCryptoServiceProvider();
 rngSalt.GetNonZeroBytes(salt);
 }
 else
 salt = existingSalt;

 // Turn string into bytes.
 byte[] pwd = Encoding.UTF8.GetBytes(password);

 // Make storage for both password and salt.
 byte[] saltedPwd = new byte[pwd.Length + salt.Length];

 // Add pwd bytes first.
 pwd.CopyTo(saltedPwd,0);
 // now add salt
 salt.CopyTo(saltedPwd,pwd.Length);

 // Use SHA512 as the hashing algorithm.
 byte[] hashWithSalt = null;
 using (SHA512Managed sha512 = new SHA512Managed())
 {
 // Get hash of salted password.
 byte[] hash = sha512.ComputeHash(saltedPwd);

 // Append salt to hash so we have it.
 hashWithSalt = new byte[hash.Length + salt.Length];

 // Copy in bytes.
 hash.CopyTo(hashWithSalt,0);
 salt.CopyTo(hashWithSalt,hash.Length);
 }

 // Return base64-encoded hash with salt.
 return Convert.ToBase64String(hashWithSalt);
 }

To check a given password against the stored value (which is salted and hashed), you call
CheckPassword and pass in the plain text password to check. First, the stored value is retrieved using
the Password property and converted from base64. Since you know you used SHA512, there are 512
bits in the hash. But you need the byte size, so you do the math and get that size in bytes. This
allows you to figure out where to get the salt from in the value, so you copy it out of the value and
call CreateHashedPassword using that salt and the plain text password parameter. This gives you the
hashed value for the password that was passed in to verify. Once you have that, you just compare it
to the Password property to see whether you have a match and return TRue or false as appropriate:

 // Check the password against our storage.

 public bool CheckPassword(string password)
 {
 // Get bytes for password.
 // This is the hash of the salted password and the salt.
 byte[] hashWithSalt = Convert.FromBase64String(Password);

 // We used 512 bits as the hash size (SHA512).
 int hashSizeInBytes = 512 / 8;

 // Make holder for original salt.
 int saltSize = hashWithSalt.Length - hashSizeInBytes;
 byte[] salt = new byte[saltSize];

 // Copy out the salt.
 Array.Copy(hashWithSalt,hashSizeInBytes,salt,0,saltSize);

 // Figure out hash for this password.
 string passwordHash = CreateHashedPassword(password,salt);

 // If the computed hash matches the specified hash,
 // the plain text value must be correct.
 // See if Password (stored) matched password passed in.
 return (Password == passwordHash);
 }
 }

Code that uses the UserSettings class is shown here:

 class IsoApplication
 {
 tatic void Main(string[] args)
 {
 if(args.Length > 0)
 {
 UserSettings settings = new UserSettings(args[0]);
 if(settings.CheckPassword(args[0]))
 {
 Console.WriteLine("Welcome");
 return;
 }
 }
 Console.WriteLine("The system could not validate your credentials");
 }
 }

The way to use this application is to pass the password on the command line as the first argument.
This password is then checked against the UserSettings, which is stored in the isolated storage for

this particular user. If the password is correct, the user is welcomed; if not, the user is shown the
door.

Discussion

Isolated storage allows an application to store data that is unique to the application and the user
running it. This storage allows the application to write out state information that is not visible to other
applications or even other users of the same application. Isolated storage is based on the code
identity as determined by the CLR, and it stores the information either directly on the client machine
or in isolated stores that can be opened and roam with the user. The storage space available to the
application is directly controllable by the administrator of the machine on which the application
operates.

The Solution uses isolation by User, appdomain, and Assembly by calling
IsolatedStorageFile.GetUserStoreForDomain. This creates an isolated store that is accessible by only
this user in the current assembly in the current appdomain:

 // Get the isolated storage.
 isoStorageFile = IsolatedStorageFile.GetUserStoreForDomain();

The Storeadm.exe utility will allow you to see which isolated-storage stores have been set up on the
machine by running the utility with the /LIST command-line switch. Storeadm.exe is part of the .NET
Framework SDK and can be located in your Visual Studio installation directory under the
\SDK\v2.0\Bin subdirectory.

The output after using the UserSettings class would look like this:

 C:\>storeadm /LIST
 Microsoft (R) .NET Framework Store Admin 1.1.4322.573
 Copyright (C) Microsoft Corporation 1998-2002. All rights reserved.

 Record #1
 [Domain]
 <System.Security.Policy.Url version="1">
 <Url>file://D:/PRJ32/Book/IsolatedStorage/bin/Debug/IsolatedStorage.exe</Url>

 </System.Security.Policy.Url>

 [Assembly]
 <System.Security.Policy.Url version="1">
 <Url>file://D:/PRJ32/Book/IsolatedStorage/bin/Debug/IsolatedStorage.exe</Url>

 </System.Security.Policy.Url>

 Size : 1024

Passwords should never be stored in plain text, period. It is a bad habit to get into, so in the
UserSettings class, you have added the salting and hashing of the password value via the
CreateHashedPassword method and verification through the CheckPassword method. Adding a salt to
the hash helps to strengthen the protection on the value being hashed so that the isolated storage,
the hash, and the salt now protect the password you are storing.

See Also

See the "IsolatedStorageFile Class," "IsolatedStorageStream Class," "About Isolated Storage," and
"ComputeHash Method" topics in the MSDN documentation.

Recipe 17.9. Making a Security Assert Safe

Problem

You want to assert that at a particular point in the call stack, a given permission is available for all
subsequent calls. However, doing this can easily open a security hole to allow other malicious code to
spoof your code or to create a back door into your component. You want to assert a given security
permission, but you want to do so in a secure and efficient manner.

Solution

In order to make this approach secure, you need to call Demand on the permissions that the
subsequent calls need. This makes sure that code that doesn't have these permissions can't slip by
due to the Assert. The Demand is done to ensure that you have indeed been granted this permission
before using the Assert to short-circuit the stackwalk. This is demonstrated by the function
CallSecureFunctionSafelyAndEfficiently, which performs a Demand and an Assert before calling
SecureFunction, which in turn does a Demand for a ReflectionPermission.

The code listing for CallSecureFunctionSafelyAndEfficiently is shown in Example 17-14.

Example 17-14. CallSecureFunctionSafelyAndEfficiently function

public static void CallSecureFunctionSafelyAndEfficiently()
{

 // Set up a permission to be able to access nonpublic members
 // via reflection.
 ReflectionPermission perm =
 new ReflectionPermission(ReflectionPermissionFlag.MemberAccess);

 // Demand the permission set we have compiled before using Assert
 // to make sure we have the right before we Assert it. We do
 // the Demand to ensure that we have checked for this permission
 // before using Assert to short-circuit stackwalking for it, which
 // helps us stay secure, while performing better.
 perm.Demand();

 // Assert this right before calling into the function that
 // would also perform the Demand to short-circuit the stack walk
 // each call would generate. The Assert helps us to optimize

 // our use of SecureFunction.
 perm.Assert();
 // We call the secure function 100 times but only generate
 // the stackwalk from the function to this calling function
 // instead of walking the whole stack 100 times.
 for(int i=0;i<100;i++)
 {
 SecureFunction();
 }
}

The code listing for SecureFunction is shown here:

 public static void SecureFunction()
 {
 // Set up a permission to be able to access nonpublic members
 // via reflection.
 ReflectionPermission perm =
 new ReflectionPermission(ReflectionPermissionFlag.MemberAccess);

 // Demand the right to do this and cause a stackwalk.
 perm.Demand();

 // Perform the action here…
 }

Discussion

In the demonstration function CallSecureFunctionSafelyAndEfficiently, the function you are calling
(SecureFunction) performs a Demand on a ReflectionPermission to ensure that the code can access
nonpublic members of classes via reflection. Normally, this would result in a stackwalk for every call
to SecureFunction. The Demand in CallSecureFunctionSafelyAndEfficiently is there only to protect
against the usage of the Assert in the first place. To make this more efficient, you can use Assert to
state that all functions issuing Demands that are called from this one do not have to stackwalk any
further. The Assert says stop checking for this permission in the call stack. In order to do this, you
need the permission to call Assert.

The problem comes in with this Assert as it opens up a potential luring attack where SecureFunction
is called via CallSecureFunctionSafelyAndEfficiently, which calls Assert to stop the Demand
stackwalks from SecureFunction. If unauthorized code without this ReflectionPermission were able
to call CallSecureFunctionSafelyAndEfficiently, the Assert would prevent the SecureFunction
Demand call from determining that there is some code in the call stack without the proper rights. This
is the power of the call stack checking in the CLR when a Demand occurs.

In order to protect against this, you issue a Demand for the ReflectionPermission needed by
SecureFunction in CallSecureFunctionSafelyAndEfficiently to close this hole before issuing the

Assert. The combination of this Demand and the Assert causes

you to do one stack walk instead of the original 100 that would have been caused by the Demand in
SecureFunction but to still maintain secure access to this functionality.

Security optimization techniques, such as using Assert in this case (even though it isn't the primary
reason to use Assert), can help class library as well as control developers who are trusted to perform
Asserts in order to speed the interaction of their code with the CLR; but if used improperly, these
techniques can also open up holes in the security picture. This example shows that you can have both
performance and security where secure access is concerned.

If you are using Assert, be mindful that stackwalk overrides should never be made in a class
constructor. Constructors are not guaranteed to have any particular security context, nor are they
guaranteed to execute at a specific point in time. This lack leads to the call stack not being well
defined, and Assert used here can produce unexpected results.

One other thing to remember with Assert is that you can have only one active Assert in a function at
a given time. If you Assert the same permission twice, a SecurityException is thrown by the CLR.
You must revert the original Assert first using RevertAssert. Then you can declare the second
Assert.

See Also

See the "CodeAccessSecurity.Assert Method," "CodeAccessSecurity.Demand Method,"
"CodeAccessSecurity.RevertAssert Method," and "Overriding Security Checks" topics in the MSDN
documentation.

Recipe 17.10. Preventing Malicious Modifications to an
Assembly

Problem

You are distributing an assembly, but you want to ensure that nobody can tamper with the internals
of that assembly. This tampering could result in its use to gather sensitive information from a user or
to act as a backdoor mechanism in attacking a network. Additionally, you do not want other malicious
assemblies that look like yours but operate in malevolent ways (e.g., stealing passwords,
reformatting a disk drive) to be created. In effect, this malevolent assembly is created to spoof your
benevolent assembly.

Solution

This can be averted to a certain degree by using a strong name for your assembly. A strong-named
assembly has a digital signature that is generated from a public-private-key pair. The public key is
the part of the pair that identifies your assembly as being from you. The private key is the part of the
pair that you keep secret. It ensures that the assembly came from you and hasn't been tampered
with.

In order to generate a key pair, you use the SN.exe from the Framework SDK:

 SN -k MyKeys.snk

This line creates your key pair in a file called MyKeys.snk . Since this file contains both your public
and private keys, you need to guard it carefully; store it only on a machine that's locked down
enough to be considered highly trusted. Never make copies of this key, and store it only on a highly
trusted machine or on media that are easy to secure.

Now that you have a key pair, you can get the public key from the pair in order to be able to delay-
sign your assemblies. Delay-signing allows day-to-day development to continue on the assemblies
while a trusted system holds the public-private-key pair file (MyKeys.snk) for final signing of the
assemblies.

In order to extract the public key from your key pair, use the -p switch on SN.exe to produce the
MyPublicKey.snk file that holds your public key:

 SN -p MyKeys.snk MyPublicKey.snk

Now you can delay-sign the assembly using the public key. You should not place the public key in two
assembly-level attributes shown here, as you would have done in previous versions of VS.NET:

 [assembly: System.Reflection.AssemblyKeyFile("MyPublicKey.snk")]
 [assembly: System.Reflection.AssemblyDelaySign(true)]

Microsoft has deemed this a security risk. Instead, there is now a tab on the project properties that
allows you to add the public key to the project. To add the public key, right-click on the project in the
Solution Explorer tab in the IDE and choose Properties. The project properties will be displayed in the
IDE in its own window. Click on the Signing tab on the lefthand side of this window; see Figure 17-1 .
This is the tab that allows you to add the public key to this project. To finish this process, check the
Sign the Assembly checkbox and select the public key file that you created by clicking on
"<Browse…>" in the "Choose a strong name" key file drop-down box. If this assembly will be delay-
signed, check the Delay Sign Only checkbox.

In order to finish the signing process, once you are ready to deploy your assembly, use SN.exe again
to add the final signing piece, using the -R option like this:

 SN -R SignedAssembly.dll MyKeys.snk

This line results in SignedAssembly being fully signed using the private key in MyKeys.snk. This step is
normally performed on a secure system that has access to the private key.

Discussion

Note that in Visual Studio .NET 2005, the private-key file location needs to be relative to the .exe or
.dll or you will get an error when you try to sign the resulting assembly.

Figure 17-1. The Signing tab of the project properties

In order to use delay-signing, you need to prepare the development environments for assemblies
that are only partially signed. To do this, instruct the CLR to skip verification of assemblies using a
given public key. Once again, use SN.exe to accomplish this:

 SN -Vr *,d15f821006850b34

One other approach is to have separate keys for development and final release versions, which allows
for fully signed development versions without compromising the signed assemblies that you ship to
customers.

Note that this solution will protect your assembly only as long as the machine it is running on is
secure. If a malicious user can access the code that uses the assembly and the assembly itself, he
can simply replace them with his own copies.

See Also

See the "AssemblyKeyFile Attribute" and "AssemblyDelaySign Attribute" topics in the MSDN
documentation.

Recipe 17.11. Verifying That an Assembly Has Been
Granted Specific Permissions

Problem

When your assembly requests optional permissions (such as asking for disk access to enable users to
export data to disk as a product feature) using the SecurityAction. RequestOptional flag, it might or
might not get those permissions. Regardless, your assembly will still load and execute. You need a
way to verify whether your assembly actually obtained those permissions. This can help prevent
many security exceptions from being thrown. For example, if you optionally requested read/write
permissions on the registry but did not receive them, you could disable the user interface controls
that are used to read and store application settings in the registry.

Solution

Check to see if your assembly received the optional permissions using the
SecurityManager.IsGranted method like this:

 using System;
 using System.Text.RegularExpressions;
 using System.Web;
 using System.Net;
 using System.Security;

 Regex regex = new Regex(@"http://www\.oreilly\.com/.*");
 WebPermission webConnectPerm = new WebPermission(NetworkAccess.Connect,regex);
 if(SecurityManager.IsGranted(webConnectPerm))
 {
 // Connect to the O'Reilly site.
 }

This code sets up a Regex for the O'Reilly web site, then uses it to create a WebPermission for
connecting to that site and all sites containing the www.oreilly.com string. You then check the
WebPermission by calling SecurityManager.IsGranted to see whether you have permission to do this.

Discussion

The IsGranted method is a lightweight way of determining whether permission is granted for an

assembly without incurring the full stackwalk that a Demand gives you. The downside to this approach
is that the code is still subject to a luring attack if Assert is misused, so you need to consider where
the call to IsGranted is being made in the overall scheme of your security.

Some of the reasons you might design an assembly to have optional permissions is for deployment in
different customer scenarios. In some scenarios (like desktop applications), it might be acceptable to
have an assembly that can perform more robust actions (talk to a database, create network traffic
via HTTP, etc.). In other scenarios, you can defer these actions if the customer does not wish to
grant enough permissions for these extra services to function.

See Also

See the "WebPermission Class," "SecurityManager Class," and "IsGranted Method" topics in the
MSDN documentation.

Recipe 17.12. Minimizing the Attack Surface of an
Assembly

Problem

Someone attacking your assembly will first attempt to find out as many things as possible about your
assembly and then use this information in constructing the attack(s). The more surface area you give
to attackers, the more they have to work with. You need to minimize what your assembly is allowed
to do so that, if an attacker is successful in taking it over, the attacker will not have the necessary
privileges to do any damage to the system.

Solution

Use the SecurityAction.RequestRefuse enumeration member to indicate, at an assembly level, the
permissions that you do not wish this assembly to have. This will force the CLR to refuse these
permissions to your code and will ensure that, even if another part of the system is compromised,
your code cannot be used to perform functions that it does not need the rights to do.

The following example allows the assembly to perform file I/O as part of its minimal permission set
but explicitly refuses to allow this assembly to have permissions to skip verification:

 [assembly: FileIOPermission(SecurityAction.RequestMinimum,Unrestricted=true)]
 [assembly: SecurityPermission(SecurityAction.RequestRefuse,
 SkipVerification=false)]

Discussion

Once you have determined what permissions your assembly needs as part of your normal security
testing, you can use RequestRefuse to lock down your code. If this seems extreme, think of scenarios
in which your code could be accessing a data store containing sensitive information, such as Social
Security numbers or salary information. This proactive step can help you show your customers that
you take security seriously and can help defend your interests in case a break-in occurs on a system
that your code is part of.

One serious consideration with this approach is that the use of RequestRefuse marks your assembly
as partially trusted. This in turn prevents it from calling any strong-named assembly that hasn't been
marked with the AllowPartiallyTrustedCallers attribute.

See Also

See Chapter 8 of Microsoft Patterns & Practices Group:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh08.asp;
see the "SecurityAction Enumeration" and "Global Attributes" topics in the MSDN documentation.

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnnetsec/html/THCMCh08.asp

Recipe 17.13. Obtaining Security/Audit Information

Problem

You need to obtain the security rights and/or audit information for a file or registry key.

Solution

When obtaining security/audit information for a file, use the static GetAccessControl method of the
File class to obtain a System.Security.AccessControl.FileSecurity object. Use the FileSecurity
object to access the security and audit information for the file. These steps are demonstrated in
Example 17-15 .

Example 17-15. Obtaining security audit information

public static void ViewFileRights()
{
 // Get security information from a file.
 string file = @"c:\FOO.TXT";

 FileSecurity fileSec = File.GetAccessControl(file);

 DisplayFileSecurityInfo(fileSec);
}

public static void DisplayFileSecurityInfo(FileSecurity fileSec)
{
 Console.WriteLine("GetSecurityDescriptorSddlForm: {0}",
 fileSec.GetSecurityDescriptorSddlForm(AccessControlSections.All));

 foreach (FileSystemAccessRule ace in
 fileSec.GetAccessRules(true, true, typeof(NTAccount)))
 {
 Console.WriteLine("\tIdentityReference.Value: {0}",
 ace.IdentityReference.Value);
 Console.WriteLine("\tAccessControlType: {0}", ace.AccessControlType);
 Console.WriteLine("\tFileSystemRights: {0}", ace.FileSystemRights);
 Console.WriteLine("\tInheritanceFlags: {0}", ace.InheritanceFlags);
 Console.WriteLine("\tIsInherited: {0}", ace.IsInherited);
 Console.WriteLine("\tPropagationFlags: {0}", ace.PropagationFlags);

 Console.WriteLine("-----------------\r\n\r\n");
 }

 foreach (FileSystemAuditRule ace in
 fileSec.GetAuditRules(true, true, typeof(NTAccount)))
 {
 Console.WriteLine("\tIdentityReference.Value: {0}",
 ace.IdentityReference.Value);
 Console.WriteLine("\tAuditFlags: {0}", ace.AuditFlags);
 Console.WriteLine("\tFileSystemRights: {0}", ace.FileSystemRights);
 Console.WriteLine("\tInheritanceFlags: {0}", ace.InheritanceFlags);
 Console.WriteLine("\tIsInherited: {0}", ace.IsInherited);
 Console.WriteLine("\tPropagationFlags: {0}", ace.PropagationFlags);

 Console.WriteLine("-----------------\r\n\r\n");
 }

 Console.WriteLine("GetGroup(typeof(NTAccount)).Value: {0}",
 fileSec.GetGroup(typeof(NTAccount)).Value);
 Console.WriteLine("GetOwner(typeof(NTAccount)).Value: {0}",
 fileSec.GetOwner(typeof(NTAccount)).Value);

 Console.WriteLine("---------------------------------------\r\n\r\n\r\n");
}

These methods produce the following output:

 GetSecurityDescriptorSddlForm: O:BAG:SYD:PAI(A;;FA;;;SY)(A;;FA;;;BA)
 IdentityReference.Value: NT AUTHORITY\SYSTEM
 AccessControlType: Allow
 FileSystemRights: FullControl
 InheritanceFlags: None
 IsInherited: False
 PropagationFlags: None

 IdentityReference.Value: BUILTIN\Administrators
 AccessControlType: Allow
 FileSystemRights: FullControl
 InheritanceFlags: None
 IsInherited: False
 PropagationFlags: None

 GetGroup(typeof(NTAccount)).Value: NT AUTHORITY\SYSTEM
 GetOwner(typeof(NTAccount)).Value: BUILTIN\Administrators

When obtaining security/audit information for a registry key, use the GetAccess-Control instance
method of the Microsoft.Win32.RegistryKey class to obtain a System .

Security.AccessControl.RegistrySecurity object. Use the RegistrySecurity object to access the
security and audit information for the registry key. These steps are demonstrated in Example 17-16 .

Example 17-16. Getting security or audit information for a registry key

public static void ViewRegKeyRights()
{
 // Get security information from a registry key.
 using (RegistryKey regKey =
 Registry.LocalMachine.OpenSubKey(@"SOFTWARE\MyCompany\MyApp"))
 {
 RegistrySecurity regSecurity = regKey.GetAccessControl();
 DisplayRegKeySecurityInfo(regSecurity);
 }
}

public static void DisplayRegKeySecurityInfo(RegistrySecurity regSec)
{
 Console.WriteLine("GetSecurityDescriptorSddlForm: {0}",
 regSec.GetSecurityDescriptorSddlForm(AccessControlSections.All));

 foreach (RegistryAccessRule ace in
 regSec.GetAccessRules(true, true, typeof(NTAccount)))
 {
 Console.WriteLine("\tIdentityReference.Value: {0}",
 ace.IdentityReference.Value);
 Console.WriteLine("\tAccessControlType: {0}", ace.AccessControlType);
 Console.WriteLine("\tRegistryRights: {0}", ace.RegistryRights.ToString());
 Console.WriteLine("\tInheritanceFlags: {0}", ace.InheritanceFlags);
 Console.WriteLine("\tIsInherited: {0}", ace.IsInherited);
 Console.WriteLine("\tPropagationFlags: {0}", ace.PropagationFlags);

 Console.WriteLine("-----------------\r\n\r\n");
 }

 foreach (RegistryAuditRule ace in
 regSec.GetAuditRules(true, true, typeof(NTAccount)))
 {
 Console.WriteLine("\tIdentityReference.Value: {0}",
 ace.IdentityReference.Value);
 Console.WriteLine("\tAuditFlags: {0}", ace.AuditFlags);
 Console.WriteLine("\tRegistryRights: {0}", ace.RegistryRights.ToString());
 Console.WriteLine("\tInheritanceFlags: {0}", ace.InheritanceFlags);
 Console.WriteLine("\tIsInherited: {0}", ace.IsInherited);
 Console.WriteLine("\tPropagationFlags: {0}", ace.PropagationFlags);

 Console.WriteLine("-----------------\r\n\r\n");
 }
 Console.WriteLine("GetGroup(typeof(NTAccount)).Value: {0}",
 regSec.GetGroup(typeof(NTAccount)).Value);

 Console.WriteLine("GetOwner(typeof(NTAccount)).Value: {0}",
 regSec.GetOwner(typeof(NTAccount)).Value);

 Console.WriteLine("---------------------------------------\r\n\r\n\r\n");
}

These methods produce the following output:

 GetSecurityDescriptorSddlForm: O:S-1-5-21-329068152-1383384898-682003330-1004G:S-1-
 5-21-329068152-1383384898-682003330-513D:
 AI(A;ID;KR;;;BU)(A;CIIOID;GR;;;BU)(A;ID;KA;;;BA)(A;CIIOID;GA;;;BA)(A;ID;KA;;;SY)(A;CI
 IOID;GA;;;SY)(A;ID;KA;;;S-1-5-21-329068152-1383384898-682003330-
 1004)(A;CIIOID;GA;;;CO)
 IdentityReference.Value: BUILTIN\Users
 AccessControlType: Allow
 RegistryRights: ReadKey
 InheritanceFlags: None
 IsInherited: True
 PropagationFlags: None

 IdentityReference.Value: BUILTIN\Users
 AccessControlType: Allow
 RegistryRights: -2147483648
 InheritanceFlags: ContainerInherit
 IsInherited: True
 PropagationFlags: InheritOnly

 IdentityReference.Value: BUILTIN\Administrators
 AccessControlType: Allow
 RegistryRights: FullControl
 InheritanceFlags: None
 IsInherited: True
 PropagationFlags: None

 IdentityReference.Value: BUILTIN\Administrators
 AccessControlType: Allow
 RegistryRights: 268435456
 InheritanceFlags: ContainerInherit
 IsInherited: True
 PropagationFlags: InheritOnly

 IdentityReference.Value: NT AUTHORITY\SYSTEM
 AccessControlType: Allow
 RegistryRights: FullControl

 InheritanceFlags: None
 IsInherited: True
 PropagationFlags: None

 IdentityReference.Value: NT AUTHORITY\SYSTEM
 AccessControlType: Allow
 RegistryRights: 268435456
 InheritanceFlags: ContainerInherit
 IsInherited: True
 PropagationFlags: InheritOnly

 IdentityReference.Value: OPERATOR-C1EFE0\Admin
 AccessControlType: Allow
 RegistryRights: FullControl
 InheritanceFlags: None
 IsInherited: True
 PropagationFlags: None

 IdentityReference.Value: CREATOR OWNER
 AccessControlType: Allow
 RegistryRights: 268435456
 InheritanceFlags: ContainerInherit
 IsInherited: True
 PropagationFlags: InheritOnly

 GetGroup(typeof(NTAccount)).Value: OPERATOR-C1EFE0\None
 GetOwner(typeof(NTAccount)).Value: OPERATOR-C1EFE0\Admin

Discussion

The essential method that is used to obtain the security information for a file or registry key is the
GetAccessControl method. When this method is called on the RegistryKey object, a RegistrySecurity
object is returned. However, when this method is called on a File class, a FileSecurity object is
returned. The RegistrySecurity and FileSecurity objects essentially represent a Discretionary Access
Control List (DACL), which is what developers writing code in unmanaged languages such as C++ are
used to working with.

The RegistrySecurity and FileSecurity objects each contains a list of security rules that has been
applied to the system object that it represents. The RegistrySecurity object contains a list of
RegistryAccessRule objects, and the FileSecurity object contains a list of FileSystemAccessRule
objects. These rule objects are the equivalent of the Access Control Entries (ACE) that make up the list
of security rules within a DACL.

System objects other than just the File class and RegistryKey object allow security privileges to be

queried. Table 17-1 lists all the .NET Framework classes that return a security object type and what
that type is. In addition, the rule-object type that is contained in the security object is also listed.

Table 17-1. List of all *Security and *AccessRule objects and the types to
which they apply

Class
Object returned by the

GetAccessControl method
Rule-object type contained within the

security object

Directory DirectorySecurity FileSystemAccessRule

DirectoryInfo DirectorySecurity FileSystemAccessRule

EventWaitHandle EventWaitHandleSecurity EventWaitHandleAccessRule

File FileSecurity FileSystemAccessRule

FileInfo FileSecurity FileSystemAccessRule

FileStream FileSecurity FileSystemAccessRule

Mutex MutexSecurity MutexAccessRule

RegistryKey RegistrySecurity RegistryAccessRule

Semaphore SemaphoreSecurity SemaphoreAccessRule

The abstraction of a system object's DACL through the *Security objects and the abstraction of a
DACL's ACE through the *AccessRule objects allows easy access to the security privileges of that
system object. In previous versions of the .NET Framework, these DACLs and their ACEs would have
been accessible only in unmanaged code. With the latest .NET Framework, you now have access to
view and program these objects.

See Also

See Recipe 17.14; see the "System.IO.File.GetAccessControl Method," "System.
Security.AccessControl.FileSecurity Class," "Microsoft.Win32.RegistryKey.GetAccessControl Method,"
and "System.Security.AccessControl.RegistrySecurity Class" topics in the MSDN documentation.

Recipe 17.14. Granting/Revoking Access to a File or
Registry Key

Problem

You need to change the security privileges of either a file or registry key programmatically.

Solution

The code shown in Example 17-17 grants and then revokes the ability to perform write actions on a
registry key.

Example 17-17. Granting and revoking the right to perform write actions
on a registry key

public static void GrantRevokeRegKeyRights()
{
 NTAccount user = new NTAccount(@"WRKSTN\ST");

 using (RegistryKey regKey = Registry.LocalMachine.OpenSubKey(
 @"SOFTWARE\MyCompany\MyApp"))
 {
 GrantRegKeyRights(regKey, user, RegistryRights.WriteKey,
 InheritanceFlags.None, PropagationFlags.None, AccessControlType.Allow);
 RevokeRegKeyRights(regKey, user, RegistryRights.WriteKey,
 InheritanceFlags.None, PropagationFlags.None,
 AccessControlType.Allow)
 }
}

public static void GrantRegKeyRights(RegistryKey regKey,
 NTAccount user,
 RegistryRights rightsFlags,
 InheritanceFlags inherFlags,
 PropagationFlags propFlags,
 AccessControlType actFlags)
{
 RegistrySecurity regSecurity = regKey.GetAccessControl();

 RegistryAccessRule rule = new RegistryAccessRule(user, rightsFlags, inherFlags,
 propFlags, actFlags);
 regSecurity.AddAccessRule(rule);

 regKey.SetAccessControl(regSecurity);
}

public static void RevokeRegKeyRights(RegistryKey regKey,
 NTAccount user,
 RegistryRights rightsFlags,
 InheritanceFlags inherFlags,
 PropagationFlags propFlags,
 AccessControlType actFlags)
{
 RegistrySecurity regSecurity = regKey.GetAccessControl();

 RegistryAccessRule rule = new RegistryAccessRule(user, rightsFlags, inherFlags,
 propFlags, actFlags);
 regSecurity.RemoveAccessRuleSpecific(rule);

 regKey.SetAccessControl(regSecurity);
}

The code shown in Example 17-18 grants and then revokes the ability to delete a file.

Example 17-18. Granting and revoking the right to delete a file

public static void GrantRevokeFileRights()
{
 NTAccount user = new NTAccount(@"WRKSTN\ST");

 string file = @"c:\FOO.TXT";
 GrantFileRights(file, user, FileSystemRights.Delete, InheritanceFlags.None,
 PropagationFlags.None, AccessControlType.Allow);
 RevokeFileRights(file, user, FileSystemRights.Delete, InheritanceFlags.None,
 PropagationFlags.None, AccessControlType.Allow);
}

public static void GrantFileRights(string file,
 NTAccount user,
 FileSystemRights rightsFlags,
 InheritanceFlags inherFlags,
 PropagationFlags propFlags,
 AccessControlType actFlags)
{
 FileSecurity fileSecurity = File.GetAccessControl(file);

 FileSystemAccessRule rule = new FileSystemAccessRule(user, rightsFlags,
 inherFlags, propFlags,
 actFlags);
 fileSecurity.AddAccessRule(rule);

 File.SetAccessControl(file, fileSecurity);
}

public static void RevokeFileRights(string file,
 NTAccount user,
 FileSystemRights rightsFlags,
 InheritanceFlags inherFlags,
 PropagationFlags propFlags,
 AccessControlType actFlags)
{
 FileSecurity fileSecurity = File.GetAccessControl(file);

 FileSystemAccessRule rule = new FileSystemAccessRule(user, rightsFlags,
 inherFlags, propFlags,
 actFlags);
 fileSecurity.RemoveAccessRuleSpecific(rule);
 File.SetAccessControl(file, fileSecurity);
}

Discussion

When granting or revoking access rights on a file or registry key, you need two things. The first is a
valid NTAccount object. This object essentially encapsulates a user or group account. A valid
NTAccount object is required in order to create either a new RegistryAccessRule or a new
FileSystemAccessRule . The NTAccount identifies the user or group this access rule will apply to. Note
that the string passed in to the NTAccount constructor must be changed to a valid user or group name
that exists on your machine. If you pass in the name of an existing user or group account that has
been disabled, an IdentityNotMappedException will be thrown with the message "Some or all identity
references could not be translated."

The second item that is needed is either a valid RegistryKey object, if you are modifying security
access to a registry key or a string containing a valid path and filename to an existing file. These
objects will have security permissions either granted to them or revoked from them.

Once these two items have been obtained, you can use the second item to obtain a security object,
which contains the list of access-rule objects. For example, the following code obtains the security
object for the registry key HKEY-LOCAL_ MACHINE\SOFTWARE\MyCompany\MyApp:

 RegistryKey regKey = Registry.LocalMachine.OpenSubKey(
 @"SOFTWARE\MyCompany\MyApp");
 RegistrySecurity regSecurity = regKey.GetAccessControl();

The following code obtains the security object for the FOO.TXT file:

 string file = @"c:\FOO.TXT";

 FileSecurity fileSecurity = File.GetAccessControl(file);

Now that you have your particular security object, you can create an access-rule object that will be
added to this security object. To do this, you need to create a new access rule. For a registry key, you
have to create a new RegistryAccessRule object, and for a file, you have to create a new
FileSystemAccessRule object. To add this access rule to the correct security object, you call the
SetAccessControl method on the security object. Note that RegistryAccessRule objects can be added
only to RegistrySecurity objects and FileSystemAccessRule objects can be added only to
FileSecurity objects.

To remove an access-rule object from a system object, you follow the same set of steps, except that
you call the RemoveAccessRuleSpecific method instead of AddAccessRule . RemoveAccessRuleSpecific
accepts an access-rule object and attempts to remove the rule that exactly matches this rule object
from the security object. As always, you must remember to call the SetAccessControl method to
apply any changes to the actual system object.

For a list of other classes that allow security permissions to be modified programmatically, see Recipe
17.13.

See Also

See Recipe 17.13; see the "System.IO.File.GetAccessControl Method,"
"System.Security.AccessControl.FileSecurity Class,"
"System.Security.AccessControl.FileSystemAccessRule Class,"
"Microsoft.Win32.RegistryKey.GetAccessControl Method,"
"System.Security.AccessControl.RegistrySecurity Class," and
"System.Security.AccessControl.RegistryAccessRule Class" topics in the MSDN documentation.

Recipe 17.15. Protecting String Data with Secure Strings

Problem

You need to store sensitive information, such as a Social Security number, in a string. However, you
do not want prying eyes to be able to view this data in memory.

Solution

Use the SecureString object. To place text from a stream object within a SecureString object, use
the following method:

 public static SecureString CreateSecureString(StreamReader secretStream)
 {
 SecureString secretStr = new SecureString();
 char buf;

 while (secretStream.Peek() >= 0)
 {
 buf = (char)secretStream.Read();
 secretStr.AppendChar(buf);
 }

 // Make the secretStr object read-only.
 secretStr.MakeReadOnly();

 return (secretStr);
 }

To pull the text out of a SecureString object, use the following method:

 public static void ReadSecureString(SecureString secretStr)
 {
 // In order to read back the string, you need to use some special methods.
 IntPtr secretStrPtr = Marshal.SecureStringToBSTR(secretStr);
 string nonSecureStr = Marshal.PtrToStringBSTR(secretStrPtr);

 // Use the unprotected string.
 Console.WriteLine("nonSecureStr = {0}", nonSecureStr);

 Marshal.ZeroFreeBSTR(secretStrPtr);

 if (!secretStr.IsReadOnly())
 {
 secretStr.Clear();
 }
 }

Discussion

A SecureString object is designed specifically to contain string data that you want to keep secret.
Some of the data you may want to store in a SecureString object would be a Social Security number,
a credit card number, a PIN number, a password, an employee ID, or any other type of sensitive
information.

This string data is automatically encrypted immediately upon being added to the SecureString object,
and it is automatically decrypted when the string data is extracted from the SecureString object. The
encryption is one of the highlights of using this object. In addition to encryption, there will be only
one copy of a SecureString object in memory at any one time. This is in direct contrast to a String
object, which creates multiple copies in memory whenever the text in the String object is modified.

Another feature of a SecureString object is that when the MakeReadOnly method is called, the
SecureString becomes immutable. Any attempt to modify the string data within the read-only
SecureString object causes an InvalidOperationException to be thrown. Once a SecureString object
is made read-only, it cannot go back to a read/write state. However, you need to be careful when
calling the Copy method on an existing SecureString object. This method will create a new instance of
the SecureString object on which it was called, with a copy of its data. However, this new
SecureString object is now readable and writable. You should review your code to determine if this
new SecureString object should be made read-only similarly to its original SecureString object.

The SecureString object can be used only on Windows 2000 (with Service Pack
3 or greater) or later operating system

In this recipe you create a SecureString object from data read in from a stream. This data could also
come from a char* using unsafe code. The SecureString object contains a constructor that accepts a
parameter of this type in addition to an integer parameter that takes a length value, which
determines the number of characters to pull from the char*.

Getting data out of a SecureString object is not obvious at first glance. There are no methods to
return the data contained within a SecureString object. In order to accomplish this, you must use
two static methods on the Marshal class. The first is the SecureStringToBSTR, which accepts your
SecureString object and returns an IntPtr. This IntPtr is then passed into the PtrToStringBSTR
method, also on the Marshal class. The PtrToStringBSTR method then returns an unsecure String
object containing your decrypted string data.

Once you are done using the SecureString object, you should call the static ZeroFreeBSTR method on
the Marshal class to zero out any memory allocated when extracting the data from the SecureStirng.

As an added safeguard, you should call the Clear method of the SecureString object to zero out the
encrypted string from memory. If you have made your SecureString object read-only, you will not be
able to call the Clear method to wipe out its data. In this situation, you must either call the Dispose
method on the SecureString object or rely on the garbage collector to remove the SecureString
object and its data from memory.

Notice that when you pull a SecureString object into an unsecure String, its data becomes viewable
by a malicious hacker. So it may seem pointless to go through the trouble of using a SecureString
when you are just going to convert it into an unsecure String. However, by using a SecureString,
you narrow the window of opportunity for a malicious hacker to view this data in memory. In
addition, some APIs accept a SecureString as a parameter so that you don't have to convert it to an
unsecure String. The ProcessStartInfo, for example, accepts a password in its Password property as
a SecureString object.

The SecureString object is not a silver bullet for securing your data. It is,
however, another layer of defense you can add to your application.

See Also

See the "SecureString Class" topic in the MSDN documentation.

Recipe 17.16. Securing Stream Data

Problem

You want to use the TCP server in Recipe 16.1 to communicate with the TCP client in Recipe 16.2.
However, you need the communication to be secure.

Solution

Replace the NetworkStream class with the more secure SslStream class on both the client and the
server. The code for the more secure TCP client, TCPClient_SSL , is shown in Example 17-19 (changes
are highlighted).

Example 17-19. TCPClient_SSL class

class TCPClient_SSL
{
 private TcpClient _client = null;
 private IPAddress _address = IPAddress.Parse("127.0.0.1");
 private int _port = 5;
 private IPEndPoint _endPoint = null;

 public TCPClient_SSL(string address, string port)
 {
 _address = IPAddress.Parse(address);
 _port = Convert.ToInt32(port);
 _endPoint = new IPEndPoint(_address, _port);
 }

 public void ConnectToServer(string msg)
 {
 try
 {
 using (client = new TcpClient())
 {
 client.Connect(_endPoint);

 using (SslStream sslStream = new SslStream(_client.GetStream(),
 false, new RemoteCertificateValidationCallback(
 CertificateValidationCallback)))
 {
 sslStream.AuthenticateAsClient("MyTestCert2");

 // Get the bytes to send for the message.
 byte[] bytes = Encoding.ASCII.GetBytes(msg);

 // Send message.
 Console.WriteLine("Sending message to server: " + msg);

 sslStream.Write(bytes, 0, bytes.Length);

 // Get the response.
 // Buffer to store the response bytes.
 bytes = new byte[1024];

 // Display the response.

 int bytesRead = sslStream.Read(bytes, 0, bytes.Length);
 string serverResponse = Encoding.ASCII.GetString(bytes, 0,
 bytesRead);
 Console.WriteLine("Server said: " + serverResponse);
 }
 }
 }
 catch (SocketException e)
 {
 Console.WriteLine("There was an error talking to the server: {0}",
 e.ToString());
 }
 }

 private bool CertificateValidationCallback(object sender,
 X509Certificate certificate,
 X509Chain chain,
 SslPolicyErrors sslPolicyErrors)
 {
 if (sslPolicyErrors == SslPolicyErrors.None)
 {
 return true;
 }
 else
 {
 if (sslPolicyErrors == SslPolicyErrors.RemoteCertificateChainErrors)
 {
 Console.WriteLine("The X509Chain.ChainStatus returned an array " +
 "of X509ChainStatus objects containing error information.");
 }
 else if (sslPolicyErrors ==
 SslPolicyErrors.RemoteCertificateNameMismatch)
 {
 Console.WriteLine("There was a mismatch of the name " +
 "on a certificate.");
 }
 else if (sslPolicyErrors ==

 SslPolicyErrors.RemoteCertificateNotAvailable)
 {
 Console.WriteLine("No certificate was available.");
 }
 else
 {
 Console.WriteLine("SSL Certificate Validation Error!");
 }
 }

 Console.WriteLine(Environment.NewLine +
 "SSL Certificate Validation Error!");
 Console.WriteLine(sslPolicyErrors.ToString());

 return false;
 }
}

The new code for the more secure TCP server, TCPServer_SSL, is shown in Example 17-20 (changes
are highlighted).

Example 17-20. TCPServer_SSL class

class TCPServer_SSL
{
 private TcpListener _listener = null;
 private IPAddress _address = IPAddress.Parse("127.0.0.1");
 private int _port = 55555;

 #region CTORs
 public TCPServer_SSL()
 {
 }

 public TCPServer_SSL(string address, string port)
 {
 _port = Convert.ToInt32(port);
 _address = IPAddress.Parse(address);
 }
 #endregion // CTORs

 #region Properties
 public IPAddress Address
 {
 get { return _address; }
 set { _address = value; }

 }

 public int Port
 {
 get { return _port; }
 set { _port = value; }
 }
 #endregion

 public void Listen()
 {
 try
 {
 using(listener = new TcpListener(_address, _port))
 {
 // Fire up the server.
 listener.Start();

 // Enter the listening loop.
 while (true)
 {
 Console.Write("Looking for someone to talk to… ");

 // Wait for connection.
 TcpClient newClient = _listener.AcceptTcpClient();
 Console.WriteLine("Connected to new client");

 // Spin a thread to take care of the client.
 ThreadPool.QueueUserWorkItem(new WaitCallback(ProcessClient),
 newClient);
 }
 }
 }
 catch (SocketException e)
 {
 Console.WriteLine("SocketException: {0}", e);
 }
 finally
 {
 // Shut it down.
 _listener.Stop();
 }

 Console.WriteLine("\nHit any key (where is ANYKEY?) to continue…");
 Console.Read();
 }

 private void ProcessClient(object client)
 {
 using (TcpClient newClient = (TcpClient)client)
 {
 // Buffer for reading data.

 byte[] bytes = new byte[1024];
 string clientData = null;

 using (SslStream sslStream = new SslStream(newClient.GetStream()))
 {
 sslStream.AuthenticateAsServer(GetServerCert("MyTestCert2"), false,
 SslProtocols.Default, true);

 // Loop to receive all the data sent by the client.
 int bytesRead = 0;

 while ((bytesRead = sslStream.Read(bytes, 0, bytes.Length)) != 0)
 {
 // Translate data bytes to an ASCII string.
 clientData = Encoding.ASCII.GetString(bytes, 0, bytesRead);
 Console.WriteLine("Client says: {0}", clientData);

 // Thank them for their input.
 bytes = Encoding.ASCII.GetBytes("Thanks call again!");

 // Send back a response.

 sslStream.Write(bytes, 0, bytes.Length);
 }
 }
 }
 }

 private static X509Certificate GetServerCert(string subjectName)
 {
 X509Store store = new X509Store(StoreName.My, StoreLocation.LocalMachine);
 store.Open(OpenFlags.ReadOnly);
 X509CertificateCollection certificate =
 store.Certificates.Find(X509FindType.FindBySubjectName,
 subjectName, true);

 if (certificate.Count > 0)
 return (certificate[0]);
 else
 return (null);
 }
}

Discussion

For more information about the inner workings of the TCP server and client and how to run these

applications, see Recipes 16.1 and 16.2. In this recipe, you will cover only the changes needed to
convert the TCP server and client to use the SslStream object for secure communication.

The SslStream object uses the SSL protocol to provide a secure encrypted channel on which to send
data. However, encryption is just one of the security features built into the SslStream object. Another
feature of SslStream is that it prevents malicious or even accidental modification to the data. Even
though the data is encrypted, it may become modified during transit. To determine if this has
occurred, the data is signed with a hash before it is sent. When it is received, the data is rehashed and
the two hashes are compared. If both hashes are equivalent, the message arrived intact; if the hashes
are not equivalent, then something modified the data during transit.

The SslStream object also has the ability to use client and/or server certificates to authenticate the
client and/or the server. These certificates are used to prove the identity of the issuer. For example, if
a client attaches to a server using SSL, the server must provide a certificate to the client that is used
to prove that the server is who it says it is. The SslStream object also allows the client to pass a
certificate to the server if the client also needs to prove who it is to the server.

To allow the TCP server and client to communicate successfully, you need to set up an X.509 certificate
that will be used to authenticate the TCP server. To do this, you set up a test certificate using the
makecert.exe utility. This utility can be found in the <drive>:\Program Files\Microsoft Visual Studio
8\SDK\v2.0\Bin directory. The syntax for creating a simple certificate is as follows:

 makecert -r -pe -n "CN=MyTestCert2" -e 01/01/2036
 -sr localMachine c:\MyAppTestCert.cer

The options are defined as follows:

-r

The certificate will be self-signed.

-pe

The certificate's private key will be exportable so that it can be included in the certificate.

-n "CN=MyTestCert2"

The publisher's certificate name. The name follows the "CN =" text.

-e 01/01/2036

The date at which this certificate expires.

-sr localMachine

The store where this certificate will be located. In this case, it is localMachine . However, you
can also specify currentUser (which is the default if this switch is

omitted).

The final argument to the makecert.exe utility is the output filename, in this case
c:\MyAppTestCert.cer . This will create the certificate in the c:\MyAppTestCert.cer file on the hard
drive.

The next step involves opening Windows Explorer and right-clicking on the c:\MyAppTestCert.cer file.
This will display a pop-up menu with the Install Certificate menu item. Click this menu item and a
wizard will be started to allow you to import this .cer file into the certificate store. The first dialog box
of the wizard is shown in Figure 17-2 . Click the Next button to go to the next step in the wizard.

Figure 17-2. The first step of the Certificate Import Wizard

The next step in the wizard allows you to choose the certificate store in which you want to install your
certificate. This dialog is shown in Figure 17-3 . Keep the defaults and click the Next button.

The final step in the wizard is shown in Figure 17-4 . On this dialog, click the Finish button.

Figure 17-3. Specifying a certificate store in the Certificate Import Wizard

Figure 17-4. The last step of the Certificate Import Wizard

After you click the Finish button, the message box shown in Figure 17-5 is displayed, warning you to
verify the certificate that you wish to install. Click the Yes button to install the certificate.

Figure 17-5. The security warning

Finally, the message box in Figure 17-6 is displayed, indicating that the import was successful.

Figure 17-6. The import successful message

At this point you can run the TCP server and client and they should communicate successfully.

To use the SslStream in the TCP server project, you need to create a new SslStream object to wrap
the TcpClient object:

 SslStream sslStream = new SslStream(newClient.GetStream());

Before you can use this new stream object, you must authenticate the server using the following line
of code:

 sslStream.AuthenticateAsServer(GetServerCert("MyTestCert2"),
 false, SslProtocols.Default, true);

The GetServerCert method finds the server certificate used to authenticate the server. Notice the
name passed in to this method; it is the same as the publisher's certificate name switch used with the
makecert.exe utility (see the n switch). This certificate is returned from the GetServerCert method as
an X509Certificate object. The next argument to the AuthenticateAsServer method is false ,
indicating that a client certificate is not required. The SslProtocols.Default argument indicates that

the authentication mechanism (SSL 2.0, SSL 3.0, TLS 1.0, or PCT 1.0) is chosen based on what is
available to the client and server. The final argument indicates that the certificate will be checked to
see whether it has been revoked.

To use the SslStream in the TCP client project, you create a new SslStream object, a bit differently
from how it was created in the TCP server project:

 SslStream sslStream = new SslStream(_client.GetStream(), false,
 new RemoteCertificateValidationCallback(CertificateValidationCallback));

This constructor accepts a stream from the _client field, a false indicating that the stream associated
with the _client field will be closed when the Close method of the SslStream object is called, and a
delegate that validates the server certificate. The CertificateValidationCallback method is called
whenever a server certificate needs to be validated. The server certificate is checked and any errors
are passed into this delegate method to allow you to handle them as you wish.

The AuthenticateAsClient method is called next to authenticate the server:

 sslStream.AuthenticateAsClient("MyTestCert2");

As you can see, with a little extra work, you can replace the current stream type you are using with
the SslStream to gain the benefits of the SSL protocol.

See Also

See the "SslStream Class" topic in the MSDN documentation.

Recipe 17.17. Encrypting web.config Information

Problem

You need to encrypt data within a web.config file programmatically.

Solution

To encrypt data within a web.config file section, use the following method:

 public static void EncryptWebConfigData(string appPath,
 string protectedSection,
 string dataProtectionProvider)
 {
 System.Configuration.Configuration webConfig =
 WebConfigurationManager.OpenWebConfiguration(appPath);
 ConfigurationSection webConfigSection = webConfig.GetSection(protectedSection);

 if (!webConfigSection.SectionInformation.IsProtected)
 {
 webConfigSection.SectionInformation.ProtectSection(dataProtectionProvider);
 webConfig.Save();
 }
 }

To decrypt data within a web.config file section, use the following method:

 public static void DecryptWebConfigData(string appPath, string protectedSection)
 {
 System.Configuration.Configuration webConfig =
 WebConfigurationManager.OpenWebConfiguration(appPath);
 ConfigurationSection webConfigSection = webConfig.GetSection(protectedSection);

 if (webConfigSection.SectionInformation.IsProtected)
 {
 webConfigSection.SectionInformation.UnprotectSection();
 webConfig.Save();
 }
 }

You will need to add the System.Web and System.Configuration DLLs to your project before this code
will compile.

Discussion

To encrypt data, you can call the EncryptWebConfigData method with the following arguments:

 EncryptWebConfigData("/WebApplication1", "appSettings",
 "DataProtectionConfigurationProvider");

The first argument is the virtual path to the web application, the second argument is the section that
you want to encrypt, and the last argument is the data protection provider that you want to use to
encrypt the data.

The EncryptWebConfigData method uses the virtual path passed into it to open the web.config file.
This is done using the OpenWebConfiguration static method of the WebConfigurationManager class:

 System.Configuration.Configuration webConfig =
 WebConfigurationManager.OpenWebConfiguration(appPath);

This method returns a System.Configuration.Configuration object, which you use to get the section
of the web.config file that you wish to encrypt. This is accomplished through the GetSection method:

 ConfigurationSection webConfigSection = webConfig.GetSection(protectedSection);

This method returns a ConfigurationSection object that you can use to encrypt the section. This is
done through a call to the ProtectSection method:

 webConfigSection.SectionInformation.ProtectSection(dataProtectionProvider);

The dataProtectionProvider argument is a string identifying which data protection provider you want
to use to encrypt the section information. The two available providers are
DpapiProtectedConfigurationProvider and RsaProtectedConfigurationProvider. The
DpapiProtectedConfigurationProvider class makes use of the Data Protection API (DPAPI) to encrypt
and decrypt data. The RsaProtectedConfigurationProvider class makes use of the
RsaCryptoServiceProvider class in the .NET Framework to encrypt and decrypt data.

The final step to encrypting the section information is to call the Save method of the
System.Configuration.Configuration object. This saves the changes to the web.config file. If this
method is not called, the encrypted data will not be saved.

To decrypt data within a web.config file, you can call the DecryptWebConfigData method with the
following parameters:

 DecryptWebConfigData("/WebApplication1", "appSettings");

The first argument is the virtual path to the web application; the second argument is the section that
you want to encrypt.

The DecryptWebConfigData method operates very similarly to the EncryptWebConfigData method,
except that it calls the UnprotectSection method to decrypt the encrypted data in the web.config file:

 webConfigSection.SectionInformation.UnprotectSection();

If you encrypt data in the web.config file using this technique, the data will automatically be
decrypted when the web application accesses the encrypted data in the web.config file.

See Also

See the "System.Configuration.Configuration Class" topic in the MSDN documentation.

Recipe 17.18. Obtaining the Full Reason a
SecurityException Was Thrown

Problem

You need more information as to why a SecurityException was thrown.

Solution

Use the new properties available on the SecurityException object, shown in Table 17-2.

Table 17-2. SecurityException Properties

Property Description

Action

This property returns a SecurityAction enumeration value indicating
the cause of the security check failure. Possible values can be any of
the following:

 Assert

 Demand

 DemandChoice

 Deny

 InheritanceDemand

 InheritanceDemandChoice

 LinkDemand

 LinkDemandChoice

 PermitOnly

 RequestMinimum

 RequestOptional

 RequestRefuseusing

Property Description

Data An IDictionary of user-defined key-value pairs.

Demanded

Returns the permission(s) that caused the Demandto fail. The
returned object needs to be cast to a Permission, PermissionSet, or
PermissionSetCollection type in order to access its information. You
can use the is keyword to determine which one of these types this
property returned.

DenySetInstance

Returns the denied permission(s) that caused the Demand to fail. This
property contains a value whenever a Deny higher up in the stack
causes a Demand to fail. The returned object needs to be cast to a
Permission, PermissionSet, or PermissionSetCollection type in
order to access its information. You can use the is keyword to
determine which one of these types this property returned.

FailedAssemblyInfo
Returns an AssemblyName object for the assembly where this exception
occurred (i.e., the assembly where the Demand that failed was called).

FirstPermissionThatFailed

Returns an IPermission object of the first permission that failed. This
is useful when several permissions in a permission set were demanded
at one time. This property identifies which permission caused the
exception to occur.

Method

Returns a MethodInfo object for the method where this exception
originated. If the cause of the exception was due to a Deny or
PermitOnly, the method containing the Deny or PermitOnly will be
returned by this property. From this object you can also obtain
information on the type and assembly that contain this method.

PermitOnlySetInstance

Returns the permission(s) that were set by a PermitOnly at the point
where the security exception was thrown. The returned object needs
to be cast to a Permission, PermissionSet, or
PermissionSetCollection type in order to access its information. You
can use the is keyword to determine which one of these types this
property returned.

URL
Returns a string representing the URL of the assembly where this
exception originated.

Zone

Returns a SecurityZone enumeration value indicating the zone of the
assembly where this exception originated. Possible values can be any
of the following:

 Internet

 Intranet

 MyComputer

 NoZone

 trusted

 UnTRusted

Data An IDictionary of user-defined key-value pairs.

Demanded

Returns the permission(s) that caused the Demandto fail. The
returned object needs to be cast to a Permission, PermissionSet, or
PermissionSetCollection type in order to access its information. You
can use the is keyword to determine which one of these types this
property returned.

DenySetInstance

Returns the denied permission(s) that caused the Demand to fail. This
property contains a value whenever a Deny higher up in the stack
causes a Demand to fail. The returned object needs to be cast to a
Permission, PermissionSet, or PermissionSetCollection type in
order to access its information. You can use the is keyword to
determine which one of these types this property returned.

FailedAssemblyInfo
Returns an AssemblyName object for the assembly where this exception
occurred (i.e., the assembly where the Demand that failed was called).

FirstPermissionThatFailed

Returns an IPermission object of the first permission that failed. This
is useful when several permissions in a permission set were demanded
at one time. This property identifies which permission caused the
exception to occur.

Method

Returns a MethodInfo object for the method where this exception
originated. If the cause of the exception was due to a Deny or
PermitOnly, the method containing the Deny or PermitOnly will be
returned by this property. From this object you can also obtain
information on the type and assembly that contain this method.

PermitOnlySetInstance

Returns the permission(s) that were set by a PermitOnly at the point
where the security exception was thrown. The returned object needs
to be cast to a Permission, PermissionSet, or
PermissionSetCollection type in order to access its information. You
can use the is keyword to determine which one of these types this
property returned.

URL
Returns a string representing the URL of the assembly where this
exception originated.

Zone

Returns a SecurityZone enumeration value indicating the zone of the
assembly where this exception originated. Possible values can be any
of the following:

 Internet

 Intranet

 MyComputer

 NoZone

 trusted

 UnTRusted

Discussion

These new properties on the SecurityException class provide much more insight into what caused
the exception to be thrown. For example, if you think a Demand has failed, you can examine the
Action property to determine that it was in fact the Demand. Next you can use the Demanded property
to find out exactly what permission(s) the Demand attempted to demand. You can compare this to the
GrantedSet property, which contains the permission(s) that were granted to the assembly. Now that
you know what caused the Demand to fail, you can use the Method, FailedAssemblyInfo, and URL
properties to determine where the failure occurred.

The Data property can be a very useful property to a developer. This property contains key-value
pairs that the developer creates and fills with information concerning why this exception occurred. In
this property, you can place variable names and the data they contained at the time of the exception.
This can give you even more clues as to why this exception was thrown. See Recipe 7.18 for more
information on the Exception.Data property.

See Also

See the "SecurityException" topic in the MSDN documentation.

Recipe 17.19. Achieving Secure Unicode Encoding

Problem

You want to make sure that your UnicodeEncoding or UTF8Encoding class detects any errors, such as
an invalid sequence of bytes.

Solution

Use the constructor for the UnicodeEncoding class that accepts three parameters:

 UnicodeEncoding encoding = new UnicodeEncoding(false, true, true);

Or use the constructor for the UTF8Encoding class that accepts two parameters:

 UTF8Encoding encoding = new UTF8Encoding(true, true);

Discussion

The final argument to both these constructors should be TRue. This turns on error detection for this
class. Error detection will help when an attacker somehow is able to access and modify a Unicode-or
a UTF8-encoded stream of characters. If the attacker is not careful she can invalidate the encoded
stream. If error detection is turned on, it will be a first defense in catching these invalid encoded
streams.

When error detection is turned on, errors such as the following are dealt with by throwing an
ArgumentException:

Leftover bytes that do not make up a complete encoded character sequence exist.

An invalid encoded start character was detected. For example, a UTF8 character does not fit
into one of the following classes: Single-Byte, Double-Byte, Three-Byte, Four-Byte, Five-Byte,
or Six-Byte.

Extra bits are found after processing an extra byte in a multibyte sequence.

The leftover bytes in a sequence could not be used to create a complete character.

A high surrogate value is not followed by a low surrogate value.

In the case of the GetBytes method, the byte[] that is used to hold the resulting bytes is not
large enough.

In the case of the GetChars method, the char[] that is used to hold the resulting characters is
not large enough.

If you use a constructor other than the one shown in this recipe or if you set the last parameter in
this constructor to false, any errors in the encoding sequence are ignored and no exception is
thrown.

See Also

See the "UnicodeEncoding Class" and "UTF8Encoding Class" topic in the MSDN documentation.

Recipe 17.20. Obtaining a Safer File Handle

Problem

You want more security when manipulating an unmanaged file handle than a simple IntPtr can
provide.

Solution

Use the Microsoft.Win32.SafeHandles.SafeFileHandle object to wrap an existing unmanaged file
handle:

 public static void WriteToFileHandle(IntPtr hFile)
 {
 // Wrap our file handle in a safe handle wrapper object.
 using (Microsoft.Win32.SafeHandles.SafeFileHandle safeHFile =
 new Microsoft.Win32.SafeHandles.SafeFileHandle(hFile, true))
 {
 // Open a FileStream object using the passed-in safe file handle.
 using (FileStream fileStream = new FileStream(safeHFile,
 FileAccess.ReadWrite))
 {
 // Flush before we start to clear any pending unmanaged actions.
 fileStream.Flush();

 // Operate on file here.
 string line = "Using a safe file handle object";

 // Write to the file.
 byte[] bytes = Encoding.ASCII.GetBytes(line);
 fileStream.Write(bytes,0,bytes.Length);
 }
 }
 // Note that the hFile handle is invalid at this point.
 }

The SafeFileHandle constructor takes two arguments. The first is an IntPtr that contains a handle to
an unmanaged resource. The second argument is a Boolean value, where true indicates that the
handle will always be released during finalization and false indicates that the safeguards that force
the handle to be released during finalization are turned off. Unless you have an extremely good

reason to turn off these safeguards, it is recommended that you always set this Boolean value to
true.

Discussion

A SafeFileHandle object contains a single handle to an unmanaged file resource. This class has two
major benefits over using an IntPtr to store a handlecritical finalization and prevention of handle
recycling attacks. The SafeFileHandle is seen by the garbage collector as a critical finalizer, due to
the fact that one of the SafeFileHandle's base classes is CriticalFinalizerObject. The garbage
collector separates finalizers into two categories: critical and noncritical. The noncritical finalizers are
run first, followed by the critical finalizers. If a FileStream's finalizer flushes any data, it can assume
that the SafeFileHandle object is still valid, because the SafeFileHandle finalizer is guaranteed to run
after the FileStream's.

The Close method on the FileStream object will also close its underlying
SafeFileHandle object.

Since the SafeFileHandle falls under critical finalization, it means that the underlying unmanaged
handle is always released (i.e., the SafeFileHandle.ReleaseHandle method is always called), even in
situations in which the appdomain is corrupted and/or shutting down or the thread is being aborted.
This will prevent resource handle leaks.

The SafeFileHandle object also helps to prevent handle recycling attacks. The operating system
aggressively tries to recycle handles, so it is possible to close one handle and open another soon
afterward and get the same value for the new handle. One way an attacker will take advantage of
this is by forcing an accessible handle to close on one thread while it is possibly still being used on
another in the hope that the handle will be recycled quickly and used as a handle to a new resource,
possibly one that the attacker does not have permission to access. If the application still has this
original handle and is actively using it, data corruption could be an issue.

Since this class inherits from the SafeHandleZeroOrMinusOneIsInvalid class, a handle value of zero or
minus one is considered an invalid handle.

See Also

See the "Microsoft.Win32.SafeHandles.SafeFileHandle Class" topic in the MSDN documentation.

Chapter 18. Threading and
Synchronization

Introduction

Recipe 18.1. Creating Per-Thread Static Fields

Recipe 18.2. Providing Thread-Safe Access to Class Members

Recipe 18.3. Preventing Silent Thread Termination

Recipe 18.4. Polling an Asynchronous Delegate

Recipe 18.5. Timing out an Asynchronous Delegate

Recipe 18.6. Being Notified of the Completion of an Asynchronous Delegate

Recipe 18.7. Determining Whether a Request for a Pooled Thread Will Be Queued

Recipe 18.8. Configuring a Timer

Recipe 18.9. Storing Thread-Specific Data Privately

Recipe 18.10. Granting Multiple Access to Resources with a Semaphore

Recipe 18.11. Synchronizing Multiple Processes with the Mutex

Recipe 18.12. Using Events to Make Threads Cooperate

Recipe 18.13. Get the Naming Rights for Your Events

Recipe 18.14. Performing Atomic Operations Among Threads

Introduction

A thread represents a single flow of execution logic in a program. Some programs never need more
than a single thread to execute efficiently, but many do, and that is what this chapter is about.
Threading in .NET allows you to build responsive and efficient applications. Many applications have a
need to perform multiple actions at the same time (such as user interface interaction and processing
data) and threading provides the capability to achieve this. Being able to have your application
perform multiple tasks is a very liberating and yet complicating factor in your application design.
Once you have multiple threads of execution in your application, you need to start thinking about
what data in your application needs to be protected from multiple accesses, what data could cause
threads to develop an interdependency that could lead to deadlocking (Thread A has a resource that
Thread B is waiting for and Thread B has a resource that Thread A is waiting for), and how to store
data you want to associate with the individual threads. You will explore some of these issues to help
you take advantage of this wonderful capability of the .NET Framework. You will also see the areas
where you need to be careful and items to keep in mind while designing and creating your
multithreaded application.

Recipe 18.1. Creating Per-Thread Static Fields

Problem

Static fields, by default, are shared between threads within an application domain. You need to allow
each thread to have its own nonshared copy of a static field, so that this static field can be updated
on a per-thread basis.

Solution

Use ThreadStaticAttribute to mark any static fields as not shareable between threads:

 using System;
 using System.Threading;

 public class Foo
 {
 [ThreadStaticAttribute()]
 public static string bar = "Initialized string";
 }

Discussion

By default, static fields are shared between all threads that access these fields in the same
application domain. To see this, you'll create a class with a static field called bar and a static method
to access and display the value contained in this field:

 using System;
 using System.Threading;

 public class ThreadStaticField
 {
 public static string bar = "Initialized string";

 public static void DisplayStaticFieldValue()
 {
 string msg =
 string.Format("{0} contains static field value of: {1}",

 Thread.CurrentThread.GetHashCode(),
 ThreadStaticField.bar);
 Console.WriteLine(msg);
 }
 }

Next, create a test method that accesses this static field both on the current thread and on a newly
spawned thread:

 public static void TestStaticField()
 {
 ThreadStaticField.DisplayStaticFieldValue();

 Thread newStaticFieldThread =
 new Thread(ThreadStaticField.DisplayStaticFieldValue);

 newStaticFieldThread.Start();

 ThreadStaticField.DisplayStaticFieldValue();
 }

This code displays output that resembles the following:

 9 contains static field value of: Initialized string
 10 contains static field value of: Initialized string
 9 contains static field value of: Initialized string

In the preceding example, the current thread's hash value is 9 and the new thread's hash value is 10.
These values will vary from system to system. Notice that both threads are accessing the same static
bar field. Next, add the ThreadStaticAttribute to the static field:

 public class ThreadStaticField
 {

 [ThreadStaticAttribute()]
 public static string bar = "Initialized string";

 public static void DisplayStaticFieldValue()
 {
 string msg =
 string.Format("{0} contains static field value of: {1}",
 Thread.CurrentThread.GetHashCode(),
 ThreadStaticField.bar);

 Console.WriteLine(msg);
 }
 }

Now, output resembling the following is displayed:

 9 contains static field value of: Initialized string
 10 contains static field value of:
 9 contains static field value of: Initialized string

Notice that the new thread returns a null for the value of the static bar field. This is the expected
behavior. The bar field is initialized only in the first thread that accesses it. In all other threads, this
field is initialized to null. Therefore, it is imperative that you initialize the bar field in all threads
before it is used.

Remember to initialize any static field that is marked with
ThreadStaticAttribute before it is used in any thread. That is, this field should
be initialized in the method passed in to the ThreadStart delegate. You should
make sure to not initialize the static field using a field initializer as shown in the
prior code, since only one thread gets to see that initial value.

The bar field is initialized to the "Initialized string" string literal before it is used in the first thread
that accesses this field. In the previous test code, the bar field was accessed first, and, therefore, it
was initialized, in the current thread. Suppose you were to remove the first line of the
TestStaticField method, as shown here:

 public static void TestStaticField()
 {

 // ThreadStaticField.DisplayStaticFieldValue();
 Thread newStaticFieldThread =
 new Thread(ThreadStaticField.DisplayStaticFieldValue);
 newStaticFieldThread.Start();

 ThreadStaticField.DisplayStaticFieldValue();
 }

This code now displays similar output to the following:

 10 contains static field value of: Initialized string
 9 contains static field value of:

The current thread does not access the bar field first and therefore does not initialize it. However,
when the new thread accesses it first, it does initialize it.

Note that adding a static constructor to initialize the static field marked with this attribute will still
follow the same behavior. Static constructors are executed only one time per application domain.

See Also

See the "ThreadStaticAttribute Attribute" and "Static Modifier (C#)" topics in the MSDN
documentation.

Recipe 18.2. Providing Thread-Safe Access to Class
Members

Problem

You need to provide thread-safe access through accessor functions to an internal member variable.

The following NoSafeMemberAccess class shows three methods: ReadNumericField,
IncrementNumericField, and ModifyNumericField. While all of these methods access the internal
numericField member, the access is currently not safe for multithreaded access:

 public static class NoSafeMemberAccess
 {
 private static int numericField = 1;

 public static void IncrementNumericField()
 {
 ++numericField;
 }

 public static void ModifyNumericField(int newValue)
 {
 numericField = newValue;
 }

 public static int ReadNumericField()
 {
 return (numericField);
 }
 }

Solution

NoSafeMemberAccess could be used in a multithreaded application, and therefore it must be made
thread-safe. Consider what would occur if multiple threads were calling the IncrementNumericField
method at the same time. It is possible that two calls could occur to IncrementNumericField while the
numericField is updated only once. In order to protect against this, you will modify this class by
creating an object that you can lock against in critical sections of the code:

 public static class SaferMemberAccess
 {

 private static int numericField = 1;

 private static object syncObj = new object();

 public static void IncrementNumericField()
 {

 lock(syncObj)
 {
 ++numericField;

 }
 }

 public static void ModifyNumericField(int newValue)
 {

 lock(syncObj)
 {
 numericField = newValue;

 }
 }

 public static int ReadNumericField()
 {

 lock (syncObj)
 {
 return (numericField);

 }
 }
 }

Using the lock statement on the syncObj object lets you synchronize access to the numericField
member. This now makes all three methods safe for multithreaded access.

Discussion

Marking a block of code as a critical section is done using the lock keyword. The lock keyword should
not be used on a public type or on an instance out of the control of the program as this can
contribute to deadlocks. Examples of this are using the "this" pointer, the type object for a class
(typeof(MyClass)), or a string literal ("MyLock"). If you are attempting to protect code in only public

static methods, the System.Runtime.CompilerServices.MethodImpl attribute could also be used for
this purpose with the MethodImplOption.Synchronized value:

 [MethodImpl (MethodImplOptions.Synchronized)]
 public static void MySynchronizedMethod()
 {
 }

There is a problem with synchronization using an object such as syncObj in the SaferMemberAccess
example. If you lock an object or type that can be accessed by other objects within the application,
other objects may also attempt to lock this same object. This will manifest itself in poorly written
code that locks itself, such as the following code:

 public class DeadLock
 {
 public void Method1()
 {
 lock(this)
 {
 // Do something.
 }
 }
 }

When Method1 is called, it locks the current DeadLock object. Unfortunately, any object that has
access to the DeadLock class may also lock it. This is shown here:

 using System;
 using System.Threading;

 public class AnotherCls
 {
 public void DoSomething()
 {
 DeadLock deadLock = new DeadLock();
 lock(deadLock)
 {
 Thread thread = new Thread(deadLock.Method1);
 thread.Start();

 // Do some time-consuming task here.
 }
 }
 }

The DoSomething method obtains a lock on the deadLock object and then attempts to call the Method1
method of the deadLock object on another thread, after which a very long task is executed. While the
long task is executing, the lock on the deadLock object prevents Method1 from being called on the
other thread. Only when this long task ends, and execution exits the critical section of the
DoSomething method, will the Method1 method be able to acquire a lock on the this object. As you can
see, this can become a major headache to track down in a much larger application.

Jeffrey Richter has come up with a relatively simple method to remedy this situation, which he details
quite clearly in the article "Safe Thread Synchronization" in the January 2003 issue of MSDN
Magazine. His solution is to create a private field within the class on which to synchronize. Only the
object itself can acquire this private field; no outside object or type may acquire it. This solution is
also now the recommended practice in the MSDN documentation for the lock keyword. The DeadLock
class can be rewritten, as follows, to fix this problem:

 public class DeadLock
 {
 private object syncObj = new object();

 public void Method1()
 {
 lock(syncObj)
 {
 // Do something.
 }
 }
 }

Now in the DeadLock class, you are locking on the internal syncObj, while the DoSomething method
locks on the DeadLock class instance. This resolves the deadlock condition, but the DoSomething
method still should not lock on a public type. Therefore, change the AnotherCls class like so:

 public class AnotherCls
 {
 private object deadLockSyncObj = new object();

 public void DoSomething()
 {
 DeadLock deadLock = new DeadLock();
 lock(deadLockSyncObj)
 {
 Thread thread = new Thread(deadLock.Method1);
 thread.Start();

 // Do some time-consuming task here.
 }
 }

 }

Now the AnotherCls class has an object of its own to protect access to the DeadLock class instance in
DoSomething instead of locking on the public type.

To clean up your code, you should stop locking any objects or types except for the synchronization
objects that are private to your type or object, such as the syncObj in the fixed DeadLock class. This
recipe makes use of this pattern by creating a static syncObj object within the SaferMemberAccess
class. The IncrementNumericField, ModifyNumericField, and ReadNumericField methods use this
syncObj to synchronize access to the numericField field. Note that if you do not need a lock while the
numericField is being read in the ReadNumericField method, you can remove this lock block and
simply return the value contained in the numericField field.

Minimizing the number of critical sections within your code can significantly
improve performance. Use what you need to secure resource access, but no
more.

If you require more control over locking and unlocking of critical sections, you might want to try using
the overloaded static Monitor.TryEnter methods. These methods allow more flexibility by introducing
a timeout value. The lock keyword will attempt to acquire a lock on a critical section indefinitely.
However, with the TRyEnter method, you can specify a timeout value in milliseconds (as an integer)
or as a TimeSpan structure. The tryEnter methods return true if a lock was acquired and false if it
was not. Note that the overload of the tryEnter method that accepts only a single parameter does
not block for any amount of time. This method returns immediately, regardless of whether the lock
was acquired.

The updated class using the Monitor methods is shown in Example 18-1.

Example 18-1. Using Monitor methods

using System;
using System.Threading;

public static class MonitorMethodAccess
{
 private static int numericField = 1;
 private static object syncObj = new object();

 public static object SyncRoot
 {
 get { return syncObj; }
 }

 public static void IncrementNumericField()
 {

 if (Monitor.TryEnter(syncObj, 250))
 {
 try
 {
 ++numericField;
 }
 finally
 {
 Monitor.Exit(syncObj);
 }
 }
 }

 public static void ModifyNumericField(int newValue)
 {
 if (Monitor.TryEnter(syncObj, 250))
 {
 try
 {
 numericField = newValue;
 }
 finally
 {
 Monitor.Exit(syncObj);
 }
 }
 }

 public static int ReadNumericField()
 {
 if (Monitor.TryEnter(syncObj, 250))
 {
 try
 {
 return (numericField);
 }
 finally
 {
 Monitor.Exit(syncObj);
 }
 }

 return (-1);
 }
}

Note that with the tryEnter methods, you should always check to see whether the lock was in fact
acquired. If not, your code should wait and try again or return to the caller.

You might think at this point that all of the methods are thread-safe. Individually, they are, but what
if you are trying to call them and you expect synchronized access between two of the methods? If
ModifyNumericField and ReadNumericField are used one after the other by Class 1 on Thread 1 at the
same time Class 2 is using these methods on Thread 2, locking or Monitor calls will not prevent Class
2 from modifying the value before Thread 1 reads it. Here is a series of actions that demonstrates
this:

Class 1 Thread 1

Calls ModifyNumericField with 10

Class 2 Thread 2

Calls ModifyNumericField with 15

Class 1 Thread 1

Calls ReadNumericField and gets 15, not 10

Class 2 Thread 2

Calls ReadNumericField and gets 15, which it expected

In order to solve this problem of synchronizing reads and writes, the calling class needs to manage
the interaction. The external class can accomplish this by using the Monitor class to establish a lock
on the exposed synchronization object SyncRoot from MonitorMethodAccess, as shown here:

 int num = 0;
 if(Monitor.TryEnter(MonitorMethodAccess.SyncRoot,250))
 {
 MonitorMethodAccess.ModifyNumericField(10);
 num = MonitorMethodAccess.ReadNumericField();
 Monitor.Exit(MonitorMethodAccess.SyncRoot);
 }
 Console.WriteLine(num);

See Also

See the "Lock Statement," "Thread Class," and "Monitor Class" topics in the MSDN documentation;
see the "Safe Thread Synchronization" article in the January 2003 issue of MSDN Magazine.

Recipe 18.3. Preventing Silent Thread Termination

Problem

An exception thrown in a spawned worker thread will cause this thread to be silently terminated if the
exception is unhandled. You need to make sure all exceptions are handled in all threads. If an
exception happens in this new thread, you want to handle it and be notified of its occurrence.

Solution

You must add exception handling to the method that you pass to the ThreadStart delegate with a
try-catch, try-finally, or try-catch-finally block. The code to do this is shown in Example 18-2
in bold.

Example 18-2. Preventing silent thread termination

using System;
using System.Threading;

public class MainThread
{
 public void CreateNewThread()
 {
 // Spawn new thread to do concurrent work.
 Thread newWorkerThread = new Thread(Worker.DoWork);
 newWorkerThread.Start();
 }
}

public class Worker
{
 // Method called by ThreadStart delegate to do concurrent work
 public static void DoWork ()
 {
 try
 {
 // Do thread work here.
 }
 catch
 {

 // Handle thread exception here.
 // Do not re-throw exception.
 }
 finally
 {
 // Do thread cleanup here.
 }
 }
}

Discussion

If an unhandled exception occurs in the main thread of an application, the main thread terminates,
along with your entire application. An unhandled exception in a spawned worker thread, however, will
terminate only that thread. This will happen without any visible warnings, and your application will
continue to run as if nothing happened.

Simply wrapping an exception handler around the Start method of the THRead class will not catch the
exception on the newly created thread. The Start method is called within the context of the current
thread, not the newly created thread. It also returns immediately once the thread is launched, so it
isn't going to wait around for the thread to finish. Therefore, the exception thrown in the new thread
will not be caught since it is not visible to any other threads.

If the exception is rethrown from the catch block, the finally block of this structured exception
handler will still execute. However, after the finally block is finished, the rethrown exception is, at
that point, rethrown. The rethrown exception cannot be handled and the thread terminates. If there
is any code after the finally block, it will not be executed, since an unhandled exception occurred.

Never rethrow an exception at the highest point in the exception-handling
hierarchy within a thread. Since no exception handlers can catch this rethrown
exception, it will be considered unhandled and the thread will terminate after all
finally blocks have been executed.

What if you use the THReadPool and QueueUserWorkItem? This method will still help you because you
added the handling code that will execute inside the thread. Just make sure you have the finally
block set up so that you can notify yourself of exceptions in other threads as shown earlier.

In order to provide a last-chance exception handler for your WinForms application, you need to hook
up to two separate events. The first event is the
System.appdomain.CurrentDomain.UnhandledException event, which will catch all unhandled
exceptions in the current appdomain on worker threads; it will not catch exceptions that occur on the
main UI thread of a WinForms application. See Recipe 7.10 for more information on the
System.appdomain.UnhandledException event. In order to catch those, you also need to hook up to
the System.Windows.Forms.Application.ThreadException, which will catch unhandled exceptions in
the main UI thread. See Recipe 7.20 for more information about the THReadException event.

See Also

See the "Thread Class" and "Exception Class" topics in the MSDN documentation.

Recipe 18.4. Polling an Asynchronous Delegate

Problem

While an asynchronous delegate is executing, you need to continuously poll it to see whether it has
completed. This ability is useful when you need to monitor the length of time it takes the
asynchronous delegate to execute. It can also be helpful if you need to monitor other objects in the
system in parallel with this asynchronous delegate, possibly to determine which object finishes first,
second, third, and so on. It can also be useful when performing a continuous task, such as displaying
an indicator to the user that the asynchronous operation is still running.

Solution

Use the IsCompleted property of the IAsyncResult interface to determine when the asynchronous call
has completed. Note that the BeginInvoke method call on the delegate passes null for the callback
setup parameters. Example 18-3 shows how this is accomplished.

Example 18-3. Polling an asynchronous delegate

using System;
using System.Threading;

public class AsyncAction
{
 public void PollAsyncDelegate()
 {
 // Set up the delegate.
 AsyncInvoke method1 = TestAsyncInvoke.Method1;
 // Since we are not using a callback here, we pass null for the
 // callback and null for the object data for the callback.
 Console.WriteLine("Calling BeginInvoke on Thread {0}",
 Thread.CurrentThread.ManagedThreadId);
 IAsyncResult asyncResult = method1.BeginInvoke(null, null);

 Console.WriteLine("Starting Polling on Thread {0}",
 Thread.CurrentThread.ManagedThreadId);
 while (!asyncResult.IsCompleted)
 {
 // Give up the CPU for 1 second.
 Thread.Sleep(1000);

 Console.Write('.');
 }
 Console.WriteLine("Finished Polling on Thread {0}",
 Thread.CurrentThread.ManagedThreadId);

 try
 {
 int retVal = method1.EndInvoke(asyncResult);
 Console.WriteLine("retVal: " + retVal);
 }
 catch (Exception e)
 {
 Console.WriteLine(e.ToString());
 }
 }
}

The following code defines the AsyncInvoke delegate and the asynchronously invoked static method
TestAsyncInvoke.Method1:

 public delegate int AsyncInvoke();

 public class TestAsyncInvoke
 {
 public static int Method1()
 {
 Console.WriteLine("Invoked Method1 on Thread {0}",
 Thread.CurrentThread.ManagedThreadId);
 return (1);
 }
 }

To run the asynchronous invocation, create an instance of the AsyncAction class and call the
PollAsyncDelegate method like so:

 AsyncAction aa = new AsyncAction();
 aa.PollAsyncDelegate();

The output for this code is shown next. Note that the Method1 thread ID is different:

 Calling BeginInvoke on Thread 9
 Starting Polling on Thread 9
 Invoked Method1 on Thread 10

 .Finished Polling on Thread 9
 retVal: 1

Discussion

The delegate, AsyncInvoke, is invoked asynchronously using its BeginInvoke method. The BeginInvoke
method returns an IAsyncResult object, which allows access to the result information from an
asynchronous operation.

If the delegate accepts a string and an int, in this order, the BeginInvoke method is defined as this:

 public IAsyncResult BeginInvoke(string s, int i, AsyncCallback callback,

 object state)

For this recipe, the method that the delegate will call takes no arguments, and the callback and
state parameters are set to null. The callback parameter could call back at completion into the

code that invoked it, but for this example, it is a no-op.

To poll for the completion of the method1 delegate, you get the IsCompleted property of the
IAsyncResult object that is returned by the BeginInvoke method. The IsCompleted property returns
TRue if the method1 delegate has completed its operation or false if it has not. This property can be
called continuously within a loop to check whether the delegate has finished.

Once the method1 delegate has finished its asynchronous processing, the results of the operation can
be retrieved through a call to the EndInvoke method. The compiler also creates this method
dynamically, so that the return value of the delegate can be accessed through the EndInvoke
methodas well as any out or ref parameters that the delegate accepts as parameters.

The way that EndInvoke works in general is that it returns an object of the same type as the return
value of the delegate and has the same out and ref parameters as the initial delegate. An EndInvoke
method called on a delegate of the following signature:

 public delegate long Foo(ref int i, out string s, bool b);

will be defined as follows:

 public long EndInvoke(ref int i, out string s, IAsyncResult result)

Notice that the return type is a long and only the ref and out parameters of the original delegate are
in the signature for this method. The EndInvoke method parameters contain only those original

method parameters marked as ref or out. The IAsyncResult (result) is the context handed back
from the initial call to BeginInvoke.

If the asynchronous delegate throws an exception, the only way to obtain that
exception object is through the EndInvoke method. The EndInvoke method
should be wrapped in an exception handler.

Once the while loop of the PollAsyncDelegate method in this recipe is exitedmeaning that the
asynchronous delegate has completedthe EndInvoke method can be safely called to retrieve the
return value of the delegate as well as any ref or out parameter values. If you want to obtain these
values, you must call the EndInvoke method; however, if you do not need any of these values, you
may leave out the call to the EndInvoke method.

See Also

See the "IAsyncResult Interface," "AsyncResult Class," "BeginInvoke Method," and "EndInvoke
Method" topics in the MSDN documentation.

Recipe 18.5. Timing out an Asynchronous Delegate

Problem

You want an asynchronous delegate to operate only within an allowed time span. If it is not finished
processing within this time frame, the operation will time out. If the asynchronous delegate times
out, it must perform any cleanup before the thread it is running on is terminated.

Solution

The WaitHandle.WaitOne method can indicate when an asynchronous operation times out. The code
on the invoking thread needs to periodically wake up to do some work along with timing out after a
specific period of time. Use the approach shown in the following code, which will wake up every 20
milliseconds to do some processing. This method also times out after a specific number of
wait/process cycles (note that this code will actually time out after more than 2 seconds of operation
since work is being done between the wait cycles):

 public class AsyncAction
 {
 public void TimeOutWakeAsyncDelegate()
 {
 // Set up the delegate.
 AsyncInvoke method1 = TestAsyncInvoke.Method1;
 // Since we are not using a callback here, we pass null for the
 // callback and null for the object data for the callback.
 Console.WriteLine("Calling BeginInvoke on Thread {0}",
 Thread.CurrentThread.ManagedThreadId);
 IAsyncResult asyncResult = method1.BeginInvoke(null, null);

 int counter = 0;
 while (counter <= 25 &&
 !asyncResult.AsyncWaitHandle.WaitOne(20, true))
 {
 counter++;
 Console.WriteLine("Processing…");
 }

 if (asyncResult.IsCompleted)
 {
 int retVal = method1.EndInvoke(asyncResult);
 Console.WriteLine("retVal (TimeOut): " + retVal);
 }

 else
 {
 Console.WriteLine("TimedOut");
 }
 }
 }

The following code defines the AsyncInvoke delegate and the asynchronously invoked static method
TestAsyncInvoke.Method1:

 public delegate int AsyncInvoke();

 public class TestAsyncInvoke
 {
 public static int Method1()
 {
 Console.WriteLine("Invoked Method1 on Thread {0}",
 Thread.CurrentThread.ManagedThreadId);
 return (1);
 }
 }

To run the asynchronous invocation, create an instance of the AsyncAction class and call the
TimeOutWakeAsyncDelegate method like so:

 AsyncAction aa1 = new AsyncAction();
 aa1.TimeOutWakeAsyncDelegate();

The output for this code looks like this:

 Calling BeginInvoke on Thread 9
 Invoked Method1 on Thread 10
 retVal (TimeOut): 1

Discussion

The asynchronous delegates in this recipe are created and invoked in the same fashion as the
asynchronous delegate in Recipe 18.4. However, instead of using the IsCompleted property to
determine whether the asynchronous delegate is finished processing, WaitHandle.WaitOne is used.
This method blocks the thread that it is called on either indefinitely or for a specified length of time.

This method will stop blocking the thread when it is signaled by the THReadPool that the thread has
completed or timed out and returns a true indicating that the asynchronous processing is finished. If
the processing is not finished before the allotted time-out value expires, WaitOne returns false. Note
that the WaitOne method that accepts no parameters will block the calling thread indefinitely.

It is usually a better idea to include a time-out value when using the WaitOne
method, as this will prevent the calling thread from being blocked forever if a
deadlock situation occurs (in which case the thread on which the WaitOne
method waits is never signaled) or if the thread running the asynchronous
delegate never returns, such as when entering into an infinite loop.

The TimeOutWakeAsyncDelegate method in this recipe will periodically wake up (after 20 milliseconds)
and perform some task on the calling thread; unlike the TimeOutAsyncDelegate method, which will
continue blocking for the allotted time frame and not wake up. After 25 wait cycles, if the
asynchronous delegate has not finished processing, the while loop will be exited, essentially timing
out the delegate. If the delegate finishes processing before the 25 wait cycles have completed, the
while loop is exited.

The IsCompleted property is checked next to determine whether the asynchronous delegate has
finished its processing at this time. If it has finished, the EndInvoke method is called using the
IAsyncResult from the initial BeginInvoke call to obtain any return value, ref parameter values, or
out parameter values. Otherwise, the delegate has not completed within the allotted time span and
the application should be informed that this thread has timed out.

See Also

See the "WaitOne Method" and "AsyncResult Class" topics in the MSDN documentation.

Recipe 18.6. Being Notified of the Completion of an
Asynchronous Delegate

Problem

You need a way of receiving notification from an asynchronously invoked delegate that it has finished.
However, it must be more flexible than the notification schemes in the previous two recipes (Recipes
18.4 and 18.5). This scheme must allow your code to continue processing without having to
constantly call IsCompleted in a loop or to rely on the WaitOne method. Since the asynchronous
delegate will return a value, you must be able to pass this return value back to the invoking thread.

Solution

Use the BeginInvoke method to start the asynchronous delegate, but use the first parameter to pass
a callback delegate to the asynchronous delegate, as shown in Example 18-4.

Example 18-4. Getting notification on completion of an anonymous
delegate

using System;
using System.Threading;

public class AsyncAction2
{
 public void CallbackAsyncDelegate()
 {
 AsyncCallback callBack = DelegateCallback;

 AsyncInvoke method1 = TestAsyncInvoke.Method1;
 Console.WriteLine("Calling BeginInvoke on Thread {0}",
 Thread.CurrentThread.ManagedThreadId);
 IAsyncResult asyncResult = method1.BeginInvoke(callBack, method1);

 // No need to poll or use the WaitOne method here, so return to the calling
// method.
 return;
 }

 private static void DelegateCallback(IAsyncResult iresult)

 {
 Console.WriteLine("Getting callback on Thread {0}",
 Thread.CurrentThread.ManagedThreadId);
 AsyncResult asyncResult = (AsyncResult)iresult;
 AsyncInvoke method1 = (AsyncInvoke)asyncResult.AsyncDelegate;

 int retVal = method1.EndInvoke(asyncResult);
 Console.WriteLine("retVal (Callback): " + retVal);
 }
}

This callback delegate will call the DelegateCallback method on the thread the method was invoked
on when the asynchronous delegate is finished processing.

The following code defines the AsyncInvoke delegate and the asynchronously invoked static method
TestAsyncInvoke.Method1:

 public delegate int AsyncInvoke();

 public class TestAsyncInvoke
 {
 public static int Method1()
 {
 Console.WriteLine("Invoked Method1 on Thread {0}",
 Thread.CurrentThread.ManagedThreadId);
 return (1);
 }
 }

To run the asynchronous invocation, create an instance of the AsyncAction class and call the
CallbackAsyncDelegate method like so:

 AsyncAction aa2 = new AsyncAction();
 aa2.CallbackAsyncDelegate();

The output for this code is shown next. Note that the thread ID for Method1 is different:

 Calling BeginInvoke on Thread 9
 Invoked Method1 on Thread 10
 Getting callback on Thread 10
 retVal (Callback): 1

Discussion

The asynchronous delegates in this recipe are created and invoked in the same fashion as the
asynchronous delegate in Recipe 18.4. Instead of using the IsCompleted property to determine when
the asynchronous delegate is finished processing (or the WaitOne method to block for a specified time
while the asynchronous delegate continues processing), this recipe uses a callback to indicate to the
calling thread that the asynchronous delegate has finished processing and that its return value, ref
parameter values, and out parameter values are available.

Invoking a delegate in this manner is much more flexible and efficient than simply polling the
IsCompleted property to determine when a delegate finishes processing. When polling this property in
a loop, the polling method cannot return and allow the application to continue processing. A callback
is also better than using a WaitOne method, since the WaitOne method will block the calling thread and
allow no processing to occur. You can break up the WaitOne method into a limited number of wait
cycles as in Recipe 18.5, but this is simply a merging of the polling technique with the WaitOne

operation.

The CallbackAsyncDelegate method in this recipe makes use of the first parameter to the
BeginInvoke method of the asynchronous delegate to pass in another delegate. This contains a
callback method to be called when the asynchronous delegate finishes processing. After calling
BeginInvoke, this method can now return and the application can continue processing; it does not
have to wait in a polling loop or be blocked while the asynchronous delegate is running.

The AsyncInvoke delegate that is passed into the first parameter of the BeginInvoke method is
defined as follows:

 public delegate void AsyncCallback(IAsyncResult ar)

When this delegate is created, as shown here, the callback method passed in, DelegateCallback, will
be called as soon as the asynchronous delegate completes:

 AsyncCallback callBack = new AsyncCallback(DelegateCallback);

DelegateCallback will not run on the same thread as BeginInvoke but rather on a Thread from the
ThreadPool. This callback method accepts a parameter of type IAsyncResult. You can cast this
parameter to an AsyncResult object within the method and use it to obtain information about the
completed asynchronous delegate, such as its return value, any ref parameter values, and any out
parameter values. If the delegate instance that was used to call BeginInvoke is still in scope, you can
just pass the IAsyncResult to the EndInvoke method. In addition, this object can obtain any state
information passed into the second parameter of the BeginInvoke method. This state information can
be any object type.

The DelegateCallback method casts the IAsyncResult parameter to an AsyncResult object and
obtains the asynchronous delegate that was originally called. The EndInvoke method of this
asynchronous delegate is called to process any return value, ref parameters, or out parameters. If

any state object was passed in to the BeginInvoke method's second parameter, it can be obtained
here through the following line of code:

 object state = asyncResult.AsyncState;

See Also

See the "AsyncCallback Delegate" topic in the MSDN documentation.

Recipe 18.7. Determining Whether a Request for a Pooled
Thread Will Be Queued

Problem

Your application will be creating many threads from the thread pool. When creating a thread from
this pool, you want to be informed as to whether a thread in the pool is available or if the request for
a new thread will have to be queued. Basically, you want to know whether a thread is available for
immediate use from the thread pool.

Solution

Use the ThreadPool.GetAvailableThreads method to get the number of worker threads currently
available in the ThreadPool. This allows you to determine whether you should queue another request
to launch a thread via ThreadPool.QueueUserWorkItem or should take an alternate action.

The Main method shown here calls a method (SpawnManyThreads) to spawn lots of threads from the
ThreadPool, then waits for a bit to simulate processing:

 public class TestThreads
 {
 public static void Run()
 {
 SpawnManyThreads();
 // Have to wait here or the background threads in the thread
 // pool would not run before the main thread exits.
 Console.WriteLine("Main Thread waiting to complete…");
 Thread.Sleep(2000);
 Console.WriteLine("Main Thread completing…");
 }

The SpawnManyThreads method launches threads and pauses between each launch to allow the
ThreadPool to register the request and act upon it. The isThreadAvailable method is called with the
parameter set to true to determine whether there is a worker thread available for use in the
THReadPool:

 public static bool SpawnManyThreads()
 {
 try

 {
 for(int i=0;i<500;i++)
 {
 // Have to wait or thread pool never gives out threads to
 // requests.
 Thread.Sleep(100);
 // Check to see if worker threads are available in the pool.
 if(true == IsThreadAvailable(true))
 {
 // Launch thread if queue isn't full.
 Console.WriteLine("Worker Thread was available…");
 ThreadPool.QueueUserWorkItem(ThreadProc,i);
 }
 else
 Console.WriteLine("Worker Thread was NOT available…");
 }
 }
 catch(Exception e)
 {
 Console.WriteLine(e.ToString());
 return false;
 }
 return true;
}

The IsThreadAvailable method calls ThreadPool.GetAvailableThreads to determine whether the
ThreadPool has any available worker threads left. If you pass false as the checkWorkerThreads
parameter, it also sees whether there are any completion port threads available. The
GetAvailableThreads method compares the current number of threads allocated from the pool
against the maximum ThreadPool tHReads. The worker thread maximum is 25 per CPU, regardless of
the number of CPUs, in v1.1 of the CLR. In v2.0 of the CLR, the maximum number of worker threads
is actually settable. The maximum number of worker threads applies to each CPU, so if it is set to 25
on a two-processor machine, the maximum will actually be 50.

 public static bool IsThreadAvailable(bool checkWorkerThreads)
 {
 int workerThreads = 0;
 int completionPortThreads = 0;
 // Get available threads.
 ThreadPool.GetAvailableThreads(out workerThreads,
 out completionPortThreads);

 // Indicate how many work threads are available.
 Console.WriteLine("{0} worker threads available in thread pool.",
 workerThreads);

 if(checkWorkerThreads)
 {
 if(workerThreads > 0)

 return true;
 }
 else // Check completion port threads.
 {
 if(completionPortThreads > 0)
 return true;
 }
 return false;
 }

This is a simple method to call in a threaded fashion:

 static void ThreadProc(Object stateInfo)
 {
 // Show we did something with this thread.
 Console.WriteLine("Thread {0} running…",stateInfo);
 Thread.Sleep(1000);
 }
 }

Discussion

The THReadPool is a great way to perform background tasks without having to manage all aspects of
the thread yourself. It can be handy to know when the ThreadPool itself is going to become a
bottleneck to your application, and the GetAvailableThreads method can help you. However, you
might want to check your application design if you are consistently using this many threads, as you
might be losing performance due to contention or context switching. Queuing up work when the
ThreadPool is full simply queues it up for execution once one of the threads comes free; the request
isn't lost, just postponed.

See Also

See the "ThreadPool Class" topic in the MSDN documentation; see Applied Microsoft.NET Framework
Programming (Wintellect).

Recipe 18.8. Configuring a Timer

Problem

You have one of the following timer configuration needs:

You want to use a timer to call a timer callback method at a fixed time after the timer object
has been created. Once this callback method has been called the first time, you want to call this
same callback method at a specified interval (this interval might be different from the time
interval between the creation of the timer and the first time the timer callback method is
called).

You want to use a timer to call a timer callback method immediately upon creation of the
System.Threading.Timer object, after which the callback method is called at a specified interval.

You want to use a timer to call a timer callback method one time only.

You have been using a System.Threading.Timer object and need to change the intervals at
which its timer callback method is called.

Solution

To fire a System.Threading.Timer after an initial delay, and then at a specified period after that, use
the System.Threading.Timer constructor to set up different times for the initial and following
callbacks, as shown in Example 18-5.

Example 18-5. Configuring a timer

using System;
using System.Threading;

public class TestTimers
{
 public static int count = 0;
 public static Timer timerRef = null;
 private static bool limitHit = false;
 private static object syncRoot = new object();

 public static bool LimitHit
 {

 get
 {
 lock (syncRoot)
 {
 return limitHit;
 }
 }
 set
 {
 lock (syncRoot)
 {

 limitHit = value;
 }
 }
 }
 public static void Run()
 {
 TimerCallback callback = TimerMethod;

 // Create a timer that waits one half second, then invokes
 // the callback every second thereafter.
 Timer timer = new Timer(callback, null,500, 1000);

 // Store a reference to this timer so the callback can use it.
 timerRef = timer;

 // The main thread does nothing until the timer is disposed.
 while (true)
 {
 if (LimitHit == false)
 Thread.Sleep(0);
 else
 break;
 }
 Console.WriteLine("Timer example done.");
 }

 static void TimerMethod(Object state)
 {
 count++;
 if(count == 5)
 {
 LimitHit = true;
 timerRef.Dispose();
 }
 }
}

The previous method showed how to fire the callback after 500 milliseconds. To fire the initial callback
immediately, change the value to zero:

 // Create a timer that doesn't wait, then invokes
 // the callback every second thereafter.
 Timer timer = new Timer(callback, null,0, 1000);

To have the timer call the callback only once, change the constructor to pass Timeout.Infinite for
the second callback interval. You also have to change the current scheme that waits for five callbacks
before disposing of the timer to do it the first time. If you didn't do this, the program will hang, since
the Main function is still waiting for the timer to have Dispose called, but the fifth callback will never
trigger the Dispose call:

 // Create a timer that waits for half a second, then is disposed.
 Timer timer = new Timer(callback, null,500, Timeout.Infinite);

 static void TimerMethod(Object state)
 {
 timerRef.Dispose();
 }

To change the interval of a running System.Threading.Timer, call the Change method specifying the
delay before the next callback and the new callback interval, like this:

 static void TimerMethod(Object state)
 {
 count++;
 if(count == 5)
 {

 timerRef.Change(1000,2000);
 }
 if(count == 10)
 {
 timerRef.Dispose();
 }
 }

This code now checks for the fifth callback and changes the interval from 1 second to 2 seconds. The
sixth callback will happen 1 second after, and then callbacks through 10 will happen 2 seconds apart.

Discussion

One item to be aware of when using System.Threading.Timers and TimerCallbacks is that they are
serviced from the ThreadPool. This means that if you have other work being farmed out to the
ThreadPool in your application, it could be contending with the Timer callbacks for an available worker
thread. The basic timer is enough to serve the earlier scenarios, but if you are doing UI work and
want to use timers, you should investigate the System.Windows.Forms.Timer class. If you are doing
server work, you might also want to look at System.Timers.Timer as well. Both of these classes add
events for when the timers are disposed and when the timer "ticks"; they also add properties that
expose the settings.

See Also

See the "System.Threading.Timer Class," "TimerCallback Delegate," "System.Windows. Forms.Timer
Class," and "System.Timers.Timer" topics in the MSDN documentation.

Recipe 18.9. Storing Thread-Specific Data Privately

Problem

You want to store thread-specific data discovered at runtime. This data should be accessible only to
code running within that thread.

Solution

Use the AllocateDataSlot, AllocateNamedDataSlot, or GetNamedDataSlot method on the Thread class
to reserve a thread local storage (TLS) slot. Using TLS, a large object can be stored in a data slot on
a thread and used in many different methods. This can be done without having to pass the structure
as a parameter.

For this example, a structure called Data here represents a structure that can grow to be very large
in size:

 public class Data
 {
 // Application data is stored here.
 }

Before using this structure, a data slot has to be created in TLS to store the structure.
GetNamedDataSlot is called to get the appDataSlot. Since that doesn't exist, the default behavior for
GetNamedDataSlot is to just create it. The following code creates an instance of the Data structure and
stores it in the data slot named appDataSlot:

 Data appData = new Data();
 Thread.SetData(Thread.GetNamedDataSlot("appDataSlot"), appData);

Whenever this structure is needed, it can be retrieved with a call to THRead.GetData. The following
line of code gets the appData structure from the data slot named appDataSlot:

 Data storedappdata = (Data)Thread.GetData(Thread.GetNamedDataSlot("appDataSlot"));

At this point, the storedappdata structure can be read or modified. After the action has been
performed on the storedappdata structure, storedappdata must be placed back into the data slot
named appDataSlot:

 Thread.SetData(Thread.GetNamedDataSlot("appDataSlot"), appData);

Once the application is finished using this structure, the data slot can be released from memory using
the following method call:

 Thread.FreeNamedDataSlot("appDataSlot");

The HandleClass class in Example 18-6 shows how TLS can be used to store a structure.

Example 18-6. Using TLS to store a structure

using System;
using System.Threading;

public class HandleClass
{
 public static void Main()
 {
 // Create structure instance and store it in the named data slot.
 Data appData = new Data();
 Thread.SetData(Thread.GetNamedDataSlot("appDataSlot"), appData);

 // Call another method that will use this structure.
 HandleClass.MethodB();

 // When done, free this data slot.
 Thread.FreeNamedDataSlot("appDataSlot");
 }

 public static void MethodB()
 {
 // Get the structure instance from the named data slot.
 Data storedappdata = (Data)Thread.GetData(
 Thread.GetNamedDataSlot("appDataSlot"));

 // Modify the Storedappdata structure.
 // When finished modifying this structure, store the changes back
 // into the named data slot.
 Thread.SetData(Thread.GetNamedDataSlot("appDataSlot"),

 storedappdata);

 // Call another method that will use this structure.
 HandleClass.MethodC();
 }

 public static void MethodC()
 {
 // Get the structure instance from the named data slot.
 Data storedappdata =
 (Data)Thread.GetData(Thread.GetNamedDataSlot("appDataSlot"));

 // Modify the storedappdata structure.

 // When finished modifying this structure, store the changes back into
 // the named data slot.
 Thread.SetData(Thread.GetNamedDataSlot("appDataSlot"), storedappdata);
 }
}

Discussion

Thread local storage is a convenient way to store data that is usable across method calls without
having to pass the structure to the method or even without knowledge about where the structure
was actually created.

Data stored in a named TLS data slot is available only to that thread; no other thread can access a
named data slot of another thread. The data stored in this data slot is accessible from anywhere
within the thread. This setup essentially makes this data global to the thread.

To create a named data slot, use the static Thread.GetNamedDataSlot method. This method accepts a
single parameter, name, that defines the name of the data slot. This name should be unique; if a data

slot with the same name exists, then the contents of that data slot will be returned and a new data
slot will not be created. This action occurs silently; there is no exception thrown or error code
available to inform you that you are using a data slot someone else created. To be sure that you are
using a unique data slot, use the Thread.AllocateNamedDataSlot method. This method throws a
System.ArgumentException if a data slot already exists with the same name. Otherwise, it operates
similarly to the GetNamedDataSlot method.

It is interesting to note that this named data slot is created on every thread in the process, not just
the thread that called this method. This fact should not be much more than an inconvenience to you,
though, since the data in each data slot can be accessed only by the thread that contains it. In
addition, if a data slot with the same name was created on a separate thread and you call
GetNamedDataSlot on the current thread with this name, none of the data in any data slot on any
thread will be destroyed.

GetNamedDataSlot returns a LocalDataStoreSlot object that is used to access the data slot. Note that
this class is not creatable through the use of the new keyword. It must be created through one of the
AllocateDataSlot or AllocateNamedDataSlot methods on the Thread class.

To store data in this data slot, use the static Thread.SetData method. This method takes the object
passed in to the data parameter and stores it in the data slot defined by the dataSlot parameter.

The static THRead.GetData method retrieves the object stored in a data slot. This method retrieves a
LocalDataStoreSlot object that is created through the Thread.GetNamedDataSlot method. The
Getdata method then returns the object that was stored in that particular data slot. Note that the
object returned might have to be cast to its original type before it can be used.

The static method Thread.FreeNamedDataSlot will free the memory associated with a named data
slot. This method accepts the name of the data slot as a string and, in turn, frees the memory
associated with that data slot. Remember that when a data slot is created with GetNamedDataSlot, a
named data slot is also created on all of the other threads running in that process. This is not really a
problem when creating data slots with the GetNamedDataSlot method because, if a data slot exists
with this name, a LocalDataStoreSlot object that refers to that data slot is returned, a new data slot
is not created, and the original data in that data slot is not destroyed.

This situation becomes more of a problem when using the FreeNamedDataSlot method. This method
will free the memory associated with the data slot name passed in to it for all threads, not just the
thread that it was called on. Freeing a data slot before all threads have finished using the data within
that data slot can be disastrous to your application.

A way to work around this problem is to not call the FreeNamedDataSlot method at all. When a thread
terminates, all of its data slots in TLS are freed automatically. The side effect of not calling
FreeNamedDataSlot is that the slot is taken up until the garbage collector determines that the thread
the slot was created on has finished and the slot can be freed.

If you know the number of TLS slots you need for your code at compile time, consider using the
ThreadStaticAttribute on a static field of your class to set up TLS-like storage.

See Also

See the "Thread Local Storage and Thread Relative Static Fields," "ThreadStaticAttribute Attribute,"
and "Thread Class" topics in the MSDN documentation.

Recipe 18.10. Granting Multiple Access to Resources with
a Semaphore

Problem

You have a resource you want only a certain number of clients to access at a given time.

Solution

Use a semaphore to enable resource-counted access to the resource. For example, if you have an
Xbox and a copy of Halo2 (the resource) and a development staff eager to blow off some steam (the
clients), you have to synchronize access to the Xbox. Since the Xbox has four controllers, up to four
clients can be playing at any given time. The rules of the house are that when you die, you give up
your controller.

To accomplish this, create a class called Halo2Session with a Semaphore called _Xbox like this:

 public class Halo2Session
 {
 // A semaphore that simulates a limited resource pool
 //
 private static Semaphore _Xbox;

 // Player handles for Xbox
 private static string [] _handles = new string [9]{"Igor",
 "AxeMan",
 "Frosty",
 "Dr. Death",
 "HaPpyCaMpEr",
 "Executioner",
 "FragMan",
 "Beatdown",
 "Stoney"
 };

The _handles array is an array of player names that will be used. In order to get things rolling, you
need to call the Play method, shown in Example 18-7, on the Halo2Session class.

Example 18-7. Play method

public static void Play()
{
 // An Xbox has four controller ports so four people can play at a time.
 // We use 4 as the max and zero to start with as we want players
 // to queue up at first until the Xbox boots and loads the game.
 //
 _Xbox = new Semaphore(0, 4, "Xbox");
 ManualResetEvent GameOver = new ManualResetEvent(false);
 //
 // Nine players log in to play.
 //
 for(int i = 0; i < 9; i++)
 {
 Thread t = new Thread(new ParameterizedThreadStart(XboxPlayer.JoinIn));

 XboxPlayer.Data playerData = new XboxPlayer.Data();
 // Set the handle.
 playerData._handle = _handles[i];
 // Set the game over event.
 playerData._GameOver = GameOver;

 // Put a name on the thread.
 t.Name = _handles[i];
 // Fire up the player with the data.
 t.Start(playerData);
 }

 // Wait for the Xbox to spin up and load Halo2 (3 seconds).
 Console.WriteLine("Xbox initializing…");
 Thread.Sleep(3000);
 Console.WriteLine("Halo2 loaded & ready, allowing 4 players in now…");

 // The Xbox has the whole semaphore count. We call
 // Release(4) to open up four slots and
 // allow the waiting players to enter the Xbox(semaphore)
 // up to four at a time.
 //
 _Xbox.Release(4);

 // Wait for the game to end…
 GameOver.WaitOne();
}

The first thing the Play method does is to create a new semaphore that has a maximum resource
count of 4 and a name of Xbox. This is the semaphore that will be used by all of the player threads to
gain access to the game. A ManualResetEvent called GameOver is created to track when the game has

ended.

 public class XboxPlayer
 {
 public class Data
 {
 public ManualResetEvent _GameOver;
 public string _handle;
 }
 //… more class
 }

To simulate the nine developers, you create nine threads, each with its own XboxPlayer.Data class
instance to contain the player name and a reference to the GameOver ManualResetEvent. The thread
creation is using the new (in the .NET Framework Version 2.0) ParameterizedThreadStart delegate,
which takes the method to execute on the new thread in the constructor, but also allows you to pass
the data object directly to a new overload of the THRead.Start method.

Once the players are in motion, the Xbox "initializes" and then calls Release on the semaphore to
open four slots for player threads to grab onto, then waits until it detects that the game is over from
the firing of the GameOver event.

The players initialize on separate threads and run the JoinIn method, shown in Example 18-8. First
they open the Xbox semaphore by name and get the data that was passed to the thread. Once they
have the semaphore, they call WaitOne to queue up to play. Once the initial four slots are opened or
another player "dies," then the call to WaitOne unblocks and the player "plays" for a random amount
of time, then dies. Once the players are dead, they call Release on the semaphore to indicate their
slot is now open. If the semaphore reaches its maximum resource count, the GameOver event is set.

Example 18-8. JoinIn method

public static void JoinIn(object info)
{
 // Open up the semaphore by name so we can act on it.
 Semaphore Xbox = Semaphore.OpenExisting("Xbox");

 // Get the data object.
 Data data = (Data)info;

 // Each player notifies the Xbox he wants to play
 Console.WriteLine("{0} is waiting to play!", data._handle);

 // They wait on the Xbox (semaphore) until it lets them
 // have a controller.
 Xbox.WaitOne();

 // The Xbox has chosen the player! (Or the semaphore has
 // allowed access to the resource…)
 Console.WriteLine("{0} has been chosen to play. " +
 "Welcome to your doom {0}. >:)", data._handle);

 // Figure out a random value for how long the player lasts.
 System.Random rand = new Random(500);
 int timeTillDeath = rand.Next(100, 1000);

 // Simulate the player as busy playing till they die.
 Thread.Sleep(timeTillDeath);

 // Figure out how they died.
 rand = new Random();
 int deathIndex = rand.Next(6);

 // Notify of the player's passing.
 Console.WriteLine("{0} has {1} and gives way to another player",
 data._handle, _deaths[deathIndex]);

 // If all ports are open, everyone has played and the game is over.
 int semaphoreCount = Xbox.Release();
 if (semaphoreCount == 3)
 {

 Console.WriteLine("Thank you for playing, the game has ended.");
 // Set the GameOver event.
 data._GameOver.Set();
 // Close out the semaphore.
 Xbox.Close();
 }
}

When the Play method is run, output similar to the following is generated:

 Igor is waiting to play!
 AxeMan is waiting to play!
 Frosty is waiting to play!
 Dr. Death is waiting to play!
 HaPpyCaMpEr is waiting to play!
 FragMan is waiting to play!
 Executioner is waiting to play!
 Stoney is waiting to play!
 Beatdown is waiting to play!
 Xbox initializing…
 Halo2 loaded & ready, allowing 4 players in now…
 Frosty has been chosen to play. Welcome to your doom Frosty. >:)
 HaPpyCaMpEr has been chosen to play. Welcome to your doom HaPpyCaMpEr. >:)
 FragMan has been chosen to play. Welcome to your doom FragMan. >:)
 Dr. Death has been chosen to play. Welcome to your doom Dr. Death. >:)
 Frosty has fallen to their death and gives way to another player.
 Executioner has been chosen to play. Welcome to your doom Executioner. >:)
 HaPpyCaMpEr has died of lead poisoning and gives way to another player.
 Beatdown has been chosen to play. Welcome to your doom Beatdown. >:)
 FragMan has shot their own foot and gives way to another player.
 AxeMan has been chosen to play. Welcome to your doom AxeMan. >:)
 Dr. Death has was captured and gives way to another player.
 Stoney has been chosen to play. Welcome to your doom Stoney. >:)
 Executioner has choked on a rocket and gives way to another player.
 Igor has been chosen to play. Welcome to your doom Igor. >:)
 Beatdown has fallen to their death and gives way to another player.
 AxeMan has died of lead poisoning and gives way to another player.
 Stoney has bought the farm and gives way to another player.
 Igor has choked on a rocket and gives way to another player.
 Thank you for playing, the game has ended.

Discussion

Semaphores are a new piece of the Framework in 2.0 and a welcome one. They are primarily used
for resource counting and are available cross-process when named (as they are based on the
underlying kernel semaphore object). Cross-process may not sound too exciting to many .NET
developers until they realize that cross-process also means cross-appdomain. If you are creating
additional appdomains to perform work in, say, for instance, to hold assemblies you are loading
dynamically that you don't want to stick around for the whole life of your main appdomain, the
semaphore can help you keep track of how many are loaded at a time. Being able to control access
up to a certain number of users can be useful in many scenarios (socket programming, custom
thread pools, etc.).

See Also

See the "Semaphore," "ManualResetEvent," and "ParameterizedThreadStart" topics in the MSDN
documentation.

Recipe 18.11. Synchronizing Multiple Processes with the
Mutex

Problem

You have two processes or appdomains that are running code with actions that you need to
coordinate.

Solution

Use a named Mutex as a common signaling mechanism to do the coordination. A named Mutex can be
accessed from both pieces of code even when running in different processes or appdomains.

One situation in which this can be useful is when you are using shared memory to communicate
between processes. The SharedMemoryManager class presented in this recipe will show the named
Mutex in action by setting up a section of shared memory that can be used to pass serializable objects
between processes. The "server" process creates a SharedMemoryManager instance which sets up the
shared memory and then creates the Mutex as the initial owner. The "client" process then also creates
a SharedMemoryManager instance that finds the shared memory and hooks up to it. Once this
connection is established, the "client" process then sets up to receive the serialized objects and waits
until one is sent by waiting on the Mutex the "server" process created. The "server" process then
takes a serializable object, serializes it into the shared memory, and releases the Mutex. It then waits
on it again so that when the "client" is done receiving the object, it can release the Mutex and give
control back to the "server." The "client" process that was waiting on the Mutex then deserializes the
object from the shared memory and releases the Mutex.

In the example, you will send the Contact structure, which looks like this:

 [StructLayout(LayoutKind.Sequential)]
 [Serializable()]
 public struct Contact
 {
 public string _name;
 public int _age;
 }

The "server" process code to send the Contact looks like this:

 // Create the initial shared memory manager to get things set up.

 using(SharedMemoryManager<Contact> sm =
 new SharedMemoryManager<Contact>("Contacts",8092))
 {
 // This is the sender process.

 // Launch the second process to get going.
 string processName = Process.GetCurrentProcess().MainModule.FileName;
 int index = processName.IndexOf("vshost");
 if (index != -1)
 {

 string first = processName.Substring(0, index);
 int numChars = processName.Length - (index + 7);
 string second = processName.Substring(index + 7, numChars);

 processName = first + second;
 }
 Process receiver = Process.Start(
 new ProcessStartInfo(
 processName,
 "Receiver"));

 // Give it 5 seconds to spin up.
 Thread.Sleep(5000);

 // Make up a contact.
 Contact man;
 man._age = 23;
 man._name = "Dirk Daring";

 // Send it to the other process via shared memory.
 sm.SendObject(man);
}

The "client" process code to receive the Contact looks like this:

 // Create the initial shared memory manager to get things set up.
 using(SharedMemoryManager<Contact> sm =
 new SharedMemoryManager<Contact>("Contacts",8092))
 {

 // Get the contact once it has been sent.
 Contact c = (Contact)sm.ReceiveObject();

 // Write it out (or to a database…)
 Console.WriteLine("Contact {0} is {1} years old.",
 c._name, c._age);
 // Show for 5 seconds.
 Thread.Sleep(5000);

 }

The way this usually works is that one process creates a section of shared memory backed by the
paging file using the unmanaged Win32 APIs CreateFileMapping and MapViewOfFile. Currently there is
no purely managed way to do this, so you have to use P/Invoke, as you can see in Example 18-9 in
the constructor code for the SharedMemoryManager and the private SetupSharedMemory method. The
constructor takes a name to use as part of the name of the shared memory and the base size of the
shared memory block to allocate. It is the base size because the SharedMemoryManager has to allocate
a bit extra for keeping track of the data moving through the buffer.

Example 18-9. Constructor and SetupSharedMemory private method

public SharedMemoryManager(string name,int sharedMemoryBaseSize)
{
 if (string.IsNullOrEmpty(name))
 throw new ArgumentNullException("name");

 if (sharedMemoryBaseSize <= 0)
 throw new ArgumentOutOfRangeException("sharedMemoryBaseSize",
 "Shared Memory Base Size must be a value greater than zero");

 // Set name of the region.
 _memoryRegionName = name;
 // Save base size.
 _sharedMemoryBaseSize = sharedMemoryBaseSize;
 // Set up the memory region size.
 _memRegionSize = (uint)(_sharedMemoryBaseSize + sizeof(int));
 // Set up the shared memory section.
 SetupSharedMemory();
}

private void SetupSharedMemory()
{
 // Grab some storage from the page file.
 _handleFileMapping =
 PInvoke.CreateFileMapping((IntPtr)INVALID_HANDLE_VALUE,
 IntPtr.Zero,
 PInvoke.PageProtection.ReadWrite,
 0,
 _memRegionSize,
 _memoryRegionName);
 if (_handleFileMapping == IntPtr.Zero)
 {
 throw new Win32Exception(
 "Could not create file mapping");
 }

 // Check the error status.
 int retVal = Marshal.GetLastWin32Error();
 if (retVal == ERROR_ALREADY_EXISTS)
 {

 // We opened one that already existed.
 // Make the mutex not the initial owner
 // of the mutex since we are connecting
 // to an existing one.
 _mtxSharedMem = new Mutex(false,
 string.Format("{0}mtx{1}",
 typeof(TransferItemType), _memoryRegionName));
 }
 else if (retVal == 0)
 {
 // We opened a new one.
 // Make the mutex the initial owner.
 _mtxSharedMem = new Mutex(true,
 string.Format("{0}mtx{1}",
 typeof(TransferItemType), _memoryRegionName));
 }
 else
 {
 // Something else went wrong.
 throw new Win32Exception(retVal, "Error creating file mapping");
 }

 // Map the shared memory.
 _ptrToMemory = PInvoke.MapViewOfFile(_handleFileMapping,
 FILE_MAP_WRITE,
 0, 0, IntPtr.Zero);
 if (_ptrToMemory == IntPtr.Zero)
 {
 retVal = Marshal.GetLastWin32Error();
 throw new Win32Exception(retVal, "Could not map file view");
 }

 retVal = Marshal.GetLastWin32Error();
 if (retVal != 0 && retVal != ERROR_ALREADY_EXISTS)
 {
 // Something else went wrong.
 throw new Win32Exception(retVal, "Error mapping file view");
 }
}

The code to send an object through the shared memory is contained in the SendObject method,
shown in Example 18-10. First it checks to see if the object being sent is indeed serializable by
checking the IsSerializable property on the type of the object. If the object is serializable, an
integer with the size of the serialized object and the serialized object content are written out to the

shared memory section. Then the Mutex is released to indicate that there is an object in the shared
memory. It then waits on the Mutex again to wait until the "client" has received the object.

Example 18-10. SendObject method

public void SendObject(TransferItemType transferObject)
{
 // Can send only Seralizable objects.
 if (!transferObject.GetType().IsSerializable)
 throw new ArgumentException(
 string.Format("Object {0} is not serializeable.",
 transferObject));
 // Create a memory stream, initialize size.
 using (MemoryStream ms = new MemoryStream())
 {
 // Get a formatter to serialize with.
 BinaryFormatter formatter = new BinaryFormatter();
 try
 {
 // Serialize the object to the stream.
 formatter.Serialize(ms, transferObject);

 // Get the bytes for the serialized object.
 byte[] bytes = ms.GetBuffer();

 // Check that this object will fit.
 if(bytes.Length + sizeof(int) > _memRegionSize)
 {
 string fmt =
 "{0} object instance serialized to {1} bytes " +
 "which is too large for the shared memory region";

 string msg =
 string.Format(fmt,
 typeof(TransferItemType),bytes.Length);

 throw new ArgumentException(msg, "transferObject");
 }

 // Write out how long this object is.
 Marshal.WriteInt32(this._ptrToMemory, bytes.Length);

 // Write out the bytes.
 Marshal.Copy(bytes, 0, this._ptrToMemory, bytes.Length);
 }
 finally
 {
 // Signal the other process using the mutex to tell it
 // to do receive processing.

 _mtxSharedMem.ReleaseMutex();

 // Wait for the other process to signal it has received
 // and we can move on.
 _mtxSharedMem.WaitOne();
 }
 }
}

The ReceiveObject method shown in Example 18-11 allows the client to wait until there is an object
in the shared memory section, then read the size of the serialized object and deserialize it to a
managed object. It then releases the Mutex to let the sender know to continue.

Example 18-11. ReceiveObject method

public TransferItemType ReceiveObject()
{
 // Wait on the mutex for an object to be queued by the sender.
 _mtxSharedMem.WaitOne();

 // Get the count of what is in the shared memory.
 int count = Marshal.ReadInt32(_ptrToMemory);
 if (count <= 0)
 {
 throw new InvalidDataException("No object to read");
 }

 // Make an array to hold the bytes.
 byte[] bytes = new byte[count];

 // Read out the bytes for the object.
 Marshal.Copy(_ptrToMemory, bytes, 0, count);

 // Set up the memory stream with the object bytes.
 using (MemoryStream ms = new MemoryStream(bytes))
 {

 // Set up a binary formatter.
 BinaryFormatter formatter = new BinaryFormatter();

 // Get the object to return.
 TransferItemType item;
 try
 {
 item = (TransferItemType)formatter.Deserialize(ms);
 }
 finally

 {
 // Signal that we received the object using the mutex.
 _mtxSharedMem.ReleaseMutex();
 }
 // Give them the object.
 return item;
 }
}

Discussion

A Mutex is designed to give mutually exclusive (thus the name) access to a single resource. A Mutex
can be thought of as a cross-process, named Monitor where the Mutex is "entered" by waiting on it
and becoming the owner, then "exited" by releasing the Mutex for the next thread that is waiting on
it. If a thread that owns a Mutex ends, the Mutex is released automatically.

Using a Mutex is slower than using a Monitor as a Monitor is a purely managed construct whereas a
Mutex is based on the Mutex kernel object. A Mutex cannot be "pulsed" as can a Monitor, but it can be
used across processes which a Monitor cannot. Finally, the Mutex is based on WaitHandle, so it can be
waited on with other objects derived from WaitHandle, like Semaphore and the event classes.

The SharedMemoryManager and PInvoke classes are listed in their entirety in Example 18-12.

Example 18-12. SharedMemoryManager and PInvoke classes

/// <summary>
/// Class for sending objects through shared memory using a mutex
/// to synchronize access to the shared memory
/// </summary>
public class SharedMemoryManager<TransferItemType> : IDisposable
{
 #region Consts
 const int INVALID_HANDLE_VALUE = -1;
 const int FILE_MAP_WRITE = 0x0002;
 /// <summary>
 /// Define from Win32 API.
 /// </summary>
 const int ERROR_ALREADY_EXISTS = 183;
 #endregion

 #region Private members
 IntPtr _handleFileMapping = IntPtr.Zero;
 IntPtr _ptrToMemory = IntPtr.Zero;
 uint _memRegionSize = 0;
 string _memoryRegionName;
 bool disposed = false;

 int _sharedMemoryBaseSize = 0;
 Mutex _mtxSharedMem = null;
 #endregion

 #region Construction / Cleanup
 public SharedMemoryManager(string name,int sharedMemoryBaseSize)
 {
 // Can be built for only Seralizable objects
 if (!typeof(TransferItemType).IsSerializable)
 throw new ArgumentException(
 string.Format("Object {0} is not serializeable.",
 typeof(TransferItemType)));

 if (string.IsNullOrEmpty(name))
 throw new ArgumentNullException("name");

 if (sharedMemoryBaseSize <= 0)
 throw new ArgumentOutOfRangeException("sharedMemoryBaseSize",
 "Shared Memory Base Size must be a value greater than zero")

 // Set name of the region.
 _memoryRegionName = name;
 // Save base size.
 _sharedMemoryBaseSize = sharedMemoryBaseSize;
 // Set up the memory region size.
 _memRegionSize = (uint)(_sharedMemoryBaseSize + sizeof(int));
 // Set up the shared memory section.
 SetupSharedMemory();
 }

 private void SetupSharedMemory()
 {
 // Grab some storage from the page file.
 _handleFileMapping =
 PInvoke.CreateFileMapping((IntPtr)INVALID_HANDLE_VALUE,
 IntPtr.Zero,
 PInvoke.PageProtection.ReadWrite,
 0,
 _memRegionSize,
 _memoryRegionName);

 if (_handleFileMapping == IntPtr.Zero)
 {
 throw new Win32Exception(
 "Could not create file mapping");
 }

 // Check the error status.
 int retVal = Marshal.GetLastWin32Error();
 if (retVal == ERROR_ALREADY_EXISTS)
 {
 // We opened one that already existed.

 // Make the mutex not the initial owner
 // of the mutex since we are connecting
 // to an existing one.
 _mtxSharedMem = new Mutex(false,
 string.Format("{0}mtx{1}",
 typeof(TransferItemType), _memoryRegionName));
 }
 else if (retVal == 0)
 {
 // We opened a new one.
 // Make the mutex the initial owner.
 _mtxSharedMem = new Mutex(true,
 string.Format("{0}mtx{1}",
 typeof(TransferItemType), _memoryRegionName));
 }
 else
 {
 // Something else went wrong.
 throw new Win32Exception(retVal, "Error creating file mapping");
 }

 // Map the shared memory.
 _ptrToMemory = PInvoke.MapViewOfFile(_handleFileMapping,
 FILE_MAP_WRITE,
 0, 0, IntPtr.Zero);

 if (_ptrToMemory == IntPtr.Zero)
 {
 retVal = Marshal.GetLastWin32Error();
 throw new Win32Exception(retVal, "Could not map file view");
 }

 retVal = Marshal.GetLastWin32Error();
 if (retVal != 0 && retVal != ERROR_ALREADY_EXISTS)
 {
 // Something else went wrong.
 throw new Win32Exception(retVal, "Error mapping file view");
 }
 }

 ~SharedMemoryManager()
 {
 // Make sure we close.
 Dispose(false);
 }

 public void Dispose()
 {
 Dispose(true);
 GC.SuppressFinalize(this);
 }

 private void Dispose(bool disposing)
 {
 // Check to see if Dispose has already been called.
 if (!this.disposed)
 {
 CloseSharedMemory();
 }
 disposed = true;
 }

 private void CloseSharedMemory()
 {
 if (_ptrToMemory != IntPtr.Zero)
 {
 // Close map for shared memory.
 PInvoke.UnmapViewOfFile(_ptrToMemory);
 _ptrToMemory = IntPtr.Zero;
 }
 if (_handleFileMapping != IntPtr.Zero)
 {
 // Close handle.
 PInvoke.CloseHandle(_handleFileMapping);
 _handleFileMapping = IntPtr.Zero;
 }
 }
 public void Close()
 {
 CloseSharedMemory();
 }
 #endregion

 #region Properties
 public int SharedMemoryBaseSize
 {
 get { return _sharedMemoryBaseSize; }
 }
 #endregion

 #region Public Methods
 /// <summary>
 /// Send a serializable object through the shared memory
 /// and wait for it to be picked up.
 /// </summary>
 /// <param name="transferObject"></param>
 public void SendObject(TransferItemType transferObject)
 {
 // Create a memory stream, initialize size.
 using (MemoryStream ms = new MemoryStream())
 {
 // Get a formatter to serialize with.
 BinaryFormatter formatter = new BinaryFormatter();
 try

 {
 // Serialize the object to the stream.
 formatter.Serialize(ms, transferObject);

 // Get the bytes for the serialized object.
 byte[] bytes = ms.ToArray();

 // Check that this object will fit.
 if(bytes.Length + sizeof(int) > _memRegionSize)
 {

 string fmt = "
 "{0} object instance serialized to {1} bytes " +
 "which is too large for the shared memory region";

 string msg =
 string.Format(fmt,
 typeof(TransferItemType),bytes.Length);

 throw new ArgumentException(msg, "transferObject");
 }

 // Write out how long this object is.
 Marshal.WriteInt32(this._ptrToMemory, bytes.Length);

 // Write out the bytes.
 Marshal.Copy(bytes, 0, this._ptrToMemory, bytes.Length);
 }
 finally
 {
 // Signal the other process using the mutex to tell it
 // to do receive processing.
 _mtxSharedMem.ReleaseMutex();

 // Wait for the other process to signal it has received
 // and we can move on.
 _mtxSharedMem.WaitOne();
 }
 }
 }

 /// <summary>
 /// Wait for an object to hit the shared memory and then deserialize it.
 /// </summar>
 /// <returns>object passed</returns>
 public TransferItemType ReceiveObject()
 {

 // Wait on the mutex for an object to be queued by the sender.
 _mtxSharedMem.WaitOne();

 // Get the count of what is in the shared memory.

 int count = Marshal.ReadInt32(_ptrToMemory);
 if (count <= 0)
 {
 throw new InvalidDataException("No object to read");
 }

 // Make an array to hold the bytes.
 byte[] bytes = new byte[count];

 // Read out the bytes for the object.
 Marshal.Copy(_ptrToMemory, bytes, 0, count);

 // Set up the memory stream with the object bytes.
 using (MemoryStream ms = new MemoryStream(bytes))
 {

 // Set up a binary formatter.
 BinaryFormatter formatter = new BinaryFormatter();

 // Get the object to return.
 TransferItemType item;
 try
 {
 item = (TransferItemType)formatter.Deserialize(ms);
 }
 finally
 {
 // Signal that we received the object using the mutex.
 _mtxSharedMem.ReleaseMutex();
 }
 // Give them the object.
 return item;
 }
 }
 #endregion
}

public class PInvoke
{
 #region PInvoke defines
 [Flags]
 public enum PageProtection : uint
 {

 NoAccess = 0x01,
 Readonly = 0x02,
 ReadWrite = 0x04,
 WriteCopy = 0x08,
 Execute = 0x10,
 ExecuteRead = 0x20,
 ExecuteReadWrite = 0x40,
 ExecuteWriteCopy = 0x80,

 Guard = 0x100,
 NoCache = 0x200,
 WriteCombine = 0x400,
 }
 [DllImport("kernel32.dll", SetLastError = true)]
 public static extern IntPtr CreateFileMapping(IntPtr hFile,
 IntPtr lpFileMappingAttributes, PageProtection flProtect,
 uint dwMaximumSizeHigh,
 uint dwMaximumSizeLow, string lpName);

 [DllImport("kernel32.dll", SetLastError = true)]
 public static extern IntPtr MapViewOfFile(IntPtr hFileMappingObject, uint
 dwDesiredAccess, uint dwFileOffsetHigh, uint dwFileOffsetLow,
 IntPtr dwNumberOfBytesToMap);

 [DllImport("kernel32.dll", SetLastError = true)]
 public static extern bool UnmapViewOfFile(IntPtr lpBaseAddress);

 [DllImport("kernel32.dll", SetLastError = true)]
 public static extern bool CloseHandle(IntPtr hObject);
 #endregion
}

See Also

See the "Mutex" and "Mutex Class" topics in the MSDN documentation and Programming Applications
for Microsoft Windows, Fourth Edition.

Recipe 18.12. Using Events to Make Threads Cooperate

Problem

You have multiple threads that need to be served by a server but only one can be served at a time.

Solution

Use an AutoResetEvent to notify each thread when it is going to be served. For example, a diner has
a cook and multiple waitresses. The waitresses can keep bringing in orders, but the cook can serve
up only one at a time. You can simulate this with the Cook class shown in Example 18-13.

Example 18-13. Using events to make threads cooperate

public class Cook
{

 public static AutoResetEvent OrderReady = new AutoResetEvent(false);

 public void CallWaitress()
 {
 // We call Set on the AutoResetEvent and don't have to
 // call Reset like we would with ManualResetEvent to fire it
 // off again. This sets the event that the waitress is waiting for
 // in PlaceOrder.
 OrderReady.Set();
 }
}

The Cook class has an AutoResetEvent called OrderReady that the cook will use to tell the waiting
waitresses that an order is ready. Since there is only one order ready at a time and this is an equal
opportunity diner, the waitress who has been waiting longest gets her order first. The AutoResetEvent
allows for just signaling the single thread when you call Set on the OrderReady event.

The Waitress class has the PlaceOrder method that is executed by the thread. PlaceOrder takes an
object parameter, which is passed in from the call to t.Start in the next code block. The Start
method uses a ParameterizedThreadStart delegate, which takes an object parameter. PlaceOrder
has been set up to be compatible with it. It takes the AutoResetEvent passed in and calls WaitOne to

wait until the order is ready. Once the Cook fires the event enough times that this waitress is at the
head of the line, the code finishes.

 public class Waitress
 {
 public static void PlaceOrder(object signal)
 {
 // Cast the AutoResetEvent so the waitress can wait for the
 // order to be ready.
 AutoResetEvent OrderReady = (AutoResetEvent)signal;
 // Wait for the order…
 OrderReady.WaitOne();
 // Order is ready….
 Console.WriteLine("Waitress got order!");
 }
 }

The code to run the "diner" creates a Cook and spins off the Waitress threads, then calls all
waitresses when their orders are ready by calling Set on the AutoResetEvent:

 // We have a diner with a cook who can serve up only one meal at a time.
 Cook Mel = new Cook();

 // Make up five waitresses and tell them to get orders.
 for (int i = 0; i < 5; i++)
 {
 Thread t = new Thread(Waitress.PlaceOrder);
 // The Waitress places the order and then waits for the order.
 t.Start(Cook.OrderReady);
 }

 // Now we can go through and let people in.
 for (int i = 0; i < 5; i++)
 {
 // Make the waitresses wait…
 Thread.Sleep(2000);
 // OK, next waitress, pickup!
 Mel.CallWaitress();
 }

Discussion

There are two types of events, AutoResetEvent and ManualResetEvent. There are two main
differences between the events. The first is that AutoResetEvents release only one of the threads that
are waiting on the event while a ManualResetEvent will release all of them when Set is called. The

second difference is that when Set is called on an AutoResetEvent, it is automatically reset to a
nonsignaled state while the ManualResetEvent is left in a signaled state until the Reset method is
called.

See Also

See the "AutoResetEvent" and "ManualResetEvent" topics in the MSDN documentation and
Programming Applications for Microsoft Windows, (Fourth Edition).

Recipe 18.13. Get the Naming Rights for Your Events

Problem

You want to have code running in worker threads, or in other processes or appdomains, to be able to
wait on an event.

Solution

Use the EventWaitHandle class, new to the 2.0 Framework. With it, you can create a named event
that will allow any code running on the local machine to find and wait on the event. AutoResetEvent
and ManualResetEvent are excellent for signaling events in threaded code and even between
appdomains if you are willing to go through the hassle of passing the event reference around. Why
bother? Both of them derive from EventWaitHandle, but neither exposes the naming facility.
EventWaitHandle can not only take the name of the event, but also can take an EventresetMode
parameter to indicate if it should act like a ManualResetEvent (EventResetMode.ManualReset) or an
AutoResetEvent (EventResetMode.AutoReset). Named events have been available to Windows
developers for a long time, and the EventWaitHandle class can serve as a named version of either an
AutoResetEvent or a ManualResetEvent.

To set up a named EventWaitHandle that operates as a ManualResetEvent, do this:

 // Make a named manual reset event.
 EventWaitHandle ewhSuperBowl =
 new EventWaitHandle(false, // Not initially signaled
 EventResetMode.ManualReset,
 @"Champs");
 // Spin up three threads to listen for the event.
 for (int i = 0; i < 3; i++)
 {
 Thread t = new Thread(ManualFan);
 // The fans wait anxiously…
 t.Name = "Fan " + i;
 t.Start();
 }
 // Play the game.
 Thread.Sleep(10000);
 // Notify people.
 Console.WriteLine("Patriots win the SuperBowl!");
 // Signal all fans.
 ewhSuperBowl.Set();
 // Close the event.

 ewhSuperBowl.Close();

The ManualFan method is listed here:

 public static void ManualFan()
 {
 // Open the event by name.
 EventWaitHandle ewhSuperBowl =
 new EventWaitHandle(false,
 EventResetMode.ManualReset,
 @"Champs");

 // Wait for the signal.
 ewhSuperBowl.WaitOne();
 // Shout out.
 Console.WriteLine("\"They're great!\" says {0}",Thread.CurrentThread.Name);
 // Close the event.
 ewhSuperBowl.Close();
 }

The output from the manual event code will resemble the listing here (the ManualFan tHReads might
be in a different order):

 Patriots win the SuperBowl!
 "They're great!" says Fan 2
 "They're great!" says Fan 1
 "They're great!" says Fan 0

To set up a named EventWaitHandle to operate as an AutoResetEvent, do this:

 // Make a named auto reset event.
 EventWaitHandle ewhSuperBowl =
 new EventWaitHandle(false, // Not initially signalled
 EventResetMode.AutoReset,
 @"Champs");
 // Spin up three threads to listen for the event.
 for (int i = 0; i < 3; i++)
 {
 Thread t = new Thread(AutoFan, i);
 // The fans wait anxiously…
 t.Name = "Fan " + i;
 t.Start();
 }

 // Play the game.
 Thread.Sleep(10000);
 // Notify people.
 Console.WriteLine("Patriots win the SuperBowl!");
 // Signal one fan at a time.
 for (int i = 0; i < 3; i++)
 {
 Console.WriteLine("Notify fans");
 ewhSuperBowl.Set();
 }
 // Close the event.
 ewhSuperBowl.Close();

The AutoFan method is listed here:

 public static void AutoFan()
 {
 // Open the event by name.
 EventWaitHandle ewhSuperBowl =
 new EventWaitHandle(false,
 EventResetMode.AutoReset,
 @"Champs");
 // Wait for the signal.
 ewhSuperBowl.WaitOne();
 // Shout out.
 Console.WriteLine("\"Yahoo!\" says {0}", Thread.CurrentThread.Name);
 // Close the event.
 ewhSuperBowl.Close();
 }

The output from the automatic event code will resemble the listing here (the AutoFan threads might
be in a different order):

 Patriots win the SuperBowl!
 Notify fans
 "Yahoo!" says Fan 0
 Notify fans
 "Yahoo!" says Fan 2
 Notify fans
 "Yahoo!" says Fan 1

Discussion

EventWaitHandle is defined as deriving from WaitHandle, which in turn derives from
MarshalByRefObject. EventWaitHandle implements the IDisposable interface.

 public class EventWaitHandle : WaitHandle

 public abstract class WaitHandle : MarshalByRefObject, IDisposable

WaitHandle derives from MarshalByRefObject so you can use it across appdomains, and it implements
IDisposable to make sure the event handle gets released properly.

The EventWaitHandle class can also open an existing named event by calling the OpenExisting
method and get the event's access-control security from GetAccessControl.

When naming events, one consideration is how it will react in the presence of terminal sessions.
Terminal sessions are the underlying technology behind Fast User switching and Remote Desktop, as
well as Terminal Services. The consideration is due to how kernel objects (such as events) are
created with respect to the terminal sessions. If a kernel object is created with a name and no prefix,
it belongs to the Global namespace for named objects and is visible across terminal sessions. By
default, EventWaitHandle creates the event in the Global namespace. A kernel object can also be
created in the Local namespace for a given terminal session, in which case the named object belongs
to the specific terminal session namespace. If you pass the Local namespace prefix
(Local\[EventName]), then the event will be created in the local session for events that should be
visible from only one terminal session.

 // Open the event by local name.
 EventWaitHandle ewhSuperBowl =
 new EventWaitHandle(false,
 EventResetMode.ManualReset,
 @"Local\Champs");

Named events can be quite useful not only when communicating between processes, appdomains, or
threads, but also when debugging code that uses events, as the name will help you identify which
event you are looking at if you have a number of them.

See Also

See the "EventWaitHandle," "AutoResetEvent," "ManualResetEvent," and "Kernel Object Namespaces
(Platform SDK Help)" topics in the MSDN documentation.

Recipe 18.14. Performing Atomic Operations Among
Threads

Problem

You are operating on data from multiple threads and want to insure that each operation is carried out
fully before performing the next operation from a different thread.

Solution

Use the Interlocked family of functions to insure atomic access. Interlocked has methods to
increment and decrement values, add a specific amount to a given value, exchange an original value
for a new value, compare the current value to the original value, and exchange the original value for
a new value if it is equal to the current value.

To increment or decrement an integer value, use the Increment or Decrement methods, respectively:

 int i = 0;
 long l = 0;

 Interlocked.Increment(ref i); // i = 1
 Interlocked.Decrement(ref i); // i = 0
 Interlocked.Increment(ref l); // l = 1
 Interlocked.Decrement(ref i); // l = 0

To add a specific amount to a given integer value, use the Add method:

 Interlocked.Add(ref i, 10); // i = 10;
 Interlocked.Add(ref l, 100); // l = 100;

To replace an existing value, use the Exchange method:

 string name = "Mr. Ed";
 Interlocked.Exchange(ref name, "Barney");

To check if another thread has changed a value out from under the existing code before replacing the
existing value, use the CompareExchange method:

 int i = 0;
 double runningTotal = 0.0;
 double startingTotal = 0.0;
 double calc = 0.0;
 for (i = 0; i < 10; i++)
 {
 do
 {
 // Store of the original total
 startingTotal = runningTotal;

 // Do an intense calculation.
 calc = runningTotal + i * Math.PI * 2 / Math.PI;
 }
 // Check to make sure runningTotal wasn't modified
 // and replace it with calc if not. If it was,
 // run through the loop until we get it current.
 while (startingTotal !=
 Interlocked.CompareExchange(
 ref runningTotal, calc, startingTotal));
 }

Discussion

In an operating system like Microsoft Windows, with its ability to perform preemptive multitasking,
certain considerations must be given to data integrity when working with multiple threads. There are
many synchronization primitives to help secure sections of code, as well as signal when data is
available to be modified. To this list is added the capability to perform operations that are guaranteed
to be atomic in nature.

If there has not been much threading or assembly language in your past, you might wonder what the
big deal is and why you need these atomic functions at all. The basic reason is that the line of code
written in C# ultimately has to be translated down to a machine instruction and along the way the
one line of code written in C# can turn into multiple instructions for the machine to execute. If the
machine has to execute multiple instructions to perform a task and the operating system allows for
preemption, it is possible that these instructions may not be executed as a block. They could be
interrupted by other code that modifies the value being changed by the original line of C# code in the
middle of the C# code being executed. As you can imagine, this could lead to some pretty
spectacular errors, or it might just round off the lottery number that keeps a certain C# programmer
from winning the big one.

Threading is a powerful tool, but like most "power" tools, you have to understand its operation to use
it effectively and safely. Threading bugs are notorious for being some of the most difficult to debug,

as the runtime behavior is not constant. Trying to reproduce them can be a nightmare. Recognizing
that working in a multithreaded environment imposes a certain amount of forethought about
protecting data access and understanding when to use the Interlocked class will go a long way
toward preventing long frustrating evenings with the debugger.

See Also

See the "Interlocked" and "Interlocked Class" topics in the MSDN documentation.

Chapter 19. Unsafe Code

Introduction

Recipe 19.1. Controlling Changes to Pointers Passed to Methods

Recipe 19.2. Comparing Pointers

Recipe 19.3. Navigating Arrays

Recipe 19.4. Manipulating a Pointer to a Fixed Array

Recipe 19.5. Returning a Pointer to a Particular Element in an Array

Recipe 19.6. Creating and Using an Array of Pointers

Recipe 19.7. Switching Unknown Pointer Types

Recipe 19.8. Converting a String to a char*

Recipe 19.9. Declaring a Fixed-Size Structure with an Embedded Array

Introduction

Visual C# .NET allows you to step outside of the safe environment of managed code and write code
that is considered "unsafe" by the CLR. Running unsafe code presents a certain set of restrictions in
exchange for opening up possibilities, like accessing memory-mapped data or implementing time-
critical algorithms that use pointers directly. These restrictions are mainly based in the CAS system of
the CLR and are in place to draw a distinct line between code the CLR knows to be playing by the
rules (or "safe") and code that needs to do a bit outside of the traditional sandbox of the CLR (and is
thus "unsafe" code). In order to run code that is marked as unsafe by the CLR, you need to have the
CAS SkipVerification privilege granted to the assembly where the unsafe code is implemented. This
tells the CLR to not bother verifying the code and to allow it to run, whereas normally unverified code
would not run. This is a highly privileged operation and is not to be done lightly, as you increase the
permissions your application will require in order to operate correctly on a user's system. If you use
unsafe types in a method signature, you also make the code non-CLS-compliant. This means that
interoperability with other .NET-based languages, like VB.NET or Managed C++, for this assembly is
compromised.

Even though unsafe code allows you to easily write potentially unstable code, it does have several
safeguards. You can create only pointers to value types or value types inside of reference types; you
cannot create pointers to reference types. This forces pointer types to be created solely on the stack,
so you do not have to use the new and delete operations to allocate and release the memory to
which the variable points. You only have to wait for the method that declared the pointer type to
return, forcing the pointer to go out of scope and clearing any stack space devoted to this method.
You can get into a bit of trouble if you are doing exotic things with unsafe code, such as pointing to a
value type inside of a reference type. This behavior allows access to heap-based memory, thereby
opening up the possibility for pointer pitfalls, such as those seen in C++.

Recipe 19.1. Controlling Changes to Pointers Passed to
Methods

Problem

You must pass a pointer variable to a method; however, you do not want to allow the called method
to change the address that the pointer points to. For example, a developer wants to assume that,
after passing a pointer parameter to a method, the parameter is still pointing to the same address
when the method returns. If the called method were to change what the pointer pointed to, bugs
could be introduced into the code.

In other cases, the converse may be true: the developer wants to allow the address to be changed in
the method she passes the pointer to. Consider a developer who might create a method that accepts
two pointers and switches those pointers by switching the memory locations to which each pointer
points to, rather than swapping the values each pointer points to.

Solution

You must decide whether to pass a pointer by value, by reference, or as an out parameter. There are
several ways to pass pointers to methods. These include using or not using the ref or out keyword to
define how the parameters are to be handled.

To make sure that a method does not modify the pointer itself, pass the pointer by value, as shown
here:

 unsafe
 {
 int num = 1;
 int* numPtr = #
 ModifyValue(numPtr);
 // Continue using numPtr…
 }

The method ModifyValue can still change the value in the memory location to which numPtr points to,
but it cannot force numPtr to point to a different memory location after the method ModifyValue
returns.

To allow the method to modify the pointer, pass it by reference:

 public unsafe void TestSwitchXY()
 {
 int x = 100;
 int y = 20;
 int* ptrx = &x;
 int* ptry = &y;

 Console.WriteLine(*ptrx + "\t" + (int)ptrx);
 Console.WriteLine(*ptry + "\t" + (int)ptry);

 SwitchXY(ref ptrx, ref ptry);
 Console.WriteLine(*ptrx + "\t" + (int)ptrx);
 Console.WriteLine(*ptry + "\t" + (int)ptry);
 }

 public unsafe void SwitchXY(ref int* x, ref int* y)
 {
 int* temp = x;
 x = y;
 y = temp;
 }

The SwitchXY method switches the values of the x and y pointers so that they point to the memory
location originally pointed to by the other parameter. In this case, you must pass the pointers in to
the SwitchXY method by reference (ref). This allows the SwitchXY method to actually change the
pointers and to return these modified pointers.

Discussion

In safe code, passing a value type to a method by value means that the value, not the reference to
that value, is passed in. Therefore, the called method cannot modify the value that the calling
method's reference points to; it can modify only the copy that it receives.

It works the same way with unsafe code. When an unsafe pointer is passed in to a method by value,
the value of the pointer (which is a memory location) cannot be modified; however, the value that
this pointer points to can be modified.

To examine the difference between passing a pointer by reference and by value, you first need to set
up a pointer to an integer:

 int x = 5;
 int* ptrx = &x;

Next, write the method that attempts to modify the pointer parameter:

 private unsafe void CallByValue(int* x)
 {
 int newNum = 7;
 x = &newNum;
 }

Finally, call the method and pass in ptrx to this method:

 CallByValue(ptrx);

If you examine the pointer variable ptrx before the call to CallByValue, you'll see that it points to the
value 5. The called method CallByValue changes the passed-in parameter to point to a different
memory location. However, when the CallByValue returns, the ptrx pointer still points to the original
memory location that contains the value 5. The reason for this is that CallByValue accepts the pointer
ptrx by value. This means that whatever value ptrx holds, a memory location in this case, it cannot
be modified.

At other times, you need to allow a called method to modify the memory location that a pointer
points to. Passing a pointer by reference does this. This means that the called method may, in fact,
modify the memory location to which a pointer parameter points. To see this, again set up a pointer:

 int x = 5;
 int* ptrx = &x;

Next, write the method that attempts to modify the parameter:

 private unsafe void CallByRef(ref int* x)
 {
 int newNum = 7;
 x = &newNum;
 }

Finally, call the method and pass the pointer by reference:

 CallByRef(ref ptrx);

Now if you examine the value that the pointer ptrx points to, before and after the call is made to
CallByRef, you'll see that it has indeed changed from 5 to 7. Not only this, but the ptrx pointer is

actually pointing to a different memory location. Essentially, the ref keyword allows the method
CallByRef to modify the value contained in the ptrx variable.

Let's consider the use of the out or ref keywords with pointers. A method that accepts a pointer as
an out or ref parameter is called like this:

 public unsafe void TestOut()
 {
 int* ptrx;
 CallUsingOut(out ptrx);

 Console.WriteLine(*ptrx + "\t" + (int)ptrx);
 }

The CallUsingOut method is written as follows:

 public unsafe void CallUsingOut(out int* ptrx)
 {
 int x = 7;
 ptrx = &x;
 }

The ptrx variable is initially a null pointer. After the call is made to the CallUsingOut method, the
ptrx variable points to the value 0. There is a serious flaw in the design of this example code (the
code in the Solution section does not contain this flaw).

The problem is that the temp variable, pointed to by the out parameter ptrx in the CallUsingOut
method, is in the stack frame of the CallUsingOut method. The stack frame to the CallUsingOut
method is promptly overwritten when this method returns, thereby causing the value in ptrx to be
undefined.

This mistake is easy to make, especially as the code gets more and more complex. This error can
also occur when returning a pointer from a method as a return value. To solve this, you need to not
assign local variables that are created on the stack in the scope of the method to the pointer, since
the value being pointed to can "go away" once the scope is exited, creating a dangling pointer.

Be very careful that you do not create dangling pointers (a pointer that doesn't
point at anything valid, such as by assigning a pointer to memory that is
collected before leaving the function) when passing pointer parameters as ref
or out. This warning also applies to pointers used as return values.

See Also

See the "Method Parameters," "out Parameter," and "ref Parameter" topics in the MSDN

documentation.

Recipe 19.2. Comparing Pointers

Problem

You need to know whether two pointers point to the same memory location. If they don't, you need
to know which of the two pointers points to a higher or lower element in the same block of memory.

Solution

Using the == and != operators, you can determine if two pointers point to the same memory
location. For example, the code:

 unsafe
 {
 int[] arr = new int[5] {1,2,3,4,5};
 fixed(int* ptrArr = &arr[0])
 {
 int* p1 = (ptrArr + 1);
 int* p2 = (ptrArr + 3);

 Console.WriteLine("p2 > p1");
 Console.WriteLine("(p2 == p1) = " + (p2 == p1));
 Console.WriteLine("(p2 != p1) = " + (p2 != p1));

 p2 = p1;
 Console.WriteLine("p2 == p1");
 Console.WriteLine("(p2 == p1) = " + (p2 == p1));
 Console.WriteLine("(p2 != p1) = " + (p2 != p1));
 }
 }

displays the following:

 p2 > p1
 (p2 == p1) = False
 (p2 != p1) = True

 p2 == p1
 (p2 == p1) = True

 (p2 != p1) = False

Using the >, <, >=,or <= comparison operators, you can determine whether two pointers are
pointing to a higher, a lower, or the same element in an array. For example, the code:

 unsafe
 {
 int[] arr = new int[5] {1,2,3,4,5};
 fixed(int* ptrArr = &arr[0])
 {
 int* p1 = (ptrArr + 1);
 int* p2 = (ptrArr + 3);

 Console.WriteLine("p2 > p1");
 Console.WriteLine("(p2 > p1) = " + (p2 > p1));
 Console.WriteLine("(p2 < p1) = " + (p2 < p1));
 Console.WriteLine("(p2 >= p1) = " + (p2 >= p1));
 Console.WriteLine("(p2 <= p1) = " + (p2 <= p1));

 p2 = p1;
 Console.WriteLine("p2 == p1");
 Console.WriteLine("(p2 > p1) = " + (p2 > p1));
 Console.WriteLine("(p2 < p1) = " + (p2 < p1));
 Console.WriteLine("(p2 >= p1) = " + (p2 >= p1));
 Console.WriteLine("(p2 <= p1) = " + (p2 <= p1));

 }
 }

displays the following:

 p2 > p1
 (p2 > p1) = True
 (p2 < p1) = False
 (p2 >= p1) = True
 (p2 <= p1) = False

 p2 == p1
 (p2 > p1) = False
 (p2 < p1) = False
 (p2 >= p1) = True
 (p2 <= p1) = True

Discussion

When manipulating the addresses that pointers point to, it is sometimes necessary to compare their
addresses. The ==, !=, >, <, >=, and <= operators have been overloaded to operate on pointer-
type variables. These comparison operators do not compare the value pointed to by the pointers;
instead, they compare the addresses pointed to by the pointers.

To compare the values pointed to by two pointers: dereference the pointers and then use a
comparison operator on them. For example:

 *intPtr == *intPtr2

will compare the values pointed to by these pointers, rather than their addresses.

See Also

See the "C# Operators," "== Operator," and "!= Operator" topics in the MSDN documentation.

Recipe 19.3. Navigating Arrays

Problem

You need to iterate through the elements of a single-dimensional, multidimensional, or jagged array
using a pointer to that array.

Solution

To enable iteration, create an unsafe pointer that points to an array. The manipulation of the array
can then be performed through this pointer.

To create a pointer to a single-dimensional array, declare and initialize the array:

 int[] intArray = new int[5] {1, 2, 3, 4, 5};

and then set a pointer, arrayPtr, to the address of the first element in this array (you must use the
fixed keyword to pin the array in the managed heap so that the garbage collector does not move it):

 fixed(int* arrayPtr = &intArray[0])

Note that this line could also be written as:

 fixed(int* arrayPtr = intArray)

without any address of (&) operator or indexer. This is because the array variable always points to
the first element, similarly to how C/C++ array pointers operate.

The following code creates and initializes a pointer to a single-dimensional array and then displays
the last item in that array:

 unsafe
 {
 int[] intArray = new int[5] {1, 2, 3, 4, 5};

 fixed(int* arrayPtr = intArray)
 {
 Console.WriteLine(*(arrayPtr + 4)); //Display the last value '5'
 }
 }

Creating a pointer to an array of enumeration values is very similar:

 unsafe
 {
 Colors[] intArray = new Colors[2] {Colors.Red, Colors.Blue};
 fixed(Colors* arrayPtr = intArray)
 {
 // Use arrayPtr here.
 }
 }

where Colors is declared as follows:

 public enum Colors{Red, Green, Blue}

Creating a pointer to a multidimensional array is performed by declaring and initializing a
multidimensional array:

 int[,] intMultiArray = new int[2,5] {{1,2,3,4,5},{6,7,8,9,10}};

You then set a pointer to the address of the first element in this array:

 fixed(int* arrayPtr = intMultiArray)

For example, the following code creates and initializes a pointer to a multidimensional array, then
displays the last item in that array:

 unsafe
 {
 int[,] intMultiArray = new int[2,5] {{1,2,3,4,5},{6,7,8,9,10}};
 fixed(int* arrayPtr = intMultiArray)

 {
 Console.WriteLine(*(arrayPtr + 9)); //Display the last value '10'
 }
 }

See Also

See the "Multidimensional Arrays" and "Jagged Arrays" topics and the "Unsafe at the Limit" article in
the MSDN documentation.

Recipe 19.4. Manipulating a Pointer to a Fixed Array

Problem

One limitation of a pointer to a fixed array is that you cannot reassign this pointer to any other
element of that array using pointer arithmetic. The following code will not compile since you are
attempting to modify where the fixed pointer, arrayPtr, is pointing. The line of code in error is
highlighted; it results in a compile-time error:

 unsafe
 {
 int[] intArray = new int[5] {1,2,3,4,5};
 fixed(int* arrayPtr = &intArray[0])
 {

 arrayPtr++;
 }
 }

You need a way to increment the address stored in the arrayPtr to access other elements in the
array.

Solution

To allow this operation, create a new temporary pointer to the fixed array, shown here:

 unsafe
 {
 int[] intArray = new int[5] {1,2,3,4,5};
 fixed(int* arrayPtr = &intArray[0])
 {
 int* tempPtr = arrayPtr;
 tempPtr++;
 }
 }

By assigning a pointer that points to the fixed pointer (arrayPtr), you now have a variable (tempPtr)

that you can manipulate as you wish.

Discussion

Any variables declared in a fixed statement cannot be modified or passed as ref or out parameters
to other methods. This can pose a problem when attempting to move a pointer of this type through
the elements of an array. Getting around this involves creating a temporary variable, tempPtr, that
points to the same memory locations as the pointer declared in the fixed statement. Pointer
arithmetic can then be applied to this temporary variable to move the pointer to any of the elements
in the array.

See Also

See the "unsafe Keyword" and "fixed Keyword" topics in the MSDN documentation.

Recipe 19.5. Returning a Pointer to a Particular Element
in an Array

Problem

You need to create a method that accepts a pointer to an array, searches that array for a particular
element, and returns to the location of the found element in the array.

Solution

The FindInArray method, used in the following example, will return the position of the element found
in the array given a fixed integer pointer. To see FindInFixedArray in action, look at the TestFind
method shown here:

 public void TestFind()
 {
 unsafe
 {
 int[] numericArr = new int[3] {2,4,6};
 fixed(int* ptrArr = numericArr)
 {
 int foundPos = FindInFixedArray(ptrArr, numericArr.Length, 4);
 if (foundPos > -1)
 {
 Console.WriteLine("Position in array: " + foundPos);
 }
 else
 {
 Console.WriteLine("Not Found");
 }
 }
 }
 }

The TestFind method creates an array of integers (numericArr), then uses the fixed statement to
create a pointer (ptrArr) and to make sure the array will not be moved in memory by the garbage
collector. The ptrArr pointer variable is passed to the FindInFixedArray method shown here to get
the position of the element for the value being searched for:

 public unsafe int FindInFixedArray(int* theArray, int arrayLength,
 int valueToFind)
 {
 for (int counter = 0; counter < arrayLength; counter++)
 {
 if (theArray[counter] == valueToFind)
 {
 return (counter);
 }
 }
 // Return -1 if the value is not found in the array.
 return (-1);
 }

Notice that the FindInFixedArray method requires that the int* be fixed to be effective. If the
pointer passed in to the FindInFixedArray method is not fixed, the garbage collector could move the
array being searched at any time. To avoid this, use the fixed statement as shown in the TestFind
example. This method is strongly typed for arrays that contain integers. To modify this method to
use another type, change the int* types to the pointer type of your choice. Note that if no elements
are found in the array, a value of -1 is returned.

Discussion

The FindInArray method accepts three parameters. The first parameter, theArray, is a pointer to the
first element in the array that will be searched. The second parameter, arrayLength, is the length of
the array, and the final parameter, valueToFind, is the value you wish to find in the array theArray.

The second parameter, arrayLength, informs the for loop of the length of the array. You cannot
determine the length of an array from just a pointer to that array, so this parameter is needed. Many
unmanaged APIs that accept a pointer to an array also require that the length of the array be
passed.

You could pass a pointer to any element in the array through the theArray
parameter, but if you do so, you must calculate the remaining length by
subtracting the element location from the length of the array and passing the
result to the arrayLength parameter.

The loop iterates over each element in the array and looks for the element that has a value equal to
the parameter valueToFind. Once this element is found, the location of this element in the array is
returned to the caller.

See Also

See the "unsafe Keyword" in the MSDN documentation.

Recipe 19.6. Creating and Using an Array of Pointers

Problem

You need to create, initialize, and use an array containing pointers.

Solution

The following code creates three pointers to a NewBrush structure (theNewBrush1, theNewBrush2, and
theNewBrush3) that are inserted as elements in an array. The NewBrush structure used here is defined
like this:

 public struct NewBrush
 {
 public int BrushType;
 }

The array of pointers is created and set to a size of 3 so that it can hold each element. This newly
defined array now contains undefined pointers. These undefined pointers should be initialized either
to point to a value or to point to null. Here, all of the pointers in the array are initialized as null
pointers. Finally, each NewBrush structure is added to the array. Now you have a fully initialized array
of pointers. From here you can use this array as you wish:

 unsafe
 {
 NewBrush theNewBrush1 = new NewBrush();
 NewBrush theNewBrush2 = new NewBrush();
 NewBrush theNewBrush3 = new NewBrush();

 NewBrush*[] arrayOfNewBrushPtrs = new NewBrush*[3];

 arrayOfNewBrushPtrs[0] = &theNewBrush1;
 arrayOfNewBrushPtrs[1] = &theNewBrush2;
 arrayOfNewBrushPtrs[2] = &theNewBrush3;
 }

This array of pointers to NewBrush objects must be referenced as a pointer to a pointer in unsafe

code. The following code shows how to dereference each pointer within the array
arrayOfNewBrushPtrs:

 unsafe
 {
 fixed(NewBrush** ptrArrayOfNewBrushPtrs = arrayOfNewBrushPtrs)
 {
 for (int counter = 0; counter < 3; counter++)
 {
 ptrArrayOfNewBrushPtrs[counter]->BrushType = counter;
 Console.WriteLine(ptrArrayOfNewBrushPtrs[counter]->BrushType);
 Console.WriteLine((int)ptrArrayOfNewBrushPtrs[counter]);
 }
 }
 }

The for loop initializes the BrushType field of each of the pointers to NewBrush objects in the array.
This field is initialized to the current value of the loop counter (counter). The next two lines display
this newly initialized field and the address of the structure in memory. This code displays the
following output (note that the addresses will be different on different machines):

 0
 1243292
 1
 1243284
 2
 1243276

Discussion

When using an array of pointers, the fixed statement pins the array in memory. Even though this
array consists of pointers to value types, the array itself is created on the managed heap. Notice that
ptrArrayOfNewBrushPtrs is defined as a pointer to a pointer. This stems from having created a pointer
(ptrArrayOfNewBrushPtrs) that initially points to the first element in an array of pointers. To be able
to dereference this pointer to get to the value that the array element is pointing to, you must
dereference it once to get to the array element and then a second time to get the value that the
element is pointing to.

See Also

See the "Unsafe Code Tutorial" topic in the MSDN documentation.

Recipe 19.7. Switching Unknown Pointer Types

Problem

You need a generic method that accepts two pointers and switches the addresses that each pointer
points to. In other words, if x points to an integer variable Foo and y points to an integer variable Bar,
you want to switch x so that it points to Bar and switch y so that it points to Foo.

Solution

Create a method that accepts two void pointers. The following method accepts two pointers to void
by reference. The by reference is required since you are actually switching the values contained in the
pointer variables, not the value that the pointer is pointing to:

 public unsafe void Switch(ref void* x, ref void* y)
 {
 void* temp = x;
 x = y;
 y = temp;
 }

The following test code calls the Switch method with two integer variables that point to different
memory locations:

 public unsafe void TestSwitch()
 {
 int x = 100;
 int y = 20;
 int* ptrx = &x;
 int* ptry = &y;

 Console.WriteLine(*ptrx + "\t" + (int)ptrx);
 Console.WriteLine(*ptry + "\t" + (int)ptry);

 // Convert int* to void*.
 void* voidx = (void*)ptrx;
 void* voidy = (void*)ptry;

 // Switch pointer values.

 Switch(ref voidx, ref voidy);

 // Convert returned void* to a usable int*.
 ptrx = (int*)voidx;
 ptry = (int*)voidy;

 Console.WriteLine(*ptrx + "\t" + (int)ptrx);
 Console.WriteLine(*ptry + "\t" + (int)ptry);
 }

The following is displayed (note that the addresses will be different on different machines):

 100 1243108
 20 1243104
 20 1243104
 100 1243108

The TestSwitch method could have been written just as easily with another data type, such as a
byte, shown here:

 public unsafe void TestSwitch()
 {
 byte x = 100;
 byte y = 20;
 byte* ptrx = &x;
 byte* ptry = &y;

 Console.WriteLine(*ptrx + "\t" + (int)ptrx);
 Console.WriteLine(*ptry + "\t" + (int)ptry);

 // Convert byte* to void*.
 void* voidx = (void*)ptrx;
 void* voidy = (void*)ptry;

 // Switch pointer values.
 Switch(ref voidx, ref voidy);
 // Convert returned void* to a usable byte*.
 ptrx = (byte*)voidx;
 ptry = (byte*)voidy;

 Console.WriteLine(*ptrx + "\t" + (int)ptrx);
 Console.WriteLine(*ptry + "\t" + (int)ptry);
 }

All that had to be done is to change the int* types to byte* types. The problem here is that there are
no safeguards against passing in pointers to different types. This can be a big problem, if you swap
out, say, a byte and an integer.

Discussion

A void pointer has no type and therefore cannot be dereferenced, nor can pointer arithmetic be
applied to this type of pointer. A void pointer does have one very useful function, though; it can be
cast to a pointer of any other type. Notice that the Switch method, used in the Solution for this
recipe, takes two parameters of type void* by reference. You are declaring that any pointer type
may be passed to these two parameters. Once inside the Switch method, you can manipulate the
value contained in the void pointers. However, since you do not know the original type that the void*
was cast from, you cannot dereference the void*.

The one drawback to this technique is that before the Switch method is called in the TestSwitch
method, the int* or byte* pointers must be cast to a void*. When the Switch method returns, the
void* pointers must be cast back to their original types before they can be used. The reason for this
casting is that you are passing the void* pointers by reference instead of by value.

You could pass the void* pointers by value instead and simply Switch the values pointed to, rather
than the memory locations pointed to, in the Switch method. This new SwitchValues method would
look something like this:

 public unsafe void SwitchValues(void* x, void* y)
 {
 void* temp = x;
 *x = *y;
 *y = *temp;
 }

Unfortunately, this code will not compile, since you cannot dereference a void*. The void* must be
cast to its original type before it can be dereferenced. To do this, you must also pass along the type
information to the SwitchValues method. This can become very cumbersome, and it reduces the
generic character of this method as well.

See Also

See the section "A.4 Pointer Conversions" in the C# specification.

Recipe 19.8. Converting a String to a char*

Problem

You have a string that you want to convert to a char* , which is essentially a pointer to the first element
in a character array.

Solution

Use the ToCharArray method of the string type to create a char* character array:

 public static void ConvertStringToCharPtr(string str)
 {
 unsafe
 {
 fixed (char* pStr = str.ToCharArray())
 {
 // Display some of the characters.
 Console.WriteLine(pStr->ToString()); // Could also have been
 // written as pStr[0].ToString().
 Console.WriteLine(pStr[1].ToString());
 Console.WriteLine(pStr[2].ToString());
 Console.WriteLine(pStr[3].ToString());
 }
 }
 }

Discussion

To get a character array from a string object, you can use the overloaded ToCharArray method on the
string object. This method is overloaded to accept no arguments and convert the entire string to a
character array or to take two integer arguments and convert only a substring of the entire string to a
character array. These two integer parameters hold a startIndex value and a length value. The
substring starting at the startIndex position in the string and ending at the (startIndex + length)
position in the string is converted to a character array.

See Also

See Recipes 19.319.7; see the "Unsafe Code Tutorial" and the "Fixed Statement" topics in the MSDN
documentation.

Recipe 19.9. Declaring a Fixed-Size Structure with an
Embedded Array

Problem

You require a structure to contain a fixed-size array in which the array is not stored on the managed
heap; rather, the array needs to be stored inside the structure on the stack. This type of structure is
useful when an unmanaged method that requires a fixed-size structure as a parameter is called from
managed code.

Solution

Use a fixed array inside of a structure:

 public unsafe struct UnsafeByteArray
 {
 public fixed byte Data[254];
 }

Discussion

A fixed type can be one of the following built-in types: bool, byte, sbyte, char, short, ushort,
int, uint, long, ulong, float, or double. In addition, the array must be a fixed size. For example,
the following code will not compile:

 public unsafe struct UnsafeByteArray
 {
 public fixed byte Data1[]; // Needs to be a fixed size.
 public fixed byte[] Data2; // Needs to be one of the
 // aforementioned built-in types.
 }

A fixed-size buffer has a few other limitations, including:

You can use it only in an unsafe context.

You cannot declare it as a static field, only as an instance field.

It can be only a one-dimensional array with a lower bound of zero (i.e., a vector array).

Declaring a structure with an embedded array in the following manner:

 public struct SafeByteArray
 {
 public SafeByteArray(int size)
 {
 // Create the byte array.
 Data = new byte[254];
 }

 public byte[] Data;
 }

simply creates a structure that is 8 bytes in size. This is because arrays are reference types and are
created on the managed heap while the structure, SafeByteArray, is created on the stack with a 4-
byte pointer to the array on the managed heap. The UnsafeByteArray structure created in the
Solution to this recipe has a size of 254 bytes in memory. This is because of the fixed keyword, which
fixes the array inside of the structure as opposed to creating a pointer to an array on the managed
heap. Since structures typically exist on the stack, unless they are referenced inside of a reference
type, the fixed data will also reside in the stack.

See Also

See the "Unsafe Code Tutorial," the "Fixed-Size Buffers," and the "Fixed Statement" topics in the
MSDN documentation.

Chapter 20. Toolbox

Introduction

Recipe 20.1. Dealing with Operating System Shutdown, Power Management, or User Session
Changes

Recipe 20.2. Controlling a Service

Recipe 20.3. List What Processes an Assembly Is Loaded In

Recipe 20.4. Using Message Queues on a Local Workstation

Recipe 20.5. Finding the Path to the Current Framework Version

Recipe 20.6. Determining the Versions of an Assembly That Are Registered in the Global
Assembly Cache (GAC)

Recipe 20.7. Getting the Windows Directory

Recipe 20.8. Capturing Output from the Standard Output Stream

Recipe 20.9. Running Code in Its Own appdomain

Recipe 20.10. Determining the Operating System and Service Pack Version of the Current
Operating System

Introduction

Every programmer has a certain set of, routines that he refers back to and uses over and over again.
These utility functions are usually bits of code that are not provided by any particular language or
framework. This chapter is a compilation of utility routines that we have gathered during our time
with C# and the .NET Framework. The type of things found in this chapter are:

Determining the path for various locations in the operating system

Interacting with services

Inspecting the Global Assembly Cache

Message queuing

It is a grab bag of code that can help to solve a specific need while you are working on a larger set of
functionality in your application.

Recipe 20.1. Dealing with Operating System Shutdown,
Power Management, or User Session Changes

Problem

You want to be notified whenever the operating system or a user has initiated an action that requires
your application to shut down or be inactive (user logoff, remote session disconnect, system
shutdown, hibernate/restore, etc.). This notification will allow you have your application respond
gracefully to the changes.

Solution

Use the Microsoft.Win32.SystemEvents class to get notification of operating system, user session
change, and power management events. The RegisterForSystemEvents method shown next hooks up
the five event handlers necessary to capture these events and would be placed in the initialization
section for your code:

 public static void RegisterForSystemEvents()
 {
 // Always get the final notification when the event thread is shutting down
 // so we can unregister.
 SystemEvents.EventsThreadShutdown +=
 new EventHandler(OnEventsThreadShutdown);
 SystemEvents.PowerModeChanged +=
 new PowerModeChangedEventHandler(OnPowerModeChanged);
 SystemEvents.SessionSwitch +=
 new SessionSwitchEventHandler(OnSessionSwitch);
 SystemEvents.SessionEnding +=
 new SessionEndingEventHandler(OnSessionEnding);
 SystemEvents.SessionEnded +=
 new SessionEndedEventHandler(OnSessionEnded);
 }

The EventsThreadShutdown event notifies you of when the thread that is distributing the events from
the SystemEvents class is shutting down so that you can unregister the events on the SystemEvents
class if you have not already done so. The PowerModeChanged event triggers when the user suspends
or resumes the system from a suspended state. The SessionSwitch event is triggered by a change in
the logged-on user. The SessionEnding event is triggered when the user is trying to log off or shut
down the system, and the SessionEnded event is triggered when the user is actually logging off or
shutting down the system.

The events can be unregistered using the UnregisterFromSystemEvents method.
UnregisterFromSystemEvents should be called from the termination code of your Windows Form, user
control, or any other class that may come and go, as well as from one other area shown later in the
recipe:

 private static void UnregisterFromSystemEvents()
 {
 SystemEvents.EventsThreadShutdown -=
 new EventHandler(OnEventsThreadShutdown);
 SystemEvents.PowerModeChanged -=
 new PowerModeChangedEventHandler(OnPowerModeChanged);
 SystemEvents.SessionSwitch -=
 new SessionSwitchEventHandler(OnSessionSwitch);
 SystemEvents.SessionEnding -=
 new SessionEndingEventHandler(OnSessionEnding);
 SystemEvents.SessionEnded -=
 new SessionEndedEventHandler(OnSessionEnded);
 }

Since the events exposed by SystemEvents are static, if you are using them in a
section of code that could be invoked multiple times (secondary Windows Form,
user control, monitoring class, etc.), you must unregister your handlers or you
will cause memory leaks in the application.

The SystemEvents handler methods are the individual event handlers for each of the events that have
been subscribed to in RegisterForSystemEvents . The first handler to cover is the
OnEventsThreadShutdown handler. It is essential that your handlers are unregistered if this event fires,
as the notification thread for the SystemEvents class is going away and the class may be gone before
your application is. If you haven't unregistered before that point, you will cause memory leaks, so add
a call to UnregisterFromSystemEvents into this handler as shown here:

 private static void OnEventsThreadShutdown(object sender, EventArgs e)
 {
 Debug.WriteLine("System event thread is shutting down, no more notifications.");
 // Unregister all our events as the notification thread is going away.
 UnregisterFromSystemEvents();
 }

The next handler to explore is the OnPowerModeChanged method. This handler can report the type of
power management event through the Mode property of the PowerModeEventChangedArgs parameter.
The Mode property has the PowerMode enumeration type and specifies the event type through the
enumeration value contained therein.

 private static void OnPowerModeChanged(object sender, PowerModeChangedEventArgs e)
 {
 // Power mode is changing.
 switch (e.Mode)
 {
 case PowerModes.Resume:
 Debug.WriteLine("PowerMode: OS is resuming from suspended state");
 break;
 case PowerModes.StatusChange:
 Debug.WriteLine("PowerMode: There was a change relating to the power" +
 " supply (weak battery, unplug, etc..)");
 break;
 case PowerModes.Suspend:
 Debug.WriteLine("PowerMode: OS is about to be suspended");
 break;
 }
 }

The next three handlers all deal with operating system session states. They are OnSessionSwitch,
OnSessionEnding , and OnSessionEnded . Handling all three of these events covers all of the operating
system session state transitions that your application may need to worry about. In OnSessionEnding ,
there is a SessionEndingEventArgs parameter, which has a Cancel member. This Cancel member
allows you to request that the session not end if set to false . Code for the three handlers is shown in
Example 20-1 .

Example 20-1. OnSessionSwitch, OnSessionEnding, and OnSessionEnded
handlers

private static void OnSessionSwitch(object sender, SessionSwitchEventArgs e)
{
 // Check reason.
 switch (e.Reason)
 {
 case SessionSwitchReason.ConsoleConnect:
 Debug.WriteLine("Session connected from the console");
 break;
 case SessionSwitchReason.ConsoleDisconnect:
 Debug.WriteLine("Session disconnected from the console");
 break;
 case SessionSwitchReason.RemoteConnect:
 Debug.WriteLine("Remote session connected");
 break;
 case SessionSwitchReason.RemoteDisconnect:
 Debug.WriteLine("Remote session disconnected");
 break;
 case SessionSwitchReason.SessionLock:
 Debug.WriteLine("Session has been locked");
 break;

 case SessionSwitchReason.SessionLogoff:
 Debug.WriteLine("User was logged off from a session");
 break;
 case SessionSwitchReason.SessionLogon:
 Debug.WriteLine("User has logged on to a session");
 break;
 case SessionSwitchReason.SessionRemoteControl:
 Debug.WriteLine("Session changed to or from remote status");
 break;
 case SessionSwitchReason.SessionUnlock:
 Debug.WriteLine("Session has been unlocked");
 break;
 }
}

private static void OnSessionEnding(object sender, SessionEndingEventArgs e)
{
 // True to cancel the user request to end the session, false otherwise
 e.Cancel = false;
 // Check reason.
 switch(e.Reason)
 {
 case SessionEndReasons.Logoff:
 Debug.WriteLine("Session ending as the user is logging off");
 break;
 case SessionEndReasons.SystemShutdown:
 Debug.WriteLine("Session ending as the OS is shutting down");
 break;
 }
}

private static void OnSessionEnded(object sender, SessionEndedEventArgs e)
{
 switch (e.Reason)
 {
 case SessionEndReasons.Logoff:
 Debug.WriteLine("Session ended as the user is logging off");
 break;
 case SessionEndReasons.SystemShutdown:
 Debug.WriteLine("Session ended as the OS is shutting down");
 break;
 }
}

Discussion

The .NET Framework provides many opportunities to get feedback from the system when there are
changes due to either user or system interactions. The SystemEvents class exposes more events than

just the ones used in this recipe. For a full listing, see

Table 20-1. The SystemEvents events

Value Description

DisplaySettingsChanged User changed display settings.

DisplaySettingsChanging Display settings are changing.

EventsThreadShutdown Thread listening for system events is terminating.

InstalledFontsChanged User added or removed fonts.

PaletteChanged User switched to an application with a different palette.

PowerModeChanged User suspended or resumed the system.

SessionEnded User shut down the system or logged off.

SessionEnding User is attempting to shut down the system or log off.

SessionSwitch The currently logged-in user changed.

TimeChanged User changed system time.

TimerElapsed A Windows timer interval expired.

UserPreferenceChanged User changed a preference in the system.

UserPreferenceChanging User is trying to change a preference in the system.

Keep in mind that these are system events. Therefore, the amount of work
done in the handlers should be kept to a minimum so the system can move on
to the next task.

The notifications from SystemEvents come on a dedicated thread for raising these events. In a
Windows Forms application, you will need to get back on to the correct user interface thread before
updating a UI with any of this information, using one of the various methods for doing so
(Control.BeginInvoke, Control.Invoke, BackgroundWorker).

See Also

See the "SystemEvents Class," "PowerModeChangedEventArgs Class," "SessionEndedEventArgs
Class," "SessionEndingEventArgs Class," "SessionSwitchEventArgs Class," "TimerElapsedEventArgs
Class," "UserPreferenceChangingEventArgs Class," and "UserPreferenceChangedEventArgs Class"
topics in the MSDN documentation.

Recipe 20.2. Controlling a Service

Problem

You need to programmatically manipulate a service that your application interacts with.

Solution

Use the System.ServiceProcess.ServiceController class to control the service. ServiceController
allows you to interact with an existing service and to read and change its properties. In the example,
it will be used to manipulate the ASP.NET State Service. The name, the service type, and the display
name are easily available from the ServiceName, ServiceType, and DisplayName properties.

 ServiceController scStateService = new ServiceController("COM+ Event System");
 Console.WriteLine("Service Name: " + scStateService.ServiceName);
 Console.WriteLine("Service Type: " + scStateService.ServiceType.ToString());
 Console.WriteLine("Display Name: " + scStateService.DisplayName);

The ServiceType enumeration has a number of values, shown in Table 20-2.

Table 20-2. The ServiceType enumeration values

Value Description

Adapter Service that serves a hardware device

FileSystemDriver Driver for the filesystem (kernel level)

InteractiveProcess Service that communicates with the desktop

KernelDriver Low-level hardware device driver

RecognizerDriver Driver for identifying filesystems on startup

Win32OwnProcess Win32 program that runs as a service in its own process

Win32ShareProcess Win32 program that runs as a service in a shared process like SvcHost

One useful task is to determine a service's dependents. The services that depend on the current

service are accessed through the DependentServices property, an array of ServiceController instances
(one for each dependent service):

 foreach (ServiceController sc in scStateService.DependentServices)
 {
 Console.WriteLine(scStateService.DisplayName + " is depended on by: " +
 sc.DisplayName);
 }

To see the services that the current service does depend on, the ServicesDependedOn array contains
ServiceController instances for each of those:

 foreach (ServiceController sc in scStateService.ServicesDependedOn)
 {
 Console.WriteLine(scStateService.DisplayName + " depends on: " +
 sc.DisplayName);
 }

One of the most important things about services is what state they are in. A service doesn't do much
good if it is supposed to be running and it isn'tor worse yet, it is supposed to be disabled (perhaps as
a security risk) and isn't. To find out the current status of the service, check the Status property. For
this example, the original state of the service will be saved so it can be restored later in the
originalState variable.

 Console.WriteLine("Status: " + scStateService.Status);
 // Save original state.
 ServiceControllerStatus originalState = scStateService.Status;

If a service is stopped, it can be started with the Start method. First, check if the service is stopped,
then once Start has been called on the ServiceController instance, the WaitForStatus method
should be called to make sure that the service started. WaitForStatus can take a timeout value so
that the application is not waiting forever for the service to start in the case of a problem.

 // If it is stopped, start it.
 TimeSpan serviceTimeout = TimeSpan.FromSeconds(60);
 if (scStateService.Status == ServiceControllerStatus.Stopped)
 {
 scStateService.Start();
 // Wait up to 60 seconds for start.
 scStateService.WaitForStatus(ServiceControllerStatus.Running, serviceTimeout);
 }
 Console.WriteLine("Status: " + scStateService.Status);

Services can also be paused. If the service is paused, the application needs to check if it can be
continued by looking at the CanPauseAndContinue property. If so, the Continue method will get the
service going again, and the WaitForStatus method should be called to wait until it does:

 // If it is paused, continue.
 if (scStateService.Status == ServiceControllerStatus.Paused)
 {
 if(scStateService.CanPauseAndContinue)
 {
 scStateService.Continue();
 // Wait up to 60 seconds for running.
 scStateService.WaitForStatus(ServiceControllerStatus.Running,
 serviceTimeout);
 }
 }
 Console.WriteLine("Status: " + scStateService.Status);

 // Should be running at this point.

Determining if a service can be stopped is done through the CanStop property. If it can be stopped,
then stopping it is a matter of calling the Stop method followed by WaitForStatus:

 // Can we stop it?
 if (scStateService.CanStop)
 {
 scStateService.Stop();
 // Wait up to 60 seconds for stop.
 scStateService.WaitForStatus(ServiceControllerStatus.Stopped, serviceTimeout);
 }
 Console.WriteLine("Status: " + scStateService.Status);

Now it is time to set the service back to how you found it. The originalState variable has the original
state, and the switch statement holds actions for taking the service from the current stopped state to
its original state:

 // Set it back to the original state.
 switch (originalState)
 {
 case ServiceControllerStatus.Stopped:
 if (scStateService.CanStop)
 {
 scStateService.Stop();
 }

 break;
 case ServiceControllerStatus.Running:
 scStateService.Start();
 // Wait up to 60 seconds for stop.
 scStateService.WaitForStatus(ServiceControllerStatus.Running,
 serviceTimeout);
 break;
 case ServiceControllerStatus.Paused:
 // If it was paused and is stopped, need to restart so we can pause.
 if (scStateService.Status == ServiceControllerStatus.Stopped)
 {
 scStateService.Start();
 // Wait up to 60 seconds for start.
 scStateService.WaitForStatus(ServiceControllerStatus.Running,
 serviceTimeout);
 }
 // Now pause.
 if (scStateService.CanPauseAndContinue)
 {
 scStateService.Pause();
 // Wait up to 60 seconds for stop.
 scStateService.WaitForStatus(ServiceControllerStatus.Paused,
 serviceTimeout);
 }
 break;
 }

In order to be sure that the Status property is correct on the service, the application should call
Refresh to update it before testing the value of the Status property. Once the application is done with
the service, call the Close method.

 scStateService.Refresh();
 Console.WriteLine("Status: " + scStateService.Status.ToString());

 // Close it.
 scStateService.Close();

Discussion

Services run many of the operating system functions today. They usually run under a system account
(LocalSystem, NetworkService, LocalService) or a specific user account that has been granted
specific permissions and rights. If your application uses a service, then this is a good way to
determine if everything for the service to run is set up and configured properly before your
application attempts to use it. Not all applications depend on services directly. But if your application
does, or you have written a service as part of your application, it can be handy to have an easy way
to check the status of your service and possibly correct the situation.

See Also

See the "ServiceController Class" and "ServiceControllerStatus Enumeration" topics in the MSDN
documentation.

Recipe 20.3. List What Processes an Assembly Is Loaded
In

Problem

You want to know what current processes have a given assembly loaded.

Solution

Use the GetProcessesAssemblyIsLoadedIn method that we've created for this purpose to return a list
of processes that a given assembly is loaded in. GetProcessesAssemblyIsLoadedIn takes the filename
of the assembly to look for (like System.Data.dll), then gets a list of the currently running processes
on the machine by calling Process.GetProcesses. It then searches the processes to see if the
assembly is loaded into any of them. When found in a process, that Process object is added to a
List<Process>. The entire List<Process> is returned once all the processes have been examined.

 public static List<Process> GetProcessesAssemblyIsLoadedIn(string assemblyFileName)
 {
 List<Process> processList = new List<Process>();
 Process[] processes = Process.GetProcesses();
 foreach (Process p in processes)
 {
 foreach (ProcessModule module in p.Modules)
 {
 if (module.ModuleName.Equals(assemblyFileName,
 StringComparison.OrdinalIgnoreCase))
 {
 processList.Add(p);
 break;
 }
 }
 }
 return processList;
 }

Discussion

In some circumstances, such as when uninstalling software or debugging version conflicts, it is

beneficial to know if an assembly is loaded into more than one process. By quickly getting a list of the
Process objects that the assembly is loaded in, you can narrow the scope of your investigation.

The following code uses this routine:

 string searchAssm = "System.Data.dll";
 List<Process> processes = Toolbox.GetProcessesAssemblyIsLoadedIn(searchAssm);
 foreach (Process p in processes)
 {
 Console.WriteLine("Found {0} in {1}",searchAssm, p.MainModule.ModuleName);
 }

The preceding code might produce output like this (you may see more if you have other applications
running):

 Found System.Data.dll in WebDev.WebServer.EXE
 Found System.Data.dll in devenv.exe
 Found System.Data.dll in CSharpRecipes.vshost.exe

Since this is a diagnostic function, you will need FullTrust security access to use this method.

See Also

See the "Process Class," "ProcessModule Class," and "GetProcesses Method" topics in the MSDN
documentation.

Recipe 20.4. Using Message Queues on a Local
Workstation

Problem

You need a way to disconnect two components of your application (like a web service endpoint and
processing logic) so that the first component has to worry about only formatting the instructions and
the bulk of the processing occurs in the second component.

Solution

Use the MQWorker class shown here in both the first and second components to write and read
messages to and from a message queue. MQWorker uses the local message-queuing services to do
this. The queue pathname is supplied in the constructor, and the existence of the queue is checked in
the SetUpQueue method.

 class MQWorker
 {
 private string _mqPathName;
 MessageQueue _queue = null;

 public MQWorker(string queuePathName)
 {
 if (string.IsNullOrEmpty(queuePathName)
 throw new ArgumentNullException("queuePathName");

 _mqPathName = queuePathName;

 SetUpQueue();
 }

SetUpQueue creates a message queue of the supplied name using the MessageQueue class if none
exists. It accounts for the scenario in which the message-queuing services are running on a
workstation computer. In that situation, it makes the queue private, as that is the only type of queue
allowed on a workstation.

 private void SetUpQueue()
 {

 // See if the queue exists, create it if not.
 if (!MessageQueue.Exists(_mqPathName))
 {
 try
 {
 _queue = MessageQueue.Create(_mqPathName);
 }
 catch (MessageQueueException mqex)
 {
 // See if we are running on a workgroup computer.
 if (mqex.MessageQueueErrorCode ==
 MessageQueueErrorCode.UnsupportedOperation)
 {
 string origPath = _mqPathName;
 // Must be a private queue in workstation mode.
 int index = _mqPathName.ToLower().IndexOf("private$");
 if (index == -1)
 {
 // Get the first \.
 index = _mqPathName.IndexOf(@"\");
 // Insert private$\ after server entry.
 _mqPathName = _mqPathName.Insert(index + 1, @"private$\");

 if (!MessageQueue.Exists(_mqPathName))
 _queue = MessageQueue.Create(_mqPathName);
 else
 _queue = new MessageQueue(_mqPathName);
 }
 }
 }
 }
 else
 {
 _queue = new MessageQueue(_mqPathName);
 }
 }

The SendMessage method sends a message to the queue set up in the constructor. The body of the
message is supplied in the body parameter, and then an instance of System.Messaging.Message is
created and populated. The BinaryMessageFormatter is used to format the message, as it enables
larger volumes of messages to be sent with fewer resources than does the default
XmlMessageFormatter. Messages are set to be persistent by setting the Recoverable property to true.
Finally, the Body is set and the message is sent.

 public void SendMessage(string label, string body)
 {
 if (_queue != null)
 {
 Message msg = new Message();

 // Label our message.
 msg.Label = label;

 // Override the default XML formatting with binary
 // as it is faster (at the expense of legibility while debugging).
 msg.Formatter = new BinaryMessageFormatter();
 // Make this message persist (causes message to be written
 // to disk).
 msg.Recoverable = true;
 msg.Body = body;
 _queue.Send(msg);
 }
 }

The ReadMessage method reads messages from the queue set up in the constructor by creating a
Message object and calling its Receive method. The message formatter is set to the
BinaryMessageFormatter for the Message, since that is how we write to the queue. Finally, the body of
the message is returned from the method.

 public string ReadMessage()
 {
 Message msg = null;
 msg = _queue.Receive();
 msg.Formatter = new BinaryMessageFormatter();
 return (string)msg.Body;
 }
 }

To show how the MQWorker class is used, the following example creates an MQWorker. It then sends a
message (a small blob of XML) using SendMessage, then retrieves it using ReadMessage:

 // NOTE: Message Queue services must be set up for this to work.
 // This can be added in Add/Remove Windows Components.

 // This is the right syntax for workstation queues.
 //MQWorker mqw = new MQWorker(@".\private$\MQWorkerQ");
 MQWorker mqw = new MQWorker(@".\MQWorkerQ");
 string xml = "<MyXml><InnerXml location=\"inside\"/></MyXml>";
 Console.WriteLine("Sending message to message queue: " + xml);
 mqw.SendMessage("Message Label",xml);

 // This could also be in a separate component.
 string retXml = mqw.ReadMessage();
 Console.WriteLine("Read message from message queue: " + retXml);

Discussion

Message queues are very useful when you are attempting to distribute the processing load for
scalability purposes. Without question, using a message queue adds overhead to the processing, as
the messages must travel through the infrastructure of MSMQ, overhead would not incur without it.
One benefit is that MSMQ allows your application to spread out across multiple machines, so there
can be a net gain in production. Another advantage is that this supports reliable asynchronous
handling of the messages so that the sending side can be confident that the receiving side will get the
message without the sender having to wait for confirmation. The Message Queue services are not
installed by default, but can be installed through the Add/ Remove Windows Components applet in
Control Panel. Using a message queue to buffer your processing logic from high volumes of requests
(such as in the web service scenario presented earlier) can lead to more stability and ultimately can
produce more throughput for your application through using multiple reader processes on multiple
machines.

See Also

See the "Message Class" and "MessageQueue Class" topics in the MSDN documentation.

Recipe 20.5. Finding the Path to the Current Framework
Version

Problem

You need the path to where the version of the .NET Framework you are running on is located.

Solution

Use the GetruntimeDirectoryRuntimeDirectory method (implemented in
System.Runtime.InteropServices.RuntimeEnvironment) to return the full path to the folder that the
current version of .NET is installed in:

 public static string GetCurrentFrameworkPath()
 {

 return
 System.Runtime.InteropServices.RuntimeEnvironment.GetRuntimeDirectory();
 }

Discussion

There are many reasons why you might want to know the current framework path, including:

Manually loading the configuration files in the config directory to check settings

Dynamically adding references for system components in a code generator

The list could go on and on. Since the method to get to the path is pretty far down a namespace
chain (System.Runtime.InteropServices.RuntimeEnvironment), it is provided for your programming
convenience.

See Also

See the "Version Class" and "Version.ToString Method" topics in the MSDN documentation.

Recipe 20.6. Determining the Versions of an Assembly That
Are Registered in the Global Assembly Cache (GAC)

Problem

You need to determine all of the versions of an assembly that are currently installed in the GAC.

Solution

Use the PrintGACRegisteredVersions method (implemented here) to display all of the versions (both
native and managed) of an assembly in the GAC. In order to be complete, the code looks for .dll, .exe ,
and the native versions of .dll and .exe files in the Global Assembly Cache.

 public static void PrintGACRegisteredVersions(string assmFileName)
 {

 Console.WriteLine("Searching for GAC Entries for {0}\r\n", assmFileName);
 // Get the filename without the extension as that is the subdirectory
 // name in the GAC where it would be registered.
 string assmFileNameNoExt = Path.GetFileNameWithoutExtension(assmFileName);

 // Need to look for both the native images as well as "regular" .dlls and .exes.
 string searchDLL = assmFileNameNoExt + ".dll";
 string searchEXE = assmFileNameNoExt + ".exe";
 string searchNIDLL = assmFileNameNoExt + ".ni.dll";
 string searchNIEXE = assmFileNameNoExt + ".ni.exe";

The Directory.GetFiles method is used to determine if any of those versions are present in the GAC,
which is located in the [Windows]\ASSEMBLY folder.

The ASSEMBLY folder is not visible through Windows Explorer, as the GAC shell
extension gets in the way. But if you run a Command Prompt window, you can
maneuver to the [Windows]\ASSEMBLY folder and see how things are stored in the
GAC.

Finally, all of the files are combined into a master ArrayList using the AddRange method:

 // Get the path to the GAC using GetWinDir from 20.7.
 string gacPath = GetWinDir() + @"\ASSEMBLY\";

 // Go get all of the possible file derivatives in the GAC.
 string [] dllFiles = Directory.GetFiles(gacPath, searchDLL,
 SearchOption.AllDirectories);
 string [] exeFiles = Directory.GetFiles(gacPath, searchEXE,
 SearchOption.AllDirectories);
 string [] niDllFiles = Directory.GetFiles(gacPath, searchNIDLL,
 SearchOption.AllDirectories);
 string [] niExeFiles = Directory.GetFiles(gacPath, searchNIEXE,
 SearchOption.AllDirectories);

 ArrayList files = new ArrayList(5);
 files.AddRange(dllFiles);
 files.AddRange(exeFiles);
 files.AddRange(niDllFiles);
 files.AddRange(niExeFiles);

Now that you have a master list of the versions of this file in the GAC, you display the information for
each individual item by examining the FileVersionInfo and writing it out to the console:

 foreach (string file in files)
 {
 // Grab the version info and print.
 FileVersionInfo fileVersion = FileVersionInfo.GetVersionInfo(file);
 if (file.IndexOf("NativeImage") != -1)
 {
 Console.WriteLine("Found {0} in the GAC under {1} as a native image",
 assmFileNameNoExt, Path.GetDirectoryName(file));
 }
 else
 {
 Console.WriteLine("Found {0} in the GAC under {1} with version " +
 "information:\r\n{2}",
 assmFileNameNoExt, Path.GetDirectoryName(file),
 fileVersion.ToString());
 }
 }
 }

The output from this when looking for mscorlib looks like this:

 Found mscorlib in the GAC under C:\WINDOWS\ASSEMBLY\NativeImages1_v1.1.4322\mscorlib\
 1.0.5000.0_ _b77a5c561934e089_a4b3b51f as a native image
 Found mscorlib in the GAC under C:\WINDOWS\ASSEMBLY\NativeImages1_v1.1.4322\mscorlib\
 1.0.5000.0_ _b77a5c561934e089_605b23c2 as a native image
 Found mscorlib in the GAC under C:\WINDOWS\ASSEMBLY\NativeImages1_v1.0.3705\MSCORLIB\

 1.0.3300.0_ _b77a5c561934e089_22016492 as a native image
 Found mscorlib in the GAC under C:\WINDOWS\ASSEMBLY\GAC_32\mscorlib\2.0.0.0_ _
 b77a5c561934e089 with version information:
 File: C:\WINDOWS\ASSEMBLY\GAC_32\mscorlib\2.0.0.0_ _b77a5c561934e089\
 mscorlib.dll
 InternalName: mscorlib.dll
 OriginalFilename: mscorlib.dll
 FileVersion: 2.0.50712.6 (lab23df.050712-0600)
 FileDescription: Microsoft Common Language Runtime Class Library
 Product: Microsoftr .NET Framework
 ProductVersion: 2.0.50712.6
 Debug: False
 Patched: False
 PreRelease: False
 PrivateBuild: False
 SpecialBuild: False
 Language: English (United States)

 Found mscorlib in the GAC under C:\WINDOWS\ASSEMBLY\NativeImages_v2.0.50712_32\
 mscorlib\043d0388db36f94390f023725a82a5e4 as a native image
 Found mscorlib in the GAC under C:\WINDOWS\ASSEMBLY\NativeImages_v2.0.50601_32\
 mscorlib\e56acc8ebce07f4db51f6f98c84419c2 as a native image
 Found mscorlib in the GAC under C:\WINDOWS\ASSEMBLY\NativeImages_v2.0.50215_32\
 mscorlib\5259bd1f47da3e329e6706b9d018132f as a native image
 Found mscorlib in the GAC under C:\WINDOWS\ASSEMBLY\NativeImages_v2.0.50110_32\
 mscorlib\1958e0d8502fff3f9b6b032a1e517867 as a native image
 Found mscorlib in the GAC under C:\WINDOWS\ASSEMBLY\NativeImages_v2.0.50110_32\
 mscorlib\07185e97384cd23eb6c91147f5db32ce as a native image
 Found mscorlib in the GAC under C:\WINDOWS\ASSEMBLY\NativeImages_v2.0.41115_32\
 mscorlib\ce295c2bd5b3d53cbcdca987ec346d99 as a native image

Discussion

The ability to have multiple versions of assemblies on a machine and having absolute binding
mechanisms to the specific version of an assembly, were proclaimed as the cure to .dll hell .dll hell was
the case in which two applications linked to a .dll of the same name in a common folder (like System32),
but each application needed a different version of the .dll . Problems occurred when you attempted to
run one or the other application, depending upon which version was present. With assemblies and the
GAC, this scenario occurs only when the application is improperly configured by allowing it to use newer
versions of an assembly automatically or via publisher policy issues. Perhaps things are better now. In
any case, they are different, and the starting point for debugging assembly loads is to figure out what is
on the system. This can be helped by looking at the Assembly Binding Log Viewer (FUSLOGVW.exe). But
having a way to just see what is on the system with a particular filename and what versions are included
can be a very useful thing.

See Also

See the "Directory Class," "ArrayList Class," and "FileVersionInfo Class" topics in the MSDN

documentation.

Recipe 20.7. Getting the Windows Directory

Problem

You need to know the full path to the Windows directory.

Solution

Call the GetWinDir method created for your use here to return the Windows directory path in a
string:

 public static string GetWinDir()
 {
 string sysDir = Environment.GetFolderPath(Environment.SpecialFolder.System);
 return Path.GetFullPath(sysDir + @"\..");
 }

Discussion

There is an enumeration to describe almost every significant operating system folder
(Environment.SpecialFolder). But for some reason, since the inception of .NET, the Windows
directory has been deemed unacceptably off-limits. This recipe exists for want of an
Environment.SpecialFolder.Windows value. Another way to get at this value is to use the
Environment.GetEnvironmentVariable function, passing in "windir" as the value.

Table 20-3 shows all of the other places in the OS you can get through Environment.SpecialFolder.

Table 20-3. The Environment.SpecialFolder enumeration values

Value Description

ApplicationData Roaming user's application data directory

CommonApplicationData Application data directory for all roaming users

CommonProgramFiles Folder for common application components

Cookies Directory where cookies are stored

Value Description

Desktop The logical desktop folder

DesktopDirectory The physical desktop folder

Favorites Where favorites are stored on disk

History Internet history items folder

InternetCache Where temporary Internet files are stored

LocalApplicationData Nonroaming user's application data directory

MyComputer Physical location of My Computer folder

MyDocuments Physical location of My Documents folder

MyMusic Physical location of My Music folder

MyPictures Physical location of My Pictures folder

Personal Physical location of personal documents

ProgramFiles Physical location of the official Program Files directory

Programs Folder where Program Groups are stored

Recent Folder containing most recently used documents

SendTo Send To menu item folder

StartMenu Folder containing the Start menu structure and items

Startup Folder corresponding to the Startup Program Group location

System The system directory

Templates Common location for document templates

See Also

See the "Environment.SpecialFolder Enumeration" and "Environment.GetFolderPath Method" topics in
the MSDN documentation.

Desktop The logical desktop folder

DesktopDirectory The physical desktop folder

Favorites Where favorites are stored on disk

History Internet history items folder

InternetCache Where temporary Internet files are stored

LocalApplicationData Nonroaming user's application data directory

MyComputer Physical location of My Computer folder

MyDocuments Physical location of My Documents folder

MyMusic Physical location of My Music folder

MyPictures Physical location of My Pictures folder

Personal Physical location of personal documents

ProgramFiles Physical location of the official Program Files directory

Programs Folder where Program Groups are stored

Recent Folder containing most recently used documents

SendTo Send To menu item folder

StartMenu Folder containing the Start menu structure and items

Startup Folder corresponding to the Startup Program Group location

System The system directory

Templates Common location for document templates

See Also

See the "Environment.SpecialFolder Enumeration" and "Environment.GetFolderPath Method" topics in
the MSDN documentation.

Recipe 20.8. Capturing Output from the Standard Output
Stream

Problem

You want to capture output that is going to the standard output stream from within your C#
program.

Solution

Use the Console.SetOut method to capture and release the standard output stream. SetOut sets the
standard output stream to whatever System.IO.TextWriter-based stream it is handed. To capture the
output to a file, create a StreamWriter to write to it, and set that writer using SetOut. Now when
Console.WriteLine is called, the output goes to the StreamWriter, not to stdout as shown here:

 try
 {
 Console.WriteLine("Stealing standard output!");
 using (StreamWriter writer = new StreamWriter(@"c:\log.txt"))
 {
 // Steal stdout for our own purposes…
 Console.SetOut(writer);

 Console.WriteLine("Writing to the console… NOT!");

 for (int i = 0; i < 10; i++)
 Console.WriteLine(i);

 }
 }
 catch(IOException e)
 {
 Debug.WriteLine(e.ToString());
 return ;
 }

To restore writing to the standard output stream, create another StreamWriter. This time, call the
Console.OpenStandardOutput method to acquire the standard output stream and use SetOut to set it
once again. Now calls to Console.WriteLine appear on the console again.

 // Recover the standard output stream so that a
 // completion message can be displayed.
 using (StreamWriter standardOutput =
 new StreamWriter(Console.OpenStandardOutput()))
 {
 standardOutput.AutoFlush = true;
 Console.SetOut(standardOutput);
 Console.WriteLine("Back to standard output!");
 }

The console output from this code looks like this:

 Stealing standard output!
 Back to standard output!

log.txt contains the following after the code is executed:

 Writing to the console… NOT!
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

Discussion

Redirecting the standard output stream inside of the program may seem a bit antiquated. But
consider the situation when you're using another class that writes information to this stream. You
don't want the output to appear in your application, but you have to use the class. This could also be
useful if you create a small launcher application to capture output from a console application.

See Also

See the "Console.SetOut Method," "Console.OpenStandardOutput Method," and "StreamWriter Class"
topics in the MSDN documentation.

Recipe 20.9. Running Code in Its Own appdomain

Problem

You want to run code isolated from the main part of your application.

Solution

Create a separate appdomain to run the code using the appdomain.CreateDomain method.
CreateDomain allows the application to control many aspects of the appdomain being created like the
security environment, the appdomain settings, and base paths for the appdomain. To demonstrate this,
the code creates an instance of the RunMe class (shown in full later in this recipe) and calls the
PrintCurrentappdomainName method. This prints the name of the appdomain where the code is
running.

 public static void RunCodeInNewappdomain()
 {
 appdomain myOwnappdomain = appdomain.CreateDomain("MyOwnappdomain");
 // Print out our current appdomain name.
 RunMe rm = new RunMe();
 rm.PrintCurrentappdomainName();

Now you create an instance of the RunMe class in the "MyOwnappdomain" appdomain by calling
CreateInstance on the appdomain. We pass CreateInstance the module and type information
necessary for constructing the type, and it returns an ObjectHandle. We can then retrieve a proxy to
the instance running in the appdomain by taking the returned ObjectHandle and casting it to a RunMe
reference using the Unwrap method.

 // Create our RunMe class in the new appdomain.
 Type adType = typeof(RunMe);
 ObjectHandle objHdl =
 myOwnappdomain.CreateInstance(adType.Module.Assembly.FullName,
 adType.FullName);

 // Unwrap the reference.
 RunMe adRunMe = (RunMe)objHdl.Unwrap();

The PrintCurrentappdomainName method is called on the RunMe instance in the "MyOwnappdomain"
appdomain and it prints out "Hello from MyOwnappdomain!". The appdomain is unloaded using
appdomain.Unload and the program terminates.

 // Make a call on the toolbox.
 adRunMe.PrintCurrentappdomainName();

 // Now unload the appdomain.
 appdomain.Unload(myOwnappdomain);
 }

The RunMe class is defined here. It inherits from MarshalByRefObject, as that allows you to retrieve
the proxy reference when you call Unwrap on the ObjectHandle and have the calls on the class
remoted into the new appdomain. The PrintCurrentApp-DomainName method simply accesses the
FriendlyName property on the current appdomain and prints out the "Hello from {appdomain}!"

message.

 public class RunMe : MarshalByRefObject
 {
 public RunMe()
 {
 PrintCurrentappdomainName();
 }

 public void PrintCurrentappdomainName()
 {
 string name = appdomain.CurrentDomain.FriendlyName;
 Console.WriteLine("Hello from {0}!", name);
 }
 }

The output from this example is shown here:

 Hello from CSharpRecipes.vshost.exe!
 Hello from CSharpRecipes.vshost.exe!
 Hello from MyOwnappdomain!
 Hello from MyOwnappdomain!

Discussion

Isolating code in a separate appdomain is overkill for something as trivial as this example, but it
demonstrates that code can be executed remotely in an appdomain created by your application. There

are six overloads for the CreateDomain method and each adds a bit more complexity to the appdomain
creation. In situations in which the isolation or configuration benefits outweigh the complexities of not
only setting up a separate appdomain but debugging code in it as well, it is a useful tool. A good
realworld example is hosting a separate appdomain to run ASP.NET pages outside of the normal
ASP.NET environment though this is truly a nontrivial usage.

See Also

See the "appdomain Class," "appdomain.CreateDomain Method," and "ObjectHandle Class" topics in
the MSDN documentation.

Recipe 20.10. Determining the Operating System and
Service Pack Version of the Current Operating System

Problem

You want to know the current operating system and service pack.

Solution

Use the GetOSAndServicePack method shown in Example 20-2 to get a string representing the current
operating system and service pack. GetOSAndServicePack uses the Environment.OSVersion property
to get the version information for the operating system, then determines the "official" name of the
OS from that. The OperatingSystem class retrieved from Environment.OSVersion has a property for
the service pack called ServicePack. The two strings are then merged together and returned as the
OS and service pack string.

Example 20-2. GetOSAndServicePack method

public static string GetOSAndServicePack()
{
 // Get the current OS info.
 OperatingSystem os = Environment.OSVersion;
 string osText = "";
 // If version is 5, then it is Win2K, XP, or 2003
 if (os.Version.Major == 5)
 {
 switch (os.Version.Minor)
 {
 case 0: osText = "Windows 2000";
 break;
 case 1: osText = "Windows XP";
 break;
 case 2: osText = "Windows Server 2003";
 break;
 // This is the default but it usually reports "Microsoft Windows NT"
 // due to relying on the PlatformID.
 default: osText = os.ToString();
 break;
 }

 }
 else
 {
 // Probably NT4 as .NET doesn't run on Win9X…
 osText = os.VersionString;
 }

 // Get the text for the service pack.
 string spText = os.ServicePack;
 // Build the whole string.
 return string.Format("{0} {1}", osText, spText);
}

Discussion

Enabling your application to know the current operating system and service pack allows you to
include that information in debugging reports and in the about box (if you have one) for your
application. The simple knowledge of the correct operating system and service pack transmitted
through your support department can save you hours in debugging time. It is well worth making
available so your support department can easily direct your clients to it in case they cannot otherwise
locate it.

See Also

See the "Environment.OSVersion Property" and "OperatingSystem Class" topics in the MSDN
documentation.

About the Authors

Jay Hilyard has been developing applications for the Windows platform for over 12 years and for
.NET for more than 4 of those. Jay has published multiple articles in MSDN Magazine, and he currently
works on the New Product Development team at Newmarket International in Portsmouth, NH. When
not immersed in .NET, Jay spends his time with his family and rooting for the Patriots.

Stephen Teilhet earned a degree in electrical engineering, but soon afterwards began to write
software for the Windows platform. For the last 11 years, he's worked for several consulting firms on
a wide range of projects, specializing in Visual Basic, Visual C++, MTS, COM, MSMQ, and SQL Server.
Stephen currently is employed at Compuware Numega Labs in Nashua, NH, where he has worked on
several award-winning products, including DevPartner CodeReview and, most recently, DevPartner
SecurityChecker.

Colophon

The animal on the cover of C# Cookbook is a garter snake (Thamnophis sirtalis). Named because
their longitudinal stripes resemble those on garters once used to hold up men's socks, garter snakes
are easily identified by their distinctive stripes: a narrow stripe down the middle of the back with a
broad stripe on each side of it. Color and pattern variations enable them to blend into their native
environments, helping them evade predators. They are the most common snake in North America
and the only species of snake found in Alaska.

Garter snakes have keeled scales--one or more ridges down the central axis of the scales--giving
them a rough texture and lackluster appearance. Adult garter snakes generally range in length
between 46 and 130 centimeters (one and a half feet to over four feet). Females are usually larger
than males, with shorter tails and a bulge where the body and tail meet.

Female garters are ovoviviparous, meaning they deliver "live" young that have gestated in soft eggs.
Upon delivery, most of the eggs and mucous membranes have broken, which makes their births
appear live. Occasionally, a baby will be born still inside its soft shell. A female will usually deliver 10 to
40 babies: the largest recorded number of live babies birthed by a garter snake is 98. Once emerging
from their mothers, baby garters are completely independent and must begin fending for themselves.
During this time they are most susceptible to predation, and over half of all baby garters die before
they are one year old.

Garter snakes are one of the few animals able to eat toads, newts, and other amphibians with strong
chemical defenses. Although diets vary depending on their environments, garter snakes mostly eat
earthworms and amphibians; however, they occasionally dine on baby birds, fish, and small rodents.
Garter snakes have toxic saliva (harmless to humans), which they use to stun or kill their prey before
swallowing them whole.

The cover image is from a 19th-century engraving from the Dover Pictorial Archive.The cover font is
Adobe ITC Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad Condensed;
and the code font is LucasFont's TheSans Mono Condensed..

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

!= (inequality operator)

 overriding

(comment character)

#define preprocessor directive 2nd

#elif preprocessor directive 2nd

#if preprocessor directive 2nd

#undef preprocessor directive 2nd

& (bitwise AND operator)

& (bitwise AND) operator

 determining if flag turned on in enumeration value

 high word and low word of a number

 overloaded 2nd 3rd 4th

 testing if bit flags are on or off

&& (logical AND) operator

 indirectly overloading 2nd 3rd

'- (hyphen)

 in regular expression patterns

() (cast operator)

() (parentheses)

 in equations 2nd 3rd

* (wildcard character)

*= (assignment operator) 2nd

 overloaded 2nd 3rd

+= (assignment operator) 2nd

// (comment characters)

: (colon)

 path-separation character

< nopgage

-= (assignment operator)

/= (assignment operator)

-= (assignment operator)

/= (assignment operator)

== (equality operator)

 comparing strings with

 overriding

> (greater than operator)

\ (backslash)

 on command line

^ (bitwise XOR operator)

^ (bitwise XOR) operator

_items array

 standard .NET type

| (bitwise OR) operator

 overloaded

 testing if bit flags are set

~ (bitwise complement) operator 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

abstract classes

 implementing polymorphism 2nd 3rd 4th 5th

AcceptTcpClient method 2nd

AccessException exception 2nd

Action<T> class

ActivationArguments

ActivationContext

ActivationData

adapter design pattern

Add method

 Hashtable class

 IList interface

 SortedList class

AddExtensionObject method

AddGroup method

AddNode method

 BinaryTree<T> class

AddParam method

AddProxyInfoToRequest method

AddSorted method 2nd

AddUniqueNode method 2nd

AfterAddItem event

AfterChangeItem event

AggregateCacheDependency class 2nd

AllocateDataSlot method 2nd

AllocateNamedDataSlot method 2nd

AmbiguousMatchException exception 2nd

AND operator

 testing for even and odd values

and responding to 2nd 3rd 4th 5th 6th 7th

anonymous methods 2nd 3rd 4th 5th 6th

 implementing closures 2nd

 outer variables

 parameter modifiers

 working with generic delegates

appdomain

 determining current settings 2nd

appdomain.CurrentDomain.SetupInformati on class

appdomainSetup class

appdomainUnloadedException exception 2nd

Append method

AppendText method

 File class

 FileInfo class

AppEvents class 2nd 3rd 4th 5th 6th

 constructing multiple

 methods

application

 data for

 performance counters for 2nd

 persisting collections between sessions

 versioning with multiple entry points 2nd

application configuration file

 level of debug/trace output

 selecting components to trace in

 selecting level of tracing in

 switches for application tracing

 turning on tracing with

 WinForms- or Console-based application

ApplicationException exception 2nd 3rd

applications

 base and name

 command-line parameters

 conditionally compiling blocks of code

 event logs 2nd 3rd 4th 5th 6th 7th 8th

 processes not responding

 production

 selective debugging and tracing 2nd

ApplicationTrust property (appdomainSetup)

Approval delegate

ApproveAdd method

ApproveChange method

AppSpecificSwitch custom class 2nd 3rd 4th 5th

AppSpecificSwitchLevel enumeration 2nd

arcsine

ArgType enumeration

ArgumentException exception 2nd 3rd 4th 5th 6th 7th 8th

ArgumentNullException exception 2nd 3rd 4th 5th 6th 7th

ArgumentOutOfRangeException exception 2nd 3rd 4th 5th

ArithmeticException exception 2nd

Array class

 BinarySearch method

 Copy method

 Sort method 2nd

ArrayList class 2nd

 BinarySearch method

 replacing with generic List<T> 2nd 3rd

 snapshot of

ArrayListEx class

arrays

 displaying values as a delimited string

 exceptions for

 inserting and removing items 2nd 3rd

 jagged

 of pointers

 performing an action on each element 2nd 3rd

 pointers to

 read-only 2nd

 returning pointers to an element in

 reversing jagged array

 reversing order of elements 2nd 3rd

 reversing two-dimensional arrays

 searching class or structure objects in 2nd 3rd

 snapshots of lists in

 swapping two elements in

 testing every element in

 types of

ArrayTypeMismatchException exception 2nd

ArrayUtilities class

ArthimeticException exception

as operator

 casting with 2nd 3rd

 when to use 2nd

ASCII values

ASCIIEncoding class

 GetBytes method

 GetString method

ASP.NET

 applications mappings on IIS 2nd

 web site precompilation 2nd 3rd

ASP.NET cache

ASP.NET pages

 parsing with built-in regular expressions 2nd 3rd 4th

AspCodeRegex class

AspExprRegex class

ASPNET user account 2nd

AsReadOnly method

assemblies

 assemblies imported by 2nd

 attack surface of

 CLSCompliantAttribute

 finding members in 2nd

 loading

 loading constraints for the appdomain

 nested types in

 obfuscator utilities

 permissions for

 regular expressions compiled into

 subclasses of types in 2nd 3rd

assembly registration tool (Regasm.exe)

AssemblyName class

Assert method

 CodeAccessSecurity class

 Debug class

Associative Law

AsymmetricAlgorithm class

AsyncAction class 2nd 3rd 4th

asynchronous delegates

 notification of completion

AsyncInvoke method

Attachment class

AttachToCallback method

attacks on application security

attributes

 custom

 directory 2nd 3rd

 file 2nd 3rd

Attributes property

 DirectoryInfo class

 FileInfo class

AutoDispatch interface

AverageCount64 counter

AverageTimer32 counter

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

BadImageFormatException exception 2nd

Balance class 2nd

base classes 2nd 3rd 4th 5th

base counter

base keyword 2nd

base10

 converting numbers in other bases to

Base64 data

 decoding into byte array

Base64DecodeString method

Base64EncodeBytes method

BaseOverrides class 2nd

BeforeAddItem event

BeforeAddListener method

BeforeChangeItem event

BeforeChangeListener method

BeginInvoke method 2nd 3rd

binary data

 decoding Base64 data into

binary functions

binary trees

 algorithm for storing objects

 creating and managing without BinaryTree<T> class 2nd

BinaryReader class 2nd 3rd 4th

 Read method

BinarySearch method

 List<T> class 2nd 3rd

BinarySearchCountAll method 2nd 3rd

BinarySearchGetAll method 2nd

BinaryTree<T> class 2nd

 members

BinaryTreeNode<T> class 2nd 3rd

BinaryWriter class 2nd 3rd 4th

BindingFlags enumeration 2nd 3rd

bit flags

 turning on or off 2nd 3rd 4th 5th

bit mask 2nd 3rd 4th

bit masks

BitArray class

bitwise binary operators numeric promotion and

bitwise complement operator (~) 2nd

blittable objects

books

 about security

Boolean equations 2nd 3rd

 simplifying

Boolean logic

 overloading 2nd

boolean values 2nd

BooleanSwitch class 2nd

boxing

 avoidance with generic Queue and Stack types

 finding where it occurs

 in standard .NET type

BreadthFirstSearch method 2nd

BuildDependentAssemblyList method

BuildManager class

byte array

 converting to a string

 encoding as a string

 passing strings to methods as

byte data type

 bitwise complement operator

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

C#

 CLS-compliant code 2nd

cache

 ASP.NET

cache for objects 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 generic

CacheDependency class

CachePolicy property

caching

 changing web application configuration 2nd

 data with multiple dependencies 2nd

 HTTP results

 objects

 implementing generic object cache

CalcHash method

calculated hash algorithm

CalculateEarnings delegate

CallbackAsyncDelegate method 2nd

callbacks

 delegates implementing

 interfaces used for 2nd 3rd 4th 5th

CallBackThroughIFace method 2nd

CallCOMMethod method

CallNextHookEx function

CallSecureFunctionSafelyAndEfficiently method

CancelEventArgs class

CannotUnloadappdomainException exception

Capacity property

caretaker objects 2nd

 MementoCareTaker

 MultiMementoCareTaker

 use of

carriage return character (\r)

 terminating lines in Macintosh files

carriage return followed by a line-feed (\r\n)

carriage returns

 XSLT transformations of XML

case sensitivity

 comparing characters using

 comparing strings using

 searching for strings at head or tail of string using

 searching for strings within strings using

casting

 as operator used for 2nd 3rd

 bitwise operation values to data types

 cast operator (()) used for

 exceptions thrown as result of

 is operator used for

 nullable type to a non-nullable type

catch blocks

 in iterators

 multiple 2nd 3rd

 rethrowing exceptions from

 specific

 written to access Exception object

 written without parameters

CategoryType enumeration 2nd

CDATA sections 2nd

Celsius temperatures

 converting Fahrenheit to

 converting to Fahrenheit

ChangeType method

character class

characters

 case-sensitive or case-insensitive comparison of

 conversions to 2nd 3rd

 determining if balanced

 ensuring maximum number in string

 iterating over characters in string

 removing from head or tail of string

 removing or replacing within a string

 searching strings for 2nd

 type of

 within a range

CharKind enumeration

Check methods 2nd

checked context 2nd

CheckPassword method

CheckUserEnteredPath method

Children property

circular references

 deep cloning and

classes

 cloneable 2nd

 containing references to unmanaged resources

 differences between standard .NET classes and generics 2nd 3rd

 interoperation with COM

 object-oriented capabilities

 operating as union types

 overridden methods in 2nd 3rd 4th 5th

 performance

 polymorphism 2nd

 polymorphism for 2nd 3rd 4th

 represented as a string 2nd 3rd 4th 5th

 sealed 2nd 3rd

 static fields

 using to prevent boxing

 when to use

ClassInterfaceAttribute 2nd

Clear method

 classes using

ClearLog method

ClientABC class

ClientBuildManager class

ClientBuildManagerCallback class

ClientBuildManagerParameter class

Clone method

 missing in generic Queue and Stack types

cloneable classes 2nd 3rd 4th

cloning

Close method

 FileStream class

ClosedPorts property

CloseLog method

closures 2nd

 definition of

CLSCompliantAttribute for assembly

coarse-grained exception handling

 try-catch or try-catch-finally exception handler

coarse-grained excpetion handling

Code Access Security (CAS)

Code Access Security in Practice (Microsoft Patterns & Practices Group)

code bloat

Collect method

collection

 number of times an item appears in a List<T> 2nd 3rd 4th

CollectionBase class

collections 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

 generic

 performing multiple opertions on using functors

 persisting between application sessions

 read-only 2nd

 types of

CollectionsUtil class

COM components

 handling user-defined HRESULTs

 HRESULTs 2nd 3rd 4th

 releasing through managed code

 using C# classes 2nd 3rd 4th

COMException exception 2nd 3rd 4th

command-line parameters 2nd 3rd 4th 5th 6th 7th 8th 9th

CommandLine property

CommentRegex class

comments

 in regular expressions

commissions 2nd

Common Language Specification(CLS)

Commutative Law

CompanyDataTraceProxy class

Compare method 2nd

CompareFileVersions method 2nd

CompareHeight class

CompareLen class

Comparer<T> class

CompareTo method

comparison operators

 characters used with

 pointers and

 strings used with

comparison operatorsEquals method

Comparison<T> delegate

Compiled flag

CompileToAssembly method

compiling

 /main switch

 blocks of code conditionally 2nd 3rd

 regular expressions 2nd

complex expressions 2nd

ComplexReplace method

component

CompressFile method

CompressionType enumeration

ComVisibleAttribute

ConcatStringGetHashCode method

concrete classes

ConditionalAttribute attribute

Configuration class

configuration files

ConfigurationException exception

Connect method

Console-based applications

constant field 2nd 3rd 4th

constraints 2nd

constructors

 overloaded

 user-defined exceptions

ContainedObjHash method

Container<T> class 2nd 3rd

 iterating over elements from first to last

 iterator members

Contains method

 Hashtable class

ContextMarshalException exception

control character

Convert class

 ToByte

ConvertCollectionToDelStr method

ConvertObj method

CopyTo method

 FileInfo class

 ICollection interface

 PriorityQueue class

Cos method

Count property 2nd

CountChildren method

 BinaryTreeNode<T> class

CounterCreationData class 2nd

CounterCreationDataCollection class

CounterDelta32 counter

CounterDelta64 counter

CounterMultiTimer counter

CounterMultiTimer100Ns counter

CounterMultiTimer100NsInverse counter

CounterMultiTimerInverse counter

counters

 performance counter requiring a base counter 2nd 3rd 4th

 simple performance counter 2nd 3rd 4th

CounterSample class

CounterTimer counter

CounterTimerInverse counter

CountPerTimeInterval32 counter

CountPerTimeInterval64 counter

Create method

 File class

 FileInfo class

CreateAndHandlePoint method

CreateComplexCounter method

CreateDirectory method

CreateFile method

CreateHashedPassword method 2nd

CreateInstance method

CreateInternedStr method

CreateLockedFile method

CreateNestedObjects method

CreateNode method

CreatePoint method

CreateRegExDLL method

CreateSimpleCounter method

CreateStringHash method 2nd

CreateText method

CreationTime property

 DirectoryInfo class

 FileInfo class

CryptographicException exception

CryptographicUnexpectedOperationExceptio n exception

CryptoHash method 2nd

CryptoStream class

currency

Current property

CurrentDirectory property

CurrentDomain property

CurrentException property

custom counter

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

data

 isolated storage of

Data property 2nd

data types

 casting

 conversions between

 hash codes for 2nd 3rd 4th 5th 6th 7th 8th

 MaxValue and MinValue fields

 of variables 2nd 3rd

 simple 2nd

 using bitwise complement (~) operator with

database tables 2nd

DatabindExprRegex class

DataSet

DateTime class

 Parse method

DblQueue<T> class 2nd 3rd 4th

 enqueueing and dequeueing operations

DeadLock class

Debug class

 interchanging with Trace class

DebuggerDisplayAttribute attribute 2nd

DebuggerVisualizerAttribute 2nd

debugging

 building debugger visualizer 2nd 3rd 4th 5th

 configuring to break on exceptions

 creating custom displays for classes 2nd

 custom switch class 2nd 3rd

 determining if process is not responding

 enabling for specific components 2nd 3rd 4th

 enabling/disabling complex code

 problems with assembly loading

 tracing

decimal type

DeCompress method

DeCompressFile method

decorator design pattern

Decrypt method 2nd

deep copying 2nd

 using object serialization

DeepClone class

default constructor

 problem with not supplying

 removing

default keyword

DefaultCachePolicy property

DefaultWebProxy property

/define: compiler option

degrees

 angles of right triangle

 converting radians to

 converting to radians

DelegateCallback method 2nd 3rd

delegates 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th

 anonymous methods and

 parameter modifiers

 asynchronous 2nd

 callbacks implemented by

 compared to dynamic invocation using reflection

 for hook callback method

 for keyboard hook callback

 generic 2nd

 generic delegate 2nd

 MatchEvaluator 2nd 3rd

 multicast

 controlling delegates executed in

 synchronous 2nd 3rd 4th

 use in complex interface searches 2nd 3rd 4th

 use in complex member searches 2nd 3rd 4th

 using delegate inference

 using interfaces instead of

Delete method

 Directory class

 DirectoryInfo class

 File class

DeleteLog method 2nd

delimiter

DemonstrateRenameDir method

DeMorgan's Theorem

DequeueHead method

DequeueLargest method 2nd

DequeueSmallest method 2nd

DequeueTail method

derived classes 2nd 3rd 4th

DerivedOverrides class 2nd

design patterns

 adapter design pattern

 memento design pattern

 observer design pattern

DetectXMLChanges method

diagnostics 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th

DialogDebuggerVisualizer class

dictionaries

Dictionary<T> class 2nd 3rd 4th 5th

 creating with max and min value boundaries 2nd 3rd

 hash code for data type used as key 2nd 3rd 4th 5th 6th

 members equivalent to Hashtable standard class

 one-to-many map (multimap) 2nd 3rd 4th 5th 6th 7th 8th

 sorting keys and values

 sorting keys and/or values

 using foreach with

DictionaryEntry class

difference of set objects 2nd

DifferenceOf method

digit

Dimensions structure

DirectAssignmentWay class

DirectiveRegex class

directories 2nd 3rd 4th 5th

 creating

 determining if directory exists

 monitoring for changes 2nd 3rd 4th 5th

 waiting for changes to 2nd

Directory class

 Exists method

 GetCreationTime method

 GetDirectories method 2nd 3rd

 GetFiles method 2nd 3rd

 GetLastAccessTime method

 GetLastWriteTime method

 Move method 2nd

DirectoryEntry class 2nd

DirectoryInfo class 2nd 3rd 4th

 Create method

 creating instance of

 CreationTime property

 GetDirectories method

 LastAccessTime property 2nd

 LastWriteTime property

 MoveTo method 2nd

DirectoryInfoNotify class 2nd 3rd 4th

 specialized parameter passed to 2nd

DirectoryInfoObserver class 2nd

 BeforeCreateListener method

DirectoryNotFoundException exception 2nd

DisallowBindingRedirects property

DisallowCodeDownload property

DisallowPublisherPolicy property

disassembler tool

DisplayDirAttr method

DisplayDirs method 2nd 3rd

DisplayException method 2nd 3rd 4th

DisplayFileAttr method

DisplayFiles method 2nd 3rd

DisplayFilesDirs method 2nd 3rd 4th

DisplayInheritanceChain method 2nd

DisplayInheritanceHierarchyType method

DisplayInterfaceProperties method

DisplayNestedTypes method

DisplayNICInfo method 2nd

DisplayPingReplyInfo method

DisplaySet method

DisposableList<T> class

disposal of objects 2nd 3rd

dispose design pattern 2nd

Dispose method 2nd 3rd 4th 5th 6th

disposing of unmanaged resources 2nd 3rd 4th 5th 6th

Distributive Law

DivideByZeroException exception 2nd

DllImport attribute

DllNotFoundException exception

.dmp file extension

Dns class 2nd

DOM (Document Object Model) 2nd

DoReversal<T> method 2nd

Dotfuscator utility 2nd

double queue 2nd 3rd 4th 5th 6th

double type

 comparing fraction with

DownloadData method

DownloadFile method

DriveInfo class 2nd 3rd 4th

DTDs (document type definitions) for XML

dump files

DuplicateWaitObjectException exception

DynamicBase property

DynamicInvocation method

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

echo request message (ICMP)

ElapsedTime counter

elements

email 2nd 3rd

EnableRaisingEvents property

Encoding class

 ASCII property

Encrypt method

encryption

 of files

 of strings

EndInvoke method 2nd 3rd 4th 5th

EndOfStreamException exception 2nd

EndsWith method

EndTagRegex class

EnhancedLog class

Enqueue method 2nd

EnqueueHead method

EnsureCapacity method

entry points

 parsed arguments passed to

 using multiple for versioning 2nd 3rd

EntryPointNotFoundException exception

EntryWrittenEventArgs class

EntryWrittenEventHandler delegate

Enum class

 IsDefined method

 ToString method

enumeration

enumerations

 converting strings to

 determining if flags are set 2nd 3rd

 displaying a value as a string 2nd 3rd

 exceptions for

 testing for valid enumeration value 2nd 3rd

 textual value

 using members in bit mask 2nd 3rd

Environment class

 CommandLine property

environment variables

 viewing and manipulating

epsilon value

equality operator (==)

 overriding

Equals method

 string class

equations

 complex 2nd 3rd 4th

Error event

error handling

 web server errors

error pages (custom) 2nd

ErrorCode property

EscapeDataString method 2nd

EscapeUriString method 2nd

even value

event logs

 custom

 monitoring for specific entries

 multiple 2nd 3rd

 searching 2nd

 sources for specific log 2nd 3rd

EventArgs class 2nd

EventHandler class 2nd

 generic EventHandler<T> vs.

EventIDType enumeration 2nd

EventLog class

 WriteEntry method

EventLogEntryCollection class

events

 adding to sealed class 2nd 3rd 4th 5th 6th 7th 8th

 generic event handlers

 mouse

 observing additions and modifications to Hashtable object 2nd

 setting up event handlers

 specialized parameters for 2nd

EventSearchLog class

exception 2nd

Exception class 2nd

 base class for exception objects

 COMException vs.

 mapped to HRESULT

 ToString method 2nd

exception event handler

 trapping TypeInitializationException

exception event handlers

exception handling 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 21st 22nd 23rd 24th 25th 26th

27th 28th 29th 30th 31st 32nd 33rd 34th 35th 36th 37th 38th 39th 40th 41st 42nd 43rd 44th 45th 46th 47th 48th 49th 50th 51st 52nd 53rd

54th 55th 56th 57th 58th 59th 60th 61st 62nd 63rd 64th 65th 66th

 breaking application before handling 2nd 3rd

 coarse-grained

 creating new exception type 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

 debugging problems when loading an assembly

 determining how to structure

 exceptions thrown by methods called via reflection 2nd

 finding innermost exception quickly

 fine-grained

 for asynchronous delegates 2nd 3rd 4th

 for delegates in multicast delegate

 getting exception information 2nd 3rd 4th 5th

 giving exceptions information with Exception.Data

 individually 2nd

 looking at exceptions using visualizers 2nd 3rd 4th 5th 6th 7th

 mapping managed exceptions to HRESULTs 2nd 3rd 4th

 methods returning null value

 performance

 performance of

 preventing

 TypeInitializationException 2nd 3rd 4th 5th

 preventing unhandled

 exceptions 2nd 3rd

 processing NullReferenceException

 specific catch blocks to handle different exceptions

 stack trace 2nd 3rd

 throwing exceptions rather than returning error codes

 unhandled exceptions in WinForms applications

 verifying critical parameters

 when to catch and rethrow exceptions

 when to throw specific exceptions 2nd

 with threads 2nd

ExceptionDisplay form 2nd

exceptions

 built-in types

 handling derived exceptions individually 2nd

 in iterators

 preventing loss with finally blocks

 specificity of

 throwing

 wrapping in an outer exception

Exceptions dialog box

ExceptionVisualizer class

executable modules

ExecutionEngineException exception 2nd

Exists method

 File class 2nd

 FileInfo class

ExpandEnvironmentVariables method

exported types of an assembly

expressions

 nullable type

ExternalException class

ExternalException exception

ExtractGroupings method

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

factory design pattern 2nd

false operator

 overloading 2nd

FCLibrary class

FieldAccessException exception

FieldOffsetAttribute (structures)

fields

 const 2nd 3rd 4th

File class

 Copy method

 Create method

 GetCreationTime method

 GetLastAccessTime method

 Move method 2nd

 Open method

 OpenRead method

 OpenText method

 OpenWrite method

 SetLastAccessTime method

 SetLastWriteTime method

file handle

file streams 2nd 3rd 4th 5th 6th 7th 8th

 creating

 opening from file handle 2nd

FileAccess enumeration

FileAttributes enumeration

FileComparison enumeration

FileInfo class 2nd

 GetFiles method

 LastAccessTime property

 LastWriteTime property

 MoveTo method 2nd

 Open method

 OpenRead method

 OpenText method

 OpenWrite method

FileInteropFunctions class

FileLoadException exception

FileMode enumeration

FileName property

FileNotFoundException exception 2nd

files

 compressing and decompressing 2nd 3rd

 counting lines of text in 2nd 3rd

 creating 2nd 3rd

 encrypting and decrypting

 locking portions of

 not found

 regular expression pattern for path name

 renaming

 returning entire line where match is found

 searching for 2nd 3rd 4th 5th

 writing to multiple files at one time 2nd 3rd 4th

FileShare enumeration

FileStream class 2nd

 asynchronous or synchronous opening of streams

 constructor calls equivalent to FileInfo methods

 creating instance of

 locking or unlocking files

 unmanaged file handle 2nd 3rd

 Write method

FileSystemInfo class 2nd 3rd

FileSystemWatcher class 2nd 3rd

 as alternative to DirectoryInfoNotify class

 properties of

FileSystemWatcher object

 inability to handle raised events from filesystem

FileVersionInfo class 2nd

finalizers

finally blocks 2nd

 for each delegate in multicast delegate

 iterators and 2nd

 null stream

FindAll method 2nd

FindAllOccurrences method

FindAnEntryInEventLog method

FindAny method

FindAnyIllegalChars method

FindEachOccurrenceOf method

FindEntryType method

FindIFaceMemberInAssembly method

FindInArray method

FindInstanceID method

FindInterfaces method 2nd

FindLast method

FindMemberInAssembly method

FindMembers method

 Type class

FindMethodOverrides method 2nd

FindOccurrenceOf method

FindOverriddenMethods method

FindSerializable method

FindSourceNamesFromAllLogs method

FindSourceNamesFromLog method 2nd

FindSpecificInterfaces method

FindSubclassOfType method

FindSubstrings method 2nd

fine-grained exception handling

FinishedProcessingGroup method

FinishedProcessingSubGroup method

first-chance exception

FirstHalf iterator property

fixed statement

fixed-size arrays

flags

FlipBit method

FlipBitPosition method

floating-point types

floating-point values

 approximate equality with fraction

 rounding

Floor method

folding hash algorithm

FoldingHash method

for loop

 array reversal

foreach loop

 iterating over interfaces

foreach loops

 custom enumerators 2nd

 iterator on a generic type

 iterator on a nongeneric type 2nd 3rd

 iterators

 iterators implemented as overloaded operators

 iterators that accept parameters 2nd

 nested foreach functionality 2nd 3rd 4th

 using with generic dictionary types

ForEach method

 Array class

 List class

 List<T> class

Form class

 mouse events

Format method

FormatException exception 2nd 3rd 4th

formatting strings

formatting types (enumeration strings)

forms 2nd 3rd 4th

ForwardOrderStep method

fqueue (finalization queue)

FreeNamedDataSlot method

FromASCIIByteArray method

FromBase64CharArray method

FromUnicodeByteArray method

FTP

 downloading a file

FtpWebRequest class

functors 2nd

FusionLog property

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

GAC (Global Assembly Cache)

garbage collector

 outer variables used in anonymous methods

GC class

GenerateHttpWebRequest method 2nd

GenerateSchemaForDirectory method 2nd

generic delegates

 using with anonymous methods

generic types 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 21st 22nd 23rd 24th 25th 26th 27th

28th 29th 30th 31st 32nd 33rd

 collections 2nd 3rd 4th 5th 6th 7th

 constraining type arguments 2nd 3rd

 creating an iterator on 2nd 3rd

 creating value type capable of initialization to null 2nd 3rd

 deciding when and where to use

 determining if type or method is generic

 getting type of

 implementing a linked list 2nd 3rd 4th

 initializing generic variables to default values

 making read-only collections 2nd

 replacing ArrayList with generic List<T> class 2nd 3rd 4th

 replacing Hashtable objects with generic Dictionary<T> 2nd 3rd 4th 5th

 replacing Stack and Queue with generics 2nd 3rd 4th

 reversing contents of sorted list 2nd

 understanding

GenericWay class

get accessor

 adding properties to simple iterators

Get methods

GET request 2nd 3rd

GetAllNetworkInterfaces method

GetAvailableThreads method 2nd

GetBaseDefinition method 2nd

GetBaseException method

GetBaseTypeList method 2nd

GetBytes method

 UnicodeEncoding class

GetCharKind method

GetCharKindInString method

GetChild method

GetCommandLineArgs method

GetCurrentProcess method

GetCurrentThreadId method

GetData method

GetDirectories method

 DirectoryInfo class 2nd 3rd

GetDirectoryName method

GetEntries method

GetEnumerator method 2nd 3rd

 parameters and

 SimpleListIterator class

GetEnvironmentVariable method

GetEnvironmentVariables method

GetExceptionTypes method

GetExportedTypes method

GetExtension method

GetFileName method

GetFileNameWithoutExtension method

GetFiles method

 FileInfo class 2nd

GetFileSystemEntries method 2nd 3rd

GetFileSystemInfos method 2nd 3rd 4th

GetFrameAsString method

GetGroup method

GetHashCode method 2nd 3rd 4th 5th 6th 7th

GetHighWord method

GetHostEntry method 2nd

GetHTMLFromURL method

GetInterface method

GetInterfaces method

GetInternetConnectionOption method 2nd

GetInternetSettings method

GetInvalidFileNameChars method

GetInvalidPathChars method

GetInvocationList method 2nd 3rd 4th 5th

GetIPProperties method

GetKeys method

GetLines method 2nd

 calling with filename or string

GetLocalVars method

GetLowWord method

GetManifestResourceInfo method

GetManifestResourceNames method

GetMember method 2nd 3rd

GetMembers method

GetMethod method

GetMethods method 2nd

GetNamedDataSlot method

GetNext method

GetObject method

GetObjectData method

GetProcessById method

GetProcesses method

 Process class

GetProcessesByName method

GetRange method 2nd

GetReferencedAssemblies method 2nd

GetResponse method 2nd

GetSerializableTypes method

GetStackTraceDepth method

GetStream method

GetString method

 ASCIIEncoding class

 UnicodeEncoding class

GetSubClasses method

GetSubKeyNames method

GetTempFileName method

GetTempPath method

GetType method

GetValues method

Global Assembly Cache (GAC)

Group class 2nd 3rd 4th 5th 6th

 components of

groups in regular expressions 2nd 3rd 4th

 named

 unnamed

GTRegex class

GuidAttribute

GUIDs

 created by assembly registration tool

 explicitly stating for types exposed to COM clients

GZipStream class

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

HandlingInvalidChars method

hasBeenDisposed flag

hash code algorithms 2nd 3rd 4th 5th 6th 7th 8th

 guidelines for

hash values

 appending to strings for verification 2nd

 creating for a data type

hashed passwords

Hashtable class 2nd

 replacing with generic Dictionary<T>

 sorted by keys and/or values

HashtableEventArgs class 2nd

 key

HashtableEventHandler delegate

HashtableObserver class 2nd 3rd 4th

HashtableObservers class

 using

hexadecimal values

high word of a number

HookProc delegate

hooks provided by Windows

hostname

 converting to IP address

 resolving IP address to

HostName2IP method

HRESULTs

 for user-defined exceptions

 mapping to exceptions 2nd

 unknown

 user-defined

 with no mapping to managed exceptions

HTML

 converting XML to 2nd 3rd 4th 5th

 displaying in WinForms-based application 2nd 3rd

 parsing 2nd

HTMLDocument class

HTTP status codes

HTTP: The Definitive Guide (Gourley

HttpErrors property

HttpStatusCode enumeration

HttpWebRequest class 2nd

HttpWebResponse class

HybridDictionary class

hypotenuse of right triangle

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

I/O (input/output)

 comparing version information of executable modules 2nd 3rd

 creating 2nd 3rd

 determining if a file exists

 displaying or manipulating directory attributes 2nd 3rd

 encrypting/decrypting an existing file

 file stream 2nd

 information for all drives on a system 2nd 3rd

 launching and interacting with console utilities

 manipulating file attributes 2nd 3rd

 opening a file or stream for reading/writing 2nd 3rd 4th 5th 6th 7th

 parsing

 parsing in environment variables 2nd 3rd

 renaming directories 2nd

 watching filesystem for changes to files or directories 2nd 3rd 4th 5th 6th

ICloneable interface

ICMP (Internet Control Message Protocol) echo request message

ICollection interfacce

ICollection interface

 array implementing

 containing all keys currently in Dictionary<T>

IComparable interface 2nd

IComparer interface 2nd 3rd

IComparer<T> interface

 priority queue order

IConvertible interface

 implemented by TriValue partial class 2nd 3rd 4th

IDialogVisualizerService interface

IDictionary interface

 support by Exception.Data

IDictionary<T> class

IDisposable interface 2nd 3rd

idnirectly overloading 2nd 3rd

IEEE standards

 rounding floating-point values

IEnumerable interface 2nd 3rd 4th

 returned by iterator property

IEnumerable<T> interface 2nd

IEnumerator interface 2nd 3rd 4th

 implemented on NGShoppingList class

IEnumerator<T> class 2nd

IFormatProvider interface

IFormattable interface

 ToString method 2nd

IHTMLDocument2 interface

IIS (Internet Information Server)

 application mappings for ASP.NET 2nd

 HTTP errors 2nd

Ildasm disassembler tool

IList class

IList interface

IList or IList<T> interface

IMemento interface 2nd

IncludeRegex class

index value to start and end iterating

indexers

 called on object already disposed

 parameters for 2nd 3rd

IndexOf method

 string class 2nd 3rd

IndexOfAny method 2nd 3rd 4th

IndexOutOfRangeException exception 2nd 3rd 4th

InferSchema method

inheritance

 interfaces implemented by partial types

 structures vs. classes

inheritance hierarchies 2nd

InitInternalFrameArray method

InnerException property

 COMException class

 Exception class

 TargetInvocationException

InnerText method

InnerXML property 2nd

INotificationCallbacks interface 2nd

Insert method 2nd

 string class

 StringBuilder class

InsertIntoArray method

InstallException exception

instance methods 2nd

int type

 casting long to

integer division

integers

 high word or low word

integral types

interfaces

 callbacks provided with 2nd 3rd 4th 5th 6th 7th

 implementing explicit members on structures

 iterating over with foreach

 polymorphism implemented with 2nd

 searching 2nd

InterfaceTypeAttribute

Intern method

intern pool

internal protected visibility methods

internal visibility methods

internalFrameArray field

internalQueue field

InternedStrCls class

Internet

 accessing through proxy

 reading XML data from

Internet connection settings 2nd 3rd 4th 5th 6th 7th 8th

Internet Control Message Protocol (ICMP) echo request message

InternetConnectionOption structure 2nd

InternetPerConnOptionList class

InternetSettingsReader class 2nd

 properties

 using

interoperation with COM

 classes

 attributes controlling

 C# retrofitting class to interoperate with COM

 code for using from VB6

 exposing C# types to COM clients

intersection of set objects 2nd

IntersectionOf method

INullableValue interface

InvalidCastException exception 2nd 3rd 4th

InvalidComObjectException exception

InvalidEnumArgumentException exception 2nd 3rd

InvalidFilterCriteriaException exception

InvalidOleVariantTypeException exception

InvalidOperationException exception 2nd 3rd 4th

InvalidPathChars field

InvalidProgramException exception

invocation list for multicast delegates

Invoke method

 MethodInfo class 2nd

InvokeEveryOtherSetup method

InvokeInReverse method

InvokeMethod method

IOException exception 2nd 3rd

IP (Internet Protocol)

IP address property

IP information for network adapters

IPAddress property

IPEndPoint class

IPHostEntry class

IPInterfaceProperties class

is operator

 determining variable's type with 2nd

IsCharEqual method

IsDefined method

 Flags enumerations

ISerializable interface

IsEven method

IsGenericMethod method

IsGenericType method

IsGranted method

IsInRange method

IsInterned method

IsMatch method

IsOdd method

IsolatedStorageException exception

IsProcessResponding method

IsSubclassOf method

IsSubsetOf method 2nd

IsSupersetOf method

isThreadAvailable method 2nd

Item class

iterating over elements from first to last

 Container<T> class

 skipping every other element

iterators 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 21st 22nd

 accepting parameters 2nd 3rd

 adding multiple to single type

 creating on nongeneric types 2nd

 finally blocks 2nd 3rd 4th

 forcing to stop iterating 2nd 3rd

 implementing as overloaded operators 2nd 3rd

 implementing nested foreach functionality in a class 2nd

IVisualizerObjectProvider interface

IXPathNavigable interface

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

jagged arrays

Join method

 string class

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

keepChanges field

KeepChanges property 2nd

Kernel32.dll 2nd

key/value pairs

 collections

 creating dictionary with max and min value boundaries 2nd

 sorting in a dictionary 2nd

keyboard input 2nd 3rd 4th 5th 6th

Keys property 2nd

KeyValuePair structure

KeyValuePair<T> class

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

language-neutral conversions

 simple types

 type conversions between simple types

languages

 converting between simple types consistently across

LastChanceHandler method

LayoutKind.Explicit (StructLayout)

Left property

Length property

letter

Line class

 ToString methods 2nd 3rd 4th

Line structure

 Parse method

line-terminating characters

 for different operating systems

LineCount method

LineCount2 method

LinkedList<T> class 2nd 3rd 4th 5th

 Contains

LinkedListNode<T> class

List class

List<T> class

 Dictionary<T> keys or values stored in

 maintaining sort when adding or modifying elements 2nd 3rd

 number of times an item appears in

 read-only 2nd

 retrieving all instances of a specific item 2nd 3rd 4th

 Sort method

ListDictionary class 2nd

listeners element

ListEx<T> class 2nd 3rd 4th 5th

 GetAll and BinarySearchGetAll methods

ListExportedTypes method

lists

 in an array

 performing multiple operations on 2nd 3rd

LoaderOptimization property

LoadFrom method

LoadMissingDLL method

local variables

 accessing information on

LocalDataStoreSlot class

LocalVariableInfo class

LocalVariables property

lock keyword 2nd

Lock method

Log class

log file 2nd 3rd 4th 5th 6th 7th

logging

 custom event log 2nd 3rd

 finding all sources for an event log 2nd 3rd

 multiple event logs

 searching event log entries 2nd 3rd

logical NOR operation

low word of a number

LTRegex class

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

machine configuration file

machine name

machine.config file

 caching policy

MailMessage class

/main compiler switch

main counter

Main entry point method 2nd

MainWindowHandle property

malicious characters

managed code

 blittable and nonblittable types and

 called by COM objects

 calling unmanaged method with P/Invoke

 exceptions for 2nd 3rd 4th

managed languages

ManifestResourceInfo class

Marshal class 2nd

MarshalDirectiveException exception

Match method

 Match class

 Regex class

 verifying syntax of regular expression

Match object 2nd

MatchCollection class

MatchCollection object

 extracting groups from 2nd 3rd 4th

Matches method 2nd

 compiled regular expressions with

MatchesCollection object

MatchEvaluator delegate 2nd 3rd

MatchHandler method

Math class

 Atan

 Sin

 trigonometric functions

mathematical equations

MaxMinValueDictionary<T> class 2nd

MaxValue field

Media class

 abstract base class

 rewritten as concrete class

MemberAccessException exception

MemberFilter delegate

MemberInfo class

members

 advanced searches for 2nd 3rd

 dynamically invoking using reflection 2nd 3rd

 thread-safe access to

MemberwiseClone method

Memento class 2nd

memento design pattern

memento object

MementoCareTaker class 2nd

MemoryStream class 2nd 3rd

metabase properties 2nd 3rd

MethodAccessException exception 2nd

MethodBody class

MethodInfo class 2nd

methods

 calling on multiple object types 2nd 3rd

 conditional compilation of

 format parameters

 generic type parameters

 invoked using reflection 2nd 3rd 4th

 invoked via reflection 2nd

 overridden

 raising notifications from non-virtual methods

 returning multiple items from

 static vs. instance

 visibility

Microsoft intermediate language (MSIL) partial classes and

Microsoft SQL Server

MinValue field

MissingFieldException exception

MissingManifestResourceException exception

MissingMemberException exception

MissingMethodException exception

ModifyFile method

ModifyFileAttr method

ModifySorted method 2nd

Monitor class

mouse

mouse events

MouseEventArgs class

Move method

 Directory class

 File class 2nd

MoveInFile method

MoveNext method

MoveTo method

 DirectoryInfo class

 FileInfo class

MSHTML control 2nd 3rd

MultiCallBackThroughIFace method 2nd

multicast delegates

 controlling delegates executed in 2nd

 handling exceptions for each delegate in

 handling exceptions individually for each delegate 2nd 3rd 4th

 return values from each delegate

MulticastDelegate class 2nd

MulticastNotSupportedException exception

MultiClone class

multidimensional arrays

MultiMap<T,u> class

 key-value pairs added to

MultiMementoCareTaker class 2nd 3rd

MultiTask class 2nd

MultiWriter class

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

n-ary trees

 creating nodes for 2nd 3rd 4th 5th 6th

named groups in regular expressions

named pipes 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 21st 22nd

NamedPipeClient class 2nd 3rd

 interaction with NamedPipeServer

 methods

 using

NamedPipeInterop class 2nd

NamedPipeServer class 2nd 3rd

 methods

 setting up for a client

NamedPipesInterop class

NameValueCollection class 2nd

narrowing conversion

narrowing conversions

narrowing numeric casts 2nd

Navigated event

nested types within an assembly 2nd

.NET Framework Class Library (.NET FCL)

 simple data types

NetworkAvailabilityEventArgs class

NetworkChange.NetworkAddressChanged event

NetworkChange.NetworkAvailability Changed event

NetworkCredential class

networking 2nd

 caching data with multiple dependencies

 checking network connectivity 2nd 3rd 4th 5th 6th

 downloading data from server

 forming and validating absolute URI 2nd

 named pipes communicating across network 2nd

 parsing a URI 2nd 3rd 4th 5th

 pinging programatically

 prebuilding ASP.NET web site

 scanning ports on a machine using sockets 2nd 3rd 4th 5th 6th

 sending GET or POST request to web server 2nd

 sending SMTP mail using SMTP service 2nd 3rd 4th

 simulating form execution 2nd 3rd 4th

 using current Internet connection settings 2nd 3rd

 writing a TCP client 2nd 3rd 4th

 writing aTCP server

NetworkInterface class

NetworkStream class 2nd

 Close method

NewLine constant 2nd

NGShoppingList class 2nd 3rd

 IEnumerator implemented on

NodeType property

nonblittable objects

not implemented on generic types

NOT XOR operation

NotFiniteNumberException exception 2nd

notification callbacks 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

notifications

NotifyClient class

NotImplementedException exception 2nd

NotSupportedException exception 2nd 3rd

NTFS filesystem

 file encryption and decryption

NTree<T> class 2nd

NTreeNode<U> class

NTreeNodeFactory<T> class 2nd 3rd 4th

null values

 keys mapped to

 method parameters

nullable types 2nd 3rd

NullReferenceException exception 2nd 3rd 4th 5th 6th 7th 8th 9th

NumberOfItems32 counter

NumberOfItems64 counter

NumberOfItemsHEX32 counter

NumberOfItemsHEX64 counter

numbers

 Celsius to Fahrenheit conversions

 determining if string is valid number

 equality between fraction and floating-point value

 finding angles of a right triangle

 finding length of sides of a right triangle 2nd

 high word or low word

 numeric values of enumeration members 2nd

 testing for even or odd value

NumberStyles enumeration

numeric promotion

numeric values

 big flags in

 determining if character is

 formatting strings as

 items in enumerations

NumOfChildren property

 NTreeNode<U> class

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

ObfuscateAssembly attribute 2nd

ObfuscatedCls class

Obfuscation attribute

obfuscators

 configuring on assemblies 2nd 3rd

ObjCache class

 using

Object class

object containment in design patterns

object-oriented programming

 classes vs. structures

ObjectDisposedException exception 2nd 3rd 4th

objects

 caching 2nd 3rd 4th 5th 6th

 generating tracing code when creating 2nd

 initializing with overloaded constructors

 retrieving all instances of specific object in List<T>

 rolling back changes to 2nd 3rd 4th 5th 6th 7th

 stored in arrays

 searching

 sorting 2nd

 string representation of 2nd 3rd 4th 5th

 wrapping value type in (boxing)

ObjState class

ObservableHashtable class 2nd 3rd 4th 5th

 observer object that watches

ObservableHashtables class using

observer design pattern

 performance and

odd value

offsets

 unions

OnAfterAdd method

OnAfterChange method

OnBeforeAdd method 2nd

OnBeforeChange method 2nd

OnBeforeCreate method

OnChanged event

OnCreated and OnDeleted events

one-to-many map

OnEntryWritten method

OnRenamed event

Open method

 FileInfo class

OpenPortFound event 2nd

OpenPorts and ClosedPorts properties

OpenRead method

OpenSubKey method

OpenText method

 File class

operating systems

 gettting version

 page size

operator ()

operators

 overloading += 2nd

originator object 2nd 3rd 4th

out keyword

out parameter

 acting as return parameter

out parameter modifier 2nd 3rd

out-of-bounds situations

outer variables

OutOfMemoryException exception 2nd

OverflowException

OverFlowException exception 2nd

OverflowException exception 2nd 3rd 4th 5th

overloaded operators

 implementing iterators as

overloading methods

 exception for invalid formatting parameter

overriding methods

 conditional compilation and

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

P/Invoke (Platform Invoke) method

P/Invoke wrapper class

parameter modifiers in anonymous methods 2nd 3rd

ParameterInfo class

parameters

 command-line 2nd 3rd 4th 5th 6th 7th 8th

 iterators that accept

 out keyword for

 specialized

params modifier 2nd 3rd 4th

Parse method 2nd 3rd

 invalid data passed to

 Line structure

ParseCmdLine class 2nd

ParseExact method

ParsePath method

ParsePathEnvironmentVariable method

partial types 2nd

 code generation outside main code paths 2nd 3rd

 organizing interface implementations 2nd 3rd

PartialClassAddin

password strings

Path class

path name

paths

 using in file functions

PathSeparator field

PathTooLongException exception

PauseAndCreateFile method

Peek method 2nd

PeekChar method

PeekHead method

PeekTail method

performance

 caching HTTP results

 exception handling and 2nd

 observer design pattern and

 regular expressions and

performance counters

 in .NET Framework

 simple counters 2nd

PerformanceCounter class 2nd

 incrementing or decrementing

PerformanceCounterCategory type

PerformanceCounterCategoryType class

permissions

 for assemblies

 for reflections 2nd

persistent information 2nd

Ping class

PingCompleted event

PingCompletedEventArgs class

PingReply class

pipes 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

PlatformNotSupportedException exception

pluggable protocols

pointers

 passing as out or ref parameter

 passing by reference 2nd

 passing by value

 to fixed arrays

PolicyException exception

PollAsyncDelegate method 2nd

polymorphism

 classes

 implemented with concrete class

 implemented with interfaces

 implemented with interfaces

 implementing with abstract base class 2nd 3rd 4th

 implementing with interfaces

Port property 2nd

ports

 determining open ports on a machine 2nd 3rd 4th 5th

PortScan method

POST request 2nd

PrecompilationFlags enumeration

Predicate<T> class 2nd

preprocessor directives

PreventLossOfException method

Print method

priority

 boosing for process programmatically

priority queue

PriorityClass property

PriorityQueue<T> class 2nd 3rd 4th 5th 6th

 special comparer object (CompareLen)

Process class 2nd

 static methods to get process information

Process.StartInfo class

ProcessClient method 2nd 3rd

processes

 capturing standard output for 2nd 3rd

 not responding

ProcessInfo class

ProcessInvoice method

processors

ProcessPriorityClass

ProcessRespondingState enumeration

ProcessSomething method

ProcessStartInfo class 2nd

profiling tools

ProgIdAttribute

protected virtual methods

protocol

PtrToStructure method

public visibility methods

punctuation

Pythagorean theorem

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Query property 2nd 3rd

QueryXML method

Queue class

 snapshot of

Queue<T> class

 snapshot of current state

queues

 double queue

 priority 2nd 3rd 4th 5th

QueueUserWorkItem method

quotes

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

radians

 converting to degrees

Random class

range

RankException exception

RateOfCountsPerSecond32 counter

RateOfCountsPerSecond64 counter

RawFraction counter

RawValue property (PerformanceCounter)

RCW (runtime callable wrapper) of a COM object

 garbage collection

Read method

 BinaryReader class

 FileStream class

 StreamReader class 2nd

ReadAllBufferedLog method

ReadAllLog method

ReadAllLogAsBytes method

ReadByte method

ReaderDecorator class 2nd

ReadLine method 2nd 3rd

ReadLogByLines method 2nd

readonly field

 instance readonly field

ReadOnlyCollection<T> class 2nd

ReadSensitiveData method

ReadToEnd method 2nd

ReceiveInvoice method

redirecting standard output

RedirectStandardOutput property (Process.StartInfo class)

ref parameter 2nd

ref parameter modifier 2nd 3rd

reference types

 performance

 type arguments narrowed down to

ReferencedAssembly property

Reflect class

reflection 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 21st 22nd 23rd 24th 25th

 generic type or method

 handling exceptions generated by methods using 2nd

 inheritance hierarcy for a type 2nd

 listing assemblies imported by an assembly 2nd 3rd

 listing exported types of an assembly

 local variable information

 manifest resources

 member information 2nd 3rd 4th

 overridden methods

 permissions for

ReflectionException method

ReflectionOnlyLoad* methods

ReflectionTypeLoadException exception

Regasm.exe command-line tool

Regex class

 Match method

 Matches method

 Replace method 2nd

 Split method

Regex object

RegexCompilationInfo class

RegexOptions class

 options parameter

RegExUtilities class

Register for COM interop field

Register method

 HashtableObserver classs

registry

 chaning maximum size of custom event log

Registry class

RegistryKey class

 changing maximum event log size using

regular expressions 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 21st 22nd 23rd 24th 25th 26th

27th 28th 29th

 common patterns

 compiling 2nd

 conditionally replacing matching text within strings

 determining depth of stack trace

 enumerating matches 2nd 3rd 4th

 finding last match in a string

 finding specific occurrence of a match

 verifying syntax of

ReleaseComObject method 2nd

RemoteComponentException class 2nd 3rd 4th

 testing

RemotingException exception

RemotingTimeoutException exception

Remove method

 string class 2nd

 StringBuilder class

RemoveAt method 2nd

RemoveFromArray method

RemoveLeftNode method

RemoveRightNode method

RenameFile method

replacing Stack objects with generic Stack<T>

 Stack class

 benefits of

replacing with generic Dictionary<T>

 Hashtable class

 equivalent members 2nd 3rd 4th

ReportToConsole method

RequestCacheLevel enumeration

RequestCachePolicy class

reserved words

 for data types

Reset method

resource cleanup with finally blocks

resources

 manifest

resources (unmanaged) 2nd 3rd 4th 5th 6th

Responding property

ResponseCategories enumeration

RestoreObj<T> method

ReturnDimensions method 2nd

ReturnTypeFilter method

revenue and commission tracking program (example) 2nd 3rd 4th 5th

Reverse method

Reverse2DimArray<T> method

ReverseJaggedArray<T> method

ReverseOrder property

ReverseOrderStep method

ReversibleSortedList<T> class 2nd 3rd 4th 5th 6th 7th 8th

Right property

right-associative properties

RightToLeft constant (RegexOptions)

Rijndael algorithm

RNGCryptoServiceProvider class

Rollback method

Root property

Round method

 choosing rounding algorithm

RunatServerRegex class

RunProcessToReadStdIn method

RunServer method

runtime callable wrapper (RCW) of a COM object

runtime environment

 gathering information for troubleshooting

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Safe Thread Synchronization (MSDN Magazine)

SafeArrayRankMismatchException exception

SafeArrayTypeMismatchException exception

SafeFileHandle class 2nd

SampleCounter counter

SampleFraction counter

SaveObj<T> method

SaveSensitiveData method

sbyte type

 non-compliance with CLS

Scan method

schemas

 inferring from existing XML files

scientific notation

sealed classes 2nd 3rd 4th

sealed keyword

search methods for event log searches

SearchDepthFirst method

searches

 array elements

 characters in strings

 event logs

 for files or directories 2nd 3rd 4th 5th

 interfaces 2nd 3rd 4th

 member 2nd 3rd 4th 5th

 substrings in strings

 tokens in strings

searching

 event logs

 other search methods

SearchInterfacesOfType method 2nd

SearchMembers method

SearchType class

SecondHalf iterator property

SecretFile class 2nd

security

 asserting a permission safely

 clearing cryptography information after using

 XSLT stylesheets and

SecurityException exception 2nd 3rd

SecurityManager class

Seek method

seeking (file) 2nd 3rd

 methods of performing

 testing for beginning or end of a file

SeekOrigin enumeration

SEHException exception

Select method

 XPathNavigator class

Send method

separator

serializable types

SerializableAttribute

serialization

 objects to and from a file

 using in deep copying

SerializationException exception

ServerException exception

servers

 creating a TCP server 2nd 3rd 4th 5th 6th

set objects 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 equivalence and nonequivalence of 2nd

 mathematical operations on

 subset of

 superset of

Set<T> class 2nd 3rd 4th

SetCreationTime method

 Directory class

SetCustomLogMaxSize method

SetEnvironmentVariable method

settings_ValidationEventHandler function

SetWindowsHookEx function

ShadowCopyDirectories property

ShadowCopyFiles property

shallow copying 2nd

ShallowClone class

shift and add hash algorithm

ShiftAndAddHash method

ShoppingList<T> class 2nd

 IEnumerable<T> and

shortened development time using generics

Show method

signed data types int

SignedNumber structure

SignedNumberWithText structure

silent thread termination

simple types

SimpleClass class

SimpleHash algorithm

SimpleHash method

SimpleListIterator class

Sin method

single quotes (')

SMTP (Simple Mail Transfer Protocol) 2nd 3rd 4th

 setting up relaying

SmtpClient class

SN.EXE program

social security numbers

Socket class

sockets

SomeComplexObj class

SomeDataOriginator class

Sort method

 ArrayList class

SortDirection property

SortDirectionComparer<T> class

sorted list 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 21st 22nd 23rd 24th 25th 26th

SortedList class 2nd 3rd 4th

 Contains method

 ContainsKey method

 ContainsValue method

 foreach

 sorting routine

SortedList<T> class 2nd 3rd

sorting

 dictionary keys and values 2nd 3rd 4th

 making types sortable 2nd 3rd

space

SpawnManyThreads method

SpecializedParseCmdLine class

Split method

 String class 2nd

 string class 2nd

SqlCacheDependency class 2nd 3rd 4th

SqlCacheDependencyAdmin class

SqlCacheDependencyDatabase class

SqlCommand classproper cleanup in finally block

Sqrt method

Square class

Stack class

stack trace 2nd 3rd

Stack<T> class

StackOverflowException exception 2nd

StackTrace class 2nd 3rd 4th 5th 6th

StackTrace method

StackTrace property

StackTraceList class 2nd 3rd 4th 5th

standard input

standard output

 capturing for a process

StandardOutput stream

Start method

 Process class

StartInfo property

StartsWith method

static fields

 cloning operations and

 initializing with static constructors 2nd

static methods 2nd

StatusCode property

StopListening method 2nd

Stream class

StreamReader class 2nd 3rd

streams 2nd 3rd

 creating

 using built-in .NET streams

 XML

StreamWriter class 2nd 3rd 4th

 WriteLine method 2nd

string class

 Equals method

 Join method

 Replace method

 Split method

 TrimStart method

string concatenation

string concatenation hash algorithm

string data type

StringBuilder class

 constructor for

 improving performance of

 Insert method

 Remove method

 Replace method

StringCollection class

StringDictionary class

StringReader class

strings

 array of

 conversions to

 converting numeric values to

 delimited

 delimited string

 encoding byte array as

 encrypting and decrypting

 inserting character or string into

 interning

 replacing text conditionally 2nd

 replacing text within 2nd

 searching for substrings 2nd 3rd 4th

 types represented as 2nd 3rd

 XML 2nd 3rd 4th

StringSet class 2nd 3rd 4th

StringWriter class

StructLayout attribute

structures 2nd 3rd 4th

 boxing and

 operating as union types 2nd

 performance advantages

 static fields

 stored in arrays searching 2nd 3rd 4th 5th

SubGroup class

subset of set objects

SUDSGeneratorException exception

SUDSParserException exception

superset of set objects 2nd

SuppressFinalize method 2nd 3rd

surrogate character

SwapElementsInArray<T> method

Switch class 2nd 3rd 4th 5th 6th

switch statements

 listing enumeration values

switches element

symbol

SymmetricAlgorithm class

SyncDelegateType delegate

SyncDelegateTypeSimple delegate

SynchronizationLockException exception

synchronous delegates 2nd 3rd 4th

SyncRoot method

System.Collections namespace

System.Collections.Generic namespace

System.Collections.Specialized namespace

System.Diagnostics namespace

System.Enum

System.Environment class

System.EventHandler class 2nd

System.Net.Mail namespace

System.Text.RegularExpressions namespace 2nd

System.ValueType 2nd

SystemDirectory property

SystemException exception 2nd 3rd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

TakeSnapshotOfList<T> method

Tan method

TargetException exception

TargetInvocationException exception 2nd 3rd

TargetParameterCountException exception

Task class

TCP (Transmission Control Protocol)

 writing a server 2nd 3rd 4th 5th

TcpClient class 2nd 3rd

 Read method

 Write method

TcpListener class 2nd

 Stop method

TCPServer class 2nd

temporary files

TestArrayReversal method

TestDirectoryInfoObserver method

TestDisplayDataAsDelStr method

TestInit class

TestMediaABC method

TestReceivedStringHash method

TestReverse2DimArray method

TestReverseJaggedArray method

TestSearchMembers method

TestSerialization utility

TestSort method 2nd 3rd 4th

TestWatcher method

textual values of enumeration members 2nd 3rd

 converting to enumeration value

theorems for Boolean equations

this pointer 2nd

thread local storage (TLS)

ThreadAbortException exception

ThreadException class

ThreadException property

threading

 exception event handlers for

 thread pool requests

Threading.Timer class

ThreadInterruptedException exception

ThreadPool class

 timers and

ThreadStateException exception

ThreadStaticField class

ThreadStopException exception

throw keyword

ThrowException method

time

TimeoutException exception

TimeOutWakeAsyncDelegate method 2nd

Timer100Ns counter

Timer100nsInverse counter

TimerCallback delegate

timestamps

 creating for files

 directory

 displaying or manipulating for files

ToASCIIByteArray method

ToBase64CharArray method

ToBoolean method

ToByte method

ToChar method

ToDateTime method

ToDecimal method

ToDouble method

ToInt16 method

ToInt32 method

ToInt32 method (Convert)

ToInt64 method

Tokenize method

ToSByte method

ToSingle method

ToString method

 controlling display of information 2nd 3rd 4th 5th 6th

 displaying exception information

 exception information

 Exception type exceptions

 formatting with

 using with exceptions

ToString methods

ToUInt16 method

ToUInt32 method

ToUInt64 method

ToUnicodeByteArray method

ToUpper method

Trace class

trace element

Traceable class 2nd

TraceFactory class 2nd 3rd 4th

TraceSwitch class 2nd

 tracing levels

tracing

 configuration file to turn on

 generating code for during object creation 2nd

 output from production application 2nd 3rd 4th 5th

 selecting levels of

Transform method

TransformXML method

trees

 binary tree 2nd

TreeSize property

Trim method

TriValue partial class

 support for Iconvertible interface 2nd 3rd

true operator

 overloading

TrueForAll method

try blocks

try-catch exception handlers when to use

try-catch-finally exception handlers when to use

try-finally exception handlers when to use

try/catch block

 wrapping around Main method

try/catch blocks

 nested

 preventing unhandled exceptions with

 within finally blocks

try/catch/finally blocks

try/finally blocks

TryEnter method

TryParse method

TurnBitOff method

TurnBitOn method

TurnBitPositionOff method

TurnBitPositionOn method

two-dimensional arrays reversing

type argument

Type class

 methods accepting BindingFlags enumerator

 searching for interfaces with

type conversions 2nd

type parameters in generics

type safety

 generic replacements for Queue and Stack objects

 provided by generic types

TypeFilter delegate

TypeInitializationException exception

 preventing

TypeLoadException exception

typeof operator

types

 serializable

TypeUnloadedException exception

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

unary functions

UnAttachCallback method

UnauthorizedAccessException exception

unchecked context

understanding

 generic types

 boxing

UnescapeDataString method 2nd

unhandled exceptions

 in WinForms applications

UnhandledExceptionEventHandler method

UnhookWindowsHookEx function

union of set objects

UnionOf method

unions 2nd

Unlock method

unmanaged resources 2nd 3rd 4th 5th 6th

unnamed groups in regular expressions

UnRegister method

unsafe code

 unknown pointer types

UploadValues method 2nd

URI (Uniform Resource Identifier)

 absolute 2nd

 escaping/unescaping data for web operations

Uri class 2nd

UriBuilder class 2nd

UriBuilderFix class

URL

 obtaining HTML from

 reading XML data from

UseMedia method

UserEventArgs class

UseShellExecute property (ProcessInfo)

using directive

using statement

 dispose pattern

 important points about

UTF-16 encoded values

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Validate method 2nd 3rd

ValidateXML method

ValidationEventArgs class

ValidationEventHandler class 2nd

ValidationType enumeration

Value method 2nd

value types

 creating type that can be initialized to null

Values property 2nd

variables

 defined in using statement

 determining type with is operator

 generic

vector array

VerificationException exception

VerifyRegEx method 2nd 3rd

versioning

 application 2nd 3rd

versions

ViewModifyFileAttr method

visibility of methods

VisualizerDevelopmentHost class

visualizers

 examining exceptions 2nd 3rd 4th 5th

void pointers

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

WaitForChanged method 2nd

WaitForMessage method

WaitForZipCreation method

WaitOne method

WarningException exception

WatchForAppEvent method

WeakReference class

WeakReferenceException exception

web applications

 inspecting and changing configuration 2nd 3rd

 parsing HTML 2nd 3rd

web browser 2nd 3rd

web pages

 parsing ASP.NET pages

web proxy

web server

 custom error pages 2nd

web.config file

 sqlCacheDependency

WebBrowser class

WebBrowserNavigatedEventArgs class

WebClient class

WebConfigurationManager class 2nd

WebException exception

WebProxy class

WH_KEYBOARD hook 2nd 3rd 4th 5th 6th

where keyword

whitespace

wildcards

 searching for members in assembly using

 using in searches for files or directories 2nd 3rd 4th 5th

Windows

 file encryption/decryption

Windows operating system

 event log 2nd 3rd 4th 5th 6th

 keyboard hook 2nd 3rd 4th 5th 6th

WinForms applications

 unhandled exceptions

WinForms-based

 application displaying HTML-based content 2nd

WinInet (Windows Internet) API

WriteByte method

WriteCData method

WriteDebuggerVisualizerAttribute method

WriteElementString method

WriteLine method

 formatting data using

 newline characters and

WriteLine method (Console class)

WriteNodeInfo method

WriterDecorator class

WriteToLog method 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

XDR schema 2nd

XML

 exception data copied to clipboard

XML (Extensible Markup Language) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 21st 22nd 23rd

24th 25th 26th 27th 28th 29th 30th 31st 32nd 33rd 34th 35th 36th 37th 38th 39th 40th 41st 42nd 43rd 44th 45th

 breaking document into constituent parts 2nd 3rd 4th 5th 6th

 constructing document from separate pieces 2nd 3rd 4th 5th

 creating document programmatically 2nd 3rd

 DOM model for

 extending XSLT transformations 2nd 3rd 4th

 finding tags in an XML string

 invalid characters in XML string 2nd 3rd 4th

 querying document contents 2nd 3rd 4th

 reading XML data in document order 2nd 3rd 4th

 tracking changes to 2nd 3rd

 transformations 2nd

 transforming

 validating conformance to a schema

 validating modified documents without reloading 2nd 3rd

XML configuration file

XML files

 application configuration file for WinForms- or Console-based applications

XmlAttributes class

XmlDocument class

 assembling an XML document using 2nd

 constructing XML data using

 event handlers and WriteNodeInfo method

 when to use 2nd 3rd

XmlElement class

XmlException exception

XmlNode class

XmlNodeType enumeration

XmlReader class 2nd 3rd 4th

 Create method

 validating XML 2nd 3rd 4th 5th 6th

XmlReaderSettings class 2nd 3rd

XmlResolver class

XmlSchemaInference class

XmlSchemaSet class

XmlSecureResolver class

XmlUrlResolver class 2nd

XmlWriter class 2nd

XmlWriterSettings class

XPath 2nd 3rd 4th

XPathDocument class 2nd

XPathNavigator class 2nd

XPathNodeIterator class 2nd 3rd

XSD schema

 generating from existing XML files

 XML validation against

XslCompiledTransform class 2nd

XSLExtensionObject class

XSLT

 passing parameters to transformations 2nd 3rd

XSLT stylesheet

XsltSettings class

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

yield break statement

yield return statement 2nd

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

zip code

	C# Cookbook, 2nd Edition
	Table of Contents
	Copyright
	Dedication

	Preface
	Who This Book Is For
	What You Need to Use This Book
	Platform Notes
	How This Book Is Organized
	What Was Left Out
	Conventions Used in This Book
	About the Code
	Using Code Examples
	Comments and Questions
	Safari Enabled
	Acknowledgments

	Chapter 1. Numbers and Enumerations
	Introduction
	Recipe 1.1. Determining Approximate Equality Between a Fraction and Floating-Point Value
	Recipe 1.2. Converting Degrees to Radians
	Recipe 1.3. Converting Radians to Degrees
	Recipe 1.4. Using the Bitwise Complement Operator with Various Data Types
	Recipe 1.5. Testing for an Even or Odd Value
	Recipe 1.6. Obtaining the High Word or Low Word of a Number
	Recipe 1.7. Converting a Number in Another Base to Base10
	Recipe 1.8. Determining Whether a String Is a Valid Number
	Recipe 1.9. Rounding a Floating-Point Value
	Recipe 1.10. Choosing a Rounding Algorithm
	Recipe 1.11. Converting Celsius to Fahrenheit
	Recipe 1.12. Converting Fahrenheit to Celsius
	Recipe 1.13. Safely Performing a Narrowing Numeric Cast
	Recipe 1.14. Finding the Length of Any Three Sides of a Right Triangle
	Recipe 1.15. Finding the Angles of a Right Triangle
	Recipe 1.16. Displaying an Enumeration Value as a String
	Recipe 1.17. Converting Plain Text to an Equivalent Enumeration Value
	Recipe 1.18. Testing for a Valid Enumeration Value
	Recipe 1.19. Testing for a Valid Enumeration of Flags
	Recipe 1.20. Using Enumerated Members in a Bit Mask
	Recipe 1.21. Determining if One or More Enumeration Flags Are Set
	Recipe 1.22. Determining the Integral Part of a Decimal or Double

	Chapter 2. Strings and Characters
	Introduction
	Recipe 2.1. Determining the Kind of Character a char Contains
	Recipe 2.2. Determining Whether a Character Is Within a Specified Range
	Recipe 2.3. Controlling Case Sensitivity When Comparing Two Characters
	Recipe 2.4. Finding All Occurrences of a Character Within a String
	Recipe 2.5. Finding the Location of All Occurrences of a String Within Another String
	Recipe 2.6. Implementing a Poor Man's Tokenizer to Deconstruct a String
	Recipe 2.7. Controlling Case Sensitivity When Comparing Two Strings
	Recipe 2.8. Comparing a String to the Beginning or End of a Second String
	Recipe 2.9. Inserting Text into a String
	Recipe 2.10. Removing or Replacing Characters Within a String
	Recipe 2.11. Encoding Binary Data as Base64
	Recipe 2.12. Decoding a Base64-Encoded Binary
	Recipe 2.13. Converting a String Returned as a Byte[] Back into a String
	Recipe 2.14. Passing a String to a Method That Accepts only a Byte[]
	Recipe 2.15. Converting Strings to Other Types
	Recipe 2.16. Formatting Data in Strings
	Recipe 2.17. Creating a Delimited String
	Recipe 2.18. Extracting Items from a Delimited String
	Recipe 2.19. Setting the Maximum Number of Characters a StringBuilder Can Contain
	Recipe 2.20. Iterating over Each Character in a String
	Recipe 2.21. Improving String Comparison Performance
	Recipe 2.22. Improving StringBuilder Performance
	Recipe 2.23. Pruning Characters from the Head and/or Tail of a String
	Recipe 2.24. Testing a String for Null or Empty
	Recipe 2.25. Appending a Line
	Recipe 2.26. Encoding Chunks of Data

	Chapter 3. Classes and Structures
	Introduction
	Recipe 3.1. Creating Union-Type Structures
	Recipe 3.2. Allowing a Type to Represent Itself as a String
	Recipe 3.3. Converting a String Representation of an Object into an Actual Object
	Recipe 3.4. Implementing Polymorphism with Abstract Base Classes
	Recipe 3.5. Making a Type Sortable
	Recipe 3.6. Making a Type Searchable
	Recipe 3.7. Indirectly Overloading the +=, -=, /=, and *= Operators
	Recipe 3.8. Indirectly Overloading the &&, ||, and ?: Operators
	Recipe 3.9. Turning Bits On or Off
	Recipe 3.10. Making Error-Free Expressions
	Recipe 3.11. Minimizing (Reducing) Your Boolean Logic
	Recipe 3.12. Converting Between Simple Types in a Language-Agnostic Manner
	Recipe 3.13. Determining When to Use the Cast Operator, the as Operator, or the is Operator
	Recipe 3.14. Casting with the as Operator
	Recipe 3.15. Determining a Variable's Type with the is Operator
	Recipe 3.16. Implementing Polymorphism with Interfaces
	Recipe 3.17. Calling the Same Method on Multiple Object Types
	Recipe 3.18. Adding a Notification Callback Using an Interface
	Recipe 3.19. Using Multiple Entry Points to Version an Application
	Recipe 3.20. Preventing the Creation of an Only Partially Initialized Object
	Recipe 3.21. Returning Multiple Items from a Method
	Recipe 3.22. Parsing Command-Line Parameters
	Recipe 3.23. Retrofitting a Class to Interoperate with COM
	Recipe 3.24. Initializing a Constant Field at Runtime
	Recipe 3.25. Writing Code That Is Compatible with the Widest Range of Managed Languages
	Recipe 3.26. Building Cloneable Classes
	Recipe 3.27. Assuring an Object's Disposal
	Recipe 3.28. Releasing a COM Object Through Managed Code
	Recipe 3.29. Creating an Object Cache
	Recipe 3.30. Rolling Back Object Changes
	Recipe 3.31. Disposing of Unmanaged Resources
	Recipe 3.32. Determining Where Boxing and Unboxing Occur

	Chapter 4. Generics
	Introduction
	Recipe 4.1. Deciding When and Where to Use Generics
	Recipe 4.2. Understanding Generic Types
	Recipe 4.3. Getting the Type of a Generic Type
	Recipe 4.4. Replacing the ArrayList with Its Generic Counterpart
	Recipe 4.5. Replacing the Stack and Queue with Their Generic Counterparts
	Recipe 4.6. Implementing a Linked List
	Recipe 4.7. Creating a Value Type That Can Be Initialized to Null
	Recipe 4.8. Reversing the Contents of a Sorted List
	Recipe 4.9. Making Read-Only Collections the Generic Way
	Recipe 4.10. Replacing the Hashtable with Its Generic Counterpart
	Recipe 4.11. Using foreach with Generic Dictionary Types
	Recipe 4.12. Constraining Type Arguments
	Recipe 4.13. Initializing Generic Variables to Their Default Values

	Chapter 5. Collections
	Introduction
	Recipe 5.1. Swapping Two Elements in an Array
	Recipe 5.2. Reversing an Array Quickly
	Recipe 5.3. Reversing a Two-Dimensional Array
	Recipe 5.4. Reversing a Jagged Array
	Recipe 5.5. Writing a More Flexible StackTrace Class
	Recipe 5.6. Determining the Number of Times an Item Appears in a List<T>
	Recipe 5.7. Retrieving All Instances of a Specific Item in a List<T>
	Recipe 5.8. Inserting and Removing Items from an Array
	Recipe 5.9. Keeping Your List<T> Sorted
	Recipe 5.10. Sorting a Dictionary's Keys and/or Values
	Recipe 5.11. Creating a Dictionary with Max and Min Value Boundaries
	Recipe 5.12. Displaying an Array's Data as a Delimited String
	Recipe 5.13. Storing Snapshots of Lists in an Array
	Recipe 5.14. Persisting a Collection Between Application Sessions
	Recipe 5.15. Testing Every Element in an Array or List<T>
	Recipe 5.16. Performing an Action on Each Element in an Array or List<T>
	Recipe 5.17. Creating a Read-Only Array or List<T>

	Chapter 6. Iterators and Partial Types
	Introduction
	Recipe 6.1. Implementing Nested foreach Functionality in a Class
	Recipe 6.2. Creating Custom Enumerators
	Recipe 6.3. Creating an Iterator on a Generic Type
	Recipe 6.4. Creating an Iterator on a Non-generic Type
	Recipe 6.5. Creating Iterators That Accept Parameters
	Recipe 6.6. Adding Multiple Iterators on a Single Type
	Recipe 6.7. Implementing Iterators as Overloaded Operators
	Recipe 6.8. Forcing an Iterator to Stop Iterating
	Recipe 6.9. Dealing with Finally Blocks and Iterators
	Recipe 6.10. Organizing Your Interface Implementations
	Recipe 6.11. Generating Code That Is No Longer in Your Main Code Paths

	Chapter 7. Exception Handling
	Introduction
	Recipe 7.1. Verifying Critical Parameters
	Recipe 7.2. Knowing When to Catch and Rethrow Exceptions
	Recipe 7.3. Identifying Exceptions and Their Usage
	Recipe 7.4. Handling Derived Exceptions Individually
	Recipe 7.5. Assuring Exceptions Are Not Lost When Using Finally Blocks
	Recipe 7.6. Handling Exceptions Thrown from Methods Invoked via Reflection
	Recipe 7.7. Debugging Problems When Loading an Assembly
	Recipe 7.8. Mapping Back and Forth Between Managed Exceptions and HRESULTs
	Recipe 7.9. Handling User-Defined HRESULTs
	Recipe 7.10. Preventing Unhandled Exceptions
	Recipe 7.11. Getting Exception Information
	Recipe 7.12. Getting to the Root of a Problem Quickly
	Recipe 7.13. Creating a New Exception Type
	Recipe 7.14. Obtaining a Stack Trace
	Recipe 7.15. Breaking on a First-Chance Exception
	Recipe 7.16. Preventing the Nefarious TypeInitializationException
	Recipe 7.17. Handling Exceptions Thrown from an Asynchronous Delegate
	Recipe 7.18. Giving Exceptions the Extra Info They Need with Exception.Data
	Recipe 7.19. Looking at Exceptions in a New Way Using Visualizers
	Recipe 7.20. Dealing with Unhandled Exceptions in WinForms Applications

	Chapter 8. Diagnostics
	Introduction
	Recipe 8.1. Controlling Tracing Output in Production Code
	Recipe 8.2. Providing Fine-Grained Control over Debugging/Tracing Output
	Recipe 8.3. Creating Your Own Custom Switch Class
	Recipe 8.4. Compiling Blocks of Code Conditionally
	Recipe 8.5. Determining Whether a Process Has Stopped Responding
	Recipe 8.6. Using Event Logs in Your Application
	Recipe 8.7. Changing the Maximum Size of a Custom Event Log
	Recipe 8.8. Searching Event Log Entries
	Recipe 8.9. Watching the Event Log for a Specific Entry
	Recipe 8.10. Finding All Sources Belonging to a Specific Event Log
	Recipe 8.11. Implementing a Simple Performance Counter
	Recipe 8.12. Implementing Performance Counters That Require a Base Counter
	Recipe 8.13. Enabling and Disabling Complex Tracing Code
	Recipe 8.14. Capturing Standard Output for a Process
	Recipe 8.15. Creating Custom Debugging Displays for Your Classes
	Recipe 8.16. Determining Current appdomain Settings Information
	Recipe 8.17. Boosting the Priority of a Process Programmatically
	Recipe 8.18. Looking at Your Runtime Environment and Seeing What You Can Do About It

	Chapter 9. Delegates, Events, and Anonymous Methods
	Introduction
	Recipe 9.1. Controlling When and If a Delegate Fires Within a Multicast Delegate
	Recipe 9.2. Obtaining Return Values from Each Delegate in a Multicast Delegate
	Recipe 9.3. Handling Exceptions Individually for Each Delegate in a Multicast Delegate
	Recipe 9.4. Converting Delegate Invocation from Synchronous to Asynchronous
	Recipe 9.5. Wrapping Sealed Classes to Add Events
	Recipe 9.6. Passing Specialized Parameters to and from an Event
	Recipe 9.7. An Advanced Interface Search Mechanism
	Recipe 9.8. An Advanced Member Search Mechanism
	Recipe 9.9. Observing Additions and Modifications to a Hashtable
	Recipe 9.10. Using the Windows Keyboard Hook
	Recipe 9.11. Tracking and Responding to the Mouse
	Recipe 9.12. Using Anonymous Methods
	Recipe 9.13. Set up Event Handlers Without the Mess
	Recipe 9.14. Using Different Parameter Modifiers in Anonymous Methods
	Recipe 9.15. Using Closures in C#
	Recipe 9.16. Performing Multiple Operations on a List Using Functors

	Chapter 10. Regular Expressions
	Introduction
	Recipe 10.1. Enumerating Matches
	Recipe 10.2. Extracting Groups from a MatchCollection
	Recipe 10.3. Verifying the Syntax of a Regular Expression
	Recipe 10.4. Quickly Finding Only the Last Match in a String
	Recipe 10.5. Replacing Characters or Words in a String
	Recipe 10.6. Augmenting the Basic String Replacement Function
	Recipe 10.7. Implementing a Better Tokenizer
	Recipe 10.8. Compiling Regular Expressions
	Recipe 10.9. Counting Lines of Text
	Recipe 10.10. Returning the Entire Line in Which a Match Is Found
	Recipe 10.11. Finding a Particular Occurrence of a Match
	Recipe 10.12. Using Common Patterns
	Recipe 10.13. Documenting Your Regular Expressions
	Recipe 10.14. Using Built-in Regular Expressions to Parse ASP. NET Pages

	Chapter 11. Data Structures and Algorithms
	Introduction
	Recipe 11.1. Creating a Hash Code for a Data Type
	Recipe 11.2. Creating a Priority Queue
	Recipe 11.3. Creating a Double Queue
	Recipe 11.4. Determining Where Characters or Strings Do Not Balance
	Recipe 11.5. Creating a One-to-Many Map (MultiMap)
	Recipe 11.6. Creating a Binary Tree
	Recipe 11.7. Creating an n-ary Tree
	Recipe 11.8. Creating a Set Object

	Chapter 12. Filesystem I/O
	Introduction
	Recipe 12.1. Creating, Copying, Moving, or Deleting a File
	Recipe 12.2. Manipulating File Attributes
	Recipe 12.3. Renaming a File
	Recipe 12.4. Determining Whether a File Exists
	Recipe 12.5. Choosing a Method of Opening a File or Stream for Reading and/or Writing
	Recipe 12.6. Accessing Part of a File Randomly
	Recipe 12.7. Outputting a Platform-Independent EOL Character
	Recipe 12.8. Creating, Writing to, and Reading from a File
	Recipe 12.9. Determining Whether a Directory Exists
	Recipe 12.10. Creating, Copying, Moving, or Deleting a Directory
	Recipe 12.11. Manipulating Directory Attributes
	Recipe 12.12. Renaming a Directory
	Recipe 12.13. Searching for Directories or Files Using Wildcards
	Recipe 12.14. Obtaining the Directory Tree
	Recipe 12.15. Parsing a Path
	Recipe 12.16. Parsing Paths in Environment Variables
	Recipe 12.17. Verifying a Path
	Recipe 12.18. Using a Temporary File in Your Application
	Recipe 12.19. Opening a File Stream with Just a File Handle
	Recipe 12.20. Writing to Multiple Output Files at One Time
	Recipe 12.21. Launching and Interacting with Console Utilities
	Recipe 12.22. Locking Subsections of a File
	Recipe 12.23. Watching the Filesystem for Specific Changes to One or More Files or Directories
	Recipe 12.24. Waiting for an Action to Occur in the Filesystem
	Recipe 12.25. Comparing Version Information of Two Executable Modules
	Recipe 12.26. Querying Information for All Drives on a System
	Recipe 12.27. Encrypting/Decrypting an Existing File
	Recipe 12.28. Compressing and Decompressing Your Files

	Chapter 13. Reflection
	Introduction
	Recipe 13.1. Listing Referenced Assemblies
	Recipe 13.2. Listing Exported Types
	Recipe 13.3. Finding Overridden Methods
	Recipe 13.4. Finding Members in an Assembly
	Recipe 13.5. Finding Members Within an Interface
	Recipe 13.6. Determining and Obtaining Nested Types Within an Assembly
	Recipe 13.7. Displaying the Inheritance Hierarchy for a Type
	Recipe 13.8. Finding the Subclasses of a Type
	Recipe 13.9. Finding All Serializable Types Within an Assembly
	Recipe 13.10. Filtering Output When Obtaining Members
	Recipe 13.11. Dynamically Invoking Members
	Recipe 13.12. Providing Guidance to Obfuscators
	Recipe 13.13. Determining if a Type or Method Is Generic
	Recipe 13.14. Reading Manifest Resources Programmatically
	Recipe 13.15. Accessing Local Variable Information
	Recipe 13.16. Creating a Generic Type

	Chapter 14. Web
	Introduction
	Recipe 14.1. Converting an IP Address to a Hostname
	Recipe 14.2. Converting a Hostname to an IP Address
	Recipe 14.3. Parsing a URI
	Recipe 14.4. Forming and Validating an Absolute Uri
	Recipe 14.5. Handling Web Server Errors
	Recipe 14.6. Communicating with a Web Server
	Recipe 14.7. Going Through a Proxy
	Recipe 14.8. Obtaining the HTML from a URL
	Recipe 14.9. Using the New Web Browser Control
	Recipe 14.10. Tying Database Tables to the Cache
	Recipe 14.11. Caching Data with Multiple Dependencies
	Recipe 14.12. Prebuilding an ASP.NET Web Site Programmatically
	Recipe 14.13. Escaping and Unescaping Data for the Web
	Recipe 14.14. Using the UriBuilder Class
	Recipe 14.15. Inspect and Change Your Web Application Configuration
	Recipe 14.16. Working with HTML
	Recipe 14.17. Using Cached Results When Working with HTTP for Faster Performance
	Recipe 14.18. Checking out a Web Server's Custom Error Pages
	Recipe 14.19. Determining the Application Mappings for ASP.NET Set Up on IIS

	Chapter 15. XML
	Introduction
	Recipe 15.1. Reading and Accessing XML Data in Document Order
	Recipe 15.2. Reading XML on the Web
	Recipe 15.3. Querying the Contents of an XML Document
	Recipe 15.4. Validating XML
	Recipe 15.5. Creating an XML Document Programmatically
	Recipe 15.6. Detecting Changes to an XML Document
	Recipe 15.7. Handling Invalid Characters in an XML String
	Recipe 15.8. Transforming XML
	Recipe 15.9. Tearing Apart an XML Document
	Recipe 15.10. Putting Together an XML Document
	Recipe 15.11. Validating Modified XML Documents Without Reloading
	Recipe 15.12. Extending XSLT Transformations
	Recipe 15.13. Getting Your Schema in Bulk from Existing XML Files
	Recipe 15.14. Passing Parameters to XSLT Transformations

	Chapter 16. Networking
	Introduction
	Recipe 16.1. Writing a TCP Server
	Recipe 16.2. Writing a TCP Client
	Recipe 16.3. Simulating Form Execution
	Recipe 16.4. Downloading Data from a Server
	Recipe 16.5. Using Named Pipes to Communicate
	Recipe 16.6. Pinging Programmatically
	Recipe 16.7. Send SMTP Mail Using the SMTP Service
	Recipe 16.8. Check out Your Network Connectivity
	Recipe 16.9. Use Sockets to Scan the Ports on a Machine
	Recipe 16.10. Use the Current Internet Connection Settings
	Recipe 16.11. Download a File Using FTP

	Chapter 17. Security
	Introduction
	Recipe 17.1. Controlling Access to Types in a Local Assembly
	Recipe 17.2. Encrypting/Decrypting a String
	Recipe 17.3. Encrypting and Decrypting a File
	Recipe 17.4. Cleaning up Cryptography Information
	Recipe 17.5. Verifying that a String Remains Uncorrupted Following Transmission
	Recipe 17.6. Wrapping a String Hash for Ease of Use
	Recipe 17.7. A Better Random Number Generator
	Recipe 17.8. Storing Data Securely
	Recipe 17.9. Making a Security Assert Safe
	Recipe 17.10. Preventing Malicious Modifications to an Assembly
	Recipe 17.11. Verifying That an Assembly Has Been Granted Specific Permissions
	Recipe 17.12. Minimizing the Attack Surface of an Assembly
	Recipe 17.13. Obtaining Security/Audit Information
	Recipe 17.14. Granting/Revoking Access to a File or Registry Key
	Recipe 17.15. Protecting String Data with Secure Strings
	Recipe 17.16. Securing Stream Data
	Recipe 17.17. Encrypting web.config Information
	Recipe 17.18. Obtaining the Full Reason a SecurityException Was Thrown
	Recipe 17.19. Achieving Secure Unicode Encoding
	Recipe 17.20. Obtaining a Safer File Handle

	Chapter 18. Threading and Synchronization
	Introduction
	Recipe 18.1. Creating Per-Thread Static Fields
	Recipe 18.2. Providing Thread-Safe Access to Class Members
	Recipe 18.3. Preventing Silent Thread Termination
	Recipe 18.4. Polling an Asynchronous Delegate
	Recipe 18.5. Timing out an Asynchronous Delegate
	Recipe 18.6. Being Notified of the Completion of an Asynchronous Delegate
	Recipe 18.7. Determining Whether a Request for a Pooled Thread Will Be Queued
	Recipe 18.8. Configuring a Timer
	Recipe 18.9. Storing Thread-Specific Data Privately
	Recipe 18.10. Granting Multiple Access to Resources with a Semaphore
	Recipe 18.11. Synchronizing Multiple Processes with the Mutex
	Recipe 18.12. Using Events to Make Threads Cooperate
	Recipe 18.13. Get the Naming Rights for Your Events
	Recipe 18.14. Performing Atomic Operations Among Threads

	Chapter 19. Unsafe Code
	Introduction
	Recipe 19.1. Controlling Changes to Pointers Passed to Methods
	Recipe 19.2. Comparing Pointers
	Recipe 19.3. Navigating Arrays
	Recipe 19.4. Manipulating a Pointer to a Fixed Array
	Recipe 19.5. Returning a Pointer to a Particular Element in an Array
	Recipe 19.6. Creating and Using an Array of Pointers
	Recipe 19.7. Switching Unknown Pointer Types
	Recipe 19.8. Converting a String to a char*
	Recipe 19.9. Declaring a Fixed-Size Structure with an Embedded Array

	Chapter 20. Toolbox
	Introduction
	Recipe 20.1. Dealing with Operating System Shutdown, Power Management, or User Session Changes
	Recipe 20.2. Controlling a Service
	Recipe 20.3. List What Processes an Assembly Is Loaded In
	Recipe 20.4. Using Message Queues on a Local Workstation
	Recipe 20.5. Finding the Path to the Current Framework Version
	Recipe 20.6. Determining the Versions of an Assembly That Are Registered in the Global Assembly Cache (GAC)
	Recipe 20.7. Getting the Windows Directory
	Recipe 20.8. Capturing Output from the Standard Output Stream
	Recipe 20.9. Running Code in Its Own appdomain
	Recipe 20.10. Determining the Operating System and Service Pack Version of the Current Operating System

	About the Authors
	Colophon
	Index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

