downloaded from: lib.ommolkefab.ir

=
=

Contents

Chapter 1: Rich Clients vs. Web Clients.......cccccoveviiiiiiiiiiniiiccneenn, 1
A Rich Client DefiNitioncocveeeeeossssnsiecssssansscsssssssssessssssssssssssssssssssses 2
TeChNICAl ASPECES.....eiiiiieeiieeiiieie ettt 2
DeVelOPET ASPECES. . eiiiuiiiiiiiieeeiie ettt ettt ettt e e e et e e eaae e e b e e e eaneeas 3
ENterpriSe ASPECES ...uvieeiieiiieeiiieieeetie ettt et et e e et e ennee e 3
A Web Client DefifitiON......ueeeseeeeossersanreosssssanssesssssssssssssssssssesssssssssssssses 4
TEChNICAl ASPECES.....eiiiiieiiieeiieie et 4
DeVEIOPET ASPECES...eiiiiiiiieiiie ettt ettt ettt e e e e st e e e taeeeebaeeenneeas 5
ENterpriSe ASPECES ...uveeeiieeiiieeiieeeie ettt ettt tee e e e e eneee e 6
A Rich Web Client DefiNitioN.......ccueeeeeeeesssssanssecssssassecsssssassssssssssasssssses 7
TeChNICAl ASPECES.....eiiviieiiieeiiieie et e 7
DEeVEIOPET ASPECES...eiiiuiiieeiiieeeiie ettt eetee ettt e e e s e e eaaeeeebaeeenneeas 8
ENterpriSe ASPECESeeeurieiiieieie ettt et 9
History Is Repeating ItSelfeuuueeeeesessuneeicssssnnniccssssannsscsssssssssssssssnns 10
WHAt (0 CHOOSE INOW? .auuueeeeesssueniicssssansecssssassscssssssssssssssssssssssssssassssssss 11
Chapter 2: Introducing Eclipse RAPcoovviiiiiiiiiiicicee e, 15
THE RAP VISION.eeeeeeseuueereiosssssnriscsses 15
Componentized and Event-Driven Design.........c.ccooceeviiniiniiniineinecneenne. 15
Programming Using Java APISccccooeviiieiiiiiniieeee e 16
Developing for the Web Just As with Java SWT........cccoooiviiviieiiiiieee, 17
Bringing Eclipse RCP to the Web........cccoooiiiiiiiiiie, 18
Customizing Web Applications with Plug-ins...........ccccoeeveeiieniienieennne, 18
Evolving RCP Applications Through Code Reusecccceeveeviieeiiennnen. 19

Eclipse Rich Ajax Platform i

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

RAP CASC STUAICS aueeeenenneeeneeeseeeseeossecesecsssesss 20
Scenario 1: Freedom of ChOICEuuieeeeeeeeeeeeeeeeee e 20
Scenario 2: Business-to-Customer SOIULIONS .. .cevveeneeeeeeeeeeeeeee e 20
Scenario 3: Intranet Productivity TOOISccceecieeiiiiiiiieieeieeeeeee 21
Scenario 4: End Customer SOIUtIONS.......veeeeeeeeeeeeee e 23
Scenario 5: Business Solutions AS SEIVICES ...ueeeeeneeeeeeeeeeeeeeeeeeeeeeeeeeeeann 25

PitfQllS With RAP.......uuuueeeeeoonnneeeiiisssnnnrioss 27
Wrong EXPectationsccceveeriiirieniiniiinieeieesieeieeie e 27
LOWEL PEIfOIMANCE ... e e 29
NO WED 1N WED ..ot 30

Chapter 3: The RAP Architecture.........coovviiiviiiiiiiiie e 31

The RUNLIE LAYET aee..eenenneeeeeossssrenssossssssnsss 32
TRE SEIVET STAEC ..ot e e e e e e e aaaees 32
TIHE CHENE SIAC ... ettt 33

V{07707 11 [[T 1 AV N 35
Standard Widget TOOIKItcooiiiiiiiiiiiiecee e 35
T ACE e 36
The WOTKDENCH ... 36

ISSUCS ANA SOIULIONS aueeeneennaneenneereneeeseerssecosecsssesesssossessssssssssssssssssssssssses 37
RAP Does Not Implement All APIS Yet.....ooooooeriieiiienieeeeeee e 37
RAP Will Never Implement Certain APIS..........ccooocvveviiiiiiiieeeeeee 38
RAP 1S IMUITUSET ... 39

RAP Plug-ins and PACKAZEScuueeeeereoosssunnviosssssnnreossssssssssssssssssssssns 40

RAP Version HiSTOTY...uueeeeeereuuereccsssssnsricsses 41

The RAP COMMURILY «eueeeeeeesnnsesiossses 42

se Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 4: Developing a RAP Applicationccccevviiiiiiinniinniennnn, 45
Installing the Eclipse and RAP SDKScoueuuueeeeosscnnnrecossssnnnneccnes 45
Running the RAP Sample AppliCAtION............ceneauaeeeeoosnnnnrioossssnnnrecone 48
Creating a Simple APPlICALION........aeeeeeneenneeeoisssnnereiossssanerecssssnssressses 52

Creating an Entry POInt.........c.cocooieiiiiiiee e 55
Creating a WorkbencChAdViSOT..........ccviiiiieeiii it 56
Creating @ PerSPeCIVEccuviieiiiieeiiie ettt e 57
CreatiNg @ VIBWviiiiiiieeiieeeciiee et et et e e et e e v e e eaveeeenaaeeensaeenens 58
WIAPPING UP oottt e e et et e s e eneeas 60
Running the Applicationcccveeiieeiieiiierieeee e 61
Extending the APPlCALIONueeeueeveeeeeiiiioossssssrsannssesecsssssssssssssssssssens 63
Changing the Window AppPearance...........cceecueerveeneeenieeeieeeieeneeeseeeseee e 63
Creating a Menu Bar and a Coolbar...........cccceeeiieiiieiiiiieceeeee, 65
Creating @ Tablecooviiiiiiiee e 67
Creating an BEdItoroooiiiiiiiiiiecieceee e 72
Creating a Form for the Editor...........ccccoiioiiiiiiiiiiiee e, 77

Chapter 5: Single SOUrCINGcvvviiiiiieiiineeice e e een 83
Pros and Cons of Single SOUTCINGccovvveevvvrrrnnneriiiccssssssssssssssssssssens 83
) o) L6 AN Y 1] 1 85

RAP Proof 0f CONnCePt.....cceeeiuiiiiiieiieeiie et 87
Enabling RCP Support for a RAP Application..........cceevevienienieneeneenne. 87
Developing for Both Platforms at the Same Time............cccooeveveiieeiiennnn. 88
Running the Mail Demo il RCP......uuueeeeeecicooissssssvvennnssisiccsssssscsnssanns 88
Running the Mail Demo il RAPcueuueeeiiossvannsicossssasssecsssssnssecsns 89
FIXing IMPOTESeoiiiiiiiiiiicee s 90
Fixing EXtension POINtS.........cccooiiiiiieiiiieiiieceee e 91
Fixing Nonexistent APIScccoiiiiiiiiiiieeee e 93
Adding the ENtrypoint.......cc.oooeiiiieiiiieiiie et 96

se Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Running maildemo in RAPccoooiiiiiiiie e 97
Rerunning the RCP VerSiOt.....eeeeeiicccossssssssssnsssssssnscsssssssssssssssssssens 97
WEAPPIAG UP ...cnnnnneeeiosinnanricssssnnsicssssssssssssssssssssssssssssssssssssnsssssssssssssssss 99
More Single-Sourcing TECHNIGUES.........ueuueeeeeerssneeeecossssassssssssssssnses 100

Using Heavy Reflectioncooeevieiiiiiiiiiiiiicicicciccccccccc 100

Using Interfaces and Reflectionccoocvvviieniiiniieiiiceeeeee 102

Creating Unimplemented Classesccccveeveeeiieeiieeniienieenie e 104

Patching RAP ...t 107

Chapter 6: Advanced RAP Features........ccovviiviiiiiiiiiiiiniieen, 109
Changing the Look Qnd Feel.........ccooosueeeiesossrnansicossssnnsscssssnnnsnes 109

Configuring RAP to Use a Different Theme...........cccccooevvieviiiiiniinennnnn, 110

Applying the Theme.........ccceiiiiiiiiiiii e 112

Branding the Applicationcceeeciieriieriierie e 113
Writing a Custom Widget.......uuueeeeessssraneicsssssrnssscssssonssssssssssssssssssssasses 116

Creating a Java Wid@et........ccovveeiieriieciiecieee e 116

Creating a q00Xd00 Widget.......c.eeeviiiiiiiiiieiieeee e 117

Creating a JavaScript-to-Java Connectioncccceevueveerienieneennennnene. 119

Creating @ VIBWcccueieiieeiieeiee et eeiteeeieeeieeeaeeeaeessaeesnaeesnseessseensaeensaeenneas 121

Creating a Resource Definitionccceeeviiiiiiiiieeniie e 122

Integrating the VIEWcccuiiiiiiiiiee e 124
RAP Without the WorkBDENCHeuueeeeeoeenvensioosssranniicsssssansiesssssssssssssses 125
Uit TESHING I RAP.......uuuuueeeieencranricossrransiisssssssssecssssssssssssssssssasssssans 127

Chapter 7: RAP Deploymentccovveeiiiiiiiiiiiirire e 131
Running RAP in Jetty in EQUINOXccoovvsvevvrrvnnnnereicccssssssssssssassanes 131

Preparing the OSGi Runtime...........cccoooviiiiiiiiiiiiiiiiiiiccccc 131

Creating and Exporting a Feature............ccccoevieeiiieiieiiieeieeeeeeeee 133

Running the Application in OSGicccuveeiieriieniieie e 135

\Y Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Running RAP in EQuinox in TOMCAL........ueeeeeoossrrensiosssssansssssssssanssses 136
Preparing the Web Containerooocvveeeiiiieiiiieiiiieeiee e 136
Creating and Exporting a Web Archiveccccvviviiiiiiciiiiiieeceeee, 136

Related Titlesoovvviiiiiiii s 141

Eclipse Rich Ajax Platform v

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Eclipse Rich Ajax Platform:
Bringing Rich Clients to the Web

by Fabian Lange

Eclipse Rich Ajax Platform (RAP) is a great technology, the only problem is that
there is no book available about the technology and how to use it. With this book,
I want to fill this gap and show where and how Eclipse RAP can be used.

I would like to thank the whole Eclipse RAP team, especially Frank Appel, for
supporting me while writing this book. I spent some time during fall 2007 with
Frank and his team trying to convert an Eclipse RCP application with RAP. This
is where I got firsthand experience and expert advice on this great technology.
Thank you for creating Eclipse RAP and providing me with valuable input.

I want also to thank Apress for allowing me to publish this book, especially Steve
Anglin, Sofia Marchant, and Damon Larson for the great professional support
during the creation of this book.

Additional thanks go to my employer, codecentric GmbH, and all of my
colleagues who supported me in one way or another during the creation of this
book. I am very proud of working with such a great team.

Very special thanks go to my lovely wife, Marie: thank you for supporting me in
a way no one else could, day and night, encouraging me to write this book. I love
you deeply.

Feel free to visit www. rap-book . com or e-mail me at fabian@rap-
book . com in case of any questions or comments.

Vi Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 1: Rich Clients vs. Web Clients

This chapter describes the properties of rich clients and web clients, and
tries to establish a sound definition of each. The focus is on the differences
and characteristics that are important for this book—that is, differences that
matter for the Eclipse Rich Ajax Platform (RAP). Eclipse RAP combines
these technologies, allowing you to create rich web clients from rich
clients.

Each of the definitions is structured in three parts:

» Technical aspects, which describe the technology and patterns involved or
used, and the implications they have.

» Developer aspects, which describe key properties, like programming
language or tooling.

= FEnterprise aspects, which basically try to identify why big companies
should put money into a technology. Of course, enterprise aspects might
be important for end users or in other scenarios as well; however, software
and its related costs weigh much more in larger environments. Thus, small
differences can impose larger consequences.

The definitions are intended to be generic and valid for all programming
languages. However, readers of this book are more likely to be familiar
with Java than with any other language, so the examples and references are
based on Java.

Note If you are a developer and are just interested in the RAP
technology and how to implement it, you might want to skip directly to
Chapter 2; but keep in mind that your customers either might have read
this chapter or may need advice on finding a solution based on their
requirements. For these reasons, you might want to read this chapter first.

Eclipse Rich Ajax Platform 1

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

A Rich Client Definition

» Rich client: Also knows as a desktop application, native application, thick
client, or fat client

Technical Aspects

Typically, applications that are considered rich clients don’t run in an
emulator or browser, but run natively on the operating system of the user’s
computer. The majority of these rich clients are written in C++, Java, or
NET. Such rich clients have nearly unrestricted access to system resources
like memory, storage, input devices (e.g., keyboard and mouse), and output
devices (e.g., printer and screen). Only certain functionality, like modifying
memory used by other applications, can be restricted by the operating
system to prevent malicious applications compromising the system. This
access to many system resources allows the application to perform a wide
range of tasks, which include operations that can utilize the CPU
completely for a noticeable amount of time (e.g., multimedia editing).

Rich clients offer a large feature set optimized to work on a well-defined
range of use cases. Often, these applications contain many more features
than the user actually needs to perform her job. The look and feel is often
designed to be very similar to the host operating system, which makes it
easier for users to learn how to use the application, because they can
recognize common usage patterns across different applications.

Another feature of rich clients is extensibility using p/ug-ins. Plug-ins are
additions provided by vendors or third parties that are able to hook into
APIs provided by the rich client and deliver additional functionality.

Usually, data manipulated with the applications is local. If a network 1s
involved at all, it is often just used to pull data, which is then stored locally
for processing and sent back to a server later on. This design allows the
application to be used offline without any network connection.

2 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Rich client applications are typically able interact with each other using
drag-and-drop functionality or other technologies like Microsoft OLE (for
Windows), or Bonobo and KParts (for Linux).

Developer Aspects

From a developer point of view, rich clients are easy to implement, because
the programming languages and operating systems are very mature and
offer a lot of APIs to develop the required functionality. That means that
developers don’t have to expend as much effort as they used to, as they can
reuse existing or provided functionality and can deal with business logic
most of the time. They also have access to advanced tooling that helps with
the creation, testing, and installation of rich client applications. As the
computers running these applications nowadays are powerful enough to run
applications that waste CPU power or memory, developers no longer have
to spend large amount of time optimizing applications for lesser CPU or
memory usage.

A Java, C++, or NET developer can develop, test, and maintain an entire
application, because there is no second technology involved, which would
require a different set of competencies.

In the Java world, there are three main players for creating rich clients:
= Eclipse Rich Client Platform
= NetBeans Platform
= Spring Rich

Enterprise Aspects

Rich clients need to be installed, maintained, and updated on each user’s
workstation. While solutions exist for managing the application
maintenance (like HP OpenView, IBM Tivoli, or Microsoft Systems
Management Server), users are almost always able to bypass the
mechanisms of these solutions. In extreme situations, outdated software

Eclipse Rich Ajax Platform i

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

can expose security risks or corrupt data, so it is important to supply users
with the most recent version of their applications.

While green IT concepts advertise that end user workstations should be
very small to reduce costs and power consumption, rich clients are not
ideally designed for this. Rich client applications often need a powerful
CPU or a lot of memory, but do not utilize powerful hardware most of the
time. To be cost efficient, rich clients would need to move heavy
operations to the server side where they can be scaled more efficiently, so
that the client computers just need to be capable of handling the few
remaining lightweight operations.

In spite of these considerations, software and hardware costs are usually
less important than the costs of wasted working time when users have to
wait for their applications to respond. In the end, slow applications cost
more than what would be spent on enabling users to work as efficiently as
possible.

The use of plug-ins with rich clients enables more standardization in a
company. It’s possible to provide the same foundation application to every
department, and, for example, provide sales support for the sales
department and financial functionality for accounting using plug-ins. This
pattern allows for greater source code reuse than separate applications
would.

A Web Client Definition

» Web client: Also known as a web application, Internet/intranet
application, web user interface, and thin client

Technical Aspects

Contrary to rich clients, web clients do not run on top of the computer
operating system, but inside the web browser. This imposes many
restrictions on web clients. Components cannot be drawn directly on the

4 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

screen; instead, HTML and CSS, which are the markup languages a
browser is able to understand, have to be used to lay out the application.
The original concept of HTML did not include multimedia or a high degree
of interactivity, so many of these features have been added with plug-ins.
However, for web applications, it is not predictable whether a certain plug-
in is installed on the client side and exactly what functionality the plug-in
delivers.

Classical web applications use the network heavily, because the browser
basically shows a screen that has been created remotely, on the server. This
slows down interaction between the user and the application, as each
interaction requires a server roundtrip. Additionally, the entire screen must
be re-requested from the server on each roundtrip. Implicitly, this already
indicates the main disadvantage of web clients: they cannot work without a
network connection and are impacted by the quality of service the network
connection provides. Even with a fast network, much data is transferred on
each request, which reduces application performance.

Usually, it is said that the advantage of web applications is that they are
good cross-platform applications. They can often be used on mobile phones
and kiosk systems—basically anywhere a web browser is installed.
However, this is somewhat true as well for rich clients that, for example,
just need a virtual machine, or a recompilation on the target platform to
run.

Web clients do not need to be installed on the user’s hardware, which
makes it possible for users to access the application even on a machine
where the application should not or cannot be installed.

Developer Aspects

The main language of web clients is HTML, combined with a bit of CSS
for better-looking interfaces. The complete layout of the screens has to be
done either by the application developer or a web designer. HTML and

Eclipse Rich Ajax Platform 5

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

CSS offer only limited support for creating user interfaces that are usable at
a variety of screen resolutions and that integrate into the native look and
feel of the user’s operating system. Additional issues arise from the fact
that end users can change many display settings of the browser and have
incompatible browsers or browser versions installed.

To enable user interaction with the application, developers need to provide
some kind of server-side logic that is able to render the required HTML
and deal with the data submitted by the user using HTML forms. This need
sparked such lightweight scripting languages as Perl and PHP, which were
well suited for this job. However, scripting languages often fail to provide
concepts that are required to develop structured and maintainable source
code.

From the Java point of view, much effort has been spent to create a sound
server-side solution for web applications with the Servlets, JSP, and JSF
standards. .NET also provides server-side solutions based on ASP.

Enterprise Aspects

From an enterprise perspective, web clients solve software maintenance
issues. A single server installation is used by all corporate users, which
improves data integrity. For example, a tax rate change can be deployed
once to the server and all bills created with the application on the server
will be correct. With rich clients, some users would be able to create bills
with an incorrect tax rate from their local machine, because their
application won’t have been updated yet. But this is only true as long all
users have a similar browser setup for corporate use; otherwise, cross-
browser issues could interfere with the application.

A further advantage is that sensitive data is stored only on the server, and
just the set of data being used by the user is transferred from the central
storage over the network.

6 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The network dependency of web clients is of less impact for enterprise
applications, as internal networks are fast enough to power many
simultaneous users. For users working at a customer’s site, these
applications were impossible to use in the past; however, nowadays
wireless networks enable remote users to work with web clients. Still, the
issue of poor-quality wireless networks (or in some places, no network
access) remains.

Due to the limited functionality of web clients, many companies are using
web clients only for read-only data, like phone books or branch/department
information. These types of applications do not need much functionality
because data maintenance and updates are usually taken care of directly by
superusers on the main databases.

A Rich Web Client Definition

» Rich web client: Also known as a rich Internet application, Ajax client,
Web 2.0 client, and fat thin client

Technical Aspects

Since the beginning of the Web 2.0 era, many old web client technologies
have been evolving quickly and the definition of web client has changed
fundamentally. The revised usage of JavaScript allows web applications to
modify static content and interact with page elements. By using Ajax as a
transport protocol for asynchronous requests, it has become possible to
interact with the server while staying on the same screen, which means that
users can continue to work while the application fetches data or updates
parts of its screen based on the outcome of a server-side computation. This
basically removes the disadvantage of unresponsive applications that
always refresh to load data from the server.

In rich web clients, state is not only kept on the server side, but also on
client side. Usually, data state is managed on the server side, while
application state, which does not need to be persisted longer than a browser

Eclipse Rich Ajax Platform 7

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

session, is handled on the client side. Also, it follows the separation-of-
concerns pattern, as user-relevant state is just managed by that user on that
user’s computer.

While network connection is still critical for rich web clients (or maybe
even more critical than for traditional web clients, as in total more requests
are made at shorter intervals, which are not very tolerant of timeouts), some
solutions are emerging, like Google Gears, that let rich web applications
continue to work without a network connection by queuing requests to the
server in a local storage.

Some people consider very well-designed applications or applications with
visual effects to be rich applications, as it’s actually not that easy to decide
from a user’s point of view what qualifies as a rich web application. As a
rule of thumb, you could say the following: if a web application uses
JavaScript to load data asynchronously, it is a rich web application.

Developer Aspects

Manually creating HTML markup is no longer the main method of
designing web applications. JavaScript has taken over the lead role,
wrapped by some frameworks that make it similar to a traditional
programming language, by dealing with cross-browser issues with HTML,
CSS, and JavaScript and providing consistent APIs. Additionally, browser
manufacturers have worked on adhering to standards, which guarantee that
regardless of the browser used, applications can look and work the same.

While the main programming language for the user interface will be often
JavaScript, the sever side just generates basic HTML and serves the data
used by the application in XML or JSON.

Still, JavaScript has not gained much more functionality than it had already
in traditional web clients, which might prevent some features from being
implemented in pure JavaScript. For example, many features require
Adobe Flash, which is perhaps the most commonly used plug-in for

8 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

multimedia functionality. So, in the end, developers of rich web
applications often need a broad technology knowledge.

Eclipse RAP and Google Web Toolkit are two frameworks that try to solve
server- and client-side programming in pure Java and just generate the
appropriate HTML and JavaScript dynamically. This would allow the
developers to focus on one development language and environment.

Enterprise Aspects

Rich web clients usually impose more requirements on the web browser.
As the technology is still evolving quickly, recent web browsers should be
used with rich web clients. On the one hand, it’s good for standardization
purposes that corporations usually have the same browser installed on all
workstations; however, this may be an older version that does not work
well with rich web clients. For example, Internet Explorer 6 can still be
found in many corporations as the default browser, which does not work
very well with rich web clients. The main reason for this is that companies
often still use early rich web clients with special ActiveX functionality that
made the applications work in Internet Explorer 6. Upgrading to Internet
Explorer 7 would be beneficial for many new rich web clients, but in some
cases it would make the existing rich web clients work incorrectly. This is a
big issue, as existing applications usually have higher priorities than new
applications, and it makes the total cost of deploying new applications
higher than expected.

Because JavaScript is employed in rich web clients slightly beyond its
original intentions, it is not a very stable runtime environment. For
business-critical applications that are used throughout an entire working
day, this could be an issue, as a browser crash could cause a user to lose
some of his work. However, browser manufacturers are working to make
JavaScript execution more robust and fix memory leaks.

Eclipse Rich Ajax Platform)

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

When compared to non-rich web applications, the additional interaction
allows, for example, self-maintenance of personal data for phone books, or
for multiple members of a department to contribute to its knowledge base.
These applications are usually the same as before, but enriched with user
management and some interaction. Full-size applications, however, still
mostly remain in the rich client world, outside the browser.

History Is Repeating Itself

While this chapter gives a description of rich clients, web clients, and rich
web clients, this leaves a question open: “Is there something like a non-rich
version of a rich client?”

In fact, there is one (or better, there was one—it has nearly died out, but it
still exists in large companies, especially in the finance sector). These are
called terminal applications, and they run on host computers. These
applications can be considered as representatives of the traditional client
application type, but their characteristics are surprisingly similar to web
clients. Users have to use a terminal program instead of a browser to
connect to the host. Application logic is completely on the server, and the
terminals just render the forms to input and read data.

The move from terminal application toward rich clients involved new
programming languages, new hardware platforms, and increased input and
output capabilities. In the realm of web development, the evolution was
somewhat slower, but still involved a mental shift as well. Logic was
moved from the server to the client, allowing more interaction on the client
side without server roundtrips.

The mouse as an input device also played a big role in the evolution of
applications. By using the mouse, users were able to manipulate and use
screen elements that were nontextual. While software for things like
accounting and text processing works without this feature, software for
media editing does not. While it was not possible to do picture editing with

10 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

host applications, it became so with rich clients. The very same evolution is
happening today: until now, it was considered impossible to do picture
editing in a web application, because this would basically have meant many
roundtrips to the server on each operation. However, some online photo-
editing applications are already out there, using a mixture of server- and
client-side editing functionality that is transparent for the user.

Interestingly, more terminal applications have been converted to web
applications than to rich client applications, as the concept was the same
and only the rendering technology had to be rewritten. Rich clients were
mainly new creations that took advantage of the new possibilities.

Taking this technology evolution further down the road, we will have in the
future rich client applications that run natively in the operating system,
using the full capabilities of the computer. We will also have rich web
clients that run inside a web application platform, which will be an
evolution of the web browser that uses the full capabilities of HTML 5 and
ECMAScript.

Having a look into the software industry today, there is a clear trend toward
developing rich web clients that offer the same functionality as powerful
rich clients. Many companies have stopped evolving web clients into rich
web clients, but have restarted development from scratch, due the different
philosophy used when developing rich web clients.

What to Choose Now?

The first important step in deciding whether to create your application with
one of the aforementioned technologies is identifying whether you’re
actually creating an application.

For example, web sites, which are responsible for displaying static or
dynamic content and let users to some extent contribute to it, have to
adhere to a very specific design, either to conform to a corporate design or
based on concepts from design agencies. A toolkit for creating uniform

Eclipse Rich Ajax Platform 11

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

“rich client—style” applications is not very suitable for creating such web
sites. While toolkits like Eclipse RAP can be used for developing web sites,
their intended use is for developing applications, where functionality is the
number one priority and a general common look and feel is requested, but
no specific individual design. Additionally, applications allow a much
greater interaction with the user than web sites. User contribution to Web
2.0 sites should not be confused with user interaction, as the first is about
providing content in a form, and the other is about manipulating data and
application controls to complete a workflow or solve a business task.

For this book, the working assumption is that you’ll be creating
applications, not web sites.

When comparing rich clients to rich web clients, it looks as though rich
clients will always be a bit ahead, as operating system features can be
directly accessed, while rich web clients have to wait for web standards to
appear and to be implemented by browser manufacturers. They also may
have to wait for tool vendors to support particular functionalities, or invent
custom solutions based on certain browser plug-ins.

On the other hand, browsers do offer a nice operating system abstraction
level, which can be very useful for managing applications in a
heterogeneous hardware environment, as long as the application
requirements do not exceed what HTML and JavaScript are capable of
doing.

To decide what to build, do a quick check of the key criteria:

= Is complete offline functionality required (e.g., for salespeople who work
at a customer site where there might be no network connection)?

If yes, then you should build a rich client application.

= Are many local files involved in the workflow handled by the application,
and do those files have to remain local?

If yes, then you should build a rich client application.

12 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

= [s the application intended mostly for reading, but not editing textual data?
If yes, then you should build a web client application.
» [s easy management of applications that have fairly complex features
required?
If yes, then you should build a rich web client application.
In the end, the decision is often based on personal preferences. When there
is no clear advantage of the one or the other technology, availability of

developers, documentation, and taste may play a part in the decision-
making progress.

Perhaps Eclipse RAP is an even better choice, as it tries to deal with this
standoff between technologies, as outlined in Chapter 2.

Later, in Chapter 4, you use Eclipse RAP to build a rich web client
application that you will also be able to launch as a rich client application.
This will ease the decision process by removing the need to decide on a
platform early on.

In Chapter 5,you will see how to convert an already existing Eclipse Rich
Client Platform (RCP) application into a rich web client application using
Eclipse RAP.

Eclipse Rich Ajax Platform 13

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 2: Introducing Eclipse RAP

This chapter covers the main aspects of Eclipse RAP, focusing largely on
abstract concepts rather than technical details, which is important early in
the technology decision-making process. I’1l dig deeper into the technical
details of Eclipse RAP in Chapter 3.

The RAP Vision

Eclipse Rich Ajax Platform (RAP) empowers developers to build rich web
clients “the Eclipse way.” This can be separated into multiple goals:

» Allowing componentized, event-driven web application design
= Supporting web application programming using Java APIs

= Developing web applications like Java SWT applications

* Bringing the Eclipse Rich Client Platform (RCP) to the Web

= Customizing web applications using plug-ins

= Evolving RCP applications with great code reuse

This chapter will go over these goals, describe design goals, and discuss
why certain choices have been made.

Componentized and Event-Driven Design

A fundamental concept of Java is reusable components. Components have
some controller and view logic, and just need a model plugged in to do
their job. The i1dea behind components is that they can be easily reused and
developers can concentrate on business logic, rather than on fiddling
around with presentation and basic manipulation. They also facilitate a
consistent look and feel throughout an entire application. As a nice bonus,
components and their reuse can save development money.

Eclipse Rich Ajax Platform 15

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Components can communicate by listening to and sending events, which
make communication between components convenient. Events allow for
more flexible coding, as not all components have to know each other.
Listeners can be seen as an early form of dependency injection.

While implementations like JSF are component-driven, there is still a lack
of frameworks that integrate events in an easy way. Some web frameworks
are beginning to support events, but most still rely on the traditional form
submit or page request flow, where developers then have to read values
from requests and do a lot of low-level coding on their own, rather than just
using component and event APIs. Eclipse RAP heavily uses component
models for development, and it also allows the creation of custom
components according well-defined APIs.

Programming Using Java APIs

Besides having componentized architecture, the most important design goal
of Eclipse RAP was to eliminate the need to develop in something other
than Java. There are many Java developers who are capable of developing
rich usable applications for businesses; however, they would have to be
trained in HTML and JavaScript to start developing web applications for
businesses. Also, nowadays it is much easier to recruit skilled Java
enterprise or RCP developers than seasoned JavaScript developers.

The ability to create web applications in Java should not be underestimated.
Integration between the web application and the Java back-end is very hard
to achieve with non-Java languages. This drawback often cannot be
compensated for by the possibly better abilities of non-Java frameworks
(like Ruby on Rails, symfony, or Django) to create nice rich web clients.

Also, by using a Java API, RAP makes use of the great existing Java
tooling. With RAP, developers can run quick JUnit tests against the code,
rather than to trying to work with the comparably slow HtmlUnit or
Selenium to figure out how something is rendered and interacted with in a

16 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

browser. Java IDEs have full debugging and refactoring support. When
multiple different languages or technologies are involved, developers need
to manually change some Java, JSP, and JavaScript with three different
tools, requiring them to find the relevant code pieces by hand, because
there is no tool support. In pure Java that is not required, as IDEs can assist
with finding the code pieces, changing and testing them.

That using Java APIs is a good idea is also proven by the fact that this
concept is also adapted more or less by other frameworks. For example,
Google Web Toolkit, Wicket, and Tapestry also use a Java API to model
components and concepts to some extent. But they all basically still use
HTML as the design language for what is being displayed, and require
some JavaScript wrangling to get everything working as intended. There is
no need for that in RAP, as everything has a known presentation delivered
by the framework, very much like Swing Widget Toolkit (SWT).

Developing for the Web Just As with Java SWT

Taking the previous point further, there are already some very good and
proven Java APIs for developing user interfaces:

= Swing, which evolved from the Abstract Window Toolkit (AWT)
= SWT, which was created as part of Eclipse

As a brief comparison, Swing contains its own visual representation, and
SWT relies on the operating system for rendering. Both have their pros and
cons, but as RAP is an Eclipse project and was designed for integration
with RCP and the operating system, it reimplements SWT. That means that
if developers are able to develop SWT applications, they can without any
further training develop RAP applications. RAP encapsulates Ajax
technologies into simple-to-use Java components the same way SWT
encapsulates native widgets. The SWT API has been optimized to develop
rich client business applications, which is an additional advantage.

Eclipse Rich Ajax Platform 17

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

These factors provide distinct advantages over new proprietary APIs like
Google Web Toolkit and Wicket, which would have to be learned and
understood by the developers. Using the proven and widely known SWT
API makes Eclipse RAP an extremely handy toolkit.

Bringing Eclipse RCP to the Web

Eclipse RCP is a very powerful framework. Besides user interface
components, it provides many utility services, like the Workbench, layout
managers, online help support, a preference store, and a security model.

Evolved from a platform intended to power the Eclipse IDE, RCP became
a platform supporting the functionality requirements of business
applications. So it seems natural to bring these features into rich web
clients intended for business applications. However, the whole platform is a
very large chunk, and powerful JavaScript clients would be required to deal
with its functionality.

Eclipse RAP solves this issue by separating RCP into a server and a client
application, where the client is just the screen on the browser and RCP runs
on the server, preventing the JavaScript clients from doing the heavy lifting
in business logic. This makes it possible to bring all the features of RCP,
even the more complex ones, to the Web.

One of Eclipse RCP’s key concepts is that it supports, or actually is
composed of, plug-ins. Most of the core services are plug-ins, and custom
code can be easily added with plug-ins. (Of course, it would be great to
have this in RAP web applications as well.)

Customizing Web Applications with Plug-ins

Plug-ins allow very easy extension of functionality with source code
provided by third parties. The good integration makes installation of plug-
ins as easy as dropping them into the ecl i pse/ pl ugi ns folder.

18 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Plug-ins don’t just enable integrating third-party components, but also
allow better decoupled distributed application development and company-
wide code reuse. They also support maintenance of live software, because
plug-ins are easy to upgrade. As long as a plug-in is not currently in use, it
can even be exchanged while an application is running.

Plug-ins can automatically hook into predefined slots, called extension
points, and are active without further configuration.

Plug-ins can be used to support customization. For example, perhaps only
administrators will get an administrator plug-in, or two plug-ins might
deliver two different look-and-feel assets, and the correct plug-in will be
chosen based on the locale of the user.

As Eclipse RAP is totally based on the Eclipse plug-in mechanism, this
comes for free. There’s no need to custom-code a plug-in registry, deal
with hot deployment of plug-ins, or invent an extension point concept. It is
all there.

Evolving RCP Applications Through Code Reuse

As there are plenty of RCP applications out in the wild, it would be wasted
effort to rewrite them just to make them available on the Web.

Eclipse RAP tries to bring those applications to the Web with as much code
reuse as possible. Although there are many technical challenges to
overcome to achieve this, RAP has managed to make it possible with very
little effort on the developer side. Chapter 3 will explain how RAP uses the
SWT API to make it basically transparent to the developer, whether he
develops with SWT or RAP. As a result, there is no real need to change
existing code, because this should be hidden from the application.

There are a few points that should be considered when designing an RCP
application that should also use RAP, which will be described in Chapter 5.

Eclipse Rich Ajax Platform 19

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

But the general promise is still valid: Eclipse RAP enables existing RCP
application to be used on the Web, while also allowing the creation of web
applications that run on the desktop.

RAP Case Studies

In this section, five different scenarios are described. The first two are

pretty generic, the third proposes a RAP implementation of an existing
RCP application, and the remaining two feature two existing products

based on Eclipse RAP.

Scenario 1: Freedom of Choice

As mentioned in Chapter 1, it can be a matter of taste whether a certain
application should be an RCP or a RAP application. Sometimes no decision
in favor of one can be made, or it should be checked in a proof-of-concept
project whether one or the other works out better. This is especially true for
longer development projects, where it is unknown whether rich clients or
rich web clients will be the favored solution at the time of release.

For these cases, RAP leaves both paths open, as no wrong decision can be
made when doing a RAP-compatible implementation.

Scenario 2: Business-to-Customer Solutions

In this scenario, imagine a corporation considering opening up an internal
application for end customers via the Internet for self-service use. Such an
application could be modular, and the modules that will be accessible for
customer could be exposed using Eclipse RAP. This allows code reuse for
internal and external functionality. Customers could use the RAP
application to maintain their data, and access, for example, their orders,
while the internal application could contain the same modules with some
additional management modules. Either an RCP or a RAP application can
be used internally.

20 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Scenario 3: Intranet Productivity Tools

This scenario describes a complex RCP application and talks about further
development options for it. The application is Lotus Notes, which is a
calendar, e-mail, and contact-management application. Starting from
version 8, it is implemented using Eclipse RCP. The screenshot in Figure
2-1 shows some of the complex features of this application.

Figure 2-1. IBM Lotus Notes

Eclipse Rich Ajax Platform 21

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

IBM migrated its Lotus Notes to be based on RCP to enable cross-platform
usage of the application in Windows and Linux. It was a strategic decision
to strengthen the support for Linux as a desktop operating system, enabling
the user to choose the operating system more freely while keeping the
application.

A possible next step on this path would be to use RAP for transforming
Lotus Notes into a web application for worldwide access to e-mail and
more. In the current version, IBM reimplemented the web part of Lotus
Notes from scratch, as did Microsoft with Outlook Web Access; however,
both products suffer in many areas of functionality.

Eclipse RAP could have given IBM a neat, cheap web solution for Lotus
Notes. Depending on the SWT and JFace APIs used by Lotus Notes, this
could have been achieved with a large amount of code reuse, saving
development and maintenance costs. More details on Lotus Notes can be
found at www. i bm cont sof t war e/ | ot us/ product s/ not es.

The value in providing RCP applications as RAP versions in the corporate
intranet 1s worldwide accessibility.

Data should be stored on the server anyway, so it is not uncommon to make
the application dealing with the data available on the server.

Note Generally, it is easy to migrate an existing RCP application to
RAP. The procedure for that is described in Chapter 5. You might need to
slightly redesign certain pieces of code, but this will be limited.

22 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Scenario 4: End Customer Solutions

Yoxos On Demand is an application developed by Innopract using RAP. It
allows customers to customize their own Eclipse download bundle. The
main view of Yoxos is shown in Figure 2-2.

Figure 2-2. Yoxos On Demand

The bundle contains user-selected and compatibility-checked third-party
plug-ins and Eclipse projects. It comes with a set of preconfigured bundles
for different use cases. Users can use this application remotely on the
server, without any additional software required.

Eclipse Rich Ajax Platform 23

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

By using RAP, Innopract has been able to use plug-ins, manage installation
easily, and let Eclipse users configure their Eclipse download in a familiar
Eclipse-like user interface. Yoxos On Demand was the first proof-of-
concept application implemented with RAP.

More details on Yoxos can be found at htt p: / / ondemand. yoxos. com
geteclipse/start.

The value in proving a web user interface using Eclipse RAP is twofold.
For RCP developers, it is much easier to achieve than using any other
framework. It also is much simpler to implement due to the availability of a
wide variety of standard components. It is more convenient to deal with
more session state than in other frameworks.

For the end user, the application feels more powerful. This is not to say that
other rich web clients are not powerful, but that Eclipse RAP applications
are easier to grasp for the user. There is no risk of losing context while
navigating through multiple pages; a whole workflow can be done on one
screen. As RAP applications give the choice of using a native theme, users
can also apply known concepts and use the application more efficiently.

Tip Using themes, Eclipse RAP applications can look either like RCP
clients or other Web 2.0 sites. Custom styling allows the designer to find
the right balance between the two for the application. Chapter 4 contains
some instructions on how to change the look and feel by playing around
with the basic components (e.g. by making the main window not look like a
window).

24 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Scenario 5: Business Solutions As Services

PIA is a software-as-a-service customer relationship management
application, built with Eclipse RAP technology by CAS Software AG. A
contact editor for PIA is shown in Figure 2-3.

Figure 2-3. CAS PIA contact editor

Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

25

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

CAS has created PIA as software that can be used by customers as a
service. Plug-ins can be created to perform customer-specific
customizations easily on existing applications without any need to change
the main code base, enabling perfect reselling of the same core
functionality without crippling the ability to customize.

The software is hosted and managed by the service provider, enabling
customers to just buy time/user licenses without any installation or
maintenance. And as bonus, the application is available everywhere.

The application offers the same functionality as other comparable rich
client customer relationship management applications. With any other
technology besides RAP, it would have been very hard for CAS to deliver
competitive functionality in its web application.

Eclipse RAP allows either an evolution of existing RCP code to a web
service solution, or the creation of a web service solution that can be
shipped as a rich client to customers. Eclipse RAP opens up new
possibilities for new businesses without closing down existing offerings.

More details on PIA and a demo login can be found at wwv. cas- pi a. de.

b Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Pitfalls with RAP

While RAP might look like a great solution so far, it isn’t perfect. There are
some areas where RAP can make trouble, so it’s good to be prepared.
Luckily, the RAP development team is aware of these areas, and the next
version may already fix some of the issues. Chapter 3 will contain some
details about current and old versions of RAP.

Wrong Expectations

There are some usability issues with rich web clients, due to the fact that
users can have wrong expectations based on the visual impression. For
example, users usually associate appearance with certain behavior, and vice
versa. Here are some examples:

In the earlier days of the Internet, users were used to clicking only on
links, not images. Two factors helped users to identify links:

= [inks were blue
= [inks were underlined

Today, design agencies have managed to remove the underlining, as it
disturbs a nice clean design, but very often the link is still blue.
Additionally, links often react on mouseover—for example, by displaying
an underline to confirm to the user that it is really a link.

This psychological effect can be easily tested with a colleague, friend, or
family member. Create a web page, style two or three words in blue, and
underline them. You can be pretty sure that nearly everybody will hover
over those words and try to click them.

If the active window looks like a text editor, containing mainly a large text
area with just some supporting toolbars, users will expect the application
to behave like most editors behave.

The most common expectation will be that you can press Ctrl+S to save
the document. But with many web mail clients, for example, the draft will

Eclipse Rich Ajax Platform 27

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

not be saved. Instead, the browser will open a dialog and prompt the user
to save the HTML. Google Mail learned this and supports saving using
this keyboard shortcut, making it much more convenient to use.

There are even more subtle differences to keyboard shortcuts.
Programmatically waiting for Ctrl+S with JavaScript will not work on
Macs, where users are used to Apple+S.

= [fthere are multiple input fields on a page, users expect to be able to use
the Tab key to navigate between them. Besides this being expected
behavior, it 1s also good usability. A common concern when switching
from a rich client application to a web client application is that such
simple and powerful functionality is often not preserved. Many badly
designed web applications prove this.

= [f there are smaller windows with a window title bar, people expect to be
able to double-click the title bar to maximize the windows. Eclipse RAP
supports this feature out of the box.

» [felements like picture thumbnails in a gallery are shown, people expect
to be able to either drag and drop or copy and paste to reorder them. This
pitfall is also known as the explorer anti-pattern. Sometimes items are
displayed like they are in a native explorer, but the functionality is
different. This greatly confuses users and should be avoided.

The closer a rich web client comes to the look and feel of a rich client
application (or any other frequently used application), the more users will
expect similar behavior. This is characterized as a downside here, but
ultimately can be an advantage, as mentioned in Chapter 1. Users do not
have to learn the application; they intuitively understand how to use it from
previous learning.

In fact, RAP deals pretty well with these issues. As an additional tool, RAP
supports themes, which can completely change the look and feel of

applications to emphasize certain usage concepts. Themes are discussed in
Chapter 6.

28 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Lower Performance

As with performance it is pretty much as with wrong expectations. On one
hand, users expect web applications to be slower than rich client
applications. However, users of rich web applications that look like rich
client applications have higher expectations with respect to performance
than users of traditional web clients.

Having a short look at the technical facts, RAP applications have lots of
JavaScript code involved on the client side, and nearly every action by the
user will result in an Ajax request replicating state information to the server
or requesting new data. To cope with this issue, some mouse and keyboard
events are not supported by RAP, resulting in better performance with
slight functionality reduction.

Interestingly, there is an order of magnitude difference in browser
performance. All the latest major browsers work fast enough, except
Internet Explorer. Version 7 is really slow, and even the latest betas of
Internet Explorer 8 are still way behind the others.

Also, keep in mind that running an applications multiple times on the
server is not the way Java is intended to scale. When greater scalability is
required, the business logic should be moved to traditional Java enterprise
concepts (distributed Enterprise Java Beans [EJBs]), and RAP should be
left for the user interface part, resulting in a three-tier architecture with
RAP taking the middle-tier role, rather than a two-tier client-server model.

Still, RAP applications have great performance, and the developers are still
making improvements. For example, RAP 1.2 will include a good
JavaScript compression engine enabled by default.

At the same time, users can be irritated by the application performance and
say that the application feels more sluggish than a real rich client does.
Ideally, the application will uses established techniques like progress bars
or other types of wait indicators to help users understand the delays.

Eclipse Rich Ajax Platform 29

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

No Web in Web

While the RAP model allows developers to avoid writing HTML or
JavaScript, when it comes to integrating third-party web applications, these
may again be required. RAP has some support for this, by allowing the use
of a browser widget, which is basically an [Frame that is controlled by the
application. However, the communication between the RAP application
and the third-party web application displayed inside the browser widget is
limited, due to browser security restrictions. A second option is writing a
custom JavaScript widget to integrate third-party JavaScript. Chapter 6
describes all steps required to develop and include such a widget.

However, especially with other JavaScript-heavy applications, you should
avoid mashing them up with RAP. RAP works best when it would work the
same in RCP, but web mashups won’t work in RCP, unless you take the
extra work of developing a RAP widget, which then includes or combines
those mashups. However, this would be more of a programmed mashup,
rather than a user-created one. Perhaps it can be seen as a drawback that
Eclipse RAP uses too much Java and too little HTML for web applications,
but perhaps it is just a question of mindset when approaching the
development of an RCP and rich web client application with RAP.

It is good practice to run your application in the respective other
environment from time to time to see if it works from a look-and-feel or
usability point of view, and to be reminded of the dual-environment
functionality that RAP supports. However, it is unlikely that it will not
work in the RCP environment when it can compile in RAP. Chapter 5 will
elaborate this concept more in detail.

30 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 3: The RAP Architecture

This chapter describes the technical architecture of Eclipse RAP. It
compares the RAP stack with the stack used by RCP and highlights the
differences and commonalities. In a nutshell: RAP has replaced most RCP
interfaces with its own implementation.

Figure 3-1 gives a possible presentation of the components involved in the
RCP and RAP stacks. They will each be explained and compared
throughout the chapter. Notice in the figure that the top levels are identical
and only the lower levels have been changed by the RAP team.

Figure 3-1. RCP and RAP architecture compared

Eclipse Rich Ajax Platform ich

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The Runtime Layer

In the RCP case, the runtime layer is pretty simple. It is composed of the
host operating system and a standard Java Runtime Edition VM, on which
sits an OSGi implementation that is used by the Workbench to provide the
plug-in service. OSGi, specified in JSR-291, specifies how different
modules, or plug-ins (called bundles in OSGi terms), can expose their
services.

Above OSGi 1s SWT, which does not use OSGi but is drawn above it,
because it contains components and is not just an infrastructure level like
OSGi. SWT uses functionality provided through the JVM from the
operating system to render the native widgets.

For RAP, there are two existing runtimes. One resides on the server side,
powering the main RAP stack, and the other resides on the client side,
running the user interface part. One design goal of RAP was to make sure
that the application-facing interfaces are the same, so that it wouldn’t
matter which stack the applications run on. As such, the server-side stack
of RAP, where the application is running, is almost the same as the RCP
one.

The Server Side

On the server side in RAP, there is a JVM as well, but the operating system
does not need to provide means for rendering widgets. This allows you to
use a real server to run the server side, as it doesn’t need to understand
visuals. Often, this type of server is called headless. This JVM runs two
platforms:

One is also an OSGi implementation, which is Equinox in the Eclipse case.
As in the RCP case, Equinox is responsible for dependency management of
the modules and enables hot deployment of new versions or extensions. RAP
takes advantage of the fact that RCP uses Equinox as well to power the plug-

32 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

in concept in Eclipse. Certain RCP bundles are simply replaced by RAP ones;
others are reused as they are.

The other platform is a servlet container, responsible for doing the typical
web stuff: handling requests. This could be a Tomcat or Jetty server, or even
a heavier one like WebLogic or WebSphere. However, there is no need for
any server-specific functionality, as the server is only used for
communication with the client web browser. The requests are picked up by a
servlet bridge and handed to the Equinox system.

Interestingly, it does not matter if the servlet container is launched from
Equinox, which is usually the case in development environments, or if the
web archive that is deployed to a servlet container contains the Equinox
runtime, as in many production environments. The bonus of this is that a
RAP application can be treated like any other web application from an
administrator’s point of view.

In both scenarios, the application developed with RAP is provided as OSGi
bundles that sit alongside the RAP core bundles in the Equinox runtime.
Both deployment scenarios are covered in Chapter 7. When run, there is
just one instance of RAP and the application, rather than multiple instances
of the application stack, which is especially common in scripting
languages.

The Client Side

On the client side, there is the client operating system, where the browser
runs. There are no restrictions on the operating system, but there are some
on the browser. The browser acts like a JVM, providing some standard
services to the upper layers (most notably a JavaScript engine, which the
browser has to support). Unfortunately, the different browser vendors still
implement the JavaScript interpreter in a nonstandard way; this requires
either an additional abstraction layer or a lot of additional cross-browser
JavaScript code from the RAP team.

Eclipse Rich Ajax Platform 33

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Instead of coding the majority of the JavaScript code from scratch, the
RAP team chose one of the many available JavaScript libraries to power
the client side. The choice was made to use qooxdoo as the user interface
part on the client side as part of the RAP bundle. qooxdoo provides a
JavaScript framework for solving cross-browser issues as well as for
rendering user interfaces with complete widgets and communicating with
them. In fact, qooxdoo allows JavaScript widgets to be treated almost the
same as SWT widgets, which is a perfect fit for RAP. There is a small
amount of RAP-specific JavaScript code on the client side to bootstrap
RAP and adapt the qooxdoo interfaces to the RAP/RCP ones. From another
point of view, it could be said that only Java-to-JavaScript translation is
required from the RAP team to create and use widgets on the client side.

ABOUT QOOXDOO

qgooxdoo (pronounced COOKS-doo) is an open source JavaScript
framework created by the German company 1&1 Internet. It provides
basic JavaScript framework code for cross-browser functionality and
Ajax, like any other JavaScript framework, but additionally comes
with a remarkable GUI library that allows the creation of rich web
clients without any HTML or CSS knowledge. Its component model is
closely related to the Swing and SWT component models, which
makes it suitable for Java developers to work with. qooxdoo is dual
licensed under the LGPL and EPL licenses.

You can find more information on qooxdoo at wwv. qooxdoo. or g.

Note As additional advice, it is always beneficial to use a JavaScript
library when hand-writing Java Script code. A library makes code more
robust, easier to write, and better to maintain. Some examples of other
first-class libraries are jQuery, Prototype, MooTools, Dojo, and YUI.

34 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Reimplemented APIs

The main task of RAP is to provide reimplementations of three big
subframeworks: SWT, Workbench, and JFace. The RAP approach for
reimplementation was to take the complete original code, move it over to
the RAP plug-ins, and edit everything that didn’t work in RAP.

You can see this easily by checking the RAP source code. To allow you to
find the RAP modifications in the original implementation, the RAP team
used a special pattern to tag their modifications, as follows:

/'l RAP [devel oper]: conmmrent

/1 original code

new code
/1 RAPEND: [devel oper]

Here’s an example of a font size calculation change in the JFace dialog:

/'l RAP [bm: GC
/[l int | = gc.textExtent(s).Xx;

int | = Graphics.textExtent(getFont(), s, 0).x;
/| RAPEND: [bni

The number of changes required for RAP in version 1.1.1 was 2,090
(assuming that every code piece was correctly tagged). Future versions of
RAP will bring these numbers down by implementing APIs that did not
exist before. Also, future versions of the Workbench, SWT, and JFace
APIs will help reduce these numbers by improving their implementation to
be more RAP-friendly.

Standard Widget Toolkit

The SWT API from the RPC side was reimplemented by RAP under the
name RAP Widget Toolkit (RWT). Instead of drawing to the

Gr aphi cal Cont ext , the object communicating with the screen buffer of
the operating system, RWT creates the required JavaScript commands that
cause qooxdoo to render the appropriate widgets. These commands are

Eclipse Rich Ajax Platform 35

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

compressed and sent to the browser using Ajax. To make this happen
timely, the client will always have an Ajax request open that can be used
for delivering some user interface updates to the client. Commands coming
in while a request is being returned are collected until the new request
comes in from the client, and are then sent in one batch. Perhaps in the
future, when web socket protocols have matured and become widely
supported, this can be replaced with support a server-push model rather
than the current tweaked client-pull model (also known as Comet,.

JFace

JFace is an addition to SWT, designed to create a friendlier API for
developers who did not really like SWT. It provides some more complete
ready-made components, called viewers, and additional utilities, like useful
convenience APIs, field validation, dialogs, and an action concept. Its
virtual viewers are essential tools when it comes to displaying large
amounts of data, as they support lazy loading. Its functionality blurs
slightly into the Workbench, as it in fact uses some Workbench code.

RAP maps most of the JFace API; in fact, most recent additions to RAP
have been made with regard to JFace, as it is used very frequently by
developers. Unlike the Workbench code, JFace required more recoding
from the RAP team, as both the SWT and Workbench APIs were
incomplete. And as the JFace API is also very large and powerful, there are
still areas that are just not implemented by RAP (e.g., the ability to custom-
style components as the St yl edText class or create complex drawings
with HTML elements).

The Workbench

The Workbench provides the communication infrastructure with
components like activities, commands, and context. Additionally, it allows
the notion of hierarchical and logical grouping of user interface
components.

36 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The hierarchy goes like this: Window contains Menu/Toolbar and Page,
which are managed by a perspective. The Page can contain different views
and an editor, which is a special-purpose view.

If there is a central component in RCP, it is the Workbench. The main issue
with the RCP Workbench model from a RAP perspective is that, due to
historical reasons, the Workbench assumes that only one user is capable of
using it. For example, objects holding user state were implemented as
singletons. This limitation left two options for the RAP team:

» (Creating a Workbench for every remote user
= Rewriting Workbench code so that it can handle multiple users

The RAP team chose the latter, because the memory consumption for a
new Workbench for every user would just be too much. Also, the latter
choice made the Workbench multiuser-capable. This required some work,
but the RAP team is actually contributing modifications to the RCP
Workbench team, enabling future versions of the Workbench to run
multiple users in RCP and reducing the memory footprint for the RAP use
case. Some implications of this multiuser modification for the Workbench
are described in the following section.

Issues and Solutions

While RAP is a great solution for many cases and its architecture is very
interesting, the complexity involved in the RAP technology creates some
limitations. Chapter 5 will describe patterns for dealing with these issues.
This section will outline some of them, along with their implications and
possible solutions, as well as the direction the future development of
Eclipse RAP will go to resolve the issues.

RAP Does Not Implement All APIs Yet

RAP currently provides a subset of most RCP APIs. Among the missing
ones are some optional Workbench stuff, some JFace APIs, and a few

Eclipse Rich Ajax Platform ¥/

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

events, plus some other stuff that most likely will never be implemented,
just because nobody is using or requesting support for it. As the most
important and commonly used APIs are implemented, this is not a big
issue; however, every project will find an RCP API that doesn’t (yet) exist.
In such cases, there are three options:

* Try not use that particular API.
* (Create a workaround—for example, using patch fragments.
* Implement a clean solution and submit it to the RAP sandbox.

While the first option is of course possible, the RAP team will happily
accept the third option, as the unimplemented APIs mainly result from time
restrictions, and are not the result of impracticality. The RAP sandbox was
especially designed for user contributions of missing APIs. For infrequent
contributions, sending implementations to the RAP bug tracker or the
developer mailing list could also be an option. As with any open source
project, RAP lives from contributions and improvements from the
community, so you should always consider contributing.

RAP Will Never Implement Certain APIs

Unfortunately, some APIs are missing because of architectural differences
between a native and a browser application, or because they would cause
severe performance issues.

For example, there is no G- aphi cal Cont ext class

(org. eclipse. swt . graphi cs. GC), as you simply cannot paint on the
screen freely in a web application. Some other functionality of GC, like
finding out text size, is available from the Gr aphi cs class as a static helper
rather than instance method. For example, instead of

aCCl nstance. stringExtent (String string),youinvoke

G aphi cs. stringExtent (Font font, String string).

38 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

NEVER SAY NEVER AGAIN

The current assumption of the RAP team is that they will never create
a mapping for GC; however, more and more JavaScript developers
are discovering the canvas tag, which is defined in the HTML 5
specification and is already implemented in Safari, Firefox, and Opera
browsers. The canvas element actually allows painting on it, like the
GC does for RCP. So perhaps future versions of RAP could support
that.

Resource objects will have no di spose() method. The reason for this is
that resources should not be created and disposed per user, but should be
obtained via factories provided by JFace that will supply the singleton
instance of that resource to multiple clients. When doing so, it would not
make sense for one client to invoke the di spose() method of a resource
that another client is using. Also, resources in the web context are not byte
arrays in the heap as they would be in RCP; in RAP, they just reference a
URL that will be loaded by the browser when using this resource. By using
this approach, memory consumption is greatly reduced.

RAP is Multiuser

For traditional web frameworks, the idea of an application being accessed
by multiple users at the same time is nothing new. But RCP was never
intended to be run by multiple users, so RAP had to deal with that by
creating a multiuser layer inside the platform. Because developers can also
implement code that is possibly conflicting when it is accessed by multiple
users, they have to be reminded that their application needs to be multiuser-
safe. Handling multiple users not only means more consumed memory for
storing application state, but that objects from the Workbench that were
considered singletons in the RCP case are no longer real singletons. For
example, objects that store user-specific information are impacted by this.

RAP solves this by introducing the concept of Sessi onSi ngl et ons. These
are unique for each user, and can be used by developers like this:

Eclipse Rich Ajax Platform 39

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

public class M/Si ngl et on extends Sessi onSi ngl et onBase {
public static MySingleton getlnstance() {
return (MySi ngl eton)getlnstance(MSi ngl eton. cl ass);

// all the other stuff cones here

}

Some other singletons are globally unique and can be used by all users
simultaneously. A similar example is the internationalization (I18N)
feature, where in the RCP case, the language can be determined on startup
and stored in a singleton. In a multiuser environment, there must be one
instance of the resource bundle per session, or the browsers can switch
languages while the application is running.

For memory consumption, it is even more important to implement
carefully. RAP makes reuse of resources possible, but the developer has to
keep in mind that there will be multiple users on one server. For that, it is a
good idea to use the virtual viewer components from JFace that load only
the displayed data on demand.

With respect to scalability, the RAP team has tested servers that can handle
roughly 250 users per GB RAM and CPU core. The nature of RAP running
on a central server allows you to place business logic outside of the RAP
container and access it remotely—for example, via EJBs. This will turn the
RAP server into a presentation host and create a service layer that is
accessible not only from RAP applications but also from other applications.
It additionally allows smooth scaling of the components that cause heavy
load.

RAP Plug-ins and Packages

The RAP version control system includes the sandbox and runt i me
folders. The sandbox folder contains mostly community contributions and
experimental code, which is intended for user contributions, and might or

40 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

might not be merged later into the official package. Inside the r unt i e
folder are following plug-ins:

= org.eclipse.rap.jface

= org.eclipse.rap.jface. databi ndi ng
= org.eclipse.rap. ui

= org.eclipse.rap.ui.forns

= org.eclipse.rap.ui.views

= org.eclipse.rap.ui.workbench

These plug-ins reflect the structure of Eclipse RCP, which has the same
plug-ins for RCP instead of RAP. The actual Java packages inside are
1dentical, and have the same API.

The Eclipse project uses Concurrent Version System (CVS), and the RAP

repository can be accessed from the following URL: htt p: // dev
.eclipse.org/viewvs/index.cgi/org.eclipse.rap/?root=Techn

ol ogy_Proj ect.

Or do a checkout from CVS using a pser ver connection to dev. ecl i pse
.org:/cvsroot/technol ogy. The RAP project is located inside the
folder or g. ecl i pse. r ap.

To ease the process of getting the projects from the CVS repository, there
is a Team Project Set file available that can be used to automatically import
the projects.

RAP Version History

This book covers Eclipse RAP 1.1.1. In general, the content is valid for
older releases and the next 1.2 release as well, as the APIs and extension
points are now identical to RCP, and the styling API is based on CSS, the
standard for styling web apps. The main progress is now on making the
API complete, rather than inventing new concepts.

Eclipse Rich Ajax Platform 41

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The RAP team maintains its “New and Noteworthy” page at
www. ecl i pse. or g/ rap/ not ewort hy.

The following list gives a brief overview of the evolution of RAP.

June 2006: Eclipse RAP project approved: Innopract contributed the initial
code base from its World Wide Web Windowing Toolkit (W4T).

October 2007: 1.0 release: For the 1.0 release, RAP underwent massive API
refactoring. From the original RAP APIs, everything was moved into the
original RCP namespace. This greatly emphasized that RAP was intended to
be a different rendering layer, rather than a different API. Table and tree
widgets were the first that were close to par with their RCP relatives.

June 2008: 1.1 release: This release was part of the Eclipse Platform
Ganymede release. Most important, it contains an implementation for
readAndDi spat ch(), which works the same as in SWT. The Theming and
Branding APIs were updated to use CSS instead of the previous proprietary
format. Activities and image decorators became supported. Mouse click
events were added, as well as the preference store.

September 2008: 1.1.1 service release: This release contains many bug fixes
and is shipping the upgraded qooxdoo library in version 0.7.3.

June 2009: 1.2 release: This release will be part of the Eclipse Platform
Galileo release. The main goals for 1.2 are RAP allowing multiple browser
tabs and supporting the use of RAP applications in portlet environments.
Already done are a date-picker implementation and an expand bar. Also, a
new JavaScript compression reduces the initial payload by 20 percent.

The RAP Community

As

RAP is still a very young project, it is important to know where more

information can be found. RAP has a newsgroup where many of the core
team members are active, at ww. ecl i pse. or g/ newsportal /
t hr ead. php?gr oup=ecl i pse. t echnol ogy. r ap.

42

Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Bugs or proposed tickets for Eclipse RAP are tracked in the Eclipse Bug
Tracker, searchable from ht t ps: // bugs. ecl i pse. or g/ bugs/ query
. cgi ?pr oduct =RAP.

If you want to share widgets or contribute to the project in any way, you
can obtain a user account with commit rights to the sandbox project from
the RAP team.

Another recommended read is the RAP development team blog, which
contains plenty of good information on very detailed topics, available at
http://rapbl og. i nnoopract.com

An up-to-date list of recommended further reading, links to community
mailing lists, and more are being compiled at the companion website for
this book, at www. r ap- book. com

Eclipse Rich Ajax Platform 43

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 4: Developing a RAP Application

The instructions in this book assume that you know how to use the Eclipse
IDE and the navigators and editors, and especially that you can
automatically import required packages (using Ctrl+O), as the code
examples show only parts of classes and omit import declarations.

Additionally, RCP application knowledge is a good prerequisite; however,
the instructions will be explicit enough for beginners as well. Code
examples in this book use loose code style (e.g., variables are not declared
as fi nal and @ver ri de annotations are not added) to keep them short.
Class names are written in monospaced font (I i ke t hi s) and begin with
an uppercase letter. Method names used in the text are followed by
parentheses, like this: met hodNane() .

Live demos, code examples and errata are available for download from
wWwWw. r ap- book. coni code.

Installing the Eclipse and RAP SDKs

Note The following instructions are valid for Eclipse 3.4 Ganymede,
which is recommended and used throughout this book. For the examples,
any 3.3.x or newer version is also very likely to work fine; please check
wwwv. ecl i pse. org/ rap/ gettingstarted. php. Also note that these
instructions are tailored for Windows. However, they work the same on
Linux or Mac OS X, just with different directories.

To get started with development, get the Eclipse for RCP/Plug-in
Developers package from the Eclipse download site, at wwv. ecl i pse. or g
/ downl oads. Once the package is downloaded, extract it to C: \ RAP\ ,
where the extraction process will create a folder called ecl i pse. Start

Eclipse Rich Ajax Platform 45

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

ecl i pse. exe from C: \ RAP\ ecl i pse and choose a workspace location;
for example, C: \ RAP\ ws.

Once Eclipse is loaded, select Help » Software Updates from the menu to
install RAP. Switch to the Available Software tab and click the “Add Site”
button. Enter the Eclipse RAP update site, ht t p: / / downl oad. ecl i pse
.org/ technol ogy/ rap/ updat e- si t e, into the Location field of the
dialog shown by Eclipse, and then click OK. By doing so, you will always
get the latest stable RAP release.

This entry will now appear in the list. Check the box next to it, as shown in
Figure 4-1, and click Install to download and install the Eclipse RAP SDK.

Figure 4-1. Choosing RAP on the Available Software tab

46 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

If you are using a different Eclipse package than the one with RCP,
additional plug-ins will be added to the selection; otherwise, the wizard
will just ask you to accept some licenses. Do so by clicking Next and then
Finish.

The download will start. Once it has completed, Eclipse will prompt for
restart. Confirm this by clicking Yes. Once Eclipse is restarted, the
Overview screen will contain a new entry that reads “Rich Ajax Platform
(RAP). Learn how to install and use the Rich Ajax Platform” (see Figure 4-
2).

Figure 4-2. The Overview screen of the Eclipse RAP SDK

Select it and choose Install Target Platform. Choose C: \ RAP\ t ar get from
the displayed dialog and make sure that the check box labeled “Switch the

Eclipse Rich Ajax Platform 47

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

target after installation” is checked. As the description says, this will
reconfigure Eclipse to use a different platform for running applications. By
default, this target platform is the same as the one running the development
environment. For running RAP, it will not work using the development
environment platform as a target, because some plug-ins of RAP and the
IDE will conflict, because the IDE uses RCP code, which is not compatible
with RAP.

This step will complete quite fast, because it just unpacks parts of the RAP
SDK.

The default view of Eclipse 3.4 presented after launching Eclipse shows a
task list view and a welcome view, which can be closed to free some screen
real estate. You are free to configure the layout to your needs, but certain
descriptions in this book will assume that you use the default layout. If you
want to reset a perspective to its default settings, the Window » Reset
Perspective option takes care of this.

Open the Plug-in Development perspective from Window » Open
Perspective » Other » “Plug-in development,” which will be the main
perspective for developing RAP applications.

Running the RAP Sample Application

To run the RAP sample application, you first need to unpack it from the
plug-in it is shipped with. Start with the Plug-in Development perspective
and select the Plug-ins view on the left.

Right-click or g. ecl i pse. r ap. deno and select Import As » Source
Project, as shown in Figure 4-3.

48 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Figure 4-3. Importing the sample application from the plug-in

The source files of the demo plug-in will be extracted to a new project into
the workspace. If you are interested in having a look at the other RAP
source code, the same procedure can be applied to any other RAP or RCP
plug-in, bringing them into the workspace. Additionally, Eclipse will prefer
the workspace project over the embedded plug-in. This also allows for
easier debugging or even changing some code inside plug-ins.

Switch back to the Package Explorer view and expand or g. ecl i pse

. rap. deno. After that, double-click the pl ugi n. xm folder. The Overview
screen, which is the main screen for editing the plug-in configuration, will
appear, as shown in Figure 4-4.

Note The same dialog can be also accessed by double-clicking
MANI FEST. MF inside the META- | NF directory. This is handy in some cases
where pl ugi n. xm is not yet generated. All changes to this configuration
dialog can be also done with XML inside the pl ugi n. xm file or in manifest
style inside the MANI FEST. MF file. Feel free to check the generated code
from the dialog by clicking the pl ugi n. xm or MANI FEST. MF tab.

Eclipse Rich Ajax Platform 49

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Figure 4-4. Launching the sample application

To launch the application, select Launch a RAP Application from the
“Testing” tab. The application will start up by starting an integrated Jetty
web server and showing some startup output in the console.

The integrated browser will open up, showing the URL htt p: // 127
.0.0.1:50131/ rap?startup=defaul t.

Note The port number will vary, as it is automatically determined
from the list of available free ports. It can be fixed in the Launch dialog.

50 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

A blue gradient background will show for a second or two, which is the
time required for the browser to load the JavaScript libraries. The user
interface depicted in Figure 4-5 will be shown once they are loaded and the
application state is synchronized with the server side.

Figure 4-5. The Eclipse RAP sample application

Feel free to play around a bit to get familiar with what RAP and RCP can
offer in terms of layout, widgets, and interaction functionality. It is a good
idea to compare the effort that would be required using other frameworks
to create this functionality with the ease of development in RAP.

Eclipse Rich Ajax Platform 51

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

INTEGRATED BROWSER

While the integrated browser works OK, sometimes it can be handier
to use an external browser (e.g., to use Firebug or check browser
compatibility).

The browser used by Eclipse can be configured via Window »
Preferences. In the Preferences dialog, type browser into the box
above the tree and select General » Web Browser. The resulting
screen allows you to select between the internal browser (which uses
the Internet Explorer rendering engine on Windows systems) and an
external browser. If your preferred browser is not autodetected, you
can add it using the New dialog.

Creating a Simple Application

After having successfully launched the RAP example application, you’ll
now try to create your own application from scratch. Instead of using the
standard, boring “Hello World” example, we’ll create something more
useful: a tool with which cats can find new homes and “can openers.” It
will consist of the Workbench, a view for the general layout, a

Tabl eVi ewer to display the cats, and an editor to edit them.

There are different ways to start a new project, and of course also plenty of
code to take from the RAP demo project. The goal of this section is to
make you familiar with all the involved Eclipse wizards, the fundamental
concepts and components, and the usual development workflow.

To start development of a new project, select File » new » Project while
in the Plug-in Development perspective. Choose the “Create a new plug-in
project” option from the New Plug-in Project dialog. Type in the project
name catshelter. Also, for the target runtime, make sure to select “an OSGi
framework: Equinox,” as shown in Figure 4-6.

52 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Figure 4-6. Step 1 in the New Plug-in Project wizard

I recommend using the default values proposed for the “Source folder” and
“Output folder” options, because this standard convention allows additional
tools and plug-ins to integrate more nicely.

If you want, you can change the location of the project by unchecking the
“Use default location” check box and using a new path for Location.

Click Next and uncheck “Generate an activator, a Java class that controls
the plug-in’s life cycle” on the next screen (see Figure 4-7). You are free to
edit any other plug-in properties, but that is not required.

Eclipse Rich Ajax Platform 53

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Figure 4-7. Step 2 in the New Plug-in Project wizard

After the project has been created, Eclipse will display the plug-in
configuration editor. It is similar to the one shown in the RAP sample
application in Figure 4-4. I recommend checking the box “This plug-in is a
singleton,” which will prevent multiple startup of this plug-in.

The project needs to know that it depends on the RAP platform. To tell it
that, select the Dependencies tab in the open editor and click Add to add
two dependencies:

= org.eclipse.rap.ui

= org.eclipse.rap.ui.views

54 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Creating an Entry Point

Next, you need to create an entry point, which is responsible for creating
the Workbench and a window, and starting them.

To do so, switch back to the plug-in Overview page and select the
Extensions link on the right-hand side. Eclipse might ask you to display
hidden configuration pages—if so, choose Yes. Then, on the Extensions
tab, click Add and enter the following:

org. eclipse.rap. ui.entrypoint

After that, enter a value that identifies this entry point, like cat shel t er
.entrypoi nt 1, and a short name used for the URL to launch the
application—for example, cat s—into the field named parameter, as shown
in Figure 4-8.

Note This name is used to store certain project-related information on
the server. If you have run the default configuration from the demo
application, reusing the default will bring up some strange errors, like RAP
being unable to restore the Workbench layout.

Eclipse Rich Ajax Platform 55

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Figure 4-8. Creating the entry point for your application

Click the class*: link on the right to open an editor to create this

Ent rypoi nt class. Use the package cat shel t er and name it
Cat Ent rypoi nt

Write the following code for the cr eat eUl () method:

public int createU () {
Di splay display = PlatformJ . createD splay();
Wor kbenchAdvi sor advi sor = new Cat Wr kbenchAdvi sor () ;
return PlatfornmJ.createAndRunWor kbench(di spl ay,
advi sor) ;
}

Creating a WorkbenchAdvisor

Next, you need to create the Cat Wor kbenchAdvi sor class, which was
referenced in the cr eat eUl () method and is currently shown by Eclipse as
compile error, because it does not yet exist. A Wor kbenchAdvi sor 1is
required to initialize some setup parameters, especially the active
perspective, and provide initial layout configuration.

56 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

To fix the compilation error, you create that advisor—for example, by
selecting that line and pressing Ctrl+1 (that’s a numeric one, not a
lowercase L), using the Eclipse-provided shortcut “Create class
CatWorkbenchAdvisor.”

The automatically generated class would already be enough to let the
application run, as the parent Wor kbenchAdvi sor class provides some
amount of default values. However, the application would be still a bit
empty. So in the next step, you are going to create a perspective that can
hold your cat management.

That perspective (or to be more precise, the identifier for it) has to be
returned by the get I ni ti al W ndowPer specti vel d() method of the
Wor kbenchAdvi sor . So edit the generated code to return an ID,
represented by a string:

public String getlnitial WndowPerspectiveld() {
return "catshelter. perspectivel”;

}

Creating a Perspective

Go back to the Extensions tab in the pl ugi n. xnl editor, and add the
following:

org. eclipse. ui.perspectives
Make sure that the ID is cat shel t er. per specti vel, as the IDs from the
configuration have to match the hard-coded string ID, as shown in Figure

4-9. You can also change the perspective icon and its name here, but we’ll
skip that for now.

Eclipse Rich Ajax Platform 57

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Figure 4-9. Creating a perspective for your application

Click the class*: link to open an editor for this perspective.

Again, use the package cat shel t er and the class name
Cat Manager Per spect i ve. Put in some code that will add a view to your
perspective:

public void createlnitial Layout (I PageLayout |ayout) {
| ayout . set Edi t or AreaVi si bl e(fal se);
| ayout . addVi ew("cat shel ter. vi ewl", | PagelLayout. TOP,
.95f, null);
}

The special Edi t or section is not of interest for now, so you set it to be
invisible. You add a view with an ID cat shel t er. vi ewl, and some layout
information that is not relevant for now. Next, you need to create the view.

Creating a View

Again, you need to create an extension in the Extension tab of the plug-in
editor. Click Add and add the extension point:

org. eclipse.ui.views

58 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

This time, no subentry is created by default, as there are three options for
that. Right-click the or g. ecl i pse. ui . vi ews extension and choose “new’
> “view.”

b

As shown in Figure 4-10, give the view the name Cat Shel t er and make
sure cat shel t er. vi ewl is filled in as the ID, so that it can be linked to
your perspective.

Figure 4-10. Creating the view for your application

Click the class*: link to open an editor again. This time, use
Cat Shel t er Vi ewas the class name, and also use the package
catshel ter.

Use the following code for the required methods:

public void createPartControl (Conposite parent) {
Label hellowrld = new Label (parent, SW. HORI ZONTAL) ;
hel | oWbrl d. set Text("We |ike Cats!");

}

public void setFocus() {

}
Eclipse Rich Ajax Platform 59

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

When doing the imports, take care that you import or g. ecl i pse. swt
. Wi dget s. Label rather than the AWT label.

The cr eat ePart Cont r ol () method is invoked before that view is created,
and you set up its contents here. set Focus() can remain empty, as you do
not need focus handling right now. The method is required from the

Abst r act Vi ewclass and intended to let the view decide which
subcomponent should receive focus when the view is focused.

Wrapping Up

Before launching the application, let’s quickly recap what you’ve done.
There have been plenty of screens and classes, but if you’re used to
creating RCP applications, this should have been nothing new, as it follows
the same model as RCP:

1. Create an Ent r ypoi nt for RAP to find which Wor kbenchAdvi sor to
use. It is an extension of or g. ecl i pse. rap. ui . entrypoi nt.

2. Create a Wr kbenchAdvi sor that specifies which Per specti ve
instance to show.

3. Create the Per spect i ve that defines which Vi ew instances are visible. It
1s an extension of or g. ecl i pse. ui . perspecti ves.

4. Create a Vi ewclass that displays the “We like Cats!” label. It is an
extension of or g. ecl i pse. ui . vi ews.

This 1s not that much, actually. I recommend performing a cleanup step,
making the string IDs constants of their related objects. By doing so,
multiple usage of the same string constant bears less typo risk, and the
classes get some editor-recognizable connection. For example, the code

should look like this:
public class Cat ShelterVi ew extends ViewPart {
public static final String ID = "catshelter.viewl";
/...
}

60 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

/1 and in Cat Manager Perspective
public void createlnitial Layout (I PageLayout |ayout) {
| ayout . addVi ew(Cat Shel ter Vi ew. | D, | PageLayout. TOP
.95f, null);
/...

}

Next, you can check what you have created by running your application.

Running the Application

Select Run » Run Configurations from the menu. In the Run
Configurations dialog, select RAP Application from the left-hand panel,
and click the New icon, which is located at the top left and is depicted by a
page with a plus decorator (see Figure 4-11).

Figure 4-11. The Run Configurations dialog

Eclipse Rich Ajax Platform 61

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Give this configuration a nice name like Cat Shelter Manager, and choose
the entry point by clicking Browse. Click the Run button to see your
application starting up, as shown in Figure 4-12.

Note Depending on your computer speed, Eclipse may open the web
browser before Equinox has launched completely and the integrated Jetty
server is ready to use. In those cases, a 404 error page will be displayed
inside the browser. If this happens, wait a second, and click the refresh
button. It should work then.

Figure 4-12. Running your application

62 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Extending the Application

In this section, we will gradually extend the previous Cat Shelter Manager
application. We will use both traditional RCP code and some RAP web
influences.

Changing the Window Appearance

Till now, the Wor kbenchAdvi sor creates a default W ndowAdvi sor to
style the window. To create your own, just overwrite the
Cat Wor kbenchAdvi sor #cr eat eWor kbenchW ndowAdvi sor () like this:

publ i ¢ Wor kbenchW ndowAdvi sor
cr eat eWwsr kbenchW ndowAdvi sor (
| Wor kbenchW ndowConf i gurer configurer) {
return new Cat Wor kbenchW ndowAdvi sor (confi gurer);

}

Create a Cat Wor kbenchW ndowAdvi sor class (preferably using the Crtl+1
shortcut). This class needs one explicit constructor and some code to
change the look and feel of the window:

publ i ¢ Cat Wor kbenchW ndowAdvi sor (
| Wor kbenchW ndowConf i gurer configurer) {
super (configurer);
}
public void preWndowOpen() {
| Wor kbenchW ndowConf i gurer configurer =
get W ndowConfi gurer();
configurer.setlnitial Size(new Poi nt (800, 600));
confi gurer. set ShowienuBar (true);
confi gurer. set ShowCool Bar (true);
confi gurer. set ShowPer specti veBar (fal se);
configurer.set ShowPr ogressl ndi cator(true);
configurer.setTitle("Save the cats!");
configurer.setShell Styl e(SW. TI TLE | SW. MAX
| SWI. RESI ZE) ;

Eclipse Rich Ajax Platform 63

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The pr eW ndowOpen() hook method is invoked, as the name says, before
the window is opened. By default, a RAP application will appear as an
application frame inside the browser window. On one hand, this supports
the real application look; on the other hand, it might look irritating to see
another window in a browser view. As discussed in Chapter 2, a RCP look
in a browser window has its usability disadvantages. Also in this default
style, it is possible to close the application, leaving the browser empty.

The following code will change this to show the application in the entire
browser window:
public void preW ndowOpen() {
| Wor kbenchW ndowConf i gurer configurer =
get W ndowConf i gurer();
confi gurer. set ShowMenuBar (true);
confi gurer. set ShowCool Bar (true);
configurer.set ShowPer specti veBar (fal se);
confi gurer. set ShowPr ogressl ndi cator(true);
get W ndowConfigurer().setShell Styl e(SW.NO TR M ;

}

public void post WndowCreate() {
Shel | shell =
get W ndowConf i gurer (). get Wndow() . get Shel | ();
shel | . set Maxi m zed(true);

}

Of course, in this case, there is no need to specify an initial size or a title. In
the pr eW ndowOpen() method, you set Shel | St yl e not to have any
border. Additionally, you need to set up a post W ndowCr eat e() method
callback, as the display area, called shel | , needs to be maximized from the
initial created state.

As you can see, a MenuBar and Cool Bar are defined, but the reserved
screen real estate is still empty. That is because neither of these have been

filled yet.

64 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Let’s fix this in the next step.

Creating a Menu Bar and a Coolbar

To create the menu bar and the coolbar (which Eclipse named as a “cool”
version of a toolbar), you need to supply a custom Act i onBar Advi sor
from the Wor kbenchW ndowAdvi sor . Do so by providing the following
method in Cat Wor kbenchW ndowAdvi sor :

publ i c ActionBar Advi sor createActi onBar Advi sor (

| Acti onBar Configurer configurer) {
return new Cat Acti onBar Advi sor (confi gurer);

}

Create the Cat Act i onBar Advi sor and put in the following code:
private Action denpAction;

public Cat Acti onBar Advi sor (
| Acti onBar Confi gurer configurer) {
super (configurer);

}

protected void fill MenuBar (1 MenuManager nenuBar) {
MenuManager w ndowiMenu =
new MenuManager ("W ndow',
| Wor kbenchAct i onConst ants. M_W NDOW ;
wi ndowvenu. add(denpAct i on) ;
menuBar . add(w ndowivenu) ;

}

This code declares an Act i on called denpAct i on, and uses it in the

fill MenuBar () method. For each menu group (e.g., File, Edit, etc.), there
should be a MenuManager . The constructor takes the label and an identifier.
| Wor kbenchAct i onCont st ant s already contains some constants for
common use cases:

Eclipse Rich Ajax Platform (1

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

M _FI LE: File menu

M EDI T: Edit menu

M W NDOW Window menu
M_HELP: Help menu

| Wor kbenchAct i onCont st ant s also holds additional common IDs that
can be used. Usage of such standard IDs makes code more readable and
frees developers from having to make up their own IDs.

The action is now added to the menu, but it does not exist yet, which you
should change. Act i onBar Advi sor defines a callback designed for
creating actions, called makeActi on() . It also gets a reference to the main
window for cross-referencing it in actions.

protected void makeActions(final |WrkbenchWndow w) {

66

| mmgeDescri pt or denoActionlcon =
Abst ract U Pl ugi n. i mageDescri pt or Fr onPl ugi n(
"org.eclipse.rap.ui ",
"“icons/full/obj16/font.gif");

denoAction = new Action() {
public void run() {
MessageDi al og. openl nf or mati on(w. get Shel | (),
"Popup”, "A sinple MessageDi al 0og");
}

}s
denoAct i on. set Text ("Pop Me Up");

denpAction. setl d("catshelter. popup”);
denoActi on. set | mageDescri pt or (denpActi onl con);

Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The code performs three steps:

1. It creates an | mageDescr i pt or, which holds information about the
decorating icon used by this action. The icon as such is taken from an
already existing plug-in.

2. It creates a new Act i on instance and implements a basic r un() method
that will open a MessageDi al og.

3. Itsets alabel, ID, and | rageDescr i pt or to that action.

Once the action is created, it will show up in the menu. As the Cool Bar
can work with exactly the same actions, you can reuse the code for it as
well:

protected void fill Cool Bar (I Cool Bar Manager cool Bar) {

| Tool Bar Manager tool bar = new Tool Bar Manager () ;
t ool bar. add(denoActi on);

cool Bar. add(new Tool Bar Contri buti onl ten{t ool bar,
"tool bar.itenl. denmoAction"));
}

The Tool Bar Manager is a class that takes care of a set of actions that shall
be grouped in a toolbar. The denpAct i on is added to a new instance of that
class, which is then added to the Cool Bar, together with an ID, as a

Tool Bar Contri butionltem

Creating a Table

Getting back to the essentials of the application, you now need a table that
will hold all cats currently seeking a new home. The JFace viewers are
ideally suited for this. They are ready-made and can be used for any
domain model, by using providers to adapt to different models behind
them. So let’s use a Tabl eVi ewer for displaying some cats. Add the
following code to Cat Shel t er Vi ew, replacing the previous content of that
class:

Eclipse Rich Ajax Platform 67

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

private Tabl eVi ewer viewer;

public Tabl eVi ewer getViewer() {
return viewer;

}

public void createPartControl (Conposite parent) {
par ent. set Layout (new Fi |l | Layout (SWI. VERTI CAL)) ;

Label hell owrld = new Label (parent, SW. HORI ZONTAL) ;
hel | owor |l d. set Text (" Those cats need new can opener");

vi ewer = new Tabl eVi ewer (parent);

Cat Label Provi der | abels = new Cat Label Provi der();
| abel s. creat eCol ums(vi ewer);

vi ewer . set Label Provi der (| abel s);

vi ewer . set Cont ent Provi der (new Cat sProvi der());

vi ewer.setlnput(getSite());

}

The Tabl eVi ewer is stored in a variable and made accessible with a getter
so that it can be accessed later. The Label is still inside the parent
Conposi t e, but a layout is required to lay out the components of this view.

Two providers are attached to the Tabl eVi ewer . One,

Cat Label Provi der, is responsible for generating displayable labels out of
the domain objects provided by the other provider, Cont ent Pr ovi der,
named Cat sProvi der . There is one additional call made: | abel s

. creat eCol ums(vi ewer) . This is required for the Label Provi der to set
up columns in the Tabl eVi ewer , which are filled with some details of the
cats being displayed.

To be able to create the Cat sPr ovi der, first some model classes have to
be created in the package cat shel t er. nodel . Create an Enumthat
represents a cat’s gender:

68 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

public enum Gender {
mal e, femal e

}

Next, create a cat model class using the following:

public class Cat {
private String nane;
private String |ikes;
private Cender gender;

}

Use the source code generation feature from Eclipse to generate
appropriate getters and setters for the fields, as well as a constructor from
these fields. To access these generators, right-click in the code and select
Source » Generate Getters and Setters and Source » Generate Constructor
using Fields.

As a replacement for full-blown object storage, you create a singleton that
can give you a Li st of Cat instances. Let’s call it Cat Shel t er and place it
as well into the cat shel t er. nodel package:

public final class CatShelter {

private static CatShelter instance;
public List<Cat> cats = new ArraylLi st<Cat>();

private CatShelter() {
cats. add(new Cat("Merlin", "running", Gender.nale));

cats.add(new Cat ("M na", "boxes", Gender.fenmale));
cats. add(new Cat ("Meow', "sl eeping", CGender.nmale));
cats. add(new Cat ("M ssy", "wool", Gender.fenale));

}

Eclipse Rich Ajax Platform 69

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

public static synchroni zed Cat Shelter getlnstance() {
if (instance == null) {
i nstance = new Cat Shelter();
}

return i nstance;

}

Now all the required model objects are there to create the Cat sPr ovi der
class in the cat shel t er . provi der package:

public class CatsProvider inplenents
| St ruct ur edCont ent Provi der {

public Object[] getEl ements(Cbject inputElenment) {
return Cat Shelter.getlnstance().cats.toArray();
}

public void dispose() { }

publ i c voi d input Changed(Vi ewer viewer,
bj ect ol dl nput, Object newinput) { }
}

The purpose of an | St r uct ur edCont ent Provi der implementation is to
be able to obtain and clean up the data for the viewer. It also provides the
means of updating the data. For now, it is enough to return the cats from
the Cat Shel t er singleton.

The last and longest class that needs to be created is the

Cat Label Provi der, which should also go into the cat shel t er

. provi der package. It also has to update the Tr eeVi ewer to be able to
display multiple columns:

70 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

public class CatLabel Provi der extends Label Provi der
i mpl enents | Tabl eLabel Provi der {

private static final String[] titles =
{ "Name", "Likes", "GCender" };

public | mage get Col umml mage(Obj ect el enent,
i nt col uml ndex) {
return null;
}
public String getCol umText (Cbject el enent,
i nt col uml ndex) {
Cat cat = (Cat) el enent;
swi tch (col uml ndex) {
case 0: return cat.getNane();
case 1: return cat.getlLikes();
case 2: return cat.getGender().toString();
default: return null;

}
}

public void createCol ums(Tabl eViewer viewer) {
for (String title : titles) {
Tabl eVi ewer Col um col um =
new Tabl eVi ewer Col utm(vi ewer, SWI. NONE) ;
col um. get Col umm() . set W dt h(100) ;
col um. get Col unm() . set Text (title);
col um. get Col umm() . set Resi zabl e(true);

Tabl e table = vi ewer. get Tabl e();
t abl e. set Header Vi si bl e(true);
t abl e. set Li nesVi si bl e(true);

}
}

The code of get Col unmText () is pretty much self-explanatory: it returns
the string for the specified column number by accessing different getters.

Eclipse Rich Ajax Platform 71

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The get Col umml mage() method is empty, but could be filled with code
returning icons, which would be placed into the cell by the renderer.

The only slightly more complex method is cr eat eCol urms() . It iterates
over the static list of column titles and creates a new Tabl eVi ewer Col umm
for each. It should be emphasized that in JFace, the API uses the object
hierarchy, in this case by passing the viewer to the constructor of the
additional column, rather than adding additional methods like, for example,
vi ewer . addCol umm() . This allows cleaner code, but could lead to
confusion the first times it 1s used.

Also, some layout is set up by cr eat eCol ums(), by adding lines and
making the headers visible. It could be argued whether that code is
correctly placed in this method, or if it should go to some more user
interface—related methods; however, adding column titles without making
columns that look like columns does not make much sense either. Also
note that setting the column width is mandatory; otherwise, the columns
would be zero width, because no minimum width is calculated by the
renderer (thus making the columns invisible).

Creating an Editor

As a last step, you want to create and use an editor to manipulate the cats
displayed in the table. As the editor is an extension of the Workbench, head
back to the Extensions tab in the pl ugi n. xm editor and add the following:

org.eclipse.ui.editors

Make sure that the ID is cat shel t er. edi t or in the screen shown in
Figure 4-13, as that ID will be referenced later. Give it the name
cat Edi tor.

72 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Figure 4-13. Creating an editor

Click the class*: link to open an editor for this editor class.

Use the package cat shel t er. edi t or and the class name Cat Edi t or . For
now, only add the ID and fill the i ni t () method:

public static final String ID = "catshelter.editor";
private Cat cat;
public void init(lEditorSite site, IEditorlnput input)
throws PartlnitException {
if (!'(input instanceof CatEditorlnput)) {
t hrow new Runti nmeException("Input not of type "
+ Cat Editorlnput.class. getNane());
}
setSite(site);
set | nput (i nput) ;
set Part Nanme(i nput . get Nane());
cat = (Cat) input.getAdapter(Cat.class);

Eclipse Rich Ajax Platform 73

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The input is checked for compatible type and an adapter is obtained from
the input. The adapter pattern is used here to be able to accept different

| Edi t or | nput objects, but be able to treat them all as a specific domain
model classes. Of course, you are free to implement this in another way
(e.g., by providing a getter for an instance of Cat —but then the input has to
be casted and restricted to classes that provide this custom getter).

The cr eat ePart Cont r ol () method is invoked when creating the editor to
add the fields for editing. You will add the form editor in the next chapter.
Next, you will integrate the editor with the Tabl eVi ewer .

Open the Cat Shel t er Vi ewclass and add two method calls to the end of
createPart Control ():

getSite().setSel ectionProvider(viewer);
addEdi t or (vi ewer);

The set Sel ecti onProvi der () method call will declare your viewer to be
able to tell what is selected in this view. The addEdi t or () method does
not yet exist, so you’ll create it now:

private void addEditor(StructuredViewer viewer) {
Vi ewer .
addDoubl ed i ckLi st ener (new | Doubl eCl i ckLi stener () {
public void doubl eC i ck(Doubl el ickEvent event) {
| Sel ection selection = getViewer().getSelection();
if (selection instanceof |StructuredSelection) {

Li st sel ectionList =
((I'StructuredSel ection) selection).toList();
for (bject selectedObject : selectionList) {

if (selectedObject instanceof Cat) {
Cat Edi t or I nput i nput =
new Cat Edi torl nput ((Cat) sel ectedObject);

try {
getSite().get Page().openEditor(input,
CatEditor.1D);

74 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

} catch (PartlnitException e) {
t hrow new Runti neException(CatEditor.ID
+ " not found");

This code could also be placed directly in cr eat ePart Cont rol (), butit’s
generally good practice to encapsulate such functionality in methods. It not
only allows reuse of the method code, but also documents what the method
does by its name. You add an anonymous implementation of the

| Doubl ed i ckLi st ener that will be notified when the user double-clicks
the viewer. It will invoke the doubl ed i ck() method.

The selection is obtained via the get Vi ewer () method from the
Tabl eVi ewer inside the Cat Shel t er Vi ew. On the selection, two checks
are made using the i nst anceof operator:

1. Isthe selection of type | St ruct ur edSel ecti on?
2. Is the first object of a possible multiple selection of type Cat ?

The i nst anceof operator has a nice additional function: it makes sure that
the object is not nul | .

To be able to open the editor, first an Edi t or I nput object needs to be
created and then passed into the openEdi t or () call, which also takes the
ID of the editor.

As a last required step for calling the editor, you have to create the
Cat Edi t or I nput , which implements | Edi t or | nput . Place it into the
catshel ter. edi t or package and enter in following code:

Eclipse Rich Ajax Platform 75

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

public static final String ID ="catshelter.editorlnput”;
private final Cat cat;

public CatEditorlnput(Cat cat) {
this.cat = cat;

}

public String getNanme() {
return cat.get Name();

}
public String getTool Ti pText () {

return cat.getNane() + " likes " + cat.getLikes();
}

public Object get Adapter(C ass adapter) {
return cat;

}

The other autogenerated methods can remain empty. Additionally, it is a
good idea to generate an equal s() method to be able to determine the
equality of two Edi t or I nput instances. To generate it, right-click in the
code and select Source » “Generate hashCode() and equals(),” and select
the cat instance member. The get Adapt er () method is a bit lazy, as it
just returns the Cat object, but it should be good enough for this example.

Now you can run the application again and double-click a cat in the table
view. An editor will open for it and display the cat’s name in the tab (see
Figure 4-14). Note that opening an editor for the same cat isn’t possible,
thanks to the equal s() method of the Cat Edi t or | nput class.

76 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Figure 4-14. Opening editors for table rows

In the next and final section of this chapter, you will add an Eclipse Forms—
based editor into the editor view that you opened.

Creating a Form for the Editor

Before you start, you need to add a new dependency to the project. Do so
by opening the pl ugi n. xm editor, and switch to the Dependencies tab.
Add the following:

org.eclipse.rap.ui.forns
and save the plug-in configuration.

Now let’s edit the cr eat ePart Cont r ol () method of the Cat Edi t or to set
up a form and import the SWT classes (not the AWT ones):

Eclipse Rich Ajax Platform 77

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

private static final GidData FILL =

new G i dDat a(G i dDat a. FI LL_HORI ZONTAL) ;

private Button nal e;
private Button femnal e;
private Text nane;
private Text |ikes;
private Button save;

public void createPartControl (Conposite parent) {

78

Formlool kit tk = new Fornifool ki t (parent. get Di splay());
Conposite body = tk.createForn(parent). getBody();
body. set Layout (new Gi dLayout (2, true));

t k. creat eLabel (body, "Nane:");
name = new Text (body, SW. BORDER);
name. set Layout Dat a(FI LL) ;

t k. creat eLabel (body, "Likes:");
i kes = new Text (body, SW.BORDER);
I i kes. set Layout Dat a(FI LL) ;

t k. creat eLabel (body, "Gender:");

Conposite group = tk.createConposite(body);

group. set Layout (new Fi | | Layout (SW. VERTI CAL)) ;

mal e = tk.createButton(group, "male", SW.RAD O;
femal e = tk.createButton(group, "female", SW.RAD O;

set Val uesToFi el ds(cat);

save = tk.createButton(group, "save", SW. PUSH);
save. addSel ecti onLi st ener (new Sel ecti onLi stener() {

public void w dget Def aul t Sel ect ed(Sel ecti onEvent e){
}

Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

public void w dget Sel ect ed(Sel ecti onEvent e) {
saveVal uesToMdel (cat);

| Wor kbenchPage page = getSite().getPage();
| ViewPart view = page.findView Cat ShelterView ID);
if (view instanceof CatShelterView) {

((Cat ShelterView) view).getViewer().refresh();

}
}
1)
}

The For mrool ki t (stored in the variable t k in the code example) has very
handy methods for creating things like Label , Fi el d, and But t on
instances. The very first element created and used as reference for all later
elements is the form body. To achieve a nice layout, a two-column grid
layout is set for the body.

Label and Text creation are straightforward. Setting the FI LL layout to the
table cell is just for eye candy, making the field fill the whole table cell.

Note Storing objects in private static final fields conserves
memory. You should always consider this if the object can be reused by
multiple objects or even multiple threads. Good candidates for that are
objects that never change. Gri dDat a, for example, has no setters, making
it immutable.

Contrary to many web frameworks, in SWT, radio buttons are treated the
same way as check boxes or regular buttons. The style and behavior is
determined by the style attribute passed into the constructor. The RADI O
type, for example, makes sure that from the buttons in the parent
composite, only one is checked.

Eclipse Rich Ajax Platform 79

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The fields are updated from the Cat model using a helper method that you
will create shortly.

For the save button, you create and add a Sel ect i onLi st ener, which
does nothing on the Def aul t Sel ect i on, but does update the model using
a second method you will create on the next page. Most important, it finds
and notifies your Cat Shel t er Vi ewer that its Tabl eVi ewer should refresh
itself. This is a simple and efficient method of doing this. More
sophisticated solutions would include notification via

Propert yChangeli st eners.

The methods for setting the values on editor creation and on saving
changed values are pretty easy:

private void setVal uesToFi el ds(Cat cat) {
name. set Text (cat . get Nane()) ;
i kes. set Text (cat. getLikes());
switch (cat.getCGender()) {
case nmal e: mal e. set Sel ection(true); br eak;
case femal e: femal e. setSel ection(true); break;
}
}

private void saveVal uesToMbdel (Cat cat) {
cat . set Name(nane. get Text ());
cat.setLi kes(likes.getText());
if (male.getSelection()) {
cat . set Gender (Gender . nal e) ;

if (femal e.getSelection()) {
cat. set Gender (Gender. fenual e);

}
}

Figure 4-15 shows the final application.

80 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Figure 4-15. The final application

This concludes the creation of a simple RAP application that uses RCP
concepts and components.

Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 5: Single Sourcing

In Chapter 4, I described how a RAP application can be created and
introduced all of the main concepts and components involved in the
development of an Eclipse RAP application.

One of the sweet spots of RAP is that it is a technology that aims at making
the runtime environment transparent for the developer. Unfortunately, as
discussed before, that is not true yet, and perhaps will never be 100 percent
true, so the main question answered in this chapter is “How do you either
migrate an existing RCP application to RAP or start development of an
application that will work fine in both environments?”

This chapter will demonstrate this using a demo application that is
available to every Eclipse user, because it is shipped with it: The RCP Mail
Client demo. The Cat Shelter Manager application is not used, because it is
already based on RAP, but for single sourcing, the existing software isn’t.
It shouldn’t be too hard to apply single sourcing to the Cat Shelter Manager
application after studying this chapter.

Pros and Cons of Single Sourcing

Single sourcing is the concept of targeting multiple platforms with the
same code base. Java itself is a successful single-sourcing language, as its
code can run on virtually every operating system, allowing developers to
actually use the concept of write once, run everywhere. Single sourcing
allows addressing larger markets and user base without spending extra
money on development time.

“There ain’t no such thing as a free lunch.”

Robert A. Heinlein

Eclipse Rich Ajax Platform 83

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

But almost every single sourcing has some higher initial costs. It requires
some additional skills and testing effort, as from a business perspective,
you should not trust the promises of platform providers that want to sell
their single-source platform.

In the RAP case, some additional work has to be done to accommodate the
existing differences that prevent 100 percent single sourcing. But still, RAP
brings in a web view on a client application, which could be a clear
competitive advantage.

There are other ideas that can help solve this issue as well. For example,
Adobe AIR can run a Flash application as a native desktop application.

For many enterprise applications, Eclipse RAP will take the project or
product from where it is already: an Eclipse RCP application in Java. But
also for clean slate development, where nothing exists yet, the whole Java-
and-Eclipse offering is very compelling, and RAP just completes it. Eclipse
RAP makes Java and Eclipse RCP an even more attractive target platform.

Additional testing costs arising from the wish of running the same
application on the Web and the desktop should not be neglected. On the
other hand, developing a totally new, separate application for the Web
would also require testing, and likely even more than in any single-
sourcing case.

Actually, with the pure Java language as a base, many projects are limited
to a well-defined amount of target platforms. So, the issue of not being able
to test every scenario is nothing new, and it is advisable to focus on one
environment and from time to time check how the application works in the
other. After a while during the project or product development, you may
notice that certain functionality just works the same in all of the
environments. Testing for these can be reduced, and eventually shifted to
more problematic areas. Single sourcing allows delivering a better-quality
product to more platforms than when developing for them separately.

84 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Project Setup

To run a successful single-sourcing project, developers have to be able to
manage common and distinct code among the different platforms easily.
This can be mostly addressed with a sensible setup of the development
environment. While some variations of project setup and structure can
work fine, the following instructions have proven to be best practice.

A folder schema like this should be used:
C. \ AppDev\

- RAP
- Source
- Target
- W5

- RCP
- Source
- Target
- WB

- Common
- Eclipse
- Source

As described earlier, RAP development requires a target platform
installation, due to incompatibilities with the development environment.
This 1s most likely not true with the RCP application; however, it is
generally a good idea to separate the runtime and testing target platform
from the development. I recommend fixing the runtime version to a very
specific version, doing controlled changes, and testing with that. This setup
will completely decouple the development environment from the runtime,
allowing developers in the project to work with their favorite version and
plug-ins for development without risking any kind of side effects on the
project.

It could be possible to launch the application in either RCP or RAP mode
from a single workspace; however, that would involve too much
reconfiguration. Instead, two workspaces should be used: one for

Eclipse Rich Ajax Platform 85

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

developing and testing the application against RAP, and the other for doing
this against RCP.

The main development should happen in the RAP workspace, because
RAP uses a limited subset of the RCP API. Developers will be able to
recognize the unsupported parts of the RAP API, either by compile errors,
or by missing code completion hints when developing. When developing in
RAP mode, it is also almost guaranteed that the application will run in
RCP. However, it is advisable not to take that for granted. At least every
few days the RCP workspace should be opened and the application
compiled and tested.

In general, all source code should first go into projects residing in the
Common\ Sour ce folder. You should move it out whenever you notice that
two different implementations are required for RCP and RAP (I will cover
techniques for doing that later). Turning this around, after refactoring and
changes in RCP- or RAP-specific code, you should check whether it would
be possible to move the newly improved code to the Cormon folder,
creating more single-sourced code.

The source code can be arranged in a similar way for a version control
system. For example, in Subversion (SVN), it could look like this:

\ app- proj ect\
- branches
- tags
- trunk
- RAP
- rap_adapter
- RCP
- rcp_adapter
- COVWDN
- conponents
- Views

86 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

It might be a good idea to prefix or suffix RAP- or RCP-specific projects so
that they can be recognized even without their path hierarchy. Such a setup
allows different styles of running the development project.

RAP Proof of Concept

The RAP promise is nice, but if you’re with a company running a
successful RCP application, it might not be worth putting too many
resources into proving that this is true. The described project setup allows
two project teams to work in parallel. The one works as before with the
traditional setup in the RCP world. The RAP prototyping team can then
just pick existing plug-ins and combine them with compatibility plug-ins or
workarounds to make the application run in RAP. There will be quick wins
so that the application can run in RAP mode to a large extent, and some
more problematic code that takes longer to get it running. Sometimes it
might be advisable to just do an ugly fix to one specific problem to speed
up the general migration effort.

As a side effect of this prototyping work, the main RCP code will get
better, because it will implicitly be a code review for the existing code
base. Misuse of APIs will be noticed by the RAP prototyping team and
corrected. Due to that, it is advisable to put a few experienced developers
on the RAP prototyping. It is not about learning RAP or mass development,
but spotting issues, rechecking architecture, and ensuring consistency.

Enabling RCP Support for a RAP Application

This use case is perhaps not as common as the one before, but some
projects do work this way. Let’s say the goal is to develop a RAP-based
rich web client. It all could be done in either the RAP or the Conmon folder,
but it is advisable not to do this, for two reasons:

" Changes to proprietary RAP APIs are easier to manage: Even though it’s
successful, RAP is still a young project. Some APIs may still change,

Eclipse Rich Ajax Platform 87

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

especially the proprietary ones. Having code using RAP proprietary APIs
already separated will help you deal with such change.

» Requirements change: A successful RAP application might generate
queries for an RCP client. If the project is set up in the way described
previously, it is very easy to supply this RCP client.

Developing for Both Platforms at the Same Time

This is the most common use case. Developers will be able to compile the
application in a clearly defined environment without spending a lot of time
setting up the environment. It also makes it possible for a few experts to
concentrate on platform-specific problems while the majority of developers
can develop common code on one or the other platform (or on the working
one, in case a platform-specific change has broken the other runtime). The
real single-sourced code is usually of higher quality.

Running the Mail Demo in RCP

As a first step, you will set up the development environment as discussed
previously. Therefore, the Eclipse SDK goes to the following:

C:. \ AppDev\ common\ ecl i pse

And the workspace will be pointed here:
C: \ AppDev\ RCP\ ws

You skip the target installation for now, as RCP can also work with the
Eclipse integrated target runtime. To create the project, select File » New
» Project » Plug-in Project, and use nai | deno as the project name.

As you want the source code to be single sourced, you place the project in
C. \ AppDev\ common\ sour ce\ mai | deno.

You use Eclipse 3.4 as the target runtime, and on the next page of the New
Plug-in Project wizard, make sure that you select Generate an Activator

88 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

and “This plug-in will make contributions to the UL.” Also, switch the radio
button “Would you like to create a rich client application” to Yes.

After doing this, the next page will offer a template called RCP Mail
Template. If that template is not listed, check the settings on the previous
page, as they influence the available templates.

Click Finish, and the project will open up. It will not contain any errors,
and you can launch it right away, by selecting it and choosing Run As »
“Eclipse application” from the context menu.

Feel free to play around with it a bit. It looks simple, but actually uses a
good deal of RCP features. When you’re done playing and ready to begin
with the RAP approach, close this Eclipse instance.

Running the Mail Demo in RAP

To run the mail demo application in RAP, just open Eclipse again, this time
pointing to a workspace at C: \ AppDev\ RAP\ ws.

The workspace is empty, but can be filled easily. Let’s import the project
you created from the common project. To do so, select File » Import »
Project » Existing Projects from File System.

In the dialog that appears, use C: \ AppDev\ common\ sour ce as the root
folder. The mai | denp plug-in should then be autodetected and selected for
import. If the project imports fine without any errors, the setup is still
missing the target runtime.

In this case, select Help » Welcome, and on the page that opens, click the
globe icon on the top-left side and select Rich Ajax Platform (RAP).

Select Install Target Platform, and point the directory here:
C. \ AppDev\ RAP\ t ar get

Check the check box labeled “Switch the target after installation,” if it is
not checked by default already.

Eclipse Rich Ajax Platform 89

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Now Eclipse should detect that mai | deno will run in RAP, and report 216
errors to you (as shown in Figure 5-1). The next step is for you to fix those
errors so that you can run the application.

Note The number of errors might vary depending on version of Eclipse
and/or RAP used. This humber is accurate for Eclipse 3.4 and Rap 1.1.1.

Figure 5-1. Errors for the RAP maildemo plug-in

Fixing Imports

It is a good idea to sort by problem type and fix all plug-in problems first,
before taking care of any other errors, because many of the errors are likely
caused by the plug-in problems.

So, the first error you are going to resolve is this one:
Bundl e 'org.eclipse.ui' cannot be resolved

In fact, the majority of the other problems listed come from missing
imports of classes belonging to that bundle. In a RAP target runtime, this
bundle does not exist, but there is a replacement provided by RAP that
should be used instead. When opening the pl ugi n. xn file, this
dependency is found on the Dependencies tab.

90 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

For an Eclipse RAP target runtime, or g. ecl i pse. rap. ui is the bundle
you should depend on, because it provides a lot of the missing classes. You
will resolve this issue transparently for both the RAP and RCP runtimes.

First, select the dependency or g. ecl i pse. ui and click the Properties
button. After checking the check box labeled Optional, you can close the
dialog and add or g. ecl i pse. rap. ui as an additional dependency. After
adding this plug-in, you can set the Optional property for it as well.

Save pl ugi n. xnl and voila: 214 errors gone, 2 left!

Note Making both bundles optional does the trick but gives a slightly
different meaning. If neither dependency bundle is present, the plug-in will
not work, despite the fact that both bundles were declared as optional. Also,
Equinox will report a missing optional dependency in the log file.

Fixing Extension Points

One of the remaining two errors reads as follows:
Unknown extension point: 'org.eclipse.ui.bindings'

This extension point exists in the RCP world, but does not exist in RAP.
Because there is no replacement for this, you need to get it out of the RAP
workspace so that the plug-in can compile.

Because the error comes from a plug-in configuration file, it unfortunately
cannot be resolved by regular Java tricks. Instead, you need to use an
approach that enables you to distribute the configuration (like the one from
the pl ugi n. xnl file) into plug-ins that can be loaded only on specific
runtime platforms.

The preferred solution for resolving such an issue is to create a so-called
plug-in fragment, which is only activated for the RCP runtime; not for the

Eclipse Rich Ajax Platform 91

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

RAP one. This works also in reverse for RAP-specific code that might be
needed later on and should not be seen in RCP.

PLUG-IN FRAGMENTS

A plug-in fragment is very similar to a plug-in, but the IDE merges
the content of the fragment into the parent/host plug-in before
launching the application. This causes the classes to exist in the same
class loader so that runtime dependencies can be resolved. Compile-
time dependencies from the host to the fragment, however, will not
work.

To create a plug-in fragment, select File » New » Project » Fragment
Project. The Fragment Project wizard will then pop up.

Name this fragment r cp_nmi | denp, place it into the directory
C: \ AppDev\ RCP\ sour ce\ r cp_nmi | denp, and on the next step, choose
mai | deno as the host plug-in ID.

Cut the extension point for bindings from the pl ugi n. xn file of the
mai | deno plug-in, and put it into the f r agnent . xm file of the freshly
created r cp_mai | deno plug-in fragment. The file is created by Eclipse
only when needed, but you can also create it yourself.

The fragnment . xm content should look like this:

<?xm version="1.0" encodi ng="UTF-8"?>
<?ecl i pse version="3.2"7?>
<fragnent >
<ext ensi on point="org. eclipse. ui.bindings">
<key
commrand! d="mai | deno. open”
schenel d=
"org. eclipse. ui.defaul t Accel erat or Confi guration”
sequence="CTRL+2" >
</ key>

92 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

<key commandl d="nmi | denp. openMessage"”
schenel d=
"org.eclipse.ui.defaul t Accel erat or Confi guration”
sequence="CTRL+3" >
</ key>
<key
comandl d="org. eclipse.ui.file.exit"
schenel d=
"org.eclipse.ui.defaul t Accel erat or Confi guration”
sequence="CTRL+X" >
</ key>
</ ext ensi on>
</ fragment >

Save it, and you will notice that the compilation error has moved. It is now
in the r cp_mai | deno plug-in, which you are not going to use in RAP, but

in RCP. To make sure it does not interfere with the rest of the plug-ins,
close the project from its context menu.

Fixing Nonexistent APIs

The last remaining error is the following:

Acti onFactory. ABOUT cannot be resolved in
Appl i cati onActi onBar Advi sor. j ava

The ABOUT action from RCP doesn’t just include a logo and text, but is also
able to show plug-in details and the like. Such an action is a bit trickier to
do in RAP, and is actually not required for most products, so in this
example, you will work around this limitation by creating your own limited
ABQUT action.

There are different methods to fix such a problem. One might work better
than the other for some cases, so you’ll first use one to get the application
working, and then move on to the other variants.

Eclipse Rich Ajax Platform 93

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

First, a new plug-in has to be created, named r ap_conpat . It should go
here:

C. \ AppDev\ RAP\ sour ce\ rap_conpat

The plug-in needs to depend on or g. ecl i pse. r ap. ui . After adding the
dependency, you create the package nai | deno and put the class
MyAct i onFact or y with the following code into it:

public abstract class M/ActionFactory {

private static class WrkbenchPopupActi on extends
Action inplenments | WrkbenchAction {

private final String title;
private final String text;
private final |WrkbenchW ndow wi ndow;,

Wor kbenchPopupAction(String title, String text,
| Wor kbenchW ndow wi ndow) {
super(title);
this.title =title;
this.text = text;
t hi s. wi ndow = w ndow,

}

public void run() {
MessageDi al og. openl nf or mati on(w ndow. get Shel | (),
title, text);
}

public void dispose() {
}

94 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

public static final ActionFactory ABOUT =
new Acti onFactory("about") {

}

publ i c | WrkbenchAction create(

| Wor kbenchW ndow wi ndow) {
if (window == null) {
t hrow new ||| egal Argunent Exception();
}
Wor kbenchPopupActi on action =
new Wor kbenchPopupAct i on(" About ",
"We have to build about text here",
W ndow) ;
action.setld(getld());
action. set Text (Wr kbenchMessages. get ().
About Acti on_text);
action. set Tool Ti pText (Wr kbenchMessages. get ().
About Acti on_t ool Ti p);

return action;

That code is to some extent copied from the original SWT source of the
ABOUT action, modified with what is at your disposal from the RAP

runtime.

After saving, you can change line 51 of the
Appl i cationActi onBar Advi sor class from this:

about Action = ActionFactory. ABOUT. cr eat e(w ndow) ;

to this:

about Action = M/Acti onFactory. ABOUT. cr eat e(w ndow) ;

After you save, Eclipse now will report a new error:

MyActi onFactory cannot be resol ved

Eclipse Rich Ajax Platform 1

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

This is caused by two settings that have not been changed yet. First, the
rap_conpat plug-in needs to export this package for usage by others. To
enable this, open the pl ugi n. xni file of that plug-in and go to the Runtime
tab. Click the “add” button, select the mai | denp package, and save.

Second, open the pl ugi n. xm file of the main mai | deno plug-in. On the
Dependencies tab, add r ap_conpat . As with the Eclipse user interface
plug-ins, make it optional on its properties page to allow the plug-in to start
in RCP mode, in which this compatibility plug-in will not exist.

After saving, all compile errors should be gone.

Adding the Entrypoint

Before running mai | deno, you need to add the Ent r ypoi nt for RAP.
Unfortunately, this is a RAP-specific API. As the Ent r ypoi nt extension
point is defined in the pl ugi n. xn file, you should use the same approach
as for the bindings extension point (described in the “Fixing Extension
Points” section), but this time creating r ap_n=i | deno in

C. \ AppDev\ RAP\ sour ce\rap_nai | deno.

Go to the “Extensions” tab and add or g. ecl i pse. rap. ui . entrypoi nt.

Click the class*: link next to the generated class name
rap_mai | deno. Ent r yPoi nt 1 to generate the Ent r ypoi nt class.

Put the following code into it:

public int createU () {
Di splay display = PlatformJ .createbD splay();
Wor kbenchAdvi sor advi sor =
new Appl i cati onWr kbenchAdvi sor ();
return PlatfornmJ.creat eAndRunWr kbench(di spl ay,
advi sor) ;

96 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Running maildemo in RAP

From the main menu, select Run » Run Configurations. Select RAP
Application and click the New icon on the top left.

Put the ID r ap_mmai | deno. ent r ypoi nt 1 into the Entry Point field, and
select Apply and then Run.

The application should now show up, working the same way as the original
RPC one.

Rerunning the RCP Version

Close Eclipse and switch to the RCP workspace at C: \ AppDev\ RCP\ ws. In
this workspace, you will now get one compile error and a problem that is
not reported by Eclipse, because it is a logical problem.

Because the r cp_mai | denp plug-in is not yet in the workspace, the
bindings extension point will no longer be used by the RCP version of
mai | deno.

To prevent you from forgetting to import it, do it immediately using File »
Import » Existing Projects from File System, and using C: \ AppDev\ RCP
\ sour ce\ as the root path to import the plug-in from.

The compile error was caused when you introduced the MyAct i onFact ory
class for solving the RAP errors. Now you have to do the same for RCP.
Create the plug-in r cp_conpat in C: \ AppDev\ RCP\ sour ce\ r cp_conpat ,
just as described in the “Fixing Nonexistent APIs” section.

For this plug-in, add the dependency or g. ecl i pse. ui and create the
abstract class MyAct i onFact ory in the mai | denp package. It can simply
extend from or g. ecl i pse. ui . acti ons. Acti onFact ory and do nothing
else:

Eclipse Rich Ajax Platform 97

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

public abstract class M/Acti onFactory extends
ActionFactory {

protected MyActionFactory(String actionld) {
super (actionld);
}

}

Make sure you export it on the Runtime tab. Now you only have to add the
dependency to r cp_conpat , which you do on the Dependencies tab of the
configuration from nmai | deno. It should now list the following
dependencies:

= org.eclipse.core.runtine

= org.eclipse.ui (optional)

"= org.eclipse.rap.ui (optional)
" rap_conpat (optional)

*= rcp_conpat (optional)

After saving all files, you can run the application, but you need to update
the existing run configuration to include the two new plug-ins on the Plug-
ins tab of the run configuration. The last caveat remaining is on the
Configuration tab of the run configuration (see Figure 5-2). When making
changes to plug-in dependencies, if you don’t select the check box labeled
“Clear the configuration area before launching,” odd errors, such as OSGi
not starting due to missing bundles, or runtime exceptions from the RAP
code, might occur.

98 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Figure 5-2. The launch configuration

Wrapping Up

While there were many projects and settings involved in making nwi | deno
run in RAP and RCP, it resulted in a sound setup. In the end, you created a
plug-in fragment for both platforms and a compatibility plug-in for both
platforms. With this setup, all issues can be resolved.

Note When working with two workspaces, it is important to “refresh”
the projects after switching workspaces to detect changes on the file system
that might be cached by Eclipse. You can refresh projects by selecting them
and pressing F5, or choosing Refresh from the context menu. If a clean
build of all sources isn’t invoked automatically by Eclipse, I recommended
performing one. You can do this from the main menu by selecting Project »
Clean.

Eclipse Rich Ajax Platform 99

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

More Single-Sourcing Techniques

In addition to the methods just described, there are still a few variations
that might come in handy and provide easier or more elegant solutions.

Using Heavy Reflection

Rather than putting facade code into separate plug-ins (r ap_conpat and

r cp_conpat , in this case), you could also put them in the platform-specific
fragment. This, however, would require using reflection to load the class at
runtime, rather than having compile-time dependencies that you could have
when using a compatibility plug-in that contains the appropriate code. This
is because plug-in fragments are merged at runtime only, and thus the
classes are not available at compile time. The advantage, however, would
be that one platform-specific plug-in fragment would be enough.

Let’s try this with your example project. Move the MyAct i onFact ory
class to the r ap_nmi | deno fragment—for example, into the

rap_mai | demo package. Then delete the r ap_conpat plug-in. Eclipse
should take care of removing the dependencies where they were referenced
before. Now, in the main mai | denmo plug-in, create the f acades package
and put the following class into it:

public final class ActionFactoryFacade {
public static final ActionFactory ABOUT() {

try {

try {
Field f =

Acti onFactory. cl ass. get Decl ar edFi el d(" ABOUT") ;
return (ActionFactory) f.get(null);
} catch (NoSuchFi el dException e) {
Cl ass nyd ass =
Cl ass. forNanme("rap_nai | deno. MyActi onFactory");
Field f = nyd ass. get Decl ar edFi el d(" ABOUT") ;
return (ActionFactory) f.get(null);

100 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

} catch (Exception e) {
t hrow new Runti neExcepti on(
"Nei ther RCP nor custom cl ass worked");

}

Now you can use

about Action =
Acti onFact or yFacade. ABOUT() . creat e(w ndow) ;

instead of
about Action = M/Acti onFactory. ABOUT. cr eat e(w ndow) ;

The reflection code inside this pattern can vary depending on what should
be hidden behind this facade. In this case, it is just a static field.

Using reflection in general and exception handling with reflection for
specific situations is always a bit tricky. This code might not be 100
percent fail-proof, because reflection calls can throw
SecurityExcepti ons, but it works and illustrates the concept.

First, you check if you can get the st at i ¢ field from the Acti onFactory.
If it works, you know that you are executing your application against RCP
code, or possibly newer RAP code, where this field is implemented.

After introducing this facade, the plug-in r cp_conpat is no longer required
in the RCP workspace, allowing you to clean up a bit more.

The problem with this solution is that the reflection done here is a bit
messy and there is actually no visible contract for that interface. The good
part of this solution is that it allows graceful enhancements, because it will
automatically adapt to new RAP versions that supply the previously
unimplemented code.

Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Using Interfaces and Reflection

You can improve the situation by introducing an interface to better define
the functionality. Interfaces also provide better means to refactor method
invocations and make code easier to test. This is often the best solution.

As a supplement for the factory you already have in the f acades package,
let’s create an interface there called | Acti onFact ory:

public interface | ActionFactory {
Acti onFactory ABOUT();

}
In both the r ap_nwi | deno and r cp_mai | deno plug-ins, you need to create

an implementation, and put them into the f acades package as well, so you
can use a naming convention to retrieve the implementation.

For the RPC version, this is very simple:

public class | ActionFactorylnmpl inplenents
| Acti onFactory {
public ActionFactory ABOUT() {
return ActionFactory. ABOUT,
}

}
In the RAP workspace, this would look like this:

public class | ActionFactorylnpl inplenents
| Acti onFactory {
public ActionFactory ABOUT() {
return MyActi onFact ory. ABOUT;
}

}

It would of course also be possible to move all code from the
MyAct i onFact ory class to the | Acti onFact or yl npl , but for this
example, it should be sufficient to leave it as it is.

The Act i onFact or yFacade now can be simplified to the following:

Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

public final class ActionFactoryFacade {
private static |ActionFactory | NSTANCE;

public static final ActionFactory ABOUT() {
if (INSTANCE == null) {

try {
Cl ass<? extends | ActionFactory> nyC ass =

Cl ass. forNane("facades. | Acti onFactorylnmpl")
.asSubcl ass(| Acti onFactory. cl ass);
| NSTANCE = nyC ass. newl nst ance();
} catch (Exception e) {
t hrow new Runti neExcepti on(
"Qur nam ng pattern nmust be broken");
}

}
return | NSTANCE. ABOUT() ;

}
}
This looks a lot nicer and clearer than before. The Java 5 generics pattern
also allows better typing support, so you should use it wherever possible.
Using a naming pattern, like the f acades package and the class name from
the interface with the | npl suffix, helps to get code organized, but is not
really required.

In both patterns, you can access the ABOUT value as a static field instead of
invoking a member method named ABOUT() ; however, in the example in
which the interface was used, the code is much cleaner:

public final class ActionFactoryFacade {

public static final ActionFactory ABOUT;
static {

try {
Cl ass<? extends | ActionFactory> nyC ass =

Cl ass. forNane("facades. | Acti onFactorylnmpl")
.asSubcl ass(| Acti onFactory. cl ass);

Eclipse Rich Ajax Platform 103

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

ABOQUT = nyC ass. new nstance(). ABOUT() ;
} catch (Exception e) {
t hr ow new Runti meExcepti on(
"Qur nam ng pattern nust be broken");

Note Static initializers are known for unwanted side effects. Here they
only allow you to save two brackets, so you should consider whether they’re
worth the risk. Especially in the context of a more dynamic class, the class
may be loaded before the implementing class is available, resulting in
Cl assNot FoundExcept i ons that mess everything up.

Creating Unimplemented Classes

APIs that are completely unimplemented by RAP (which means that the
complete class does not exist inside the RAP bundles) can easily be
implemented in such a way that the single-sourced code compiles.
Normally, the intention is to make the API work, but not to its full extent.
(If a project might produce a fully functional implementation for a yet
unimplemented API, the RAP team will be very happy to accept
contributions.)

Let’s take the St yl edText class from SWT. It is a somewhat fancy class
that allows text coloration and other visual enhancements for text. Many
projects only use St yl edText for minor visual effects. In these cases, you
could easily accept that in the RAP version this styling will be lost, while it
remains in RCP deployments.

To illustrate the solution, you will enhance the mai | deno plug-in slightly.

104 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Let’s alter lines 42 and 43 of the mai | deno. Vi ewclass from this:

| = new Label (banner, SW.WRAP);
| .setText("This is a nessage!");

to this:

Styl edText s = new Styl edText (banner, SW.WRAP) ;
s.setText("This is a styled nessage!");

Styl eRange range = new Styl eRange();

range.start = 8;

range. |l ength = 16;

range. font Styl e = SW. BOLD;

s. set Styl eRange(range) ;

In RPC, this executes fine and styles the message title in bold. In the RAP
workspace, this will not compile at all, as the St yl edText and
St yl edRange classes are unknown.

To fix this, you create yet another plug-in, called r ap_suppl enent . You
make it depend on or g. ecl i pse. r ap. ui , as you are going to need the
SWT Label class from there.

Then you create the package or g. ecl i pse. swt . cust om where
Styl edText and Styl eRange come from. Now you are going to create a
St yl eRange class inside that package:
public class Styl eRange {
public int start;

public int |ength;
public int fontStyle;

}

This class only contains code that makes your code compile; there is no
functionality needed. Next, you create the St yl edText class:
public class Styl edText extends Label {

public Styl edText (Conposite parent, int style) {
super (parent, style);

Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

public void setStyl eRange(Styl eRange range) { }
}

In the original SWT code, St yl edText has about 8,500 lines of code
(including comments) and extends the Canvas class. This is obviously a
powerful class, so how can you mock it with four lines? The answer is that
you treat St yl edText justas an SWT Label . For each Styl edText
method call you might find in your code, you can create an empty dummy
in this St yl edText clone that just does nothing. It is a quick fix that can
make loads of source code work in RAP with unaltered code but reduced
functionality.

Depending on your required core functionality, you might be able to find a
way to imitate the functionality. For example, you could insert an asterisk
character where the bold text would be:
public void set Styl eRange(Styl eRange range) {
if ((range.fontStyle & SW.BOLD) !'= 0) {
String t = getText();
t = t.substring(0, range.start)
+ "*" + t.substring(range.start,
range. start + range. | ength)
+ "*" + t.substring(range.start + range.length);
set Text (t);

}
}

Admittedly, this is not the most advanced solution, but it’s just meant to

illustrate one option you have when implementing yet unimplemented
APIs.

To make this implementation visible for code outside this plug-in, you have
to declare it as an exported package on the Runtime tab of the plug-in
configuration. After doing that, you can add the r ap_suppl enent plug-in
as a dependency to the mai | deno plug-in. Again, you should make it
optional to allow the RCP client to work without it (because it contains an
implementation of St yl edText).

106 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Patching RAP

Note This technique isn’t supported by any involved party, nor does it
produce good code. However, you might consider using it when you want
zero interference with the original code (e.g., for proof-of-concept work).

Instead of creating additional code using facades to fix the nonexistent
ABQUT action in the Act i onFact ory, you are going to create a patch for
that class that includes an implementation.

First, create a patch fragment the same way as before, giving it the name
rap_pat ch_wor kbench. As the Act i onFact ory is part of

org. eclipse.rap. ui . wor kbench, define it as a host plug-in. Now you
are contributing to the original RAP Workbench plug-in, rather than
creating something stand-alone.

Instead of making a real contribution, you are going to replace the
Act i onFact ory class. There are two requirements for doing this:

1. The host plug-in must read a JAR file from the class path and declare
itself patchable. The RAP team has done this for their plug-ins by using
the manifest entry Ecl i pse- Ext ensi bl eAPI : tr ue and declaring the
JAR file to be named pat ch. j ar.

2. Your plug-in fragment has to create that pat ch. j ar file. This is done on
the “Build” tab of the plug-in configuration.

Open the “Build” tab. There is an entry already called . (period), which
means that the classes are put on the plain class path. Right-click this entry
and select Rename from the context menu. Give it the new name

pat ch. j ar. Now the build will create the pat ch. j ar file.

Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Now your patch fragment will patch the RAP plug-in and will be able to
replace classes. Next, you are going to create that replacement. Create the
class Act i onFact or y inside the package or g. ecl i pse. ui . acti ons.

Now this class needs to be filled with the RAP source code. The easiest
way to obtain this is by importing the or g. ecl i pse. rap. ui . wor kbench
bundle from the Plug-ins view into the workspace as source project. See
the “Running the RAP Sample Application” section of Chapter 4 for details
on how to do that. Locate the Acti onFact ory. j ava file inside the src
folder and copy the whole content of that class over to your freshly created
Act i onFact ory class.

Now you can copy the code from MyAct i onFact ory (see “Fixing
Nonexistent API”) into here and save. Take care to leave the original code
intact and just add the code from the MyAct i onFact or y. During runtime,
your replacement class will be used instead of the RAP-provided one. But
the Eclipse IDE is not yet aware of that, so references to the newly
implemented ABOUT field will still not compile.

To inform the IDE of your patching activities, you have to declare it in the
MANI FEST. MF file (available via the MANIFEST.MF tab of the plug-in
fragment configuration) of the r ap_pat ch_wor kbench:

Ecl i pse- Pat chFragnment: true

Note MANI FEST. M- files are a bit picky. They must end with an
empty newline, and each header has to be on a line on its own.

After doing so the, original source code in
Appl i cati onActi onBar Advi sor

about Action = ActionFactory. ABOUT. cr eat e(w ndow) ;

will now compile without problems.

Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 6: Advanced RAP Features

This chapter contains some examples of advanced features of RAP and
how to use them. These features may or may not be required for a
successful RAP-based application, but many are nice to know and provide
nifty additions to the RAP framework.

Also contained in this chapter is a description on how to write unit tests
that simulate basic user interface behavior that can be viewed while
developing test cases (similar to what Selenium offers).

Changing the Look and Feel

The point of the rich web client movement is to enable web users to use
near-desktop functionality. However, from a usability perspective, it might
be counterproductive to have the exact same user interface on the Web and
the desktop. As described in Chapter 2, there are some expectations
connected with appearance. If Eclipse RAP is to be adopted broadly, its
look and feel must be customizable so that the applications can look more
web-like, fresher, and more modern.

RAP has supported theming and styling from day one, but until RAP 1.1,
this had been based on a proprietary properties file. Since 1.1, this has been
aligned with an open web standard: plain CSS files. RAP now enables
styling in an established way, and more important, in a way that HTML
designers understand. The point with that, having said initially that
developers should not need to understand CSS, is that when it comes to
making a RAP application look more web-like and integrate into the
corporate web application landscape, it often involves people that know
CSS. And it is not that it is an essential part of the development process—
the widgets are all there—it is now about fine-tuning appearance. Let’s
have a look.

Eclipse Rich Ajax Platform 109

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Configuring RAP to Use a Different Theme

First, you need to create the theme CSS file. To get started with this
example, create a folder called t henes in the mai | deno project. In order to
adhere to single-source concepts, you should do this in the RAP-specific
fragment. Inside this folder, you are going to create one folder for each
theme, so that you can place icons there as well and still easily manage
different themes (but this is not mandatory). Inside the r ap_mai | deno
project used in Chapter 5, this would look like Figure 6-1.

Figure 6-1. File structure for CSS files

Create a CSS file named al | bl ack. css inside the al | bl ack folder inside
the t herres folder. The al | bl ack. css file is pretty simple:

*

color: rgb(255, 255, 255);
background-color: rgb(0, 0, 0);
}

The * is a CSS2.1 selector that simply applies to every element.

Note In CSS, all style definitions can either inherit from or overwrite
previous definitions. Using global definitions instead of local element
definitions can affect the user interface in an unintended way.

110 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

SPECIAL RAP CSS

Alongside the CSS2.1 selectors are a few special ones introduced by
RAP. The button element has, for example, the RAP proprietary
attributes PUSH, RADI O, CHECK, and TOGGELE, that match the
corresponding SWT button style:

Button[PUSH { color: rgb(0, 255, 0); }

To apply a CSS class to some widgets in code, RAP supports so-called
variants:

| abel . setDat a(Wdget Util.CUSTOM VARI ANT, "red");

that will match the following:
Label .red { color: rgb(255, 0, 0); }

To declare the plug-in using this CSS file, you have to specify it using the
org. eclipse.rap. ui.thenes extension point. Create that extension
point in the r ap_nmai | deno f ragnent . xm on the Extensions tab, as
shown in Figure 6-2.

Figure 6-2. Creating the theme extension

Eclipse Rich Ajax Platform 111

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Give it the ID rap_nai | deno. al | bl ack, and point the file to
t hemes/ al | bl ack/ al | bl ack. css. The name is just used for displaying
in this editor, so put something nice here.

Applying the Theme

When you run the application, the theme will not yet be active. That is
because just putting files into the plug-in will not trigger any magic. The
plug-in needs to be told to use that CSS file. This can be done multiple
ways. To efficiently ask RAP to use the different theme, you can pass a
reserved parameter called t hene to the servlet. This parameter will contain
the ID of the theme being used:

http://127.0.0.1: 51034/ rap?startup=rap_nai |l deno. entrypoi
nt 1& henme=rap_mai | deno. al | bl ack

As you can see in Figure 6-3, the mail demo now is pretty much black with
white text. Notice that the asterisk selector affects all HTML elements, and
destroys some of the original formatting. Generally, it takes some time to
develop a good CSS file.

112 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Figure 6-3. Running the All Black mail demo application

Branding the Application

The process of making an application look like other applications of the
same vendor is called branding. With branding, certain elements of the
corporate brand are put into the application—usually the company name,
logo, and colors.

While the previous sections described how to work with coloring, you will
now have a look at how to bundle name, logo, and colors together into a
branding for the application.

Additionally, the themes extension point has a branding extension point
available, called or g. ecl i pse. rap. ui . br andi ng. It takes an existing
theme extension and combines it with more branding data.

Eclipse Rich Ajax Platform 113

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

To use the extension, create it in the rap_mai | deno f ragnent . xm file on
the Extensions tab (see Figure 6-4). The generated ID should be fine, so
keep it and fill in the next field, servletName. The servlet name is the
identifier for this application. In the previous examples, it was r ap and was
followed by configuration information for the entry point and theme. In this
example, a good idea for your servlet name would be bl ack. The next two
fields save you from giving away the entry point and theme in the URL.
This not only makes the URL better looking, but also prevents the user
from playing around with it.

For this example, use r ap_mai | deno. ent r ypoi nt 1 for the
defaultEntrypointld field and r ap_nai | deno. al | bl ack for the themeld
field.

The title field value is displayed as the browser title. Additionally, you
could supply an alternate favicon or even a template for the HTML body.
That option was created by RAP as an option to supply HTML code
inserted into the page—for example, for tracking service snippets. Even
more customization is possible using nested addi t i onal Header s
elements, which can provide metatags.

114 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Figure 6-4. Creating the branding extension

Unfortunately, the RAP application launcher integrated into Eclipse
requires an entry point. So the URL opened in the browser by the launcher
will be the following:

http://127.0.0. 1: 54158/ bl ack?st art up=rap_nmai | deno. entryp
ointl

But the startup parameter is actually not required, so removing it and just
opening the more user friendly URL

http://127.0.0. 1: 54158/ bl ack
will also work.

As a last step, you should put any resource files (e.g., CSS files) being used
by your plug-ins into the build path, so that binary builds of the plug-ins
can work later in deployment (see Chapter 7). To do that, open the plug-in
configuration editor of the r ap_mai | deno fragment and switch to the Build

Eclipse Rich Ajax Platform 115

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

tab. On the left side is the project tree shown underneath the label Binary
Build. Make sure to select the t henes directory.

Note The RAP team provides a more sophisticated branding example
of the mail demo in their CVS repository, dev.eclipse.org:/
cvsroot/rt, inside org.eclipse.rap/sandbox/org.eclipse.rap.
mai | deno. ext.

Writing a Custom Widget

Composition of existing RAP widgets does not allow integrating third-
party JavaScript. Especially as today’s APIs for rich web clients are mostly
in JavaScript, you might need to create an integration widget that can
communicate to the third party via JavaScript.

In the following small example, you are going to integrate a basic YouTube
player named CatTube into the Cat Shelter Manager application developed
in Chapter 4 by creating your own RAP widget.

Creating a Java Widget

The Java side of the widget is very simple. It just holds the YouTube video
ID. Let’s create the class Cat Tube in the package cat shel t er . t ube with
the following contents:

public class Cat Tube extends Conposite {
private String videoid = ""

publ i ¢ Cat Tube(Conposite parent, int style) {
super (parent, style);

public void layout() {

/1 1ayout done by javascript!

}

116 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

public void setVideoid(String videoid) {
this.videoid = videoid,

}

public String getVideoid() {
return videoid,

}

public Object get Adapter(C ass adapter) {
bj ect result;
i f(adapter == ILifeCycl eAdapter.class) {
result = new Cat TubeLCA();
} else {
result = super.get Adapt er (adapter);
}

return result;

}
}

And that’s it for the widget part on the Java side. Next, you have to create
the JavaScript part. The missing class Cat TubeLCA and an explanation of it
will follow.

Creating a qooxdoo Widget

Y ou must write the JavaScript using the qooxdoo syntax. It is possible to
use a different framework, unless it conflicts with qooxdoo. You just need
to use the skeleton structure as it is used in the following file. Create the
Cat Tube. j s file inside cat shel t er. t ube:
gx. C ass. defi ne("catshel ter.tube. Cat Tube", {
extend: qgx.ui.layout. CanvasLayout,
construct: function(id) {
t hi s. base(argunents);
this.setHm Attribute("id", id);
this. id =id;
1

Eclipse Rich Ajax Platform 117

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

properties : {
videoid : {
init @ "",
apply : "setVideo"
}
¥

menbers : {
_doActivate : function() {

var shell = null;
var parent = this.getParent();
whil e(shell == null && parent !'= null) {

i f (parent.classna ==
"org.eclipse.swt.wdgets. Shell") {

shell = parent;
}
parent = parent.getParent();
}
if(shell '=null) {
shel | . set ActiveChild(this);
}

}

setVideo : function() {
if (this.getVideoid())({

var t = '<object w dth="425" hei ght="344">"+
' <param val ue="http://ww. yout ube. conf v/ ' +
this.getVideoid() + '" name="novie"></paranp' +

' <enbed src="http://ww. yout ube. confv/'+
this.getVideoid()+ " w dth="425" hei ght="344""+
" type="application/x-shockwave-flash">" +
' </ enbed></ obj ect >' ;
docunent . getEl enment Byl d(this. id).innerHTM. = t;
}
}
}

o),

118 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The first part of this code defines the name for the widget and that it
inherits from CanvasLayout . The constructor named const ruct is a
standard one, but it additionally stores the ID into an internal variable. The
next section defines the properties of this widget. The Java widget has one
property (vi deoi d) that you reflect here. It is initialized with an empty
string, and whenever it is changed, the appl y method (which you’ve
named set Vi deo()) is invoked.

Note gooxdoo will generate getVideoid() and setVideoid()
automatically at runtime. Therefore, you should avoid defining getter and
setter methods with property names yourself.

The menber s block lists all the methods available on this object. The
_doAct i vat e() method is an internal API callback that registers, for
example, focus handling. set Vi deo() is the function that you set to the
appl y hook of the vi deoi d property. The majority of your code goes into
this. The YouTube API is pretty easy, so you just have to construct an
HTML object that will load the Flash video.

Creating a JavaScript-to-Java Connection

Now that you have created the Java and JavaScript sides of the widget, you
need to connect them. This is done by a Li f eCycl eAdapt or (LCA). For
SWT, the Java widget is a normal widget that does nothing, because the
doLayout () method is empty. But by providing a RAP LCA, you can
hook into the various calls made by SWT. To provide the LCA, you have
to implement an Abst r act W dget LCA, which is returned by the

get Adapt er () method in your Cat Tube widget. Alternatively, you can
choose not to implement the get Adapt er () method, and instead place the
LCA into a package following a very strict naming pattern.

Eclipse Rich Ajax Platform 119

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

That pattern for the class and package would be as follows:
<wi dget package>. i nt er nal . <wi dget nane>ki t . <w dget nane>LCA

Because this is pretty complex and also provides no navigable connection
between the widget and the LCA, you create the class Cat TubeLCA and the
package cat shel t er. t ube. The following code goes into it:

public class Cat TubeLCA extends Abstract Wdget LCA {
public void renderlnitialization(Wdget w dget)
throws | OException {
JSWiter witer = JSWiter.getWiterFor(w dget);
String id = WdgetUil.getld(w dget);
witer.newWdget ("catshelter.tube. Cat Tube",
new bject[] { id });

witer.set("appearance", "conposite");
witer.set("overflow', "hidden");
Control LCAUti | .witeStyl eFl ags((Cat Tube) w dget);

}
public void render Changes(W dget wi dget)

t hrows | OException {
Cat Tube tube = (Cat Tube) w dget;
Control LCAUti | . witeChanges(tube);
JSWiter witer = JSWiter.getWiterFor(w dget);
writer.set("videoid", "videoid", tube.getVideoid());
}
public void renderD spose(W dget w dget)
t hrows | OException {
JSWiter witer = JSWiter.getWiterFor(w dget);
writer.dispose();

}

public void readDat a(Wdget w dget) {

}

public void preserveVal ues(Wdget w dget) {
}

Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The render I nitialization() method sets up the widget by writing a
newW dget () method to the JavaScript writer. The ID that goes into the
newW dget () method call has to match exactly the widget name inside the
JavaScript file, and is case sensitive. The second method,

render Changes(), is invoked whenever changes from the Java widget
need to be passed to the JavaScript widget. It is important not to forget the
Control LCAUti | . writeChanges() call, which invokes all the basic
widget manipulation, such as layout. The change you actually want to
transport is a property change. The set () method of the JavaScript writer
takes the Java property name and the JavaScript property name alongside
the new value. In general, you should use the same name for JavaScript and
Java properties, or use constants prefixed with JAVA_and JS_, to reduce
the risk of confusion.

The last method you implement is r ender Di spose(), which takes care of
destroying the widget on the client side to reduce memory consumption.

You did not implement r eadDat a() , which is basically the opposite of
render Changes() . It is the hook to obtain data changes on the JavaScript
side of the Java widget. You also left out pr eser veVal ues(), which
allows you to store some values in the session for reinitializing the widget
when it is recreated after disposing. Neither method is required, because
there is no event that you might to want read from JavaScript and transport
to the Java side.

Creating a View

Now that you have implemented the widget completely, you can create a
view that contains the Cat Tube inside the package cat shel t er. t ube:

public class Cat TubeVi ew extends ViewPart {
public static final String ID = "catshelter.view2";

public void createPartControl (Conposite p) {

Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

p. set Layout (new Gi dLayout (1, true));

Conposite ¢ = new Conposite(p, SW.NONE);

c.set Layout (new GidLayout (3, false));

Formlool kit tk = new Fornifool kit (c.getDi splay());
final Label | = tk.createlLabel (c, "Video ID");
final Text id = tk.createText(c, "Wo-g JVURI");
Button b = tk.createButton(c, "view', SW.PUSH);
final Cat Tube tube = new Cat Tube(p, SWI.FILL);

b. addSel ecti onLi st ener (new Sel ecti onLi stener () {
public void wi dget Def aul t Sel ect ed(Sel ecti onEvent e){

}

public void w dget Sel ect ed(Sel ecti onEvent e) {
t ube. set Vi deoi d(i d. get Text());
}

1),

}
public void setFocus() {}

}

The code for this view is pretty straightforward. It creates a small input
area followed by the new CatTube widget. The Wo- g_JVvURI text is the ID
for a funny cat video that you can play after starting the application. After
the user clicks the button next to the video widget, that text will be set to
the widget via the button’s Sel ect i onLi st ener.

The usual registration of this view in the pl ugi n. xml configuration on the
Extension tab follows. Add a new extension for or g. ecl i pse. ui . vi ews.
Give 1t the ID cat shel t er. vi ew2, the name Cat Tube, and the class
catshel ter.tube. Cat TubeVi ew.

Creating a Resource Definition

Currently, the JavaScript file Cat Tube. j s is defined on the class path, but
it is not included in the application. To include it, open the Extensions tab
of the plug-in configuration again. The extension point name is

org. ecli pse. rap. ui.resources, and your implementation class should

122 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

be named cat shel t er. t ube. Cat TubeResour ce. Create that class and put
following code into it:

public class Cat TubeResource inplenents | Resource {

public String getCharset() {
return "I SO 8859-1";
}

publ i c Regi sterOptions getOptions() {
return Regi sterOptions. VERSI ON,
}

public String getlLocation() {
return "catshelter/tube/ Cat Tube.js";
}

publ i c bool ean isJSLibrary() {
return true;
}

publi c Cl assLoader getLoader() {
return this.getC ass().getd assLoader();
}

public bool ean isExternal () {
return fal se;
}

}

There is nothing special to explain about this class—it basically just
provides some information about the resource defined in the extension
point. The class also contains the option

Regi st er Opt i ons. VERSI ON_AND_COWPRESS, which additionally shrinks
the JavaScript file. If you use this option without VERSI ON, the file will not
be versioned, and browser-caching issues can occur, so I recommend
including it.

Eclipse Rich Ajax Platform 123

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Note Compression in RAP before version 1.2 M2 did not work
correctly. See https://bugs. eclipse.org/bugs/showbug. cgi ?i d=
247791.

Integrating the View

The last step required before launching the application is to integrate the
view. Currently, it is not showing up because it is not used anywhere. You
will fix this by changing the cr eat ePart Cont r ol () method of
cat shel t er. Cat Manager Per spect i ve to add both views and position
them nicely around the editor area:
public void createlnitial Layout (I PageLayout |ayout) {
| ayout . addVi ew(Cat Shel ter Vi ew. | D, | PageLayout. BOTTOM
.5f, layout.getEditorArea());

| ayout . addVi em Cat TubeVi ew. | D, | PagelLayout . LEFT,
.5f, CatShelterView |ID);
}

After starting the application, everything should work now. And you
should be able to play the YouTube video from the embedded player (see
Figure 6-5). If the video doesn’t come up, the vi deol d might have become
invalid over time.

Note The RAP team also provides a complex custom widget example
using GMaps in their CVS repository, dev. ecl i pse.org:/cvsroot/rt,
inside or g. ecl i pse. rap/ sandbox/ org. ecl i pse. rap. deno. gnaps.

Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Figure 6-5. The Cat Shelter Manager with CatTube

RAP Without the Workbench

Because RAP is very modular, it allows the development of applications
that don’t use the Workbench concept at all. Even though the main benefit
of RAP comes from advanced RCP concepts, it can support some less
complex use cases as well. For example, it could allow developers to
quickly develop small applications or prototypes.

Instead of using the Workbench and its view concept, you could obtain the
Shel | element directly in the entry point. The Shel | is the main container
object to which you can add SWT widgets to.

Eclipse Rich Ajax Platform 125

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The following code demonstrates how to use the simple Shel | to display a
basic but easy-to-develop application:

public class Hellowrld inplenments |IEntryPoint {

public int createU () {
Di splay display = new Display();
Shel |l shell = new Shell (display, SW.SHELL TRIM;
shel | . set Si ze(300, 300);
shel | . set Layout (new Fi || Layout ());

shel | .setText("Hello World!'");

Label | = new Label (shell, SW. NONE);
| .setText("This is very basic");

shel | . open();
whi l e(!shell.isDi sposed()) {
i f(!display.readAndDi spatch()) {
di spl ay. sl eep();
}
}

return O;

This 1s already enough to be run inside a new plug-in project that has a
dependency to or g. ecl i pse. rap. ui and this Hel | oWbr | d class as the
extension for the extension point or g. ecl i pse. rap. ui . entrypoi nt
defined. When run, the application should look like the one displayed in
Figure 6-6.

126 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Figure 6-6. A RAP application without the Workbench

You could also use, for example, the Forms Framework used in Chapter 4
or custom widgets inside the Shel | element. The downside of developing
like this is that it does not enforce good modularization. But it is also
possible to refactor such an application later to use the full Workbench
capabilities, because Shel | inherits from Conposi t e just as Vi ew does.

Unit Testing in RAP

RAP supports standard JUnit testing. It is pretty straightforward. For
example, in the Cat Shelter Manager application, you can create the

Cat Shel t er Test class inside the cat shel t er package. You should
ideally create this class in a separate Sour ceFol der called t est . The test
case you are going to write checks if the application is able to open
perspectives successfully. Use the code on the next page for this test case:

Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

public class Cat Shel ter Test extends Test Case {

public void testOpenAndC oseView) ({
openPer spective();
| Wor kbenchPage page = get Page();
assert Equal s(2, page. get Vi ewRef erences() .| ength);
page. hi deVi ew(page. get Vi ewRef erences()[0]);
assert Equal s(1, page. get Vi ewRef erences() .| ength);

}

private void openPerspective() {
| Per specti veDescriptor descriptor =
Pl at f or mJI . get Wor kbench()
. get Per specti veRegi stry()
.findPerspectiveWthld("catshelter. perspectivel”);
get Page() . set Perspecti ve(descriptor);

private | WrkbenchPage get Page() {
| Wor kbench wor kbench = Pl atfornlJ . get Wor kbench() ;
| Wor kbenchW ndow wi ndow =
wor kbench. get Act i veWor kbenchW ndow() ;
return wi ndow. get Acti vePage() ;

}

Note Currently, the RAP JUnit test runner only supports JUnit 3.x-
style test cases. There is no support for annotation-based test cases yet.

This very simple test class inherits from the standard JUnit test case
(junit.framework. Test Case). However, it cannot be run using the
standard JUnit test case runner. To make the RAP JUnit test runner
available, you have to add two additional dependencies to the pl ugi n. xm
configuration on the Dependencies tab:

128 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

org.eclipse.rap.junit

org.eclipse.rap.junit.runtine
After saving, you can right-click CatShelterTest and select Run As » RAP
JUnit Test. Equinox will start up, followed by Jetty, and the browser will

open. This test case should pass, but the application shown by the browser
will not look like the one you have created.

Note Run As » RAP JUnit Test will create a new launch configuration,
which by default contains all plug-ins from the workspace and the target
platform. To prevent them from interfering, you can adjust the run
configuration by deselecting some plug-ins from the Bundles tab.

This 1s because the Standard JUnit test case does not send user interface
updates. But usually when developing test cases that work on the user
interface part of an application, it is better to actually see what the test case
is doing, and in which state the user interface is when a test is possibly
failing.

To deal with this need, the RAP team developed the RAPTest Case. To use
it, just replace the ext ends Test Case with ext ends RAPTest Case, like
this:

public class Cat ShelterTest extends RAPTest Case {
/...

}

When you run the test case again, all the user interface updates done during
the tests should be visible in the browser.

Unfortunately, it is not currently possible to run automated headless tests
using the RAP test launcher, but tools from RCP can be used for that.

Eclipse Rich Ajax Platform 129

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Chapter 7: RAP Deployment

This chapter describes the two scenarios already referenced in Chapter 2:
Running a RAP application inside Jetty inside Equinox
Running a RAP application inside Equinox inside a web container

This chapter will use Tomcat, but other web containers will work similarly.

Running RAP in Jetty in Equinox

The recommended deployment uses an OSGi runtime, which contains a
web container. Because OSGi allows easy exchange of bundles during
runtime, it is a very good choice for running enterprise applications. Many
application servers will become OSGi runtimes in the future, so a
framework should be prepared to create OSGi-compatible bundles.

This section describes how to deploy your application to Jetty running in
Equinox.

Preparing the OSGi Runtime

First, you need to set up your OSGi runtime. On Windows, create a
directory called C: \ rap_depl oy\ and a subdirectory called
C:\rap_depl oy\ pl ugi ns\ . Copy from your Eclipse IDE the following
directory and two files from the pl ugi ns directory into
C. \rap_depl oy\ pl ugi ns:

org. eclipse. equi nox. | auncher.w n32. wi n32. x86_1.0. 101. =

R3x_v20080731
org. ecl i pse. equi nox. | auncher _1. 0. 101. R34x_v20080819. j ar

org. eclipse. update. configurator_3.2.201. R34x_*-
v20080819. j ar

Eclipse Rich Ajax Platform 131

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

org. ecl i pse. equi nox. | auncher is the main OSGi library, and

org. ecl i pse. equi nox. | auncher. w n32. wi n32 is just a platform-
specific plug-in fragment, which works the same way the r ap_n=i | deno
fragment works for solving platform issues.

org. ecl i pse. updat e. conf i gur at or looks a bit misplaced, but it takes
care of installing all available plug-ins into OSGi.

Note The actual version number will vary depending on your Eclipse
version. The first item in the preceding list is a platform-specific plug-in
fragment shipped as a directory, not a JAR file.

Additionally, a launcher binary is required. Copy ecl i pse. exe from your
Eclipse installation into C: \ r ap_depl oy as well. This will be used as a
Windows-compatible launcher to start the OSGi Equinox runtime.

As a last step, create C: \ r ap_depl oy\ configuration\config.ini,a
configuration file that will instruct OSGi what to do on startup, and put the
following code into it:

#Normal |y the eclipse | auncher expects an eclipse app
ecl i pse.ignoreApp=true

#Do not term nate idle OSG runtine

0sgi . noShut down=t r ue

#Jetty will use this property to determ ne the port
or g. osgi . service. http. port=7070

#This is what shall be started

0sgi . bundl es=or g. ecl i pse. equi nox. common@: start, =
org. eclipse. update. configurator@:start, =
org.eclipse.rap.ui @:start,naildeno_feature@: start, =
org. eclipse.equinox. http.jetty@: start, =

org. eclipse. equi nox. http.registry@i: start

osgi . bundl es. defaul t StartLevel =4

132 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

The osgi . bundl es instructions have to go on one line. They tell Equinox
to load itself first, and then load the Eclipse helper that will initialize all
other bundles. Then RAP will be started, followed by mai | deno_f eat ure,
which you will create in the next section. Afterward, Jetty is instructed to
start. Each bundle is followed by the start level and an instruction on what
to do: start. If : st art were omitted, the bundle would just be loaded, but
not yet activated.

Now, as the directories, plug-ins, and executable are set up and the OSGi
platform has been configured completely, you can go ahead and create an
OSGi bundle to deploy inside Equinox.

Creating and Exporting a Feature

You will reuse the mai | deno plug-in created in Chapter 5. After opening
the RAP workspace, you have to create a feature. Select File » New »
Other from the main menu, and select Feature Project.

Name the project mai | deno_f eat ur e, and on the next page of the wizard,
mark all plug-ins as required, except RAP demo, RAP, standard JUnit, and
any source plug-ins. In total, you should have 31 plug-ins, including the
mai | deno and r ap_nai | deno plug-ins (see Figure 7-1).

Note JUnit is only required for testing, so it is not deployed.
Depending on the Eclipse download used, source plug-ins might be made
available by the IDE. They would do no harm but increase the size of the
deployment package.

Eclipse Rich Ajax Platform 133

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Figure 7-1. Selecting plug-ins for the OSGi feature project

After creation, right-click the mai | deno_f eat ur e project and select
Export » “Deployable features.”

In the dialog, choose to export to the file system using the path
C:\rap_depl oy. The export wizard will automatically put the plug-ins
into the pl ugi ns subdirectory.

134 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Running the Application in OSGi

Running the application is not very complicated. Just run it from
C:\rap_depl oy:
ecli pse -consol e

A new OSGi console will pop up, giving some debug output of Jetty
starting, as shown in Figure 7-2.

Figure 7-2. Equinox startup output

After the startup completes, the application will be accessible via the port
specified in the configuration file. For example, starting the application
with the black theme created in Chapter 6 can be done with the following:

http://1ocal host: 7070/ bl ack

Eclipse Rich Ajax Platform 135

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Running RAP in Equinox in Tomcat

Because it is not currently possible with every application server to deploy
OSGi bundles directly, this section shows you how to deploy to a web
container.

Preparing the Web Container

The sweet spot of running RAP inside a web container is that it is
completely transparent for the deployer. By going this way, RAP looks
exactly like any other web application.

Any standard web application server can be used. For the next steps, you
will use Apache Tomcat, as it is small, free, and widely used. This book
assumes that it has been installed to C: \ apache-t ontat - 6. 0. 18.

There are no additional setup steps required for the application server, but
the creation of the RAP web archive is slightly more complicated than
deploying OSGi with the integrated Jetty.

Creating and Exporting a Web Archive

Next, you’ll create another feature intended to be run in a web archive
(WAR).

Name it mai | deno_war and select the plug-ins the same way as for the
OSGi deployment, but make sure to leave out four additional bundles:

j avax. servl et, org. apache. conmons. | oggi ng,

org. eclipse. equi nox. http.jetty,andorg. nortbay.jetty (see
Figure 7-3). You do not need those, as you have an external web container.
If you include them, they will cause class-loading conflicts with the classes
provided by the web container.

136 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Figure 7-3. Selecting plug-ins for the WAR feature project

Right-click the feature and select Export » “Deployable features.”

In the dialog, export to the file system using the path

C:\rap_web_depl oy\ VEB- | NF\ ecl i pse, which you will use to create the
WAR file from. The export wizard will automatically put the plug-ins into
the pl ugi ns subdirectory correctly.

Next, you need two additional files: ser vl et bri dge. j ar and
org. eclipse. equi nox. http.servletbridge_1.0.0. HEAD. j ar.
Normally, they would need to be compiled from source from the Equinox

Eclipse Rich Ajax Platform 137

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

project. For convenience, however, they can be downloaded from the
book’s web site, at www. r ap- book. coni ser vl et bri dge. zi p.

The first file needs to go into C: \ r ap_web_depl oy\ VEB- | NF\ | i b and the
latter into C: \ r ap_web_depl oy\ VEB- | NF\ ecl i pse\ pl ugi ns. Both are
responsible for delegating the request from the web server into the OSGi
runtime.

Note More information about running Equinox inside a servlet
container can be obtained from the Equinox project web site, in the
Embedding Equinox in a Servlet Container section, at www. ecl i pse
. or g/ equi nox/ server.

As with the stand-alone OSGi setup, you utilize ecl i pse. updat e
.configurator to load all plug-ins as OSGi bundles. Copy the following
JAR file from your Eclipse IDE plug-ins directory:

org. eclipse. update.configurator_3.2.201. R34x_™-
v20080819. j ar

to this directory:
C.\rap_web_depl oy\ EEB- | NF\ ecl i pse\ pl ugi ns

Create the configuration file for OSGi at C: \ r ap_web_depl oy\ EB-
| NF\ ecl i pse\ confi guration\config.ini with the following content:

0sgi . bundl es=or g. ecl i pse. equi nox. compn@: start, =
org. eclipse. update.configurator@tart, -

org. eclipse. equi nox. http.servletbridge@tart, =
org. eclipse.equinox. http.registry@tart, -

mai | deno_war @t art

osgi . bundl es. defaul t Start Level =4

138 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

As before, the OSGi bundles need to all go on one line. The last file that
needs to be created i1s web. xnl in C:\rap_web_depl oy\ VEB- | NF, which
instructs the web container what to do with this WAR.

The contents should look like this:

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE web-app PUBLIC "-//Sun M crosystens, Inc.//DTD
Web Application 2.2//EN
“http://java. sun. conlj 2ee/ dt ds/ web-app_2 2.dtd">
<web- app i d="WebApp" >
<servlet id="bridge">
<servl et - name>equi noxbri dgeser vl et </ servl et - nane>
<servl et-class>
org. ecli pse. equi nox. servl et bri dge. Bri dgeSer vl et
</ servl et-class>
<init-paranp
<par am nane>conmmandl| i ne</ par am name>
<par am val ue>- consol e</ par am val ue>
</init-paranp
<l oad- on- st artup>1</| oad- on- st art up>
</ servl et>
<servl et - mappi ng>
<servl et - name>equi noxbri dgeser vl et </ servl et - nane>
<url-pattern>/*</url-pattern>
</ servl et - mappi ng>
</ web- app>

Note The init-param commandl i ne will activate the console of

OSGi to appear in the Tomcat console. When the application works OK and

does not need debugging of OSGi bundles any more, you should remove

this parameter.

Eclipse Rich Ajax Platform 139

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

As a last step, you need to actually create the WAR file. Zip the WEB- | NF
folder and name the result mai | deno. war . Make sure that inside the
archive, the first level is WEB- | NF.

Place this WAR file in the webapps folder of the Tomcat installation and
start the server. The output will contain the following:

| NFO Depl oyi ng web application archive mail deno. war

osgi >
There will be log output afterward that mixes into the console; press Enter
to clear that.

Now you are able to access the application in the port specified by the web
container. Additionally, as you have published a WAR, you need to prefix
the servlet name with the context root. In case of Tomcat, the context root
is the name of the WAR file deployed. For example, you can launch the
black configuration from the mai | deno WAR with the following URL.:

http://1 ocal host: 8080/ nai | deno/ bl ack

Note In case of problems, it is worth checking the log file located in
C:. \ apachet ontat 6. 0. 18\ wor k\ Cat al i na\ | ocal host \ nai | deno\
ecl i pse\configuration.

A very common error is a missing dependency, which can be discovered
easily from the log file. For example, it could contain a line like this:
Bundl e org. eclipse. update.configurator@tart not found.

140 Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

downloaded from: lib.ommolkefab.ir

Related Titles

Asleson, Ryan, and Nathaniel T. Schutta. Foundations of Ajax. Berkeley,
CA: Apress, 2005.

Gurumurthy, Karthik. Pro Wicket. Berkeley, CA: Apress, 2006.

McAffer, Jeff, and Jean-Michel Lemieux. Eclipse Rich Client Platform:
Designing, Coding, and Packaging Java™ Applications. Amsterdam:
Addison-Wesley, 2005.

McAffer, Jeff, Paul Vanderlei, and Simon Archer. Equinox and OSGi: The
Power Behind Eclipse. Amsterdam: Addison-Wesley, 2009.

Silva, Vladimir. Practical Eclipse Rich Client Platform Projects. Berkeley,
CA: Apress, 2008.

Smeets, Bram, Uri Boness, and Roald Bankras. Beginning Google Web
Toolkit: From Novice to Professional. Berkeley, CA: Apress, 2008.

Eclipse Rich Ajax Platform

downloaded from: lib.ommolkefab.ir

http://lib.ommolketab.ir
http//lib.ommolketab.ir

